diff --git a/lessons/pydata/eda-univariate-timeseries/info.yml b/lessons/pydata/eda-univariate-timeseries/info.yml
index efd2e4114b..5f69919974 100644
--- a/lessons/pydata/eda-univariate-timeseries/info.yml
+++ b/lessons/pydata/eda-univariate-timeseries/info.yml
@@ -1,4 +1,4 @@
-title: EDA 3 - Analýza jedné proměnné a časových řad
+title: Analýza jedné proměnné a časových řad
style: ipynb
attribution: Pro PyDataCZ napsal Jakub Urban, 2019.
license: cc-by-sa-40
diff --git a/lessons/pydata/pandas_types/index.ipynb b/lessons/pydata/pandas_types/index.ipynb
new file mode 100644
index 0000000000..556743a1f6
--- /dev/null
+++ b/lessons/pydata/pandas_types/index.ipynb
@@ -0,0 +1,7310 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Pandas - datové typy a manipulace se sloupci\n",
+ "\n",
+ "V minulé lekci jsme si představili knihovnu pandas a její základní třídy: `Series`, `DataFrame` a `Index`. Brali jsme je ovšem jako statické objekty, které jsme si pouze prohlíželi.\n",
+ "\n",
+ "V této lekci začneme upravovat existující tabulky. Ukážeme si:\n",
+ "\n",
+ "* jak přidat či ubrat sloupce a řádky\n",
+ "* jak změnit hodnotu konkrétní buňky\n",
+ "* jaké datové typy se hodí pro který účel\n",
+ "* aritmetické a logické operace, které lze se sloupci provádět\n",
+ "* filtrování a řazení řádků\n",
+ "\n",
+ "A jelikož o výsledky práce určitě nechceš přijít, přijde nakonec vhod i ukládání výsledků do externích souborů."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Obligátní import\n",
+ "import pandas as pd"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Manipulace s DataFrames\n",
+ "\n",
+ "Pro rozehřátí budeme pracovat s malou tabulkou obsahující několik základních informací o planetách, které snadno najdeš např. na [wikipedii](https://en.wikipedia.org/wiki/Planet)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
symbol
\n",
+ "
obezna_poloosa
\n",
+ "
obezna_doba
\n",
+ "
\n",
+ "
\n",
+ "
jmeno
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
Merkur
\n",
+ "
☿
\n",
+ "
0.39
\n",
+ "
0.24
\n",
+ "
\n",
+ "
\n",
+ "
Venuše
\n",
+ "
♀
\n",
+ "
0.72
\n",
+ "
0.62
\n",
+ "
\n",
+ "
\n",
+ "
Země
\n",
+ "
⊕
\n",
+ "
1.00
\n",
+ "
1.00
\n",
+ "
\n",
+ "
\n",
+ "
Mars
\n",
+ "
♂
\n",
+ "
1.52
\n",
+ "
1.88
\n",
+ "
\n",
+ "
\n",
+ "
Jupiter
\n",
+ "
♃
\n",
+ "
5.20
\n",
+ "
11.86
\n",
+ "
\n",
+ "
\n",
+ "
Saturn
\n",
+ "
♄
\n",
+ "
9.54
\n",
+ "
29.46
\n",
+ "
\n",
+ "
\n",
+ "
Uran
\n",
+ "
♅
\n",
+ "
19.22
\n",
+ "
84.01
\n",
+ "
\n",
+ "
\n",
+ "
Neptun
\n",
+ "
♆
\n",
+ "
30.06
\n",
+ "
164.80
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " symbol obezna_poloosa obezna_doba\n",
+ "jmeno \n",
+ "Merkur ☿ 0.39 0.24\n",
+ "Venuše ♀ 0.72 0.62\n",
+ "Země ⊕ 1.00 1.00\n",
+ "Mars ♂ 1.52 1.88\n",
+ "Jupiter ♃ 5.20 11.86\n",
+ "Saturn ♄ 9.54 29.46\n",
+ "Uran ♅ 19.22 84.01\n",
+ "Neptun ♆ 30.06 164.80"
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "planety = pd.DataFrame({\n",
+ " \"jmeno\": [\"Merkur\", \"Venuše\", \"Země\", \"Mars\", \"Jupiter\", \"Saturn\", \"Uran\", \"Neptun\"],\n",
+ " \"symbol\": [\"☿\", \"♀\", \"⊕\", \"♂\", \"♃\", \"♄\", \"♅\", \"♆\"],\n",
+ " \"obezna_poloosa\": [0.39, 0.72, 1.00, 1.52, 5.20, 9.54, 19.22, 30.06],\n",
+ " \"obezna_doba\": [0.24, 0.62, 1, 1.88, 11.86, 29.46, 84.01, 164.8],\n",
+ "})\n",
+ "planety = planety.set_index(\"jmeno\") # S jmenným indexem se ti bude snáze pracovat\n",
+ "planety"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Přidání nového sloupce\n",
+ "\n",
+ "Když chceme přidat nový sloupec (`Series`), přiřadíme ho do `DataFrame` jako hodnotu do slovníku - tedy v hranatých závorkách s názvem sloupce. Dobrá zpráva je, že stejně jako v konstruktoru si `pandas` \"poradí\" jak se `Series`, tak s obyčejným seznamem.\n",
+ "\n",
+ "V našem konkrétním případě si najdeme a přidáme počet známých měsíců (velkých i malých)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
symbol
\n",
+ "
obezna_poloosa
\n",
+ "
obezna_doba
\n",
+ "
mesice
\n",
+ "
\n",
+ "
\n",
+ "
jmeno
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
Merkur
\n",
+ "
☿
\n",
+ "
0.39
\n",
+ "
0.24
\n",
+ "
0
\n",
+ "
\n",
+ "
\n",
+ "
Venuše
\n",
+ "
♀
\n",
+ "
0.72
\n",
+ "
0.62
\n",
+ "
0
\n",
+ "
\n",
+ "
\n",
+ "
Země
\n",
+ "
⊕
\n",
+ "
1.00
\n",
+ "
1.00
\n",
+ "
1
\n",
+ "
\n",
+ "
\n",
+ "
Mars
\n",
+ "
♂
\n",
+ "
1.52
\n",
+ "
1.88
\n",
+ "
2
\n",
+ "
\n",
+ "
\n",
+ "
Jupiter
\n",
+ "
♃
\n",
+ "
5.20
\n",
+ "
11.86
\n",
+ "
79
\n",
+ "
\n",
+ "
\n",
+ "
Saturn
\n",
+ "
♄
\n",
+ "
9.54
\n",
+ "
29.46
\n",
+ "
82
\n",
+ "
\n",
+ "
\n",
+ "
Uran
\n",
+ "
♅
\n",
+ "
19.22
\n",
+ "
84.01
\n",
+ "
27
\n",
+ "
\n",
+ "
\n",
+ "
Neptun
\n",
+ "
♆
\n",
+ "
30.06
\n",
+ "
164.80
\n",
+ "
14
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " symbol obezna_poloosa obezna_doba mesice\n",
+ "jmeno \n",
+ "Merkur ☿ 0.39 0.24 0\n",
+ "Venuše ♀ 0.72 0.62 0\n",
+ "Země ⊕ 1.00 1.00 1\n",
+ "Mars ♂ 1.52 1.88 2\n",
+ "Jupiter ♃ 5.20 11.86 79\n",
+ "Saturn ♄ 9.54 29.46 82\n",
+ "Uran ♅ 19.22 84.01 27\n",
+ "Neptun ♆ 30.06 164.80 14"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "mesice = [0, 0, 1, 2, 79, 82, 27, 14] # Alternativně mesice = pd.Series([...])\n",
+ "planety[\"mesice\"] = mesice\n",
+ "planety"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "💡 V tomto případě jsme přímo upravili existující `DataFrame`. Většina metod / operací v `pandas` (už znáš např. `set_index`) ve výchozím nastavení vždy vrací nový objekt - je to dobrým zvykem, který budeme dodržovat. Přiřazování sloupců je jednou z akceptovaných výjimek tohoto jinak uznávaného pravidla, zejména když se tabulka upravuje jen v úzkém rozsahu řádků kódů.\n",
+ " \n",
+ "`DataFrame` však nabízí ještě metodu `assign`, která nemění tabulku, ale vytváří její kopii s přidanými (nebo nahrazenými) sloupci. Pokud se chceš vyhnout nepříjemnému sledování, kterou tabulku jsi změnil/a či nikoliv, `assign` ti můžeme jen doporučit.\n",
+ "\n",
+ "Mimochodem, kopii tabulky můžeš kdykoliv vytvořit metodou [`copy`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.copy.html) - to se hodí třeba při psaní funkcí, kde se vstupní tabulka z různých důvodů upravuje."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
"
+ ],
+ "text/plain": [
+ " symbol obezna_poloosa obezna_doba mesice je_obr\n",
+ "jmeno \n",
+ "Merkur ☿ 0.39 0.24 0 False\n",
+ "Venuše ♀ 0.72 0.62 0 False\n",
+ "Země ⊕ 1.00 1.00 1 False\n",
+ "Mars ♂ 1.52 1.88 2 False\n",
+ "Jupiter ♃ 5.20 11.86 79 True\n",
+ "Saturn ♄ 9.54 29.46 82 True\n",
+ "Uran ♅ 19.22 84.01 27 True\n",
+ "Neptun ♆ 30.06 164.80 14 True"
+ ]
+ },
+ "execution_count": 12,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "planety = planety.drop(\"je_planeta\", axis=\"columns\") \n",
+ "planety"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "⛧ Metoda `drop`, v souladu s výše zmíněnou konvencí, vrací nový `DataFrame` (a proto výsledek operace musíme přiřadit do `planety`). Pokud chceš operovat rovnou na tabulce, můžeš použít příkaz `del` (funguje stejně jako u slovníku) nebo poprosit pandí bohy (a autory těchto materiálů) o odpuštění a přidat argument `inplace=True` (tento argument lze, bohužel, použít i mnoha dalších operací):"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Jen na vlastní nebezpečí\n",
+ "\n",
+ "# Alternativa 1)\n",
+ "# del planety[\"je_planeta\"]\n",
+ "\n",
+ "# Alternativa 2)\n",
+ "# planety.drop(\"je_planeta\", axis=1, inplace=True)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Datové typy\n",
+ "\n",
+ "Jak už jsme předeslali, datové typy v pandas se trochu liší od typů v Pythonu a nejsou to v pravém slova smyslu třídy, ale naštěstí konverze mezi nimi je často automatická a \"chovající se dle očekávání\"."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Příprava dat\n",
+ "\n",
+ "V datovém kurzu budeme využívat různých datových sad (obvykle větších - takových, kde není praktické je celé zapsat v konstruktoru). Nyní opustíme planety a podíváme se na některé zajímavé charakteristiky zemí kolem světa (ježto definice toho, co je to země, je poněkud vágní, bereme v potaz členy OSN), zachycené k jednomu konkrétnímu roku uplynulé dekády (protože ne vždy jsou všechny údaje k dispozici, bereme poslední rok, kde je známo dost ukazatelů). Data pocházejí povětšinou z projektu [Gapminder](https://www.gapminder.org/), doplnili jsme je jen o několik dalších informací z wikipedie.\n",
+ "\n",
+ "Následující kód (nemusíš mu rozumět) stáhne potřebný soubor a uloží ho v místním adresáři. Alternativně ho můžeš stáhnout manuálně z [https://raw.githubusercontent.com/janpipek/data-pro-pyladies/master/data/countries.csv](https://raw.githubusercontent.com/janpipek/data-pro-pyladies/master/data/countries.csv)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Soubor countries.csv už byl stažen, použijeme místní kopii.\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Nutné importy ze standardní knihovny\n",
+ "import os\n",
+ "from urllib.request import urlretrieve\n",
+ "\n",
+ "# Seznam souborů (viz níže)\n",
+ "zdroj = \"https://raw.githubusercontent.com/janpipek/data-pro-pyladies/master/data/countries.csv\"\n",
+ "jmeno = zdroj.rsplit(\"/\")[-1]\n",
+ "\n",
+ "if not os.path.exists(jmeno):\n",
+ " print(f\"Soubor {jmeno} ještě není stažen, jdeme na to...\")\n",
+ " urlretrieve(url=zdroj, filename=jmeno)\n",
+ " print(f\"Soubor {jmeno} úspěšně stažen.\")\n",
+ "else:\n",
+ " print(f\"Soubor {jmeno} už byl stažen, použijeme místní kopii.\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "A otevřeme ho pomocí již známé funkce `read_csv` (Poznámka: `pandas` umí otevřít soubor i přímo z internetu, ale raději použijeme místní kopii, aby ses mohl/a k práci vrátit i off-line)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
iso
\n",
+ "
world_6region
\n",
+ "
world_4region
\n",
+ "
income_groups
\n",
+ "
is_eu
\n",
+ "
is_oecd
\n",
+ "
eu_accession
\n",
+ "
year
\n",
+ "
area
\n",
+ "
population
\n",
+ "
alcohol_adults
\n",
+ "
bmi_men
\n",
+ "
bmi_women
\n",
+ "
car_deaths_per_100000_people
\n",
+ "
calories_per_day
\n",
+ "
infant_mortality
\n",
+ "
life_expectancy
\n",
+ "
life_expectancy_female
\n",
+ "
life_expectancy_male
\n",
+ "
un_accession
\n",
+ "
\n",
+ "
\n",
+ "
name
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
Afghanistan
\n",
+ "
AFG
\n",
+ "
south_asia
\n",
+ "
asia
\n",
+ "
low_income
\n",
+ "
False
\n",
+ "
False
\n",
+ "
NaN
\n",
+ "
2018
\n",
+ "
652860.0
\n",
+ "
34500000.0
\n",
+ "
0.03
\n",
+ "
20.62
\n",
+ "
21.07
\n",
+ "
NaN
\n",
+ "
2090.0
\n",
+ "
66.3
\n",
+ "
58.69
\n",
+ "
65.812
\n",
+ "
63.101
\n",
+ "
1946-11-19
\n",
+ "
\n",
+ "
\n",
+ "
Albania
\n",
+ "
ALB
\n",
+ "
europe_central_asia
\n",
+ "
europe
\n",
+ "
upper_middle_income
\n",
+ "
False
\n",
+ "
False
\n",
+ "
NaN
\n",
+ "
2018
\n",
+ "
28750.0
\n",
+ "
3238000.0
\n",
+ "
7.29
\n",
+ "
26.45
\n",
+ "
25.66
\n",
+ "
5.978
\n",
+ "
3193.0
\n",
+ "
12.5
\n",
+ "
78.01
\n",
+ "
80.737
\n",
+ "
76.693
\n",
+ "
1955-12-14
\n",
+ "
\n",
+ "
\n",
+ "
Algeria
\n",
+ "
DZA
\n",
+ "
middle_east_north_africa
\n",
+ "
africa
\n",
+ "
upper_middle_income
\n",
+ "
False
\n",
+ "
False
\n",
+ "
NaN
\n",
+ "
2018
\n",
+ "
2381740.0
\n",
+ "
36980000.0
\n",
+ "
0.69
\n",
+ "
24.60
\n",
+ "
26.37
\n",
+ "
NaN
\n",
+ "
3296.0
\n",
+ "
21.9
\n",
+ "
77.86
\n",
+ "
77.784
\n",
+ "
75.279
\n",
+ "
1962-10-08
\n",
+ "
\n",
+ "
\n",
+ "
Andorra
\n",
+ "
AND
\n",
+ "
europe_central_asia
\n",
+ "
europe
\n",
+ "
high_income
\n",
+ "
False
\n",
+ "
False
\n",
+ "
NaN
\n",
+ "
2017
\n",
+ "
470.0
\n",
+ "
88910.0
\n",
+ "
10.17
\n",
+ "
27.63
\n",
+ "
26.43
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
2.1
\n",
+ "
82.55
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
1993-07-28
\n",
+ "
\n",
+ "
\n",
+ "
Angola
\n",
+ "
AGO
\n",
+ "
sub_saharan_africa
\n",
+ "
africa
\n",
+ "
upper_middle_income
\n",
+ "
False
\n",
+ "
False
\n",
+ "
NaN
\n",
+ "
2018
\n",
+ "
1246700.0
\n",
+ "
20710000.0
\n",
+ "
5.57
\n",
+ "
22.25
\n",
+ "
23.48
\n",
+ "
NaN
\n",
+ "
2473.0
\n",
+ "
96.0
\n",
+ "
65.19
\n",
+ "
64.939
\n",
+ "
59.213
\n",
+ "
1976-12-01
\n",
+ "
\n",
+ "
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
\n",
+ "
\n",
+ "
Venezuela
\n",
+ "
VEN
\n",
+ "
america
\n",
+ "
americas
\n",
+ "
upper_middle_income
\n",
+ "
False
\n",
+ "
False
\n",
+ "
NaN
\n",
+ "
2018
\n",
+ "
912050.0
\n",
+ "
30340000.0
\n",
+ "
7.60
\n",
+ "
27.45
\n",
+ "
28.13
\n",
+ "
7.332
\n",
+ "
2631.0
\n",
+ "
12.9
\n",
+ "
75.91
\n",
+ "
79.079
\n",
+ "
70.950
\n",
+ "
1945-11-15
\n",
+ "
\n",
+ "
\n",
+ "
Vietnam
\n",
+ "
VNM
\n",
+ "
east_asia_pacific
\n",
+ "
asia
\n",
+ "
lower_middle_income
\n",
+ "
False
\n",
+ "
False
\n",
+ "
NaN
\n",
+ "
2018
\n",
+ "
330967.0
\n",
+ "
90660000.0
\n",
+ "
3.91
\n",
+ "
20.92
\n",
+ "
21.07
\n",
+ "
NaN
\n",
+ "
2745.0
\n",
+ "
17.3
\n",
+ "
74.88
\n",
+ "
81.203
\n",
+ "
72.003
\n",
+ "
1977-09-20
\n",
+ "
\n",
+ "
\n",
+ "
Yemen
\n",
+ "
YEM
\n",
+ "
middle_east_north_africa
\n",
+ "
asia
\n",
+ "
lower_middle_income
\n",
+ "
False
\n",
+ "
False
\n",
+ "
NaN
\n",
+ "
2018
\n",
+ "
527970.0
\n",
+ "
26360000.0
\n",
+ "
0.20
\n",
+ "
24.44
\n",
+ "
26.11
\n",
+ "
NaN
\n",
+ "
2223.0
\n",
+ "
33.8
\n",
+ "
67.14
\n",
+ "
66.871
\n",
+ "
63.875
\n",
+ "
1947-09-30
\n",
+ "
\n",
+ "
\n",
+ "
Zambia
\n",
+ "
ZMB
\n",
+ "
sub_saharan_africa
\n",
+ "
africa
\n",
+ "
lower_middle_income
\n",
+ "
False
\n",
+ "
False
\n",
+ "
NaN
\n",
+ "
2018
\n",
+ "
752610.0
\n",
+ "
14310000.0
\n",
+ "
3.56
\n",
+ "
20.68
\n",
+ "
23.05
\n",
+ "
11.260
\n",
+ "
1930.0
\n",
+ "
43.3
\n",
+ "
59.45
\n",
+ "
65.362
\n",
+ "
59.845
\n",
+ "
1964-12-01
\n",
+ "
\n",
+ "
\n",
+ "
Zimbabwe
\n",
+ "
ZWE
\n",
+ "
sub_saharan_africa
\n",
+ "
africa
\n",
+ "
low_income
\n",
+ "
False
\n",
+ "
False
\n",
+ "
NaN
\n",
+ "
2018
\n",
+ "
390760.0
\n",
+ "
13330000.0
\n",
+ "
4.96
\n",
+ "
22.03
\n",
+ "
24.65
\n",
+ "
20.850
\n",
+ "
2110.0
\n",
+ "
46.6
\n",
+ "
60.18
\n",
+ "
63.944
\n",
+ "
60.120
\n",
+ "
1980-08-25
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
193 rows × 20 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " iso world_6region world_4region income_groups \\\n",
+ "name \n",
+ "Afghanistan AFG south_asia asia low_income \n",
+ "Albania ALB europe_central_asia europe upper_middle_income \n",
+ "Algeria DZA middle_east_north_africa africa upper_middle_income \n",
+ "Andorra AND europe_central_asia europe high_income \n",
+ "Angola AGO sub_saharan_africa africa upper_middle_income \n",
+ "... ... ... ... ... \n",
+ "Venezuela VEN america americas upper_middle_income \n",
+ "Vietnam VNM east_asia_pacific asia lower_middle_income \n",
+ "Yemen YEM middle_east_north_africa asia lower_middle_income \n",
+ "Zambia ZMB sub_saharan_africa africa lower_middle_income \n",
+ "Zimbabwe ZWE sub_saharan_africa africa low_income \n",
+ "\n",
+ " is_eu is_oecd eu_accession year area population \\\n",
+ "name \n",
+ "Afghanistan False False NaN 2018 652860.0 34500000.0 \n",
+ "Albania False False NaN 2018 28750.0 3238000.0 \n",
+ "Algeria False False NaN 2018 2381740.0 36980000.0 \n",
+ "Andorra False False NaN 2017 470.0 88910.0 \n",
+ "Angola False False NaN 2018 1246700.0 20710000.0 \n",
+ "... ... ... ... ... ... ... \n",
+ "Venezuela False False NaN 2018 912050.0 30340000.0 \n",
+ "Vietnam False False NaN 2018 330967.0 90660000.0 \n",
+ "Yemen False False NaN 2018 527970.0 26360000.0 \n",
+ "Zambia False False NaN 2018 752610.0 14310000.0 \n",
+ "Zimbabwe False False NaN 2018 390760.0 13330000.0 \n",
+ "\n",
+ " alcohol_adults bmi_men bmi_women car_deaths_per_100000_people \\\n",
+ "name \n",
+ "Afghanistan 0.03 20.62 21.07 NaN \n",
+ "Albania 7.29 26.45 25.66 5.978 \n",
+ "Algeria 0.69 24.60 26.37 NaN \n",
+ "Andorra 10.17 27.63 26.43 NaN \n",
+ "Angola 5.57 22.25 23.48 NaN \n",
+ "... ... ... ... ... \n",
+ "Venezuela 7.60 27.45 28.13 7.332 \n",
+ "Vietnam 3.91 20.92 21.07 NaN \n",
+ "Yemen 0.20 24.44 26.11 NaN \n",
+ "Zambia 3.56 20.68 23.05 11.260 \n",
+ "Zimbabwe 4.96 22.03 24.65 20.850 \n",
+ "\n",
+ " calories_per_day infant_mortality life_expectancy \\\n",
+ "name \n",
+ "Afghanistan 2090.0 66.3 58.69 \n",
+ "Albania 3193.0 12.5 78.01 \n",
+ "Algeria 3296.0 21.9 77.86 \n",
+ "Andorra NaN 2.1 82.55 \n",
+ "Angola 2473.0 96.0 65.19 \n",
+ "... ... ... ... \n",
+ "Venezuela 2631.0 12.9 75.91 \n",
+ "Vietnam 2745.0 17.3 74.88 \n",
+ "Yemen 2223.0 33.8 67.14 \n",
+ "Zambia 1930.0 43.3 59.45 \n",
+ "Zimbabwe 2110.0 46.6 60.18 \n",
+ "\n",
+ " life_expectancy_female life_expectancy_male un_accession \n",
+ "name \n",
+ "Afghanistan 65.812 63.101 1946-11-19 \n",
+ "Albania 80.737 76.693 1955-12-14 \n",
+ "Algeria 77.784 75.279 1962-10-08 \n",
+ "Andorra NaN NaN 1993-07-28 \n",
+ "Angola 64.939 59.213 1976-12-01 \n",
+ "... ... ... ... \n",
+ "Venezuela 79.079 70.950 1945-11-15 \n",
+ "Vietnam 81.203 72.003 1977-09-20 \n",
+ "Yemen 66.871 63.875 1947-09-30 \n",
+ "Zambia 65.362 59.845 1964-12-01 \n",
+ "Zimbabwe 63.944 60.120 1980-08-25 \n",
+ "\n",
+ "[193 rows x 20 columns]"
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Místo `set_index` vybereme index rovnou při načítání\n",
+ "countries = pd.read_csv(\"countries.csv\", index_col=\"name\")\n",
+ "\n",
+ "countries = countries.sort_index()\n",
+ "countries"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Namátkou si vybereme nějakou zemi a podíváme se, jaké údaje o ní v tabulce máme."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "iso CZE\n",
+ "world_6region europe_central_asia\n",
+ "world_4region europe\n",
+ "income_groups high_income\n",
+ "is_eu True\n",
+ "is_oecd True\n",
+ "eu_accession 2004-05-01\n",
+ "year 2018\n",
+ "area 78870\n",
+ "population 1.059e+07\n",
+ "alcohol_adults 16.47\n",
+ "bmi_men 27.91\n",
+ "bmi_women 26.51\n",
+ "car_deaths_per_100000_people 5.72\n",
+ "calories_per_day 3256\n",
+ "infant_mortality 2.8\n",
+ "life_expectancy 79.37\n",
+ "life_expectancy_female 81.858\n",
+ "life_expectancy_male 76.148\n",
+ "un_accession 1993-01-19\n",
+ "Name: Czechia, dtype: object"
+ ]
+ },
+ "execution_count": 16,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "countries.loc[\"Czechia\"]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Už na první pohled je každé pole jiného typu. Ale jakého? Na to nám odpoví vlastnost `dtypes` naší tabulky (u `Series` použiješ `dtype`, resp. raději `dtype.name`, pokud chceš stejně pěknou řetězcovou reprezentaci)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "iso object\n",
+ "world_6region object\n",
+ "world_4region object\n",
+ "income_groups object\n",
+ "is_eu bool\n",
+ "is_oecd bool\n",
+ "eu_accession object\n",
+ "year int64\n",
+ "area float64\n",
+ "population float64\n",
+ "alcohol_adults float64\n",
+ "bmi_men float64\n",
+ "bmi_women float64\n",
+ "car_deaths_per_100000_people float64\n",
+ "calories_per_day float64\n",
+ "infant_mortality float64\n",
+ "life_expectancy float64\n",
+ "life_expectancy_female float64\n",
+ "life_expectancy_male float64\n",
+ "un_accession object\n",
+ "dtype: object"
+ ]
+ },
+ "execution_count": 17,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "countries.dtypes"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Typy v pandas vycházejí z toho, jak je definuje knihovna `numpy` (obecně užitečná pro práci s numerickými poli a poskytující vektorové operace s rychlostí řádově vyšší než v Pythonu jako takovém). Ta potřebuje především vědět, jak alokovat pole pro prvky daného typu - na to, aby mohly být seřazeny efektivně jeden za druhým, a tedy i kolik bajtů paměti každý zabírá. Kopíruje přitom \"nativní\" datové typy, které už můžeš znát z jiných jazyků, např. [C](https://cs.wikipedia.org/wiki/C_(programovac%C3%AD_jazyk)). Umístění paměti je něco, co v Pythonu obvykle neřešíme, ale rychlé počítání se bez toho neobejde. My nepůjdeme do detailů, ale požadavek na rychlost se nám tu a tam vynoří a my budeme klást důraz na to, aby se operace dělaly \"vektorově\", řešily \"na úrovni numpy\".\n",
+ "\n",
+ "Poněkud tajuplný systém typů v `numpy` (popsaný v [dokumentaci](https://docs.scipy.org/doc/numpy/user/basics.types.html)) je naštěstí v `pandas` (mírně) zjednodušen a nabízí jen několik užitečných základních (rodin) typů, které si teď představíme."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Celá čísla (integers)\n",
+ "\n",
+ "V Pythonu je pro celá čísla vyhrazen přesně jeden typ: `int`, který možňuje pracovat s libovolně velkými celými čísly (0, -58 nebo třeba 123456789012345678901234567890). V `pandas` se můžeš setkat s `int8`, `int16`, `int32`, `int64`, `uint8`, `uint16`, `uint32` a `uint64` - všechny mají stejné základní vlastnosti a každý z nich má jen určitý rozsah čísel, která do něj lze uložit. Liší se velikostí paměti, kterou jedno číslo zabere (číslovka v názvu vyjadřuje počet bitů), a tím, zda jsou podporována i záporná čísla (předpona `u` znamená, že počítáme pouze s nulou a kladnými čísly). \n",
+ "\n",
+ "Rozsahy:\n",
+ "\n",
+ "- `int8`: -128 až 127 \n",
+ "- `uint8`: 0 až 255\n",
+ "- `int16`: -32 768 až 32 767\n",
+ "- `uint16`: 0 až 65 535\n",
+ "- `int32`: -2 147 483 647 až 2 147 483 647 (tedy +/- ~2 miliardy)\n",
+ "- `uint32`: 0 až 4 294 967 295 (tedy až ~4 miliardy)\n",
+ "- `int64`: -9 223 372 036 854 775 808 až 9 223 372 036 854 775 807 (tedy +/- ~9 trilionů)\n",
+ "- `uint64`: 0 až 18 446 744 073 709 551 615 (tedy až ~18 trilionů)\n",
+ "\n",
+ "💡 Aby toho nebylo málo, ke každému `int?` / `uint?` typu existuje ještě jeho alternativa, která umožňuje ve sloupci použít chybějící hodnoty, t.j. `NaN`. Místo malého `i`, případně `u` v názvu se použije písmeno velké. Tato vlastnost (tzv. \"nullable integer types\") je relativně užitečná, ale je dosud poněkud experimentální. My ji nebudeme v kurzu využívat.\n",
+ "\n",
+ "Detailní vysvětlení toho, jak jsou celá čísla v paměti počítače reprezentována, najdeš třeba ve [wikipedii](https://cs.wikipedia.org/wiki/Integer)."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "V `pandas` je výchozí celočíselný typ `int64`, a pokud neřekneš jinak, automaticky se pro celá čísla použije (ve většině případů to bude vhodná volba):"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "name\n",
+ "Afghanistan 2018\n",
+ "Albania 2018\n",
+ "Algeria 2018\n",
+ "Andorra 2017\n",
+ "Angola 2018\n",
+ " ... \n",
+ "Venezuela 2018\n",
+ "Vietnam 2018\n",
+ "Yemen 2018\n",
+ "Zambia 2018\n",
+ "Zimbabwe 2018\n",
+ "Name: year, Length: 193, dtype: int64"
+ ]
+ },
+ "execution_count": 18,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "countries[\"year\"]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0 0\n",
+ "1 123\n",
+ "2 12345\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 19,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "pd.Series([0, 123, 12345])\n",
+ "\n",
+ "# pd.Series([0, 123, 12345], dtype=\"int64\") # totéž"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Pomocí argumentu `dtype` můžeš ovšem přesně specifikovat, který typ celých čísel chceš:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0 0\n",
+ "1 123\n",
+ "2 12345\n",
+ "dtype: int16"
+ ]
+ },
+ "execution_count": 20,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "pd.Series([0, 123, 12345], dtype=\"int16\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**⚠ Pozor:** Když vybíráš konkrétní celočíselný typ, musíš si dát pozor na rozsahy, protože `pandas` tě nebude varovat, pokud se nějaká z tvých hodnot do rozsahu \"nevleze\" a vesele zahodí tu část binární reprezentace, která je navíc (a dostaneš mnohem menší číslo, než jsi čekal/a):"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0 0\n",
+ "1 123\n",
+ "2 57\n",
+ "dtype: int8"
+ ]
+ },
+ "execution_count": 21,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "pd.Series([0, 123, 12345], dtype=\"int8\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Toto naštěstí neplatí pro typ s nejširším rozsahem (`int64`). Zkusme do něj vložit veliké číslo (třeba 123456789012345678901234567890) a uvidíme, co se stane:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0 0\n",
+ "1 123\n",
+ "2 123456789012345678901234567890\n",
+ "dtype: object"
+ ]
+ },
+ "execution_count": 22,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Toto vyhodí výjimku:\n",
+ "# pd.Series([0, 123, 123456789012345678901234567890], dtype=\"int64\")\n",
+ "\n",
+ "# Toto projde, ale už to není int64:\n",
+ "pd.Series([0, 123, 123456789012345678901234567890])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "- Když ho budeme explicitně požadovat, vyhodí se výjimka.\n",
+ "- Když `pandas` necháme dělat jeho práci, použije se obecný typ `object` a přijdeme o jistou část výhod: sloupec nám zabere násobně více paměti a aritmetické operace s ním jsou o řád až dva pomalejší. Dokud naší prioritou, není to zase takový problém.\n",
+ "\n",
+ "Obecně proto doporučujeme držet se `int64`, resp. nechat `pandas`, aby jej za nás automaticky použil. Teprve v případě, že si to budou žádat přísné paměťové nároky, se ti vyplatí hledat ten \"nejvíce růžový\" typ."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**Úkol:** Zkus vytvořit `Series` s datovým typem `uint8`, obsahující (alespoň) jedno malé záporné číslo. Co se stane?"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Čísla s plovoucí desetinnou čárkou (floats)\n",
+ "\n",
+ "Podobně jako u celočíselných hodnot, i jednomu typu v Python (`float`) odpovídá několik typů v `pandas`: `float16`, `float32`, `float64`. Součástí názvu je opět počet bitů, které jedno číslo potřebuje ke svému uložení. Naštěstí v tomto případě `float64` přesně odpovídá svým chováním `float` z Pythonu, zbylé dva typy nejsou tak přesné a mají menší rozsah - kromě optimalizace paměťových nároků u specifického druhu dat je nejspíš nepoužiješ.\n",
+ "\n",
+ "Více teoretického čtení o reprezentaci čísel s desetinnou čárkou najdeš na [wiki](https://cs.wikipedia.org/wiki/Pohybliv%C3%A1_%C5%99%C3%A1dov%C3%A1_%C4%8D%C3%A1rka)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "name\n",
+ "Afghanistan 20.62\n",
+ "Albania 26.45\n",
+ "Algeria 24.60\n",
+ "Andorra 27.63\n",
+ "Angola 22.25\n",
+ " ... \n",
+ "Venezuela 27.45\n",
+ "Vietnam 20.92\n",
+ "Yemen 24.44\n",
+ "Zambia 20.68\n",
+ "Zimbabwe 22.03\n",
+ "Name: bmi_men, Length: 193, dtype: float64"
+ ]
+ },
+ "execution_count": 23,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "countries[\"bmi_men\"]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0 3.141593\n",
+ "dtype: float64"
+ ]
+ },
+ "execution_count": 24,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Docela přesné pí\n",
+ "pd.Series([3.14159265])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0 3.140625\n",
+ "dtype: float16"
+ ]
+ },
+ "execution_count": 25,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Ne už tak přesné pí\n",
+ "pd.Series([3.14159265], dtype=\"float16\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**Úkol**: Vytvoř pole typu `float64` jen ze samých celých čísel. Co se stane?"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Logické hodnoty (booleans)\n",
+ "\n",
+ "Toto je asi nejméně překvapivý datový typ. Chová se v zásadě stejně jako typ `bool` v Pythonu. Nabírá hodnot `True` a `False` (které lze též pokládat za 1 a 0 v některých operacích). Má ještě jednu skvělou vlastnost - objekty `Series` i `DataFrame` jde filtrovat právě pomocí sloupce logického typu (o tom viz níže)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "name\n",
+ "Afghanistan False\n",
+ "Albania False\n",
+ "Algeria False\n",
+ "Andorra False\n",
+ "Angola False\n",
+ "Antigua and Barbuda False\n",
+ "Argentina False\n",
+ "Armenia False\n",
+ "Australia True\n",
+ "Austria True\n",
+ "Azerbaijan False\n",
+ "Bahamas False\n",
+ "Bahrain False\n",
+ "Bangladesh False\n",
+ "Barbados False\n",
+ "Belarus False\n",
+ "Belgium True\n",
+ "Belize False\n",
+ "Benin False\n",
+ "Bhutan False\n",
+ "Name: is_oecd, dtype: bool"
+ ]
+ },
+ "execution_count": 26,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "countries[\"is_oecd\"].iloc[:20]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0 True\n",
+ "1 False\n",
+ "2 False\n",
+ "dtype: bool"
+ ]
+ },
+ "execution_count": 27,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Vytvoření nového sloupce\n",
+ "pd.Series([True, False, False])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Jde to ovšem i takto:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0 True\n",
+ "1 False\n",
+ "2 False\n",
+ "dtype: bool"
+ ]
+ },
+ "execution_count": 28,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "pd.Series([1, 0, 0], dtype=\"bool\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**Úkol:** Co se stane, když vytvoříš `Series` typu `bool` z řetězců `\"True\"` a `\"False\"` (nezapomeň na uvozovky)?"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Objekty a řetězce (objects)\n",
+ "\n",
+ "Toto tě pravděpodobně překvapí: `pandas` nemá zvláštní datový typ pro řetězce! Spadá společně s dalšími neurčenými nebo nerozpoznanými hodnotami do kategorie `object`, která umožňuje v daném sloupci mít cokoliv, co znáš z Pythonu, a chová se tak do značné míry jako obyčejný seznam s výhodami (žádné podivné konverze, sledování rozsahů, ...) i nevýhodami (je to pomalejší, než by mohlo; nikdo ti nezaručí, že ve sloupci budou jen řetězce).\n",
+ "\n",
+ "*Poznámka: V době psaní těchto materiálů se připravuje `pandas` verze 1.0, která speciální typ pro řetězce zavádí.*"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "name\n",
+ "Afghanistan AFG\n",
+ "Albania ALB\n",
+ "Algeria DZA\n",
+ "Andorra AND\n",
+ "Angola AGO\n",
+ " ... \n",
+ "Venezuela VEN\n",
+ "Vietnam VNM\n",
+ "Yemen YEM\n",
+ "Zambia ZMB\n",
+ "Zimbabwe ZWE\n",
+ "Name: iso, Length: 193, dtype: object"
+ ]
+ },
+ "execution_count": 29,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "countries[\"iso\"]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0 pes\n",
+ "1 kočka\n",
+ "2 křeček\n",
+ "3 tarantule\n",
+ "4 hroznýš\n",
+ "dtype: object"
+ ]
+ },
+ "execution_count": 30,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Domácí mazlíčci\n",
+ "pd.Series([\"pes\", \"kočka\", \"křeček\", \"tarantule\", \"hroznýš\"])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0 1\n",
+ "1 dvě\n",
+ "2 3\n",
+ "dtype: object"
+ ]
+ },
+ "execution_count": 31,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "pd.Series([1, \"dvě\", 3.0]) # Řetězec a další \"smetí\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Pozor, třeba i takový seznam může být hodnotou v sloupci typu `object`:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Eva [řízek, brambory, cola]\n",
+ "Evelína [smažák, hranolky]\n",
+ "Evženie [sodovka]\n",
+ "dtype: object"
+ ]
+ },
+ "execution_count": 32,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Objednávky\n",
+ "pd.Series(\n",
+ " [[\"řízek\", \"brambory\", \"cola\"], [\"smažák\", \"hranolky\"], [\"sodovka\"]],\n",
+ " index=[\"Eva\", \"Evelína\", \"Evženie\"])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**Úkol:** Co za druh objektu (a jaký `dtype`) dostaneme, když se pokusíme získat jeden řádek z tabulky `planety`?"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Datum / čas (datetime)\n",
+ "\n",
+ "Časovými daty se blíže zabývá jedna z následujících lekcí, nicméně nějaká v tabulce zemí už máme, a tak alespoň pro úplnost uvedeme, co v tomto směru `pandas` nabízí:\n",
+ "\n",
+ "- Časové či datumové údaje (*datetime*) jakožto body na časové ose.\n",
+ "\n",
+ "- Časové údaje s označením časové zóny (*datetimes with time zone*).\n",
+ "\n",
+ "- Časové úseky (*timedeltas*) jakožto určení délky nějakého úseku (počítáno v nanosekundách)\n",
+ "\n",
+ "- Období (*periods*) udávají nějak určená časová období (třeba \"únor 2020\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "💡 Pro převod z nejrůznějších formátů na datum / čas slouží funkce `to_datetime`, kterou použijeme pro následující ukázku:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "name\n",
+ "Afghanistan 1946-11-19\n",
+ "Albania 1955-12-14\n",
+ "Algeria 1962-10-08\n",
+ "Andorra 1993-07-28\n",
+ "Angola 1976-12-01\n",
+ " ... \n",
+ "Venezuela 1945-11-15\n",
+ "Vietnam 1977-09-20\n",
+ "Yemen 1947-09-30\n",
+ "Zambia 1964-12-01\n",
+ "Zimbabwe 1980-08-25\n",
+ "Name: un_accession, Length: 193, dtype: datetime64[ns]"
+ ]
+ },
+ "execution_count": 33,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "pd.to_datetime(countries[\"un_accession\"])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Kategorické (category)\n",
+ "\n",
+ "Pokud chceme být efektivní při práci se sloupci, kde se často opakují hodnoty (zejména řetězcové), můžeme je zakódovat do kategorií. Tím mnohdy ušetříme zabrané místo a urychlíme některé operace. Při takové konverzi `pandas` najde všechny unikátní hodnoty v daném sloupci, uloží si je do zvláštního seznamu a do sloupce uloží jenom indexy z tohoto seznamu. Vše se chová transparentně a při používání tak většinou ani nepoznáte, jestli máte sloupec typu `object` nebo `category`."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "💡 Pro převod mezi různými datovými typy slouží metoda [`astype`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.astype.html), která jako svůj argument akceptuje jméno dtype, na který chceme převést:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 34,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "name\n",
+ "Afghanistan low_income\n",
+ "Albania upper_middle_income\n",
+ "Algeria upper_middle_income\n",
+ "Andorra high_income\n",
+ "Angola upper_middle_income\n",
+ " ... \n",
+ "Venezuela upper_middle_income\n",
+ "Vietnam lower_middle_income\n",
+ "Yemen lower_middle_income\n",
+ "Zambia lower_middle_income\n",
+ "Zimbabwe low_income\n",
+ "Name: income_groups, Length: 193, dtype: category\n",
+ "Categories (4, object): [high_income, low_income, lower_middle_income, upper_middle_income]"
+ ]
+ },
+ "execution_count": 34,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "countries[\"income_groups\"].astype(\"category\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**Úkol:** Napadne tě, které sloupce z tabulky `countries` bychom měli překonvertovat na nějaký jiný typ?"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Matematika\n",
+ "\n",
+ "Počítání se `Series` v `pandas` je navrženo tak, aby co nejméně překvapilo. Jednotlivé sloupce se tak můžou stát součástí aritmetických výrazů společně se skalárními hodnotami, s jinými sloupci, `numpy` poli příslušného tvaru, a dokonce i seznamy."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "name\n",
+ "Afghanistan 21421.85\n",
+ "Albania 28473.65\n",
+ "Algeria 28418.90\n",
+ "Andorra 30130.75\n",
+ "Angola 23794.35\n",
+ " ... \n",
+ "Venezuela 27707.15\n",
+ "Vietnam 27331.20\n",
+ "Yemen 24506.10\n",
+ "Zambia 21699.25\n",
+ "Zimbabwe 21965.70\n",
+ "Name: life_expectancy, Length: 193, dtype: float64"
+ ]
+ },
+ "execution_count": 35,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Očekávaná doba života ve dnech\n",
+ "countries[\"life_expectancy\"] * 365"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "name\n",
+ "Afghanistan 52.844408\n",
+ "Albania 112.626087\n",
+ "Algeria 15.526464\n",
+ "Andorra 189.170213\n",
+ "Angola 16.611855\n",
+ " ... \n",
+ "Venezuela 33.265720\n",
+ "Vietnam 273.924591\n",
+ "Yemen 49.927079\n",
+ "Zambia 19.013832\n",
+ "Zimbabwe 34.113011\n",
+ "Length: 193, dtype: float64"
+ ]
+ },
+ "execution_count": 36,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Hustota obyvatelstva\n",
+ "countries[\"population\"] / countries[\"area\"]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 37,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "řízek 129.9\n",
+ "smažák 109.9\n",
+ "dtype: float64"
+ ]
+ },
+ "execution_count": 37,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Jak nám podražily obědy\n",
+ "pd.Series([109, 99], index=[\"řízek\", \"smažák\"]) + [20.9, 10.9] # sčítání se seznamem"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**Úkol**: Spočti celkový počet mrtvých v automobilových haváriích v jednotlivých zemích (použij sloupce \"population\" a \"car_deaths_per_100000_people\" a jednoduchou aritmetiku). Sedí výsledek pro ČR?"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 38,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "name\n",
+ "Afghanistan 26723 days 11:24:22.989293\n",
+ "Albania 23411 days 11:24:22.989293\n",
+ "Algeria 20921 days 11:24:22.989293\n",
+ "Andorra 9670 days 11:24:22.989293\n",
+ "Angola 15753 days 11:24:22.989293\n",
+ " ... \n",
+ "Venezuela 27092 days 11:24:22.989293\n",
+ "Vietnam 15460 days 11:24:22.989293\n",
+ "Yemen 26408 days 11:24:22.989293\n",
+ "Zambia 20136 days 11:24:22.989293\n",
+ "Zimbabwe 14390 days 11:24:22.989293\n",
+ "Name: un_accession, Length: 193, dtype: timedelta64[ns]"
+ ]
+ },
+ "execution_count": 38,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Jak dlouho jsou v OSN?\n",
+ "from datetime import datetime\n",
+ "datetime.now() - pd.to_datetime(countries[\"un_accession\"])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "💡 Čísla s plouvoucí desetinnou čárkou mohou obsahovat i speciální hodnoty \"not a number\" a plus nebo mínus nekonečno. Vzniknou např. při nevhodném dělení nulou:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 39,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0 NaN\n",
+ "1 -inf\n",
+ "2 inf\n",
+ "dtype: float64"
+ ]
+ },
+ "execution_count": 39,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "pd.Series([0, -1, 1]) / pd.Series([0, 0, 0])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**Varování:** Nabádáme tě k opatrnosti při práci s omezenými celočíselnými typy. Podobně jako při jejich nevhodné konverzi, i tady může výsledek \"přetéct\" a ukazovat pochybné výsledky. O důvod víc, proč se držet `int64`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 40,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0 14\n",
+ "1 28\n",
+ "2 42\n",
+ "dtype: int8"
+ ]
+ },
+ "execution_count": 40,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "pd.Series([7, 14, 149], dtype=\"int8\") * 2"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Porovnávání"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Pro `Series` lze použít nejen operátory početní, ale také logické. Výsledkem pak není jedna logická hodnota, ale sloupec logických hodnot."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 41,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "name\n",
+ "Afghanistan False\n",
+ "Albania False\n",
+ "Algeria False\n",
+ "Andorra False\n",
+ "Angola False\n",
+ " ... \n",
+ "Venezuela False\n",
+ "Vietnam False\n",
+ "Yemen False\n",
+ "Zambia False\n",
+ "Zimbabwe False\n",
+ "Name: alcohol_adults, Length: 193, dtype: bool"
+ ]
+ },
+ "execution_count": 41,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# 15 litrů čistého alkoholu na osobu na rok budeme považovat za hranici nadměrného pití\n",
+ "# (nekonzultováno s adiktology!)\n",
+ "\n",
+ "# Kde se hodně pije?\n",
+ "countries[\"alcohol_adults\"] > 15"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 42,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "True"
+ ]
+ },
+ "execution_count": 42,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Skoro nikde. A jak jsme na tom u nás?\n",
+ "countries.loc[\"Czechia\", \"alcohol_adults\"] > 15"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 43,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "name\n",
+ "Afghanistan False\n",
+ "Albania True\n",
+ "Algeria False\n",
+ "Andorra True\n",
+ "Angola False\n",
+ " ... \n",
+ "Venezuela False\n",
+ "Vietnam False\n",
+ "Yemen False\n",
+ "Zambia False\n",
+ "Zimbabwe False\n",
+ "Length: 193, dtype: bool"
+ ]
+ },
+ "execution_count": 43,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Jsou muži v jednotlivých zemích tlustší než ženy?\n",
+ "countries[\"bmi_men\"] > countries[\"bmi_women\"]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**Úkol**: Zjistěte, jestli se v jednotlivých zemích dožívají více muži nebo ženy."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 44,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "name\n",
+ "Afghanistan False\n",
+ "Albania False\n",
+ "Algeria True\n",
+ "Andorra False\n",
+ "Angola True\n",
+ " ... \n",
+ "Venezuela False\n",
+ "Vietnam False\n",
+ "Yemen False\n",
+ "Zambia True\n",
+ "Zimbabwe True\n",
+ "Name: world_4region, Length: 193, dtype: bool"
+ ]
+ },
+ "execution_count": 44,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Leží země v Africe?\n",
+ "countries[\"world_4region\"] == \"africa\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Podobně jako v Pythonu lze podmínky kombinovat pomocí operátorů. Vzhledem k jistým syntaktickým požadavkům Pythonu je ale potřeba použít místo vám známých logických operátorů jejich alternativy: `&` (místo `and`), `|` (místo `or`) a `~` (místo `not`). Protože mají jiné priority než jejich klasičtí bratříčci, bude lepší, když při kombinaci s jinými operátory vždycky použiješ závorky."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 45,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "name\n",
+ "Afghanistan False\n",
+ "Albania True\n",
+ "Algeria True\n",
+ "Andorra False\n",
+ "Angola False\n",
+ " ... \n",
+ "Venezuela False\n",
+ "Vietnam False\n",
+ "Yemen False\n",
+ "Zambia False\n",
+ "Zimbabwe False\n",
+ "Length: 193, dtype: bool"
+ ]
+ },
+ "execution_count": 45,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Kde se ženy i muži dožívají přes 75 let?\n",
+ "(countries[\"life_expectancy_male\"] > 75) & (countries[\"life_expectancy_female\"] > 75)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Filtrování\n",
+ "\n",
+ "Pokud chceš z tabulky vybrat řádky, které splňují nějaké kritérium, musíš (není to vždy těžké :-)) toto kritérium převést do podoby sloupce logických hodnot. Potom tento sloupec (sloupec samotný, nikoliv jeho název!) vložíš do hranatých závorek jako index `DataFrame`.\n",
+ "\n",
+ "Když budeš například chtít informace jen o členech EU, můžeš k tomu přímo použít sloupec \"is_eu\", který logické hodnoty obsahuje:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 46,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
"
+ ],
+ "text/plain": [
+ " iso world_6region world_4region income_groups \\\n",
+ "name \n",
+ "Moldova MDA europe_central_asia europe lower_middle_income \n",
+ "South Korea KOR east_asia_pacific asia high_income \n",
+ "Belarus BLR europe_central_asia europe upper_middle_income \n",
+ "North Korea PRK east_asia_pacific asia low_income \n",
+ "Ukraine UKR europe_central_asia europe lower_middle_income \n",
+ "Estonia EST europe_central_asia europe high_income \n",
+ "Czechia CZE europe_central_asia europe high_income \n",
+ "Uganda UGA sub_saharan_africa africa low_income \n",
+ "Lithuania LTU europe_central_asia europe high_income \n",
+ "Russia RUS europe_central_asia europe high_income \n",
+ "\n",
+ " is_eu is_oecd eu_accession year area population \\\n",
+ "name \n",
+ "Moldova False False NaN 2018 33850.0 3496000.0 \n",
+ "South Korea False True NaN 2018 100280.0 48770000.0 \n",
+ "Belarus False False NaN 2018 207600.0 9498000.0 \n",
+ "North Korea False False NaN 2018 120540.0 24650000.0 \n",
+ "Ukraine False False NaN 2018 603550.0 44700000.0 \n",
+ "Estonia True True 2004-05-01 2018 45230.0 1339000.0 \n",
+ "Czechia True True 2004-05-01 2018 78870.0 10590000.0 \n",
+ "Uganda False False NaN 2018 241550.0 36760000.0 \n",
+ "Lithuania True True 2004-05-01 2018 65286.0 3278000.0 \n",
+ "Russia False False NaN 2018 17098250.0 142600000.0 \n",
+ "\n",
+ " alcohol_adults bmi_men bmi_women car_deaths_per_100000_people \\\n",
+ "name \n",
+ "Moldova 23.01 24.24 27.06 5.529 \n",
+ "South Korea 19.15 23.99 23.33 4.319 \n",
+ "Belarus 18.85 26.16 26.64 8.454 \n",
+ "North Korea 18.28 22.02 21.25 NaN \n",
+ "Ukraine 17.47 25.42 26.23 8.771 \n",
+ "Estonia 17.24 26.26 25.19 5.896 \n",
+ "Czechia 16.47 27.91 26.51 5.720 \n",
+ "Uganda 16.40 22.36 22.48 13.690 \n",
+ "Lithuania 16.30 26.86 26.01 8.090 \n",
+ "Russia 16.23 26.01 27.21 14.380 \n",
+ "\n",
+ " calories_per_day infant_mortality life_expectancy \\\n",
+ "name \n",
+ "Moldova 2714.0 13.6 72.41 \n",
+ "South Korea 3334.0 2.9 81.35 \n",
+ "Belarus 3250.0 3.4 73.76 \n",
+ "North Korea 2094.0 19.7 71.13 \n",
+ "Ukraine 3138.0 7.7 72.29 \n",
+ "Estonia 3253.0 2.3 77.66 \n",
+ "Czechia 3256.0 2.8 79.37 \n",
+ "Uganda 2130.0 37.7 62.86 \n",
+ "Lithuania 3417.0 3.3 75.31 \n",
+ "Russia 3361.0 8.2 71.07 \n",
+ "\n",
+ " life_expectancy_female life_expectancy_male un_accession \n",
+ "name \n",
+ "Moldova 76.090 67.544 1992-03-02 \n",
+ "South Korea 85.467 79.456 1991-09-17 \n",
+ "Belarus 78.583 67.693 1945-10-24 \n",
+ "North Korea 75.512 68.450 1991-09-17 \n",
+ "Ukraine 77.067 67.246 1945-10-24 \n",
+ "Estonia 82.111 73.201 1991-09-17 \n",
+ "Czechia 81.858 76.148 1993-01-19 \n",
+ "Uganda 62.667 58.252 1962-10-25 \n",
+ "Lithuania 80.060 69.554 1991-09-17 \n",
+ "Russia 76.882 65.771 1945-10-24 "
+ ]
+ },
+ "execution_count": 55,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# 10 zemí s největší spotřebou alkoholu na jednoho obyvatele\n",
+ "countries.sort_values(\"alcohol_adults\", ascending=False).head(10)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "💡 V následující buňce je celý kód uzavřen do závorky. Umožnili jsme si tím roztáhnout jeden výraz na více řádků, abychom jeho části mohli náležitě okomentovat."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 56,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
eu_accession
\n",
+ "
un_accession
\n",
+ "
\n",
+ "
\n",
+ "
name
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
France
\n",
+ "
1952-07-23
\n",
+ "
1945-10-24
\n",
+ "
\n",
+ "
\n",
+ "
Luxembourg
\n",
+ "
1952-07-23
\n",
+ "
1945-10-24
\n",
+ "
\n",
+ "
\n",
+ "
Netherlands
\n",
+ "
1952-07-23
\n",
+ "
1945-12-10
\n",
+ "
\n",
+ "
\n",
+ "
Belgium
\n",
+ "
1952-07-23
\n",
+ "
1945-12-27
\n",
+ "
\n",
+ "
\n",
+ "
Italy
\n",
+ "
1952-07-23
\n",
+ "
1955-12-14
\n",
+ "
\n",
+ "
\n",
+ "
Germany
\n",
+ "
1952-07-23
\n",
+ "
1973-09-18
\n",
+ "
\n",
+ "
\n",
+ "
Denmark
\n",
+ "
1973-01-01
\n",
+ "
1945-10-24
\n",
+ "
\n",
+ "
\n",
+ "
United Kingdom
\n",
+ "
1973-01-01
\n",
+ "
1945-10-24
\n",
+ "
\n",
+ "
\n",
+ "
Ireland
\n",
+ "
1973-01-01
\n",
+ "
1955-12-14
\n",
+ "
\n",
+ "
\n",
+ "
Greece
\n",
+ "
1981-01-01
\n",
+ "
1945-10-25
\n",
+ "
\n",
+ "
\n",
+ "
Portugal
\n",
+ "
1986-01-01
\n",
+ "
1955-12-14
\n",
+ "
\n",
+ "
\n",
+ "
Spain
\n",
+ "
1986-01-01
\n",
+ "
1955-12-14
\n",
+ "
\n",
+ "
\n",
+ "
Sweden
\n",
+ "
1995-01-01
\n",
+ "
1946-11-19
\n",
+ "
\n",
+ "
\n",
+ "
Austria
\n",
+ "
1995-01-01
\n",
+ "
1955-12-14
\n",
+ "
\n",
+ "
\n",
+ "
Finland
\n",
+ "
1995-01-01
\n",
+ "
1955-12-14
\n",
+ "
\n",
+ "
\n",
+ "
Poland
\n",
+ "
2004-05-01
\n",
+ "
1945-10-24
\n",
+ "
\n",
+ "
\n",
+ "
Hungary
\n",
+ "
2004-05-01
\n",
+ "
1955-12-14
\n",
+ "
\n",
+ "
\n",
+ "
Cyprus
\n",
+ "
2004-05-01
\n",
+ "
1960-09-20
\n",
+ "
\n",
+ "
\n",
+ "
Malta
\n",
+ "
2004-05-01
\n",
+ "
1964-12-01
\n",
+ "
\n",
+ "
\n",
+ "
Estonia
\n",
+ "
2004-05-01
\n",
+ "
1991-09-17
\n",
+ "
\n",
+ "
\n",
+ "
Latvia
\n",
+ "
2004-05-01
\n",
+ "
1991-09-17
\n",
+ "
\n",
+ "
\n",
+ "
Lithuania
\n",
+ "
2004-05-01
\n",
+ "
1991-09-17
\n",
+ "
\n",
+ "
\n",
+ "
Slovenia
\n",
+ "
2004-05-01
\n",
+ "
1992-05-22
\n",
+ "
\n",
+ "
\n",
+ "
Czechia
\n",
+ "
2004-05-01
\n",
+ "
1993-01-19
\n",
+ "
\n",
+ "
\n",
+ "
Slovakia
\n",
+ "
2004-05-01
\n",
+ "
1993-01-19
\n",
+ "
\n",
+ "
\n",
+ "
Bulgaria
\n",
+ "
2007-01-01
\n",
+ "
1955-12-14
\n",
+ "
\n",
+ "
\n",
+ "
Romania
\n",
+ "
2007-01-01
\n",
+ "
1955-12-14
\n",
+ "
\n",
+ "
\n",
+ "
Croatia
\n",
+ "
2013-01-01
\n",
+ "
1992-05-22
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " eu_accession un_accession\n",
+ "name \n",
+ "France 1952-07-23 1945-10-24\n",
+ "Luxembourg 1952-07-23 1945-10-24\n",
+ "Netherlands 1952-07-23 1945-12-10\n",
+ "Belgium 1952-07-23 1945-12-27\n",
+ "Italy 1952-07-23 1955-12-14\n",
+ "Germany 1952-07-23 1973-09-18\n",
+ "Denmark 1973-01-01 1945-10-24\n",
+ "United Kingdom 1973-01-01 1945-10-24\n",
+ "Ireland 1973-01-01 1955-12-14\n",
+ "Greece 1981-01-01 1945-10-25\n",
+ "Portugal 1986-01-01 1955-12-14\n",
+ "Spain 1986-01-01 1955-12-14\n",
+ "Sweden 1995-01-01 1946-11-19\n",
+ "Austria 1995-01-01 1955-12-14\n",
+ "Finland 1995-01-01 1955-12-14\n",
+ "Poland 2004-05-01 1945-10-24\n",
+ "Hungary 2004-05-01 1955-12-14\n",
+ "Cyprus 2004-05-01 1960-09-20\n",
+ "Malta 2004-05-01 1964-12-01\n",
+ "Estonia 2004-05-01 1991-09-17\n",
+ "Latvia 2004-05-01 1991-09-17\n",
+ "Lithuania 2004-05-01 1991-09-17\n",
+ "Slovenia 2004-05-01 1992-05-22\n",
+ "Czechia 2004-05-01 1993-01-19\n",
+ "Slovakia 2004-05-01 1993-01-19\n",
+ "Bulgaria 2007-01-01 1955-12-14\n",
+ "Romania 2007-01-01 1955-12-14\n",
+ "Croatia 2013-01-01 1992-05-22"
+ ]
+ },
+ "execution_count": 56,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "(\n",
+ " # Uvažuj jenom EU\n",
+ " countries[countries[\"is_eu\"]]\n",
+ " \n",
+ " # Seřaď nejdřív podle data vstupu do EU, pak podle vstupu do OSN\n",
+ " .sort_values([\"eu_accession\", \"un_accession\"])\n",
+ "\n",
+ " # Zobraz si jen ty dva sloupce\n",
+ " [[\"eu_accession\", \"un_accession\"]]\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "💡 Ostatně je možné řadit nejen řádky, ale i sloupce. Následující příklad rovná sloupce podle jejich názvu (indexu). Poslouží k tomu (podobně jako v jiných podobných případech) argument `axis`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 57,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
alcohol_adults
\n",
+ "
area
\n",
+ "
bmi_men
\n",
+ "
bmi_women
\n",
+ "
calories_per_day
\n",
+ "
car_deaths_per_100000_people
\n",
+ "
eu_accession
\n",
+ "
income_groups
\n",
+ "
infant_mortality
\n",
+ "
is_eu
\n",
+ "
is_oecd
\n",
+ "
iso
\n",
+ "
life_expectancy
\n",
+ "
life_expectancy_female
\n",
+ "
life_expectancy_male
\n",
+ "
population
\n",
+ "
un_accession
\n",
+ "
world_4region
\n",
+ "
world_6region
\n",
+ "
year
\n",
+ "
\n",
+ "
\n",
+ "
name
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
Afghanistan
\n",
+ "
0.03
\n",
+ "
652860.0
\n",
+ "
20.62
\n",
+ "
21.07
\n",
+ "
2090.0
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
low_income
\n",
+ "
66.3
\n",
+ "
False
\n",
+ "
False
\n",
+ "
AFG
\n",
+ "
58.69
\n",
+ "
65.812
\n",
+ "
63.101
\n",
+ "
34500000.0
\n",
+ "
1946-11-19
\n",
+ "
asia
\n",
+ "
south_asia
\n",
+ "
2018
\n",
+ "
\n",
+ "
\n",
+ "
Albania
\n",
+ "
7.29
\n",
+ "
28750.0
\n",
+ "
26.45
\n",
+ "
25.66
\n",
+ "
3193.0
\n",
+ "
5.978
\n",
+ "
NaN
\n",
+ "
upper_middle_income
\n",
+ "
12.5
\n",
+ "
False
\n",
+ "
False
\n",
+ "
ALB
\n",
+ "
78.01
\n",
+ "
80.737
\n",
+ "
76.693
\n",
+ "
3238000.0
\n",
+ "
1955-12-14
\n",
+ "
europe
\n",
+ "
europe_central_asia
\n",
+ "
2018
\n",
+ "
\n",
+ "
\n",
+ "
Algeria
\n",
+ "
0.69
\n",
+ "
2381740.0
\n",
+ "
24.60
\n",
+ "
26.37
\n",
+ "
3296.0
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
upper_middle_income
\n",
+ "
21.9
\n",
+ "
False
\n",
+ "
False
\n",
+ "
DZA
\n",
+ "
77.86
\n",
+ "
77.784
\n",
+ "
75.279
\n",
+ "
36980000.0
\n",
+ "
1962-10-08
\n",
+ "
africa
\n",
+ "
middle_east_north_africa
\n",
+ "
2018
\n",
+ "
\n",
+ "
\n",
+ "
Andorra
\n",
+ "
10.17
\n",
+ "
470.0
\n",
+ "
27.63
\n",
+ "
26.43
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
high_income
\n",
+ "
2.1
\n",
+ "
False
\n",
+ "
False
\n",
+ "
AND
\n",
+ "
82.55
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
88910.0
\n",
+ "
1993-07-28
\n",
+ "
europe
\n",
+ "
europe_central_asia
\n",
+ "
2017
\n",
+ "
\n",
+ "
\n",
+ "
Angola
\n",
+ "
5.57
\n",
+ "
1246700.0
\n",
+ "
22.25
\n",
+ "
23.48
\n",
+ "
2473.0
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
upper_middle_income
\n",
+ "
96.0
\n",
+ "
False
\n",
+ "
False
\n",
+ "
AGO
\n",
+ "
65.19
\n",
+ "
64.939
\n",
+ "
59.213
\n",
+ "
20710000.0
\n",
+ "
1976-12-01
\n",
+ "
africa
\n",
+ "
sub_saharan_africa
\n",
+ "
2018
\n",
+ "
\n",
+ "
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
\n",
+ "
\n",
+ "
Venezuela
\n",
+ "
7.60
\n",
+ "
912050.0
\n",
+ "
27.45
\n",
+ "
28.13
\n",
+ "
2631.0
\n",
+ "
7.332
\n",
+ "
NaN
\n",
+ "
upper_middle_income
\n",
+ "
12.9
\n",
+ "
False
\n",
+ "
False
\n",
+ "
VEN
\n",
+ "
75.91
\n",
+ "
79.079
\n",
+ "
70.950
\n",
+ "
30340000.0
\n",
+ "
1945-11-15
\n",
+ "
americas
\n",
+ "
america
\n",
+ "
2018
\n",
+ "
\n",
+ "
\n",
+ "
Vietnam
\n",
+ "
3.91
\n",
+ "
330967.0
\n",
+ "
20.92
\n",
+ "
21.07
\n",
+ "
2745.0
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
lower_middle_income
\n",
+ "
17.3
\n",
+ "
False
\n",
+ "
False
\n",
+ "
VNM
\n",
+ "
74.88
\n",
+ "
81.203
\n",
+ "
72.003
\n",
+ "
90660000.0
\n",
+ "
1977-09-20
\n",
+ "
asia
\n",
+ "
east_asia_pacific
\n",
+ "
2018
\n",
+ "
\n",
+ "
\n",
+ "
Yemen
\n",
+ "
0.20
\n",
+ "
527970.0
\n",
+ "
24.44
\n",
+ "
26.11
\n",
+ "
2223.0
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
lower_middle_income
\n",
+ "
33.8
\n",
+ "
False
\n",
+ "
False
\n",
+ "
YEM
\n",
+ "
67.14
\n",
+ "
66.871
\n",
+ "
63.875
\n",
+ "
26360000.0
\n",
+ "
1947-09-30
\n",
+ "
asia
\n",
+ "
middle_east_north_africa
\n",
+ "
2018
\n",
+ "
\n",
+ "
\n",
+ "
Zambia
\n",
+ "
3.56
\n",
+ "
752610.0
\n",
+ "
20.68
\n",
+ "
23.05
\n",
+ "
1930.0
\n",
+ "
11.260
\n",
+ "
NaN
\n",
+ "
lower_middle_income
\n",
+ "
43.3
\n",
+ "
False
\n",
+ "
False
\n",
+ "
ZMB
\n",
+ "
59.45
\n",
+ "
65.362
\n",
+ "
59.845
\n",
+ "
14310000.0
\n",
+ "
1964-12-01
\n",
+ "
africa
\n",
+ "
sub_saharan_africa
\n",
+ "
2018
\n",
+ "
\n",
+ "
\n",
+ "
Zimbabwe
\n",
+ "
4.96
\n",
+ "
390760.0
\n",
+ "
22.03
\n",
+ "
24.65
\n",
+ "
2110.0
\n",
+ "
20.850
\n",
+ "
NaN
\n",
+ "
low_income
\n",
+ "
46.6
\n",
+ "
False
\n",
+ "
False
\n",
+ "
ZWE
\n",
+ "
60.18
\n",
+ "
63.944
\n",
+ "
60.120
\n",
+ "
13330000.0
\n",
+ "
1980-08-25
\n",
+ "
africa
\n",
+ "
sub_saharan_africa
\n",
+ "
2018
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
193 rows × 20 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " alcohol_adults area bmi_men bmi_women calories_per_day \\\n",
+ "name \n",
+ "Afghanistan 0.03 652860.0 20.62 21.07 2090.0 \n",
+ "Albania 7.29 28750.0 26.45 25.66 3193.0 \n",
+ "Algeria 0.69 2381740.0 24.60 26.37 3296.0 \n",
+ "Andorra 10.17 470.0 27.63 26.43 NaN \n",
+ "Angola 5.57 1246700.0 22.25 23.48 2473.0 \n",
+ "... ... ... ... ... ... \n",
+ "Venezuela 7.60 912050.0 27.45 28.13 2631.0 \n",
+ "Vietnam 3.91 330967.0 20.92 21.07 2745.0 \n",
+ "Yemen 0.20 527970.0 24.44 26.11 2223.0 \n",
+ "Zambia 3.56 752610.0 20.68 23.05 1930.0 \n",
+ "Zimbabwe 4.96 390760.0 22.03 24.65 2110.0 \n",
+ "\n",
+ " car_deaths_per_100000_people eu_accession income_groups \\\n",
+ "name \n",
+ "Afghanistan NaN NaN low_income \n",
+ "Albania 5.978 NaN upper_middle_income \n",
+ "Algeria NaN NaN upper_middle_income \n",
+ "Andorra NaN NaN high_income \n",
+ "Angola NaN NaN upper_middle_income \n",
+ "... ... ... ... \n",
+ "Venezuela 7.332 NaN upper_middle_income \n",
+ "Vietnam NaN NaN lower_middle_income \n",
+ "Yemen NaN NaN lower_middle_income \n",
+ "Zambia 11.260 NaN lower_middle_income \n",
+ "Zimbabwe 20.850 NaN low_income \n",
+ "\n",
+ " infant_mortality is_eu is_oecd iso life_expectancy \\\n",
+ "name \n",
+ "Afghanistan 66.3 False False AFG 58.69 \n",
+ "Albania 12.5 False False ALB 78.01 \n",
+ "Algeria 21.9 False False DZA 77.86 \n",
+ "Andorra 2.1 False False AND 82.55 \n",
+ "Angola 96.0 False False AGO 65.19 \n",
+ "... ... ... ... ... ... \n",
+ "Venezuela 12.9 False False VEN 75.91 \n",
+ "Vietnam 17.3 False False VNM 74.88 \n",
+ "Yemen 33.8 False False YEM 67.14 \n",
+ "Zambia 43.3 False False ZMB 59.45 \n",
+ "Zimbabwe 46.6 False False ZWE 60.18 \n",
+ "\n",
+ " life_expectancy_female life_expectancy_male population \\\n",
+ "name \n",
+ "Afghanistan 65.812 63.101 34500000.0 \n",
+ "Albania 80.737 76.693 3238000.0 \n",
+ "Algeria 77.784 75.279 36980000.0 \n",
+ "Andorra NaN NaN 88910.0 \n",
+ "Angola 64.939 59.213 20710000.0 \n",
+ "... ... ... ... \n",
+ "Venezuela 79.079 70.950 30340000.0 \n",
+ "Vietnam 81.203 72.003 90660000.0 \n",
+ "Yemen 66.871 63.875 26360000.0 \n",
+ "Zambia 65.362 59.845 14310000.0 \n",
+ "Zimbabwe 63.944 60.120 13330000.0 \n",
+ "\n",
+ " un_accession world_4region world_6region year \n",
+ "name \n",
+ "Afghanistan 1946-11-19 asia south_asia 2018 \n",
+ "Albania 1955-12-14 europe europe_central_asia 2018 \n",
+ "Algeria 1962-10-08 africa middle_east_north_africa 2018 \n",
+ "Andorra 1993-07-28 europe europe_central_asia 2017 \n",
+ "Angola 1976-12-01 africa sub_saharan_africa 2018 \n",
+ "... ... ... ... ... \n",
+ "Venezuela 1945-11-15 americas america 2018 \n",
+ "Vietnam 1977-09-20 asia east_asia_pacific 2018 \n",
+ "Yemen 1947-09-30 asia middle_east_north_africa 2018 \n",
+ "Zambia 1964-12-01 africa sub_saharan_africa 2018 \n",
+ "Zimbabwe 1980-08-25 africa sub_saharan_africa 2018 \n",
+ "\n",
+ "[193 rows x 20 columns]"
+ ]
+ },
+ "execution_count": 57,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "countries.sort_index(axis=\"columns\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**Úkol:** Seřaď země světa podle hustoty obyvatel."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**Úkol:** Které země mají problémy s nadváhou (průměrné BMI mužů a žen je přes 25)?"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**Úkol:** V kterých 20 zemích umře absolutně nejvíc lidí při automobilových haváriích?"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ulož výsledky!\n",
+ "\n",
+ "A tím už pomalu končíme. Jenže jsme udělali (skoro) netriviální množství práce a ta bude do příště ztracená. Naštěstí zapsat `DataFrame` do externího souboru v některém z typických formátů není vůbec komplikované. K sadě funkcí `pd.read_XXX` existují jejich protějšky `DataFrame.to_XXX`. Liší se různými parametry, ale základní použití je velmi jednoduché:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 58,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "planety.to_csv(\"planety.csv\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 59,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "planety.to_excel(\"planety.xlsx\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Excel ani CSV nejsou formáty pro ukládání velikých dat zcela vhodné (jako alternativy se nabízí třeba [feather](https://github.com/wesm/feather) nebo [parquet](https://en.wikipedia.org/wiki/Apache_Parquet)), pro naše účely (malé soubory, čitelný textový formát) ale budou CSV postačovat."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Jednou z možností je i vytvoření HTML tabulky (které lze dodat i různé formátování, což ovšem nechme raději na jindy nebo na doma, viz [dokumentace \"Styling\"](https://pandas.pydata.org/pandas-docs/stable/user_guide/style.html)). Výchozí [`to_html`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_html.html) si bohužel neporadí s \"nezápadními\" symboly (což je třeba ☿), a tak mu (v našem konkrétním případě) musíme předat korektně otevřený soubor:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 60,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# planety.to_html(\"planety.html\") # To (zatím) nefunguje :-(\n",
+ "\n",
+ "with open(\"planety.html\", \"w\", encoding=\"utf-8\") as out:\n",
+ " planety.to_html(out)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 61,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "countries.to_html(\"countries.html\") # Žádné exotické symboly :-)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**Úkol**: Podívej se, co ve výstupních souborech najdeš."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**Úkol**: Podívej se na seznam možných výstupních formátů a zkus si planety nebo země zapsat do nějakého z nich: https://pandas.pydata.org/pandas-docs/stable/reference/frame.html#serialization-io-conversion"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "A to už je opravdu všechno. 👋"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.3"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/lessons/pydata/pandas_types/info.yml b/lessons/pydata/pandas_types/info.yml
new file mode 100644
index 0000000000..1e138b59b4
--- /dev/null
+++ b/lessons/pydata/pandas_types/info.yml
@@ -0,0 +1,4 @@
+title: Datové typy v pandas
+style: ipynb
+attribution: Pro PyDataCZ napsal Jan Pipek, 2020.
+license: cc-by-sa-40
\ No newline at end of file
diff --git a/lessons/pydata/visualization_basics/index.ipynb b/lessons/pydata/visualization_basics/index.ipynb
new file mode 100644
index 0000000000..b45bde16d6
--- /dev/null
+++ b/lessons/pydata/visualization_basics/index.ipynb
@@ -0,0 +1,4434 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Základy vizualizace - v pandas a pro pandas\n",
+ "\n",
+ "Jeden obrázek (či graf) někdy dokáže říci více než tisíc slov. U (explorativní) datové analýzy to platí dvojnásob (A jako umí být manipulativní článek o tisíci slovech, o to manipulativnější umí být \"vhodně\" připravený graf).\n",
+ "\n",
+ "V této lekci si ukážeme, jak z dat, která už umíš načíst a se kterými provádíš mnohé aritmetické operace, vykreslíš některé základní typy grafů (sloupcový, spojnicový a bodový)."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Rozmanitý svět vizualizačních knihoven v Pythonu\n",
+ "\n",
+ "Zatímco ohledně knihovny pro běžné zpracování tabulkových dat panuje shoda a při zkoumání malých až středně velkých dat nepříliš exotického typu téměř vždy analytici běžně sahají po `pandas`, knihoven pro vizualizaci dat existuje nepřeberné množství - každá má svoje výhody i nevýhody. My si během lekcí EDA zmíníme tyto tři (a budeme se soustředit především na to, jak je použít společně s pandas):\n",
+ "\n",
+ "- `matplotlib` - Toto je asi nejrozšířenější a v mnoha ohledech nejflexibilnější knihovna. Představuje výchozí volbu, pokud potřebuješ dobře vyhlížející statické grafy, které budou fungovat skoro všude. Značná flexibilita je vyvážena někdy ne zcela intuitivními jmény funkcí a argumentů. Pandas ji využívá interně (proto se s ní nemusíš seznámit tak detailně). Viz https://matplotlib.org/.\n",
+ "\n",
+ "- `seaborn` - Cílem této knihovny je pomoci zejména se statistickými grafy. Staví na matplotlibu, ale překrývá ho \"lidskou\" tváří. My s ním budeme pracovat při vizualizaci složitějších vztahů mezi více proměnnými. Viz https://seaborn.pydata.org/.\n",
+ "\n",
+ "- `plotly` (a zejména její podmnožina `plotly.express`) - Po této knihovně zejména sáhneš, budeš-li chtít do své vizualizace vložit interaktivitu. Ta se samozřejmě obtížně tiskne na papír, ale zejména při práci v Jupyter notebooku umožní vše zkoumat výrazně rychleji. Viz https://plot.ly/python/.\n",
+ "\n",
+ "Pro zájemce o bližší vysvětlení doporučujeme podívat se na (již poněkud starší) video od Jakea Vanderplase: Python Visualizations' Landscape (https://www.youtube.com/watch?v=FytuB8nFHPQ), které shrnuje základní vlastnosti jednotlivých knihoven.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%matplotlib inline\n",
+ "\n",
+ "# Co to má znamenat!?"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Jestli ses dosud tvářil/a, že nevíš o existenci matplotlibu, teď už nemůžeš :-). Tato mysteriózní řádka (ve skutečnosti \"IPython magic command\") říká, že všechny grafy se automaticky vykreslí přímo do notebooku (to vůbec není samozřejmé a leckdy to ani nechceme - třeba když chceme grafy ukládat rovnou do souboru nebo interaktivně mimo notebook).\n",
+ "\n",
+ "Více viz https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-matplotlib.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Příprava - zdroj dat\n",
+ "\n",
+ "Nejdříve si načteme data se zeměmi světa, použitá již v lekci o typech. Přidáme k tomu i tabulku s vývojem některých ukazatelů v čase pro Českou republiku (a hned se na ně podíváme).\n",
+ "\n",
+ "Opět kód pro stažení...\n",
+ "\n",
+ "Případně můžeš manuálně stáhnout tyto soubory:\n",
+ "- https://raw.githubusercontent.com/janpipek/data-pro-pyladies/master/data/countries.csv\n",
+ "- https://raw.githubusercontent.com/janpipek/data-pro-pyladies/master/data/cze.csv"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Soubor countries.csv už byl stažen, použijeme místní kopii.\n",
+ "Soubor cze.csv už byl stažen, použijeme místní kopii.\n",
+ "Všechny soubory jsou staženy.\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Nutné importy ze standardní knihovny\n",
+ "import os\n",
+ "from urllib.request import urlretrieve\n",
+ "\n",
+ "# Seznam souborů (viz níže)\n",
+ "zdroje = [\n",
+ " # Země\n",
+ " \"https://raw.githubusercontent.com/janpipek/data-pro-pyladies/master/data/countries.csv\",\n",
+ "\n",
+ " # Česká data\n",
+ " \"https://raw.githubusercontent.com/janpipek/data-pro-pyladies/master/data/cze.csv\"\n",
+ "]\n",
+ "\n",
+ "for zdroj in zdroje:\n",
+ " # Pouze poslední část cesty adresy datového zdroje je jeho jméno\n",
+ " jmeno = zdroj.rsplit(\"/\")[-1]\n",
+ " \n",
+ " if not os.path.exists(jmeno): \n",
+ " print(f\"Soubor {jmeno} ještě není stažen, jdeme na to...\")\n",
+ " urlretrieve(url=zdroj, filename=jmeno)\n",
+ " print(f\"Soubor {jmeno} úspěšně stažen.\")\n",
+ " else:\n",
+ " print(f\"Soubor {jmeno} už byl stažen, použijeme místní kopii.\")\n",
+ "print(\"Všechny soubory jsou staženy.\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
year
\n",
+ "
population
\n",
+ "
alcohol_adults
\n",
+ "
bmi_men
\n",
+ "
bmi_women
\n",
+ "
car_deaths_per_100000_people
\n",
+ "
calories_per_day
\n",
+ "
infant_mortality
\n",
+ "
life_expectancy
\n",
+ "
life_expectancy_female
\n",
+ "
life_expectancy_male
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
29
\n",
+ "
2009
\n",
+ "
10440000.0
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
3276.0
\n",
+ "
3.6
\n",
+ "
77.24
\n",
+ "
80.450
\n",
+ "
74.234
\n",
+ "
\n",
+ "
\n",
+ "
30
\n",
+ "
2010
\n",
+ "
10490000.0
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
3276.0
\n",
+ "
3.4
\n",
+ "
77.47
\n",
+ "
80.672
\n",
+ "
74.511
\n",
+ "
\n",
+ "
\n",
+ "
31
\n",
+ "
2011
\n",
+ "
10530000.0
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
3251.0
\n",
+ "
3.2
\n",
+ "
77.75
\n",
+ "
80.873
\n",
+ "
74.768
\n",
+ "
\n",
+ "
\n",
+ "
32
\n",
+ "
2012
\n",
+ "
10570000.0
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
3243.0
\n",
+ "
3.2
\n",
+ "
78.00
\n",
+ "
81.055
\n",
+ "
75.006
\n",
+ "
\n",
+ "
\n",
+ "
33
\n",
+ "
2013
\n",
+ "
10590000.0
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
3256.0
\n",
+ "
3.0
\n",
+ "
78.27
\n",
+ "
81.219
\n",
+ "
75.225
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " year population alcohol_adults bmi_men bmi_women \\\n",
+ "29 2009 10440000.0 NaN NaN NaN \n",
+ "30 2010 10490000.0 NaN NaN NaN \n",
+ "31 2011 10530000.0 NaN NaN NaN \n",
+ "32 2012 10570000.0 NaN NaN NaN \n",
+ "33 2013 10590000.0 NaN NaN NaN \n",
+ "\n",
+ " car_deaths_per_100000_people calories_per_day infant_mortality \\\n",
+ "29 NaN 3276.0 3.6 \n",
+ "30 NaN 3276.0 3.4 \n",
+ "31 NaN 3251.0 3.2 \n",
+ "32 NaN 3243.0 3.2 \n",
+ "33 NaN 3256.0 3.0 \n",
+ "\n",
+ " life_expectancy life_expectancy_female life_expectancy_male \n",
+ "29 77.24 80.450 74.234 \n",
+ "30 77.47 80.672 74.511 \n",
+ "31 77.75 80.873 74.768 \n",
+ "32 78.00 81.055 75.006 \n",
+ "33 78.27 81.219 75.225 "
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "import pandas as pd\n",
+ "\n",
+ "countries = pd.read_csv(\"countries.csv\").set_index(\"name\")\n",
+ "czech = pd.read_csv(\"cze.csv\")\n",
+ "czech.tail()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Sloupcový graf (bar plot)\n",
+ "\n",
+ "Úplně nejjednodušší graf, který můžeš vytvořit, je **sloupcový**. Vedle sebe postupně zobrazíš sloupečky vysoké podle vlastnosti, která tě zajímá. Ukazuje hodnoty jedné proměnné, aniž by je jakýmkoliv způsobem statisticky zpracovával nebo porovnával s proměnnou jinou.\n",
+ "\n",
+ "V `pandas` se k funkcím pro kreslení grafů přistupuje pomocí tzv. **accessoru** `.plot`. To je hybridní objekt, který lze volat jako metodu (`Series.plot()` - použije výchozí typ grafu), anebo lze pomocí další tečky odkazovat na jeho vlastní metody, které kreslí různé typy grafů. Z \"pedagogických důvodů\" (které bývají leckdy nepochopitelné) chceme začít od sloupcového grafu, který výchozí není, a tak voláme [`Series.plot.bar()`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.plot.bar.html)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAGnCAYAAACnyazSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydeZheRbH/P00ChLAvAQElgCLqBUHNVVxRcd8At6sXMT9FudcVBe8VV3C5CCqgXkXZCSg7KmFfkkBEIPu+7/uezEySWZKZ6d8f36rbJzGYSciEmTf1fZ7zvO973nNOV1dXV1dVV/dJOWcCgUAg0P2x2wtNQCAQCAR2DEKhBwKBQI0gFHogEAjUCEKhBwKBQI0gFHogEAjUCEKhBwKBQI2g584s7JBDDslHH330ziwyEAgEuj1GjRq1MufcZ2vX7VSFfvTRRzNy5MidWWQgEAh0e6SU5nXkugi5BAKBQI0gFHogEAjUCEKhBwKBQI0gFHogEAjUCEKhBwKBQI0gFHogEAjUCEKhBwKBQI0gFHogEAjUCEKhB7oNjr7wgReahMAORLTnjkco9EAgEKgRhEIPBALdCs/Xsq9lz6BbKPRaboBAIBDYUXjBFXoo68CW4HLxQshHyGRtYldo1xdcoXdn1IKA1EIdAoGA0K0UeiifQFfEzpbLF9J7CXRtdEihp5S+mVKalFKamFK6LaXUK6V0TEppWEppRkrpjpTSHp1N7Laiuwh8d6ETOp/W7sSLXQU7q03+WTndWS52Ju1bVegppSOBrwP9cs4nAD2ATwGXAVfmnI8D1gDndCahge4t1IHuj5C/ro+Ohlx6AnullHoCvYElwDuBu+3/AcAZO5687osQ/q6HaJNArWOrCj3nvAj4JTAfKfJ6YBRQl3NutcsWAkdu6f6U0rkppZEppZErVqzYMVQHAs+BrhAe6M6o1XrtKuhIyOVA4HTgGOAIYG/g/Vu4NG/p/pzzNTnnfjnnfn36bPUdp4FAINDl0VUHvo6EXN4FzMk5r8g5bwT+DLwJOMBCMAAvBhZ3Eo27JKoC01WFJxAIdAw7qw93RKHPB05JKfVOKSXgNGAyMAT4uF3TH7i3c0gMBAKBQEfQkRj6MDT5ORqYYPdcA3wbOD+lNBM4GLi+E+ns9oh0v0Ag0NnoUJZLzvminPMrcs4n5JzPzjm35Jxn55xfn3N+Wc75Eznnlo4W2pUWRnQFGgKBzsT2yviu2De6e5273ErR7s7Q54vOrP+uztvAzkV4pf+Izqa5yyn0bUVnMKg7Ckqg+2JXl7ddvf47El1WoddKI9dKPboSuhNPuxOtgR2LF6Ltu6xCD+w6CKUXCOwYdGmFHh196+guPOoudG4NtVKPnY3g23NjR/KmSyv0nY1aEbpaqcfOQFfiVVei5bnQHWjclREKPVDziLS9wK6CXU6hRycNBP4R0S9eeOyINtjlFHqg44hOHtjRCJnqXHRbhf58BWNHClYIaSAQ6Arotgp9c8TuhIFAYFdHzSj0wM5HRwbOGFwDtYLuIMuh0AOBQKBGsEso9O4wsu4o7Ep17Y6I9ulaqLW9oHYJhR7Y8dgRQtuVJrYDtYFdXSY68k7R41NKYytHQ0rpGymlg1JKj6WUZtjngTuD4ECgI6jFjl2Ldeps7Go868gbi6blnE/OOZ8MvA5oBP4CXAgMyjkfBwyy34FAoAsg9iLfNbGtIZfTgFk553nA6cAAOz8AOGNHEhYIdFd0d2UXobBN0Z3qs60K/VPAbfb9sJzzEgD7PHRHEhYI7MroTkpkV0ZX2yeowwo9pbQH8BHgrm0pIKV0bkppZEpp5IoVK7aVvkAgEOgU1OKguS0W+vuB0TnnZfZ7WUrpcAD7XL6lm3LO1+Sc++Wc+/Xp0+f5UdsFUItCEAgEagPbotA/TQm3AAwE+tv3/sC9O4qoQG0jBsVAoHPQIYWeUuoNvBv4c+X0pcC7U0oz7L9Ldzx5gUDtIga2zsOuytsOKfScc2PO+eCcc33l3Kqc82k55+Psc3XnkRnoTthVO9OuiGjrroVYKboT0V2Ev7vQuTXUSj12FIIftY9Q6IH/Q3fs8N2R5kCgsxAKne6nFLobvYFAoON4Pv07FHqgQ4hBJBDo+giFXsPYkhIOxVzbiPbdtREKfRdFdPydi662RDxQmwiFHtglEYoyUEWtyEOXUeix3WeguyNkLPBCo8so9EDn4YVQNKHcAoGdj1DogUAg8AJhRxs+odBfQIQVGwgEdiRCoQcCW0EMvDsXVX4H77cNodADgeeBUDi1i+7YtqHQXwB0R0EJdG2ETAUgFHqgRhAKLRAIhb5VhKLYOoJHgUDXQEffWHRASunulNLUlNKUlNIbU0oHpZQeSynNsM8DO5vYQCAQCDw3Omqh/xp4OOf8CuAkYApwITAo53wcMMh+1yxiJeuujZ3VPjtbDkLuagtbVegppf2AtwHXA+ScN+Sc64DTgQF22QDgjM4iMhAIBAJbR0cs9GOBFcCNKaUxKaXrUkp7A4flnJcA2OehW7o5pXRuSmlkSmnkihUrdhjhgUCg+yI8g45hW/nUEYXeE3gt8Puc82uA9WxDeCXnfE3OuV/OuV+fPn22ibhA90J00kDghUVHFPpCYGHOeZj9vhsp+GUppcMB7HN555AYCAQCgY5gqwo957wUWJBSOt5OnQZMBgYC/e1cf+DeTqEwEAgEAh1CR7Ncvgb8KaU0HjgZuAS4FHh3SmkG8G77/U8xYVH99tIZCAQC24VdKRTYsyMX5ZzHAv228NdpO5acQCAQkBKee+kHX2gyuh1ipWggEAjUCEKhBwKBQI0gFHogEAjUCEKhBwKBQI0gFHogEAjUCEKhBwKBQI0gFHogEAjUCEKhBwKBQI0gFHogEAjUCEKhBwKBQI0gFHogEAjUCEKhBwKBQI0gFHogEAjUCEKhBwKBQI0gFHogEAjUCEKh70DsShvpBwKBrocOveAipTQXWAu0Aa05534ppYOAO4CjgbnAJ3POazqHzEAgEAhsDdtiob8j53xyztnfXHQhMCjnfBwwyH4HAoFA4AXC8wm5nA4MsO8DgDOePzmBQCAQ2F50VKFn4NGU0qiU0rl27rCc8xIA+zx0SzemlM5NKY1MKY1sa4yXRAcCgUBnoUMxdODNOefFKaVDgcdSSlM7WkDO+RrgGoA9Dz8ubweNgUAgEOgAOmSh55wX2+dy4C/A64FlKaXDAexzeWcRGQgEAoGtY6sKPaW0d0ppX/8OvAeYCAwE+ttl/YF7O4vIQCAQCGwdHQm5HAb8JaXk19+ac344pTQCuDOldA4wH/hE55EZCAQCga1hqwo95zwbOGkL51cBp3UGUYFAIBDYdsRK0UAgEKgRhEIPBAKBGkEo9EAgEKgRhEIPBAKBGkEo9EAgEKgRhEIPBAKBGkEo9EAgEKgRhEIPBAKBGkEo9EAgEKgRhEIPBAKBGkEo9EAgEKgRhEIPBAKBGkEo9EAgEKgRhEIPBAKBGkEo9EAgEKgRdFihp5R6pJTGpJTut9/HpJSGpZRmpJTuSCnt0XlkBgKBQGBr2BYL/TxgSuX3ZcCVOefjgDXAOTuSsEAgEAhsGzqk0FNKLwY+CFxnvxPwTuBuu2QAcEZnEBgIBAKBjqGjFvqvgP8G2u33wUBdzrnVfi8EjtzBtAUCgUBgG7BVhZ5S+hCwPOc8qnp6C5fm57j/3JTSyJTSyLbG+u0kMxAIBAJbw1ZfEg28GfhISukDQC9gP2SxH5BS6mlW+ouBxVu6Oed8DXANwJ6HH7dFpR8IBAKB54+tWug55+/knF+ccz4a+BQwOOd8FjAE+Lhd1h+4t9OoDAQCgcBW8Xzy0L8NnJ9Smoli6tfvGJICgUAgsD3oSMjl/5BzfgJ4wr7PBl6/40kKBAKBwPYgVooGAoFAjSAUeiAQCNQIQqEHAoFAjSAUeiAQCNQIQqEHAoFAjSAUeiAQCNQIQqEHAoFAjSAUeiAQCNQIQqEHAoFAjSAUeiAQCNQIQqEHAoFAjSAUeiAQCNQIQqEHAoFAjSAUeiAQCNQIQqEHAoFAjSAUeiAQCNQIOvKS6F4ppeEppXEppUkppR/Z+WNSSsNSSjNSSneklPbofHIDgUAg8FzoiIXeArwz53wScDLwvpTSKcBlwJU55+OANcA5nUdmIBAIBLaGjrwkOuec19nP3e3IwDuBu+38AOCMTqEwEAgEAh1Ch2LoKaUeKaWxwHLgMWAWUJdzbrVLFgJHPse956aURqaURrY11u8ImgOBQCCwBXRIoeec23LOJwMvRi+GfuWWLnuOe6/JOffLOffr0Xv/7ac0EAgEAv8U25TlknOuA54ATgEOSCn1tL9eDCzesaQFAoFAYFvQkSyXPimlA+z7XsC7gCnAEODjdll/4N7OIjIQCAQCW0fPrV/C4cCAlFIPNADcmXO+P6U0Gbg9pfRTYAxwfSfSGQgEAoGtYKsKPec8HnjNFs7PRvH0QCAQCHQBxErRQCAQqBGEQg8EAoEaQSj0QCAQqBGEQg8EAoEaQSj0QCAQqBGEQg8EAoEaQSj0QCAQqBGEQg8EAoEaQSj0QCAQqBGEQg8EAoEaQSj0QCAQqBGEQg8EAoEaQSj0QCAQqBGEQg8EAoEaQSj0QCAQqBF05I1FL0kpDUkpTUkpTUopnWfnD0opPZZSmmGfB3Y+uYFAIBB4LnTEQm8FLsg5vxK9S/QrKaVXARcCg3LOxwGD7HcgEAgEXiBsVaHnnJfknEfb97XofaJHAqcDA+yyAcAZnUVkIBAIBLaObYqhp5SORq+jGwYclnNeAlL6wKE7mrhAIBAIdBwdVugppX2Ae4Bv5JwbtuG+c1NKI1NKI9sa67eHxkAgEAh0AB1S6Cml3ZEy/1PO+c92ellK6XD7/3Bg+ZbuzTlfk3Pul3Pu16P3/juC5kAgEAhsAR3JcknA9cCUnPMVlb8GAv3te3/g3h1PXiAQCAQ6ip4duObNwNnAhJTSWDv3XeBS4M6U0jnAfOATnUNiIBAIBDqCrSr0nPNTQHqOv0/bseQEAoFAYHsRK0UDgUCgRhAKPRAIBGoEodADgUCgRhAKPRAIBGoEodADgUCgRhAKPRAIBGoEodADgUCgRhAKPRAIBGoEodADgUCgRhAKPRAIBGoEodADgUCgRhAKPRAIBGoEodADgUCgRhAKPRAIBGoEodADgUCgRhAKPRAIBGoEHXkF3Q0ppeUppYmVcwellB5LKc2wzwM7l8xAIBAIbA0dsdBvAt632bkLgUE55+OAQfY7EAgEAi8gtqrQc85DgdWbnT4dGGDfBwBn7GC6AoFAILCN2N4Y+mE55yUA9nnoc12YUjo3pTQypTSyrbF+O4sLBAKBwNbQ6ZOiOedrcs79cs79evTev7OLCwQCgV0W26vQl6WUDgewz+U7jqRAIBAIbA+2V6EPBPrb9/7AvTuGnEAgEAhsLzqStngb8AxwfEppYUrpHOBS4N0ppRnAu+13IBAIBF5A9NzaBTnnTz/HX6ftYFoCgUAg8DwQK0UDgUCgRhAKPRAIBGoEodADgUCgRhAKPRAIBGoEodADgUCgRhAKPRAIBGoEodADgUCgRhAKPRAIBGoEodADgUCgRhAKPRAIBGoEodADgUCgRhAKPRAIBGoEodADgUCgRhAKPRAIBGoEodADgUCgRhAKPRAIBGoEz0uhp5Tel1KallKamVK6cEcRFQgEAoFtx3Yr9JRSD+B3wPuBVwGfTim9akcRFggEAoFtw/Ox0F8PzMw5z845bwBuB07fMWQFAoFAYFuRcs7bd2NKHwfel3P+gv0+G3hDzvmrm113LnCu/TweWGXfVwKHbOFzR/4X5XRfGmqtnK5AQ62V0xVo2Fnl7J1z7sPWkHPergP4BHBd5ffZwP924L6RwEj/vvnnjvwvyum+NNRaOV2BhlorpyvQsDPr2pHj+YRcFgIvqfx+MbD4eTwvEAgEAs8Dz0ehjwCOSykdk1LaA/gUMHDHkBUIBAKBbUXP7b0x59yaUvoq8AjQA7gh5zypA7des4Xvm3/uyP+inO5LQ62V0xVoqLVyugINO7Ocf4rtnhQNBAKBQNdCrBQNBAKBGkEo9EAgEKgRhEJ/DqSU9kgpnWDH7l3pmSmlvVNKu1V+75ZS6r0jaAxsP6wd9nuh6diVkFI6MKX06uf63VWws2SjS8TQU0onoO0Devm5nPPNz/OZBwIvyTmP39byUkpvBwYAc4GE0jP755yH2v8JOAtl9nwG2A94ETAD+HTO+aotlFl95h5W/jRgb2AvO///gBflnIf/s3qklJ4F3gNclXP+TErps8Afcs69U0rHAT8D3gBsrNTv2K3x7J8hpbQXcFTOedo23PMh4MGcc/s2lnWCfT0T+DfgYDTxvh7Iz7cuWyn7QLQA7sfAT1GBQ//J9bcC/wm0AaOA/YErcs6/sP8/CPwLFVkDrtRj8zq7Zg/g5fbftJzzxsq1pJQmAM/ZUXPOmyiwrfE9pdQLOGdzunLOn3+uMv4ZrLyfo35wM/BSO8ZXn5tS6gscl3N+3OSpZ855bUrpPOBGYC1wHfAaxPuFwGHAh1H/WmlFfhj4FtDbrtsbrVS/HHgYWAo8mXM+/5/Q/G575j7AocDuQB/gcGTovsN443zfzb5n+55QmzsGIxn9MNAXONVovBEtDPp3oJ2KbGxGz+uBo6kkquScb30u+p+zXjtDoaeU3gQcB7wTeDUS+jpgT+AA1DB7o1WkBwPDgVsRU4+zazbY45qBtwBNqPFOQnvK/Bx4APgj8G7gXXZtPbAIMaoX6qx7o4ZZhRpwHZt2uB72f5v9t5s9a4zR/lKj/3hgql3/YmAm8Apgjd0z1ejvaXWYYGW/yJ59gD2nB/B74B7gfiRc06zOp9hzhgE/yTnPTyktQsrut8CFwB+Q0JxsfLvInnMJWgD2EjSI7OVNUuHnOuN/M+pQ+9vv9fb/IuBIO5eABUgZ/BQNQscbr/ZBHXq11XcPq+cG4/N8a5+3Ga/6GC/2qdCyHpiOtpXoaXyZiTpcD9QhdrNn9wCeNH7vC9yF2vBoq0MbWqTxOitrT7tvd6AFGGTXH2p1O9Bo2YviuWYrc7nV63CkLF6ElPcRwMuAZUZDsudvBO5FA35Pq98AJJMHG8/3MBrnWrutsfL3B94OnAh8x8rew+jpZe30aeCDqG1fCnwEGQjnAUfZdbsZHf2AE4ALjD7Q4NGAlOUwK38VkiEvK1X43WLnZgBfBH6I5HqvCs1PAG+2urZb2cuNr72svfayzyn2/KOszHnGhzrglUhxv4oiA44mlBp9utG/CrV/svJ6Ao3A00bLdDs332h0ZXc4kpN2+z/Zf86fDUgB32bl7I8GpxNQmzVb2b9CMvZS4EfAsfa/K+WNdu1GJH/fAf4LuLTCj0OBtxqfZgNL7L9XAONzzl80I+34nPP9bA0dXYG0vQdwizF4JmrgDZXDO0y2Sq+2z1aKQvX/WuzadqR4Wqzx/Jpced4q+3++nXsaKcx2e3a1/EY7vwgp/9YKDW8ChgBzrJw2u6ZKdzsSwOXAnUgoNwB/RQpqo52rRx25CWgw3rSjzttkdHjZGSmJJvu+pMIP/79KQ5vd64fXe5o9Y4FdM9zKWYYU02KKwK0Afmn3z6o8a6V9nmDt01Ap148NlMEvV9pntZXdav+3o87bvlkbeF38Om9zH3TXAWONZ+OALwHXWz032H3tVuYD1hbzkMJvtzqusPaYYDzZXG6W2LVLjEcLkJJdhdZczLRy1lPk0xXXYuPLjAr/F9r/P7dzLmd+eJu1VZ75S+PdSmTpOh/aK2W22PXtVq7Ld3ulXnM2K6sq99MofacJyeY6q/cC4D/smkbgKuPBzUievR+sZlP5y0aT87HV+LaMIj9rjIfNSAnO3axeeTM+VdvmVUg5r6b0Q2+/j9v3yca76cgAcsXbTulbuXLOZbDJ2m408ljagJWV/rkvZZCYZPXsYWUsMp7MQ4Nqpij9x+z6JmRs/DvwjF3TxKZy5LxssjZto+i7NqNvbGevFO0o+qHRci1SIs7sl1CU82w0Oh6PLILpVqEG+76bPedJoDHnvC9qmHWIgU0554Q68nJkPWXk+uSc85uQ1d6CGm4q6tjjgGeBDTnnI5H3sBENQj4y/whZlGuBiUgQx9vv5cBQ1MD1Vsb1qKH6UCyH+caLyfa5e0rpWrtuXzR6L7NrJyJB291oa0ICs9jobUTu3AbjZ53xZzwSuvXAtfb5kP3XaNevQ52qV875Rciinmpl7pVz/hawW875pUZrC7IsewDfRRZ1D7s+I49rLXATMNb4Pgd5CZOMx9da+/5oMx60Wdn1yDqZA3wdWWxr7fta48GewKtSSnOAg3LOv0fy8Bt7Vovd3wPJ1YHA35D1vBDJ0D7Isj4KDVjjrQ6fN95PR7JyuH1vRRbYfsbXvkihTAd+glxpHxj72LNebvyeh3k9Oef/RnLwIaN1lrXlSmSpbkCW3ToURmsFDkKy0IYMkauRS99kvL/MnvHv9swTrfw6+z0BKdbVRuN8pGDmGR/GITloQTI7GlmVhwH9rQ0W5Jy/bOfPRKGEqfb8HpSBeZJ9DjT6nrI6TDEaGqwu09Fg6wrsUMqgPoBiPb+JYmgtsM+jjf/zkIx9ymhfibzaduRFthgP2pGH1AJMzzn3tuecbOcetbqst/bwwcTr1zuldIQ953eoTfc1vu2GZOpYq/uN9t/ldu++1m59rd16oX5zm/F3qrVLD4rhtBhFHQba98l2jAO+APwvxXv459gJFvpdyMUZjty7ocbcfzGG1SH31xVfRg283q4bagx6C8Utm4o6wNOoMzUgd2YJsgRut3uPRUL2ZTQ6NiKFOwzFSJtRAy9Gym++0XSKPXODPbMNdQC3xB+xcwvtvmyNOwcp4iak4Ort+ePtWTdRLKXLgF9QLJs7rexP2r3tdq4F+Fe7ZwUwwvg6FoVVTrTnH4is/cuQwE9AwrYRxfsbjf4VFAui1dplrT3/RDv3VUrIZ6DRMpJiGa2w5+5mdZxmNMwyvs1EHa/Bnt0O/DcajLF73JLciBRtM1KIT9p/V1EslI3G02n2+xq7t6/dd499X4rmIZqAN1JisoutLj6oj7f22ojmQBopnet0ZFU3oY7fgpSpewAb7fpH7PoGJBPrUOx3o9HWhGTxpUbjUmvnJ6ztmpCFNx/JZKN9X2vP/F8kG+ehENcMJPfuxW2w52xAoZxGu6bBeOhW/LPAqcb33laHL1CU/lzj6QKkaO6hWIgjKJ6EW+HeDn+2599Y4Y17SkusLq12XZ3R12L0jrL/3Bv6BJKJRjSYtFvdfsKmlnqb3d+A5i0akdKbjBTmcPs+zOrbhGTlZGsDN27ust8bKIN3PcWbcDrXGq8no3mP9RR94Vb2ekqf8NCiy3zVA3PP6hrgtcZbHzTW2b31FK+wHhht9RgFDO+Ivu30GHpKaQhi6CIUn1uNFBRWmRnIQvg3xNyDUec6FllH4+16j2PfjJjzFjQarkGC/mLUaaYg5QFqjIPYdPJirT2rFVngv0Rx3X9FgrcvEowXIYavMjpWIetud4qb753qcKPpCDQa744E7D1G80GoMRcb/Z+zuifUsU5BcfAPWznNSAm7awiylPz3RqTMTzc6PKaM8beX1fnrlNjdoci62wfF7g9BnWTPSls4Xzz+moxft6M436usnDHGn0b77IkEfAKynD3stQcarD9gZTch1/1C4+WWrI7FSAZuRAryQNSma+z/TxttHuffx2iehowEj4e2VZ4/C8V8PS5cj9qoFbVtQjLYG8UuW1EHPcDKXocmmVcjA6InMiZOQgPdUuC9xo+xyMrc3coZAHzW6HdL8HjjjQ8QPa0dNthnMxpwXkOJaTvWIxlbjwatnyC5ewWS23koDJEr1x/GprFoD+kdYnVvRYNSQnHdZait/ZpJxqe70cD5djR/dZbVvRlZyLNROPGNKaU/IG/pJOAONIi0Gn8y8toxuuqQkfVB++5e1TCkuIeh2HovZIh9xu7dmxKi+ACSFSghmx4UeXC5dgXaZNe7geOKdzYyIp9Fuul4pGsSMCfnfOdm7UFK6V+RnLwIDYgnWDsMRDL0ETQw90eyMct4s4Ayx+YTvj2RLHt9pyBD6z055yc2L/sfaNkJCv3ULZzuhYS9F1Km+yBLt97+fy0SMBfej1EUG8jVd8vc0YgEd0/g70gYD0VMHmrnZ9u1+yJG74asZoBf5JzfkFIaY3ScidzHlyKBnoWU8dFosvFsZP356O4xvT2AXyMBGJRznmJ8mESJlflGZsegEfs6NCP+RdRJvoQspyY0qeeKdANSAntRBqlJKLSQkXX6Y/v/aGRZfBb4D3OfN4GlUb2DIrA9c87fSCl9HinxNhSeqbfr9za+rTA6TzOej0IK+nhkZf/F6vkepARut3Z4qxU9NOf8F3vmnnbv25EV1IIG2oeRpzDY2ugVmEucc/5xSukNyKU90I5k93rstA0pk5xzXmfl9DUa2lFI5rtI9h5B7dvPPlciF/p2NBi6gbEA+BMagF9M8d5eQ9nH6P/ZdVcA70PKtpfxZCEatBcjD2Q/JNu7A7flnMeklE5GSvqlSPbbkLI8Ag2OP0fyf7KV+Trj+wHGo1OMdg9lVrf3yMjYOQR5rSdaG30QtfP1nomCJu4+iBTbSqRgelPmTC5ERsv77TgAGUXNyEo9xmj9ltH/eePly1GcfhGaINwNtf8RSIE2otDnYjT434fa/VYk1/vbNa4rbkD97Urg9JzzayyldwEadI+166ehwXN348m9Vt6+qA9dg7b5/g+kfDNlEvxQu3e9teWelPDX/kbr76wdPmd13xvpnfUoc+2klNLnkAF5j9HejuTh79Zeq6y8JuTJfc+ec0nOeQQdwM5Q6J9BFT4ZCVBCFkR1RtktYCiz3nehDtZs5z2Va087XgU8iIRpLmL+bCtnAxLCuXbPDMTcC1ADHoMafHcrb1/K5FZfpBh6ULI+RqABZF+ksA+w59ZbPTy74xaj7dWoIx6GBOBFdl8rJa6+yM4vRR0F5Dr/AsXIfVLzcGShHJ1z7pdSOgWYZOle45AyHoqU8YkppfWoY882+vegeAPNlbLWGa0+abQfUtTJeLc7xQP6F8qkFH82/P4AACAASURBVEgJDTQ+H5ZzPsEG7u/Zs9ySfY/VtRclzesPSFmBOtbeSHgPRp1hGbJeJlo7uQfhltwq++9fKANAW7a0U0s7vACFrnweAzT4e2jhpVafpSgOPRGFPS6jGAn727V9kRX+AAp9LEcdfDiKi++B5HU/4H/QgNrD2u5Iq3sTCnG9H8nslchqPQd5Wu9DVmcvNEjuR8m6eMTq0oQUmrvxexj/90AKeDDFCvVB7RWofXtYu7wJKbgrjL7XI4X4Obv+UTTAu9J+GHl5Y1DfnWr/9abEm19p/PRJvjaj3yfAj0JytTuS9/WU7JUFKFPrbOPPUnvmt5G39xLk3S5F/X0N6nttOec9U0prKRk06yiey7vQwHuOPa8deGvO+WcppXeiAWAxGhgTm6YhenriWDRQu1eXKLLkk6tufKxHsnkYkt8jKeGnZHQvMx68HA3sIMP1YTQAHgfsl3M+JqX0V7vuozln53PHsBNi6Jci5eWztm6lzkcNvhwpgoWU2FM1/uQZINPsmo1ICJuRZXiTPXuRXfs4ZaJkgT3TR3ifaGpACq8FWQBzUYzdJ/bWISFcUXl+3sLRaM/yDuCz+R5TbKDEERcjl2uEnfsU/5i14sdaymy4u4ge21uOOsFvkeX4EBKoNUjwWygx+OFIuc5EIYzlKK3TJ14akEu3wPjxC6NnjdXNM4+2VPfq4VkTnqK4Egn4ckp80bMXPIOomt3hPPAMBOdtK3LNG+yZs1HH8GyoBkoGy1Sj25/lsdEmSvaJxzvbKXMXLo8eA96A0j4XmPwuRQbIokpds9XTY/yPGo+H2PUrkPV+EerwLuvtyOp9wq572u4fYjQ+SpkI9Oyo+6zMm+38CGTdN1IyaWZQwkzuKXrG0YMUOapm9ng7zGHTePE9xtf7kAfTjpTOP2t/598E4GvIa1hkdf1Bpb0bkNd7if2ejmSk3T43Gl88s2eiffaiZFzdQsmGqUOD8ENoUJlHyWKqZpBU6azG43OlLE/Q8OyuVWgg/zc0qD5NkZFFSH5ONd4vQAN0s7VNMwrhLaZk3N1k9FXbyfWRz0+0oH451/7zbLF64LwO6dudoNBHopDAGGPO55AS8cmgFWgmvx44uDLh1wP4ZmVi9SdIgS1Fgl9vjOxvTH4KuZGrkfJqRcLsE3/eWdYhi+gGYKk93ycfvm1C8yUTiqvs/OuN4Z9F7qw3vg843llcaMcDj+aSZrefCdobkDU9H3Wk1SjG2o6su2ZsAqvCP1dsnn7nnafZGv5ZipU9nzJYtVEml29HltJYo2Vyhc/jUWYLyNrzydB9gFGVSZmjkPX5ZWQtNRqfmpEltIHiCT1g9buGMsFzof3f3545gWK99rLnTQG+gTr3g/aMY5Fw32H3tBida5H1M5VNDYEFqIMMNjrXWHnNyNrvi1zsvnZ8ipIt5Hz2/GFP7Ztm/29EHbsVWbmtlOytOqT4JiNFOBa57gdZva63Zz9FyVrygfpJ5PEMtPueQeEGDyFtsHZqtbK+Tukri628ZmTt16HB5C5Kuu+XjSe/pUzqnUKxSKuGlg+IDciS9pz5m1EI5ZtGw5etXmNQKOgW5DU1WHuvR2GN463dJtm1h1v9Pa14vvF5HfAV5I34oPZSu+48a4elKAfeUyznGV/moAHVB4Z21MfnGT0ejnsVMhAaKzI4GvXvZciDmYv67OvQ4OlzHRMog6TLgq/F2Ght0GTPGI1Cer9F+qQNyZArbp/89DCQG7hVnkwFzkAD1kJgapdR6PbpWSDXWIWGImW/HgmjT2zNQIr7Tmucu63yvzHmXIXCJFONAWOQYhxJUa7eMacjV/ZJyqjt+dI3WmMPsee+z7777HebCdBH0YTOUuD7JkgzkMU/FSmFDWgUH4/CDDcY7WdZWe5yeWzXlcQv0EDVhDr+MqT41lGUisckv4MmwR5Clt8xSFGfBzxQ4fchyN30rJgGZBG64HiHnYYGg7lW9gfteufhGqTI70ax6mVIOd+BOsoYFO5pR8q+rtLWT1r7uiLweGM9UloT7HrPoBljbTmuQocr6c2tQJ+oa8EGJ2tXz6cfQ7HuFtl/99t9+6FOOsL4NhIp6GutbV0pLDCe32f3fRu557+kdNwf2n8PoxDPcivHMzx8IJ6NZHmC8donXN0Tut/4OhfJzwI0wfdHyrqH+6x8l8uZdu181H/OpaSlLkQGzAqKwvim1Wuw0TwXxW2zfTYj2fq5/e8Tk/X2nAnGz3lWxgwUgtmI+k61nbyt1lHWGSygeOhPWvnXo5BDH+PlMxU+jDK+1ds9D1GsVc8mGWLnhqO+6dkzY+18L6vbepPJdfY5zHiWKOs0vG8+YzxdTvGS3JP5qJXjc2btlcN5Mt7oqaMo70X2rC8aXXPsOfPRgLAYGQeX2H/vqNTxr2ju4dAO69udoNC9Yy+3hnUl3t+Y8DETuLnGKBfMRUgZuZL5oV3zCdSh51rjNVJyxD0NapA11g1IMGcjpb/KnucpWm6JeLlL7VmTjDYPFbhb5C6XhwuWUZTGRZTc3qpwuxvfZs/0VMa/UQYe7wR+zK+UswF1qMnIInoNZWZ+807k4YsGivXXRskV/gqKVbvyc0vfn7GKkprmQus0uAeyzvjpIRZ3W50Gf567rk6rpx56B5qGZMNDRM4nTx39tV17Axp8r0SKzpXMSIoh0IAmHZvQpKTT7Fa389kHtLWo845GyrIJWUKrkZL9PhoYPgC8reLNDEATeR6jrjN6l1A66yyk+C+1566kpC26Wz0GhQZvtbrdZPWajpTCOjuuQBblw/YMV8ieVjgVGTrfQsp2HhqsxiFF0cdo+BPqB+solmI1s8Ot38WUCToP2yw3uhooSs6zmNw7aab0oYeAi5GX1mb8vIeS7tluPPK0Tk8V9PBDIyWU6R7KCOPFXajdh1EWOT2Jwjz/ieR8GcW4W2Wf0ykepA8C/260e4isEQ0Svvjur8bPhyje8DK7rx9l/mI8mgPwxXtuEK2mhIL/AxlPI4ymRUieHrRrXo0Mn/VWjuuixUjGfo7WiXQJhd4XjZbjrQHrrdJzrDKz7bqL7GhFrv1Fds0QJLh/Qx3QG2oBmllehOJ0NxjDz0GDxMeQhVyPhP5DKJ55gj1zLOogbZXQkE8SzbH/V5sA+GKdjyLLop4y612PFqD8CHWki4D97Zl/R9kzIHd/tAmJ86EaM26n5G23WtkHo5SnGVaer1Jtpbhld6IwUL3xpc54NcUEaDWK4a+rtMlEymRfX5T5McPKGoIsvv6o859rbXcd6nzuLrYiob8CWZPOV8+hrrf7HrI2uxMpCPeoPDthEopFOh98QPQY6FqkMDeggb+X1eHHSNl9Gln6r7Jnr7R6PWv1+bzV5Zt2zgeuJ+3Zvwc22jOXU+LHPtA/g7yUJopFWk+Jn/7aeN6CFNVstGQbpKwftXI+ae05FslZI0XBe7svRgrFY7A+APpA2Wr8Ot54eAVSRm45ttlzfNB7DKVTzra63WT0fxVlu5yNwoiDUCjI++KJRltfiqzMRYp0gtHivFpjv29A8vAr5O0+i/roJcgDPN74Opyi5CejgWaG1XMFxTJvQZ6hHwtQqGm68Wm+8eABZEjdiUI8E5DceluMtf99AHE587kUz/v3uv8QDUjX2vW/QrI/DfWn0SgMuAxNDruc7200n2T1eh3qg1OQJzIdKfZ5lNRNp6WVMjfUCgw0WvZB3uFGoKWrKPTz7POnwAcqim6EVbzRGLemUqE5yLq4Fo1igyuHj9KrKJahx67bK9/bjNGr2NSKX0AZ/dcYg1dRFhLNoUwoTkcKabKVfRhKMxpXaSxXMG9C4ZIVqBMPQu58A3K3JiLBHYQGmD8iC+17SAi/at8/i6y3OcjanI8UwRqkmEYa7Xehwew3dqw1OtZT4vuNKNzyVzaNDbsF63nQnoe8Ggn+51Eo4HLkEawzmpw/B9qzz0IhiIWoI1xiPHmb/T99M3fXB5kbKRZtC8qmGQVMrNThk5RJ5QkU5boWON+OHijd7Smk0O9FivYzRvuD1rarrM4TkaIZTLGoPMb5dUrc+mprxz9aPU6jhOzcxX7W6PMVuU3Iom+myJLztwXJsoeBfCsIl9f/RSG1n6HBayPqyCfZMQOF5r5H8a58wGu2+yYjebkFKbM6o2MkGvSOQYp1kLXDcGvje5Bs3Y1kbQSSex9E2tDA4APcRDs3Dhk3T7Kpxe9H1eNcYXyuDtR1KEa+jJL//Rkk667EvO2cT6sonoPL3Rj7z8OzL7dzB/mxBZ3kc2Z3IUV9v9E1j7J61RcvrkMDyKxK23zEyppq/HTPtQV5nWsp8tJs3zdQFk89Y/f4Wojb+McQTwsaiAZb2e/sKgrdmecxUXfZWihKdYlV3CcxNlQYstqEZxhlRen5FIthhgnHJZQQwApr4KmVc776a7Xd29eEySe5llaEr9oZfZBxd2oxm1pDTxr9vozdLanWyvcN9uwJlIVQV1njr7L6jbN6LKKELbxD+P4YF6GO3WACtQwNlH+x5843uj5m5+YazUMog+YaJHyNbBqy2YA6VZOV7xkjbkV4+zWgeRAX4nWUNFO3ridTOuFVlDCDh1O8vRchgX21Hf+DYsW/oCjhOUgBzUMe2UYk6MPtGs8ccFrHoQ7jE7U+WK1Fse4LrPx/t/KvZlMvyWVvA2XRyk8o8rAIycpTlNWPc/lHT8ut6z8gOV1p1z9EUU7vsmsvYtOsmy0dPgh7LNm3uWhDHspMq9djSL4+T1kG77TVU8Ipq+15k4yuxyjpel+myGy1/JnIo7kDeYEL7V5XvKPteJCSPTWUsjrc5w68P24pw6tKqyvvnyLF+1Hj6dPGc/esPGzkYZjGzZ7nSroapvTBdQHqR244eKbaUcbfb9p9kymrb70NhiL5XkTJwFtOCeF4P7oNrbNwI/AKynySh0pdsd9iz7kOef2j0U6qHdK3nbaXS0rp0yml+4BjUkoDkVL5vwmjnPOeaHHGyqz9M96LrNPfUlZL+kSKN9arreLHIiv/GGPcvnb/lyhpTgejfNDVSPmtQnHSkcgS+xyaJHsL2svlRZR9Rm5FjX4+ZRGPj6y+irLN/nsLykveDblgf80597SjF2qgP1Fi8vsgS381mgv4G8q39f1ADqHk6P7e+HC31f9iZMntg1aJ9kRewel2rg8lrfNDlJWtr7Nre+ScD6SsVGu2Or8TuClrW1rfifJPxovT7ZlXIuWzDC2hd2ULcilfj9zeefbfbdZ+ZyJldjjKQ/6Z3ddM2SFytPH22yhe/GWUb9yO4pR97dozjc89UBxznfF+ptGRUOjnFCRHvtR7GJKJU7FJJmRdepbGbKS8B6LB6h7j+VKKIhqF5OF61O6HV8rsgwahR+2ei5EXc5Pxoh/yIGZaPTYYPQcZH06g7GT5pJ27DCnbm5CSfdzacBlSErMp2wk8iWTZd2p8KRqo9jcafXsC93jqrR7/Y23mqY2+8OYKFB4YZ+3wYePTLSgc82aj11cJjwO+kXN+LerDdyEPZoX97xudvRdlev0nJcY81Oi6w/hzGsWzfNjuPxLpjTORNf0Ge15TSumGCj+PsHurq5+h5L1XQ1PHUfZM+hoaMD5EGaQOQQPiVfacWykelG+cNxvJbgPqTy/LOR+ac+6Tc+5t/f8z9rxL7ZojkUz3ROsEfKB5CiVUvAsNNq1oodYStgWdaJn3RcL1DOpIHnM8G3X66ZQY8lrK7njPIuW7mjJL/Bhyp+uQ0q6nrCT1SaKzrJHcknYLsjqp6ZbRBsqo/ggSjl+iQacddfQW4IdWlyft3IeRMvwqEtIFSEE0IJd9OPD1SgjmC6gTPERJeWpFgus75V1hDdgLdYwJqKEfQSl8y5BCGIUU3k/Q5NxTlCyd4cg135NiSTdRYrNuIfskUCMKSaxGiqIvUhpXUPZ1GUiZX5hDsehWWLsNsTZdjxTTChQ7HUuJIfsOiWPsc7zxZRAlt/wWq9cGZHV5PPX/UVz3NjbdJ8Td/p7A3ysy9xtrh2psdAiygJutPVooHs3tVodVxo+bKJ7iImujc9GCoHmUeYplRreHC9zK/hllQJ2FlJBv2fAxo2kCkhufKHVZbEeD+3Djt0/WTrXjt8bjf0MhmuUofj+eks7p7r1Pdq6xduxrx4lIYYymTA56uuRgSrx/FjImfPOrRRRL0vvRmcaTv6HN8TAeDKFkRLWjPjvEeDfWvg8xGiaifutpnOuR9b3R6nq2nbsVDTB9rd6ZsmvkPOOn75Z6Y6W+Y1C/G2/fd7ffwylbjLi+qHrU7ZVP1x8NlA2/bkdGoYd516KQ4xNWD5938xBKta1HIeNoufF9AJKxQdbGl6J5gcXIQve5ue93lZDL3shS+oIxbh1llt5jUs7YJUiY3WVdiTpCkzHgPspiiyUmDM9SwjYev6uGUFab8MxGnfejqAN8zoRiPlLWvr1qE+qs65GAexZLVam4i+Sr6bxcHyyaK58++PiM/TrKBko+0dmErDrPSPEVeXVIcY+zZwxCneBWu36pCcEiJNjzrR6eNvcsUl4/oqxI+5XxdQb/mG7mIZP1aDBejLI6/kAJQ82iCGrVrfXMh1F2nSsWn9TzbBcfqH3i7jcmJ41IeXi630BK/Nat/itR209BBsESq8sq+74IGRDDkZW4nhJyq6t8dzlcS0lV9awgT6NdjxTgRDQAeyf8M8XT9OyrBymLuapxYi/LJ1O/b3V5ipLK6pNkY62saUipzaak542iKP1qJlEzZe5kCmVx0EZK7vzDSP6HowGzkRKq8RBOo11Th2RqNSUO32b/tVEmROusPtMooaKp9t9EJDcemtqIJt2/YeUstjqvpugCDw2tRl57EyX86v3NJ489lXe80XgqJVtosNXxJORFLKMYi7ORJ+V1/hElBOzhJe/HdyDvpQ7pmG9REiE2or6zCOmJPpTJ7UxZaOiL2DwMtMZoc70yB8nwBEr2Tx3yQDYiGRtPGbCndBWFPgqFIqaYILlSvM8q+mP77p3YFwS1U3KHFyBFt9YY2d+u/S3KW/466gSzkMXgHdVXCw6m7M7o35+y/z0P92ij0bNhpqAONdYE4ng0KPlCFp/kqY7iKymrJH2L00lo8Ohpjfi0NdbF9twfURaC3EvZInc9mlz8HsULabPGXoc6znIrw4Xe498TKbHmBqScJ7tQmJC8w+j5LbIoZ6OJyIn2jCeQ4Hla3neRVTILCfkiq+t3keK7AIUkvmh03YoGFM/NfYBN9z/f2uFy0oKt3LTPpWiidrHR6bzxCbwpqMMtpSw+cy/I86vnVp7taXMTKBOew+27DwgTKFsd1FnZyygLWh6x/3y142DkZU2jGAMPI4V1P/LqTkWDz0JKXr9P5s9F1vdxKJRTR0knHGxt6AP3DKPBlcdy47tbsh5DdtlpoSjDeqvHBBSKvKNihPWgyOzXKTLncu9HNTGhztrZjbEnKKmFs+3aJymegG9edw0ltHURZbD7EwqP9TR6J9r3fZHX22p1qTc6F1Xq6craByPnhXvKvj7kJ5S2H0WZwD/J2uY/rewPo747FYVMb0EexPmUdSWtlIytUylZZs/a4UbcXMog5YOzLzhbZ3x8NZt6Vvd3FYXuk6LzUKrUBNRRbrEKfRYpvVbKFqYftkZwl30uck0OMkF5yK6dQRHoecaseylW+X2UyUi3Gn0lmee+LrXrjnJarcxxwAz7PgF4vPKfu84NyPp4xGj4BhqgHkdCe4WVeTiKfa+nvJTBrcRxViff8vNUEyxfZLMOzRkMNgGbggaZH9r3gymK5zCKVeydzC3v9ZS85mf808o8FMURr0ADyBcqx8eQEvo7ZR3BsSgufRAarI5CA8PVyIKdas8dupksrECCfZbxbiGyhKYBn6hcdy4aXL5AmRzzgcvd+5+hic29KSGdydYGdSYDfSnyt8Hq9nLKoNqGDIDFqGO3Gv1vN565XE61ej7X4OOW+alW9s1o8GtECuEOJGcPWVv7Fg2uHH+GJnFnIrluN964NZwpVmQLkgk3JDai8MhSJPuTKKGX+cAEq/8Ce7YbHy4bPoh4e5y/2TGLskvqauPVRMreOr1R7PprSGk/gOZPmtEg5YvRfmq8fAgp4Sars6cE+wD+C4q1fpC1z2DKhO54isHj/Hf6pyN59VXIrj9egTy9w9F80QQrcyNSpKOsTB8YJ1MW9C2zMtZQ9vifRclvvw4YZ+X4YNBmvHPP9mqKh3+v3XM7ZU7wGaPLDbS/osHpJuR5LARu7yoKfQxahbYaWdZXGzMWUtzxejSaeU6qW+N1aHJqLlKST1GsDJ/pdyFfQun4nqni7svjSKCXIMG/CnX2yZRYcrVzurAvRMrGn/czNBC1IYW2ESnWOiSo91HcZBcMV6jtlMVTvthjPaVT3oQWEPgOgyspHXc9ZSm1rwacQ3mxg7vhibI50TLUwaZQFppsXkcPi2zJOnYX0607T1vzfGkv09vP3XOPbfa19vk5WidwNUUpuXs+3tr6FNR5Pb3UQ24en/TPd6CB+2prM9+/ZRWyqlspKWPfQAOcL0N3pZiNrkvsvh8bj/5o5c6hyNBQYL7J8TCkmPaixJ0HWr1HG40PVtqzOmfSWvntYZGMZK/N6rHQrptu/y8zPl5hn9dZ3V1mfHXjRGQUTUQKZHd77mgkh8NQ2mIDUiAL7Rned7y88RTZqC7EqvaHx4wvPqHaZM+faPePtXYYbLRca/xZj/pdA+qHNxk/JlH2X2/lH2XRy/c9fzwcNt2+T0YGwnykBEcYDS12rhnJiXsrD1I8d7fWx1PeVuXy14p0x3zU556xZ8ynGGGT0GDzFDJAR7Bpf3H6l7OpXD9IySjzrJ/qHJ+H6JopKcm/wbbM6AoK/VQk+N825m+gvI7KLceFJgAzKfm5VZfOraRGa8Qb0CTm08g1XYIU60p71mpjjq9AHEbJy/0cygy53xj6GjTReislRrcIWdgeS/fURXdfPaziHbQVhWpuMVpONToWoY43lZIrW4+yQnqh0b4PZcOfOZRFU7eglZ2eoeCWl+eKN6JO8kiFZx4P9QmeJ6zuv0ZW8VkohHVixQsZU3n2e+17G4rXr6XsO9OXMinoMeDbKAO1W8zHV9rMXd8NlBWAjyIL9lk0n+FxZPdc5tg5lwGPszpNa5DSaEJZA87fO61dHgaudw/B6J1u9y+k7Mnhluo4lMmzkhLG+i4aFK9FCudeK2Mu5YUQ45DMTbX2Ho7k6mfWlh9Bsdc19kzf0GkikuHpKBtlDfI+3fvyjv9Ru+Yo5B0NoQwOzgNPZ/Wwgk8ie7/xUMBE48tvkFV8JxpkXek0U+K4bixtRIq7jmKVLqEsuGtl035aHQxWU+LDz9i5uZTFUjMpA+xcShplRoruPiQHAykpyOspCtDp28CmczmTKTK3jLLWwPeiH2yHrwq9Fs3vjaV4cq82uvcEVtm5p4zuv9m9k1Dfu9kO3255HfJcfJvcaSh08wAyLj5hvL7X6nl3hWeDkKE51Wi/GVnnNwI3dFjfdrZC30y5+zLiCSieNJgShmhHHeK32AtX7Z4DKZtETUOK5SuUtMYRxsgLTOjWoi09VyFLbp4Jkk9K+uGKuMUadz4KPfwNbUWLNfanjc7zTOhWophif4qbt8yEaT4arc9B1txYa7R+JgTj7NqL7b9vULY7fdzovw+5jeNN4BqRlbaaMlrfY+dc+XwRuZUfN95eZfRMo3gGw5FyPx8J+gXIEh1P2XnxUCvPJ9oeQnMLiykW9kzUSX+FYvxPIwF1C8dzgD2u7Yr9ZMoirK8ZHydRJn3GUzrVSqvnU0bbw/b9bqSc3mF8PxopmaPsvmp2i4cSqhbmxyg7Qp6J5OItFCtpKptuneBegk9ytlc+/ZkbUZhgiB3rkDL3sOE8youYfULUFbwvSa+3Mh6lGBXzrN0mWTsOsfOeG1+1oi+w566y/93Cn0PZcXMcUg49jd8e+pxBWYF6rF27gqJk/wd4tfH3dsqGa3ORDI+x56yz578XycRhlLdrzaRMpLZS9iqfiIyzWykT0CutTX9i956G+uB1yGCYa2VNsfqtsTZ/TSW0dAJKwwXJ4xnGk/+yc63IoNho9/tivG+hgdUnuZuRMh6HjIP7jL9jrP38aDQ+t9vzP2+0LaSse/gPo2O9taXn/q9Fxu5V9nsBCv89jmR/th8vqEIHfmWf96GR1q3U+ZQRc/MRvtpJGik7j3msvREJ9zV23bPGtDaKq1u1Olx5rzEGuwt8utH2Z8okygzKHiorgPfZNX+nZDW0U5YQfxkJ7dN2zSJ7zgJr9KcpC1/GWx08x9XTnB6gxL9noU55ORJWt06bK4LqqyxvRJ2rGcW0H6dsduWDxKNIga00Ybvdjr9Q0qo8Zc43WKp6IQ2U7KG1SCn5lsJX2vMfts8JFCv8CdT5PmrHdypt4vzz9llLeWF2sno/Snmxx6n27B5oEPiD1d13cPTsKB88qsq2gbKa83HUSR+mWLQfMb58mjKBtoJNF4Xdbuf7Wv2mUZTkxShs9iuUYrnRaPyR8d0zU8YgWTiLMphPsucNtnOjUcjHwy5TKu3hhotnd1xJSUX1DbZeT1nl+HPKwq5qH/OBwzOCrkEK+z40IF9tvJ6PFtNkyks5Jli9VlFePfc3yusH3Wr2bBWfkHeDqZrR5uHKpZRcdU9bHGB03oWU/Cg2zUrycsZStgn4BmWe4CCj9yKj+RG75y6K5+A55DdTMoxajZeLKfK+grJIzFNTvQ0eRjI1HMnjUDRR20IJpeRKmd6nWikZN+2UVEuff2pCRtwipC/HI9m7GPhRR/Rup73gIqX0upzzqMobi25GnaEOjaBfMsY8RMnR/Quyvp5Ck42+cc7BiKGn2LPGo8mtt9txod0zFFmqR6KtPO+2/1+NLIeHKOlrP0BCmihLyH0D+xbKQoR9kFVzsd2zD1KYu1E63B5IUA5DQjkBddqXoGyXySjMMpCi1N+ILEzf3MgVxAAAIABJREFUHfBNVodDjd5eaBLPF1rNRlbMhXbvx6zcxcafRBkEmqw+jxrPehhvMT5/FLmCzSjks8J48RbUKY6kbGK1N5r4Goa2QT7C/qtiMXLPX4eEH7Qg5V1GT2/jF0hwTwT65JxP8AeklH5vdf4AyjLazfjuZe2OlEEP1H6/MTpPt2v/hizM89Akoaca/gwp02cosf6+SIn2QO05y2hvMX7MtDZYitLoelob7EWJXT+Ott7dj/KqM1+Y42g32jYgg+GVlLfR/Anl7b8fxX/PtHO+3P8ByluzHG9EA/hbrbwvoQFlb4rbPgW1Yx8kZ749rlucn0IyOgTJ31eM7wcYf29EE7m7ofbvbTTvgyzIfdDCnhGoH+9ltK2lvEbvcuQ1Xotk7Vjj6aHIEj0UeZN9rE0OMd77Uvg9kRfzKBpwf4Cs832RbIwzfp6JvNXPIsv9KKPH22EDkr99KrStRUbGKOP3d1Do62vGhzVIXhLKLDk8pfTtShvsbbSsQYPhZ6z9Lqe8oAPjpffJzxmf16PB92n7nGK8XJNzPiSl1IgU/isoaZAenqrPOb+VrWEnhlseQivLLjCmDkZKegJq8DokTHXWWD754RbpbygrFMdTEvc9Fr8SCd5cyr4Kd1GW6jfbNWvsGZ5N0EzZ0fEGNOKfafd9j5Jv7Eu8fcLF0x2n2HP/anRN3qzeDdbYy4HX2rkfU/ZRnmz0TETW1S9QXH8YEny3bN3t94nIKUbXb5C11YwGkEWUlK6MLI5foRS4n9i1S1Dnr6vQ6TvYzUadbBBSiGdScmjnIyXS1/7va+dmU1z9xRQPZQES6hEow6DOyrre2ug7lGyKhfbfGGStjqTsbb8auNX+fxrbW8V+D6kcTfb5hPH7LmTpvIgyAbw5P1vZ1Cr/N3vuOpRp4xkLMynhmOnW5i32vT/q3P0rx/WU1aa/pkweLkGdtgnJ+mTKrnr32nUbkEex0s49iGKy7kGNo0yw++K2pZS5gmaj02PdzyJlN4PykmTn+7fs9yC0qOVC49ki5KH8wNrO9xD/KRpkTjWefNzKewr1iTWUBT1nGe3udc1FRlw9ZQsEj5e7d91KSQg41a75OxpkfIJ0JSUF2tc3rENKehTSL48Y/w8xun1L5xHGG08DfRLJcDUW30DJoLsTyeJIlHX1IDKOPPzVap/L0WpZrJ59K57nDylvrVqLwrGrkdHnCRPj7VlPU/adesj4fy4w7QUNuVQUhW/64ws3qhN3PiPcjCyogcbo64wJ7rZ/yRreN1IajLJBFlP2aPFJzzZKJkkdEv7RSIGPsed5Jsp6lEvak7Ir2muRNb+UstjDG/xi1CFHU1YVXo4U2hhkoa9DCuVyazgfNHyy9Ryr/5NG6xDKJM4Qq5vPmrtFeSVybc+ipFN9wQSnP2W16ql2j8/ar7bzcymbOjVQ9u/wlyOcjwRyNCUjxMMWvSn527cbnTONhz5peL+VtdDa6THKJPDhSDBfRlHCd6DOcpEdLtTefj7H4TRMoCigugpv/NyNaPVkI1IwlyJ5+golX3sV6owZW3WHZOIxo9M3e/OMFM/CmUBZtPIRpKi943s2i8fcPQPlHCSzcyhb8o6ydrkHyUc7RZHV2X3TkRz673mUjCkfzBdQwoceUvGwgIdXWilrHzJl2+dq5oqHcQagye0fU/b68VWePv/hoZO5aAD6o9G1yvheZ3z5PSUTpcV49zu7/9tIXu5GyvEyyiToMmvPkUgGPRTRgPr2RMpS+5/YM16GrRK2aw6y72+zsj9BCfHcgwaEV9nz34DCJYchJe8T83X2+SySyxFWhz9ZnX3i1jNpVhk9i+26agbYejQweoaNT9Z632pD3uR6ZMh5mOZqa9+vUbbTeAg4pasodE8BW7TZsYDSidooaVoZCbNnvHjsutWYcxlyc4Yhq+Bj1tjVlXRbSsXzcjxt7GWUJdKbT3r50UrZmbGBslfyhs2un4Fc1E+i0MU7rEHmU7J4mkxQqnHjFspy/UlG01tQeOptyPX6C1KkI5Gls55iETiNVbp9YtA3LvJc3DmUXP6l1ga+2Ga08WQAZaVbtvaZSpnI+nOFJ6tRrHUG6uhnIGV6spV3EyWLaSqb7svzFHL39wX2sevPooSkxhi9n7D/foHk4S/IgvG0r4soFl8jUtDPIMV9qN07DYWkfmrP97UIP7V7rkGd8c/Gh5lIOU0wPs1k0zTFgdj2pvb8mSjs8iRldaBbkZ454plRLWgAXWY8OJHihdxix41W//GUDJ9ZyEI/CnlF70KK8i0Ua9wnoN0LcSPiECR3bsG7YmmiZIm0U+LOniF0h5X5W9TnBlHeUzCfTftIc6Vc3/xtI1L6HmIcigZF35fmPLtuBDLi3EPcvN9WFWAjMsjmoMH6AtT/W5GSn0zZetctaN9GZASS4XYkR5+xumygzMusxGLYxgPPL/eVtBONnjrUz/e0/x9Bob0pSP580tYN11uQpf6vxpfvG38bUBitLzICLjJaXG/MNXondVTf7oyXRA9Dim5zvA7FKc9Go+JbERNeiRTbvaij3IDcwk8h4XoMxUt/jTJg2ilvNvdwxHLExNNROGccivftjxrQN+9xrKa82HYUisN9GnWs65CyPh3FGX3f43X2nL3tGR7f9RhyRg3yEjSZdzQS6K8hgVhgPEj2ny/UmIga+iQr8wqkkI6gbK50IFLwR1BeOOux7fqc83tSSguR8t4TeTPnooHkVHu59N7IunBcTNkHOiFF2Asp+bOQ1zKZsllZvfHFY68ZDXh9UJv9HFmkQ+3541GnSkbzLUYfqCN91p5zGnIzD6Lk2iek/O+hvKPzq9ZGP0WbtN2I4u8vMTr/lHP+fUppEIpTfy7nfHVKqd7Ku5kS5z0dyUgva5PeyLNop7wkGIoCc68Q48eBqDPui0Jbb0MK/i1IGR+OFMKbKe8CPcTobqFsOAbqA7shue1NGawbUSw4U2KzPoD76sWMLMmvokF9BlIwH0Zx4ieAAbm8UNsH89cj72Mq5Y0/R1BegL2O8nq5C9HA3RvNYzWigQZKemR/FMP+I8ruaDA+rbDn+vtZj0BK/+1owPCw4bloENqX8laqnsj7AxkPf6XgbNTGlxtda5F8vtz4+gQlw2kvSoaObzw3DhlPa1E7/i7rJdSNdv4h48/hSPe0UTJ2QDL/HfveDxl0vVD/uhR4U855pPF8A0VfuS7yrKSrUV9rRN7EMnvO7sB7cs6j2Bp2goXu23zORBaCz8a7oNZTwg9HIeV6GmVVlmfIeHrRDGuABv7RIt/cwnZ308M6bZQJtVMpMfGhSBg8zjcLKZhma6hLrezplLf5NFHexTn8Oep+A1JKQylbxro76vtmzKZsGzvb6Pqh8WEssjIS5f2HX7F751I2jPIl3Ndi+6NU+O7ehPPIs0zc63GrcxXlXZ2eGbQeDTa+2Zbn/3rG0pEVvt6GBqmr7Fl/B/5o910CHFDhyzDglsrvd2AxWvvd1w7fb2Vt5bvHS30dwDRsH3W7dz823UTKrdaqzP0BDZijkfV/E2Vf8JlWzgKkCHxJ+mKkZIZim7DZMQd1uFXWdr516n/Zs06lvLbQtylotXYYiZTbzSh0cS0lA6yqsKsZSOuQoeE8mlr53td4cBSbeqluRfvinAakxJtR6G4OUqwLKJOaI+zZD9izGyhzQK7M7kOeQhPlhc71yNvxea0Wa/9rKmVcgjytUfb8ZsorKhdauU2oHw60+rrxWQ21vNk+FyF58/mNhBSvr6kYhvrWU8aP0+xoQV7I6ZS3pi3HLGJrP99IbSplDYjH4/1Yg+TnTyg7Z/MtLrzNJ1EW6Pn6mDZKhssSK88zrly/TMb6YFcIuTyNOo5vGOUu/QbUYT5CeWv5AooQe/jFBdKF0heftCAXZgKKid3Ipm8wWY0mUY9g07f1NCHrKBlDfUuAYyh7Ow9CAlhHcUnvQtaHT7iupmx+5KsJXwK8vlLWnkaLu9zzkAVWjyz1Zyg5vrcAM+17P3v2fpT8Xt/Qaj0ldOMTRn8wvp5rPOpv9M6z53lGx1Rkmc9CQuwhlztQ5/SBxyecmqxtnrW2cmH0rQV8MnmmlTmTknHwHbY8wDZg8xqbyckaLJ+8cu5QpJyOouSae1ijOpC7sm9ArncL8obWGP2r7PvlVr+L7FnrKHMY0yiLtXyV8kCr754oNXGDtdukCo1fRwplBrICB1hbT6EM3HXIw/w+sizdrb7enn+R8fziCh3LkbycajRfRlkM1UKJ72+0evnxw8rxg834OQIp8AmUAbuJknaagR/btT6vtBBZ/L7AzlMBW60Ow41fY60+cykvo55t9+9NeQH5a9l0fsQHW/eu76VsXHU/8sj3NpoOQn3+7fZ9nH0OQ/vCLLHyfG3KIMrmahuRDC9DyvwUo/89qG/8osKnf7XPhZR3/D5jtNTb9/HWbpdSwmMeXmu3tptmPHjQjkEo3HStnfeFRpdTdmScbc8YhoykX2Op0V1CoRtj2tGo9mHkiru14BMwZ5oAPE7JJ25AEzvHUuJmL0KK9kS7dh9k2ayuVHwsUtbj7fMUE5o/o+wRj6OvtMbKlXOZEpP0WPtDlHztKRQr9FgqsT+r54HYYopK3U/dwrEcTeYtsc8LrDFHA3f6wFPphB7rbKK8Fu/jxrOPoRG8xa73bIT/tufthoR4ECVfd6l9DkKW551IUb2TkmXhA6vnIT9dsYb+1/77HQqP+IZZC1AHcnr9bVXjkVI8A1ln9xpNR9vxfcqLoQcZDT6JPofN4ogo7jjH2upW1GFPoLwwehqykD2O3rvCnzGV53iMdENFwV9I8SR/YOXcRVHQaym51hspry7z8z4Q+mre4RTPaBaSp4GUjcVarZyJyGJfgAaAR6zs19h9T6KB++dW38spg5tPYq5FBsYgymvxfmg8/wNlP5d3oX7yJhRS8L3IV2OTbyjG7Qv3fkzxdqtzVdUBe621ywwUSp2IwnSrkEGwD2U+5xJ71lF23TeRN7sBWdGTKIbOuEp7zaFkVPmA7vSsokxcDkWT0u9GCQV/Rd6Ae25Vj7V6eJsttvJ8BfpiygS+h7JWor57sZU9EOmzW43PZyMjsQfwzUodzqGsN/CJ0PX2jInWzsORnvsZ0muPAP/TJRQ6imM9SVHivninDSll3+cho1nyeSZcvi/6E5QtbOdTFk2so8yEeyfy/SJ8t0EP9WTKCsZqdo03bB9kQbwMCfKeKNf0u8ia8smpq1Dc1bNvRiNrur6qJCgrH/2YTMl48Ame6kIY3xNjlgnKGDt3Oep4k9BoPQ5ZBy2UlZu3UfaQGV+pY9XTqVqzB1HenDPF6vYSZLF/xcr7EBLaNqQYfojCIo8bj30v8CGUTJxplO1K/4YUwaDK4PIUEmafuHzK+DcGCe0HKQPeTDT4++ZovodLdWJyJiV91ZeUtwBnbCZ/b6RstvQmq/Mf0LzM/ZQ3xHyZsirPPZGMZG+E3T+XkpXxJGWnxfM3O/4LDbjT7N5W49slaD7J9y/x7WWXU954MxR5Up8wGmagVNpZaHC+zJ5Zh9JqJ1V4NNzadRXyUC5CyswHaF9A5pOTz9q9s5Fn64qtqqjbKsdkJBuDK//54NZC8SDWG30HW9uMRYbVk1beMOPlEqRo/T5POLgQWfLHspknZ/ffi5T3EqvjLciYOx9tPeGhPh+IN6I+OcPaqx/q47vb7zuN75OQQl6F+rcP1lUjYAIyFMewqZIfbPd7iMa3LLjF7vko0h2NSBdMomzZ4dEIT8MestmxFttlsyso9IwEdwmawHKF3mzCNh1ZAL4y1PO8/2aVebpS8XlodvqTmx2uoN1S8ZnuH9j5rxktUyp07UMlbls5X09Zmj2FsrKuFXWqJyg79K1HI3AzUlZ92DS+2RcpioUoFHCP1e3PFQvgq5Wy97Wyb0Qdwa3mK5HidU/B3UfPdvFYuacmPkl5vZ9ve+DHHEpnrXpDnq7n1uokE66R9pzfoY7vy6SftXO+j/wzaGLut3b/r+25VyAldDflBb/v3YrMjKwMjh5HnMI/ejqNlPCPp4q5d+WZRMPQgNXGpqljm2cqzaGEmjyDyEMS1f1k/LgIyeM8+36DHXMpoRbPxpmLZH0VZaXwXKNvNAoheMbF39FANdRoH4IMlI9YOfcZH31SvAkpzrso2S3OAw9R/tKe8TJK9sSDlGX+65HhVZXbqZudO8+eNcD+810lX1G55u38//bOO8yuqur/n5UEQi+hWZAgJdI0VEHwpVpAqlIURMAXERsgYvnxKhCwi42mVDEUAelFaULoPZ2SUBKqQAigCQmhJOv3x3ftnHPvnDtzZ+aWYeZ8n+c+M6fts885e6+99tprfZcWpocjgXw3mdL1DJnWPYmMunoymSfMNDJlrUiDnoUE41Px99D4m9xTb0KC9dV4P5ORiWYSGU3wc1G/ZdBsZgpyyLgBDfDXURlzckW88yvi91r6brnZX1pj+mU8y8tkTK5p0fVRNKA8Gvd8HA3QaWY2Hgn858gxj1YPKH1BoD+NpnRvI9vRzvHxtkajYwoGGUtGrp8E13NkgUB5H9vkH7sTGQ9x8pR4Aq0Un4Ea8rxcXcYhLS01oHeRYJyOtL4x8XKnoSnbONTwk7aazB4zyXg7riETAlMLPsYjUZ9d4nd4lDecLEPPc2iK9cd4znuB98X1l6BO8QxqkGsjTSx1xJT4YwrSOKaQZVa6P/fch+Ua4bjc/8lu/2CuzocQjTKdQ6VbafK7TgusKUnFmbkyziWLkHyCyoQLeU07fcvkI58Gl9lkM5CTCJNPrvxkM0/nJf/5fOdPLqdXUmmySaaWtPaRTAE3Rlm3x28sGoAOQB3wcdSpJ8T3eoEI+IhvcC2V0/k0M0rtZi5SQJJS82rUe0Kc/zBZUuLPkS0ELkCCNJkRx5OZHJOp5c0oZxhSnKYjc0D6zhOQVjo07v87smCaRPWQ3ukwpP0/jAbjUVH+T3LvcKV4H2Pju05B2vFmZG13CBK2KZjn32R5d5NiMiuuPQatw3wd9fm5SHNO/uXH59rVC3Hf68noH5IL5INIcXozzvseWcalZIZKymPeNz+17adRe90BmQh3qPqdiRSZp5BJ+C6ygKIpaKY/LL5V+ntn/GaRcc/MRcpqsrunAWAKWXKak8kcHE7uKwI9CZUHkO/m4/HiXowXkxbubkRCLmlfO5JxZswjE1ZPUJlIOXWcqWT+6GcjO96KZJ17NpVUpmmQ2IbMu2Rj1AjPRIJ4LzT1TbbDRII1J42cqOGPRYPEulXPnmYPo1GHSsE8KTQ//X8/6tzPkzPfRBlzkbvUeCRYtyWLKHsDCdqtCU+beJadc8+XTF15//I0MCavlXkEsVCu83+LTBt5Cg0mB6Ip5IFIyB0Q9Tgkr7XE/4dSKaRT8EvikHkHDTy7omnuL3LXJqqAwXGvw8g69hZki15pZpa08ePjvsnd7evxHY+J778oMrVcHOfPQ9ptWnd4m+Bwj28zJup5LtkgPgINsk/H9hZV3ysRyU0hI55LwWDJAyYtnD1HlgTkP/EezkGD3iQye/BMNMC8Gc8/Di00JjfGVF76O49MOF+JXEt/Ft9xWnzLIbk6Xxd/p8fx6WQJI2Yi7fyJeKdHo0XPz8az/ImMJ/8WpI2ugYTZzqif7xnlPhLPMJ7MV/x1svW018i4yacgt7974t5J038z/p4U/z8X122HXE43IUuEcjWZf3hyZ748vstUsohrJyP2S/3jcmDVGjJtJzRr/iOwU15RQAv5KbYlb0rJL+A/FW1hFlmMQbJgDI93kNg0jycCCPuKQD8mGtSeZAsrZ6HV4bTSvhHZKu8MJEyeiheeQvpnoMb9JloUnYqE4IXUdllM+3YsGGBSUoRVorEdhaaAV8R2fjaQyptHtpo9MxrAvUibuj2e88dVH/g0NFg9iwTTfLJFyZfigx0RDXMjpJEekhfo8fcZJEgmxTtcFGlQU+LDv4p8tB8lm/HsRqWQrfYsGRcN8J6oy01Ic5sVzzUZCcg7iWCLuG4ymannbNThxiAh8Ds0MM0gS3mWAsX+gjSOOwrayR1UMiWmX3JbTMkxpiLTwXgyqtJf5L9tVbkPRRtJtuoLyAaHGWjwmk+WQu4QNGjOQ4P7vFw7ubaO9n43GowS8dtTZDS25yFvmZ1jO0XcziBzV5uCBF9y40sD8XwkZP6LBNjR8T5mIrPDqWTCPc0GkldZWuC/CbXHq4GTor7LIxfGreP3KWSzPzW+fWIePTHqeRdy83wRtcPbyQbBvFkv1f31+AbPktmx10cDwUvx3d9GbWYclS7O96L+dzaaKXyBXNshGzxHIZnxfjSQDEOCOtV9CvB47rrpZK6En0f9fSIa7B9G3iwHATd38p2XiG/0MFlCkfzMLCkb/4m2MJGM/C0pUk+hPvJrIilMvp+idjiNYD/tEwK96iXsHQ/3XDzcD8mymF+MtKJkckkLbJ+NxnAFWT7K5VFjTRlC5qIOnvxFZxOaLtKo84salyGzyzgUmJKYGFMmmd+RMfkNRzbstCD2NhmrYvp4T6JGOjoaY+ooawFPxf9fQB3gD3Ht/Wih8S3kuTOYzAMlMTjeRubJMD0azF9zjWUcWSqrV4D35weq3POOL/q/4NgXovE8Hu8wcT8/Gu89mVWOi/c7A02J34p3uj0asA5Dg/XDqCM+jYTuWbHvQNTZ1sjd+8N0kTMx3tFIMu+fSbljyQPnXjQrSuRp+5At/E3InZ+myGnRfQ7SiJLr3OtkU/b5qC0me+hLVb9roqxT0GB1MTL3JXe++8gEcpqZJHe9NIANRZrku3HtyfEdns3d+9PRDvaIb/J2vMtX0QxidLSDc+N3Xtw7CebJuecfgtpPcmGcRbbw+ypaIP0ZGqQvzF33DFoT+QNS0OajpNW7xW9anLMHWaDS1qgvvEAmyJ4ni+BM7r9JaXsXtbtkqlsQfx9HCsExqH1dGO/jCbL4jrSm8SZZH03HUhattXLXzEd9LSlulwM35J53QkE7/BqZe+QLSGa9hGTKz5B3y95Ibk0FtonrvplThv4c95uGtPMTyZLRJK+kQ9AA9WGk9A3rMwI9HnY/smn61+LFXxcf73WyKM2fxsvaNP7+hoyzPPmpz6Lj4lYSsBPjxcypIbhWjMaQFi4uRdPuCfHyJsaHSH6yaRqWgluSm9Rf0Gr8eUhrvoiwHcZ9rkMC+EY02l+MOmgK83+ajGJ4NeCAqneW6AOSfS/ZO5PdLy0Gzo2GmDSTxN/yCDIjTSTTSDto6AXfantk5/8bEnaXEm6ZuQZ5KpkdeiIa/P5JlkDgVjK7dP7dp307xru4LX5P08VCaa6Mx9Hs5LxoG0fm6rIGGefPK/F/4lpJC6ap7cwGPK7bM/5uG+3iNjL3zOQd9TZqV4fF+7kyfqciO+3fcr8LUFRo/tmHkjFrJjNYiitIwmdCvIvb4v2MQspLmk3+qEq4PkeWhGErKl38LkFt71C0IDuj6huPJ0vVNpssu1EK2R8T9Ziduy4/2xsc7/aGeNepbyTNNNmDUzDSIWR018lu/TjSTu+L9/1G7EtrSt9CAvMSpEgk2oR3yIKb0i8liJlGZno5GA2Q95Atut4c7//5+Ps9Mh//25GSeRRyvriloP09QbjD5vatE3+nkTPBxfs/HZlmHkaDbmLbTPIqya/J8eypjaTgwTTbaS8feu6hkkvRn1AHSZpMmlYMI2M0vASNfnNQg52HOtBb0YCS7XDlePBRZHboFJl2YzSwqbk65Bvih/LCKf6+L8q+jiz/aN6WmBbtUr0caRPXI2E6G1gmV+5aZC5PXyDTakajhvoKGsXTQunKXbzDleI3DgmG5CrmVA5waZB7hiwyNU0B0xpC3pTxTtV9dge+ndt+IPf8e6V98XcssqnOJfMI2gYNdL9Gi3b7kwU1VXSQeI5EFTu0G+1pOBJCy6BO/vt43xX+vl2U8QLq8C8gM9fv0Wwoee38GXX0JZAZ6yCk/b+KBNXpSJAfl/tNqfpdgwT2DfEeL821o5NRu50W7ecoskQIyZc9vzbwrVxbSvbk5KqbvJKeqnq/k8n6WCLpSt8+33aS3X2VOHdu1buaQGY3T0pOPto4ef28S5aGbWrU5x1kohmMZmsXor6V7MMvkwV+JdPqP8mCpy5H5qFz45w0G5lZVcclUCzDmbG9NupXQ1CbPD7q9wBSslLg1jvIw+44ssxXc9DAchUReVt1rxuJRC3V8oWMgvkTOdmWvJpSpqfN0bpbIoSbjWTiVbEvycAVeyRvWyDQHyNW66v25zXg5OmQX5S4NV7Gn5EGfw1VSYXJIj7fX9XY8tPZCsEV97oIcTqcGB/oabKO9BYdBZ+TMR3mWe2eQVPLV+ODJC35OsKDouqZN0Va40tx7ehotC+iBdjFgaXjXEMD1kyy6ekCpM2cFb8ZZKH+JyPt8IiigazOb3U3lQNe8pq4kjCJoIF5OcRelwJjzqXSBHI7mnVcQ2a7ruggdJy1HVBnHb+S3lFu3y7x97Y6y3iVLAPQGLKBO7l/zidjrZxHxsK5OZpdpnZxWK7MxKr4MhmFcLIpT0SDwBQ0qxhNtp6UOrxX/ZKgTFGZs5B5b92435pkpFvJe+PnZL7wL1KpsRfNxq5HLIhvxD1TEFSyv6dZYN4l9ub4vomE7f5ceRcT6Q1jewMkQMfG+9kPmRTyLompL81GM93RZIukVyPT341Ehqso959x3vg49hDZDPgLyOFgcjxDCtRakPvOSSF6jIxKZEru3X2sk98+8TynIUXg91TOfh5Dg9mOqA3NR7PlaWQzsdfRzOEGMgqFbwDrRRnXAEv0RN62gpzrUuBwd3+xi/NuRS5P05EJZBgSVon68iBkjpmLRtUTkEBfHNnXp0dRSwBHe40HM7PxSBgejD7OSNTZLkQLLlea2QnufmzumodQB0r28/XjULI5Qua1kjrEZBQMcFaU8QWkua5Jlsx5MJqKrYg67F6v7Ej6AAAgAElEQVTA6e6+g5kdiRZbv+7u083MUOPdnkqf6uQTPZeME+bfSEv5OxKWuHsiyaoJM3vQ3TfLbZ/q7t8xs5VRI030piBtZBmkraxnZjeSaZ5jkZAAfY+5qch4P1fHe0gLklFFP7yOOqap6L7u/ljsG+fuG5vZz5FGfQnqLKkNLMgXASzu7kPMbE93vzxXdvJA2CCe4wNx7WTUmZOr61wkuCeQkbHthdrgJrHvEeTfPBd95ySkF0QdhkRZi5PRDM9DwueLcc5pyO0Pd7/dzO52962q3seOcZ//Re04IbWJdL/FYzvd+zzkXDCTrA/tSebil7C7uw+Lew2O81dz99mx71fxfFcg4b1v1HdcHJ+AhOzBZN9mDbI2PxO5CP8QKTw7IWG4AGn8myFFY0M0cD9kZmlAeAetlSxCZu65GpkrP4AE56LxHMnLaX9kEiPe14fRjG9G3H85tI5FlL0U+paG+v2bSIGZnHtPx7r7cDMbhhSEbyMF5rGof3J1notk20+QMjkUmO/uy5vZB4BL3X0rM7sy7jUGDdTEO+26fzRLoJtZ8sldGn2MB6oqt1vV+dvkN9FHORh1mh3Rx/8N6nBnIkG/PnIjWwJpjvshk8w8pPHdUFCv1Pm3QoL9R2hK9hlkj3Qz+ysy2fzSzIaShepehhpECjSa5+4fN7PNkVvRt+IeTyKb5pWokY1FHS6FqD/t7utGY/84sl0OcfePmtnk+Dse+LS7z4wyk4D/f8DZ7r6Rma0RdVojnvnaKOsIFFL/VryPe919+1rfKvdunnT3tWocewrZQdN3exoJ908gzeo5NHVcn4wKtQPc/XAzewxpI91ufPFeDkamvFHufqmZjY/3Mab4lsXPHt92T/SuhqCO9jMyHpqtyHyoFyAtc093f9jMDqwqblT8fkZG5nYmWsQ7K3feomh2ch6ymV6JzFQXofZ9EhIiE5HgXCeUAZD5YPM45zO5Mh9GA/dod/990bNWPfdMMqK7W4HfuPu7Nc4d5+4bd7Kdf+frkdnPj0R9ZSnkNTMeDRwTkDBfCils30DCbQTSvN9CMmMlJNC+i8yVRyGz2DKIW+ZUdx8VdZgTZY5H6yBLovd5GlpDSFG2+6Dv+AL6Vm+4+xVRxkQy2uQkqI8Bvu/uE+KckcjzZeWqdzQDzRAOjOdKykxiYjUkzC8jY4rcDWniu7n7ClHOJHf/WEHbAsDdRxftr6hLEwX6Np0dd/fbC67ZEAnlfZBAuMLdTzGzF4jUYKENPoZGvXWR3fcMNLLu5O73mdk6wEXuvlHBPcYjjeBX6CWvguyoM9BHPwBpwheiD78NGjw+jTr/ZUgjGooa30vIvJB8XR2N6Le6+1lmth0S4kdGOauhqeHHkO33p0izPR0t+oyLj/qwV6ZoWyjg88fMbCXkjra9u79uZik67gEkOFZFQRlf7Ox7RFkXIrPFWVX7DwW2dfd9Y6BOWAwNSGOT0KxqjMcjTXEh3H10vbO2GnVMA/KKZHQIn4l3Ntjd53dRRL6sG9C0eCwSRMcibfB/kJLwIBKgnWG2uy9jZnejwJPbULucgQba58lmIYli4kQkkLdMgtTMhiOtP/nKfxx9x1HI3APS4pdF5oENY1+a8RyIBPrxdTz3JfF8s5AXyiLIlPI1Kgc44v5JQFVr+oMR6VjCIkjDTjPYvyOT6ZVR5wPcfQUzuw1pww9G/d8X5/86/v6/qIOjNjYv/j6NbPnfRjP0N9H3OTT+T+6KS5FFKCcvpWFRxsNo4Hkkyr8k7nmEuw+vek8T3H3Dqn0voX56LZmCum/UsRrHRj2/GwrHh5DP/0gzeyCUwSTEk+L1sYJy6saQrk/pGYoEdhHMbARqFPsi88UlaKDZLnfay2g0f87MEl1nMlu8iKZW89z9vrj3FFkoOtwrcWGcij7KssRqurufHprQH9GgchISlHeiznksmrbthDSp3ZAm/HDBY80DrjSzLyOBAeqoX0Va4Awk/Ncks8nejBbOksB8u6rMRZK2nj/m7q+Y2SLu/nq6t7vPM7MFaO1gipl9pKCORTgSuMrM9qPStJKItXD3XfMXmNnWwN9zg8x4pHX8zMy+W0OrWBF41Mw6nbXVwItx7kwz+yz6nmnge9LMLgP+kswxXWBVd98x9yx3IkG6AM2G1kLC4xFC23T3fauefyUz+y0ycb1CZs+eDHwltck4dwFqs4kvaJ6ZJc14EOr8j6IBYQWksV7h7qfE9dfH/nXI8gK84+43mNkywCZm9hUyMxBJA63CBmjQ2AYpF5uQMR2mAS59lx+4+++KXp6ZnY/WstZFQvzpOLQ6cJO7/yHOWzHuMdPM3ufu28bs9K9oAPkXMheuFNcfhN49yHSyCeKWXzTqvEScszl650uigXNZZCr7DVrzOh8pb/sjpWlB3OsWJENAswGAB83sONTn07PPMLPTkYnGo5xlkKKSHzjd3VcreD+7EkyyZrZovJ/nzWxx1GfOAD5iZoegGXwa3CeTmQvzN+lS2LfChp4WfPJI6aaOQmaIO4GD3f3JuGaau6+RK2M80mjnoI6waJSZl9rzoiyPEa9iapgr6w7kkbJhbD/m7uvG/2OQ5vBQnL5ZlDsNTc+2z5XzJJrKHZL2ufuzVffaDvkXgzr6G2Q2U+IZ7kUDyDzUeZPNPZEcJSwZ24bs1guTEeefNexvX0VT1e3RYLeIu3+u+l3UgpltT6ZlPeLut3Zy7u2IF312mhEl4d7JNyicvdWrBHRSl6WRcvBVJCD/gqJCZ9U4/20yLw/IbPxJE/0BEuxvoACYP7v7vKoybkJKyNlISCxCtpCYL3Pr3HOOC+GRxzFx3tkowcLDReYONF1fGmmZWyEhdhwx4KIZS+5W/r8Fz53swHfFc10Ts56KWWE9CIG3M9LWF0ftND17aufPIk+376PZxgeQ+WRFZD7ZHQn2h9D7+hAyYd4RfdLRLHowEoprIME6B62BTUaCOK1zrYC09K/F/S9Gg8W7SIPf390frXqOX6IF9xTQSNTlH2Tf7g5k6nmz6tqh7v4WVYiB7CQUrJXWLh6N5945nuMCNPDciDxbLorZWjW+6O6/KdhfCW++l0tROPaxqPGnBaa0wJc4ORZUl1G1/RM0yiZvlkS1Ojv3e6dGfY5Bo/mHyHEq546PI0sU/CS55Am5c3YjEwRp1fxxcrzdBddshbxfPpbbl/zQNyWiEMl5qVRdn7x4kodFIl5K7+4vBddsE3VdtIHfM7mdnoxmOrNRoyzyN++Wl02d918JBWNU+L0XnLc16txzkEfEWrljk8lYMN8hY+5MjH/XxO8RuojSo5I3PV3n8Z1eifqNyf1urbp+abIQ/jm5OuSDj+Yg5edVJNASYdzUuMexRGahOt9hdVtKXjRv11tGrqxJaJY6CQnS1eI5pyCl4gQkxJMLbfKWeQNluwfNCPLEeZuRJY/fHa1zJc+w3wMvxnlzkExJx5Jc+S+RFAPZ0U9GA8rj8d7+iZS0K3P3nEId/QQ4q2p7CWpElBIJOKpkS/JJfxuZb/PPPT/e3QcLyqqrLzW0s9V4qKJw7BS9NzE++LeQLTtFrr2NbG+fyV2zIZpKPR0PnWcp7JAIoZP6TCdzl1qQ+z8fIp1CmS8i55KUK+M5ZBdMAQ7T0YLZZGpkFomP+XDVvnyWnuQT3yWzWjTOX6O1hu/H78fRcbat+g2jziizOr/ngWRcLvuhGcaaZL64aaCeRbH7Z3Vofzo2q87734QWRSv83uPYYDSAXYk69PeiXe1FZej38Kpf4qI+CWmJY6L8fyNBMS39CurzTnzbqchT42Ak5CfFu/kKkTe16rpknkrRjXPRrGhFZE75LRmL3zZIC1+AlJEr0ULh0fF3OnIK+AfSil+mcy6SRCmcyMmeQO04DXBTyRJodJopBy2A/wnNBL8TbeON2LcZGdXGEDJ+nFORcN06jk2iMutU6qP5+I8HgE/G8RfQmtk1SKNOwTnvkkWap/40BbXTzdC6xUtIsboXOCN3z0voGDC0BXLtfJSMnO014JQ4vhya5XwttodV/SZWbY8n6yebkrFLpgjRR+kl42IrBHqn4djU5t84NK49Nh74LhRk9EzuvN2iMabw+AV0I6FqJ3U+BgnJjVBnfwKN9L9DPrhvIHvzfCIAgNpp6D6BtKvnyEjxzydjiUxa3Ry0oPavOuqXD2NPml8ij3qz6jedOqPMurhnraCjZ1GHTAFGdwGrN7E9Jf6OCr/3+DsNeSpsWXBdB7a66LBLo4FgR7II4qStHh7PNhwtDh5fUMZuyC3vajQwvZjeE3KJ+z8k9P5O+G7HsXuA7ar6SaIwGIQWTqtnqsOR0D+aLABuIoomvRmZmobE7yBqa46JUnh8rtypdBzohlMQXFPQV5YjS+H4ZtRl02gbD8d5nyZzy5wa7zjFD1wa733b+J0FnBvH8gJxRSKkPnf/1WPf2miQHB7v7qH4JklTn4vkzVRghYLnuI0sI1Pqk7MRedwHkGKQfikI7X5gn1wZz5HNspzMhTmtndyK+siRaKBP+Wc3inp6lDMCLRifS/ij04c09KJw7LWQve2TqGF/GXWqQfF/atgLkADNT5en5f6fiKZ5qWFuR47CtUZ9CqPKqs6Znvs9Q2bauAV1zNfjY/4b2ec60Lvmykra1YuoE16Npo2nxUfcBmnbtxJsj3W8058BnyvYb3QxQ+nFd6wVdLRavJclqQr4aVI9kjJwI7JDbkTGLV6kCe/aSVkLc1XG9s1oAP8WGmyfBl7JHb+zi7oNRYL0FTIO/vWRJ9PTVHb+iQXXTyRMMDXK34HMNPR0tM3EUVLEO9JhX+yvJqhbDAmaCkKuHnyb25CdeUzuXX4kjj0R+55ChFiTyUxz6yMheQWafaTI2QlkwX5JsboJzeTzNBsHRL86B/nWr4ZMnJ8nS1+3O1qfGBv1OB7YoaqfVv8ezR3fLffbPep2RtqX2iYS1Ncg5eB1NKOaiAa3G5CsOA6ZLp9HCtBLaIbwVO5+Q5An3lS0+NtegU42Dd67i/NWj4+RBP5VhIYXH+QSNPKdFQ16eu7aokQIhZpy7ppL0NQ4aQ6LU6PhV12XuFUOQwtladHtcTRI/YSINKtx/XA6Em/9LrYfQyvonVIA5MqaTcbnkqdK3ZvQYOO8X9RTXp33rE6tlxJZDEUd7f/I5bNsYrvaBS0EbkDGKvk8BbMC5DnwVCdl5Wc6Q6MD/QdpR8/EN3sUmRI+T04zzF23EtJSb0IKwCtIWP0KDfqXIZNPdbj4lXHd6vE7Oe79DOr8Y4H1q65JvDILyDhqkj08UQEMpoBqoaqcPEHdomQcMon35aQ6vkOe93x3pNy8Q5ambxYyYyXGwzeRNpoGkYcpGNTi2NmoX6VsUDfE9tlxfBxSJo5GQvzfaFE1Zc+agoILi8peB2nIzxBEb5084y/jtxkZ3/21aIad/50X56eBMs0ih5MpIElWfRrJjZfjuaaTDTodzCp0k3GxmX7ok5HGeb8XeDp0s6wl0Sr+vshzYzTqED+M/b9E07EZKMHrlp2U9ZC7b5qCUWLfRHcfmTvngBqX34M4L+6O846L/cPJqELxLnyBc77pGyIt80akXf8PchO7rLPrq8rKe7iMQ1P3v7r7g7W8THoCqxF0FL7cn0RrIQt9wL2Gq1sv7r+quz9f49goNLP7nLs/EfuORrbTnTq57go0uG6KtMSZSADtYGaboYF2OaRhL4sCcO6rKiO5oN6NvLWeQyaESUhRmUWVl5e7/97Mlkda4ifRt18FONTdr41yt0UD8sK2bGb3u/vm+faa/jez1ZCG/Ym43z1ogf2Zgueu9r5YBM2CXzWzIUgp6rTdRFv7lLu/ZmbPo4Hhm2jwWh8NGlsj88F4pIytFO9pH6RYzXf5Yu8S73g40kyXjPc02MwWiXJPiFv/BNFLj4w6PIgWSUeFN5whN8fb3f2Tufpejvpb8qq7A5kN/+XunyzwxkueTvdWPfr7q/uBKUIUJI/+gxSAi5BsMjTQrYA0+C3RQHR5vLu8HNrD3a8qeNfLo7bxq+pjHdATLameH7JjJRKhtPCVfvkcnCsh7e5MsjReHTw2cucPQ5rErejDD0KN4EBk8+xgH6u6/p74UGlxYk2qtHoyErFTyDJ0X0aVl0ru/IVeKt18RxPJaeXxLgq1loJrE4/142Rc1uPJEiUnHu4uF7bqvN+F5Hjac/tfQEFcTWtLcZ+pFGvhX41n3YEsEvePSHAs30WZKyOTWdJ6vejXRRmea9dpkTdxuMyjksDrOOC4Wm2hq33R5qcjE+CiaIb3RAPebZcsnJ3VDZkTR6HguPOifsdF27sGzW52RebTV2Lfv1GwGvHdPkbmRj0OafBrIm398njux5Fd+b/IdDoOzWZOQgPvQWQz76Qlb4YClzYjS5hyDZoRDaMb6d2ivNsK9k2nkszvxahjcou9FM0styHodOO67akzV2i9v1b4oV/t7rvntj8J7OdZmPw9aMRM0XoAeI5jo877rEiE7ndx3qfRKL8emiZvBRzk7rd1cs2yaGq1hldGb66ERuX1iaxBUfe8v/qv3f1HZra3u19aVe5kd/9obnsQ6igfpROY2ddQcMqqZItg96JG/fncqf9AMwC8QFPrDkx8LlchQZUPOloX2YZ75UNex/0/hzpuTS082tZVaNDex6t8xuu8zzW5zfehdzol7fCOlBU/Q+sn/+xB+XlshoRACnTaH9jU3ZN/OWY2FgmwXdBs8Ca0IHhKjTLd3X+au/7YGueNIhM+1dGg7u7LFDzHw2iR910zS5mGRiCTZDIz3YpiKz4T16yAFqINmSISrcUYZM9eENs7IKK5ZdHs4R2k+e7r7mPM7B3U1zZEbf9PKP3d4Wj2vj0S7GtXzSS2RgP4YXHtuqhP15yNRPDa+midAWQymRTl5AO4JhVcu5S7v1EjUGgYkd7Q3adUX9tTNF2gw8KQ/n0R6dB0NN04NY51CK+to7wtkI3yNTRVOx+ZXAZRg8Ol6vrChtXJ+Yugj7iI56ZbuaCS76PFrJvQItqPcufUND2Z2YlIM7kodn0RuVv9sIv6pPD++9Ai0JvIBpxW89OsZRHERz2xRlHdRnXQEZrmr4W+61tkQqBXIcw17r0DWojaAy2MbYaE27NkAUFDyVjtagqkKG8Eco9dxRUI9TE0ME5F3+T+OP6tdE0auHJTdEMzxcRZ39U9X0FmmVR+Co5bCtn8Pxz77kBcNa/nrk0ml/w0/d9IU89jSeQ+uYK7L5W7/qiCKhWe2xXM7MdoLWkmMhX+A0VR34WUiKvQoDTV3Vc3s0Kh6Qqy2gz149vJojQHowHhUmTzvsHd3zLxFz2MhPaZaBa0LZqRfRHJgUNQVrCjq8xTp6H+OSq2E69MLf6bPZGtfWs0M9gTCeInOj6Gbx1lboDa5zfRN30ODUzLokEJZGZ71d3n0GA0LfTf6gvpB7jOzD5Xr4YTyIfu30oVhwtabKiuT3WDSjwiq5nZah7scHFuIhYDCcf1kHfLcDM7xDOukxXc/Zyw4d7t7v8bkZN53IAa/ZJmNovKaERH08RkRz3T3a+s4/lTeD/IremtNDCa2RGoQaeQ7wvM7EyP8PHewhU1ujBy1Mx2akS5dd77FjM7CNm970Fa3Tyy8O3u4iwUDXpGbK+F2up1SCh9n4g1cPdHqurS03u+D2l5+6LZxT+Qyer2+L8Dcpr1UmZ2FrCKmR2PvB9meqxXmCJlj0BmqIupEvSeW9fo6tyu4O4/N7NbEL/Mfu4+x8yOQUE7d6F39zTSQqlRviPB/HO0yLsG0oRfiu31yVLvzTCz6Sgq+Wk08A1CM4NnyQi5VkMLpcfEPQab2RAXZ84OKLAxYQgaOJYiG1jzWNPFfjjR3Y8xs98gZfQzBeemNbVtUX++Aq0VvB7PeHvsx91fLbq+EWjmougCugjpj32z6YaGE9cs1OotF7of2wu1l6prxuQ2NyELM4YqRj6rDE1/F/m+P29mq1DJoLgvGq1HIs6PR4HL3H3NgvsvND2Z2VrkFldz52yNcnc+VevZ47ya4f1mNgkR7M+JcxtC+lNQh2XcfVZuQagC7v5ag++X14jr1sK7KPNBd9/MMrbGc8lY8N5F2tXrBMlS0aBoYu2cEAJtfzQb+6+7H29mW1V/46prh6JZ1nrIPjy9+hx33y2nWS+JPEpGUCmAVkPeIF9GJoeT8pp91T2H1XtuvYjnOIhK08Qg4Ch3/2+t63LXJ0eFlAwlOQ1cEeWMQSaSaWhGtiZiabzXFSq/DlpX+wsi8HszV3Z+JrEamrF69MHRiEq5cPaQmxHdj957itDtoNG7+y9i5jwSeaQsaWZzkafRrlbleNE0ePMWsTp1Oexl2Z0mPq7j+roXQogkGlX7kgvj6WixJ+9Ct1snZa2CGuQD5BZHcse7vbhKVXg/kVYsd3wxcvkkG/h9a2WKn04DApla8UNRgPko171i31AULHQp0v6OoSAcO66ZhITryPj/CLJct4Vtsar8d5AW+1M0td8m/yu4dmm0BjQdxS+chhaFf0QN//XctSfWe2433+PNaJFxGjLfpIQOJ0e/L/IZP5ksNeKvUBTnRLJ0gpcSWcli+xm0xnAyBS6J1KDMiGNbkPNJj30j0OBbUxagtYXlkDvwS8gB4NZ4fz9CC78PkAVBpWxeryMPopfQQHIK8mTbmEjJ17Q23YJOsyTSBlL+0IqQ/jinOvP41l2UWZ3tKB9CXsjhUnV9rY62BZrOX4ECVh6OjzID2LGX72FvsixFKTH1XgXndSl8o55L57aXBjaP/78XHWNU/CZQZ2q2gfZDU/x/UZlGbzZZCrQOvEK12hLS4g+O/19DZoE5SMin3+Q4NhYFh21AFqU6Ggmwn9HR//xY5Jp7e7SdMSiR8LFk8Qh5L5tCOoXunNvN9zgX2ZYnRf/9dzzrT6O+SXCnY3vGsctif4qrWEDGX+NIGUwy4R00uP6U4ICpqkO3vFVy19WXfFkLxR3ORQrTDfF/yuZ1FBmHfuKHv5MCLp+Gt+kWd6CFLoe5fYm/JTXUN5v+0LUF+kNIU9g76rNF7F+nqMFEJ1wut708NVwuybkoIjetQhdFNGXsqv7VEY6DqJy1bIxW/I8ANmryu9y66NfKdtWAZ1gSDYpPkuVfTUIvz/PTQeghIXs0Mpm8DwnoyfH/RDqG0leXXyFUqYo0jXuMQZredXGvo+gmIVeT39/c+HsH8k75NRHQRS54B80mRuW2J1SV8+N4pldDECa/8gvQQDAVBfbkKTOuiffTJWVGk559WWR2NSKSGnnOrU4lEd9WrahP0xZFi+Cyq55BtggFEjqbIW+T7cIe1iVJf3dhZqeQLXSuamYnV9XtcBRUclOcf4J3wa+OPth/cmW8bmYd7PeBQe6e6EQfRFPAQVV1PBhpb10+jkcrifsuMAWEYGbnu/tXyFwL8/uagR/k/l+Y8ALZ9vskzGx/d7/AzL5XdWgwylDz+9y5z3oB13UOX0SLmwe7+0umAJ8T3f0lYKSJB3tEnDvV3QdVFxA26J3Rmsy3kVkhz2O+DZoxbIMGzEXj9w4defPbgddNbsPHIU+vOchpAcC6WJRMJ+2GFKK70DN9Cpmc3Mw+gRwhJqDZwA5ULrLOBjYws2Pd/YT4Bu9z9wca9YDpGUzBS6nvDUaLwr+Iel6F1ucuIezsZvapOP8IM9vO3TuskzQSLRXoNbDQY8PEK9ydhAzdwUO5/2sJzQW5/9+sOla0ejzIzJb3WFSKBada7/QGU97Ni5Br3K+B2WaWGuamqJN+vsb1eUwzs8OR+QrkVjct/l8/f6IpD+QmdZTZI3jHhBcfQqyYfRkpNVjyVPkJ+r6DgBNNvuUgrWtRaiDe7QXu/qm0z8WJf14c3yb+fzrK+pCZHei5/K5mNhqZXq5H5F8dEqa4+6BmLGY2EH8io+94mMqFx5eB201p795EpofkGPDf+P9XSKm7EDkW7Iva8/Vx3Szgl7kyX/Nc3IOZ/Rl5/CyOIkpnI8+YhflxG4AH0Mx3r9y+d5F7ZHK1nG5mf0TtKu8JMxS1uevNbJS7X9zAelWgJX7onVagAQkZGliXlFQiH1xBbFcklYjzD0BT4BSqvzfwc3c/v0b5XyBzUbwD+aWmQKVOE0lUlbMy0uK2R4LoFtQBjqAyKASk7Zzp7kfXU3ZvYZrKTPIugqP6EsK7JWE9JFQS3AuSROSuvQZlJurgzWEKBNrP3afG9gjkorhJ7pzExAcdQ8/dld7uRLSIeiZKfvEGfQym2JD3o0xFycNqBHIJXLTWMZcf+iQUpJQCiwYjc8vXa1x3tVd6to1DitR8r0Hn0c1nKfIIuwTNxvCCIKK47mnEYulocEuuyb9BpqJXkWmoIXQchXVot0DPIzSaZdEiQ1+YSnYJM1sPCVZDLkqPdnFJs+vzy1YJ77hf3pQ1CC0mT3f3/VtVh0YhXBAvyptY6nA9/DtapL6ZysjBwy3yRVad32FfHfVagEwu71JD6HenvL6GEOjbhkk2zXRvK3h330Sz0TXRekfCCKSRr+vKvLQSGgRqmT+7qs+d8e9Q1J4fQQP9YLRQe3L1NS5+nuGx+UG0yJ6OLYzSruVW3Sj0BZPLQniTw8cbhSof7JfQQlA6Nswb7IOdK/uH7v6bKiG6EO5+uCs6bnlEC7xY7tgd1ec3CMmU5Ujg/M3d72nSvZqNU+gYYHIKWZLmIvyDGgFBwENmdg6KZAaZS+pZI6lAkd29Nwht+hQU+r4oElRz2jgw/BIYb4oVMbROUKSU/A2Zpn6JEkknfBa5A69sZj9HZpGf9LQy7v4/AGZ2EfB1d59gZi+idY1PUDuQ7Uh3/66ZnYqUm/eh9br74/gfCQK/ZqFPaejvFZjZde6+iylyrUhjWqPGpb29767ufq2ZHVh03N1HWyXPywSkPd7rucCpBtVld5QR57TYfgB57jjwQ+8GY2S7EYtuWyKz31LINQ6U3uzzvZi6D0WLnCbBNuEAACAASURBVHkz25+8IP9kK2FmD6Eo7kvR2s0BiG3xxz0sb3H07oa7+zfCzr22u1/fjTLej2zehmgyXio4p7NgtrXjWdJMuZ4k4V3VKR/AOC60/5pUJWa2OTIRXYDIw95As7a5aBB4mgZzt3Sow0AR6LW02oTwculOeclN6dkuT2ZhxOabOTvhIGSXn9v5ld2D5XheXFQA66DFti82+D53A19y9+diewIyPS2FAi12aOT9GgnrSJWaOMRT8vFE1TobBXpVc3fky1obaYzrUTkjasqg3ghYFpm50PxjZvd4J7TTXZR3EXLV3M/FibMEosLo1LRgNfhdEjxHxxHnVytS+dmUo4FzSO76uvpmJ/X7O4obuABFod6C6D72qTovUTl8lvA1J6NGTnVrCndLNfqUyaXJSKaBrVDnuyS296Zn02CPBd16PUhuQa5YaUFrCeTi1e1OFAtD30e+rvkGvD2t8xpaNAnzwF1hanotBq8+Cy/gYYmFuEvcfa+CSzrDuchd7w8ogvirdDTb9DXMNblTTjDxk7xI5vnTE6zt7vua2d4A7j43FJ6u0Bl/jFPl+uruu8TfD+f3m9lhKIjuZnJ0EIj4rjc4EHGb/4gsr2y1qysoCvROlPN0eqzFrBD1GZKrT9MH+bYL9FbZ89x9dNzvIJTL8Z3YPh0J1p7gPjPbzN0frOPcxfLeCS5azSV6eN9LEe3A2eQohwPPm9lyiO3uZjN7nYwgqZFYPr/h7t/Jba7UhPs1Fe4+v8ZUviss7iINs1j8GhWLasc1uIqNxFdQP/sOYjL8EIre7CneNrPFiFmPmX2YOvzjvSNRX6cws7Pd/WsFh76HkrmvX3Csx3BxwpwYv86wCTJh/cvMpiHPtdlIQ6/un01F2wU6ChjoYM9r4v0+gOxZaeFyqdjXE2wHHGpmz5C5O3oNL4Y5ZrZxmkaa2SZ09HWvF++6+5+LDrh78mMfFYtMy1LAPtkA3G+VzJMAmNmhBC/8exDjww3xUio9Vq6ofQnzwnz2hJl9B3k3rFx9UpyzlLvPanCdu42c18WbNCaI7wTUxlY1+dVvgzhd6oJlWYm2jl23AWckpSuHRczsAmSHTqbL9dDi47d79QTF9VoTMUFWm9NG5M9z9/HIzfJHoZ1fjmJaRgNXuvuZja5bzTq324beaHteHff7KpqejYld26Bw5NHdKOPDMbUaXnTci9N+bYZoSpO2/H7gi+7ebXOPia53BmJ+XLjA5iLxL4xq7K09saAOtRJeDAX2cPeXG3m/VsAq/dET3Dv3Q6+Zqs7M/oZYAecjs96ywO/dvSuNr6koWMwHemf3D1fBLZFSc49nUdH1XHs24u5PffAryKf8a1XnGYoyXx4pgX+Icx9EJsx/UNkfavGc11uvOxG3zm8Rx/lXEbdPrUQh6bpfoRnQC0jpOz7qM66z6xqBviDQ70C25bORC+CLKINQ06gmzex9KLIMaqyod3H9WHffxMxu6c7iX2giH0GNfkqBBlJvOUXhw+7ua1iWHcWQVvFhFHLe0Olori4VCS+8zuCogQDLOOq/jAa7H6HUaA1P/tHNeq2Q21wMrSMN60pQdVHmenRc06mVnan62g5BQEX7csdOQq6kH0WzqaKcse7uJxTsrxu5fr4ws5iZ3enh1tjJdWMKdnujPc2K0BdMLo2259WDwYgAaQgwwsxGePf8tAeZyOxHWEc+kArNwMy2d/dbTVGieaxtZl1N5wtRvShUdawiQjM8CQ7t7j26UZeKhBfvZZjZqmg9Zys0KN6FaFk7CAyrnUoOWJiqbpEYxPcATnX3d8ys7W5l3jHBwh/N7C5E+NVtmJJubIoibBN9hiPirHow38zW9MgDYMpK1MH2nPNUM2QGeRCZjTZHpHaH587duyfPUoW3YlbwlJl9gxrmtGp0d22gkWi7QG+CPa9TmNmvUQjvI1Q2vu4I9C+hTjqErrPlbIME3q4Fx5xKEqZO0cngoMIKBgfPUnyV6BrnouCVJAz2j32fLjj3ExSnksvjDOR7PBG4I0x0bbehV7kLDkLCuKcZmECLf+t5z6f7PwDGxIKiIVbKrxac91CN/3cj81pLOBpp773BkWiN7XBkS18WpQksRIFylygA7vImk3ItrEMfMLk03J7Xxf2mIpbEXgd3mNlOXhU8YWarNMt+bGbHu/txndl6qxrVIDQ1XcHdP9uMOvUnWEHQSNG+2D+YLJXcx8hSyT1SfW7VdYl5sG2oMgm8iwad33pwzvSgvL8i8qweXR9lDKXSHNll/zSlP/wcSvWWF+jLoAHm4z2tT3eQ844qygW8HEpL11RSroS2a+hIO0hYaM9r4v2moQWYXgv0JMzNbFlkJtoPuV9+MJ1TZJKpKqPuhRt3Py7+FmkvCXlN610kaC6v9x4DHDNNaeRS0u6UD7cD3H0+8uy4IYTRvsBtJtrlU0CDO0pE8QF33ynszJ9AOS/bhiaYBM5BXk8vUJkovNPAoZg5PufuL7ny4m5IJGY2sRJ2RaHxb6Sp70ZlLMlspF33CKb4ks6CEKtnyGPJTEGrofB+Q8L8WbR+8i/kFNFUtF1DL4KZ3eXun+z6zB6VfTlKF3YLlSvi3Y0UXRw1pP2QFrw0MsPckVyq4rxO/ZHdvdtmpvAzP4COi1DdeoYSlQgPoVOR0HWUiPqIIq+lOD/PY746shn/xd1fiOPXI5PNj919pImzfnz1OkerEYuixyFTSVorOKHAtl5veU+gBd/J5CiovevcuOOAT4V31tZI4B2G8oeu63UGeZnZIj11MKhRXnJ02B25NF8Y2/uixB2F5HemmJZrPBLexwziU+5+lDWZlGthHdot0GvY877ZLC8X64QHpRtlXIh8Zm9CjfBWtChTc7GykTCze1By4eoONLrOxboSvYRV8phf7AU85laVhDr21eQCaRXM7Ga0ZnRB7PoyYjv8VO2rOi3v1p54cOQ9WczsNOAVdx8V251xpnRgwCza11uY2R3uvnVu24Db8/uqzh/rOWrk2PcQMsX8ZKB4ueTDf5M9b5/iU3uP7gjuTrABmlY9hux987vyXoiV+5MQWZajJBdHuvu0zq6rgcXcvZYpZzoKtEiddV/0Tm/swX0GBMysM+8Od/efFuz/Cgo+GgEcblmke57Sdk5owymCcgsiqUObMazqmX5mZnv0orxHzew8xPmdn/V25eUy2OrIZlSAIgbMrlgxe4KVzWx1d386tlej8yjoEWb2Ehmj4vLI7PIrNKNuOtou0Fvt4mMNIFOK6fM6yNzyLzObASxtZu/z2j7tf0M5FVMk55eQrXbzGud3hvPN7BCUY7IisAjlEM1rENeGpvF/1YWUWIgi0qQlUbTjCmTsiwvh9VHafg+ZYdY0kZmtROZB006MMbMvAX+P7b2oTQFcD5aNv/nZXz1uixfRRTajPCxjxVypam1qGeSK3GgcBdwZjhQgRsdvdnL+Voh1Mi3G/gM4rsjttVnoCyaXIk3zvygAY0IT7ncXGZnSrgSZUlpw7GGZmyJNeG/geS+IcjWz+91986p997n7Fj2437eRG9V/yBZv3BVY9Biwc9L8Tbwa//RchpcStWFmSyP64YORwPuddyPqsaqsocifOnlvTEW5ZdtNnzsbDVjJXDeIXNYkbyEvunWS6cg7si1ugzxGvoG4jPYj4+F/maqBuRHmxVgrWy82H3Xxu3R1zVLepqxSfUGg/w3Zza+NXTujgIF1gEvdvaH5Ka2H0V91lm0o430+32Hepek/yObuyBd+aI3pfFf3eQrY3N1nFhzbEaUqS6ac1YFD3b00uXQCa0LOTgsO7a72vddhZh9A5sTkyHAHMic2gxQOMxvu7s+EgAel5+tgZuzprNTMtnH3202JqzuglinJzLZEEe9LuftqZjYS9b1v9aQePUHbTS5oSrtxGtHCK+QytOg4lsYnHK6LTKkncI2O1VmX8i5NUBm16RRM5+vAI2T5TqvrcEOYldaJXXX59A5kWGXOzo/2VrsyUUt8EFjczDYi+/bLIM6RtsMam9XqXNRnU9rBr8S+ZsU+DDWzM8m8vDYGxrl7UgqvNVGK9BSfRv24yDzWmSnpD+iZrwFw94nhvdMy9AUN/TFgpEcO0ZimTnD3dZvh6mMdyZSWAU509/saeZ9mIvxk10cEY0lYb5xcPc1sb3e/NHf+L0obem1Yg3N2hifVQWjmmY9onA381XtA99BIWIOzWhV5pDTTm8fMJiKTy1hk0roMuZdeE8fbYmZMZtUqr6YeJ6vuCfqChv43xCt+dWzvClxkSpLQ8ITLnnGXv0FxeHFTYGaFq9zufl4Pirsqfnnkp4fVYc87AqVAr4E6Fzi7U95oYLSZ7enufTGo6wiyrFbbxQJ/b2g3XotF1hStuQ8ZPXUzUEEfbUoefWZuPW51GsBfZEoCsgcd4z1+UeOS58Ls4nHt4Uh5bBnarqEDmLjBU97Fu9z9oS4uaStqLOQuhBdEf5qIhRIWQ25a4+oNnigob1HkMgdabHsgpxVUzGyaMdMpUR/MbGc0m8qbNnrFAthb5PzjJ6C1mLd6o1Gb2erAn5DHlqMYicO8SfwlVkwfvSiwSvzfEDOjmf0DmEc2EwDA3X9d4/wV0VrCp5Asuwk43JuUNL4IbdPQrTLh6/T4pWPDWvkSeoBuExm5+2H5bRNdwPk1Tu8UZrYtWrh7GjWcDwH5SLnqUbr9o/YAhClycAnEiX02cg/sC8k/GpLVysy+4+6nhp/25xpcx86QggN/kNu3aGwPAUaamEx7MvvNY7i7b9CN8z/i7l/O7zAlvGhowFNnaJuGbh0Tvi48RLjgtaViLYKJVnVST+x8ZjYWJeSdGtsjkJY+G72/xckWTQ0FIi3SkIqXqBsWSVtyf5cCrnD3z7S7bgnhKbIscENax+rGtX3CY8fMzgfWROsBSZN27yUVhinxxu/dvS7Tb1/wamqbhu41Er42G6bchwfTcRpckxazEWWZ2bVkA9dgROL19+rz6sQinmO2c/fHww2zrYkTSnRA8lmeG659rwItbe95RHv9BkrxOBk4J+9i29dhtemjt0OmjUYvNm+O0hI+SSekY9b6gKeaaPuiqBVk/Sna10CcD0xB7kUnIL/jni5cdKes3+b+fxd4xnseQfaQmZ1DZrL5MpVscyX6Bq4L08aJKE2fI9NLuzAamebuBHZCATNH9KK8j5lZEb97j7yD6kCt3ALvIBfDRgv0eukQFkW86dX5EWYhM1vL0E6Ty2LIvjgGRX/lfXWvb5bLUVogzE2DFwFu7InLVnfLCv/kj6OO/aB3M/VdrpyhKCluWki+A/hT6W/et2BmQ9M3iW+2GDCvXd+pKphuCFpI77E5oK8stpv43TdE6xN5KoweRYqa2ZLuPsfMCgckr5HoOwU89eSejUI7NfRDEe/BB5B2mQT6LMR50iykxcP/mNkGKI/p6s0uK3x/j0UahgGnmLiz/9Ldm4ZXwvnA+e7+So9qXqIVuJcgjAoh/paJMrZddueFC+fu/q5lhGLvOVR5D02LX28XQRMuQzOYR8iCAvN/KxKxm9kf3f27wKlWQNLX04GlJ2inDf0k4CQzO8wjIUCLcGZEyR2DIrqWooe5FHNl/SRX1jE1zv0BIs56FcDEwncPULdAN/XA41D+VYtd84FT2u0KVyJDH44UHZkzkRiq3yx6biLpbYq3HqHAe+jjaLbRkPUAVzISQy6d9Xj/JNPnbzs9qwXoK37oW9LReb9Ro21TYKIP2Mvd61rYNLNbgJ1yEbGLomi2ujmozexI5B729eTja6Ll/TPyUvhDNx+jRBNQFSn6IJlA7xORou91FHgPbYdcMAcje/ZgYE5vbfhWwG/e19F2gd4sl6OC++zv7hfUCgoqCgaqo8wKAvwuzj0P+ChwNZq27Y5sfo/Xe38zGw982qtIucxsJcRW13Z7ZokMfThS9D0Ny0Ls70McPNciTqjX0SB6ALC295Luwsz+DJzlVayPnZy/FTAKJbkeQhtcsNvu5YI+QG8yhteLJeNvb7KbV+NmM/s+CnleSN1ZIyjqqfglJKqD7tRnkWphHvd7JRZkS/QBmNmuKMbg8tg+lsiViThHWpIBvh+j2ntoGEoisYcr1+u5pqxePYJlSTc+CRxiYjedQw23xRzOQblMKyJLW4m+oKFfinxIX2xrRXqACIqqRqcjclpB7+H9agYp9JUgjxIyCQBbuPtcM9sF+D2idN0I2Nvdm8VC2BZE1PMoIFFQ345ylDY9O1N4D91KZk9/CXgROMh7SIqV+pKZrVl03GvkSrWCnAetRl/Q0FdEKawa4nLUFcI8cQgdbfbdDixCiWznVZW/WNGJEXxwDlo47SlXcn5Rq6J4coFNJdoOd/cUqfsFFMAzFhhrZi3jxm4h/gI8TJY6MtHnVgcA9QomptTnkruvifBuT2S2XAE5CxyJqDD27M2toOsk1wUYY6JivoJKWVaXyaYR6Asa+jZF+5sVwRZTsTvpSLjTbVtnd0J9zex+FGRwjWckWg9797giSrwHEBr6loh+YTqwpwfhnJk96u7rdXb9ew3WIvrccPn8lLu/ZuIZvxg4DPmgr+s9JLoruM/zaFZViFrrXeEPX3B685NDJ7RdQ68W3LGwsB8dE0U0Cku4+496U0BP3dLc/bkq39+22NlKNB1/RIv8s4DHcsJ8I2QO6G9408w+6e53wcI+3GWqth5gcG596ovAmaGIXW5ijmzYfdBMuluO+t7i/MhFaLtABzCzDZEQ3wdpNM30DLjOzD7n7v/sRRmfRW5pq1I5ks+mNu9427mSS7QG7v4XM7sRZcKamDv0Ei3k4G8hvgGcF7Z0Q1zoBzXhPoNzC5Y7AF/PHWukLHuxO3EdBZ5zDsxEVOAtXQBvZ+j/CJT5fl9EWnQJ8H13H97k+6YEuW+hyLke8050xy3NirmSj0iBRiVKvNeRQuVrhcY3oPwfoziMmShac2N3dzM7DPiSu2+VO7cia1c379MtSgNT2sxqDEOK3yh3v7gn9egJ2inQFyBb9sHu/mTsm9ZKn83eIlbY96TjAmtdo3tvPF5KlOhLsBYl8jCzLYD3o7iLObHvEeAr+cXH3nh9WYPyMZhyPfyrld5n7TS57Ik09DFmdgNa4Gg6uUTY9ya4yHf2R7waf3T3Z3tQ3NXAf9ECa03CJTP7IGqEk9z9bTNbGfHYHIS4bEqUeM+iIBS/aYk8PJf718x2Qhr7isBBZnZQHFoGMZr29B4NSa4Ti7ctJcxpJ5fLlcCVptyheyB3o1UiOutKd7+pSbf+M3L/Gwn8ELkSno+oObuLVd19x85OMLPvAj8GnkTZyk9CdvfzgPdUWHGJ+hCaWU00SmD0IWyZC8U/3sx+R+OpbIvwb5SEezcq6aNnI3nSVpjZ9ih6tWVo+6JoTJsuBC6MjrA38P+QjbkZeDfsbrsDJ7n7OcG90RPcY2YfdffJnZzzdZSa6jUzWw0J9q3zmkaJfoexZOx8q6FObcBywLO0MclFk9CWRB7uPhGYaGZ/c/d3urygSTCzyXRM8zgMDTiFyeGbhbYL9DxCczkjfs3CbDM7GgU//I+ZDQZ6Gjb/STTVm05lRpN85qB5SSNz92fN7PFSmPdveGThClPENcmjKkwEdZOxvYdQlMjjrBbe/+OmxNHt4lDZpWrbgVfbsT7W9sCiViN8yPdDCSbuDK15W+8Bu6OZFXrkeI7k3sxmoPWBhC/lt73BJGQl+g6sgK3PzB5y903bVadmIxwFFmtF2H/unlMo4FAZiB5kA06gA5jZKsBmsfmAu8/oRVmfRMxu5watwFJ539OuzDnuPrqn9y7RtxG+6HcCFyCtbX9kbusXXC6dhOI/g9z1WrJW0Bc4VPoKBpxAN7N90NTwNjQ1+x/gB+5+WQ/KOg6xRX7E3UeE/fDSvD9siYGLWBM6DtgaCfQ7EGlVv1gUbVUofh31+BWK7mwbh0pfwUAU6BMRp/iM2F4J+Yp2m5ktwo03Asbl+FkmVdnQSwxwmNlS7v5Gu+vRaJjZxNRvzOw04BV3HxXbDedy6aQebedQ6SvoU4uiLcKgKhPLq8CgHpb1dnjMOChQqNe1K9FvEFQPZ9M7hs2+jFaF4neKvsCh0lfQU0H2XsYNZnajmaVAhH8APeV1+buZnQEsZ2aHAP+itav7Jfo2/oDCv1+FhW52dWW4eo/gIuB2M7sauS7eCWBma6GAu5bAzFYxs3PM7PrYXs/MDm7V/fsSBpzJBcDMvoBcDg24I4KcelrWp4HPRFk3uvvNNc4bjbhb/hPbywO/857xsJd4D8CyVGnjcya5iT0x7/VV1AjFH4GcA1piww5Bfi7wY3cfaWZDgPHu/tFW3L8vYSCaXHAl6b0iCLO67doUGsgq7n53CPCbY//WZramFxPjfywJ86jD6yY61RL9F/2eYbMopsLdH29xNVZ0979HfAnu/q6ZDUhq6gFjcjGzLczsNjO7wsw2MrOHUZaVl82s0/D9AvwRhRdXY24cK8Kg0MpTfYYxQAfUAYRvAN9G3PnPI++P/mI/70uYY2YrENGaMWtomcmnL2EgCZRTEVf5sigH4U7ufp+ZrYNsgTd0o6zV3X1S9U53f8jMVq9xze8QVUByj9wb+Hk37lnivYePuPuX8zuCHO7uNtWnv+J7wDXAmmZ2N7ASIggbcBgwNvS8G5WZPebu6+aOdZf/+El3X6sHx9YDtkf29lvc/dFuPUSJ9xSsGykKS/QOYTf/COpbU9vJ7dJODCQNfUHu/+r0WN0d1R40s0PcvcKjJVbWx1btW8bdZ4WJ5SXgb7ljDeFdLtG3YEoIviWwklVms1kGBcCUaCDM7NvAhe7+SGwvb2b7uvuf2ly1lmMgaejzgTloBF8c2buJ7cXcvW6CrqAOuBJ4m0yAbwosCnw+hULHude5+y5B4JV/2a0mECrRIpgSn2+LbOin5w7NBq519yfaUa/+iqIgpu7OuvsLBoxAbwbMbDtgg9h8xN1vbWd9SvQtmNnwPFFbiebAzCYBIz2EWTCoTnL39dtbs9ajFOgtgpnd4u47dLWvRP9B0Er8kI6p2QZcSHozYWYnojSQp6NZ8DcQadhR7axXOzCQbOhtgZkthtJzrRhuiykl1TKU6ef6Oy5Eyc93QULmQOCVttaof+JHwKHAN8kSsJ/d1hq1CaWG3mSY2REof+gHgBfIBPos4Cx3P7VddSvRXCQ+9Dxhm5nd7u49SXdYokSXKDX0JsPdTwJOMrPD3P2UdtenREuRXOdeNLOdUUqyVdtYn36J8O0fRfsyFvUZlBp6C2FmGwDrUWlP7XampBLvDZjZLoiw6kPAKcjMdry7X9PWivUzlBmLMpQaeosQyTC2RQL9n8BOwF1AKdD7IcLTYm13vw6FoZcUr83Df939+nZXoi+g1NBbBFNm8JGIBW5k+LKf7e67trlqJZoEMxtTcnU3H2XGogylht46vOnuC8zsXTNbBpgBDDgb3wDDPWZ2KvJ0WZgBfiAKmiYj5RPNJ992RLMxoFAK9NbhITNbDiXAGAu8ATzQ3iqVaDK2jL8n5PYNSEHTTJSzoAylyaUFMDMDVnX352J7dWCZIsbGEiVK1Acz29/dL6jiy1kId/99q+vUbgwYPvR2IkKSr8ptP10K8/6PMjVa05Fy+C5d4zfgUGroLUJkRf+ruz/Y7rqUaA3K1GjNhZlt6u4PtbsefQmlht46bAfca2ZPmdkkM5scpEIl+i9WdPe/E9TN7v4uOT/pEr3GWWb2hJmdELkGBjzKRdHWYad2V6BEy1GmRmsi3H0jM/sI8CXgMjN7G2Ufu3igslyWJpcWITrzI+4+O7aXBtZz9/vbW7MSzYKZbYwiRDdA+WtXAvYq10+aAzMbiYT7PsBL7r5Vm6vUcpQaeuvwZyCfemxOwb4S/QjuPi6SXQz41GjNhpkNAlYGVkGLpQOS1bIU6K2DeW46FEFG5fvvhzCzL9Q4NMLMcPcrWlqhfgwz+x9gX2APNAu6GDjS3QekaasUKK3DNDM7HGnlAN8CprWxPiWah0TnsDIKLkqZrLYDbkMh6iV6CTN7DngWCfHj3f3lNlep7Sht6C2Cma0MnEwWJfgv4LvuPqN9tSrRTJjZdcAh7v5ibL8fOM3da2nwJbqBMsVfR5QCvUSJJsHMHnb3DXLbg1Cuyw06uaxEiR6j9ENvEcxsVTO70sxmmNnLZna5mZXJDvo3bjOzG83sIDM7EPgHMKbdlSrRf1EK9NbhXOAalIrug8C1sa9EP4W7fwclLh4JbAic6e6HtbdW/Q+RsajLfQMBpcmlRTCzCe6+YVf7SvQvmNlwlOjiX2a2BDA4xSKUaAzMbJy7b9zVvoGA0suldZhpZvujSDaQq9WAS5E1kGBmhwBfB4YBa6KZ2enADu2sV3+BmX0CeRGtVMW4uAxKeDHgUJpcWof/JSLYgBeBvWJfif6LbwNbAbMA3P0J5MpYojFYFFgKKaZ5lsVZqH8NOJQmlxIlmgQzu9/dNzez8cE7MgQY5+4fa3fd+hNK98UMpcmlRTCzDwOHAauTe+/uvlu76lSi6bjdzP4PWNzMPo2Cya5tc536I4aa2Zl07FsDLjNUqaG3CGY2ETgHmEzQqQK4++1tq1SJpiL8zg8GPoO4XG5EicHLTtdARN86HaV2XEhP7O5j21apNqEU6C1Cmn63ux4lmg8zW83dn213PQYKzGysu2/S7nr0BZQCvUUws/2AtYGbgLfS/jIDfP9D3mXOzC539z3bXaf+DDMbBcwArqSyb73Wrjq1C6UNvXX4KPAVxOWSTC5lBvj+Ccv9v0bbajFwcGD8/UFunzMA330p0FuHzwNruPvb7a5IiabDa/xfoglw9w+3uw59BaVAbx0mAsuhqWGJ/o2RZjYLaeqLx//Etrv7Mu2rWv+BmW3v7rfW4p8fiLzzpUBvHVYBppjZg1Ta+Uq3xX4Gdx+QUYptwDaIa37XgmPOAOSdLxdFW4RIRdYBpdtiiRIlncK8YAAAA4FJREFUGoVSoLcQJVFTiRLNgZntDKwPLJb2ufsJ7atRe1ByubQIQdR0GXBG7PogcFX7alSiRP+AmZ0OfBFFYhuwNzC8rZVqE0qB3jqURE0lSjQHW7r7AcDr7n488AngQ22uU1tQCvTW4a28y2IQNZX2rhIleo834+9cM/sA8A4wIF0ZS4HeOlQTNV1KSdRUokQjcJ2ZLQecCIwDnibLOzCgUC6KtgglUVOJEs2HmQ0FFnP3/7a7Lu1AKdBbCDNbCcDdX2l3XUqUeK/DzDYDnnP3l2L7AGBP4Blg1EDkcilNLk2GCaPMbCYwBZhqZq+Y2bHtrluJEu9xnAG8DWBmWwO/As4D/guc2cZ6tQ2lQG8+vou8WzZz9xXcfRiwObCVmR3Z3qqVKPGexuCcFv5F4Ex3v9zdjwHWamO92oZSoDcfBwD7uvv0tMPdpwH7x7ESJUr0DIPDWwyUePvW3LEBSWsyIB+6xVjE3WdW73T3V8xskXZUqESJfoKLkPfYTOS6eCeAma2FzC4DDqVAbz46o8stqXRLlOgh3P3nZnYL8H7gppzH2CAUNTrgUHq5NBlmNh+YU3QIuVeVWnqJEiUaglKglyhRokQ/QbkoWqJEiRL9BKVAL1GiRIl+glKglyhRokQ/QSnQS5QoUaKfoBToJUqUKNFPUAr0Ev0OZra6mT1mZmeZ2SNmdpOZLW5mh5jZg2Y20cwujzSAmNlfzezPZjbGzKaZ2TZm9pco46+5cj9jZvea2Tgzu9TMlmrbQ5YoUYBSoJfor1gbOM3d1wf+g1j4rnD3zdx9JPAYojNOWB7YHjgS8dT/AeWo/KiZbWhmKwI/AT7l7hsDDwHfa9nTlChRB8pI0RL9FdPdfUL8PxZYHdjAzH4GLAcshTjpE651dzezycDL7j4ZwMweiWtXBdYD7jYzgEWBe1vwHCVK1I1SoJfor3gr9/98YHHgr8Ae7j7RzA4Cti04f0HVtQtQP5kP3Ozu+zapviVK9BqlyaXEQMLSwItBivblbl57H6I8XgvAzJYwsxGNrmCJEr1BKdBLDCQcA9wP3IySjdSNyDJ1EHCRmU1CAn6dRlewRIneoORyKVGiRIl+glJDL1GiRIl+glKglyhRokQ/QSnQS5QoUaKfoBToJUqUKNFPUAr0EiVKlOgnKAV6iRIlSvQTlAK9RIkSJfoJSoFeokSJEv0E/x/qum1CJU+E9QAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "countries[\"life_expectancy\"].plot.bar()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Uf, to nevypadá úplně nejpřehledněji. Zkusme totéž, jen pro země Evropské Unie (kterých bylo v době psaní materiálu i zahájení kurzu stále ještě 28). Filtrování v `query` očekává řadu logických hodnot, tou je i samotný sloupec `\"is_eu\"`:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAFNCAYAAAAZ/TRMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO29ebgkRZW//37oBtk3uSCC0KgsriA2DIiKgruyKTgwgK2ijN9RERk3HEcQ9Sc6joi77YItIggiAq4gAqKydUMDsjggIDIiNA4Iiorg+f0RUXTeuplZmXXrLimf93nyqcqsk5GRWZEnI0+cc0IRgTHGmO6xwkxXwBhjzHBYgRtjTEexAjfGmI5iBW6MMR3FCtwYYzqKFbgxxnSUudN5sPXWWy/mzZs3nYc0xpjOs2TJkjsjYqx/+7Qq8Hnz5rF48eLpPKQxxnQeSb8u224TijHGdBQrcGOM6ShW4MYY01GswI0xpqNYgRtjTEexAjfGmI5iBW6MMR3FCtwYYzrKtAbyGGNM15j3ru+Wbr/56JdOc00m4h64McZ0FPfAzUBmcw9kKni4na/pLlbgD0OsoLqF/69uMZ3/14wpcDdKY6aGtveW78Xu0kiBS3or8DoggKuA1wAbAicB6wKXAQdGxP1TVE83sg4x2xSI287M4us/dQxU4JI2Ag4BnhgRf5Z0MrAv8BLgmIg4SdLngIOAz05pbR9GuNEbMzXMtntrMvVpakKZC6wi6W/AqsBtwC7Av+TfFwFH8jBS4LOtERhjHn4MdCOMiP8FPgrcQlLcfwCWAHdHxANZ7FZgo6mqpDHGmIkMVOCS1gH2ADYDHg2sBry4RDQq9j9Y0mJJi5ctWzaZuhpjjCnQxITyPOCmiFgGIOlbwDOAtSXNzb3wjYHflu0cEQuBhQDz588vVfIPB2xyMcaMmiaRmLcAO0haVZKAXYFrgHOBvbPMAuD0qamiMcaYMprYwC8GvklyFbwq77MQeCdwmKQbgEcCX5rCehpjjOmjkRdKRBwBHNG3+UZg+5HXyBgzq7E5cPbgUPpM1xtlWf27UndjzHA4G6ExxnQU98CNMZ2m62/Pk8E9cGOM6ShW4MYY01FsQjGd4+H8ymxMkX9YBe6b3MxW3Dbr8fVpzj+sAjdmurDCMTOFbeDGGNNRrMCNMaajWIEbY0xHsQI3xpiOYgVujDEdxQrcGGM6ihW4McZ0lCZzYm4paWlhuUfSoZLWlXS2pOvz5zrTUWFjjDGJJjPy/DIitomIbYCnA/cBpwHvAs6JiM2Bc/K6McaYaaKtCWVX4FcR8WvSTPWL8vZFwJ6jrJgxxph62irwfYET8/cNIuI2gPy5/igrZowxpp7GClzSSsDuwCltDiDpYEmLJS1etmxZ2/oZY4ypoE0P/MXAZRFxe16/XdKGAPnzjrKdImJhRMyPiPljY2OTq60xxpiHaKPA92O5+QTgDGBB/r4AOH1UlTLGGDOYRgpc0qrA84FvFTYfDTxf0vX5t6NHXz1jjDFVNMoHHhH3AY/s2/Z7kleKMcaYGcCRmMYY01GswI0xpqNYgRtjTEexAjfGmI5iBW6MMR3FCtwYYzqKFbgxxnQUK3BjjOkoVuDGGNNRrMCNMaajWIEbY0xHsQI3xpiOYgVujDEdxQrcGGM6ihW4McZ0FCtwY4zpKE1n5Flb0jclXSfpWkk7SlpX0tmSrs+f60x1ZY0xxiynaQ/8WOAHEbEVsDVwLfAu4JyI2Bw4J68bY4yZJgYqcElrAs8GvgQQEfdHxN3AHsCiLLYI2HOqKmmMMWYiTXrgjwWWAcdJulzSFyWtBmwQEbcB5M/1p7Cexhhj+miiwOcC2wKfjYinAX+ihblE0sGSFktavGzZsiGraYwxpp8mCvxW4NaIuDivf5Ok0G+XtCFA/ryjbOeIWBgR8yNi/tjY2CjqbIwxhgYKPCJ+B/xG0pZ5067ANcAZwIK8bQFw+pTU0BhjTClzG8q9GThB0krAjcBrSMr/ZEkHAbcA+0xNFY0xxpTRSIFHxFJgfslPu462OsYYY5riSExjjOkoVuDGGNNRrMCNMaajWIEbY0xHsQI3xpiOYgVujDEdxQrcGGM6ihW4McZ0FCtwY4zpKFbgxhjTUazAjTGmo1iBG2NMR7ECN8aYjmIFbowxHcUK3BhjOooVuDHGdJRGEzpIuhm4F3gQeCAi5ktaF/gGMA+4GXhlRNw1NdU0xhjTT5se+HMjYpuI6M3M8y7gnIjYHDiHFjPVG2OMmTyTMaHsASzK3xcBe06+OsYYY5rSVIEHcJakJZIOzts2iIjbAPLn+lNRQWOMMeU0nZV+p4j4raT1gbMlXdf0AFnhHwywySabDFFFY4wxZTTqgUfEb/PnHcBpwPbA7ZI2BMifd1TsuzAi5kfE/LGxsdHU2hhjzGAFLmk1SWv0vgMvAH4BnAEsyGILgNOnqpLGGGMm0sSEsgFwmqSe/Ncj4geSLgVOlnQQcAuwz9RV0xhjTD8DFXhE3AhsXbL998CuU1EpY4wxg3EkpjHGdBQrcGOM6ShW4MYY01GswI0xpqNYgRtjTEexAjfGmI5iBW6MMR3FCtwYYzqKFbgxxnQUK3BjjOkoVuDGGNNRrMCNMaajWIEbY0xHsQI3xpiOYgVujDEdxQrcGGM6SmMFLmmOpMslfSevbybpYknXS/qGpJWmrprGGGP6adMDfwtwbWH9w8AxEbE5cBdw0CgrZowxpp5GClzSxsBLgS/mdQG7AN/MIouAPaeigsYYY8pp2gP/OPAO4O95/ZHA3RHxQF6/FdhoxHUzxhhTw0AFLullwB0RsaS4uUQ0KvY/WNJiSYuXLVs2ZDWNMcb006QHvhOwu6SbgZNIppOPA2tL6s1qvzHw27KdI2JhRMyPiPljY2MjqLIxxhhooMAj4vCI2Dgi5gH7Aj+OiP2Bc4G9s9gC4PQpq6UxxpgJTMYP/J3AYZJuINnEvzSaKhljjGnC3MEiy4mI84Dz8vcbge1HXyVjjDFNcCSmMcZ0FCtwY4zpKFbgxhjTUazAjTGmo1iBG2NMR7ECN8aYjmIFbowxHcUK3BhjOooVuDHGdBQrcGOM6ShW4MYY01GswI0xpqNYgRtjTEexAjfGmI5iBW6MMR3FCtwYYzpKk0mNV5Z0iaQrJF0t6X15+2aSLpZ0vaRvSFpp6qtrjDGmR5Me+F+BXSJia2Ab4EWSdgA+DBwTEZsDdwEHTV01jTHG9NNkUuOIiD/m1RXzEqTZ6b+Zty8C9pySGhpjjCmlkQ1c0hxJS4E7gLOBXwF3R8QDWeRWYKOpqaIxxpgyGinwiHgwIrYBNiZNZPyEMrGyfSUdLGmxpMXLli0bvqbGGGPG0coLJSLuJs1KvwOwtqTerPYbA7+t2GdhRMyPiPljY2OTqasxxpgCTbxQxiStnb+vAjwPuBY4F9g7iy0ATp+qShpjjJnI3MEibAgskjSHpPBPjojvSLoGOEnSB4DLgS9NYT2NMcb0MVCBR8SVwNNKtt9IsocbY4yZARyJaYwxHcUK3BhjOooVuDHGdBQrcGOM6ShW4MYY01GswI0xpqNYgRtjTEexAjfGmI5iBW6MMR3FCtwYYzqKFbgxxnQUK3BjjOkoVuDGGNNRrMCNMaajWIEbY0xHsQI3xpiO0mRKtcdIOlfStZKulvSWvH1dSWdLuj5/rjP11TXGGNOjSQ/8AeDfI+IJpMmM3yjpicC7gHMiYnPgnLxujDFmmhiowCPitoi4LH+/lzSh8UbAHsCiLLYI2HOqKmmMMWYirWzgkuaR5se8GNggIm6DpOSB9UddOWOMMdU0VuCSVgdOBQ6NiHta7HewpMWSFi9btmyYOhpjjCmhkQKXtCJJeZ8QEd/Km2+XtGH+fUPgjrJ9I2JhRMyPiPljY2OjqLMxxhiaeaEI+BJwbUR8rPDTGcCC/H0BcProq2eMMaaKuQ1kdgIOBK6StDRvezdwNHCypIOAW4B9pqaKxhhjyhiowCPip4Aqft51tNUxxhjTFEdiGmNMR7ECN8aYjmIFbowxHcUK3BhjOooVuDHGdBQrcGOM6ShW4MYY01GswI0xpqNYgRtjTEexAjfGmI5iBW6MMR3FCtwYYzqKFbgxxnQUK3BjjOkoVuDGGNNRrMCNMaajNJlS7cuS7pD0i8K2dSWdLen6/LnO1FbTGGNMP0164F8BXtS37V3AORGxOXBOXjfGGDONDFTgEfET4P/6Nu8BLMrfFwF7jrhexhhjBjCsDXyDiLgNIH+uP7oqGWOMacKUD2JKOljSYkmLly1bNtWHM8aYhw3DKvDbJW0IkD/vqBKMiIURMT8i5o+NjQ15OGOMMf0Mq8DPABbk7wuA00dTHWOMMU1p4kZ4InAhsKWkWyUdBBwNPF/S9cDz87oxxphpZO4ggYjYr+KnXUdcF2OMMS1wJKYxxnQUK3BjjOkoVuDGGNNRrMCNMaajWIEbY0xHsQI3xpiOYgVujDEdxQrcGGM6ihW4McZ0FCtwY4zpKFbgxhjTUazAjTGmo1iBG2NMR7ECN8aYjmIFbowxHcUK3BhjOsqkFLikF0n6paQbJL1rVJUyxhgzmKEVuKQ5wKeBFwNPBPaT9MRRVcwYY0w9k+mBbw/cEBE3RsT9wEnAHqOpljHGmEFMRoFvBPymsH5r3maMMWYaUEQMt6O0D/DCiHhdXj8Q2D4i3twndzBwcF7dEvhlSXHrAXe2OLzlRyc/m+piectbvlx+04gYm7A1IoZagB2BHxbWDwcOH7KsxZafGfnZVBfLW97y7eQnY0K5FNhc0maSVgL2Bc6YRHnGGGNaMHfYHSPiAUlvAn4IzAG+HBFXj6xmxhhjahlagQNExPeA742gHgstP2Pys6kulre85Vsw9CCmMcaYmcWh9MYY01GswI0xpqNMygZuQNI6wGMi4sqZrkuXkbQKsElElMUJ9Mu+DPheRPx9iury5Ij4xVSUbUyRnJLkpcA8Cvo4Ij7WZP8ZUeCSVgYOAp4ErNzbHhGvHbDfU5l4ot+qkN0c+BApT0vxGI+tKX/9PtlbKuTOA3bP9VgKLJN0fkQcNqD+jcrPsi+OiO/3bXtDRHyuQn7g+Uq6Cqgc9IiIp9bU55nA5hFxnKQxYPWIuKlC9qPAcU29kiTtBnwUWAnYTNI2wFERsXvFLvsCx0o6NR/n2ibHacHnsmvsV4CvR8Tdg3aQ9FImtuejKmRbtX9JZzLxf/sDsBj4fET8pU9+DHgnE9vCLhXl7wQsjYg/SToA2BY4NiJ+3SfXqv3UyCuJV7e3vH/j+6Upw+qeFuU/AngFE/VUaVsAzgT+AlwFtO6QzFQP/HjgOuCFwFHA/kDtTSjpy8BTgatZfqIBlCpw4DjgCOAY4LnAa0gNp6zs3YH/Bh4N3AFsmuvzpIqy14qIeyS9jqRAjpBU2QMfonyA/5T014j4cS7jncBzgFIFTrPzfVn+fGP+PD5/7g/cV1P/I4D5pEja44AVga8BO1Xsch2wUNLcLH9iRPyhqnzgSFJunfMAImKppHlVwhFxgKQ1gf2A4yRF4Tj3Fup9L/UKZ82K7c/MD8TXAoslXUL6n88uk5f0OWBV0nX/IrA3cEnVcWnf/m8ExoAT8/o/A7cDWwBfAA7skz8B+AapZ/cGYAGwrKb8zwJbS9oaeAfwJeCrwM59cm3bz8tKtg2kzf0iaQfgk8ATSB2AOcCfqv5bWl57SS8HPgysT7qfeg+fqvJPJz1clwB/rTvPzMaDHmS1tIn6GdUCXJ4/r8yfKwI/HrDPNS2PsSR/XlXYdkGF7BXAIwv1ei6wsKbsq4ANgbOA7YrnMorys8x6wEXAs4APAqcCK47ofH/WZFvht6Wkhnt5YVvl+RZktgSOBn4NfB14boXcxcV20aL89YBDgZuB7wPXA28ukTsK+DdgDWBN4P8B72hQ/hxSb+p/STf5dcDLS+Su7PtcHThrVO0f+EnVNuDqmrZwZWHb+TXlX5Y/3wscVNw2ivbTdmlzv5DeQh4PXJ7/r9cAHxzhtb8BeEKLuv+i5bl+GHjBsNdqpgYx/5Y/75b0ZGAt0itHHRe2TFf7F0krANdLepOkvUhP0dL6RMTvgRUkrRAR5wLb1JR9FCmA6YaIuFTSY0nKo4q25RMRd5LMNJ8m9UT2joi/1ezS5nxXyyYRACQ9A1itpuz7I7W2yPJ1sr0y5wBb5eVO0k15mKSTSsR/IelfgDmSNpf0SeDnNWXvLuk04MekG3D7iHgxsDXwtpJdXhgRn4mIeyPinoj4LEkxV5X/VEnHkJT2LsBuEfGE/P2Ykl3+nD/vk/RoUvverKp82rf/MUmbFOq3CenhBXB/Tfm3SXqppKcBG9eUf6+kw4EDgO/m/27FGvlW7UfSDpIulfRHSfdLelDSPTXlt7pfIuIGYE5EPBgRx5EUfmXZ+bPptb892pnofi7pKS3kLwJOk/RnSfdIunfAtRnPqJ6aLZ86rwPWIb2i3Uh6TXrDgH2eTXo1+SVwJakXXNfr3Y7UE9qY9Hr9LWCHCtkfZdlPkl5TjwV+PsLzbVw+cC9wT2H5C/DH3vYRne/TSQr15rwsBbatKfttwOfzf/V64EJKeroF+Y+Rei6fJynX4m+/LJFflfSWcWlePgCsXFP+IuDZFb/tWrLt56RX5Tkkz6v96/5f4CfAq4BVSn47sGTbfwJrkx4KvwNuA94/qvYPvAS4BTiXZGb6Nck8shpwaIn8y0iK6cl5nyWkh1BV+Y8CDgOeldc3AV5VI9+2/bTtJbe5X35CMp18FfgI8FbgihFe+2NJ5qj9gJf3lhr5a0gP1aZ66kaSaVhVMnVLZwJ5JN1AamTjjP3RN9AyZNmrkRSlSDf3WsAJkXoBZfLHUWJbjepBqLbli+TZMulBmzqyHVlRb5/uyT4feAHpHH4YFfbgLPta4KSImGAXlbRWk+PVlD0nH/95LfaZR7oRdyL9bz8jKb6bh61HzbEeQXr4DH2OfeWtAOxAUsJbka7/ddE3cNm3z04R8bNB20ZQt0btR9LiiJgv6crI9l5JP4+IZ1TIN75fJG1KUsIrkpT3WsBnIvXKJ02+1/uJmnt907LtVXpK0g+BF8eQHlXTqsAlHRARX5NU6q0RNa4zkn4cFaPofXIfj4hDK0buiWrPhsZIKr5+rwzsBfw2Ig6ZbNmFYyyJiKc3kGt9vm1HyiVtBtzWUxpKLn8b1ClASRuRBp+K5f+kQvZsYJ/I3h5KrpknRcQLK+TPIPWER6IkC+W28pqQtEtE/DgPdE0g+jykhm3/ki6MiB0bnUSSvywitm2wbahB3iHaz0+A55EGeHtvKK+OiK2bnM8omIzuGeJYbTy2vgI8ljSG89CgZ9P6TLcXSs9OtsYQ+14n6eskt5viifZ7ofRGxj86qEBJP43kcdDfkGtHmiPi1L5yTiS99o2k/MxFkraLiEsHnEbj8y3QdqT8FKDYW3owb9uuTFjS0SRXv2uyLKTzL1XgwHpRcNWLiLuUXMiq+AtwVVb8fyrsV/oAzTfR65mocPp7UW29JnYm2eF3K/ktmOghNWz7Pyt3Gr4VNT0uSTuS/qexPkW1Jsl0Mb6CEWvk/Y4iKdbjWd7rratj2/ZzYD7+m0i95MdQMgbR5n6RdHJEvLLqodv/sKXltZf0joj4SB6PKSu/qq0dQTuPrZvyslJeWjHtJpT8CnxIRJQNBtXt1/hVJh9jUUQcMGQ1WyFpS+C7EfH4EZZ5DclN7NckJdXId7Zh2b+IiCe3kF8aEdv0bbuiqgcl6ZfAUyOiyc2NpCXAXj2TUX4NPa2/x1iQX1C2PSIWVcj/HLiApHAeLMifWibfFklzIuLBwZJDl38vSQE9wHLTwoQOgKSdSa6mb2C8u+m9wJkRUTrQLuniiPinQdsKv7VqP1OBpA0j4ra2JosW5e8WEWcO0daWAk8jefE8LW+7ctB9K2mNVGz8sU09p90PPCIeVPLzbKXAI+I1LY8xJmmlSPN11iLp+Ig4cNC2wm/9PYTfkQIn6o4xB9iA8T3AOhv3iwfVu6/8nUj+1D2zRe8mLwtc+rmkp0TEVQ2LXyZp94g4Ix9rD+pnGbmR1PNopMCB/wB+Kun8vP5sls/iNIGqm6eGVSOi9v8pova+xTdJ+gFpsOvHdb3kXH7TN4Le9ka9xog4Hzhf0ldaKrAHJe1Pmtc2SAN2dQ+kVu2nopfcC0T6QIVtu/Z+iYjb8tcnRknAGxXxEk2vfUScmT/btrX7IyKUYhMGemwpecIcD6yb1+8kDSA3C4Kb7h44gKQPkgYbvsH4V+DLavZpO3D4eVJE2Rl9x5hgW+q3DyoFoFwZERPcFqX2A4yS3kwKsrmdQhBSk960mkeHXkd6Pe3vZZbdHNeQvAJuIinZ2t69pMeRgkMenWV/Q2pkpQNFShGSWwPnMN7cVTlGIGk90mCdgAsjuVFWybaKspX0AZIXQ6PUx5IWk0xAp5Beh18FPD4i/qNCfhWSGWVfUpv7DsmG/9MK+VZvBJKeXba9f0yhahykIF86/qOWg7xDtJ+PkM7z63nTvnmfPwDPjIjd+uQb3y/5Wr4n+gLeIrmVltWl7bVvG9X6NmBz4PmkNvpaUjTvJ2vq8x+RXCWR9Bzg/4uKAd4J+8+QAj+3ZHNUXZS8T6uBw2yLKjvI+woyhwPvBlZheSSZSG5ACyPi8IqyGw0wFuRvAP6pTJnW7FMajRYRpdGbda+8JbJDvXZKWp3UZu4dINf2tbNnd31sRByl5Of8qIgojWaU9FOWR53uRo46jYjS/7xggvgryQ+4dgxCLb0m+vZdh6QM94+ICXbnLDPBJDWgzDMLqyuTolaX9N8v2YRSSe6hT5q27UfSzyJip7Jtkq6KiKf0/db4fskP/u8AbwdeRPLU2TcqYiaGuPZnkTqab6MQ1Vr3Rqd2HlsTTJF15skJxBC+h5NdSDfqwG0DyliBAdGbLcr6UEv5T5MjMBvKnwvMbXmMttGhRwP/RZqrdNveMuAY65N8fjchJZKqknsE8C+kh917e8sI28Nn8zW9Nq+vA1xaI9846nTI+rTyLc777Ax8htQrPRl4RY3sB4CXTKJ+jyGlDRjV+Y7l/3Yh8OXe0mC/pu3nCpJC7q1v37ueFKJvC7+3ul9yPa4kDRrW+lO3vfa0jGod4tqfRoojmJeX9wDfbrr/TOVC+SZJwRQ5hRQg0JTNSQ2nlPzq8w4mJq2Z0MuPiMNzz2nzPtkqr4nnAv8qqXaAUcs9AW4EzpP0XZq7Cv0tIn4v6aFoNEkfrpHv9b7nF0+NFD04jqrePdW5WVp5HbQ1cZBu7m0lXZ7l7lJKJlXFuKhTUqh7ndcKLf/fA0kdhKLXRKmrYC77JlIwy8nA2yPiT1WymbcA75bU6I2ghFtJQTpV9Wl7/U8nmRV+RL3tu1d+2/bzOuDLvTc4UoDa67J9+EMl8gPvl5JxqJVI7nh7S6q7lr1rfz/pTXvQtR8X1Qr8lpKo1pL6jKOm/NcC7yN5LInUeWg83jetClzSVqQ/eS2N951dk0JDq9i3d4GUPwcNHPYS+ryMAQl9lJJSvYX0xywl2WIvpET5ZZoOMPYGn27JSxtXobtzg/8JcIKkO0heCKVERF34cD/vJ53jjyLiaZKeSxq4qmLjiHhRi/KPo2Eisczf8qBVb+BnjPrMbIeSojcPIZ3LLqT/t5Qh/t89I+JYksfH+3IZbyGZRspY0P8wUE3gTDQclCyUVXRlW4EUVn5FzS5tr3+rQV5atp9IrrBPkbQWqYdczO54cskuA++XttdwEvt9INf730kD22uSHuql5aqlS2ZE3EVqx0Mx3YE8ewB7knJ8FGewv5c06FOZ/2KIYy2JiKf32THPj4gJdsI8Sr4dcFFEbJMfNO+LiH+uKX9b4JnkQZ+oGYAdsv5tozfXIt20vQGv80kpWScEuxRsvFcAT4uIv0u6JCK2ryh7IfDJaO510Lv2D9k3JV0QEc+qkN+flGHv6aQUrnuTBqZOaXK8BvVp9f/2D2rnbZdHdgtrKD9hW9/vjd8I+sYUHgBurno4ZPm217/1IG/L9vPesu1RnWK1FS2vZe9+2iwi3i/pMcCGUTHeMkRdGrlkasgB536mtQceEacDp0vaMSIubLKPpK0i4rqsMMvKrFKcjV59Mn+JiL9IQtIj8vG2rKnTe4F9WB6ocZykUyLiAxXyrSIN83n9KcuuSQpeGsSXgV8Ar8zrB5J6YmWv/q1696QH1auzqWCg1wEtTRwRcYKSL/iuuew9oyaBUEXjr8yPTcP/V9J+JFv/ZkrRnj3WAMq8eVoFzhT2a/VGEBGLsklpi7xp0KQXbU1MbU06bdtP0aS0MumtuO7/bWz+HOLt6jOkt7tdSG8SfySPaVXU5bGkN68d834XAm+NiBsrym/qktkLvHs5KRfN1/L6fqT8Ms0YlTG+zUIaGFqT5Ct8Dsmn+IAK2YWxfGCjf6lLA1mW0Gf3CtnTSMmIjiQ1ytNJM75UlX0thWRLJC+Wa2vkl5ZsmzB40/f7v5LcqG4m2QRvAm5seYwJ2/L21UgKZi7J9HAI8MiasjctW2rkGyfWKuzzTOA1+fsYqYdUJXssySVtt7x8jXRDfBo4ftj/N5/Xc0g36c6FZVtKBtXyb0eQQsOPKCyHkUKpq+p/FUkxLc3rWwHfqJF/Dimg6/xc/5uoSOY17PVvs7RtPyX7P4LknVH1+1mkSReuzdf4y8CHR3Qte6lzi6mL65JfXUTqDM3NywHk9McV8vNy+7qTZLL9NjCvRr4yVXCjazmqP7VlA+hd7L1ImeXWrbuI01y3nUkmnpVqZL4PrF1YXxv4To38Egqj9FlRVOZbzjLXk0LMm9b7QpJPbW99J5I/9SivTSOvgyHKPYL0lvE/ef3R1Ocnb5Ufu+3/O0T9N20pf2n+XAo8ovd9QPvZsrC+Bdk7YoTnsA7JO+TZvWWU5Zcc6/q6882fAz0/hriWF5MePj1FPkZNZ6pMWZNMcaO6FtdS8MADNqOmM9i/zJQXSi/X8EtI7lD/l0xT1ag8YdAfSK5kd5TIf6JCfnEkU06//NakyRMguaTVRXD+Fbg6m0aC5LT/094xY6JveqtIw8yvqJklp4Q3AF/NtnCAu+gb2KsZKR/kF93K60DSfNI5b8r4aLcqk3T+BlcAABd4SURBVMte5PDjLPdbpdDiKsYkbRLLQ+9L82NLWrdk354df3Xg//rqPdT1IeUB/y8avPJnbpW0Nql3draku0gmvipWjMJcoRHxP5Im5OvuM/tMIKoDeRqZIUquT8+hYFD7KUZiziEpzffXVLWN+bPttfwE6Y1sfaWAwr1JrntVnCvpXSw3ifwzKWf6ugAR0d+GtiC5xW4QEU9WmgZy96gwr5IGRM+T1DPJzCO9fTdipgJ5jiYNZv6Z9NTv9WArA1GUXIp2JJlDIL1WXkTqjRwVEcf3yS8kvU71BsJeQZqO7TEkU8ShBdm3kMJrezbtvUimm6roqQVl23tEScCKWkQaZvmnkV5/L6ZBNKOkzSLipmwzJ9KUb5tFRRa0NuTBql3o8zqIiNKHkFIulLfTMPVvbwCsN/CXB3AvrFL4kl5CCpX+Fel6bkaacec84PUR8fEsdxPLFcxD1WC5wqmcH7UNGiLYo7DvziRT3w+qOg1K0wkG46cwmxt96SUkLSNFyZ5IajfjekVREcjTdpC3LRof+PMAaZKESpu50qTVF5Du1Z7nx/sip3Ko2W/gtcxyW7F8vOWcqB9v6d0/PUU5ri31t6HcSXs7aSymlwulNneMUnbHrfLqddEwh1CvBjOykF6j5uTvq5Ii7+rkzyQ91XrrG5AU7rqUTGNEyhI3t7A+N2+bQ9/0bKQggNUK66tRn4T9ZcAKLc5VJNvZe/P6JvRNdFCyzyWkiRFeQ1IIC0jualXyE0wy1Lxm5+vwaJoFYizOn1f0zhu4pEb+py3bQqsJI/I+jyCF629DzeQP09SW205htknZMuBcD8vt/TRSr+0RFf/pi0hmyctJQStPalD/VmaI/PvWJD/5N5ESl9XJlo1LTNg25LU/FnjGqOVJD7RHFdYXkDznPgGs2+BaFm3sdSadl5csuwLrNzmfmZqV/lWF78Wfvlqz27yIuL2wfgewRSTzS1nY7EYkRdxzo1sNeHSkRFf9TzgxfqT4Qer9ZtvOil4c+T6K5DZ5KhUj35kHYsAs9zCcb70qck2QZgYpo63XwRGSvsjEXCilE1BHxEeVwo/vIaXhfG/UhB9nns7yhERPlURElLafEtex2lD9IWjzyg/wXZa/CaxMeoP4JRUmqYj4q6RPka7n30mzGk3oYUbKiPgD4Ae5V7cf6fX8qKh4m8y0MkOUvLGeIKnyjbX/vJRyDVUG7Snln38zExNOlZmALgPek00Xp5EGMBdXld1C/vOkHOYo5aL5UK7TNqSI1b0ryr9TKXdQ5H33Jg1yV3EQybLwY1J7eA7ZspD/t+Nr9p2xQcxPFpYvkHpe3xywz2dIOQ96vdEz8rbVgHNL5A8ijdYfR/ItvpEUEbYa8F99soeRepdH5mUpJVNV9e2zJslWdRGpx3gwsEaFbKuR7/z7B3OZG5LeMtal5MkP7JHP8ff5s7d8goqeBmm6szZeA6uRAkiaeq18jeTSt6hQn9LQbFKv8Uct28/xpGnSPlNoR5+okW8Vqj9Ee241hVnJ/tuSXrmrfn8pyTRyHskT5RbSLC5lso8g9eJOIU1P95/ARi3qMnCQl4ZvrMDhpM7KAyyfIvDe3FYr01fke/EQUhDSzr1lQL3XJT1UzqFmgLSpfPH+zG3nyMJ6XY/6saSI1vtI7ps/pd5jq5VlYcL+o2rEk1ly4z9jgIxIT71jgI/n74PyHmxIUnB7knrfg26iQ0iDOU9rWO+ms6K3GvnOMjeVLHVuhDu2uN7n0jDXBMMp2Ktayp8BrNVC/tpB/32ffOsH6GQXBnQAqupY8dt1pGyIvfXHkWyl/XKLSA+PDwBPbnDMdeuWuv+X8W60K1f956QH/8C8Kn37VLrp1eyzPWmg/Vek3OeTkifFVMwtXP9nF39rUP5qVHTo+q9l37p65Q/SEREz54XSz30sD1IoJdIZfTMvlWhiwM9v8uejJD0q+gJ/csDDlZEGGRpFU0rajZTD4HGk3uD2EXGHpFVJyqX/VbLtyDcRsVmTuhTYS9LVpIHhH5BslIdGxNdKZBvnZolkcrpP7eayvEjSEyPimobyrWbYId1cj6L+1bRI21D9UXAYqaMxgb6gnxVInYfSNA+ZO2J86t7eZLz9HEi6flsAhxTMk1VeIkuoGeQl9SbLOA64WNJpeX1P4EtlgpGiNNtOnXasUjbRsxjfPifcn0r5gV5OUsQnkyaTvrtfbgj5E0m51e8k3VMX5P0fz3KzbFn5vyK9lV9AMjkOugcukPQdxjtb/CQP5FeeR4+ZsoEXI+nmkBLnl+VEGMa1679rDh30uUblBnZF0S2tpt6PJymOfYBjIofrSnqWpDUi4ldKE/qOP2jLSMPC8Z7BRDtg1TjBCyLiHZL2IiU72ofU0y5T4G1zs7RVsM8EFqh55OZ38wLlo/39rAdcI+kSxt/gVeHHrR+gI6Cu/kUXyQdI5z4hH3VhTONqSd8j3SNB+m8nTLUXESu0qWBEbJbHB1rlt4+Ij0k6j/Q/ixSAdXnNLk2nB+zxFNLDaBfGj9GUuWXeRHr7rPXqaisfER+UdA7pLf6s3IGE9MB9c82uTyQllnsW8NE8RnVFROxVIf9GktLeiXQtvwqcmo83ML/RTLkR7lxYfYBU8f0i4o3TXplUnx+TBhQvYbyC2r1P7jvAuyPiyr7t84Ejoi8xfeH3L5FyiSwtbDsyIo6sqdPxpB7+UgrzSlYpTUlXR8STJH2B1AB+oDZ5hWuocpuM6vzem1bI/7pPbg9SoqxP5/VLSOalAN4ZFblQVJH3OmryXbdxHRsFkm6JiMpsmQ3LOK7m54iKyUyGOE7TCbRXJrlJPp5kRvlS1LgDFvZrNT2g0uQkT40Gs2ll+d0p5ACKPJvOqOTbkAdotyPZ7Z9JSgl9ZUQ09u1udbyZUOAAkrYh5Z14JempeGpEfGrAPsXZntcj2ZhuqpB9Vdn2Yg8296jHTduU2Rn434gY91pY58+pksT0hd9uJYXWfqx3fA1OdnQtabqoRn+QGvjWq+UM9k3eSkrqUTRJDZL9GSn5/m/y+lJSL2t1knfPrm2OPdn6DFF23dvhKhFR+oabPSDexsS3q8oJTaYSSZ8GvjKohyzpGySPmwtIGTlvjkI8Rc1+jR7ofcd5c5QE6JXIfojU3k/Im/Yjub1WTcbSSr4tku4jPdw+Rho7qp2UIr9lfZgU5SyqLQvl+0+nAs8Nd1/SRfs9OfghIkr/4L59jyDP9hwRW0h6NHBK9M30UZAv2qFXJvW+LouIvQsyrXrUkm6IiomLB/x2Gck96ASS6eItJC+I0ux2eZ9TSJM/N7XzopQk655st+4Novyu8PvTI2JJ0x5s8SEj6dSImDCTeEU9TgAOb2CSujQitiusfyoi3pS/XxQRO1TsV1ScK5EieyvnrGxan+lCKTDqc0yc1mtJhXwbt7ph6nMNyX3zZurz2xezG84lxQJUdkL69u2PdK5Mh5vNM08lmYlqTWSSrgS2iYi/5/U5pMG/qt59K/m25LfKZ5IeEveTvKV+EhHnVMjfQPJYGuqNcLpt4NeRnt67RR6UkTQht24FrcKtI2KcnUopxLzfp3Jev/LO+y5Wmiewn0slvT4ivtBX9kGkm7EKRcQ9wG6SjiS5g61VIw8N7byS3hERH8mrz+uZHSLiT5L+gzTTSo9l+bemU2sV7bhtohY3JNlta01SJHc+Cr+/qbA6VlV49OV0lrQn6YaZbH2miwci4rMt5L9NGiQ8k6kZfG2a3/6heIuIeEAD0l/00ES/8a+p3m/8iIb16bE2y9MiDLqvhpFvTCzPuLoV6boeSsqsuErFLrdPxpw33Qr8FaQe+LlKs3ifRP1gT5FWsz2XcB8pZ3CRukkkyi74ocBpSukiewp7PqkXOGGQQssHPR8KAY6II/M5lE5UW+DIAb/32JeU3RGS323Rbvwixivwb5NnQmrYo46K74N432ARIHkylD0Q/5U0HtGIiPi2Ur6KydZnStHy3CxnSvo30sBq8eH8f6U7pnS4Zbl9RkJE/LrPPDlGMmP1s7Wke/J3Aavk9UGv/QeRZl3qpUj+MCl2olSBR8T5kjZgeaDbJTXmlA8BlyvNsyvSfVVnDmkr3wql4L5tSLEWF5AGY+va8uJsMvo2DYLeJhxvJmzgWfnuSTKl7ELyXz0tIs6q2aftbM9FO+8KpNHhkyPiXQWZE0kpact61C+I6oT/z2X5lFZXR54Ru0RuqEHPgtympJvqR0ouinOib0JhFSYaUN+kA3Xr/b9VHP9Blr9S90/8XGuna1j39VnecHsuYk8nBaPsGeMjb4v7FSNOVyA9RHeOiB3rzmemUXlulh4RFblZJP0Lqe0PdKsbsl6tzJNDlH8VaQ7Zv+T1lUkmxKoxo1eS5nc9j3StnkWaqq7UhVjShiRlL5IP+e/K5IaVb4Kk7Uguy48hteUDSB3Wm0lBQKUPZ5UPVEc0HKCesUHMhyqQeiX7AP88aBBH7WZ77vd0+XVE3NonswGpF3Q/JT3qyf6xGnLQM//+elIk5roR8TileQ4/F30De3126nEDo3Xr/b+NkqZ1L8jvwvJw68oHYkG+2OgfIN0kX+jvpWn47IJTiqSVo2/SibJthd8+ROrJ/YqCW92g+6VFfZaSzZOFB/xDM1mNoPzDSBG8Rb/xr0ROOlYifwXw/N7/md8IfhQFjypVTPDSo//h1la+LXmc63mRUns8m2Rd6IXePyEKY2+jZMYV+DAoeaD8PhpWfpB80x71EPUcatAz/76UZNe9uHBTTVD6A3rJK0fEig1lR6bQmtb94UrZw7PugaqWbnVD1KdVNsghj9GbglCkQb1Kv/H+tqLkSXRF37ZzGf82M+7e7n+4tZVviwouu0pePcsiuwlLWhoR2/TJvyMiPqLx850W69NonszZEolZiaQdgKNJgw7vJw1ErgesIOlVEfGDycgDRMS5LE9TO0qGHfQE+GtE3N8bKFIa9S/7oyun7pqM7CRpVPe2VDX2Hk0b/Uwh6VGkJGurKKUL7imTNUkZOau4gjTwNtCtbkhOlvR5YO389vRaUo6iSaGJfuOfiQZ+46RkXD8kRUNCysH9/T6ZdwK/ieylpRSr8JDJoqTMtvJtmSNpbj6/XRmf779Mz/YGLusSbw1k1itw4FOkgbi1SBm7XhwRFymN8p5IChufjPxU0mrQs4/zJb2bdLM/n5TvemQBB1PMVNW92NjfR3tvhZnmhcCrSZkKi2kL7mX8YHM/GwDXSRroVjcMMVw2yCYsYrzf+BNI98Sg+rw9j3P0euwLI+K0PrHP0S5bYFv5trQNvb8FKucO+H9NDzrrTSjF1w9J10bEEwq/TRiIays/HQxjosmvjQdRsPkDX2xqNppJ+uoOabziiyM+xoz8l6NA0isiYkLofI1868jT2YAm4TfeV84cUsDXCYVtbU0WreSHIb/990Lvex43WwCrl9jkbyRNdL6kb/v7SG7Wja5TF3rgRb/XP/f9VqbM2spPOcOYaCLlaPk28O2IqEt0NGvQ+ND4L+TX8THg6ZLurvIiGJJZ/yDrR9IBkZKLzdP4hFZAeTKxvP18lXj1jLBek4oGrKGV37jSbFJvJJmZzgDOzutvJ6WUOKEg3tZk0Va+NRFxUcm2/6kQ3wc4RdL+EXGh0sX5LCnlwHOaHrMLCrzne1r0OyWvl/lxt5WfVeQ/8gjSTCfKmx4k5VI5akYrN5h3kPzSe6xEcgtcnZTBbpQKvIv0YhfKfKwrH0gqePWQ8uNsRDIJTDrVQOYjTCIasIa2fuPHk+ZyvZCUu//tpDa0RxTyCGXamiyGyi44VUSKiN6TZGJ9IynQCeBFrQaro2XeXS9Tu5Cmyzob2Kyw7bEkE8pbZ7p+A+p+ad/6pwrfJz2TN8lW3JsYoH+SgHtm+vwneW6V+cNJvc+VGJ/PvFXO9QHH/tlMn3//OZHeMO6iJqc2aY7ZvRg/ucQWwLajkJ/ic+3lXX8mKU/SSSRni9pc7P3LrLeBP9yQdDnJB/bOvu1jJNvarLX7DnCb/FVEPG6669QVVJO9UNLFEfFPPbt/tidfFpN089PygKidSRHDQ0UDjop+V8o618quo+VBXTDetbHVhNtdMKE83FixX3kDRMQySSuW7TCLGElo/MOUOgPxVHn1FCOB72P5oDMkZTKtCpzhQ/U7R7SfsKUU98BnGXW9jtneI9GQofFmYA98Sj2SJO0UET8btM3MPqzAZxlaHi054Sf6IitnK2oZGv9wQcPnD18/JqYJ2DIifjmierWKDDWzB5tQZhkxfdGSU0ZW2FbafURfGtwWXCDpPyPiZABJ/07qkT9xMvWRtCPwDGCsz61xTUbopmimDitwY2Y/zwEWStqHFJV5LfX5z5uyEsmlcS7j5+m8h8lHJpoatDy1cClRnVp4fDk2oRgz+8m+woeTAtX2G6V9WtKmkXKCrxY5gtBMLRqfWngTksukSDlvbmk6yNlqFmtjzPQj6WzSTOdPBl4CHCPpoyM8xKOVplW7Nh9va0mfGWH5po+I2Cy7Cv6QFES1XkQ8EngZLbx/rMCNmf18OiJeFRF3R8QvSHbrUUYPfpyUaOv3AJHmqxw0Y5QZDdtFxPd6KxHxfZJffiNsAzdmlhMR3+5bf4CUKnmUx/hNX66SB6tkzUi5U9J7gK+RTCoHkB+kTXAP3JhZjqR7Jd2Tl79IelDSKHvgv5H0DCAkraQ0feGo86KYcvYjJXw7LS9jeVsjPIhpTMfISZC2j4i6HOJtylsPOJaUL1ukuTffEhGNe4JmckhaPSL+2Ho/K3BjuoekiyJih5muh5kc+c3ni6Sc4ZtI2hr414j4tyb72wZuzCynkHQKktlzPqOZou69NT9HRIzUzm5KOYY0gHwGpAFkpRmDGmEFbszsp5h06gHSPI6jmE6tzOd7NVKU5yMZ8UCpKWcyA8hW4MbMciLiNf3bJB1Kcv+bTLn/XShvDeAtwGtIuan/u2o/M1LGDSADh9BiANk2cGM6SF32wpblrAscBuxPmoT42Ii4a7LlmmZUDCAf0jSU3j1wY7pJ/QSTTQqQ/gt4OWlW9qcM4wVhJs2WEbF/cYOknYBGqRLcAzemg4yiBy7p76Tc7Q8wflD0H24ChdnKZFP5ugduzCxlUP7wyZYfEQ7kmyFGlcrXCtyYWcok8oeb2c9IUvnahGKMMTNEL5Xv0PtbgRtjzPQi6eMRcaikMykxk0VEIz9/m1CMMWb6OT5/Tiqvu3vgxhjTUdwDN8aYGSL7fB8JbErSxz0Xzsc22t89cGOMmRkkXQe8FVhCIQdK01S+7oEbY8zM8Yc8jdpQuAdujDEzhKSjSYE73yJFxQIQEZc12t8K3BhjZgZJ55ZsjojYpdH+VuDGGNNNbAM3xphppi//CaRgnjuBn0bETU3LcTIbY4yZftboW9YkTZX3fUn7Ni3EJhRjjJkl5Ak2ftQ0nax74MYYM0vIM/E0nqzDCtwYY2YJknYBGk9p50FMY4yZZiRdxcQshOsCvwVe1bgc28CNMWZ6kbRp36YAfh8Rf2pVjhW4McZ0E9vAjTGmo1iBG2NMR7ECN8aYjmIFbowxHcUK3PzDIWmepGslfUHS1ZLOkrSKpNdLulTSFZJOlbRqlv+KpM9KOlfSjZJ2lvTlXMZXCuW+QNKFki6TdIqk1WfsJI3BCtz847I58OmIeBJwN/AK4FsRsV1EbA1cCxxUkF8H2IU0O8qZwDHAk4CnSNpG0nrAe4Dn5TDnxUB/QiJjphUH8ph/VG6KiKX5+xJgHvBkSR8A1gZWB35YkD8zIiIHWNweEVcBSLo677sx8ETgZ5IAVgIunIbzMKYSK3Dzj8pfC98fBFYBvgLsGRFXSHo18JwS+b/37ft30n3yIHB2ROw3RfU1pjU2oZiHE2sAt0laEdi/5b4XATtJejyApFUlbTHqChrTBitw83DiP4GLgbOB69rsGBHLgFcDJ0q6kqTQtxp1BY1pg0PpjTGmo7gHbowxHcUK3BhjOooVuDHGdBQrcGOM6ShW4MYY01GswI0xpqNYgRtjTEexAjfGmI7y/wNDNhdWZ2OAegAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "eu_countries = countries.query(\"is_eu\") # nebo countries[countries[\"is_eu\"]]\n",
+ "eu_countries[\"life_expectancy\"].plot.bar();"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "To se neporovnává úplně snadno - dožívají se lidé více ve Spojeném Království, nebo v Německu? Co kdybychom (opakování z minula) hodnoty seřadili a teprve pak zobrazili?"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAFNCAYAAAAZ/TRMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO29ebgkVZG//37oFkF25IIIQoMC7iC2iKKiIO4gqDgwiK2ijN9xQ8cNRwWX+YmOI+JuK2CLCIKIgAuLgIrK1g3N2jggIDIiNI4IyiCC8fvjnOLmrZuZlVm37r2d9Od9nnyqMisyKyorM/KcOBFxFBEYY4zpHqvMtgLGGGOGwwbcGGM6ig24McZ0FBtwY4zpKDbgxhjTUWzAjTGmo8ydyS/bYIMNYt68eTP5lcYY03mWLFlye0SM9W+fUQM+b948Fi9ePJNfaYwxnUfSb8u224VijDEdxQbcGGM6ig24McZ0FBtwY4zpKDbgxhjTUWzAjTGmo9iAG2NMR7EBN8aYjjKjiTxF5r3/h6XbbzzspTOsiTHGdBO3wI0xpqPMWgu8LW1b7G7hG2Me7HTGgE830/2A8APFGDNqbMBXUEbxgPDDxJgHN40MuKR3Am8EArgCeD2wMXA8sD5wCbB/RNw7TXqaWWRF652492NMYqABl7QJ8Hbg8RHxf5JOAPYBXgIcHhHHS/oKcADw5WnV1pgZwA8U0xWaulDmAqtL+jvwMOAWYBfgn/Pni4BDsQE3ZuTY4JsqBoYRRsT/AJ8GbiIZ7j8DS4A7IuK+LHYzsMl0KWmMMWYyAw24pPWAlwNbAI8E1gBeXCIaFfsfKGmxpMXLly+fiq7GGGMKNHGhPB+4ISKWA0j6HvBMYF1Jc3MrfFPg92U7R8RCYCHA/PnzS428MWZ02OWy8tAkE/MmYEdJD5MkYFfgauBc4FVZZgFwyvSoaIwxpowmPvALge+SQgWvyPssBN4HvEvSdcDDgSOnUU9jjDF9NIpCiYhDgEP6Nl8P7DByjYwxM4pdLt3FmZjGmFY47n3FwdUIjTGmo7gFboxZoXCLvTlugRtjTEexATfGmI5iF4oxptOszC4XG3BjzErFg6napA24McbMIlMx+PaBG2NMR7EBN8aYjmIDbowxHcUG3BhjOooNuDHGdBQbcGOM6Sg24MYY01GazIm5jaSlheVOSQdJWl/SWZKuza/rzYTCxhhjEk1m5Pl1RGwXEdsBTwXuBk4G3g+cHRFbAWfndWOMMTNEWxfKrsBvIuK3pJnqF+Xti4A9R6mYMcaYetoa8H2A4/L7jSLiFoD8uuEoFTPGGFNPYwMuaVVgD+DENl8g6UBJiyUtXr58eVv9jDHGVNCmBf5i4JKIuDWv3yppY4D8elvZThGxMCLmR8T8sbGxqWlrjDHmAdoY8H0Zd58AnAosyO8XAKeMSiljjDGDaWTAJT0M2A34XmHzYcBukq7Nnx02evWMMcZU0ageeETcDTy8b9sfSVEpxhhjZgFnYhpjTEexATfGmI5iA26MMR3FBtwYYzqKDbgxxnQUG3BjjOkoNuDGGNNRbMCNMaaj2IAbY0xHsQE3xpiOYgNujDEdxQbcGGM6ig24McZ0FBtwY4zpKDbgxhjTUWzAjTGmozSdkWddSd+VdI2kZZKeIWl9SWdJuja/rjfdyhpjjBmnaQv8COD0iHgssC2wDHg/cHZEbAWcndeNMcbMEAMNuKS1gecARwJExL0RcQfwcmBRFlsE7DldShpjjJlMkxb4lsBy4GhJl0r6uqQ1gI0i4haA/LrhNOppjDGmjyYGfC6wPfDliHgK8FdauEskHShpsaTFy5cvH1JNY4wx/TQx4DcDN0fEhXn9uySDfqukjQHy621lO0fEwoiYHxHzx8bGRqGzMcYYGhjwiPgD8DtJ2+RNuwJXA6cCC/K2BcAp06KhMcaYUuY2lHsbcKykVYHrgdeTjP8Jkg4AbgL2nh4VjTHGlNHIgEfEUmB+yUe7jlYdY4wxTXEmpjHGdBQbcGOM6Sg24MYY01FswI0xpqPYgBtjTEexATfGmI5iA26MMR3FBtwYYzqKDbgxxnQUG3BjjOkoNuDGGNNRbMCNMaaj2IAbY0xHsQE3xpiOYgNujDEdxQbcGGM6SqMJHSTdCNwF3A/cFxHzJa0PfAeYB9wIvDoi/jQ9ahpjjOmnTQv8eRGxXUT0ZuZ5P3B2RGwFnE2LmeqNMcZMnam4UF4OLMrvFwF7Tl0dY4wxTWlqwAM4U9ISSQfmbRtFxC0A+XXD6VDQGGNMOU1npd8pIn4vaUPgLEnXNP2CbPAPBNhss82GUNEYY0wZjVrgEfH7/HobcDKwA3CrpI0B8uttFfsujIj5ETF/bGxsNFobY4wZbMAlrSFprd574AXAlcCpwIIstgA4ZbqUNMYYM5kmLpSNgJMl9eS/HRGnS7oYOEHSAcBNwN7Tp6Yxxph+BhrwiLge2LZk+x+BXadDKWOMMYNxJqYxxnQUG3BjjOkoNuDGGNNRbMCNMaaj2IAbY0xHsQE3xpiOYgNujDEdxQbcGGM6ig24McZ0FBtwY4zpKDbgxhjTUWzAjTGmo9iAG2NMR7EBN8aYjmIDbowxHcUG3BhjOkpjAy5pjqRLJf0gr28h6UJJ10r6jqRVp09NY4wx/bRpgb8DWFZY/yRweERsBfwJOGCUihljjKmnkQGXtCnwUuDreV3ALsB3s8giYM/pUNAYY0w5TVvgnwXeC/wjrz8cuCMi7svrNwObjFg3Y4wxNQw04JJeBtwWEUuKm0tEo2L/AyUtlrR4+fLlQ6ppjDGmnyYt8J2APSTdCBxPcp18FlhXUm9W+02B35ftHBELI2J+RMwfGxsbgcrGGGOggQGPiIMjYtOImAfsA5wTEfsB5wKvymILgFOmTUtjjDGTmEoc+PuAd0m6juQTP3I0KhljjGnC3MEi40TET4Gf5vfXAzuMXiVjjDFNcCamMcZ0FBtwY4zpKDbgxhjTUWzAjTGmo9iAG2NMR7EBN8aYjmIDbowxHcUG3BhjOooNuDHGdBQbcGOM6Sg24MYY01FswI0xpqPYgBtjTEexATfGmI5iA26MMR3FBtwYYzpKk0mNV5N0kaTLJF0l6SN5+xaSLpR0raTvSFp1+tU1xhjTo0kL/G/ALhGxLbAd8CJJOwKfBA6PiK2APwEHTJ+axhhj+mkyqXFExF/y6kPyEqTZ6b+bty8C9pwWDY0xxpTSyAcuaY6kpcBtwFnAb4A7IuK+LHIzsMn0qGiMMaaMRgY8Iu6PiO2ATUkTGT+uTKxsX0kHSlosafHy5cuH19QYY8wEWkWhRMQdpFnpdwTWldSb1X5T4PcV+yyMiPkRMX9sbGwquhpjjCnQJAplTNK6+f3qwPOBZcC5wKuy2ALglOlS0hhjzGTmDhZhY2CRpDkkg39CRPxA0tXA8ZI+DlwKHDmNehpjjOljoAGPiMuBp5Rsv57kDzfGGDMLOBPTGGM6ig24McZ0FBtwY4zpKDbgxhjTUWzAjTGmo9iAG2NMR7EBN8aYjmIDbowxHcUG3BhjOooNuDHGdBQbcGOM6Sg24MYY01FswI0xpqPYgBtjTEexATfGmI5iA26MMR2lyZRqj5J0rqRlkq6S9I68fX1JZ0m6Nr+uN/3qGmOM6dGkBX4f8G8R8TjSZMZvkfR44P3A2RGxFXB2XjfGGDNDDDTgEXFLRFyS399FmtB4E+DlwKIstgjYc7qUNMYYM5lWPnBJ80jzY14IbBQRt0Ay8sCGo1bOGGNMNY0NuKQ1gZOAgyLizhb7HShpsaTFy5cvH0ZHY4wxJTQy4JIeQjLex0bE9/LmWyVtnD/fGLitbN+IWBgR8yNi/tjY2Ch0NsYYQ7MoFAFHAssi4jOFj04FFuT3C4BTRq+eMcaYKuY2kNkJ2B+4QtLSvO0DwGHACZIOAG4C9p4eFY0xxpQx0IBHxC8AVXy862jVMcYY0xRnYhpjTEexATfGmI5iA26MMR3FBtwYYzqKDbgxxnQUG3BjjOkoNuDGGNNRbMCNMaaj2IAbY0xHsQE3xpiOYgNujDEdxQbcGGM6ig24McZ0FBtwY4zpKDbgxhjTUWzAjTGmozSZUu0oSbdJurKwbX1JZ0m6Nr+uN71qGmOM6adJC/wbwIv6tr0fODsitgLOzuvGGGNmkIEGPCJ+Dvxv3+aXA4vy+0XAniPWyxhjzACG9YFvFBG3AOTXDUenkjHGmCZM+yCmpAMlLZa0ePny5dP9dcYYs9IwrAG/VdLGAPn1tirBiFgYEfMjYv7Y2NiQX2eMMaafYQ34qcCC/H4BcMpo1DHGGNOUJmGExwHnA9tIulnSAcBhwG6SrgV2y+vGGGNmkLmDBCJi34qPdh2xLsYYY1rgTExjjOkoNuDGGNNRbMCNMaaj2IAbY0xHsQE3xpiOYgNujDEdxQbcGGM6ig24McZ0FBtwY4zpKDbgxhjTUWzAjTGmo9iAG2NMR7EBN8aYjmIDbowxHcUG3BhjOooNuDHGdJQpGXBJL5L0a0nXSXr/qJQyxhgzmKENuKQ5wBeBFwOPB/aV9PhRKWaMMaaeqbTAdwCui4jrI+Je4Hjg5aNRyxhjzCCmYsA3AX5XWL85bzPGGDMDKCKG21HaG3hhRLwxr+8P7BARb+uTOxA4MK9uA/y65HAbALe3+HrLj05+RdLF8pa3fLn85hExNmlrRAy1AM8AziisHwwcPOSxFlt+duRXJF0sb3nLt5OfigvlYmArSVtIWhXYBzh1CsczxhjTgrnD7hgR90l6K3AGMAc4KiKuGplmxhhjahnagANExI+AH41Aj4WWnzX5FUkXy1ve8i0YehDTGGPM7OJUemOM6Sg24MYY01Gm5ANfkZH0xIi4crb1WFmRtDqwWUSUxf2vsOQSES8F5lG4PyLiM7OlUxFJ6wGPiojLZ1uXFQVJLwN+FBH/mG1dZppOGXBJzwK2ioijJY0Ba0bEDRXiX8nhjd8Avh0Rdww49mlA/4DAn4HFwFcj4p6C7EOBVzL5Jv9oyXGvKDnuA0TEkyv02QlYGhF/lfQaYHvgiIj4bYnsasABwBOA1QrHfkPFsceA95Fq2BTld6nSsw2Sdgc+DawKbCFpO+CjEbFHn1zVuVFSp/LcfBo4uk3Uk6QnM/n/+l6J6GnAPcAVQCODMMT5f3FE/Lhv25sj4isV8j8F9si6LwWWS/pZRLxrgF4b9ulzU9/nw16bWwGfYPL1s+WwukyRfYAjJJ1Eui6WNdmpqU5tf2/b6yHv89IS+Un2pJ9ZMeCSXgF8EtiQdLP2bti1a/Y5BJhPyuY8GngI8C1gpzL5iHhWPvFvABZLuoj0555V8RXXA2PAcXn9n4Bbga2BrwH7F2RPIRn3JcDfBvzcl+XXt+TXY/LrfsDdNft9GdhW0rbAe4EjgW8CO5fIHgNcA7wQ+Gg+dt1FfCzwHVJL883AAmB5v5Cku6i/wav+r0NJtXJ+muWWSppXIveykm1NuAZYKGku6Vo4LiL+XCUs6SjgycBVjBvlAMoM+KZVhquGtuf/Q5L+FhHnZP3eBzwXKDXgwDoRcaekN5Ku4UMkVbbAJe0B/BfwSOA2YPOszxP6RIe9No8GDgEOB54HvJ50D09Fl578jsDngceRGgBzgL/W2YaIeI2ktYF9gaMlBePXxV1T1anN7820uh4kfQV4WD7214FXARfVHH+cNlk/o1qA64DHtdxnaT5plxa2Xd5gvzmk1vL/5JN4DfCKErmfV20DrurbfuUQv/mXTbYVPrskv34YOKC4rUT20uL5ID3czqk59pL+8wf8rEb+o8C/AmsBawP/D3hvjfyFRb2a/ldDnNNtgMOA3wLfBp5XIXd1i2N+EnhBSz3anv8NgAuAZwP/AZwEPKRG/gpgY+BM4GmDzidwGfDwgl7PAxaO8NrsXT9XFLadNyJdFgOPAS7N9+7rgf9o+D9sABwE3Aj8GLgWeNsIdGr8e4e8Hi7ve10TOLPJb56tQcxbo2E3p8C9kX5dAEhao05Y0pMlHU4y2rsAu0fE4/L7w0t2GZO0WWH/zUgXBMC9fbK/kvSklvqvkV1AveM/E6j7DXdJOhh4DfDD7Jt9SIXs3/PrHZKeCKxDchdU0ZO/RdJLJT0F2LRG/oUR8aWIuCsi7oyIL5MeilVcKemfgTmStpL0eeBXVcKSdpR0saS/SLpX0v2S7qw5fs9X/di83E66Kd8l6fgS8fNblDq+ADhZ0v9JulPSXYN0oeX5j4jbSS6RL5Jaga+KiL9XyZMeoGeQqn9eLGlLknGq1Cci/gisImmViDgX2K5Gvu21eY+kVYBrJb1V0l6k3vQodCEirgPmRMT9EXE0ycBWImkPSScD55DukR0i4sXAtsC7R6BTm98L7e/H/8uvd0t6ZN5/ixr5cZpY+VEvwBGkLvy+wCt6y4B93g18leTqeBNwPiVP14L8z4HXAquXfLZ/ybaXADcB55K6/r8luRjWAA7qk72aZNR/DVxOaiHVtjCBp5KMzI15WQpsXyP/COBdwLPz+mbAaytk3wisR3KvXE/qFr655tgvI11UT8y/dwnpAVcl/ytSN3AOKXJpP+BXNfIPI7UsL87Lx4HVauRbtbqAz5B6cV8l3azFz35dIv8ckstr4P+Vz9+TyTkSDa/nRucfuAu4s7DcA/ylt32E99dPSK24z5NcgkcM+L/aXptPy8fflORe+B6w44h0+TnJdfJN4FPAO4HLBvzeRcBzKj7bdQQ6Nf69Q96PHwLWJTWK/gDcAnysyX89K4k8ko4u2RxR4+TP++0GvIDkSjkjqv3ZbfVZBdiRZMgem49/TRQGLvvkNy/bHiUDjCX7rk0yDpU+2+lG0k4R8ctB2wqfzSNd5DuRekC/JD3UbhyRPosjYr6kyyP7nyX9KiKeWSH/BuD4iJjkp5W0Tv+5lXQd6WE4YWCy7P+SdAbw4pimiAZJIkWRNB7Ey/fLpBu16n7JvdN7SNfxfqSH9bGRWp113zPya7OtLvneuo3Ukn5nlv9SpFZ5mfwcki14/nTpNJPkAInVmv4HncnElLQFcEvPqOYwtY36jcgUIhvOj4hntNCnTURM48iVNgOHkl4TEd+SVBqNEBWhb5IuiYjtB20bFklnAXtHjvxRCn07PiJeWCH/c+D5pAGcXgvkdRGxbc13bEIafCqey59XyJ4TDSNsJH0D2JLkQ31ggLrsXE7h/C+JiKc20SfLF91VqwF7Ab+PiLc3PcaA4ze9Nj8bEQepPGKL6IsymikknUrqVY+0UdT297a9HiTtEhHn5KCOMvmyQfYJzGgUiqT3RsSnsk+07ITUXZAnAsUW2f1529P65IaNbDgz3yjfiwFPtbYRMZlGkSsRsVb+jo+SjNkxjLcU1uoT7/kp+7dX6f0M0jkc67vI1ia5Lqr2GyO5reYx8Qav6jFtEIWwzYj4k1LIVhX75+9/K6nV9ShqfOySDiOFjl1Nug4gXU+lBhy4RtK3SSGCRaNcdoPckJdV81JHq/Nf4AJJT4uIi5sIR8RJxXVJx5HcAPRt/0Wk6Kv+RsCgKK+mUVW9KJVPD9K5rS6SToiIV1c1wKoaXpl7gCtyw+GvhX0m2JMhzk/j35tpez3sTPLb717yWVAeJTWBGW2BS9o9Ik6TtKDs84hYVLPv0ojYrm/bZXWttJa63UX6A+5jvHtVetFLWgo8hRQV8pS87fK6i0zSlRHxxBb6XBgRT2+wbQ7w9ogoG5jtP+bOpHC1NzMxZO0u4LSIKB0Yk/Qr4DzSDd4zmJMMS0F+CbBXz02Qu8Unj7CF/2vgyRExKISzJ9/aZSdprSzzlyHVrNPnalJ46m9JBqe2d1iy/zbADyPiMSPSp9W1OR1I2jgibhnGPTmMPWmh1xxgUUS8ZqrHqvuOiLh/sORkZrQFHhGn5ddhTuxySXtExKkAkl5OzUwXahlP2mv5NuTeiAileNOBETGZX0l6UkRc0fA77pe0H2mu0SAN+E76kyPifqW41oEGPCJ+BvxM0jea+OsLPCwi3tdC/t+BX0j6WV5/DuOzMk2iotXVS6L6eIlv8npSr6eRAY+I1zeRy7o8kdTyWj+v304aPK5MGhqih/Lipvrk4/e3GP9ASsSq22cOsFGfPlV+91bXplKS2aGMu7B6D6BJiS2SjomI/Qdti4hb8tvHR0mSE9Ux8kPZk6bnJ99fY5JWjTT3b5Njt70ebpB0Oimw45xBHoAJ3zUbPnANkQko6dGkBJRHki6Y35FurKrBjcWkbvaJJHfHa4HHRMS/V8g/p2x7mV9V0ruBrYDdSBlabyBle36+Rv+rSZEWN5AMzyCf/DwaDhxK+g/SQMx3mNiFvKRPrtSXV5Av9WFK+jhplL5x6WBJG5AGhgWcHyl0rkr2U6SH07fzpn3yfn8GnhURu/fJn0QKETubiS6RUhdcm0HA3Nv490ihZUh6LvD/RcWAamGfxj2Uwn4DMwGloQY930ZKPLmVQuJSzbXW9tq8huTq6v+9kwYB+8dWlJKvLo+I0rDOfC4/GH1JTpHCAqt+b9tMybbn56ukTOhTmXh/VY1xtO2xrk5yo+yTv+cHpDGjX5TJT9h3lgz4mSRj824KmYBNWnmS1iTpPSnDqk+ubWTDaYXV1UiZhEuqHipqGREzTNewKZLOLT/0RN2zC6WS3EIvO37PvfQ3UoxqrU81G539gC0j4qNKMfWPiIjS7DJJv4yIncq2SboiIp7U91mrLrNaDAKWueUGuerK3Ht1qCITMCKqshPbDnpeBzy9zKBWyLe6NstceSUyBwMfAFZnPKtTpPDbhRFxcMV+G5AM2HuAF5GiwvaJmjh5Sb9gPFNyd3KmZEQcUiHf9vyUHiciPlIh3+p66Nt3PVLDbb+IqByXKiox4wstMwHz5w8F/pl0UXy4t9TIt44n7dv/UaRU3FH/9g1JMd2bkYo9VcmN5d+6EDiqt1TIbtlk2wz+v18mJaksy+vrARfXyF9GuqF66zv0/isK2Zwj1G8VKjLjgJNJcbnz8vJB4PsDjvdx4CUtvr9tJuAXyRmYDY9/LjB3Gq/Nw4D/JM2Lu31vqZD9xJB6XE4KEBgYj0/7TMmhzk8L/VtdD3mfnYEvkXpBJwCvbLLfbBWzmpAJCPye+kxAaFd/BFJkwypMjGwoDdep4GZSossDlPgiJxD1tVza1l84hdQN+wklvu8+vku6iYqcSErQKNNlmGJE65HcRkX5qqiPp0fE9pIuzXJ/UiosVsUbgaN6vStSkssb89jCJ0ahfx9bkYxUGW8APkKKABCpITDIh/4O4AOS7iW1MAdFffw9Iv4o6YFMQEmfrDn+84B/kVQ76KnxyKLrgZ9K+iEDQiHzfm2vzV7re35hW5CynCcQEQc3uXZK7q1VSeGcr5JUdy6hL1OSVDajLuqp7fkZI9Uj6i82VeXy7V0PTXusN5CSp04A3hMRfy2TK2O2DPjHJa0D/BtpoHFtkpGtY9OIeFGL79gzIo4gRZR8BEDSO0jdk0loYmjjKqTU2suKMtEuxK+fj5F8wj+JiKdIeh5pYLKKgQOHkh5LuqjW0cRY0rUpXGglHE2L4jxKRZTeQXrILs2/43xKbtjM3/MgUW+Qd4yayn6RwumelK8JxcTKkSeMQP+ecVB+rRwEjIg/Aa3iq6PdADikFOs1SQ+HYyXdRop+qqLpoGdPj5vy0iQUElpemxFRm9pepOm1M8Q5LHIQKfv37aTfsgvJLVtF2/PTK/72MmqKv/UY4rcsKHmgVSbWTZDLzfcVHkkLgc9H85HysmSVSyOH/ZXIF//w+4Abq05gmQ9wkF+w4JO/DHhKRPxD0kURsUOF/MCBQ6VInD1JdTVOLXx0F2kQpLT+SM+nWvQvSzovIp5dIX8FKd7+gojYLj84PhIR/1Qhvx+pmuNTSeV8X0UamDqxQv7DZdujopxmW/2bMOwAb9639xDfIiI+JulRwMZR7fNvnQkoaXvgWVnHX0bfAPVUGOLaXIf0AO0N/P+MVC54UiJN22sn79OmtzftFK634njazyKickypzW+osFWNEutmq5zslqSW8DNILbPzgXdGxPU1uz0LeF3ublSOlEval+Qr30IpQ6vHWkDlDRIRi3I3f+u8qW4igkYhfn20bXUN7IZFxCnAKZKeERHnD/j+Im27nPdExD2SkPTQiLhGKRa5lIg4VikWfNes955RX7ys2GVcjdTSqZNvpL+kx2ZdS2+EPiPYS9Z4BakOzbfy+r6k+iB1fIl0He9CagH+hey3rvjev2b91iYlF9WSH3B7M57YcbSkEyPi4xXyrTJhaX9tHgVcCbw6r+9P6hWVuShbXTtD9PaqHr6ltfyzfFuXSCuXb9PfoCET6ybQxtE+qoVU8W1/0gNkLqni3oUD9tm8bKmQe24+YTsXlu2pGbjI+/yW1Jr4OWkwoapAzjySj/p2Ulfq+8C8Afqvkf+UuaQu2NuBh4/ofH4q/+kPIYXW3Q68pka+bXGek0nFdg7N5+YU0gwodTo9C3h9fj9Gap02/T0PJUX2TEl/8sAgadCqf6kaxKwsK1yjT6/0b7F8buWAOfAvpBC2G0n+2BuA62vkl1EoBkaK7FhWI7+0ZFvlYHDba7Pi+JO2DXPtkOrVrNY7HikK5TsDzv8RpBDU3fPyLdID+YvAMSXyZ5ImXFhGsg1HAZ+sOX5Z8bc9pvob8ncfQiodcUhheRepTMfge6WJ0KgXSow1qYvVZN9GI+VD6LQE2KawvjV5dHu2FlL0xg6krupzqH6g9C6UvUiV2davMyBT1Glnkstm1RqZQ0gty//O64+kpr50xe++dpbO+TIKETzAFnXGMstcmA1gz5CPDTCY15LKDTTV6cfAuoX1dYEf1MgvKd4bpEZNaS35Ic/R+aT4/N76TqRY/1FcOxfn16XAQ3vvBxy3cS3/3vnJr42j4Fqen1a/gZKGaNNltgYxz5X0fsZdEP9Eqnm9PkBE/G//Dk1HymsiRQZFBjwkCvM3RsR/Syqtvy1pa1Ko3EYR8USl6br2iJIu7bD6tOxK9vR8CSn08X+TW3bSMU+dtLFATC7Os36JWG8MYk1g0v+U2YtcaiAf9/dKqemlaGIm5hySAfxYjfx8Urbn5kzMdKtKxCjr2v+ZFHZ2W9/2d5IiFHruvHmkFkAmFXkAABeUSURBVHMdnyO1NDdUSqp6FSn8sIrfUD/jTT9/A67KrpEgJZD9QtLnoDSBqVEmbMm12RvkHXSvvBn4ZvaFA/yJmkFDpVmleuMT50V9RuPNktYl9WrPkvQnksuijjFJm8V46Ya6Wv7Q3iXyuZLNfwYWR3JjTvU33C3pP2nu0hnXLT8BZpTsx4bxi6dobSLKU3IvIxmvCSPlEVGZot1Sp6OyPsVppeZGSRp2vjHeQ/Kv9WqhjLSeRJvBH6XiTnuSCsPvwHgLrX+gdTkpg/U4UqtxgpWPvkSe/D9Fn1zxBq/KdLsoInboDcTkQbvzawzs5oXV+0gTflT6YJVqobyHBuVhs/wPSeMt5+ZNzyW58bYmDb4d0yf/UFK3F1JZ4YFhq/n/6fn8z44an7/SBBpHk/6DJpmklcYx7zcpgUktMmHbImmLiLgh+/CJNN3bFlFSjVMp8utNjPvv9yK5tiqzlgv77kxyXZxeZ/QlvYSUav8b0u/dgjSD1E+BN0XEZ/vkX0YK0X0U41FwH4lcpqPk+AtJ10NvEP6VpOn5HkVyfR00ld+gKSQ2jqTL0KJr8TRSRl5vfQEpeuJzwPoD9l2cXy8DVsnvLxqhbg8l+Z6+R2pNvZPc/SmR7XWRij7P2m5elplD6kE0SZZo2w1bjzSLCaSQqkdUfP+LSG6WS0kJB0+Yhv+57eQbZX7KSdsKn/2ipT6nkXpLvfWN8v+8Pn3T41GYYKSw7ApsWHP8I4BnttDnItKkFK/P98ACUihZlfzLetd8w+OLNK704by+GX0TX5Tssy0pZ+KtpEJhdbKT3DFUuBtJCTlrFNbXoH46uFbnsrDfQ/Nv2I6ayUOGvJ7PoTB+Rur1nZPvp0nT9RXv74b3+tAunZl2oXyVVPcZpdojnwDeRjrpC0ldzyrajpS3IiL+JukLpEHAf5Bmdql66t+uVJsl3S3Sq0gDEZWoov4CafaXMhp3wyS9tvC++NE3iyuRKp6dDpyeW5n7ktwFH436Oi79YXK1qfER8WmlUgN3kkrufjjqSw30u8HmUpGElDlE0teZXAulqvzmvIi4tbB+G7B1JFdTf4r2AaTW+jkkQ/hccms9n6djmMwlwAeza+1k0oDV4hr974sBM8r30XbW9WJUzEdJYaUnUREVU9JKPlbSpFayhss7EBMjtO6nJmaf9ueyx1MZLx71ZElExDfLBJXmFnhbQR6oDRXdhPTg6YVJrgE8MlKhq7Le2Q8Z76muRuoR/JrqxKhhEhsfUHrGFgoDa6QR4kML64MGKtYgJdiMPIojH/+lJPfCT0mRKDeRZmYpk92SlCF5NymE7RcMGIggTQE2lL4MGPwhdQN7y9dILd/vVsg+lNSqPJE03dmHgE0GfH/j1HhSq+QnDX/XwSTjch/j04zdRQr3rEzBJkUZLCb1JI7OS2mZgSz/JVJ9jV5r99S8bQ3g3D7Zxq31ku9Zn2QIz6ZmEJY03dyBpImK1+8tA469NskXfwGpR3MgsFaFbNuomEatZODl+Vz/sXDejyb1oEtbzaRe7WWkKJRDST3Kg+p+a5tzmWWPIU3796XCffC5GvnLSPbjeRQi1WrkDyBFCh1Nymu4npQ9vAbwnw1+y/Ykd2vV562mOJywbxOhUS2k2NG5+f01FKIq6m4OWhiFKeh2DalaYW/90ST/Z90+a1TdRCWy59Kg/kLxhi5bGn7XOsCpJdsX5Yvj48ATW5ybtgbhVGCdhsdehRrjW7HPFS3lRerdHQ58Nr8vrbHRf+y875X9v79i3x1IA+2/IdVXr5K7oWSpDCMs7Nd01vW2UTFXMDFMcbW6cww8o+X5355kMN9BShRqsk+jc5lll1X9nxXytSHLFftsTHqA7Ulqfbfdv1UUEA0echEz70I5jlSP+nbSgNt5AJIew3j3ZBKRuip3q2S+wxFyW0wsTdubjHQSkn5DagmdR3LpXN3g+E3rLyyhZuCQ1PofxN2MJyQV2Z+UNLM18PaCu2Vg7Q61SI2n4Qwpeds/cpRCGy6Q9PiIaHLeiXRHfDcvgzhP0g+YOGD18zwQe0fZDkp1TF5BMjYnkCakLZXN+mzRRO/C8Xcn1Wh5NKm1uUNE3CbpYSTj1e/+ahsVczRwodLM7pCM1JE18ntJuop0D59O8j0fFBHfKgopJVtdHmlwv1HmaNtzmbmSlHxV68YscIRShcEzmXgv9pdf7k8A+11+fYSkR/TLF/YrusdWIT3AKlPvK3gXqbFRy0xP6PAfks4mPc3OzDcWpB/5tgG7NzYKbSj48q6S9CPSRROkzLeqKa8eTyro82zg09k3eFlE7FXzVY3qL0TEFtnn3LgGtCZmos0hTWIxqYZIRKzS5HgltDUIP8wLBb3q/J6tphgjJQkt0OCs3GFCON9CMto7ZblvAifla7WqBsgNpFZp40gPSc9ksg/2m30yjyEZpr2BwyOnYkt6tqS1IuI3ShM8TyBaZsJGxGck/ZR0XkVKwLq0Rv0XRMR7Je1FKvq2N6mHOcGA54fzZcUQvwa0PpeknsnVki5iokGu8mk/idSY2YWJ41H9YXv/VfOdZfI9iiGz95Huhdra8CXU3S/jQuM2dMWmKpQqpjhtksqn2yocvrTo/1zSgNDOpIv+4aSWxqB44TZ6Na4BrYl1vu8j/fn7RsRbRqjPwDA5pdosm0bEF/P6RaTuewDvi+paKK2mGNM01lYfFqU8hQdqg0SefapC9hhSa3ophTk9+xsjuSfwgYi4vG/7fOCQ6JvoovD5kaS6QUsL2w6NiEP75FYjha09huRGOTJqwjcL+10VEU+Q9DXSw+10VdRMl3QO6V65iIkNr7raMo3PZZbfuWx7VNe3v4YUadNohp3ZQNJNEVFVMXNcbkU34C2f3jOCpLtJF/xnSL75uiJEQ83kLemLwDeatkolbUeqAfNqUivmpIj4QpN9Bxy32A0eJPtLUvH93+X1paRWypqk6IldK/ZrbJDb6NO337NI6clHK8VIrxXlccuvAD5JyvgVg91LSPoEyWd7bN60LynstWrSgmWkqcNqbz7V5BaoZKKLwmc3k8opfKbXqld5waTvkCIgziNVPLwxamKaC/sNzDvIvYcJU5Zldgb+JyJKXTRtz+Uw5N/9tpicxFUl/9qy7f09poL81qRQ2nlM7GH110Kp6yGuHhEDPSRdMOAPXHiSToqIytnKp/g9jUOLckvzWaQL7V7SCPjPI+LsEtmnRsSSIVoJV5NC8G6kolWaL5R9SBf5H8nJABFRahCHRdKxwMGDHqSSLo6IpxXWvxARb83vL4iIHWv27c/Wu6xGtpE+BflDSLWrt4mIrSU9Ejgx+mYByrLXkSIABoXqFfe5HNguIv6R1+eQBg2rehAnkiaiHhR6el1UTFw84LNLSOGPx5Lcdu8gRQ09pU+uWM1xLimvotHE00oFsu6MND7VG8z/Q+HzYXsPrc5llikawlVJmcmV899md9GTSS7SgS4XpVLTPVYj9UQviYjSsGelpMOvMHlKtSVVv2FYZiuVvg1FX1DTgv3D8H3SwM1p1A/QEeNVAB9LarkcRKputnqJ+PK8T6mhrqFJDehrSK2n3SMPwEoaVFd9GDYmjREM6gavV1zpGe/MWNXBNTkO+VsqiUMeQp8ebVL7b21jvAusy3hpgXXqBGnus71Y0psi4mvFjZIOIBmHKhQRdwK7SzqUFBpbptMDMfARcZ9Kyi/0fe97I+JTefX5PZdYRPxV0r+TZpDqMa/feGfZxUrzvdbR5lwSffW3Je1JalxVccigY/Ydf8L4nFIJgbJ8gB73RcSX23zHsHTBgEfF+1FzT0SU1TyYhFJCxXak2O7zSAMipUktpAdD6x5ERPy2r9s/RnJFFHklqQV+rtKs1sfTcPCjJaVz/5VwYYXB+Reqzw+kONunx3iZ1U+SYp2rDHhTfXrcGxEhqRdFs0aN7OLcxf4+zZKEICWkXao0N6lI/tu6Lv+hDfU+CDhZqXRxz2DPJ7UyJw2Ya3zQ84GU8Ig4NP/uskm7t5V0Z293YPW8XuU22odU+RLS7yuOabyIiQa8bkKRsoZOj7bnchIR8X2lWktVn/9M0kaMJzZd1NSdkrmbVOt7AhqvHXSapH8lDfwXr6Gq2kFD0wUXyv2MuxD6J0it9U22/J5/Jv0plaFFkp5GCiV6FKk19xqSEb2RlJRUVoTrgUkkVDOhRMl+bbr9a5B8kvuSfM6LgJMj4swm3zUqlGZZ7xm+3nl7Kil5aM+YmA1Z3O8K0pyP9+T11Uhd/lIfb5bZnPRw+4lSON2cqJjoWtK7Sf/tbiQD8Qbg22UtfJUPakeUDGb37bcxySCIFGf8hwHybfR/HuPT+10Vecb2Ermh3BZNqbuWS9aPI5XsLes9vCDqJ3Roey6LWaGrkO6bnSPiGRXyrybN6fnT/B3PJk1lVhpmqonjV6uQotBOiIj398ndwOQQ4B4Rzaf8a8wKb8Bnijx4sj8p/vSB0KLiwEP2LT4/Ugr2c0gt3l4pgMeV+cT6fPiNZtnIskvJ3f7CTfPAjCA1+61PCuv6p/5Bk7YMGGSpfHhK2oXxtOFKg1OQfxcpQ7IYh/yN6CtCVJB/EykTcf2IeLTSHJlfiYpB0rzPbsALsu5nRH1qfyNUMVFEj6iOE26tf0N9hhr0bHH8ymu5ZH0j0v95LyW9h36jPOy5zPsWH7r3kRpUX6tqVWcf9W69z3Pv9idREkWTP++P8vptRNxco89qMXkSiUnbRoENeEYNQotUCJVSihJZHjk0S9LSiNiuZJ+hehBqWdGv62h8yjCRBoQr45Dzw20HUuus93BrZKCUIlD+GH0Xfs+/q4lzoz5AlOQb5G5+scUVffuUPkCnon8dGnLQs8Xx667l1SJiUvnlFr2Hoc7lMPSfa6XIpsumcv30yQw9RVpbuuADnykuIw2e1PnC5kiaGylWdlcm1lguPZcR0WxqpMmcIOmrwLq5xfYGUp2TBw2aHIf8pWgQhwz8LSLu7Q26KUVQTLqhJO0IHEYaEPsYaeBpA2AVSa+NiNML4r2ByyaFk3q8D/hd5GgSpVyFB1xqU9V/CIYd9GzEMNdyRJzLeBnfOlqfy6qHbeG7q5L8Tpd0BikzHNJ8BD8uOX6b6wdJjyAVvlpdqWRw72G0NqlC6MixAR9nI+AaSXWhRUOVAhiGaF/Rr4ssYmIc8uNIA3eD+JmkD5BulN1ItZ/Lkj2+QBpYW4dUXfDFEXGBUvTQcaQ08B43QWVt7f9XocdXGK66ZlP929Jq0HMFY5hzWXzYfoSG0SUR8Z7sN+/1+BZGxMklom2uH4AXAq8jVRIslsi4i4kDvCPDLpSMGsZp56dyrxRAL2pia2DNOj+dmYyGjEPOXd4DSD5tSD7tr5fIPeDWkrQsIh5X+Kx/0O160kTAS/qO8RFSmOYkvYZxqZXoL+AM4Ot13fI2NHVbrEgMey4L+zcOECjZdw4pAe3Yvu2Nr5++/V4ZEW1T54fCLfBMpNCiSZEBJXIXlGz771HroyEyAjtI2zjkYqr+17JraQx4qqQ7SqIIivH8/9f3Wb+x3Bs4UdJ+EXG+kjJfJqX4P7dCpdYuNXigRsj3ge9HRNsiRwNp4bZYkRjqXBYY+PBTmkHoLSQ3x6nAWXn9PaSyBsf27dLm+kHSayIV9JqniQWt0g6TC9dNGRvwTDEygFSnYhNSt25KkQFT4FO0zAjsIG3jkN9LikXusSopTHFNUkW9fgO+beF4q/d914Q45UjZsnuSXBBvISUWAbyoZmC7lUstPxQOIc16o7zpflLdko9WfMfKwky4J48hzd95Pqme93tI19DLo1A3pkDj6yfTyy/oz9eA6cphiZZ1bR+sC+kJvCoTa163qjs9Yn0az+K+siz0TSIBfKHw/oIpHrtXc/1ZpDoix5MGrGrrsJPmndyLiRMibA1sXyL7TlKrb4vCti1JLpR3zvb5ne2lzbnMn93F+EQg/ZOC3Fkif0Xh/RySMW9Uz38Ev61Rfe+2i33gGUkXRsTTe76t7JO9JGY4bE/jSQk7k7Lq2mQEPqgZECb3m4h49BSO3UvCgImhbLUTOLf8jktJ8ce3920fI42pDOXDNc3oD+WbrtC+iu9uVF2wLXahjDNdkQFtKWbL3c34QB0kg7LSGnCGT9UfSLScZGFIHtJvvPN3L5c0KYbajJy2LrtRMh0lLtwC7zHdkQFD6LNTRPxy0LaVCQ2Zqr+iUNfim8nWoJl5pqsFbgOekbRh9KXeStomIn49S/rMWDZX11DLVP0VBY1nMk76iIpMRtMdNIL63m2xC2Wc8yR9KCJOAJD0b6QW+eNnUglJzwCeCYz1hSKtTUlY48pINtidMNpFYvisXNMBoq+s7UxgAz7Oc4GFkvYmZWUuo76m8HSxKikMaS4T59a7k+rMPjNFNF4KtJSYhlKgxkwVu1AK5Pjfg0kB/PvOpr9Z0uaRaoKvETnj00wfmlgKdDNSiJlI9XFumqFBTmNaMews5Q86lGa7fzopBfklwOGSPj2LKj1SaVq1ZVm/bSV9aRb1eVATEVvkUMEzSAlUG0TEw4GXsXJH/pgVGBvwcb4YEa+NiDsi4kqSH3qkBapa8llScZw/AkSaI7JsVhUzWp4WET/qrUTEj0kx+cascNgHnomI7/et30cqITlrRMTv+uqD3F8la0bG7ZI+CHyL5FJ5DfkhasyKhlvgGUl3SbozL/dIul/SbLbAfyfpmUBIWlVpWrAHc12UFYV9SQWyTs7LWN5mzAqHBzEryIWNdoiIaanj2+D7NwCOINVIFmmuzndEhFuDM4CkNSPiL7OthzF12IDXIOmCiNhxtvUwM0fu9XydVN99M0nbAv8SEf86y6oZMwn7wDMqn9l6xp9ukj5c83FExKz65VcCDicNHp8KafBYaYYYY1Y4bMDHKRaR6s1svUe56LRSFvO9Bikr9OHM8sDqyoAHj01XsAHPRMTr+7dJOogUzjeTevxX4fvXAt4BvJ5Un/q/qvYzI2PC4DHwdjx4bFZQ7AOvYboqiDX43vWBdwH7kSb+PSIi/jTTeqyMVAwev92p9GZFxC3weqalhm/tF0r/CbyCNBP3kxwJMeNsExH7FTdI2glYacv4mhUXt8BrmI0WuKR/kOpd38fEQdQH46TGKxwu42u6xErfAh9Uw3eG1SEinFw1C7iMr+kiK70Bn40avmaFxGV8TeewC8WYAr0yvrOthzFNsAE3BpD02Yg4SNJplLjUImI2cgKMqWWld6EYkzkmv85mDXhjWuEWuDHGdBS3wI0pkGO+DwU2J90fvfDNLWdTL2PKcAvcmAKSrgHeCSyhUAPFZXzNiohb4MZM5M95GjVjVnjcAjemgKTDSIk73yNlxAIQEZfMmlLGVGADbkwBSeeWbI6I2GXGlTFmADbgxhjTUewDNwboq38CKZnnduAXEXHDLKhkzEBcOMmYxFp9y9qkafV+LGmf2VTMmCrsQjGmhjy5xk9cTtasiLgFbkwNeSaeGZ/Yw5gm2IAbU4OkXQBPZ2dWSDyIaQwg6QomVyFcH/g98NqZ18iYwdgHbgypDnjfpgD+GBF/nQ19jGmCDbgxxnQU+8CNMaaj2IAbY0xHsQE3xpiOYgNujDEdxQbcPOiQNE/SMklfk3SVpDMlrS7pTZIulnSZpJMkPSzLf0PSlyWdK+l6STtLOiof4xuF475A0vmSLpF0oqQ1Z+1HGoMNuHnwshXwxYh4AnAH8ErgexHxtIjYFlgGHFCQXw/YhTQbz2nA4cATgCdJ2k7SBsAHgefntPrFQH8BLGNmFCfymAcrN0TE0vx+CTAPeKKkjwPrAmsCZxTkT4uIyAk9t0bEFQCSrsr7bgo8HvilJIBVgfNn4HcYU4kNuHmw8rfC+/uB1YFvAHtGxGWSXgc8t0T+H337/oN0n9wPnBUR+06Tvsa0xi4UszKxFnCLpIcA+7Xc9wJgJ0mPAZD0MElbj1pBY9pgA25WJj4EXAicBVzTZseIWA68DjhO0uUkg/7YUStoTBucSm+MMR3FLXBjjOkoNuDGGNNRbMCNMaaj2IAbY0xHsQE3xpiOYgNujDEdxQbcGGM6ig24McZ0lP8f7TkXVr9hg/IAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "eu_countries[\"life_expectancy\"].sort_values().plot.barh();"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Funkce pro kreslení grafů nabízejí spoustu parametrů, které nejsou úplně dobře zdokumentované a jsou dost úzce svázány s tím, jak funguje knihovna `matplotlib`. Budeme si je postupně ukazovat, když nám přijdou vhod. Náš graf by se nám hodilo trošku zvětšit na výšku. Také se hodnoty od sebe příliš neliší a nastavení vlastního rozsahu na ose x by pomohlo rozdíly zvýraznit. Plus si přidáme trošku formátování.\n",
+ "\n",
+ "- `figsize` specifikuje velikost grafu jako dvojici (tuple) velikosti v palcích v pořadí (šířka, výška). Pro volbu ideální hodnoty si prostě v notebooku zaexperimentuj.\n",
+ "- `xlim` specifikuje rozsah hodnot na ose x v podobně dvojice (minimum, maximum)\n",
+ "- `color` specifikuje barvu výplně: může jít o název či o hexadecimální RGB zápis\n",
+ "- `edgecolor` říká, jakou barvou mají být sloupce ohraničeny\n",
+ "- `title` nastavuje titulek celého grafu"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcIAAAHiCAYAAAB7tMxzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdebxVZd3+8c/ljCJYimIgUmoOmaIcyFkatMkc0jKlEi1Rn8SGx6LpUXz8PSo2WJmmaI455ZhSKWrOIsikOGUlWGoo5ogjwvf3x31vz2Kz9zn7HM7AYV3v1+u8zt5r3Wute22L71n32uu+FBGYmZmV1Urd3QEzM7Pu5EJoZmal5kJoZmal5kJoZmal5kJoZmal5kJoZmal5kJoVoOkQyUdJ2kXSec1uM0Fkv5fA+3+LOmoZe9l4yStI+kJSdu1YZsRkp5qsG1D594ekkZJurvBtvtLOllSP0m3SVo5L/+hpHNb2XZvSVMkrVZn/T1t+fyqtm34s6zabgNJj0pavT3Htca4EFrp5H9YZ0t6XdI8Sb+RtE6xTUScD2wBnA58qwOP/VXgPxHxm47aZ4N+DpwUETO7+LhdKiKuBpqAq4ETI2JRXn5SRHwdQNJgSSFplcp2ktYFTgK+EBFvV+9X0ueAV7v684uIZ4HbgNFdedyycSG0UpH038B44LtAX2AHYGPg5uorgYg4OCK2i4hXOrALvYEjOnB/rZK0NjA1Ilq8IlqBjAEuj4i/tGGbDwGjI+KfddYfCVxcb+NiUe0El9DF/5spGxdCKw1JfYATgDERcWNELIyIucAXScXwy7ndynko7R+SXpU0XdJGed0Wkm6W9IKkv0r6Yp1jrZ2H5n6l5LOSZgKnAI9JGldoe6Oko6u2f0DS5/PrX0r6l6RXcl92LbQbJ+n3ki7KfX1YUlNh/feBWcBPJD0iab8WPp9eeYjzRUmPAMOq1m8p6XZJL+Xj7F21i/XyZ/OqpDskbVzYtu451OjHupKuz22nAptUrd9J0v2SXs6/d8rLd5S0AJgGnCrpTUlzC5/T7/Iu7sy/X5K0QNKOwAeAU+v0ZzXgY8AdhWXjJF0l6XeSXgFGSVpd0i8kPZN/flFvSFPSMfm/x0BJD+Urzsq6VSU9L2lIXjQF+EDx87SO5UJoZbITsAZwTXFhRCwA/gzskRd9BzgI+AzQBzgMeF3SWsDNwKXA+rnNmZI+VNxfHma7FbgnIo6JNI/hG8AhwDrAZ4H/krRv3uTSvK/K9luRCvMf86L7gSHAe3PbKyWtUTjk3sDled/XA78urJsD7Ea6+j0B+J2kDet8PseTis4mwCdzfyt9WhW4AZiUz30McImkzQvbjwROBNYjFd9LCutaO4eiM4A3gQ1Jn/1hhX68l/S5/ApYlzTk+0dJ60bE5IjoHRG9gfcA9wGX1dj/bvn3Orn95Dr9qNgMWBwR1ff49gGuIn3ulwA/Io0wDAG2BYYDP67emaT/AUYBu+d9XkT+Iyz7DPDviJgFEBHvAH/P+7TOEBH+8U8pfkj/2Myrs+4U4Ob8+q/APjXaHAjcVbXsbOD4/PoC4DzgIeC7rfTlF8Bp+fXawGvAxvn9/wHntbDti8C2+fU44JbCuq2AN1rYdlatc8vrngA+VXg/Gngqv94VmAesVFh/GTCucO6XF9b1BhYBG7V2DlXLVwYWAlsUlp0E3J1ff4U0zFvcZjIwqmrZb0gFc6XC5/S7/HowEMAqhfajKseo0aedq/93k/d3Z9WyfwCfKbz/JDA3vx4BPE0q3HcDfQvt3ge8CvTJ768Cvle173uAr3b3/4dW1B9fEVqZPE8avqt1P2fDvB5gI9I/atU2Bj6ShwZfkvQS6Sqof6HNZ4FewFnFDSVtr/Rt0bmSniT9w7seQES8SvpH+0u5+ZcoXE1J+m+lbw6+nI/Zt7JtNq/w+nVgjco5SjpQ0n15WHIu6QtAxW2L3gf8q/D+yep1EbG4av2Awvt3t410lf1C3q6Rc6joB6zSSj+eZElL9EPSEaTCc3BVf9vrRdIfK9X+VfW+um9P5mUV65D+uDg5Il6uLIyIZ0iFbn+lL219miWvpsnHf6ldvbdWuRBamUwG3gI+X1yYhzw/TRrOhPQP3CYs7V/AHRGxTuGnd0QUH4U4B7gR+FPeb8UVwERg04jYGLgQUGH9ZcBB+X5VL9I3Bcn30saS7mO+JyLWAV6u2rYmpfuaFwBHR8RGETGYdLVbb9t/k/4IqBhUeP0MsJGklarWP114/+62knqThkGfaeM5zAfeaaUf1ffK3u1HPtaJpKvel6mtrZE7f0u71oCq5dX7qe7boLys4kVgL+B8STtXbXshacTiC8DkiHj3c81/1GwKPNDGfluDXAitNPI/jCcAp0v6VP5SwmDgSuApmr8VeC5woqTNlGyT7/tNBD4o6St521UlDZO0ZdWhjiYVnImSeuVl65CGLN+RNJzCPcHsT6R/RP8XuKJwJbM2qTDMB1aRdBzpvmUj+pCKzWtKXwA6lPTtyHp+D/xA0nskDSTdB6yYQhq+/V4+7xHA50j3Jis+o/Tc5WqkYjQlIv7VlnOI9LjDNcA4SWvm+6WHFJr8ifTf4GBJq0g6kDQcPDEX/itIQ4iPt3Ce84HFpC/ItCoiFgK3ALu30vQy4MdKzzCuBxwH/K7YICJuJ40iXCvpI4VV1wHbA98k3TMsGk4aYq2+ErYO4kJopRIRpwI/BH4KvEL6B/5fwMcj4q3c7OekojApt/kt0CsPYe5JGrp8hjQkOR5YveoYQRoC+xfwh/ylkKOA4yW9SvoH8vdV27xFKgCfIH2ZpOIm0hd5HicNtb3J0kNy9c71YeBnpGG3Z4EP59f1nJCPMSef+7uPC0R6tm5v0pXz88CZpILzWGH7S0lfuHkBGEr6B78953A06R7jPNIV7fmFfvyHdFX138B/gO8Be0XE88DHScPUV+Vvgy6Q9HCNz+V10n3Ye/IQ9w4t9KXibNL9yZb8P9I3Vh8EZgMz8rLq498MHApcL2loXvYG6dnH91P1ZS7S53gW1mmUb8SamVkLlGa3GROd9FB9vlL+YER8ubBsfdJjG9tFxJudcVxzITQz63b5sZCZwFci4s7W2lvH8tComVk3knQ4aaj4zy6C3cNXhGZmVmq+IjQzs1JzITQzs1LrzBnTrROst956MXjw4O7uhplZjzJ9+vTnI6JfrXUuhD3M4MGDmTZtWnd3w8ysR8lTG9bkoVEzMys1F0IzMys1D422gaQfAQeT4mUWA0dExJQ27mNvYKuIOKU9fZg3bx7jx49vz6ZmZkvo02c1jjrq293djW7nQtignAqwF7B9RLyVJ9Vdra37iYjrSeGp7dK//9OMHfv99m5uZvau8ePb9ff4CsdDo43bEHi+MjFzRDwfEc/kfLnxkqbmn00BJH1O0hRJMyXdImmDvHyUpF/n1xdI+pWkeyU9IemAbjs7M7OSciFs3CRSHtvjks6UVIxkeSUihgO/JiWPQ0qh3iEitiNF1Xyvzn43BHYhXW36zzMzsy7modEGRcSCHJmyK/BR4ApJlTHKywq/T8uvB+Y2G5KGUOfU2fV1OXvukcpVYzVJo0mxPgwaVKuFmZm1l68I2yAiFkXE7RFxPCkzbf/KqmKz/Pt04NcR8WHgCGCNOrt9q/C6ZnJ4REyIiKaIaOpX83FQMzNrLxfCBknaXNJmhUVDSCGjAAcWfk/Or/sCT+fXxYRtMzNbjnhotHG9gdMlrQO8A/ydNFy5F7C6pCmkPywOyu3HAVdKehq4j5Q8bWZmyxnHMC0jSXOBpoh4viuON3DgwBgzZkxXHMrMVnBleo5Q0vSIaKq1zleEPUz//v0ZO3Zsd3fDzGyF4UK4jCJicHf3wczM2s9fljEzs1JzITQzs1JzITQzs1JzITQzs1Lzl2WqSFoEzC4s2jci5nZTd5biGCaz8irT4w5dyYVwaW9ExJB6KyWtEhHvdGWHihzDZFZejk3qHB4abUCOTrpS0g3AJEm9Jd0qaYak2ZL2ye0GS3pU0jmSHpY0SVKvvG7THMf0QN5uk7z8u5Lul/SgpBO68TTNzErJhXBpvSTNyj/XFpbvCBwSER8D3gT2i4jtSUkUP5NUmTB7M+CMiPgQ8BLNE3NfkpdvC+wE/FvSnrn9cNLcpUMl7dbZJ2hmZs08NLq0ekOjN0fEC/m1gJNy0VoMDAAqEUpzImJWfj0dGCxpbWBARFwLEBFvAuRCuCcwM7fvTSqMdxYP7BgmM7PO40LYuNcKr0cC/YChEbEwzzdaiVkqxiotAnpRJ14pLz85Is5u6cARMQGYANDUJE8Oa2bWgTw02j59gedyEfwosHFLjSPiFeApSfsCSFpd0prATcBhknrn5QMkrd/JfTczswIXwva5BGiSNI10dfhYA9t8BThG0oPAvUD/iJgEXApMljQbuApYu5P6bGZmNTiGqYdxDJNZefk5wvZrKYbJhbCHaWpqimnTpnV3N8zMepSWCqGHRs3MrNRcCM3MrNRcCM3MrNRcCM3MrNRcCM3MrNRcCM3MrNQ8xVoHkLQgInpLGgzsFBGXttJ+MDAxIrZu67GcR2hWXn6OsHO4EHaswcDBpNliOoXzCM3Ky3mEncNDox3rFGDXHOH07ZxPeFfOH5whaafqDfL6IYX390japkt7bWZWYi6EHev7wF0RMSQiTgOeA/bIuYUHAr+qsc25wCgASR8EVo+IB7uov2ZmpedC2LlWBc7JE2pfCWxVo82VwF6SVgUOAy6obiBptKRpkqbNn9+Z3TUzKx/fI+xc3waeBbYl/dHxZnWDiHhd0s3APsAXgaXmwnMeoZlZ53Eh7FivsmSMUl/gqYhYLOkQYOU6250L3EAaVn2hk/toZmYFHhrtWA8C70h6QNK3gTOBQyTdB3yQJVPu3xUR04FXgPO7rKdmZgb4irBDRETv/Hsh8PGq1cVvgP4gt5sLvPsMoaT3kf4omdTasebNG8D48c4jNCujPn1W6+4urJBcCLuZpK8C/wd8JyIWt9a+f//+jB07tvM7ZmZWEi6E3SwiLgIu6u5+mJmVle8RmplZqbkQmplZqbkQmplZqbkQmplZqfnLMj2MY5jMVlyOWeoey30hrGT9dXMfLiDlB17Vnf0AxzCZrcgcs9Q9PDTajSTVm3LNzMy6SI8shJIukHRA4f2C/Hs/Sbco2VDS45L6S1pZ0k8k3S/pQUlH5PYjJN0h6fe57SmSRkqaKmm2pE0Kh/1Ezg58XNJeefs1JJ2f286U9NG8fJSkXxf6N1HSiEpfJf2vpCnAjpI+I+kxSXdL+pWkiZ3+AZqZ2buW+6HRtoiIayXtD3wD+BRwfETMkzQaeDkihklaHbhHUmU6s22BLYEXgCeAcyNiuKRvAmOAb+V2g4HdgU2A2yRtmo9DRHxY0hbApJwp2JK1gIci4jhJawB/A3aLiDmSLqu1Qe7/aIBBg9r6qZiZWUt65BVhK8aQ5vR8KyIqhWVP4KuSZgFTgHWBzfK6+yPi3xHxFvAPmuf7nE0qfhW/j4jFEfE3UsHcAtgFuBggIh4DniRNrt2SRcDV+fUWwBMRMSe/r1kII2JCRDRFRFO/fq3s3czM2qSnXhG+Qy7ikgQUZ6IdACwGNpC0Up6/U8CYiLipuJM8XPlWYdHiwvvFLPn5VOcARt5vi/3L1ii8fjMiFlW6UGd7MzPrIj31inAuMDS/3oeUBI+kVUhRRgcDjwLfyW1uAo7KKfBI+qCktdp4zC9IWinfN/wA8FfgTmBkZZ/AoLx8LjAkt98IGF5nn48BH5A0OL8/sI19MjOzZdQTrgjXlPRU4f3PgXOAP0iaCtxKc87fD0nhtnflYdD7Jf2RFHw7GJiRryDnA/u2sR9/Be4ANgCOjIg3JZ0JnCVpNukqcFREvCXpHmAOaXj1IWBGrR1GxBuS/gu4UdLzwNTWOuEYJrMVl2OWuociqkf8rCtJ6h0RC3KBPgP4W0ScVq99U1NTTJs2res6aGa2ApA0PSKaaq3rqUOjK5LD89Xrw0Bf4Oxu7o+ZWan0hKHRFVq++qt7BWhmZp3LV4RmZlZqLoRmZlZqLoRmZlZqLoRmZlZqpf+yjKQfkR7AX0SaTeaIiJjSQfvu8Agp5xGarZicRdh9Sl0IJe0I7AVsnx+EX48lp2tb7jiP0GzF5CzC7lP2odENgefzhNtExPPAQEnXAEjaR9IbklbLkUtP5OWbSLpR0vQczbRFXv5+SZNz3NOJxQNJ+m4hBuqEvGywpEclnSPpYUmTJPXqyg/AzKzsyl4IJwEb5YzBMyXtTpoObbu8flfSFGnDgI+QkisAJpAm8R4KHAucmZf/EvhNRAwD5lUOImlPUtrFcGAIMFTSbnn1ZsAZEfEh4CVg/045UzMzq6nUQ6N5arOhpIL3UeAK4PvA3yVtSSpcPwd2A1YG7pLUG9gJuDLNigbA6vn3zjQXsouBys28PfPPzPy+N6kA/hOYExGz8vLpLBn9BDiP0MysM5W6EALkSKTbgdvz5NmHAHcBnwYWArcAF5AK4bGkq+iXImJIvV3WWCbg5IhYYvq0nDpRjIFaBCw1NBoRE0hXoTQ1yZPDmpl1oFIPjUraXNJmhUVDSOG6d5KS6SdHxHxSkO8WwMMR8QowR9IX8j4kadu8/T3Al/LrkYX93gQclq8mkTRA0vqddV5mZta4sl8R9gZOl7QOKUbp76QhyNdIcUt35nYPAs9Fc1THSOA3kn5MykK8HHgA+CZwqaRv0pxCT0RMykOtk/Nw6gLgy6QrQDMz60aOYephBg4cGGPGOI/QbEXj5wg7V0sxTC6EPYzzCM3M2s55hGZmZnW4EJqZWam5EJqZWam5EJqZWam5EJqZWamV/TnCHscxTGY9ix+LWP65EGaSFgGzC4v2BdYDvhoRx7SybYfkDuYp1yZGxNb12jiGyaxncbzS8s+FsNkbNeYPnQv4oT0zsxWY7xG2QNIISRPz63GSzpN0u6QnJC11lSipt6RbJc2QNFvSPnl53dxBSUMlPSBpMvCNLj1BMzNzISzoJWlW/rm2TpstgE+S4pmOl7Rq1fo3gf0iYntSrNPP1JzVVC938HzgmIjYsV7HJI2WNE3StPnz23dyZmZWm4dGm9UaGq32x5xm/5ak50gTcz9VWC/gpBy6uxgYkNtAjdxBSX2BdSLijrz8YlL80xIcw2Rm1nlcCNumOjuw+vMbCfQDhkbEQklzgTXqbNuLVDhd2MzMupGHRjtWX1Jc00JJHwU2bqlxRLwEvCxpl7xoZEvtzcys4/mKsGNdAtwgaRowC3isgW0OBc6T9DopwLdF8+YNYPx4xzCZ9RR9+qzW3V2wVjiGqYdxDJOZWds5hsnMzKwOF0IzMys1F0IzMys1F0IzMys1F0IzMys1F0IzMyu1HvEcoaQAfh4R/53fHwv0johxLWwzAng7Iu7N7y8gRRxdtQz9mAs0RcTz7d1HYV/tim5yHqHZ8svZgz1TjyiEpOnJPi/p5DYUoRHAAuDeZT14njhbrTbsAs4jNFt+OXuwZ+opQ6PvkCadXupPLUn9JF0t6f78s3MOuD0S+HZOk9g1N99N0r05RumAwj6+m7d9UNIJeVklOulMYAawUdVxr5M0PccqjS4sXyDp/3K00n2SNsjL3y9pcj7OiYX2G0q6M/fzoUJfzcysC/SUQghwBjAyJzYU/RI4LSKGkaKNzo2IucBZefmQiLgrt90Q2AXYCzgFQNKepIik4cAQYGhOjwDYHLgoIraLiCerjntYRAwFmoBjJK2bl68F3BcR2wJ3AocX+vmb3M95hf0cDNyUky+2JU3NZmZmXaSnDI0SEa9Iugg4BnijsOoTwFbNsX/0kbR2nd1cFxGLgUcqV2rAnvlnZn7fm1QY/wk8GRH31dnXMZL2y683ytv8B3gbmJiXTwf2yK93pjmD8GKgcqPvftJco6vm/i1VCPMV52iAQYPq9MbMzNqlJ10RAvwC+BrpqqtiJWDHfOU3JCIGRMSrdbYvRiGp8PvkwvabRsRv87rXau0kfxHnE/m425KKaCVuaWE0T+BaHdW01MSuEXEnsBvwNHCxpK/WaDMhIpoioqlfvzpnZmZm7dKjCmFEvAD8nlQMKyYBR1feSKqE674K1LsyLLoJOExS77z9AEnrt7JNX+DFiHhd0hbADg0c5x7gS/n1u3FLkjYmRTedA/wW2L6BfZmZWQfpUYUw+xmwXuH9MUBT/qLLI6QvyQDcAOxX9WWZpUTEJOBSYLKk2cBVtF5AbwRWkfQgcCJQb/i06JvANyTdTyqkFSOAWZJmkoZOf9nAvszMrIM4hqmHGThwYIwZ4zxCs+WRnyNcfrUUw+RC2MM4j9DMrO2cR2hmZlaHC6GZmZWaC6GZmZWaC6GZmZWaC6GZmZWaC6GZmZVaj5lrtKvk+UOvAbaMiMfasf2+wOMR8Uid9UcCr0fERe3pn/MIzZYvfnaw53MhXNpBwN2k6dDGtWP7fUmTbi9VCCWtEhFnLUvnnEdotnxxBmHP56HRgjzf6M6kuUy/lJeNkDSx0ObXkkbl16dIeiRP7/ZTSTsBewM/yVO7bSLpdkknSboD+KakcZKOzdsfnvMJH8iZimt28SmbmZWerwiXtC9wY0Q8LukFSXUnwJb0XmA/YIuICEnrRMRLkq4HJkbEVbkdwDoRsXt+P66wm2vyZNtI+n+kAnx6jWM5hsnMrJP4inBJBwGX59eX5/f1vAK8CZwr6fPA6y20vaLO8q0l3ZUn+x4JfKhWI8cwmZl1Hl8RZjlh/mOk4hTAyqT8wOtZ8g+GNQAi4h1Jw4GPk4ZRj87b11Iz1xC4ANg3Ih7Iw60jlu0szMysrXxF2OwA4KKI2DgiBkfERsCcvG4rSatL6ksqfJX7iX0j4k/At4C25iCS2/07p9OPbK2xmZl1PF8RNjsIqP7619XAwaQw4AeBv5HS6CEVsT9IWoOUcl/5/vTlwDmSjiEV15b8DzAFeBKYTQMFdN68AYwf7xgms+VFnz6rdXcXbBk5hqmHcQyTmVnbOYbJzMysDhdCMzMrNRdCMzMrNRdCMzMrNRdCMzMrNRdCMzMrNT9H2AZ5xpnfRcRX8vtVgH8DUyJirxa2GwEcGxF75ddvR8S97emDY5jMup+jl1YsLoRt8xppCrZeEfEGsAfwdBv3MQJYALSrEDqGyaz7OXppxeKh0bb7M/DZ/Pog4LLKCknDJd0raWb+vXlxQ0mDgSOBb+eYpl0lfU7SlLzNLZI26KLzMDMzXAjb43LgS3lqtW1IU6RVPAbsFhHbAccBJxU3jIi5wFnAaRExJCLuIoUA75C3uRz4XuefgpmZVXhotI0i4sF8ZXcQ8Keq1X2BCyVtRkquWLWBXQ4ErpC0IbAazRN9v8t5hGZmncdXhO1zPfBTCsOi2YnAbRGxNfA5cmRTK04Hfh0RHwaOqLWN8wjNzDqPrwjb5zzg5YiYnb8FWtGX5i/PjKqz7atAnzrbHNKBfTQzswb4irAdIuKpiPhljVWnAidLuocU7FvLDcB+lS/LAOOAKyXdBTzfKR02M7O6HMPUwwwcODDGjHEeoVl38nOEPU9LMUwuhD2M8wjNzNrOeYRmZmZ1uBCamVmpuRCamVmpuRCamVmpuRCamVmpuRCamVmpeWaZKpIWRETvNm4zF2iKiGV+IL614zuP0Kzz+TnBcnEhbICklSNiUXf3A5xHaNYVnDdYLh4arUPSCEm3SboUmJ2XfVnS1Dw92tmSlppGTdJ1kqZLejinRlSWL5D0f5IekHRfJXdQ0vslTZZ0v6QTu+wEzcwMcCFszXDgRxGxlaQtgQOBnSNiCLAIGFljm8MiYijQBBwjad28fC3gvojYFrgTODwv/yXwm4gYBsyr1QlJoyVNkzRt/vwOOzczM8OFsDVTI6KSD/hxYChwv6RZ+f0HamxzjKQHgPuAjYDN8vK3gYn59XRgcH69M81xThfX6oRjmMzMOo/vEbbstcJrARdGxA/qNc6RTJ8AdoyI1yXdTnO+4MJonth1EUt+9p7w1cysm/iKsHG3AgdIWh9A0nslbVzVpi/wYi6CWwA7NLDfe4Av5de1hlrNzKwT+YqwQRHxiKQfA5MkrQQsBL4BPFlodiNwpKQHgb+Shkdb803gUknfBK5urfG8eQMYP94xTGadqU+f1bq7C9aFHMPUwziGycys7RzDZGZmVocLoZmZlZoLoZmZlZoLoZmZlZoLoZmZlZoLoZmZlZqfIyzIE2GfRnoQ/kXStGinRsS13dqxAscwmXUsRy6ZC2EmScB1pGnUDs7LNgb2rmq3SkS80w1dBBzDZNbRHLlkHhpt9jHg7Yg4q7IgIp6MiNMljZJ0paQbgEkAkr6bo5MelHRCZZt6UU2SPiVpRo5hujUvW0vSeXk/MyXt07WnbGZmviJs9iFgRgvrdwS2iYgXJO1JSpUYTpqM+3pJuwHzaY5qWijpTGCkpD8D5wC7RcQcSe/N+/wR8JeIOEzSOsBUSbdExGvVBzczs87hQliHpDOAXUj3Cc8Abo6IF/LqPfPPzPy+N6kwbkNzVBNAL+A50j3HOyuRTlX72VvSsfn9GsAg4NGqvowGRgMMGtShp2lmVnouhM0eBvavvImIb0haD6hM7FkdyXRyRJxd3IGkMdSIapK0N7WjlgTsHxF/baljETEBmADQ1CRPDmtm1oF8j7DZX4A1JB1VWLZmnbY3AYdJ6g0gaUCOZ6oX1TQZ2F3S+yvLC/sZk7+og6TtOvqkzMysZb4izCIiJO0LnCbpe6T7fa8BY0lDnMW2kyRtCUzONWwB8OV6UU0RcV8e3rwmL38O2AM4EfgF8GAuhnOBvbrgdM3MLHMMUw8zcODAGDPGeYRmHcXPEZZDSzFMLoQ9jPMIzczaznmEZmZmdbgQmplZqbkQmplZqbkQmplZqbkQmplZqbkQmplZqZXygXpJi4DZpPN/FDgkIl5vw/Y/jIiTOqFfg4GJEbF1vTbOIzTrGH5+0CpKWQiBNyJiCICkS4AjgZ+3tlGe/UXAD4EOL4SNcB6hWcdwDqFVeGgU7gI2BZD0HUkP5Z9v5WWDJT2aI5VmAL8FeuW8wUvy+ocqO5N0rKRx+fWwnFc4WdJPKu3yNnflfMIZknbq4nM2MzddWbYAACAASURBVLOsrFeEQEqbBz4N3ChpKHAo8BHSVd8USXcALwKbA4dGxH/l7b5QuKIc3MIhzgdGR8S9kop/fj4H7BERb0raDLgMqDnjgZmZda6yXhH2kjSLFLH0T9JV3i7AtRHxWkQsAK4Bds3tn4yI+9pygBy0u3ZE3JsXXVpYvSpwjqTZwJXAVq3sa7SkaZKmzZ/fll6YmVlrynpF+O49wopKFFIdLSXGv8OSf1CsUdllC9t8G3gW2DZv+2YLbZ1HaGbWicp6RVjLncC+ktaUtBawH+n+YS0LJa2aXz8LrC9pXUmrk2OUIuJF4FVJO+R2Xyps3xf4d0QsBr4CrNzB52JmZg0q6xXhUiJihqQLgKl50bkRMbPOPcAJpAzBGRExUtL/AlOAOcBjhXZfIw2BvgbcDrycl58JXC3pC8BttHzFuYR58wYwfrxjmMyWVZ8+q3V3F2w54RimTiSpd77fiKTvAxtGxDeXZZ+OYTIza7uWYph8Rdi5PivpB6TP+UlgVPd2x8zMqrkQdqKIuAK4orv7YWZm9fnLMmZmVmouhGZmVmouhGZmVmouhGZmVmql+LKMpA2A04AdSHOHvg2cGhHXdmvH2sExTGbLzhFMVrTCF8I8ddp1wIURcXBetjGwd4PbrxwRizqxi23iGCazZecIJisqw9Dox4C3I+KsyoKIeDIiTpe0co5Huj/HJR0BIGmEpNskXQrMzrFJj0k6N0c0XSLpE5LukfQ3ScPzdsMl3StpZv69eV4+StI1km7M7U/Ny78m6bRKvyQdLqnVXEQzM+s4ZSiEHyLlCNbyNeDliBgGDAMOl/T+vG448KOIqCRDbAr8EtgG2AI4mJRYcSwpqBfS9Gq7RcR2wHEsGd47BDgQ+DBwoKSNgMuBvQvzlh5Kim4yM7MussIPjVaTdAapgL1Nmu1lG0kH5NV9gc3yuqkRMaew6ZyImJ338TBwa0REjlIaXNj+wpwxGKS4pYpbI+LlvP0jwMYR8S9JfwH2kvQosGrlGFV9Hg2MBhg0aJk/AjMzKyjDFeHDwPaVNxHxDeDjQD9SVNKYiBiSf94fEZNy0+qJsN8qvF5ceL+Y5j8oTgRui4itgc/RHMlUvf2iwjbnkqZeq3s1GBETIqIpIpr69WvlbM3MrE3KUAj/Aqwh6ajCsjXz75uAoypDk5I+mCOY2qsv8HR+PaqRDSJiCrARaaj1smU4tpmZtcMKXwgjxWvsC+wuaY6kqcCFwFjS1dgjwAxJDwFns2zDxacCJ0u6h7ZlDP4euCdnGJqZWRdyDNNyQNJE4LSIuLW1tgMHDowxY5xHaLYs/Bxh+TiGaTklaR1SEPADjRRBgP79+zN27NjO7ZiZWYm4EHajiHgJ+GB398PMrMxW+HuEZmZmLXEhNDOzUnMhNDOzUnMhNDOzUnMhNDOzUmvoW6OS1gT+GxgUEYfnuTQ3j4iJndq7TiJpETCbNMXaIuDoiLi3lW0WRETvVtqcC/w8Ih7psM5WcR6h2bLxM4RWrdHHJ84HpgM75vdPAVcCPbIQAm9ExBAASZ8ETgZ2X9adRsTXl3UfrXEeodmycRahVWt0aHSTiDgVWAgQEW+QrqZWBH1IqfUASPpuIZ/whOrGklaSdKakhyVNlPSnSnqFpNslNeXXCwrbHCDpgvz6Akm/yXmHT0jaXdJ5kh6ttDEzs67T6BXh25J6kaKFkLQJS6Yp9DS9JM0ipUNsSArvRdKepBim4aRCf72k3SLizsK2nyfFLn0YWB94FDivjcd/Tz7m3sANwM7A14H7JQ2JiFntPC8zM2ujRq8IjwduBDaSdAlwK/C9TutV53sjxy5tAXwKuEiSgD3zz0xSmO8WpMJYtAtwZUQsjoh5wG3tOP4NeTLw2cCzETE7IhaTIqMGVzeWNFrSNEnT5s9vx9HMzKyuhq4II+JmSTOAHUhXSt+MiOc7tWddJCImS1qP5nzCkyPi7BY2aXRIuDib+RpV64pZhtU5h0v9N4mICcAEgKYmeZZ0M7MO1JbHJwaQooVWA3aT9PnO6VLXkrQF6bz+Q8onPExS77xugKT1qza5G9g/3yvcABhRZ9fPStpS0krAfp3TezMzW1aNPj5xHrANaehucV4cwDWd1K/OVrlHCOkK75CIWARMkrQlMDmNlLIA+DLwXGHbq0kJ9w8BjwNTgJdrHOP7pG/V/iu3bfHRi0bNmzeA8eMdw2TWXn36rNbdXbDlTEN5hJIeiYituqA/PYKk3hGxQNK6pBilnfP9wk7X1NQU06ZN64pDmZmtMDoij3CypK0680HxHmZizhJcDTixq4qgmZl1vEYL4YWkYjiP9OUOARER23Raz5ZjETGiu/tgZmYdo9FCeB7wFdLX/Re30tbMzKzHaLQQ/jMiru/UnpiZmXWDRgvhY5IuJc2C8u5zbxHRU781amZmBjReCHuRCuCehWU9+fEJMzMzoMHHJ9q8U2kwMDEiti4sGwcsiIiftrBdE/DViDhG0gjg7dbikWrsYy7QVD3zTXG5pKHAVaR5QzcCtoqIZZ6SPvf52IjYa1n3Vc/AgQNjzBg/R2jWHo5gKq9lfnxC0hrA14APUZguLCIO65AeNu9vGlB5SG4E6YH2NhXC1kjahlQED4yImaR5RXvM/U/HMJm1nyOYrJZGp1i7GOgPfBK4AxgIvNreg+a4ovGSpkp6XNKuefmIHG00GDgS+LakWZJ2ldRP0tU5Iul+STvnbdaVNEnSTEln0/JcoFsC1wFfiYipeftRkn6dX18g6VeS7s0RSZV4pZailz4l6TFJd5OuMCvn+F5J1+U4p/tyAUbSOEkX5j7PlfR5SadKmi3pRkmrtvdzNTOztmu0EG4aEf8DvBYRFwKfJcUQLYtVImI48C1SusW7ImIucBZwWk6JuAv4ZX4/DNgfODc3Px64OyK2I13ZDWrhmH8gpdHf3UKbDUkJE3sBlT8fi9FLXycHFOcr5XOAzwG7kv5YqDgBmJmftfwhcFFh3Sakz3Af4HfAbRHxYeCNvNzMzLpIo1+WWZh/vyRpa2AeNeKCCurdeCwur3zRZnor+6r4BLBVngMUoI+ktYHdyFdiEfFHSS/W2R7gFuDrkm7Kc4vWcl2ORHokT6oNheglYJ6kSvTSFsCciPgbgKTfAaML2+yf+/WXfOXaN6/7c0QslDSbNOH3jXn5bOrEMFX2O6ilMm9mZm3W6BXhBEnvAX5Muup6BBjfQvv/kMJni94LFL/AUnkMYxGNFeSVgB3zFeKQiBgQEZXh2Ua/8XN0/n1mC22KsUiq+l1LvWPX2qbS9i2AXFgXRvM3lurGMEVEU0Q09evXQk/MzKzN2nKP8NOkq5wLgTOADeo1jogFwL8lfRzS/TJSAG5LQ5LVXgXWLryfRHMhQ9KQ/PJOYGRe9mmWLsBFi4GDgM0l/W8b+lIveukx4P2SNsnvDypsU+zXCOD5iHilDcc0M7Mu0OjQ6B9IUUPTWfKKqSVfBc6Q9LP8/oSI+Ecb+nYDcJWkfYAxwDF5fw+S+n0n6Qs1JwCX5eDgO4B/trTTiHgr7/MOSc8CrzXQl5rRSxHxZh62/KOk50kFs/LIyDjg/Nzf14FDGj5zMzPrMo3GMD1UfCawjLozeqnIzxGatZ+fIyyvjohhulfShyNidgf2q6dZLqKX+vfvz9ixY7vj0GZmK6RGC+EuwChJcyhpDJOjl8zMVkyNFsJPd2ovzMzMuklDhTAinuzsjpiZmXWHRh+fMDMzWyG5EJqZWam5EJqZWak1+mWZFYqkHwEHk6Z3WwwcQZoy7tgcBdXZxz8SeD0iLmq1cZV58+YxfnxLs9uZWZGfHbTWlK4QStqRlCyxfZ5lZj3Ss4FdJiLOau+2ziM0axtnEFpryjg0uiFp3s/KxNfPR8QzxQaSDsr5gA9JGp+XHSXp1EKbUZJOz6+/nLMVZ0k6W9LKefkCSf8n6YGcSbhBXj5O0rH59eE5X/GBnLe4Zpd8CmZmBpSzEE4CNsqBwGdK2r24UtL7SMOkHwOGAMMk7UtKtf98oemBwBWStsyvd46IIaTh1pG5zVrAfRGxLWlu1MNr9OeaiBiW2zwKfK2jTtTMzFpXukKYkzGGkvL95pOK2ahCk2HA7RExPyLeAS4BdouI+cATknbI841uDtxDmox7KHC/pFn5/Qfyvt4GJubX9XIXt5Z0V84mHAl8qLqBpNGSpkmaNn/+Mpy8mZktpXT3CAFyKO/twO25ABWTIVrKHrwC+CIpfunaiAilpOALI+IHNdoXswbr5S5eAOwbEQ/kgjyiRn8nABMAmprUaPaimZk1oHRXhJI2l7RZYdEQoDhzzhRgd0nr5Xt9B5HinQCuAfbNy67Iy24FDpC0ft7/eyVt3IYurU3KblyV5iFVMzPrImW8IuwNnJ6TJN4B/k4aJr0KICL+LekHwG2kq8M/RcQf8roXJT0CbBURU/OyRyT9GJgkaSVgIfANliyuLfkfUvF9EpjNkmHEZmbWyRrKI7Tlh/MIzdrGzxEatJxH6ELYwzQ1NcW0aZ3+zL+Z2QqlpUJYunuEZmZmRS6EZmZWai6EZmZWai6EZmZWai6EZmZWaqV4jlDSItIzequSnh28EPhFRCzu1o5lkhZERO9G2jqGyaxt/PiEtaYUhRB4I0+ITZ4B5lKgL3B8d3YqT8/W0pRuS3EMk1nbOIbJWlO6odGIeI40k8zRSlaW9JMchfSgpCMAJI2QdLukqyQ9JumSXLiQNFfSSZIm58mwt5d0k6R/5NBdJPWWdKukGTnSaZ+8fLCkRyWdCcwANqr0LU/rNlnSZ7v6czEzK6uyXBEuISKeyNOhrQ/sA7wcEcMkrQ7cI2lSbrodKQ3iGVLSxM7A3XndvyJiR0mnkSbO3hlYA3gYOAt4E9gvIl7J4b/3Sbo+b7s5cGhE/BeAJHJW4fXAjyPi5s48fzMza1bKQphVhiT3BLaRdEB+3xfYjBShNDUingLIEUuDaS6ElaI2G+gdEa8Cr0p6M89j+hpwkqTdgMXAAGCDvM2TEXFfoS+rkibv/kZE3EEVSaNJV7EMGrRM52xmZlVKNzQKIOkDpFik50gFcUxEDMk/74+IyhXhW4XNqmOUKusWV7VbnNuNBPoBQ/P9yWdJV4yQimTRO6S8wk/W6m9ETIiIpoho6tevDSdqZmatKl0hlNSPNHT565wVeBNwVI5BQtIHJa3VAYfqCzwXEQslfRRoKZopgMOALST5mzBmZl2oLEOjvfLQZuXxiYuBn+d155KGPGfkL8PMJ2UOLqtLgBskTQNmkcJ864qIRZK+lLd5JSLO7IA+mJlZK5w+0cM4hsmsbfwcoYFjmFYojmEyM2s7xzCZmZnV4UJoZmal5kJoZmal5kJoZmal5kJoZmal5kJoZmalVpYH6hsmqT/wC2AYaeq0ucC3IuLx7uxXhfMIzfxsoHUsF8KCPLPMtcCFEfGlvGwIabLsdhXCSuZgR4UAO4/QzBmD1rE8NLqkjwILI+KsyoKImAWMruQJAuRswr0ljZL0B0k3SvqrpOPz+qUyByUtKGx/gKQL8usvSHpI0gOS7uyi8zQzs8yFcElbk1Igqp0LHAogqS+wE/CnvG44KWliCPAFSZWZCzYHLoqI7SLiyRaOeRzwyYjYFth72U/BzMzawoWwATkjcFNJ6wMHAVdHxDt59c0R8Z+IeAO4BtglL6/OHKznHuACSYcDK9dqIGm0pGmSps2fv2znYmZmS3IhXNLDwNA66y4mXfkdCpxfWF49WWvlfXXmYLHdGu8ujDgS+DGwETBL0rrVB3YeoZlZ53EhXNJfgNXz1RkAkoZJ2h24APgWQEQ8XNhmD0nvldSLFN90T519PytpS0krAfsV9r9JREyJiOOA50kF0czMuogLYUEO6t2PVNz+IelhYBzwTEQ8CzzKkleDAHeTrhZnkYZM60VDfB+YSCq2/y4s/4mk2ZIeAu4EHuio8zEzs9b58YkqEfEM8MXq5ZLWBDYDLqta9VxEHF21j7mkL94Ul10FXFXjeJ9vS//mzRvA+PHOI7Ry69Nnte7ugq1AXAgbIOkTwHnAzyPi5e7sS//+/Rk7dmx3dsHMbIXiQtiAiLgFGFRj+QWke4dmZtZD+R6hmZmVmguhmZmVmguhmZmVmguhmZmVmr8s08M4hsk6iqOMzJLSF8LOyh+UNA5YEBE/rbHu3ojYqT37dQyTdRRHGZklpR4aLeQP3h4Rm0TEVsAPSfmDnaa9RdDMzDpeqQsh9fMH95A0K/88Lel8AElfljQ1Lz9b0sp5+ackzciZgrcW9r+VpNslPSHpmMrCSjahpN6Sbs3bzi5mHpqZWdcoeyGsmT8YEcdFxBBgd+A/wK8lbQkcCOyc1y0CRkrqB5wD7J8zBb9Q2NUWwCdJmYXHS1q16lBvAvtFxPakovyzfJW6BMcwmZl1ntLfI6wnF6RLgNMiYrqko0kRTffnWtULeA7YAbgzIuYARMQLhd38MSLeAt6S9BxpyPWp4mGAkyTtBiwGBuQ284p9iYgJwASApiZVxz6ZmdkyKHshfBg4oM66ccBTEVFJmxBwYUT8oNhI0t4snUlY8Vbh9SKW/rxHAv2AoRGxUNJcClmFZmbW+co+NFovf/B4YA/gmELbW4EDcko9OYNwY2AysLuk91eWt+H4fUnpFQslfRTYeNlOx8zM2qrUV4QREZL2A34h6fuke3ZzgTWB9wFT8zDo9RFxnKQfA5NyuO5C4BsRcZ+k0cA1eflzpCLaiEuAGyRNI+UZPtbaBo5hso7iKCOzRCmL1nqKpqammDatXvavmZnVIml6RDTVWlf2oVEzMys5F0IzMys1F0IzMys1F0IzMys1F0IzMys1F0IzMyu1Uj9HWI+kRcBs0ufzKHBIRLzeQvsFEdG7A447GJgYEVvXa+M8wp7DeX9mPYMLYW1v5Im1kXQJcCTw8+7tUuI8wp7DeX9mPYOHRlt3F7ApgKTvSHoo/3yrumG9WCVJgyU9KukcSQ9LmiSpV143NMc3TQa+0ZUnZmZmLoQtkrQK8GlgtqShwKHAR0iJE4dL2q5qk5ZilTYDzoiIDwEvAfvn5ecDx0TEjp17NmZmVosLYW29JM0CpgH/BH4L7AJcGxGvRcQC4Bpg16rtKrFKDwK30ByrBDAnh/5CykAcLKkvsE5E3JGXX1yrM84jNDPrPL5HWNu79wgragXm1tBSrFJ1JFMvUuFsdbJX5xGamXUeXxE27k5gX0lrSloL2I90/7CoTbFKEfES8LKkXfKikR3daTMza5mvCBsUETMkXQBMzYvOjYiZVc3aHKtEuu94nqTXgZs6qr9mZtYYxzD1MAMHDowxY5xH2BP4OUKz5UdLMUwuhD2M8wjNzNrOeYRmZmZ1uBCamVmpuRCamVmpuRCamVmpuRCamVmp+TnCHsYxTF3Djz6YlYcLYVbIIKy4PCJq5uhI2hd4PCIeaeexmoCvRsQxbd3WMUxdwxFKZuXhQthsqflFW7AvMBFoVyGMiGmkCb3NzKyb+R5hKySdIukRSQ9K+qmknYC9gZ9ImiVpE0lDJN2X21wr6T1529sljZc0VdLjknbNy0dImphfD5d0r6SZ+ffm3Xe2Zmbl4yvCZpXopYqTgZtJk2tvEREhaZ2IeEnS9cDEiLgKIMcujYmIOyT9L3A8UAnuXSUihkv6TF7+iarjPgbsFhHvSPoEcBLNWYXk/Y8GRgMMGtSRp2xmZi6EzWpFL61CCts9V9IfScOhVLWpzhS8ELiy0OSa/Hs6MLjGcfsCF0rajBTJtGp1A8cwmZl1Hg+NtiAi3gGGA1eT7gve2I7dVHIIF1H7D48TgdsiYmvgczTnF5qZWRfwFWELJPUG1oyIP0m6D/h7XvUqsDZARLws6UVJu0bEXcBXgDtq77GmvsDT+fWojum5mZk1yoWwWfU9whuBXwJ/kLQGKU2+8mDZ5cA5ko4BDgAOAc6StCbwBCljsFGnkoZGvwP8pbXG8+YNYPx4xzB1tj59VuvuLphZF3EMUw/jGCYzs7ZzDJOZmVkdLoRmZlZqLoRmZlZqLoRmZlZqLoRmZlZqLoRmZlZqfo6wQFJ/4BfAMNKMMHOBb0XE48u43x9GxEmF9/dGxE7t2ZfzCLuG8wjNysPPEWaSBNwLXBgRZ+VlQ4C184wxSFo5Iha1Y98LIqJ3R/SzqUnhxwg73/jxpzB27Nju7oaZdRA/R9iYjwILK0UQICJmAStLuk3SpeTgXknfkfRQ/qmkTCDpOknTJT2cEyOQdAp51hpJl+RlC/Lv3pJulTRD0mxJ+3Td6ZqZGXhotGhrUkJELcOBrSNijqShpCnUPkKadm2KpDsiYiZwWES8IKkXcL+kqyPi+5KOrhP6+yawX0S8Imk94D5J14cv083MuoyvCBszNSLm5Ne7ANdGxGsRsYAUs7RrXneMpAeA+4CNgM1a2a+Ak3Ke4S3AAGCDpRpJoyVNkzRt/vwOOBszM3uXC2Gzh4Ghdda9VnitWg0kjSCF7u4YEdsCM2k9Umkk0A8Ymq8Yn621TURMiIimiGjq16+VPZqZWZu4EDb7C7C6pMMrCyQNA3avancnsK+kNSWtRUqwv4sUp/RiRLwuaQtgh8I2CyUtFbibt3kuIhZK+iiwcQeej5mZNcCFMMv35fYD9pD0D0kPA+OAZ6razQAuAKYCU4Bz8/3BG4FV8jDniaTh0YoJwIOVL8sUXAI0SZpGujp8rKPPy8zMWubHJ3qYgQMHxpgxziPsbH6O0GzF0tLjEy6EPYzzCM3M2s7PEZqZmdXhQmhmZqXmQmhmZqXmQmhmZqXmQmhmZqXmuUZ7GMcwtc6PPphZW5SyEEr6EXAwsAhYDBwBjAeOjYgOezahVvySpPcBv4qIA9qzz/79n2bs2O93SP9WVOPHn9LdXTCzHqR0hVDSjsBewPYR8VZOfVitq44fEc8A7SqCZmbW8cp4j3BD4PmIeAsgIp7Pxeldkg7K+YAPSRqflx0l6dRCm1GSTs+vl8ohrNrfepImS/qspMGSHsrLB0u6K+cRzpDUrtR6MzNrvzIWwknARpIel3SmpCUm1c5Dl+OBjwFDgGGS9gWuAj5faHogcEV+fVhEDAWaSFFM6xb2twHwR+C4iPhjVV+eA/aIiO3z/n5Vq8OOYTIz6zylK4Q5Q3AoMBqYD1whaVShyTDg9oiYHxHvkCbG3i0i5gNPSNohF7rNgXvyNvVyCFcFbgW+FxE31+jOqsA5kmYDVwJb1emzY5jMzDpJ6e4RAkTEIuB24PZchA4prK6ZN5hdAXyRlBJxbUREVQ7h65JupzlT8B1S6v0ngTtq7O/bpAzCbUl/lLzZzlMys//f3t0HWVXfdxx/fwpYJQjRaiRhk6BN1BpSCa4ErAn4MJPRlhgbMuigQhNNTCJELMpkOkkxmZigHTMpRq02FJNSVJQoWqOEqqAliKuI4FM0ApEnlaroKkEevv3j/Na9e717d+/C3gOcz2uG4d7zdL/3p87X8zvnno9ZFxXujFDSUZJKk+MHA2tK3j8CjEjX9XoAZ9PaxOYCX0rLWqZFq+UQBvBV4GhJlW717AdsiIidwLlAj137dmZmVqsinhH2AaZL+iDZGdsLZNOktwFExAZJ3wUeIDs7vCci7kzrXpf0NHBMRCxNx7sXuDDlED5H2xxCImKHpLOAuyS9CdxTsvpa4HZJX0mf93ZHxW/cOIBp0xzDVE3fvnW7CdjM9gGOYdrLOIbJzKx2jmEyMzNrhxuhmZkVmhuhmZkVmhuhmZkVmhuhmZkVmhuhmZkVWuF+R1gejZQer9YYERflV1Xn5ZlH6Jw/M9sXFa4R7kkk9UzPM+20PPMInfNnZvsiT42WkDRT0uiS983p75GSHpR0m6RnJc2SpLTu9LTsYUn/KunutHyopMWSlqW/j0rLx0uaI+kuYL6kX0k6o+QzZ0n6Yl2/uJlZgRXxjPAASU+UvD8YmNeJ/T4DfApYT5Y68TeSmoB/I0unWCVpdsn2z6bl2yWdClwBfDmtGw78dUS8lmKgJgF3SuoHnEDbh4CbmVk3KmIj3BIRg1vetFwj7MR+SyNibdrnCWAg0Ay8GBGr0jazyZ5bCtkDtW9KD/gOssilFr+NiNcAImKhpJ9L+hBZ3uHt5dOlKez36wAf+1gN39TMzDrkqdG2tpPGJE19lj69eWvJ6x1k/xNRLbLph8ADETEIGEVrNBO8/+HavwLGAv8A/Ef5gZxHaGbWfdwI21pNFtoLcAZtz+IqeRY4QtLA9H5Mybp+wLr0enwHx5kJXAwQEU91plAzM9s93AjbupEsi3Ap8Fk6iEWKiC3At4B7JT1MFrK7Oa2+EvixpP+lg5zBiHgZeIYKZ4NmZta9HMO0iyT1iYjmNJX6c+D5iPhpjcfoDawAhkTE5mrbNjQ0xIQJ+eQR+neEZra3qhbDVMSbZXa3CySNI7ueuIzsLtJOS3eUzgCu7qgJAvTv358pU6Z0qVAzM3s/N8JdlM7+ajoDLNt/AeB7Qc3McuJrhGZmVmhuhGZmVmhuhGZmVmhuhGZmVmhuhGZmVmiFuWtU0g6y3+r1BFYB50bEGznVsjgiTujKvrsrj9C/CTQzyxSmEVLysG1JNwHfBn6URyFdbYKw+/IInS1oZpYp6tTo74ABkD1cW9JVklZKWiFpTFo+UtJCSbdK+r2kn0gaK2lp2u4v03ajJD2ScgcXSDosLZ8qaUbKMXxR0sSWDy/JOewj6X8kPZ6Oecb7KjUzs25VpDNCACT1AE4BfpEW/T0wGDgWOAR4VNKitO5Y4K+A14AXgX+PiKGSvgNMIHtQ9sPAsIgISecDlwH/mPY/GjgJOBB4TtJ1EbGtpJw/AWdGxJuSDgGWSJoXZc+9cwyTmVn3KdIZYUsg7/+RhfH+Ni0/EZgdETvSw68XAsendY9GxIaI2Ar8AZiflq8gyyMEaADuk7QCuJQsvLfFf0fE1ojYBLwCHFZWk4ArJD0JLCA72WvjTQAACi1JREFUSy3fxjFMZmbdqEiNsOUa4cfJngv67bS8WqZgaQbhzpL3O2k9m54OXBMRnwa+QdvcwUoZhqXGAocCx6XaXi7b38zMulmRGiEA6cHWE4HJknoBi4AxknpIOhT4PLC0hkOW5g6Oq7GcfsArEbFN0klkTdrMzOqocNcIASJimaTlwFnAfwLDgeVAAJdFxEZJR3fycFOBOZLWAUuAw2soZRZwl6Qm4AmyoN+qNm4cwLRpux7D1Lfvfrt8DDOzfYHzCPcyjY2N0dTUlHcZZmZ7lWp5hIWbGjUzMyvlRmhmZoXmRmhmZoXmRmhmZoXmRmhmZoXmRmhmZoVWyN8RlkQyieyJLxdFxOIO9nkQmBwRu/zbBUmNwHkRMbHDjcvUEsPkqCUzs44VshHSNpLpC8CPgRH1+GBJPVMz7VJDrSWGyVFLZmYd89Qo9AVeh/eil+5uWSHpGknjy3eQ9LUUzfSgpBslXZOWV4tkukHSfOCXpZ8jaaikxWmfxZKOqsN3NjOzpKhnhC1JFPsDHwZO7uyOkj4CfA8YArwF3E/2eDaoHsl0HHBiRGyRNLLkkM8Cn4+I7ZJOBa4Avtzlb2ZmZjUpaiMsnRodTnaWNqiT+w4FFkbEa2n/OcCRaV0DcIukD5MlXKwq2W9eRGypcLx+wE2SPkn2rNNe5Rs4j9DMrPsUfmo0In5HFsh7KLCdtmNSKRKpWmxTtUimt9vZ54fAAxExCBhV6TOdR2hm1n0K3whTykQPssDeNcAxkv5cUj+yJPtyS4ERkg6S1JO205hdiWQq3Wd8jeWbmdkuKurUaMs1QsjO8MZFxA7gJUm3Ak8CzwPLyneMiHWSrgAeAdYDTwOb0+qp1B7JdCXZ1OglZNcbzcysjhzD1AWS+kREczoj/DUwIyJ+XY/PbmhoiAkTOpdH6N8RmpllqsUwFfWMcFdNTXd47g/MB+6o1wf379+fKVOm1OvjzMz2eW6EXRARk/OuwczMdo/C3yxjZmbF5kZoZmaF5kZoZmaF5kZoZmaF5kZoZmaFts/fNSqpOSL6lC27EHgnIn6Z0iXmR8T6tG410BgRm7qxpvc+v9Z9nUdoZrZ77fONsJKIuL7k7XhgJdlTYvL4/Jo4j9DMbPcq5NRoygecLGk00AjMkvSEpAPSJhMkPS5pRXoW6Xv7lBxjpaSB6fUdkh6T9FRKimjZplnSjyQtl7SkLJ9wcnp9gaRH0za3S+pdl0EwMzOgoI2wRUTcRpYUPzYiBpfEJG2KiCHAdUBnfjz/1Yg4jqypTpT0F2n5B4AlEXEssAi4oMK+cyPi+LTNM8DXduErmZlZjQrdCKuYm/5+DBjYie0nSlpO9qDtjwKfTMvfBVoS79s71iBJD0laAYwFPlW+gaSvS2qS1PTqq53+DmZm1gluhJVtTX/voPU6asWswpQ2fyowPJ3VLaM1U3BbtD7VvPRYpWYCF6UMw8txHqGZWV25EcJbwIGd2G41MARA0hBaI5b6Aa9HxDvpeuKwGj//QGCDpF5kZ4RmZlZHRbhrtLektSXvry5bPxO4XtIWYHiV49wOnJdyDB8Ffp+W3wtcKOlJ4Dmy6dFafI8s23ANsIIOmvLGjQOYNq3zMUxmZlad8wj3Mo2NjdHU1JR3GWZme5VqeYSeGjUzs0JzIzQzs0JzIzQzs0JzIzQzs0JzIzQzs0JzIzQzs0Irwu8Id0mlGKcq244E3o2IxR1s9wNgUUQsqLWeSjFMjlsyM+s6N8LdayTQDFRthBHx/a5+QKUYJsctmZl1nadGu0DSKEmPSFomaYGkw1Ik04XApBTpNELSakl/lvbpLeklSb0kzUwRUEj6fophWinpBknK75uZmRWPG2HXPAwMi4jPADcDl0XEauB64Kcp0mkhsBwYkfYZBdwXEdvKjnVNimEaBBwA/F1dvoGZmQFuhF3VANyXopMupUJ0UnILMCa9Piu9L3dSOrtcAZxc6ViOYTIz6z5uhF0znexM7tPAN6gQnZTMA06TdDBwHHB/6UpJ+wPXAqPTsW6sdCzHMJmZdR83wq7pB6xLr8eVLG8T6RQRzcBS4GfA3RGxo+w4LU1vk6Q+wOjuKdfMzNrjRtix3pLWlvy5BJgKzJH0ELCpZNu7gDPTzTKfS8tuAc6hwrRoRLxBdha4AriDLN7JzMzqyDFMe5mGhoaYMKFtHqF/R2hmVl21GCY3wr2M8wjNzGrnPEIzM7N2uBGamVmheWp0LyPpVWBN3nUAh9D2RqEi81i08li08li02hPG4uMRUfEHaG6E1iWSmtqbby8aj0Urj0Urj0WrPX0sPDVqZmaF5kZoZmaF5kZoXXVD3gXsQTwWrTwWrTwWrfbosfA1QjMzKzSfEZqZWaG5EVpVko5Kz05t+fOmpIvTugmSnpP0lKQr8661u7U3FpIGS1qSljVJGpp3rfUgaVL6Z79S0mxJ+0s6PMWKPS/pFkn75V1nPbQzFrPSfx8rJc2Q1CvvOuuh0liUrJsuqTnP+irx1Kh1mqQeZKkbnwWOAP4J+NuI2CrpQxHxSq4F1lHZWNxIFsj8G0mnkwU1j8yzvu4maQBZQPUxEbFF0q3APcDpwNyIuFnS9cDyiLguz1q7W5WxeAX4Tdrsv4BFRR2LiJgpqRH4DnBmRPTJtdAyPiO0WpwC/CEi1gDfBH4SEVsBitQEk9KxCKBvWt4PWJ9bVfXVEzhAUk+gN7CBLFz6trT+JuBLOdVWb+VjsT4i7omELI6tIdcK6+d9Y5H+x/Eq4LJcK2uHG6HV4ixgdnp9JPC5NA22UNLxOdaVh9KxuBi4StJLwL8A382tqjqJiHVk3/WPZA1wM/AY8EZEbE+brQUG5FNh/VQai4iY37I+TYmeC9ybT4X1U2UsLgLmRcSGPOtrjxuhdUq61vNFYE5a1BM4CBgGXArcKkk5lVdXFcbim8CkiPgoMAn4RV611Yukg4AzgMOBjwAfAE6rsOk+f+2l0lhIOqdkk2vJpkUfyqO+empnLM4DvgJMz7O2atwIrbNOAx6PiJfT+7Vk14IiIpYCO8meJ1gE5WMxDpibXs8BinCzzKnAqoh4NSK2kX3/E4APpikxyKYCizBN3N5YIOmfgUOBS3Ksr54qjcXlwCeAFyStJgs7fyHHGt/HjdA662xapwIB7iC7HoSkI4H9yP+huvVSPhbrgRHp9cnA83WvqP7+CAyT1DvNBJwCPA08AIxO24wD7sypvnqqNBbPSDof+AJwdkTszLXC+qk0FldHRP+IGBgRA4F3IuITuVZZxneNWock9QZeAo6IiM1p2X7ADGAw8C4wOSLuz6/K+mhnLE4EfkY2Xfwn4FsR8Vh+VdaHpMuBMcB2YBlwPtk1wZuBg9Oyc1puqNqXtTMWb5MlxbyVNpsbET/Ip8L6qTQWpf8OSGre0+4adSM0M7NC89SomZkVmhuhmZkVmhuhmZkVmhuhmZkVmhuhmZkVmhuhmZkVmhuhmZkVmhuhmZkV2v8DnWpiaxCz2SIAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "eu_countries[\"life_expectancy\"].sort_values().plot.barh(\n",
+ " figsize=(6, 8),\n",
+ " xlim=(75, 85),\n",
+ " color=\"yellow\",\n",
+ " edgecolor=\"#888888\", # střední šeď\n",
+ " title=\"Očekávaná doba dožití (roky)\"\n",
+ ");"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "💡 Začínat sloupcové (ale i mnohé další) grafy jinde než u nuly ti pomůže všimnout si i nepatrných rozdílů, a proto v explorativní fázi je to určitě dobrý nápad. Ovšem při prezentaci výsledků mohou zvýrazněné rozdíly mást publikum a budit dojem, že nějaký efekt je výrazně silnější než ve skutečnosti. Manipulační efekt je tím silnější, čím méně intuitivní jsou prezentovaná data. V tomto případě by asi málokdo uvěřil, že ve Španělsku žijí lidé šedesátkrát déle než v Lotyšsku, protože to neodpovídá běžnému očekávání, ale i tak na první pohled situace vypadá velice dramaticky (necháváme ti na posouzení, jestli rozdíl mezi 75 a 83, neboli cca 10 % je obrovský či nikoliv). Novináři takto matou poměrně často - ať už úmyslně, nebo omylem."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "V grafu ovšem můžeme velice snadno zobrazit více veličin, pokud jej nevytváříme skrze `Series`, ale `DataFrame`. Stačí místo jednoho sloupce dodat sloupců více (například výběrem z `DataFrame`) a pro každý řádek se nám zobrazí více sloupečků pod sebou.\n",
+ "\n",
+ "V našem případě se podíváme na to, kolika let se dožívají muži a ženy. Zvolíme genderově stereotypní barvy (ono je to někdy intuitivnější), ale ty si je samozřejmě můžeš upravit podle libosti."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAJOCAYAAACtLO3jAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeXhdVdn+8e/NcGixpFEqhJcgUSyDIlaJyGxR5FVBBsEBURmUQsWAcUqcQRRy0NcJRCj8mBSQUSxVoYDMFGgLpWVGaRGrkXkoQynt8/tjr9DdkKQnbZLTnXN/ritX9lnTfvaG9jxda52zFRGYmZmZFdFq1Q7AzMzMbEU5kTEzM7PCciJjZmZmheVExszMzArLiYyZmZkVlhMZMzMzKywnMmY1SNLBkn4gaUdJZ1TY5yxJP66g3V8lTVz5KCsnqV7Sw5Le048+4yX9q8K2FV37ipB0kKSbKmy7r6TjJb1Z0rWSVk/l35F0+nL67inpNkmlXupv7s/969a34nvZrd/6ku6TtNaKnNcMnMiYDTvpjXGOpBcldUr6raT6fJuIOBPYHDgR+OoAnvsLwJMR8duBGrNCPweOi4g7h/i8QyoiLgGagUuAYyNicSo/LiK+BCCpSVJIWqOrn6R1geOAT0bEK93HlfRx4Pmhvn8R8V/gWmDCUJ7XhhcnMmbDiKSvA2Xgm8BoYFtgY+Cq7v8Sj4jPRsR7IuK5AQxhFHDYAI63XJLWAW6PiD5nJIaRFuAPEfG3fvR5JzAhIv7ZS/3hwO9665xPigbBuQzx/zM2vDiRMRsmJNUBxwAtEXFFRCyKiHnAp8iSmc+ldqunpYh/SHpe0kxJG6W6zSVdJekpSQ9I+lQv51onLW38WpndJd0JdAD3Szo61/YKSV/p1v8uSZ9Ix7+S9Kik51IsO+XaHS3pQknnpFjvkdScq28HZgE/lXSvpH36uD8j0xLR05LuBd7XrX4LSddJeiadZ89uQ4xJ9+Z5SddL2jjXt9dr6CGOdSVNTm1vBzbpVr+9pOmSnk2/t0/l20laAMwATpD0sqR5ufv0+zTEDen3M5IWSNoOeBtwQi/xlIAPAtfnyo6WdLGk30t6DjhI0lqSfinp3+nnl70tCUk6Mv33aJR0d5rx6apbU9ITksalotuAt+Xvp1l/OJExGz62B0YAl+YLI2IB8Ffgw6noa8D+wMeAOuAQ4EVJbwCuAs4D1kttTpb0zvx4aZniGuDmiDgysuecvAQcCNQDuwNflrR36nJeGqur/zvIEqs/p6LpwDjgTantRZJG5E65J/CHNPZk4KRc3VxgZ7LZp2OA30vaoJf780OypGET4H9TvF0xrQlcDkxN194CnCtps1z/A4BjgTFkydO5ubrlXUPeb4CXgQ3I7v0huTjeRHZffg2sS7Zk9mdJ60bEtIgYFRGjgDcCtwLn9zD+zul3fWo/rZc4uowFlkRE9z0uewEXk933c4Hvks3wjQPeDWwDfK/7YJK+DxwEfCCNeQ4piU4+BvwnImYBRMSrwN/TmGb95kTGbPgYAzyR3hi6+0+qB/gS8L2IeCAyd0XEk8AewLyIODMiXo2IO8j2YuyXG+d/yP7lflFEvPYmFhF/i4jZEbEkImaTvZl/IFX/ERiX+xf3AcClEbEw9f19RDyZzvl/wFpAPoG4KSL+kvaD/I7cG15EXBAR89N5LwAeInuD7cmngJ9ExFMR8ShZstBlW7JlsY6IeCUt20whl4ABf46IG1Lc3wW265rJquAagGw2DNgX+EFEvBARdwNn55rsDjwUEb9LY50P3A98vNtQvwZeSHGsrHrg+R7Kp0XEZenevkT23+1HEfFYRDxOljh+ftnL08/JksRdUhuA3wMfSzOGpD7dl7GeT3GY9ZsTGbPh4wmy5Y+e9jNskOoBNgL+0UObjYH3p6WVZyQ9Q/bm1ZBrszswEjgl31HSe5V9WmmepEfI/kU+BiAiniebZfhMav4ZcrMZkr6u7JMrz6ZzjmZp0gXQmTt+ERjRdY2SPi3p1rSsM49sA3O+b97/AI/mXj/SvS4ilnSr3zD3+rW+aZbrqdSvkmvo8mZgjeXE8QjLWiYOSYcB44HPdot3RT0NrNND+aPdXneP7ZFU1qWebNPu8RHxbFdhRPwbuBnYV9mm84+y7GwW6fzPrFD0VvOcyJgNH9OAhcAn8oVpyeijZMtBkL1BbcLrPQpcHxH1uZ9REZH/KPVpwBXAX9K4XS4gm8F4e0RsTDbLoFz9+cD+ab/GSLJPqpD2krSRzZa8MSLqgWe79e1Rmg05C/hKRGwUEU3AA330/Q9ZEtflLbnjfwMbSVqtW/383OvX+koaRbaM9O9+XsPjwKvLiaP7XpHX4kjnOhbYK58sdBO9lPfmoWxobditvPs43WN7Syrr8jTZrN6Zknbo1vdssuWlT5LN9Lx2X1NS+nbgrn7GbQY4kTEbNtIb2zHAiZI+kjZVNgEXAf9i6XT+6cCxksYqs1Xa9zIF2FTS51PfNSW9T9IW3U71FbKEYYqkkamsHngpIl6VtA3LLskA/IXsTfBHwAW5mYR1yN7YHwfWkPQDsn07lagjSxZeULaB+WCyT+f05kLg25LeKKmRbB9Ml9vIlmq+la57PNlyzh9ybT6m7Ht3SmTJxG1piaria0jLY5cCR0taO+0XOjDX5C9k/w0+K2kNSZ8G3kF2rzciSxi/EBEP9nGdjwNLyDb4LldELAKuZulSYG/OB76n7DtsxgA/IFs2yo91Hdks3h8lvT9XdRnwXuAosj0zeduQLWl2n4kyq4gTGbNhJCJOAL4D/Ax4juwN+lHgQ117Usg2kF5ItrH1OeD/ASPTEtBuZEs//yZb0imT7ffInyPIlhAeBf6UNrVOBH4o6XmyN7gLu/VZSPYGvivZ/pkuV5JtRH6QbKniZV6/pNHbtd4D/B/ZssV/gXel494ck84xN137a/s00ner7Ek2c/UEcDJZwnB/rv95ZBuGnwK2JnvDXpFr+ArZfpxOshmlM3NxdO1V+jrwJPAtYI+IeAL4ENky38Xp00gLJN3Tw315EfgJcHNaIty2j1i6nMqy+1168mOyT0zNBuYAd6Sy7ue/CjgYmCxp61T2Etl+q7fSbTM62X08BbMVpOzvJDMzq2XKvl24ZbC+FC/NVG0aEZ/Lla1Htnn8PRHx8mCc14Y/JzJmZjao0sfK7wQ+HxE3LK+9WX94acnMzAaNpEPJltr+6iTGBoNnZMzMzKywPCNjZmZmhTWYDwKzQTBmzJhoamqqdhhmZmZDZubMmU9ExJt7qnMiUzBNTU3MmDGj2mGYmZkNmfSN4T3y0pKZmZkVlhMZMzMzKywnMmZmZlZY3iNTMJ2dnZTL5WqHYWZmw0BdqcTE1tZqh7FSnMgUTMP8+bS1t1c7DDMzGwbKHR3VDmGleWmpHyR9V9I9kmZLmtXt6a6VjrGnJGciZmZmA8AzMhWStB3ZU2nfGxEL02PsS/0dJyImA5MHOj4zM7Na5BmZym0APBERCwEi4omI+LekeZLKkm5PP28HkPRxSbdJulPS1ZLWT+UHSTopHZ8l6deSbpH0sKT9qnZ1ZmZmBeQZmcpNBX4g6UHgauCCiLg+1T0XEdtI+gLwS7KZm5uAbSMiJH0J+Bbw9R7G3QDYEdicbKbm4u4NJE0AJgDU19dT9h4ZMzMbAHWlfi8srHKcyFQoIhZI2hrYCdgFuCC31+X83O9fpOPG1GYDsiWoub0MfVlELAHu7Zq16eHck4BJAFJztLe3rfT1mJktT0dHmbY2/31jqzYvLfVDRCyOiOsi4ofAV4B9u6ryzdLvE4GTIuJdwGHAiF6GXZg71kDGa2ZmNtw5kamQpM0kjc0VjQO6nv3w6dzvael4NDA/HR84+BGamZnVHi8tVW4UcKKkeuBV4O9k+1b2ANaSdBtZYrh/an80cJGk+cCtwFuHPGIzM7NhThGx/FbWK0nzgOaIeGIoztfY2BgtLS1DcSozq3GlUh2trROrHYYZkmZGRHNPdZ6RKZiGhgZvvjMzM0ucyKykiGiqdgxmZma1ypt9zczMrLCcyJiZmVlhOZExMzOzwnIiY2ZmZoXlRMbMzMwKy4mMmZmZFZY/fl0wnZ2dlMvlaodhZmYFUFcqMbG1tdphDConMgXTMH8+be3ty29oZmY1r9zRUe0QBp0TmW4kLQbm5Ir2joh5VQrHzMzM+uBE5vVeiohxvVVKWiMiXh3KgMzMzKxn3uxbAUkHSbpI0uXAVEmjJF0j6Q5JcyTtldo1SbpP0mmS7pE0VdLIVPd2SVdLuiv12ySVf1PSdEmzJR1Txcs0MzMrHM/IvN5ISbPS8dyI2CcdbwdsFRFPSVoD2CcinpM0BrhV0uTUbiywf0QcKulCYF/g98C5QEdE/FHSCGA1Sbul9tsAAiZL2jkibsgHJGkCMAGgvr6esvfImJlZBepKpWqHMOicyLxeb0tLV0XEU+lYwHGSdgaWABsC66e6uRHRlQjNBJokrQNsGBF/BIiIlwFSIrMbcGdqP4ossVkmkYmIScCkrE9ztLf76ddmtnwdHWXa2vz3hQ1vTmQq90Lu+ADgzcDWEbFI0jxgRKpbmGu3GBhJlvj0RMDxEXHqAMdqZmZWE7xHZsWMBh5LScwuwMZ9NY6I54B/SdobQNJaktYGrgQOkTQqlW8oab1Bjt3MzGzYcCKzYs4FmiXNIJudub+CPp8HjpQ0G7gFaIiIqcB5wDRJc4CLgXUGKWYzM7NhRxFR7RisHxobG6OlpaXaYZhZAZRKdbS2Tqx2GGYrTdLMiGjusc6JTLE0NzfHjBkzqh2GmZnZkOkrkfHSkpmZmRWWExkzMzMrLCcyZmZmVlhOZMzMzKywnMiYmZlZYTmRMTMzs8JyImNmZmaF5UTGzMzMCssPjSyYzs5OyuVytcMwM7NVRF2pxMTW1mqHUTVOZAqmYf582trbqx2GmZmtIsodHdUOoaq8tDQAJC1Iv5skfbaC9k2S7h78yMzMzIY3JzIDqwlYbiJjZmZmA8OJzMDqAHaSNEtSa5p5uVHSHeln++4dUv243OubJW01pFGbmZkVlPfIDKx24BsRsQeApLWBD0fEy5LGAucD3Z/eeTpwEPBVSZsCa0XE7HwDSROACQD19fWUvUfGzMySulKp2iFUlSKi2jEUnqQFETFK0niWTWRGAycB44DFwKYRsbakJmBKRGyZkp3ZwBbAscC/IuKk3s/VHDBjUK/HzKw/OjrKtLW1VTsMG8YkzYyI7hMBgGdkBlsr8F/g3WTLeC93bxARL0q6CtgL+BSvn7ExMzOzXjiRGVjPA+vkXo8mm2FZIulAYPVe+p0OXA7cGBFPDXKMZmZmw4Y3+w6s2cCrku6S1AqcDBwo6VZgU+CFnjpFxEzgOeDMIYvUzMxsGPCMzACIiFHp9yLgQ92q859A+nZqNw/YsqtQ0v+QJZVTl3euDTfspKXF3+xrZquOUqmu2iFYDXMiU2WSvgD8BPhaRCxZXvuGhgZvqjMzM0ucyFRZRJwDnFPtOMzMzIrIe2TMzMyssJzImJmZWWE5kTEzM7PCciJjZmZmheVExszMzArLiYyZmZkVlj9+XTCdnZ2Uy/5CPDOzVVldqcTE1tZqh1ETnMgUTMP8+bS1t1c7DDMz60O5o6PaIdSMVX5pSdKCVSCGsyTtV+04zMzMbFmrfCIznEnq7WnYZmZmVoFCJjLdZ0i6Zm0k7SPpamU2kPSgpAZJq0v6qaTpkmZLOiy1Hy/pekkXprYdkg6QdLukOZI2yZ12V0k3pnZ7pP4jJJ2Z2t4paZdUfpCkk3LxTZE0vitWST+SdBuwnaSPSbpf0k2Sfi1pyqDfQDMzs2FiWO2RiYg/StoXOAL4CPDDiOiUNAF4NiLeJ2kt4GZJXU+afjewBfAU8DBwekRsI+kooAX4amrXBHwA2AS4VtLb03mIiHdJ2hyYKmnT5YT5BuDuiPiBpBHAQ8DOETFX0vk9dUjxTwCor6+n7D0yZmartLpSqdoh1IxhlcgkLcDdwK0R0ZUY7AZslZvFGQ2MBV4BpkfEfwAk/QPoSnDmALvkxr0wPZ36IUkPA5sDOwInAkTE/ZIeAZaXyCwGLknHmwMPR8Tc9Pp8UsKSFxGTgElZjM3R3u6nX5vZ8nV0lGlr898XNrwVNZF5lbQsJklAPvXdEFgCrC9ptZR8CGiJiCvzg6TlnoW5oiW510tY9v5EtxgijdtnfMmI3PHLEbG4K4Re+puZmVkFCrlHBpgHbJ2O9wLWBJC0BnAm8FngPuBrqc2VwERJXe02lfSGfp7zk5JWS/tm3gY8ANwAHNA1JvCWVD4PGJfabwRs08uY9wNvk9SUXn+6nzGZmZnVtCLMyKwt6V+51z8HTgP+JOl24BrghVT3HeDGiLhR0ixguqQ/A6eT7XG5I83gPA7s3c84HgCuB9YHDo+IlyWdDJwiaQ7ZLMxBEbFQ0s3AXLLlqbuBO3oaMCJekvRl4ApJTwC39zMmMzOzmqaI7ismNpQkjYqIBSnB+g3wUET8orf2jY2N0dLSMnQBmllhlUp1tLZOrHYYZitN0syIaO6prggzMsPdoZIOJNvncydwal+NGxoavHnPzMwscSJTZWn2pdcZGDMzM+tdUTf7mpmZmTmRMTMzs+JyImNmZmaF5UTGzMzMCsuJjJmZmRWWExkzMzMrLCcyZmZmVlj+HpmC6ezspFwuVzsMMzPrh7pSiYmtrdUOY1hyIlMwDfPn09beXu0wzMysH8odHdUOYdiq+aUlSd+VdI+k2ZJmSXr/AI69YKDGMjMzs9er6RkZSdsBewDvTU+tHkP2zCMzMzMrgFqfkdkAeCIiFgJExBNAo6RLASTtJeklSSVJIyQ9nMo3kXSFpJmSbpS0eSp/q6RpkqZLOjZ/IknfTOWzJR2Typok3SfptDQrNFXSyKG8AWZmZkVW0zMywFTgB5IeBK4GLgBuBt6T6ncC7gbeR3avbkvlk4DDI+KhtBR1MvBB4FfAbyPiHElHdJ1E0m7AWGAbQMBkSTsD/0zl+0fEoZIuBPYFfp8PUtIEYAJAfX09Ze+RMTMrlLqSJ/sHiyKi2jFUlaTVyRKWXYDDgHbgAOBI4FTgt0ATsDrwFHAO8DjwQG6YtSJiC0lPAg0RsUhSHfDviBgl6WfAfsAzqf0o4HjgGuCqiBibYmkD1oyIH/ceb3PAjAG5djOzldXRUaatra3aYdgwJ2lmRDT3VFfrMzJExGLgOuA6SXOAA4EbgY8Ci8hmas4iS2S+QbYc90xEjOttyB7KBBwfEacuUyg1AQtzRYsBLy2ZmZlVqKb3yEjaTNLYXNE44BHgBuCrwLSIeBxYF9gcuCcingPmSvpkGkOS3p363wx8Jh0fkBv3SuAQSaNSnw0lrTdY12VmZlYran1GZhRwoqR64FXg72R7UV4A1idLaABmA4/F0nW4A4DfSvoesCbwB+Au4CjgPElHAZd0nSQipkraApgmCWAB8DmyGZh+2XDDTlpa/IV4ZrZqKJXqqh2C1bia3yNTNM3NzTFjhvfImJlZ7ehrj0xNLy2ZmZlZsTmRMTMzs8JyImNmZmaF5UTGzMzMCsuJjJmZmRWWExkzMzMrLCcyZmZmVlhOZMzMzKywav2bfQuns7OTctnf7GtmViR1pRITW1urHcaw5ESmYBrmz6etvb3aYZiZWT+UOzqqHcKw5aWlRNJiSbNyP02SmiX9uoK+CwYohiZJdw/EWGZmZrXAMzJLvRQR47qVzQP8YCMzM7NVlGdk+iBpvKQp6fhoSWdIuk7Sw5KO7KH9KEnXSLpD0hxJe6XyJkn3STpN0j2Spkoameq2lnSXpGnAEUN6gWZmZgXnGZmlRkqalY7nRsQ+PbTZHNgFWAd4QNJvI2JRrv5lYJ+IeE7SGOBWSZNT3Vhg/4g4VNKFwL7A74EzgZaIuF7ST3sKTNIEYAJAfX09Ze+RMTMrlLpSqdohDFtOZJbqaWmpuz9HxEJgoaTHgPWBf+XqBRwnaWdgCbBhagNZctSVKM0EmiSNBuoj4vpU/jvgo91PGhGTgEkAUnO0t7f1/+rMbJXT0VGmrc1/ns1WhhOZ/lmYO17M6+/fAcCbga0jYpGkecCIXvqOJEt8YnBCNTMzG/68R2ZgjQYeS0nMLsDGfTWOiGeAZyXtmIoOGOwAzczMhhPPyAysc4HLJc0AZgH3V9DnYOAMSS8CVw5mcGZmZsONIryyUSSNjY3R0tJS7TDMbACUSnW0tk6sdhhmqzxJMyOiucc6JzLF0tzcHDNm+KttzMysdvSVyHiPjJmZmRWWExkzMzMrLCcyZmZmVlhOZMzMzKywnMiYmZlZYTmRMTMzs8JyImNmZmaF5UTGzMzMCsuPKCiYzs5OyuVytcMwM6tZdaUSE1tbqx2GJYVIZCQF8POI+Hp6/Q1gVEQc3Uef8cArEXFLen0WMCUiLl6JOOYBzRHxxIqOkRtrQUSM6m+/hvnzaWtvX9nTm5nZCip3dFQ7BMspytLSQuATksb0o894YPuBOLkyRblXZmZmNaMob86vApOA183lSXqzpEskTU8/O0hqAg4HWiXNkrRTar6zpFskPSxpv9wY30x9Z0s6JpU1SbpP0snAHcBG3c57maSZku6RNCFXvkDSTyTdJelWSeun8rdKmpbOc2yu/QaSbkhx3p2L1czMzJajEEtLyW+A2ZJO6Fb+K+AXEXGTpLcAV0bEFpJOARZExM8AJH0R2ADYEdgcmAxcLGk3YCywDSBgsqSdgX8CmwEHR8SX0xj58x4SEU9JGglMl3RJRDwJvAG4NSK+m2I9FPhxivO3EXGOpCNy43w2xfwTSasDa3e/8JQoTQCor6+n7KUlM7OqqSuVqh2C5RQmkYmI5ySdAxwJvJSr2hV4Ry7JqJO0Ti/DXBYRS4B7u2ZKgN3Sz53p9SiyxOafwCMRcWsvYx0paZ90vFHq8yTwCjAllc8EPpyOdwD2Tce/A7p27E4HzpC0ZopvVg/XPolsRgqpOdrb23oJycys/zo6yrS1+e8VK6bCJDLJL8mWec7Mla0GbBcR+eSm++xJl4X5Jrnfx0fEqd36NwEv9DRI2ki8azrvi5KuA0ak6kUREel4Mcve46CbiLghzQDtDvxO0k8j4pyezmtmZmbLKsoeGQAi4ingQuCLueKpwFe6Xkgalw6fB3qbmcm7EjhE0qjUf0NJ6y2nz2jg6ZTEbA5sW8F5bgY+k44PyMW7MfBYRJwG/D/gvRWMZWZmZhQskUn+D8h/eulIoDlt1L2XbJMvwOXAPt02+75OREwFzgOmSZoDXMzyE6ArgDUkzQaOBXpbfso7CjhC0nSyRKjLeGCWpDvJlp5+VcFYZmZmBmjpKogVQWNjY7S0tFQ7DDMbRkqlOlpbJ1Y7DLNeSZoZEc091jmRKZbm5uaYMWNGtcMwMzMbMn0lMkVcWjIzMzMDnMiYmZlZgTmRMTMzs8JyImNmZmaF5UTGzMzMCsuJjJmZmRWWExkzMzMrLCcyZmZmVlhFe2hkzevs7KRcLi+/oZmZVU1dqcTE1tZqh1ETnMgUTMP8+bS1t1c7DDMz60O5o6PaIdQMLy11I2kfSZGear0i/feW9I4+6g+X9IUVj9DMzMy6OJF5vf2Bm4DPrGD/vYEeExlJa0TEKRFxzooGZ2ZmZks5kcmRNArYAfgiKZGRNF7SlFybkyQdlI47JN0rabakn0naHtgT+KmkWZI2kXSdpOMkXQ8cJeloSd9I/Q+VNF3SXZIukbT2EF+ymZlZoXmPzLL2Bq6IiAclPSXpvb01lPQmYB9g84gISfUR8YykycCUiLg4tQOoj4gPpNdH54a5NCJOS+U/JkugTuzhXBOACQD19fWUvUfGzGyVVlcqVTuEmuFEZln7A79Mx39Ir//cS9vngJeB0yX9GZjSSzuAC3op3zIlMPXAKODKnhpFxCRgEoDUHO3tbX1dg5nVgI6OMm1t/rvAzIlMImld4INkyUUAqwMBTGbZJbgRABHxqqRtgA+RLUN9JfXvyQu9lJ8F7B0Rd6XlqvErdxVmZma1xXtkltoPOCciNo6IpojYCJib6t4haS1Jo8kSl679NKMj4i/AV4Fxqe3zwDoVnnMd4D+S1gQOGKgLMTMzqxWekVlqf6D7B/8vAT4LXAjMBh4C7kx16wB/kjQCEND1zUd/AE6TdCRZctSX7wO3AY8Ac6g8ATIzMzNAEVHtGKwfGhsbo6WlpdphmFmVlUp1tLZOrHYYZkNC0syIaO6xzolMsTQ3N8eMGTOqHYaZmdmQ6SuR8R4ZMzMzKywnMmZmZlZYTmTMzMyssJzImJmZWWE5kTEzM7PCciJjZmZmheVExszMzArL3+xbMJ2dnZTL5WqHYWa2SqorlZjY2rr8hjZsOJEpmIb582lrb692GGZmq6RyR/cnzdhw56WlfpAUkn6Xe72GpMclTVlOv/FdbdLx9oMdq5mZWS1wItM/LwBbShqZXn8YmN/PMcYDTmTMzMwGgBOZ/vsrsHs63h84v6tC0jaSbpF0Z/q9Wb6jpCbgcKBV0ixJO0n6uKTbUp+rJa0/RNdhZmZWeN4j039/AH6Qloq2As4Adkp19wM7R8SrknYFjgP27eoYEfMknQIsiIifAUh6I7BtRISkLwHfAr6eP6GkCcAEgPr6esreI2Nm1qO6UqnaIdgQcyLTTxExO82s7A/8pVv1aOBsSWOBANasYMhG4AJJGwAlYG4P55wETAKQmqO9vW2F4zez4aGjo0xbm/8uMPPS0oqZDPyM3LJScixwbURsCXwcGFHBWCcCJ0XEu4DDKuxjZmZmeEZmRZ0BPBsRcySNz5WPZunm34N66fs8UNdLnwMHMEYzM7NhzzMyKyAi/hURv+qh6gTgeEk3A6v30v1yYJ+uzb7A0cBFkm4EnhiUgM3MzIYpRUS1Y7B+aGxsjJaWlmqHYWZVVirV0do6sdphmA0JSTMjornHOicyxdLc3BwzZsyodhhmZmZDpq9ExktLZmZmVlhOZMzMzKywnMiYmZlZYTmRMTMzs8JyImNmZmaF5UTGzMzMCsuJjJmZmRWWExkzMzMrLD9rqWA6Ozspl8vVDsPMrObUlUpMbG2tdhjWjROZgmmYP5+29vZqh2FmVnPKHaiADsQAACAASURBVB3VDsF64KWlbiQtWIE+8ySNqdb5zczMapUTmQpI6u1J1mZmZlZFTmR6IWm8pGslnQfMSWWfk3S7pFmSTu0pwZF0maSZku6RNCFXvkDSTyTdJelWSeun8rdKmiZpuqRjh+wCzczMhgHvkenbNsCWETFX0hbAp4EdImKRpJOBA4BzuvU5JCKekjQSmC7pkoh4EngDcGtEfFfSCcChwI+BXwG/jYhzJB3RUxApIZoAUF9fT9l7ZMzMhlxdqVTtEKwHTmT6dntEzE3HHwK2JktOAEYCj/XQ50hJ+6TjjYCxwJPAK8CUVD4T+HA63gHYNx3/DnjdR5IiYhIwCUBqjvb2tpW4JDMb7jo6yrS1+e8Jqw1OZPr2Qu5YwNkR8e3eGksaD+wKbBcRL0q6DhiRqhdFRKTjxSx77wMzMzPrN++Rqdw1wH6S1gOQ9CZJG3drMxp4OiUxmwPbVjDuzcBn0vEBAxatmZlZDfCMTIUi4l5J3wOmSloNWAQcATySa3YFcLik2cADwK0VDH0UcJ6ko4BLltd4ww07aWnxF+KZWe9Kpbpqh2A2ZLR0tcOKoLm5OWbMmFHtMMzMzIaMpJkR0dxTnZeWzMzMrLCcyJiZmVlhOZExMzOzwnIiY2ZmZoXlRMbMzMwKy4mMmZmZFZYTGTMzMyssJzJmZmZWWP5m34Lp7OykXPY3+5qZrUrqSiUmtrZWO4ya5ESmYBrmz6etvb3aYZiZWU65o6PaIdQsLy3lSFpf0nmSHpY0U9I0SftUOy4zMzPrmROZRJKAy4AbIuJtEbE12VOpG7u18yyWmZnZKsKJzFIfBF6JiFO6CiLikYg4UdJBki6SdDkwFUDSNyVNlzRb0jFdfSR9TtLtkmZJOlXS6qn8I5LukHSXpGtS2RsknZHGuVPSXkN7yWZmZsXm2YWl3gnc0Uf9dsBWEfGUpN2AscA2gIDJknYGHgc+DewQEYsknQwcIOmvwGnAzhExV9Kb0pjfBf4WEYdIqgdul3R1RLyQP7GkCcAEgPr6esreI2NmtkqpK5WqHULNciLTC0m/AXYEXgF+A1wVEU+l6t3Sz53p9SiyxGYrYGtgerZSxUjgMWBbsiWruQDdxtlT0jfS6xHAW4D78rFExCRgUhZXc7S3tw3otZrZqqOjo0xbm/+Mm1XKicxS9wD7dr2IiCMkjQFmpKL8LImA4yPi1PwAklqAsyPi293K9wSih3MK2DciHhiA+M3MzGqO98gs9TdghKSJubK1e2l7JXCIpFEAkjaUtB5wDbBfOkbSmyRtDEwDPiDprV3luXFa0kZjJL1noC/KzMxsOPOMTBIRIWlv4BeSvkW23+UFoI1siSjfdqqkLYBpKQdZAHwuIu6V9D1gqqTVgEXAERFxa9rncmkqfwz4MHAs8Etgdkpm5gF7DMHlmpmZDQuK6GnFw1ZVjY2N0dLSUu0wzGyQlEp1tLZOXH5DsxoiaWZENPdY50SmWJqbm2PGjBnLb2hmZjZM9JXIeI+MmZmZFZYTGTMzMyssJzJmZmZWWE5kzMzMrLCcyJiZmVlhOZExMzOzwnIiY2ZmZoXlRMbMzMwKy48oKJjOzk7K5XK1wzAzswrVlUpMbG2tdhjDVk0mMpIWA3PIrv8+4MCIeLEf/b8TEccNQlxNwJSI2LK3Ng3z59PW3j7QpzYzs0FS7uiodgjDWq0uLb0UEeNSwvAKcHglnZRZDfjOoEZnZmZmFanVRCbvRuDtAJK+Junu9PPVVNYk6T5JJwN3AP8PGClplqRzU/3dXYNJ+oako9Px+yTNljRN0k+72qU+N0q6I/1sP8TXbGZmNizU5NJSF0lrAB8FrpC0NXAw8H5AwG2SrgeeBjYDDo6IL6d+n4yIcem4qY9TnAlMiIhbJOXnFh8DPhwRL0saC5wP9PgwrHSOCcAEgPr6espeWjIzK4y6UqnaIQxrtZrIjJQ0Kx3fSDbLMhH4Y0S8ACDpUmAnYDLwSETc2p8TSKoH1omIW1LRecAe6XhN4CRJ44DFwKZ9jRURk4BJ2bjN0d7e1p9QzGwV0NFRpq3Nf3bNBlqtJjIvdc2odJGkPtq/0Efdqyy7RDeia8g++rQC/wXenfq+3EdbMzMz64X3yCx1A7C3pLUlvQHYh2y2pieLJK2Zjv8LrCdpXUlrkWZdIuJp4HlJ26Z2n8n1Hw38JyKWAJ8HVh/gazEzM6sJTmSSiLgDOAu4HbgNOD0i7uyl+SRgtqRzI2IR8KPUZwpwf67dF4FJkqaRzdA8m8pPBg6UdCvZslJfMz5mZmbWC0VEtWMYtiSNiogF6bgd2CAijlqZMRsbG6OlpWVA4jOzoVMq1dHaOrHaYZgVkqSZEdHjh2JqdY/MUNld0rfJ7vMjwEErO2BDQ4M3DJqZmSVOZAZRRFwAXFDtOMzMzIYr75ExMzOzwnIiY2ZmZoXlRMbMzMwKy4mMmZmZFZYTGTMzMyssJzJmZmZWWE5kzMzMrLD8PTIF09nZSblcrnYYZmY1oa5UYmJra7XDsD44kSmYhvnzaWtvr3YYZmY1odzRUe0QbDlqYmlJ0vqSzpP0sKSZkqZJ2qfacZmZmdnKGfaJjCQBlwE3RMTbImJr4DNAY4X9Vx/M+MzMzGzFDftEBvgg8EpEnNJVEBGPRMSJklaX9FNJ0yXNlnQYgKTxkq6VdB4wR1KTpPslnS7pbknnStpV0s2SHpK0Teq3jaRbJN2Zfm+Wyg+SdKmkK1L7E1L5FyX9oisuSYdK+vlQ3hwzM7Miq4U9Mu8E7uil7ovAsxHxPklrATdLmprqtgG2jIi5kpqAtwOfBCYA04HPAjsCewLfAfYG7gd2johXJe0KHAfsm8YbB7wHWAg8IOlE4A/AbEnfiohFwMHAYd2DlDQhnZf6+nrK3iNjZjYk6kqlaodgy1ELicwyJP2GLAF5BXgE2ErSfql6NDA21d0eEXNzXedGxJw0xj3ANRERkuYATbn+Z0saCwSwZq7/NRHxbOp/L7BxRDwq6W/AHpLuA9bsOkdeREwCJmV9m6O9vW2l74OZrVo6Osq0tfnPtll/1UIicw9LZ0WIiCMkjQFmAP8EWiLiynwHSeOBF7qNszB3vCT3eglL7+OxwLURsU+axbmul/6Lc31OJ5vRuR84s/LLMjMzs1rYI/M3YISkibmytdPvK4GJktYEkLSppDesxLlGA/PT8UGVdIiI24CNyJaqzl+Jc5uZmdWcYZ/IRESQ7V/5gKS5km4HzgbayGZD7gXukHQ3cCorN0t1AnC8pJuB/nza6ULg5oh4eiXObWZmVnOUvc9bNUmaAvwiIq5ZXtvGxsZoaWkZgqjMbCiVSnW0tk5cfkOzGiRpZkQ091RXC3tkVlmS6oHbgbsqSWIAGhoavCHQzMwscSJTRRHxDLBpteMwMzMrqmG/R8bMzMyGLycyZmZmVlhOZMzMzKywnMiYmZlZYTmRMTMzs8JyImNmZmaF5Y9fF0xnZyflcrnaYZiZ1Zy6UomJra3VDsO6cSJTMA3z59PW3l7tMMzMak65o6PaIVgPanJpSdJiSbMk3SXpDknbV9BnQQVtTpf0joGJ0szMzJanVmdkXoqIcQCS/hc4HvjAyg4aEV9a2THMzMyschXNyEhaW9L3JZ2WXo+VtMfghjZk6oDXnjot6ZuSpkuaLemY7o0lrSbpZEn3SJoi6S+S9kt110lqTscLcn32k3RWOj5L0m8lXSvpYUkfkHSGpPu62piZmVllKp2ROROYCWyXXv8LuAiYMhhBDYGRkmYBI4ANgA8CSNoNGAtsAwiYLGnniLgh1/cTQBPwLmA94D7gjH6e/43pnHsClwM7AF8CpksaFxGz8o0lTQAmANTX11P2HhkzsyFXVypVOwTrQaWJzCYR8WlJ+wNExEuSNIhxDbb80tJ2wDmStgR2Sz93pnajyBKbfCKzI3BRRCwBOiVduwLnvzwiQtIc4L8RMSfFcg9ZkrRMIhMRk4BJWZvmaG/306/NhquOjrKfcG/WD5UmMq9IGgkEgKRNgIWDFtUQiohpksYAbyabhTk+Ik7to0ulCVzkjkd0q+u6d0tY9j4uoXb3LZmZmfVbpZ9a+iFwBbCRpHOBa4BvDVpUQ0jS5sDqwJPAlcAhkkalug0lrdety03AvmmvzPrA+F6G/q+kLSStBuwzONGbmZnVtor+9R8RV0m6A9iWbEbiqIh4YlAjG1xde2Qgu54DI2IxMFXSFsC0tHK2APgc8Fiu7yXAh4C7gQeB24BnezhHO9keokdT21GDcB1mZmY1TRGx/FaApK3I9m+8lvxExKWDE9aqTdKoiFggaV3gdmCHiOgcinM3NjZGS0vLUJzKzKqgVKqjtXVitcMwW6VImhkRzT3VVTQjI+kMYCvgHrJ9HJDtAanJRAaYIqkeKAHHDlUSA9DQ0OCNgGZmZkmlG0u3jQh/Y20SEeOrHYOZmZlVvtl3mr9638zMzFY1lc7InE2WzHSSfVxYQETEVoMWmZmZmdlyVJrInAF8HpjD0j0yZmZmZlVVaSLzz4iYPKiRmJmZmfVTpYnM/ZLOI3su0GvfRFurH782MzOzVUOlicxIsgRmt1xZLX/82szMzFYBlX6z78GDHYiZmZlZf1X6hXgjgC8C7yT3AMSIOGSQ4rJedHZ2Ui6Xqx2GmdmwV1cqMbG1tdph2HJUurT0O+B+4H+BHwEHAPcNVlDWu4b582lrb692GGZmw165o6PaIVgFKv1CvLdHxPeBFyLibGB34F29NZbUJOnubmVHS/pGXyeR1Czp1+l4vKTtK4wvP8Y8SWP6Kpe0taS5kt4jaU9JA5IZpJinDMRYZmZmtnyVzsgsSr+fkbQl0En2AMkBFREzgBnp5Xiyp0/fMpDnSA+/vBj4dETcCdwJ+KPlZmZmBVTpjMwkSW8Evkf2pn8vsMIbNSRdJ6ks6XZJD0raKZWPlzRFUhNwONAqaZaknSS9WdIlkqannx1Sn3UlTZV0p6RTyb51uDdbAJcBn4+I21P/gySdlI7PkvRrSbdIeljSfql8NUknS7onxfeXXN1HJN0v6SbgE7lrfJOkyyTNlnRrSqC6ZqbOTjHPk/QJSSdImiPpCklrruh9NTMzqzX92SOzL9kszNmpbP2VPXdEbCPpY8APgV27KiJinqRTgAUR8TOA9D02v4iImyS9BbiSLDH5IXBTRPxI0u7AhD7O+SfgcxFxUx9tNgB2BDYnS9ouJktQmsiW09Yj2x90RtoEfRrwQeDvwAW5cY4B7oyIvSV9EDgHGJfqNgF2Ad4BTAP2jYhvSfoj2bLdZfmAJE3ouq76+nrK3iNjZjbo6kqlaodgFag0kfkT8Cwwk9wX4vUhKijv+g6amVS2TLUr8A7ptQmXOknrADuTZkIi4s+Snu5jjKuBL0m6MiIW99LmsohYAtwrqStZ2xG4KJV3Sro2lW8OzI2IhwAk/Z6lidSOZMkfEfG3NHM0OtX9NSIWSZoDrA5ckcrn0MO9iIhJwKTsHM3R3t7WxyWamb1eR0eZtjb/3WHDT6WJTGNEfKQf4z4JvLFb2ZuAubnXXQnR4grjWA3YLiJeyhemxKa3xKm7rwCnACcDh/XSJp+oqdvvnvR27p76dLVdCBARSyQtioiu8iVU/t/EzMys5lW6R+YWSb1+Sqm7iFgA/EfShyDbLwJ8BOhrSae754F1cq+nkiUipDG7lmluIPs4OJI+yusTqLwlwP7AZpJ+1I9YbgL2TXtl1ifbiAzZR9LfKmmT9Hr/XJ98XOOBJyLiuX6c08zMzJaj0n/97wgcJGku2WyCgIiIrfro8wXgN5L+L70+JiL+0Y/YLgculrQX0AIcmcabneK+gWxD8DHA+ZLuAK4H/tnXoBGxMI15vaT/Ai9UEMslwIeAu4EHgduAZyPi5bR/5c+SniBLeLZMfY4GzkzxvggcWPGVm5mZWUW0dFWjj0bSxj2VR8QjAx7RKkrSqIhYIGld4HZgh4joHOo4Ghsbo6WlZahPa2YFVyrV0do6sdphmK0QSTMjormnukqftVQzCUsfpkiqB0rAsdVIYgAaGhq8Yc/MzCzxxtIKRcT4asdgZmZmy6p0s6+ZmZnZKseJjJmZmRWWExkzMzMrLCcyZmZmVlhOZMzMzKywnMiYmZlZYfnj1wXT2dlJuVyudhhmZpbUlUpMbG2tdhg1y4lMwTTMn09be3u1wzAzs6Tc0VHtEGpaTS4tSfqupHskzZY0S9L7JV0nqcevPx6E8x8u6QtDcS4zM7PhrOZmZCRtB+wBvDc9QHIM2WMHhkxEnDKU5zMzMxuuanFGZgPgiYhYCBART0TEv/MNJO0vaY6kuyWVU9lESSfk2hwk6cR0/DlJt6fZnVMlrZ7KF0j6iaS7JN0qaf1UfrSkb6TjQyVNT20ukbT2kNwFMzOzYaDmZmSAqcAPJD0IXA1cEBHXd1VK+h+gDGwNPA1MlbQ3cDEwDfhWavpp4CeStkjHO0TEIkknAwcA5wBvAG6NiO+mJOhQ4Mfd4rk0Ik5L5/4x8EXgxHwDSROACQD19fWUvUfGzGyVUVca0kl966bmEpmIWCBpa2AnYBfgAkn5zOB9wHUR8TiApHOBnSPiMkkPS9oWeAjYDLgZOIIs6ZkuCWAk8Fga6xVgSjqeCXy4h5C2TAlMPTAKuLKHmCcBk7J4mqO93U+/NlvVdXSU/aR6syFQc4kMQEQsBq4DrpM0BzgwV60+ul4AfAq4H/hjRISy7OXsiPh2D+0XRUSk48X0fL/PAvaOiLskHQSM78elmJmZ1bSa2yMjaTNJY3NF44BHcq9vAz4gaUza67I/0LX0dCmwdyq7IJVdA+wnab00/pskbdyPkNYB/iNpTbIlKTMzM6tQLc7IjAJOlFQPvAr8nWz/ycUAEfEfSd8GriWbnflLRPwp1T0t6V7gHRFxeyq7V9L3yPbSrAYsIltueoTKfJ8seXoEmEOW2JiZmVkFtHTlw4qgsbExWlpaqh2GmS1HqVRHa+vEaodhNixImhkRPX7XmxOZgmlubo4ZM2ZUOwwzM7Mh01ciU3N7ZMzMzGz4cCJjZmZmheVExszMzArLiYyZmZkVlhMZMzMzKywnMmZmZlZYTmTMzMyssJzImJmZWWHV4iMKCq2zs5NyuVztMMzMCqGuVGJia2u1w7BB5ESmYBrmz6etvb3aYZiZFUK5o6PaIdggq4mlJUmLJc2SdI+kuyR9LT3gcZUgaUG1YzAzMyuiWpmReSkixgFIWg84DxgN/LCaQUkS2RO2zczMbAWsMrMSQyUiHgMmAF9RZnVJP5U0XdJsSYcBSBov6TpJF0u6X9K5KfFA0jxJx0maJmmGpPdKulLSPyQdntqMknSNpDskzZG0VypvknSfpJOBO4CNumKTNCaNuftQ3xczM7MiqpUZmWVExMNpaWk9YC/g2Yh4n6S1gJslTU1N3wO8E/g3cDOwA3BTqns0IraT9AvgrFQ3ArgHOAV4GdgnIp6TNAa4VdLk1Hcz4OCI+DKAJCStD0wGvhcRV+XjlTSBLPmivr6esvfImJlVpK5UqnYINshqMpFJupZ0dgO2krRfej0aGAv8//buPU6q6sz3/+eLUjaITQd1RMCJlx9gDCBKt+YiCMaA40/iFaMhDhCREQUm7eh0zzjHYYhxuhmNSXQUMReM4WQMJBo0Hi+oGBJAaLQFLwQvwBwwDUYzKgrK5Tl/1O62aKqhGxqK6vq+X696VdXaa+39rNp098Naq/b+BFgcEWsBJNUCx/JpIlOflCwHOkXEB8AHkjZLKgE+BG6RNAjYDnQHjkrarImIRRmxtAeeAq6NiGcbBxoR04Hp6ThKo7KyYq86bmYHrqqqaioq/DNu1lwFmchIOh7YBmwgndBMjIjHG9UZDHycUbSNHT+v+m3bG9XbntQbCRwJDIiILZJWkx6xgXSSk2krsBQYBuyUyJiZmVl2BbdGRtKRpKd+7oyIAB4Hxktqn2zvJenQVjhUZ2BDksQMAT67i7oBfAs4UZLnjczMzJqpUEZkOiRTQ+1Jj37cD3wv2fYj0lNGzyeLed8GLmiFY84EHpZUA9QCK3ZVOSK2SbosafN+RNyVrV737nVMnOgL4pm1ValUca5DMMsrSg9KWL4oLS2NmpqaXIdhZma230haGhGl2bYV3NSSmZmZtR1OZMzMzCxvOZExMzOzvOVExszMzPKWExkzMzPLW05kzMzMLG85kTEzM7O85UTGzMzM8lahXNm3zairq6O62lf2NTNrjuJUivHl5bkOw/YhJzJ5puu6dVRU+nZMZmbNUV1VlesQbB/z1FIjkrpK+i9Jb0h6RdKjknrlOi4zMzPbmROZDMlNIx8E5kXECRFxEvDPwFF7s09J/pzNzMz2Af+B3dEQYEtETKsviIhaYJyk8+vLJM2U9DVJoyX9RtJjkv4o6V+T7cdKelXSXcDzwDGSNma0v0TSjOT1CEkvSXpR0u/2Uz/NzMzaBK+R2VEfYGmW8h8B5cBvJHUGvgSMAr4JnJa0+whYIum3wJ+B3sCYiLgGID3Yk9VNwLCIWCepJFsFSeOAcQAlJSVUe42MmVmzFKdSuQ7B9jEnMs0QEc9K+k9JfwVcBPwqIrYmycmTEfEOgKRfA2cADwFrImJRM3b/B2CGpF8Cv27i+NOB6eljlEZlZcVe98nM9r+qqmoqKvzza9aaPLW0o5eBAU1sux8YCYwBfppRHo3q1b//sIlygKKGwoirgX8BjgFqJR3ewpjNzMwKlhOZHT0NHCLpqvoCSWWSzgRmAN8GiIiXM9p8VVIXSR2AC0iPsGSzXtLnkoW/F2bs/4SIeC4ibiI9JXVMq/bIzMysDXMikyEignSS8dXk69cvA5OBtyJiPfAqO47GAPye9GhNLekpp5omdl8JPEI6WfpTRvl/SFou6SXgd8CLrdUfMzOzts5rZBqJiLeASxuXS+oI9AR+0WjThoiY0Ggfq0kvAM4smw3MznK8i1oSX/fudUyc6Cv7muWjVKo41yGYtTlOZJpB0tnAT4DvRcR7uYyla9euXixoZmaWcCLTDBExF/jrLOUzSK+dMTMzsxzwGhkzMzPLW05kzMzMLG85kTEzM7O85UTGzMzM8pYTGTMzM8tbTmTMzMwsbzmRMTMzs7zl68jkmbq6OqqrfWVfM2s7ilMpxpeX5zoMy1MFn8hI6gp8HygDPgZWA9+OiJV7ud/JwMaIuDXLtgUR8aU92W/XdeuoqKzcm9DMzA4o1VVVuQ7B8lhBTy1JEvAgMC8iToiIk4B/Bo7al8fd0yTGzMzMdlTQiQwwBNgSEdPqCyKilvTdr2uTxzpJPwWQ9E1Ji5PyeyQdlJSfI+l5SS9Keipj/ydJmifpTUmT6gslbUyeO0l6Kmm7XNL5+6XXZmZmbUShTy31AZY2LoyIm4CbJHUG5gN3Svoc8HXgyxGxRdJdwEhJ/we4FxgUEaskdcnY1Ymkk6XDgD9KujsitmRs3wxcGBHvSzoCWCRpTkREZjySxgHjAEpKSqj21JKZtSHFqVSuQ7A8VuiJTJOSaaeZwO0RsVTSBGAAsCS9iQ7ABuALwO8iYhVARLybsZvfRsTHwMeSNpCeslqbeRjgFkmDgO1A96ROXWYsETEdmJ6OqzQqK333a2tbqqqqfVd3M9sjhZ7IvAxc0sS2ycDaiPhp8l7AfRHxT5mVJH0NCLL7OOP1Nnb+vEcCRwIDklGe1UBRs6M3MzMrcIW+RuZp4BBJV9UXSCqT9K/AV4FJGXWfAi6R9FdJvS6SPgssBM6UdFx9eQuO3xnYkCQxQ4DP7l13zMzMCktBj8hEREi6EPi+pErSa1ZWAx2BbsDiZBppTkTcJOlfgCcktQO2ANdGxKJkDcuvk/INpJOg5pgJPCypBqgFVrRi98zMzNo8NVpXage4Hj16xMSJE3MdhlmrSqWKKS8fn+swzOwAJWlpRJRm3eZEJr+UlpZGTU1NrsMwMzPbb3aVyBT6GhkzMzPLY05kzMzMLG85kTEzM7O85UTGzMzM8pYTGTMzM8tbTmTMzMwsbzmRMTMzs7zlRMbMzMzyVkHfoiAf1dXVUV1dneswzMz2SnEqxfjy8lyHYW2AE5k803XdOioqK3MdhpnZXqmuqsp1CNZGeGopC0nbJNVKeknSLEkdd1N/Yysd91hJL7XGvszMzAqBE5nsNkVE/4joA3wCXJ3rgMzMzGxnTmR2bz7w/wFIui4ZpXlJ0rcbV5TUSdJTkp6XtFzS+Un5sZJelXSvpJclPSGpQ7JtgKQXJS0Ert2fHTMzM8t3XiOzC5IOBv4GeEzSAGAMcDog4DlJz0bECxlNNgMXRsT7ko4AFkmak2zrCVweEVdJ+iVwMfBz4KfAxIh4VtJ/NBHHOGAcQElJCdVeI2Nmea44lcp1CNZGKCJyHcMBR9I2YHnydj7wD8B44PCIuCmp8x3g7Yj4oaSNEdFJUnvgdmAQsB3oDRwHFAFPRkTPpG0F0B64A1geEX+dlPcD/ncypdVEbKUBNa3eZ8t/VVXVVFRU5DoMM7NWJ2lpRJRm2+YRmew2RUT/zAJJaka7kcCRwICI2CJpNekkBuDjjHrbgA6kR3acSZqZme0hr5Fpvt8BF0jqKOlQ4ELSozWZOgMbkiRmCPDZXe0wIv4HeE/SGUnRyNYO2szMrC3ziEwzRcTzkmYAi5OiHzVaHwMwE3hYUg1QC6xoxq7HAD+R9BHweGvFa2ZmVgi8RibP9OjRIyZOnJjrMOwAlEoVU14+PtdhmJm1ul2tkXEik2dKS0ujpsaLfc3MrHDsKpHxGhkzMzPLW05kzMzMLG85kTEzM7O85UTGzMzM8pYTGTMzM8tbTmTMzMwsbzmRMTMzs7zlK/vmmbq6Oqqrq3MdhpnZPlWcSjG+vDzXYVgecCKTZ7quW0dFZWWuwzAz26eqq6pyHYLlCU8tJSRtk1Sb8WgyW5B0gaST9uJYpZJ+uKftzczMLM0jMp/aFBH9m1n3siQH0gAAIABJREFUAuAR4JU9OVBE1AC+z4CZmdle8ojMbkiqkvSKpGWSbpX0JeBrwH8kIzcnSOovaVFS50FJn0nazpNULWmxpJWSBiblgyU9krw+TdICSS8kz71z11szM7P84hGZT3WQVJvx/t+BJ4ELgRMjIiSVRMT/SJoDPBIRswEkLQMmRsSzkqYA/wp8O9nPwRFxmqRzk/KzGx13BTAoIrZKOhu4Bbg4s4KkccA4gJKSEqq9RsbM2rjiVCrXIViecCLzqZ2mliQdDGwGfiTpt6Snk2hUpzNQEhHPJkX3AbMyqvw6eV4KHJvluJ2B+yT1BAJo37hCREwHpqePVxqVlRUt6JYd6Kqqqqmo8Dk1M9sTnlrahYjYCpwG/Ir0upjH9mA3HyfP28ieOH4HeCYi+gDDgaI9OIaZmVlB8ojMLkjqBHSMiEclLQJeTzZ9ABwGEBHvSfqLpIERMR+4Ang2+x6z6gysS16Pbp3IzczMCoMTmU81XiPzGPAD4DeSigAB9Vdn+i/gXkmTgEuAUcA0SR2BN4ExLTjuVNJTS9cBT+9lH8zMzAqKIiLXMVgL9OjRIyZOnJjrMKwVpVLFlJePz3UYZmYHLElLI6I06zYnMvmltLQ0amp8CRozMyscu0pkvNjXzMzM8pYTGTMzM8tbTmTMzMwsbzmRMTMzs7zlRMbMzMzylhMZMzMzy1tOZMzMzCxvOZExMzOzvOVbFOSZuro6qqurcx2GmVmD4lSK8eXlu69otg84kckzXdeto6KyMtdhmJk1qK6qynUIVsA8tZRBUldJ/yXpDUmvSHpUUq9W2O8/N3q/YG/3aWZmZk5kGkgS8CAwLyJOiIiTgH8Gjsqoc9Ae7n6HRCYivrTHgZqZmVkDJzKfGgJsiYhp9QURUQscJOkZSf8bWA4g6TpJLyWPb9fXl/SQpKWSXpY0LimrAjpIqpU0MynbmDx3kvSUpOclLZd0/v7rrpmZWf7zGplP9QGWNrHtNKBPRKySNAAYA5wOCHhO0rMR8QLwrYh4V1IHYImkX0VEpaQJEdE/y343AxdGxPuSjgAWSZoTjW5JniRF4wBKSkqo9hoZMzuAFKdSuQ7BCpgTmeZZHBGrktdnAA9GxIcAkn4NDAReACZJujCpdwzQE3hnF/sVcIukQcB2oDvpqay6zEoRMR2Ynj5eaVRWVrRKp8zqVVVVU1Hhf1dmln+cyHzqZeCSJrZ9mPFa2SpIGgycDXwxIj6SNA8o2s0xRwJHAgMiYouk1c1oY2ZmZgmvkfnU08Ahkq6qL5BUBpzZqN7vgAskdZR0KHAhMB/oDPwlSWJOBL6Q0WaLpPZZjtkZ2JAkMUOAz7Zif8zMzNo8j8gkIiKSaaHvS6okvX5lNfBQo3rPS5oBLE6KfhQRL0h6Bbha0jLgj8CijGbTgWWSno+IkRnlM4GHJdUAtcCK3cXZvXsdEyf6gnjWulKp4lyHYGa2R9RoXakd4EpLS6OmpibXYZiZme03kpZGRGm2bZ5aMjMzs7zlRMbMzMzylhMZMzMzy1tOZMzMzCxvOZExMzOzvOVExszMzPKWExkzMzPLW05kzMzMLG/5yr55pq6ujupqX9nXzFpfcSrF+PLyXIdh1iJOZPJM13XrqKiszHUYZtYGVVdV5ToEsxYryKklSTdKelnSMkm1kk6XNE9S1ssf78VxNmYp6yZpdmsex8zMrFAV3IiMpC8C5wGnRsTHko4AUvvr+BHxFnDJ/jqemZlZW1aIIzJHA3+OiI8BIuLPSXLRQNLlkpZLeklSdVI2XtLUjDqjJd2RvH5I0tJklGdc4wNKOkLSQkn/v6RjJb2UlB8rab6k55PHl/Zhv83MzNqcghuRAZ4AbpK0EpgLPBARz9ZvlNQNqAYGAH8BnpB0ATAbWAj8Y1L168B3k9ffioh3JXUAlkj6VUS8k+zvKGAO8C8R8aSkYzNi2QB8NSI2S+oJ/ALYaXorSY7GAZSUlFDtNTJmtg8Up/bb4LRZqym4RCYiNkoaAAwEhgAPSMrMDMqAeRHxNoCkmcCgiHhI0puSvgC8BvQG/pC0mSTpwuT1MUBP4B2gPfAUcG1mspShPXCnpP7ANqBXEzFPB6an4ymNysqKPey95aOqqmoqKnzOzcyyKbhEBiAitgHzgHmSlgOjMjZrF00fAC4FVgAPRkRIGgycDXwxIj6SNA8oSupvBZYCw4BsiUw5sB44mfQ03+Y97JKZmVlBKrg1MpJ6J9M49foDazLePwecmaxrOQi4nE+TkF8DFyRlDyRlnYG/JEnMicAXMvYVwLeAExuN+pDR9k8RsR24Ajho73pnZmZWWAoukQE6AfdJekXSMuAkYHL9xoj4E/BPwDPAi8DzEfGbZNtfgFeAz0bE4qTJY8DByb6+AyzKPFgy+nMZMETSNY1iuQsYJWkR6WmlD1uzo2ZmZm2dIiLXMVgL9OjRIyZOnJjrMGw/SqWKKS8fn+swzMxyRtLSiMh6rTcnMnmmtLQ0ampqch2GmZnZfrOrRKYQp5bMzMysjXAiY2ZmZnnLiYyZmZnlLScyZmZmlrecyJiZmVneciJjZmZmecuJjJmZmeUtJzJmZmaWtwryppH5rK6ujurq6lyHYWY5VJxKMb68PNdhmB0QCi6RkbQxIjplvB8NlEbEhNxF1Xxd162jojLb/SfNrFBUV1XlOgSzA4anlnJIUsElkmZmZq3JiUwGSTMkXZLxfmPyPFjSPEmzJa2QNFOSkm3nJmW/l/RDSY8k5adJWiDpheS5d1I+WtIsSQ8DT0i6X9L5GcecKelr+7XjZmZmeaoQRwQ6SKrNeN8FmNOMdqcAnwfeAv4AfFlSDXAPMCgiVkn6RUb9FUn5VklnA7cAFyfbvgj0i4h3JZ0JlAO/kdQZ+BIwKvPAksYB4wBKSkqo9tSSWUErTqVyHYLZAaMQE5lNEdG//k39GplmtFscEWuTNrXAscBG4M2IWJXU+QVJwgF0Bu6T1BMIoH3Gvp6MiHcBIuJZSf8p6a+Ai4BfRcTWzANHxHRgevrYpVFZWdGC7tr+UlVVTUWFz42Z2f7kqaUdbSX5TJKpo8z/9nyc8Xob6SRQu9jXd4BnIqIPMBwoytj2YaO69wMjgTHAT/cocjMzswLkRGZHq4EByevz2XEUJZsVwPGSjk3efz1jW2dgXfJ69G72MwP4NkBEvNycQM3MzMyJTGP3AmdKWgyczs4jJzuIiE3ANcBjkn4PrAfeSzZPBf5d0h+Ag3azn/XAq3g0xszMrEUUEbmOIa9J6hQRG5OpqP8EXouI21u4j47AcuDUiHhvV3V79OgREydO3POAbZ9JpYopLx+f6zDMzNocSUsjIut61kJc7NvarpI0ivR6mhdIf4up2ZJvNP0E+N7ukhiArl27ekGpmZlZwonMXkpGX1o0AtOo/Vzgr1svIjMzs8LhNTJmZmaWt5zImJmZWd5yImNmZmZ5y4mMmZmZ5S0nMmZmZpa3nMiYmZlZ3nIiY2ZmZnnL15HJM3V1dVRXV+c6DDPbR4pTKcaXl+c6DLO84UQmz3Rdt46Kyspch2Fm+0h1VVWuQzDLKwUztSRpm6RaSS9JelhSSQ5jWZCrY5uZmbUlBZPIAJsion9E9AHeBa7NVSAR8aVcHdvMzKwtKaREJtNCoDuA0v4jGalZLunrSflgSc9K+qWklZKqJI2UtDipd0JSb7ik5yS9IGmupKOS8smSfiJpnqQ3JU2qP7ikjclzJ0lPSXo+2ef5+/2TMDMzy2MFt0ZG0kHAV4AfJ0UXAf2Bk4EjgCWSfpdsOxn4HOkRnDeBH0XEaZL+HpgIfBv4PfCFiAhJY4F/BP4haX8iMAQ4DPijpLsjYktGOJuBCyPifUlHAIskzYmIaBTzOGAcQElJCdVeI2PWZhWnUrkOwSyvFFIi00FSLXAssBR4Mik/A/hFRGwD1kt6FigD3geWRMSfACS9ATyRtFlOOkEB6AE8IOloIAWsyjjmbyPiY+BjSRuAo4C1GdsF3CJpELCd9CjRUUBdZuARMR2Yno6jNCorK/bmc7C9UFVVTUWFP38zswNFIU0tbYqI/sBnSScc9WtktIs2H2e83p7xfjufJoF3AHdGRF/g74CiJtpvY+fEcSRwJDAgiW19o/ZmZma2C4WUyAAQEe8Bk4DrJbUHfgd8XdJBko4EBgGLW7DLzsC65PWoFobTGdgQEVskDSGdZJmZmVkzFVwiAxARLwAvApcBDwLLkvdPA/8YEXW7aN7YZGCWpPnAn1sYykygVFIN6dGZFS1sb2ZmVtDUaF2pHeB69OgREydOzHUYBSuVKqa8fHyuwzAzKyiSlkZEadZtTmTyS2lpadTU1OQ6DDMzs/1mV4lMQU4tmZmZWdvgRMbMzMzylhMZMzMzy1tOZMzMzCxvOZExMzOzvOVExszMzPKWExkzMzPLW4V008g2oa6ujurq6lyHYWa7UJxKMb68PNdhmBUEJzJ5puu6dVRUVuY6DDPbheqqqlyHYFYwCnJqSdI2SbWSXpT0vKQvNaPNPElZryq4B8cvlfTD1tiXmZlZISvUEZlNEdEfQNIw4N+BM/fHgSUdHBE1gO8zYGZmtpcKckSmkWLgLwCSBkt6pH6DpDsljW7cQNKVklYmozT3SrozKR8u6TlJL0iaK+mopHyypOmSngB+lnkcSadJWpC0WSCp937os5mZWZtQqCMyHSTVAkXA0cBZzW0oqRvwv4BTgQ+Ap4EXk82/B74QESFpLPCPwD8k2wYAZ0TEJkmDM3a5AhgUEVslnQ3cAlzc6JjjgHEAJSUlVHuNjNkBrTiVynUIZgWjUBOZzKmlL5IeJenTzLanAc9GxLtJ+1lAr2RbD+ABSUcDKWBVRrs5EbEpy/46A/dJ6gkE0L5xhYiYDkxPH680KisrmhmqZVNVVU1FhT9DM7O2oOCnliJiIXAEcCSwlR0/k6IsTbSL3d0B3BkRfYG/a9T+wybafAd4JiL6AMObOKaZmZllUfCJjKQTgYOAd4A1wEmSDpHUGfhKliaLgTMlfUbSwew4DdQZWJe8HtXMEDLbjG5h+GZmZgWtUKeW6tfIQHqEZVREbAP+r6RfAsuA14AXGjeMiHWSbgGeA94CXgHeSzZPBmZJWgcsAo5rRixTSU8tXUd6vY2ZmZk1kyIi1zHkHUmdImJjMiLzIPCTiHhwfxy7R48eMXHixP1xqDYrlSqmvHx8rsMwM7NmkrQ0IrJey61QR2T21uTkG0ZFwBPAQ/vrwF27dvVCVTMzs4QTmT0QEdfnOgYzMzPzYl8zMzPLYx6RMTOzZtmyZQtr165l8+bNuQ7F2qiioiJ69OhB+/Y7XVKtSU5kzMysWdauXcthhx3Gsccei7SrS2qZtVxE8M4777B27VqOO645X/pN89SSmZk1y+bNmzn88MOdxNg+IYnDDz+8xSN+TmTMzKzZnMTYvrQn/76cyJiZmVne8hoZMzPbI7fffjeffPJ+q+3PF6u0PeFEJs/U1dVRXV2d6zDMLI8Up1KMLy9v9f1+8sn7VFa23gU6q6p2/7utU6dObNy4kbfeeotJkyYxe/ZsAC6//HJefvllxowZQ/k+6GtrmzFjBkOHDqVbt265DmWPrF69mvPOO4+XXnop16E4kck3Xdeto6KyMtdhmFkeqa6qynUIra5bt24NSUxdXR0LFixgzZo1OY6q+WbMmEGfPn3yNpE5kLT5NTKSNmYpu1rS3yavR0vqlrFttaQj9nFMDcc3M7OWW716NX369AFg6NChbNiwgf79+zN//nzeeOMNzjnnHAYMGMDAgQNZsWJFk/t5++23ufjiiykrK6OsrIw//OEPAEyaNIkpU6YA8PjjjzNo0CC2b9/O6NGjufrqqxk4cCC9evXikUceAWDbtm3ccMMNlJWV0a9fP+65556GY0ydOpW+ffty8sknU1lZyezZs6mpqWHkyJH079+fTZs2MWXKFMrKyujTpw/jxo2j/j6IgwcPpqKigtNOO41evXoxf/78huNdf/319O3bl379+nHHHXfw1FNPceGFFzYc98knn+Siiy5qsu+dOnWioqKCAQMGcPbZZ7N48WIGDx7M8ccfz5w5cxo+54EDB3Lqqady6qmnsmDBgp32s6u+7xcR0aYfwMbdbJ8HlGa8Xw0ckeu4m3oMgAg//PDDjxY8qqqqojW88sorO7yvqqpq1VCbE+ehhx4aERGrVq2Kz3/+8zu9jog466yzYuXKlRERsWjRohgyZEiT+7v88stj/vz5ERGxZs2aOPHEEyMi4sMPP4yTTjopnn766ejVq1e8/vrrERExatSoGDZsWGzbti1WrlwZ3bt3j02bNsU999wT3/nOdyIiYvPmzTFgwIB4880349FHH40vfvGL8eGHH0ZExDvvvBMREWeeeWYsWbKkIY768oiIb37zmzFnzpyGetddd11ERPz2t7+Nr3zlKxERcdddd8VFF10UW7ZsaWi/ffv26N27d2zYsKGhb/X7yQaIRx99NCIiLrjggvjqV78an3zySdTW1sbJJ5/c8Dls2rQpIiJWrlwZAwYM2Okzb6rve6rxv7Mk1pqI7H8XC3JqSdJkYCPppKUUmClpE/DFpMpEScOB9sCIiFhR3yYibk328RJwXkSslvQQcAzpm0j+ICKmJ3U2Aj8AzgM2AedHxPrMfUm6ChgHpIDXgSsi4qN9/RmYmbVFGzduZMGCBYwYMaKh7OOPP26y/ty5c3nllVca3r///vt88MEHHHbYYdx7770MGjSI22+/nRNOOKGhzqWXXkq7du3o2bMnxx9/PCtWrOCJJ55g2bJlDdNd7733Hq+99hpz585lzJgxdOzYEYAuXbpkjeOZZ55h6tSpfPTRR7z77rt8/vOfZ/jw4QANoyoDBgxg9erVDXFfffXVHHzwwTvs94orruDnP/85Y8aMYeHChfzsZz9rsu+pVIpzzjkHgL59+3LIIYfQvn17+vbt23CcLVu2MGHCBGpraznooINYuXLlTvtpqu8tuajd3ijIRKZeRMyWNAG4PiJqoOE77H+OiFMlXQNcD4zdza6+FRHvSuoALJH0q4h4BzgUWBQRN0qaClwF3Nyo7a8j4t7k2DcDVwJ3ZFaQNI50skNJSQnVXiNjZi1QnErlOoT9Zvv27ZSUlFBbW9vs+gsXLqRDhw47bVu+fDmHH344b7311g7lja91IomI4I477mDYsGE7bHvsscd2e22UzZs3c80111BTU8MxxxzD5MmTd7go3CGHHALAQQcdxNatWwGIiKz7HTNmDMOHD6eoqIgRI0Y0JDrZtG/fvmEf7dq1azhOu3btGo5z++23c9RRR/Hiiy+yfft2ioqKdtpPU33fXwo6kdmFXyfPS4GmJxg/NUlS/cTkMUBP4B3gE+CRjH19NUvbPkkCUwJ0Ah5vXCEZ4UlGeUqjNb8lsDeqqqqpqDgwYjGz/S+VKm7WN41asr+9VVxczHHHHcesWbMYMWIEEcGyZcs4+eSTs9YfOnQod955JzfccAMAtbW19O/fnzVr1nDbbbfxwgsvcO6553LBBRdw+umnAzBr1ixGjRrFqlWrePPNN+nduzfDhg3j7rvv5qyzzqJ9+/asXLmS7t27M3ToUKZMmcI3vvENOnbsyLvvvkuXLl047LDD+OCDDwAakpYjjjiCjRs3Mnv2bC655JJd9nPo0KFMmzaNwYMHc/DBBzfst1u3bnTr1o2bb76ZJ598cq8/z/fee48ePXrQrl077rvvPrZt27ZTnab6fuihh+718ZvDiUx29eOQ2/j0M9rKjoujiwAkDQbOBr4YER9Jmle/DdiSzO013lemGcAFEfGipNHA4FbpgZnZPnagXvNl5syZjB8/nptvvpktW7Zw2WWXNZnI/PCHP+Taa6+lX79+bN26lUGDBnH33Xdz5ZVXcuutt9KtWzd+/OMfM3r0aJYsWQJA7969OfPMM1m/fj3Tpk2jqKiIsWPHsnr1ak499VQigiOPPJKHHnqIc845h9raWkpLS0mlUpx77rnccsstDYuGO3TowMKFC7nqqqvo27cvxx57LGVlZbvt49ixY1m5ciX9+vWjffv2XHXVVUyYMAGAkSNH8vbbb3PSSSft9Wd5zTXXcPHFFzNr1iyGDBmSNTlpqu/7iz79O9s2SdoYEZ0alU3m0zUqDwPfi4hnkm2rSS/+/bOkUuDWiBgs6Zuk18RcJulUYAlwAnAyMDYihks6EagFzomIeZnHlnRJ0n50o+P/GTgJ+AvwKLAuIkY33Z/SgJpW+3z2hkdkzArLq6++yuc+97lch5FTo0eP5rzzztvtiEkuTZgwgVNOOYUrr7wy16HskWz/ziQtjYjSbPULYUSmo6S1Ge+/12j7DGBao8W+2fwK+FtJtaSTmPoVT48BV0taBvwRWNTC+P4X8BywBlgOHNbC9mZmZkB6QfChhx7KbbfdlutQ9ps2PyLT1vTo0SMmTpyY6zAAX07crNDk84jMd7/7XWbNmrVD2YgRI7jxxhtzFNH+c/rpp+/0za3777+fvn375iiiXWvpiIwTmTxTWloaNTUHxtSSmRWWfE5kLH+0NJFp81f2NTMzs7bLiYyZmZnlLScyZmZmlrcK4VtLZma2D9x9++28/8knrba/4lSK8eXlrbY/KwxOZMzMbI+8/8knVLTiLVOqq6p2W6dTp05s3LiRt956i0mTJjXc3+fyyy/n5ZdfZsyYMZTnQTI0Y8YMhg4dSrdu3XIWw6xZs7jpppvo2rUrzzzzzD45xowZM6ipqeHOO+/cJ/sHJzJmZpaHunXr1pDE1NXVsWDBAtasWZPjqJpvxowZ9OnTJ6eJzI9//GPuuusuhgwZkrMYWoPXyJiZWd5ZvXo1ffr0AdL3HdqwYQP9+/dn/vz5vPHGG5xzzjkMGDCAgQMHsmLFiib38/bbb3PxxRdTVlZGWVkZf/jDHwCYNGkSU6ZMAeDxxx9n0KBBbN++veHWAgMHDqRXr1488kj6dnrbtm3jhhtuoKysjH79+nHPPfc0HGPq1Kn07duXk08+mcrKSmbPnk1NTQ0jR46kf//+bNq0iSlTplBWVkafPn0YN24c9ZdGGTx4MBUVFZx22mn06tWL+fPnNxzv+uuvp2/fvvTr14877riDp556igsvvLDhuE8++WTDnbMbmzJlCr///e+5+uqrueGGG5qMf968eZx55plceuml9OrVi8rKSmbOnMlpp51G3759eeONNwB4+OGHOf300znllFM4++yzWb9+fbM/673lEZk8U1dXR3V1692kzczyi9eR7GzOnDmcd955DXe8/spXvsK0adPo2bMnzz33HNdccw1PP/101rZ///d/T3l5OWeccQb//d//zbBhw3j11VepqqqirKyMgQMHMmnSJB599FHatUv/33/16tU8++yzvPHGGwwZMoTXX3+dn/3sZ3Tu3JklS5bw8ccf8+Uvf5mhQ4eyYsUKHnroIZ577rkdbhp55513cuutt1Jamr40yoQJE7jpppsAuOKKK3jkkUcYPnw4AFu3bmXx4sU8+uij/Nu//Rtz585l+vTprFq1ihdeeKHhppGf+cxnuPbaa3n77bc58sgj+elPf8qYMWOy9vumm27i6aefbohh+vTpWeMHePHFF3n11Vfp0qULxx9/PGPHjmXx4sX84Ac/4I477uD73/8+Z5xxBosWLUISP/rRj5g6depOVxdu6rPeW05k8kzXdetadU7azPJLc9aRFLKNGzeyYMECRowY0VDW+Kq2mebOncsrr7zS8P7999/ngw8+4LDDDuPee+9l0KBB3H777ZxwwgkNdS699FLatWtHz549Of7441mxYgVPPPEEy5Yta5jueu+993jttdeYO3cuY8aMoWPHjgB06dIlaxzPPPMMU6dO5aOPPuLdd9/l85//fEMiUz+qMmDAAFavXt0Q99VXX83BBx+8w36vuOIKfv7znzNmzBgWLlzIz372s2Z9bk3Fn0qlKCsr4+ijjwbghBNOaEhw+vbt27C2Zu3atXz961/nT3/6E5988gnHHXdciz7rveFEZjey3XRyF3UHA59ExILd1JsC/C4i5rZCiGZmlti+fTslJSUNozPNqb9w4UI6dOiw07bly5dz+OGH89Zbb+1QLmmn9xHBHXfcwbBhw3bY9thjj+1Uv7HNmzdzzTXXUFNTwzHHHMPkyZPZvHlzw/ZDDjkEgIMOOoitW7cCEBFZ9ztmzBiGDx9OUVERI0aMaEh0dqep+OfNm9dwfIB27do1vG/Xrl1DPBMnTuS6667ja1/7GvPmzWPy5Mk7HWNXn/XecCLTugYDG4FdJjIRcdN+icbMbB8qTqVadYSoOJXa+30UF3Pccccxa9YsRowYQUSwbNkyTj755Kz1hw4dyp133skNN9wAQG1tLf3792fNmjXcdtttvPDCC5x77rlccMEFnH766UD62z6jRo1i1apVvPnmm/Tu3Zthw4Zx9913c9ZZZ9G+fXtWrlxJ9+7dGTp0KFOmTOEb3/jGDlNLhx12GB988AFAQ9JyxBFHsHHjRmbPnr3bu2sPHTqUadOmMXjw4IappS5dutCtWze6devGzTffzJNPPtnsz62p+Jvrvffea6h/3333NRlzts96bzmR2QOShgP/AqSAd4CRQAfgamCbpG8Cfw/cBxwfEdsldSR9d+zjgXuBRyJitqSbgOFJ+wXA34VvgGVmeeBAXaszc+ZMxo8fz80338yWLVu47LLLmkxkfvjDH3LttdfSr18/tm7dyqBBg7j77ru58sorufXWW+nWrRs//vGPGT16NEuWLAGgd+/enHnmmaxfv55p06ZRVFTE2LFjWb16NaeeeioRwZFHHslDDz3EOeecQ21tLaWlpaRSKc4991xuueWWhkXDHTp0YOHChVx11VX07duXY489lrKyst32cezYsaxcuZJ+/frRvn17rrrqKiZMmADAyJEjefvttznppJOa/Zk1FX9zTZ48mREjRtAdXYtJAAAIaElEQVS9e3e+8IUvsGrVqp3qZPusp02b1uxjNMU3jdyNbFNLkj4D/E9EhKSxwOci4h8kTQY2RsStSb3fAN+PiGckfR34akSMlTSDTxOZLhHxblL/fuCXEfFwo+ONA8YBlJSUDKj0GhmzgpXLxb6+aSSMHj2a8847b7cjJrk0YcIETjnlFK688spch7JHWnrTSI/I7JkewAOSjiY9KrNz6pn2APB14BngMuCuLHWGSPpHoCPQBXgZ2CGRiYjpwHQAqTQqKytaow/7VFVVNRUVB36cZmZtyYABAzj00EN3+sZQW+ZEZs/cAXwvIuYkC3wnN1FvDvDvkroAA4Advv8nqYh0clMaEf83GdEp2ldBm5kVqu9+97vMmjVrh7IRI0Zw4403tmg/M2bMaMWoWt/SpUt3Kjv99NN3+ubW/fffT9++ffdXWPuUE5k90xlYl7welVH+AVBc/yYiNkpaDPyA9FTStkb7qU9a/iypE3AJMHvfhGxmtvea+rbMge7GG29scdLSVjz33HO5DqHZ9mS5i6/su3sdJa3NeFxHegRmlqT5wJ8z6j4MXCipVtLApOwB4JvJ8w4i4n9IL/xdDjwELNmH/TAz2ytFRUW88847e/THxmx3IoJ33nmHoqKWTUx4sW+e6dGjR0ycODHXYexWKlVMefn4XIdhZq1oy5YtrF27dodrnJi1pqKiInr06EH79u13KN/VYl8nMnmmtLQ0ampqch2GmZnZfrOrRMZTS2ZmZpa3nMiYmZlZ3nIiY2ZmZnnLa2TyjKS3gTW5jqOFjmDHb3e1Ne5f/mrLfQP3L9+5f5/6bEQcmW2DExnb5yTVNLVIqy1w//JXW+4buH/5zv1rHk8tmZmZWd5yImNmZmZ5y4mM7Q/Tcx3APub+5a+23Ddw//Kd+9cMXiNjZmZmecsjMmZmZpa3nMiYmZlZ3nIiY3tMUu/kTt/1j/clfVtSF0lPSnotef5ME+1HJXVekzRqf8e/O7vo339IWiFpmaQHJZU00X61pOVJ2wPqBlm76NtkSesyys9tov05kv4o6XVJlfs7/t3ZRf8eyChbLam2ifYH7LmrJ6lc0suSXpL0C0lFko6T9FzyM/WApFQTbf8pOXd/lDRsf8feHE30b2YS80uSfiKpfRNtt2Wc5zn7O/bdaaJvMyStyoi7fxNtD+jfm9Bk/+Zn9O0tSQ810bbl5y4i/PBjrx/AQUAd8FlgKlCZlFcC1VnqdwHeTJ4/k7z+TK770cz+DQUOTsqrs/Uv2bYaOCLXsbewb5OB65tR/w3geCAFvAiclOt+NKd/jcpvA27Kx3MHdAdWAR2S978ERifPlyVl04DxWdqelJyzQ4DjknN5UK771Mz+nQsoefwiW/+S+htz3Yc96NsM4JLdtD3gf2821b9GdX4F/G1rnTuPyFhr+QrwRkSsAc4H7kvK7wMuyFJ/GPBkRLwbEX8BngTO2S+R7pmG/kXEExGxNSlfBPTIYVytIfPcNcdpwOsR8WZEfAL8F+lzfqDaqX+SBFxK+o9hvjoY6CDpYKAj8CfgLGB2sr2pn73zgf+KiI8jYhXwOulzeqBp3L+3IuLRSACLyd+fvZ361sx2+fJ7s8n+STqM9L/TrCMye8KJjLWWy/j0j8JREfEngOT5r7LU7w7834z3a5OyA1Vm/zJ9C/g/TbQJ4AlJSyWN22eR7b3GfZuQTJv9pIlpwbZw7gYC6yPitSbaHNDnLiLWAbcC/006gXkPWAr8T0aS3dR5OeDPX7b+RcQT9duTKaUrgMea2EWRpBpJiyRlS+ZyZjd9+27ys3e7pEOyNM/7cwdcCDwVEe83sYsWnzsnMrbXknn4rwGzWtIsS9kBeS2Apvon6UZgKzCziaZfjohTgb8BrpU0aJ8Gugey9O1u4ASgP+lfQrdla5alLK/OHXA5ux6NOaDPXZJgnk96aqgbcCjpWBvLdl4O+POXrX+SvplR5S7gdxExv4ld/HWkL33/DeD7kk7YpwG3wC769k/AiUAZ6amjimzNs5Tl27nb3c9ei8+dExlrDX8DPB8R65P36yUdDZA8b8jSZi1wTMb7HjR/eHV/a9w/kkV25wEjk2HunUTEW8nzBuBBDszh+x36FhHrI2JbRGwH7iV7zPl+7g4GLgIeaKpRHpy7s4FVEfF2RGwBfg18CShJ+gdNn5d8OH9N9Q9J/wocCVzXVOOM8/cmMA84ZV8H3AJZ+xYRf0pmzT4Gfkr+/uzt6twdTrpfv22q8Z6cOycy1hoaZ9hzgPrV9KOA32Rp8zgwVNJnkgx+aFJ2INqhf5LOIf2/pa9FxEfZGkg6NJkLRtKhpPv30n6ItaUa9+3ojG0Xkj3mJUDP5BsyKdJTNwfcN0MS2f73dzawIiLWZmuQJ+fuv4EvSOqYrPf5CvAK8AxwSVKnqZ+9OcBlkg6RdBzQk/R6kwNJtv69Kmks6XUilyfJ9k6S3ymHJK+PAL5M+rM5UDTVt/r//In02qZs/+by4fdm1v4l20YAj0TE5mwN9/jc5Wplsx9t40F6Idc7QOeMssOBp4DXkucuSXkp8KOMet8ivdDwdWBMrvvSgv69TnqeujZ5TEvKuwGPJq+PJ/3NkBeBl4Ebc92XZvbtfmA5sIz0H7yjG/cteX8usJL0N14OuL411b+kfAZwdaOyvDp3SZz/Bqwg/QfvftLfQjqedFLyOunptEOSul8DpmS0vTE5d38E/ibXfWlB/7Ymcdf/7N2U1G343UL6f//Lk/O3HLgy131pZt+eTuJ9Cfg50Klx35L3+fB7c6f+JeXzgHMa1d3rc+dbFJiZmVne8tSSmZmZ5S0nMmZmZpa3nMiYmZlZ3nIiY2ZmZnnLiYyZmZnlLScyZmZmlrecyJiZmVne+n8QYiZQlNLYnAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "eu_countries.sort_values(\"life_expectancy\")[[\"life_expectancy_male\", \"life_expectancy_female\"]].plot.barh(\n",
+ " figsize=(8, 10),\n",
+ " xlim=(68, 88), # rozsah osy\n",
+ " color=[\"blue\", \"red\"], # dvě různé barvy pro dva sloupce\n",
+ " edgecolor=\"#888888\", # střední šeď\n",
+ " title=\"Očekávaná doba dožití (roky)\"\n",
+ ");"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**Úkol:** Zkus si nakreslit sloupcový graf některé z dalších charakteristik (\"sloupců\") zemí (ať už evropských, nebo filtrováním přes nějaký region) a zamysli se nad tím, jakou výpovědní hodnotu takový graf má (někdy prachbídnou)."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Bodový graf (scatter plot)\n",
+ "\n",
+ "Bodový graf je nejjednodušším způsobem, jak porovnat dvě různé veličiny. V soustavě souřadníc, jak se používá v matematice, každému řádku odpovídá jeden bod (nakreslený jako symbol, nejčastěji kolečko), hodnoty dvou sloupců pak kódují souřadnici `x` a `y`. To se odráží i ve způsobu, jak bodový graf v `pandas` vytváříme.\n",
+ "\n",
+ "Zavoláme metodu [`plot.scatter`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.plot.scatter.html) naší tabulky (poznámka: bodový graf nelze jednoduše vytvořit ze `Series`) a dodáme jí coby argumenty `x` a `y` jména sloupců, která se pro souřadnice mají použít:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEHCAYAAABGNUbLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO2de5wcZZX3v2d6LglJIDHcQi4gBmUTlkScBQVfXm7ugkDU5eIFEW9EX0FY1+Wysmxgs76vgry+ukTfDYiiBBWD3ALiBcJyEaIBk5AEWCKQK0KSTZBA0jPTffaP6p709FR3V3XXravO9/OZz0xXd3Wdqu75PafOOc95RFUxDMMwskVH3AYYhmEY0WPibxiGkUFM/A3DMDKIib9hGEYGMfE3DMPIIJ1xG+CVvffeWw866KC4zTAMw2grnnzyyS2quk/19rYR/4MOOoilS5fGbYZhGEZbISJr3baHHvYRkS+JyCoRWSkiPxaRESLyAxF5UUSWlX5mhm2HYRiGsZtQPX8RmQhcBExT1Z0ichvwkdLTl6jqwjCPbxiGYbgTRcK3ExgpIp3AHsCmCI5pGIZh1CFU8VfVjcA3gHXAy8Brqvqr0tNfFZEVIvJNEelx219EZovIUhFZunnz5jBNNQzDyBShir+IjAM+ALwVOAAYJSIfB/4ROBT4K+AtwGVu+6vqfFXtVdXeffYZlqw2DMMwmiTssM9JwIuqullV+4GfA0er6svqkAe+DxwZsh1GAtm6I8/y9dvZuiMftymGkTnCLvVcB7xbRPYAdgInAktFZIKqviwiAnwQWBmyHYGxdUeeDdt2MmncSMaPdo1WGR64a9lGLrt9BV0dHfQXi1xzxuHMmjkxbrMMIzOEKv6qukREFgJPAQPAH4D5wC9EZB9AgGXA58O0IyhMsIJh6448l92+gl39RXZRBODS21dwzNS9bUA1jIgIfZKXqs4B5lRtPiHs4waNCVZwbNi2k66OjsHrCNDV0cGGbTvtWhpGRFhvH4+UBauSsmAZ/pg0biT9xeKQbf3FIpPGjYzJIsPIHib+HjHBCo7xo3u45ozDGdHVwZieTkZ0dXDNGYe3nddvCWujnWmb3j5xUxasS6ti/u0mWElh1syJHDN177ZNntfK/1hBgNEumPj7oN0FK2mMH93TltewVv7n9V0DzL13tRUEGG2BhX18Mn50DzMmj21L0TKG0mzYxi3/k+sQrr5nFbv6i7yeH2BXf5FLb19hISEjsZjnb2SSVsp2XfM/BaUr10FfoTC4zSqYjCRjnr8ROnEmRt2OvXVHnksXrmjaS3dLWM85fRoF1SGvq1UQYIliIwmY5x8BWU4CNutht3rNtu7Is2DJOuYtfp7uXG7IsRcsWUd+YKjn7tdLd8v/jOnpbFgQYIliIymY+IdMlmcFNzsxrtVrdteyjVy6cMWgwOcHBgaPPW3Cnsxb/PywffoK/st2qxPWjQoCLFFsJAkL+4RI5T97FpOAzUyMa/Walfev9uzLx162fjvdudyw5046dN9APO56BQGuiWIRrl60esj5XrJwBQ//5+bMfE+MeDDxD5GszwpuZmJcq9fMbf8yfYUCMyePHZKULfObZ18NXWwnjRtJX6E6UVykOydDtuUHinz+R09yzNcf5O5lG0O1ycguJv4hEuas4HZIGjYzk7fVa+a2f5miwpIX/4szj5g87LnuXPiD8qNrtlCosK0rJ8w5fToDRR322jf7C5m7UzSixWL+IRLWrOB2yiP4nRjX6jWr3D/XIbyR3+3l9xeUK+5cyaju4WGfsFt1lMNRldGoDoGTD9ufMSOcRHGHCG/2Db0rCaNc1JLLBpj4h07Qs4Kj6C4atDj4ncnb6jUr77/42VeZc/cq3qgS1MrHo7pzFFQbDjCtXhO3TqbduRwbtu0ctHfVptc4/4dLyQ/svhMIelBqJ8ehWWxw84aJfwQE2cYg7HbISRGHVq/Z+NE9HH/ovvzTXbXXCRrVk+Pq06dz/KH7ArB8/XZXwWjlmpSFaFR3rm44a/zoHo59+75ce+aMwbuevkKBC46b6un9vQhdFtqSJ+X72w5YzL/NCDuPkKbqpMqcg1uop1BUjj90Xx5ds4Vjvv4gH79xybAkayvXZMETa3nP1x7knBuf4LTrH+Xs3kkN8x+zZk7ksctO4PxjDwaE+Q+/UDPxe9eyjTXtdqNWtVFaChDS9v0NG/P824wwu4umcZGVyhDSyk2vMXfR0Hp6oK433Ow1WfDEWq6407nr6HOmGXDb0g0suvC9vNFXaOipf+ehNeQHioMlq9UeejNevJvj8EZfgZWbXmPG5LE1bWkX0vj9DRMTfw8kLYYYVnfRdlizYOuOPKs2/RlQph+wl6dzL4eQZkwey8nT9x9y3Zav315XMJq5Jlt35Ln6nlXDtuc6hDf6Cg2F1ouINSN040f3cOWp0wYHpTJzF63m5On7J+K73Qrt8P1NEib+DUhqDDGMdshJX7PgrmUb+fJtywYrZrpywnVnzfD1eVRft0aC0cw12bBt57Amb+BUG3kRIi8i1qzQHTZxL0b35NiRT18DuqR/f5OGiX8dWkmQJe1uwStJXbPAaca2fEipZH9BuWRhawlLL4Lh95pMGjdyWJM3gDmnT/N8p9LIpmaFbtK4kcPmFaTJO07q9zeJmPjXodkYYlLvFrzi5a4i6sFtw7ad5KQDGOpN5zqkZa/Vi2D4udMaMtdAhP5CkTmnT+ecow4M1KZmhC4L3nG7LhIUNaGLv4h8CfgsoMDTwKeACcBPgLcATwHnqmpf2Lb4pdl4r5XTBY/jTQ+fuVsoegulNCJowQjCA/ViUzN2m3dsQMilniIyEbgI6FXVw4Ac8BHg68A3VfUQYBvwmTDtaLYVQjPtCdLezyeucrrxo3u49swZdFZc2q6ccO2ZyfVak7zqW5JtM6IhirBPJzBSRPqBPYCXgROAj5Wevxm4CvhuGAdv1UttJt6b5oqDOMvpds+E9VftYxjGcEL1/FV1I/ANYB2O6L8GPAlsV9VS9TMbAFc1FpHZIrJURJZu3rzZ9/GD8lL9eEl+7xbaoUFbJXEPbs5M2H049u3BtGA2jKwSqucvIuOADwBvBbYDPwNOcXnp8NIIQFXnA/MBent7XV9Tj7i8VK93C3HEzltN1PpNGLZr1ZPhD/uc24+wwz4nAS+q6mYAEfk5cDQwVkQ6S97/JGBTGAeP00ttlIiLIzEc1GCT5MGtGhOl8EnC52z4J+zePuuAd4vIHiIiwInAamAxcGbpNecBd4Vx8GYStlERdWI46ERto1BYEvqs+O19Y/gnCZ+z0Ryhev6qukREFuKUcw4Af8AJ49wL/ERE/rW07Xth2ZDUsrao70qiDoHF3WclCyW3SSDuz9lontCrfVR1DjCnavMLwJFhH7tMEid9RD3Zxm2w6SsUQhts4k4MmyhFQ9yfs9E81tI5Rsrte2/57FE8dtkJocZJy4NNZZ18UeGxNVuafs96lUpxh9xMlKIh7s/ZaB5Rlx4kSaS3t1eXLl0atxltzdYdeY7+2oODbYIBRnR18NhlJ/j+Z/Wa5Isj4Vo+plsLZ0tEhoMl1pOLiDypqr3V2623T4bYsG0n3bmOIeLfTCikUTy9WgiiFIPqQenKU6dx2MS9MilKUQpyEkOrRn1M/KtIswcTVCikXjz90TVbhorvadM47IBoxNdtUJp77+qm7mzaHSu/NBph4s/uBUIe/+MWbnrsRbpzOfoKBS48/hA+dtSU1AhHUEnmWoPIqO7cMPG94o6VQxZJD1OA3AalDhFWbXqNY9++b2jHTRpW6WR4IXPiX+3ZVy8QApAfcDpPXPfr/+T6xWu49sz0eE1BdZt0G0Te6CsME19wlgqE8AXIbVB6s6/A+T9cyrVn+lv0pZ3xUukU1x1umu+s241Mif+wePBp0/iXe1YNEf5q8gPF1HlNQcRn3QaRrTvyw8S3Ei/5BT/i4JZbuOaMw7lk4YoheY38gKbuM6xHo/BeXCEhC0Uli8yUerrNRLz6ntUI0nDfejNv260xW5BUz/KtLPsb1ZMb9vpG+QU/M3JrvXbWzInc8Ile9ugaevw0tdVuRL3yy7hm5NpM4OSRGc/f9VY4J/T1F+rs5VBLtOL2ZJJ4C115R7By42vMvXe1p/yCnzh1o9dOP2BPiqRjqcJmP+Na4b24Jr/ZpLvkkRnxd7sVLhSVq2Ydxpy7Vw5ZFPyv/2I/fvPsq3TnaotW3Em1uAeeepRDMDMmj+Xkw/b3JF5+xKHea8vPX3natGE1/u0mMq1+xm7hvbgmv9mku+SRGfF3S1KWa8Dvv/hYNr22i8oFQhp5XHF6MkEPPH69Sz+v95pf8CMOtV67cuNrfHj+46mo8Q/LuYhrDd+4jmvUJjPiD+4hic4Ooa+gzDl92pAFthuJVpyeTJADj1/vMqw7jnriUCuxe2lV8n7uotWpqfEP07mIq9lhUpssZpVMiT8w+IX78PzH2dW/+x/rijtWgsI57z7Qk2cbpycT1MDj17sMO9TlJg61Bpvq1yYxptxKTiZs5yKuGbk2Ezg5ZE78wfGqOjuGV/lcfc8qgGFJylqebVyeTFADj1/BjEJgK8Wh0WBTLSRJiikHEa+3MIkRJpkU/0njRtJXGN7QrjMnXH3PKvoK6tmzjcuTCWLg8etdJnkNgiSJpdug9Q8LVzBtwp5M3W+M5/exMIkRJpmp869k/Oge5pw+bdj2gSJ05aJbXatVquvsm9nfbzveC46bSk+nRNK+1+9gE2WL7Hq4rdLWN1Dk/d9+xPdqYm6fcZbnlhjBkUnPH3CSu+qEerpyHRRU+fv3vZ1v/PK5Ia9LezlaM+vxgjD72IOb6nvkt1LIrzefhJiy26AF0FdofaZxEkp8kzi/xPBP5vv5D/Z+L1X/AOzqL9KTE6RDElU/Xybqf76tO/Ic8/UHhyTIm1kHoFnhCvp8o7h+dy/byD8sXEFfVe+QMT2d3PLZo5gxeazv9wzqc2iFJAw+hj8y3c+/3j97reofFeHeC9/LuFHdLF+/PTFeThz/fEEkelupFArSm4/q+s2aOZFpE/bk/d9+ZEh+qZU7ybgrmtw+w0sWLs9Mz6S0kfqYv5d+MW4x2p5cB/et/JPnXjNREFd/lCASvW7XOOp8StDXr1Hsfep+Y/jGWTMCW+Iw7lmybp9hfkC57lfPWf6hDUm1+Hv9Z6+1uPm8xWsS1YgqCAFtJlnYTGK4mqCFq5nzCHIA8tqELqgkdPnu9cpTp8W6LnJfYXgvrFt/t56jv/ZA7M6R4Y9Qwz4i8g7gpxWbDgb+GRgLnA9sLm3/iqreF/Txvd4muyUWLzhuKvMffqHlJQ+DpFUBbSXk0WrZYZClmM2eR1yT41oNW7m1Io9qdbRKxo/u4cLjD+G6X//nsOey1jY7DYQq/qr6HDATQERywEbgDuBTwDdV9RthHr/RP3tlLqBa3ADmPbSm5r5h45anGD+6hytPnTakQsmrgAYxO7dVEQuibr3V3EEck+NawXVpykXxta342FFTuH7xmiFOUZm4nSPDH1EmfE8E/qiqa0Ua99APgnr/7LW8x8ovblyThmrZdteyjcy9dzXdnR2D/Yi8eu5xJwvLVA8gfitvWj2POCbHtUJSPrcy40f3cO2ZwxfMgfSXRaeNKMX/I8CPKx5fKCKfAJYCX1bVbdU7iMhsYDbAlClTmjporRWnvHiPccywrGXbtAl7Dm4vM3fRak6evn/gXTOjopnwTRDn0eodTJSziZP4uZX/L25dso7rFz9Pdy5n7SfakEjEX0S6gVnAP5Y2fReYC2jp93XAp6v3U9X5wHxw6vybPX71P7vftgFRfqFr2bZs/faWPMCwBKvZmvlmwzdJaeMQlWOQlPN1s+uLJx7Cx46aYhO+2pSoPP9TgKdU9RWA8m8AEbkBWBSRHUAyvakytWybOXlsyzYHLVitJJBbCWckpeeNF8cgiAllSTlfN5Iwo9pojqhKPT9KRchHRCZUPPchYGVEdgDBlC5GbdvU/ca0ZHO5NBKo2w/IawllqzXzfgfgarta7WsUBX7WJG5EO5yv0V6E7vmLyB7A+4DPVWy+RkRm4oR9Xqp6LhKS7E3Vsq1Zm7166H48+VYTkX7CGe3YUiDuZT4NoxGhi7+qvgmMr9p2btjH9UKSb1lr2ebXZq8i5FesggideRnM2lVEk1alk2as0VxzpHqGr+F9Vqvf2a9Bhc4ahTOS0BaiGZKcV0oTQYbWskYmGrtBY+8grd6DVxGq97pa1yaK0Fm7imhSq3TSRLveFSYFz+IvIrcDNwG/UNXh0/sSTKOYcTvGlL3iVYRqve7RNVvqXptaYaigBtN2FtEk55XSgIXWWsNzP38ROQmnLcO7gZ8BP1DVZ0O0bQjN9vNv1AM9CT3SgyCoO5vK1wFNXZswBtOtO/Ks2vRnQJl+wF5t9dkY4ZCW/92wabmfv6r+BviNiOyFU7r5axFZD9wA3KKq/YFZGyCNvIM0eA9exNZrorjydcubmFgW1q14ozsQI3u0811hEvAV8xeR8cDHgXOBPwALgPcC5wHHBW1cEDSKGbdrTLlMmHHPZq5NGIOpxXaNWlhorXk8V/uIyM+BR4A9gNNVdZaq/lRVvwiMDsvAVqmuSunpFC44bmrN55M04csLYVXDDPaPP81f//gwBtN2rfgxosEmwDWHH8//elV90O0Jt3hSkih7BwuWrGPe4jXMf/gF5j20ZjB00M7eQ62FaFoR22H940+dxmETvfWPD+NWvN3vzlohrVVokO5zC4owr5GfhO8FwAJV3V56PA74qKp+J1CLatDqAu7tlBzy+4HfvWwjf3/bMsoddrtywnVnzWgqJh7UdQr6S3v3so3DBpS0x/zTXIWW5nMLiqCuURALuJ+vqvPKD1R1m4icD0Qi/q3iFovOibD42Vc5/tB9EzMANPOBHzN1b3IdHQyUvOP+wvBVlbyKcVAx+6BnTyfh7ixKTzXNeY40n1tQRHGN/Mzw7ZCKVVhKK3N1B2JFBLiFDt7oK3DVPasSMzOw2WZpG7btpDtXOybuZxZkkkMsUcZ2qxvJRT2TNM15jjSfW1BEcY38iP8vgdtE5EQROQGnS+f9gVkSMpWJ3VHducHtO/KFRCzODs1/4I1m5/oZUPwkwJtZRL0dqBb6BU+sbamDaTMkeRBulTSfW1BEcY38hH0uw+m++b8AAX4F3BiYJRFQDh0sfvZVrrpnFTvyhcHnwlyD1WuooNkP3C3JeuVp09iwbSev7ezzHcbxEmJJa8zW7Xb76ntW0d3pPihnbRGXIEjzuQVFFNfIc8I3blpN+FYSVfK3GYFsJbFZHmhWbnyNufeupqujg75CgaI6eYAyrZ5rOyXP/bJ8/XY+fuMSXs8PDG4b1Z2jv6j0DUR/vmmuiEnzuQVFENeo5YSviBwDXAUcWNpPAFXVg5uyKEaiGFWbTdi0ktgsv/bD8x8fctzODujp7KA7F8y5pmFWdC3c7r4Kqsw5fRpzF62O3FNNctvxVvFzblkdKML8/P2Efb4HfAl4Eig0eG3iCbt6pBWBbOUDdzvuyK5O5p1zBHuN7ArkXNMcs63lGMyaOZGTp++fSQGqRVSCnNYQY9z4Ef/XVPUXoVkSA2GOqnEJZK3jTj9gz8DONcqYbRweXy3HIM1euF+iEmQrCw0PP+K/WESuBX4ODJY5qOpTgVuVAsISyEZiGJUwR1F3H6fHZ0JfmygFOc0hxrjxI/5HlX5XJg4UOCE4c8IhrnhhEAJZabvXzpZux232GtTbL0yBNI8vuUQpyGkOMcaNn5bOx4dpSFjU8x6jGBRaEchK2/sKRQrFIgNFPIlh5XGb9aDj9LzN40suUQqylYWGh9+WzqcC04ER5W2q+i9BGxUU9bzHpPeHd7O9Gi9i2KwHHbfnbR5fcolakJPQ2iON+Cn1/P847ZyPx5ncdSbwuwb7vAP4acWmg4F/Bn5Y2n4Q8BJwtqpu82G3J2p5j6s2/TnxIQU326vxIobNetBxe97m8SWbqAXZcjDB48fzP1pVDxeRFap6tYhch5P8rYmqPgfMhMFeQBuBO4DLgQdU9Wsicnnp8WVNnUEdanmPoE0JW5S5Azfbu3JCh0B3LudZDJv1oJPgeZvHl2xMkNsbP+JfbjDzpogcAGwF3upj/xOBP6rqWhH5ALtX/roZeIgQxL+W9zj9gL18C1vU8e9atvsVw2Y96KR43iYwhhEOfvr5Xwn8G46Iz8Op9LlRVa/0uP9NwFOqer2IbFfVsRXPbVPVcS77zAZmA0yZMuVda9eu9WRrNW4eu582CnG2MwjqbiOMah/DMJJPrfYOfsS/R1Xz5b9xkr67ytsa7NsNbAKmq+orXsW/kiB7+5TxKmxu/V7G9HRyy2ePYsbksTX3ixMTbcMwIJjFXB4HjgAoCX5eRJ4qb2vAKThe/yulx6+IyARVfVlEJgCv+rAjMLyGFIKKf9t0eMMwkkLDfv4isr+IvAsYKSLvFJEjSj/H4VT/eOGjOP3/y9wNnFf6+zzgLh82R46fHve1iGoxkGYXhDEMI1t48fz/BvgkMAm4DqebJ8Cfga802llE9gDeh7MWQJmv4SwM8xlgHXCWd5PjoZXKk6078ly6cDn5AbXp8IZhJIKG4q+qNwM3i8gZqnq73wOo6pvA+KptW3ESx21Fs5UnC5asIz8wNLdST5BbCQ8loUTTMIzk42cZx3eJSGWSdpyI/GsINqWKrTvyzFu8Ztj2vkLBVZBbDQ8FEaIyDCP9+En4nqKqg2EeVd0mIu8H/il4s9JDeXH1/MBQb/zC4w8ZJshBtVSwyVG1sSoow3DwI/65qnLPkYD99zTALQzT09nBx46aMuy1Qcbr0zg5qlXhtioow9iNH/G/BXhARL6PM8Hr0zizcxNNpWAArn+HKZJ+ZsqmIV4flmfdqnDH3ajOMJKGn5bO14jICuAknIqfuar6y9AsC4BKwdg1UEBVGdnVyc7+AUSEEZ25SDxAr2GY6oGir1DkguOmhmZX0ITlWQch3FYFZRhD8ZPwBXgGuF9Vvww8IiJjQrApEKrr3fsLykARXs8PMFCE/oJGWgc/fnQPMyaPbSg0s2ZO5LHLTuD8Yw8GlPkPvxDqvICgCHN+QVm4KykLt1fScFdlGEHiWfxF5HxgIfDvpU0TgTvDMCoI3ASjFn6FJAq+89Aa8gPRDlCtEIRA1yII4bYqKMMYip+Y/wXAkcASAFV9XkT2DcWqAHATjFokzQOstw7BXiO7ElmpEqZn7bfDaK28g1VBGcZu/Ih/XlX7RJwJviLSiZP4TSTVgrGzfwBVGNGVIz9QGBbzj6NjZi3chHRn/wDn/3Ap3blkVqqE3QLaq3A3yjuksQrKMJrBT1fPa4DtwCeALwJfAFar6hXhmbebZrt6bt2RZ8GSdcxbvIaunNBXUOacPo2Tp+8fiGCHleSsbDndVyhQVCdPUSaqltJ+ibOOPs7W24aRVGp19fST8L0c2Aw8jdOn5z7aZIKXEz8vsiNfoG+gyNxFqwHHw96wbWfTsfQwk5zlxO8tnz2KGz7Ry4jO3JDnk5iniJsw8w6GkTb8lHoWReRmnJi/As+p19uGGKkVP1+wZB3feWhNSx57UOWDtbzlcohi6458W1SqxD2Jyip6DMM7fqp9TgX+CHwbuB5YIyKnhGVYULgJQl+hyLzFz7fssQchNl56+bhVqlx52rSW7lqCJgmtpK2ixzC84yfhex1wvKquARCRtwH3Ar8Iw7CgcEtEXnDcVOY//AL5gd0rczXjsbea5PQzeaky4bly42vMXbQ6UW0KkjKJyip6DMMbfsT/1bLwl3iBmFbg8ku1IADMe2hop81mwwOtiI1fwSxv+/D8xyNtU+AliZukkEs7VfRYozkjLvyI/yoRuQ+4DSfmfxbwexH5WwBV/XkI9gVGtSAEWZbYrNg0I5hRe9he4/hhl3qmkbhzJEa28SP+I4BXgP9ZerwZeAtwOs5gkGjxryYJ4YFmBDMID9urt+m3p04Srmm7YI3mjLjxU+3zqeptItKtqn3BmhQdcYQHqoXXr2C26mH78Tabuctop5BLFNQaaJOSIzGyi2fxF5GHgE+q6kulx38F3AjMCMWyFFJLeP0KZrMe9ppXXueShSvoG/DmbUYRx09zzLveQJukHImRTfxM8vo/wP0i8gUR+SowHxh2N2C4E3QppNcuoWXuWraR93/7EfqqVhSrNwkq7NLJVpesTDKNPm8rSzXixk/Y55ci8nng18AW4J2q+qfQLEsZcd7ml4WorzB8Tl5/scio7hzL12939b7DiuOnPebt5fO2HIkRJ37CPlcCZwPHAocDD4nIl1X13gb7jcUJDx3G7hXA/gY4HydpDPAVVb3Pv/nJol4II87bfDchAuju7ODs3kmcdv2jdXMAYcTx0x7z9vp5W47EiAs/YZ+9gSNV9XFV/XccAf87D/t9C2cBmENx8gPPlLZ/U1Vnln7aXvgbhTDivM13E6LunHDrZ47ktqUbYpmVm/aYt4V1jKTjJ+xzMYCIjFLVN1R1LfC+evuIyJ44dwqfLL1HHzDYFjoteA1hxHWbX6tCqKszF5v3nYV5ARbWMZKMn7DPe4DvAaOBKSIyA/icqn6hzm4H44R2vl96/ZPAxaXnLhSRTwBLgS+r6jaXY84GZgNMmTLFq6mhUx3e8RPCiOs2302I6jWMi6IKJwviaGEdI6n46ee/BDgTuFtV31natlJVD6uzTy/wBHCMqi4RkW8Bf8ZpDLcFJwcwF5igqp+ud/xm+/n7pZHouZXvHTN177btI1+5bkD5fBRs5qlhpIRa/fz9zPBFVddXhWwKDXbZAGxQ1SWlxwuBy1X1lQrDbgAW+bEjLBpNgKoV3nnsshPaNoTh1veoPJClsQrHMAwHP+K/XkSOBlREuoGL2J28dUVV/yQi60XkHar6HHAisFpEJqjqy6WXfQhY2YzxQeIlbl8vvNPOIYzK0MTy9dtTXYVjGIaDH/H/PE7lzkQcj/5XOIu6N+KLwILSgPECzsSwb4vITJywz0s4K4PFipe4faMKlTTEd9NehWMYhoPnUk9V3aKq56jqfqq6r6p+XFW3lp8XkX+ssd8yVe1V1cNV9YOquk1Vz1XVvyxtm1VxF4HeYhgAAA7cSURBVBAbXkQvC+V7WThHwzB8JHwbvpHIU6p6RCBv5kIUCV+35Gc55l+ZCAbaMrzjhzT33IH0n59hlAkk4dvoGAG+VyzUitsveGItVy9aTXdOGChqJqpf0hDCqoX10TcMfzN8G5H4xdy9UN0wbcETa7nizpX0DRTZkS+4zoLduiPP8vXbE7OerlGbJKw1bBhJwDx/F8ohgVHdOa6+Z9Ww53MdMpgINi+yvUh7TyHD8EqQ4v+zAN8rNirFPF8ogktOpL+gg7Ng09yZMo1YNVPwWP6kPfEc9hGRt4vIAyKysvT4cBH5p/Lzqvq/wzAwSqpDAn0DRfqKw1835/RpQ9o6VFKvP74RP1bNFCxpXpMh7fjx/G8ALgH+HUBVV4jIrcC/hmFYWNTzUtxCAiO6OigWla5cB/2FInNOn845Rx0IhOdFmicVLu08IS9J2J1ve+NH/PdQ1d9VtXcYCNieUGkUn3cTc4D7LvofvNFXGCYUYXSmtBxCNKS5mikqLH/S3vgR/y0i8jZKVT0iciYQ++Qsr3jxUmqJ+dT9xtR8X79eZD2v3jwpo52w/El740f8L8BZt/dQEdkIvAicE4pVIeDVS2kmJODVi2zk1ZsnZbQTWViTIc00FH8RuVhVv4XTdvkkERkFdKjq6+GbFxyNvJRqjzzoL7AXr948KaPdsPxJ++Kl2udTpd//BlBaxauthB/qV3lEUbHgpTIorZUoNgku3VRPjDTaAy9hn2dE5CVgHxFZUbFdAFXVw0OxLARqrWYVRZzdq1efNk/KEtiGkUwair+qflRE9gd+CcwK36RwqQ7pRBVn9xMfTUsliiWwDSO5eEr4quqfgBkh2xILUdbqN+PVJ7Hm36tNXgbWsM8vidfPMJKAl4Tvbap6tog8zdDmbW0X9nHDj0fuVUjqhTr8ePVJDJn4sanRwBr2+SXx+hlGUmjYz7+85KKIHOj2vKquDcWyKsLu59/Mwu1uQrJ1Rz6QxdyDep8gacamWmskhH1+Sbx+hhEHTffzL6+yFZXIx0U9j9xP7DqoHEISa/6bsalWqCvs80vi9TOMJOEl7PM67r36y2GfPQO3KmH4EZKgcgh+3yeK2Haz5+Y2sIY9p8HmTBhGfRrW+avqGFXd0+VnTBaEH/wJSVC1+n7eJ6rOikHOQwh7TkNa50wYRlAEtoZv2ESxhm896q3v60ZQnnij9/ES2w76riDI97NqH8MIlyjW8K114LHAjcBhOOGjTwPPAT8FDgJeAs5W1W1h29IKfss0g6rVb/Q+jUJSYVS8BDkPIaxWGmG26jCMNBDkGr61+BZwv6oeijNX4BngcuABVT0EeKD0OPEkcRp7vZBUFtertcVFDMMboYq/iOwJHAt8D0BV+1R1O/AB4ObSy24GPhimHWnBrUdOvdh21lYay+JgZxjNEnbY52BgM/B9EZkBPAlcDOxXUUL6sojs67aziMwGZgNMmTIlZFOTR2X44tE1W2qGb2qFpLJW8WLlnYbhnbDFvxM4Aviiqi4RkW/hI8SjqvNx1hCgt7e3PTLTAVEZq+8rFCkUiwwUqbsQTbXAZa3fetYGO8NohbDFfwOwQVWXlB4vxBH/VypmDk8AXg3ZjrbCbVJZNV492rR1Ca1H1gY7w2iFUMVfVf8kIutF5B2q+hxwIrC69HMe8LXS77vCtKPdcAtfVOPHo81SxUuWBjvDaIXQSz2BLwILRKQbeAFncZgO4DYR+QywDjgrAjvaBrfwRVdO6BDozuXMo21AlgY7w2iW0MVfVZcBwyYY4NwFhE47TvKpFb5o1aNtx2thGEY4ROH5x0Y7t/StFb5oVrTb+VoYhhE8UUzyioU01HwHNaksDdfCMIxgSa34Z22CUz3sWhiGUU1qxb9RzbfbbNm0YvXvhmFUk1rxr9f2IGv9X6y9sWEY1aS+pXN1hUuWl/ezah/DyB6xtXSOm+qa7yz3f7H6d8MwyqQ27FMLi38bhmFkUPwt/m0YhpGBsI8b1v/FMIysk0nxB4t/G4aRbTIX9jEMwzBM/A3DMDKJib9hGEYGMfE3DMPIICb+hmEYGcTE3zAMI4OY+BuGYWQQE3/DMIwMYuJvGIaRQUz8DcMwMkjo4i8iL4nI0yKyTESWlrZdJSIbS9uWicj7w7bDMAzD2E1UvX2OV9UtVdu+qarfiOj4hmEYRgUW9jEMw8ggUYi/Ar8SkSdFZHbF9gtFZIWI3CQi49x2FJHZIrJURJZu3rw5AlMNwzCyQRTif4yqHgGcAlwgIscC3wXeBswEXgauc9tRVeeraq+q9u6zzz4RmGoYhpENQhd/Vd1U+v0qcAdwpKq+oqoFVS0CNwBHhm2HYRiGsZtQxV9ERonImPLfwF8DK0VkQsXLPgSsDNMOwzAMYyhhV/vsB9whIuVj3aqq94vIj0RkJk4+4CXgcyHbYRiGYVQQqvir6gvADJft54Z5XMMwDKM+VuppGIaRQUz8DcMwMoiJv2EYRgYx8TcMw8ggJv6GYRgZxMTfMAwjg5j4G4ZhZBATf8MwjAxi4m8YhpFBTPwNwzAyiIm/YRhGBjHxTwhbd+RZvn47W3fk4zbFMIwMENUavkYd7lq2kctuX0FXRwf9xSLXnHE4s2ZOjNsswzBSjHn+MbN1R57Lbl/Brv4ir+cH2NVf5NLbV9gdgGEYoWLiHzMbtu2kq2Pox9DV0cGGbTsjs8FCToaRPSzsEzOTxo2kv1gcsq2/WGTSuJGRHN9CToaRTczzj5nxo3u45ozDGdHVwZieTkZ0dXDNGYczfnRP6Me2kJNhZBfz/BPArJkTOWbq3mzYtpNJ40ZGIvywO+S0i913HuWQU1Q2GIYRDyb+CWH86J7IBTfukJNhGPFhYZ8ME2fIyTCMeAnd8xeRl4DXgQIwoKq9IvIW4KfAQcBLwNmqui1sW4zhxBVyMgwjXqLy/I9X1Zmq2lt6fDnwgKoeAjxQemzExPjRPcyYPNaE3zAyRFxhnw8AN5f+vhn4YEx2GIZhZJIoxF+BX4nIkyIyu7RtP1V9GaD0e98I7DAMwzBKRFHtc4yqbhKRfYFfi8izXncsDRazAaZMmRKWfYZhGJkjdM9fVTeVfr8K3AEcCbwiIhMASr9frbHvfFXtVdXeffbZJ2xTDcMwMkOo4i8io0RkTPlv4K+BlcDdwHmll50H3BWmHYZhGMZQRFXDe3ORg3G8fXBCTLeq6ldFZDxwGzAFWAecpar/1eC9NgNrmzRlb2BLk/umCbsODnYdHOw67CbN1+JAVR0WOglV/JOCiCytKDPNLHYdHOw6ONh12E0Wr4XN8DUMw8ggJv6GYRgZJCviPz9uAxKCXQcHuw4Odh12k7lrkYmYv2EYhjGUrHj+hmEYRgUm/oZhGBkk1eIvIieLyHMiskZEMt05VEReEpGnRWSZiCyN256oEJGbRORVEVlZse0tIvJrEXm+9HtcnDZGQY3rcJWIbCx9J5aJyPvjtDEKRGSyiCwWkWdEZJWIXFzanrnvRGrFX0RywDzgFGAa8FERmRavVbFT3Vo7C/wAOLlqWxZbiv+A4dcB4Jul78RMVb0vYpviYAD4sqr+BfBu4IKSLmTuO5Fa8cfpIbRGVV9Q1T7gJzitpI0MoaoPA9WzxzPXUrzGdcgcqvqyqj5V+vt14BlgIhn8TqRZ/CcC6ysebyhtyypurbWzirUU382FIrKiFBZKfaijEhE5CHgnsIQMfifSLP7isi3Lda3HqOoROGGwC0Tk2LgNMmLnu8DbgJnAy8B18ZoTHSIyGrgd+DtV/XPc9sRBmsV/AzC54vEkYFNMtsROjdbaWcVTS/G0o6qvqGpBVYvADWTkOyEiXTjCv0BVf17anLnvRJrF//fAISLyVhHpBj6C00o6c9RprZ1VrKU4gyJX5kNk4DshIgJ8D3hGVf9vxVOZ+06keoZvqXTt/wE54CZV/WrMJsVCrdbaMZoUGSLyY+A4nJa9rwBzgDvx2VK83alxHY7DCfko8BLwuXLcO62IyHuBR4CngWJp81dw4v7Z+k6kWfwNwzAMd9Ic9jEMwzBqYOJvGIaRQUz8DcMwMoiJv2EYRgYx8TcMw8ggJv6GYRgZxMTfSBWl1tV7N7HfD0TkTB+vP6iyPXKzeDmuiHxSRK4v/f1B605rBIGJv2G0Fx/EaVFuGC1h4m+0LSJyZ6lL6Sq3TqUi8olSx8rlIvKj0rYDReSB0vYHRGRKxS7HishvReSFsjcuDteKyMrSYjgf9mjbQSLyiIg8Vfo5uuL9rheR1SJyLxXdIyvvWkSkV0QeqnrPo4FZwLWlxVfeJiIXld5rhYj8xNcFNDJNZ9wGGEYLfFpV/0tERgK/F5Hby0+IyHTgCpxupltE5C2lp64HfqiqN4vIp4Fvs7t3+wTgvcChOL1eFgJ/i9MCYQZOa4Tfi8jDHmx7FXifqu4SkUOAHwO9OD103gH8JbAfsBq4ycvJqupvReRuYJGqLiyd5+XAW1U1LyJjvbyPYYB5/kZ7c5GILAeewOngekjFcycAC1V1C0BFn5b3ALeW/v4RjtiXuVNVi6q6GkeYKT3/41L3y1eA/wD+yoNtXcANIvI08DN2h2qOrXi/TcCD3k/XlRXAAhH5OM4qVYbhCRN/oy0RkeOAk4D3qOoM4A/AiMqX4G39hsrX5Kv2r/ztly/hNFCbgePxd9c4ZiUD7P6fHFHjNdWcirNc6buAJ0XE7uYNT5j4G+3KXsA2VX1TRA7FWY+1kgeAs0VkPDgLdJe2/xanvTfAOcCjDY7zMPBhEcmJyD44nvvvPNr3cqlX/rk4nWXL7/eR0vtNAI6v2OclHBEHOKPG+74OlNtzdwCTVXUxcCkwFhjtwTbDMPE32pb7gU4RWQHMxQn9DKKqq4CvAv9RCg2Ve7dfBHyqtN+5wMUNjnMHTmhlOU6I5lJV/ZMH+74DnCciTwBvB96oeL/ncVoKfxcnjFTmauBbIvIIUKjxvj8BLhGRP+CEuW4phZb+gLMY+3YPthmGtXQ2DMPIIub5G4ZhZBBLDhlGC4jI3wBfr9r8oqp+KA57DMMrFvYxDMPIIBb2MQzDyCAm/oZhGBnExN8wDCODmPgbhmFkkP8GHvKU+QmOUQgAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Souvislost mezi pitím a střední dobou života\n",
+ "countries.plot.scatter(\n",
+ " x=\"alcohol_adults\",\n",
+ " y=\"life_expectancy\",\n",
+ ");"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "💡 O kauzalitách, korelacích a souvislostech mezi veličinami si budeme povídat jindy, ale taky se nemůžeš ubránit dojmu, že čím více se někde pije, tím déle se tam žije?\n",
+ "\n",
+ "I bez matematické rigoróznosti ovšem asi poznáme, kde bude zakopaný pes. Zkusme si obarvit jednotlivé regiony světa různými (stereotypními?) barvami. Naučíme se u toho šikovnou funkci `map`, která hodnoty v `Series` nahradí podle slovníku z->do (a vrátí novou instanci `Series`). Sloupec `world_4region` obsahuje přesně 4 různé oblasti (\"kontinenty\"), tak nám bude stačit velice jednoduchý slovník.\n",
+ "\n",
+ "Ukážeme si několik dalších argumentů (jež jsou vlastně spíše argumenty použité v knihovně `matplotlib`, a tak nemůžeme jednoduše použít jméno sloupce :-( ):\n",
+ "- `s` vyjadřuje velikost (resp. přibližně plochu) symbolu v bodech (může být jedna hodnota nebo sloupec/pole hodnot)\n",
+ "- `marker` značí tvar symbolu, většinou pomocí jednoho písmene, viz [seznam možností](https://matplotlib.org/3.1.1/api/markers_api.html)\n",
+ "- `alpha` vyjadřuje neprůhlednost symbolu (0 = naprosto průhledný a není vidět, 1 = neprůhledný, intenzivní, schovává vše \"za sebou\"). Hodí se, když máme velké množství symbolů v grafu a chceme jim dovolit, aby se překrývaly."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAAGqCAYAAACI3wquAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3yUVbrA8d87Lb33QBoBQgsJhBZ6CCWgAiIsoAIWdF3Fsveu1+tde1tX3evdXey6qwJKUSygBELvEEIJnYQUAgnpvUymnPtHAFECJCGTmSTn+/n4wcy85Qkk87ynPUcRQiBJkiRJHYnK2gFIkiRJUmuTyU2SJEnqcGRykyRJkjocmdwkSZKkDkcmN0mSJKnD0Vg7gKby9vYWoaGh1g5DkiRJshEpKSlFQgifxt5rN8ktNDSUAwcOWDsMSZIkyUYoipJ9vfdkt6QkSZLU4cjkJkmSJHU4MrlJkiRJHY5MbpIkSVKHY/HkpijKHxVFOa4oyjFFUb5WFMVeUZTPFUXJVBTl8KX/oi0dhyRJktR5WHS2pKIoXYAngD5CiFpFUVYCcy69/bQQ4htL3l+SJEnqnNqiW1IDOCiKogEcgdw2uKckSZLUiVk0uQkhLgDvAOeAPKBcCLHh0tuvK4qSqijKu4qi2DV2vqIoDyuKckBRlAOFhYWWDFWSJEnqQCya3BRF8QCmAWFAIOCkKMq9wLNAL2Aw4Ak809j5QoiPhRCDhBCDfHwaXYQuSZIkSdewdLfkeCBTCFEohDAAq4HhQog80UAP/BsYYuE4pA5OCEFeXh5ms9naoUiSZAMsXX7rHDBMURRHoBaIBw4oihIghMhTFEUBpgPHLByH1IFdvHiRdeuWU1iYgrNzDxIS7qVbt27WDkuSJCuyaHITQuxTFOUb4CBgBA4BHwPrFEXxARTgMPCIJeOQOqbq6mo2b17H6dM/ExenZcCAbpw+nc+aNS/j5zeKiRNn4Onpae0wJUmyAkUIYe0YmmTQoEFCFk6WLjty5CDr139GVFQtY8YEYm//y3Oa0Whmz55c9uxRiI2dy6hR46wYqSRJlqIoSooQYlBj78kKJVK7tH//z0yfrmLSpOBfJTYAjUbFqFFdWbjQk507V1kpQkmSrEkmN6ndcnLS3vB9R8cbvy9JUsclk1srKSkpQa7FkyRJsg3tZrNSW3bmzBm+//5tFMVEQsJTREb2t3ZIkiRJnZpsubWCwsJCQkKq6Nmzjvz8PGuHI0mS1OnJ5NYK+vfvj8k0loqK4cTEyPXobUGjceLYsWIMBlOj75vNgtTUfLRapzaOTJIkWyCXAkjtUllZGRs2fEdu7lYmTHCiTx8fGmoCQFZWGevWleDgEENCwmz8/f2tG6wkSRZxo6UAMrlJ7VpWVhaJicuwszvNyJFuHDpUQW5uABMnzqd3795XEp4kSR2PTG5Sh2Y2mzl06CB7964hMnIssbEj0Wo71jKAyspKjh8/Tr9+/XB2dv7Ve1VVVSiKgpOT7IKVOpcbJTc5W1Jq91QqFTExg4iJafRnvN0rLy/n+ec/pLQ0BC+v7bzyyiO4urpiMBjYtm0Xq1btQ6VSmD07lpEjY9Fo5K+1JMkJJZJk4yorK6mocCEsbCZlZY5UVVVx4cIFnntuMUuXFuHh8XtcXRfy739f4IUX3iM/P9/aIUuS1cnkJkk2zsfHh+hoBzIz32LAAGe8vb1JT0/nwoXehIbOxN7eHQcHT8LC5pCT042zZ89aO2RJsjrZfyFJNs7Ozo4nn7yPkpISPD09r0yS0Wiu3cBeo9G1dXiSZJNky02SLEQIQXp6OtnZ2bd8LUVR8PLykrM/JamJZMtNkm5BfX0958+fJyws7FeJp6SkhJ9++pry8v0YjRAQMIYpU2bh4uLSKvf18PAANlJQ4IOPT18A8vOPoCjH8PCY0ug5OTk5CCEIDg5ulRgkyZbJ5CZJLSCEIDX1KEuWbCQ/X0PfvvbcfXfClcSxY8d6vLz2cPfd3TCbBT/+mMS+fV0YP35Sq9y/f//+vPyyG199lcjJk/sBE5GRCnPnzqZr166/Ora8vJwffkhi8+YchFAYPTqAGTMmXkqQktQxyeQmSc1UUlLCZ5+t5uhRM15es+jWrSvZ2cd44YVviI8PYfbsOzCbjQQGOqNWq1Crwd/fgepqY6vGERISwjPPPERq6lFUKhWRkf2u6bbcvn03y5btwGgcSlDQNAD27NnD3r0fM2dOLPHxo1s1JkmyFTK5SVIzpaamkpLiTUTEtCvJxM8vEpMpgqSkfzF8eA5arQOnT1fSs6cXRqOZs2drCQq6dgLIrVKpVERHR133/eXLt+Pq+iBOTj5XXuvadTR1df35+ut/yuQmdVgyuUntSklJCTk5OURFXf8DvS3Y2bld00pSq3VotY4AxMffxtatGt57by1CqIiJWcCIEdZJJHZ2147z6XStM/YnSbZKJjcrE0Jw7NgxiovzGTZsJPb29tYOyaZlZWXx00+7WpTczGYz9fX1t/x3XFJSQm3tjY9xcHBg0KARGAz2jBkTi5ub2y3dU5Kk5pFLAaxsz55d7NjxV0pKvuTLL/9u7XBs3sCBA3n++cebfV51dTVvvPERjz/+vyQnH2rx/X/6aROffLKLAwe2kpa25Vfvmc0mjEb9la8dHR2p11dafYd2o7Huuq8JITh16hQGg6Gtw5Iki5LJzcqqqysJCxMMHuxFdXWBtcPpsIqKijh92owQ8SQnn2rxdXbuPEFo6GP4+k7i6NGVVFc3JK6SknSysz9kyBB7AgMDSU1N5aMXX8S8Zg0/v/IKX330EcXFxa317TTZ7bcPprDwE3Jz9yOEGSHM5OYeIC/vfW6/fTAFBQX84x/LOXPmTJvHJkmWJLslrSwqKobVqw9y5EguEyfeZ+1wOix/f3+GDXMlLW0b48ZNa/F1AgJcuXAhmR49jPj6BlBb+2/y8z0JCqrhsccm0bNnT86fP0/S//4vv/PwIKhbN0xmMzv37WNFfj6PvvBCK35XNzdlSjyDBkWycmUiyckHABUDBtgxZ848/P39EULw3HMP4+fn16ZxSZKlyS1vbIDZbMZkMnW4bVo6IoPBwM6de1EUhREjhlJfX8+pU6fo27fvlbG8jIwMdrz+OguCgq6cV1JbyxIhePKtt6wStxCCtLQ0zGYzERER1610cuHCBZKSdjN0aD969+7dxlFKUvPILW9snEqlQqWSPcTtgVarJS5uFABGo5H9+1NYsWI3Xl67mDdvIr169bJyhI1TFIWePXve9Li//30FBQUD2bHjO/7xj2C5R5zUbslPVElqodTUVD799BRubr+nsvI23n77OyorK3Fzc+OigwObcnKoN5m4WFXFjxcv4hMebpU4S0tLWbHiR/bu3Y/ZbL7hsc7OdhiN+Tg4KKjV6jaKUJJan2y5SVILGY1G7Oy64uDggYODB9XVDhQXF5Oefpq7nnqK1H37+HtSEoqbG2MXLWJgTIxV4nz99U8pLh5Iff0RFi6sIy7u+uvt/vSn+zl48BC9e4+Xy1Kkdk0mt06gvr6etWvXEx8/Wq63akUNf5fbycvzx2Aows2tnjVr/k2XLul8+60vzzzzLoUTJ+Ls7IyDg4PV4iwrq8PXdwDnz+uprb12WcDVHB0dGTlyRBtFJkmWI7slOwG9Xs/hw2lUVlZaO5QOJSIigldemUPv3keZNKmWV199FAcHF8rLFbTahlaPj49Pmye22tpakpK2cPr0aYQQzJ8fT1nZh/Tpc45Bg6LbNBbp5kwmE/v372XXrm1yvWErkrMlJakV6fV6jh8/TkRERJtPxjCbzezff4Bly7ZRUREB5DBkiCuzZk3C3d0djUbT5IlLZrOZkydP4u/vj5eXl8ViLisrY9OmnfTqFUbfvn0tdh9blZ6ezvr1S3F1zUSng7y8ACZOnE/v3r3l3n1NIGdLSm2iuLiY1Z9+iqJScdfChZ1ySxU7OzsGDhzYonOFEBw+fITjxzOYOHEkvr6+TT73woULfPbZD5w964yv7wK8vHwxm00cOXKAgwe/4I47+jF1atO228nMzGTZskTOnNGg05UyfXo048ePvu4YXElJCU5OTtjZNb8w9IoV69i2zQF7+x95992unarb/MiRI2zZ8jcmT3alZ89QFEUhK6uMn376C6WlCxkxYoy1Q2zXZHKTWs3JkyfxPHIEM3Dq1CliY2OtHZLNuFzmqr7eQP/+kY0+la9dm8TKlVlotb3YsePfvPzyAvz9/Zt0/aSkvWRk9CU0dPSVa6tUagIDh2IwRPLddx8xbNiAG17PaDSyZMlqtm7Nxdl5ImFhvTEYqvnmm81s3LiYRx65g169Iq4cbzabWbVqLevWncTTU8Pvf38HERE3X25wNXd3J9TqC7i4qDrdOs+KigoiI1VERHhfeS001J1Bg6ooKSm1YmQdg0xuUqsJDg5mj48PiqIQe9UCZgm++OJbNm8uBLTExBzkySfvu+aYwsIKnJ1j8fOLJCcnm6qqqmbdw8HBs9GkqdU6otHcfOZjUVERW7fmERz8GGp1Q6LR6ZwJDZ1KXt4hNm1K+VVyq6ys5OefTxEU9BRFRSdZv35/s5PbrFm3ExV1hsDAQBwdHZt1riTdiExuUqsJDg7mibfeQlEUdDqdtcOxKUeP5hAYeD9arRPHjv210WO6dQtg+/aNZGScxcMjr9ndukajgdOn07Gz0xIcHNSiwgAaje5KYrva5a18rqZWq9FojJSXZ1NTcwEHh+Z/nKhUKuzt7SkuLsbV1bXZ57d39fWmJr0mNZ9MblKrasm4S2fQpYsbR46sR1HsCA1tfFxp7NgRdOsWRFpaBsOGPdbsCSnnzl0gN1cHlKPTaQkMDGyFyK/P2dmZp5+ewddfJzF4sB/Tpk1u9jVqamp49dUlCKHw978/iYtL59lnLjw8nBUrAqiuzmLCBH80GhWbN+dx+rQbM2ZEWju8dk8mN0lqA48/Po9du/ZSW1vPuHEPX/e44OBggoODm319e3sNen0mZrMPavWvy7mVlmYgREWTxrSMxnpMJsM1rTeDoabR43v16sXLL7e85JidnR1DhoRjMpmtuhbQGgIDA3nssdfYvXs7H320CjARFTWDRYsmyAX0rUAuBZCkDqCmpoafftrI55/vwMEhnj59JqDXl5Ofv4HAwHzmzZt400LIv51Q4u3dMKEkN3cT7u5p10wokVpPRUUFJpOpU84wvhU3Wgogk1sLmUwmDAaDfMLqAMrLy1n37bcsX/I9k2fdzoMPP4BG0z47NfLz81mxIpEDB8pxcqpj9uzhjBw5rFnfT1ZWFkuXrmvyUgBJshaZ3Czgs8/+RkHBWRYufBkfHx9rhyPdgreffpo++fl8fbgAeycjM55+lCkzZlg7rBYTQpCVlYW3t3eLx7DaahG3JN0KuYjbAoxGA0KYblplXbJ9tcXFTA4LY0zXrpwpLiazosLaId0SRVEICwu7pWuoVKpOWTFE6jhkcmuhBx74T/R6Pc7Ozs0+t6SkhM2bfyQwMJzY2JGyzI6V6VxdOZCXRy8vL85UV+Mk11tJUrsnCye3kFarbVFiA9ixYwNa7QZ27/6UoqKiVo6sfSgsLGTZhx/y4WuvkZGRYdVY7n/2WU5GRvKPwkK85s5l4rRpVo1HkqRbJ1tuVhAQEMyWLTq0Wv9OudPxnu3b2fHFF4xWq3HTalnz8st0jY/nrvnzrRKPn58f8xctwmAwyMXnktRBWDy5KYryR2AhIICjwP1AALAc8AQOAvOEEPWWjsVWDBkynPDwCFxcXDrlh+nJPXuY6exMt0vTnrt7evLGli1WS26ArKoiSR2MRbslFUXpAjwBDBJC9APUwBzgr8C7QogeQCnwoCXjsEVeXl6d+sNUfdU4o7oFZaIkSZJupC0+VTSAg6IoGsARyAPGAd9cev8LYHobxIHZbObYsWPk5+e3xe1aTUlJSbOL6NoyrZMTx0tLqTeZMAvB4YsX0bZw/FKSJKkxFu2WFEJcUBTlHeAcUAtsAFKAMiGE8dJh54EujZ2vKMrDwMNAi0oS/dahQ4fYs+d/qajw4Jln/o5arb7la1pSTU0N69Zt5qefTmBnB3PmDGfEiOYtyLVF0+bPZ6O7O4s3bsTRbEYXHc19c+ZYO6xmKywsZP2qVdRVVjJhzhxCQkKsHZIkSZdY9FNSURQPYBoQBpQBq4DGqqs2upJcCPEx8DE0LOK+1XhcXV2prLTH1dXXpqffm81m9u1LZtmybdTURBIQ8DgGQw3/+tcGNmw4yLx5E+nVq+X1/KzN1dWVGffey/mxY6mqqiIiIsKm/z1+q7a2lq3r13P0xx8ZrVbjpNGw+sUXCRo3jgnTpnWqDTclyVZZtEKJoiizgAQhxIOXvp4PxAKzAH8hhFFRlFjgJSHEDbcJbq0KJZWVlTg4ONh06+fEiRP85S9b8PefhZPTr3djLik5S3X1Kv72t0dwd3e3UoSdk9lsJiU5ma3LltGnspK4wEAcLxUjNphM7MrNZZ9Gw5CZMxkxZkynHlOVpLZgzQol54BhiqI40tAtGQ8cALYAM2mYMbkA+MHCcVzRHrbUMBgMaLUB1yQ2AE/PcKqrnTEajY2cKVlKRkYGiUuX4nT2LPN9fPD7TRekVq1mbFAQA+rqSFq2jPeSkhg/bx79+vVrV61SSeooLD3mtk9RlG9omO5vBA7R0M34E7BcUZTXLr32mSXjkKSWMplMfPP551zcvp2Jzs70Cg29YbJys7dnZmgo2WVlJL79NvujopjzyCOdcj2jrTCbzS3auFVq3yzeNyeEeBF48TcvZwBDLH1v6daZzWYO7N9P+uHDjJwypVUm9rSE0Whkx+bNCCEYHR/fZt3KZWVlXNixgydCQtA04wMyxN2dh9zc+CI1lfPnzxMRIbeKaWtms5lNm7bx7be7GTKkOzNnTu6Uu313VvJxxgap1Wrq6/OprS295r2KivOYzdVtNtNz07p1HF28mB4pKSx/5RUuXLjQJvf9rfT0dE5++SWnlywhLS2tTe+tVaubldguUykK9k3YIFSyjHPnzrFkyVFcXR8hKUnLjh17rR2S1IZkcrNBvXr14sEH+1Je/jE5OZsxmerR6yvIylqNSrWSJ59MaLNNDWvKy4l2dGRwly4EmM3U1DS+I7OleXt7U+PrS7WvL97e3laJQWpfhBAIoUajsUdRtLSX7b2k1mG7UwY7MY1GQ1zcaGJiovnxx41s3PhPdDoTc+cOIi5uUZvOwguJiGDD5s2cOnuWwoAAq+1d5+3tzRNvvgkgZyFKTRIUFMSMGWGsWfO/DB0axPDhU60dktSGZHKzYa6urtx77wzGj7+Ivb29Vab+R8fE0PXNN8nMzGRWVJRVE4tMalJzaDQa7rxzCgkJcdjb28tZq52MTG7tgL+/v1Xv7+3tbbGuwMtdRfKDR7IUBwcHa4cgWYFMbpLVpKens37pUoz19UycN49evXrJJCdJUquQyU1qkuzsbDatWkVIv36MnTDhlmZrVlZWsnb5cgp37GCSqytatZrEv/yF/YMGMXXevDabLCNJUsclZ0tKTfLTv/5Fn1OnOLVsGZmZmVder6uro6KiolnXSk1NRbV5M4+GhhLh7U03Dw8eCQvDY+9ekvfsae3Qb5neaKTGYGj2eQaTiSq93gIRSZJ0M7LlJjWJo6cnGWfPUu3ggKOjI2azmYMHU9i6dRkmUxXR0dMZM2Y89vb2N72WEAJPO7tfrR1TKQreDg5U2dh0bQ8PD/reeSeLf/yRMRoNg/z9b7r/nBCC44WFJNXU0HX8eEJDQ9smWEmSrpDJTWqSu//wBw4OGcLYkBDq6+v56KM3sLc/wz33+ODi4svmzd+wePFG4uLuZcCAgbdc7kgIwcmTJ9m9ew19+gxn6NDhVtmiSKVSMXn6dGKGD2f9qlXs2rGDBHd3+lxnkk9uZSWJhYUYevdmxt13y21waKiVajAYcHR0tHYoUicik5vUJDqdjohevUhK+p7c3K1MmOBEnz5hVyaATJ0aSl5eJevW/YPk5AgmT773uh/sWq2Wk3o9JbW1eF6ayVah15NeW0uQnR0XL14kMXEFtbUpjBrlTGrqCVJSNjBp0jx69OhhlUknnp6eeAYEkGow8GpyMkO9vZkXFYXXpQ/sqvp6NufmcsbdnXFPPkn0gAGdvp6hEIJjx46xZMlGysr0zJo1lDFjRsglHVKbsOiWN62ptba8kZqvvr6enTu3kJz8DbGxgtjYALTaxltRQgiOHy8kKamarl3HMWHCtGvW5xmNRvbu2sXu5csZoNejU6nYq1Ix+K67cPfxZtOm94iL0zJwoD8qVUMiS0srZv36Cnr0mMGkSdMs/j3/1tmzZ1n/8svcFxREVX09Lxw9SlBQEINNJpxUKnYB0dOnM3p807pmOzqz2cx77y0hObkOT88E7O3dyctLws/vHP/93/fh6elp7RClDsCaW95I7ZgQgqNHU9m4cQmhoUX84Q8BuLra3fAcRVHo18+XiAgTu3fv4KOPdjFkyCxGjPhlfzONRsPIMWOIGjiQLT//TIVez++nTsXd3Z1NmzYwdKhg0KCAX123Rw8v1GoVO3akW+z7vRkHtRoHjQY7tZowf38WvPoq+7dto6yqigenT8fLy8tqsdkao9FISkoOYWH/g6I0tGDDwmZy7tzX5Ofny+QmWZxMbr9RV1fH1q1bcXFxYdiwYZSWlpKaeojo6BgqKioIDg7uFN1N58+fJzHxa8zmo8ya5UVQUGizztdq1YwZ05Xo6Do2blzG4sUbGD9+HpGRkVe6FV1cXJg6e3aTr2k2mzGbrdPT4OfnR223bnyRlka1otBl2DB8fX2bFX/no1xJbFdeUTr+745kG2Ryu0QIQUpKCkuXLqWsrAyTycS///0vfH3t8fTMZPFiFU5OHvTo0YNFixZ12CfPyspKNm5cQ0bGBuLj7YmKCrulMS43N3vuuiuUc+fKSUx8h+TkKBIS5tClS5dmXaeiooJt2w6yZUsu99xT3+bjNs7Ozjzy5z9z5PBhHJ2c6N69O1lZWQQHB9v0ru7WJIQZvb4SO7uGDYLNZiP19dVWjkrqLDr9b6UQAkVRyMvLY/HixXh5eeHq6sqFCyl4ehZz+HAlRqMviuJNZGQ30tPTycrK6nDJzWg0smfPTvbsWcHAgXoWLeqKnV3r/XgEB7vx0EOuHD6cxvLlzxEePpH4+Nsb2Rldoays7sq/y2VVVVUUFakoLKyltrbWKpMSVCoVAwYOBOCzz1awZUseQ4Z48MQTC9o8Flun1WqZO3cE3377AUIMx87Oi6qqJEaP9pFLI6Q20WmTW21tLVu2JHLwYCIxMZPp3r0vGo0GFxcXzpzZw6RJdfTs6U9hoY79+/04fVpHSUkJZrMZbQfao0sIwalTp9iwYQl+fhdYuNAfT0/L1OJTFIUBA/zp08fIjh0b+eCD7QwfPpthw0Zeaf1ERw/k++9T+eSTIyQkeBEc7EZpaS1bt9aSmxvE44/fg5ubm0Xia46KihqMRk/KyqqsHYpNUhSFhIRxDBkSzerVG7h48Rhz595GeHi4tUOTOolOOVuyoKCAL754gz59yhk61Id9+wrZt0/F2bN19OjRgzNndnPHHeUEBDhQVlZGUVEULi5TOHHiBFOmTGHw4MEdZtzt7Nmz/Pjjq0yb5ka3bm1b9qqkpJYffzxPly53M2HCbVdevzyFPCnpS7y8LnLxohPDh88hNnakzXQBVlZWcvjwESIj+1llt4aOxGQyceDAQezsdERF9bd6fVG9Xo+d3Y0nTkm2Qc6W/I2CggJCQyu57baGdVi33RZCaWk66emCnJwcwJHdu3MZMKCKqiodNTX2TJ0ax+wOOHmgrq6OLl3UbZ7YADw9HejXz4mLF3+9AaqiKERGRhIR8TrHjx/nzjvDcXV1bfF9zGZzsx5Gzp49S1VlJZH9+1/3PBcXF0aNGtnimKRfpKSk8Pe/H0Kj0fPnP9sTERFhtVhOnDjBW2+t5NFHb2fIkEY/M6V2omM0P1rgtw+H9vZ2PPHEE8TFxaHVunH+fDjJyeG4uNzPgw++hq+vr3UC7cR0Oh0DBgy4pcRWVVXFyqVLMZlMTTq+uLiYVW+8wc533uHo0aMtvq/UdDqdDo2mDo2m3upd/g4ODnh5OePkJKuptHedsuXm4OBAdraZU6eKiIjw4vTpYrKzzQwY4MOwYcOIj4/H3t5eVqfvAJydnbntzjubXLrLzs4OlYsLVYqCs7OzhaOTAKKionjxRRd0Oh1BQUFWjSUsLIy//e1PVo1Bah2dMrmFh4czffpzJCYuJTExHa22O9On//HKYHdAQMBNrtA0u3dvRaPRMmTIiFa5ntQy187IvD5nZ2cWvfEGer1ePty0EUVR5EQTqdV1yuQGDQnuD394npycHIKCgiwyQaSysgyNxnZmVhqNRhRFsUoBYltiNps5dPAgGUePMjIh4ZqHGUdHx2uK/NbV1XEwJYVu4eFW3xm9rZjNZo4fP46Hhwddu3a1djiS1CydNrlBw7olS1ZtnzRpusWu3Vxms5nFi19Gp7Pn0Uf/bO1wrCY7O5t1S5eiO32aCK2WZTt2EDF5MuOmTMHJyema4y8nwi1LlxJSXMxurZZet91GXEJCo8d3JD/8sJ5vv83Bzq6c556bSVhYmLVDkqQm69TJrbNxdHRGp+ucRX3LyspI+uEHzm/ezAQnJ/qGNVReiTEa2bZuHe9t3crIOXMYOvzXW+tsTkwk66uvuMfPj4DwcGoNBrauXcsnhw7x1GuvWfE7sryysioUpSt6vaC6WlYWkdoXmdxo6HLavHkd2dmpxMXNplevXtYOqdWpVCoefvgZa4dhNV/94x/0zMxkenAw2quSl71Gw6TgYGJqavj+gw8QisKIkb9M8a8uKyPGyYmAS+N2Dlot47t25WB+fpt/D21t2rR4hNhIQEB4h/ydkDq2TrsU4GqHDh2isHAF48YVsmrV3zCbzdcck5uby4kTJ2gvi95tmRCCmpqamx/YivTl5Qzy8/tVYruat6MjPXQ66uvr2zQuW+bp6ckDD/yOyZPH28zieUlqKvkTS8NsLSEUjMaGqvOFhYX4+fkBDeukNm1aS1raelxdTeza1Y+EhLlWn7LcnpWXl4pl1OIAACAASURBVHM0JYVho0dbO5SbUmk0nK+qItJsRnNp0lFWWRmqDlSCTZI6IpncgIEDB1JRcQ+bNiVTX5/P55//F3363IaXVwA7d37NgAF1PP54F3Q6Nampmaxa9TwhIfFMnnzXNbPqpJtzc3Nj4LBhVl+w2xSjJk5kXXk57+/axWh7e07W1lLQpQt33XeftUOTJOkGZHKjoULCxIm3ExQUTkrKX5kyxZ8PP9yKWl3DwoW+eHn9Up0kKsqP3r1NrFz5M6mpPRg2bJgVI2+fFEVpNzMN3d3dmfvQQ5wdN44dP/5I94EDmTVihM120xmNRnJycuTMRqnTk2NuV/H396eoKJBPPrlIePhg7OxUeHld2zLT6dR4e9vL8bd2RFGrKbjBjD+T2UxRXd113w8PD+e+P/6RkWPG2Gxig4a6qZvWrm1yuTFJ6qhs97fUCjw8PFi06BXKyspQq9V88cUOa4cktZKEBx5g7WefEZKVxXh/f9zsf1kSkVZcTGJFBR5jxjAwJqZV7metBfOBgYEsfPzxNr2nJNkimdx+Q6PR4O3tTWlpqbVDkVpRr1696Pb66+zato0PV61iqMlEhLs7m4uKKAkOJuGJJ+jRo8ct30cIweFDh9i0ZAkaOzsmzp9P796923wbF5PJxJEjqXh6esjNQaVOSSa369BqtdTUaDhyJJ/+/X1/9eGUl1dJRoaBYcPknk9NVV1dz6af0jh/spBxs/vRq5d3m8eg0+mImzCBAYMHk/TDD+w9cIAxDz3EnNjYVmlhnTt3jsSvvkJ94gRzvb2pr61l3Ztvsj8mhslz5lyZgWtpQgjeeedTjh2zR6UqZe7cKBIS4trk3pJkK2Ryuw5HR0eio6fx7rvv4O5+nEcfjSIw0IXNm3M5c8aduLiniI6OtnaY7camtWcw/Hia8Z4OfPvWLh59dxJubi2vlmIymdi/Zw+7Vq8mIjb2uuWzGuPu7s6sBQtgwYIW3/9q5eXlJP3wA+c2b2aCgwP9LlU/AXjE3Z2UEyf48tln6d2GZbtOnMijW7cXKSlJIy0tmYQEi99SkmyKTG6N0Ov1fP75u2g0J3jxxf7s2ZPFSy/tIDAwnAkT7mPRognY23ecMlaVlXoMBhNareXGh4x1JvztNAS72aOt0GMyCYQQlJTUAs3rsquqquLzd97BPTOTOV5eHL9UPuuuP/6R8O7dLfMNXMeRgwdJ/OgjhhiNTA0KQvebFqBKURgcEEA/g4GtP/3Ee1u2cOcTT9CjZ0+LxtWzpy+nT3+FopQQFta7Va+dnJzCqVPZTJ0aj5ubW6teu6XMZjOHDh0mMzOX8eNHyt3RJZncGlNWVobBcJqHH254Ag8L8yAw0J2SkilMmnSHtcNrVeHh4Zw8OZHFizczYYIjffv6WGR8aFBcKN+dLmL7+Qr63d6T6up6vvsuD6OxD9Onj2rWtYqKinA4d457QkNRFIWurq7YZ2WRefZsmye3U8nJTFap6H+TRf0OWi2Tg4NxPXeOtGPHLJrcFEXhmWceJiXlEF5eHnRvxb8Tk8nE+++vpawsiC5dDjJunG10dyYmbuarrzLQaruxffuHvPXWUx3qAVRqPpncrkOlUv3qQ16n07SbtVmXlZSUsOmHH3Dx8iJu0iTs7K4dI7S3t2fmzPlkZ48hMfEr9u8/SUKCD4GBTd8DrSmCg9147JU48vIqSUkpZcUKiI9/iujoAS1KpipF+dV5qjaesHE1TTO2S2rOsbdCo9EwdOjgVr+uSqUiIWEAqalZ9Ox56xNwWktpaRWOjgMJCBjIuXOHqa+vl8mtk5Pr3Bqh1WqpqIDTp4sQQlBWVkdaWu2Vivq1tbWcPHnS5tcSbfjmG1y2bCH/q684ePDgDY8NCQnhoYeeITr6Sb76ysQPP2RRVdV6dRaNRjN79+by9ddVODnN4vHH32TAgIEtSmw6nY5is5mssjIAyurqOFtXh66R5C21LkVRmD17Kq+//oRN7fEWGdkDszmRvXv/k+BgRVYOkmTLrTGenp7MnPksiYlL2LEjk+JiB4YOfYDY2FHs37+fZcuWUVpaSkhICPPmzaOnhcdPWkprb0+Z2Uy1Wt2kUlcqlYqBA2Po06cv27dv5P33v2fECBg6NBCNpmXPQUIITp8uZv36Snx9R/LggzPw8vJq0bUuCwgIYPKf/sT3S5bgfvYs+Y6ODFu4kNgRcsfzzkqlAq1WwcGhP9nZJSxf/iNz5ky16QX3kmUp7aXKxqBBg8SBAwdu6RrZ2dl8/fXXdOvWjalTp96028JkMnHy5EmCgoJwc3MjKSmJzz//nICAAJydnSkuLqaiooJnn33WJrcE0ev17Nu1Cxd3d6IHNL/7r7i4mA0bVlNYuJNJk1zo2dOrWdcoKKgmMbGAyspuJCTcS3h4eHO/hRsyGAwcP36csLAwq01sWPHRR0SmptLHx6dJx+87f57iKVOYMmOGhSPrXF599WPy80fj7d0Lk6me7OwP+ctf7qJLly7WDk2yIEVRUoQQgxp7r1M91nz55ZecO3eO1NRUunfvzsCBA294vFqtpl+/fle+rqiowNHREWdnZwC8vLyorq5u8+1bmsrOzo7R48a1+HwvLy/mzn2I9PQ41q9fyv79mUya5Iuv743HHmtqDGzdmsvx486MGfMHBg0agsoCY01arbbTLMeorKwkJyeHiIiINq960l7odA3jxGq1Dq1Wjrd1dp1qzM3d3Z3a2lp0Oh0ODg7WDsfiSkpKGt2brrm6d+/OI488T8+ej/D557X8/HM2tbWGa44zmczs25fLe+9dBKby2GN/ZciQYRZJbDZDUahuxh5w1QYDNLMFffHiRZ599gPefHMX77zzqaxp2oigIE+KijZQXp5DdnYS2dnJrF69gbob1AuVOrZO1XJ7+OGH6d+/P4GBgS0qteTj44Ner6e4uBhPT0/y8vJQqVQ2t6amtLSUpKTvSU/fgrt7dyZPnnfLVeILCgrw9vblscf+ytat61m8eC1jxmgYNCgAlUrh7NkSEhPLcHEZwoIFv8PX1/fmF7VBZrOZ8vJyPDw8mnT8oHHj+OHMGXKyshgfEIDrdSa1FNfUsD4/n6KgIO4aMqRZMRUXF1NV1ZWQkFmcPPkGQog2L+dl6+bPn0HfvgdZsWIlkZFOVFZ2Y9euKiZMyLLJIQPJ8iw65qYoSgSw4qqXugEvAO7AQ0Dhpdf/Rwjx842u1RpjbrdKCEFaWhpLliwhKyuLmJgYZs+eTUBAgFXjuqy+vp6dO7eQnPwNsbGC2NgA0tNLWL++ioCA0UycOKPJH9pXq6mp4f/+4z+wq6tj+vPPEx4eTn5+PomJK6muTsbdHQoLuzJp0nwiIiLa9Qfv559/w+bNp3jmmTvp27dvk86pr69n55YtJH/zDcPMZoYHBl7Z8bvOaGR7bi6HHRwYOWcOQ4cPb3a3YllZGe++u5SsrCrGj+/Jvffe2aZ/x2azmZUr1yAEzJ59h823xPV6PUuXfo/BYGLBgjs7RS9NZ3WjMbc2m1CiKIoauAAMBe4HqoQQ7zT1fFtIbpeZTCYuXrxIYGCgTX2QL178CgEBGUyYEICr6y8tCIPBxJ49eezZo+OBB17Gp4mTHy6rr6/nvZdeor68nAXPP4+/vz9weSbkacrLS4mJGdwhZqYtXfodmzYd57/+6y56925eZY/S0lKSvv+e3K1bmeDkhN5kYnN9PT0nT2bclClXxmpbwmQyUVZWdsszTVuitLSUxx9/D4B//vOxFj0gSZIl2Epymwi8KIQYoSjKS7Tj5GZr6urq0Ol0vPbaQv78566o1Y0/WX/55XlGjvwfunXr1ux7GAwGjEZjh38KFkJQXV19S4koKyuLDV99hdbBgYQ5c2ymZd9SQgiSk1MQQjBkyCCbeqCTOjdbmS05B/j6qq8XKYoyHzgA/KcQ4po9ZhRFeRh4GCA4ONiiwZnNZtLT0wkNDUWn01n0Xq2ptLSUZ555hlGjmlfCqrm0Wm2T1spZW1paGqn79jF07NgWLTJWFOWWEhtAaGgoD//P/9zSNWyJoigMGdLo54ck2aw26TxXFEUHTAVWXXrpAyAciAbygL81dp4Q4mMhxCAhxKDmdqU117lz5/jqqzc4dOiQRe/T2rRaLb6+vs3uauyIioqKWP3mm/hs2sQXr7+OwXDtjE5JkjqHtmq5TQYOCiHyAS7/CaAoyifA2jaK47qCgoK4884/2my1ketxdnbmtddeA2D//pVWjsa6TCYTapMJN3t7hMEgp8xLUifWVtOe5nJVl6SiKFcPQtwJHGujOK5LrVYTFRXVrseU3N2DWLPmHJWV+l+9bjSa2bXrPHl52lvucrNlvr6+jH3sMQ726MHMP/2pXXUvS5LUuiw+oURRFEcgB+gmhCi/9NoSGrokBZAF/F4IkXej68gJJTen1+vZvn0jhw59z/DhMGxYAGfPlrB+fQXe3iOYNGmmVWbbSZIkWYJNzJa8VTK5NV1JSQkbNqwmK2s7zs5hJCTMa9U9vVpbeno6FRWVREdH2fwaKkmSbIetzJaU2oinpydz5iyksHAanp6eNl2L8Pz587zxxnfU1rry2GM1jBwpK/tLknTr5GNyB+bj42PTiQ0attlRqQQqlUm22lpJQUEBu3fvtnYYkmRVsuUmXZder6e2trbJtTMrKio4fOgQkf37N7mKRWBgIC+8MIeqqqpmVwRpDcl79+IbEEBISEib39tSXF1dr1SRkaTOqlM+KhcVFVFVVWXtMGzezz//zAsvvNCkYy9cuMAHzzxD0aef8sl//zeZmZlNvk9wcDB9+vSxSuWLjKNHyWlGrO2Bvb19i6rQSFJH0qlablVVVWze/DOnT69DCHtGjJjL0KHDO0RNREsYO3YsUVFRTTq2qKiIHno9M8LD+Tk7m4KCglveiaAtzH7oIWuHIHUytlqbtqPpFJ/qRqORfft2s2vXcqKj63j88S5UV9ezYcNnpKSsZ+LEee2+mr0leHh4NLl70cPDg3Stlp8yMjih0zHd09PC0UlS+1NUVMQ//vE1mZl6Bgzw5A9/mNuu19basg6/FCAtLY116z7H2/s8kyb54eXl+Kv3G/YhK8fFZTBTpszB29u7tULudIqKiji4fz9RMTH4+flZOxxJsjn79+9n8eILhIVNIzv7U156aSKhoaHWDqvdutFSgA495iaEYPnyt5kypZK77w67JrEBhId78sgjIXTteoCff15mhSg7Dm9vbyZOmSITmyRdR0Mr7Rznz+9BoymVrTYL6vDdkmZzPd27B97wGLVaRbdu7mRn6294nCRJ0q3o168fzz6rYd++Y8TH3y0fBC2owyc3yfrMZjNFRUX4+PjIcU2pU1MUhd69e1tl2Utn06G7JVuqrKyM999/lUOHkq0dSoewOTGR9//4R06dOtWs8woLC/n644/5/uuvqaystFB0kiR1RDK5NaKmpoaCgiyKivJvfrB0U0FhYXTt379ZRZsvXrzIv557jtDkZJw3buT955+ntrbWglFKktSRyG7JRgQGBvJf//XPDj3Ym5GRwfYffiB8wABiR4606Fq/iN69iWhmN0xlZSVdTSZiL+2mfSwnB71e36H/TSRJaj0dvuVmb+/J1q05GAym6x5TXl7H3r3FODr+0rJwdHTssONDBoOBr958k+jTpznxySccO2b17fSuodPpuGg0klFaSmp+PjVqNVqt1tphSZLUTnTo5KYoCo888iJFRWNYvDiHY8cKruzOXFmpZ+nSVB56aC2vv56Fn9987rxznpUjbhtCCDAacdHp0AqB2Wy2dkjXCA4OZsozz7DGyYm9ISHMe/55nJycWv0++fn5bNmwodWvK0mSdXX4RdyXZWdnk5j4FSrVCTw99axadYKMjDrc3YPx8vIjPj6eGTNm4NlJKmukHjnC1pUr6T5oEPFTpmBnZ2ftkKxCCEF1dXWH3qFckjoquVnpJSUlJTz99J84cmQvnp5e9OkTg7u7O2azmdzcXEpLS7nnnnuYMWNGK0UtSZIkWYrcrPSSgoICzGbBbbfNArgyplZZWUl5eSYeHudJSvor9fUlTJzYeVpxkiRJHU2nSm7QsDnm5aRWV1fHuXOn0GqzmDxZg5+fK56enphMe/n0030MHHgno0bFd9ouO0nqzIxGIzt37qWysob4+JE4Ol5bvk+yXZ0uuUHDlhPnz2dRXX2SoUNN9O/vilaroqamBo1GRWxsV6Ki9GzatJLFizcybty9REcP6LCzJy0hJycHPz8/dDqdtUORpGYRQnDq1CmWLNlAbq4fiuLKhg3vcffdoxkyZJDN725v62prazlwIIXu3cMJCAiw2H069GzJxtTW1nLixGYCA1OZP9+emBg3tNpr/xpcXOyYPj2UOXPg4MH/45NP3qKurs4KEVtWenoaubm5rXpNk8nEl//8JydPnmzV60ptq6qqii+//IannnqLPXv20V7G52/VuXPn+Otff6a6+g5CQ+cQEjIFe/sF/POfR0hOllWLbtWaNRtZvPgsb775hUXv06mSm6OjI5WVlXTvXsT48e44O//ScDUYDNTV1V2zSLhLF1ceeCAMk+kUxcXFbR3ydRUXF/PTT981a8frxhQW5lBYeLGVomqgVqt5/LnniIyMbNXrSm1r9+59rFsnUKvv5aOPtlJeXm7tkNqEXq9HownAw+OX3cydnHzR6Xqg18vi6rfK29sdO7uL+Pu7W/Q+napbMjg4mIULF3Ls2MuUlZXh6OiIVqulsrISjUZDTEwMQUFB15ynKApqte08BxiNRj7++CViYipYtWoN99zzKl26dGnRtWJjx7VydA1cXV0tcl3JejpLy02yrHHjRtGvX4TFJ+x1quQGXNraPYpBg7SkpqZSUVFB9+7d6dmzZ7sZHzKbzRiNVUREeJCWViyfJjsQIQRHj6aybdsqwsIGEBeXYJHF600RGzuEvLxEDh5cwu9/PxZ3d8s+adsKRVGoqytFr6/Ezs4FAJOpnrq6iyhKyx4ipV/z9fW1+D06XXIDUKkakpyvry/19fXtbhaUTqcjIeERVq/+lt69ZxEcHGyR+xQUFJB27BgjxlmmdSdda9eubRw9+ilTpnhy5sxaPvnkEE899ZpVYnFxcWHBglksWGCV21tNWFgY99wTwerVHyBELBqNC3V1m7njjlBiYmKsHZ7URJ0yuV2m0WgsWjDYkgYPHsrgwUMteg9XV1e8Am+80avUuqqqKoiOtiM83JPgYDdSUlp3PFS6OY1Gw+TJ4xk6dCDffZdEaWk1s2fPanTIQrJd7fOTXWoT9vb29OrVy9phdGg/rlrFwNhYul7a/cDOzpHTp2vp0aOG06dLsLPrHF2BtsjT05MHH5xt7TCkFpLJzUqMRiN79uxk9+7V9Oo1nPj422V9w05oZHz8r8ayRo0ai0aj4eOPVxISMoj7759pxegkqf3qdMlNpVJRUKCnpsaAo2PTtlApLq6hstKIStU6MybLysr44ou38fO7wPz5Xhw7toH339/O9OlP0rNnRKvcoz2ora1lzcqVjLvtNry9va0djlX8dsaYRqNh1KixjBgxutV+3joTk8nEwYOHsbPTERnZTxZe6MQ6XXLr168fBQW/47331jB6tJpBg/yvO82/rs7Itm0XOHLEkREjHsTf379VYsjPz8fLK485c0IBCAhwwcHhHBkZp62W3EwmE7t376Ck5CJxcVPaZCq/Xq8n7ehRho4d22mT2/XIxNZ8Z8+eZcmSRDIyXIA6IiP3cffdk1u8TEZq3zpdcrOzs2Py5OnExAxn/fpVHDiwn0mT3Oje/ZcnaLNZcOjQRbZsqadnz8k8+uiUVu8y/G1CVaut+4R56tQpjh37lMBASEqq56675lv8nu7u7vz5nXcsfh+pYyspKeHbb9ezc2chLi6TCAvrCcDZs0d47rnlTJwYzu23x+Pi4mLlSKW21OmS22W+vr7ce++jnDkznp9//hJv70wmTfKjqqqedetK0OmiueeeuRapfaZWqyksrKegoBpfXydqagxkZtbg62u9dXZ2dnbU1GgpKTHg4+Nw8xMkyQbs2ZPMv/61BSFGEBIyC5Xql480f/9ojMbeJCXtYPv2D1i06A769u1t0Xjy8vLYu3cLffrE0LNnT9ktakWdaj+36zEajezbt5udO5ej07kwYcI8+vbta7EfTLPZTHLyPrZv/4rQ0DIyM7VERk5l7NhJ15T/aksZGRmUlpYQHT1AFoeV2oX/+78lpKcPwdv7xt35Fy4kExeXy913T7NIHEII1q37jhMn1jJ4sODYMTMuLoP53e8WYm9vb5F7SnI/t5vSaDSMGDGamJghbbL2TaVSMXRoLJGRURw8mMKYMRFtsmL/Zrp16wZ0u+lxkmRLrm6tXf8Yyz6sGQwGUlJ+4Omng7C31zBypJlPP00mL+82wsLCLHpvqXEyuV2lrZ+wHB0dGTlyVJves62ZzWZMJhNabdNmpkpSe6VSKdjbN3ykqtUq7O3lz7w1NXlKlqIo3yqKcpuiKHIal9QkGRkZfPjha/ztb0+xZ89OTCaTtUOSJItQq9Wo1e5s23ae+noThw9f5OJFrDrM0Nk1J1F9ANwNpCmK8qaiKLJ0hdSokpISli//lDVrXmbcuAIWLnQiI+MT3n//JdLS0qwdHvv27aOgoMDaYUgdiFqt5pFHXqKgYCRvv53NgQPh3HPPS622fEhqviZ3SwohNgIbFUVxA+YCSYqi5ACfAEuFEAYLxdhpnD9/ni1bvsPPL4zRo8c3q5u0tLQUAA8PD0uF1yRHjhxk/foPGD4cZs4MQaNpeH66554w0tKKWb/+NY4ciWPmzPusFmNVVRW1tbVWu7/UehQFamoK8fDodt0JYEIIamqKLL7cxt3dnVmz7qO8/E5cXV3lTEkra9aYm6IoXsC9wDzgELAMGAksAMa2dnCWUFhYiEajaTQJmEwm6uvr27wrobKyko0b15CRsYGxY+24cCGFxYs3Ehd3LwMGDLzhgt66ujq2b9/I4cM/AIKoqGmMGTMBe3t7kpN34OkZSHh4eJt9L5mZJxk/XsXAgdcuoejRw4uuXV159909wH1tFtNvxcfHW+3eUuu6884xlJauITMzDV/fSTg5/XpiVnl5DsXFifTvrxAXN7VNYnJzc2uT+0g31uTkpijKaqAXsAS4QwiRd+mtFYqiWGaOfivLyMjgjTfeQKPR8PLLL+Pn53flvfT0dBITl1BRkcuwYTMZOTLO4vu7Xa4vuWfPCgYO1LNoUVfs7DTExEBeXiXr1v2D5OQIJk++l5CQkEavsWrVZzg67uPRRxsK727YsIoVKzJZsOAJAgLCbmlDwJKSElJTDxMdPbBZe3mpVNd/Yr3Re5LUXMHBwTz//CPs33+AZcs+p7g4koCAsZjNBvLyNuLtncV//Ec8UVH9ZUuqk2lOy22xEGJzY29cb52BrampqUGv12Myma5s8FlbW8t3331JUdEuJk1yJSDAm40bv2bx4iTuuONhevTo2epxCCE4deoUGzYswd//AgsX+uPp+evWYkCAC/ff78zx4xdYvfoFunYdx4QJ065JMrW1JcTH++Ds3JCIhw/35bvvigGuVJpvaYwfffQyvXqV8Mkn63j66bdbfC1JsiS1Wk1s7FCioiJJTNzC2rWLUavNzJ07mLi4Re1mE2KpdTUnufVWFOWgEKIMQFEUD2CuEOJ9y4TW+vr27cuf/vQn7OzsruzNlJmZiV6/i8ceC71SEmvGjFAOH77I7t1r6dHjP1o1hvz8fBITV1BdfYA77vCgW7frr4FRFIV+/XyJiDCxa9d2Pv54N4MHz2TEiDG/+oU1m0Wj/3+rzGYjTk4KZrOx1a4pSZbi6OjIjBm3MXr0ULRarewe7OSak9weEkK8d/kLIUSpoigPAe0muSmKQlRU1DWvOzlpr6n16OZmB7ReoqipqWHLlkROnFjL2LFaYmLCmtxFp9WqGTs2iAED6ti4cRmLF29gwoT59OvXj+7dB7FixUri42tQFIWNG2uJioq75XgVReH++//MoUP7WLAgthnnqcnNrSIy0txoQerz5ytQqeT6H8lyZBFuCZqX3FSKoijiUr0uRVHUwA3b+4qiRAArrnqpG/AC8OWl10OBLOB3QojSZsTSbphMJg4c2M/27cvo16+GRYsCcHBo2Ye7m5s9d90Vyrlz5SQmvs3+/VFMnjyXiIj+rF+/HCEEs2fPuaXuyKsFBgYSGHhns84ZNWoiP/1UzAcf7CMhwf1KQerS0lqSki6SmxvA9On3tUp8kiRJ19Pk2pKKorxNQzL6kIYmzSNAjhDiP5t4vhq4AAwFHgNKhBBvKory34CHEOKZG51vqdqS6enprFnzKjNmeBAS0jCeVVNjYP36c9TVjWLu3Idv6drr1y/F1TWThARffHycWitshBAcPpzP5s16unefZFObnQohOHPmDOvXf4m393l8fdWkpOiIjZ1NbOxIWa1EkqRWcaPaks1Jbirg90A8oAAbgE+FEE0qO6EoykTgRSHECEVRTgNjhRB5iqIEAFuFEDesfGqp5CaE4Pjx4yQlLaFr14t06aJl1y5B3763M3bsJBwdHW94fn19PTt3biUn5yRjx04nJCSE4uJi1q//hqKiXSQkuNGjh6fFZmrp9Ua2b8/l0CE7hg+fzbBhIy1eG7OpLhekLim5yJgxCW2yR5wkSZ1HqyS3VgjiX8BBIcRiRVHKhBDuV71XKoS4ZuGZoigPAw8DBAcHx2RnZ1ssPoPBwK5d28jPzyIubmqTChlXVFTw6aevExKST1iYHdu26ene/XaOH9/C6NH1DBkScGURs6WVlNSybl0eWu1Yfve7B9rknpIkSdbUKrsCKIoyAngJCLl0ngIIIcRNy8griqIDpgLPNvV+NFz8Y+BjaGi5Nefc5tJqtYwdO75Z55SWluLuXsRdd4UC4OVVxvffH8bFpY7hw4MsEOX1eXo6MHKkJ5s2FbbpfSVJkmxRLXL6jwAAIABJREFUc/qvPgP+CKQAza2AO5mGVlv+pa/zFUUJuKpbst0W+jOZzAghUBQFk6l97I0nSZLU0TWnz6xcCLFOCFEghCi+/F8Tz50LfH3V1z/SULKLS3/+0Iw4bIaPjw9GY3c+/zyTbdvO8c031fToMcTaYUmSJHV6zWm5bbk0Y3I1oL/8ohDi4I1OUhTFEZhAw2SUy94EViqK8iBwDpjVjDhshqOjI7///bMcOnSQc+dO8+CDCZjNZjIz21+uFkJw8uRJAHr37i1LFUmS1K41J7kNvfTn1YN3Ahh3o5OEEDWA129eK6Zh1mW7p1KpiIkZRExMw19LYWH7G/MyGAwsXfoeen3Dc8q+fQO5997H5JR9SZLareZseXPrZS8km1ReXk5FxREef7yhFNg//3mEsrIyfHx8rByZJElSyzR3y5vbgL7AlY3GhBCvtHZQUttSFIX6ejMVFQ29zfX1Ztkt+f/t3Xt8VOW1//HPyj0hEAi3hHCTGMGAEiQggiKKgvdqrQoFEe0p2tqjx5c9FlvPOa3ay6/2oq3V1ra2iCJWFPCKIKiA96AIAhZISLgFEkKA3EjI5Pn9MQNyCTAhmcxk5vt+vfpKZs/svRfTcVaeZz97LRFp05pyK8CfgSTgIuBvwLeATwIUl7Si1NRUzj13Kn/5y2wARoy4hc6dO59kLxGR0NWUkdtI59zZZrbKOfczM/st3sUl0kwHDnj47LNi0tKSD5UAa01mxujRF3HOOcMAQqaMl4jIqWpKcqvx/aw2sx5AGXD8fi1yUt4Virt45pkv2LZtH9HRUVx8cV++8Y0BpKQknPwALUxJTUTCRVPuc3vNzDoCjwCf4a3mPzsQQUWKwsI9/PrX71NTc4DMzFR69erAO+8U8uijHwU7NBGRNq0pI7dfO+dqgZfM7DW8i0r2ByasyFBX5yEmxujUyduFOzo6iu7dk9m7t/Yke3qbkq5cWUxiYixnnqlVjSIih2vKyO3Dg78452qdc3sP3yatKz9/N8uWfcS8ee+zZ4/+xhAROdxJR25mlgZkAIlmNgRvwWSADnhXT7YJ+/btY/HiV2lo8DB27DV07Nj6CzeOlpwch1kUxcUVpKUlU1fnYfv2CgYNOnlHgtTUROrrk+nQIZ7ExNBocSMiEir8+VYcD0wFegK/5evktg/4cWDCajkHDhzggw+W8dFHLzBsWD3R0cZf/rKcYcO+xfnnjyEu7oTNxAMqI6MDDz44huef/5KVK3cQHx/DpElncdFFJ1+n07lzEv/1X5dgZkRF6Z60UFFaWsqHH37I0KFDycjICHY4IhHrpMnNOTcDmGFm1zvnXmqFmFqEc461a9eyaNFMevQo5vbb0+nY0bsCMSdnP2+/PYvHH1/IJZdM4ayzzgraTcvp6e25554R5OeX07lz4qHrb/6Ijm6dXnHin/z8fH71q19RW1vL3LlzueuuuxgyZEiwwxKJSE2ZzxpqZoudc3sAzKwTcK9z7oHAhHbqKisrefHFv1Fb+znXXtuJvn2PHAmlpCRw/fV92bJlL2+++RsWLz6N3r3PZOTIC0lPT2/1eM2M009PbfXzSssqKyujvr6efv36sXnzZkpK2mwnJ5E2ryl/+l9+MLEBOOfKgStaPqTmKywsJDr6M6ZN60vfvse/tpaWlsSFF9ZQVvYcO3Y8y3PP/YRXX32R6urqUz53YmIiFRVJvPvuFg4caGrbu1NXUlLFO++UkZLS+sm5LWtoaCAvL4+KiopmH6tjx46YGUVFRdTX19Op0zHN5UWklTQluUWbWfzBB2aWCMSf4PVBlZgYe9JrUVu2bKaubh05Oe0YOTKDH/ygB9XVc3n//XdP+bzJycl873sPs2vXhTz++Ba+/LIE5wLXxLS6+gCvv17EjBn7yc6+k+uumxywc4WjHTt28Nrjj7Nq1apmH+uMM87gwQcf5JJLLuH//u//GD5cvf1EgqUp05LPAovN7B94W93cBswISFStoLq6mhUr8hgyJIrYWG+OT0iIoU+fJPbsqW/WsVNSUvjWt6ZQVHQhCxbM4pNP1nHZZV3p0aN9S4QOeDuA5+XtYOlSDwMHXsOdd44nKanNLF49ocrKSubNm8mOHRu54orbyM4eGLBzpaenc+vPfkaPHj1a5Hg9e/Zk0qRJLXIsETl1TWl582szWwVcgnfF5EPOubcCFlkriIqKOmZU1ZKjrD59+vDd7/6IlSs/Z9asmWRlFTJ2bA+Sk5u3QjM/fzcLFuyhffvh3HLLjbRv357Vq1eTnZ0dFiW0NmzYALzPlVem8O67/yI7+2cBO5eZ0adPn4AdX0SCo6k3SK0D6p1zb5tZkpm1d841/2JFECQlJXH++RewcePH7NxZRXp6Ax9/vJ3ly2H8+N4tdp6oqCjOOWco2dkDWbr0bZ54Yj6jRjnOPbcHMTFNW+1YVlbNwoU7KS3tybhx36d///6YGQsXLuTRRx9lypQpTJgwocViD5aOHTuyfXsi+/dXkJp6TrDDEZE2qCktb74LTANSgUy8N3b/mTbcUbt79zSSky/ho4+W889/FjNixGXccsuNdOt28puomyohIYFx465i6NDzWLjwZVasWM748e0544zOJ70Noba2nqVLt/P55wmMGvUdbrhhJDExX/9fN3DgQMaPH09ubu4JjtJ2nHbaaUyd+nNKSkrIzs4Odjgi0gaZv9NwZrYSGA587Jwb4tu22jl3VgDjOyQ3N9fl5eX59dq1a9eybNnPmTy5D+3anXgKsKbmAM89t4n+/b/H+eef32r3u23cuJG33nqWDh02MX58N7p1a3fMa7z1I3ewZEkdWVnjGTv2Kr+mHUtLS5kzZw5FRUVMnjyZgQMHqvmoiIQdM1vhnGv0r/qmJLePnXPnmtnnzrkhZhYDfOacO7slgz2epiS3AwcOsHjxm6xaNZ8LLohi+PD0Y254bmhw5OUV89579WRnX8Ull1xJfHzrLv70eDzk5X3C0qWzGDiwkosu6kFiYiwAmzfv5c03y4iJGczll0/0a8FDQ0MDr732GvPnzycqKoqkpCTKy8vJycnhllvUgFREwktLJbdfA3uAKcB/At8H1jrnftJSgZ5IU5LbQaWlpbz11ovs2fMx48d3ICvL++VeUFDOG2+U0779MC677Ea6d+8eiJD9Vl1dzTvvLGDt2tc4//xotm07wJYt3bjkkpsZNGiQ36OuHTt2cN9999GzZ89DZcWcc2zYsIFJkyZx5ZVXBvKfETHq6uqCWrZNRLxOlNyasqBkOvAdYDVwO/AG8Lfmhxc4Xbt2ZdKk77FhwyUsWDCTTz4poKamjg8/3EenTh246qpsUlODXxkkKSmJK6/8Jrm5o3j33Vfp1q0P11xzYZO/QJ1zxMbGHrGfmZGYmBjQe+0iyVtvvcWcOXOYPn06mZmZwQ5HRI6jKbcCNJjZDOBjvPe5/du1gW9MM+OMM84gM/OnvPLKPPLyZnDzzekMGtSZd96ZyZNPLuXOO/+X6OjoYIdK9+7duemm/wh2GOIHXcMUCW1+r0U3syuBfOAPwOPARjO7PFCBtbTo6Gj69DmNMWO6MGZML7p0SeKGG/pSVbWZAwcOBOSchYWFNHUqtTmSkpKIi4tj27ZtNDQ0ALBnzx7q6upISUlptTjC2fjx43niiSfo169fsEMRkRNoyrTkb4GLnHMbAcwsE3gdeDMQgbW2qqoq9u/f36KLLubNm8eaNWvIyck5Yul+oKSkpPDQQw8xZ84cPvzwQ5xzpKenM336dC2pb0GxsbHBDkFETqIp37glBxObTwHQpsqed+3albffTmDJks1kZ6eyZEkpHTqcTl5eHrNmzaKmpoYrrriCb37zmy0yTTl16lSqqqpaJbEd1KVLF+644w7Gjh1LSUkJw4cPb3Nfxvv37+cvf/kLqampTJ48WVOAItJkTSmRscbM3jCzqWZ2C/Aq8KmZfdPMvhmg+FpUr169uP32X1JefhH//Gctffv+B3fc8WNmzpxJu3btyMjI4NVXX6W4uLhFztexY8cWa1hZUFDA22+/7XfHgqysLEaNGkVsbCylpaXMnz+fzZs3t0gsgbZ3717y8vJ4//33D02viog0RVOGFAnATuBC3+NSvNVKrsa7wOTllg0tMFJSUrj++puBmw9tc84dGh2E2iihqqqK2bNns3TpUpxzzJs3jylTpvhVcb6mpoZFixYxf/586uvrefnllxk7dizf+MY3QvoaXLdu3fjJT35CUlJSSCz0CUe1tbV88skn9O3bl169egU7HJEW15TVkrcevc3M4pxzdS0bUuubPHkyzz33HLW1tYwbN460tLRgh3TImjVrWLx4MaeffjpRUVFUVVXx5JNPnjS5rVixgmeeeYZ9+/aRnp5OXFwcHo+H9957j/fff58bb7yRiy++OOSSOXj/wBgwYECwwwhLDQ0NfP755zz77LPs2rWL6OjoQ3/wdOjQIdjhibSYptSWfBeY6pwr9D0ehvc+t8EBiawVjR49mpycHGpqaoJ+Q/fRnHPEx8cTFeWdQW7Xrh2lpaUn3e+JJ56gU6dOR1S8j46OplevXuzfv59nnnmGIUOGhMR9ftI6Nm/ezHPPPce6devo2rUrmZmZR/zBc8MNNzB69Og2d41WpDFNmZb8JbDAzP6At2jyFcAxo7m2qkOHDiH5l2t0dDS1tbXU1tYSFxdHWVmZX2XCGhoaaNfu2HqV4C3iHBMToxu7I0R1dTVz5sxhyZIlJCYmctpppx0asUdHR9OzZ0/279/PzJkzWbhwIbfddhv9+/cPctQizeP3ghJf77Y7gMfwNiq93Dn3WaACE6/BgwczZcoUysrK2LRpE507d+a+++4LdljShqxevZo333yTXr160b1790anohMSEujbty9VVVX87W8hXXhIxC9NmZb8H+BGYDRwNvCumd3rnHs9UMGJ956qyy67jHPPPZetW7eSnZ2tRRbSJM45EhIS/PrcJCcnU1fX5i+jizRpWrILMNw5VwN8aGYL8F5zU3JrBZ06daJTp05+v97MqK6ubnRqsra2lvr6+pYM74Q2b95MampqWHQJF5G2oSnTknc752rMrJ3vcZFz7tLAhSbNMW3aNGpqaigqKjpUXqyhoYGtW7eya9cuJk6c2CqLSfbv389DDz3EG2+8EfBziYgc1JRpyfOAvwPJQG8zGwzc7pz7fqCCk1M3YsQIzjrrLBYsWMDrr79OQ0MDzjlGjx7Ndddd12qrJBMSErjnnntC6vYKEQl/TZmWfBQYD7wC4Jz7wsxGByQqaRHt2rXj+uuvZ9SoUSxbtoyhQ4cGpeCv6lqKSGtrSvktnHNbjtrkacFYxGfTpk1+3cvmr7S0NG644YZmJ7Z9+/aRl/dRC0XV8jweD2vWrKGysjLYoQSVx+PB4/n6P83o6Gj2799/0oUizjl2795NQkJCoEMUCbimjNy2mNlIwJlZHHAXsC4wYUWuhoYGZsz4FX36nMmtt/5XsMNpMzZu3MjMmTMpKCigffv2TJgwgZEjR7Zq0epQUFNTw8MPPwzAAw88QGJiIoMHD2by5MnMmzcP5xw9evQ4VBTgoH379rFr1y6ys7OZPHlyMEIXaVHm7428ZtYF7z1ulwAGLATuds6VBS68r+Xm5rrW7I0WTOvXr6d9+/akp6cHO5Q2YdasWbz11lt06NCB1NRUampq2LlzJ3369OH+++8nMTEx2CG2mj179vDf//3fmBmPPPLIETVEy8rKePnll1m+fDnt27enc+fO1NXVUVxcTGpqKjfffDM5OTkhWZJNpDFmtsI5l9vocy1VpcLM7nfO/bJFDtaISEpuoWTXrl188MEHDB06tMU6HLS0e++9l5iYmGOS2ObNm/n5z38ecX8kbNu2DTOjR48ejT6fn59/aJQbHx/Pddddx9ixY/2qfCMSSk6U3FpyzuYGvCW6JIz8+c9/Zu3atSxZsoRHH330mOerqqrYuXPnESWdgqGxc0fqCORkf4RkZmbyP//zP6xdu5aMjAzVF5Ww1JLJLTK/ScJcamoqUVFRx3wBOud4//33mT17Nvv27SMnJ4dJkyaFXOFpaVx0dDRnnXVWsMMQCZgmrZY8iUbnN82so5nNMbOvzGydmZ1nZj81s21mttL3vytaMA5pQdOmTeOBBx7gRz/60RHbS0tL+etf/3qoEO/q1at5/vnngxJjVlYWxcXFVFRUAHDgwAGKiopISUmhffv2QYlJRIKrNUZujwELnHPf8q2yTMJ7v9zvnXO/acHzh7SKigo2bdpEdnZ2m1rBFxMT02hvtYaGBmJiYg6V90pJSQlaTcJp06aRm5vLs88+S35+PnFxcVxzzTWMHz+epKSkoMQkIsHVkt+yLx69wcw64C20PBXA19i0LtKuhWzatIlHHnmEyspKevfuzf3333/cdjRtRXx8PNHR0ezYsYNOnTpRVlbGwIEDgxJLVFQUubm5DBo0iBUrVpCVlUW3bt2CEouIhAa/pyXN7AwzW2xmX/oen21mDxx83jn3i0Z26weUAv8ws8/N7G8Ha1MCPzCzVWb2tJk1WhHYzKaZWZ6Z5bXkTc2tbdu2bVRXV9OvXz+Ki4spLy8PdkjN1qlTJ/73f/+XzMzMQ7Uqp0yZEtSYEhISGDVqlBKbiDTpmttfgfuBAwDOuVXAhJPsEwOcAzzpnBsCVAHTgSeBTCAHKAZ+29jOzrmnnHO5zrncrl27NiHU0JKamoqZUVBQQFJSUthUx+/Zsyc//OEP+eMf/8gVV1yhpeQiEjKaMi2Z5Jz75KgpxZP1TdkKbHXOfex7PAeY7pzbefAFZvZX4LUmxNHmZGdn8/DDD7NmzRpGjBgRkh2/T5WZqVyTiIScpozcdplZJr5VkWb2LbyjruNyzu3AW7brYM/6scBaMzv8rtrrgC+bEEfI2rFjB7NnzyY/P/+Y5zIyMhg3blxYJbbj2b17N6+++CJr1qyhpYoEiIg0RVNGbncCTwEDzGwbsAmY5Md+/wk851spWQDcCvzBzHLwJspC4PamBB2qfv3rX1NWVsbixYt59NFH2/yikVOxZ88ennrgAXKrq3nv1VfZfeutXHDRRcEOS0QizEmTm5nd7Zx7DEh3zl3iWxAS5Zyr8OcEzrmVwNHlUW5ueqihLzo6moaGhmOK0kaS6upqOtXWcknfvnTYto3S3buDHZKIRCB/Rm634r1X7Y/AOc65qsCG1Hb96Ec/4oMPPmDIkCEROWoD6NixI/vT05mRn8/OhAQuP/30YIckIhHopIWTzex54DygK3D4xSQDnHPu7MCF97VgFk5+++03qago47rr1ArEH/X19axevZrevXvTuXPnYIcjImGqWYWTnXMTzSwNeAu4pqWDawtycoaxf//+YIfRZsTExDBkyJBghyEiEcyvBSW+VY+DAxxLyOrSpUuwQxARkSbwZ0HJv5xzN5rZao4sjtyq05IiIiL+8mfkdrfv51WBDERERKSl+HPNrdj3syjw4YiEh927d/PSSy9RVFTEt7/9bc4888yIbZ4qEgz+TEtW0HivtoPTkuFfckPET3V1dSxatIh58+bhnCMpKYlf/epXDB06lIkTJ6qos0gr8Wfkpm6Pjdi+fTuvv/46iYkJTJgwsU31aJPA+fLLL5k1axZ9+vQhLi4O8HZQWLlyJfX19dx7771BjlAkMugb+RS88sorzJ07l/LycnbvXkt+fgHTp09XVXzB4/EQFxd3KLGBt7h0x44dg9bMVSQSKbmdgkWLFtG9e3d69+5Nbe0ACgsL2b17N+np6SffWUREAi5yiyA2U1RU1KF2L9HR0cEOR0KEmVFbW4vH4zlie1VVVUTXHBVpbfqv7RT079+frVu3Ul5eTlFRESkpKbRv3/ilyS1bttCWu4hL02RnZzN+/Hg2b95MSUkJ1dXVFBQU0L17d2666aZghycSMU5aWzJUBLO2pHOO7du3k56eTlRUFA0NDaxYsYKXXnqJkSNHcumll5KYmHjMfgsXLuS5554jJiaGe++9l+zs7CBEL8FQVFTEs88+y/bt25kwYQIjR47UCL+VFRUVsXjxYs477zwGDBigWzHCULNqS0a64uJiZs6cyerVq8nKymLq1Kn07t2bYcOGMWzYsBPum5+fT0JCAhUVFZSUlCi5RZA+ffpw//334/F4iI2NDXY4EaWiooKXX36ZJUuWEBMTw3vvvUdubi4TJ05UKb0IomnJk3jxxRf56quv6NevH1u3bmXGjBl+73vxxRfTrl07zjjjDCW2CBQVFaXEFgTLly9nwYIF9O7dm169etG3b1/y8vKYO3dusEOTVqSR20l4PB6Sk5MxMzp06EB9fb3f+/bv359HHnkEM2vxxQTOOQoLC8nIyDhi2blIpPN4PCQlJR2aBjYz2rdvz4EDB4IcmbQmJbeTyMrKYuXKlVRVVVFfX09ubqPTu8cViOssmzdvZtasWaxZs4a0tDSmTJnCoEGDdE1BRMQnopNbZWUla9asYeDAgSQnJzf6mquuuors7GyWLFnC+eefT//+/Vs5yq9VVlYyd+5cFi9eTGJiIv369WPfvn088sgjDB48mEmTJpGWlha0+ERCQUZGBs45iouLSUtLY9euXVRWVnK6usJHlIhdLblixQqefvpp9u3bR4cOHbjtttsYOnRoix0/EBYsWMCMGTM4/fTTjxgROufYsmULAwcOVHknEWDHjh288MILrFixgjPOOINJkyZx2mmnBTssaWFaLdmIN954g+joaDIzM9m9ezdvvPFGyCe3o68lHGRmpKSkqLyTiE9aWhp33XUXO3fupFu3brqBPgJFbHIDDn3g9cEXCT9mpmn6CBax3+oXXHABlZWV5OfnU1lZyYUXXhjskADYu3cvlZWVwQ5DRKRNi9iR25gxYxg0aBCfffYZQ4cOpXPnzsEOCYD169cQGxtPTs6xU6TJycnU1tYeuk540P79+ykrK9O9dCIiPhG7oORkPB4P27Zto2fPniEzbemc44svvmDmzJmUlZXRvXt3du3aRWxsLDfccAOjR4/WTcMiEjG0oKSJSkpK+OMf/0hhYSHZ2dl873vfo2PHjsEOCzMjJyeHM888k3feeYe5c+cyZswYrrnmGlJSUoIdnohIyFBya8T69evZtGkTmZmZrFu3jsLCQnJycoId1iHx8fFcdtlljBs3LmRGlSIioUTfjI2IjY2loaGB3bt345wL2am+SEtsGzZs4NVXX2Xv3r3BDkVEQpyuuTWivr6e5cuXs2TJEq688kqGDRsWcYkklDjn+Pvf/86yZcsASEhI4I477mDIkCFBjkxEgknX3JooJiaGMWPGMGbMmGCHIkBDQwPLly+nT58+REVFsWPHDj7//HMlNxE5Lg1HpM3weDxH/BQROR4lNwmKuro69u3b59dro6KiuPbaaykuLiY/P5/27dtzwQUXNHrMRYsW8dhjj1FYWNjCEYtIW6JrbkGwa9cuioqKOPvss1t0sYrH4wlIi52W5Jxj1apVzJw5k/Lycq6++mrGjx9PYmLiSffdsWMHBQUFDB06lPj4+COeq6qq4uGHH6a4uJj4+Hj279/PjTfeyJVXXhmofwoej4eKioqQuE1EJBLpmlsA7dq1y+8qJwcOHGDBggXMnz+f2tpaMjIymDp1KgMGDGhWDB6Ph9dee5EvvniboUOv4PLLrw3ZBTCFhYX87ne/IzU1lbS0NObMmUNVVRWTJk066b5paWnHrRW4Z88eSkpK6Nu376HHa9asCVhyKykp4U9/+hNFRUVcdtll3HTTTeqnJxJCQvMbsI1YtmwZ06dPZ+bMmUyfPp3ly5ef8PX//ve/eeGFF+jWrRuZmZnU1NTw6KOPNjuOnTt3Ulj4Bnfd1YV16+ZTXl7e7GMGSl1dHTExMaSkpBAbG0tKSgrV1dUtcmyPx8PBmYhAX5dbt24dGzdupGfPnixYsED1QEVCjJJbM3zwwQckJSWRmZlJQkICH3300Qlf39DQQFxcHHFxcQCkpKRQX1/f7DiSkpKoqUnm3Xe3UV/fgYSEhGYfM1Cio6Opq6ujuroaj8fDvn37jpliPBVdunQhJyeHwsJCCgsLqaurC+hq16SkJAC2b99OcnJyyN4LKRKpNC3ZTAcOHDji54lER0dTW1tLbW0t8fHxlJeXt8iXYseOHfnudx9i1aqV3HHHUNq1a9fsYwZKv379uP3223n++efZuXMnl156Kddee22zjxsfH8/dd9/N2rVrWb9+PRdffHFAS5Ll5uZy3333sXbtWi699NKQ/oNCJBJpQUkzrF+/nqeeeoqSkhLS0tKYNm3aCVvZ19fXs3jxYubMmUNtbS29e/fmlltuISsrqxWjDg1VVVVUVFSo35aInLITLShRcmumuro6Nm7cSFZWlt+jsPLycjZv3sygQYNCfnWjiEio0mrJAIqLi2tyH7VOnTrRqVOnAEV0csXFxbzwwgtUV1fz7W9/+9AKQxGRcKEFJRHoN7/5DWvXrmXr1q388pe/pK6uLtghiYi0KCW3CFRZWUmXLl3o0qULtbW1KmclImFHyS0CXXTRRWzfvp2ioiJGjBjR6FL8hoYGVq1aRVFRURAiFBFpHl1zi0ATJkxg5MiR1NXVkZmZeUxljZqaGn7/+9/z1VdfYWZcfvnlTJgwIUjRiog0XcBHbmbW0czmmNlXZrbOzM4zs1QzW2RmG3w/g7e6IkL17t2b008/vdGSUWVlZWzYsIHTTjuNjIwM3nvvvSBEGLraygpjkUjWGtOSjwELnHMDgMHAOmA6sNg5lwUs9j2WEBEdHU1DQwNVVVWUl5e3SAWRcPHhhx/ygx/8gKeffloLcURCWECTm5l1AEYDfwdwztU55/YA3wBm+F42A2h+iQppMWlpaXz/+9+nrq6OjIwM7rnnnmCHFDJeeOEF4uLiePfdd9m6dWuwwxGR4wj0Nbd+QCnwDzMbDKwA7ga6O+eKAZxzxWbWrbGdzWwaMA2802jSOsyllG0CAAANDklEQVSMc889l6FDhxIVFRWyHQaCISsri48//piOHTuq1Y1ICAtohRIzywU+AkY55z42s8eAfcB/Ouc6Hva6cufcCa+7hWqFEoksDQ0NrF+/np49e5KcnBzscEQi2okqlAT6T/KtwFbn3Me+x3OAc4CdZpbuCy4dKAlwHBEnPz+fX/ziF+pI3cKioqIYMGCAEptIiAtocnPO7QC2mFl/36axwFrgFeAW37ZbgPmBjCOcVVZWMnv2bB588EG++uqrQyv5CgoKyMvLY9OmTUGOUESk9QW8cLKZ5QB/A+KAAuBWvEn1X0BvYDNwg3Nu94mOo2nJxj344IMUFBSQnJxMRUUFP/7xj+nfvz/19fUUFRXRt29fFWcWkbAU1MLJzrmVQGMnHxvoc0eCsrIy0tPTiY+Pp6amhpqaGgBiYmLIzMwMcnQiIsGhCiVtXO/evVm1ahVxcXGYWUAbdIqItBVKbm3c3XffzfLly9mwYQNXX321mn+KiKDk1ubFxMQwZswYxowZE+xQRERChu7OFRGRsBMRIzePx8Onn37Me++9QN++ZzNu3DeD2glbREQCK+xHbnv27OHJJx9kw4a/MGVKDD16fMhTT93Hp59+GOzQREQkQMJ+5LZt2zZSU4uYOLEvZkZ6envS0spYvnwZw4adF+zwQp5zjrq6OnUGEJE2JexHbgAxMdFH9C2LjdVNzf568cUXueuuu9i9+4T32IuIhJSwT25mxt69tdTW1gPekUhpaRVmSnD+6NKlC2lpacTFxQU7FBERvwW8/FZLOdXyW7W1tbz55svk5y/k/PNj2LChjj17+nD11d+hT58+AYhURERaQ1DLbwVbfHw81147kW3bRrN06etkZg5k+PARqrcoIhLGwj65HZSRkcHEidOCHYaIiLSCiEluJ1JZWclbb71FTEwM48aNIzExMdghiYhIMyi5Ab/73e8oKCjAOceGDRv44Q9/GOyQRESkGZTc8LaN6d69O/X19VryLiISBsL+VgB/XHrppZSWlrJ3714uvvjiYIcjIiLNpJEbcNVVVzF8+HCio6Pp3LlzsMMREZFmUnLz6datW7BDEBGRFqJpSRERCTtKbiIiEnaU3EREJOwouYmISNhRchMRkbCj5CYiImFHyU1ERMKOkpuIiIQdJTcREQk7Sm4iIhJ2lNxERCTsKLmJiEjYUXITEZGwo+QmIiJhR8lNRETCjpKbiIiEHSU3EREJO0puIiISdpTcREQk7Ci5iYhI2FFyExGRsKPkJiIiYUfJTUREwo6Sm4iIhB0lNxERCTsBT25mVmhmq81spZnl+bb91My2+batNLMrAh2HiIhEjphWOs9FzrldR237vXPuN610fhERiSCalhQRkbDTGsnNAQvNbIWZTTts+w/MbJWZPW1mnRrb0cymmVmemeWVlpa2QqgiIhIOWiO5jXLOnQNcDtxpZqOBJ4FMIAcoBn7b2I7Ouaecc7nOudyuXbu2QqgiIhIOAp7cnHPbfT9LgLnAcOfcTuecxznXAPwVGB7oOEREJHIENLmZWTsza3/wd2Ac8KWZpR/2suuALwMZh4iIRJZAr5bsDsw1s4PnmuWcW2BmM80sB+/1uELg9gDHISIiESSgyc05VwAMbmT7zYE8r4iIRDbdCiAiImFHyU1ERMKOkpuIiIQdJTcREQk7Sm4iIhJ2lNxERCTsKLmJiEjYUXITEZGwo+QmIiJhR8lNRETCjpKbiIiEHSU3EREJO0puIiISdpTcREQk7Ci5iYhI2FFyExGRsKPkJiIiYUfJTUREwo6Sm4iIhB0lNxERCTtKbiIiEnaU3EREJOwouYmISNhRchMRkbCj5CYiImFHyU1ERMKOkpuIiIQdJTcREQk7Sm5thHOOd955h6effpqysrJghyMiEtJigh2A+Gf79u384x//wOPxEBsby8033xzskEREQpZGbm1EcnIyqampxMTE0KNHj2CHIyIS0jRyayNSUlL4xS9+wd69e0lPTw92OCIiIU3JrQ1JSkoiKSkp2GGIiIQ8TUtKs6xcuZJFixbh8XiCHYqIyCEauckpa2ho4A9/+AOVlZVkZmbSr1+/YIckIgIouUkzREVFcdNNN7Fz504yMjKCHY6IyCFKbtIs48ePD3YIIiLH0DU3EREJO0puIiISdpTcREQk7Ci5iYhI2FFyExGRsKPkJiIiYSfgtwKYWSFQAXiAeudcrpmlAi8AfYFC4EbnXHmgYxERkcjQWiO3i5xzOc65XN/j6cBi51wWsNj3WEREpEUEa1ryG8AM3+8zgGuDFIeIiISh1khuDlhoZivMbJpvW3fnXDGA72e3xnY0s2lmlmdmeaWlpa0QqoiIhIPWKL81yjm33cy6AYvM7Ct/d3TOPQU8BZCbm+sCFaCIiISXgI/cnHPbfT9LgLnAcGCnmaUD+H6WBDoOERGJHAFNbmbWzszaH/wdGAd8CbwC3OJ72S3A/EDGISIikSXQ05LdgblmdvBcs5xzC8zsU+BfZvYdYDNwQ4DjEBGRCBLQ5OacKwAGN7K9DBgbyHOLiEjkMufaxjoNMysFipp5mC7ArhYIJ5LoPTs1et+aTu9Z00X6e9bHOde1sSfaTHJrCWaWd9iN5OIHvWenRu9b0+k9azq9Z8en2pIiIhJ2lNxERCTsRFpyeyrYAbRBes9Ojd63ptN71nR6z44joq65iYhIZIi0kZuIiEQAJTcREQk7EZPczOwyM/u3mW00M/WP84OZFZrZajNbaWZ5wY4nVJnZ02ZWYmZfHrYt1cwWmdkG389OwYwx1BznPfupmW3zfd5WmtkVwYwx1JhZLzN7x8zWmdkaM7vbt12ftUZERHIzs2jgT8DlQDYw0cyygxtVm3F0o1k51j+By47apoa8J/ZPjn3PAH7v+7zlOOfeaOWYQl09cK9z7kxgBHCn73tMn7VGRERyw9uJYKNzrsA5VwfMxtswVaTZnHNLgd1HbVZD3hM4znsmJ+CcK3bOfeb7vQJYB2Sgz1qjIiW5ZQBbDnu81bdNTqyxRrPiH78a8soxfmBmq3zTlppeOw4z6wsMAT5Gn7VGRUpys0a26R6IkxvlnDsH73TunWY2OtgBSVh7EsgEcoBi4LfBDSc0mVky8BLwX865fcGOJ1RFSnLbCvQ67HFPYHuQYmkzjtNoVvyjhrxN5Jzb6ZzzOOcagL+iz9sxzCwWb2J7zjn3sm+zPmuNiJTk9imQZWanmVkcMAFvw1Q5jhM0mhX/qCFvEx38gva5Dn3ejmDexph/B9Y553532FP6rDUiYiqU+JYVPwpEA087534e5JBCmpn1wztag68bzeo9a4SZPQ+Mwdt+ZCfwf8A84F9Ab3wNeZ1zWkDhc5z3bAzeKUkHFAK3H7yWJGBm5wPLgNVAg2/zj/Fed9Nn7SgRk9xERCRyRMq0pIiIRBAlNxERCTtKbiIiEnaU3EREJOwouYmISNhRchMRkbCj5CbSDL62QF1OYb9/mtm3mvD6voe3hzlV/pzXzKaa2eO+369VBw1pi5TcRORErsXbJkqkTVFyE/GTmc3zdUhY01iXBDOb4qto/4WZzfRt62Nmi33bF5tZ78N2GW1mH5hZwcHRlHk9YmZf+hrF3uRnbH3NbJmZfeb738jDjve4ma01s9c5rGL84aNOM8s1s3ePOuZI4BrgEV/z0Ewzu8t3rFVmNrtJb6BIK4oJdgAibchtzrndZpYIfGpmLx18wswGAj/B20lhl5ml+p56HHjGOTfDzG4D/sDX/bbSgfOBAXjrA84Bvom3BNVgvKWpPjWzpX7EVgJc6pzbb2ZZwPNALt4ajf2Bs4DuwFrgaX/+sc65D8zsFeA159wc379zOnCac67WzDr6cxyRYNDITcR/d5nZF8BHeLtMZB323MXAHOfcLoDDavudB8zy/T4TbzI7aJ5zrsE5txZv4sH3/PO+6vg7gfeAYX7EFgv81cxWAy/y9VTi6MOOtx1Y4v8/t1GrgOfMbDLeztAiIUnJTcQPZjYGuAQ4zzk3GPgcSDj8JfjXI/Dw19Qetf/hP5vqHrwFiAfjHbHFHeech6vn6++AhOO85mhXAn8ChgIrzEyzPxKSlNxE/JMClDvnqs1sADDiqOcXAzeaWWeAw6YlP8DbYglgErD8JOdZCtxkZtFm1hXvyOsTP+Mr9vVCuxlv94uDx5vgO146cNFh+xTiTVIA1x/nuBXAwdZHUUAv59w7wH1ARyDZj9hEWp2Sm4h/FgAxZrYKeAjv1OQhzrk1wM+B93xTlwf7bd0F3Orb72bg7pOcZy7eqb8v8E4h3uec2+FHfE8At5jZR8AZQNVhx9uAt03Kk3inOQ/6GfCYmS0DPMc57mzgv83sc7zTsM/6pj4/B37vnNvjR2wirU4tb0REJOxo5CYiImFHF4NF2hAzGw/8v6M2b3LOXReMeERClaYlRUQk7GhaUkREwo6Sm4iIhB0lNxERCTtKbiIiEnb+P+Gxw182R4t5AAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Souvislost mezi pitím a střední dobou života\n",
+ "import numpy as np\n",
+ "\n",
+ "barvy_kontinentu = {\n",
+ " \"europe\": \"blue\",\n",
+ " \"asia\": \"yellow\",\n",
+ " \"africa\": \"black\",\n",
+ " \"americas\": \"red\"\n",
+ "}\n",
+ "barva = countries[\"world_4region\"].map(barvy_kontinentu) \n",
+ "# barva obsahuje sloupec plný barev\n",
+ "\n",
+ "countries.plot.scatter(\n",
+ " figsize=(7, 7),\n",
+ " x=\"alcohol_adults\",\n",
+ " y=\"life_expectancy\",\n",
+ " marker=\"h\", # Tvar symbolu: šestiúhelník - (h)exagon\n",
+ " color=barva, # Bohužel nejde použít jen jméno sloupce, musíme dát celé \"pole\" hodnot \n",
+ " s=countries[\"population\"] / 1e6, # Velikost symbolu (na druhou) podle populace\n",
+ " edgecolor=\"black\", # Barva okraje\n",
+ " alpha=0.5 # Poloprůhledné symboly\n",
+ ");"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "A tak to vlastně vypadá, že v Asii se obecně pije málo, v Americe tak středně, v Africe se lidé dožívají menšího věku, ale na první pohled v těchto skupinách zemí nevidíme žádný trend. Jediný kontinent, který se vymyká, je Evropa, kde se jak hodně pije, tak dlouho žije, ale obojí je nejspíš důsledkem moderního způsobu života. No a při bližším pohledu se naopak zdá, že v rámci Evropy větší pití znamená kratší život. "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Často se stane, že jsou hodnoty obtížně souměřitelné. Například co do rozlohy či počtu obyvatelstva se na světě vyskytují země miniaturní a naopak gigantické, rozdíly jsou řádové:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAF+CAYAAABtdgaSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de5hcdZ3n8c+nujsJksglaS8kgYBEGGADSA+C7Ch4WQOjREWFqKMomtURmF0vgOuICDPPzMRxvIygG1mWxR1hEEaJiMM6EsQFw6RZk0CiYBtuTXykDQEMkKbT/d0/6tShulLddbrTpy5d79fz9EOdc35V9e1DpT59fr9zfscRIQAAJKnQ6AIAAM2DUAAApAgFAECKUAAApAgFAECKUAAApFoyFGxfZftx2/dlaHuQ7Z/Y3mj7dtsL6lEjALSilgwFSVdLWpqx7d9LuiYilki6VNLf5FUUALS6lgyFiLhD0hPl62y/wva/2r7H9s9sH55sOkLST5LHayQtq2OpANBSWjIUxrBK0nkRcZykT0m6Ilm/QdIZyeO3S5pje24D6gOAptfZ6AKmgu3Zkl4j6bu2S6tnJv/9lKSv2z5b0h2SHpO0q941AkArmBahoOIRz5MRcUzlhojYKukdUhoeZ0TEU3WuDwBawrToPoqIpyU9aPtdkuSio5PH82yXfs/PSLqqQWUCQNNryVCwfa2kn0s6zHa/7XMkvVfSObY3SNqkFwaUT5Z0v+0HJL1U0l83oGQAaAlm6mwAQElLHikAAPJBKAAAUi139tG8efNi0aJFjS4DAFrKPffc8/uI6K7VruVCYdGiRert7W10GQDQUmw/nKVdbt1HWSets/3HtodtvzOvWgAA2eQ5pnC1akxaZ7tD0t9JujXHOgAAGeUWCtUmraviPEk3Sno8rzoAANk17Owj2/NVnKDum42qAQAwWiNPSf2KpAsjYrhWQ9srbPfa7h0YGKhDaQDQnhp59lGPpOuSWU3nSTrN9q6I+H5lw4hYpeLU2Orp6eESbADIScNCISIOLj22fbWkm6sFAgCgfnILhWTSupMlzbPdL+nzkrokKSIYRwCAJpRbKETE8gm0PTuvOgAA2TH3EdBktu0Y1IZHn9S2HYONLgVtqOWmuQCms5vWP6YLb9yorkJBQyMjWnnGEp1+zPxGl4U2wpEC0CS27RjUhTdu1M6hEf1hcJd2Do3oghs3csSAuiIUgCbRv/05dRVG/5PsKhTUv/25BlWEdkQoAE1iwX57aWhkZNS6oZERLdhvrwZVhHZEKABNYu7smVp5xhLN6ipozsxOzeoqaOUZSzR39sxGl4Y2wkAz0EROP2a+Tjp0nvq3P6cF++1FIKDuCAWgycydPZMwQMPQfQQASBEKAIAUoQAASBEKAIAUoQAASBEKAIAUoQAASBEKAIAUoQAASBEKAIAUoQAASBEK0xC3cwQwWUyIN81wO0cAe4IjhWmE2zkC2FOEwjTC7RwB7ClCYRrhdo4A9hShMI1wO0cAe4qB5mmG2zkC2BOEwjTE7RwBTBbdRwCAFKEAAEgRCgCAFKEAAEgRCgCAFKEAAEgRCgCAFKEAAEjlFgq2r7L9uO37xtj+Xtsbk5+7bB+dVy0AgGzyPFK4WtLScbY/KOl1EbFE0mWSVuVYCwAgg9ymuYiIO2wvGmf7XWWLayUtyKsWAEA2zTKmcI6kH4210fYK2722ewcGBupYFgC0l4aHgu1TVAyFC8dqExGrIqInInq6u7vrVxwAtJmGzpJqe4mkKyWdGhHbGlkLAKCBRwq2D5T0L5L+LCIeaFQdAIAX5HakYPtaSSdLmme7X9LnJXVJUkR8U9LFkuZKusK2JO2KiJ686gEA1Jbn2UfLa2z/sKQP5/X+AICJa/hAMwCgeRAKAIAUoQAASBEKAIAUoQAASBEKAIAUoQAASBEKAIAUoQAASBEKAIAUoQAASBEKAIAUoQAASBEKAIAUoQAASBEKAIAUoQAASBEKAIAUoQAASBEKAIAUoQAASBEKAIAUoQAASBEKAIAUoQAASBEKAIAUoQAASBEKAIAUoQAASBEKAIAUoQAASBEKAIAUoQAASBEKAIBUbqFg+yrbj9u+b4zttv012322N9p+VV61AACyyfNI4WpJS8fZfqqkxcnPCknfyLEWAEAGuYVCRNwh6YlxmiyTdE0UrZW0r+2X51UPAKC2Ro4pzJf0aNlyf7IOANAgjQwFV1kXVRvaK2z32u4dGBjIuSwAaF+NDIV+SQvLlhdI2lqtYUSsioieiOjp7u6uS3EA0I4aGQqrJb0/OQvpBElPRcRvG1gPALS9zrxe2Pa1kk6WNM92v6TPS+qSpIj4pqRbJJ0mqU/Ss5I+mFctAIBscguFiFheY3tI+nhe7w8AmDiuaAYApAgFAECKUAAApAgFAECKUAAApAgFAECKUAAApAgFAECKUAAApAgFAECKUAAApAgFAECKUAAApAgFAECKUAAApAgFAECKUAAApAgFAECKUAAApAgFAECKUAAApAgFAECKUAAApAgFAECKUAAApAgFAECKUAAApAgFAECKUAAApAgFAECKUAAApAgFAECKUAAApAgFAECKUAAApHINBdtLbd9vu8/2RVW2H2h7je1f2N5o+7Q86wEAjC+3ULDdIelySadKOkLScttHVDT7S0nXR8Sxks6SdEVe9QAAasvzSOF4SX0RsSUinpd0naRlFW1C0ouTx/tI2ppjPQCAGvIMhfmSHi1b7k/WlbtE0vts90u6RdJ51V7I9grbvbZ7BwYG8qgVAKB8Q8FV1kXF8nJJV0fEAkmnSfq27d1qiohVEdETET3d3d05lAoAkPINhX5JC8uWF2j37qFzJF0vSRHxc0mzJM3LsSYAwDgyh4LtDtsHJGcMHWj7wBpPWSdpse2Dbc9QcSB5dUWbRyS9IXn9P1IxFOgfAoAG6czSyPZ5kj4v6XeSRpLVIWnJWM+JiF22z5V0q6QOSVdFxCbbl0rqjYjVkj4p6Vu2/2vyemdHRGUXEwCgTpzlO9h2n6RXR8S2/EsaX09PT/T29ja6DABoKbbviYieWu2ydh89KumpPSsJANDsMnUfSdoi6XbbP5Q0WFoZEf+QS1UAgIbIGgqPJD8zkh8AwDSUKRQi4guSZHtOcTF25FoVAKAhMo0p2D7K9i8k3Sdpk+17bB+Zb2kAgHrLOtC8StInIuKgiDhIyamk+ZUFAGiErKGwd0SsKS1ExO2S9s6lIgBAw2Q++8j25yR9O1l+n6QH8ykJANAoWY8UPiSpW9K/SPpe8viDeRUFAGiMrGcfbZd0fs61AAAabNxQsP2ViPgvtn+g3ae9VkScnltlAIC6q3WkUBpD+Pu8CwEANN64oRAR9yQPj4mIr5Zvs/0Xkn6aV2EAgPrLOtD8gSrrzp7COgAATaDWmMJySe+RdLDt8hvkzJHU8Gm0AQBTq9aYwl2SfqviLTK/VLb+D5I25lUUAKAxao0pPCzpYUkn1qccAEAjZZ0Q7wTb62zvsP287WHbT+ddHACgvrIONH9d0nJJv5a0l6QPS/rHvIoCADRG1rmPFBF9tjsiYljS/7R9V451AQAaIGsoPGt7hqT1tleqOPjMLKkAMM1k7T76M0kdks6V9IykhZLOyKsoAEBjZJ0Q7+Hk4XOSvpBfOQCARqp18dq9qjIRXklELJnyigAADVPrSOEtdakCANAUsly8BgBoE5nGFGz/QS90I82Q1CXpmYh4cV6FAQDqL+tA85zyZdtvk3R8LhUBABom6ympo0TE9yW9foprAQA0WNbuo3eULRYk9Wics5IAAK0p6xXNby17vEvSQ5KWTXk1AICGyjqm8MG8CwEANF7WqbMPsf0D2wO2H7d9k+1D8i4OAFBfWQeavyPpekkvl3SApO9KujavogAAjZE1FBwR346IXcnP/xYDzQAw7WQNhTW2L7K9yPZBti+Q9EPb+9vef6wn2V5q+37bfbYvGqPNu21vtr3J9ncm80sAAKZG1rOPzkz++58r1n9IxSOG3cYXbHdIulzSmyT1S1pne3VEbC5rs1jSZySdFBHbbb9kgvUDAKZQ1rOPDp7Eax8vqS8itkiS7etUPI11c1mbj0i6PCK2J+/z+CTeBwAwRbKefdRl+3zbNyQ/59ruqvG0+ZIeLVvuT9aVe6WkV9q+0/Za20vHeP8Vtntt9w4MDGQpGQAwCVnHFL4h6ThJVyQ/xyXrxuMq6yoHpzslLZZ0sqTlkq60ve9uT4pYFRE9EdHT3d2dsWQAwERlHVP444g4umz5NtsbajynX8XbdpYskLS1Spu1ETEk6UHb96sYEusy1gUAmEJZjxSGbb+itJBcuDZc4znrJC22fbDtGZLOkrS6os33JZ2SvOY8FbuTtmSsCQAwxbIeKXxaxdNSS1/YiySNO/VFROyyfa6kWyV1SLoqIjbZvlRSb0SsTrb9J9ubVQyZT0fEtkn8HgCAKeCI2teg2Z4l6ZOS3pCs+rGkL0fEzhxrq6qnpyd6e3vr/bYA0NJs3xMRPbXaZT1SuEbS05IuS5aXS/q2pHdNrjwAQDPKGgqHVQw0r8kw0AwAaDFZB5p/YfuE0oLtV0u6M5+SAACNkvVI4dWS3m/7kWT5QEm/tH2vpIiIJblUBwCoq6yhUPVKYwDA9JJ17qOH8y4EANB4WccUAABtgFAAAKQIBQBAilAAAKQIBQBAilAAAKQIBQBAilAAAKQIBQBAilAAAKQIBQBAilAAAKQIBQBAilAAAKQIBQBAilAAAKQIBQBAilAAAKQIBQBAilAAAKQIBQBAilAAAKQIBQBAilAAAKQIBQBAilAAAKQIBQBAilAAAKRyDQXbS23fb7vP9kXjtHun7bDdk2c9AIDx5RYKtjskXS7pVElHSFpu+4gq7eZIOl/S3XnVAgDIJs8jheMl9UXEloh4XtJ1kpZVaXeZpJWSduZYCwAggzxDYb6kR8uW+5N1KdvHSloYETfnWAcAIKM8Q8FV1kW60S5I+rKkT9Z8IXuF7V7bvQMDA1NYIgCgXJ6h0C9pYdnyAklby5bnSDpK0u22H5J0gqTV1QabI2JVRPRERE93d3eOJQNAe8szFNZJWmz7YNszJJ0laXVpY0Q8FRHzImJRRCyStFbS6RHRm2NNAIBx5BYKEbFL0rmSbpX0S0nXR8Qm25faPj2v9wUATF5nni8eEbdIuqVi3cVjtD05z1oAALVxRTMAIEUoAABShAIAIEUoAABShAIAIEUoAABShAIAIEUoAABShAIAIEUoAE1u245BbXj0SW3bMdjoUtAGcp3mAsCeuWn9Y7rwxo3qKhQ0NDKilWcs0enHzK/9RGCSOFIAmtS2HYO68MaN2jk0oj8M7tLOoRFdcONGjhiQK0IBaFL9259TV2H0P9GuQkH9259rUEVoB4QC0KQW7LeXhkZGRq0bGhnRgv32alBFaAeEAtCk5s6eqZVnLNGsroLmzOzUrK6CVp6xRHNnz2x0aZjGGGgGmtjpx8zXSYfOU//257Rgv70IBOSOUACa3NzZMwkD1A3dRwCAFKEAAEgRCgCAFKEAAEgRCgCAFKEAAEgRCgCAFKEAAEgRCnXG3PgAmhlXNNcRc+MDaHYcKdQJc+MDaAWEQp0wNz6AVkAo1Alz4wNoBYRCnTA3PoBWwEBzHTE3PoBmRyjUGXPjA2hmdB8BAFKEAgAglWso2F5q+37bfbYvqrL9E7Y3295o+ye2D8qzHiAvXKmO6SK3MQXbHZIul/QmSf2S1tleHRGby5r9QlJPRDxr+2OSVko6M6+agDxwpTqmkzyPFI6X1BcRWyLieUnXSVpW3iAi1kTEs8niWkkLcqwHmHJcqY7pJs9QmC/p0bLl/mTdWM6R9KNqG2yvsN1ru3dgYGAKSwT2DFeqY7rJMxRcZV1UbWi/T1KPpC9W2x4RqyKiJyJ6uru7p7DEbOgvxli4Uh3TTZ7XKfRLWli2vEDS1spGtt8o6bOSXhcRTfetS38xxlO6Uv2Cis8I16KgVeUZCuskLbZ9sKTHJJ0l6T3lDWwfK+m/S1oaEY/nWMuklPcX71Txr8ELbtyokw6dxz96pLhSHdNJbt1HEbFL0rmSbpX0S0nXR8Qm25faPj1p9kVJsyV91/Z626vzqmcyqvUXF2xt2vpUgypCs5o7e6aOXrgvgYCWl+s0FxFxi6RbKtZdXPb4jXm+/56q1l/87PPD+sg1vfriO4+mGwnAtMMVzeMo9RfP7By9mwZ3BacdApiW2jIUJnI20enHzNe33t+jF3V1jFrPaYcApqO2myV1MmcTHXnAizVScTYtpx0CmI7a6khhslefcoMcAO2irY4USmcTlU4vlV7oBqr1Bc9phwAaaduOwbp8/7RVKOzp1afcIAdAI9TzItq26j6iGwhAq6n3pIttdaQgVe8GqtdhGQBM1J50e09G24WCNLobiLmNADSzek+62FbdR5UaNRc+s64CyKre3d5teaRQUu/DMokjEwATV8+zH9s6FOp9WMasqwAmq15nP7Z191G9D8u4SxeAZtfWRwpSfQ/LuEsXgGbX1kcKUv2uEpS4TgJA82vrI4Wb1j+mC27YoA4XNBwjdblHAtNlAGhmbRsK23YM6pPXr9euEUkaliR94vr1NQd9S0cWe8/o0DPPD0/qi53pMgA0q7YNhU1bn04C4QW7RorrX/vK7qrPKZ1OGiOhweHQrK5i7xunlQKYLtp4TCGqrv35b35fdX356aSDw8Xn7hwayXTBGxerAWgVbXukcOQB+6irwxoaHh0OV935oD78J4ek3Tul7qKnnhva7UK3kvEueJvoxWrMwwSgkdo2FObOnqnzX79YX/rxA6PWdxYKWvOrx3XK4S/R/+37ffqF/vzwiIZHdg8EaezTSid6sRpXOwNotLYNBUk69aiX6Ws/eUBDZd/1zzw/rM/dtEnD37tXIWloONIv9K4Oa2anpNBuYwrVvuQnMo0GVzsDaAZtGwqlv8oLhYI0MqKugtJweG5ouOpzZnV26PL3Hqt99pqR6eyjiVys1oh5mACgUluGQvlf5SVD1XuGRhkaGdGRB+yT+Uu6dLHaBRVdQtWez9XOAJpB24XCth2DWvOrx9VhZ2rf1WHN6uzQ0MiIPveWI9J5iko359m09WlJMWZYZL1YbSIBAgB5aatQKHUZddh65vnqXUSVLGnFaw/R/nvP0GU3b06/sN/ds0DfufuR9FqHrg7rS++qfkV01ovVuNoZQKM5ovr5+s2qp6cnent7J/y8bTsGddLf3TaqyyirmZ2WZA1WXu22W7uC7rro9bl+mXPKKoDJsH1PRPTUatc2RwrVBnJndBSvYu6yNFgjKzoKtbubOgquOTCc5Ut9rDacsgr+KEDe2iYUqg3klnqQBmscLA3tCqmz9hHV8EiMOzCc5Ut9rDacsgr+KEA9tM00F6WB3K6ObAPMlZYdc8Co5T85dK46K/be8MiI7uyrPU1G5f2gS9Ng9P3uD2O24QY97a1R9xNH+2mbIwVJOunQefIYcx6NZ1ZXQd/7xWOj1q17eLuu+8gJWn7l3elUGbtGxv7rfazrEP7p7kd0xe196ioUNDg8IleM8ZS++DlltT6atXuG61hQL20VClf+bIsynnQ0yrNVBqe7CgU9tO1ZFWxVTq5X7R9q9e6rEV2+5tca3BVV51SSXvjinzt7pj73p0foCz/YpK6OgoYjOGV1ijVz9wx/FKBe2qb76J/WPqxv/HTLlL3e0MiIHn3i2d3OSNo5NKK9Z3Ts1r7aXdfOPeVQzegY3XZWV0EzOrzbndluWv+YLvvhZs3oLGhoJPS5txzRNF9Y00Gzd89w1z7US1scKWzbMaiLb7pvyl5vRmdBn3jjK7Xy1l9V3b71qZ069KVzdltfeR2CJF1+e99u7W45/09GTaFR7Qrsy27erKVHvowvhSnSCt0zXMeCemiLUNi09WkNT9HlGB0F6WOvPUQrb/3VbjfpKXn6uaHd+qbLl49euG/attpVzJWB0gpfWK2uVbpnuGsf8pZrKNheKumrkjokXRkRf1uxfaakayQdJ2mbpDMj4qGpruNbP/3NlL3W4u699dXbdv/rvtx9W5/Sp27YMOrq5+t7+6v2VWf5669VvrBaGdOMAEW5XdFsu0PSA5LeJKlf0jpJyyNic1mbP5e0JCI+avssSW+PiDPHe92JXtG8bcegjvurf5vMrzApHZY6OwrjXv08q6ugOy+c2JXPq9c/ttsXFmMKU69Zzz4C9lQzXNF8vKS+iNiSFHSdpGWSNpe1WSbpkuTxDZK+btsxhUn12pX1CYTiVBjSuacs1qo7towbCpPp+qE/uT7onkG7yzMU5kt6tGy5X9Krx2oTEbtsPyVprqRRV4DZXiFphSQdeOCBEyrimecn1HxS/tuph+vVh8wdd/C43GS7fvjCApC3PE9JrXbpcOURQJY2iohVEdETET3d3d0TKmLfWZO7grlcV9kpou8/8UDN6ipo75kdmtFZ0F+//SiteN0rdPTCfdMv7cpTB0vP4VRCAM0uzyOFfkkLy5YXSNo6Rpt+252S9pH0xFQWsf6S07Tooh/WbPeWo16qs086WD/f8oS+vubX6iwUNDQ8os+/9UgtPeplo7pt/uINrxy3G6daV0+t5wBAM8hzoLlTxYHmN0h6TMWB5vdExKayNh+X9B/KBprfERHvHu91Jzt19jGX3KIndxZ/15fN7tJfvvUoSaEX7zVDRx7w4lFf1Aw2AphuGj7QnIwRnCvpVhVPSb0qIjbZvlRSb0SslvQ/JH3bdp+KRwhn5VXP+ktOy9yWvnsA7SrX6xQi4hZJt1Ssu7js8U5J78qzBgBAdm0z9xEAoDZCAQCQIhQAAClCAQCQIhQAAClCAQCQIhQAAClCAQCQIhQAAKnc5j7Ki+0BSQ9P8unzVDEtdwtotZpbrV6p9WputXql1qu51eqVatd8UETUnGa65UJhT9juzTIhVDNptZpbrV6p9WputXql1qu51eqVpq5muo8AAClCAQCQardQWNXoAiah1WputXql1qu51eqVWq/mVqtXmqKa22pMAQAwvnY7UgAAjGPahILtpbbvt91n+6Iq22fa/udk+922F5Vt+0yy/n7bb26Sej9he7PtjbZ/Yvugsm3DttcnP6vrUW/Gms+2PVBW24fLtn3A9q+Tnw80Sb1fLqv1AdtPlm2r+z62fZXtx23fN8Z22/5a8vtstP2qsm11378Za35vUutG23fZPrps20O270328cTvsZtPvSfbfqrs//3FZdvG/Tw1sOZPl9V7X/LZ3T/ZNvF9HBEt/6Pi7T5/I+kQSTMkbZB0REWbP5f0zeTxWZL+OXl8RNJ+pqSDk9fpaIJ6T5H0ouTxx0r1Jss7mnQfny3p61Weu7+kLcl/90se79foeivan6fiLWMbuY9fK+lVku4bY/tpkn4kyZJOkHR3o/bvBGp+TakWSaeWak6WH5I0r8n28cmSbt7Tz1M9a65o+1ZJt+3JPp4uRwrHS+qLiC0R8byk6yQtq2izTNL/Sh7fIOkNtp2svy4iBiPiQUl9yes1tN6IWBMRzyaLayUtyLmmWrLs47G8WdKPI+KJiNgu6ceSluZUZ8lE610u6dqcaxpXRNyh4r3Kx7JM0jVRtFbSvrZfrsbsX0m1a46Iu5KapCb4HGfYx2PZk8//HplgzXv8OZ4uoTBf0qNly/3JuqptImKXpKckzc343Kk20fc8R8W/EEtm2e61vdb22/IosIqsNZ+RdBXcYHvhBJ87lTK/Z9I1d7Ck28pWN2If1zLW79SI/TsZlZ/jkPR/bN9je0WDaqrmRNsbbP/I9pHJuqbfx7ZfpOIfAzeWrZ7wPu7Mo7gGcJV1ladVjdUmy3OnWub3tP0+ST2SXle2+sCI2Gr7EEm32b43In6TQ52jSqmyrrLmH0i6NiIGbX9UxSOz12d87lSbyHueJemGiBguW9eIfVxLM32GJ8T2KSqGwn8sW31Sso9fIunHtn+V/FXcSP9Pxekgdtg+TdL3JS1WC+xjFbuO7oyI8qOKCe/j6XKk0C9pYdnyAklbx2pju1PSPioekmV57lTL9J623yjps5JOj4jB0vqI2Jr8d4uk2yUdm2exiZo1R8S2sjq/Jem4rM/NwUTe8yxVHHI3aB/XMtbv1Ij9m5ntJZKulLQsIraV1pft48clfU/5d9vWFBFPR8SO5PEtkrpsz1OT7+PEeJ/j7Pu4HgMlef+oeMSzRcUugNIg0JEVbT6u0QPN1yePj9TogeYtyn+gOUu9x6o4sLW4Yv1+kmYmj+dJ+rXqMOCVseaXlz1+u6S1yeP9JT2Y1L5f8nj/RtebtDtMxcE4N3ofJ++3SGMPgv6pRg80/3uj9u8Eaj5QxXG611Ss31vSnLLHd0la2gT1vqz0WVDxC/SRZH9n+jw1ouZke+mP3L33dB/X5Req0047TdIDyRfpZ5N1l6r4V7YkzZL03eQD+u+SDil77meT590v6dQmqfffJP1O0vrkZ3Wy/jWS7k0+lPdKOqeJ9vHfSNqU1LZG0uFlz/1Qsu/7JH2wGepNli+R9LcVz2vIPlbxr7zfShpS8S/TcyR9VNJHk+2WdHny+9wrqaeR+zdjzVdK2l72Oe5N1h+S7N8NyWfms01S77lln+G1Kguzap+nZqg5aXO2iifMlD9vUvuYK5oBAKnpMqYAAJgChAIAIEUoAABShAIAIEUoAEATqzUhXkXbMSd5zPx+nH0EAM3L9msl7VBx3qujJvC88yQdGxEfmsj7caQATAHbHY2uAdNTVJkQz/YrbP9rMqfRz2wfXuWpk5ocj1AAMrD9/eQf4KbSxGK2d9i+1PbdKk6idpztnybtbk1mMJXtj9hel0yydmMycRmwJ1ZJOi8ijpP0KUlXlG8cY5LHTOg+AjKwvX9EPGF7L0nrVJyg8PeSzoyI6213SfqpivP7DNg+U9KbI+JDtudGMueP7b+S9LuI+MdG/S5oPS7eFOzmiDjK9mxJAyrOwFAyMyL+qKz9hZIWRMR5E32v6TJLKpC3822/PXm8UMWZM4f1wjTFh0k6SsWZKKXiTVl+m2w7KgmDfSXNlnRrvYrGtFSQ9GREHDNOm7NUnO9twggFoAbbJ0t6o6QTI+JZ2yfnJ+EAAADuSURBVLerOJfWznhhum1L2hQRJ1Z5iaslvS0iNtg+W8W7ewGTEhFP237Q9rsi4rvJzcKWRMQGSbJ9mIoTI/58Mq/PmAJQ2z6StieBcLiKM5RWul9St+0TJcl2V9kNWuZI+m3SxfTeulSMacP2tSp+wR9mu9/2OSp+js6xXZrsrvwucMtVnBxvUmMDjCkANdieqeLNVuYr+fJXcXbVmyNidlm7YyR9TcUQ6ZT0lYj4lu2PSbpA0sMqzm46JyLOrufvAGRFKAAAUnQfAQBShAIAIEUoAABShAIAIEUoAABShAIAIEUoAABShAIAIPX/AeHum0MM9Oi2AAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "countries.plot.scatter(\n",
+ " x=\"area\",\n",
+ " y=\"population\",\n",
+ " figsize=(6,6)\n",
+ ");"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "No nic moc - odděleně vidíme cca 7 až 20 bodů a zbytek splývá v jednu velikou \"kaňku\". V takovém případě se hodí opustit běžné, **lineární měřítko**. Místo něj použijeme **logaritmické měřítko**. K tomu slouží argumenty `logx` a `logy` (podle příslušné osy)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAF3CAYAAABQRbfUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3df3Dk9X3f8ddb0v466Q4cvGGSAyQILoXgNuLucJxJbBjrcrjjgkty2GragNkU8AT7LBrqMzXjiY90XOPmCsaNjonO/GhPGBzsYoepErUQ0pjkfiCTwBEyFyrZZ2eiTSAHh/Xr7t79Q1pld/X9rHal/SXt8zHzHdjv/vp8ueP72s9vc3cBABClrdEFAAA0L0ICABBESAAAgggJAEAQIQEACCIkAABBHY0uQDW9853v9J6enkYXAwDWlCNHjvydu6ejnltXIdHT06PDhw83uhgAsKaY2UToOZqbAABBhAQAIIiQAAAEERIAgCBCAgAQREgAAIIICQBAECEBAAgiJAAAQYQEACCIkAAABBESAIAgQgIAEERIAACCCAkAQBAhAQAIIiQAAEGEBAAgiJAAAAQREgCAIEICABDUNCFhZheZ2ZCZfb3UOQBA/dQ0JMxsv5lNmtlLReevMbNXzeyYme2WJHd/zd0z+a+LOgcAqJ9a1yQeknRN/gkza5f0FUkflHSZpH4zu6zG5QAArEBNQ8Ldn5P0etHpKyUdW6glzEp6TNJ1tSwHAGBlGtEnsVnS9/MeH5e02czOMbNBSb1m9hlJijpXzMxuMbPDZnY4m83WvPAA0Eo6GvCdFnHO3f3vJd1WdHLJuYg3PijpQUnaunWrV6uQAIDG1CSOSzo/7/F5kn7YgHIAAJbRiJA4JOldZnahmcUlfVTSUw0oBwBgGbUeAjss6XlJl5jZcTPLuPspSbdLGpH0iqTH3f3lWpYDALAyNe2TcPf+wPmnJT1dy+8GAKxe08y4BgA0H0ICABBESAAAgggJAEAQIQEACCIkAABBhAQAIIiQAAAEERIAgCBCAgAQREgAAIIICQBAECEBAAgiJAAAQYQEACCIkAAABBESAIAgQgIAEERIAACCCAkAQBAhAQAIIiQAAEGEBAAgiJAAAAQREgCAIEICABBESAAAgggJAEAQIQEACCIkAABBhAQAIIiQAAAEERIAgCBCAgAQREgAAIIICQBAECEBAAgiJAAAQYQEACCIkAAABBESAIAgQgIAEERIAACCCAkAQBAhAQAIIiQAAEGEBAAgiJAAAAQREgDWrGw2q0OHDimbzTa6KOsWIQGgKVR6wx8eHlZ3d7e2b9+u7u5uDQ8P17iErYmQANBwld7ws9msMpmMpqamdOLECU1NTSmTyVCjqIGmDQkzu8zMHjez3zGzX250eQDUxkpu+OPj44rH4wXnYrGYxsfHa1za1lPXkDCz/WY2aWYvFZ2/xsxeNbNjZrZ74fQHJX3Z3T8u6VfrWU4A9bOSG35PT49mZ2cLzs3Nzamnp6cGJWxt9a5JPCTpmvwTZtYu6SuaD4XLJPWb2WWSHpX0UTO7V9I5dS4ngDpZyQ0/nU5raGhIqVRKmzZtUiqV0tDQkNLpdI1L23rqGhLu/pyk14tOXynpmLu/5u6zkh6TdJ27T7r7r0vaLenv6llOAPWz0ht+f3+/JiYmNDo6qomJCfX399epxK2lo9EFkLRZ0vfzHh+X9B4z65F0l6ROSfeG3mxmt0i6RZIuuOCCmhUSQO309/err69P4+Pj6unpKbtGkE6nqT3UWDOEhEWcc3cf18LNvxR3f1DSg5K0detWr27RANQLN/zm1Ayjm45LOj/v8XmSftigsgAA8jRDSByS9C4zu9DM4pI+KumpBpcJAKD6D4EdlvS8pEvM7LiZZdz9lKTbJY1IekXS4+7+cj3LBQCIVtc+CXePHH7g7k9LerqeZQEALK8ZmpsAAE2KkAAABBESAIAgQgIAEERIAACCCAkAQBAhAWDNYvvS2iMkAKxJbF9aH+a+ftbE27p1qx8+fLjRxQBQY9lsVt3d3Zqamlo8l0qlNDExwSKBK2BmR9x9a9Rz1CQArDlsX1o/hASAuqpGPwLbl9YPIQGgbqrVj8D2pfVDnwSAuqhFP0I2m614NzssRZ8EgIardj8CAVEfhASAqliur6Ga/QgMf60fQgLAqhXftO+5554lYVGtfoRsNqtMJqOpqSmdOHFCU1NTymQyTKirEUICaFHVmq0cddO+++67dcEFFyz5hd/f36+JiQmNjo5qYmJC/f2R+5CVxPDX+iIkgBZUzeaaqJu2JE1PT0f+wk+n09q2bduK+xHKbbZiyY7qICSAFlPt5pqom3ZOLX7hl9NsRZ9F9RASQItZSXNNqV/l+TftYrWa4Faq2Yo+i+oiJIAWU+koo3J+ledu2nv27FEymSzZMV2tZqBQsxV9FlXm7uvm2LJliwNY3oEDBzyVSvmmTZs8lUr5gQMHIl83OTnpqVTKJS0eqVTKJycng589OTnpBw8ejHxN7nvPOuuskt+7Gispc6uTdNgD91VqEkALKneU0djYmNraCm8Ty/0qD/3Cr1czEEt2VFdHowsAoDHS6XTJG+fw8PDiTT3fSvsZcs1A+Z+XC5xq38D7+/vV19fHjOwqICQALJH/qz9fR0dHWb/Ks9msxsbGJEm9vb1Kp9N1X7l1uRBEeWhuArDE+Pi4OjqW/oZsa2tTX19fyfcODw9r8+bN2rFjh3bs2KHzzjtPw8PDSqfT2rt3rxKJhDZu3Egz0BpBSABYIjT3YXZ2Vvv27Yt8Tzab1R/8wR/oYx/7mObm5grek8lktG/fPg0MDCgej2t2dlZ79+5VX18fE96aHEuFA4i0b98+3XbbbUvOJ5NJvfDCCzp58uRie3+u/6KtrU1vv/32kvds2LBBp0+f1szMzOK5eDyutrY2JRIJzc7OamhoaEXLdGD1WCocQNly8xiuv/56ffKTn4x8TW9vrz7wgQ/o/PPP15e+9KXF/ouogJCk06dPL5m7MDs7q+npaSa8NTk6rgEsytUIcqOQoloapqenJWmxVnDnnXcqmUwGPzMej+u+++7TwMBAye+u1UgnrA4hAUBS4Yim4lFNObkmolxQ5BQ/TqVSeuihh3T22Wcvjm7atGmTMpmMYrGY5ubmdOrUqYK+C/aobk40NwEtYrnlMEKrueZ0dnbq0UcfjaxdxGIxJRKJxclrd911l66++mr19vZqfHxc2Wx2yQS+hx9+mAlva0FoKvZaPFiWA4hWznIYUctZKGJpi8HBwcjnk8mk79y505PJpJ911lkei8W8vb3dN27cWPI7Q0t4oH5UYlkORjcB61w2m1V3d3dBE1IqldLExMSSX+65PolYLKbp6Wm5u1KplObm5hZHHw0PD+vGG28saCoqR+g70XilRjfRJwGsc5Ush1G8nEXu/bmhrrl+i0oDQpqfrR3qmM5msyyh0aTokwDWuWouhxGaiV2O2dlZ9fT0FPSNZLNZ3XPPPWwQ1MxC7VBr8aBPAohW7tLg+X0X8XjcY7FYQT/G0aNHPR6PB/stdu7cGezXGBwcXPL5HR0dwb6PctCnUR0q0SfR8Bt7NQ9CAggrvqFGPS7VcR2Pxz2RSHgsFgu+ZnBw0CcnJ33Pnj2eTCa9q6vLE4nE4vlSn587Nm3a5AcPHlz2euqxN0WrKBUSdFwDLSh/0lxuSYyLL75Y27dv14kTJ1b8ualUSkeOHNHJkyfV1dVV8M833nhDN9xww7KfX04HdyWd8VgeHdcAFkVNmstkMjpy5Ejkon6l5EImx93V29urZDK5uLDf0NCQ4vG4ZmZmdObMmZKfV+58iXruTdHq6LgGWkxoD+iTJ08u7ujW2dmpWCy27GcVt0RMT09rZmZmcT2mBx54YHEnutyQ2tASHrt37y65S16+eu9N0coICaDFdHV1LVlGI/8Gm7vxm1nJNZlyYrFYWa+T5msKX/ziF9XZ2VlwfuPGjbr++uvLqgXkhsvu3buXGdt1QHMTsA6F5h3kL+ktzS/7bWbau3evxsbGdPPNNy8JkFLm5uaUSCSWbUbKf31fX58+/elPF5w/depUWbWA4r6UvXv36oorrmB+RS2FerTX4sHoJiA86idqdFEikfB7773XU6mUd3Z2Lhlp1N7e7vF4PPK54s+JOnfzzTd7IpFYsjRHuUNy80WVv5LhsggTQ2CB1lDqRnrw4EE/66yzCp7LDVEtFQAbNmxYvOGXGv4aCp+NGzcuDoMtLmslcxyiyl/ucFmUViokym5uMrN2Secqr4nK3b9X7vsB1F6pUT+hzt7cyKOQH/3oR5Lmm3pyzVTFEomE3F2JREKnTp3S3r17NTAwUFCOgYGBgn6HdDpdURMRndWNUVbHtZl9QtLfSvpDSb+/cHy7huUCUKb8ZS5K3UjT6XTB6KVUKqX77rtPp06dKut72tragktyzMzMKBaLFfQTFHN3jY+Plyx/Kfnlp7O6fsod3bRL0iXu/tPu/u6F45/VsmAAljc8PFyw7tHo6GjJG+mbb76p06dPLzYlbNq0acmw19DQ19OnT+v06dPBsrz99tuamZnRwMCAZmdnl2xcND09ra6urpLlX27dpuI9KdgTuw5C7VD5h6RnJHWU89pGHvRJoJWU6n+Iau+P2gcilUr54OCgJ5NJ7+zs9GQy6ddee21kP8OePXsKOpyTyaTfeuutvnHjxiX9BPfff3/kZ4yMjJRVftSXqtAn8ZqkZ83s9yUtNl66+2+vPJ4ArEap/odt27YVNMNks1nt2rVryWe0t7dr165dBX0STz311JLXJRIJ/dIv/ZJOnjy5uOxGri9g//79Ba+dmprSueeeu6ry04TUPMptbvqe5vsj4pI25h0AGqSSjtzQ1qSzs7MltyzNufbaa7VlyxZt375dW7Zs0bFjxxZv5GZW8Foz07vf/e4lzVaxWEy9vb0rKj8ap6yQcPffdPfflPTbkv5L3mMAdZLr4H3llVd06NAhSSq7I7enpyeyg/ozn/nMshsIJZNJffvb315cXmNqakqZTEbZbFZjY2NLwiCZTOrkyZN6+OGHlzw3Ojq6+O90RK8RoXao/EPS5ZLGJE0sHEck/XQ5713NIekXJA1K+l1J31nu9fRJYL3K9QUkk8nFeQi5SWiTk5M+MjLiIyMjS9rzc30TR48e9Z07dxa0/3d0dHgqlQr2QaRSKU+lUr5nz57I+Qm55cCj3jc5ORm590RUnwN7QjSeVjuZTtJ3JF2d9/iqcm7agc/aL2lS0ktF56+R9KqkY5J2Fz33YUm3LvfZhATWo1L7MOQ6nqNmWOeCpdQmQaWOeDwe3AcimUxGTqzLff+BAwciJ+kx+a05VSMkXiznXJmf9T5JV+SHhKR2SX8t6SLN93u8KOmyvOcfl7Rpuc8mJLAeHTx4cMkIotzR2dm55GacSqX86NGjZW3ws9yR++V/4MCBgrBpb2+PfP3Xvva1ZUONGkPzKRUS5XZcv2Zmd5tZz8LxWUn/r8z3FnD35yS9XnT6SknH3P01d5+V9Jik6yTJzC6QdMLd31zJ9wFrXVQHb05Ux3MsFtPBgweDs6MrkRtt1NfXV/B5ofkSZ599drCTPJFI0OewBpX7t+hmSWlJT0r6xsK/f6yK5dgs6ft5j48vnJOkjKSvht5oZreY2WEzO7zcjE1grbr11lsjz+/atStyhNCVV15Z8QZCUXKjjcbHx5VIJEq+Njd6KSrUEomExsbGmPy2BpU7uukNd/+ku1/h7r3uvsvd36hiOSzinC989+fc/Tslyvagu2919638QsF6k5uRPDQ0tOS59vZ2ffnLXy5Y9js3QujSSy+NnBdR7Nd+7deCe0HkjzaKuvHHYjElEgl1dnYqmUzq4YcfXlyPqXjU0le/+lVdeumlK/gvgEYrOZnOzP6ru3/KzL6lhZt2Pne/tkrlOC7p/LzH50n6YZU+G1iT8rcZjVK8TIa7a3R0VPF4XNlsVpdffvmy35FbBmPnzp361re+tbjY30033aRdu3Yt3tjT6bT27t2rT3ziEwVDZu+7777I/Rz6+/vV19e3ZE+L0D4XaGKhzor5vgxtWfjn+6OOUu9d5nN7VNhx3aH5Wd0X6h87riseYkvHNdaTqKWxlddZHTXiKJFILI5y+tznPldRB/XRo0d9z549JUdKRb2v3I7o0D4XaDxVYXTTrnLOlflZw5L+RtKc5msQmYXz/0LSX2l+lNN/XMlnExJYTyYnJ5cMX43FYj4yMlK10Uu5Y9OmTT4yMhK5llKp7yp3SCvrNDW3UiFRbsf1jRHnbirzvQXcvd/df8LdY+5+nrsPLZx/2t3/ibv/lLv/1ko+G1iJcpeqboT5/38L9fb26tJLL9XQ0FBZS2qUY25uTv/wD/+wZERULBbT6OhocKRUuctoRI14yo2cQnMrGRJm1r/QH3GhmT2Vdzwj6e/rU0SgdipdqrqexsfHtWHDhoJzqVRq8cZaPCx1NT70oQ/pxhtv1Ntvv11wfnp6WnfeeeeS8zmZTKasvgXWaVrDQlWMhV8w3ZqfXf28CvsjrlATLh1OcxMq0exNIMuVr9Qku6gjHo9Hzr6Ox+ORy2vE43Hv6OhYti8jajmQKCvZ1xr1oZU2N7n7hLs/6+7vdfc/yjtecPfytrMCmlQzNIGUaupabgG8UpPsiu3cuVPf/e53I2sed9xxR+QciLa2tmV3rZuamtL111/PhkHrWSg98g9JPyvpkKSTkmYlnZb0ZjnvredBTQKVaHRNotzRPqUWwIvaSCjqyK3DVLy0RmhtppUczVQLQ2VUhdFNhyVdrPmVYNs1P9v6t8p5bz0PQgKValQTSDUD6t577y3rJh61xlPu+3L/HTo7O8v6rA0bNpQc6cTKrmtLqZAou9fL3Y9Janf30+7+VUlXl/teoFk1qglktU1d+c1Uv/Ebv6Frr11+Xmt7e3vk92WzWV188cU6cuSInnzySaVSqZKfs3v3bn3jG99YMlM71xHdzIMBsAKh9Mg/JD2n+Uluj0j6oqQBrXAV2Foe1CSwVqy0JjE5Oemf/vSnPZFI+MaNGwv2qNYyv/6LXxNaZjxXq4jqFE8mk0tqH/m1sEY34WFlVIXmpm5JKUmbJH1O8zvUXVzOe+t5EBJYS5Zr6ipusjlw4EDkaKNcYCwXELnZ1LnvywVE1A0999333nuvJxIJ7+rqKquMUbPEc81QNEE1r1WHxFo5CAmsNaFd5Yo7tUvVFrq6uiI3+CkOkvybf+6foRt6fhk2btzoiUTCBwcHy7qeqOAJbYyE5rDikJD0F5L+PHSUem8jDkICa03UCKeoG20ikYjsLM49l7sJd3V1Rb4m6gZfqmloNc1GxTWkUjUWNIfVhER3qaPUextxEBJYS0I34pGRkSW/8Ddu3BjchjQXALnaQX5gLFcDCDV5LVfLCF1PrpZSSY0FjUdzE9CEQjfP0EJ7g4OD3tbWVnA+k8lEfvbRo0f9oYce8qNHjy5bjqi+gkprEqXmfNCZ3fyq0XH9lqQ3F45pMZkOWLWom2du9FDupptfGzh69GjJuQ451VqSu9yO9ahVYovLxZIcza3qNQlJH5b0n1by3loehATWmgMHDngsFlu8ucbj8cUb6ODg4OLIpXg87u3t7Uuamoqbbar9qz00Iik/iKL2tohqTmJ0U/MqFRIld6YLcfdvmtnulbwXwD968803C3Z6m52dVSaT0c/8zM9oYGBAMzMzmpmZCb6/eCXV3CS9/N3scpPmVrITXG470nz5O+aFds2LWuE16rPQ/MoKCTO7Pu9hm6Stmv/FAGCFstls5D7UHR0dOnjw4JKbfbFEIqG77rqr4Fy1luQutc1oVBAlk0m5uxKJhObm5goWIsTaVu6yHP8y79ih+T6K62pVKKAVRC3NIc3XJq688sqSK7zGYjFJ0pe+9KWCpS+WWzm2HMstqxEVRGamsbExVnhdj0LtUGvxoE8CK1Wr9vJSnxtafTU3ZDW/szcej3ssFlvs+M3vx5CW7uuw0uspt0+Djuj1RVUY3XSRpG9JykqalPQ/JV1UznvreRASWIlKRwOVewMu53OjRjHlf8fRo0eXzD2ImkchyTs7O1d9w65kTgMd0etHNULiTyX9W833YXRI+jeS/qyc99bzICRQqWrOB6j0c6OCwL1wVFNo6Gmp/R9WO5qJOQ2tp1RIlNsnYe7+qLufWjj+u+i4xjpQyZLd+aN6Tpw4oampKWUymchd5Zb73Px2/y1btujYsWNKp9Pat2+fbrvtNs3MzOitt96K/I78fofOzs4l372a3fWq0aeBdSaUHvmHpC9I2i2pR/NLcvwHSXdL+jFJP1bOZ9TjoCaBSlXyy7nSpphK10WKmiwnzS/gF/qOkZGRyCXAV/vLn6ak1qIq1CQ+IulWSc9IelbSxyXdLOmI5netA9akSn45VzK8tNTnhmoZuWGvxebm5tTV1bVkL+x0Oq1f/MVf1P79+6v+yz+dTmvbtm3UIMDoJsC98s7ockf1VLIuUtTyFpK8v79/2X4QfvljNVSiJmHzz5dmZjHN1x7et3DqWUn73H0u+KYG2Lp1qx8+TMUGtZPNZjU2NiZJ6u3tXfEv7eHhYWUyGcViscXJZ/39/Yvn3V3T09OKx+NLai+pVEoTExP8ykfVmNkRd98a9Vy5zU2/I2mLpP+2cGxZOAe0jFxn8w033KAPf/jDGh0dXfFnhfbW7u/v15EjR3J9gZET6tra2haDKn+v62qo9udhHQhVMfIPRexnHXWu0QfNTaiVeg4NjeogLz5SqZTffvvtVd3trVqrx2LtURU6rk+b2U/lHpjZRZpfLhxoCZUMlV2NbDarN954o+SifpI0NTWlBx54oKzhuOV+b7nDe9Fayg2JOyU9Y2bPmtmzkv6PpH9fs1IBTaZaC+eVkt+cdebMGcViscURS7t3746cE5FvNaFVrxDE2lNuSPyJpH2Sziwc+yQ9X6tCAc2m1pPMin/Jz87OqqOjQ0888YQmJiZ0xx13lFzwT1p5aIVqL9UOQaxN5e4n8Yjmd6Xbs/C4X9KjknbWolBAM+rv71dfX1/BEtpRS2qXWmY7JLQPxDve8Y7F7zGzgvd0dHSoo6ND8Xh8xctz50ZTxePxxdpLKpViuW8sKjckLnH3f573+Bkze7EWBQKaWf7GOfk32NnZWQ0NDUnSknPlLJu9XHPW+Pi4UqlUwWs2bNigJ554Qu94xzsqCqScqM2DUqmUnnjiiVUN78X6Um5IjJnZz7r7n0qSmb1H801QQEuKusHmz2/IP9fX17fsDTfXnFU8dyL3vlCIrOZmvlztBZDK75N4j6TvmNm4mY1rvj/i/Wb2F2b25zUrHbBKtRr3H9XR29bWpvb29oJzuc7fcsoRmjsh1aZPpB6d8Vj7yq1JXFPTUgA1ENUcVK0d06JusGfOnFmcBJczNzenF154Qe9///vLKkepfaCj+kRWY7naCyCpvGU51gqW5UBONptVd3d3QVNKtZeziFpaQ1LBub1792pgYKDscqyk03u1GvGdaC6lluUotyYBrCnj4+Pq6Cj8651r+qnWjTD0yz7/XKjdP6ocpWo+1biRhz6jVO0FaPhSGtU8WJYDOYODg1XdsW2lyl3Oo9TrqrFcBktuoBRVYVkOYM3IZrMaGBhYcv7zn//8YidyvZTb4Rya8Tw2Nrbq5TJYcgOrQUhg3Ym64SaTSX32s5/V9u3b1d3dreHh4bqVp9SopZyuri5NT08XnJubm1+Jf7XLZbDkBlaDkMC6EzXyaHp6WjMzMw37JV1qp7fh4WFt2bJFbW3z/zsmk8nFGkdvb++qh6ky1BWrQUhg3Slu4kkkEkqlUgWvaZZf0lGT8txdR44cUX9/f1XmR9R63SmsbwyBxbqVG83T1dWlLVu21HQ47EodOnRI27dv14kTJxbPbdq0SaOjo9q2bdviuVqObgIYAouWlD+0s1knjZXbFFSNYaoMdcVK0NyElhDqPI5aLqPSpTxWs/QHTUFodjQ3oWVVYxXXai39QVMQGqlUcxMhgZYUWrbDF1ZxzT9XagmNWi/9AdRDqZCguQktqdJVXMv9jGYZNQVUCx3XaEmVrOIamk/A/AO0AmoSaEmhDuP9+/eX3YlMpzNaAX0SaGnZbFZjY2OStLjLW6WdyHQ6Y61bs/MkzOwqSXskvSzpMXd/tqEFwpoUFQQ5o6OjymQy6ujo0OzsrAYGBnTHHXcUTGRbDvMPsJ7VvbnJzPab2aSZvVR0/hoze9XMjpnZ7oXTLumkpKSk4/UuK9a+4eFhbd68WTt27NCOHTt03nnnLS7ul78kxltvvaWZmRl94Qtf0E/+5E/WdQFAoJnVvbnJzN6n+Rv/I+5++cK5dkl/JWm75sPgkKR+SX/p7mfM7FxJv+3uv1Lqs2luQr5sNqsLLrhgyeqqsVhMzzzzjOLxuD7wgQ/orbfeWvLeZDKp733ve9QQ0BKaagisuz8n6fWi01dKOubur7n7rKTHJF3n7mcWnn9DUqKOxcQ6MD4+vmRIqzQ/Aunnf/7ntW/fviWjk3La29sZygqoeUY3bZb0/bzHxyVtNrPrzWyfpEclPRD1RjO7xcwOm9lhNlFBvp6eHp0+fTr4/NDQkHbv3h353OnTpxnKCqh5QsIizrm7P+nut7r7R0Kd1u7+oLtvdfetNA0gXzqd1v79+xWLxYKvOeecczQ4OFjwmlgspv3799PUBKh5QuK4pPPzHp8n6YcNKgvWkf7+fv3gBz/QXXfdFfn8ueeeq1tvvVUvvvii7r//fn3ta1/TD37wgxWtvwSsR80SEockvcvMLjSzuKSPSnqqwWXCOpFOp/WpT31KHR2FI747Ojp09dVXL+4Md/fdd+umm27S6Ohog0oKNJ9GDIEdlvS8pEvM7LiZZdz9lKTbJY1IekXS4+7+cr3LhrWpnKW60+m0HnnkkcWtQZPJpB555BFJWhwG26itTYFmVvfJdO4eWY9396clPV3n4mCNi1qqu6+vL3IGdH9//5LnDh06pHg8XrCSa26RPvokAJblwBoWtVR3LBZTR0dH2fs7sNw30GTzJIBqiVqqe25urqKmIxbpA0pr6rWbgFKiluouVk7TUVQzFIB51CSwZhXXApLJZGTNoiP64dgAAAi+SURBVJxJcel0Wtu2bSMggCLUJLCm9fX16Zvf/Kak+RVec6u6xmIxzc3N0XQErBIh0YLWy/4HUSObaDoCqovRTS0mdGNtFuUGGKOSgOphdBMkFe6f0IwTx4aHh9Xd3a3t27eru7u75J4OUSObcp3UAKqHkGghzXxjrTTAokY2ldtJDaB8hEQLaeYba6UBxvwGoD4IiRbSzDfWlQRYf3+/JiYmNDo6qomJiabqWwHWC0Y3tZhmHf2TC7BKh6+m0+mmuQZgPWJ0E5pKrYfnrpfhv0A1MboJa0YtZz5XMnoKwDxqEmgJzKsAwqhJoOU18/BfoJkREmgJzTz8F2hmhARaQjMP/wWaGUNg0TKadfgv0MwICbQU5lUAlaG5CQAQREigZrLZrA4dOtQ0q8wCqBwhgZoITVwjOIC1hT4JVF3+st+5yWuZTEZvvvmmBgYGmnbDIwBLUZNA1UVNXGtvb9euXbuadsMjANEICVRdaOIaM56BtYeQQNVFTVy77777dOrUqYLXMeMZaH70SaAmoiaubdq0qeL9IgA0FqvAoq7YzwFoPqVWgaUmgbpixjOwttAnAQAIIiQAAEGEBAAgiJAAAAQREgCAIEICABBESAAAgggJAEAQIQEACCIkAABBhAQAIIiQAAAEERIAgCBCAgAQREgAAIIICQBAECEBAAgiJAAAQYQEACCIkAAABBESAIAgQgIAENTUIWFml5rZoJl93cw+3ujyAECrqXtImNl+M5s0s5eKzl9jZq+a2TEz2y1J7v6Ku98m6QZJW+tdVgBodY2oSTwk6Zr8E2bWLukrkj4o6TJJ/WZ22cJz10r6v5L+d32LCQCoe0i4+3OSXi86faWkY+7+mrvPSnpM0nULr3/K3X9O0q9EfZ6Z3WJmh83scDabrWXRAaDldDS6AAs2S/p+3uPjkt5jZldJul5SQtLTUW909wclPShJW7du9doWEwBaS7OEhEWcc3d/VtKz9S0KACCnWUY3HZd0ft7j8yT9sEFlAQAsaJaQOCTpXWZ2oZnFJX1U0lMNLhMAtLxGDIEdlvS8pEvM7LiZZdz9lKTbJY1IekXS4+7+cr3LBgAoVPc+CXfvD5x/WoHOaQBAYzRLcxMAoAkREgCAIEICABBESAAAgggJAEAQIQEACCIkAABBhAQAIIiQAAAEERIAgCBCAgAQREgAAIIICQBAECEBAAgiJAAAQYQEACCIkAAABBESAIAgQgIAEERIAACCCAkAQBAhAQAIIiQAAEGEBAAgiJAAAAQREgCAIEICABBESAAAgggJAEAQIQEACCIkAABBhAQAIIiQAAAEERIAgCBCAgAQREgAAIIICQBAECEBAAgiJAAAQYQEACCIkAAABBESAIAgQgIAEERIAACCCAkAQBAhAQAIIiQAAEHm7o0uQ9WYWVbSRKPLUcI7Jf1dowtRZevxmiSuay1Zj9ck1fe6ut09HfXEugqJZmdmh919a6PLUU3r8ZokrmstWY/XJDXPddHcBAAIIiQAAEGERH092OgC1MB6vCaJ61pL1uM1SU1yXfRJAACCqEkAAIIICQBAECEBAAgiJJqAmV1kZkNm9vVGl2W11tO15DOzS81s0My+bmYfb3R5qsHMrjKzP164rqsaXZ5qMbNfWLim3zWz7zS6PNViZpeZ2eNm9jtm9sv1+l5CYpXMbL+ZTZrZS0XnrzGzV83smJntLvUZ7v6au2dqW9KVq+Qam/1a8lV4Xa+4+22SbpDU8AlOIRX+fXRJJyUlJR2vd1krUeGf1R8v/Fl9W9LDjShvuSr88/qgpC+7+8cl/WrdCunuHKs4JL1P0hWSXso71y7pryVdJCku6UVJl0l6t+b/4uYfP573vq83+npWe43Nfi2ruS5J10r6jqR/3eiyV+nvY9vC8+dK+h+NLnsN/g4+LmlTo8texT+vH5f0FUn3SvqTepWRmsQquftzkl4vOn2lpGM+/6t6VtJjkq5z979w9w8VHZN1L3SFKrnGuhduFSq9Lnd/yt1/TtKv1Lek5avw7+OZheffkJSoYzErVumflZldIOmEu79Z35JWpsI/r0l3/3VJu1XHtaoIidrYLOn7eY+PL5yLZGbnmNmgpF4z+0ytC1clkde4Rq8lX+i6rjKz+81sn6SnG1O0FQtd0/UL1/OopAcaUrLVKfX/WUbSV+teouoI/Xn1mNmDkh7RfG2iLjrq9UUtxiLOBWctuvvfS7qtdsWpichrXKPXki90Xc9Kera+Rama0DU9KenJehemioL/n7n75+pclmoK/XmNS7qlzmWhJlEjxyWdn/f4PEk/bFBZamW9XuN6vK71eE0S11UXhERtHJL0LjO70Mzikj4q6akGl6na1us1rsfrWo/XJHFddUFIrJKZDUt6XtIlZnbczDLufkrS7ZJGJL0i6XF3f7mR5VyN9XqN6/G61uM1SVxXI6+LBf4AAEHUJAAAQYQEACCIkAAABBESAIAgQgIAEERIAACCCAkAQBAhAdSYmbU3ugzAShESwCqZ2TfN7IiZvWxmtyycO2lmnzezP5P0XjPbYmZ/tPC6ETP7iYXX/TszO2RmL5rZ75nZhoZeDFCEGdfAKpnZj7n762aW0vy6O+/X/Hr/H3H3x80sJumPNL8nQNbMPiJph7vfbGbnLKycKzO7R9LfuvuXG3UtQDGWCgdW75Nm9q8W/v18Se+SdFrS7y2cu0TS5ZL+0Myk+Z3H/mbhucsXwuFsSV2aX68HaBqEBLAKZnaVpD5J73X3H5nZs5rfM3ra3U/nXibpZXd/b8RHPCTpw+7+opndJOmqWpcZqAR9EsDqnCXpjYWA+KeSfjbiNa9KSpvZeyXJzGJm9tMLz22U9DcLTVJNuy0qWhchAazO/5LUYWZ/LmmPpD8tfsHCPsW/LOk/m9mLkr4r6ecWnr5b0p9J+kNJf1mXEgMVoOMaABBETQIAEERIAACCCAkAQBAhAQAIIiQAAEGEBAAgiJAAAAQREgCAoP8PO2UCut0IslwAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "ax = countries.plot.scatter(\n",
+ " x=\"area\",\n",
+ " y=\"population\",\n",
+ " color=\"black\",\n",
+ " figsize=(6, 6),\n",
+ " logx=True,\n",
+ " logy=True,\n",
+ ");"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**Úkol:** Vyzkoušej si zobrazení některých dalších dvojic veličin. Které z nich ukazují zajímavé výsledky?"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Spojnicový graf (line plot)\n",
+ "\n",
+ "Tento druh grafu má smysl zejména tehdy, pokud se nějaká proměnná vyvíjí spojitě v závislosti na proměnné jiné. Časové řady jsou pro to skvělým příkladem (ať už pro vztah mezi časem a veličinou, anebo dvěma veličinami, které se obě vyvíjí ve stejném čase).\n",
+ "\n",
+ "Spojnicový graf vytvoříš pomocí funkce [`plot.line`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.plot.line.html). Shodou okolností je to také výchozí typ grafů pro `pandas`, a tak vlastně postačí `plot` zavolat jako metodu. Parametry má podobné jako `scatter` (bodový graf).\n",
+ "\n",
+ "Pojďme se například podívat na vývoj očekávané doby života v Česku, jak se vyvíjela s časem od začátku 80. let:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEGCAYAAAB8Ys7jAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deVzVVf7H8dcRBQRxA1xQEFfcQcE02zO3xmy1dKxR09Sppm2mbWqcaZp+02LbtDmWpU5maWV7mZbazGgq7huiKCgugIILIOs9vz/u1SHTAOVy74X38/Hgwb3nbp9zL7793vM93+8x1lpERMT31PF0ASIicm4U4CIiPkoBLiLioxTgIiI+SgEuIuKj6lbni4WFhdno6OjqfEkREZ+3Zs2aQ9ba8NPbqzXAo6OjSUxMrM6XFBHxecaYtDO1awhFRMRHKcBFRHyUAlxExEdV6xj4mRQXF5Oenk5BQYGnS5FzFBgYSOvWralXr56nSxGpVTwe4Onp6YSEhBAdHY0xxtPlSCVZazl8+DDp6em0bdvW0+WI1CoeH0IpKCggNDRU4e2jjDGEhobqG5SIB3g8wAGFt4/T5yfiGR4fQhERkTMrLnXw2pKdZ71dAS4i4oV2ZBzngXkb2LTv6Fnv4xVDKJ7WoEEDAPbv389NN910qn3UqFH07NmTF1980VOlVcrMmTPZv3+/p8sQkfPgcFje+vcufvXKf0jPyeeN0b3Pel9tgZcRERHBhx9+CMDBgwdZvnw5aWlnPILVK82cOZPu3bsTERHh6VJE5Bzszc7nD/M3sHJ3Nld1acbfb+hJeEjAWe/vVQH+xOdb2Lr/WJU+Z9eIhvz5mm4Vum9qairDhg1j8+bNDBo0iMzMTOLi4njllVeIiIjgrrvuIisri6CgIN588006d+58xufJyspi8uTJ7NmzB4CXXnqJiy66iHvuuYewsDCmTJnCwoULeeqpp1i6dCm33347gYGBbNmyhYyMDF544QWGDRtGaWkpjzzyCEuXLqWwsJC77rqLSZMmAfDss8/yr3/9izp16jB06FASEhJITExk9OjR1K9fnxUrVvDcc8/x+eefc+LECfr3788///lPjDFcfvnl9O3blyVLlnDkyBFmzJjBJZdcQmlpKQ8//DALFy7EGMMdd9xB165defXVV1mwYAEAixYt4o033uDjjz+ugk9HRMA5HXde4l6e/GIbAM/e1JMR8a3LnSBQboAbY2KAD8o0tQOmAEuBaUAgUALcaa1ddU7Ve6HPPvuMYcOGsX79egAGDBjAtGnT6NixIytXruTOO+/k+++/P+Nj7733Xu6//34uvvhi9uzZw+DBg9m2bRtPP/00ffr04ZJLLuGee+7hq6++ok4d5yhWamoqy5YtIyUlhSuuuIKdO3cye/ZsGjVqxOrVqyksLOSiiy5i0KBBJCUl8cknn7By5UqCgoLIzs6madOmvPrqq0ydOpWEhAQA7r77bqZMmQLAbbfdxhdffME111wDQElJCatWreKrr77iiSeeYPHixUyfPp3du3ezbt066tatS3Z2Nk2aNDn1H1d4eDjvvPMO48aNc/fbL1JrZB4v4NGPNvFdUiZ92zZl6ohYIpsGVeix5Qa4tXY7EAdgjPED9gELgDeBJ6y1XxtjrgaeBS4/xz4AVHhLubrl5uayfPlyRowYcaqtsLDwrPdfvHgxW7duPXX92LFjHD9+nJCQEN58800uvfRSXnzxRdq3b3/qPjfffDN16tShY8eOtGvXjqSkJL799ls2btx4aljn6NGj7Nixg8WLFzNu3DiCgpwfctOmTc9Yx5IlS3j22WfJz88nOzubbt26nQrwG264AYD4+HhSU1NP1T158mTq1q37k+e97bbbePfddxk3bhwrVqxg9uzZlXr/ROTMvtp0gMcWbCKvqJQ/DevKuP7R1KlT8Wm5lR1CGQCkWGvTjDEWaOhqbwTU2L1nDoeDxo0bn9oar8j9V6xYQf369X9226ZNmwgNDf3ZzsbTvyoZY7DW8sorrzB48OCf3PbNN9+U+9WqoKCAO++8k8TERCIjI/nLX/7yk4NtAgKc42p+fn6UlJQAzq9xZ3recePGcc011xAYGMiIESNOBbyInJucvCKe+HwLn6zfT8/WjXjh5lg6NAup9PNUdhbKSGCu6/J9wHPGmL3AVODRMz3AGDPRGJNojEnMysqqdIHeoGHDhrRt25b58+cDzqDbsGHDWe8/aNAgXn311VPXTwZ/Wloazz//POvWrePrr79m5cqVp+4zf/58HA4HKSkp7Nq1i5iYGAYPHswbb7xBcXExAMnJyeTl5TFo0CDefvtt8vPzAcjOzgYgJCSE48ePA5wK67CwMHJzc09txf+SQYMGMW3atFOBfvJ5IyIiiIiI4G9/+xtjx44t/w0TkTOy1vLJun0MeGEZX2w8wL0DOvLRb/ufU3hDJQLcGOMPDAfmu5p+C9xvrY0E7gdmnKXg6dbaBGttQnj4zxaU8Blz5sxhxowZxMbG0q1bNz799NOz3vcf//gHiYmJ9OzZk65duzJt2jSstYwfP56pU6cSERHBjBkzmDBhwqmgjYmJ4bLLLmPo0KFMmzaNwMBAJkyYQNeuXenduzfdu3dn0qRJlJSUMGTIEIYPH05CQgJxcXFMnToVgLFjxzJ58mTi4uIICAjgjjvuoEePHlx33XX06dOn3D5OmDCBqKgoevbsSWxsLO+9996p20aPHk1kZCRdu3Y9z3dSpHbam53PmHdWc98H64lsGsTnv7uY+wd2op7fuc/mNtbait3RmGuBu6y1g1zXjwKNrbXWOL93H7XWNvyl50hISLCnr8izbds2unTpck7F1xRjx45l2LBhP5mD7m3uvvtuevXqxfjx4894uz5HkTMrKXXwzn9TeWFRMnUMPDg4htsujMavEmPdxpg11tqE09srM5g5iv8Nn4BzzPsynLNRrgR2VOK5xIfEx8cTHBzM888/7+lSRHzK5n1HeeTjjWzed4wBnZvx5HXdiWj8831j56pCAW6MCQIGApPKNN8BvGyMqQsUABOrrCof8dRTT50aFz9pxIgRPPbYY5V6npkzZ1ZhVVVvzZo1ni5BxKfkF5Xw0uIdzPjPbpoE+fPar3tzdY8WVX7itwoFuLU2Hwg9re0/QHxVFHG22Q/e7rHHHqt0WNdEFR2GE6kNfkjO4rFPNrE3+wSjLojkkSFdaBTknsVOPD4fLDAwkMOHD+uc4D7q5IIOgYGBni5FxKPyi0p48ottzF21h3Zhwbw/sR/92oWW/8Dz4PEAb926Nenp6fjqFEP535JqIrXVpvSj3Pv+OnYfzmPSpe24f2AnAuv5uf11PR7g9erV01JcIuKTSh2W6T/s4vlvtxPWIIA54/vSv0NYtb2+xwNcRMQX7T9yggfmrefHXdkM7d6C/7u+B02C/au1BgW4iEglfbnxAH9csIniUgfP3tiTEQnlnznQHRTgIiIVlFtYwhOfbWH+mnRiWzfipZG9aBsW7LF6FOAiIhWwbk8O932wnj3Z+dx9RQfuvarjeR0GXxUU4CIivyC3sIRXvt/BW//eTYuGgbx/Rz/6unl6YEUpwEVEzsDhsCxYt4+nv0ki63ghI+Jb8/iwrjSq756Dcs6FAlxE5DQb9h7hz59tYf3eI8RFNubN3yQQF9nY02X9jAJcRMQl63ghzy1MYl5iOmENApg6IpYberWq1Co51UkBLiK1XlGJg9krUnl58Q4KSkqZdGk77r6yAyGB3jNcciYKcBGp1ZZuz+SvX2xlV1Yel8eEM2VYV9qFN/B0WRWiABeRWie3sISvNh5gXuJeEtNyiA4N4u2xCVzZubmnS6sUBbiI1ArWWlan5jAvcS9fbTpAflEp7cKD+dOwrtzaL4qAuu4/+VRVU4CLSI124OgJPl67j/mJe0k9nE+wvx/DYyMYkRBJ76jGPn0aawW4iNQ4hSWlLNqawfzEdP69IwuHhb5tm/K7KzsytEcLgvxrRvSV2wtjTAzwQZmmdsAU4EIgxtXWGDhirY2r8gpFRCohMTWb38/fQNrhfFo2CuSuKzpwU3xr2oR67pwl7lJugFtrtwNxAMYYP2AfsMBa+9LJ+xhjngeOuqtIEZHyFJaU8uKiHUz/IYWIxvWZMSaBy2OaVWr1d19T2e8RA4AUa23ayQbjHEC6GefK9CIi1W7r/mM8MG89SQePM7JPJI8P60qDgJoxTPJLKtvDkcDc09ouATKstTvO9ABjzERcK9ZHRUVVukARkbMpKXXwzx928dLiZBrV92fGmAQGdPGtqYDno8IBbozxB4YDj5520yh+HuqnWGunA9MBEhIStHy5iFSJ3Yfy+P289azdc4Sre7Tgb9f1oGk1r4jjaZXZAh8KrLXWZpxsMMbUBW4A4qu6MBGRM7HW8u6PafzfV0nU8zO8PDKO4bERPj0d8FxVJsDPtKV9FZBkrU2vupJERM7swNETPPThRv694xCXdAzjuZtiadEo0NNleUyFAtwYEwQMBCaddtOZxsRFRKrc90kZPDBvA4XFDp68rju39o2qlVvdZVUowK21+cDPlqCw1o6t6oJERMoqKXXwwqJkXl+aQpeWDXl9dG+PrkPpTWr+PBsR8VmZxwr43dx1rNydzcg+kfxleDcC6/neOUvcRQEuIl5pRcphfjd3HbmFxTw/IpYb41t7uiSvowAXEa/icFjeWJbC899uJzosmDkT+hLTIsTTZXklBbiIeI2cvCIemLeeJduzuCY2gr/f0KNWHFF5rvTOiIhXWLcnh7vfW0fW8UKevLYbt/ZrU+tnmZRHAS4iHmWtZdbyVJ76ahvNGwby4W8vpGdr71sB3hspwEXEY4pKHEz5dDPvr97LVV2a8fyIOBoFefdCwt5EAS4iHpGTV8Tkd9ewcnc2d1/RgQcGdqJODT71qzsowEWk2u3MzGX8rNUcOFrAS7fEcV2vVp4uyScpwEWkWv17RxZ3zllLQN06zL2jH/Ftmni6JJ+lABeRavOvFan85fOtdGzWgLfGJNC6SZCnS/JpCnARcbuSUgd//WIrs1ekMaBzM14e1Uvzu6uA3kERcaujJ4q5+721/HvHISZe2o6Hh3Su0etUVicFuIi4TdrhPG6fuZq0w/k8c2MPbumjZRWrkgJcRNziPzsO8bu5a7HAuxP60q/dz85ILedJAS4iVcpay7Rlu3huYRIdmjVg+m0JROv83W6hABeRKpNbWMKD8zfw9eaDDOvZkmdu7Emwdla6TZ3y7mCMiTHGrC/zc8wYc5/rtt8ZY7YbY7YYY551f7ki4q12ZuZy7av/4dutGTz+qy68MqqXwtvNyn13rbXbgTgAY4wfsA9YYIy5ArgW6GmtLTTGNHNrpSLitb7ZfIA/zN9IQN06vDu+Lxe213h3dajsf48DgBRrbZox5jngaWttIYC1NrPKqxMRr1bqsEz9djtvLE0hNrIx027tTctG9T1dVq1R7hDKacquQt8JuMQYs9IYs8wY0+dMDzDGTDTGJBpjErOyss6nVhHxItl5RYx5exVvLE3h132jmDepn8K7mlV4C9wY4w8MBx4t89gmQD+gDzDPGNPOWmvLPs5aOx2YDpCQkPCT20TEN21KP8rkd9eQlVuo+d0eVJkhlKHAWmtthut6OvCxK7BXGWMcQBigzWyRGspay7s/pvHkl9sIC/bnw8lafMGTKhPgo/jf8AnAJ8CVwFJjTCfAHzhUhbWJiBc5lFvIQx9u5PukTC7rFM4LN8cS2iDA02XVahUKcGNMEDAQmFSm+W3gbWPMZqAIGHP68ImI1AxLtmfy4PwNHCso4c/XdGVs/2itV+kFKhTg1tp8IPS0tiLgVncUJSLeoaC4lKe/TmLm8lRimofw7oS+dG7R0NNliYtm2YvIGSUdPMa9c9ezPeM44y6K5uEhnQms5+fpsqQMBbiI/ITDYZm5PJWnv0miYWA9Zo7rw+UxOk7PGynAReSUzGMF/OHDjfyQnMVVXZrxzI09taPSiynARQSHw/LJ+n387ctt5BeV8LfrujO6b5R2VHo5BbhILffjrsM89eU2Nu07SmzrRjx/cywdmoV4uiypAAW4SC21KyuXv3+dxKKtGUQ0CuTFW2K5NrYVdbTcmc9QgIvUMjl5Rbz83Q7e/TGNgLp1eHBwDOMvbqsZJj5IAS5SSxSWlDJreSqvfL+TvMISRl4Qxf1XdSI8RDspfZUCXKSGs9by5aYDPPNNEnuzT3B5TDh/vLoLnZprnNvXKcBFaqis44UsWJfO/MR0dmTm0rlFCP8afwGXdAz3dGlSRRTgIjVIcamDJUmZzEtMZ8n2TEodlt5RjZk6Ipbre7XCTzsoaxQFuEgNkJxxnPmJe1mwbh+HcosIDwlgwiVtGRHfWlMCazAFuIiPOl5QzGcb9jMvMZ0Ne49Qt47hqi7NGZHQmss6hVPXr7ILbomvUYCL+BiHw/LR2nT+/nUS2XlFdG4RwuO/6sL1vVrpsPdaRgEu4kOSDh7jT59sZnVqDvFtmvDWmAR6RTbWIe+1lAJcxAfkFpbw8uJk3v5vKg0D6/LsjT25Kb61jpqs5coNcGNMDPBBmaZ2wBSgMXAH/1sD84/W2q+qvEKRWsxayzebD/LE51s5eKyAURdE8tDgzjQJ9vd0aeIFyg1wa+12IA7AGOMH7AMWAOOAF621U91aoUgtlXoojz9/toVlyVl0admQ10b3Jr5NE0+XJV6kskMoA4AUa22axtxE3KOguJRpy1J4fWkK/n51+PM1XbmtXxvNKpGfqWyAj+SnK9PfbYz5DZAI/N5am1NllYnUQhv2HuH+D9az61Ae18RG8PivutC8YaCnyxIvZSq6kLwxxh/YD3Sz1mYYY5oDhwALPAm0tNbefobHTQQmAkRFRcWnpaVVVe0iNUapwzJtWQovLkomPCSAZ2/qqUPe5RRjzBprbcLp7ZXZAh8KrLXWZgCc/O168jeBL870IGvtdGA6QEJCQsX+txCpRfYfOcH9H6xn5e5sftWjJf93fQ8aBdXzdFniAyoT4KMoM3xijGlprT3guno9sLkqCxOpDb7YuJ8/fryJUofluZucUwO1f0kqqkIBbowJAgYCk8o0P2uMicM5hJJ62m0i8gtyC0v486db+GhtOnGRjXnpljiiw4I9XZb4mAoFuLU2Hwg9re02t1QkUsOt3ZPDfe+vJz0nn3uu7MDvBnSknmaYyDnQkZgi1aSk1MHrS1N4+bsdtGgYyAeTLqRPdFNPlyU+TAEuUg32HM7ngXnrSUzL4dq4CJ68rjsNA7WjUs6PAlzEjay1vLdqD099uQ0/Y3jxlliu79Xa02VJDaEAF3GTjGMFPPThRpYlZ3FxhzCevaknEY3re7osqUEU4CJu8NmG/fzpk80UlpTy12u7cWvfNjpzoFQ5BbhIFcrJK+LxTzfz5cYDxEU25oWbY2kX3sDTZUkNpQAXqSJLkjJ56KONHMkv4sHBMUy6tJ1OQCVupQAXOU+5hSU89eVW5q7aS0zzEGaO60O3iEaeLktqAQW4yHlIOniMO2Ynkp5zgkmXteOBgZ0IqOvn6bKkllCAi5yjZclZ3DVnLcEBfszTQTniAQpwkXPw3so9/OnTzXRs1oB3xvWhZSNND5TqpwAXqQSHw/Lswu1MW5bCZZ3CeW10bxoE6J+ReIb+8kQqqKC4lN/P38CXGw8wum8UTwzvplkm4lEKcJEKOJxbyB2zE1m75wiPDu3MxEvb6bzd4nEKcJFy7MrKZdzM1Rw8WsDro3tzdY+Wni5JBFCAi/yiVbuzmfivRPyMYe7EfvSOauLpkkROUYCLnMWn6/fx4PyNtG5an5ljLyAqNMjTJYn8RLl7YIwxMcaY9WV+jhlj7itz+x+MMdYYE+beUkWqh7WWV77bwb3vr6dXVGM+/m1/hbd4pXK3wK2124E4AGOMH7APWOC6Holzrcw9bqxRpNoUlTj444JNfLgmnRt6teLvN/bQkZXitSo7hDIASLHWprmuvwg8BHxapVWJeMDRE8X89t01LE85zL0DOnLfVR0100S8WmUDfCQwF8AYMxzYZ63d8Et/5MaYicBEgKioqHMsU8S99mbnc/vM1aQezmPqiFhuiteqOeL9Khzgxhh/YDjwqDEmCHgMGFTe46y104HpAAkJCfYc6xRxmw17jzB+ViJFJaXMuv0C+rfX7hzxDZU5jGwosNZamwG0B9oCG4wxqUBrYK0xpkXVlyjiPgu3HOSW6SsIrFeHj+/sr/AWn1KZIZRRuIZPrLWbgGYnb3CFeIK19lCVVifiJtZa3v5vKn/7cis9Wzfmrd8kEB4S4OmyRCqlQgHuGjIZCExybzki7ldS6uDJL7Yya0UaQ7q14MVb4qjvr5km4nsqFODW2nwg9Bduj66qgkTcKa+whHvmruO7pEzuuKQtjw7tosWGxWfpSEypNQqKSxk/azWrdmfz5HXdua1fG0+XJHJeFOBSKxSXOrj7vbWs3J3NizfHcV2vVp4uSeS86WTGUuM5HJY/zN/A4m2Z/PXa7gpvqTEU4FKjWWuZ8tlmPl2/n4eGxGjYRGoUBbjUaM8t3M67P+5h8mXtufPyDp4uR6RKKcClxnpjaQqvL03h132jeHhIjKfLEalyCnCpkeasTOOZb5IYHhvBk9d210mppEZSgEuN8+n6fTz+yWau7NyM52+OxU/zvKWGUoBLjfLdtgx+P28DF0Q35fXRvamnVeOlBtNft9QYK1IOc+ectXSNaMhbYxIIrKfD46VmU4BLjbB+7xEmzFpNVNMgZo67gJDAep4uScTtFODi85YlZzH6zR9p2sCff43vS9Ngf0+XJFItFODi0z5ck874matpExrMR5P706JRoKdLEqk2OheK+CRrLa8vTeG5hdu5uEMYb9zaW8MmUusowMXnlDosUz7dzJyVe7i+VyueubEn/nX1ZVJqHwW4+JQTRaXc8/46Fm3NYPJl7XlocIzO5y21lgJcfEZOXhHjZ61m3d4jPDG8G2P6R3u6JBGPKjfAjTExwAdlmtoBU3Cu0HMt4AAygbHW2v3uKFJkb3Y+Y95ZRXrOCd4Y3Zsh3Vt6uiQRjys3wK2124E4AGOMH7APWADkWGv/5Gq/B2eoT3ZfqVJbbd53lLHvrKa41MGcCX3pE93U0yWJeIXKDqEMAFKstWmntQcDtmpKEvmfpdszuWvOWhoH+fP+xL50aBbi6ZJEvEZlA3wkMPfkFWPMU8BvgKPAFWd6gDFmIjARICoq6tyqlFqnpNTBS4t38NrSnXRu0ZCZ4/rQvKHmeIuUZayt2IazMcYf2A90s9ZmnHbbo0CgtfbPv/QcCQkJNjEx8VxrlVpi35ET3Dt3HYlpOdySEMmfh3clyF/726X2MsassdYmnN5emX8VQ4G1p4e3y3vAl8AvBrhIeRZuOchDH26k1GF5eWQc18Zp/UqRs6lMgI/ip8MnHa21O1xXhwNJVVmY1C4FxaU8/XUSM5en0qNVI14Z1YvosGBPlyXi1SoU4MaYIGAgMKlM89OuKYYOIA3NQJFztCsrl7vfW8fWA8cYf3FbHh7SWUdWilRAhQLcWpuPc9532bYb3VKR1Cofr03n8U82E1C3DjPGJDCgS3NPlyTiM7RnSDwir7CEKZ9u4aO16VzQtikvj4yjZaP6ni5LxKcowKXapR7KY8LsRFKycrl3QEfuGdBR61aKnAMFuFSrFSmH+e2cNRhgzvi+9O8Q5umSRHyWAlyqzQer9/DYgs1EhwUzY0wCbUI1y0TkfCjAxe1KHZa/f7WNt/6zm0s7hfPqr3vRUIsviJw3Bbi4VW5hCffOXcd3SZmM7R/N47/qQl0/TREUqQoKcHGbvdn5TJiVyM6sXJ68rju39Wvj6ZJEahQFuLjFmrRsJs5eQ3Gpg1njLuDijtpZKVLVFOBS5T5em84jH20ionEgM8b2oX14A0+XJFIjKcClyjgclucXbee1JSlc2C6UN27tTeMgf0+XJVJjKcClShQUl/L7+Rv4cuMBRl0QyV+v7U497awUcSsFuJy37Lwi7pidyJq0HB4d2pmJl7bDGB1ZKeJuCnA5L7sP5THunVUcOFrA66N7c3UPLTYsUl0U4HLOVu3OZuK/EvEzhrkT+9E7qomnSxKpVRTgck4+Xb+PB+dvpHXT+swcewFRoUGeLkmk1lGAS6VYa3ltyU6mfptM37ZN+edt8ZppIuIhCnCpsOJSB48t2MS8xHSu79WKp2/sQUBdP0+XJVJrlRvgrmXTPijT1A6YArQCrgGKgBRgnLX2iDuKFM87eqKYO+es4b87D3PvgI7cd1VHzTQR8bByJ+paa7dba+OstXFAPJAPLAAWAd2ttT2BZOBRt1YqHpOYms1Nbyxn1e5spo6I5f6BnRTeIl6gskMoA4AUa20azoWMT/oRuKnKqhKvkHTwGFMXbmfxtkyahQQw6/YL6N9e5zQR8RaVDfCRwNwztN/OT4dZTjHGTAQmAkRFRVXy5cQT9mbn8+LiZBas20eDgLo8NCSGcf3bUt9f490i3sRYayt2R2P8gf1AN2ttRpn2x4AE4AZbzpMlJCTYxMTE8yhX3OlwbiGvLtnJnB/3YAyMvSia317WXrNMRDzMGLPGWptwentltsCHAmtPC+8xwDBgQHnhLd4rt7CEt/69izd/2EVBiYObE1pzz4COWiVexMtVJsBHUWb4xBgzBHgYuMxam1/VhYl7ORyWfUdOsGhrBq8t2cnhvCKGdm/B7wfF0KGZTv8q4gsqFODGmCBgIDCpTPOrQACwyDUj4Udr7eQqr1DO29H8YpIOHmN7xnGSDh4n6cAxkjNyyS0sAeDCdqE8PLQzcZGNPVypiFRGhQLctYUdelpbB7dUJOcl83gBa9Ny2JB+lKQDx0g6eJwDRwtO3d6ofj06twjhpvjWxLQIoUerRnSLaKhpgSI+SEdi+rBShyU54zhr0nJO/ezJdo5m1fMztA9vQL92ocS0CKFzixA6t2hI84YBCmuRGkIB7kMKiktZk5ZDYmoOa/bksC4th+OuYZCwBgEktGnCbf3aEB/dhG4RDXWYu0gNpwD3ATszc3lv5R4+XLOXYwUlGAMxzUMYHhdBfJsmJLRpSmTT+tqyFqllFOBeqqjEwcItB5mzMo0fdzZa+nQAAAwvSURBVGVTz88wuFsLbujdivg2TWlUv56nSxQRD1OAe5m92fm8t2oP8xP3cii3iNZN6vPQkBhGxEcSHhLg6fJExIsowL1ASamD75MymbNyDz/syMIAA7o0Z3TfKC7tGE6dOhoaEZGfU4B7UEmpgwXr9vGP73ewN/sEzRsGcM+VHbmlTyQRjXUUpIj8MgW4B5Q6LJ9t2MfLi3eQejif7q0a8titXbiqS3Pq+pV7hl8REUABXq1KHZYvNx3gpcXJ7MrKo0vLhky/LZ6BXZtrBomIVJoCvBo4HJZvthzkpcXJJGfk0ql5A94Y3ZvB3VpofFtEzpkC3I2stXy7NYMXFyWTdPA47cODeWVUL37Vo6WCW0TOmwLcDQqKS/l8w37e/m8q2w4co21YMC+PjGNYzwj8FNwiUkUU4FUo41gB7/6Yxnsr93A4r4hOzRswdUQs18VFaOekiFQ5BXgVWLcnh3f+m8pXmw5Qai0DOjdj3EVt6d8+VDsnRcRtFODnqKjEwdebD/DOf1NZv/cIIQF1+c2F0Yzp34Y2ocGeLk9EagEFeCUdLyhm1vJUZq9II/N4IW3DgnlieDdujG9NgwC9nSJSfcpNHGNMDD9dcb4dMAXYB/wF6AJcYK2t0asVF5aUMufHPby6ZCfZeUVc2imcZ26K5jId6i4iHlJugFtrtwNxAMYYP5zBvQAIAm4A/unOAj2t1GH5ZN0+XliUzL4jJ+jfPpSHh3QmVsuPiYiHVfY7/wAgxVqbdrKhpu6ks9by3bZMnlu4ne0Zx+neqiFP39iDSzqGe7o0ERGg8gE+kjIr09dUq1OzeebrJBLTcmgbFsyrv+7F1d118I2IeJcKB7gxxh8YDjxamRcwxkwEJgJERUVVqrjqtu3AMZ5buJ3vkzJpFhLAU9d35+aESOppDreIeKHKbIEPBdZaazMq8wLW2unAdICEhARbmce6m7WWLfuPsWhrBou3ZbBl/zFCAuvy0JAYxvVvS31/rSkpIt6rMgE+ihowfFJYUsqKlMMs3pbBd9syOXC0AGMgPqoJjwztzMg+kTQO8vd0mSIi5apQgBtjgoCBwKQybdcDrwDhwJfGmPXW2sFuqfI8ZecVsSQpk8XbMvghOYu8olLq1/Pj0k5hPDCwE1d0bkZYAy1XJiK+pUIBbq3NB0JPa1uAczqhV7DWknGskF1ZuaQcymNXVi67svLYdSiX9JwTWAvNQgK4tlcrBnZpzoXtQwmspyESEfFdPnHoYEmpgyMnisnJKyInv5jsvCKO5Bc5A/tQLilZuezOyiOvqPTUY+rX86NtWDCxrRszIj6SyzqF06NVI80kEZEaw2sCvKjEQWJaNsuSs0g+eJyc/GJy8ovIySviWEHJGR9jDEQ0qk+78GASEprSLjyYdmENaBceTIuGgQprEanRPBrgaYfz+CE5i2XJWSxPOUx+USl16xg6NQ8htIE/UU2DaBJUjybB/jQJ8nf9rnfqcmiwv4ZBRKTWqtYAd1jLd9syWJacxQ/JWaQezgcgsml9bujdiss6NePC9qE6KZSISAVUa1Ju3X+M8bMSqV/PjwvbhzLuorZc2imc6NCgGntIvoiIu1RrgIc1CGDOhL4kRDchoK6GPkREzke1BniLRoFc1CGsOl9SRKTG0kk+RER8lAJcRMRHKcBFRHyUAlxExEcpwEVEfJQCXETERynARUR8lAJcRMRHGWurb5UzY8xxYHu1vaB7hQGHPF1EFagp/QD1xVvVlL54sh9trLXhpzdW91mjtltrE6r5Nd3CGJNYE/pSU/oB6ou3qil98cZ+aAhFRMRHKcBFRHxUdQf49Gp+PXeqKX2pKf0A9cVb1ZS+eF0/qnUnpoiIVB0NoYiI+CgFuIiIjzqvADfGvG2MyTTGbC7TFmuMWWGM2WSM+dwY09DVXs8YM8vVvs0Y82iZxwwxxmw3xuw0xjxyPjV5QV9SXe3rjTGJPtAXf2PMO672DcaYy8s8Jt7VvtMY8w/jgXXvqrAvS11/Y+tdP82quR+Rxpglrr+XLcaYe13tTY0xi4wxO1y/m7jajes932mM2WiM6V3muca47r/DGDOmOvvhhr6UlvlMPvPyfnR2/d0VGmP+cNpzeSbDrLXn/ANcCvQGNpdpWw1c5rp8O/Ck6/Kvgfddl4OAVCAa8ANSgHaAP7AB6Ho+dXmqL67rqUBYddd/Hn25C3jHdbkZsAao47q+CrgQMMDXwFAf7stSIMGDn0lLoLfrcgiQDHQFngUecbU/Ajzjuny16z03QD9gpau9KbDL9buJ63ITX+yL67ZcH/pMmgF9gKeAP5R5Ho9l2HltgVtrfwCyT2uOAX5wXV4E3Hjy7kCwMaYuUB8oAo4BFwA7rbW7rLVFwPvAtedT17moor54hUr2pSvwnetxmcARIMEY0xJoaK1dYZ1/pbOB69xd++mqoi/VUGa5rLUHrLVrXZePA9uAVjj/1me57jaL/73H1wKzrdOPQGPXZzIYWGStzbbW5uDs/5Bq7EpV9sWjKtsPa22mtXY1UHzaU3ksw9wxBr4ZGO66PAKIdF3+EMgDDgB7gKnW2mycb9jeMo9Pd7V5g8r2BZzh/q0xZo0xZmJ1FluOs/VlA3CtMaauMaYtEO+6rRXOz+IkX/hcztaXk95xfVX/kyeGg04yxkQDvYCVQHNr7QFwBgrOrTw4+78Lr/r3cp59AQg0xiQaY340xlT7BsJJFezH2XjsM3FHgN8O3GWMWYPza0mRq/0CoBSIANoCvzfGtMP5tep03jK3sbJ9AbjIWtsbGOp67KXVXPPZnK0vb+P8g0sEXgKWAyX45udytr4AjLbW9gAucf3cVq0VuxhjGgAfAfdZa3/pW9vZ3n+v+VyqoC8AUdZ5ePqvgZeMMe2ruMxyVaIfZ32KM7RVy2dS5edCsdYmAYMAjDGdgF+5bvo18I21thjINMb8F+fX2738dCupNbC/qus6F+fQl13W2v2ux2YaYxbgDPsffvbk1exsfbHWlgD3n7yfMWY5sAPIwflZnOT1n8sv9AVr7T7X7+PGmPdwfi6zq7NuY0w9nEExx1r7sas5wxjT0lp7wDWskOlqT+fM/y7SgctPa1/qzrrPpIr6Qpl/L7uMMUtxbgWnVEMXgEr342zO2j93q/It8JN7940xdYDHgWmum/YAV7r2SAfj3JmRhHOHVEdjTFtjjD8wEqjWvdFnU9m+GGOCjTEhrscE4wyZzT9/5up3tr4YY4JctWKMGQiUWGu3ur46HjfG9HMNN/wG+NQz1f9UZfviGlIJc7XXA4ZRzZ+L6z2cAWyz1r5Q5qbPgJMzScbwv/f4M+A3rr+xfsBR12eyEBhkjGnimh0xyNVWbaqqL64+BLieMwy4CNhaLZ3gnPpxNp7LsPPcizsX5zhwMc7/hcYD9+Lcm5sMPM3/jvZsAMwHtuD8kB4s8zxXu+6fAjxWHXtv3dEXnHuhN7h+tvhIX6JxnuJ3G7AY52krTz5PAs6gSwFePfkYX+sLEIxzRspG1+fyMuBXzf24GOfX6o3AetfP1UAozh2vO1y/m7rub4DXXO/9JsrMoME5hLTT9TPOA59JlfQF6O+6vsH1e7yX96OF62/wGM4d5Ok4d/SDhzJMh9KLiPgoHYkpIuKjFOAiIj5KAS4i4qMU4CIiPkoBLiLioxTgIiI+SgEuUknGGD9P1yACCnCp4YwxT548z7Pr+lPGmHuMMQ8aY1Yb5/mpnyhz+yeuE5FtKXsyMmNMrjHmr8aYlThPsSvicQpwqelm4Dos2nXo/UggA+iI83wocUB8mZOO3W6tjcd5FOo9xphQV3swznOS97XW/qc6OyByNlV+MisRb2KtTTXGHDbG9AKaA+twnpR/kOsyOE+N0BHnScfuMcZc72qPdLUfxnn2yY+qs3aR8ijApTZ4CxiL81wWbwMDgL9ba/9Z9k7GuQTbVcCF1tp819nxAl03F1hrS6urYJGK0BCK1AYLcK5a0wfnmfsWAre7zgONMaaV6wyHjYAcV3h3xnmWSRGvpS1wqfGstUXGmCXAEddW9LfGmC7ACtfCPLnArcA3wGRjzEacZzX80VM1i1SEzkYoNZ5r5+VaYIS1doen6xGpKhpCkRrNGNMV53mzv1N4S02jLXARER+lLXARER+lABcR8VEKcBERH6UAFxHxUQpwEREf9f+K6gJ9xv0iIwAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "