diff --git a/tests/test_rand_rotate.py b/tests/test_rand_rotate.py index 24a7bad002..79f3036454 100644 --- a/tests/test_rand_rotate.py +++ b/tests/test_rand_rotate.py @@ -52,7 +52,7 @@ def test_correct_results(self, degrees, keep_size, mode, padding_mode, align_cor self.imt[0, 0], -np.rad2deg(angle), (0, 1), not keep_size, order=_order, mode=_mode, prefilter=False ) expected = np.stack(expected).astype(np.float32) - np.testing.assert_allclose(expected, rotated[0], rtol=1e-2, atol=1) + np.testing.assert_allclose(expected, rotated[0]) class TestRandRotate3D(NumpyImageTestCase3D): diff --git a/tests/test_rand_rotated.py b/tests/test_rand_rotated.py index 0144820f43..962ac5fc51 100644 --- a/tests/test_rand_rotated.py +++ b/tests/test_rand_rotated.py @@ -54,7 +54,7 @@ def test_correct_results(self, degrees, keep_size, mode, padding_mode, align_cor self.imt[0, 0], -np.rad2deg(angle), (0, 1), not keep_size, order=_order, mode=_mode, prefilter=False ) expected = np.stack(expected).astype(np.float32) - self.assertTrue(np.allclose(expected, rotated["img"][0], rtol=1e-2, atol=1)) + self.assertTrue(np.allclose(expected, rotated["img"][0])) class TestRandRotated3D(NumpyImageTestCase3D): diff --git a/tests/utils.py b/tests/utils.py index f3ddb75369..8de82bee82 100644 --- a/tests/utils.py +++ b/tests/utils.py @@ -30,7 +30,6 @@ from monai.config.deviceconfig import USE_COMPILED from monai.data import create_test_image_2d, create_test_image_3d -from monai.transforms import Randomizable from monai.utils import ensure_tuple, optional_import, set_determinism from monai.utils.module import get_torch_version_tuple @@ -435,25 +434,14 @@ def _call_original_func(name, module, *args, **kwargs): return f(*args, **kwargs) -class NumpyImageTestCase2D(unittest.TestCase, Randomizable): +class NumpyImageTestCase2D(unittest.TestCase): im_shape = (128, 64) input_channels = 1 output_channels = 4 num_classes = 3 - def randomize(self, data=None): - return create_test_image_2d( - width=self.im_shape[0], - height=self.im_shape[1], - num_objs=4, - rad_max=20, - noise_max=0, - num_seg_classes=self.num_classes, - random_state=self.R, - ) - def setUp(self): - im, msk = self.randomize() + im, msk = create_test_image_2d(self.im_shape[0], self.im_shape[1], 4, 20, 0, self.num_classes) self.imt = im[None, None] self.seg1 = (msk[None, None] > 0).astype(np.float32) @@ -468,26 +456,14 @@ def setUp(self): self.segn = torch.tensor(self.segn) -class NumpyImageTestCase3D(unittest.TestCase, Randomizable): +class NumpyImageTestCase3D(unittest.TestCase): im_shape = (64, 48, 80) input_channels = 1 output_channels = 4 num_classes = 3 - def randomize(self, data=None): - return create_test_image_3d( - height=self.im_shape[0], - width=self.im_shape[1], - depth=self.im_shape[2], - num_objs=4, - rad_max=20, - noise_max=0, - num_seg_classes=self.num_classes, - random_state=self.R, - ) - def setUp(self): - im, msk = self.randomize() + im, msk = create_test_image_3d(self.im_shape[0], self.im_shape[1], self.im_shape[2], 4, 20, 0, self.num_classes) self.imt = im[None, None] self.seg1 = (msk[None, None] > 0).astype(np.float32)