Interlanguage Test report - Java | Python

1. Creating Key Pairs in Java and verifying if the shared keys generated in both

environments are the same.

e Creating a set of keypairs in Java:

DHKeyPair keyPairl = KeyUtil.generateKeyPair () ;

out .println ("Key Pair 1 ==> "+ keyPairl.toString())

ceyPair?2 Y Jjtil.generateKeyPair () ;

Pair 2 ==> "+ keyPair2.toString())

Key Pair 1 ==> DHKeyPair [publicKey=MCowBQYDK2VuAyEAx4C8YJ4HFeyn3xgqaiggb2wzj/EpuHhNA91L80
DhFTzw=, privateKey=MC4CAQAwWBQYDK2VuBCIEIE3ks5ncglyyTsgPaENupalAE3CGUIKtnilmfzgfOwXI]
Key Pair 2 ==> DHKeyPair [publicKey=MCowBQYDK2VuAyEAsUsihdnQihvE6v2Dsy4zTNDHFDY rvV3U6zJUtX
7wb4Ws=, privateKey=MC4CAQAwWBQYDK2VuBCIEIMWmoHoC/0I/YyNNCh8sJIJBOUvecm7DctxzAis6HSIVH]

e Generating Shared Keys for the above keypairs in Java:

String sharedKeyl = KeyUtil.generateSharedKey (keyPairl.getPrivateKey (),
keyPair2.getPublicKey()) ;

m.out.println ("SharedKeyl ==> "+ sharedKeyl) ;

String sharedKey2 = KeyUtil.generateSharedKey (keyPair2.getPrivateKey (),

keyPairl.getPublicKey()) ;

tem.out.println ("SharedKey2 ==> "+ sharedKey?2) ;




e Output:
SharedKeyl ==> 3e+FNtzeoAF57nB7vr16f2tqHgyDNV2Ff29b9QWIuRo=

SharedKey2 ==> 3e+FNtzeoAF57nB7vr16f2tqHgyDNV2Ff29b9QWIuRo=

e Generating Shared keys for the same key pairs in Python:

keypairl = key
private key="

public key= "MCowBQ

keypair2 = ke
private key="

public_ key= "MC

shared keyl=key util.generate shared key(keypairl.private key,keypair2.public key)

generate shared key(keypair2.private key,keypairl.public key)

println ("sharec keyl:",shared keyl)

println ("sh :",shared key2)

e Output:

shared_keyl: 3e+FNtzeoAF57nB7vrl6f2tqHgyDNV2Ff29b9QWIuRo=
shared_key2: 3e+FNtzeoAF57nB7vr16f2tqHgyDNV2Ff29b9QWIuRo=

Observation:

Shared keys generated from both utilities for the same set of keypairs generated from the Java

utility are the same.



2. Encrypting the text in Java and decrypting in Python (Using above shared keys)

e Encrypting the text in java

String rawData = "Hello This is ONDC Test Data";

String encryptedData = EncryptionUtil.encryptData (sharedKeyl, rawData);

m.out.println ("Encrypt - " + encryptedData) ;

Encrypted Data ===> eyJub25jZSI6I1A4M2VIVOXFVK5IMjUxb1QiLCJ1bmNyeXBOZWRfZGFAYSI6IMS0ZTFGT
mhnaDZQZUFzUCOVWWXKWThQWLhWSTJ3dkpZNVVsZnh3XHUWMDNKXHUWMDNKI iwiaG1lhYyI6I INRMEIrc2p5UkFSQX
JLc20vS21KSkFcdTAWM2RcdTAWM2QifQ==

e Decrypting the above text in python:

encrypted data =
cyJub25jZSI6I1A4AM2Y FVk5IMjUxblQiLCJI1lbmNyeX NRfZGFOYSI6ImS50ZTFGTmhnaDZQZUFzUC

aGlhYyI6I1INRMEIrc2p5SUKES

decrypted data=encryption util.decrypt data(shared keyZ2,encrypted data)

println ("decryrp 1 > ",decrypted data)

e Output:

decrypted Data ===> Hello This is ONDC Test Data

Observation:

Data encrypted in Java utility was decrypted successfully in Python Ulility.



3. Generating Key Pairs in Python and verifying whether the shared keys generated

in both environments are the same:

e Generating a set of Key pairs in Python:

keypairl=k util.generate key pair()

keypair2= ~util.generate key pair()

o

print ("ke oai 1.public , keypairl.public key)
print (" -~ 1l.priv J 2 keypairl.private key)
print ("key - 2. iC y: keypair2.public key)

print ("key pair 2.private key: keypair2.private key)

key_pair_1.public_key: MCowBQYDK2VUAYEAM9xpzjzS0zhZh/bXWIOVYftXWEZdpG153kMQMLI+vD4=
key_pair_1.private_key: MC4CAQAwBQYDK2VuBCIEIHg/4IQYX/BwWwihhLhzFD4RAhYBCE1HHSNz7gjMrtSRu
key_pair_2.public_key: MCowBQYDK2VuAyEATay/vLATgWbZg@VmwWzY LUEZ6R7BADZ6aSD rpsDorMR4=
key_pair_2.private_key: MC4CAQAwBQYDK2VuBCIEIAjYZfcV30LUTe2JglPtNF3X/FXEG42HKTX+041yVEdF

e Generating Shared key in Python:

shared keyl=key util.generate shared key(keypairl.private key,keypair2.public key)
shared key2=key util.generate shared key(keypair2.private key,keypairl.public key)
71:",shared keyl)

y2:",shared key2)

shared_keyl: hXgHvkFK/01lgsbFLxA1i6/JkSxDz52KCzgZQZ9vMm3X8=
shared_key2: hXgHvkFK/01lgsbFLxAi16/JkSxDz52KCzgZQZ9vMm3X8=




Generating shared key in Java for the above key pairs:

g privateKey2 =

K2VuBCIEIAjYZf« 0LUTe2JglPtNF3X/FXEG42HKTX+041yVEdFE" ;

sharedKeyl = KeyUtil.generateSharedKey (privateKeyl, publicKey2) ;

.out.println ("Sha yl ==> "+ sharedKeyl) ;

String sharedKey2 = KeyUtil.generateSharedKey (privateKey2, publicKeyl) ;

em.out.println("S dKey2 ==> "+ sharedKey2) ;

Output:

SﬁaredKeyl ==> thHVkFK/olngFLXAiG/JkSXDZSZKCZgZQZQVMm3X8=

SharedKey2 ==> hXgHvkFK/01gsbFLxAi6/JkSxDz52KCzgZQZ9vMm3X8=

Observation:

The shared keys generated for both the utilities with the same set of keypairs generated from

python utility are the same.



4. Encrypting the text in Python utility and decrypting it in Java utility:

e Encrypting in Python utility:

raw_data = "Hello This is ONDC Test Data"

encrypted data=enc ion util.encrypt data(shared keyl,raw data)

println ("Encrypted Data - ", encrypted data)

Encrypted Data ===> eyJub25jZSI6IC]SeUd10Cs@dnRPbWIlWbFIOIiwgImVuY3J5cHR1ZFOkYXRhIjogIkF
0aEEvVmM9sNi9jMV1YQjAyc 1pVUFE1IK1RORVBBdUhIbVQvOGpBPTAiLCAiaG1lhYyI6ICIrNUE1d@FxemsxYXpnOHN
oMnJHbWRRPTO1ifQ==

e Decrypting the above text in Java utility:

String decryptedData = EncryptionUtil.decryptData (sharedKey2, encryptedData);

em.out.println ("Decrypted Data ===> " + decryptedData) ;

e Output:
Decrypted Data ===> Hello This is ONDC Test Data

Observation:

Text encrypted in the Python utility was decrypted successfully in the Java utility.



