From 5055dc8cdccda1c2dbac265843dad6038b4e703f Mon Sep 17 00:00:00 2001
From: leiqing1
Date: Mon, 8 Aug 2022 10:57:14 +0800
Subject: [PATCH] =?UTF-8?q?=E2=80=98=E2=80=99?=
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
---
README.md | 273 +++++++++++++++++++++++++++---------------------------
1 file changed, 139 insertions(+), 134 deletions(-)
diff --git a/README.md b/README.md
index 20a1f520a3b..3c9f2474384 100644
--- a/README.md
+++ b/README.md
@@ -16,11 +16,10 @@
-
@@ -28,100 +27,70 @@
## News 📢
-* 🔥 2022.6.30 晚20:30,⚡️FastDeploy天使用户邀测沟通会,与开发者共同讨论推理部署痛点问题,欢迎大家扫码报名入群获取会议链接。
-
-

-
-
-* 🔥 2022.6.27 [**⚡️FastDeploy v0.1.0**](https://github.com/PaddlePaddle/FastDeploy/releases/tag/release%2F0.1.0)测试版发布!🎉
- * 💎 发布40个重点模型在8种重点软硬件环境的支持的SDK
- * 😊 支持网页端、pip包两种下载使用方式
-
+* 🔥 2022.8.15 [**⚡️FastDeploy v0.2.0**](https://github.com/PaddlePaddle/FastDeploy/releases/tag/release%2F0.2.0)测试版发布!🎉
+
+ * 💎 升级服务器端(CPU/GPU/Jetson)SDK代码架构,速度SOTA
+ * 😊 支持PyTorch模型部署,如YOLOv5、YOLOv6、YOLOv7等热门模型
## 特性
-
### 📦**开箱即用的推理部署工具链,支持云边端、多硬件、多平台部署**
+
- 网页端点选下载、PIP 安装一行命令,快速下载多种类型SDK安装包
- 云端(含服务器、数据中心):
- - 支持一行命令启动 Serving 服务(含网页图形化展示)
- - 支持一行命令启动图像、本地视频流、本地摄像头、网络视频流预测
- - 支持 Window、Linux 操作系统
- - 支持 Python、C++ 编程语言
+ - 支持 Window、Linux 操作系统
+ - 支持 Python、C++ 编程语言
- 边缘端:
- - 支持 NVIDIA Jetson 等边缘设备,支持视频流预测服务
+ - 支持 NVIDIA Jetson 等边缘设备
- 端侧(含移动端)
- - 支持 iOS、Android 移动端
- - 支持 ARM CPU 端侧设备
+ - 支持 iOS、Android 移动端
+ - 支持 ARM CPU 端侧设备
- 支持主流硬件
- - 支持 Intel CPU 系列(含酷睿、至强等)
- - 支持 ARM CPU 全系(含高通、MTK、RK等)
- - 支持 NVIDIA GPU 全系(含 V100、T4、Jetson 等)
-
-### 🤗**丰富的预训练模型,轻松下载SDK搞定推理部署**
-
-
-
-
-| 模型| 任务 | 大小(MB) | 端侧 | 移动端 | 移动端 |边缘端 |服务器+云端 | 服务器+云端 | 服务器+云端 | 服务器+云端 |
-|---|---|---|---|---|---|---|---|---|---|---|
-|----- | ---- |----- | Linux | Android | iOS | Linux | Linux | Linux | Windows | Windows |
-|----- | ---- |--- | ARM CPU | ARM CPU | ARM CPU | Jetson | X86 CPU | GPU | X86 CPU | GPU |
-| [PP-LCNet](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.3/docs/zh_CN/models_training/classification.md) |Classfication | 11.9 |✅|✅|✅|✅|✅|✅|✅|✅|
-| [PP-LCNetv2](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.3/docs/zh_CN/models_training/classification.md) |Classfication | 26.6 |✅|✅|✅|✅|✅|✅|✅|✅|
-| [EfficientNet](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.3/docs/zh_CN/models_training/classification.md) |Classfication |31.4 |✅|✅|✅|✅|✅|✅|✅|✅|
-| [GhostNet](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.3/docs/zh_CN/models_training/classification.md) |Classfication | 20.8 |✅|✅|✅|✅|✅|✅|✅|✅|
-| [MobileNetV1](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.3/docs/zh_CN/models_training/classification.md) |Classfication | 17 |✅|✅|✅|✅|✅|✅|✅|✅|✅|
-| [MobileNetV2](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.3/docs/zh_CN/models_training/classification.md) |Classfication | 14.2 |✅|✅|✅|✅|✅|✅|✅|✅|
-| [MobileNetV3](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.3/docs/zh_CN/models_training/classification.md) |Classfication | 22 |✅|✅|✅|✅|✅|✅|✅|✅|
-| [ShuffleNetV2](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.3/docs/zh_CN/models_training/classification.md)|Classfication | 9.2 |✅|✅|✅|✅|✅|✅|✅|✅|
-| [SqueezeNetV1.1](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.3/docs/zh_CN/models_training/classification.md) |Classfication |5 |✅|✅|✅|✅|✅|✅|✅|✅|
-| [Inceptionv3](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.3/docs/zh_CN/models_training/classification.md) |Classfication |95.5 |✅|✅|✅|✅|✅|✅|✅|✅|
-| [PP-HGNet](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.3/docs/zh_CN/models_training/classification.md) |Classfication | 59 |✅|✅|✅|✅|✅|✅|✅|✅|
-| [ResNet50_vd](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.3/docs/zh_CN/models_training/classification.md) |Classfication | 102.5 |❌|❌|❌|✅|✅|✅|✅|✅|
-| [SwinTransformer_224_win7](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.3/docs/zh_CN/models_training/classification.md) |Classfication | 352.7 |✅|✅|✅|✅|✅|✅|✅|✅|
-| [PP-PicoDet_s_320_coco](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/GETTING_STARTED_cn.md) |Detection | 4.1 |✅|✅|✅|✅|✅|✅|✅|✅|
-| [PP-PicoDet_s_320_lcnet](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/GETTING_STARTED_cn.md) |Detection | 4.9 |✅|✅|✅|✅|✅|✅|✅|✅|
-| [CenterNet](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/GETTING_STARTED_cn.md) |Detection |4.8 |✅|✅|✅|✅ |✅ |✅|✅|✅|
-| [YOLOv3_MobileNetV3](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/GETTING_STARTED_cn.md) |Detection | 94.6 |✅|✅|✅|✅|✅|✅|✅|✅|
-| [PP-YOLO_tiny_650e_coco](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/GETTING_STARTED_cn.md) |Detection |4.4 |✅|✅|✅|✅|✅|✅|✅|✅|
-| [SSD_MobileNetV1_300_120e_voc](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/GETTING_STARTED_cn.md) |Detection | 23.3 |✅|✅|✅|✅|✅|✅|✅|✅|
-| [YOLOX_Nano_300e_coco](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/GETTING_STARTED_cn.md) |Detection | 3.7 |❌|❌|❌|✅|✅ |✅|✅|✅|
-| [PP-YOLO_ResNet50vd](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/GETTING_STARTED_cn.md) |Detection | 188.5|✅ |✅ |✅ |✅ |✅ |✅|✅|✅|
-| [PP-YOLOv2_ResNet50vd](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/GETTING_STARTED_cn.md) |Detection | 218.7 |✅|✅|✅|✅|✅ |✅|✅|✅|
-| [PP-YOLO_crn_l_300e_coco](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/GETTING_STARTED_cn.md) |Detection | 209.1 |✅|✅|✅|✅|✅|✅|✅|✅|
-| [YOLOv5s](https://github.com/ultralytics/yolov5) |Detection | 29.3|✅|✅|✅|✅|✅|✅|✅|✅|
-| [Faster R-CNN_r50_fpn_1x_coco](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/GETTING_STARTED_cn.md) |Detection | 167.2 |❌|❌|❌|✅|✅|✅|✅|✅|
-| [BlazeFace](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/GETTING_STARTED_cn.md) |Face Detection |1.5|✅|✅|✅|✅|✅|✅|✅|✅|
-| [RetinaFace](https://github.com/biubug6/Pytorch_Retinaface) |Face Localisation |1.7| ✅|❌|❌|✅|✅|✅|✅|✅|
-| [PP-TinyPose](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/GETTING_STARTED_cn.md) |Keypoint Detection| 5.5 |✅|✅|✅|✅|✅|✅|✅|✅|
-| [PP-LiteSeg(STDC1)](https://github.com/PaddlePaddle/PaddleSeg/blob/develop/configs/pp_liteseg/README.md)|Segmentation | 32.2|✅|✅|✅|✅|✅|✅|✅|✅|
-| [PP-HumanSeg-Lite](https://github.com/PaddlePaddle/PaddleSeg/blob/develop/contrib/PP-HumanSeg/README_cn.md) |Segmentation | 0.556|✅|✅|✅|✅|✅|✅|✅|✅|
-| [HRNet-w18](https://github.com/PaddlePaddle/PaddleSeg/blob/develop/docs/train/train_cn.md) |Segmentation | 38.7|✅|✅|✅|❌|✅|✅|✅|✅|
-| [Mask R-CNN_r50_fpn_1x_coco](https://github.com/PaddlePaddle/PaddleSeg/blob/develop/contrib/PP-HumanSeg/README_cn.md)|Segmentation| 107.2|❌|❌|❌|✅|✅|✅|✅|✅|
-| [PP-HumanSeg-Server](https://github.com/PaddlePaddle/PaddleSeg/blob/develop/contrib/PP-HumanSeg/README_cn.md)|Segmentation | 107.2|✅|✅|✅|✅|✅|✅|✅|✅|
-| [Unet](https://github.com/PaddlePaddle/PaddleSeg/blob/develop/docs/train/train_cn.md) |Segmentation | 53.7|❌|✅|❌|❌|✅|✅|✅|❌|
-| [Deeplabv3-ResNet50](https://github.com/PaddlePaddle/PaddleSeg/blob/develop/docs/train/train_cn.md)|Segmentation |156.5|❌|❌|❌|❌|✅|✅|✅|✅|
-| [PP-OCRv1](https://github.com/PaddlePaddle/PaddleOCR/blob/release%2F2.5/doc/doc_ch/ppocr_introduction.md) |OCR | 2.3+4.4 |✅|✅|✅|✅|✅|✅|✅|✅|
-| [PP-OCRv2](https://github.com/PaddlePaddle/PaddleOCR/blob/release%2F2.5/doc/doc_ch/ppocr_introduction.md) |OCR | 2.3+4.4 |✅|✅|✅|✅|✅|✅|✅|✅|
-| [PP-OCRv3](https://github.com/PaddlePaddle/PaddleOCR/blob/release%2F2.5/doc/doc_ch/PP-OCRv3_introduction.md) |OCR | 2.4+10.6 |✅|✅|✅|✅|✅|✅|✅|✅|
-| [PP-OCRv3-tiny](https://github.com/PaddlePaddle/PaddleOCR/blob/release%2F2.5/doc/doc_ch/models_list.md) |OCR |2.4+10.7 |✅|✅|✅|✅|✅|✅|✅|✅|
-
-
-
-## SDK安装
-
-### 方式1:网页版下载安装
-
-- 可以登录[EasyEdge网页端](https://ai.baidu.com/easyedge/app/openSource)下载SDK
-
-### 方式2:pip安装
+ - 支持 Intel CPU 系列(含酷睿、至强等)
+ - 支持 ARM CPU 全系(含高通、MTK、RK等)
+ - 支持 NVIDIA GPU 全系(含 V100、T4、Jetson 等)
+
+## 服务器端
+
+### 🤗**服务端:丰富的预训练模型,轻松下载SDK搞定推理部署**
+
+
+| 任务场景 | 模型 | 大小(MB) | 边缘端 | 服务器/云端 | 服务器/云端 | 服务器/云端 | 服务器/云端 |
+| ------------------------------- | --------------------------------------------------------- | --------------------- | --------------------------------------- | ------------------------------- | -------------------- | ------------------------- | --------------------- |
+| ---- | ---- | ---- | [Jetson](./doc/Jetson.md) | [X86 CPU](./doc/) | [GPU]() | [X86 CPU]() | [GPU]() |
+| ---- | ---- | ---- | Linux | Windows | Linux | Windows | Linux |
+| Classfication | | | | | | | |
+| Detection | [NanoDet-Plus](./model_zoo/vision/nanodet_plus/README.md) | 0.95~2.44 | ✅ | ✅ | ✅ | ✅ | ✅ |
+| | [YOLOR](./model_zoo/vison/yolor/README.md) | | ✅ | ✅ | ✅ | ✅ | ✅ |
+| | [YOLOX](./model_zoo/vison/yolox/README.md) | | ✅ | ✅ | ✅ | ✅ | ✅ |
+| | [Scaled-YOLOv4](./model_zoo/vison/scaledyolov4/README.md) | 4.9 | ✅ | ✅ | ✅ | ✅ | ✅ |
+| | [YOLOv5](./model_zoo/vison/yolov5/README.md) | | ✅ | ✅ | ✅ | ✅ | ✅ |
+| | [YOLOv5_Lite](./model_zoo/vison/yolov5lite/README.md) | 94.6 | ✅ | ✅ | ✅ | ✅ | ✅ |
+| | [YOLOv6](./model_zoo/vison/yolov6/README.md) | 4.4 | ✅ | ✅ | ✅ | ✅ | ✅ |
+| | [YOLOv7](./model_zoo/vison/yolov7/README.md) | 23.3 | ✅ | ✅ | ✅ | ✅ | ✅ |
+| Face Detection | [UltraFace](./model_zoo/vison/ultraface/README.md) | 1.04~1.1 | ✅ | ✅ | ✅ | ✅ | ✅ |
+| | [YOLOv5Face](./model_zoo/vison/yolov5face/README.md) | | ✅ | ✅ | ✅ | ✅ | ✅ |
+| Face Localisation | [RetinaFace](./model_zoo/vison/retinaface/README.md) | 1.7M | ✅ | ✅ | ✅ | ✅ | ✅ |
+| Face Recognition | [ArcFace](./model_zoo/vison/arcface/README.md) | 1.7 | ✅ | ✅ | ✅ | ✅ | ✅ |
+| Keypoint Detection | [SCRFD](./model_zoo/vison/scrfd/README.md) | 5.5 | ✅ | ✅ | ✅ | ✅ | ✅ |
+| Segmentation | [PP-Seg](./model_zoo/vison/ppseg/README.md) | 32.2 | ✅ | ✅ | ✅ | ✅ | ✅ |
+| OCR | [PP-OCRv1](./model_zoo/vison/ppocrv1/README.md) | 2.3+4.4 | ✅ | ✅ | ✅ | ✅ | ✅ |
+| | [PP-OCRv2](./model_zoo/vison/ppocrv2/README.md) | 2.3+4.4 | ✅ | ✅ | ✅ | ✅ | ✅ |
+| | [PP-OCRv3](./model_zoo/vison/ppocrv3/README.md) | 2.4+10.6 | ✅ | ✅ | ✅ | ✅ | ✅ |
+| | | | | | | | |
+
+
+
+### 服务器端快速开始(CPU/GPU/Jetson)
+
+
+### 方式:pip安装
开发者可以通过pip安装`fastdeploy-python`来获取最新的下载链接
- 环境依赖
-
- python >= 3.6
+
+ python >= 3.6
- 安装方式
@@ -130,69 +99,105 @@ pip install fastdeploy-python --upgrade
```
- 使用方式
-
- - 列出FastDeploy当前支持的所有模型
+
+ - 列出FastDeploy当前支持的所有模型
+
```
fastdeploy --list_models
```
- - 下载模型在具体平台和对应硬件上的部署SDK以及示例
+
+ - 下载模型在具体平台和对应硬件上的部署SDK以及示例
+
```
fastdeploy --download_sdk \
- --model PP-PicoDet-s_320 \
- --platform Linux \
- --soc x86 \
- --save_dir .
+ --model PP-PicoDet-s_320 \
+ --platform Linux \
+ --soc x86 \
+ --save_dir .
```
-
- - 参数说明
- - `list_models`: 列出FastDeploy当前最新支持的所有模型
- - `download_sdk`: 下载模型在具体平台和对应硬件上的部署SDK以及示例
- - `model`: 模型名,如"PP-PicoDet-s_320",可通过`list_models`查看所有的可选项
- - `platform`: 部署平台,支持 Windows/Linux/Android/iOS
- - `soc`: 部署硬件,支持 x86/x86-NVIDIA-GPU/ARM/Jetson
- - `save_dir`: SDK下载保存目录
-
-## SDK使用
-### 1 云+服务器部署
- - Linux 系统(X86 CPU、NVIDIA GPU)
- - [C++ Inference部署(含视频流)](./docs/Linux-CPP-SDK-Inference.md)
- - [C++ 服务化部署](./docs/Linux-CPP-SDK-Serving.md)
- - [Python Inference部署](./docs/Linux-Python-SDK-Inference.md)
- - [Python 服务化部署](./docs/Linux-Python-SDK-Serving.md)
- - Window系统(X86 CPU、NVIDIA GPU)
- - [C++ Inference部署(含视频流)](./docs/Windows-CPP-SDK-Inference.md)
- - [C++ 服务化部署](./docs/Windows-CPP-SDK-Serving.md)
- - [Python Inference部署](./docs/Windows-Python-SDK-Inference.md)
- - [Python 服务化部署](./docs/Windows-Python-SDK-Serving.md)
-
-### 2 边缘侧部署
- - ArmLinux 系统(NVIDIA Jetson Nano/TX2/Xavier)
- - [C++ Inference部署(含视频流)](./docs/Jetson-Linux-CPP-SDK-Inference.md)
- - [C++ 服务化部署](./docs/Jetson-Linux-CPP-SDK-Serving.md)
-
-### 3 端侧部署
- - ArmLinux 系统(ARM CPU)
- - [C++ Inference部署(含视频流)](./docs/ARM-Linux-CPP-SDK-Inference.md)
- - [C++ 服务化部署](./docs/ARM-Linux-CPP-SDK-Serving.md)
- - [Python Inference部署](./docs/ARM-Linux-Python-SDK-Inference.md)
- - [Python 服务化部署](./docs/ARM-Linux-Python-SDK-Serving.md)
-
-### 4 移动端部署
- - [iOS 系统部署](./docs/iOS-SDK.md)
- - [Android 系统部署](./docs/Android-SDK.md)
-
-### 5 自定义模型部署
- - [快速实现个性化模型替换](./docs/Replace-Model-With-Anther-One.md)
+
+ - 参数说明
+
+ - `list_models`: 列出FastDeploy当前最新支持的所有模型
+ - `download_sdk`: 下载模型在具体平台和对应硬件上的部署SDK以及示例
+ - `model`: 模型名,如"PP-PicoDet-s_320",可通过`list_models`查看所有的可选项
+ - `platform`: 部署平台,支持 Windows/Linux/Android/iOS
+ - `soc`: 部署硬件,支持 x86/x86-NVIDIA-GPU/ARM/Jetson
+ - `save_dir`: SDK下载保存目录
+
+## 端侧
+
+### 🤗**移动端和端侧:丰富的预训练模型,轻松下载SDK搞定推理部署**
+
+
+| 任务场景 | 模型 | 大小(MB) | 端侧 | 移动端 | 移动端 |
+| ------------------ | ---------------------------- | --------------------- | --------------------- | ---------------------- | --------------------- |
+| ---- | --- | --- | Linux | Android | iOS |
+| ----- | ---- | --- | ARM CPU | ARM CPU | ARM CPU |
+| Classfication | PP-LCNet | 11.9 | ✅ | ✅ | ✅ |
+| | PP-LCNetv2 | 26.6 | ✅ | ✅ | ✅ |
+| | EfficientNet | 31.4 | ✅ | ✅ | ✅ |
+| | GhostNet | 20.8 | ✅ | ✅ | ✅ |
+| | MobileNetV1 | 17 | ✅ | ✅ | ✅ |
+| | MobileNetV2 | 14.2 | ✅ | ✅ | ✅ |
+| | MobileNetV3 | 22 | ✅ | ✅ | ✅ |
+| | ShuffleNetV2 | 9.2 | ✅ | ✅ | ✅ |
+| | SqueezeNetV1.1 | 5 | ✅ | ✅ | ✅ |
+| | Inceptionv3 | 95.5 | ✅ | ✅ | ✅ |
+| | PP-HGNet | 59 | ✅ | ✅ | ✅ |
+| | SwinTransformer_224_win7 | 352.7 | ✅ | ✅ | ✅ |
+| Detection | PP-PicoDet_s_320_coco | 4.1 | ✅ | ✅ | ✅ |
+| | PP-PicoDet_s_320_lcnet | 4.9 | ✅ | ✅ | ✅ |
+| | CenterNet | 4.8 | ✅ | ✅ | ✅ |
+| | YOLOv3_MobileNetV3 | 94.6 | ✅ | ✅ | ✅ |
+| | PP-YOLO_tiny_650e_coco | 4.4 | ✅ | ✅ | ✅ |
+| | SSD_MobileNetV1_300_120e_voc | 23.3 | ✅ | ✅ | ✅ |
+| | PP-YOLO_ResNet50vd | 188.5 | ✅ | ✅ | ✅ |
+| | PP-YOLOv2_ResNet50vd | 218.7 | ✅ | ✅ | ✅ |
+| | PP-YOLO_crn_l_300e_coco | 209.1 | ✅ | ✅ | ✅ |
+| | YOLOv5s | 29.3 | ✅ | ✅ | ✅ |
+| Face Detection | BlazeFace | 1.5 | ✅ | ✅ | ✅ |
+| Face Localisation | RetinaFace | 1.7 | ✅ | ❌ | ❌ |
+| Keypoint Detection | PP-TinyPose | 5.5 | ✅ | ✅ | ✅ |
+| Segmentation | PP-LiteSeg(STDC1) | 32.2 | ✅ | ✅ | ✅ |
+| | PP-HumanSeg-Lite | 0.556 | ✅ | ✅ | ✅ |
+| | HRNet-w18 | 38.7 | ✅ | ✅ | ✅ |
+| | PP-HumanSeg-Server | 107.2 | ✅ | ✅ | ✅ |
+| | Unet | 53.7 | ❌ | ✅ | ❌ |
+| OCR | PP-OCRv1 | 2.3+4.4 | ✅ | ✅ | ✅ |
+| | PP-OCRv2 | 2.3+4.4 | ✅ | ✅ | ✅ |
+| | PP-OCRv3 | 2.4+10.6 | ✅ | ✅ | ✅ |
+| | PP-OCRv3-tiny | 2.4+10.7 | ✅ | ✅ | ✅ |
+
+##
+
+## SDK使用(ARM CPU)
+
+### 1 端侧部署
+
+- ArmLinux 系统(ARM CPU)
+ - [C++ Inference部署(含视频流)](./docs/ARM-Linux-CPP-SDK-Inference.md)
+ - [C++ 服务化部署](./docs/ARM-Linux-CPP-SDK-Serving.md)
+ - [Python Inference部署](./docs/ARM-Linux-Python-SDK-Inference.md)
+ - [Python 服务化部署](./docs/ARM-Linux-Python-SDK-Serving.md)
+
+### 2 移动端部署
+
+- [iOS 系统部署](./docs/iOS-SDK.md)
+- [Android 系统部署](./docs/Android-SDK.md)
+
+### 3 自定义模型部署
+
+- [快速实现个性化模型替换](./docs/Replace-Model-With-Anther-One.md)
## 社区交流
- - **加入社区👬:** 微信扫描二维码后,填写问卷加入交流群,与开发者共同讨论推理部署痛点问题
+
+- **加入社区👬:** 微信扫描二维码后,填写问卷加入交流群,与开发者共同讨论推理部署痛点问题
-
-
## Acknowledge
本项目中SDK生成和下载使用了[EasyEdge](https://ai.baidu.com/easyedge/app/openSource)中的免费开放能力,再次表示感谢。