diff --git a/monai/auto3dseg/analyzer.py b/monai/auto3dseg/analyzer.py index 37f3faea21..e60327b551 100644 --- a/monai/auto3dseg/analyzer.py +++ b/monai/auto3dseg/analyzer.py @@ -470,7 +470,7 @@ def __call__(self, data: Mapping[Hashable, MetaTensor]) -> dict[Hashable, MetaTe unique_label = unique(ndas_label) if isinstance(ndas_label, (MetaTensor, torch.Tensor)): - unique_label = unique_label.data.cpu().numpy() + unique_label = unique_label.data.cpu().numpy() # type: ignore[assignment] unique_label = unique_label.astype(np.int16).tolist() diff --git a/monai/metrics/cumulative_average.py b/monai/metrics/cumulative_average.py index e55e7b8576..dccf7b094b 100644 --- a/monai/metrics/cumulative_average.py +++ b/monai/metrics/cumulative_average.py @@ -65,6 +65,7 @@ def get_current(self, to_numpy: bool = True) -> NdarrayOrTensor: if self.val is None: return 0 + val: NdarrayOrTensor val = self.val.clone() val[~torch.isfinite(val)] = 0 @@ -96,6 +97,7 @@ def aggregate(self, to_numpy: bool = True) -> NdarrayOrTensor: dist.all_reduce(sum) dist.all_reduce(count) + val: NdarrayOrTensor val = torch.where(count > 0, sum / count, sum) if to_numpy: diff --git a/monai/metrics/panoptic_quality.py b/monai/metrics/panoptic_quality.py index 05175ba0fb..7c9d59c264 100644 --- a/monai/metrics/panoptic_quality.py +++ b/monai/metrics/panoptic_quality.py @@ -274,7 +274,7 @@ def _get_paired_iou( return paired_iou, paired_true, paired_pred - pairwise_iou = pairwise_iou.cpu().numpy() + pairwise_iou = pairwise_iou.cpu().numpy() # type: ignore[assignment] paired_true, paired_pred = linear_sum_assignment(-pairwise_iou) paired_iou = pairwise_iou[paired_true, paired_pred] paired_true = torch.as_tensor(list(paired_true[paired_iou > match_iou_threshold] + 1), device=device) diff --git a/monai/metrics/rocauc.py b/monai/metrics/rocauc.py index 56d9faa9dd..57a8a072b4 100644 --- a/monai/metrics/rocauc.py +++ b/monai/metrics/rocauc.py @@ -88,8 +88,8 @@ def _calculate(y_pred: torch.Tensor, y: torch.Tensor) -> float: n = len(y) indices = y_pred.argsort() - y = y[indices].cpu().numpy() - y_pred = y_pred[indices].cpu().numpy() + y = y[indices].cpu().numpy() # type: ignore[assignment] + y_pred = y_pred[indices].cpu().numpy() # type: ignore[assignment] nneg = auc = tmp_pos = tmp_neg = 0.0 for i in range(n): diff --git a/monai/transforms/croppad/functional.py b/monai/transforms/croppad/functional.py index a8286fb90c..361ec48dcd 100644 --- a/monai/transforms/croppad/functional.py +++ b/monai/transforms/croppad/functional.py @@ -48,7 +48,7 @@ def _np_pad(img: NdarrayTensor, pad_width: list[tuple[int, int]], mode: str, **k warnings.warn(f"Padding: moving img {img.shape} from cuda to cpu for dtype={img.dtype} mode={mode}.") img_np = img.detach().cpu().numpy() else: - img_np = img + img_np = np.asarray(img) mode = convert_pad_mode(dst=img_np, mode=mode).value if mode == "constant" and "value" in kwargs: kwargs["constant_values"] = kwargs.pop("value") diff --git a/monai/visualize/img2tensorboard.py b/monai/visualize/img2tensorboard.py index e7884e9b1f..677640bd04 100644 --- a/monai/visualize/img2tensorboard.py +++ b/monai/visualize/img2tensorboard.py @@ -176,7 +176,9 @@ def plot_2d_or_3d_image( # as the `d` data has no batch dim, reduce the spatial dim index if positive frame_dim = frame_dim - 1 if frame_dim > 0 else frame_dim - d: np.ndarray = data_index.detach().cpu().numpy() if isinstance(data_index, torch.Tensor) else data_index + d: np.ndarray = ( + data_index.detach().cpu().numpy() if isinstance(data_index, torch.Tensor) else np.asarray(data_index) + ) if d.ndim == 2: d = rescale_array(d, 0, 1) # type: ignore