diff --git a/docs/source/ko/training/distributed_inference.mdx b/docs/source/ko/training/distributed_inference.mdx
new file mode 100644
index 000000000000..18bfaf4df3da
--- /dev/null
+++ b/docs/source/ko/training/distributed_inference.mdx
@@ -0,0 +1,93 @@
+# 여러 GPU를 사용한 분산 추론
+
+분산 설정에서는 여러 개의 프롬프트를 동시에 생성할 때 유용한 🤗 [Accelerate](https://huggingface.co/docs/accelerate/index) 또는 [PyTorch Distributed](https://pytorch.org/tutorials/beginner/dist_overview.html)를 사용하여 여러 GPU에서 추론을 실행할 수 있습니다.
+
+이 가이드에서는 분산 추론을 위해 🤗 Accelerate와 PyTorch Distributed를 사용하는 방법을 보여드립니다.
+
+## 🤗 Accelerate
+
+🤗 [Accelerate](https://huggingface.co/docs/accelerate/index)는 분산 설정에서 추론을 쉽게 훈련하거나 실행할 수 있도록 설계된 라이브러리입니다. 분산 환경 설정 프로세스를 간소화하여 PyTorch 코드에 집중할 수 있도록 해줍니다.
+
+시작하려면 Python 파일을 생성하고 [`accelerate.PartialState`]를 초기화하여 분산 환경을 생성하면, 설정이 자동으로 감지되므로 `rank` 또는 `world_size`를 명시적으로 정의할 필요가 없습니다. ['DiffusionPipeline`]을 `distributed_state.device`로 이동하여 각 프로세스에 GPU를 할당합니다.
+
+이제 컨텍스트 관리자로 [`~accelerate.PartialState.split_between_processes`] 유틸리티를 사용하여 프로세스 수에 따라 프롬프트를 자동으로 분배합니다.
+
+Translated with www.DeepL.com/Translator (free version)
+
+```py
+from accelerate import PartialState
+from diffusers import DiffusionPipeline
+
+pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
+distributed_state = PartialState()
+pipeline.to(distributed_state.device)
+
+with distributed_state.split_between_processes(["a dog", "a cat"]) as prompt:
+ result = pipeline(prompt).images[0]
+ result.save(f"result_{distributed_state.process_index}.png")
+```
+
+Use the `--num_processes` argument to specify the number of GPUs to use, and call `accelerate launch` to run the script:
+
+```bash
+accelerate launch run_distributed.py --num_processes=2
+```
+
+자세한 내용은 [🤗 Accelerate를 사용한 분산 추론](https://huggingface.co/docs/accelerate/en/usage_guides/distributed_inference#distributed-inference-with-accelerate) 가이드를 참조하세요.
+
+
+
+## Pytoerch 분산
+
+PyTorch는 데이터 병렬 처리를 가능하게 하는 [`DistributedDataParallel`](https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html)을 지원합니다.
+
+시작하려면 Python 파일을 생성하고 `torch.distributed` 및 `torch.multiprocessing`을 임포트하여 분산 프로세스 그룹을 설정하고 각 GPU에서 추론용 프로세스를 생성합니다. 그리고 [`DiffusionPipeline`]도 초기화해야 합니다:
+
+확산 파이프라인을 `rank`로 이동하고 `get_rank`를 사용하여 각 프로세스에 GPU를 할당하면 각 프로세스가 다른 프롬프트를 처리합니다:
+
+```py
+import torch
+import torch.distributed as dist
+import torch.multiprocessing as mp
+
+from diffusers import DiffusionPipeline
+
+sd = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
+```
+
+사용할 백엔드 유형, 현재 프로세스의 `rank`, `world_size` 또는 참여하는 프로세스 수로 분산 환경 생성을 처리하는 함수[`init_process_group`]를 만들어 추론을 실행해야 합니다.
+
+2개의 GPU에서 추론을 병렬로 실행하는 경우 `world_size`는 2입니다.
+
+```py
+def run_inference(rank, world_size):
+ dist.init_process_group("nccl", rank=rank, world_size=world_size)
+
+ sd.to(rank)
+
+ if torch.distributed.get_rank() == 0:
+ prompt = "a dog"
+ elif torch.distributed.get_rank() == 1:
+ prompt = "a cat"
+
+ image = sd(prompt).images[0]
+ image.save(f"./{'_'.join(prompt)}.png")
+```
+
+분산 추론을 실행하려면 [`mp.spawn`](https://pytorch.org/docs/stable/multiprocessing.html#torch.multiprocessing.spawn)을 호출하여 `world_size`에 정의된 GPU 수에 대해 `run_inference` 함수를 실행합니다:
+
+```py
+def main():
+ world_size = 2
+ mp.spawn(run_inference, args=(world_size,), nprocs=world_size, join=True)
+
+
+if __name__ == "__main__":
+ main()
+```
+
+추론 스크립트를 완료했으면 `--nproc_per_node` 인수를 사용하여 사용할 GPU 수를 지정하고 `torchrun`을 호출하여 스크립트를 실행합니다:
+
+```bash
+torchrun run_distributed.py --nproc_per_node=2
+```
\ No newline at end of file
diff --git a/docs/source/ko/using-diffusers/control_brightness.mdx b/docs/source/ko/using-diffusers/control_brightness.mdx
new file mode 100644
index 000000000000..8e95c66c3f43
--- /dev/null
+++ b/docs/source/ko/using-diffusers/control_brightness.mdx
@@ -0,0 +1,44 @@
+
+Stable Diffusion 파이프라인은 [일반적인 디퓨전 노이즈 스케줄과 샘플 단계에 결함이 있음](https://huggingface.co/papers/2305.08891) 논문에서 설명한 것처럼 매우 밝거나 어두운 이미지를 생성하는 데는 성능이 평범합니다. 이 논문에서 제안한 솔루션은 현재 [`DDIMScheduler`]에 구현되어 있으며 이미지의 밝기를 개선하는 데 사용할 수 있습니다.
+
+
+
+💡 제안된 솔루션에 대한 자세한 내용은 위에 링크된 논문을 참고하세요!
+
+
+
+해결책 중 하나는 *v 예측값*과 *v 로스*로 모델을 훈련하는 것입니다. 다음 flag를 [`train_text_to_image.py`](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py) 또는 [`train_text_to_image_lora.py`](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image_lora.py) 스크립트에 추가하여 `v_prediction`을 활성화합니다:
+
+```bash
+--prediction_type="v_prediction"
+```
+
+예를 들어, `v_prediction`으로 미세 조정된 [`ptx0/pseudo-journey-v2`](https://huggingface.co/ptx0/pseudo-journey-v2) 체크포인트를 사용해 보겠습니다.
+
+다음으로 [`DDIMScheduler`]에서 다음 파라미터를 설정합니다:
+
+1. rescale_betas_zero_snr=True`, 노이즈 스케줄을 제로 터미널 신호 대 잡음비(SNR)로 재조정합니다.
+2. `timestep_spacing="trailing"`, 마지막 타임스텝부터 샘플링 시작
+
+```py
+>>> from diffusers import DiffusionPipeline, DDIMScheduler
+
+>>> pipeline = DiffusionPipeline.from_pretrained("ptx0/pseudo-journey-v2")
+# switch the scheduler in the pipeline to use the DDIMScheduler
+
+>>> pipeline.scheduler = DDIMScheduler.from_config(
+... pipeline.scheduler.config, rescale_betas_zero_snr=True, timestep_spacing="trailing"
+... )
+>>> pipeline.to("cuda")
+```
+
+마지막으로 파이프라인에 대한 호출에서 `guidance_rescale`을 설정하여 과다 노출을 방지합니다:
+
+```py
+prompt = "A lion in galaxies, spirals, nebulae, stars, smoke, iridescent, intricate detail, octane render, 8k"
+image = pipeline(prompt, guidance_rescale=0.7).images[0]
+```
+
+
+

+
\ No newline at end of file
diff --git a/docs/source/ko/using-diffusers/using_safetensors.mdx b/docs/source/ko/using-diffusers/using_safetensors.mdx
index 6972103bde10..4e1c6758e13f 100644
--- a/docs/source/ko/using-diffusers/using_safetensors.mdx
+++ b/docs/source/ko/using-diffusers/using_safetensors.mdx
@@ -1,14 +1,67 @@
-# 세이프센서란 무엇인가요?
+# 세이프텐서 로드
-[세이프텐서](https://github.com/huggingface/safetensors)는 피클을 사용하는 파이토치를 사용하는 기존의 '.bin'과는 다른 형식입니다.
+[safetensors](https://github.com/huggingface/safetensors)는 텐서를 저장하고 로드하기 위한 안전하고 빠른 파일 형식입니다. 일반적으로 PyTorch 모델 가중치는 Python의 [`pickle`](https://docs.python.org/3/library/pickle.html) 유틸리티를 사용하여 `.bin` 파일에 저장되거나 `피클`됩니다. 그러나 `피클`은 안전하지 않으며 피클된 파일에는 실행될 수 있는 악성 코드가 포함될 수 있습니다. 세이프텐서는 `피클`의 안전한 대안으로 모델 가중치를 공유하는 데 이상적입니다.
-피클은 악의적인 파일이 임의의 코드를 실행할 수 있는 안전하지 않은 것으로 악명이 높습니다.
-허브 자체에서 문제를 방지하기 위해 노력하고 있지만 만병통치약은 아닙니다.
+이 가이드에서는 `.safetensor` 파일을 로드하는 방법과 다른 형식으로 저장된 안정적 확산 모델 가중치를 `.safetensor`로 변환하는 방법을 보여드리겠습니다. 시작하기 전에 세이프텐서가 설치되어 있는지 확인하세요:
-세이프텐서의 가장 중요한 목표는 컴퓨터를 탈취할 수 없다는 의미에서 머신 러닝 모델 로딩을 *안전하게* 만드는 것입니다.
+```bash
+!pip install safetensors
+```
-# 왜 세이프센서를 사용하나요?
+['runwayml/stable-diffusion-v1-5`] (https://huggingface.co/runwayml/stable-diffusion-v1-5/tree/main) 리포지토리를 보면 `text_encoder`, `unet` 및 `vae` 하위 폴더에 가중치가 `.safetensors` 형식으로 저장되어 있는 것을 볼 수 있습니다. 기본적으로 🤗 디퓨저는 모델 저장소에서 사용할 수 있는 경우 해당 하위 폴더에서 이러한 '.safetensors` 파일을 자동으로 로드합니다.
-**잘 알려지지 않은 모델을 사용하려는 경우, 그리고 파일의 출처가 확실하지 않은 경우 "안전성"이 하나의 이유가 될 수 있습니다.
+보다 명시적인 제어를 위해 선택적으로 `사용_세이프텐서=True`를 설정할 수 있습니다(`세이프텐서`가 설치되지 않은 경우 설치하라는 오류 메시지가 표시됨):
-그리고 두 번째 이유는 **로딩 속도**입니다. 세이프센서는 일반 피클 파일보다 훨씬 빠르게 모델을 훨씬 빠르게 로드할 수 있습니다. 모델을 전환하는 데 많은 시간을 소비하는 경우, 이는 엄청난 시간 절약이 가능합니다.
\ No newline at end of file
+```py
+from diffusers import DiffusionPipeline
+
+pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", use_safetensors=True)
+```
+
+그러나 모델 가중치가 위의 예시처럼 반드시 별도의 하위 폴더에 저장되는 것은 아닙니다. 모든 가중치가 하나의 '.safetensors` 파일에 저장되는 경우도 있습니다. 이 경우 가중치가 Stable Diffusion 가중치인 경우 [`~diffusers.loaders.FromCkptMixin.from_ckpt`] 메서드를 사용하여 파일을 직접 로드할 수 있습니다:
+
+```py
+from diffusers import StableDiffusionPipeline
+
+pipeline = StableDiffusionPipeline.from_ckpt(
+ "https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix.safetensors"
+)
+```
+
+## 세이프텐서로 변환
+
+허브의 모든 가중치를 '.safetensors` 형식으로 사용할 수 있는 것은 아니며, '.bin`으로 저장된 가중치가 있을 수 있습니다. 이 경우 [Convert Space](https://huggingface.co/spaces/diffusers/convert)을 사용하여 가중치를 '.safetensors'로 변환하세요. Convert Space는 피클된 가중치를 다운로드하여 변환한 후 풀 리퀘스트를 열어 허브에 새로 변환된 `.safetensors` 파일을 업로드합니다. 이렇게 하면 피클된 파일에 악성 코드가 포함되어 있는 경우, 안전하지 않은 파일과 의심스러운 피클 가져오기를 탐지하는 [보안 스캐너](https://huggingface.co/docs/hub/security-pickle#hubs-security-scanner)가 있는 허브로 업로드됩니다. - 개별 컴퓨터가 아닌.
+
+개정` 매개변수에 풀 리퀘스트에 대한 참조를 지정하여 새로운 '.safetensors` 가중치가 적용된 모델을 사용할 수 있습니다(허브의 [Check PR](https://huggingface.co/spaces/diffusers/check_pr) 공간에서 테스트할 수도 있음)(예: `refs/pr/22`):
+
+```py
+from diffusers import DiffusionPipeline
+
+pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", revision="refs/pr/22")
+```
+
+## 세이프센서를 사용하는 이유는 무엇인가요?
+
+세이프티 센서를 사용하는 데에는 여러 가지 이유가 있습니다:
+
+- 세이프텐서를 사용하는 가장 큰 이유는 안전입니다.오픈 소스 및 모델 배포가 증가함에 따라 다운로드한 모델 가중치에 악성 코드가 포함되어 있지 않다는 것을 신뢰할 수 있는 것이 중요해졌습니다.세이프센서의 현재 헤더 크기는 매우 큰 JSON 파일을 구문 분석하지 못하게 합니다.
+- 모델 전환 간의 로딩 속도는 텐서의 제로 카피를 수행하는 세이프텐서를 사용해야 하는 또 다른 이유입니다. 가중치를 CPU(기본값)로 로드하는 경우 '피클'에 비해 특히 빠르며, 가중치를 GPU로 직접 로드하는 경우에도 빠르지는 않더라도 비슷하게 빠릅니다. 모델이 이미 로드된 경우에만 성능 차이를 느낄 수 있으며, 가중치를 다운로드하거나 모델을 처음 로드하는 경우에는 성능 차이를 느끼지 못할 것입니다.
+
+ 전체 파이프라인을 로드하는 데 걸리는 시간입니다:
+
+ ```py
+ from diffusers import StableDiffusionPipeline
+
+ pipeline = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1")
+ "Loaded in safetensors 0:00:02.033658"
+ "Loaded in PyTorch 0:00:02.663379"
+ ```
+
+ 하지만 실제로 500MB의 모델 가중치를 로드하는 데 걸리는 시간은 얼마 되지 않습니다:
+
+ ```bash
+ safetensors: 3.4873ms
+ PyTorch: 172.7537ms
+ ```
+
+지연 로딩은 세이프텐서에서도 지원되며, 이는 분산 설정에서 일부 텐서만 로드하는 데 유용합니다. 이 형식을 사용하면 [BLOOM](https://huggingface.co/bigscience/bloom) 모델을 일반 PyTorch 가중치를 사용하여 10분이 걸리던 것을 8개의 GPU에서 45초 만에 로드할 수 있습니다.
diff --git a/docs/source/ko/using-diffusers/using_safetensors_short.mdx b/docs/source/ko/using-diffusers/using_safetensors_short.mdx
new file mode 100644
index 000000000000..6972103bde10
--- /dev/null
+++ b/docs/source/ko/using-diffusers/using_safetensors_short.mdx
@@ -0,0 +1,14 @@
+# 세이프센서란 무엇인가요?
+
+[세이프텐서](https://github.com/huggingface/safetensors)는 피클을 사용하는 파이토치를 사용하는 기존의 '.bin'과는 다른 형식입니다.
+
+피클은 악의적인 파일이 임의의 코드를 실행할 수 있는 안전하지 않은 것으로 악명이 높습니다.
+허브 자체에서 문제를 방지하기 위해 노력하고 있지만 만병통치약은 아닙니다.
+
+세이프텐서의 가장 중요한 목표는 컴퓨터를 탈취할 수 없다는 의미에서 머신 러닝 모델 로딩을 *안전하게* 만드는 것입니다.
+
+# 왜 세이프센서를 사용하나요?
+
+**잘 알려지지 않은 모델을 사용하려는 경우, 그리고 파일의 출처가 확실하지 않은 경우 "안전성"이 하나의 이유가 될 수 있습니다.
+
+그리고 두 번째 이유는 **로딩 속도**입니다. 세이프센서는 일반 피클 파일보다 훨씬 빠르게 모델을 훨씬 빠르게 로드할 수 있습니다. 모델을 전환하는 데 많은 시간을 소비하는 경우, 이는 엄청난 시간 절약이 가능합니다.
\ No newline at end of file