
Interlanguage Test report - Java | Python

1. Creating Key Pairs in Java and verifying if the shared keys generated in both
environments are the same.

● Creating a set of keypairs in Java:

// Generate Key Pair for User 1.

DHKeyPair keyPair1 = KeyUtil.generateKeyPair();

System.out.println("Key Pair 1 ==> "+ keyPair1.toString());

// Generate Key Pair for User 2.

DHKeyPair keyPair2 = KeyUtil.generateKeyPair();

System.out.println("Key Pair 2 ==> "+ keyPair2.toString());

● Output:

● Generating Shared Keys for the above keypairs in Java:

// Generate Shared Key with User 1's Private Key and User 2's Public Key.

String sharedKey1 = KeyUtil.generateSharedKey(keyPair1.getPrivateKey(),

keyPair2.getPublicKey());

System.out.println("SharedKey1 ==> "+ sharedKey1);

// Generate Shared Key with User 2's Private Key and User 1's Public Key.

String sharedKey2 = KeyUtil.generateSharedKey(keyPair2.getPrivateKey(),

keyPair1.getPublicKey());

System.out.println("SharedKey2 ==> "+ sharedKey2);



● Output:

● Generating Shared keys for the same key pairs in Python:

keypair1 = key_util.DHKeyPair(

private_key="MC4CAQAwBQYDK2VuBCIEIE3ks5ncg1yyTsgPaENupalAE3CGUJKtnilmfzgfOwXI",

public_key= "MCowBQYDK2VuAyEAx4C8YJ4HFeyn3xqaiggb2wzj/EpuHhNA91L8ODhFTzw=")

keypair2 = key_util.DHKeyPair(

private_key="MC4CAQAwBQYDK2VuBCIEIMWmoHoC/OI/YyNNCh8sJIJBOUvcm7DctxzAis6HsIVH",

public_key= "MCowBQYDK2VuAyEAsUsihdnQihvE6v2Dsy4zTNDHFDYrV3U6zJUtX7wb4Ws=")

shared_key1=key_util.generate_shared_key(keypair1.private_key,keypair2.public_key)

shared_key2=key_util.generate_shared_key(keypair2.private_key,keypair1.public_key)

println("shared_key1:",shared_key1)

println("shared_key2:",shared_key2)

● Output:

Observation:
Shared keys generated from both utilities for the same set of keypairs generated from the Java

utility are the same.



2. Encrypting the text in Java and decrypting in Python (Using above shared keys)

● Encrypting the text in java

// Initializing the raw text to be encrypted.

String rawData = "Hello This is ONDC Test Data";

// Encrypting the raw data.

String encryptedData = EncryptionUtil.encryptData(sharedKey1, rawData);

System.out.println("Encrypted Data ===> " + encryptedData);

● Output:

● Decrypting the above text in python:

encrypted_data =

"eyJub25jZSI6IlA4M2VJV0xFVk5IMjUxblQiLCJlbmNyeXB0ZWRfZGF0YSI6Im5oZTFGTmhnaDZQZUFzUC9vW

WxKWThQWlhWSTJ3dkpZNVVsZnh3XHUwMDNkXHUwMDNkIiwiaG1hYyI6IlNRMEIrc2p5UkFSQXJLc2ovS2lKSkF

cdTAwM2RcdTAwM2QifQ=="

decrypted_data=encryption_util.decrypt_data(shared_key2,encrypted_data)

println("decrypted Data ===> ",decrypted_data)

● Output:

Observation:
Data encrypted in Java utility was decrypted successfully in Python Utility.



3. Generating Key Pairs in Python and verifying whether the shared keys generated
in both environments are the same:

● Generating a set of Key pairs in Python:

keypair1=key_util.generate_key_pair()

keypair2=key_util.generate_key_pair()

print("key_pair_1.public_key:", keypair1.public_key)

print("key_pair_1.private_key:", keypair1.private_key)

print("key_pair_2.public_key:", keypair2.public_key)

print("key_pair_2.private_key:", keypair2.private_key)

● Output:

● Generating Shared key in Python:

shared_key1=key_util.generate_shared_key(keypair1.private_key,keypair2.public_key)

shared_key2=key_util.generate_shared_key(keypair2.private_key,keypair1.public_key)

println("shared_key1:",shared_key1)

println("shared_key2:",shared_key2)

● Output:



● Generating shared key in Java for the above key pairs:

String publicKey1 =

"MCowBQYDK2VuAyEAm9xpzjzSOzhZh/bXWIOVYftXWEZdpGl53kMQML9+vD4=";

String privateKey1 =

"MC4CAQAwBQYDK2VuBCIEIHg/4IQYx/BWwihhLhzFD4RAhYBCElHHSNz7gjMrtSRu";

String publicKey2 =

"MCowBQYDK2VuAyEATay/vLATgWbZg0VmWzYluEZ6R7BADZ6aSDrpsDorMR4=";

String privateKey2 =

"MC4CAQAwBQYDK2VuBCIEIAjYZfcV30LUTe2Jg1PtNF3X/FXEG42HKTX+04lyVEdF";

// Generate Shared Key with User 1's Private Key and User 2's Public Key.

String sharedKey1 = KeyUtil.generateSharedKey(privateKey1, publicKey2);

System.out.println("SharedKey1 ==> "+ sharedKey1);

// Generate Shared Key with User 2's Private Key and User 1's Public Key.

String sharedKey2 = KeyUtil.generateSharedKey(privateKey2, publicKey1);

System.out.println("SharedKey2 ==> "+ sharedKey2);

● Output:

Observation:
The shared keys generated for both the utilities with the same set of keypairs generated from

python utility are the same.



4. Encrypting the text in Python utility and decrypting it in Java utility:

● Encrypting in Python utility:

raw_data = "Hello This is ONDC Test Data"

encrypted_data=encryption_util.encrypt_data(shared_key1,raw_data)

println("Encrypted Data ===> ", encrypted_data)

● Output:

● Decrypting the above text in Java utility:

String encryptedData =

"eyJub25jZSI6ICJSeUdlOCs0dnRPbWlWbFJ0IiwgImVuY3J5cHRlZF9kYXRhIjogIkFoaEEvVm9sNi9jMVlYQ

jAyclpVUFE1K1R0RVBBdUhJbVQvOGpBPT0iLCAiaG1hYyI6ICIrNUE1d0FxemsxYXpnOHNoMnJHbWRRPT0ifQ=

=";

// Decrypting the Encrypted data.

String decryptedData = EncryptionUtil.decryptData(sharedKey2, encryptedData);

System.out.println("Decrypted Data ===> " + decryptedData);

● Output:

Observation:
Text encrypted in the Python utility was decrypted successfully in the Java utility.


