diff --git a/docs/notebooks/SolidMotor_class_usage.ipynb b/docs/notebooks/SolidMotor_class_usage.ipynb index ed43fd274..582efc2ab 100644 --- a/docs/notebooks/SolidMotor_class_usage.ipynb +++ b/docs/notebooks/SolidMotor_class_usage.ipynb @@ -76,6 +76,7 @@ "MOTOR = SolidMotor(\n", " thrustSource=1500,\n", " burnOut=5.3,\n", + " distanceNozzleMotorReference=0.40396,\n", " reshapeThrustCurve=False,\n", " grainNumber=6,\n", " grainSeparation=6 / 1000,\n", @@ -513,6 +514,7 @@ "MOTOR = SolidMotor(\n", " thrustSource=r\"../../data/keron/thrustCurve.csv\",\n", " burnOut=5.274,\n", + " distanceNozzleMotorReference=0.40396,\n", " reshapeThrustCurve=False,\n", " grainNumber=6,\n", " grainSeparation=6 / 1000,\n", @@ -900,6 +902,7 @@ "MOTOR = SolidMotor(\n", " thrustSource=lambda x: 1 / (x + 1),\n", " burnOut=5.274,\n", + " distanceNozzleMotorReference=0.40396,\n", " reshapeThrustCurve=False,\n", " grainNumber=6,\n", " grainSeparation=6 / 1000,\n", @@ -1277,6 +1280,7 @@ "MOTOR = SolidMotor(\n", " thrustSource=r\"../../data/keron/thrustCurve.csv\",\n", " burnOut=5.274,\n", + " distanceNozzleMotorReference=0.40396,\n", " reshapeThrustCurve=[10, 6000],\n", " grainNumber=6,\n", " grainSeparation=6 / 1000,\n", diff --git a/docs/notebooks/dispersion_analysis/dispersion_analysis.ipynb b/docs/notebooks/dispersion_analysis/dispersion_analysis.ipynb index 1d2c3e229..c7f2c5430 100644 --- a/docs/notebooks/dispersion_analysis/dispersion_analysis.ipynb +++ b/docs/notebooks/dispersion_analysis/dispersion_analysis.ipynb @@ -1,1756 +1,1830 @@ { - "nbformat": 4, - "nbformat_minor": 2, - "metadata": { - "colab": { - "name": "Valetudo_Monte_Carlo_Dispersion_Analysis.ipynb", - "provenance": [], - "collapsed_sections": [ - "au88RN0P-bVl", - "-9u9RIaqpOQl", - "tExJzLhDpOQp", - "ifuJX7jYpORB", - "mYD4EQ5spORE", - "ajI4vr7QpORL", - "9m19OV9upORS", - "mQzQELcJpORX", - "7MUVLAM-pORb", - "4LpDYGpfpORf", - "nKSzDWi7pORi", - "BvMCGZYHpORn", - "LhPQQlpHpORq", - "5MvfiSQZvwPK" - ], - "toc_visible": true - }, - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - } - }, - "cells": [ - { - "cell_type": "markdown", - "source": [ - "# Monte Carlo Dispersion Analysis using RocketPy\n", - "\n", - "This is an advanced use of RocketPy. This notebook wraps RocketPy's methods to run a Monte Carlo analysis and predict probability distributions of the rocket's landing point, apogee and other relevant information.\n", - "\n", - "The main output is a map very similar to the one below.\n", - "\n", - "![Landing point dispersion elipses](https://github.com/Projeto-Jupiter/RocketPy/raw/master/docs/notebooks/dispersion_analysis/dispersion_analysis_outputs/valetudo_rocket_v0.svg)\n", - "\n", - "This jupyter notebook presents the Monte Carlo analysis performed for the flight of Valetudo, one of the most famous rockets made by Projeto Jupiter. Valetudo has a diameter of $80$ mm and height of $2.4$ m. It was built for the first time to be launched at Latin American Space Challenge (LASC) 2019. Indeed, Valetudo came to be launched in 2019 on August 10th by 5:56 pm (local time), propelled by a class K motor called 'Keron', a solid motor completely designed and built by Projeto Jupiter. The rocket crossed the sky and reached an $860$ m apogee, descending safely by the drogue parachute called \"Charmander\" and landing with an 18.5 m/s terminal velocity. \n", - "\n", - "We hope you enjoy the flight(s) in this notebook just like everyone in LASC19 did it in real-time!" - ], - "metadata": { - "id": "V0OcBOvipOP8" - } - }, - { - "cell_type": "markdown", - "source": [ - "## Clone repository if using Google Colab\n", - "\n", - "If you are running this using Binder, or you are running locally with the necessary files, you do not need to run this.\n", - "On the other hand, if you are running on Google Colab, make sure to run the cell below to clone the repository and download the necessary files." - ], - "metadata": {} - }, - { - "cell_type": "code", - "execution_count": null, - "source": [ - "!git clone https://github.com/giovaniceotto/RocketPy.git\n", - "import os\n", - "\n", - "os.chdir(\"RocketPy/docs/notebooks/dispersion_analysis\")" - ], - "outputs": [], - "metadata": {} - }, - { - "cell_type": "markdown", - "source": [ - "## Install and Load Necessary Libraries\n", - "\n" - ], - "metadata": { - "id": "Um2fvNlQpTAH" - } - }, - { - "cell_type": "code", - "execution_count": null, - "source": [ - "!pip install netCDF4\n", - "!pip install rocketpy" - ], - "outputs": [], - "metadata": { - "id": "JJNfsYrwpXGJ", - "colab": { - "base_uri": "https://localhost:8080/" + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "V0OcBOvipOP8" + }, + "source": [ + "# Monte Carlo Dispersion Analysis using RocketPy\n", + "\n", + "This is an advanced use of RocketPy. This notebook wraps RocketPy's methods to run a Monte Carlo analysis and predict probability distributions of the rocket's landing point, apogee and other relevant information.\n", + "\n", + "The main output is a map very similar to the one below.\n", + "\n", + "![Landing point dispersion elipses](https://github.com/Projeto-Jupiter/RocketPy/raw/master/docs/notebooks/dispersion_analysis/dispersion_analysis_outputs/valetudo_rocket_v0.svg)\n", + "\n", + "This jupyter notebook presents the Monte Carlo analysis performed for the flight of Valetudo, one of the most famous rockets made by Projeto Jupiter. Valetudo has a diameter of $80$ mm and height of $2.4$ m. It was built for the first time to be launched at Latin American Space Challenge (LASC) 2019. Indeed, Valetudo came to be launched in 2019 on August 10th by 5:56 pm (local time), propelled by a class K motor called 'Keron', a solid motor completely designed and built by Projeto Jupiter. The rocket crossed the sky and reached an $860$ m apogee, descending safely by the drogue parachute called \"Charmander\" and landing with an 18.5 m/s terminal velocity. \n", + "\n", + "We hope you enjoy the flight(s) in this notebook just like everyone in LASC19 did it in real-time!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Clone repository if using Google Colab\n", + "\n", + "If you are running this using Binder, or you are running locally with the necessary files, you do not need to run this.\n", + "On the other hand, if you are running on Google Colab, make sure to run the cell below to clone the repository and download the necessary files." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "python" + } + }, + "outputs": [], + "source": [ + "!git clone https://github.com/giovaniceotto/RocketPy.git\n", + "import os\n", + "\n", + "os.chdir(\"RocketPy/docs/notebooks/dispersion_analysis\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Um2fvNlQpTAH" + }, + "source": [ + "## Install and Load Necessary Libraries\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "JJNfsYrwpXGJ", + "outputId": "e2c4e1ef-4720-40ae-abd1-4d2a599bedd4", + "vscode": { + "languageId": "python" + } + }, + "outputs": [], + "source": [ + "!pip install netCDF4\n", + "!pip install rocketpy" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "id": "rNY7u8fApOP_", + "vscode": { + "languageId": "python" + } + }, + "outputs": [], + "source": [ + "from time import process_time, time\n", + "\n", + "from rocketpy import Environment, SolidMotor, Rocket, Flight, Function\n", + "\n", + "import numpy as np\n", + "from numpy.random import normal, choice\n", + "from IPython.display import display" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we import matplotlib to produce awesome looking plots." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "id": "0uEmvBIt5Ltg", + "vscode": { + "languageId": "python" + } + }, + "outputs": [], + "source": [ + "%config InlineBackend.figure_formats = ['svg']\n", + "import matplotlib as mpl\n", + "import matplotlib.pyplot as plt\n", + "\n", + "%matplotlib inline\n", + "mpl.rcParams[\"figure.figsize\"] = [8, 5]\n", + "mpl.rcParams[\"figure.dpi\"] = 120\n", + "mpl.rcParams[\"font.size\"] = 14\n", + "mpl.rcParams[\"legend.fontsize\"] = 14\n", + "mpl.rcParams[\"figure.titlesize\"] = 14" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4ksmBqU7pOQC" + }, + "source": [ + "## Defining Analysis Parameters\n", + "\n", + "The analysis parameters are a collection of expected values (and their uncertainties, or standard deviation) that completely defines a rocket flight.\n", + "As an assumption, the parameters which define the flight can behave in 3 different ways:\n", + " - the parameter is a completely known and has a constant value (i.e. number of fins)\n", + " - the parameter can assume certain discrete values with uniform distribution (i.e. the member of an ensemble forecast, which might be any integer from 0 to 9)\n", + " - the parameter is best represented by a normal (gaussian) distribution with a defined expected value and standard deviation\n", + "\n", + "We implement this using a dictionary, where the key is the name of the parameter and the value is either a tuple or a list, depending on the behaviour of the parameter:\n", + " - if the parameter is know, its value is represented as a list with a single entry (i.e. `\"number_of_fins: [4]\"`)\n", + " - if the parameter can assume certain discrete values with uniform distribution, its values are represented by a list of possible choices (i.e. `\"member_of_ensemble_forecast: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]\"`)\n", + " - if the parameter is best represented by a normal (gaussian) distribution, its value is a tuple with the expected value and its standard deviation (i.e. `\"rocket_mass\": (100, 2)`, where 100 kg is the expected mass, with uncertainty of plus or minus 2 kg)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "id": "fwoCdOgKpOQD", + "vscode": { + "languageId": "python" + } + }, + "outputs": [], + "source": [ + "analysis_parameters = {\n", + " # Mass Details\n", + " \"rocketMass\": (\n", + " 8.257,\n", + " 0.001,\n", + " ), # Rocket's dry mass (kg) and its uncertainty (standard deviation)\n", + " # Propulsion Details - run help(SolidMotor) for more information\n", + " \"impulse\": (1415.15, 35.3), # Motor total impulse (N*s)\n", + " \"burnOut\": (5.274, 1), # Motor burn out time (s)\n", + " \"nozzleRadius\": (21.642 / 1000, 0.5 / 1000), # Motor's nozzle radius (m)\n", + " \"throatRadius\": (8 / 1000, 0.5 / 1000), # Motor's nozzle throat radius (m)\n", + " \"grainSeparation\": (\n", + " 6 / 1000,\n", + " 1 / 1000,\n", + " ), # Motor's grain separation (axial distance between two grains) (m)\n", + " \"grainDensity\": (1707, 50), # Motor's grain density (kg/m^3)\n", + " \"grainOuterRadius\": (21.4 / 1000, 0.375 / 1000), # Motor's grain outer radius (m)\n", + " \"grainInitialInnerRadius\": (\n", + " 9.65 / 1000,\n", + " 0.375 / 1000,\n", + " ), # Motor's grain inner radius (m)\n", + " \"grainInitialHeight\": (120 / 1000, 1 / 1000), # Motor's grain height (m)\n", + " # Aerodynamic Details - run help(Rocket) for more information\n", + " \"inertiaI\": (\n", + " 3.675,\n", + " 0.03675,\n", + " ), # Rocket's inertia moment perpendicular to its axis (kg*m^2)\n", + " \"inertiaZ\": (\n", + " 0.007,\n", + " 0.00007,\n", + " ), # Rocket's inertia moment relative to its axis (kg*m^2)\n", + " \"radius\": (40.45 / 1000, 0.001), # Rocket's radius (kg*m^2)\n", + " \"distanceRocketNozzle\": (\n", + " -1.024,\n", + " 0.001,\n", + " ), # Distance between rocket's center of dry mass and nozzle exit plane (m) (negative)\n", + " \"distanceNozzleMotorReference\": (0.39796, 0.001),\n", + " \"powerOffDrag\": (\n", + " 0.9081 / 1.05,\n", + " 0.033,\n", + " ), # Multiplier for rocket's drag curve. Usually has a mean value of 1 and a uncertainty of 5% to 10%\n", + " \"powerOnDrag\": (\n", + " 0.9081 / 1.05,\n", + " 0.033,\n", + " ), # Multiplier for rocket's drag curve. Usually has a mean value of 1 and a uncertainty of 5% to 10%\n", + " \"noseLength\": (0.274, 0.001), # Rocket's nose cone length (m)\n", + " \"noseDistanceToCM\": (\n", + " 1.134,\n", + " 0.001,\n", + " ), # Axial distance between rocket's center of dry mass and nearest point in its nose cone (m)\n", + " \"finSpan\": (0.077, 0.0005), # Fin span (m)\n", + " \"finRootChord\": (0.058, 0.0005), # Fin root chord (m)\n", + " \"finTipChord\": (0.018, 0.0005), # Fin tip chord (m)\n", + " \"finDistanceToCM\": (\n", + " -0.906,\n", + " 0.001,\n", + " ), # Axial distance between rocket's center of dry mass and nearest point in its fin (m)\n", + " # Launch and Environment Details - run help(Environment) and help(Flight) for more information\n", + " \"inclination\": (\n", + " 84.7,\n", + " 1,\n", + " ), # Launch rail inclination angle relative to the horizontal plane (degrees)\n", + " \"heading\": (53, 2), # Launch rail heading relative to north (degrees)\n", + " \"railLength\": (5.7, 0.0005), # Launch rail length (m)\n", + " \"ensembleMember\": list(range(10)), # Members of the ensemble forecast to be used\n", + " # Parachute Details - run help(Rocket) for more information\n", + " \"CdSDrogue\": (\n", + " 0.349 * 1.3,\n", + " 0.07,\n", + " ), # Drag coefficient times reference area for the drogue chute (m^2)\n", + " \"lag_rec\": (\n", + " 1,\n", + " 0.5,\n", + " ), # Time delay between parachute ejection signal is detected and parachute is inflated (s)\n", + " # Electronic Systems Details - run help(Rocket) for more information\n", + " \"lag_se\": (\n", + " 0.73,\n", + " 0.16,\n", + " ), # Time delay between sensor signal is received and ejection signal is fired (s)\n", + "}" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "EJCbP69TpOQG" + }, + "source": [ + "## Creating a Flight Settings Generator\n", + "\n", + "Now, we create a generator function which will yield all the necessary inputs for a single flight simulation. Each generated input will be randomly generated according to the `analysis_parameters` dicitionary set up above.\n", + "\n", + "This is just a helper function to make the code clearer." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "id": "5XCL9JaIpOQH", + "vscode": { + "languageId": "python" + } + }, + "outputs": [], + "source": [ + "def flight_settings(analysis_parameters, total_number):\n", + " i = 0\n", + " while i < total_number:\n", + " # Generate a flight setting\n", + " flight_setting = {}\n", + " for parameter_key, parameter_value in analysis_parameters.items():\n", + " if type(parameter_value) is tuple:\n", + " flight_setting[parameter_key] = normal(*parameter_value)\n", + " else:\n", + " flight_setting[parameter_key] = choice(parameter_value)\n", + "\n", + " # Skip if certain values are negative, which happens due to the normal curve but isnt realistic\n", + " if flight_setting[\"lag_rec\"] < 0 or flight_setting[\"lag_se\"] < 0:\n", + " continue\n", + "\n", + " # Update counter\n", + " i += 1\n", + " # Yield a flight setting\n", + " yield flight_setting" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "FtdRXCVHpOQO" + }, + "source": [ + "## Creating an Export Function\n", + "\n", + "Monte Carlo analyses usually contain data from thousands or tens of thousands of simulations. They can easily take hours to run. Therefore, it is very important to save our outputs to a file during the analysis. This way, if something happens, we do not lose our progress.\n", + "\n", + "These next functions take care of that. They export the simulation data to three different files:\n", + "- `dispersion_input_file`: A file where each line is a json converted dictionary of flight setting inputs to run a single trajectory simulation;\n", + "- `dispersion_output_file`: A file where each line is a json converted dictionary containing the main outputs of a single simulation, such as apogee altitute and maximum velocity;\n", + "- `dispersion_error_file`: A file to store the inputs of simulations which raised errors. This can help us debug these simulations later on." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "id": "1eC2p3jEpOQO", + "vscode": { + "languageId": "python" + } + }, + "outputs": [], + "source": [ + "def export_flight_data(flight_setting, flight_data, exec_time):\n", + " # Generate flight results\n", + " flight_result = {\n", + " \"outOfRailTime\": flight_data.outOfRailTime,\n", + " \"outOfRailVelocity\": flight_data.outOfRailVelocity,\n", + " \"apogeeTime\": flight_data.apogeeTime,\n", + " \"apogeeAltitude\": flight_data.apogee - Env.elevation,\n", + " \"apogeeX\": flight_data.apogeeX,\n", + " \"apogeeY\": flight_data.apogeeY,\n", + " \"impactTime\": flight_data.tFinal,\n", + " \"impactX\": flight_data.xImpact,\n", + " \"impactY\": flight_data.yImpact,\n", + " \"impactVelocity\": flight_data.impactVelocity,\n", + " \"initialStaticMargin\": flight_data.rocket.staticMargin(0),\n", + " \"outOfRailStaticMargin\": flight_data.rocket.staticMargin(\n", + " TestFlight.outOfRailTime\n", + " ),\n", + " \"finalStaticMargin\": flight_data.rocket.staticMargin(\n", + " TestFlight.rocket.motor.burnOutTime\n", + " ),\n", + " \"numberOfEvents\": len(flight_data.parachuteEvents),\n", + " \"executionTime\": exec_time,\n", + " }\n", + "\n", + " # Calculate maximum reached velocity\n", + " sol = np.array(flight_data.solution)\n", + " flight_data.vx = Function(\n", + " sol[:, [0, 4]], \"Time (s)\", \"Vx (m/s)\", \"linear\", extrapolation=\"natural\"\n", + " )\n", + " flight_data.vy = Function(\n", + " sol[:, [0, 5]], \"Time (s)\", \"Vy (m/s)\", \"linear\", extrapolation=\"natural\"\n", + " )\n", + " flight_data.vz = Function(\n", + " sol[:, [0, 6]], \"Time (s)\", \"Vz (m/s)\", \"linear\", extrapolation=\"natural\"\n", + " )\n", + " flight_data.v = (\n", + " flight_data.vx**2 + flight_data.vy**2 + flight_data.vz**2\n", + " ) ** 0.5\n", + " flight_data.maxVel = np.amax(flight_data.v.source[:, 1])\n", + " flight_result[\"maxVelocity\"] = flight_data.maxVel\n", + "\n", + " # Take care of parachute results\n", + " if len(flight_data.parachuteEvents) > 0:\n", + " flight_result[\"drogueTriggerTime\"] = flight_data.parachuteEvents[0][0]\n", + " flight_result[\"drogueInflatedTime\"] = (\n", + " flight_data.parachuteEvents[0][0] + flight_data.parachuteEvents[0][1].lag\n", + " )\n", + " flight_result[\"drogueInflatedVelocity\"] = flight_data.v(\n", + " flight_data.parachuteEvents[0][0] + flight_data.parachuteEvents[0][1].lag\n", + " )\n", + " else:\n", + " flight_result[\"drogueTriggerTime\"] = 0\n", + " flight_result[\"drogueInflatedTime\"] = 0\n", + " flight_result[\"drogueInflatedVelocity\"] = 0\n", + "\n", + " # Write flight setting and results to file\n", + " dispersion_input_file.write(str(flight_setting) + \"\\n\")\n", + " dispersion_output_file.write(str(flight_result) + \"\\n\")\n", + "\n", + "\n", + "def export_flight_error(flight_setting):\n", + " dispersion_error_file.write(str(flight_setting) + \"\\n\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "GX6pB4Y7pOQQ" + }, + "source": [ + "## Simulating Each Flight Setting\n", + "\n", + "Finally, we can start running some simulations!\n", + "\n", + "We start by defining the file name we want to use. Then, we specify how many simulations we would like to run by setting the `number_of_simulations` variable.\n", + "\n", + "It is good practice to run something in the order of 100 simulations first, to check for any possible errors in the code. Once we are confident that everything is working well, we increase the number of simulations to something in the range of 5000 to 50000.\n", + "\n", + "We will loop through all flight settings, creating the environment, rocket and motor classes with the data of the analysis parameters.\n", + "For the power off and on drag and thrust curve user should have in hands the .csv (or .eng for COTS motor's thrust curve).\n", + "\n", + "**Tip**: A better practice is opening the files in \"append\" mode, this way we can accumulate our simulations. To do this, just change the 'a' (write) argument of the `open` function in the third, fourth and fifth line of code to `a` (append)." + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "id": "GILiaO30pOQS", + "outputId": "5a2ae15d-5c16-4ae0-f28b-165730d2419d", + "vscode": { + "languageId": "python" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'Curent iteration: 019999 | Average Time per Iteration: 0.000289 s'" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Basic analysis info\n", + "filename = \"dispersion_analysis_outputs/valetudo_rocket_v0\"\n", + "number_of_simulations = 20000\n", + "\n", + "# Create data files for inputs, outputs and error logging\n", + "dispersion_error_file = open(str(filename) + \".disp_errors.txt\", \"w\")\n", + "dispersion_input_file = open(str(filename) + \".disp_inputs.txt\", \"w\")\n", + "dispersion_output_file = open(str(filename) + \".disp_outputs.txt\", \"w\")\n", + "\n", + "# Initialize counter and timer\n", + "i = 0\n", + "\n", + "initial_wall_time = time()\n", + "initial_cpu_time = process_time()\n", + "\n", + "# Define basic Environment object\n", + "Env = Environment(\n", + " railLength=5.7, date=(2019, 8, 10, 21), latitude=-23.363611, longitude=-48.011389\n", + ")\n", + "Env.setElevation(668)\n", + "Env.maxExpectedHeight = 1500\n", + "Env.setAtmosphericModel(\n", + " type=\"Ensemble\",\n", + " file=\"dispersion_analysis_inputs/LASC2019_reanalysis.nc\",\n", + " dictionary=\"ECMWF\",\n", + ")\n", + "\n", + "# Set up parachutes. This rocket, named Valetudo, only has a drogue chute.\n", + "def drogueTrigger(p, y):\n", + " # Check if rocket is going down, i.e. if it has passed the apogee\n", + " vertical_velocity = y[5]\n", + " # Return true to activate parachute once the vertical velocity is negative\n", + " return True if vertical_velocity < 0 else False\n", + "\n", + "\n", + "# Iterate over flight settings\n", + "out = display(\"Starting\", display_id=True)\n", + "for setting in flight_settings(analysis_parameters, number_of_simulations):\n", + " start_time = process_time()\n", + " i += 1\n", + "\n", + " # Update environment object\n", + " Env.selectEnsembleMember(setting[\"ensembleMember\"])\n", + " Env.railLength = setting[\"railLength\"]\n", + "\n", + " # Create motor\n", + " Keron = SolidMotor(\n", + " thrustSource=\"dispersion_analysis_inputs/thrustCurve.csv\",\n", + " burnOut=5.274,\n", + " reshapeThrustCurve=(setting[\"burnOut\"], setting[\"impulse\"]),\n", + " distanceNozzleMotorReference=setting[\"distanceNozzleMotorReference\"]\n", + " nozzleRadius=setting[\"nozzleRadius\"],\n", + " throatRadius=setting[\"throatRadius\"],\n", + " grainNumber=6,\n", + " grainSeparation=setting[\"grainSeparation\"],\n", + " grainDensity=setting[\"grainDensity\"],\n", + " grainOuterRadius=setting[\"grainOuterRadius\"],\n", + " grainInitialInnerRadius=setting[\"grainInitialInnerRadius\"],\n", + " grainInitialHeight=setting[\"grainInitialHeight\"],\n", + " interpolationMethod=\"linear\",\n", + " )\n", + "\n", + " # Create rocket\n", + " Valetudo = Rocket(\n", + " motor=Keron,\n", + " radius=setting[\"radius\"],\n", + " mass=setting[\"rocketMass\"],\n", + " inertiaI=setting[\"inertiaI\"],\n", + " inertiaZ=setting[\"inertiaZ\"],\n", + " distanceRocketNozzle=setting[\"distanceRocketNozzle\"],\n", + " powerOffDrag=\"dispersion_analysis_inputs/Cd_PowerOff.csv\",\n", + " powerOnDrag=\"dispersion_analysis_inputs/Cd_PowerOn.csv\",\n", + " )\n", + " Valetudo.setRailButtons([0.224, -0.93], 30)\n", + " # Edit rocket drag\n", + " Valetudo.powerOffDrag *= setting[\"powerOffDrag\"]\n", + " Valetudo.powerOnDrag *= setting[\"powerOnDrag\"]\n", + " # Add rocket nose, fins and tail\n", + " NoseCone = Valetudo.addNose(\n", + " length=setting[\"noseLength\"],\n", + " kind=\"vonKarman\",\n", + " distanceToCM=setting[\"noseDistanceToCM\"],\n", + " )\n", + " FinSet = Valetudo.addFins(\n", + " n=3,\n", + " rootChord=setting[\"finRootChord\"],\n", + " tipChord=setting[\"finTipChord\"],\n", + " span=setting[\"finSpan\"],\n", + " distanceToCM=setting[\"finDistanceToCM\"],\n", + " )\n", + " # Add parachute\n", + " Drogue = Valetudo.addParachute(\n", + " \"Drogue\",\n", + " CdS=setting[\"CdSDrogue\"],\n", + " trigger=drogueTrigger,\n", + " samplingRate=105,\n", + " lag=setting[\"lag_rec\"] + setting[\"lag_se\"],\n", + " noise=(0, 8.3, 0.5),\n", + " )\n", + "\n", + " # Run trajectory simulation\n", + " try:\n", + " TestFlight = Flight(\n", + " rocket=Valetudo,\n", + " environment=Env,\n", + " inclination=setting[\"inclination\"],\n", + " heading=setting[\"heading\"],\n", + " maxTime=600,\n", + " )\n", + " export_flight_data(setting, TestFlight, process_time() - start_time)\n", + " except Exception as E:\n", + " print(E)\n", + " export_flight_error(setting)\n", + "\n", + " # Register time\n", + " out.update(\n", + " f\"Current iteration: {i:06d} | Average Time per Iteration: {(process_time() - initial_cpu_time)/i:2.6f} s\"\n", + " )\n", + "\n", + "# Done\n", + "\n", + "## Print and save total time\n", + "final_string = f\"Completed {i} iterations successfully. Total CPU time: {process_time() - initial_cpu_time} s. Total wall time: {time() - initial_wall_time} s\"\n", + "out.update(final_string)\n", + "dispersion_input_file.write(final_string + \"\\n\")\n", + "dispersion_output_file.write(final_string + \"\\n\")\n", + "dispersion_error_file.write(final_string + \"\\n\")\n", + "\n", + "## Close files\n", + "dispersion_input_file.close()\n", + "dispersion_output_file.close()\n", + "dispersion_error_file.close()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Post-processing Monte Carlo Dispersion Results\n", + "\n", + "Now that we have finish running thousands of simulations, it is time to process the results and get some nice graphs out of them! " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "X8ewOccUpOQb" + }, + "source": [ + "### Importing Dispersion Analysis Saved Data\n", + "\n", + "We start by loading the file which stores the outputs." + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "-7qgTJzRpOQb", + "outputId": "76d2cecd-a09f-429f-cca2-f4e03e39d49e", + "vscode": { + "languageId": "python" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of simulations: 20000\n" + ] + } + ], + "source": [ + "filename = \"dispersion_analysis_outputs/valetudo_rocket_v0\"\n", + "\n", + "# Initialize variable to store all results\n", + "dispersion_general_results = []\n", + "\n", + "dispersion_results = {\n", + " \"outOfRailTime\": [],\n", + " \"outOfRailVelocity\": [],\n", + " \"apogeeTime\": [],\n", + " \"apogeeAltitude\": [],\n", + " \"apogeeX\": [],\n", + " \"apogeeY\": [],\n", + " \"impactTime\": [],\n", + " \"impactX\": [],\n", + " \"impactY\": [],\n", + " \"impactVelocity\": [],\n", + " \"initialStaticMargin\": [],\n", + " \"outOfRailStaticMargin\": [],\n", + " \"finalStaticMargin\": [],\n", + " \"numberOfEvents\": [],\n", + " \"maxVelocity\": [],\n", + " \"drogueTriggerTime\": [],\n", + " \"drogueInflatedTime\": [],\n", + " \"drogueInflatedVelocity\": [],\n", + " \"executionTime\": [],\n", + "}\n", + "\n", + "# Get all dispersion results\n", + "# Get file\n", + "dispersion_output_file = open(str(filename) + \".disp_outputs.txt\", \"r+\")\n", + "\n", + "# Read each line of the file and convert to dict\n", + "for line in dispersion_output_file:\n", + " # Skip comments lines\n", + " if line[0] != \"{\":\n", + " continue\n", + " # Eval results and store them\n", + " flight_result = eval(line)\n", + " dispersion_general_results.append(flight_result)\n", + " for parameter_key, parameter_value in flight_result.items():\n", + " dispersion_results[parameter_key].append(parameter_value)\n", + "\n", + "# Close data file\n", + "dispersion_output_file.close()\n", + "\n", + "# Print number of flights simulated\n", + "N = len(dispersion_general_results)\n", + "print(\"Number of simulations: \", N)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ioeUkzPipOQe" + }, + "source": [ + "## Dispersion Results\n", + "\n", + "Now, we plot the histogram for every single output. This shows how are outputs behave. Valuable statistical data can be calculated based on them." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QDy8KaJ8pOQg" + }, + "source": [ + "### Out of Rail Time" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 607 + }, + "id": "1JQSzd5cpOQh", + "outputId": "455abcdf-9dd7-4689-9523-50154c7fb302", + "vscode": { + "languageId": "python" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Out of Rail Time - Mean Value: 1.084 s\n", + "Out of Rail Time - Standard Deviation: 0.183 s\n" + ] + }, + { + "data": { + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-07T19:04:11.797608\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "print(\n", + " f'Out of Rail Time - Mean Value: {np.mean(dispersion_results[\"outOfRailTime\"]):0.3f} s'\n", + ")\n", + "print(\n", + " f'Out of Rail Time - Standard Deviation: {np.std(dispersion_results[\"outOfRailTime\"]):0.3f} s'\n", + ")\n", + "\n", + "plt.figure()\n", + "plt.hist(dispersion_results[\"outOfRailTime\"], bins=int(N**0.5))\n", + "plt.title(\"Out of Rail Time\")\n", + "plt.xlabel(\"Time (s)\")\n", + "plt.ylabel(\"Number of Occurrences\")\n", + "plt.show()\n", + "\n", + "# You can also use Plotly instead of Matplotlib if you wish!\n", + "# import plotly.express as px\n", + "# fig1 = px.histogram(\n", + "# x=dispersion_results[\"outOfRailTime\"],\n", + "# title='Out of Rail Time',\n", + "# nbins=int(N**0.5)\n", + "# )\n", + "# fig1.update_layout(\n", + "# xaxis_title_text='Time (s)',\n", + "# yaxis_title_text='Number of occurences'\n", + "# )" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-9u9RIaqpOQl" + }, + "source": [ + "### Out of Rail Velocity" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 607 + }, + "id": "jE23vILMpOQm", + "outputId": "aa04f5a4-26f2-47e8-831a-41d3e76b616f", + "vscode": { + "languageId": "python" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Out of Rail Velocity - Mean Value: 23.081 m/s\n", + "Out of Rail Velocity - Standard Deviation: 3.116 m/s\n" + ] + }, + { + "data": { + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-07T18:34:47.959518\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "print(\n", + " f'Out of Rail Velocity - Mean Value: {np.mean(dispersion_results[\"outOfRailVelocity\"]):0.3f} m/s'\n", + ")\n", + "print(\n", + " f'Out of Rail Velocity - Standard Deviation: {np.std(dispersion_results[\"outOfRailVelocity\"]):0.3f} m/s'\n", + ")\n", + "\n", + "plt.figure()\n", + "plt.hist(dispersion_results[\"outOfRailVelocity\"], bins=int(N**0.5))\n", + "plt.title(\"Out of Rail Velocity\")\n", + "plt.xlabel(\"Velocity (m/s)\")\n", + "plt.ylabel(\"Number of Occurrences\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "tExJzLhDpOQp" + }, + "source": [ + "### Apogee Time" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 607 + }, + "id": "l8zjT_VjpOQq", + "outputId": "1c15fe12-afae-4035-f085-7d82e61d24d9", + "vscode": { + "languageId": "python" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Apogee Time - Mean Value: 14.305 s\n", + "Apogee Time - Standard Deviation: 0.344 s\n" + ] + }, + { + "data": { + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-07T18:34:48.668781\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "print(\n", + " f'Apogee Time - Mean Value: {np.mean(dispersion_results[\"apogeeTime\"]):0.3f} s'\n", + ")\n", + "print(\n", + " f'Apogee Time - Standard Deviation: {np.std(dispersion_results[\"apogeeTime\"]):0.3f} s'\n", + ")\n", + "\n", + "plt.figure()\n", + "plt.hist(dispersion_results[\"apogeeTime\"], bins=int(N**0.5))\n", + "plt.title(\"Apogee Time\")\n", + "plt.xlabel(\"Time (s)\")\n", + "plt.ylabel(\"Number of Occurrences\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "erNB46vApOQt" + }, + "source": [ + "### Apogee Altitude" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 607 + }, + "id": "gWWMoOClpOQv", + "outputId": "88f2cf05-142c-4bb1-ce64-9879696107a7", + "vscode": { + "languageId": "python" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Apogee Altitude - Mean Value: 847.247 m\n", + "Apogee Altitude - Standard Deviation: 42.020 m\n" + ] + }, + { + "data": { + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-07T18:34:49.466956\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "print(\n", + " f'Apogee Altitude - Mean Value: {np.mean(dispersion_results[\"apogeeAltitude\"]):0.3f} m'\n", + ")\n", + "print(\n", + " f'Apogee Altitude - Standard Deviation: {np.std(dispersion_results[\"apogeeAltitude\"]):0.3f} m'\n", + ")\n", + "\n", + "plt.figure()\n", + "plt.hist(dispersion_results[\"apogeeAltitude\"], bins=int(N**0.5))\n", + "plt.title(\"Apogee Altitude\")\n", + "plt.xlabel(\"Altitude (m)\")\n", + "plt.ylabel(\"Number of Occurrences\")\n", + "plt.show()\n", + "\n", + "# Real measured apogee for Valetudo = 860 m" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7bBvFJ5xpOQ1" + }, + "source": [ + "### Apogee X Position" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 607 + }, + "id": "nGdsF9VppOQ3", + "outputId": "b4f0a3aa-afa1-4942-91b8-8ad61d263244", + "vscode": { + "languageId": "python" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Apogee X Position - Mean Value: 108.492 m\n", + "Apogee X Position - Standard Deviation: 24.629 m\n" + ] + }, + { + "data": { + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-07T18:34:50.197193\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "print(\n", + " f'Apogee X Position - Mean Value: {np.mean(dispersion_results[\"apogeeX\"]):0.3f} m'\n", + ")\n", + "print(\n", + " f'Apogee X Position - Standard Deviation: {np.std(dispersion_results[\"apogeeX\"]):0.3f} m'\n", + ")\n", + "\n", + "plt.figure()\n", + "plt.hist(dispersion_results[\"apogeeX\"], bins=int(N**0.5))\n", + "plt.title(\"Apogee X Position\")\n", + "plt.xlabel(\"Apogee X Position (m)\")\n", + "plt.ylabel(\"Number of Occurrences\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-LtYxB0lpOQ8" + }, + "source": [ + "### Apogee Y Position" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 607 + }, + "id": "ocq6GmeNpOQ8", + "outputId": "f3a45339-c0a6-4819-bd03-60f7fe6df963", + "vscode": { + "languageId": "python" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Apogee Y Position - Mean Value: 107.614 m\n", + "Apogee Y Position - Standard Deviation: 19.732 m\n" + ] + }, + { + "data": { + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-07T18:34:50.895468\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "print(\n", + " f'Apogee Y Position - Mean Value: {np.mean(dispersion_results[\"apogeeY\"]):0.3f} m'\n", + ")\n", + "print(\n", + " f'Apogee Y Position - Standard Deviation: {np.std(dispersion_results[\"apogeeY\"]):0.3f} m'\n", + ")\n", + "\n", + "plt.figure()\n", + "plt.hist(dispersion_results[\"apogeeY\"], bins=int(N**0.5))\n", + "plt.title(\"Apogee Y Position\")\n", + "plt.xlabel(\"Apogee Y Position (m)\")\n", + "plt.ylabel(\"Number of Occurrences\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ifuJX7jYpORB" + }, + "source": [ + "### Impact Time" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 607 + }, + "id": "52j6t5-MpORB", + "outputId": "9cba31b1-c731-402f-b138-df5c72521408", + "vscode": { + "languageId": "python" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Impact Time - Mean Value: 62.911 s\n", + "Impact Time - Standard Deviation: 4.159 s\n" + ] + }, + { + "data": { + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-07T18:34:51.588750\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "print(\n", + " f'Impact Time - Mean Value: {np.mean(dispersion_results[\"impactTime\"]):0.3f} s'\n", + ")\n", + "print(\n", + " f'Impact Time - Standard Deviation: {np.std(dispersion_results[\"impactTime\"]):0.3f} s'\n", + ")\n", + "\n", + "plt.figure()\n", + "plt.hist(dispersion_results[\"impactTime\"], bins=int(N**0.5))\n", + "plt.title(\"Impact Time\")\n", + "plt.xlabel(\"Time (s)\")\n", + "plt.ylabel(\"Number of Occurrences\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "mYD4EQ5spORE" + }, + "source": [ + "### Impact X Position" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 607 + }, + "id": "uzL8-1UGpORF", + "outputId": "5c74f8d1-b909-44cf-a5c9-2f1b5e9dda1d", + "vscode": { + "languageId": "python" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Impact X Position - Mean Value: 364.105 m\n", + "Impact X Position - Standard Deviation: 46.835 m\n" + ] + }, + { + "data": { + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-07T18:34:52.272039\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "print(\n", + " f'Impact X Position - Mean Value: {np.mean(dispersion_results[\"impactX\"]):0.3f} m'\n", + ")\n", + "print(\n", + " f'Impact X Position - Standard Deviation: {np.std(dispersion_results[\"impactX\"]):0.3f} m'\n", + ")\n", + "\n", + "plt.figure()\n", + "plt.hist(dispersion_results[\"impactX\"], bins=int(N**0.5))\n", + "plt.title(\"Impact X Position\")\n", + "plt.xlabel(\"Impact X Position (m)\")\n", + "plt.ylabel(\"Number of Occurrences\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ajI4vr7QpORL" + }, + "source": [ + "### Impact Y Position" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 607 + }, + "id": "Q-ghmNVopORM", + "outputId": "cd0c81a8-a3fc-4710-cadf-a20cf0882bec", + "vscode": { + "languageId": "python" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Impact Y Position - Mean Value: 16.109 m\n", + "Impact Y Position - Standard Deviation: 36.402 m\n" + ] + }, + { + "data": { + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-07T18:34:53.068212\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "print(\n", + " f'Impact Y Position - Mean Value: {np.mean(dispersion_results[\"impactY\"]):0.3f} m'\n", + ")\n", + "print(\n", + " f'Impact Y Position - Standard Deviation: {np.std(dispersion_results[\"impactY\"]):0.3f} m'\n", + ")\n", + "\n", + "plt.figure()\n", + "plt.hist(dispersion_results[\"impactY\"], bins=int(N**0.5))\n", + "plt.title(\"Impact Y Position\")\n", + "plt.xlabel(\"Impact Y Position (m)\")\n", + "plt.ylabel(\"Number of Occurrences\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "H7_H_eeXpORP" + }, + "source": [ + "### Impact Velocity" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 607 + }, + "id": "Ryx7KEEVpORP", + "outputId": "90cdcf97-affc-4f09-ed2a-9b854257a8a0", + "vscode": { + "languageId": "python" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Impact Velocity - Mean Value: -18.280 m/s\n", + "Impact Velocity - Standard Deviation: 1.503 m/s\n" + ] + }, + { + "data": { + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-07T18:34:53.778475\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "print(\n", + " f'Impact Velocity - Mean Value: {np.mean(dispersion_results[\"impactVelocity\"]):0.3f} m/s'\n", + ")\n", + "print(\n", + " f'Impact Velocity - Standard Deviation: {np.std(dispersion_results[\"impactVelocity\"]):0.3f} m/s'\n", + ")\n", + "\n", + "plt.figure()\n", + "plt.hist(dispersion_results[\"impactVelocity\"], bins=int(N**0.5))\n", + "plt.title(\"Impact Velocity\")\n", + "# plt.grid()\n", + "plt.xlim(-35, 0)\n", + "plt.xlabel(\"Velocity (m/s)\")\n", + "plt.ylabel(\"Number of Occurrences\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "9m19OV9upORS" + }, + "source": [ + "### Static Margin" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 675 + }, + "id": "a2Tpo9hjpORT", + "outputId": "94129858-cd6b-4af6-8f88-66923455a566", + "vscode": { + "languageId": "python" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Initial Static Margin - Mean Value: 1.998 c\n", + "Initial Static Margin - Standard Deviation: 0.326 c\n", + "Out of Rail Static Margin - Mean Value: 2.178 c\n", + "Out of Rail Static Margin - Standard Deviation: 0.330 c\n", + "Final Static Margin - Mean Value: 3.026 c\n", + "Final Static Margin - Standard Deviation: 0.347 c\n" + ] + }, + { + "data": { + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-07T18:34:55.486698\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "print(\n", + " f'Initial Static Margin - Mean Value: {np.mean(dispersion_results[\"initialStaticMargin\"]):0.3f} c'\n", + ")\n", + "print(\n", + " f'Initial Static Margin - Standard Deviation: {np.std(dispersion_results[\"initialStaticMargin\"]):0.3f} c'\n", + ")\n", + "\n", + "print(\n", + " f'Out of Rail Static Margin - Mean Value: {np.mean(dispersion_results[\"outOfRailStaticMargin\"]):0.3f} c'\n", + ")\n", + "print(\n", + " f'Out of Rail Static Margin - Standard Deviation: {np.std(dispersion_results[\"outOfRailStaticMargin\"]):0.3f} c'\n", + ")\n", + "\n", + "print(\n", + " f'Final Static Margin - Mean Value: {np.mean(dispersion_results[\"finalStaticMargin\"]):0.3f} c'\n", + ")\n", + "print(\n", + " f'Final Static Margin - Standard Deviation: {np.std(dispersion_results[\"finalStaticMargin\"]):0.3f} c'\n", + ")\n", + "\n", + "plt.figure()\n", + "plt.hist(dispersion_results[\"initialStaticMargin\"], label=\"Initial\", bins=int(N**0.5))\n", + "plt.hist(\n", + " dispersion_results[\"outOfRailStaticMargin\"], label=\"Out of Rail\", bins=int(N**0.5)\n", + ")\n", + "plt.hist(dispersion_results[\"finalStaticMargin\"], label=\"Final\", bins=int(N**0.5))\n", + "plt.legend()\n", + "plt.title(\"Static Margin\")\n", + "plt.xlabel(\"Static Margin (c)\")\n", + "plt.ylabel(\"Number of Occurrences\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "mQzQELcJpORX" + }, + "source": [ + "### Maximum Velocity" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 607 + }, + "id": "nOu1O8MXpORY", + "outputId": "7510aec8-7b73-4751-f033-8367cd0c9bdc", + "vscode": { + "languageId": "python" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Maximum Velocity - Mean Value: 124.881 m/s\n", + "Maximum Velocity - Standard Deviation: 5.655 m/s\n" + ] + }, + { + "data": { + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-07T18:34:56.395755\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "print(\n", + " f'Maximum Velocity - Mean Value: {np.mean(dispersion_results[\"maxVelocity\"]):0.3f} m/s'\n", + ")\n", + "print(\n", + " f'Maximum Velocity - Standard Deviation: {np.std(dispersion_results[\"maxVelocity\"]):0.3f} m/s'\n", + ")\n", + "\n", + "plt.figure()\n", + "plt.hist(dispersion_results[\"maxVelocity\"], bins=int(N**0.5))\n", + "plt.title(\"Maximum Velocity\")\n", + "plt.xlabel(\"Velocity (m/s)\")\n", + "plt.ylabel(\"Number of Occurrences\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7MUVLAM-pORb" + }, + "source": [ + "### Number of Parachute Events\n", + "\n", + "This is usefull to check if the parachute was triggered in every flight." + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 607 + }, + "id": "yhcWi2kCpORb", + "outputId": "dee54569-8213-46cc-e287-9fffd2b8e43c", + "vscode": { + "languageId": "python" + } + }, + "outputs": [ + { + "data": { + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-07T18:34:56.971158\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.hist(dispersion_results[\"numberOfEvents\"])\n", + "plt.title(\"Parachute Events\")\n", + "plt.xlabel(\"Number of Parachute Events\")\n", + "plt.ylabel(\"Number of Occurrences\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4LpDYGpfpORf" + }, + "source": [ + "### Drogue Parachute Trigger Time" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 607 + }, + "id": "lvCksZG8pORf", + "outputId": "3efd19ed-11e9-41d1-8e66-04da384665ce", + "vscode": { + "languageId": "python" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Drogue Parachute Trigger Time - Mean Value: 13.338 s\n", + "Drogue Parachute Trigger Time - Standard Deviation: 0.347 s\n" + ] + }, + { + "data": { + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-07T18:34:57.599505\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "print(\n", + " f'Drogue Parachute Trigger Time - Mean Value: {np.mean(dispersion_results[\"drogueTriggerTime\"]):0.3f} s'\n", + ")\n", + "print(\n", + " f'Drogue Parachute Trigger Time - Standard Deviation: {np.std(dispersion_results[\"drogueTriggerTime\"]):0.3f} s'\n", + ")\n", + "\n", + "plt.figure()\n", + "plt.hist(dispersion_results[\"drogueTriggerTime\"], bins=int(N**0.5))\n", + "plt.title(\"Drogue Parachute Trigger Time\")\n", + "plt.xlabel(\"Time (s)\")\n", + "plt.ylabel(\"Number of Occurrences\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "nKSzDWi7pORi" + }, + "source": [ + "### Drogue Parachute Fully Inflated Time" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 607 + }, + "id": "KCYKVFYXpORj", + "outputId": "8ae49853-0f08-4bf6-9bd8-91a7c9a9448d", + "vscode": { + "languageId": "python" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Drogue Parachute Fully Inflated Time - Mean Value: 15.106 s\n", + "Drogue Parachute Fully Inflated Time - Standard Deviation: 0.608 s\n" + ] + }, + { + "data": { + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-07T18:34:58.270807\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "print(\n", + " f'Drogue Parachute Fully Inflated Time - Mean Value: {np.mean(dispersion_results[\"drogueInflatedTime\"]):0.3f} s'\n", + ")\n", + "print(\n", + " f'Drogue Parachute Fully Inflated Time - Standard Deviation: {np.std(dispersion_results[\"drogueInflatedTime\"]):0.3f} s'\n", + ")\n", + "\n", + "plt.figure()\n", + "plt.hist(dispersion_results[\"drogueInflatedTime\"], bins=int(N**0.5))\n", + "plt.title(\"Drogue Parachute Fully Inflated Time\")\n", + "plt.xlabel(\"Time (s)\")\n", + "plt.ylabel(\"Number of Occurences\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "BvMCGZYHpORn" + }, + "source": [ + "### Drogue Parachute Fully Inflated Velocity" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 607 + }, + "id": "KxrpPUzqpORn", + "outputId": "9c102bdb-b805-4aa1-b3a2-1ac329c76976", + "vscode": { + "languageId": "python" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Drogue Parachute Fully Inflated Velocity - Mean Value: 13.936 m/s\n", + "Drogue Parachute Fully Inflated Velocity - Standard Deviation: 3.091 m/s\n" + ] + }, + { + "data": { + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-07T18:34:58.924128\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "print(\n", + " f'Drogue Parachute Fully Inflated Velocity - Mean Value: {np.mean(dispersion_results[\"drogueInflatedVelocity\"]):0.3f} m/s'\n", + ")\n", + "print(\n", + " f'Drogue Parachute Fully Inflated Velocity - Standard Deviation: {np.std(dispersion_results[\"drogueInflatedVelocity\"]):0.3f} m/s'\n", + ")\n", + "\n", + "plt.figure()\n", + "plt.hist(dispersion_results[\"drogueInflatedVelocity\"], bins=int(N**0.5))\n", + "plt.title(\"Drogue Parachute Fully Inflated Velocity\")\n", + "plt.xlabel(\"Velocity m/s)\")\n", + "plt.ylabel(\"Number of Occurences\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "TlWXtnKMrlMI" + }, + "source": [ + "### Error Ellipses\n" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": { + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 837 + }, + "id": "DZRrk_bIr3iG", + "outputId": "b4a5a583-7f53-473a-bec2-2636cdf28a7c", + "vscode": { + "languageId": "python" + } + }, + "outputs": [ + { + "data": { + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-07T18:35:10.687908\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Import libraries\n", + "from imageio import imread\n", + "from matplotlib.patches import Ellipse\n", + "\n", + "# Import background map\n", + "img = imread(\"dispersion_analysis_inputs/Valetudo_basemap_final.jpg\")\n", + "\n", + "# Retrieve dispersion data por apogee and impact XY position\n", + "apogeeX = np.array(dispersion_results[\"apogeeX\"])\n", + "apogeeY = np.array(dispersion_results[\"apogeeY\"])\n", + "impactX = np.array(dispersion_results[\"impactX\"])\n", + "impactY = np.array(dispersion_results[\"impactY\"])\n", + "\n", + "# Define function to calculate eigen values\n", + "def eigsorted(cov):\n", + " vals, vecs = np.linalg.eigh(cov)\n", + " order = vals.argsort()[::-1]\n", + " return vals[order], vecs[:, order]\n", + "\n", + "\n", + "# Create plot figure\n", + "plt.figure(num=None, figsize=(8, 6), dpi=150, facecolor=\"w\", edgecolor=\"k\")\n", + "ax = plt.subplot(111)\n", + "\n", + "# Calculate error ellipses for impact\n", + "impactCov = np.cov(impactX, impactY)\n", + "impactVals, impactVecs = eigsorted(impactCov)\n", + "impactTheta = np.degrees(np.arctan2(*impactVecs[:, 0][::-1]))\n", + "impactW, impactH = 2 * np.sqrt(impactVals)\n", + "\n", + "# Draw error ellipses for impact\n", + "impact_ellipses = []\n", + "for j in [1, 2, 3]:\n", + " impactEll = Ellipse(\n", + " xy=(np.mean(impactX), np.mean(impactY)),\n", + " width=impactW * j,\n", + " height=impactH * j,\n", + " angle=impactTheta,\n", + " color=\"black\",\n", + " )\n", + " impactEll.set_facecolor((0, 0, 1, 0.2))\n", + " impact_ellipses.append(impactEll)\n", + " ax.add_artist(impactEll)\n", + "\n", + "# Calculate error ellipses for apogee\n", + "apogeeCov = np.cov(apogeeX, apogeeY)\n", + "apogeeVals, apogeeVecs = eigsorted(apogeeCov)\n", + "apogeeTheta = np.degrees(np.arctan2(*apogeeVecs[:, 0][::-1]))\n", + "apogeeW, apogeeH = 2 * np.sqrt(apogeeVals)\n", + "\n", + "# Draw error ellipses for apogee\n", + "for j in [1, 2, 3]:\n", + " apogeeEll = Ellipse(\n", + " xy=(np.mean(apogeeX), np.mean(apogeeY)),\n", + " width=apogeeW * j,\n", + " height=apogeeH * j,\n", + " angle=apogeeTheta,\n", + " color=\"black\",\n", + " )\n", + " apogeeEll.set_facecolor((0, 1, 0, 0.2))\n", + " ax.add_artist(apogeeEll)\n", + "\n", + "# Draw launch point\n", + "plt.scatter(0, 0, s=30, marker=\"*\", color=\"black\", label=\"Launch Point\")\n", + "# Draw apogee points\n", + "plt.scatter(apogeeX, apogeeY, s=5, marker=\"^\", color=\"green\", label=\"Simulated Apogee\")\n", + "# Draw impact points\n", + "plt.scatter(\n", + " impactX, impactY, s=5, marker=\"v\", color=\"blue\", label=\"Simulated Landing Point\"\n", + ")\n", + "# Draw real landing point\n", + "plt.scatter(\n", + " 411.89, -61.07, s=20, marker=\"X\", color=\"red\", label=\"Measured Landing Point\"\n", + ")\n", + "\n", + "plt.legend()\n", + "\n", + "# Add title and labels to plot\n", + "ax.set_title(\n", + " \"1$\\sigma$, 2$\\sigma$ and 3$\\sigma$ Dispersion Ellipses: Apogee and Lading Points\"\n", + ")\n", + "ax.set_ylabel(\"North (m)\")\n", + "ax.set_xlabel(\"East (m)\")\n", + "\n", + "# Add background image to plot\n", + "# You can translate the basemap by changing dx and dy (in meters)\n", + "dx = 0\n", + "dy = 0\n", + "plt.imshow(img, zorder=0, extent=[-1000 - dx, 1000 - dx, -1000 - dy, 1000 - dy])\n", + "plt.axhline(0, color=\"black\", linewidth=0.5)\n", + "plt.axvline(0, color=\"black\", linewidth=0.5)\n", + "plt.xlim(-100, 700)\n", + "plt.ylim(-300, 300)\n", + "\n", + "# Save plot and show result\n", + "plt.savefig(str(filename) + \".pdf\", bbox_inches=\"tight\", pad_inches=0)\n", + "plt.savefig(str(filename) + \".svg\", bbox_inches=\"tight\", pad_inches=0)\n", + "plt.show()" + ] + } + ], + "metadata": { + "colab": { + "collapsed_sections": [ + "au88RN0P-bVl", + "-9u9RIaqpOQl", + "tExJzLhDpOQp", + "ifuJX7jYpORB", + "mYD4EQ5spORE", + "ajI4vr7QpORL", + "9m19OV9upORS", + "mQzQELcJpORX", + "7MUVLAM-pORb", + "4LpDYGpfpORf", + "nKSzDWi7pORi", + "BvMCGZYHpORn", + "LhPQQlpHpORq", + "5MvfiSQZvwPK" + ], + "name": "Valetudo_Monte_Carlo_Dispersion_Analysis.ipynb", + "provenance": [], + "toc_visible": true + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + } }, - "outputId": "e2c4e1ef-4720-40ae-abd1-4d2a599bedd4" - } - }, - { - "cell_type": "code", - "execution_count": 4, - "source": [ - "from datetime import datetime\n", - "from time import process_time, perf_counter, time\n", - "import glob\n", - "\n", - "from rocketpy import Environment, SolidMotor, Rocket, Flight, Function\n", - "\n", - "import numpy as np\n", - "from numpy.random import normal, uniform, choice\n", - "from IPython.display import display" - ], - "outputs": [], - "metadata": { - "id": "rNY7u8fApOP_" - } - }, - { - "cell_type": "markdown", - "source": [ - "Next, we import matplotlib to produce awesome looking plots." - ], - "metadata": {} - }, - { - "cell_type": "code", - "execution_count": 5, - "source": [ - "%config InlineBackend.figure_formats = ['svg']\n", - "import matplotlib as mpl\n", - "import matplotlib.pyplot as plt\n", - "\n", - "%matplotlib inline\n", - "mpl.rcParams[\"figure.figsize\"] = [8, 5]\n", - "mpl.rcParams[\"figure.dpi\"] = 120\n", - "mpl.rcParams[\"font.size\"] = 14\n", - "mpl.rcParams[\"legend.fontsize\"] = 14\n", - "mpl.rcParams[\"figure.titlesize\"] = 14" - ], - "outputs": [], - "metadata": { - "id": "0uEmvBIt5Ltg" - } - }, - { - "cell_type": "markdown", - "source": [ - "## Defining Analysis Parameters\n", - "\n", - "The analysis parameters are a collection of expected values (and their uncertainties, or standard deviation) that completely defines a rocket flight.\n", - "As an assumption, the parameters which define the flight can behave in 3 different ways:\n", - " - the parameter is a completely known and has a constant value (i.e. number of fins)\n", - " - the parameter can assume certain discrete values with uniform distribution (i.e. the member of an ensemble forecast, which might be any integer from 0 to 9)\n", - " - the parameter is best represented by a normal (gaussian) distribution with a defined expected value and standard deviation\n", - "\n", - "We implement this using a dictionary, where the key is the name of the parameter and the value is either a tuple or a list, depending on the behaviour of the parameter:\n", - " - if the parameter is know, its value is represented as a list with a single entry (i.e. `\"number_of_fins: [4]\"`)\n", - " - if the parameter can assume certain discrete values with uniform distribution, its values are represented by a list of possible choices (i.e. `\"member_of_ensemble_forecast: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]\"`)\n", - " - if the parameter is best represented by a normal (gaussian) distribution, its value is a tuple with the expected value and its standard deviation (i.e. `\"rocket_mass\": (100, 2)`, where 100 kg is the expected mass, with uncertainty of plus or minus 2 kg)" - ], - "metadata": { - "id": "4ksmBqU7pOQC" - } - }, - { - "cell_type": "code", - "execution_count": 6, - "source": [ - "analysis_parameters = {\n", - " # Mass Details\n", - " \"rocketMass\": (\n", - " 8.257,\n", - " 0.001,\n", - " ), # Rocket's dry mass (kg) and its uncertainty (standard deviation)\n", - " # Propulsion Details - run help(SolidMotor) for more information\n", - " \"impulse\": (1415.15, 35.3), # Motor total impulse (N*s)\n", - " \"burnOut\": (5.274, 1), # Motor burn out time (s)\n", - " \"nozzleRadius\": (21.642 / 1000, 0.5 / 1000), # Motor's nozzle radius (m)\n", - " \"throatRadius\": (8 / 1000, 0.5 / 1000), # Motor's nozzle throat radius (m)\n", - " \"grainSeparation\": (\n", - " 6 / 1000,\n", - " 1 / 1000,\n", - " ), # Motor's grain separation (axial distance between two grains) (m)\n", - " \"grainDensity\": (1707, 50), # Motor's grain density (kg/m^3)\n", - " \"grainOuterRadius\": (21.4 / 1000, 0.375 / 1000), # Motor's grain outer radius (m)\n", - " \"grainInitialInnerRadius\": (\n", - " 9.65 / 1000,\n", - " 0.375 / 1000,\n", - " ), # Motor's grain inner radius (m)\n", - " \"grainInitialHeight\": (120 / 1000, 1 / 1000), # Motor's grain height (m)\n", - " # Aerodynamic Details - run help(Rocket) for more information\n", - " \"inertiaI\": (\n", - " 3.675,\n", - " 0.03675,\n", - " ), # Rocket's inertia moment perpendicular to its axis (kg*m^2)\n", - " \"inertiaZ\": (\n", - " 0.007,\n", - " 0.00007,\n", - " ), # Rocket's inertia moment relative to its axis (kg*m^2)\n", - " \"radius\": (40.45 / 1000, 0.001), # Rocket's radius (kg*m^2)\n", - " \"distanceRocketNozzle\": (\n", - " -1.024,\n", - " 0.001,\n", - " ), # Distance between rocket's center of dry mass and nozzle exit plane (m) (negative)\n", - " \"distanceRocketPropellant\": (\n", - " -0.571,\n", - " 0.001,\n", - " ), # Distance between rocket's center of dry mass and and center of propellant mass (m) (negative)\n", - " \"powerOffDrag\": (\n", - " 0.9081 / 1.05,\n", - " 0.033,\n", - " ), # Multiplier for rocket's drag curve. Usually has a mean value of 1 and a uncertainty of 5% to 10%\n", - " \"powerOnDrag\": (\n", - " 0.9081 / 1.05,\n", - " 0.033,\n", - " ), # Multiplier for rocket's drag curve. Usually has a mean value of 1 and a uncertainty of 5% to 10%\n", - " \"noseLength\": (0.274, 0.001), # Rocket's nose cone length (m)\n", - " \"noseDistanceToCM\": (\n", - " 1.134,\n", - " 0.001,\n", - " ), # Axial distance between rocket's center of dry mass and nearest point in its nose cone (m)\n", - " \"finSpan\": (0.077, 0.0005), # Fin span (m)\n", - " \"finRootChord\": (0.058, 0.0005), # Fin root chord (m)\n", - " \"finTipChord\": (0.018, 0.0005), # Fin tip chord (m)\n", - " \"finDistanceToCM\": (\n", - " -0.906,\n", - " 0.001,\n", - " ), # Axial distance between rocket's center of dry mass and nearest point in its fin (m)\n", - " # Launch and Environment Details - run help(Environment) and help(Flight) for more information\n", - " \"inclination\": (\n", - " 84.7,\n", - " 1,\n", - " ), # Launch rail inclination angle relative to the horizontal plane (degrees)\n", - " \"heading\": (53, 2), # Launch rail heading relative to north (degrees)\n", - " \"railLength\": (5.7, 0.0005), # Launch rail length (m)\n", - " \"ensembleMember\": list(range(10)), # Members of the ensemble forecast to be used\n", - " # Parachute Details - run help(Rocket) for more information\n", - " \"CdSDrogue\": (\n", - " 0.349 * 1.3,\n", - " 0.07,\n", - " ), # Drag coefficient times reference area for the drogue chute (m^2)\n", - " \"lag_rec\": (\n", - " 1,\n", - " 0.5,\n", - " ), # Time delay between parachute ejection signal is detected and parachute is inflated (s)\n", - " # Electronic Systems Details - run help(Rocket) for more information\n", - " \"lag_se\": (\n", - " 0.73,\n", - " 0.16,\n", - " ), # Time delay between sensor signal is received and ejection signal is fired (s)\n", - "}" - ], - "outputs": [], - "metadata": { - "id": "fwoCdOgKpOQD" - } - }, - { - "cell_type": "markdown", - "source": [ - "## Creating a Flight Settings Generator\n", - "\n", - "Now, we create a generator function which will yield all the necessary inputs for a single flight simulation. Each generated input will be randomly generated according to the `analysis_parameters` dicitionary set up above.\n", - "\n", - "This is just a helper function to make the code clearer." - ], - "metadata": { - "id": "EJCbP69TpOQG" - } - }, - { - "cell_type": "code", - "execution_count": 7, - "source": [ - "def flight_settings(analysis_parameters, total_number):\n", - " i = 0\n", - " while i < total_number:\n", - " # Generate a flight setting\n", - " flight_setting = {}\n", - " for parameter_key, parameter_value in analysis_parameters.items():\n", - " if type(parameter_value) is tuple:\n", - " flight_setting[parameter_key] = normal(*parameter_value)\n", - " else:\n", - " flight_setting[parameter_key] = choice(parameter_value)\n", - "\n", - " # Skip if certain values are negative, which happens due to the normal curve but isnt realistic\n", - " if flight_setting[\"lag_rec\"] < 0 or flight_setting[\"lag_se\"] < 0:\n", - " continue\n", - "\n", - " # Update counter\n", - " i += 1\n", - " # Yield a flight setting\n", - " yield flight_setting" - ], - "outputs": [], - "metadata": { - "id": "5XCL9JaIpOQH" - } - }, - { - "cell_type": "markdown", - "source": [ - "## Creating an Export Function\n", - "\n", - "Monte Carlo analyses usually contain data from thousands or tens of thousands of simulations. They can easily take hours to run. Therefore, it is very important to save our outputs to a file during the analysis. This way, if something happens, we do not lose our progress.\n", - "\n", - "These next functions take care of that. They export the simulation data to three different files:\n", - "- `dispersion_input_file`: A file where each line is a json converted dictionary of flight setting inputs to run a single trajectory simulation;\n", - "- `dispersion_output_file`: A file where each line is a json converted dictionary containing the main outputs of a single simulation, such as apogee altitute and maximum velocity;\n", - "- `dispersion_error_file`: A file to store the inputs of simulations which raised errors. This can help us debug these simulations later on." - ], - "metadata": { - "id": "FtdRXCVHpOQO" - } - }, - { - "cell_type": "code", - "execution_count": 8, - "source": [ - "def export_flight_data(flight_setting, flight_data, exec_time):\n", - " # Generate flight results\n", - " flight_result = {\n", - " \"outOfRailTime\": flight_data.outOfRailTime,\n", - " \"outOfRailVelocity\": flight_data.outOfRailVelocity,\n", - " \"apogeeTime\": flight_data.apogeeTime,\n", - " \"apogeeAltitude\": flight_data.apogee - Env.elevation,\n", - " \"apogeeX\": flight_data.apogeeX,\n", - " \"apogeeY\": flight_data.apogeeY,\n", - " \"impactTime\": flight_data.tFinal,\n", - " \"impactX\": flight_data.xImpact,\n", - " \"impactY\": flight_data.yImpact,\n", - " \"impactVelocity\": flight_data.impactVelocity,\n", - " \"initialStaticMargin\": flight_data.rocket.staticMargin(0),\n", - " \"outOfRailStaticMargin\": flight_data.rocket.staticMargin(\n", - " TestFlight.outOfRailTime\n", - " ),\n", - " \"finalStaticMargin\": flight_data.rocket.staticMargin(\n", - " TestFlight.rocket.motor.burnOutTime\n", - " ),\n", - " \"numberOfEvents\": len(flight_data.parachuteEvents),\n", - " \"executionTime\": exec_time,\n", - " }\n", - "\n", - " # Calculate maximum reached velocity\n", - " sol = np.array(flight_data.solution)\n", - " flight_data.vx = Function(\n", - " sol[:, [0, 4]], \"Time (s)\", \"Vx (m/s)\", \"linear\", extrapolation=\"natural\"\n", - " )\n", - " flight_data.vy = Function(\n", - " sol[:, [0, 5]], \"Time (s)\", \"Vy (m/s)\", \"linear\", extrapolation=\"natural\"\n", - " )\n", - " flight_data.vz = Function(\n", - " sol[:, [0, 6]], \"Time (s)\", \"Vz (m/s)\", \"linear\", extrapolation=\"natural\"\n", - " )\n", - " flight_data.v = (\n", - " flight_data.vx**2 + flight_data.vy**2 + flight_data.vz**2\n", - " ) ** 0.5\n", - " flight_data.maxVel = np.amax(flight_data.v.source[:, 1])\n", - " flight_result[\"maxVelocity\"] = flight_data.maxVel\n", - "\n", - " # Take care of parachute results\n", - " if len(flight_data.parachuteEvents) > 0:\n", - " flight_result[\"drogueTriggerTime\"] = flight_data.parachuteEvents[0][0]\n", - " flight_result[\"drogueInflatedTime\"] = (\n", - " flight_data.parachuteEvents[0][0] + flight_data.parachuteEvents[0][1].lag\n", - " )\n", - " flight_result[\"drogueInflatedVelocity\"] = flight_data.v(\n", - " flight_data.parachuteEvents[0][0] + flight_data.parachuteEvents[0][1].lag\n", - " )\n", - " else:\n", - " flight_result[\"drogueTriggerTime\"] = 0\n", - " flight_result[\"drogueInflatedTime\"] = 0\n", - " flight_result[\"drogueInflatedVelocity\"] = 0\n", - "\n", - " # Write flight setting and results to file\n", - " dispersion_input_file.write(str(flight_setting) + \"\\n\")\n", - " dispersion_output_file.write(str(flight_result) + \"\\n\")\n", - "\n", - "\n", - "def export_flight_error(flight_setting):\n", - " dispersion_error_file.write(str(flight_setting) + \"\\n\")" - ], - "outputs": [], - "metadata": { - "id": "1eC2p3jEpOQO" - } - }, - { - "cell_type": "markdown", - "source": [ - "## Simulating Each Flight Setting\n", - "\n", - "Finally, we can start running some simulations!\n", - "\n", - "We start by defining the file name we want to use. Then, we specifiy how many simulations we would like to run by setting the `number_of_simulations` variable.\n", - "\n", - "It is good practice to run something in the order of 100 simulations first, to check for any possible errors in the code. Once we are confident that everything is working well, we increase the number of simulations to something in the range of 5000 to 50000.\n", - "\n", - "We will loop throught all flight settings, creating the environment, rocket and motor classes with the data of the analysis parameters.\n", - "For the power off and on drag and thrust curve user should have in hands the .csv (or .eng for comercial motor's thrust curve).\n", - "\n", - "**Tip**: A better practice is openning the files in \"append\" mode, this way we can acumulate our simulations. To do this, just change the 'a' (write) argument of the `open` function in the third, fourth and fifth line of code to `a` (append)." - ], - "metadata": { - "id": "GX6pB4Y7pOQQ" - } - }, - { - "cell_type": "code", - "execution_count": 48, - "source": [ - "# Basic analysis info\n", - "filename = \"dispersion_analysis_outputs/valetudo_rocket_v0\"\n", - "number_of_simulations = 20000\n", - "\n", - "# Create data files for inputs, outputs and error logging\n", - "dispersion_error_file = open(str(filename) + \".disp_errors.txt\", \"w\")\n", - "dispersion_input_file = open(str(filename) + \".disp_inputs.txt\", \"w\")\n", - "dispersion_output_file = open(str(filename) + \".disp_outputs.txt\", \"w\")\n", - "\n", - "# Initialize counter and timer\n", - "i = 0\n", - "\n", - "initial_wall_time = time()\n", - "initial_cpu_time = process_time()\n", - "\n", - "# Define basic Environment object\n", - "Env = Environment(\n", - " railLength=5.7, date=(2019, 8, 10, 21), latitude=-23.363611, longitude=-48.011389\n", - ")\n", - "Env.setElevation(668)\n", - "Env.maxExpectedHeight = 1500\n", - "Env.setAtmosphericModel(\n", - " type=\"Ensemble\",\n", - " file=\"dispersion_analysis_inputs/LASC2019_reanalysis.nc\",\n", - " dictionary=\"ECMWF\",\n", - ")\n", - "\n", - "# Set up parachutes. This rocket, named Valetudo, only has a drogue chute.\n", - "def drogueTrigger(p, y):\n", - " # Check if rocket is going down, i.e. if it has passed the apogee\n", - " vertical_velocity = y[5]\n", - " # Return true to activate parachute once the vertical velocity is negative\n", - " return True if vertical_velocity < 0 else False\n", - "\n", - "\n", - "# Iterate over flight settings\n", - "out = display(\"Starting\", display_id=True)\n", - "for setting in flight_settings(analysis_parameters, number_of_simulations):\n", - " start_time = process_time()\n", - " i += 1\n", - "\n", - " # Update environment object\n", - " Env.selectEnsembleMember(setting[\"ensembleMember\"])\n", - " Env.railLength = setting[\"railLength\"]\n", - "\n", - " # Create motor\n", - " Keron = SolidMotor(\n", - " thrustSource=\"dispersion_analysis_inputs/thrustCurve.csv\",\n", - " burnOut=5.274,\n", - " reshapeThrustCurve=(setting[\"burnOut\"], setting[\"impulse\"]),\n", - " nozzleRadius=setting[\"nozzleRadius\"],\n", - " throatRadius=setting[\"throatRadius\"],\n", - " grainNumber=6,\n", - " grainSeparation=setting[\"grainSeparation\"],\n", - " grainDensity=setting[\"grainDensity\"],\n", - " grainOuterRadius=setting[\"grainOuterRadius\"],\n", - " grainInitialInnerRadius=setting[\"grainInitialInnerRadius\"],\n", - " grainInitialHeight=setting[\"grainInitialHeight\"],\n", - " interpolationMethod=\"linear\",\n", - " )\n", - "\n", - " # Create rocket\n", - " Valetudo = Rocket(\n", - " motor=Keron,\n", - " radius=setting[\"radius\"],\n", - " mass=setting[\"rocketMass\"],\n", - " inertiaI=setting[\"inertiaI\"],\n", - " inertiaZ=setting[\"inertiaZ\"],\n", - " distanceRocketNozzle=setting[\"distanceRocketNozzle\"],\n", - " distanceRocketPropellant=setting[\"distanceRocketPropellant\"],\n", - " powerOffDrag=\"dispersion_analysis_inputs/Cd_PowerOff.csv\",\n", - " powerOnDrag=\"dispersion_analysis_inputs/Cd_PowerOn.csv\",\n", - " )\n", - " Valetudo.setRailButtons([0.224, -0.93], 30)\n", - " # Edit rocket drag\n", - " Valetudo.powerOffDrag *= setting[\"powerOffDrag\"]\n", - " Valetudo.powerOnDrag *= setting[\"powerOnDrag\"]\n", - " # Add rocket nose, fins and tail\n", - " NoseCone = Valetudo.addNose(\n", - " length=setting[\"noseLength\"],\n", - " kind=\"vonKarman\",\n", - " distanceToCM=setting[\"noseDistanceToCM\"],\n", - " )\n", - " FinSet = Valetudo.addFins(\n", - " n=3,\n", - " rootChord=setting[\"finRootChord\"],\n", - " tipChord=setting[\"finTipChord\"],\n", - " span=setting[\"finSpan\"],\n", - " distanceToCM=setting[\"finDistanceToCM\"],\n", - " )\n", - " # Add parachute\n", - " Drogue = Valetudo.addParachute(\n", - " \"Drogue\",\n", - " CdS=setting[\"CdSDrogue\"],\n", - " trigger=drogueTrigger,\n", - " samplingRate=105,\n", - " lag=setting[\"lag_rec\"] + setting[\"lag_se\"],\n", - " noise=(0, 8.3, 0.5),\n", - " )\n", - "\n", - " # Run trajectory simulation\n", - " try:\n", - " TestFlight = Flight(\n", - " rocket=Valetudo,\n", - " environment=Env,\n", - " inclination=setting[\"inclination\"],\n", - " heading=setting[\"heading\"],\n", - " maxTime=600,\n", - " )\n", - " export_flight_data(setting, TestFlight, process_time() - start_time)\n", - " except Exception as E:\n", - " print(E)\n", - " export_flight_error(setting)\n", - "\n", - " # Register time\n", - " out.update(\n", - " f\"Curent iteration: {i:06d} | Average Time per Iteration: {(process_time() - initial_cpu_time)/i:2.6f} s\"\n", - " )\n", - "\n", - "# Done\n", - "\n", - "## Print and save total time\n", - "final_string = f\"Completed {i} iterations successfully. Total CPU time: {process_time() - initial_cpu_time} s. Total wall time: {time() - initial_wall_time} s\"\n", - "out.update(final_string)\n", - "dispersion_input_file.write(final_string + \"\\n\")\n", - "dispersion_output_file.write(final_string + \"\\n\")\n", - "dispersion_error_file.write(final_string + \"\\n\")\n", - "\n", - "## Close files\n", - "dispersion_input_file.close()\n", - "dispersion_output_file.close()\n", - "dispersion_error_file.close()" - ], - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - "'Curent iteration: 019999 | Average Time per Iteration: 0.000289 s'" - ] - }, - "metadata": {} - } - ], - "metadata": { - "id": "GILiaO30pOQS", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 34 - }, - "outputId": "5a2ae15d-5c16-4ae0-f28b-165730d2419d" - } - }, - { - "cell_type": "markdown", - "source": [ - "## Post-processing Monte Carlo Dispersion Results\n", - "\n", - "Now that we have finish running thousands of simulations, it is time to process the results and get some nice graphs out of them! " - ], - "metadata": {} - }, - { - "cell_type": "markdown", - "source": [ - "### Importing Dispersion Analysis Saved Data\n", - "\n", - "We start by loading the file which stores the outputs." - ], - "metadata": { - "id": "X8ewOccUpOQb" - } - }, - { - "cell_type": "code", - "execution_count": 49, - "source": [ - "filename = \"dispersion_analysis_outputs/valetudo_rocket_v0\"\n", - "\n", - "# Initialize variable to store all results\n", - "dispersion_general_results = []\n", - "\n", - "dispersion_results = {\n", - " \"outOfRailTime\": [],\n", - " \"outOfRailVelocity\": [],\n", - " \"apogeeTime\": [],\n", - " \"apogeeAltitude\": [],\n", - " \"apogeeX\": [],\n", - " \"apogeeY\": [],\n", - " \"impactTime\": [],\n", - " \"impactX\": [],\n", - " \"impactY\": [],\n", - " \"impactVelocity\": [],\n", - " \"initialStaticMargin\": [],\n", - " \"outOfRailStaticMargin\": [],\n", - " \"finalStaticMargin\": [],\n", - " \"numberOfEvents\": [],\n", - " \"maxVelocity\": [],\n", - " \"drogueTriggerTime\": [],\n", - " \"drogueInflatedTime\": [],\n", - " \"drogueInflatedVelocity\": [],\n", - " \"executionTime\": [],\n", - "}\n", - "\n", - "# Get all dispersion results\n", - "# Get file\n", - "dispersion_output_file = open(str(filename) + \".disp_outputs.txt\", \"r+\")\n", - "\n", - "# Read each line of the file and convert to dict\n", - "for line in dispersion_output_file:\n", - " # Skip comments lines\n", - " if line[0] != \"{\":\n", - " continue\n", - " # Eval results and store them\n", - " flight_result = eval(line)\n", - " dispersion_general_results.append(flight_result)\n", - " for parameter_key, parameter_value in flight_result.items():\n", - " dispersion_results[parameter_key].append(parameter_value)\n", - "\n", - "# Close data file\n", - "dispersion_output_file.close()\n", - "\n", - "# Print number of flights simulated\n", - "N = len(dispersion_general_results)\n", - "print(\"Number of simulations: \", N)" - ], - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Number of simulations: 20000\n" - ] - } - ], - "metadata": { - "id": "-7qgTJzRpOQb", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "76d2cecd-a09f-429f-cca2-f4e03e39d49e" - } - }, - { - "cell_type": "markdown", - "source": [ - "## Dispersion Results\n", - "\n", - "Now, we plot the histogram for every single output. This shows how are outputs behave. Valuable statistical data can be calculated based on them." - ], - "metadata": { - "id": "ioeUkzPipOQe" - } - }, - { - "cell_type": "markdown", - "source": [ - "### Out of Rail Time" - ], - "metadata": { - "id": "QDy8KaJ8pOQg" - } - }, - { - "cell_type": "code", - "execution_count": 73, - "source": [ - "print(\n", - " f'Out of Rail Time - Mean Value: {np.mean(dispersion_results[\"outOfRailTime\"]):0.3f} s'\n", - ")\n", - "print(\n", - " f'Out of Rail Time - Standard Deviation: {np.std(dispersion_results[\"outOfRailTime\"]):0.3f} s'\n", - ")\n", - "\n", - "plt.figure()\n", - "plt.hist(dispersion_results[\"outOfRailTime\"], bins=int(N**0.5))\n", - "plt.title(\"Out of Rail Time\")\n", - "plt.xlabel(\"Time (s)\")\n", - "plt.ylabel(\"Number of Occurences\")\n", - "plt.show()\n", - "\n", - "# You can also use Plotly instead of Matplotlib if you wish!\n", - "# import plotly.express as px\n", - "# fig1 = px.histogram(\n", - "# x=dispersion_results[\"outOfRailTime\"],\n", - "# title='Out of Rail Time',\n", - "# nbins=int(N**0.5)\n", - "# )\n", - "# fig1.update_layout(\n", - "# xaxis_title_text='Time (s)',\n", - "# yaxis_title_text='Number of occurences'\n", - "# )" - ], - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Out of Rail Time - Mean Value: 1.084 s\n", - "Out of Rail Time - Standard Deviation: 0.183 s\n" - ] - }, - { - "output_type": "display_data", - "data": { - "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-07T19:04:11.797608\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - } - } - ], - "metadata": { - "id": "1JQSzd5cpOQh", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 607 - }, - "outputId": "455abcdf-9dd7-4689-9523-50154c7fb302" - } - }, - { - "cell_type": "markdown", - "source": [ - "### Out of Rail Velocity" - ], - "metadata": { - "id": "-9u9RIaqpOQl" - } - }, - { - "cell_type": "code", - "execution_count": 51, - "source": [ - "print(\n", - " f'Out of Rail Velocity - Mean Value: {np.mean(dispersion_results[\"outOfRailVelocity\"]):0.3f} m/s'\n", - ")\n", - "print(\n", - " f'Out of Rail Velocity - Standard Deviation: {np.std(dispersion_results[\"outOfRailVelocity\"]):0.3f} m/s'\n", - ")\n", - "\n", - "plt.figure()\n", - "plt.hist(dispersion_results[\"outOfRailVelocity\"], bins=int(N**0.5))\n", - "plt.title(\"Out of Rail Velocity\")\n", - "plt.xlabel(\"Velocity (m/s)\")\n", - "plt.ylabel(\"Number of Occurences\")\n", - "plt.show()" - ], - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Out of Rail Velocity - Mean Value: 23.081 m/s\n", - "Out of Rail Velocity - Standard Deviation: 3.116 m/s\n" - ] - }, - { - "output_type": "display_data", - "data": { - "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-07T18:34:47.959518\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - } - } - ], - "metadata": { - "id": "jE23vILMpOQm", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 607 - }, - "outputId": "aa04f5a4-26f2-47e8-831a-41d3e76b616f" - } - }, - { - "cell_type": "markdown", - "source": [ - "### Apogee Time" - ], - "metadata": { - "id": "tExJzLhDpOQp" - } - }, - { - "cell_type": "code", - "execution_count": 52, - "source": [ - "print(\n", - " f'Apogee Time - Mean Value: {np.mean(dispersion_results[\"apogeeTime\"]):0.3f} s'\n", - ")\n", - "print(\n", - " f'Apogee Time - Standard Deviation: {np.std(dispersion_results[\"apogeeTime\"]):0.3f} s'\n", - ")\n", - "\n", - "plt.figure()\n", - "plt.hist(dispersion_results[\"apogeeTime\"], bins=int(N**0.5))\n", - "plt.title(\"Apogee Time\")\n", - "plt.xlabel(\"Time (s)\")\n", - "plt.ylabel(\"Number of Occurences\")\n", - "plt.show()" - ], - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Apogee Time - Mean Value: 14.305 s\n", - "Apogee Time - Standard Deviation: 0.344 s\n" - ] - }, - { - "output_type": "display_data", - "data": { - "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-07T18:34:48.668781\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - } - } - ], - "metadata": { - "id": "l8zjT_VjpOQq", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 607 - }, - "outputId": "1c15fe12-afae-4035-f085-7d82e61d24d9" - } - }, - { - "cell_type": "markdown", - "source": [ - "### Apogee Altitude" - ], - "metadata": { - "id": "erNB46vApOQt" - } - }, - { - "cell_type": "code", - "execution_count": 53, - "source": [ - "print(\n", - " f'Apogee Altitude - Mean Value: {np.mean(dispersion_results[\"apogeeAltitude\"]):0.3f} m'\n", - ")\n", - "print(\n", - " f'Apogee Altitude - Standard Deviation: {np.std(dispersion_results[\"apogeeAltitude\"]):0.3f} m'\n", - ")\n", - "\n", - "plt.figure()\n", - "plt.hist(dispersion_results[\"apogeeAltitude\"], bins=int(N**0.5))\n", - "plt.title(\"Apogee Altitude\")\n", - "plt.xlabel(\"Altitude (m)\")\n", - "plt.ylabel(\"Number of Occurences\")\n", - "plt.show()\n", - "\n", - "# Real measured apogee for Valetudo = 860 m" - ], - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Apogee Altitude - Mean Value: 847.247 m\n", - "Apogee Altitude - Standard Deviation: 42.020 m\n" - ] - }, - { - "output_type": "display_data", - "data": { - "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-07T18:34:49.466956\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - } - } - ], - "metadata": { - "id": "gWWMoOClpOQv", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 607 - }, - "outputId": "88f2cf05-142c-4bb1-ce64-9879696107a7" - } - }, - { - "cell_type": "markdown", - "source": [ - "### Apogee X Position" - ], - "metadata": { - "id": "7bBvFJ5xpOQ1" - } - }, - { - "cell_type": "code", - "execution_count": 54, - "source": [ - "print(\n", - " f'Apogee X Position - Mean Value: {np.mean(dispersion_results[\"apogeeX\"]):0.3f} m'\n", - ")\n", - "print(\n", - " f'Apogee X Position - Standard Deviation: {np.std(dispersion_results[\"apogeeX\"]):0.3f} m'\n", - ")\n", - "\n", - "plt.figure()\n", - "plt.hist(dispersion_results[\"apogeeX\"], bins=int(N**0.5))\n", - "plt.title(\"Apogee X Position\")\n", - "plt.xlabel(\"Apogee X Position (m)\")\n", - "plt.ylabel(\"Number of Occurences\")\n", - "plt.show()" - ], - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Apogee X Position - Mean Value: 108.492 m\n", - "Apogee X Position - Standard Deviation: 24.629 m\n" - ] - }, - { - "output_type": "display_data", - "data": { - "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-07T18:34:50.197193\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - } - } - ], - "metadata": { - "id": "nGdsF9VppOQ3", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 607 - }, - "outputId": "b4f0a3aa-afa1-4942-91b8-8ad61d263244" - } - }, - { - "cell_type": "markdown", - "source": [ - "### Apogee Y Position" - ], - "metadata": { - "id": "-LtYxB0lpOQ8" - } - }, - { - "cell_type": "code", - "execution_count": 55, - "source": [ - "print(\n", - " f'Apogee Y Position - Mean Value: {np.mean(dispersion_results[\"apogeeY\"]):0.3f} m'\n", - ")\n", - "print(\n", - " f'Apogee Y Position - Standard Deviation: {np.std(dispersion_results[\"apogeeY\"]):0.3f} m'\n", - ")\n", - "\n", - "plt.figure()\n", - "plt.hist(dispersion_results[\"apogeeY\"], bins=int(N**0.5))\n", - "plt.title(\"Apogee Y Position\")\n", - "plt.xlabel(\"Apogee Y Position (m)\")\n", - "plt.ylabel(\"Number of Occurences\")\n", - "plt.show()" - ], - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Apogee Y Position - Mean Value: 107.614 m\n", - "Apogee Y Position - Standard Deviation: 19.732 m\n" - ] - }, - { - "output_type": "display_data", - "data": { - "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-07T18:34:50.895468\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - } - } - ], - "metadata": { - "id": "ocq6GmeNpOQ8", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 607 - }, - "outputId": "f3a45339-c0a6-4819-bd03-60f7fe6df963" - } - }, - { - "cell_type": "markdown", - "source": [ - "### Impact Time" - ], - "metadata": { - "id": "ifuJX7jYpORB" - } - }, - { - "cell_type": "code", - "execution_count": 56, - "source": [ - "print(\n", - " f'Impact Time - Mean Value: {np.mean(dispersion_results[\"impactTime\"]):0.3f} s'\n", - ")\n", - "print(\n", - " f'Impact Time - Standard Deviation: {np.std(dispersion_results[\"impactTime\"]):0.3f} s'\n", - ")\n", - "\n", - "plt.figure()\n", - "plt.hist(dispersion_results[\"impactTime\"], bins=int(N**0.5))\n", - "plt.title(\"Impact Time\")\n", - "plt.xlabel(\"Time (s)\")\n", - "plt.ylabel(\"Number of Occurences\")\n", - "plt.show()" - ], - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Impact Time - Mean Value: 62.911 s\n", - "Impact Time - Standard Deviation: 4.159 s\n" - ] - }, - { - "output_type": "display_data", - "data": { - "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-07T18:34:51.588750\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - } - } - ], - "metadata": { - "id": "52j6t5-MpORB", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 607 - }, - "outputId": "9cba31b1-c731-402f-b138-df5c72521408" - } - }, - { - "cell_type": "markdown", - "source": [ - "### Impact X Position" - ], - "metadata": { - "id": "mYD4EQ5spORE" - } - }, - { - "cell_type": "code", - "execution_count": 57, - "source": [ - "print(\n", - " f'Impact X Position - Mean Value: {np.mean(dispersion_results[\"impactX\"]):0.3f} m'\n", - ")\n", - "print(\n", - " f'Impact X Position - Standard Deviation: {np.std(dispersion_results[\"impactX\"]):0.3f} m'\n", - ")\n", - "\n", - "plt.figure()\n", - "plt.hist(dispersion_results[\"impactX\"], bins=int(N**0.5))\n", - "plt.title(\"Impact X Position\")\n", - "plt.xlabel(\"Impact X Position (m)\")\n", - "plt.ylabel(\"Number of Occurences\")\n", - "plt.show()" - ], - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Impact X Position - Mean Value: 364.105 m\n", - "Impact X Position - Standard Deviation: 46.835 m\n" - ] - }, - { - "output_type": "display_data", - "data": { - "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-07T18:34:52.272039\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - } - } - ], - "metadata": { - "id": "uzL8-1UGpORF", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 607 - }, - "outputId": "5c74f8d1-b909-44cf-a5c9-2f1b5e9dda1d" - } - }, - { - "cell_type": "markdown", - "source": [ - "### Impact Y Position" - ], - "metadata": { - "id": "ajI4vr7QpORL" - } - }, - { - "cell_type": "code", - "execution_count": 58, - "source": [ - "print(\n", - " f'Impact Y Position - Mean Value: {np.mean(dispersion_results[\"impactY\"]):0.3f} m'\n", - ")\n", - "print(\n", - " f'Impact Y Position - Standard Deviation: {np.std(dispersion_results[\"impactY\"]):0.3f} m'\n", - ")\n", - "\n", - "plt.figure()\n", - "plt.hist(dispersion_results[\"impactY\"], bins=int(N**0.5))\n", - "plt.title(\"Impact Y Position\")\n", - "plt.xlabel(\"Impact Y Position (m)\")\n", - "plt.ylabel(\"Number of Occurences\")\n", - "plt.show()" - ], - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Impact Y Position - Mean Value: 16.109 m\n", - "Impact Y Position - Standard Deviation: 36.402 m\n" - ] - }, - { - "output_type": "display_data", - "data": { - "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-07T18:34:53.068212\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - } - } - ], - "metadata": { - "id": "Q-ghmNVopORM", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 607 - }, - "outputId": "cd0c81a8-a3fc-4710-cadf-a20cf0882bec" - } - }, - { - "cell_type": "markdown", - "source": [ - "### Impact Velocity" - ], - "metadata": { - "id": "H7_H_eeXpORP" - } - }, - { - "cell_type": "code", - "execution_count": 59, - "source": [ - "print(\n", - " f'Impact Velocity - Mean Value: {np.mean(dispersion_results[\"impactVelocity\"]):0.3f} m/s'\n", - ")\n", - "print(\n", - " f'Impact Velocity - Standard Deviation: {np.std(dispersion_results[\"impactVelocity\"]):0.3f} m/s'\n", - ")\n", - "\n", - "plt.figure()\n", - "plt.hist(dispersion_results[\"impactVelocity\"], bins=int(N**0.5))\n", - "plt.title(\"Impact Velocity\")\n", - "# plt.grid()\n", - "plt.xlim(-35, 0)\n", - "plt.xlabel(\"Velocity (m/s)\")\n", - "plt.ylabel(\"Number of Occurences\")\n", - "plt.show()" - ], - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Impact Velocity - Mean Value: -18.280 m/s\n", - "Impact Velocity - Standard Deviation: 1.503 m/s\n" - ] - }, - { - "output_type": "display_data", - "data": { - "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-07T18:34:53.778475\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - } - } - ], - "metadata": { - "id": "Ryx7KEEVpORP", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 607 - }, - "outputId": "90cdcf97-affc-4f09-ed2a-9b854257a8a0" - } - }, - { - "cell_type": "markdown", - "source": [ - "### Static Margin" - ], - "metadata": { - "id": "9m19OV9upORS" - } - }, - { - "cell_type": "code", - "execution_count": 60, - "source": [ - "print(\n", - " f'Initial Static Margin - Mean Value: {np.mean(dispersion_results[\"initialStaticMargin\"]):0.3f} c'\n", - ")\n", - "print(\n", - " f'Initial Static Margin - Standard Deviation: {np.std(dispersion_results[\"initialStaticMargin\"]):0.3f} c'\n", - ")\n", - "\n", - "print(\n", - " f'Out of Rail Static Margin - Mean Value: {np.mean(dispersion_results[\"outOfRailStaticMargin\"]):0.3f} c'\n", - ")\n", - "print(\n", - " f'Out of Rail Static Margin - Standard Deviation: {np.std(dispersion_results[\"outOfRailStaticMargin\"]):0.3f} c'\n", - ")\n", - "\n", - "print(\n", - " f'Final Static Margin - Mean Value: {np.mean(dispersion_results[\"finalStaticMargin\"]):0.3f} c'\n", - ")\n", - "print(\n", - " f'Final Static Margin - Standard Deviation: {np.std(dispersion_results[\"finalStaticMargin\"]):0.3f} c'\n", - ")\n", - "\n", - "plt.figure()\n", - "plt.hist(dispersion_results[\"initialStaticMargin\"], label=\"Initial\", bins=int(N**0.5))\n", - "plt.hist(\n", - " dispersion_results[\"outOfRailStaticMargin\"], label=\"Out of Rail\", bins=int(N**0.5)\n", - ")\n", - "plt.hist(dispersion_results[\"finalStaticMargin\"], label=\"Final\", bins=int(N**0.5))\n", - "plt.legend()\n", - "plt.title(\"Static Margin\")\n", - "plt.xlabel(\"Static Margin (c)\")\n", - "plt.ylabel(\"Number of Occurences\")\n", - "plt.show()" - ], - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Initial Static Margin - Mean Value: 1.998 c\n", - "Initial Static Margin - Standard Deviation: 0.326 c\n", - "Out of Rail Static Margin - Mean Value: 2.178 c\n", - "Out of Rail Static Margin - Standard Deviation: 0.330 c\n", - "Final Static Margin - Mean Value: 3.026 c\n", - "Final Static Margin - Standard Deviation: 0.347 c\n" - ] - }, - { - "output_type": "display_data", - "data": { - "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-07T18:34:55.486698\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - } - } - ], - "metadata": { - "id": "a2Tpo9hjpORT", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 675 - }, - "outputId": "94129858-cd6b-4af6-8f88-66923455a566" - } - }, - { - "cell_type": "markdown", - "source": [ - "### Maximum Velocity" - ], - "metadata": { - "id": "mQzQELcJpORX" - } - }, - { - "cell_type": "code", - "execution_count": 61, - "source": [ - "print(\n", - " f'Maximum Velocity - Mean Value: {np.mean(dispersion_results[\"maxVelocity\"]):0.3f} m/s'\n", - ")\n", - "print(\n", - " f'Maximum Velocity - Standard Deviation: {np.std(dispersion_results[\"maxVelocity\"]):0.3f} m/s'\n", - ")\n", - "\n", - "plt.figure()\n", - "plt.hist(dispersion_results[\"maxVelocity\"], bins=int(N**0.5))\n", - "plt.title(\"Maximum Velocity\")\n", - "plt.xlabel(\"Velocity (m/s)\")\n", - "plt.ylabel(\"Number of Occurences\")\n", - "plt.show()" - ], - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Maximum Velocity - Mean Value: 124.881 m/s\n", - "Maximum Velocity - Standard Deviation: 5.655 m/s\n" - ] - }, - { - "output_type": "display_data", - "data": { - "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-07T18:34:56.395755\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - } - } - ], - "metadata": { - "id": "nOu1O8MXpORY", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 607 - }, - "outputId": "7510aec8-7b73-4751-f033-8367cd0c9bdc" - } - }, - { - "cell_type": "markdown", - "source": [ - "### Number of Parachute Events\n", - "\n", - "This is usefull to check if the parachute was triggered in every flight." - ], - "metadata": { - "id": "7MUVLAM-pORb" - } - }, - { - "cell_type": "code", - "execution_count": 62, - "source": [ - "plt.figure()\n", - "plt.hist(dispersion_results[\"numberOfEvents\"])\n", - "plt.title(\"Parachute Events\")\n", - "plt.xlabel(\"Number of Parachute Events\")\n", - "plt.ylabel(\"Number of Occurences\")\n", - "plt.show()" - ], - "outputs": [ - { - "output_type": "display_data", - "data": { - "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-07T18:34:56.971158\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - } - } - ], - "metadata": { - "id": "yhcWi2kCpORb", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 607 - }, - "outputId": "dee54569-8213-46cc-e287-9fffd2b8e43c" - } - }, - { - "cell_type": "markdown", - "source": [ - "### Drogue Parachute Trigger Time" - ], - "metadata": { - "id": "4LpDYGpfpORf" - } - }, - { - "cell_type": "code", - "execution_count": 63, - "source": [ - "print(\n", - " f'Drogue Parachute Trigger Time - Mean Value: {np.mean(dispersion_results[\"drogueTriggerTime\"]):0.3f} s'\n", - ")\n", - "print(\n", - " f'Drogue Parachute Trigger Time - Standard Deviation: {np.std(dispersion_results[\"drogueTriggerTime\"]):0.3f} s'\n", - ")\n", - "\n", - "plt.figure()\n", - "plt.hist(dispersion_results[\"drogueTriggerTime\"], bins=int(N**0.5))\n", - "plt.title(\"Drogue Parachute Trigger Time\")\n", - "plt.xlabel(\"Time (s)\")\n", - "plt.ylabel(\"Number of Occurences\")\n", - "plt.show()" - ], - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Drogue Parachute Trigger Time - Mean Value: 13.338 s\n", - "Drogue Parachute Trigger Time - Standard Deviation: 0.347 s\n" - ] - }, - { - "output_type": "display_data", - "data": { - "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-07T18:34:57.599505\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - } - } - ], - "metadata": { - "id": "lvCksZG8pORf", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 607 - }, - "outputId": "3efd19ed-11e9-41d1-8e66-04da384665ce" - } - }, - { - "cell_type": "markdown", - "source": [ - "### Drogue Parachute Fully Inflated Time" - ], - "metadata": { - "id": "nKSzDWi7pORi" - } - }, - { - "cell_type": "code", - "execution_count": 64, - "source": [ - "print(\n", - " f'Drogue Parachute Fully Inflated Time - Mean Value: {np.mean(dispersion_results[\"drogueInflatedTime\"]):0.3f} s'\n", - ")\n", - "print(\n", - " f'Drogue Parachute Fully Inflated Time - Standard Deviation: {np.std(dispersion_results[\"drogueInflatedTime\"]):0.3f} s'\n", - ")\n", - "\n", - "plt.figure()\n", - "plt.hist(dispersion_results[\"drogueInflatedTime\"], bins=int(N**0.5))\n", - "plt.title(\"Drogue Parachute Fully Inflated Time\")\n", - "plt.xlabel(\"Time (s)\")\n", - "plt.ylabel(\"Number of Occurences\")\n", - "plt.show()" - ], - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Drogue Parachute Fully Inflated Time - Mean Value: 15.106 s\n", - "Drogue Parachute Fully Inflated Time - Standard Deviation: 0.608 s\n" - ] - }, - { - "output_type": "display_data", - "data": { - "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-07T18:34:58.270807\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - } - } - ], - "metadata": { - "id": "KCYKVFYXpORj", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 607 - }, - "outputId": "8ae49853-0f08-4bf6-9bd8-91a7c9a9448d" - } - }, - { - "cell_type": "markdown", - "source": [ - "### Drogue Parachute Fully Inflated Velocity" - ], - "metadata": { - "id": "BvMCGZYHpORn" - } - }, - { - "cell_type": "code", - "execution_count": 65, - "source": [ - "print(\n", - " f'Drogue Parachute Fully Inflated Velocity - Mean Value: {np.mean(dispersion_results[\"drogueInflatedVelocity\"]):0.3f} m/s'\n", - ")\n", - "print(\n", - " f'Drogue Parachute Fully Inflated Velocity - Standard Deviation: {np.std(dispersion_results[\"drogueInflatedVelocity\"]):0.3f} m/s'\n", - ")\n", - "\n", - "plt.figure()\n", - "plt.hist(dispersion_results[\"drogueInflatedVelocity\"], bins=int(N**0.5))\n", - "plt.title(\"Drogue Parachute Fully Inflated Velocity\")\n", - "plt.xlabel(\"Velocity m/s)\")\n", - "plt.ylabel(\"Number of Occurences\")\n", - "plt.show()" - ], - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Drogue Parachute Fully Inflated Velocity - Mean Value: 13.936 m/s\n", - "Drogue Parachute Fully Inflated Velocity - Standard Deviation: 3.091 m/s\n" - ] - }, - { - "output_type": "display_data", - "data": { - "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-07T18:34:58.924128\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - } - } - ], - "metadata": { - "id": "KxrpPUzqpORn", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 607 - }, - "outputId": "9c102bdb-b805-4aa1-b3a2-1ac329c76976" - } - }, - { - "cell_type": "markdown", - "source": [ - "### Error Ellipses\n" - ], - "metadata": { - "id": "TlWXtnKMrlMI" - } - }, - { - "cell_type": "code", - "execution_count": 69, - "source": [ - "# Import libraries\n", - "from imageio import imread\n", - "from matplotlib.patches import Ellipse\n", - "\n", - "# Import background map\n", - "img = imread(\"dispersion_analysis_inputs/Valetudo_basemap_final.jpg\")\n", - "\n", - "# Retrieve dispersion data por apogee and impact XY position\n", - "apogeeX = np.array(dispersion_results[\"apogeeX\"])\n", - "apogeeY = np.array(dispersion_results[\"apogeeY\"])\n", - "impactX = np.array(dispersion_results[\"impactX\"])\n", - "impactY = np.array(dispersion_results[\"impactY\"])\n", - "\n", - "# Define function to calculate eigen values\n", - "def eigsorted(cov):\n", - " vals, vecs = np.linalg.eigh(cov)\n", - " order = vals.argsort()[::-1]\n", - " return vals[order], vecs[:, order]\n", - "\n", - "\n", - "# Create plot figure\n", - "plt.figure(num=None, figsize=(8, 6), dpi=150, facecolor=\"w\", edgecolor=\"k\")\n", - "ax = plt.subplot(111)\n", - "\n", - "# Calculate error ellipses for impact\n", - "impactCov = np.cov(impactX, impactY)\n", - "impactVals, impactVecs = eigsorted(impactCov)\n", - "impactTheta = np.degrees(np.arctan2(*impactVecs[:, 0][::-1]))\n", - "impactW, impactH = 2 * np.sqrt(impactVals)\n", - "\n", - "# Draw error ellipses for impact\n", - "impact_ellipses = []\n", - "for j in [1, 2, 3]:\n", - " impactEll = Ellipse(\n", - " xy=(np.mean(impactX), np.mean(impactY)),\n", - " width=impactW * j,\n", - " height=impactH * j,\n", - " angle=impactTheta,\n", - " color=\"black\",\n", - " )\n", - " impactEll.set_facecolor((0, 0, 1, 0.2))\n", - " impact_ellipses.append(impactEll)\n", - " ax.add_artist(impactEll)\n", - "\n", - "# Calculate error ellipses for apogee\n", - "apogeeCov = np.cov(apogeeX, apogeeY)\n", - "apogeeVals, apogeeVecs = eigsorted(apogeeCov)\n", - "apogeeTheta = np.degrees(np.arctan2(*apogeeVecs[:, 0][::-1]))\n", - "apogeeW, apogeeH = 2 * np.sqrt(apogeeVals)\n", - "\n", - "# Draw error ellipses for apogee\n", - "for j in [1, 2, 3]:\n", - " apogeeEll = Ellipse(\n", - " xy=(np.mean(apogeeX), np.mean(apogeeY)),\n", - " width=apogeeW * j,\n", - " height=apogeeH * j,\n", - " angle=apogeeTheta,\n", - " color=\"black\",\n", - " )\n", - " apogeeEll.set_facecolor((0, 1, 0, 0.2))\n", - " ax.add_artist(apogeeEll)\n", - "\n", - "# Draw launch point\n", - "plt.scatter(0, 0, s=30, marker=\"*\", color=\"black\", label=\"Launch Point\")\n", - "# Draw apogee points\n", - "plt.scatter(apogeeX, apogeeY, s=5, marker=\"^\", color=\"green\", label=\"Simulated Apogee\")\n", - "# Draw impact points\n", - "plt.scatter(\n", - " impactX, impactY, s=5, marker=\"v\", color=\"blue\", label=\"Simulated Landing Point\"\n", - ")\n", - "# Draw real landing point\n", - "plt.scatter(\n", - " 411.89, -61.07, s=20, marker=\"X\", color=\"red\", label=\"Measured Landing Point\"\n", - ")\n", - "\n", - "plt.legend()\n", - "\n", - "# Add title and labels to plot\n", - "ax.set_title(\n", - " \"1$\\sigma$, 2$\\sigma$ and 3$\\sigma$ Dispersion Ellipses: Apogee and Lading Points\"\n", - ")\n", - "ax.set_ylabel(\"North (m)\")\n", - "ax.set_xlabel(\"East (m)\")\n", - "\n", - "# Add background image to plot\n", - "# You can translate the basemap by changing dx and dy (in meters)\n", - "dx = 0\n", - "dy = 0\n", - "plt.imshow(img, zorder=0, extent=[-1000 - dx, 1000 - dx, -1000 - dy, 1000 - dy])\n", - "plt.axhline(0, color=\"black\", linewidth=0.5)\n", - "plt.axvline(0, color=\"black\", linewidth=0.5)\n", - "plt.xlim(-100, 700)\n", - "plt.ylim(-300, 300)\n", - "\n", - "# Save plot and show result\n", - "plt.savefig(str(filename) + \".pdf\", bbox_inches=\"tight\", pad_inches=0)\n", - "plt.savefig(str(filename) + \".svg\", bbox_inches=\"tight\", pad_inches=0)\n", - "plt.show()" - ], - "outputs": [ - { - "output_type": "display_data", - "data": { - "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-07T18:35:10.687908\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", - "text/plain": [ - "
" - ] - }, - "metadata": {} - } - ], - "metadata": { - "id": "DZRrk_bIr3iG", - "cellView": "both", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 837 - }, - "outputId": "b4a5a583-7f53-473a-bec2-2636cdf28a7c" - } - } - ] + "nbformat": 4, + "nbformat_minor": 2 } \ No newline at end of file diff --git a/docs/notebooks/dispersion_analysis/parachute_drop_from_helicopter.ipynb b/docs/notebooks/dispersion_analysis/parachute_drop_from_helicopter.ipynb index ef4ec11c2..04c64be21 100644 --- a/docs/notebooks/dispersion_analysis/parachute_drop_from_helicopter.ipynb +++ b/docs/notebooks/dispersion_analysis/parachute_drop_from_helicopter.ipynb @@ -1,96 +1,81 @@ { - "nbformat": 4, - "nbformat_minor": 2, - "metadata": { - "colab": { - "name": "Valetudo_Monte_Carlo_Dispersion_Analysis.ipynb", - "provenance": [], - "collapsed_sections": [ - "au88RN0P-bVl", - "-9u9RIaqpOQl", - "tExJzLhDpOQp", - "ifuJX7jYpORB", - "mYD4EQ5spORE", - "ajI4vr7QpORL", - "9m19OV9upORS", - "mQzQELcJpORX", - "7MUVLAM-pORb", - "4LpDYGpfpORf", - "nKSzDWi7pORi", - "BvMCGZYHpORn", - "LhPQQlpHpORq", - "5MvfiSQZvwPK" - ], - "toc_visible": true - }, - "kernelspec": { - "name": "python385jvsc74a57bd0c2da7378535a81a5062c7d9d5abfaea347836f969bbf0660b64f76fb08a148af", - "display_name": "Python 3.8.5 64-bit ('rocketpy_venv': conda)" - } - }, "cells": [ { "cell_type": "markdown", + "metadata": { + "id": "V0OcBOvipOP8" + }, "source": [ "# Monte Carlo Dispersion Analysis of a Parachute Drop from Helicopter using RocketPy\n", "\n", "This is an advanced use of RocketPy. This notebook wraps RocketPy's methods to run a Monte Carlo analysis and predict probability distributions of the rocket's landing point if realeased from a helicopter. This is a common test used to validate the parachute system before a rocket launch." - ], - "metadata": { - "id": "V0OcBOvipOP8" - } + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "## Clone repository if using Google Colab\n", "\n", "If you are running this using Binder, or you are running locally with the necessary files, you do not need to run this.\n", "On the other hand, if you are running on Google Colab, make sure to run the cell below to clone the repository and download the necessary files." - ], - "metadata": {} + ] }, { "cell_type": "code", "execution_count": null, + "metadata": { + "vscode": { + "languageId": "python" + } + }, + "outputs": [], "source": [ "!git clone https://github.com/giovaniceotto/RocketPy.git\n", "import os\n", "\n", "os.chdir(\"RocketPy/docs/notebooks/dispersion_analysis\")" - ], - "outputs": [], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": { + "id": "Um2fvNlQpTAH" + }, "source": [ "## Install and Load Necessary Libraries\n", "\n" - ], - "metadata": { - "id": "Um2fvNlQpTAH" - } + ] }, { "cell_type": "code", "execution_count": null, - "source": [ - "!pip install netCDF4\n", - "!pip install rocketpy" - ], - "outputs": [], "metadata": { - "id": "JJNfsYrwpXGJ", "colab": { "base_uri": "https://localhost:8080/" }, - "outputId": "e2c4e1ef-4720-40ae-abd1-4d2a599bedd4" - } + "id": "JJNfsYrwpXGJ", + "outputId": "e2c4e1ef-4720-40ae-abd1-4d2a599bedd4", + "vscode": { + "languageId": "python" + } + }, + "outputs": [], + "source": [ + "!pip install netCDF4\n", + "!pip install rocketpy" + ] }, { "cell_type": "code", "execution_count": 1, + "metadata": { + "id": "rNY7u8fApOP_", + "vscode": { + "languageId": "python" + } + }, + "outputs": [], "source": [ "from datetime import datetime\n", "from time import process_time, perf_counter, time\n", @@ -101,22 +86,25 @@ "import numpy as np\n", "from numpy.random import normal, uniform, choice\n", "from IPython.display import display" - ], - "outputs": [], - "metadata": { - "id": "rNY7u8fApOP_" - } + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "Next, we import matplotlib to produce awesome looking plots." - ], - "metadata": {} + ] }, { "cell_type": "code", "execution_count": 2, + "metadata": { + "id": "0uEmvBIt5Ltg", + "vscode": { + "languageId": "python" + } + }, + "outputs": [], "source": [ "%config InlineBackend.figure_formats = ['svg']\n", "import matplotlib as mpl\n", @@ -128,14 +116,13 @@ "mpl.rcParams[\"font.size\"] = 14\n", "mpl.rcParams[\"legend.fontsize\"] = 14\n", "mpl.rcParams[\"figure.titlesize\"] = 14" - ], - "outputs": [], - "metadata": { - "id": "0uEmvBIt5Ltg" - } + ] }, { "cell_type": "markdown", + "metadata": { + "id": "4ksmBqU7pOQC" + }, "source": [ "## Defining Analysis Parameters\n", "\n", @@ -149,14 +136,18 @@ " - if the parameter is know, its value is represented as a list with a single entry (i.e. `\"number_of_fins: [4]\"`)\n", " - if the parameter can assume certain discrete values with uniform distribution, its values are represented by a list of possible choices (i.e. `\"member_of_ensemble_forecast: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]\"`)\n", " - if the parameter is best represented by a normal (gaussian) distribution, its value is a tuple with the expected value and its standard deviation (i.e. `\"rocket_mass\": (100, 2)`, where 100 kg is the expected mass, with uncertainty of plus or minus 2 kg)" - ], - "metadata": { - "id": "4ksmBqU7pOQC" - } + ] }, { "cell_type": "code", "execution_count": 3, + "metadata": { + "id": "fwoCdOgKpOQD", + "vscode": { + "languageId": "python" + } + }, + "outputs": [], "source": [ "analysis_parameters = {\n", " # Mass Details\n", @@ -194,10 +185,7 @@ " -1.024,\n", " 0.001,\n", " ), # Distance between rocket's center of dry mass and nozzle exit plane (m) (negative)\n", - " \"distanceRocketPropellant\": (\n", - " -0.571,\n", - " 0.001,\n", - " ), # Distance between rocket's center of dry mass and and center of propellant mass (m) (negative)\n", + " \"distanceNozzleMotorReference\": (0.40396, 0.001),\n", " \"powerOffDrag\": (\n", " 0.9081 / 1.05,\n", " 0.033,\n", @@ -241,28 +229,31 @@ " 1.0,\n", " ), # Time delay between sensor signal is received and ejection signal is fired (s)\n", "}" - ], - "outputs": [], - "metadata": { - "id": "fwoCdOgKpOQD" - } + ] }, { "cell_type": "markdown", + "metadata": { + "id": "EJCbP69TpOQG" + }, "source": [ "## Creating a Flight Settings Generator\n", "\n", "Now, we create a generator function which will yield all the necessary inputs for a single flight simulation. Each generated input will be randomly generated according to the `analysis_parameters` dicitionary set up above.\n", "\n", "This is just a helper function to make the code clearer." - ], - "metadata": { - "id": "EJCbP69TpOQG" - } + ] }, { "cell_type": "code", "execution_count": 4, + "metadata": { + "id": "5XCL9JaIpOQH", + "vscode": { + "languageId": "python" + } + }, + "outputs": [], "source": [ "def flight_settings(analysis_parameters, total_number):\n", " i = 0\n", @@ -283,14 +274,13 @@ " i += 1\n", " # Yield a flight setting\n", " yield flight_setting" - ], - "outputs": [], - "metadata": { - "id": "5XCL9JaIpOQH" - } + ] }, { "cell_type": "markdown", + "metadata": { + "id": "FtdRXCVHpOQO" + }, "source": [ "## Creating an Export Function\n", "\n", @@ -300,14 +290,18 @@ "- `dispersion_input_file`: A file where each line is a json converted dictionary of flight setting inputs to run a single trajectory simulation;\n", "- `dispersion_output_file`: A file where each line is a json converted dictionary containing the main outputs of a single simulation, such as apogee altitute and maximum velocity;\n", "- `dispersion_error_file`: A file to store the inputs of simulations which raised errors. This can help us debug these simulations later on." - ], - "metadata": { - "id": "FtdRXCVHpOQO" - } + ] }, { "cell_type": "code", "execution_count": 5, + "metadata": { + "id": "1eC2p3jEpOQO", + "vscode": { + "languageId": "python" + } + }, + "outputs": [], "source": [ "def export_flight_data(flight_setting, flight_data, exec_time):\n", " # Generate flight results\n", @@ -371,14 +365,13 @@ "\n", "def export_flight_error(flight_setting):\n", " dispersion_error_file.write(str(flight_setting) + \"\\n\")" - ], - "outputs": [], - "metadata": { - "id": "1eC2p3jEpOQO" - } + ] }, { "cell_type": "markdown", + "metadata": { + "id": "GX6pB4Y7pOQQ" + }, "source": [ "## Simulating Each Flight Setting\n", "\n", @@ -392,14 +385,33 @@ "For the power off and on drag and thrust curve user should have in hands the .csv (or .eng for comercial motor's thrust curve).\n", "\n", "**Tip**: A better practice is openning the files in \"append\" mode, this way we can acumulate our simulations. To do this, just change the 'a' (write) argument of the `open` function in the third, fourth and fifth line of code to `a` (append)." - ], - "metadata": { - "id": "GX6pB4Y7pOQQ" - } + ] }, { "cell_type": "code", "execution_count": 8, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "id": "GILiaO30pOQS", + "outputId": "5a2ae15d-5c16-4ae0-f28b-165730d2419d", + "vscode": { + "languageId": "python" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'Completed 4000 iterations successfully. Total CPU time: 646.875 s. Total wall time: 668.0580973625183 s'" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# Basic analysis info\n", "filename = \"dispersion_analysis_outputs/parachute_drop_from_helicopter\"\n", @@ -451,6 +463,7 @@ " thrustSource=\"dispersion_analysis_inputs/thrustCurve.csv\",\n", " burnOut=5.274,\n", " reshapeThrustCurve=(setting[\"burnOut\"], setting[\"impulse\"]),\n", + " distanceRocketMotorReference=setting[\"distanceNozzleMotorReference\"],\n", " nozzleRadius=setting[\"nozzleRadius\"],\n", " throatRadius=setting[\"throatRadius\"],\n", " grainNumber=6,\n", @@ -470,7 +483,6 @@ " inertiaI=setting[\"inertiaI\"],\n", " inertiaZ=setting[\"inertiaZ\"],\n", " distanceRocketNozzle=setting[\"distanceRocketNozzle\"],\n", - " distanceRocketPropellant=setting[\"distanceRocketPropellant\"],\n", " powerOffDrag=\"dispersion_analysis_inputs/Cd_PowerOff.csv\",\n", " powerOnDrag=\"dispersion_analysis_inputs/Cd_PowerOn.csv\",\n", " )\n", @@ -533,7 +545,7 @@ "\n", " # Register time\n", " out.update(\n", - " f\"Curent iteration: {i:06d} | Average Time per Iteration: {(process_time() - initial_cpu_time)/i:2.6f} s\"\n", + " f\"Current iteration: {i:06d} | Average Time per Iteration: {(process_time() - initial_cpu_time)/i:2.6f} s\"\n", " )\n", "\n", "# Done\n", @@ -549,50 +561,50 @@ "dispersion_input_file.close()\n", "dispersion_output_file.close()\n", "dispersion_error_file.close()" - ], - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - "'Completed 4000 iterations successfully. Total CPU time: 646.875 s. Total wall time: 668.0580973625183 s'" - ] - }, - "metadata": {} - } - ], - "metadata": { - "id": "GILiaO30pOQS", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 34 - }, - "outputId": "5a2ae15d-5c16-4ae0-f28b-165730d2419d" - } + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "# Post-processing Monte Carlo Dispersion Results\n", "\n", "Now that we have finish running thousands of simulations, it is time to process the results and get some nice graphs out of them! " - ], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": { + "id": "X8ewOccUpOQb" + }, "source": [ "## Importing Dispersion Analysis Saved Data\n", "\n", "We start by loading the file which stores the outputs." - ], - "metadata": { - "id": "X8ewOccUpOQb" - } + ] }, { "cell_type": "code", "execution_count": 9, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "-7qgTJzRpOQb", + "outputId": "76d2cecd-a09f-429f-cca2-f4e03e39d49e", + "vscode": { + "languageId": "python" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of simulations: 4000\n" + ] + } + ], "source": [ "filename = \"dispersion_analysis_outputs/parachute_drop_from_helicopter\"\n", "\n", @@ -642,47 +654,64 @@ "# Print number of flights simulated\n", "N = len(dispersion_general_results)\n", "print(\"Number of simulations: \", N)" - ], - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Number of simulations: 4000\n" - ] - } - ], - "metadata": { - "id": "-7qgTJzRpOQb", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "76d2cecd-a09f-429f-cca2-f4e03e39d49e" - } + ] }, { "cell_type": "markdown", + "metadata": { + "id": "ioeUkzPipOQe" + }, "source": [ "## Dispersion Results\n", "\n", "Now, we plot the histogram for every single output. This shows how are outputs behave. Valuable statistical data can be calculated based on them." - ], - "metadata": { - "id": "ioeUkzPipOQe" - } + ] }, { "cell_type": "markdown", - "source": [ - "### Apogee Time" - ], "metadata": { "id": "tExJzLhDpOQp" - } + }, + "source": [ + "### Apogee Time" + ] }, { "cell_type": "code", "execution_count": 10, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 607 + }, + "id": "l8zjT_VjpOQq", + "outputId": "1c15fe12-afae-4035-f085-7d82e61d24d9", + "vscode": { + "languageId": "python" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Apogee Time - Mean Value: 0.101 s\n", + "Apogee Time - Standard Deviation: 0.000 s\n" + ] + }, + { + "data": { + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-08T00:47:10.603136\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "print(\n", " f'Apogee Time - Mean Value: {np.mean(dispersion_results[\"apogeeTime\"]):0.3f} s'\n", @@ -695,52 +724,55 @@ "plt.hist(dispersion_results[\"apogeeTime\"], bins=int(N**0.5))\n", "plt.title(\"Apogee Time\")\n", "plt.xlabel(\"Time (s)\")\n", - "plt.ylabel(\"Number of Occurences\")\n", + "plt.ylabel(\"Number of Occurrences\")\n", "plt.show()" - ], + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "erNB46vApOQt" + }, + "source": [ + "### Apogee Altitude" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 607 + }, + "id": "gWWMoOClpOQv", + "outputId": "88f2cf05-142c-4bb1-ce64-9879696107a7", + "vscode": { + "languageId": "python" + } + }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ - "Apogee Time - Mean Value: 0.101 s\n", - "Apogee Time - Standard Deviation: 0.000 s\n" + "Apogee Altitude - Mean Value: 800.051 m\n", + "Apogee Altitude - Standard Deviation: 0.000 m\n" ] }, { - "output_type": "display_data", "data": { - "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-08T00:47:10.603136\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-08T00:47:11.184531\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" - } + }, + "output_type": "display_data" } ], - "metadata": { - "id": "l8zjT_VjpOQq", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 607 - }, - "outputId": "1c15fe12-afae-4035-f085-7d82e61d24d9" - } - }, - { - "cell_type": "markdown", - "source": [ - "### Apogee Altitude" - ], - "metadata": { - "id": "erNB46vApOQt" - } - }, - { - "cell_type": "code", - "execution_count": 11, "source": [ "print(\n", " f'Apogee Altitude - Mean Value: {np.mean(dispersion_results[\"apogeeAltitude\"]):0.3f} m'\n", @@ -757,50 +789,53 @@ "plt.show()\n", "\n", "# Real measured apogee for Valetudo = 860 m" - ], + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7bBvFJ5xpOQ1" + }, + "source": [ + "### Apogee X Position" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 607 + }, + "id": "nGdsF9VppOQ3", + "outputId": "b4f0a3aa-afa1-4942-91b8-8ad61d263244", + "vscode": { + "languageId": "python" + } + }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ - "Apogee Altitude - Mean Value: 800.051 m\n", - "Apogee Altitude - Standard Deviation: 0.000 m\n" + "Apogee X Position - Mean Value: 1.012 m\n", + "Apogee X Position - Standard Deviation: 0.000 m\n" ] }, { - "output_type": "display_data", "data": { - "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-08T00:47:11.184531\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-08T00:47:11.692623\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" - } + }, + "output_type": "display_data" } ], - "metadata": { - "id": "gWWMoOClpOQv", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 607 - }, - "outputId": "88f2cf05-142c-4bb1-ce64-9879696107a7" - } - }, - { - "cell_type": "markdown", - "source": [ - "### Apogee X Position" - ], - "metadata": { - "id": "7bBvFJ5xpOQ1" - } - }, - { - "cell_type": "code", - "execution_count": 12, "source": [ "print(\n", " f'Apogee X Position - Mean Value: {np.mean(dispersion_results[\"apogeeX\"]):0.3f} m'\n", @@ -815,50 +850,53 @@ "plt.xlabel(\"Apogee X Position (m)\")\n", "plt.ylabel(\"Number of Occurences\")\n", "plt.show()" - ], + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-LtYxB0lpOQ8" + }, + "source": [ + "### Apogee Y Position" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 607 + }, + "id": "ocq6GmeNpOQ8", + "outputId": "f3a45339-c0a6-4819-bd03-60f7fe6df963", + "vscode": { + "languageId": "python" + } + }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ - "Apogee X Position - Mean Value: 1.012 m\n", - "Apogee X Position - Standard Deviation: 0.000 m\n" + "Apogee Y Position - Mean Value: 1.009 m\n", + "Apogee Y Position - Standard Deviation: 0.000 m\n" ] }, { - "output_type": "display_data", "data": { - "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-08T00:47:11.692623\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-08T00:47:12.137787\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" - } + }, + "output_type": "display_data" } ], - "metadata": { - "id": "nGdsF9VppOQ3", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 607 - }, - "outputId": "b4f0a3aa-afa1-4942-91b8-8ad61d263244" - } - }, - { - "cell_type": "markdown", - "source": [ - "### Apogee Y Position" - ], - "metadata": { - "id": "-LtYxB0lpOQ8" - } - }, - { - "cell_type": "code", - "execution_count": 13, "source": [ "print(\n", " f'Apogee Y Position - Mean Value: {np.mean(dispersion_results[\"apogeeY\"]):0.3f} m'\n", @@ -873,50 +911,53 @@ "plt.xlabel(\"Apogee Y Position (m)\")\n", "plt.ylabel(\"Number of Occurences\")\n", "plt.show()" - ], + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ifuJX7jYpORB" + }, + "source": [ + "### Impact Time" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 607 + }, + "id": "52j6t5-MpORB", + "outputId": "9cba31b1-c731-402f-b138-df5c72521408", + "vscode": { + "languageId": "python" + } + }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ - "Apogee Y Position - Mean Value: 1.009 m\n", - "Apogee Y Position - Standard Deviation: 0.000 m\n" + "Impact Time - Mean Value: 44.512 s\n", + "Impact Time - Standard Deviation: 3.319 s\n" ] }, { - "output_type": "display_data", "data": { - "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-08T00:47:12.137787\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-08T00:47:12.593856\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" - } + }, + "output_type": "display_data" } ], - "metadata": { - "id": "ocq6GmeNpOQ8", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 607 - }, - "outputId": "f3a45339-c0a6-4819-bd03-60f7fe6df963" - } - }, - { - "cell_type": "markdown", - "source": [ - "### Impact Time" - ], - "metadata": { - "id": "ifuJX7jYpORB" - } - }, - { - "cell_type": "code", - "execution_count": 14, "source": [ "print(\n", " f'Impact Time - Mean Value: {np.mean(dispersion_results[\"impactTime\"]):0.3f} s'\n", @@ -931,50 +972,53 @@ "plt.xlabel(\"Time (s)\")\n", "plt.ylabel(\"Number of Occurences\")\n", "plt.show()" - ], + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "mYD4EQ5spORE" + }, + "source": [ + "### Impact X Position" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 607 + }, + "id": "uzL8-1UGpORF", + "outputId": "5c74f8d1-b909-44cf-a5c9-2f1b5e9dda1d", + "vscode": { + "languageId": "python" + } + }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ - "Impact Time - Mean Value: 44.512 s\n", - "Impact Time - Standard Deviation: 3.319 s\n" + "Impact X Position - Mean Value: 278.812 m\n", + "Impact X Position - Standard Deviation: 16.320 m\n" ] }, { - "output_type": "display_data", "data": { - "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-08T00:47:12.593856\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-08T00:47:13.087803\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" - } + }, + "output_type": "display_data" } ], - "metadata": { - "id": "52j6t5-MpORB", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 607 - }, - "outputId": "9cba31b1-c731-402f-b138-df5c72521408" - } - }, - { - "cell_type": "markdown", - "source": [ - "### Impact X Position" - ], - "metadata": { - "id": "mYD4EQ5spORE" - } - }, - { - "cell_type": "code", - "execution_count": 15, "source": [ "print(\n", " f'Impact X Position - Mean Value: {np.mean(dispersion_results[\"impactX\"]):0.3f} m'\n", @@ -989,50 +1033,53 @@ "plt.xlabel(\"Impact X Position (m)\")\n", "plt.ylabel(\"Number of Occurences\")\n", "plt.show()" - ], + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ajI4vr7QpORL" + }, + "source": [ + "### Impact Y Position" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 607 + }, + "id": "Q-ghmNVopORM", + "outputId": "cd0c81a8-a3fc-4710-cadf-a20cf0882bec", + "vscode": { + "languageId": "python" + } + }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ - "Impact X Position - Mean Value: 278.812 m\n", - "Impact X Position - Standard Deviation: 16.320 m\n" + "Impact Y Position - Mean Value: -90.965 m\n", + "Impact Y Position - Standard Deviation: 19.915 m\n" ] }, { - "output_type": "display_data", "data": { - "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-08T00:47:13.087803\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-08T00:47:13.576831\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" - } + }, + "output_type": "display_data" } ], - "metadata": { - "id": "uzL8-1UGpORF", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 607 - }, - "outputId": "5c74f8d1-b909-44cf-a5c9-2f1b5e9dda1d" - } - }, - { - "cell_type": "markdown", - "source": [ - "### Impact Y Position" - ], - "metadata": { - "id": "ajI4vr7QpORL" - } - }, - { - "cell_type": "code", - "execution_count": 16, "source": [ "print(\n", " f'Impact Y Position - Mean Value: {np.mean(dispersion_results[\"impactY\"]):0.3f} m'\n", @@ -1047,50 +1094,53 @@ "plt.xlabel(\"Impact Y Position (m)\")\n", "plt.ylabel(\"Number of Occurences\")\n", "plt.show()" - ], + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "H7_H_eeXpORP" + }, + "source": [ + "### Impact Velocity" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 607 + }, + "id": "Ryx7KEEVpORP", + "outputId": "90cdcf97-affc-4f09-ed2a-9b854257a8a0", + "vscode": { + "languageId": "python" + } + }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ - "Impact Y Position - Mean Value: -90.965 m\n", - "Impact Y Position - Standard Deviation: 19.915 m\n" + "Impact Velocity - Mean Value: -18.218 m/s\n", + "Impact Velocity - Standard Deviation: 1.476 m/s\n" ] }, { - "output_type": "display_data", "data": { - "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-08T00:47:13.576831\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-08T00:47:14.014911\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" - } + }, + "output_type": "display_data" } ], - "metadata": { - "id": "Q-ghmNVopORM", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 607 - }, - "outputId": "cd0c81a8-a3fc-4710-cadf-a20cf0882bec" - } - }, - { - "cell_type": "markdown", - "source": [ - "### Impact Velocity" - ], - "metadata": { - "id": "H7_H_eeXpORP" - } - }, - { - "cell_type": "code", - "execution_count": 17, "source": [ "print(\n", " f'Impact Velocity - Mean Value: {np.mean(dispersion_results[\"impactVelocity\"]):0.3f} m/s'\n", @@ -1107,76 +1157,41 @@ "plt.xlabel(\"Velocity (m/s)\")\n", "plt.ylabel(\"Number of Occurences\")\n", "plt.show()" - ], - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Impact Velocity - Mean Value: -18.218 m/s\n", - "Impact Velocity - Standard Deviation: 1.476 m/s\n" - ] - }, - { - "output_type": "display_data", - "data": { - "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-08T00:47:14.014911\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - } - } - ], - "metadata": { - "id": "Ryx7KEEVpORP", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 607 - }, - "outputId": "90cdcf97-affc-4f09-ed2a-9b854257a8a0" - } + ] }, { "cell_type": "markdown", - "source": [ - "### Maximum Velocity" - ], "metadata": { "id": "mQzQELcJpORX" - } + }, + "source": [ + "### Maximum Velocity" + ] }, { "cell_type": "code", "execution_count": 18, - "source": [ - "print(\n", - " f'Maximum Velocity - Mean Value: {np.mean(dispersion_results[\"maxVelocity\"]):0.3f} m/s'\n", - ")\n", - "print(\n", - " f'Maximum Velocity - Standard Deviation: {np.std(dispersion_results[\"maxVelocity\"]):0.3f} m/s'\n", - ")\n", - "\n", - "plt.figure()\n", - "plt.hist(dispersion_results[\"maxVelocity\"], bins=int(N**0.5))\n", - "plt.title(\"Maximum Velocity\")\n", - "plt.xlabel(\"Velocity (m/s)\")\n", - "plt.ylabel(\"Number of Occurences\")\n", - "plt.show()" - ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 607 + }, + "id": "nOu1O8MXpORY", + "outputId": "7510aec8-7b73-4751-f033-8367cd0c9bdc", + "vscode": { + "languageId": "python" + } + }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "Maximum Velocity - Mean Value: 24.982 m/s\n", "Maximum Velocity - Standard Deviation: 5.492 m/s\n" ] }, { - "output_type": "display_data", "data": { "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-08T00:47:14.439473\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", "text/plain": [ @@ -1185,43 +1200,53 @@ }, "metadata": { "needs_background": "light" - } + }, + "output_type": "display_data" } ], - "metadata": { - "id": "nOu1O8MXpORY", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 607 - }, - "outputId": "7510aec8-7b73-4751-f033-8367cd0c9bdc" - } + "source": [ + "print(\n", + " f'Maximum Velocity - Mean Value: {np.mean(dispersion_results[\"maxVelocity\"]):0.3f} m/s'\n", + ")\n", + "print(\n", + " f'Maximum Velocity - Standard Deviation: {np.std(dispersion_results[\"maxVelocity\"]):0.3f} m/s'\n", + ")\n", + "\n", + "plt.figure()\n", + "plt.hist(dispersion_results[\"maxVelocity\"], bins=int(N**0.5))\n", + "plt.title(\"Maximum Velocity\")\n", + "plt.xlabel(\"Velocity (m/s)\")\n", + "plt.ylabel(\"Number of Occurences\")\n", + "plt.show()" + ] }, { "cell_type": "markdown", + "metadata": { + "id": "7MUVLAM-pORb" + }, "source": [ "### Number of Parachute Events\n", "\n", "This is usefull to check if the parachute was triggered in every flight." - ], - "metadata": { - "id": "7MUVLAM-pORb" - } + ] }, { "cell_type": "code", "execution_count": 19, - "source": [ - "plt.figure()\n", - "plt.hist(dispersion_results[\"numberOfEvents\"])\n", - "plt.title(\"Parachute Events\")\n", - "plt.xlabel(\"Number of Parachute Events\")\n", - "plt.ylabel(\"Number of Occurences\")\n", - "plt.show()" - ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 607 + }, + "id": "yhcWi2kCpORb", + "outputId": "dee54569-8213-46cc-e287-9fffd2b8e43c", + "vscode": { + "languageId": "python" + } + }, "outputs": [ { - "output_type": "display_data", "data": { "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-08T00:47:14.810783\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", "text/plain": [ @@ -1230,56 +1255,52 @@ }, "metadata": { "needs_background": "light" - } + }, + "output_type": "display_data" } ], - "metadata": { - "id": "yhcWi2kCpORb", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 607 - }, - "outputId": "dee54569-8213-46cc-e287-9fffd2b8e43c" - } + "source": [ + "plt.figure()\n", + "plt.hist(dispersion_results[\"numberOfEvents\"])\n", + "plt.title(\"Parachute Events\")\n", + "plt.xlabel(\"Number of Parachute Events\")\n", + "plt.ylabel(\"Number of Occurences\")\n", + "plt.show()" + ] }, { "cell_type": "markdown", - "source": [ - "### Drogue Parachute Trigger Time" - ], "metadata": { "id": "4LpDYGpfpORf" - } + }, + "source": [ + "### Drogue Parachute Trigger Time" + ] }, { "cell_type": "code", "execution_count": 20, - "source": [ - "print(\n", - " f'Drogue Parachute Trigger Time - Mean Value: {np.mean(dispersion_results[\"drogueTriggerTime\"]):0.3f} s'\n", - ")\n", - "print(\n", - " f'Drogue Parachute Trigger Time - Standard Deviation: {np.std(dispersion_results[\"drogueTriggerTime\"]):0.3f} s'\n", - ")\n", - "\n", - "plt.figure()\n", - "plt.hist(dispersion_results[\"drogueTriggerTime\"], bins=int(N**0.5))\n", - "plt.title(\"Drogue Parachute Trigger Time\")\n", - "plt.xlabel(\"Time (s)\")\n", - "plt.ylabel(\"Number of Occurences\")\n", - "plt.show()" - ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 607 + }, + "id": "lvCksZG8pORf", + "outputId": "3efd19ed-11e9-41d1-8e66-04da384665ce", + "vscode": { + "languageId": "python" + } + }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "Drogue Parachute Trigger Time - Mean Value: 0.105 s\n", "Drogue Parachute Trigger Time - Standard Deviation: 0.000 s\n" ] }, { - "output_type": "display_data", "data": { "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-08T00:47:15.346227\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", "text/plain": [ @@ -1288,56 +1309,59 @@ }, "metadata": { "needs_background": "light" - } + }, + "output_type": "display_data" } ], - "metadata": { - "id": "lvCksZG8pORf", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 607 - }, - "outputId": "3efd19ed-11e9-41d1-8e66-04da384665ce" - } - }, - { - "cell_type": "markdown", - "source": [ - "### Drogue Parachute Fully Inflated Time" - ], - "metadata": { - "id": "nKSzDWi7pORi" - } - }, - { - "cell_type": "code", - "execution_count": 21, "source": [ "print(\n", - " f'Drogue Parachute Fully Inflated Time - Mean Value: {np.mean(dispersion_results[\"drogueInflatedTime\"]):0.3f} s'\n", + " f'Drogue Parachute Trigger Time - Mean Value: {np.mean(dispersion_results[\"drogueTriggerTime\"]):0.3f} s'\n", ")\n", "print(\n", - " f'Drogue Parachute Fully Inflated Time - Standard Deviation: {np.std(dispersion_results[\"drogueInflatedTime\"]):0.3f} s'\n", + " f'Drogue Parachute Trigger Time - Standard Deviation: {np.std(dispersion_results[\"drogueTriggerTime\"]):0.3f} s'\n", ")\n", "\n", "plt.figure()\n", - "plt.hist(dispersion_results[\"drogueInflatedTime\"], bins=int(N**0.5))\n", - "plt.title(\"Drogue Parachute Fully Inflated Time\")\n", + "plt.hist(dispersion_results[\"drogueTriggerTime\"], bins=int(N**0.5))\n", + "plt.title(\"Drogue Parachute Trigger Time\")\n", "plt.xlabel(\"Time (s)\")\n", "plt.ylabel(\"Number of Occurences\")\n", "plt.show()" - ], + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "nKSzDWi7pORi" + }, + "source": [ + "### Drogue Parachute Fully Inflated Time" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 607 + }, + "id": "KCYKVFYXpORj", + "outputId": "8ae49853-0f08-4bf6-9bd8-91a7c9a9448d", + "vscode": { + "languageId": "python" + } + }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "Drogue Parachute Fully Inflated Time - Mean Value: 2.257 s\n", "Drogue Parachute Fully Inflated Time - Standard Deviation: 0.887 s\n" ] }, { - "output_type": "display_data", "data": { "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-08T00:47:15.950669\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", "text/plain": [ @@ -1346,56 +1370,59 @@ }, "metadata": { "needs_background": "light" - } + }, + "output_type": "display_data" } ], - "metadata": { - "id": "KCYKVFYXpORj", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 607 - }, - "outputId": "8ae49853-0f08-4bf6-9bd8-91a7c9a9448d" - } - }, - { - "cell_type": "markdown", - "source": [ - "### Drogue Parachute Fully Inflated Velocity" - ], - "metadata": { - "id": "BvMCGZYHpORn" - } - }, - { - "cell_type": "code", - "execution_count": 22, "source": [ "print(\n", - " f'Drogue Parachute Fully Inflated Velocity - Mean Value: {np.mean(dispersion_results[\"drogueInflatedVelocity\"]):0.3f} m/s'\n", + " f'Drogue Parachute Fully Inflated Time - Mean Value: {np.mean(dispersion_results[\"drogueInflatedTime\"]):0.3f} s'\n", ")\n", "print(\n", - " f'Drogue Parachute Fully Inflated Velocity - Standard Deviation: {np.std(dispersion_results[\"drogueInflatedVelocity\"]):0.3f} m/s'\n", + " f'Drogue Parachute Fully Inflated Time - Standard Deviation: {np.std(dispersion_results[\"drogueInflatedTime\"]):0.3f} s'\n", ")\n", "\n", "plt.figure()\n", - "plt.hist(dispersion_results[\"drogueInflatedVelocity\"], bins=int(N**0.5))\n", - "plt.title(\"Drogue Parachute Fully Inflated Velocity\")\n", - "plt.xlabel(\"Velocity m/s)\")\n", + "plt.hist(dispersion_results[\"drogueInflatedTime\"], bins=int(N**0.5))\n", + "plt.title(\"Drogue Parachute Fully Inflated Time\")\n", + "plt.xlabel(\"Time (s)\")\n", "plt.ylabel(\"Number of Occurences\")\n", "plt.show()" - ], + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "BvMCGZYHpORn" + }, + "source": [ + "### Drogue Parachute Fully Inflated Velocity" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 607 + }, + "id": "KxrpPUzqpORn", + "outputId": "9c102bdb-b805-4aa1-b3a2-1ac329c76976", + "vscode": { + "languageId": "python" + } + }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "Drogue Parachute Fully Inflated Velocity - Mean Value: 24.155 m/s\n", "Drogue Parachute Fully Inflated Velocity - Standard Deviation: 6.286 m/s\n" ] }, { - "output_type": "display_data", "data": { "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-08T00:47:16.493646\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", "text/plain": [ @@ -1404,30 +1431,62 @@ }, "metadata": { "needs_background": "light" - } + }, + "output_type": "display_data" } ], - "metadata": { - "id": "KxrpPUzqpORn", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 607 - }, - "outputId": "9c102bdb-b805-4aa1-b3a2-1ac329c76976" - } + "source": [ + "print(\n", + " f'Drogue Parachute Fully Inflated Velocity - Mean Value: {np.mean(dispersion_results[\"drogueInflatedVelocity\"]):0.3f} m/s'\n", + ")\n", + "print(\n", + " f'Drogue Parachute Fully Inflated Velocity - Standard Deviation: {np.std(dispersion_results[\"drogueInflatedVelocity\"]):0.3f} m/s'\n", + ")\n", + "\n", + "plt.figure()\n", + "plt.hist(dispersion_results[\"drogueInflatedVelocity\"], bins=int(N**0.5))\n", + "plt.title(\"Drogue Parachute Fully Inflated Velocity\")\n", + "plt.xlabel(\"Velocity m/s)\")\n", + "plt.ylabel(\"Number of Occurences\")\n", + "plt.show()" + ] }, { "cell_type": "markdown", - "source": [ - "### Error Ellipses\n" - ], "metadata": { "id": "TlWXtnKMrlMI" - } + }, + "source": [ + "### Error Ellipses\n" + ] }, { "cell_type": "code", "execution_count": 23, + "metadata": { + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 837 + }, + "id": "DZRrk_bIr3iG", + "outputId": "b4a5a583-7f53-473a-bec2-2636cdf28a7c", + "vscode": { + "languageId": "python" + } + }, + "outputs": [ + { + "data": { + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-08T00:47:19.966912\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# Import libraries\n", "from imageio import imread\n", @@ -1523,35 +1582,47 @@ "plt.savefig(str(filename) + \".pdf\", bbox_inches=\"tight\", pad_inches=0)\n", "plt.savefig(str(filename) + \".svg\", bbox_inches=\"tight\", pad_inches=0)\n", "plt.show()" - ], - "outputs": [ - { - "output_type": "display_data", - "data": { - "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-04-08T00:47:19.966912\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", - "text/plain": [ - "
" - ] - }, - "metadata": {} - } - ], - "metadata": { - "id": "DZRrk_bIr3iG", - "cellView": "both", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 837 - }, - "outputId": "b4a5a583-7f53-473a-bec2-2636cdf28a7c" - } + ] }, { "cell_type": "code", "execution_count": null, - "source": [], + "metadata": { + "vscode": { + "languageId": "python" + } + }, "outputs": [], - "metadata": {} + "source": [] + } + ], + "metadata": { + "colab": { + "collapsed_sections": [ + "au88RN0P-bVl", + "-9u9RIaqpOQl", + "tExJzLhDpOQp", + "ifuJX7jYpORB", + "mYD4EQ5spORE", + "ajI4vr7QpORL", + "9m19OV9upORS", + "mQzQELcJpORX", + "7MUVLAM-pORb", + "4LpDYGpfpORf", + "nKSzDWi7pORi", + "BvMCGZYHpORn", + "LhPQQlpHpORq", + "5MvfiSQZvwPK" + ], + "name": "Valetudo_Monte_Carlo_Dispersion_Analysis.ipynb", + "provenance": [], + "toc_visible": true + }, + "kernelspec": { + "display_name": "Python 3.8.5 64-bit ('rocketpy_venv': conda)", + "name": "python385jvsc74a57bd0c2da7378535a81a5062c7d9d5abfaea347836f969bbf0660b64f76fb08a148af" } - ] -} \ No newline at end of file + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/notebooks/environment_class_usage.ipynb b/docs/notebooks/environment_class_usage.ipynb index 0aae94fef..20cae4405 100644 --- a/docs/notebooks/environment_class_usage.ipynb +++ b/docs/notebooks/environment_class_usage.ipynb @@ -20,7 +20,7 @@ "metadata": {}, "outputs": [], "source": [ - "from rocketpy import Environment, SolidMotor, Rocket, Flight" + "from rocketpy import Environment" ] }, { diff --git a/docs/notebooks/getting_started.ipynb b/docs/notebooks/getting_started.ipynb index d81609632..cb05dcfbb 100644 --- a/docs/notebooks/getting_started.ipynb +++ b/docs/notebooks/getting_started.ipynb @@ -1,3322 +1,3321 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Getting Started" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here we go through a simplified rocket trajectory simulation to get you started. Let's start by importing the rocketpy module." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from rocketpy import Environment, SolidMotor, Rocket, Flight" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If you are using Jupyter Notebooks, it is recommended to run the following line to make matplotlib plots which will be shown later interactive and higher quality." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "%matplotlib notebook" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Setting Up a Simulation" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Creating an Environment for Spaceport America" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "Env = Environment(\n", - " railLength=5.2, latitude=32.990254, longitude=-106.974998, elevation=1400\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To get weather data from the GFS forecast, available online, we run the following lines.\n", - "\n", - "First, we set tomorrow's date." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "import datetime\n", - "\n", - "tomorrow = datetime.date.today() + datetime.timedelta(days=1)\n", - "\n", - "Env.setDate((tomorrow.year, tomorrow.month, tomorrow.day, 12)) # Hour given in UTC time" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Then, we tell Env to use a GFS forecast to get the atmospheric conditions for flight.\n", - "\n", - "Don't mind the warning, it just means that not all variables, such as wind speed or atmospheric temperature, are available at all altitudes given by the forecast." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\franz\\AppData\\Local\\Programs\\Python\\Python39\\lib\\site-packages\\rocketpy\\Environment.py:1784: UserWarning: Exact chosen launch time is not available in the provided file, using 2021-11-24 18:00:00 UTC instead.\n", - " warnings.warn(\n" - ] - } - ], - "source": [ - "Env.setAtmosphericModel(type=\"Forecast\", file=\"GFS\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can see what the weather will look like by calling the info method!" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Launch Site Details\n", - "\n", - "Launch Rail Length: 5.2 m\n", - "Launch Date: 2021-02-25 12:00:00 UTC\n", - "Launch Site Latitude: 32.99025°\n", - "Launch Site Longitude: -106.97500°\n", - "Reference Datum: SIRGAS2000\n", - "Launch Site UTM coordinates: 315468.64 W 3651938.65 N\n", - "Launch Site UTM zone: 13S\n", - "Launch Site Surface Elevation: 1471.5 m\n", - "\n", - "\n", - "Atmospheric Model Details\n", - "\n", - "Atmospheric Model Type: Forecast\n", - "Forecast Maximum Height: 54.863 km\n", - "Forecast Time Period: From 2021-02-24 12:00:00 to 2021-03-06 12:00:00 UTC\n", - "Forecast Hour Interval: 3 hrs\n", - "Forecast Latitude Range: From -90.0 ° To 90.0 °\n", - "Forecast Longitude Range: From 0.0 ° To 359.75 °\n", - "\n", - "\n", - "Surface Atmospheric Conditions\n", - "\n", - "Surface Wind Speed: 1.30 m/s\n", - "Surface Wind Direction: 353.37°\n", - "Surface Wind Heading: 173.37°\n", - "Surface Pressure: 852.03 hPa\n", - "Surface Temperature: 283.96 K\n", - "Surface Air Density: 1.045 kg/m³\n", - "Surface Speed of Sound: 337.81 m/s\n", - "\n", - "\n", - "Atmospheric Model Plots\n" - ] + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Getting Started" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here we go through a simplified rocket trajectory simulation to get you started. Let's start by importing the rocketpy module." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from rocketpy import Environment, SolidMotor, Rocket, Flight" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If you are using Jupyter Notebooks, it is recommended to run the following line to make matplotlib plots which will be shown later interactive and higher quality." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib notebook" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setting Up a Simulation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Creating an Environment for Spaceport America" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "Env = Environment(\n", + " railLength=5.2, latitude=32.990254, longitude=-106.974998, elevation=1400\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To get weather data from the GFS forecast, available online, we run the following lines.\n", + "\n", + "First, we set tomorrow's date." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "import datetime\n", + "\n", + "tomorrow = datetime.date.today() + datetime.timedelta(days=1)\n", + "\n", + "Env.setDate((tomorrow.year, tomorrow.month, tomorrow.day, 12)) # Hour given in UTC time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Then, we tell Env to use a GFS forecast to get the atmospheric conditions for flight.\n", + "\n", + "Don't mind the warning, it just means that not all variables, such as wind speed or atmospheric temperature, are available at all altitudes given by the forecast." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\franz\\AppData\\Local\\Programs\\Python\\Python39\\lib\\site-packages\\rocketpy\\Environment.py:1784: UserWarning: Exact chosen launch time is not available in the provided file, using 2021-11-24 18:00:00 UTC instead.\n", + " warnings.warn(\n" + ] + } + ], + "source": [ + "Env.setAtmosphericModel(type=\"Forecast\", file=\"GFS\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can see what the weather will look like by calling the info method!" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Launch Site Details\n", + "\n", + "Launch Rail Length: 5.2 m\n", + "Launch Date: 2021-02-25 12:00:00 UTC\n", + "Launch Site Latitude: 32.99025°\n", + "Launch Site Longitude: -106.97500°\n", + "Reference Datum: SIRGAS2000\n", + "Launch Site UTM coordinates: 315468.64 W 3651938.65 N\n", + "Launch Site UTM zone: 13S\n", + "Launch Site Surface Elevation: 1471.5 m\n", + "\n", + "\n", + "Atmospheric Model Details\n", + "\n", + "Atmospheric Model Type: Forecast\n", + "Forecast Maximum Height: 54.863 km\n", + "Forecast Time Period: From 2021-02-24 12:00:00 to 2021-03-06 12:00:00 UTC\n", + "Forecast Hour Interval: 3 hrs\n", + "Forecast Latitude Range: From -90.0 ° To 90.0 °\n", + "Forecast Longitude Range: From 0.0 ° To 359.75 °\n", + "\n", + "\n", + "Surface Atmospheric Conditions\n", + "\n", + "Surface Wind Speed: 1.30 m/s\n", + "Surface Wind Direction: 353.37°\n", + "Surface Wind Heading: 173.37°\n", + "Surface Pressure: 852.03 hPa\n", + "Surface Temperature: 283.96 K\n", + "Surface Air Density: 1.045 kg/m³\n", + "Surface Speed of Sound: 337.81 m/s\n", + "\n", + "\n", + "Atmospheric Model Plots\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAE/CAYAAABBxBeBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAB0xklEQVR4nO3ddZhbVfrA8e8Z99RdUnd3F6AUBmhx98WdRQaW35IFlh0Wdy20xVm0MECL1N3d29RdMp2ZtmPn98e5006HmWlGkptM3s/z5Elyc3Pzpk3eeXPuEaW1RgghhBAi1ITZHYAQQgghhB2kCBJCCCFESJIiSAghhBAhSYogIYQQQoQkKYKEEEIIEZKkCBJCCCFESIqwOwAhhBCiKGdKWh6wHIgEcoHxwMvu1OT8SnyN24Esd2ryeGdK2g3AJHdq8s4yHuNr4BF3avImZ0pahjs1OaGMz78CaOFOTf63F/vWAB4HagO/u1OTP3ampH0B/J87NXl9WV5XGFIEVSHOlLSXgS3u1ORXrPsTgW3u1OS/WfdfBHYAG4D27tTk1DIceyzwkzs1+etitg8B0oFYYA7wuDs1ebv1+M/AVe7U5MMVfG+jgXXu1ORV1v2ngGnu1OTfK3Jc61jdgLvdqck3O1PSwoCxQEvgFndq8kpnSlon4O/u1OQbKvpaQgivHXWnJncFcKak1QE+A5KAJyvrBdypye8UunsDsALwughypqR1AMLdqcmbKhDGOcBr3uzoTk0+aOX1x4Hj1ua3gUeAWyoQQ8iSIqhqmQlcBrxi/TGvhUkaBfoDD7hTk+cAEyrxdR92pyZ/7UxJU8D9wJ/OlLSO7tTkbHdq8rlFd7b2U2X8RTca+AlYBeBOTf5nxcM+4XHgGev2CGAu8DDwH+Amd2rycmdKWiNnSloTd2ry1kp8XSGEF9ypyXudKWm3AvOdKWkuTFeOVGAoEA286U5NfteZkjYUcAH7gY7AQuAad2qydqakpQIXYFqVJrlTkx+yjpUBuIGewKfOlLSjwD8wP4JGAzhT0s4C7nSnJl9YJLSrgR+KxutMSasF/IjJK78AbwDDgW1ADvBhoZzZFVhkxdIMaA40AR4A+mKKpB3A+e7U5Bx3avJvzpS0Rdb7/wqYDox1pqRFuFOTc8v6bxvqpAiqWmYBL1u3O2B+1dR3pqRVB7KAdpgv2w1AT3dq8t1WS046JgHUwzTrFnw5XwfOwnxxs0/34u7UZA287ExJuxDzxf3BmZLmto6dAEzEFBg9gHOdKWmXYYq2aOA7d2rykwDOlLTrgIcADSzD/NK5ABjiTEl7ArgY+D+slilnStoZwAuYz/N84A53avJx67XHAedjmtQvdacmrykcszMlLRHo7E5NXmptCgfyrYsqtOuPwBXAf0/37yCEqHzW6aZwoA4wCvC4U5N7OVPSooGZzpS0Sdau3TD5byfmh+EAZ0raauBCoK1VEFUrcuyvnSlpdwMPuVOTF1j570VnSlptd2ryPuBG4MNiwhoAfF54gzMlrS7mR+YTVsFyCeAE2luxry50rG7AUismgBbAMGvf2cDF7tTkR5wpad8Byc6UtI3AHZhcPcmKPd+ZkrYB6IIp+kQZSMfoKsQ6l53rTElrgmn1mY0pOvphCpHl7tTk4oqZ+sBA4DzMrwswCaMN5st4nXU8by0C2hazvRXwljs1uYN17FZAb8wvoR7OlLTBVvPyE8Bwd2pyF+A+d2ryLExSedidmtzVnZq8seCAzpS0GMzpq8vdqcmdMIXQHYVec787Nbk7ppB6qJiYemKKxQITMaf3JgAvFdq+ABjk3dsXQvjYCOA6Z0raEkyOq4nJJwDz3KnJ262W5iWYAsQDHAPGOFPSLsL8KCyR9YPuY+Aaq2Dqh2nRKao+sK/Q/UjgD8yPyd+sbQOB/7lTk/Pdqcm7gcmF9h9Z5Li/uFOTczB9ocKBX63tywGnOzV5uTs1+U53avJFRU7l7QUalPaeRPGkJajqmYUpWPpj/og3tG57ML+KivO9lTBWWb9iAAYDn7tTk/OAnc6UtD/LEIMqYfsW61QcmCQ2Alhs3U/AJLEumISxH8w58NO8Vhtgszs1eZ11fxxwF/CKdf9b63ohcFExzz8liVnNyVcUs58kGSFs5ExJaw7kYb6LCrjHnZo8scg+QznZVwZr/wh3anKuMyWtN3AGcAlwN+b0VGk+wrQAH8PkpOJONR0FYgrdz8XkmrOBqV68rRGYlu0Cx+FE606OVYyBaZku7e91jBWLKCNpCap6ZmKKnk6YFo45mF8x/TEFUnEKJ42SCpiy6IZp8i0qs8jr/Mdq2enqTk1u6U5NHlMJr11UwXvLo/gkUjSJlUSSjBA2caak1QbeAd6wCoOJwB3OlLRI6/HWzpS0+FKenwA43KnJP2P62nQpZrcjQGLBHatlfSemZfqjEg69GjOIooAGbgLaOlPSHrW2zQQudqakhVk/ModaMTkwBdqB0t67l1pzaou28JIUQVXPLMxprYPu1OQ8qyWlGqYQKqkIKs404HJnSlq4MyWtPuY8damcKWnKmZJ2L6Z15dfT7D4RuMlKTjhT0hpaI0D+BC51pqTVtLbXsPY/JUEVshZwOlPSChLRtXj3C6xA0SRWEkkyQvhXrDMlbYkzJW0l8DumD8y/rMc+wAySWORMSVsBvEvpLSWJwE/OlLRlwAzgwWL2GQu8Y71mrLXtU8wI2+J+1AGkYRU1BazW8yuB4c6UtDuBb4DtVryfYLoLeDD9LStjdGtdzEi63RU9ViiS02FVz3LMqLDPimxLKDjF5KXvMM3Fq4CtmP5FJXnemZL2f0AcpuVpWAl9j05wpyZPcqaktQNmWx0CMzCjOFY6U9L+DUy15glZjBm6+gXwvlVkXVLoOMecKWk3Av9zpqQVdIx+By+5U5PXOFPSHM6UtER3avKRUnYdhkl4Qgg/cKcmh5fyWD5mVOfjRR6aYl0K9ru70GO9izmOq9DtbzAFS2EDgfdLCfNrYLIzJe1J60dngnWs45hTYgA4U9IecqcmZ1g/7uZhcvIzmGLuL7FY9xNKeqyIqzBFoCgHpbU+/V5CVGHOlLQHgCPu1OQPSng8GtO6NFCGoAoRGpwpaQsxp/DPsoqakvY7G1hd2vQZzpS0KZgW+Sjgv+7U5LGVGOeNwMeSm8pHiiAR8qwRZpe6U5M/LuHxVkBDd2ryFL8GJoQQwqekCBJCCCFESAqZPkHOlLSRwKuYuRc+KMuSEYHCmZL2IabT8153anJHa1sN4EvMXBhu4DJ3avIha7KvV4FzMXNi3OBOTV5kR9zecKakNcasDVQXM8LiPXdq8qtV6P3FYDqbR2O+d1+7U5OfdKakNcP0d6qJGVp7rTs1Ods6BTceM7HkAcw8SG5bghcB43R5zF+fGy/ieBD4G2bI+D7MzOtbKjsOb+MptN/FmH48vdypyQvsiMOaJNaFyXNL3anJV1V2HN7EYs0nNw5zmi4cSLFGz/kilr/87SryuG35PCRGh1mzjL6JmcW4PXClMyWtvb1RlctYzORahaUAf7hTk1thJulKsbafg5l3pxVwK2aywECWi1mfqz1mqvi7rP+jqvL+jnNyAsiuwEhnSlpf4DnMopAtgUPAzdb+NwOHrO0vW/uJEOZlHvP558bLOBZjZqXvjCk6fDbTurf53Zod/j7M5Iq2xGGdWn8MGGBNGnu/XbFghv5/5U5N7oaZG+0tX8RiGctf/3YVZls+D4kiCDMqYIM7NXmTNWrpC8y060HFnZo8DSg6eeAoTDWPdT260Pbx7tRkbU1QWM0a6h6Q3KnJuwoqf2uU1mrMRI9V5f1pd2pyhnU30rpozAi8gkVpi76/gvf9NXCG9WtJhC5v8pg/PjenjcOdmjzZnZpcMCvzHKBRJcdQpngsT2OKwmM2xnELZp2zQ2DWRLMxFs3JtSUdlGHh2LIq4W9XYbbl81Apghpi1r8qsN3aVhXUdacm77Ju78acToIgfs/OlDQnZsLFuVSh92fNubQEM+Ptb8BG4HChUR2F38OJ92c97sGcMhOhy5vPvD8+N2X97t1M8UtO+C0eZ0pad6CxOzXZl9NcePPv0hpo7UxJm+lMSZtjnbKyKxYXZlmQ7cDPwD0+isUbtuXzUCmCQoI1k2pQ93S3Jk/8BrjfnZqcXvixYH9/1jwiXTG/intT/PpqQlQZzpS0azDr8z1vYwxhmCWE/m5XDIVEYE75DMVMqPh+0cVc/ehKYKw7NbkRpi/Ox9a/VUgJlTe8A2hc6H4ja1tVsKeg2dC6LmheDbr3bE2B/w3wqTs1uWDNryrz/gq4U5MPYxZR7Idp9i0YoFD4PZx4f9bjDkxHVxG6vPnM++Nz49V3z5mSdibwD+CC0ubZ8UM8iUBHYIozJc2N6XM4wZmS1tPPcYBp4ZjgTk3OcacmbwbWcXLhV3/HcjPwFYA7NXk2ZmmgWj6IxRu25fNQGR02H2hljcTZgekE5pMe+TaYAFyPWf39euCHQtvvdqakfQH0ATyFTisFHKvfwhjMpGOFV2+vKu+vNpDjTk0+bE3Jfxamf8JkzAzYX/DX93c9ZqbuS4A/Cy2mKEKTN3nMH5+b08bhTEnrhpnFeKQP+714FY87NdlDoT/u1sSFD/lgdJg3/z/fY1pgPnKmpNXCnB7bVMlxeBvLVsyCsmOt2ftjKLSYtJ/Zls9DoiXIOjd+N2a9qtWYHvEr7Y2q7JwpaZ9jklsbZ0radmdK2s2Y4uAsZ0raeuBM6z6Yc7ybgA2Yad/vtCHkshiAWfdruLV2zxJnStq5VJ33Vx8zvf4yTIL6zZ2a/BPwKPCgMyVtA6bvRsEismOAmtb2Bzk5Kk6EqJLymDMl7SlnStoF1m4+/9x4GcfzQAJmOZslzpS0CZUdRxnj8Tkv45gIHHCmpK3C/AB62F05C6iWJ5a/A7c4U9KWAp9jhqX75IdWcX+7nClptztT0m63drEtn8tkiUIIIYQISSHREiSEEEIIUZQUQUIIIYQISVIECSGEECIkSREkhBBCiJAkRZAQQgghQlLIFUHOlLRb7Y7BV6ryewN5f0KUJJA+OxJL8SSW4tkdS8gVQZgVaquqqvzeQN6fECUJpM+OxFI8iaV4UgQJIYQQQvhbyE2WGBYZrWOjTq4Wkp+fT1iY/bVgZcSRHxlHWE6W7XFUhuLiqIz3Vxlx+Oy1Snh//owhKytLa63t/wCIE8LCwnRsbGyp+3j73fDHZ6ks31Nfx1PWnOHLeMqTv3wVT3lzqS/iqWhez8/P59ixY+XPW1rrkLrExcXpwiZPnqwDgcRxKonDnhiATB0A31O5lJyzKiIQPs+FSTylk3hOb/LkyRXKW/KLTwghhBAhSYogIYQQQoQkKYKEEEIIEZKkCBJCCCFESJIiSAghhBAhSYogIYQQQoQkKYKEEEIIEZKkCBJCCCFESJIiSIgK8GTl8P60TWzYe6T0HdN3wqzX4fBW/wQmQsbPy3fxw5Iddoch7HD0kMkr+9baHUnQkiJIiAo4mJXNv39ezYod6aXveGgLTHoCDmz0T2AiZHw+bytjZ7ntDkPYIeugySu7ltodSdCSIkgIIYQQIUmKICGEEEKEJCmChBBCCBGSpAgSQgghREiSIkgIIYQQIUmKICGEEEKEJCmChBBCCBGSpAgSQgghREiSIkgIIYQQIUmKICGEEEKEJCmChBBCCBGSpAgSQgghREiSIkgIIYQQIUmKICGEEEKEJCmChBBCCBGSpAgSQgghREjyaRGklHIrpZYrpZYopRZY22oopX5TSq23rqtb25VS6jWl1Aal1DKlVPdCx7ne2n+9Uur6Qtt7WMffYD1X+fL9CCGqNslZQoQWf7QEDdNad9Va97TupwB/aK1bAX9Y9wHOAVpZl1uBt8EkIOBJoA/QG3iyIAlZ+9xS6Hkjff92hBBVnOQsIUKEHafDRgHjrNvjgNGFto/XxhygmlKqPnA28JvW+qDW+hDwGzDSeixJaz1Ha62B8YWOJYQQlUVylhBVlK+LIA1MUkotVErdam2rq7XeZd3eDdS1bjcEthV67nZrW2nbtxezXQghyktylhAhJMLHxx+otd6hlKoD/KaUWlP4Qa21VkppH8eAlcxuBYiIiGDKlCknHsvIyDjlvl0kjuCMY3dmPgCrVq+mmmd9ifs5Dq+iG7B06VIObStbN5BA+bcIEQGfs4o6dPAYR3O1V5+RQPssSTylO108sVk76QOsWr2KvQdL3s9f8dghIyOjQs/3aRGktd5hXe9VSn2HOT++RylVX2u9y2oe3mvtvgNoXOjpjaxtO4ChRbZPsbY3Kmb/4uJ4D3gPID4+Xg8devJwU6ZMofB9u0gcwRnH5v2ZMH0K7du1Y2i3Un7Ub4mGJdClSxdoUfLxyhODqDzBkLOKGrNxLpHHcxk6dMBp31+gfZYkntKdNp4DG2EetG/XnvadS9nPX/HYoKJFmc9Ohyml4pVSiQW3gRHACmACUDBa4nrgB+v2BOA6a8RFX8BjNUFPBEYopapbnQtHABOtx9KVUn2tERbXFTqWEEKUieQsIUKPL1uC6gLfWSNAI4DPtNa/KqXmA18ppW4GtgCXWfv/DJwLbACygBsBtNYHlVJPA/Ot/Z7SWh+0bt8JjAVigV+sixBClIfkLCFCjM+KIK31JqBLMdsPAGcUs10Dd5VwrA+BD4vZvgDoWOFghRAhT3KWEKFHZowWQgghREiSIkiICsg4lgtARHgpI76O7IEZL5nbMUl+iEoIERLy88y1kj/l5eXrIfJCVGnT1u8DoJezxl8f1BpWfAM/PwQ5R2HEv6FB97/uJ0QFKKXQPh+0LwLS0UPmOraarWEEMymChKiASav20KVxNeomxZz6QOZ++OkBWD0BGvaE0W9D7db2BCmqtDAFWqqg0JS131zH1bQ3jiAmRZAQ5bQ3/RhLtx3moRFFiptVP8BPD8LxdDjjSeh/L4TLV034RphS5EsNFJqyDpjruFr2xhHEJDMLUU6/rzZz5p3Z3lpFYe8amPIfWPU91O8Co3+Euu3tC1CEBAXkS0tQaMqUlqCKkiJIiHLQWvPF/K20qB1Pm5x18MXLsOYniIyDoY/DoAchPNLuMEUIUNISFLoy9kBUIkTF2R1J0JIiSIhyWOg+yLLtHp6pNw015h2IccDgR6DP7RAvv8qE/4SHQb5UQaHJsx0csgZvRUgRJERZ5OfD2jQ+/Ho9DhpyUc7PcNbT0PNGiE60OzoRgsLDFHlyOiw0pe+AJCmCKkKKICG8kZcDy/8HM15h+74D/Hr8FW5tc5S4a+ZDZMzpny+Ej4QpJS1BocqzA+p1sjuKoCZFkBClCMs7DnPfhVmvg2cb1O3I+OYvotaGc92F50sBJGwnLUEhKvc4ZO6FpEZ2RxLUpAgSojhHD8P89+k753XI8UDjvpD8IplNhvN56p+M7FibBtVi7Y5SCGuIvBRBISd9h7l2SBFUEVIECVHYkT0w502Y/yFkH+FIjR7UHPUMNO0PwDez3Rw5lsvNA5vZHKgQhjkdZncUwu88BUWQ9AmqCCmChAA4uBlmvQaLP4X8HGg/GgY+wPK1BxlqFUD5+ZqPZrrp2rga3ZtUtzdeISzhYZAnfYJCT0FLkJwOqxApgkRo27MKZrxs1vgKC4cuV8KA+6BmC/P42ikndp2ybi+b92fy2pXd7IlViGLI6bAQ5dlurpMa2BtHkJMiSISmbfNg+kuw7heIjIe+d0C/u0pNKB/OcFMvKYZzOtbzY6BClC4sTIqgkOTZDrE1ZKLECpIiSIQOrWHjHzD9ZdgyA2Krw9DHoPetEFfMKvCFrN19hBkb9vPw2W2IDA/zU8BCnF64zBgdmtJ3SH+gSuBVEaSUqg40AI4Cbq21dMMTwSM/z6zmPuNl2LUUEhvA2c9C9+shOsGrQ4ydtZnoiDCu6t3Ex8GKyhIqeStMSZ+gkOTZAdWb2h1F0CuxCFJKOYC7gCuBKGAfEAPUVUrNAd7SWk/2S5RClEduNiz7Ema+Agc2QI0WcMHr0PlyiIj2+jAHM7P5dtEOLureiOrxUb6LV1RYKOatsDCZLDEkpW8/MWpVlF9pLUFfA+OBQVrrw4UfUEr1AK5VSjXXWo/xYXxClF12JiwcB7PfME3G9TrDpWOh3QWm83MZfT5vK8dz87lxgLPSQxWVLuTyVriSyRJDzvEMOOaR02GVoMQiSGt9VimPLQQW+iQiIcor6yDMex/mvgNHD0LTgXDBa9DiDFCqXIfMzdeMn+NmUKtatK4ra4MFulDMW9IxOgTJ8PhK422foM6As/D+WutvfRSTEGWTvsu0+iwcC9kZ0PocGPQgNO5d4UPP353HnvTjpF7cueJxCr8KlbwlkyWGoILh8dISVGGnLYKUUh8CnYGVQMFXTQNVLpmIIHNgI8x8FZZ+Dvm50PFiGPgA1O1QKYfXWjPJnUPz2vEMaVW7Uo4p/COU8lZ4GHI6LNScKIKkJaiivGkJ6qu1bu/zSITw1v4NMOVZWPkdhEVCt2ug/71Qo3KXsli09RCb0/N5enQzwsLKdzpN2CZk8la4UjI6LNQc2gwoSKxvdyRBz5siaLZSqr3WepXPoxGiNEcPwdTnYd67EBED/e+BvndCom8mL/x0zlZiI+Di7tLkHIRCJm+Fh5l5q/LyNeFSrFdtebkw/QXTAt64N4RH2h1R0POmCBqPSSi7geOAArTWWjpJCP/Iy4WFH8HkZ00h1P06GP4EJNTx2UumH8vh5xW76Fc/grgomVM0CIVM3ooIN4VPbn4+4eUY/SiCxOGt8O2tsHW2Wd7n3OftjqhK8Ca7jwGuBZZz8ty6EP6x/neY9A/Ytwacg2Dkf6BeJ5+/7I9Ld3IsJ5/BjWReoCAVMnkrwmr9kVNiVdjK72DCfaDz4aIPoPOldkdUZXhTBO3TWk/weSRCFBKXuQ0+uQQ2/AY1msMVn0Gbc8s91L2svpq/jbb1EnEm5fnl9USlC5m8VXAKLCdPiqCqJizvGPxwNyz+GBr2gIvHVHrfx1DnTRG0WCn1GfAjplkZqJpDTUUAOJYOU5+j1/y3IDoRRvzbrO0V4b8WmbW7j7B0u4d/ntcelbvFb68rKlXI5K2Ctexy86p0g1do0RrW/kKv+Q/AsT0w8EEY9rj0AfIBb4qgWEwSGVFoW5UcaipspDWs+AYm/gMy9rCr/ggaXPMWxNfyeyjfLNpORJhiVNcGLF8gRVCQCpm8dbJPkLQEVQl7V8Ovj8GmyeTHNYLrJ0CzwXZHVWWdtgjSWt/oj0BECNu7Bn5+CNzToUE3uPIz1q0/QgMbCqDcvHy+W7yDYW3rUDPB+/XFRGAJpbxV0BKUIy1BwS3rIEz5D8wfYxZ2HvkcC7JaMkQKIJ8KK+kBpdQTSqkapTw+XCl1nm/CEiHh+BGY9AS8MwB2L4fzXoa//WHOfdtkxob97DtyXIbFB6lQzFuR4dInKKjl5cLc9+C1bjD/A+hxA9yzGPrejg6Tkam+Vtq/8HLgR6XUMWARJ1djbgV0BX4Hnj3dCyilwoEFwA6t9XlKqWbAF0BNzDo+12qts5VS0ZhhrT2AA8DlWmu3dYzHgJuBPOBerfVEa/tI4FUgHPhAa51apncv7KG1Ge0w8R9wZCd0uxbO/BfE17Q7Mr5ZtINqcZEMa+u74ffCpyqct4ItZ0lLUBDbONmc+tq32pzyGplaaTPeC++U2BKktf5Baz0AuB0z9Xw4kA58AvTWWj+gtd7nxWvcB6wudP854GWtdUvgECZRYF0fsra/bO2HUqo9cAXQARgJvKWUCrcS1ZvAOUB74EprXxHI9q2Dj0fD1zea/j43/w6j3giIAij9WA6TVu7m/M4NiI6Q+VaCUSXlraDKWRFhUgQFnQMb4fMrTS7MyYLLP4XrJkgBZANv+gStB9aX5+BKqUZAMvBv4EGllAKGA1dZu4wDXMDbwCjrNsDXwBvW/qOAL7TWx4HNSqkNQMHKmBu01pus1/rC2rfKzxAblLIzYdrzMOsNiIyDc1+AnjdBAE3u9vOyXRzPzefiHrIeT7Arb94KxpxVcDosV06HBb5j6WbG59lvQUQ0nPGkmfU+MsbuyEKWr084vgI8AiRa92sCh7XWudb97UBB54uGwDYArXWuUspj7d8QmFPomIWfs63I9j6VHL+oKK1h9QT49XFI3w5drzanvhICb0HSbxZtp0XteLo0ctgdirDPKwRZzpLTYUEgPx+WfAp/PAWZe00ePOOfPlvyR3jPZ0WQ1flwr9Z6oVJqqK9ex8tYbgVuBYiIiGDKlCknHsvIyDjlvl2qYhyxWTtptf49ahxaTEa8k3XdUkl3tIMFK/0ahzf2ZuUz332US1pHMnXqVNviKE4gxBAKgiVnFbX6gJnQc/7CxWS4S29ZDbTPUijEk+RZTav175OYsRFPUhs2dH+EI0mtYOEaYI3f46mIQIsHTEwVorX2yQX4D+aXjhvYDWQBnwL7gQhrn37AROv2RKCfdTvC2k8BjwGPFTruROt5J55rbT9lv5IucXFxurDJkyfrQFDl4ti+UOunamn9bCOtZ7+tdW6OPXF46a3JG3TTR3/S2w5m2hpHcfwZA5CpfZQTAv0SLDmrqHmbD+imj/6kp67dW+p+WgfG57mwKh/PjFe1fjJJ6xfbab30K63z8+2Np4ICLR6tTUwVyVsltgQppV7HTC5WUvF0b0mPWY8/Zn3JsX5VPaS1vlop9T/gEsxoi+uBH6ynTLDuz7Ye/1NrrZVSE4DPlFIvAQ0wozzmWcmmlTVyYwemI2LBeXthty0zIS8b7l4A1ZvaHc1pNa0ZB8CirYdpVD3O5mhEeVUkbwVrzoqOkNNhAcmzwyz63PocuGQMRMXbHZEoRmmnwxb46DUfBb5QSj0DLMYsdIh1/bHVifAgJkGgtV6plPoK03kwF7hLa50HoJS6G/MrKxz4UGt9+vMswj+O7DYdoKs1sTsSr4zsUI/WdRN47Y/1JHeqf2I9JhF0fJG3AjpnFYxkPJYjRVBA+fNps+Dpuf+VAiiAlVgEaa3HFb6vlIrTWmeV50W01lOAKdbtTZwcKVF4n2NAsUvjaq3/jRmtUXT7z8DP5YlJ+NiR3ZBQ128LnlZUWJjivjNac9dni0hbvosLujSwOyRRDpWVt4IpZxW0BB3PlcV+A8bOJbD0cxhwf9D8EAxVJc4TVEAp1U8ptQqrB5dSqotS6i2fRyaC25HdkFjf7ijK5JyOJ1uD8mQdpqAWSnkrJlJaggKK1mYm/LiaMOhBu6MRp3HaIggzZPRszIyoaK2XArKYiSjdkV2QWNfuKMqkoDVow94M0pbvsjscUTGvECJ5q6Al6FiOtAQFhHW/mnUQhz4GMTLdRqDzpghCa72tyCb5tonSZeyFhOCbA6OgNejV39dJa1CQC5W8VdASlC0do+2XlwOT/g9qtjJrgImA500RtE0p1R/QSqlIpdRDnDqlvBCnys6E7COQEHzrbxW0Bm3cl8lPy3baHY4ov5DJW9ISFEAWjYMD6+GspyA80u5ohBe8KYJuB+7CzHi6A7MI4V0+jEkEu4w95jpIZ0M9p2M92tZL5NU/1pOvpTUoSIVM3goLU0SFh3E8V1qCbHUsHSb/B5oOhDbn2B2N8JI3M0YrrfXVPo9EVB0Ze811ELYEQUFrUCvu+HQRc3ZFM9zugER5hFTeio4Ik5Ygu818BbL2w4ing2ZUrPCuJWimUmqSUupmpVQ1XwckqoAju811EPYJKnB2B9MaNGFDNrnS1yIYhVTeio4Ml5YgO3m2w+w3odOl0LC73dGIMjhtEaS1bg08AXQAFimlflJKXePzyETwOtESFFyjwwoLC1Pcf2YrdmdpfpS+QUEn1PKWtATZ7M9nzND4M/5pdySijLwdHTZPa/0gZsKwg8C40zxFhLKM3aDCzTwZQWxE+3o0TgzjtT82SGtQEAqlvBUTKX2CbLNzCSz9AvreIRMjBiFvJktMUkpdr5T6BZgF7KKY2VOFOCFjj+kPFOZVjR2wwsIUo1tGsnl/JhOWSmtQMAm1vBUdEc5xaQnyv4KJEWOry8SIQcqbjtFLge+Bp7TWs30bjqgSVBhk7odF46HbtUHdSbB7nXA6NEjimbTVdG1cjea1E+wOSXgnpPJWTGSYzBhth02TzcSI5/xXJkYMUt78VG+utX4Ak1SEOL0zngTnQJhwD3x/J2SXa8m5gKCU4o2ruqOAa8fMY0/6MbtDEt4JqbwVGxVOVnau3WGEFq1hynOQ1FAmRgxi3hRBfUNlDR5RSeJrwTXfwJAUs4jgB2fC/g12R1VuzWrFM/bG3hzOyub6D+fhOZpjd0ji9EIqb8VGRpCVLafD/Mo9HbbNgYEPQES03dGIcpK1w4RvhIXDsMfgmq/NOmLvDYWV39kdVbl1auTg3Wt7snFfBreMWyAjcQLfK4RQ3oqLCueofCb9a8pzZpHobtfaHYmoAFk7TPhWyzPh9ulQpy387wb49jbYs9LuqMplYKtavHRZV+ZvOcidny6S0w8BLpTyVlxUuLQE+ZN7JmyZAQPuh8gYu6MRFSBrhwnfczSCG36GAffBqh/g7f4w7nxY8zPkB1fiPr9LA54Z3ZEpa/dy6Tuz2eU5andIonghlbfioiLIOi5Fud/Meg3iakGP6+2ORFRQedcOu9OHMYmqKCLKLCr44Co40wUHNsIXV8LrPWDO22bdnSBxdZ+mjLm+F1sOZHHBGzNZsu2w3SGJvwqpvJUQE0Fmdh75+bLWnc/tWwvrfoXet0JkrN3RiAryZsbo/Vrrq7XWdbXWdbTW1wCP+yE2URXF1TAdCe9bCpd8ZOYT+jUFXmoPv6TAwU12R+iVYW3r8O2d/YmJDOPyd2fzo8wjFFBCLW8lRIcDkCX9gnxv9hsQEQO9brY7ElEJyjub3WWVGoUIPeGR0PEiuHkS3PKnWXV5/vvwWnf47Aoch1fYHeFpta6byPd3DqBzIwf3fL6Yl35bh5ZV5wNZlc1b8dFmyrdMOSXmWxl7YemX0PUqMwpWBL3yFkHBO/udCDwNe8DF78P9K2DwQ7B9Ht2W/MP0GQpwNROi+eRvfbikRyNe+2M9704LjpasEFVl81aCVQQdOSZFkM/kHDPznuVlQ9+77I5GVJISZ4xWStUo6SGqcDIRNkqqD8OfgEF/J+OVfiT8dD806WtOoQWw6Ihwnr+kM5nHc3lx0loGtqxFx4Yye6wdQjVvJcVEAnDkmMxh5RM5x+DLq2HD73DeK1Crpd0RiUpSWkvQQmCBdV34sgDI9n1oImRFxrKm7b2QdcD0FwoCSin+c1EnasZHc+8Xizkqw5XtEpJ5KzFGWoJ8JueoGcSx4Q+44HXoeaPdEYlKVGIRpLVuprVubl0XvTT3Z5Ai9GQkNodBD8GyL4PitBhAtbgoXrqsC5v3Z/JM2iq7wwlJoZq3kmJNS1C6tARVrpyj8PmVsHGyKYC6X2d3RKKSBfcy36JqG3i/mZH1p/uDZv2x/i1rceug5nw6dyvT1u2zOxwRIgpOh6UflZagSrN3NXxyMWyaAqPehO4yM3RVJEWQCDzHM2i4/Ud4s7dZciOmGuQHT3K/c6jpL7B8h8fmSESocFgtQYePVtkzfv6zdw3870Z4qx/sWgoXvgvdrrY7KuEjJXaMFsLv0nfBvHdhwYe0OuaBxn3h7GehzblmLbIgseOwmUW6ac04myMRoSI2KpzYyHAOZkgRVG5719Bu1QswZQZExcOgB6Hf3QE/MENUjNdFkFKqDnBikRSt9VafRCRCz56VMOsNWP4/0HnQ7nwWRQ+g+6jb7I6sXNwHMgGz+rywVyjlrRrxURzMkiKozPathan/hRXfUCss2kzm2u9uiK9pd2TCD05bBCmlLgBeBBoAe4GmmDV4Ovg2NFGlaQ2bJpviZ+MfEBkHPW+CvndAjWakT5lid4Tltnm/KYKcNaUIskso5q2aCVEczJQiyGv71sG0/8Lyr03+GXg/c/K7M+DMC+yOTPiRNy1BTwN9gd+11t2UUsOAa3wblqiycrNh5bcw63XYswIS6sLw/zMFUBVpdnbvz6ROYvSJWXyFLUIub9WIlyLIK/s3wNTnYMXXEBFrFnbufw/E1yIniH98ifLxJkvnaK0PKKXClFJhWuvJSqlXfB2YqGKOeWDhOLNY6pGdULstXPAGdL4MIqLtjq5Sbd6fKafC7BdyeatGfBTr92TYHUbgOrARpj1vpt2IiDGnvAbcJ8tfhDhviqDDSqkEYDrwqVJqL5Dp27BElXF4G8x9xxRA2Ueg2WC44DVoeSaoqjmB7+b9mYzoUNfuMEJdyOWtWgnRHMg8jtYaVUW/W+VycLMpfpZ+AeFR0PdOGHA/JNS2OzIRALwpgkYBR4H7gasBB/CUD2MSVcGupeaU14pvzf2OF5lfXg262hqWr3mycjiQmS0tQfYLubxVMz6KYzn5ZGXnyalYgENbTPGz5DOzYHOf20zxkyg/UMRJp/2maK0zlVJNgVZa63FKqTggeMYrC//RGjZPhekvwuZpEJUAfW43nZ2rNbY7Or/YfGJkWILNkYS2UMxbNeKjADiQkR3aRdCRPTDlWVj8Cahw6H2LGfGVWM/uyEQAOu1kiUqpW4CvgXetTQ2B7714XoxSap5SaqlSaqVS6l/W9mZKqblKqQ1KqS+VUlHW9mjr/gbrcWehYz1mbV+rlDq70PaR1rYNSqngWGSqKtIa1v8OH54N40eZURdn/gseWAkjnw2ZAghgza50AFrWkSLITuXJW8Ges+o5zEwABfNUhZzc4zDjFXi9Byz+FHrcCPctgXOekwJIlMibGaPvAgYA6QBa6/VAHS+edxwYrrXuAnQFRiql+gLPAS9rrVsCh4Cbrf1vBg5Z21+29kMp1R64AjO0dSTwllIqXCkVDrwJnAO0B6609hX+ojWs/RXeHw6fXgyeHXDuC3DfUrPkRWw1uyP0u6XbD5MUE4FTJkq0W3nyVlDnrIJTsJv2h1jnaK1h9U/wZh/4/UlwDoS75kLyC5DUwO7oRIDzpgg6rrU+Me5SKRUB6NM9SRsF38ZI66KB4ZhfaADjgNHW7VHWfazHz1Cmd98o4Aut9XGt9WZgA9DbumzQWm+y4vvC2lf4Wn4+rP4R3h0Mn18OWfvh/Ffh3sWm6Tky5vTHqKKWbPPQpXE16ZhqvzLnrWDPWQ0cscREhrFpX5Xu/32qPSth/AXw5dVmlOm138FVX0DNFnZHJoKENyeOpyqlHgdilVJnAXcCP3pzcOuXz0KgJeYX0EbgsNa6YCGo7ZhmaqzrbQBa61yllAeoaW2fU+iwhZ+zrcj2Pt7EJcopPx9W/wBTn4e9K6FGcxj1lhnmHh5pd3S2y8rOZd2eI5zZThJwAChX3grmnBUWpnDWjGfTvhBoCcrcD5P/DQvHQozDtED3uBHCQ7gvlCgXbz4xKZhm3+XAbcDPwAfeHFxrnQd0VUpVA74D2pYvzIpRSt0K3AoQERHBlEITYmVkZJxy3y4BHYfOo87eGTTd8hXxWdvJjGvElnYPsK/2ILQnHKbP9E8cNihLHOsO5ZGXrwk7vI0pU3bZEoM4oVx5KxhyVmkSOcbKbSV/XgLts1TWeFR+Lg13/EzTLV8QkXuUHQ3Pwe28ktysRJg+w+/x+JrEc3oZGRUr+r0ZHZYPvK+UGoc5x71Da33a02FFjnFYKTUZ6AdUU0pFWL+sGgE7rN12AI2B7VbTtQM4UGh7gcLPKWl70dd/D3gPID4+Xg8dOvTEY1OmTKHwfbsEZBx5uWY9r+kvwIENULsdnDOG+A4X0t7HC5oG5L/HaWyYvglYzdXnDKROYuWdEgyUf4tgUtG8Fcg5qzSLsteycPIG+g0cRHTEX7+jgfZZKlM86ybBxMfhwHpocQac/SyN6rSlkV3x+IHEc3oVLcpK7BOklHpHKdXBuu0AlgDjgcVKqStPd2ClVG3r1xRKqVjgLMzaPZOBS6zdrgd+sG5PsO5jPf6nlbQmAFdYIzGaAa2AecB8oJU1ciMK0xFxgpfvW5QmNxsWjYc3esD3t5up5S8bD3fMgk6XBNWK7v60ZNthGlaLrdQCSJRNRfJWVchZzWsnkK9hy4GsyjysvfathU8uhs8uBTRc9RVc8w3UsaWRTlQxpbUEDdJa327dvhFYp7UerZSqB/wCfH6aY9cHxlnn2MOAr7TWPymlVgFfKKWeARYDY6z9xwAfK6U2AAcxCQKt9Uql1FfAKiAXuMtqskYpdTcwETP/x4da65VlefOiiNzj1N/5K7x+D3i2Qv2ucMXn0OacKju7c2Vatt1Dl8YOu8MIdRXJW0Gfs5rXtkaI7cugdd3Eyjy0/x09BFOeg/nvQ2Q8jPg39L4VIqLsjkxUIaUVQYVX4jsL+B+A1nq3NyNftNbLgG7FbN+EGSVRdPsx4NISjvVv4N/FbP8Zc65fVETOMdPyM/MV2qTvgIY9zfDSViOk+PHSwcxsth7M4qo+TewOJdSVO29VhZxVMEx+YzCPEMvLhUVj4c9/w7HD0P16GP6ErPElfKK0IuiwUuo8zDnrAVhzY1jnvmP9EJvwtewsM7pi5quQsRua9GOp81a6XHifFD9ltHT7YQA6N5KWIJuFdN5KjImkblI0G4N1hNimKfDrY7B3FTgHwcj/QL1OdkclqrDSiqDbgNeAesD9Wuvd1vYzgDRfByZ86HgGLBhj1vbK3GeSzcUfgHMgh6ZOlQKoHJZuO4xS0LlRNbtDCXUhn7ea10oIvrmCDmyESf8Ha9OgWlO47GNod77kIuFzJRZBWut1mNlOi26fiDmnLYLNsXRzfn3WG3D0IDQfBkMegab97Y4s6C3ddphWdRJICOU1mwKA5C3TL+jHpTuDYjX58NwsU/zMfQfCIuGMf0Lfu0J6wlXhX5KxQ8HRwzD3XZjzljnH3moEDH4EGveyO7IqQWvN0u0ezmjrzWoyQvhW89oJpB/L5UBmNrUSou0Op3j5ebDkU/rMfQJyPND1alMAyRpfws+kCKrKsg7CnLdNAXTcA23OhcEPQ8PudkdWpWw/dJSDmdl0blzN7lCEoMWJEWKZgVkEbZkFvzwKu5dxNKktUTd8Bw172B2VCFFSBFVFmfth9hsw733IzjDn1gc/DPW72B1ZlbRk22EAukkRJAJAi9oJgBkm37tZDZujKeTwVvjtn7DyO0hqCBePYfH+mgyVAkjY6LRFkFKqLvAs0EBrfY616nE/rfWY0zxV+FvGXpj1GswfAzlHocOFpvipW2kLVYtiLNt+mKiIMNrUC/J5WaqQUM5bDarFEhURxqb9AdI5OjsTZrxsBmKgYOhj0P9eiIqDAFuCQYQeb1qCxgIfAf+w7q8DvuTkhGHCbum7zDD3hR9BXjZ0uhQG/R1qt7E7spCwdJuHjg2SiAwvcQJ24X9jCdG8FR6maFYzno17bR4mn59vlt35/Uk4sgs6XgJn/QsclbnQhRAV400RVEtr/ZVS6jE4sVpyno/jEt5I3wXTXzQTHebnQpcrTPFTU1Yx95fcvHyW7/BwRe/Gp99Z+FNI563mteNZs/uIfQHsXg4/3g87FkCDbnDpOGjSx754hCiBN0VQplKqJqABlFJ9AY9PoxKlO34EZr5m+v3kZZuRFQMfgBrN7I4s5Ow5cpyjOXnBv0RB1RPSeatV3UQmrtzNkWM5JMZE+vfF3TPhs8vN6a7Rb0PnKyBMWklFYPKmCPo7ZpG/FkqpmUBtTi4mKPwpL8fM8Dz1OTPJYYeL4Iz/gxrN7Y4sZOXlmYXJo+RUWKAJ6bzVp1kNXtOwYMshhrXx49QN6ybBV9dCtSZw3Q+Q1MB/ry1EOZy2CNJaL1RKDQHaAApYq7XO8Xlk4iStYc1P8LsLDmyApgPgyi+hkYyqsFueNkVQeFhgT0oXakI9b3VvUp3IcMWcTQf8VwSt/A6++RvUaQ/XfidrfYmg4M3osGXAF8CXWuuNvg9JnGLrXPjt/2DbXKjVBq78AlqPlOnkA0RevimCwqQICiihnrdio8Lp2rgaczcd9M8LLvoYfrwXGvWGq7+CGFlDTwQHb9rwzwdyga+UUvOVUg8ppWSpbF87uBm+ug4+HAGH3HD+q3DHLGhzjhRAASTfagmSGijghHze6tu8Jst3eDhyzMcNYAs+ggl3Q/OhcO23UgCJoHLaIkhrvUVr/V+tdQ/gKqAzsNnnkYWqo4dh0hPwZm9Y/5uZU+OeRdDjBgiXuS0DTYRV/eRafYNEYJC8Bf1a1CQvX/u2NWjVBEh7EFqeZVqpo+J991pC+IBXf1WVUk2By61LHvCIL4MKRSo/z8zwPPlZOHrIjPga/gQk1bc7NFGKmMhwAI7lhMzo66AR6nmrR9PqxEaGM339Ps5sX7fyX8A9w/QBatgDLhsHEQG4RIcQp+FNn6C5QCTwP+BSrfUmn0cVSrSG9b/Rc8EDkLUdnIPg7H/LEhdBIjrCNKZKERRYJG9BdEQ4fZrXYPqG/ZV/8N3L4fMroboTrvpKWoBE0PKmJeg6rfVan0cSig5ugp8ehE2TUbEN4IrPpc9PkCloCTqem29zJKIIyVvAwJa1eCZtNTsOH6VhtdjKOejBzfDJxRCdaPoAxQXQ+mRClJE3HaN3K6VeUkotsC4vKqWk51tlmPgEbF8AI59jfq/Xoe25UgAFmYIi6Ki0BAUayVvAkNa1Afh91Z7KOeD63+D9YZB7HK75RpbAEEHPmyLoQ+AIcJl1ScesySMqau8qaHUm9L0dHSadnoNReJgiKjyMYznSEhRgJG9hZo5uWy+R7xbvqNiB8nLhj6fg00sgqRHc8ifUaVc5QQphI2/+8rbQWl9c6P6/lFJLfBRP6Mg9Doe3mMVORVCLiQyTPkGBR/KW5cJuDfnPL2vYXN5V5Y/sgW9uBvd06H4dnPNfiKykU2tC2MyblqCjSqmBBXeUUgOAo74LKUQc3AQ6H2q1sjsSUUExkeFSBAUeyVuWUV0bohTlaw3aPB3eHWRO249+Gy54XQogUaV40xJ0BzDOOp+ugIPA9T6NKhQcsCaxTd8B+fIHNJjFRoVLn6DAI3nLUs8RQ/8WNflu8Xa69vKyz2HWQZj+Isx5C2q0gGu/h7rtfRqnEHbwZu2wJUAXpVSSdT/d10GFhPqdoW4nsx7Yks+oXecCyB8sqy0HodjIcI5mSxEUSCRvneqq3k2567NFLNgTzfDSdsw5BvPeNQXQsXTodg2M/I8ZCSZEFXTav7hKqZpKqdeAKcBkpdSrSqmaPo+sqqvWBG6bBpeOAxVGh1UvwDsDzAys+dLJNphIS1Dgkbx1qpEd69G8Vjw/bcxB62JmN8/PgyWfwes94Ld/QuM+cMdMGPWGFECiSvOm2eELYB9wMXCJdftLXwYVMsLCoMNouGMWq9r9HfKy4atr4b3BsPYXM5GiCHjSEhSQJG8VEh6muH1oC7YeyWfK2n0nH7Ama+WdQfD9HZBQB67/Ca7+H9TtYF/AQviJN0VQfa3101rrzdblGcAHc7CHsLBw9tYdDHfOhdHvwPEj8PkVZj6O9b9JMRTg4qLCyZIiKNBI3iriwm4NqRmjeGPyBtMatHMxjL/ADHvPyYJLPjJD35sNsjtUIfzGmyJoklLqCqVUmHW5DJjo68BCUngEdL0S7l4AF7wBmQdMghozAjZOlmIoQMVEyumwACR5q4jI8DDOaRbJwi2HmPPRo/DeUNiz0gx5v2sedLxIJmsVIafEIkgpdUQplQ7cAnwGHLcuXwC3+ie8EBUeCd2vhXsWwnkvmxFkH4+Gsclm0UIRUExLUK7dYQgkb5Uqcz83HvuYWhzmrY21YPDDcO8S6HMbRETZHZ0QtiixCNJaJ2qtk6zrMK11pHUJ01on+TPIkBURBT1vgnsWwTnPm2H1Y5Nh3AWwda7d0QlLXFSE9AkKEJK3ipGdCdOeh1e70nzXj/yt6V6m53Vgaau7ISY0/0mEKFCm8dhKqRZKqSeUUit9FZAoRmQM9LkV7lsCZz9rltv4cIRZxHD7QrujC3kyOiywhWzeysuFhWPhte7w5zPQfAjze73O1TfeTVJMBG9M3mB3hELYzpsh8g2UUg8qpeYDK4Fw4AqfRyb+KjIW+t0F9y2FM/8FOxbBB8Phy2vM5GbCFgrIydPk5MnUBoEi5PPW/g1myo0f7zPTcdw0Ea74lKz4RiTGRHLDgGb8tmoPq3aG9PRJQpTaJ+hWpdRkzDwbNYCbgV1a639prZf7KT5RnKh4GHg/3L8Mhv0D1k2E94bAziV2RxZy5rsPMmbGZro3qUZEmHQqtZvkLcxp83HnQeZ+uPwTuHkSNOl7yi43DXBSLS4S148ri583SIgQUVpL0BvW41dprZ/QWi8DvP62KKUaK6UmK6VWKaVWKqXus7bXUEr9ppRab11Xt7YrpdRrSqkNSqllSqnuhY51vbX/eqXU9YW291BKLbee85pSITa0IToRhjwCN/5qJlgcMwIWfWx3VCFjze50bh47n4bVYnn/up6E2scvQJU7b1WJnHVwE4w9z8w5dv0EaHd+sSO+qsVF8cjZbZm3+SA/LNlZqSEIEUxKK4LqA58DLyql1iqlngYiy3DsXODvWuv2QF/gLqVUeyAF+ENr3Qr4w7oPcA7QyrrcCrwNJgEBTwJ9gN7AkwVJyNrnlkLPG1mG+KqORj3gtqnQtB9MuBsm3GOmvxc+s+1gFteNmUdsVDjjb+5NzYRou0MSRkXyVnDnrIObYez5kHsMrptw2skOL+/VmC6NHDyTtpr0YzmVFoYQwaS00WEHtNbvaK2HAGcAh4E9SqnVSqlnT3dgrfUurfUi6/YRYDXQEBgFjLN2GweMtm6PAsZrYw5QTSlVHzgb+E1rfVBrfQj4DRhpPZaktZ6jTXvu+ELHCj3xteCab2HQ32HRePjwbDi81e6oqqT9Gce57sN5HMvJY/xNfWhUPc7ukISlInkrqHPWoS0w7nzIyYTrfoB6HU/7lPAwxdOjO3Ig8zgv/7auUsIQIth4NTpMa71da/2i1ron5otfpmYGpZQT6AbMBepqrXdZD+3m5CyuDYFthZ623dpW2vbtxWwPXWHhcMY/4YrPTbP4uAvM8FhRKXLz8vlkzhbOfnkaOw8f5cMbetGmnqyrFKgqkreCLmf98ohZ8PTa783izF7q3KgaV/dpwrhZbhZukcEVIvScdhX5orTW64CnvN1fKZUAfAPcr7VOL3wKXGutlVI+75WnlLoVa6K0iIgIpkyZcuKxjIyMU+7bpXLjiMPR7lG6LfkH28fdwoZW3s8RVzX/PSoex4r9uXy+JpsdGZo21cO4t0sUGe5lTHH7LwZRfmXJW4Ges/5C5zNw4zT21hnEunWHYV3J+xb3WRqQoJkYo7ht7Bye6h9LXKT/+rYF2mdb4ildoMUDJqYK0Vr77II5Fz8ReLDQtrWYdX3AnL9fa91+F7iy6H7AlcC7hba/a22rD6wptP2U/Uq6xMXF6cImT56sA4FP4vglResnk7TeOMXeOMohUOL49Mc/9A0fztVNH/1JD3ruT/3L8p06Pz/frzH4898CyNQ+zAmBfgmGnPUXu1ea7/niz0rfT5f8WVrgPqibP5am7/t80WmPUZkC5XteQOIpXaDFo7WJqSJ5q0yTJZaFNephDLBaa/1SoYcmAAWjJa4Hfii0/TprxEVfwKNNE/REYIRSqrrVuXAEMNF6LF0p1dd6resKHUuAOTVWsyX8cLdpKhdeO5iZzT9/WMETM4+ywH2Ix89ty28PDmZkx/oyCqyKCtqctX2euW7cu9yH6NG0Oved0Yrvl+zk+8U7KhySEMHCm8kS//BmWzEGANcCw5VSS6zLuUAqcJZSaj1wpnUf4GdgE7ABeB+4E0BrfRB4GphvXZ6ytmHt84H1nI3AL17EFToiY82q9Onb4avrYMU3Zu4QUao/1+xh6POT+XTuVoY2jmDKw0O5dXALoiPC7Q5NeKmceSs4c9a2+RAZD9WaVugwdw1rSS9ndZ74fgVbDkhfQhEaSuwTpJSKAeKAWtavmYKfv0l40ZlPaz2j0HOKOqOY/TVwVwnH+hD4sJjtC4DTD4MIZY17wVlPw9TnYNNks61uJ2g+BJoNgab9ITrB3hgDzIuT1lErIZpvru3BjtULZfh7EKlI3granFXDaUaFjR8FF38ASfXLdZjwMMXLl3flvNdncMv4BXx75wASosvcbVSIoFJaS9BtwEKgrXVdcPkBMyGZCBb974ZHNsPf/oDh/wdx1WHe+/DZpfBcUxhzNkx+FtwzUfmhPV/I1gNZrNyZzpW9m9Cqroz8CkKhl7cGPwwXvgs7F8E7A2Hjn+U+VKPqcbx5VXc27svk718tIT9fZpMWVVuJZb7W+lXgVaXUPVrr1/0Yk/CF8Aho1NNcBj8EOUdh21zYNBU2TzWrTE99joFh0bBj4MmWonqdIcxnXccCzi8rzEjokR3r2RyJKI+QzVtdroAG3eCr6+Hji0xhNDTFTJtRRgNa1uIf57bjqZ9W8dqf67n/zNY+CFiIwHDatk6t9etKqf6As/D+WuvxPoxL+FpkLDQfai4ARw+Dewa7ZnxGI88G+O2fZntsdXAOOlkU1WhRpYuiX1bsplNDB41ryASIwSwk81btNnDLH/DzwzDtv7B1tjk9llj2gv7GAU5W7Urnld/X07ZekvwoEFXWaYsgpdTHQAtgCZBnbS6Y7VRUFbHVoN15bNiTQKOhQyF9F2yeZlqJNk2F1RPMflEJULejmZCtXifTUlSnHUQEf7+ZrOxclmw7zB1DW9gdiqigkM1bUfEw+i1oOgDS/g6v94Bef4N+d0NCba8Po5TimdEd2bA3gwe/WkKj6v3o2NDhw8CFsIc3vd56Au2tToAiVCTVhy6Xm4vWZgbqLTNh93LYtQyWfAbZ1iRVYRFQq82phVG9jqYVKYjERobTqk4CC9wyc24VENp5q9vVZsj85Gdh5qsw913oeSNRqqfXh4iJDOe9a3sw+s2Z3DxuPt/fNYD6jlgfBi2E/3lTBK0A6gG7TrejqKKUgpotzKVAfj4c2gy7l50sjDZOhqWfn9zH0aRIYdQJHI2KXdU6ECilGNW1AS9MWsf2Q1myJlhwk7xVqxVc+hEMexymvwRz36Uv70HOTBh4P1RrctpD1EmKYcwNvbj0ndncPHYBX93eT0aMiSqltCHyP2KajxOBVUqpecDxgse11hf4PjwRsMLCThZGHS48uT1j76mF0e7lsCYN81HCtA6dKIqswqhWa9NxOwCM6tqQFyatY8LSndw5tKXd4YgykrxVjFqt4MK3Ycgj7P7fozRYNB4WjYPOV8CgB0/9cVOMdvWTeOOqbtw8bgH3fr6Y967tQUR41e0XKEJLaX95XvBbFKLqSKgDLc80lwLHM2DvKlMcFRRG8z+AXGs9y/BoqNse6neBpgOh2SB7Ygca14ije5NqTFgiRVCQkrxVkhrNWNfmThpc8TLMeg0WjoWln0HHS+DsZ0vtMzS0TR1cF3Tg/75fwZMTVvL0qI6EhQVmi64QZVHaEPmp/gxEVGHRCaZ/QuFp/fNy4cB6q8Voqble8Z1JzEDv2IaQMdIURM5BEF/Lb+H2a1GTNydvJFS7kwQzyVtecDSEc56DgQ/C7DdMf6HNU+HCd6DF8BKfdm3fpmw/lMW7UzeRcTyX5y/pQlSEtAiJ4ObN6LAjnDiXcYIHWAD8XWu9yReBiSouPMKMKqvTDjpfZrbl55nWos3TObrwe+KWfQkLxpjH6nQwBVGzwWaWax93ug4PU7JGWBCTvOWFxLow4mnofDl8fRN8fCEMuM9MqBoeWexTUka2JSkmkucnrmV/xnHevqYHSTHF7ytEMPCmI8YrwHbgM8yU8ldghp4uwkwLP9RHsYlQExZuJnxr0I3lOZ0ZOmgA7FwC7mlmuP7CcTD3HUCZU2fNBoFzMDTtB9GVN7tzbr4mXJr6g90rSN7yTr2OcOsUmPiYGUm2eTpcMgZqNP/Lrkop7hrWknpJMTz6zTIue2c2Y2/sTT1HjP/jFqISeFMEXaC17lLo/ntKqSVa60eVUo/7KjAhCI80a5817gWD/g65x2H7AnBPN4l67rsw63VQ4dCwu2klcg6Cxn0gqvwju/LyNBFSBAU7yVtlERUH578KzYfBj/fCO4PhvJdOttIWcXGPRtROjOaOTxZy0VszGXdTb1lmRgQlb07oZimlLlNKhVmXywCrR+tfmpuF8J2IaHAOMMsB3JgGKVvhuh9g4AOAMr9iPx4N/20Gn18Jiz+BzP1lfpnsvHwpgoKf5K3y6DAabp9pWoe+vcXMHF9C37jBrWvz5W39yMnXXPT2LP5cs8e/sQpRCbxpCboaeBV4C5M85gDXKKVigbt9GJsQpSu69MfxDLNUwIbfzbD8tT+DCoPGfaFtMrQ9t9gm/qLW7j5Cs9oJPg1d+JzkrfKq1hiu/wl+edj8sMjNhpH/KXZ+r44NHXx7R39u+3ghN49bwP1ntOae4S1l5JgIGt6sHbYJOL+Eh2dUbjhCVEB0ArQ6y1xGpppO1mt+NgXRpH+YS532VkGUDPW7/iWx5+drVuzwcFH3Rva8B1EpJG9VUHgEJL9kpq+Y+zbkZcO5LxS7bmDjGnF8c0d/Hv9uOS//vo7lOw7z0uVdpcO0CAqlTZb4iNb6v0qp1ymm+Vhrfa9PIxOiIpTVebp+Fxj2GBxym4Jo7c8w/UWY9jwkNYQ255qCyDkQwiPZtD+TzOw8OjeSdZKCkeStSqSUaQEKjzTzCuXnwHmvFlsIxUaF89JlXejSyMEzaasZ9cZM3r22B62ln5AIcKW1BK22rhf4IxAhfKq6E/rdaS6ZB2D9RNNCtPgTmP8+xDig1QiWR50PRNC5UTWbAxblJHmrMikFZz1l+uNNe97M7zX6rWJPjSmluGFAM9rVT+KuzxYz+s2ZpF7cmQu6NLAhcCG8U9pkiT9a1+MAlFJxWussfwUmhM/E14SuV5lLdhZsmnKiD9HK9CiiOYsWf94O7c8jIkd+yQYTyVs+oBQMf8KMwpyaaub2GlByg1qf5jX56Z6B3PnpQu79fDGT1+zFdUEHHLFyekwEntOODlNK9VNKrQLWWPe7KKXe8nlkQvhDVJzpMD36TXhoPWvrX0DLhONE7FoE399O/1nXwfjRMH8MHNltd7TCS5K3fGBoCrS7AH53wda5pe5azxHDl7f1474zWjFh6U7OeWUaszce8E+cQpSBN0PkXwHOBg4AaK2XAoN9GJMQ9giPYH16JG1atYUHVsLf/mR7o1FweCukPQgvtoUxZ8OsN0wfIxHIXkHyVuVSCka9YUaPfX0TZB0sdffI8DAeOKs1X9/ej+jIcK76YA7/TlvFsZw8PwUsxOl5tfCL1npbkU3yKRZVjicrh93px2hdL9F0/mzUg00trod7FsKdc2DY45CTaUaZvdoF3hkIU/8Le1eXOJeKsI/kLR+IccClYyFzL3x3G+Tnn/Yp3ZpUJ+3egVzVuwnvT9/M6DdnsnpXuu9jFcIL3hRB25RS/QGtlIpUSj3Eyc6HQlQZ6/ceAaB13SJzBCll+kEMeQRunwH3LoERz0BkHEz+N7zVF97sDZOfhb1r/B+4KI7kLV9p0M2sOr9+Eiz7wqunxEVF8O8LO/HRDb3Yn5HNBW/M4NmfV5OZIz8ehL28KYJuB+4CGgI7gK7WfSGqlJ0eM6Fwo+qnWXKjRjPofw/cPAkeXGPmT0moa1qF3uoDb/WDqc/DgY1+iFqUQPKWL/X6G8RUg23zyvS0YW3rMOmBwYzu2pD3p2/ikWlZfDB9E8dzpZFO2MObyRL3Y2ZfFaJK25tuiqA6idHePympPvS+xVyO7IZVP8CKb2HyM+ZSrzN0uBA6XmSG6Qu/kLzlY0pBrdZwYEOZn1ojPornL+3CTQOb8fCns3gmbTXjZrt55Oy2nNe5PqqY4fdC+EppkyUWO9lYAZl0TFQ1+zKOExURVv6hvIn1oM9t5uLZDiu/h5Xfwh//MpcG3U0x1OFCcMiM1L4gecuParWCDX+U++nt6ifxUM8Ywhp04NmfV3PP54v5YMZm/nFuO3o3q1GJgQpRstJaggpPNvYv4EkfxyKErfalH6d2QnTl/BJ1NIL+d5vLIffJgmjSE+bSuA+0HwUtzzJ/TOTXb2WRvOUvNVvCkk/hmMd0mC6nwa1rM6BlLb5dtJ0XJ63jsndnM6J9XR46u43MOC18rrTJEscV3FZK3V/4vhBV0cGsbGomRFX+gas7YeD95nJgoymGVnwHEx83l6RG0GIotBgOzYaayRxFuUje8qNGPc31tBdgxNMVOlR4mOLSno05r3MDPpy5mbenbGTEy9MY2aEedw9vSceGsoyN8A1vVpGHUpqXhagqjuXkERMZ7tsXqdkCBj9sLgc3w6bJsHEyrP7RLOGBteZZi+HQYphpMRLlJXnLl5oNhp43m3XFGnQzp3orKDYqnLuGteSq3k34aOZmPprl5teVuzmjbR3uHt6Sbk2qV0LgQpzkbREkRJV3PDefhGg/fiVqNDOXnjeZNZl2LraKoj/NH5YZL0FkHJ0S20HMamg+DGq3kVNnInCMTIU9K+CHu8xns26HSjls9fgoHhzRhr8Nbs74WW4+mLGZC9+axaBWtbhneCvpMyQqTWkdo49w8pdUnFKqYHYrBWitdZKvgxPCn47l5FMz3sctQSUJj4DGvcxlyCNwLB3cM2Djn8SuSINfU8x+iQ1OthI1HwrxteyJN0BJ3vKziCi4bDy8OwS+uBpunQyxlddakxQTyd3DW3HjgGZ8MmcL70/fxGXvzqZ3sxrcO7wVA1rWlNFkokJK6xMkPdJESDmem0d0pFeTqPteTJJZ06ztucyLP4+hXZub02Yb/4S1abDkE7Nf477Q4wboMBoiY+2MOCBI3rJBYj1TCI1NhrHnw9BHoc25EFZ5PyjioyO4bUgLru/v5PN5W3l36iauGTOXLo2rcceQ5pzVvh7hYVIMibILkIwvhP1y8zSRgZpIqzWBHtfDZePg4Y1wy58w7AnI2g/f3w4vtoFfHjVLeAjhb036wKUfQfYR+PIaeKMXLPgQco5W6svERIZz44BmTH1kKP++sCOHs7K5/ZNFnPnSVD6bu1XWJRNl5rMiSCn1oVJqr1JqRaFtNZRSvyml1lvX1a3tSin1mlJqg1JqmVKqe6HnXG/tv14pdX2h7T2UUsut57ympE1UVFBeviY8LAh+F4SFQ8MeMORhuHsBXP+TGWq/4EOzhMeYs2HJ55X+BygUSN6qgHbnw90L4ZKPTEvmTw/Ayx3NTOqnWWy1rKIjwrm6T1P+/PtQ3ryqOwnRETz+3XIGPjeZNydvwJOVU6mvJ6ouX2b8scDIIttSgD+01q2AP6z7AOcArazLrcDbYJIPZp6PPkBv4MmCBGTtc0uh5xV9LSHKxBRBdkdRRkpBs0FwyRizhMeIZ6R1qGLGInmr/MIjzCixWyab4rxhd7O+3ssd4OeHzZxZlflyYYrkzvWZcPcAPrulD+0bJPH8xLX0S/2Dp39axc7D8kNAlM5nKV9rPQ0oWv6PAgrm7RgHjC60fbw25gDVlFL1gbOB37TWB7XWh4DfgJHWY0la6zlaaw2ML3QsIcolT+vg7lcQX9OsaVZS69DK7+2OMOBJ3qokBcX51f+DO+eYWdIXfASvdYP/3QAbfjed/yvt5RT9W9Ri/E29+fneQYxoX5exs9wM/u9kHvxyCWt3H6m01xJVi7+HyNfVWu+ybu8G6lq3GwLbCu233dpW2vbtxWwXotzy8zVhVeHsRMEfoGaDIGMvfHYZbJtjhjK3Pc/8WhdlIXmrIuq0g9FvwfAnYO47phha+R2oMHrGNYWM4dCkLzTuDdWaVngKiPYNknjlim48dHYbxszYzBfztvHt4h0Mb1uHO4a2oJdThteLk2zLhlprrZTyy2RmSqlbMc3VREREMGXKlBOPZWRknHLfLhKH/XEcy85m966dTJlywNY4iipvDInp62i97h0SMzZyqFon1re6lazpMyo/wBDir7xVWs6qCNs/z5HDCe/Vj6T0tSSlryHh4HJiFn9GxIIxAByPqo7H0Y70pLZ4HO3ISGiGDivnWn7AkEToMSiaP7bm8NvGvfy5Zi8tq4WR3DySLrXD//Kjx/Z/nyIkntPLyMio0PP9XQTtUUrV11rvspqG91rbdwCNC+3XyNq2AxhaZPsUa3ujYvYvltb6PeA9gPj4eD106MlDTpkyhcL37SJx2B9H2JSJNG7UiKFDT074Fgj/HmWOIesg/O6CReMhoS5cPIbqHS+md1Vo5bKH3/NWaTmrIgLh82ycA1jxDB4Ee1fB1jlEb5tHnW1zqLNxltktItb0K2rcx7r0hriyt+ScB2Rl5/LV/G28P30zry46Sqs6Cdw2pAWjujYg0uoMGDj/PobEc3oVLcr8XQRNAK4HUq3rHwptv1sp9QWmM6HHSjgTgWcLdSocATymtT6olEpXSvUF5gLXAa/7842Iqic/P8j7BOXnw+LxpgA6lg797oIhj5qROqIiJG/5Ulg41OtkLr1vMdvSd8G2uScvs16D/FzzWK3WpiBq0tdc12zp1Sm0uKgIbhjQjKv7NuWnZTt5Z8omHvrfUl6atJa/DWrOFb0bn/YYourxWRGklPoc82uollJqO2a0RCrwlVLqZmALcJm1+8/AucAGIAu4EcBKGk8D8639ntJaF3RavBMzkiMW+MW6CFFueVoTVDWQ1ma0zfb55rJ5GuxbA00HwLkvQN32dkcYdCRvBYik+mYC0A6jzf3sLLOszLY5sG0erPkJFn9sHouraSYNdQ6Apv2hXudSJ2qMDA/jwm6NGN21IVPW7uPtKRt56qdVvPbnevrXhZZdsmhUPc7nb1EEBp8VQVrrK0t46Ixi9tXAXSUc50Pgw2K2LwA6ViRGIQqrnRjNTs8xu8Mo2fEM84dg+zzYvsAUPpn7zGOR8ea0waC/Q6dLZX2xcpK8FaCi4kyR4xxg7ufnw4ENpijaOhe2zjIzqQNEJ5kWoqb9wTkQ6nc1y3sUoZRiWNs6DGtbh4VbDvHetI38snIPv/53MsPb1uX6/k0Z0KIWYUH1y0iUlQwTEcLSob6DVTsrb9huhWgNBzbC9nm0WvcDrH4C9q4EnW8er9nKDIFv3Asa9YLa7WTUlwgdYWFQu7W5dL/ObEvfCVtmwZaZ5vqPf5ntEbGmL1FTq6WoUc+/LDHTo2l13r22J9/88iebwhrwxbxt/L56D81rxXNtv6Zc3KMRSTHl76AtApdkTSEs7Rsk8evK3WQcz/XvavIAxzywY6Fp4dk2D3YsgKOHAKgbHgdN+8Dgh03B07BHuTqHClGlJTWATpeYC0Dm/kJF0UyY8h9AQ3iU+Q4VFEWN+0B0AgA1Y8O4eGhb7j2jFT8v38W4WVv414+reH7iWi7s1pDr+jlpU0+Wp6tKpAgSwtKhgelAvGZXOj19OZdIdibsXwe7l5tTWtvmm748aEBB7bZmCYJGvaBRb2as3MnQYcN9F48QVVF8LWh/gbmA+VGxde7JomjGyzD9BVDh0KArNO1PzXQHHOtGdIyDC7s14sJujVi2/TDjZ2/hfwu38+ncrfRuVoPr+jVlRPt6REUE2xTzoigpgoSwdGjgAGDZdk/lFEGZB2D/Wti31hQ9BdeeQvPoxVY3xU7Hi6xWnu4Q4zj1OKt2VzwWIUJdbHVoM9JcwPSx2zb3ZGvR3HfplJcNK581/YiaDYZmg+jcpB8vXNqFx89tx1cLtvHJnC3c/dliqsdFMrpbQy7t0Zj2DWQEZrCSIkgISz1HDA2rxbJwyyFuGtjMuydpDZ7tVrGz7tTrrJOTLhIZB7VaQZN+UPt6qNUG6rSHmi2kE7MQdohOgJZnmAtAzlGW/PQ+XR1HwD0dZr8BM1+BsEho2IMazQZze7NB3NK3H9PcR/h6wXY+nbOVj2a66dAgiUt7NGJU14ZUj/9rJ2wRuKQIEqKQHk2rM3fzAbTWnLLAd14uHNpsteYUKnT2r4fsQjOWxlY3BU7bZHNdu42Z18TR2HTmFEIEpshYDlfvDAWTAWZnwtY5ZuoJ93Rz6mzafwkPj2ZY494MazaEQ70G8MOeOvxv8S5cP67i2Z/XcFb7ulzSsxGDW9UO7nnHQoQUQUIU0qtxAhOW7mT77G9ofGwNHVbNgJWPmpFa+Tknd0xsYEamdLvGFDm125iiJ76WtOwIURVExZ/aUnTMA1tmm4Jo81SY/G+qo7khMp4bmvRlVcsz+Z+nHd+v30/a8l3UTYrmou6NuLRHI5rXTrD3vYgSSREkQld2JuxYdHKywT0r6HkQIJX5v3xE44hZxMfUgyZdofXIk4VOrVYyC7MQoSbGcWqfoqyD4J5hFUXTaL/xMZ4EHouqwZ9NL+Gro714d+px3p6ykR5Nq3Nht4Ykd6ovp8sCjBRBIjRobU5nbZtvJhvcNg/2rASdZx6v0QIa9qR1lzbE/aFZ1iGFiy7pzbwZswNurRwhRACIq3Hq6LOMveCeTtTmaYx0T2Zk+nvsjarGt3o43+wezhPfH+JfE1YwpFUtRvdozJnt6hITWfLM1sI/pAgSVdOJVp55VuEzH7L2m8eiEsworIEPmEnUGvU6Me9OONB29UxWHlYQEW1f/EKI4JJQBzpebC4AGXups2UWt2+ZxW1b3mXVriP8kNefH9YN4Pe1+0kIz+Ps5pFc2Lc9/do1kf5DNpEiSAQ/reHgppOntYq28tRsCa1GWLMr94Y67UpdW6hDAwffLtpOfr720xsQQlQ5CXVOrH+mgA5HD9Nh21wedc9k7pptfL+nNr+s78U361dQJ3w259dP58Iu9ejQrR8qobbd0YcMKYJE8DnmgV3LSmnl6QGDHjQFT6OeZZ5duUODJD6ek8eWg1k+CF4IEZJiq0HrswlvfTb9R0D/7Eyecs/nz4Wr+H5jHuO3N2HM9nBa/PwdoxPXckHLKOroaEhvbWbDFj4hRZAIbJn7YdfSk5fdy0yrT4GaraD12dbsyr1O28rjjSY1zArSWw5kVug4QghRoqh4YloP5dzWQzkXOJyeyc+zFvD9suq8eHA4Ly6C9srNyOWPc06N3bRs1Q7VfDA4B5lRqKJSSBEkAoPWcGTXiWKn4/I/YNFdkL795D7VmkL9LtD1anPtozW0Fm87DJjTYit3VfrhhRDiL6olxXPVyCFcNRJ2HD7KL8t28L/p2bx05FJe2gvN9+/mnDk/MzL8X3SsF28KomaDzfpnRWeZF16TIkj4X8FIrV3LTm3lKTilhSI2riG06GeKnXqdoX5nMxGhH0xbt4/29ZOonSgdo4UQ/tewWix/G9ySlvnbade9L5NW7ubXFTV4Z1M93swbTcNdRxi5axbnzPon3cM2EtawKzQbYoqixn0gKs7utxA0pAgSvpWfZ2ZV3l244FkGxz3m8bAIqN3OzMNTv4spdup2ZP7sBbYMTc84nsuirYe4eWBzv7+2EEIUVTcphmv7Obm2n5ODmdn8vnoPv67YzcfrkxiTdza1o3I4e/9qRm7/hT7TXyUyItz0h2xmtRQ17AERMjdRSaQIEpXneAbsXQV7VsDuFWaV9D0rIMfqYBweDfU6QqeLT7bw1GkPkTH2xl3IvM0HyMnT9G9R0+5QhBDiFDXio7isZ2Mu69mYI8dy+HPNXn5dsZtv1sbwSU5nqkXDGYl7GXpwNoPcr1FtyrNm3cIm/aDtudD2fEisa/fbCChSBImy0xoObzGFzp6VsGe5uT64GbCGlUcnQd0O0P36ky08tVpDeKStoZ9O3aQYIsIUL05aS+dGcp5dCBGYEmMiGdW1IaO6NuRodh5T1+3j1xW7+H1tJN8cHUWYGkWXWpohcW6G7JlE5w0PEZ72kOlD1O4CaHc+OBra/TZsJ0WQKF12JuyxWncKWnj2roLj6dYOCmo0g7odocuVpvCp2xGqNQnKNbQ6NHDw7rU9uOOTRVzx3hzubCdzBQkhAltsVDgjO9ZjZMd65OVrlm4/zNS1+5i6bh+vblW8om+jeswdDKp2gCH7pjHI/Sx1fn3UnDZrf4Epiqo3tftt2EKKIGFoDYe3UnP/XJg6zzqVtdIajm4VAlGJpsjpfJlV7HQyQ9Kjq9bigGe0q8uYG3pyy/gF/Geepk+/Y9RNCpxTdkIIUZLwMEX3JtXp3qQ6D5zVmoOZ2UxfbwqiaesimZAxChhFh6SjDNm3mCG/fkL3iU8S2bCzKYbaj4KaLex+G34jRVCo0dos/HfIbU5jnTiltRKOe+hUsF/1Zqb/TufLTMtOvY7gaAJhYTYG7z+DWtVm3I29uX7MHC57dzaf3NyHxjVkxIUQIrjUiI86cdosP1+zalc6U9eZoujdLXG8ld+fxIg8BuzZyJCtUxn8+xs0rFffFEPtzofabYOyVd9bUgRVFVqbU1RHdpv5dtJ3meuC+0d2m0vGbsjLPvm8qATTqtPpYqjbkUU7c+g+8mqITrTvvQSIPs1r8nCvGF5dks2wF6bQp3kNRrSvx5nt69KwWqzd4QkhRJmEhSk6NnTQsaGDu4a1JP1YDrM27DdF0dp4fs1sDbnQfOdBBm+fx8Df76Rv0iESWvaFZkOIOl71RplJERQMsjOLFDMlXOcUs8xDdBIk1jOXpv0gsb65OBqa4qea85TWnfQpU6QAKqRFtXB+uLsvXy3YxqSVu3lywkqenLCSDg2SOKt9XUa0r0e7+omoKvxLSQhRNSXFRDKyY31GdqyP1poNezOYum4fMzbs54uNNRmbM5KIA/l092xi0MJfGRS2nLx1zxHefDA0HwrOgWY5kCAmRZCdco+faKGpvXcmzFlTfOtNwZw6hUXEQpJV0DToZhU39U69Tqhb5frr2KFZrXgeHdmWR0e2ZdO+DH5btYffVu3h1T/W88rv62lYLdYqiOrSq1kNIsND45ShEKLqUErRqm4ireom8rdBzTmem8fCLYeYvn4/M9ZX46UdLXmRy3DsPs6APcsZOHsMg8IfoHHDRtB8iCmKGveByOBqJZciyBfyciFzbyktN7shfSccPXjiKR0AVgFhkScLmdptzAeraHGTWM9Mky6tD37XvHYCtw1J4LYhLdh35Dh/rjEF0efztjJ2lhtHbCTD29bhrPZ1Gdy6NgnR8hUTQgSf6Ihw+reoRf8WtXh0ZFsOZmbz/oRpHIhsxPR1Sfyc3hNyodm2QwzcupBBU5+iX+QGEpt2MbNXNx8GDbpWeC1HX5MMXRH5+bBtDqz+0cyRc2Sn1e9mLydGVBVQYaZlJrGeGT7euPcphc38tdvpNewCszREiHQ+Dna1E6O5vFcTLu/VhKzsXKat289vq/bw55o9fLd4B1HhYfRvWZN29ZNoUC2WBo4Y6jtiaVAtBkdspJxCE0IEjRrxUfSpH8HQoV3QWrNxXybT1+9jxvr9fLOpJh9nn0l4rqbbpu30XzePPmHf0i12L3HNekOrs8yqAEn17X4bfyFFUFlpbZaAWP41rPjWLPAZEQs1W5qCpl5nU9wUnKoqaL2Jr11qRZy5YwrEyyzFwSouKuLEPB25efks3HKISav2MHntXmas309u/qlFcWxkOPWrxdDAEUt9Rwz1C4qkQtfSiiSECERKKVrWSaBlnQRuHNCM7Nx8Fm81p86mb6jOG9sb81oeROTm03nVNnqvmEOfsLH0aBhNUrszoc05ZtRxAPwQlCzrrQMbrcLna9i/zqx51eIMONNl/kOl742wRISH0ad5Tfo0r8n/ndee/HzN/ozj7Dh8lF2eY+y0rnd5jrLz8DGmrd/H3iPH0UUaDxNjImjgiCU67xgTDy7/S5FU3xFDTGRgNzULIaq+qIiTOe+hs9tw5FgOC7ccYt7mg8zbXJMx25ryTs4FhLnzab9lC70nvUPvhH30bteCGh3PNB2sI+xZsFqKoNKk7zStPSu+hp2LAQVNB0DfO6D9aIirYXeEIgiEhSnqJMVQJymGbiXsk5OXz570Y6cWSYePstNzjHXbM5m0cjcHMrP/8rwa8VGmJck6zVb4ur4jhnqOGOmoLYTwq8SYSIa2qcPQNnUAOJqdx+JtVlG0wcFn25x86FEwB1rPXU/viF/p3TCKPl06U7fLWX792ypFUFFZB2H1BNPq454BaKjfFUY8Ax0ukrVWhE9EhofRqHocjar/dULGKVOmMHToUI7l5LHbc4ydnqPsOmy1JFnF0vZDWczbfID0Y7mnPFcpqJ0QfbIFqXCRZJ2Oq50YTXiY/c3SQoiqKTbqZCdrzmxNdm4+y3ccZu6GPcxdpfh+d30+cUeAG5wTvqN34kF6N69Fn559aNSinU/7T0oRVFj6LnilE+TnmD4+Q1Og4yVQq6XdkQlBTGQ4zlrxOGvFl7hP5vHcE6fZCl/v8hxj3Z4jTF23j6zsvFOec8fQFjw6sq2vwxdCCMCcPuvRtAY9mtbgzjPakZuXz+qdHuYuXc7ctR4mHWjGV0tiYclmXJ0XccNV1/gsFimCCkuqD2f8E5oNNiufB0CnLSHKIj46gpZ1EmlZp/gJL7XWpB/NNa1JVpHUvkGSn6MUQoiTIsLD6NS4Op0aD+Zv50F+vmb9xvXMWzCf/j27+/a1fXr0YDTgXrsjEMJnlFI44iJxxEXSrr4UP0KIwBMWpmjTqjVtWrX2/Wv5/BV8TCk1Uim1Vim1QSmVYnc8QghRGslZQgSOoC6ClFLhwJvAOUB74EqlVHt7oxJCiOJJzhIisAR1EQT0BjZorTdprbOBL4BRNsckhBAlkZwlRAAJ9iKoIbCt0P3t1jYhhAhEkrOECCBKF52mNogopS4BRmqt/2bdvxboo7W+u8h+twK3AkRERPT47bffTjyWkZFBQoL9sz1LHBJHIMQwbNiwLK11yWPwRYVURs6qiED4PBcm8ZRO4jm9jIwMzj///PLnLa110F6AfsDEQvcfAx4r7TlxcXG6sMmTJ+tAIHGcSuKwJwYgUwfAd7uqXiojZ1VEIHyeC5N4SifxnN7kyZMrlLeC/XTYfKCVUqqZUioKuAKYYHNMQghREslZQgSQoJ4nSGudq5S6G5gIhAMfaq1X2hyWEEIUS3KWEIElqIsgAK31z8DPdschhBDekJwlROAI6o7R5aGUygeOFtyPCCMiN5/cUp7iFxKHxBEgMcRqrYP9NHmVUjRnVUQgfJ4Lk3hKJ/GcnhVTZLnzVnk7E1WZy5NJC2yPQeKQOAI9BrlUjUugfZYkHonH5pjkF58QQgghQpIUQUIIIYQISVIEwXt2B2CROE4lcZwUCDGIqiHQPksST+kkntOrUEwh1zFaCCGEEAKkJUgIIYQQISro5wmqEJdjJPAqZtKyD3B5Uv30uh8C5wF7cXk6WttqAF8CTsANXIbLc8iHMTQGxgN1AQ28h8vzqg1xxADTgGjM5/FrXJ4ncTmaYVbYrgksBK7F5cn2WRwn4wkHFgA7cHnOsyUOl8MNHAHygFxcnp5+/38Rwank73UX4B0gAfP5uRqXJ916zmPAzZjP2724PBMrMZ6yfb9djmgr/h7AAeByXB63H+K5G7gfaAHUxuXZb+2vMH8jzgWygBtweRb5IZ5PgZ5ADjAPuA2XJ8fGeMZY8ShgnfW6Gbb9f518/DXgJlyeBOt+meMJ3ZYg88fuTeAcoD1wJS5Hez+9+lhgZJFtKcAfuDytgD+s+76UC/wdl6c90Be4y3r//o7jODAcl6cL0BUYicvRF3gOeBmXpyVwCJOk/eE+YHWh+3bFMQyXpysuT0/rvr//X0RwKul7/QGQgsvTCfgOeBjAeuwKoAMmJ71l5cbKUtbv983AIWv7y9Z+lamkeGYCZwJbiux/DtDKutwKvO2neD4F2gKdgFjgbzbH8wAuTxdcns7AVqBgwV+7/r/A5egJVC+yf5njCd0iCHoDG3B5Nlm/7L8ARvnllV2eacDBIltHAeOs2+OA0T6OYdeJXxAuzxHMH/6GNsShcXkyrHuR1kUDw4Gv/RYHgMvRCEjG/MEo+BXo/ziK59//FxGcSv5et8b8ogb4DbjYuj0K+AKX5zguz2ZgAyY3VlY8Zf1+F/6cfw2cYX0PfRuPy7O4hBaDUcB463lzgGq4HPX9EM/P1mMa0xLUyOZ4CloNFaYoK+hMbNP/lyMceB54pMgzyhxPKBdBDYFthe5vt7bZpS4uzy7r9m5Mc7Z/uBxOoBsw15Y4XI5wXI4lwF5Mgt4IHMblKZiZ1F//N69gvlT51v2aNsWhgUm4HAtxOW61ttn3+RDB6dTv9UpO/si7FGhs3fZ9Hizb9/tkPOZxD+Z76Lt4XJ65pezt/3+fwvG4HJHAtcCvtsfjcnyEyT1tgdf/Eo9//7/uBiYUyokFyhxPKBdBgctU//4ZtudyJADfAPefqPb9HYfLk4fL0xXza6c35kvmXy5HQR+thX5/7b8aiMvTHdP0fRcux+BTHvXn50MEp79+r28C7sTlWAgkAr7vX3cilgD4fpcWj8vRMYDjeQuYhssz3fZ4XJ4bgQaY1sXLbYxnMKaQf73U53kplIugHZz8NQTmH3iHTbEA7DnRrGmu9/r8Fc2vjG+AT3F5vrUtjhPxeA4Dk4F+mGbego77/vi/GQBcYHVK/gLTXP+qDXGAy7PDut6L6b/RGzv/X0RwKe577fKsweUZgcvTA/gc0xoD/syD3n2/T8ZjHndgOrj6Mp6i/TMLs+Pfx8TjcjwJ1AYeDIh4zLY8TH4sOJ1qx//XMKAlsMHK13G4HBvKG08oF0HzgVa4HM1wOaIwnQMn2BjPBOB66/b1wA8+fTVznnQMsBqX5yUb46iNy1HNuh0LnIX5pTEZuMR/cXgew+VphMvjxHwW/sTludr/cTjicTkST9yGEcAK/P3/IoJTSd9rl6OOdR0GPIEZKQbmc3UFLke0NWKrFaYPSmXFU9bvd+HP+SWY72HltXoWH8+aUp4xAbgOl0NZHXI9xZyCqfx4XI6/AWcDV+Ly5Bd6hh3xrMXlaGltU8AFnPw3s+P/ayEuTz1cHqeVr7OsjtDliid0h8i7PLnWsMiJmCHyH+LyrPTPazs+B4YCtXA5tgNPAqnAV7gcN2NGKFzm4ygGYM41L7fOtwI8bkMc9YFxVke3MPPanp9wOVYBX+ByPAMsxiR2Ozzq5zjqAt/hcoD5fn6Gy/MrLsd8/Pv/IoJTSd/rVrgcd1n3vwU+AsDlWYnL8RWwCjOy7C7r135lKev3ewzwsfXL/iDmB0llKimeezH9AesBy3A5fsbl+RvwM2Y4+gbMkPQb/RRPLuZ7PtvKBd/i8jxlSzyQBkzH5UjCDJFfCtxh7W/P/1fJyhyPzBgthBBCiJAUyqfDhBBCCBHCpAgSQgghREiSIkgIIYQQIUmKICGEEEKEJCmChBBCCBGSQneIfFXlcrwMbMHlecW6PxHYZg33BJfjRcyEUhuA9rg8qWU49ljgJ1yer4ts74uZWDDaunyJy+Oq0PsoPY4bgJ64PHcX89hooLM1nLQsx0zB/Dt9WsxjnTCLUt5Q9mCFCHEuxz+AqzCr1OdjVkQvbamKir7eFOAhXJ4FXu4/CDNvUg7QD5fnaKHH/B27C8jA5XmhmMfuBw7i8owv4zHfAT7G5ZlZzGPnAb1xef5ZjmirBGkJqnpmAv2BgonRamFWiC7QH5iFyzOhTAVQ6cYBt1pTm3fEzC1hl0cwU82X1dnApGIfcXmWA41wOZpUIC4hQo/L0Q84D+iOWYH8TE5d+yoQXA38B5ena5ECKHBiN7Mf3wR8Vo5n9wXmlPBYGnA+LkdceUMLdtISVPXMAl62bnfAzDZcH5ejOmZyrXbAolNaU0wLTzrQEzNZ2CO4PF9bs4O+jpmlcxslrzdUBzCzlpqJ1laZ2w4X0AIzxXkt4L+4PO9bjz2MmfAvGvgOl+dJa/s1wL1AFGbhxzvN2jGOG4HHgMOYybqO/yUKl6M1cByXZ791fyxwFLOIZB1MErkOM23/3BMtO2YSsChcnn24HJdiJq/Mw8zGWrBu14+Yibf+W8K/gRDir+oD+3F5zPe14LsJWEsefIVZI+8ocBUuzwZcjtqYlpmCHx334/LMtGZQfx3zQysScOHy/GDNJPwR0AUzk3FssZG4HGcAL2D+7s3HTPh3LSYPnY3LcY41S7w3sf/1WC7Pces99cTl2Y/L0RN4AZdnqJULmwDNretXcHles471D8wsx3sxeba49QuHA4tOLDprWrsWA4OAeExeewzohGmJf8Larx2wzsqh9wK3YybFXIXLcwUuj7aOdR72/ni1jbQEVTUuz04g12q16A/MxhQT/TBFznJcnuKKmfrAQMyXoaCF6EKgDdAe8yXrX8KrvoyZWv07XI7bcDliCj3WGfMF7gf8E5ejAS7HCMz0/L2BrkAPXI7B1hf2cmCA1aqUB1yNWSvrX5jZcAda8RRnALCoyLbq1ms/gJlS/WVMcdgJl6Ortc+ZwB/W7X8CZ+PydMFMD19gASbhCCG8NwlojMuxDpfjLVyOIUUe9+DydALeAF6xtr0KvIzL0wuzRtUH1vZ/YJZB6I1ZP+p5qzC6A7N0QjvMD5gef4nC5KSxwOXW60VgCpcPMHnh4SIFUMmxl3Ss02uLaXHuDTyJyxGJy9ED8+OqK2Ym6F4lPHcAfy2OsnF5emIKxh+AuzAF4g24HAUrp5/DyRXoU4BuVqvW7YWOE9K5TYqgqmkWpmApKIJmF7r/1/PCxve4PPm4PKswSzcADAY+t1bx3Qn8WewzTf+bnpikcRUnv3QAP+DyHLV+RU3GJIAR1mUxpmhpiymKzsAksPnWlP9nYH459QGmmJYaTzbwZQnvoT6wr8i2H621Y5YDe3B5lltr8awEnNY+I4FfrNszgbG4HLdgllMpsBezgrIQwlsuTwbmO30r5rv5pdUKXeDzQtf9rNtnAm9YOWACkITLkYDJGSnW9ilADKZVZTDwifV6y4BlxUTSBtiMy7POuj/Oel55Yi/7sYw001rk2Y/JJ3Uxxcd3uDxZuDzplLx+ZXG5rWDf5cBKXJ5dVqvVJk4usno2J/PxMuBTq7U9t9BxQjq3yemwqqmgX1AnzOmwbcDfMae8PirhOYVPL6kyv6LLsxF4G5fjfWBfoV8iRddl0dbx/4PL8+6px3DcA4zD5XmsyPbRXkZxFLNqcGEF7yufU99jPic//70p+CXn8tyOy9EHSAYW4nL0wOU5gEm4RxFClI05RT4FmILLsRxz6mes9Wjh/FBwOwzoi8tz7NTjOBRwMS7P2iLbKz3kk8cuNvbFpTwjl5ONCzFFHiucf/Io29/fo6Ucr/jcZvr5VLN+wILJaYOB84F/4HJ0sk6vhXRuk5agqmkW5rTWQasV5yBQDfNLa1YZjjMNuByXI9w6JTWs2L1cjmQrQYFp0cnD9N0BGIXLEWMVRUMx588nAjdZv+7A5WiIWeX6D+ASTq54XQOXoynmdN4QXI6auByRwKUlxLsa0//Iey5HB2DNiUUjXY4WuDxzrdES+zj5i6o1pqAUQnjL5WiDy9Gq0JaumIVBC1xe6Hq2dXsScE+hY3S1bk0E7jmRa1yObtb2aZgWaHA5OmJOwRe1FnBSsBq66Qs0tZyxl3YsNydPx11c6vFPxj4alyMWlyMRU6AUp+y5zeTryUDBIJnGuDyTMYtCO4AEa7+Qzm1SBFVNyzEdkecU2eY5pXPf6X0HrMd0dB7PySRV1LWYPkFLgI+BqwutRL0M80WcAzyNy7MTl2cSZpTDbOvX1ddAonUq7glgEi7HMuA3oD4uzy7AZb3+TExCKM40oFuhgswbhc+Zg+lnsByXYwWmYFxqbR+GGUkhhPBeAmYV8FXWd7o95rtcoLq1/T5Mvz0wAyN64nIsw6w2X9B/5WlMh+hluBwrrfsAbwMJuByrgacormOxaVW6EfiflXPyMX1pyh576cf6F/AqLscCzI/B0rk8izCn95diTsnPL2HPX/DulFthhXNbOPCJFe9i4DVcnsPWYyGd22QVeeE7pc154bvXfBXTD+h3L/f/DbjOKrRK2ica80tv4InRGUKIiik8kkqcnsvxHWbk7nov918E9MHlySlln7rAZ7g8Z1RKjEFI+gSJquZZTEdq77g8Z3mxVxMgRQogIYSNUjAdpL0sgjzdvdirCaa/aMiSliAhhBBChCTpEySEEEKIkCRFkBBCCCFCkhRBQgghhAhJUgQJIYQQIiRJESSEEEKIkCRFkBBCCCFC0v8Dg3PTWVSkf9kAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "Env.info()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Creating a Motor\n", + "\n", + "A solid rocket motor is used in this case. To create a motor, the SolidMotor class is used and the required arguments are given.\n", + "\n", + "The SolidMotor class requires the user to have a thrust curve ready. This can come either from a .eng file for a commercial motor, such as below, or a .csv file from a static test measurement.\n", + "\n", + "Besides the thrust curve, other parameters such as grain properties and nozzle dimensions must also be given." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "Pro75M1670 = SolidMotor(\n", + " thrustSource=\"../../data/motors/Cesaroni_M1670.eng\",\n", + " burnOut=3.9,\n", + " distanceNozzleMotorReference=0.39796,\n", + " grainNumber=5,\n", + " grainSeparation=5 / 1000,\n", + " grainDensity=1815,\n", + " grainOuterRadius=33 / 1000,\n", + " grainInitialInnerRadius=15 / 1000,\n", + " grainInitialHeight=120 / 1000,\n", + " nozzleRadius=33 / 1000,\n", + " throatRadius=11 / 1000,\n", + " interpolationMethod=\"linear\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To see what our thrust curve looks like, along with other import properties, we invoke the info method yet again. You may try the allInfo method if you want more information all at once!" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Motor Details\n", + "Total Burning Time: 3.9 s\n", + "Total Propellant Mass: 2.956 kg\n", + "Propellant Exhaust Velocity: 2038.745 m/s\n", + "Average Thrust: 1545.218 N\n", + "Maximum Thrust: 2200.0 N at 0.15 s after ignition.\n", + "Total Impulse: 6026.350 Ns\n", + "\n", + "Plots\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAykUlEQVR4nO3deXwc1ZXo8d/Rbu2SF0neJO/gBWwkG4gJsUMSzBIgCcmEJEBIeDAMJJM3mUxIJjPMg2wzZJsEhsAQCGucleA4xo5DbAgQwDLYeAdjy7tsY+2WJfVy3h9dLdqypF6s7upune/n05/urqquOiq77+l7b91boqoYY4wxg8lwOwBjjDHJz5KFMcaYsCxZGGOMCcuShTHGmLAsWRhjjAnLkoUxxpiwLFmYpCQi/yEij7sdR5CI5IrIVhGpiuIzvxWRS+IZl3Oc94rIjngfJ+R43xGRL0W4bULOgYk/SxbGFSLSEfLwi8iJkPefTnAsDSLygTCb3QQ8r6qHnM/8XERURBaE7GeqiIQOXPpP4JtDEN+nQ87NCed89Z4/Vf2rqs443eNEGMto4Drg/pBlXxeR3U48+0XklyEfGZJzYNxnycK4QlULgw9gL/DhkGVPRLMvEcmKT5Qn+XvgsT7LmhikIFTVV4FiEak7nQOr6hMh5+oS4GCf85dInwVWqOoJABG5HrgW+IATSx3wbEjsQ3IOjPssWZhkliMij4pIu4hsCS1wnNrAV0XkDeC4iGQ5v/SnhmzzcxH5pvN6lIgsF5EWEWkSkb+KSIaIPAZMBP7g/DL+l75BiMhEYDLwSp9VjwBnicj7Bvkb1gKX9bfCif+VYLITkVucvzMvkpMTsp9FIrI/5H2DiHxFRN4QkeMi8jMRqRCRZ5xz+WcRKQvZ/jwReck5NxtFZNEgh7sEeC7k/Xxglaq+DaCqjar6QJ/PrGWAc2BShyULk8yuAJYCpcAy4J4+668hUAiVqqo3zL6+DOwHRgMVwNcBVdVrOblm81/9fHYOsKufY3QC3wa+NchxtwFnD7DubqAb+IaITHP29RlV7Qrzt0TiY8AHgenAh4FnCPzNowl8778IICLjgD8SqCGVA/8M/NZpburPHCC0f+Rl4DonOdWJSGY/nxnsHJgUYcnCJLMXVHWFqvoINAH1LXB+rKr7gk0iYXiAKqBaVT1OO3+kE6OVAu0DrLsfmDhIJ2678/lTqKqfQPv/Fwkkw/9S1dcjjCmcn6jqYVU9APwVeEVVX3cS0VPAPGe7zxBoVlqhqn5VXQ3UA5cOsN9SQs6Fqj4OfAG4mECN44iIfLXPZwY8ByZ1WLIwyawx5HUnkNenf2JfFPu6G9gJ/ElEdonI7VF8thko6m+FqnYDdzmP/hQBLQPtWFUbgDVADXBvFDGFczjk9Yl+3gf7OqqBjztNUC0i0gJcQCCx9ueUc+H0qXyAQEL4e+AuEbk4ZJNBz4FJDZYsTCrrWzPoBPJD3lf2bqjarqpfVtXJBJq3/klELhpgP329AUwapCP9YQIF5Uf7WXcmsHGgHYvIZcD5BDqF7w4TRzzsAx5T1dKQR4GqfneA7d8g0LR1CqfG9mtnm9khqwY9ByY1WLIw6WQD8CkRyRSRJUBvx7OIXO5c2ipAK+AD/M7qwwQ6sPulqvsJ1EoWDLDeC9wB9G1+wYnhmf4+JyKjgAeBG4HrgQ+LyEDNP/HyuHPci53zlud0mI8fYPsVnHxePysil4lIkXPBwCXALE6+GGDAc2BShyULk07+kUBnbgvwaeD3IeumAX8GOoC/Af+jqmucdd8h0MncIiL/PMC+7ydwiehAfgEcCl0gIvOBDufy0f48ADzt9BccAz4PPCgiIwc5zpBS1X3AlQQ6v48SqGl8hYHLhkeBS0VkhPO+zfnsXgLn/b+AW1T1BYjoHJgUIXbzI2PCE5Fc4HXgouDAvAg+81vgZ6q6Iq7BJZiIfBs4oqo/imDbtDwHw5ElC2OMMWFZM5QxxpiwLFkYY4wJy5KFMcaYsBIxAVvCjRo1SmtqamL+/PHjxykoKBi6gIaQxRYbiy02FltsUjW29evXv6Oq/U/1oqpp96itrdXTsWbNmtP6fDxZbLGx2GJjscUmVWMD6nWActWaoYwxxoRlycIYY0xYliyMMcaEZcnCGGNMWJYsjDHGhGXJwhhjTFiWLIwxxoRlyeI0HGw5wTObIpqA1BhjUpoli9Nw82PrueWJ1zjUGsktoI0xJnVZsjgNmw60AvD63hZ3AzHGmDizZBGjLo+v9/Wh1i4XIzHGmPizZBGjzU6tAqDRmqGMMWnOkkWMNuxrAaAgJ5PGtm53gzHGmDhLyynKE+H1vS2MKx3B+LIRVrMwxqQ9q1nEaMO+FuZOLKWqJM/6LIwxac+SRQyOtHVxoOUE8yaUUlkygiNt3fj96nZYxhgTN5YsYvC6018xb2IplcW59Pj8NHX2uBuUMcbEkSWLGLy+t4WsDGHW2BIqS0YA0GhNUcaYNGbJIgYb9jUzc2wxedmZVJXkATbWwhiT3ixZRMnnV97Y38rcCaUAvcmisc2ShTEmfVmyiNKbh9vp7PExb2IpACMLc8nMELt81hiT1ixZRCk4GG/uhDIAMjOEiqLcYd8M1dHtpa1H8dlVYcakJRuUF6XX9zZTmp9Nzcj83mWVJXkcHkbNUEfbu9lysJUtB9vYerCNzQdb2XOsE4B/XLOC0hHZlBfkhDxyKS/Iprwgl5EFOZQV5DAyZH1edqbLf5ExJpy4JQsRmQA8ClQACjygqv8tIuXAL4EaoAH4hKo2i4gA/w1cCnQCn1XV15x9XQ98w9n1N1X1kXjFHc6GfS3MnVBKINyAypI8tje2uxVS3Kgq+5tP9CaGLQfb2HyglSPt705vMrE8n1lji/l47Xga9zVQPraa5uM9NB3v4djxbhre6WT9nhaaO3sGrHXk52RSlp/DyEIngeQ7z4Xvvh5ZmBPYpiCXorwsMjKk330ZY+IjnjULL/BlVX1NRIqA9SKyGvgs8KyqfldEbgduB74KXAJMcx7nAvcB5zrJ5Q6gjkDSWS8iy1S1OY6x96u9y8NbRzq4dE7VScsri0ewdsdRVPWkJJJKvD4/u945HkgMB9qc5NBKW5cXCDS3TR1dyAVTRzFzbDGzxpYwc2wxJSOye/exdu0BFi2a3u/+/X6lvcvLsePdNHf2cKwjkFCaOntoCn19vIe3DnfQ3NlDZ4+v331lZoiTOHIoK8hmZEEu5f3UWIKPsvycoT9hxgwzcUsWqnoIOOS8bheRbcA44EpgkbPZI8BaAsniSuBRVVXgZREpFZEqZ9vVqtoE4CScJcAv4hX7QA61dqEKU0YXnrS8qiSPzh4fbV3ekwrPZNXl8bGjsb03IWw52Mb2xja6PH4AcrMyOKOqmMvPHsssJzGcUVl0Ws1FGRlCSX42JfmRn58ujy+QRI73cOx4D83Oc9PxbpqOe5znHrY3ttF0vIeWEx50gC6T4hw4d28982vKqK0uZ864EnKyrMvOmEiJDvTtGsqDiNQAzwOzgb2qWuosF6BZVUtFZDnwXVV9wVn3LIEksgjIU9VvOsv/DTihqt/rc4ybgJsAKioqapcuXRpzvB0dHRQWFp6yfE+bjzte6uIL83KprXg3z75yyMt9G7v51sIRjCuKbwE0UGwD6fQoe9v97Gnzs7fNz542HwePK8EWoRFZUF2cQXVRBhOLM6guzqSqQMiMoZkn2tiGml+VDg+09ygdPUpbjwZee5QDrT00dGRwuDPwh2dnwOSSDKaVZTK9LIMppZkUZLtTK3T7vA3GYotNqsa2ePHi9apa19+6uHdwi0gh8FvgS6raFtpMo6oqIkOSrVT1AeABgLq6Ol20aFHM+1q7di39ff6N/S3w0oucPWcOi2ZW9C4vaGjivo1/Y/yMObxv+uiYj3s6sQEcae/q7XQO1hiCHc8Ao4tymT2ujKvGlvTWGCaUjxiyprPBYnNbMLaj7d2s39PEuoZm6huaWNnQxvJdigjMqCiirqaM+TXl1NWUM650REJjS0YWW2zSMba4JgsRySaQKJ5Q1d85iw+LSJWqHnKamY44yw8AE0I+Pt5ZdoB3m62Cy9fGM+6BeJ2f41mZJxeulcXOwLwEjbUIdjxvPtB6UlNS347n2eOK+UTdBKePoZgxRXkJiS+ZjS7KZcnsKpbMDvQ7dfZ42bCvhfqGZtY1NPH71w/y+Mt7gUDzYl1NOfNryqirLmdGZVFMNS5j0kE8r4YS4GfANlX9QciqZcD1wHed56dDlt8mIksJdHC3OgllFfBtESlztvsQ8LV4xT0Yr89JFhknNzVV9CaL+N0Eqcvj45GXGnjq1RN8ce2f+u14njUuUGOYObaY4rzk7ztJBvk5WbxnyijeM2UUEBihv72xrTd5vLr7GH/YeBCAotws5lWXMb+6jLqacuZOKGVEjl32a4aHeNYsFgLXAptEZIOz7OsEksSvROTzwB7gE866FQQum91J4NLZGwBUtUlE7gLWOdvdGezsTjSvP9AB3PfXZU5WBqMKc2hsG/qaharyzOZGvr1iG/ubT1BTnMHlZ49lttOUNOM0O57NyTKdCSJnjS3h+vfU9Nbi1u8JJI/6hma+v/pNgMBkkuNKepNHXU0ZowpzXf4LjImPeF4N9QIwUJ39on62V+DWAfb1EPDQ0EUXm+A4gezMU/+syjjcBGnzgVbuXL6VV3c3cUZlEU/eeC49+zezaNGcIT2OGZiIMKE8nwnl+Vw1bxwALZ09vLa3mXUNzaxvaObRl/fw4Au7AZg8qoDa6mC/RxmTRhWk7OXUxoSyEdxRCDZD9dduXVk8gv3Nnacsj8WR9i6+t2oHv16/n/L8HL79kTn83fwJZGYIa/cPySHMaSjNz+H9Z1Tw/jMCFzl0e31sPtDa22m+etthfr0+8A81siCHOqfPo66mjFlj7ZJdk5osWUSht4M749Qve1VJHvV7Tq91rMvj4+EXG7h3zU66vT5uvGASX7homvU/JLncrExqq8uprS6H903B71d2vdPBuoZ3m65WbTkMQF52BnMnlDK/ppza6jLOqS4Ls3djkoMliyj4nD6LvldDQaAZqqXTw4keX9SdnqrKqi2NfGvFNvY1neADZ1bwr5edyaRRBUMSt0msjAxh6pgipo4p4poFE4HArXjrQ/o97l2zE7+CCIwvzOCSzm1cPKuSeRNKbSoTk5QsWUTB03s1VH/NUO/e1yKaQn7LwVbuWr6Vl3c1MaOiiMc/fy4XTBs1NAGbpDGmOI9L51T1ThXT0e1lw94W6vc0seq1t3n4xd088PwuKopzuXhWJUtmVbJgUjlZmdZkZZKDJYsoBDu4++uz6L0JUmtkyeJoezc/WL2Dpev2UToim7uums018ydY4TBMFOZmccG0UVwwbRRzsw4y79yF/GX7YVZubuRX9ft49G97KMvP5oMzK1gyu5KFU0eRm2VXvRn3WLKIgrf3aqhTC/SK3jvmDX75bLfXx89fbOAnf9lJl8fH5xZO4osXTUuJOaVM/JSMyOYj88bzkXnj6ezx8tyOo6zc0sgzmxr5Vf1+CnOzeP8ZY1gyu5L3TR9NQa59dU1i2f+4KHh9/Y+zgHeboQa6fFZV+dPWw3x7xTb2HOvk/WeM4V8vO/OUSQmNyc/J4pI5VVwyp4pur4+X3j7Gyk2NrN52mGUbD5KblcH7po9myexKLjqjIqrJGY2JlSWLKLx7NdSpyaIgN4vivCwa+0kW2w61cdfyrbz09jGmjSnkkc8tiPscUiY95GZlsnjGGBbPGMO3fH7WNTSzcvMhVm05zJ+2HiYrQzh/ykgumV3FB2dWMLrIBgWa+LBkEQVf79xQ/fcrVJWMOClZHOvo5vur32Tpq3spHpHNnVfO4lMLJlq/hIlJVmYG508ZyflTRnLHh2excX8LK7c0snJzI19/ahP/+vtNzK8uZ8nsSi6eXZmwiRDN8GDJIgqeQZqhINBv0djWRY/XzyMvNfDjZ9+i0+PjuvNr+NIHplFqN+ExQyQjQ5g3sYx5E8u4fckZbG9sZ+XmQOK4c/lW7ly+lbPGl3DxrEoumV3JZGvuNKfJkkUUfIM0QwFUFefx/JtH+dAPn6PhWCeLZozmG5edydQxRYkM0wwzIsKZVcWcWVXM//3gdHYd7WDVlsOs3NLI3at2cPeqHUyvKGTJrEqWzK7izKoim4LERM2SRRQGmqI8aP6kcn5Zvw+Ah2+Yz+IZYxIWmzFBk0cXcsuiQm5ZNIWDLSdY5TRV3bNmJz/+y04mlucHmqpsEKCJgiWLKAw0RXnQx84Zx5TRBcweV9Lv5bXGJNrY0hHcsHASNyycxDsd3azeGhjLYYMATbQsWUQhON3HQD/ERALtyMYko1GFuVyzYCLXLJhI6wmPDQI0UbFkEQWvX8nOFGvvNSmv7yDA5988yjObTx0EWKVexh1up2ZUgdWWhzlLFlHw+dVuq2nSTn5OVu+tZoODAFdtbuRPWw/TdLyH+994npzMDCaPLuCMyiKmVxYFniuKGFc6dPdwN8nNkkUUPD4dsL/CmHQQOgjwm1f5eeKPayieMIPtje3saGzn1d1N/H7Dwd7tC3OzmF5RyIzKYmYEnyuLKC+wy8TTjSWLKPj8/gGvhDIm3WRlZlBdnMmieeNPWt56wsNbh9vZ3tjOm87zik2H+MWrnt5tRhflMqOiiBmVRb3P0yoKyc+xIidV2b9cFLx+HXCMhTHDRcmIbOee4+W9y1SVI+3d7HBqIDsOB56feGUPXZ7AhSEiMLE8n+kV7zZjnVFZZP0hKcKSRRS8PuuzMKY/IkJFcR4VxXlcGDLvmc+v7G3q7E0igZpIG89uO4wzbKm3P2RG5ck1EesPSS6WLKIQqFnYLyBjIpWZIUwaVcCkUQUsmV3Zu7zL4+Ptox29zVg7GttZt7uJp0P6Q6aMLuAbl8+0wa1JwpJFFKzPwpihkZedyayxJcwaW3LS8rYuD282trPtUBsPv9jADQ+vY/GM0Xzj8pk2nb/L7GdyFDx26awxcVWcF+gPufb8GlZ+6UL+9dIzqW9o5uIfPs9dy7fSesITficmLixZRMHnU7KtGcqYhMjJyuD/XDiZNV9ZxMfrxvPQi7tZ/L21PPnK3t5JPU3iWMkXBa/VLIxJuFGFuXzno2fxh9suYOroQr7+1CYu/8kLHO30ux3asGLJIgpe67MwxjWzx5Xwy5vP455PzWP3Ox2s2G1NUolkySIKPhtnYYyrRITLzxrLhdNGs+WYz+1whhVLFlHw2nQfxiSF+TXlHOlUjrSdes97Ex9W8kXB6/dbn4UxSaCuJnArgPo9zS5HMnxYsoiCx6fWZ2FMEpg1toScDKhvsGSRKJYsouD1+8mxOWyMcV1OVgaTSjKo39PkdijDhpV8UfB4rWZhTLKYXpbJloNtdPZ43Q5lWLBkEQWP32+zYxqTJKaVZeDzKxv2trgdyrBgJV8UPD5LFsYki6mlmYjAOuu3SAgr+aLg9QXuwW2McV9+tjCjosj6LRLEkkUUrGZhTHKpqynjtT3NeH029Ue8xa3kE5GHROSIiGwOWfYfInJARDY4j0tD1n1NRHaKyA4RuThk+RJn2U4RuT1e8Uaix2vJwphkMr+mnOM9PrY3trsdStqLZ8n3c2BJP8t/qKpznccKABGZCXwSmOV85n9EJFNEMoF7gUuAmcA1zrau8PqtGcqYZBK8tet6G5wXd3FLFqr6PBBpY+KVwFJV7VbV3cBOYIHz2Kmqu1S1B1jqbOsKj89PltUsjEka40pHUFWSx7oG67eINzfulHebiFwH1ANfVtVmYBzwcsg2+51lAPv6LD+3v52KyE3ATQAVFRWsXbs25gA7OjpO+byq4vEpB/ftZe3axpj3fbr6iy1ZWGyxsdhiE4xt4ggPL+5oZM2aNUlzz+5UOG9RU9W4PYAaYHPI+wogk0CN5lvAQ87ye4DPhGz3M+Bq5/FgyPJrgXvCHbe2tlZPx5o1a05Z1uP1afVXl+uP//zmae37dPUXW7Kw2GJjscUmGNsjL+3W6q8u131Nx90NKEQqnLf+APU6QLma0DYVVT2sqj5V9QP/S6CZCeAAMCFk0/HOsoGWJ5zHudoiO8uaoYxJJrXVzqSCNt4irhJa8olIVcjbjwDBK6WWAZ8UkVwRmQRMA14F1gHTRGSSiOQQ6ARflsiYgzy+wG0c7WooY5LLGZXFFOZmWb9FnMWtz0JEfgEsAkaJyH7gDmCRiMwFFGgAbgZQ1S0i8itgK+AFblVVn7Of24BVBJqvHlLVLfGKeTC9NQu7GsqYpJKZIZxTXWZXRMVZ3JKFql7Tz+KfDbL9twj0Y/RdvgJYMYShxcRrNQtjklZddRk//PObtHZ6KMnPdjuctGQlX4SCNQu7raoxyaeupgxVeG2v1S7ixZJFhHqcZJFjHdzGJJ25E0rJyhCbJyqOrOSLkDVDGZO88nOymDW22GagjSMr+SJkzVDGJLe6mnI27muhx2uTCsaDJYsI2TgLY5Lb/Joyur1+Nh9sdTuUtGQlX4R6x1lk2CkzJhnVVgcmFay38RZxYSVfhGychTHJbXRRLjUj863fIk4iGmchInXAe4GxwAkCI69Xa2ASwGHBmqGMSX51NeX8ZfsRVDVpJhVMF4OWfCJyg4i8BnwNGAHsAI4AFwB/FpFHRGRi/MN0nzVDGZP86qrLaDrew653jrsdStoJV7PIBxaq6on+VjpTd0wD9g5xXEnH21uzsF8rxiSr4M2Q6huamDK60OVo0sugP5NV9d6BEoWzfoOqPjv0YSWfnt5LZ61mYUyymjK6gLL8bJuBNg4GrVmIyL8PslpV9a4hjidpBZuhcmxQnjFJS0SorS6n3iYVHHLhSr7j/TwU+Dzw1fiGllysGcqY1DC/pozd7xznaHu326GklXDNUN8PPoAHCHRyf47AvbAnJyC+pOGxZihjUkKw38KmLB9aYUs+ESkXkW8CbxBotjpHVb+qqkfiHl0SsWYoY1LD7HHF5GRl2OC8IRauz+Ju4KMEahVzVLUjIVElod6ahQ3KMyap5WZlMnd8KeusZjGkwv1M/jKBgXjfAA6KSJvzaBeRtviHlzzeHcFtNQtjkl1dTRlbDrRyosfndihpI1yfRYaqjlDVIlUtDnkUqWpxooJMBu/eg9tqFsYku7qaMrx+ZcO+FrdDSRvhRnCHHdUSyTbpwOPzk5UhNoWAMSmgdqJNKjjUwrWpPC0i3xeRC0WkILhQRCaLyOdFZBWwJL4hJgevX60JypgUUZKfzYyKIhtvMYTCNUNdBDwL3AxsEZFWETkGPA5UAter6m/iH6b7erx+69w2JoXU1pTx2p5mfH51O5S0EHbWWVVdAaxIQCxJzePz22WzxqSQ+TVlPPnKXnY0tjNz7LDqYo0LK/0i5PVZM5QxqaSuOjg4z/othoKVfhHy+KwZyphUMr5sBBXFuXYzpCFiySJCHr9aM5QxKUREqKsptyuihkhEpZ+IPBbJsnTmsQ5uY1LO/OoyDrZ2caBlwDstmAhF+lN5VugbEckEaoc+nOTl8fmtz8KYFBN6MyRzesINyvuaiLQDZ4VO9UHg1qpPJyTCJOGxcRbGpJwzKosoyMm0myENgXDjLL6jqkXA3X2m+hipql9LUIxJweP121QfxqSYrMwMzqkus8F5QyDSn8rLgyO4ReQzIvIDEamOY1xJx+u3ZihjUlFtdRnbG9to6/K4HUpKi7T0uw/oFJGzCcxE+zbwaNyiSkI9PiXLkoUxKWd+TTmq8JrVLk5LpKWfV1UVuBK4R1XvBYriF1by8fr85FgzlDEpZ+6EUjIzxO6cd5rCTvfhaBeRrwGfAS4UkQwgO35hJR+7GsqY1FSQm8XMqmLW2RVRpyXS0u/vgG7g86raCIwH7o5bVEnIY81QxqSsupoyNuxr6b2JmYleRKWfqjaq6g9U9a/O+72qOqz6LAI1C2uGMiYVza8pp8vjZ8vBYXWDzyEV6Qju9pBxFl0i4hOR1ngHl0w8Pj/ZGVazMCYV1VWXATY473REWrPova0qMAL4GIErpAYkIg+JyBER2RyyrFxEVovIW85zmbNcROTHIrJTRN4QkXNCPnO9s/1bInJ9TH/lEPD6lOwsq1kYk4rGFOcxsTzf+i1OQ9Q/lTXg98DFYTb9OafeRe924FlVnUbgpkq3O8svAaY5j5twEpGIlAN3AOcCC4A7ggkm0Xp8frKsZmFMyqqrKWP9nmYCF3aaaEXaDPXRkMfVIvJdoGuwz6jq80DfNH4l8Ijz+hHgqpDljzqJ6GWgVESqCCSk1arapKrNwGpcuo2rx+cnJ8uShTGpqq66nHc6emg41ul2KCkp0ktnPxzy2gs0ECjgo1Whqoec141AhfN6HLAvZLv9zrKBlp9CRG4iUCuhoqKCtWvXxhBeQEdHxymf93j9HNy/j7VrD8e836HQX2zJwmKLjcUWm2hj047AlVCPr3yJ946P75X/6XTegsImC2eG2TdU9YcxxDUgVVURGbL6oKo+ADwAUFdXp4sWLYp5X2vXriX086qKb+UKpkyqYdGi6acZ6enpG1sysdhiY7HFJtrY/H7l7tdW05FXwaJFZ8UvMNLrvAWFbVdRVR9wTQwx9eew07yE83zEWX4AmBCy3Xhn2UDLE8rjC+Q0a4YyJnVlZAi1E8tYZ7dZjUmkpd+LInKPiLxXRM4JPmI43jIgeEXT9bw7zfky4DrnqqjzgFanuWoV8CERKXM6tj/kLEuo4ECerAy7GsqYVFZXU86uo8c51tHtdigpJ9I+i7nO850hyxR4/0AfEJFfAIuAUSKyn8BVTd8FfiUinwf2AJ9wNl8BXArsBDqBGwBUtUlE7gLWBY+vqgn/WRBMFjbdhzGpbX5N4GLK9Xua+dCsSpejSS0RJQtVXRztjlV1oKari/rZVoFbB9jPQ8BD0R5/KAWbobKtGcqYlDZ7XAk5mRnUW7KIWkTJQkRyCQzEqwn9jKreOdBn0klvzcKaoYxJaXnZmZw1vsRGcscg0p/KTxO4VNYLHA95DAveYM3CmqGMSXl1NeVsOtBKl8fndigpJdI+i/Gq6spguGTQE+zgtokEjUl5ddVl/PQ5ZeO+Fs6dPNLtcFJGpD+VXxKROXGNJIkFm6FyrGZhTMqrDU4qaDdDisqgNQtnEkC/s90NIrKLwH0thEC/dHxHtiQJa4YyJn2UFeQwbUyh9VtEKVwz1DjevWx22LJmKGPSS11NGX984xB+v5JhF65EJNxP5d2qumegR0IiTAJea4YyJq3UVZfT1uXlrSMdboeSMsLVLMaIyD8NtFJVfzDE8SSl4DgLu62qMelhfk05AOsamphRWeRyNKkhXOmXCRQCRQM8hoV3R3BbddWYdDChfASji3Kt3yIK4WoWh4bLwLvB2HQfxqQXEWF+TZldERWFcKWf/ZQmZLoPSxbGpI266nL2N5/gUOsJt0NJCeFKv1PmcRqOvH5rhjIm3dQ5kwrWN1jtIhKDJgs3ZnhNRj1ea4YyJt3MrComPyeT9dYUFREr/SJgzVDGpJ+szAzmTihlnXVyR8RKvwhYM5Qx6amuppxth9ro6Pa6HUrSs2QRgWAzlI2zMCa9zK8pw6/w+l5rigrHSr8IeP3OPbgtWRiTVuZNLCNDYJ11codlpV8EPF6bG8qYdFSYm8WZVcU2OC8CliwiEByUl2UTjhmTdubXlLNhX0vv99z0z5JFBDx+JSczAxFLFsakm9rqMjp7fGw71OZ2KEnNkkUEPF6/NUEZk6aCg/Os32Jwliwi4PWrjbEwJk1VlYxgfNkI1u+xfovBWAkYgR6f38ZYGJPG6qrLWNfQjKq6HUrSsmQRAY/XbzULY9JYXU05R9u72dvU6XYoSctKwAh4fJYsjElnwZsh2aSCA7MSMAIen1ozlDFpbNqYQorzsqi3fosBWbKIQI/VLIxJaxkZQq3Tb2H6ZyVgBDw+PzlZdqqMSWd1NeXsPNJB8/Eet0NJSlYCRsD6LIxJf3XVgfEWdn+L/lkJGAGP1/osjEl3Z08oJTtTWGf9Fv2yZBEBj99qFsaku7zsTOaMK2G99Vv0y0rACHh8fpue3JhhoK6mnDf2t9Ll8bkdStKxEjACgWYoO1XGpLu66jJ6fH42HWh1O5SkYyVgBDw+P9l2NZQxaa/W6eS2wXmnshIwAjY3lDHDw8jCXCaPLrCbIfXDkkUErM/CmOFjfnU59Xua8fttUsFQrpSAItIgIptEZIOI1DvLykVktYi85TyXOctFRH4sIjtF5A0ROSfR8Qam+7BkYcxwMH9SOa0nPLy+r8XtUJKKmyXgYlWdq6p1zvvbgWdVdRrwrPMe4BJgmvO4Cbgv0YHarLPGDB9LZldSMiKbnz73ttuhJJVkKgGvBB5xXj8CXBWy/FENeBkoFZGqRAbW4/OTnWV9FsYMB4W5WdywsIbVWw+zvdFutRokbtzsQ0R2A82AAver6gMi0qKqpc56AZpVtVRElgPfVdUXnHXPAl9V1fo++7yJQM2DioqK2qVLl8YcX0dHB4WFhb3vb1h5nMunZPOxaTkx73Oo9I0tmVhssbHYYhPP2Dp6lH9+rpOzR2dyy9y86D+foudt8eLF60Nae06mqgl/AOOc5zHARuBCoKXPNs3O83LggpDlzwJ1g+2/trZWT8eaNWt6X3t9fq3+6nL97z+/eVr7HCqhsSUbiy02Flts4h3bd1Zs00m3L9e3j7RH/dlUPW9AvQ5QrrrSDKWqB5znI8BTwALgcLB5yXk+4mx+AJgQ8vHxzrKE8Pj8ANZnYcww8/kLJpGdmcF9a63vAlzosxCRAhEpCr4GPgRsBpYB1zubXQ887bxeBlznXBV1HtCqqocSFW9Pb7KwPgtjhpPRRblcs2AiT71+gP3NdrtVN34uVwAviMhG4FXgj6q6Evgu8EEReQv4gPMeYAWwC9gJ/C/wD4kM1uMNJAu7n4Uxw89NF05GBB54fpfbobguK9EHVNVdwNn9LD8GXNTPcgVuTUBo/fL4AhcAWDOUMcPP2NIRfOyc8Sxdt4/bFk9lTHH0nd3pwkrAMKzPwpjh7ZZFU/D6/Dz4wm63Q3GVlYBhWJ+FMcNb9cgCrjh7LI+/vGdY33LVkkUYwZqFzQ1lzPD1D4un0tnj4+EXh2/twkrAMDxe67MwZribXlHEklmV/PylBtq6PG6H4worAcPobYayq6GMGdZuXTyVti4vj/1tj9uhuMJKwDA81mdhjAHmjC/hfdNH87MXdtPZ43U7nISzZBGG9VkYY4K+8P6pNB3v4clX9rodSsJZCRiGXTprjAmqqyln4dSR/OfK7Sx9dXglDCsBw+ixDm5jTIh7P3UO500eye2/28S//X5z7w/KdGclYBi9zVB2PwtjDFCan8PDn53PTRdO5rGX9/DpB1/hnY5ut8OKO0sWYVgzlDGmr6zMDL5+6Zn86O/msnFfC1f85AU2H2h1O6y4shIwDEsWxpiBXDVvHL/5+/cAcPVPX+LpDQm7e0LCWQkYRo9NJGiMGcSc8SUs+8IFnDWulH9cuoHvrNiG34U7kMablYBh9E5RbsnCGDOAUYW5PH7juXzmvInc//wufrC+m9bO9BrpbSVgGL3NUNbBbYwZRE5WBt+8ag7f+egcth3zceW9L/Dm4Xa3wxoylizCsD4LY0w0rlkwkdsX5NHR7eMj977Iqi2Nboc0JKwEDCPYZ5GVYTULY0xkppVl8ocvLGTqmEJufmw9P/rzm/j9qd2PYckiDI/PT05mBiKWLIwxkasqGcEvbz6fj54zjh/9+S3+/vH1dHSn7pxSlizC8Hj9NomgMSYmedmZfP/jZ/Pvl8/k2e1H+Mi9L9LwznG3w4qJJYswPD6/TU9ujImZiPC5Cybx6OcWcLSjmyvueYHn3jzqdlhRs1IwjB6fWue2Mea0LZw6imW3XsDY0hHc8PCr3P/c22gKjcewUjCMYJ+FMcacrokj8/ndP7yHS2ZX8Z1ntvOlX27gRI/P7bAiYqVgGB6f9VkYY4ZOfk4W93xqHl+5eAbLNh7k6p++xIGWE26HFZYlizACycJOkzFm6IgIty6eyoPX1bH3WCdX/OQFXtl1zO2wBmWlYBg9XuuzMMbEx0VnVvDUrQspyc/m0w++wmN/a0jafgwrBcOwq6GMMfE0dUwhv791IRdOH82/Pb2Fr/1uE93e5OvHsFIwjEAHt/VZGGPipzgvm/+9ro5bF09h6bp9XPPAyxxp63I7rJNYsgjD+iyMMYmQmSF85eIzuPdT57DtUDsfvucFNuxrcTusXlYKhmHjLIwxiXTZWVX89pb3kJ2ZwSfu/xu/Wb/f7ZAASxZhdXt8dumsMSahZo4tZtltF1BXXcY//3oj/+8PW/A6M2C7xZLFIN463M72xnZmjytxOxRjzDBTXpDDo59bwA0La3j4xQaue+hVmo73uBaPJYtB3Lf2bfJzMrn+/Bq3QzHGDENZmRnc8eFZfO/jZ1O/p5kr7nmBrQfbXInFksUA9jV18vTGg3xqwUTKCnLcDscYM4xdXTueX918Ph6fn4/d9xJ/fONQwmOwZDGA+59/mwyBG9872e1QjDGGuRNK+cNtF3BmVRG3Pvkad6/aji+BN1SyZNGPli4/v6rfz9W146ksyXM7HGOMAWBMcR6/uOk8rlkwgXvXvM3/ebSeti5PQo5tyaIfq/Z48fr83HzhFLdDMcaYk+RmZfLtj8zhrqtm8/ybR7nqnhfZeaQj7sdNmWQhIktEZIeI7BSR2+N1nJbOHtbs9XD5WWOpGVUQr8MYY0zMRIRrz6vmiRvPpfWEh4/c+yLPbjsc12OmRLIQkUzgXuASYCZwjYjMjMexHnlpD10+uGWR1SqMMcnt3MkjWfaFC6gelc+Nj9Zzz1/eittEhCmRLIAFwE5V3aWqPcBS4MqhPsjxbi8Pv7SbuaMzObOqeKh3b4wxQ25c6Qh+ffN7uOLssXzvT29y25Ov449Dx7ck63S4oUTkamCJqt7ovL8WOFdVbwvZ5ibgJoCKiorapUuXRn2c5i4/T27v4b1jvJw1tnBogh9iHR0dFBZabNGy2GJjscXGjdhUlZUNXjo9ysemD3y5/2CxLV68eL2q1g14gGR/AFcDD4a8vxa4Z6Dta2tr9XSsWbPmtD4fTxZbbCy22FhssUnV2IB6HaBcTZVmqAPAhJD3451lxhhjEiBVksU6YJqITBKRHOCTwDKXYzLGmGEjy+0AIqGqXhG5DVgFZAIPqeoWl8MyxphhIyWSBYCqrgBWuB2HMcYMR6nSDGWMMcZFliyMMcaEZcnCGGNMWJYsjDHGhJUSI7ijJSJHgT2nsYtRwDtDFM5Qs9hiY7HFxmKLTarGVq2qo/tbkZbJ4nSJSL0ONOTdZRZbbCy22FhssUnH2KwZyhhjTFiWLIwxxoRlyaJ/D7gdwCAstthYbLGx2GKTdrFZn4UxxpiwrGZhjDEmLEsWxhhjwhq2yUJElojIDhHZKSK397M+V0R+6ax/RURqkii2z4rIURHZ4DxuTGBsD4nIERHZPMB6EZEfO7G/ISLnJFFsi0SkNeS8/XsCY5sgImtEZKuIbBGRf+xnG1fOXYSxuXLuRCRPRF4VkY1ObP+vn21c+a5GGJub39VMEXldRJb3sy76czbQXZHS+UFgmvO3gclADrARmNlnm38Afuq8/iTwyySK7bMMcqfAOMd3IXAOsHmA9ZcCzwACnAe8kkSxLQKWu3TeqoBznNdFwJv9/Lu6cu4ijM2Vc+eci0LndTbwCnBen23c+q5GEpub39V/Ap7s798tlnM2XGsWC4CdqrpLVXuApcCVfba5EnjEef0b4CIRkSSJzTWq+jzQNMgmVwKPasDLQKmIVCVJbK5R1UOq+przuh3YBozrs5kr5y7C2FzhnIsO52228+h7VY4r39UIY3OFiIwHLgMeHGCTqM/ZcE0W44B9Ie/3c+qXo3cbVfUCrcDIJIkN4GNOU8VvRGRCP+vdEmn8bjnfaTZ4RkRmuRGAU+WfR+CXaCjXz90gsYFL585pTtkAHAFWq+qA5y3B39VIYgN3vqs/Av4F8A+wPupzNlyTRar7A1CjqmcBq3n3F4IZ3GsE5r45G/gJ8PtEByAihcBvgS+paluijz+YMLG5du5U1aeqc4HxwAIRmZ2oY4cTQWwJ/66KyOXAEVVdP5T7Ha7J4gAQmuHHO8v63UZEsoAS4FgyxKaqx1S123n7IFCbgLgiFcm5dYWqtgWbDTRw58VsERmVqOOLSDaBwvgJVf1dP5u4du7Cxeb2uXOO2wKsAZb0WeXWdzVsbC59VxcCV4hIA4Fm7PeLyON9ton6nA3XZLEOmCYik0Qkh0AHz7I+2ywDrndeXw38RZ3eILdj69OOfQWBNuZksQy4zrmy5zygVVUPuR0UgIhUBttlRWQBgf//CSlUnOP+DNimqj8YYDNXzl0ksbl17kRktIiUOq9HAB8EtvfZzJXvaiSxufFdVdWvqep4Va0hUH78RVU/02ezqM9ZytyDeyipqldEbgNWEbj66CFV3SIidwL1qrqMwJfnMRHZSaDT9JNJFNsXReQKwOvE9tlExAYgIr8gcGXMKBHZD9xBoGMPVf0pgfukXwrsBDqBG5IotquBW0TEC5wAPpmgHwAQ+LV3LbDJaeMG+DowMSQ+t85dJLG5de6qgEdEJJNAgvqVqi5Phu9qhLG59l3t63TPmU33YYwxJqzh2gxljDEmCpYsjDHGhGXJwhhjTFiWLIwxxoRlycIYY0xYliyMGYSIjAyZMbRRRA44rztE5H/idMwvich1zuvznFlBN4jINhH5D2f55c6lkMYkhF06a0yEnIK6Q1W/F8djZBGYWuMcZ8zNDuATqrrRuZ5/hqpudQbIvQYsVNXOeMVjTJDVLIyJgQTu77Dcef0fIvKIiPxVRPaIyEdF5L9EZJOIrHSm0kBEakXkORFZLyKrpP8ZZd8PvOZM7gYwBjgEvfMQbXVeK7AWuDzOf6oxgCULY4bKFAIF/RXA48AaVZ1DYLTzZU7C+AlwtarWAg8B3+pnPwuB0AngfgjsEJGnRORmEckLWVcPvHfo/xRjTjUsp/swJg6eUVWPiGwiME3LSmf5JqAGmAHMBlY7Uyxl4tQY+qgiZP4gVb1TRJ4APgR8CriGwJQmEJgWe+xQ/yHG9MeShTFDoxtAVf0i4gmZN8lP4HsmwBZVPT/Mfk4AobUHVPVt4D4R+V/gqIiMVNVjznYnhvKPMGYg1gxlTGLsAEaLyPkQmBJc+r+B0DZgavCNiFwWnO0VmAb4gBbn/XSg3/uNGzPULFkYkwDOLXKvBv5TRDYCG4D39LPpMwTuJR50LYE+iw3AY8CnVdXnrFsM/DFeMRsTyi6dNSbJiMhTwL+o6luDbFMBPKmqFyUuMjOcWbIwJsmIyAygQlWfH2Sb+YBHVTckLDAzrFmyMMYYE5b1WRhjjAnLkoUxxpiwLFkYY4wJy5KFMcaYsCxZGGOMCev/AzvxLp5/hhHhAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "Pro75M1670.info()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Creating a Rocket" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A rocket is composed of several components. Namely, we must have a motor (good thing we have the Pro75M1670 ready), a couple of aerodynamic surfaces (nose cone, fins and tail) and parachutes (if we are not launching a missile).\n", + "\n", + "Let's start by initializing our rocket, named Calisto, supplying it with the Pro75M1670 engine, entering its inertia properties, some dimensions and also its drag curves." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "Calisto = Rocket(\n", + " motor=Pro75M1670,\n", + " radius=127 / 2000,\n", + " mass=19.197 - 2.956,\n", + " inertiaI=6.60,\n", + " inertiaZ=0.0351,\n", + " distanceRocketNozzle=-1.255,\n", + " powerOffDrag=\"../../data/calisto/powerOffDragCurve.csv\",\n", + " powerOnDrag=\"../../data/calisto/powerOnDragCurve.csv\",\n", + ")\n", + "\n", + "Calisto.setRailButtons([0.2, -0.5])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Adding Aerodynamic Surfaces" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we define the aerodynamic surfaces. They are really straight forward." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "NoseCone = Calisto.addNose(length=0.55829, kind=\"vonKarman\", distanceToCM=0.71971)\n", + "\n", + "FinSet = Calisto.addFins(\n", + " 4, span=0.100, rootChord=0.120, tipChord=0.040, distanceToCM=-1.04956\n", + ")\n", + "\n", + "Tail = Calisto.addTail(\n", + " topRadius=0.0635, bottomRadius=0.0435, length=0.060, distanceToCM=-1.194656\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Adding Parachutes" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, we have parachutes! Calisto will have two parachutes, Drogue and Main.\n", + "\n", + "Both parachutes are activated by some special algorithm, which is usually really complex and a trade secret. Most algorithms are based on pressure sampling only, while some also use acceleration info.\n", + "\n", + "RocketPy allows you to define a trigger function which will decide when to activate the ejection event for each parachute. This trigger function is supplied with pressure measurement at a predefined sampling rate. This pressure signal is usually noisy, so artificial noise parameters can be given. Call help(Rocket.addParachute) for more details. Furthermore, the trigger function also receives the complete state vector of the rocket, allowing us to use velocity, acceleration or even attitude to decide when the parachute event should be triggered.\n", + "\n", + "Here, we define our trigger functions rather simply using Python. However, you can call the exact code which will fly inside your rocket as well." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "def drogueTrigger(p, y):\n", + " # p = pressure\n", + " # y = [x, y, z, vx, vy, vz, e0, e1, e2, e3, w1, w2, w3]\n", + " # activate drogue when vz < 0 m/s.\n", + " return True if y[5] < 0 else False\n", + "\n", + "\n", + "def mainTrigger(p, y):\n", + " # p = pressure\n", + " # y = [x, y, z, vx, vy, vz, e0, e1, e2, e3, w1, w2, w3]\n", + " # activate main when vz < 0 m/s and z < 800 m.\n", + " return True if y[5] < 0 and y[2] < 800 else False\n", + "\n", + "\n", + "Main = Calisto.addParachute(\n", + " \"Main\",\n", + " CdS=10.0,\n", + " trigger=mainTrigger,\n", + " samplingRate=105,\n", + " lag=1.5,\n", + " noise=(0, 8.3, 0.5),\n", + ")\n", + "\n", + "Drogue = Calisto.addParachute(\n", + " \"Drogue\",\n", + " CdS=1.0,\n", + " trigger=drogueTrigger,\n", + " samplingRate=105,\n", + " lag=1.5,\n", + " noise=(0, 8.3, 0.5),\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Just be careful if you run this last cell multiple times! If you do so, your rocket will end up with lots of parachutes which activate together, which may cause problems during the flight simulation. We advise you to re-run all cells which define our rocket before running this, preventing unwanted old parachutes. Alternatively, you can run the following lines to remove parachutes.\n", + "\n", + "```python\n", + "Calisto.parachutes.remove(Drogue)\n", + "Calisto.parachutes.remove(Main)\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Simulating a Flight\n", + "\n", + "Simulating a flight trajectory is as simple as initializing a Flight class object givin the rocket and environnement set up above as inputs. The launch rail inclination and heading are also given here." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "TestFlight = Flight(rocket=Calisto, environment=Env, inclination=85, heading=0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Analyzing the Results\n", + "\n", + "RocketPy gives you many plots, thats for sure! They are divided into sections to keep them organized. Alternatively, see the Flight class documentation to see how to get plots for specific variables only, instead of all of them at once." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Initial Conditions\n", + "\n", + "Position - x: 0.00 m | y: 0.00 m | z: 1471.47 m\n", + "Velocity - Vx: 0.00 m/s | Vy: 0.00 m/s | Vz: 0.00 m/s\n", + "Attitude - e0: 0.999 | e1: -0.044 | e2: -0.000 | e3: 0.000\n", + "Euler Angles - Spin φ : 0.00° | Nutation θ: -5.00° | Precession ψ: 0.00°\n", + "Angular Velocity - ω1: 0.00 rad/s | ω2: 0.00 rad/s| ω3: 0.00 rad/s\n", + "\n", + "\n", + "Launch Rail Orientation\n", + "\n", + "Launch Rail Inclination: 85.00°\n", + "Launch Rail Heading: 0.00°\n", + "\n", + "\n", + "Surface Wind Conditions\n", + "\n", + "Frontal Surface Wind Speed: -1.29 m/s\n", + "Lateral Surface Wind Speed: -0.15 m/s\n", + "\n", + "\n", + " Rail Departure State\n", + "\n", + "Rail Departure Time: 0.363 s\n", + "Rail Departure Velocity: 25.800 m/s\n", + "Rail Departure Static Margin: 2.133 c\n", + "Rail Departure Angle of Attack: 2.857°\n", + "Rail Departure Thrust-Weight Ratio: 10.143\n", + "Rail Departure Reynolds Number: 1.946e+05\n", + "\n", + "\n", + "BurnOut State\n", + "\n", + "BurnOut time: 3.900 s\n", + "Altitude at burnOut: 656.382 m (AGL)\n", + "Rocket velocity at burnOut: 280.170 m/s\n", + "Freestream velocity at burnOut: 280.271 m/s\n", + "Mach Number at burnOut: 0.835\n", + "Kinetic energy at burnOut: 6.374e+05 J\n", + "\n", + "\n", + "Apogee\n", + "\n", + "Apogee Altitude: 4780.609 m (ASL) | 3309.143 m (AGL)\n", + "Apogee Time: 25.874 s\n", + "Apogee Freestream Speed: 25.265 m/s\n", + "\n", + "\n", + "Events\n", + "\n", + "Drogue Ejection Triggered at: 25.876 s\n", + "Drogue Parachute Inflated at: 27.376 s\n", + "Drogue Parachute Inflated with Freestream Speed of: 29.080 m/s\n", + "Drogue Parachute Inflated at Height of: 3298.143 m (AGL)\n", + "\n", + "\n", + "Impact\n", + "\n", + "X Impact: 2015.767 m\n", + "Y Impact: 1344.453 m\n", + "Time of Impact: 202.495 s\n", + "Velocity at Impact: -17.477 m/s\n", + "\n", + "\n", + "Maximum Values\n", + "\n", + "Maximum Speed: 286.278 m/s at 3.38 s\n", + "Maximum Mach Number: 0.852 Mach at 3.38 s\n", + "Maximum Reynolds Number: 2.056e+06 at 3.31 s\n", + "Maximum Dynamic Pressure: 4.070e+04 Pa at 3.35 s\n", + "Maximum Acceleration: 105.104 m/s² at 0.15 s\n", + "Maximum Gs: 10.718 g at 0.15 s\n", + "Maximum Upper Rail Button Normal Force: 0.257 N\n", + "Maximum Upper Rail Button Shear Force: 0.257 N\n", + "Maximum Lower Rail Button Normal Force: 0.257 N\n", + "Maximum Lower Rail Button Shear Force: 0.257 N\n", + "\n", + "\n", + "Numerical Integration Information\n", + "\n", + "Maximum Allowed Flight Time: 600.000000 s\n", + "Maximum Allowed Time Step: inf s\n", + "Minimum Allowed Time Step: 0.000000e+00 s\n", + "Relative Error Tolerance: 1e-06\n", + "Absolute Error Tolerance: [0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 1e-06, 1e-06, 1e-06, 1e-06, 0.001, 0.001, 0.001]\n", + "Allow Event Overshoot: True\n", + "Terminate Simulation on Apogee: False\n", + "Number of Time Steps Used: 730\n", + "Number of Derivative Functions Evaluation: 2060\n", + "Average Function Evaluations per Time Step: 2.821918\n", + "\n", + "\n", + "Trajectory 3d Plot\n", + "\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg0AAAIHCAYAAAAcg2/yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3xb1d3/30d7WcMjtmPHsRMnQAiEFUYZBcoolAcopTSlg5bRXegeUNpCW0Z/paV9oBtaeDqA0lIopexSKCsBEpKQvYcTJ7E1bGtL5/eHfC+y4yHZWlbO+/XKK4mkq3OudHXP53ynkFKiUCgUCoVCMR6Gck9AoVAoFArF1ECJBoVCoVAoFDmhRINCoVAoFIqcUKJBoVAoFApFTijRoFAoFAqFIieUaFAoFAqFQpETSjQoFBWMEKJdCCGFEKbB//9LCHFZjsc+J4S4srgzzGkeHxJCPFnueSgUismjRINCUQEIIbYIISJCiP6sP9OHv05KeY6U8p4CjDdEjIzw/C+z5hEXQiSy/v+vfMaSUv5RSnlWMeerUChKgxINCkXl8D9SSlfWn65yTURK+SltHsBNwP1Z8zpHe91UWcSnyjwVikpHiQaFYgqR7XIQQhiFELcJIfYJITYLIT43wm58phDiRSFEnxDiSSFE/eDjzw/+HRi0HpyQxxy2CCG+LoRYDgwIIUxCiG8IITYOjrNKCPHerNd/TAjx36z/HyyEeEoI0SuEWCuEuCTrOfvgOW0VQgSFEP8VQthHmq8QwiCE+Nbga/cIIe4VQngG30ezTFwhhNgGPCuE+KcQ4vPDzmV59lwVCsXYKNGgUExdrgLOAY4AjgIuHOE1lwIfB6YBFuArg4+fMvi3d9B68HKeY38QeM/g8UlgI3Ay4AFuAP4ghGgefpAQwgk8BfxpcE6LgJ8LIeYNvuRHwNHAO4Ba4GtAepT5fmzwz2nALMAF3DFsyHcChwBnA/cAH86aywKgBfhnnueuUBywKNGgUFQOfxdCBAb//D2H118C/FRKuUNK6QduGeE1v5NSrpNSRoAHyAiMQvAzKeX2wfdFSvkXKWWXlDItpbwfWA8cO8Jx5wFbpJS/k1ImpZRLgb8C7xdCGIDLgWuklDullCkp5UtSytgoc/gQ8GMp5SYpZT/wTWDRMEvLd6WUA4PzfASYK4SYM/jcR8i4XeKT/CwUigMGJRoUisrhQimld/DPhTm8fjqwPev/20d4ze6sf4fJ7MYLwZCxhBAfFUIs00QPMB+oH+G4mcBxWeIoQGbxbxp8vY2M1SIXpgNbs/6/FTABjSPNU0oZBe4HPjwoUD4I/F+OYykUCjI/MIVCMTXZBbRm/X9GHsdOtr2tfrwQYibwG+BdwMtSypQQYhkgRjhuO/AfKeWZw58YXMijwGzgzRzm20VGhGi0AUmgm7c/l+HH3UNGKPwXCE/ALaNQHNAoS4NCMXV5ALhGCNEihPACX8/j2L1kYgVmFWAeTjKL814AIcTHyVgaRuJRMi6CjwghzIN/FgohDpFSpoG7gR8LIaYPBnqeIISwjjLfPwNfFEJ0CCGyszySo010UCSkgdtQVgaFIm+UaFAopi6/AZ4ElgNLgcfI7LRT4x0opQwDPwBeHHQTHD/RSUgpV5FZhF8ms8s/DHhxlNf2AWeRCYDsIuM+uRWwDr7kK8AKYAnQO/icYZT53k1m4X8e2EzGSjEkO2IU7h2c4x/yPVeF4kBHSDlZK6VCoagEhBDnAL+UUs4c98UlRAhxOfBhKeXp5Z4LZOIvgE9IKU8q91wUiqmGsjQoFFOUwZoG5w7WSWgBvgM8VO55jcChZCwBZUcI4QA+A/y63HNRKKYiSjQoFFMXQaYmgp+Me2I18O2yzmgYg6mj7ybjvigrQoizycRGdJOpE6FQKPJEuScUCoVCoVDkhLI0KBQKhUKhyAklGhQKhUKhUOREuYo7KZ+IQqFQKBSVy0jF2ZSlQaFQKBQKRW4o0aBQKBQKhSInlGhQKBQKhUKRE0o0KBQKhUKhyAklGhQKhUKhUOSEEg0KhUKhUChyQokGhUKhUCgUOaFEg0KhUCgUipxQokGhUCgUCkVOKNGgUCgUCoUiJ5RoUCgUCoVCkRNKNCgUCoVCocgJJRoUCoVCoVDkhBINCoVCoVAockKJBoVCoVAoFDmhRINCoVAoFIqcUKJBoVAoFApFTijRoFAoFAqFIieUaFAoFAqFQpETSjQoFAqFQqHICSUaFAqFQqFQ5IQSDQqFQqFQKHJCiQaFQqFQKBQ5oUSDQqFQKBSKnFCiQaFQKBQKRU4o0aBQKBQKhSInlGhQKBQKhUKRE0o0KBQKhUKhyAklGhQKhUKhUOSEEg0KhUKhUChyQokGhUKhUCgUOaFEg0KhUCgUipxQokGhUCgUCkVOKNGgUCgUCoUiJ5RoUCgUCoVCkRNKNCgUCoVCocgJJRoUCoVCoVDkhBINCoVCoVAockKJBoVCoVAoFDmhRINCoVAoFIqcUKJBoVAoFApFTijRoFAoFAqFIieUaFAoFAqFQpETSjQoFAqFQqHICSUaFAqFQqFQ5IQSDQqFQqFQKHJCiQaFQqFQKBQ5oUSDQqFQKBSKnFCiQaFQKBQKRU4o0aBQKBQKhSInlGhQKBQKhUKRE0o0KBQKhUKhyAklGhQKhUKhUOSEEg0KhUKhUChyQokGhUKhUCgUOaFEg0KhUCgUipxQokGhUCgUCkVOKNGgUCgUCoUiJ5RoUCgUCoVCkRNKNCgUCoVCocgJJRoUCoVCoVDkhBINCoVCoVAockKJBoVCoVAoFDmhRINCoVAoFIqcUKJBoVAoFApFTijRoFAoFAqFIieUaFAoFAqFQpETSjQoFAqFQqHICSUaFAqFQqFQ5IQSDQqFQqFQKHJCiQaFQqFQKBQ5oUSDQqFQKBSKnFCiQaFQKBQKRU4o0aBQKBQKhSInlGhQKBQKhUKRE6ZyT0ChUFQfUkrS6TQAQgj9j0KhmNoo0aBQKCaFJhBSqRSJREL/N4DRaMRkytxmDAYDUkpMJhMGg0EJCYViCqJEg0KhyBlNIKTTaZLJJMlkUhcI4XCYLVu2cOihh+qiwGg06mJBSsnKlSuZMWMGbrcbyAgJ7Y+ySCgUlY8SDQqFYkTGEghSSn2BzxYI2v+Hky0ENJGgCYlkMjnktUpIKBSVixINCoUib4FQCLT3yX4/JSQUispGiQaF4gCjHAIhV5SQUCgqGyUaFIoqJjtIMR6PI6WsGIGQK/kKCRVsqVAUDyUaFIoqYSwLQiwWY+3atSxYsKDwAkFKTOv/iVk4gGmFe98xGEtILFu2jDlz5uBwOABlkVAoCokSDQrFFCRfF4PJZBo1SHHSJKOY3/wj9m0v4DjhDmB+4cfIARVsqVAUHyUaFIoKp1AxCFLK4kzQbCdy3s9x/fpYGrc/BlxYnHEmgIqRUCgKixINCkUFUawgxWIsfiLUhfWFm4id/E2ku4XYjBPx7XqNuJRQwYutEhIKxcRRokGhKBOVnMUwHsK/CcdfPoiIhYgfdTnS3UK89UTcm58m0bcT6W4t7/zy/LyUkFAockOJBoWiBIwlELZu3YrT6aShoaEiBcJwDF2vY//75YAkfMlfSDdmYhiSjQvw1x2FJRGhSI6QkjKWkNizZw89PT3MmTMHUEJCceCgRINCUWDGEgga2RaEbItCpWPc8h/sf78cWdNM+L33Imtn6c8lpx3GhqN/wGF1c8o4wyLGbrC/BUMFWyoONJRoUCgmQb4CYSSm0kKSnjaf5NxziZ16A9JRO/KLKjymodAo14biQEKJBoUiRwohEMqFEGLiO/BkFPPS35M46gqko47ouf876kvnLL8V+6ookQ88OMGZTg20mJPRUEJCUa0o0aBQjECpBUIxTeqTQfTvxv7wlRh3LyNd20lq9hljvl4azBgCa0o0u9GpxEVXCQlFNaBEg+KAZzSB0NvbSzKZZNq0aUW1IFTqYmDoeh37I59AxPuInP+bcQUDQMw2DdHVDak4GC0lmOX+lEqAFeJ7G09I7NmzBykljY2NSkgoKgIlGhQHFPlYEFKpFIlEAqPRWJJ5VRKmtY9i+9fVSFcz4Yv/SLr+4JyOi9mnIZCIvl1I78wiz7J8lCLYUghBIpHQXSHKIqGoBJRoUFQtUyUGoRJv8unaWSTbTyN69o/A7sv5uJitAQBD305SVSwaSkV2vQ5Qrg1F+VGiQVEVFEMgTCp4sAIZ91wifsxr/k7iyI+TbphH9MK78h4j6phO/PAPIe2jZFZUCeMFQpYCJSQU5UCJBsWUI1sgaC6EYlgQSikaij3OeJ+DoXsF9keuQgzsJdn+TqRv1pivH42YvZHYsbdOai6FoFIWRJlMkurtJZyO0mNN0OGbTVqmOfvvZxNOhjEKI83OZmZ7ZnPOzHM4ueXkocdLmVf9DiUkFMVGiQZFRTOSQOjq6qK+vl6PNagEF8NkKPe8TSvvx/b0tUhHHeFFf5uwYNBJpzKBkGZ7YSaYJ+UOhEx2dxN68K+En3+e+Nq1mboVQMoAXQuOxHHaqXz44AsJWJMk00l29O/g9T2vM905nZNbTkZKye7wbpqdzQWd51hCIp1O09XVRVtbmxISijFRokFRMeRqQdizZ88Q0VAsqs09MRLW576H5fVfkWw7ieh77kQ66ib9ns5fLyTZeTaxM24uwAwrk5Gui1QohP9//5fQ3x4CbTEG+pxgxYJtIE506VKiS5dyit2O71OfxPOhDyHMZqSUxFIxAJ7Z/gzfeuVbLJqziDNrzsRr8hZ8/sOFhJSSrq4uZsyYoSwSijFRokFRFibjYqi2xbyc55OafhQxw6eJn/R1MBTmdiBtXlKh3XR1dRGJRHC5XHg8HlwuV0HevxIJv/IKe6+9jlRPDxiNBE48lDtbV9N8whl87tgv0eRsIt3XR+TVxYT+8hcir7xC709up/+JJ2n6yY8xNTVhM9kAOKLhCM6deS5/XPtH/mH+B5+d81kuarmoqPPPDrhUrg3FWCjRoCg6hY5BKNUiW23iRDsX4/aXEcHtJOdfQnLue2Dueyb1ntFolFAoRG9vL4FAgFDSgjHQRTKZpLa2lkgkwpYtW+jv7ycajSKlpL6+Hq/Xi91un5K1L7IDIYN//BM9P/oRpNOYFxxO4/Xfpr1zFtf0rOTw+sP1Yww1NTjPeBfOM95F+L//Zd8PfkB81Sq6rrqKlnvuwVibCR6tt9fz7eO+zfvnvJ/r/3s9N626ifWJ9Xz96K+X5HyyUTESiuEo0aAoKKUKUqymxbwUCCFASsyv/wbrf75Pum4OyUPeC0ZzXu8Tj8cJhUKEQiH6+vqIRqPY7XZqamrwer3E43FcjR0Y975FW1sbRqNxiBvpzTffxOfzEYlE2L17N5FIBKvVisfj0f9YrdZCn35xkBL/L3+J/xe/BGD3+0/hxnlr+E2TlRnCMEQwDMdx0km03Hcfuz7xSeJr1rD3+z+g6ce3DXnNIbWHcNO8m3h076MsbFpY5FPJPRtECYkDGyUaFBMmWyBEIhHS6fR+rylGkGKpbjpVZdGIDzBv9W3Y9v6XROe7ib77J+MKhmQySV9fny4QwuEwZrMZt9tNTU0N06dPx2q16t9HJBJh3759SEcdItwz4nsaDAa8Xi81NTX6Y9FolGAwSCAQYOvWrcTjcRwOhy4i3G43ZnPu4qZkgvLvD+O/914wGFj/ybO4zvs076h7B/X2+pwON3o8NP30drZf+F7CzzxDfP0GLHM6h7zGZDBxacelNDU1AfC3DX9jRs0MFjYWV0TkSz5CAjKBlzabTQmJKYgSDYqcGM+CsH79ehobG/F6vUW/AVSb26DoJKO47n8v7n3riJ38TeILP7NfF8p0Ok1/f79uRRgYGMBgMFBTU0NNTQ0dHR04HI6cvtvkrNPzCqi02WzYbDYaGxuBzLUWDocJBoPs2bOHDRs2kEql9NgIj8dDTU1NSSp1jkbyqafh3ntBCLZecyHX2R7hjBln8P0Tvo8pj9gQU1MTrnPeTd/fHiL8/PP7iYbs6zyRSvCXDX9hS2gL3zv+e5zRNn5Z71wpRt2J0YREX18fW7ZsYf78+frjyiIxdVCiQbEfE3ExZKc/lmqOxaZqxInJRvyQ97E2aGH2sVdkFuWBAd2CEAqFkFLicrlwu920trbicrnyqg+QTarjdFIdp4/4XC6fpxACp9OJ0+lk+vTpwNuiJhgMsmPHDkKhEEII3G63LiRcLldJrr/oypUkfvpTAEKfvJiv2f7OO5rfwfeO/15egkHDtmABfX97iNi6dSM+r52T2Wjml6f9ki++8EWuffla0qQ5q+2siZ9IFqUqVqWNoQkEbWzl2pg6KNFwgFPIGIRy58dPVYQQI7p2JkU6heXlH5OccSLhaUcRnHkRu9avJ/jGGySTSRwOB263m4aGBmbNmoXJVMBbQSqOiPgzVSELZA0wGAy43W7cbjczZswA3nafBINBNm7cyMDAACaTiUgkwp49e6itrS14oGUqEGDPV7+aSak85xwOuupLXLG6jo8d8jHMecaH6OfmzZTpluHwfs8N/015rB7uPPVOrv7P1Vz/8vXYjDZOaTllQuMOH6dcgl/FSEwtlGg4gChmkGIpf7hVFWtQYBKJBP17t+N99qtYu19l9/bNbD/EqZvz58+fj8VS3O6Tpg1PYn/0Uwx89Clomj/+ARMdx2TC5/Ph873dGyMej7NkyRLC4TDd3d1Eo1FsNhtutxuv14vH45nw+Usp2fud75Ls2kV6TieJj30Qu8nOpw771KTOQ8ai2gmNOObw35bdZOcnp/yEz/z7M2zr2zapsbMppWgYz4qlhETlokRDlVKqLIbs9yrlAjvVFvNikEqldPdCKBQiHA7jiWzjsFW3YonuJfTOG/Ed9TFqDQaklPT09BRdMABIqxsAEesr+ljDsVgsmM1mOjo6MA8WTdICLXt7e9m8eTOJRAKn0zkk0DIXS0v/o/8k/NxzCJeLX1zsYOf6m/jj3D9iNEzOmpLYsQMAc0tLzse4zC7uetddunVjspaCqfDbVUKiMlCioQoYTSBs3ryZjo4OoPillkspGg7E7Il0Os3AYBxCKBSiv78fIQQ1NTW43W7a29upCW/D+eevI20+wh/4K2L60UWf+0hI62BmRLz0omE4Qgjsdjt2u13PQJBSMjAwQDAYZPfu3axbt450Ok1NTc2QQMvs3XBy7156bs301Njw0VP4D09y1bSrJi0YAGIrVgBg6Zy933NjiQFNMLy+53V+vvzn/PSUn+KyTKyAVqndE4UaKxchsX79eubMmaOERIFQomGKkY8Fwe/309nZOco7FZZSi4ZSLeblQEpJJBIZUg8hnU7jdDpxu920tLTgdDr3yx6QzkOIH/t5Eod/COlsKMvcIdvSEKJc9qCxvjshBC6XC5fLRcvg7j6dTuvxEdu2baOvr0+Po/B4PMhbbiHd14c87ki+7X2Whb6FnN149qTnKZNJoq+9DoBt4cTSKKWUrOxZyQ2Lb+CHJ/5wQtftVBUNIzFcSPT09DB37lxlkSgQSjRUMKV2MUyGahQNUBqzbSKRoL+/n40bNxIKhUgkEtjtdtxuN/X19WMGKoqBPVif+iax076L9MwgfsIXij7fcRm0NIhYX9lEQ74YDAbdyqCRTCYJhUIEnn0Wnn+BtM3KDe/oxmF08tHGj5JKpSa9AEYWLybd14e5o2NE90Qu739M4zF8bsHn+Omyn/LndX/m0oMundBcqkU0jIRybRQOJRoqhKkkEEZiKgYNjkcxPudEIjEkDkErq2yxWJg2bRqtra05V0Q0dL2O/R+fQESDJHrWkfLMGPW1pbxmpM1L7ORvkmo+inJcqYW6Dk0mE76aGgbu/T8SgP2qyxDNr/CFGe/HErGwa9cudu3ahd1ux+v16laJfOJG+h97DADn2aOnTuby3X34oA+zbO8yfrrspxxadygL6hfkPAcofUxDJdzDlJCYGEo0lIGpLhBGQlka9ieVSu1XMMloNOqpg9OmTcNut9Pd3U08Hqe+PrdKgkiJefkfsT57PbJmOuFL/490w7wJz7PgGC3Ej/1s5p9lnspkCf7pzyS2bsXc3s70y67i96ZPYRAGtm/fjpSSGTNmEIlECAaD9PT0sGnTJpLJ5JBCVG63e8RCVKlAgIEnnwKg5j0j9//I9foTQvDd477Lh5/4ME9sfWJCoqGaLQ25ooTE+CjRUGSyBUIsFkNKOeUFwkhUo2jIZxwtuC47UFFKqQcqzpw5E4fDMWqqWT7nY17xZ2xPf4Nk+6lEzv1fsPvGP6jEiOA2MJjB21ruqUyYlN+P/9e/BmDpB47AlerHZx6sqZDVFdLhcOBwOGhubtaf0wpRdXV1sWbNGoAhgZYul4u+hx9GxmLYTzwRc1vbiHPIZ4GtsdRw95l3U2utzftclWgYnXyFRDqdxmKxVK2QUKKhgIxnQXj99dc55phjprxAGI1qEw2jkd3ZUQtUTCaTeqBic3MzLpcr5zLH+V4LiUMuhGSYxBEfhwJE7xcDx18WkWpZSOK8O8o9lQkT+N3vkP39DBw5lxsNj/LNHYfxvs73jXucltVSU1NDa2tGNGnpscFgMNPx0++n4e7fYQSSZ5zBwMBAzmW6x6LOlinfvaNvBxtDG3lnyztzPlaJhtwZS0i8/PLLnHDCCfrj1WaRUKJhgkzUxTDR0ryVzlT+EYyGJk6yOzuGQiHi8bheMKiuro729va8GiqNxHgiyLj9JSyv/JTIBXeDxUniqCsnNV6xkSY7JCJlG3+y12Ny715C990PwM+PCzDXO5cLZ12oP59LgaJsjEYjXq8Xr9cLQOgvD7IvEMDQ0UHi8MNYt24d4XAYi8UypOPnRBfYHy/7MUu6l/Cns//EjJrRY12yz6dUVINoGIlsIVHNJbKVaMiB4QIhmUzudxHk4mLQFqGpcnHkQ7W4J7I7O/b29tLX10csFtPjEFpaWgreunnM60EOtrN+/gekfR2ISC/S4izo+EXBbEMk9i+LXAoKcW0EfvNbZCzGvoWzWeLbyi+PvKkgNRkAZCJB4O67Aaj/1KdwZaVFx2IxgsEgwWCQ7du3EwwG6evro76+Xg+2zEWgfu2or/HBxz/I9a9cz2/f9dtxe2Io90RxyNW1oYmGqSAklGgYhvaFplIpXSBoqVUaE41BKIdoKGUjmoL3TxhjrEIsDGN1dtR6HOzevXtIN76Skghje+KrmNc+TGLOOZl21hMs3lNqpNkByfJZGiZDoquL0F//CkJw+1HdvLPlnRzTeEzB3r//n/8k2dWFub0d55lDO1VarVamTZvGtGnTAFi5ciX19fWk0+m8On42OZv45sJvcu1L13L3qrv5xPxPjDknJRpKx1QXEge0aMhVIGSbmyZDqX3xpby4yh1nMB5SZtotZ8chSPl2Z8cZM2bgdDqHfM8DAwMlvZEOx/bUNzCtfYTYSd/IZCNMpRutyY4I7yv3LCZE8N7/g2QS01mnMftIF1ceur8raKILn4zH8f/qVwB4r7wSkUPci91ux+PxjNrxs68vU3lzeMfPs9rO4oWdL3DXW3dxSsspHOw7ePR5KdFQVqaSkDhgRMNwgTAwMEAkEsHlenvnVkiBMBLabjzXALmpNF4luSe0QMXsegjZnR0bGxvp7Owc93MpZZbGEGQahIHYiV8lMe99pNpzD2arFOJHXY5IRMs2/kRvoim/n76HHgKg8apP8725cws5LYL33U+yaxfm2bNxnXvOhN5jpI6fqVSKUChEMBhk06ZNenrvhTUX4mh1UG+sr5jFulLmUQwKeb/IVUj09/djNpv1TU+xhUTVioZ4PM6GDRuYNWvWiBaEUCiE3+8fUgGu2BgGGweVilLv/sslGuLx+H4Fk7RARZ/PR1tbW0kaNU0amcbyys8w7F1F9H9+ifTMGLNgUyWTaj8VKE+dhslch8H77kNGowSPnE28Ic3oe/P8hUkqFCLwm98AUPfFL+RkZch1gTUajft1/EwkEgSDQS6xX8K2DdtYHV6N3WYfEmipxedUq6Wh1NbPdDpd1GD3kYTEnj17cLlcQ2KthlskCpmxV7Wioaenh6uvvpoHH3xwRAtCqXb72ZTDPVGq8UoliFKpFJFIhIGBAfbs2UM4HMZkMuk7r+bmZqxWa0F+ICW1nsT7sD18FeaNT5A45CJIJcBU2IDLUiJCXYiBbmgtXCxAsUmHI4T+fB8AP523jcM2/3NUk/5ErovAXXeRDoWwLVyI/aSTcj5uotey2Wymvr6e+vp6Ngc388OXfsh1ndfhFm4CgQBbt24lHo/jcDgwmUyk02mSyWROHT8nQ76ZJ5OlGmPIho+pCYPsx7ItEoW6J0IViwaLxUIymRxVHGhFOEpJNYsGKLyqH62zI6DnwBcit73cWEJbmP7cNZjCXURPu5HEkR+fWvELI2B54y7Mb95L5Eubyj2VnOl76G+kg0H2dvhY3x7jR4dcVrD3Tu7aRehPfwYGrQw5fr+F+k3V2mrxx/zcvOxm7jnzHhobG/X3HxgYYPv27QQCAV577TXS6TQulwuv1ztix8/JUq1WjXKMByNbN7ItEoVe56pWNFitVuLx+KjPlyNwr5QZBtp4pXQZTAYtUFFzM4zU2dHlcmEwGNi2bRsWiwWns7iphyX5/NIpGp+9BuIhIu+/j1Tr8cUdr8hon5c02xHJSCY+YwoUk5apFME//BGAe4/q4/1zPky9ffSy3vkuDj0/uR0Zj+N897uxHnpoXnMrxCLksXq4duG1fPmFL/O71b/TsymEyHT8rKurw2QyMWfOnBE7fgohhrg1nE7nhOdVyoU1nU6XdBEvtntiJEotVKpWNFgsFhKJxKjPl8PSUM0xDfmOFYvFhhRMyu7s2NDQMHZnx3IFKBYSKQEJBiN7T74Jf8JC2xQXDEM+L7M983cyCqbJFb6a9FxyIPzCf0l2ddHX4GTZ3DQ3HPzhgs0l8vrrDDzxBMJqpfaaq/M6tpDX+Ttb3sk5M8/hrrfu4tSWU5nrezvIM3vhGavjZzAYZMOGDQwMDGA2m4cICZvNltPnriwNhaXUQqVqRYPRaBxTNJTL0nAgiobhnR0jkQg2m02vxT9jxoyKDVQsyueXCGN7/EukazuJn/gV4g2HkQgECj9OGZFmR+YfiTDYaso7mRwI3Z+p/rjrzMO55OCDx7QyaOS0QKZS9Nx6KwDeyz+OeTBtMlcKvQh9+agvs7h7MX9e92e+c9x3ch7HZDJRW1tLbe3bfS3i8bheiGrnzp1EIhE9PVT7M9LvuppFQ7ksDeONWcjPoGpFw3gfooppKM5YI3V2NJlMesGkxsbGnHck441VbIpxsxHBbdgfvgLDvrXETr624O9fKUhTxtIgylBKOt9rI75lK5GXXkJYrZz5qVt4dw4ZVbmO0fe3h4ivXYepuRnPZYWLkZgoXquXX53+K1pdQxuJTWRxtVgsNDQ00NDQoL9HNBolGAzS29vL5s2bSSQSOJ3OIR0/Sy0aSrmIl8vSoNwTBWKsD7IcloZSC5Vin6MWqNjX18fevXvp6+sjEAjoBZPG6+w4UUr53RVyHOO2F7H941MImSZy0b16WmKlF8aaCKm2dxA575dIe/4dF0tN6IGMlaH/1KMQ7sJZRVKhEL13ZBp21X7pixjs9rzfoxiLULu7HYBALEA0GaXJ2VSQcYQQ2O127HY7TU1NwNuBlsFgkN27d7N27Vqi0Sgul4tYLIbX69VjlYqBck8UnqoWDWNR6vgCmNqWBiklkUhED1IMhUKkUik9ULG+vh6bzcZBBx1UkPFymU+xKeTnJ8L7sD90GWn3DMIX3oX0zSrI+1Yq0tNG0tNWltRmyN1KlA6H6X/kEQBumL6Y7wfWjVk5USOXxcH/i1+QDgSwHXMMzjPPzGk+pSKVTnH505dTb6vnl6f/smjjaIGWLpeLlpYWANatW4fFYkFKmen42d8/JI7C4/EULCuq1LvwUls2tDGVpaGAjPaBljqTQRtzqoiGWCw2JA4hHo9jt9upqakZsbNjMBikv7+/UFMfkym1Mx+s7igd9UQu+C2p5qPBWvk+/kkTDWDcvRymHwGu8eMDykX/v/5Fuq+fTW0Wag87IifBkAvxDRsI3f8AGAzUff1rFZdpYDQY+ejBH+X7S77PI5seYaFtYUldBk6nU3drQCbQUouP6O7uHrHjp81mm9BYpY5pUJaGKcp4X9yBEAiZqzVFi4zWREIkEsFsNufV2bGUP5RSxjRMZhzRvxv7I58gfswnSM49T3dHFHqcSkTsWY3jr5fSdcYvMM09o+C5/oWi7+8PA/Cvw5J88KAP5nXsaNe8lJJ9t9wKqRTuD1yCdZKlqIv127pg1gU8tuUxbl92Oz878md4jKWtjpuNyWSirq6Ouro6/bHhHT9jsdh+gZbjdfw8ENwTytJQIsoVCFnumAYtUFETCMM7O86ePRu73T6hi7CU51bpi6yh63Xsj3wCEe8DUfl1CiZLPB6nt7eXgYEB3njjDRy9G1kIJKID7Ny6lf7+foxGI/F4nJ6eHsxm84R2jgWd88aNxJYvJ2Y1sumoaZw8/eScjx3r+ht44kmiS5Zg8Hrxffazk5pjMa9zIQTXLbyODz7+QX6z8Td89aCvFm2sbHK9Twzv+Km5SIPBIPv27WPjxo0kk8khHT/dbvcQl9iBkD2hLA0lolyBkKUeMxwO68GKuXR2nCiltjSUapyJfF+mlfdje/qbSFcz4ff9gXTDIUWYXfnI7rKoCU+tYY7ZbGb+/PnYAlZ4E5oaamk6+HAgIyyWLVvGwMAAK1asIB6P43Q68Xq9eL1e3G53SW9+fQ9nrAyvHWbj/HmXYDJM/naYHhig50c/AqD2mqsxFqC3TTGv95numVx56JW8tvM14unRi+EVmol8z0IIHA4HDoeD5uZm4O1g7GAwSFdXF2vWrAEyFWO9Xi9Go/GAsDSM9nlq9y+VclkAylF6uJhCZaTOjgMDAwwMDFBXV5dzZ8eJUik1IcqNoet17E98mWTbyUTO+znYfeMeU8nnA2+bibXiPlqZYS1DRqsOGI1G9SA3jIP5+cm3FyKLxYLNZmPmzJm4XC49sj4QCLBjxw5CoZAeEKcJicmm546GTCTo/8ejAFx09Z0Y5+YXyzDa4uD/9a9J7d2Ldf58ai68cPLzLMF18bF5H+NdrneVTLAV8pw0K6lWVh4y1lQtk2v37t0Eg0FeffVV3G63Xhp7otbU8ShXTINyTxQIIQSpVKroDVhypZDuiXg8rouDvr4+YrGYXjDJ5/Mxc+ZMtm3bhs/nG1KQpVhUo2jIa5zBgMf09KOJnP9rkrPPggLsXEtNdgnhUCg0JCBNu67G8yMDSE00pGKjviY7sl674WudGQOBAF1dXUSjURwOxxBrRCGEb/i//yXV24tpVgeOwxcU5KYb37QpU4paCOqv/SaiAItwKXauBpGZ567oLl5a9xIfmPuBoo5X7HMyGo369eL1eunq6mLOnDl6fMSuXbuIRCJYrdYRO35OhnJkT4znnij0Zz317mp5oJWSriTRMJHFLplM6u4F7UauBSrW1NQwffr0EbuYlTKGotS75UramRv2vIXtsc8TPfd/SU87lOScc/M6vhxWL3jbOqVZEEKhEFJKPb6lo6Njwqlv0jmN8EX3Ihrnk88tNLszozbHcDisiwjN/JxtjZjIrrHvob8DcF/nXq6M+am1TU5YSynZd/MtkExSc/HFefeXKDdSSp7c/SR/3/l3DvIdxBENRxR1rFL3nhh+XQF6IarhHT+zhUS+a0c53BNQ2ntIZaymRUITDfYJFFUpBrnENGj+Ys2CoOUwaya4fG7k1bj718Yq1TjjnZNp3aPY/vVFpM0DMjXhsUrx2UkpCQQCQ6wINpsNj8dDfX39mP0+8sZsJ9Vx+qStAkIInE4nTqdTz/PPTs9bs2YN4XBYv9l7vd5xP8vkvn0ZS4MBNh3XOiHBMHxxGHjySaKLF2PweKj9/Ofyfr9cxykWUkoubb+UxYHFfH/J9/nT2X/CYixOafdKKSNts9mw2WxDOn6Gw2GCwSB79uxhw4YNpFKp/QItx9rVl0s0lJKqFg1ms3nMTpelZvgipF2k2emOWqBiTU3NkM6OhRivmFTrWKMiJZZXbsf60m2kmo8mcsFvkM5p5Z1TFtnFuILBIH19fYTDYbq7uyedJZMT6SSmjU9Bw0EwrTC1DzSGp+dp5xoIBPQc/5dffln3YXu93iFCe+DxxyGV4o05gjMWXDzp+aTDYXp+dBswGPzo9U76PTVKuQjZjDa+ccw3uPo/V3Pvmnu58tArizJOpYiG4WQL1OmDPUKyg3537NhBX18fAG63WxcSLpdLH6Mc2ROl5oAWDaU2pyeTScLhMJFIhL6+PhKJBA6HI6fOjhOhmhfycveeMK28H+tLt5GYdzHRM28F08T9oYX47LRaG5pIiEajek77tGnT6Ozs5I033ihZxU7SKeyPXEX8lG8iCywahpMdVT99+nQCgQDHHnssoVCIQCDAunXrhlhVTI/8A4BXDrNw48yzJzRm9mLk/9WvSe3Zg/XQQ6l573sLdl6lRDufdzS/gzNmnMHdb93N2W1nM6NmRtHGKgWTjTEwGAx6vZoZMzKfheYuDgaDbNy4cUjHz1QqhdlsrmqLQ1WLBovFUjZLQyKRGBKoGI1GkVJitVppaGigra2t6J0dK2JHXgTK+mOUEoQgOe99REw2kgdfAGVIsdIsVJoVQQih734K0RRs0hgzwZIiGaccV6DRaMTn8+HzvZ29EolE8K9aRXTtWiIWSM5fwNZ1W/WI+uwdY67EN28m+Ic/gBDUFSj4MZtSuie0cb505Jdodjbjs42f+TPZsYpNMcYymUz7XVtax8/t27fT29vLnj17dJE6VsfPqUjVi4ZkMjnq84W6mLQUH00gaJ0dNYXa1NSEzWZjz549RKPRIcE4xaRaLQ3lEkOGXW9g+/d3iVx4N9JRT/KQC0sybrYADQaDesCW2+2mubmZOXPmlK3Hw6gIA9JgHjN7otTY7XaiS14jCohTTuDq079Eg2ggEAjoO0aLxaK7NMa70Usp6bllMPjxfe/DNn9+UeZdyhgegGmOaVxzxDVFG2eqi4aR0Dp+RiIRhBC0trbm1PGzUoL082HqzTgPcrE05HtRacVEtJt4f38/Qgg9UDE7b304U6n3RCWPBaXPnjCt/hu2J76KdDVCNAiOwgm/7M8uuyugdn1pJlKPx0Nzc3PZKynmjNECqcSQh8pp+ZJS0v+vfwHQftFHcPjmAODNikHIvtFv2rRJD4TThIQWYySlJPn880ReeTUT/Hj154s251Iw0jgre1by8+U/54cn/RCX2VXQsapNNGSPZzAYEGL8jp/r1q0jnU5TU1OjC4lilFtXKZd5MJ5o0G7WY9WQ14LJNCtCOp3WOzu2tLTgdDpz3uUp0VC4sUqGTGN54Rasi+8g2Xo80f/5NdJRuLoX8XicQCBAX18fS5cu1Xcj2vVVzLbBRcdohlTlBCLH16whsWULsRorA4fPxjHCa4ZH1Gt1KwKBAFu2bKGvrw+z2Uyqvx/LHXcigNrPf76gwY/DKbV7Ipsl3Uv41Ypf8eWjvlz0sYpBqQsfpdPpUeuYZNcl0TKBsuuibNu2jb6+viGbBI/HM+omtFxUtWgwmUwkEolRnx++0MViMV0ghEIhPV1Ta/082UDFcvSeqMY6DaUcq33bX7BuvY/44R8idvr33q50OAGyS95qVgSTyYTNZsNkMjFv3ryCFJipFMIX3YvB1ZhXnYZi0v9Yxsrw77kJ3m/KbVbZLZs14vE467/zXURPD4mZM1nR1IjrzTd1a0Qhd4ultDQMX5jm183nos6LuH/9/byn4z0F6wBa7ZaGfMYb6frSgpqDwSAbNmzQ3WbZFS1HqstTKqpaNFgsFmKxkX2qyWSSZDLJ1q1bGRgYIBKJ6F+Mx+OhtbW14DfwUveeqNaFvJRj7Zh+Ds0HHUNy/gfyDnjUgqM0kaA11xne96O/v59t27ZVlWAASDcfhaiQWAuZSumuCf/J82mwN4xzxBh0dWF74gkQgpk/+D5z58+nv7+fQCCg7xaNRuN+5bAnSjktDZ89/LP8e/u/ufW1W7nrjLv06pHFGKsYVLpoGAmTyURtbe2QSr7ahlYrua5lR7ndbpLJJPF4fNT4G+WeyAMtEHJgYIBwOKxXvxsYGMBoNJJMJrFarTQ1NRU3Z30Q5Z6YGhh3vIr5jd8Sfc+dJM1ukoe9a9xjRmvipC0cuZZfriaMG57EYKuBWe8s91SILl1Kau9e9njgiHdeMuH3kVLSc/MtiFQKy3veg+2wwwD0mCYtLS+RSBAIBPSbfCwWK2tzronitrj53ILPcePiG/n3jn/zrhnj/xbGYyqlXOZLseo0aFl3DQ0Zsau5zv1+P6lUiqVLl47Y8bMYc6k60ZBKpVi1ahVLlizh+eef57HHHsNoNHLDDTewYMECZs6cicPhwGAw8Oabb1JfX1+yHV6pF9ZydNUsBcX8HM0r/oz16WuRnhmI8L5RXze8/LLWxMnj8YwZDDsa1fg9WV/8IdLXTqoCRMPA088AsHiemStmnDbx93nmGSKvvIJ0OnF84qpRX2c2m/e7yZerOVcujLWQn9dxHhaDhXe2FOZ7rGbRUKpz02qTWCwWduzYwXHHHZcJ9B3cuGgl16WUHHnkkQVN9yyIaBBCGKSUIzrPhRA24HnAOjjeg1JKNm/ezKJFi+jp6eHoo4/m//7v/3R3wkc/+lFef/116urquP/++2lvbwfg5ptv5q677sJoNPKzn/2Ms88eWpjlwQcf5KabbmLevHksXLiQww47jNNPP52LLrpoxHkbDIaSxhhUu3uiVBTlvNJJrP/5PpY3fkty5juJnHcn2LzATlKplP5jDAaDhMNhvdlNbW0t7e3tk7IiVFKQU0ExWhEVEAgp02kGnsmIBvNpp+A0Oyf0PulwhJ7/l2l7nfjAJRjyCH4cqTmXVg5b66sRiUR0a8RwP3exGWuxMwgD725/d2bO6eSkW4iXOhCylOnI5bRsZGfxZTeAK3RaZ85nJ4S4QQjRMcrTYxVbjwGnSykXAEcA737llVf4+te/zhe/+EU2bNiAz+fjrrvuAuCuu+7C5/OxYcMGvvjFL/L1r38dgFWrVnHffffx1ltv8fjjj/OZz3yGVGporf/3ve99vPHGG/zhD3/gmmuuYfbs2WNenOVwF5Q6ELIad7DFOC/rM9dheeO3xI68nN5zfkl3MMa6desYGBjgjTfeYNeuXZjNZmbNmsWxxx7LEUccQUdHB3V1dQec2yFnDCZIj14npVTEVqwgtWcPxqYmPnXJjyb8PoHf/obU7t1YDjmE5GmnFcR3XVdXx+zZszn66KM58cQTmTt3LhaLhd27d7N48WIGBgZYtWoVXV1dhMPhov2ec1nIX+t+jQv+cQHb+7YXfaxCUeqYhnJka4wlUoxGY8FFUz6S6GrgeSHEB4QQw5N2PyOEGNH+ITP0D/7XDJiFEDz77LNcfHGm7vtll13G3//+dwAefvhhLrvsMgAuvvhinnnmGaSUPPzwwyxatAir1UpHRwednZ0sXrx4yFjDvyyz2Txm9kSpLQ3VHNMwVUmlUvj9frY2vpsNh1zNC873sH7jZiKRCA0NDTgcDhYuXMjBBx9Mc3NzUdKfqvV7kgYTpCfexKtQaK4J57veNeHvLr5lK4F77gWg/tpvQhF2k1rvg5aWFubNm8cJJ5yAw+GgqamJaDTKmjVrePHFF3n99dfZuHEjPT09YxavKzQz3TMJJUL8ZNlPJvU+1Swaqn08yM89sR64EvgNcLYQ4gdSyo2Dz/UNvteItkghhBF4HegE7pw9e/aRXq9XN5u0trayc+dOAHbu3KkHE5lMJjweDz09PezcuZPjjz9ef8/sY0ZD63I5GtW+iFfrYjTR89KCh7Q4BMOOV6nreY29h38Gz7RDqOk8jmOHBcRWreugFBiMZbc0SCnpe/opAP49O8L7J/geeuXHCy/EdvjhsHJlYSc6CkKIIZH02dfwnj17WL9+Pel0WndneL3eCQnbXBafBnsDVxx6BXe8eQev7HqF45uPH/P1451XKSiHpaEaAi/HIh/RIIAtUsrjhBDfB/42+PeDQGqs95JSpoAjhBBe4KE1a9ZMYsq5M15xp3LEGFRrnQYoXTBfrqJhpCZOWvnljr7F1K74LtLdSm1702D8gmIyDL85R8/6IUajqax1GuJr1pDu2oXfCQedfP6E3iP8zLNEXn4ZQ00NtddcDZSvBbIWAOdwOGhubgYy1jItHW/9+vV6zE12OezxXGi5ns+lcy/l4Y0Pc9vS2/hz458nHd9QbKo1ELJc40EOokEIIeTbd2gLgJTyW0KIvwL3kIlTmJ7Le0kpA0KIf7/88sunBgIBkskkJpOJHTt26BWyWlpa2L59O62trXqgUF1dnf64RvYxo2E2m+nv7x/1+VIvqtUcCFlutCZOmhUhu7Ka1v/DarUikFheug3rKz8lOeMdRP7nV2UXDNX6PUlvO7LMdRoGnn4agLcOdfKRhgV5H5+OROj5USYOwvf5z2GsLVw10EIxUnOuaDRKIBBg3759bNy4kVQqRU1NzZBy2NmLTa6Lj8Vo4fMLPs/XXvwaL+16iVNaTinKORWKal/EK93SENVeP5gtsRQ4XAhxO1Az2nsJIRqAxKBgsANnHnLIIZx22mk8+OCDLFq0iHvuuYcLLrgAgPPPP5977rmHE044gQcffJDTTz8dIQTnn38+l156KV/60pfo6upi/fr1HHvssWNO2Gq10tvbO+rz1R6YWI7xSjVOKpWip6dHFwm5NnGyPvFVLCvvIz5/EbEzbppUhUfF2Bg3PYMxMQCHXVyW8aWU9D2VcU0YTj1xQtdn4K67SO7aheXgg3Ff/PZ5lMvSkCs2m42mpia974FWrtjv97Np0yb6+/v15lxaS+dcz+e01tP47bt+yxENRxTxDApDpQUmFpqKtDRkWRluBkKDj6VBt0J8QQhxB+Af5S2agXsG4xoMwAPnnXfeSfPmzWPRokV861vf4sgjj+SKK64A4IorruAjH/kInZ2d1NbWct999wFw6KGHcskllzBv3jxMJhN33nnnuFGh43W5rPadf7XsYIc3cQqFQnqxHK1HQ661NpKzz0L6ZhFf+OmSt7Q+0DCv+BPG4HYSZRINiY0bSW3dRsgOC864NP/jt24l8Pt7gEzwY6VUt5wII5UrjsViBAIB/H4/vb299PX1DakbMVrfEyGELhiiySg2U+U2UFOWhjJWhJRSPjbCY3LQ6rBhjOOWA0cOe/iGWbNm7Zf9ABmF/Je//GXE97ruuuu47rrrcp1yzg2rSkW1WzYKRTweH1I4KbulbEtLC+3t7axfv57Ozs6c3s+wdzWGvW+RnHcxqc6zSHFWkc8gP6bq9zQuZU65HHjm2cw/Tj6W+dPyc01IKdl36w8hkcB1wQXYFuTv2qh0rFYrjY2NNDY2Eo1GmTVrFlLK/ZpzZQuJbHH+6OZH+dmyn/HAuQ/gtXrLdyJjcCCIhoqzNIzHaEWdKoFKS7msdsvGRMhu4hQMBhkYGNCzZrQeDcOrmcVisZzPy7jpGeyPfgZp85Cc8x4w24txGoqREOVNuQz/5zkA5pz34bxvrOF//5vIiy9iqKmh7ppr9nu+0t0T+aIFDGrWu7a2NuDtLqxaF8Z4PK5XPp1hnkEgHuCut+4qaBfMQlKJO/9CkkugZ9l7TwghTFLK8ldsyYFKtDRU83i5oDVeGd7EyePx0NbWpjdxGouczktKzEvvxvrcDaQb5hG58O6KFQzVtPgMwWCEMt0qknv2EHtrFSmLCeMx+VkJ0pEIPT/8fwD4PvtZjHWVF/xYaEZbXC0WC9OmTWPatGn667TmXAa/geMcx/HAugdYaFzI3Ma5k27OVWiqPXuiogMhs7IorhJC/FNKua2I8yoIucQ0VLO7oNyiQQu+0kRCOBzWzZ0+n2/CTZzGPS8psT57PZZlvycx+2yi5/4MLBMrHVwqKk3cFYQyuifCL7wAwKoOI7MdNXkdG7jr7kzw40EH4X7/yPEYVfl95UB2qeIZM2bw7c5vc+GjF/JI7yN8yvmpIc25NLeG2+0uaSnnbKp9Ea/IQMgsDGTqMbwXWAFsG5aOWXEoS0Npx0un0+zZs2fEJk7t7e1FqaY4IkIgXU3Ej/kksZOvzex4FSUh+3qLnXIdRpJlqdMQ+nemCmTihCPzauec2LaNwO9/DwwGP45Rt7+aLEQTXXwa7A1cetCl3Lv6Xr5y7Ffo7Owc0pxr586drF69ekhzrnQ6XbLFrtQ+/2oXKTCxmIbdQMXGMWRjNpvHFQ2ltDSUmmKKhlQqNcSKEIlEiEajDAwMUFdXR0dHR8EbpWiMdl4iuB3R30265Rjix352ymRHVNPik4101JWnTkM8TvTVxRiAOecsyvkwKSX7brk1E/x4/v9gO+KIok2x0pjMYnfZwZfxnvb30OTMpHeKcZpzRaNRXnzxRRwOx5BW4cW4X1R7IGRFWxoGqzoCfIpMEyoq2coA45eRNhgMJa3dDqVdIAoVeCmlJBqNDkl5BKipqcHtdjN79mzsdjuvvfYa7e3tRT/HkUSDoet17A9fAWYnA5f/J2Man0JU+E8pb6SUJNY8gdz9FunjP0NNTU3JdkTWNWswxJNsaTFz6kG5Fx8aeOopPfix9gtfGPO11RgIOdHzcVlcuCyZdkSjdcHUmnPV1dXR3d3NCSecQCQSIRAIsHv3btauXQswpBy2w+GY9Gdc7Yv4lLA0SCnDxZhIMag090Spmej5aWVpNZEQiUSw2+243W4aGhqYNWvWiLsCbbxS/Giyz8u05mFsj38JWdNE5MJ7Ci4Yqm2BKAbJZJJAIEA4HGbp0qUkEgnmbXuUaV1P80bze/T0vXg8jt/vx2azFc0SZV2+AoCBYw/J2TWR7u/Xgx9rr74aU11dUeZWqRTiGr/x1RsJxoPcdvJt4742uxz29OnTgcx9R7NGaB1m7Xb7kHLY+V4z5fjtqpTLKUylBUKWmlxEw/AmTqFQCCGEXn65sbERm82W04VZKhGmz0VKLK/cjvWl20i2HEf0/N8gHVMv0n0qiletMJB23QA4nU6MRiPz5s3DarViDT+BoSvN4Ycfrh+zdOlS/H4/O3fuREqp7yp9Ph92++SzW2Q6jXVFRjScuejanI/r/cUvSO3di3X+fGouft+k53EgMt01nUdWPMKa3jUcXHtw3scbjcb9mnNp5bCzm3O53W5dSIwXJ1Xq7IlSI6UcN8i0bCmXQgj34OtDUyXl0mq1KkvDsPPTmjhpN/tYLIbdbsfj8dDY2EhnZ+ekIp1LJRoy40gMPetJzLuY6Jm3gim3qpATGetAtjRkB7ZptTQsFgsej4f6+npmz56N0WgkFouxZs0avQCQNBiH1GmwWq3Y7XZmzZqFy+XSd5Z+v59du3YRiURwuVx6H4Wampq8P/fYqlUYQyGMTU1YDzoot2PWrCH0pz+DwUD9t76FyGGRqbZrohDns2jOIv609k/8+q1f8+OTfzzpOQkhsNvt2O32/ZpzBYNBNmzYwMDAAFardUgBquyMrGr7noaTTqfHzEArxrnn0rDKMFjA6RbgLOA3Qohnga1AfyW7K8YLhKx2SwNkREJXVxfBYJD+/v4hTZyam5szTZwKdGGV7McZDWKN7gVhIHrOTzPuiCq+MZSa7K6JwWCQeDyup9C1tbXt1+xoVMZpjT3SzrK/vx+/369XJLRYLPh8Pn1BGM88PfDccwBsnl/HzBzmKNNp9v3gJkincX/oUqyH5L9DrgYKsbi6LC4unXspv1z5y1GtDZPdVIzVnKunp4dNmzYNac41VkxbNTDe91aMTVwuvSfSg39/RgjRCvwOuAl4BnhWCPFvYDuwT0o5+gpdBsYLhCyHpaGY4yUSCV2Fazf7WCxGKpVi+vTpRQ9GK8XnKUI7cPztMg6PxuDEs8GYf52HvMYrxTmV2eIVi8X0ayYYDALgdrvxeDw0NzdPvFiPMCJkCqTMSdRl1wDQKhJqC8LevXtZv349gF7nw+fz7Tc3/7NPYgDEiQtzmmLf3/5GbPlyjA0N1H7mMzmfWrXtYAt1PovmLuKPa//IPavv4eYTby7aONmM1pxLi7FZsmTJftaI4VVmpyoVHQg5WAlyhxBiNfBXKeUvhRA3AvcDNuBjwOPFmebEsFqt44qGqWpp0HZlmkjo7+/HZDLpN/uWlhYsFguvvfYaM2bMKMmcir34GbqXY3/oY4hklA1zv0ynqr+QN9nNv7TrRiu4VehU2fixnyG18BNM5lsaviBoqXtaXEQsFtNdGu5EAsPGbUTNsODMD4373qmeXnp/+jMA6r76FQwu1yRmOvUpxGLusri49cRbmeubO+LzpRBb2c25du/ezdFHHz0kyHLLli0kEgndGuHxeEqa3VNIKjrlkrdrMySANiGECXiRjGA4C3AXeG6TZrzsiVL3goCJ/zCzmzgFg0GSyaRuMm5tbR21I10pKaZoMG58Gvujn0Y66gi//z78m4JFGWc45bYCTJZsH7C263I4HJneATNm5FS2e8KYHWA0FtR1lJ26B0NdGl3//Cc2YFOHE+ueEKm4YcyI+57bf0I6FMJ+wgk4z6qsJmZQ2jTcQo51bNOxY45TjhRIq9U6pBx2Op3Wy2Fv3bqV/v5+jEajbokY3pyrUqloSwNgJCMcBHARcDIQB34lpfwaDCk1XRGM17CqXJaG8X442gWt3ewHBgYwm826FWGkJk6VQNEWWJnG+spPSNfNIfLe3yOd02DTksKPUyYK+bnF43F9R6VV5dSuG5vNxsKFC0t20zbuWIx5y7OkT/m6HqRa6Osj26WxeeMaJNA/by4Oh4Pu7m7WrVsHoGdoaL0RIq+9Rv8j/0BYLJnKj3l+Jso9MTbrA+u5+bWbufH4G2l1tRZtnPEYLXsiO7YruzmX9tvRmnM5nc4hBajKvTEbTkWmXGYJgXcLIf6XTPzC/wPul1L2Z7+2kgQDjH8zLpelYfgPR/MpayIhlUrp5ZdnzpxZuvLLk6TgokGmIRkDs53Ihb9HWpyZ3WsJqWRLg5SScDis3+iyXQ21tbX7uRq2b99e2uJi3W9ifvUOYu+4ZkhmSzHmIBMJWPImAL4jTqe5uVmPuNdqSAQCAbZv3058YIDGW2/FANg//GFMJXLf5UupF9hCjuW1elndu5o/rvkjXz/m6/rj5RANuWKxWGhoaKChoUE/tr+/n2AwyI4dOwiFQhiNxiGxEeVuzpVLSmnJUy6zhMBm4GIp5WuDE7EKITQnoAGISSljBZ3dJBFCjPmBlWtBCAQCul85HA5jsVhwu92TauJUCRT080xEsP3rGkQqRuSCu5HOhsK8b4WSy+emle7WXFSRSEQvxVspLqohiMFohhI0rYquWIEcGMDc0UFN4+whz5lMJurr66mvrweg5+c/J9i1C1pa2P2OE9j40kvYbDbdGuHxeMZNO642S0OhabA3cM7Mc/jH5n/w6cM/jduS8V5PpWJL2VYsrRx2IpHQRfqOHTuIRqO6NcLj8ZR8Pal090QKOEUIcdzgcQYyrgoAH/A88FRhp1dcip1yKaUcYkUIhUIMDAywe/duvF4vHR0dBSmVWkkU4kcjwj3Y/345hl1vEDv125BHw6FCU6rsiZHQzKXan3Q6TU1NDR6Phzlz5uRcdKtslHBuwef/DYDp+GPGfF180yaCd90NQPP3bmTW0UcDEIlE8Pv9ekljIcQQl0Y5/NtTXZgsmruIRzY/wsObHuYjB38EmPrnZDabhwhQzdoXCATo6uoiHA7z8ssvD7FG2O32op1zpQdCeoGDge7B/yfIiIbk4L8rkrFu+IVeELJ3glr5ZavVitvt1iPTV65cSWdnZ0XGJEyWQly8oncTjoc+gujfTfR/fkly7nsKMLNJzKdEP8jsm08wGKSvrw+TyaTffKayBaoU+J9/Fiuw7/C2UV8j02n23fg9SCaped9F2AcFA6AXEdJKGicSCd2lsXXrVhKJhF6J0OfzlWxHOZUX2Lm+uRzVcBQPrHuAS+deitFgnPKiYThCCJxOJ06nk6amJvr7+znmmGN0a8Tu3bsJh8NFa85V0ZYGKeXLwMuDWRMGMkJhLtAAvKTVc6hERrtQJ2NpyLWJ0/BxK9lHPlkmfW4yjf2RKyHWR/j9D5CefvT4x5SAYnxfWi65dnMZGBhg48aNeDyektTUqCaS+/Zh3biTmAkOPu0ilix9c8TX9f31b0SXLsVYXz9uQyqz2TzEv619X36/nw0bNhAMBlm+fDm1tbWZdE+3e1KVVEeiGu4TVx56Jdv6tpGWaYxUn2jIRju3kTJ8RmrOlV0Oe6IW54q2NAghvMAHgRPJiIYIcCgwC/i1EOIBKeXyYkxyooz3YeazyCWTyf2sCFr55YaGBr2Ubi5zmqq1IcZj0qJBGIieczvSUoP0dRRuYpOgUD9IzReq/dGCXb1eL7NnzyYajXLYYYcVZKxKIbHgo6SP/ChGc3GDxcIvvghA90ENHGJ3jvia5J499Nx+OwB1X/8aRnd+GeLZuf8Ar776KnPnzqW/v5+uri5Wr16tp+xpLo1CWBOn+gJ7bNOxQ1Iwq1k0jLbrH605l1Z1dXhzLs26mIs1oiItDVnZE6cCHwe+DLiAfcC5ZFIvfw0MFG+aE2e8QMiRFnDNVKxlM/T19U24idNwypGxUSomJBqkxLLkFxDvI37S10k3Hl6cyU2CfM8puwmYdv0YjUZ9Z9HW1nZg1Mc3GAtep2Ekup97AiNgOWH0+gA9P/whsr8fxymn4DzzzIKM63A4cLvd+7k0tDLYyWSSmpoavXplvrvJarlPRJNRHt3yKEc2HEmjsbE6r3Xy+x0PL4ed3Zxr7969bNiwIafmXGONWazrJ5/siRjwupTyBe05IYQFcEoptxVldkVGW8DHauLU3NzMnDlzCmZ6VO6JLNIprM9+G8ub95A46IJMc6MKq/KYyzllF4rRMmKyr5+5c+eOuRuo1puocccrmNf9k/Rp14O1ONUWZSqFXLwUgM6zLxnxNQPPPcfAU08j7PYJ1WTIlZFcGqFQCL/fr+8mHQ6HbonweDxjXhfVIibj6Ti3L72ds9rO4ovzvlgV5zQSk/m+xAjNubTrJxAI6M25LBbLkFbhuVgaSp5ymcV/gFVCCDtgJeOi2A7cMRjnUCel7B7rDcpF9pepldHNLr/85ptvFqbWfg4o0TBIIoLtsc9h3vAEsYWfJn7yN8uaJZEPWo8PTSRoO0qPx8OsWbOqLiNmohj2rsG89HfETvkqGeNk4Ym99Ram/giipZmGOftbqdIDA+y7KdMDofbzn8M0eEMuBQaDQb/Bw9Bg1507dxbNpVFpuC1uzm0/l0c3P8rHZ3+8an8bhXYVDL9+AD2Orre3l02bNhEKhVi9erV+/QzvDFuMzzof0dBGpqhTz+Bxksyd4Fngr2TiHW4r9AQni9Vq5YEHHmD58uVcfPHFJJNJvYxuS0sLfX19HH106QLuytUkqxQ/1JzPTUrsD30U4/ZXiJ52I4mjLi/63CZDtqshFAoN8W9XanXOAwUtnqHmpFNGvMZ7//cOUt3dWA89FPeiRQUbdyK/qexI+5aWFiCTVqu5NDZv3kwqldJrtjidI8dnTEUWzV3E3zb+jce2P8aJ5hPLPZ2iUIr7rM1mw2az0djYCMDLL79MW1sboVCIzZs36wXesmMjCr0Jzkc07AZ+C4TI1GyIk+k70S+l7BJCPFzQmU2QNWvW8Nxzz/Hyyy+zfPlydu7cyX//+19OOOEEDjnkEOx2+5DXl1r1lrodd6kryuUkGoQgcdiHSBzxsbKnVA5HczVoIqG3t5dEIkFtbS2NjY10dnYWPEq+lFSLyVuj+7knsALpYxfs91x0+QpC990HRiP13/k2ogK/N4vFsl9PBC2jZteuXQQCAZYuXarvJCuxlHEuzPLMYkH9Av6141+c2KFEQyHH1CxVM2fOBN4WooFAQC+XXUhyvvqklAHgH8AbwCpgHZkMinOFEDOBPaMdK4SYIYT4txBilRDirZ/+9KcAfPe736WlpYUjjjiCI444gscee0w/5uabb6azs5ODDjqIJ554Qn/88ccf56CDDqKzs5Nbbrllv7EWL15MOp3mC1/4AosXL+bQQw/lxhtv5EMf+tB+gqEclNrSUOrxxizbvectTOv/BUDykAsrQjAkk0l6enrYtGkTS5cu5bXXXmPHjh0YDAY6Ojqoq6vjoIMOor29Ha/XO6UFQ7WRCoUwr91C0gC+404a8pxMJNh3440gJZ6PfhTrQQcVdOxiLRAGgwGfz0dHRwfz58/H5/Mxd+5cTCYT27dv55VXXmHx4sWsW7eOvXv3jtlbp9K4YNYFuM1uBtIVGTM/acqRyQD7bww1ITpnzhy9CFUhyTfl8gbg3WTERpJMbMNM4BTgJ8A/Rzk8CXxZSvmGEKLmzjvvDJ05GMH8xS9+ka985StDXrxq1Sruu+8+3nrrLbq6ujjjjDP0xjOf/exneeqpp2htbWXhwoWcf/75zJs3Tz/2ox/96JD3MpvNY3a6LDXVLBrGuokat76A/ZGrkI56krPeBcbymPS1COVsV4MWz9La2rqfq6GaduUlx2BEFvF7Di9ZgkHCnlk+5tYM3U35f/tb4uvXY5oxA98nP1G0ORQbg8GguzS0UsbxeBy/36/7tVOpFB6PR7dGFLMC4WT4n47/4WTfyezevbvcUykK1WbFG4183BPTgXdKKQ8SQlillDEhxCHAL6WUZ4x1oJRyF7Br8N99F1xwATt37hz19Q8//DCLFi3CarXS0dFBZ2cnixcvBqCzs5NZs2YBsGjRIh5++OEhomE447XHLjWlrtOgjVeKHfJoAsW06q/Ynvgy6dpOIhf9X8kEQ3bDGa2Aks1mw+PxMG3atJxcDdUcuFpsEgs+QvqojxXt2tv9fCbV0njsUUMeN+3YQeC3dwHQ8N3vYKgAC+NEGO26s1gsNDY26n5tLeff7/ezevVqIpGIXgPE5/NVTKEw7V7Ul+wjkoxgNxX3eyn1Il4uS0OpyUc09ANvAWQ1puoGlkDubbGFEO0zZszguOOO48UXX+SOO+7g3nvv5ZhjjuG2227D5/Oxc+dOjj/+eP2Y1tZWXWTMyOpI19rayquvvjrmeBaLpaJMeKWu01BqS8PwsSyLf471hZtIzngHkQt+C9bC+deG3xSyU2cDgQCJREJvJtPe3j5luoUWC+37qZbPIPrqYpxAx+kX6I/JRALPvf8HySTuD3wA+zFj96KYKKX4HHMdY6Sc/4GBAfx+P1u3bqWvrw+z2ay/JtfCQcWgK9zF1auu5mv2r3FR50VFHascHTWr5bc1FvmUkd4GfEgIUQ9Ysv7cNvh8LoLBBfz19ttvx+128+lPf5rrr78eIQTXX389X/7yl7n77rsndiajUGmiodrdE8PHEpFeEgddQPTdPx7SHrkQY0Wj0SH1NeDt0qzTp08vSJMhZWmYOMZtL2JZ/VdSZ94EtsIGYyV378a5K0DcZqLhyBP0xwP33IN5+3ZM05up/cI1BR1zqiCEwOVy4XK59E1WLBbD7/ezb98+NmzYgJRSj67XxEYpaLI10WRt4h+b/1F00ZBOpw940VDWlMvBWgyfB75IJmsiBZiBbcBR41kahBBmMqmZf7zooouOAnTzGsBVV13FeeedB0BLSwvbt2/Xn9uxY4eeojTa46OeoMlUce6JqhcNySgi1IWsnUXslGsHn5yc2U7bPWnxCP39/axZswav10t9fX3OZbwVpcPQuxHTygdInf5toLCiIfLKKwB4jzsRMVhdM75hA/5f/gqA+u98B4PDUdAxh1MploZcsFqtNDU10dTUBGRcGsFgEL/fz65du+jv72fZsmW6NWJ4vn8hOan2JO7ruo+d/TtpcY19/54M5XBPVJpoKAb53Mm9ZERDp5RympSyWUpZL6U8Csa2NIjMJ3kXsFpK+WPt8V27dumveeihh5g/fz4A559/Pvfddx+xWIzNmzezfv16jj32WBYuXMj69evZvHkz8Xic++67j/PPP3/MSediaSj1Il7qmIZSigYRC2F/8EM4Hng/xAcyYmECgiGVSum568uWLWPJkiVs3boVgLa2NlwuF4cffjgdHR3U1tYWTTAoS0NlEnrpvwDYjzsOAJlMsvc734VEgvBJJ+LIcm9OVYp53RmNRmpra5k9ezZHH300TqeT2bNnI4Rgy5YtvPTSSyxZsoQNGzawb98+kslkQcaVUvKO2ncA8OS2JwvynmONVWpLg4ppGEoM2AokhRBatQgDgJQyPM6xJwIfAVYIIZYtWLCAm266iT//+c8sW7YMIQTt7e386leZXcKhhx7KJZdcwrx58zCZTNx55536onDHHXdw9tlnk0qluPzyyzn00EPHHHi8QMhS+3mrOabBFO2l5YUvYgxtIXrO7WDJvThNLBYb0tAJGLNKZ6k+xwNh51AoSvVZSSkJvvxfbIDluIUABP/4R2IrV2JsbKTvouKavUtJKT5T7f5XU1NDTU0NbW2Z9uLZvRDWr18PoGdp+Hy+CRUNklIyzTaNw+sP54mtT/DxeR8v6LkMH6uUi3gluieKQT6iIQJsAB4BHgXSg8engF+NdaCU8r9A9qcpAc4999xRj7nuuuu47rrr9nv83HPPHfO44Yxnaahmd0EpxxOBrXQ8+0lM0R4i7/09qfZ3jvpazdWgCQStipnH46Guro6Ojo6yBWqNRDVZGqrhXBIbNmALRenzWOiY3Ul8y1b8d/4cgIZvX8/OKtntlXsRstlsQ1wayWRSd2ns3LmTWCyGy+XSRYTL5Rp3vto5ffnIL1NjqSnq/FX2RPnLSMvBP2uAOWRqL0BGPFQsuVgaSpWSqI1XjaLB+vKPEYk+tp/+c2qHCQYtJUwTCdFoFKfTqZdhdjqdef/YSiaGqmjnUPJqdSYr0u5j6H5h8ux9/mkAwgs6IZ1m73e+g4zFcJ3/PzhOOgleeqmg41U7uS6uJpOJuro66urq9OP6+/vx+/1s2rSJ/v5+rFbrkIZcw8W/NtahdWNbiAtBtWdPlGsDkE/2RAr4xGBAo2Pw2EgOromyMl5xp3K4C1KpVEnHK+r5SQlCED3jZva0LyLhbiMej+tpj6FQSG/x6vF4JtVWPJtSiq9q2J2Xg+T8DxBZcGnBBfm+//6bGqDupNMI3Xc/sWXLMNbXU/fVrxZ0nHJTqkVoouOM5tLw+/10d3frBfmyG3Jlj7Vs7zIe3/o4Xz/660U5z1IHJpZjvPG6pBaDvGzAQoh5wI+AI8lYGN4SQnwvu112pTGee6KaYwyKPZ5x0zNYFv+cnrN/TiCSYlfYQrR3C3v27MHj8VBbW1s0V0MpLQ1KNOSHlJJIJKIX1CpkAyaZSGBbuRGA1jlH0/3pzwBQ/63rMBa4xn4lUMmiYSRsNhvNzc16e+dkMqn3Qdi+fbve3tloNLKmbw0PbniQi2ZfxFzf3IKMn021B0Lmcn7ldk8A3APcLKX82+CETgV+K4Q4TEpZOXmNWeTqnigVpRYphR4vlUrR19eHWH4/La/9gD5nB1s3rcc1bSY+nw+TyaTvOhQHBlqMSk9PD319fSxevBi73U5LdC0ztv+TnUd/g/X79jEwMEAymaSrq4umpqacfODDiS5fjjmeIj5jGoGf/wIZjeI85904TzutSGdXPqpBrJpMJurr6/UeCNu3byccDiOlpDnSjEBw35L7+NDsD+Hz+fB4PAWzTFW7e6JcMRT5ioY0oHeVklI+J4TYUamCAVQg5GTH01wN2p90Ok3nvieZseoXxFtOgAvv4pDBwj27d+8uWU0MZWmYGIU4F82Xre0gw+EwTqeTmpoa7HY7Rx11FEIIzG8ux7bladr+5ye0uRqRUvL6668jhGDTpk309fVht9upra2ltrY2p3LHkVcyFWAtu3qJbt+Dweej/utfn/Q5VSpTzdKQC3a7nba2NmbOnMl8/3zWpdZht9vZvXs3a9euRQgxxKUx0SJtpd75p9PpkgZwTxXR8DhwrRDiL0ACuAzYJIQ4HjACL0spKyow0mw2j+ueKEcviFKOl+tCkW1WDgaD9PX1YTKZ9MpxM2fOxLHiHmyrfkFizjnEzv1fhOnttKtyV59UjM1EF4Z0Ok1fXx9+v59gMKhHzXu9XmbPnq03SNJa8o42jhACk8lEc3MzTqdTv956e3vZtm0boVAIi8VCbW2tvmAMvynue+GZzE1rsG5A/XXXYixhRcNSUsqYnVKmy2aPdUrLKdy5/E5MXhPzpmd6CCUSCV2Qbt26lUQioVd61dxcucxXuSeKQ06iIava46VkijxdSSaTIkwm5fJUwA7MA0LFmOhEsVgsRKPRUZ8v9eJTSTEU2mKgBS1GIhEcDgcej4fp06ePuPNLzj6LWH838ZO+AYahZsRSf5bK0lActGwX7cadfdNuamoaMz8/n89KCIHD4cDhcOgdHLVAul27drFmzRpMJpOe0uc2mzGt3qgf7zr3HFyD3XKrkUoPhJzoWNn3lHe2vJNHNj3C7vBupjmmAZmNXkNDAw0NDcBQ0bphwwb6+/ux2+1vXxdu94guDeWeKA45iQat2qOUck5xp1N4rFar3pdgJMphaSiXaEgkEkNcDalUSt8xdnZ2jt5SNxXHvOI+Egs+jPS0ET9l//oZw8cqNtWUCllutPx7TSSk02ndutTS0rJfu/BiMjyQTmsDvXfvXja98B/qB18n6urwfOUrJZtXtVMuS0OHu4O/vedvY45vMBjweDx4PB79PTSLaFdXF6tXr8ZoNA5xaVgslqpfxCva0pCNEOJc4CygHngJeAjYA3paZkVhsVjGLIE61WIMckX7YfX39xMKhdi0aRNGo1HfMba1tWEerNk/JokI9n98EtPmZ0nXzibVduK445YCFdMwcbLNv1r1Ta/Xm991kQPS4iTtboVhN7Z8bnTZbaDX/vimt8/hE1exdP165Lp1+mLh8/lKKnCKTSktDaVi+Dlp/06mM/dok2H8JSnbQjV9+nTg7Wva7/ezZcsWksmkLhwGBgZwOBxTqldILuQiUsqePSGE+BhwFfAL4Ktk3BNzgO9JKXsLPrsCMF72RLVYGtLptB6cFgwGCYfD2O120um0vhjkrYLjA9gfvhzjtpeInnnLuIKh5MWDqmwxLxaxWEwPWHzjjTcwmUx4vd6iV99MHvJe5PyLCxINLxMJzItXAGBobmLuokVAxpUSCAT0uIhkMkkkEqGrq4va2toJlTo+0ChnTAPA5uBmLn/6cr5z3Hc4tfXUCb3vSC6Nbdu2sWfPHtatW6cLh+zCU4W2ClS7O0Qj15gGw2CA41XAJ6SUbwkhPgF8kkxJ6SagIkWDyWSqqOyJQomURCKh+52DwSDJZJKamho8Hg+zZs3SlfXWrVux2Wz5/0CiQRwPXYZh1xtEz7md5Lz3jXtINbonppqlQUqp9wwIBAL09fVhNpt1k+2CBQsK0jK81PTcfrv+79Y//EH/t9FoHFKlMJVK8eKLLxKJRFi5ciWxWEyvE1FbWzu6C64CqdaYhuFjtbpaSaQTLO5ePGHRMByDwYDT6cTr9TJ37lyklITDYQKBADt37hzVpTEZSu2eqOiYhiziZAIeIVMb9mgqvIy01WrNqWFVqZjIeNpCoMUihEKhIX6+GTNmjHrBT/T8jPvWYti3huh5vyA59z05HaOyJ0pP9s1QK6ZktVrxer37BbMGAoGS3mSMm57BuvQukhf8Chx1E36f6MqVhP7wR/3/pvr6UV9rMBgwm83Mnj0beDuIrre3lzVr1hAOh3G5XHqGxkRqRZSKUi7m5RQNZqOZo6YdxeLuxQUfS7vehRA4nU6cTictLZl23Fq2j9ZNN5VK6QLT5/PlLTDL4Z6YCsWddgGNg//uAu4A/gHsLOSkCslUdE9orgZNJAwMDGCz2fQyzJ2dnTmbfPNeXJMxMFlJtR5L/5Uvgz33dDaVPVF8RqqR4HA4dBdUJS2Chv7dGLc8TzI18dod6UiEvd+6Xv+/98orxnz98O8qW1x3dHQM6ZewceNG+vv7cTqdQyLxK+XzKxXljGnQOLbxWG5fdjvd4W4aHY0jHFm4sTQsFgvTpk1j2rRM1kY6ndYDgjWBqVkrtGtjvLLN1ZziqZFr9oS2ql6ddcydQEpK+WIxJlYoKjEQcrhI0aLXtT+JRAKXy6Xf6CYTxJPP+YnQThwPfpDY8VeTnHdxXoIh37Emy4FyY8+OVQkEAnqzL6/XO8QNVa303v5TEps36/+3HX3MpN5PDOuXoFlq/H4/W7dupa+vD6vVqlsiiuH7zpUDxT0BGdEAsKR7Ced1nFfUsUbDYDDo4lETmAMDA3oJbK1uTbZLIztoWLknRkBKuS/r388XfjqFJ5eGVaUuI51MJtm9e/cQV4PW0Km1tbWgEeC5LuTCvxnHXxYh4n2kvR1FHasQVGv2hFamWzObJhIJampq8Hq9zJkzpyDNvqYK4f/+l9B99+n/TxkFtiOOKOgY2WZrrVZEJBLR2z+vXr0ak8k0pOBUqTrilopKEA2d3k6uPPRKDvIdVLCxJttASgiBy+XC5XLp14aWAtzb28umTZtIpVJ4PB58Pt+YsXPFoKIDIUciq+BTRVPuMtKaOVQze/X395NIJPB6vUybNi0vV8NEyKUCpWHfWuwPfhDSScLvf4B04/wJj6VEQ36kUim9yuIbb7yh+1W9Xi/Nzc0FD1qcAj9ZAFI9vez99ncAMB+xgMSyNwnOmobBYR/nyMljt9ux2+16Ol8sFtM7N65duxaj0Ug0GmXv3r16v5VicKDENAAYhIFPHfapkow1GbJTgOHtQmh+v59AIMCbb745pHplLqXRJ8qUsDSITFtspJSJqSAYoPQxDclkklAopIuERCKhm5Pb29sxmUysXbuW9vb2go05FuMteiK8D/v9F4PRQuQDD5Kum3i3uWqMaSg0WoEtLetFSqmbwOfPn1/UOgMlT4m1eUnXHzykcmgu35mUkr033kiqpwfbMUfT2+rBsQysxxyd07iFPk+r1UpTUxNNTU1AZrf58ssv09PTw8aNG5FS6mbtqVgrohJiGgCiyShv9b7FQd6DcFlcRR2rUBiNRv17D4VCdHZ2Agxxd5nNZt1KVUiRWdGWhiyrwhcApxDi/4AeICKljBVxfpOm2JYGLQdeczUAutKcPn36fjvFeDxeUYGX0lFP/PhrSM56F9I3MbfEkPerspiGyV4fWoS2do0YDAb95qGJSMhkNky1xWY8knPfgzzk/LwtaX1//Svh557DUONi2ve/T/cnPwzAjFPePe6xpbj+LBYLZrOZgw8+GHi7/XNvby9btmwhlUoNKTg10VoRB1JMA8Aa/xo++ewn+dFJPypI6mW5AhMdDgcul4sZM2YAb1uqskWmVnFVy9KYCFOiuBPwH+DDwIvABuBPQojXyWRP7KrUipCFEg3ZgTFaVoPFYsHj8VBfX8/s2bPHvUFWSu8Jw+43QRhINx5G4ugrCzZWqai0rAaN7BoJoVBID5xqaGjI6fo40Ilv2UrP//sRAPXXXYdwOHBv6yFlEriPXFjm2Y3M8PbPmsvJ7/ezY8cO4vG47vf2+Xw4HI6c3rcaRcNYHOw7GJPBxIqeFQUTDZUQmDjcUpV9fezatYtIJILL5dKvj5qampy+j8nGbEyUvHpPAK9JKRcPuinigA34KbAXeF0IcY+UcvNo71MOJuOeyG7cEwwGicfjOJ1OPB7PhNPbylFMar80tF1Lcfz1Q6S97YQ/9M/9yvxOlGp0T4x1Tlqpbk0k9Pf3Y7Va8Xg8NDc3M3fu3LJF3lcCxo1PYV18B8mL7wHntHFfLxMJ9l77TWQ0mmlGdc45DPz73wgJzsOPxDDBHVmpMRqNervv2bNnk06ndb/36tWriUaj1NTU6ItErl0bi0WpLQ2j/SZsJhsH+w5m+b7lBRkrnU6XVKTn+jlmXx/acVoa8JYtW+jr68NiseguDa/XO6JLQ0pZlk1IvpYG7RMxASuklD8XQvwZ+DzwbWDz4J+KIR9LQywWG5L6COhZDc3NzQUpSVvuYlKGXW/gePBDSHstkfN/UzDBMNJYxaQcN9lsS5NWSMlut+P1emltbcXlclW0SCj1Z2YI78PY9TrJVG5R5f5f/YrYW6swNTdT981vAjDw6qsA2BbmnmpZCbvmbDSXlNfr1VP5tIJT69evZ2BgAKfTqS8k2makUiwAhWS8+8Ph9Yfz1w1/JZFKYDZOrgfKVCnrPDwNGN62WO7du5f169cDDLFW2Ww20ul0wfrE5MNERQPAyUKIGuAjwHrg3WTcFxWF1WodUTRoC4Df79e76JnNZjweT1Fr8pdTNBi6Xsfx1w8j7bWEL/kL0j29aGMVm1KMJaUkFosRDofZt28fkUhkSFBruXeIE6ESXToA0TeWErjrbhCChh98H6PbDcDOF5/EQ+5BkJV6ftkIIXC73bjdbtrb24fcizZt2kRfXx92ux2TyYTZbC56lHylWBoADq87nD+t/RPrg+uZVztv0mOVukJjob4nm802xKWh1fLRUoFjsUwoodvtpqampqRF3fJdFTuFEB8GjgEiwAvA8VLK/oLPrEBo7on+/n42btyIx+MhGAzqRXLMZjM1NTUcfPDBJdkllnqRyV5cLUvvRjoGBUNNYQXD8LGKTTHG0koO+/1+PQ1SC2xqb2+fUn0LphLpvj72XHctpNN4L78c+9EZgZAKBPBs6yVpEtgXHFHeSRaR7HoAM2bM0N1emzZtIhgM8vLLL2OxWIYUnCqkWbrUomEsjm06lt+f+Xtme2YXZKypYGnIBZPJNKTHipSSVatWIaVk06ZNumu0mA259Lnk8qKs7IkTAR9wtpRyT1FmVCD27t3Liy++yPPPP8/27ds5/fTTOeuss/jc5z5HY2OjXiQnEAiwZ8+eijYrTwYhBHIwZiN69o8RsSAyB//yhMeaAjs9jeyYlUAgoDf98nq9NDU1YbPZ6OrqIp1O5xy8Nhmq0RydC/tuuZVk1y4shxyC7zOf1h8PvJopNhua04xhCjbZmihCZFo/a66K9vZ2otGoHji3Zs0a3S+uLRKTsYpWSvYEgNviZn7dxOrEjDRWKe/rpa6roQXha2WwtWuku7ubdevW4fP5OOywwwo+dr6BkA8CrwLtQoi5ZAIhASRQDyyXUq4efrwQYgZwL5m+FfL222/nmmuuobe3lw984ANs2bKF9vZ2HnjgAXw+H1JKrrnmGh577DEcDge///3vOeqoowC45557+P73vw/At771LS677LL95nveeecRiUQ48cQTOfPMM3n66ad58cWRq11PtYUuX6zdS+l8+UfQ+kew+5Cm4ggGqHxLg2bi00RCOp3WU59aWlqqLuWx3KQd9aSmHwNj+Kb7H3+C/kcfRdhsTLv5JkSWj3bnS0/hAt3ycKCRfX3bbDaam5tpbm4G3q5MqPm8hRBDakXk4+uulDoNGku6l7A5tJlL5lxS9LEKSbndIcOvkVQqVb6UyyxLw/uA3wL7gO3AdDJdL1cBRuCXwH6iAUgCX5ZSviGEqLnzzjtDZ555Jr///e9517vexTe+8Q1uueUWbrnlFm699Vb+9a9/sX79etavX8+rr77Kpz/9aV599VV6e3u54YYbeO211xBCcPTRR3P++efj8w3tkfCPf/xD/7CklHxzMKhqJEpdRrqUGHcspuGJTxK31pFMxSjFraGSREMikRhSIwHQA9La2tpyurFWk6gstRUjNftMYnPfPaopPblrF/sGNwB1X/4Slo6hdUKSy1YA0Hri2cWdaIUy1iI0vDKhdq339vayefNm0un0kFoR41UWrRRLA8Cz25/lX1v/xfs73z+peZUjJbHUomGs8YrmKsnz9b3A96SU39EeEEJ8FghLKX83+P/9yktLKXeR6ZCJlLLvggsuYOfOnTz88MM899xzAFx22WWceuqp3HrrrTz88MN89KMfRQjB8ccfTyAQYNeuXTz33HOceeaZeqrKmWeeyeOPP84HP/jBIZMc/mGN98GWelEoxXiGrtex/+0jJJ1NrDnmFma7moo+ZrnrNGiFtrQaCUajEa/XW9TA1kJRqmj5ShFAMplkz7XXke7rw3HKKdS8//1Dnk8PDODZ1kvaaKDmiNwtDQeqi8dsNtPQ0EBDQwOQ2WVqImLbtm0kk0k9+r62tnZIJlgluScA2mra6E/0E4gF8Nnya5qX71hTmVK7XzTyvYu2Ak0AQginlHKATIzDIcDvhBBmKeWY+VVCiPYZM2Zw3HHH0d3drZtSmpqa6O7uBmDnzp16NS2A1tZWdu7cOerj4zHWjbKadpIahu7lmSwJZwM97/k9cf/EWxPnQyk/Sykl8XicXbt2EQgE9HKthe7pUY3XR6kwrf8X1pd+ROKDD4JraLvjwG9/S/SNNzA2NNBww3f3u7lHl72JSEtsh80vSb+JSmQyi57RaBwSOKe1fe7t7WXlypXEYjFqamqora0tqaU1l3OaUZO5x2/t26pEwxhUdO+JLMvBm8B5QojvAf8RQhwDHE/GZQEZN8SoCCFcwF9vv/123IMpVVnPFfULHu0Cqkb3hLTXk2o+kuhZP0Ia3MjebSUZt5gLrJSZFsaaJcHv92OxWGhqaqKlpaXiayQckESDGPathWF1GuLLluH/1a9BCKb94PsYBy2H2ex7NdNE13rkEaWYaUVSyN9SdttnGJoppFUlHBgY0IMri5XCl8tCPrNmJgDb+7ZzRMMRRR1rKlOu88u3NfYLQohPAFcAnwK2AF+XUr41klsim8Eqkn8F/njRRRcdBdDY2MiuXbtobm5m165dehRoS0sL27dv14/dsWMHLS0ttLS06O4M7fFTTz11zDmP96GWYydZrC9ahHYgXc1I93QiF/8p89jAQEXFGeSKViVNEwnhcBiHw6HHI7jdboxGo96JsFiU6vqobovG2+cl+vsJfO/7mfTKKy7HftxxIx6x99X/4APE4YeWaI6VSbHuFQaDAY/Hg8fjwWaz0d/fT2NjI36/n40bN9Lf34/T6dSFhtvtLshcclnomp3NGIWR7f3bx3xdLmNV80aioi0Nw9hFJhOimUythn0wxBqxHyJzldwFrJZS/hi4DeD888/nnnvu4Rvf+Ab33HMPF1xwAdrjd9xxB4sWLeLVV1/VKzKeffbZXHvttfj9fgCefPJJbr755nEnPNZFWi2WBtG7Ccf9F5E85L3ETv3O249XeEaDRjqd1kWC3+8nFovphZRmzZqFw+EY8j1qgY3FppoW85Kfy7DfnZQS++9+R7q7G+thh+H79KdHPEzG49Rs2A2A99gT8hqymnaXpVr0tHGyqxJqlr3sbo1Wq3VIrYiJzC2X78dkMPGvC/6Fzzpx10SuY01lxjq/Yv7O822N7QS+BXwIWAzMBPqEEF8ZzIwYzdpwIpnKkSuEEMsWLFjATTfdxDe+8Q0uueQS7rrrLmbOnMkDDzwAwLnnnstjjz1GZ2cnDoeD3/3udwDU1tZy/fXXs3BhpnHNt7/9bT0ociyqPaZBhHbieHARSEnisA8Nfa5C+0EMr5GQSCT0Gglz587V62iMRjV8bwcafX95EPPrbyCcTqbdcsuQ9MpsBlYsx5SUBFu8GD2eEs/ywGOkxUcIgdPpxOl00traCkAkEtErEq5evRqTyTSkVkQuMUS5LuS1tvHv64Uaa6oyVbpcngwcLqVs0x4QQryfTN+JCwEDsF+nSynlfxlaglq/2z/zzDP7DSKE4M477xxxApdffjmXX355ntOuvJiGQl3QIrwPx4MfRMT6CF/yF9J1nUOfL7GlYbRzSiaTQ0RCKpUas4V4LmOV4ntT7omJI11NpNrfCSYr8fUb6PlRpnul+2tfxdzaMupxO156EgvAgkNKM9EKpVSLXq7j2O127Ha77hLUWj5rxYSy4yZ8Pt+oTZZyGevV3a/y5LYnuW7hdRjExKwt1S4apkRMA5nOlkkAIYRNShkdfDxW0FkVGJPJRCqVGlGVlSumoSAd2KTE/vcrEH1dRN73J9KN+1dSK9dilEgkhhRSAvRCSq2traqQUpUipaS3t3fQzeQiNeMaTK+voeGH/w8RixE76STsZ5015nv0v7aEWqDp+NNLM+k8qTZxN1GGt3xOJBL4/X56enrYuHEjUkq8Xq9ujbBYLDkvdNv6tvHwpof59GGfpt5eP6H5lat1dKkYz9JQKXUaNgFRIcT/Ao8KIQ4GTgfuG3y+IoMDtP4TIxXzKZdoKMiYQhA75ZuQjJJqPba4Y41DPB4nEAgQjUZZsmSJ3tnP5/PR3t5e8BoJ1WgBmIqLUXbb597eXvr7+9m3bx9er5cZM2Zgs9nYd9NNDGzfTrq5ma5zzyHw5pvU19dTW1u7n1lbplLUrd+DBBqOP6V8J1YBVJqlYTzMZjPTpk3TA9qTyaQeo7RlyxZSqRSRSITdu3fvVytiOA32TL2JfZF9ExYNpa4/UWqmRCCklHKLEOJTwCeBjwFdwM1SylcGn6/Iu57ZbB61PXY5lKjBYJjcRZaMYdz2X1Kz3kWq9fjijjUKWutWrZCSViPBZDJx1FFHFb3Pe7WZ86fKzS07Vc/v95NMJnU307Rp01i3bh1z584FwLTuUeK//x4DT0kwm5nxk5/QF40wa9YsIpEI3d3drF27VveN19bWYt+9GzkwgKmlBVNj4zizGZlSFMgq1fc1lUTDcEwmE/X19dTXZxb9VCrFiy++SCQSYcWKFSQSCdxut+7OyG4IV2fL1JfYF9034fFLmT1RDlfBVHFPIKX0A7cACCEswAIhxAeklPePl3ZZLsxmM/F4aQoc5cKkFrx0Ettjn8O0/nHCH3uGdN3c4o01iJSZrnuaSNA6qmlZLXPnztV/nPv27Su6YMieV7GpJnEykRuMltWiiYR4PE5NTQ0+n4958+YNiUUZLsyTu3az+z8pwEDdF67BesjBsHSp3oJeM2vHYjF6e3vZtWsX/r/+gelA/+w2/H5/3lH61fJdQenOpVSLj9FoxGQyMXv2bGbPnj3ESrV69Wqi0SgulysjHq2Zgl77IpMTDZVU6bLQTAlLA+hCoQk4E7gA6AR+X9hpFRbNPVEpTHghkmlsT34N8/p/ET3tu+MKhomOJaVkYGBAFwkDAwPY7XY9HqESCilVm6+yUsSJVh9DEwmxWAyXy4XP5+Pggw8e06Q85H1SKfb9+jHScQP244/G/aEPjfpaq9WqN9p5/WdbAEjPP4idO3eyatUqPdWvrq6uYPUCJstUtgCMRLksrlovmI6ODqSUuhWrd3svZsxs2LqBraat+Hw+ampq8ppntYsGKM/3lm/KZR1wP3Aw8BBwrZRypfZ8JVoZoPJEw4QyNqTE+u/vYn7rAWInfInEUVfmdFgui1F2jYRAIEAkEtFrJLS3t+N0OiviRp1NNcY0lANNIGoiIRKJ6CJh7ty52O0TK+Hcd/fviK3bgdGWYto3rs7p+pFSYntrIwBzz74QS3s7kEn16+3t1esF2Gw26urqqK2tzXshKQTVdj1UyvkIIXC73bjdbmbOnMmLR76o14rYvHkz/f392Gw2PbDS7XaPuXkp5UJerl1/OcjX0uAAjiVTNvofQEAIMQ3okVLul2pZKVgsFpLJMStcl5SJLETGna9iWXo38aOuJH7CF/M6dvhY2X7pQCBAPB7H5XLh9Xrp7Owc4lusVKp9MS8Ww0VCOBzWK/8V6ruPLVtG6Le/BQEtx/sx+rw5HZfYuhV7X5xIjQXzzJn643a7Xa8Iq7nKtG6OfX19OJ1OPSbCbDZX/LWbK1MtELLQGAwGXC4XLpeLGTNm6N+93+9n+/bthEIhLBbLkIJT2a7RUmZPVOJnWBHZE1LK7UIIH3Ax8HngIODfwDNkLA8ViclkqihLw0QWvFTr8YQvvo9U24n7VdrLZSxtkdBqJGiFlPIxOVca1WRpKNY42TfaYDDIihUrdJEwUqXNySL6++m95VZIp3G/911YD+slZc7NWrH75WcBiB46a9Q5CSFwOBw4HA5aW1v1yoVaml9fXx/JZJJt27ZRW1tbFCtZtbkNKnHBA/jtyt8ST8f5zOGfAYZ+9y0tmTof0WgUv9/P7t27WbNmDUajURcRpRQN1Z7emc1EAiFTZFwU9wMIId5LJu2yYkWD1WqdsqLBtOqvpL3tpKcfTWrmSTkdk0wmh9RICIfD7N27t6pqJBwoP9CJoIkEv99Pf38/drsdn8+H0+mks7MTl8tVlHGllNT8/vek9uzBcthh1Hzte8St1pwDY/teexU74FmYe+no7MqFbW1tRCIRli9fjpSS9evXMzAwoHdzrK2tLbhIKialtKRV4meyvGc5gVhAFw0jYbPZ9HgYyKR++/1+9u7dS39/P0uWLBlScGqktPtCUMpMjXIzkUBIA3AYcMzgQy9IKStWMMDYKZflINdqhsbN/8b2+JdIzj6T6AW/HfV18XhcFwnBYBAhhF5Iqa2tjWXLlulpcNXCVLcAjDTORNF2W5pIsFqt+Hw+2trahnQrDIVCRV0cwg88gHX5CkRNDbU/+D4iz9ocNat3kARaTxy7+NNYCCEwmUzMnDmTmTNn6oGdPT09rF27lkgksp+ImOg4paBUloZKpMZcw/a+/JpWWSwWGhsb9eZbRx11lN4SfPPmzaTTaTwej26NyLcS7WhUqrWmGEyk4s77gZuAZ4EPAs8IIR6QUv6xoDMrIBaLhVhs7KKVpfzSc6mdYOhejv0fnyRdfzDRc24f8lwsFhtSI8FoNOL1eqmrq6Ojo6PghZQqlUpfzPMl1/PRyvf6/X76+vqwWCz4fL6yZrbEV62i/86fA1D77esxNTdjWvMwtme+RfzjT4G3bczjk93dJHfuRLhcWAsocIUQeiOm9vZ2pJSEQiF6e3v1ND+3261nZ+Tiqqu2Yl+VuuC5LC76E/2Teg+LxUJDQwMNDZliUalUikAgQG9vL9u2bdPrjGgiYqKBv5UYCFkRMQ2D6ZbfAA6TUoaFEPOllBcIId4EKlo0jBUIqe0mS7l7GLOJVnAb9r9dhrT5CL/3HiIpI4FduwgEAvT19WE2m/H5fDQ2NtLZ2VmyugiVRCUu5sVCM7lqliTt+58+fTo1NTVlv1ml+/vpufY6SCaJnHYqdq1dfSqBiPpBDrWqjfTd9Sx5CYDoQW2IIl7PmhXO4/HQ0dGh1wro7e1l5cqVxGIxfSdaV1dXsJ3oRDjQAyFd5oxoKOT8jEYjdXV11NVlikel02mCwSB+v5+33nqLWCymW6J8Pl/O7qxK/QyLQb5b0hRgGBQMZsAmhPAClWP7H4HxijuVOhJ/LPeElBLDq79EJqKsOOomelZvw2az4fV6aWlpqYgaCZXAVHAb5DuOdj6JREIvvxsMBjEajfh8PqZNm8acOXMq6vuXUuK/6WZSO3dimjOH/osvHulV475P9+L/4ALS8ydnZcj35p1dK2DWrFn6ItLb28vy5ctJJBJ4PB49xTOf/glThUo9nwZ7A42ORhLpBBZjceKwsptsad+/llm2du1awuGwXnDK5/MNcfdlU2mfYTHvjflmT6SEEDEhRI2Usk8IYQK+AvynONMrDBaLZcyYBq1uQql27NkLhOZzzQ5adDRdwrSWc5nWtoBZo1yklUwpd0iloNjjJJNJYrEYW7ZsYWBgACEEPp+P+vp6Zs+eXbDrshhCa+DvDxN56imE3Y7nezeyKxTKGjD390mueAuA1uPfVdD55Uv2IqJVLdTM2Vu3btW7s8ZiMeLxeFGDiittISo1i+YuYtHcRSUd02Aw6JYozZ2lFTvbuHEj/f39OByOIbUitE1gKcV8Lr/jinBPDPJ1oBHoA/4OdEsp7yjkpArNeMWdSmlpSKfTJBIJuru72bFjh1461euu4fA9f0Me+wmoaS7JXIpBqVw9leJKmghadovmchBCkEgk8Hq9zJ07d8q4mxIbNhK47TYAfN/8Jqa2Nli5cpyj9icdiVCzZR9pATVHHF3oaU4Kg8GgB012dnaSSqXYu3cvPT09LF26lHQ6rccTFTo6/0CPaagEsmNi2tra9BRfv9+vFxuzWq3YbDYSiUTJxEM5YygmknL576x/X1/Y6RSHXCwNxfqBplIpQqGQbknQ5qGVTrXZbAghsD53I5ZlvyHaMJvE4R8uylxKQbVlNRSCVCo1RCTIwZbBWsVNk8nEypUr9ytOU8mkIxF6rr0WYjEc//M/OM55936/sbSnneT8S8DiHPO9wiuWY0xLAm21GCaYzVAqNFeR0+nkmGOOIZlM6h0+N23ahJRSFxk+n2/SQckHckzDq7tf5Z7V93DD8TfoXS/LTXaKb2trK5BJcd6+fTuBQIBXXnlFb8Dm8/n26+JaKMqZ4jmpK3ow/RIyFaQr9g4+XsplrimQuZBMJvUmLMFgUDdner1epk+fjtVqZcuWLTgcDj1S17ziz1he/zXxIz8+pQWDRjWJhgkV4hoUippI0NK8tBTYYuWKl5LAj35EcvNmTB0deL/6lRFfk245hnjbcePeNENvLAHAvGD+pOdV6gXQZDINic5PJpP09vbS09PDhg0bEEIMERH5LCDVFgiZ7+/IH/WzuHsxA4mBihENI6HVQQGYO3eunt3U3d3NunXr9LiZQglJKG8xqUnNXkpZmJW2yIyXcjkZ0ZBIJIYUUgLGXSCye08Yd7yC9elrSc58J7FTvzOhOVQSpbQAVIpOze7W5/f7SaVS+jUwY8aMqhAJ2YQff5zwI/8Aq5W6m36AYYJpahqGlWsB6DjxnEJMr+iMtciaTCamTZvGtGnTgMz9obe3l71797J+/foh7o5i7ULzpVJ+R8MxGTPLUzJdOS0ARiP7mrBarTQ1NeldXBOJhG6N2rhxo25p1ETEROJippR7AkAIYQTqycQ22IAIsF1KGSjc1AqHxWIhHA6P+nw+7ol4PK4LhGAwqKtIn8+nm5rHQ19YpcTy4v8j7Wkjct7PwVC8+gql2k1UU9EbbZyxenf4/X4911vLcJnITWCquFsS27bhv/kWALxf+hLmzs5RX2ta/RC2x79E/KoXoHbWiK+R6TSR5W8CYF2woPATLjNms1kvNgSZ+0dvby/d3d2sXbtWN2XX1dXt1wb8QC9XbTZkxPZUEA1jLeJms3mIkEwmk3p21JYtW0ilUvoa4vP5cq4VMtUsDZcDXwRqgDiQBp4SQtwspcyvhFcJGK+M9Fg37Gg0OqSQktlsxuv10tDQMOHIdn08IYhc+DtENAg2T97vk894paKS3QYTRSsIpImEeDxOTU0NPp+PefPmlTWXPx8m+5nJeJzea69DhsPYzzgD53svHOeANCI91C04fPz45s3IYIiwz46peeoEAE/0N2WxWIbsQmOxGL29vXR1dbF69WrMZrMuIqrRPTER0ZBIV3RGP5DfuZlMJurr66mvrweGxjzt2LGDeDy+X8Gp4e89pSwNQohPARcA50spN2Q9/kPg+0KIayrN4mA2m8cs7qS5C7TmPppI0EryejwempubmTt3bkG+KCHTeNfcBw2fBasbaXVP+j3HHK+ExauqwT2RnWa1b98++vv79VS8qdzga7IEf/YzEmvXYmxpwXfdtQW5nvYueQGAyMEzKzIYbyQKed1ZrdYhvROi0Si9vb3s2LGD7u5u+vv7aWxspLa2Vk/vKzSVKhpqzDV0ejp18VDJTOYz1Jps1dbW6mm+2iZFq1qaXSvC6XTmNF7ZUy6FEIbBGIYrgI9LKTcIIaxAEkBK+TUhxOtkXBaBYkx2oowWCCkH2wQPDAywadMm4vE4DodD90WPVshjstSvupv6lb8l0txJ8pALC/7+wynlQj4Viy5p14FmSYhEIrhcLt3ltHPnTubNm1ew8Uai0t0Tkeeeo//+B8Bkou4HP8BQoKZXe5f8Fw/gOerYgrwfVGbzpVyx2WxMnz6d6dOnA9DY2Eg8HtfT+2w2m15oqqampiDnWqmi4bD6w7jvnPuKOKPCUcjAxOyCYx0dHUgpdXeo1oTNarXqQfeFug5yZSLuiT4ylSEB3gM8J6XsHfx/aILvWVSsVqtejKWnp0evuBeJRPTWudOmTWP69OlF//CNm5+lbuVd+Geei+ngC4o6lka1ioaJjpOda+33+wmHw3q76M7OziHmwEgkUshpT0mSu3fT+73vA+D5/OewHFo4AWVYuQ6AlhMKU9SpFNdeKRdZq9VKQ0MDLS0tuiVUa77U19eH0+nUd6nF2uQUilL64Uvt8y9mCqQQArfbjdvt1puwdXd3s3XrVjZv3kx/fz82m21IwSntuGIwkQXeT8aasBq4DtgK9AohbGRiGyrmqo3FYrz22ms89NBDLFmyhL///e9cccUVXHTRRUMWh40bN+r1EoqJCG7H/tjVxL2ddB35ZdqmcIGico+VzzjazVYTCQMDAzgcDr107FRql1xqZDJJ73XfQoZC2E46CdcHP5jzsena2SSOuhxsI7vfUn4/NbtDJMwGHAcX15IzFRm+8AkhcDgcOBwOWltbdQuZFpXf39+vm7Fra2v1DVG+4xSLfMd5Y88b/OzNn/Hd475Lu7u9qGNNllIHrVqtVmpqapg3b96Q+9uOHTsIBoPYbDaOPbZw1rts8hEN2h36EeAbQogvA24G3RPA+WQ6X+4e7Q2EEHcD5x166KGsHKwc993vfpff/OY3ep7zTTfdxLnnngvAzTffzF133YXRaORnP/sZZ599NgCPP/4411xzDalUiiuvvJJvfOMbQ8bZt28fl1xyCcFgkIULFzJ9+nSOPfZYfvrTn442r4LVaRgL25Nfg3SK3e/8f6QMxSs/O5xSnZ82ViWY2bNFQn9/v55L3d7envPNFCpTBJVyjNAvf0V8+XKM06bh+86387oxppuOINFy9KjBwtHlKwBIHTwLMcXSUitBZAohcLlcuFwuvVphf38/vb29uhl7eBvwkeZdqaIhEAuwsmcl8dToQeyjUeo6Bul0uqSp1dmBkNlisqWlBchsmMtuadCKN0kp7xFCPA/YgaiUctPg4w/k8Da/B+4AXs9+8Itf/CJf+crQAjGrVq3ivvvu46233qKrq4szzjiDdesypszPfvazPPXUU7S2trJw4ULOP//8IT7n2tpa7rvvPj3F5YUXXuDee+8ddVLFrAiZTfSMmzCEdpB2tiOza/QXmVIv5OVYZKPRqF5MSSvt6vP5aGtrm5TZthIWh3IRfeUV+u65BwwGar//PYxeb35vkE6BTILBBmJ/021s2TIAmo49ZfKTLSGVWt45u+SxZsbu6+ujt7dXb76kReVrImIi40yUfMdJD5YBMoxw7RR6rMlSaeMVU8BMJHvCBYTJ1GawCyEOAqzARinlwFjHSimfF0K05zLOww8/zKJFi7BarXR0dNDZ2cnixYsB6OzsZNasTN73okWLePjhh4eIBoPBoAsGGL+MdLF34sK/CentQPo6SPk6ED09JV3ES+2eKAWJRIJoNMqaNWsIhUJYLBZ8Pl9ROoFO9WyQiZDat4/e73wXAPcnrsJ65JF5v4dp7SPYH/s88U+8jKybvd/zva+9jAGwLjhicpPNolJLIpeDbF+41nxJawOuReW73W7C4TCxWAxXgYJbRyPf7yaWyhTkm0iHy1JfB+WwbFR8yqUQwiilTAF3A+8D9gJmMsWd7MBZwNNZWRY5c8cdd3DvvfdyzDHHcNttt+Hz+di5cyfHH3+8/prW1lZ27twJwIwZM4Y8/uqrr475/uM1rCqmpUEEtuL8w7nEj76K+Du+nHmsxDv/aohp0Ipq+f1+QqEQRqORVCpV0FTYkaim4jq5IlMper/9HdK9vViPOYaaj32s8GMkEqRXr8UA2BYcXvD3LyaVujMfDyGE3sGxo6NDT+1buXIl69evZ82aNUPagBe6/ki+5xNJZoKQHab8+5EUMzCxUsar+OJOg4IBKeUl2Y8LIWqBrwFaBkVeK8anP/1prr/+eoQQXH/99Xz5y1/m7rvvzuctxqVsXS7TSeyPXQ3CQGL+B4o/3ihMRdGgZbhoPTy0RkHTpk1jzpw5JJNJVq1ahcdTvKJYGpVkAZgMud5k+u65h9iSJRh8Pmq/dyOiCKWOo6tXY0qkCTbV5O/2OEAo9sKgpfY5nU4OOuggbDYbwWBQrxOhdV7V3BmTbQOe7/l4rB4OqzsMp3nshmeFGGuylMOyMZ5IKXtMw3AGsyVcUsp9g/UaWoA38n0frbwqwFVXXcV5550HQEtLC9u3v11ccseOHXqQx2iPj4bFYsmpuFOhsbz6vxh3vU7k3DuQ7taijzcaU0E0ZJdWDQaDCCHwer3U19ePWHmzmgIUSznOeGPEli4l9KtfA1B7w3cxDlatKzS7Xs00y03Nn1OU9y82lWQZmizagqcVMPP5fMyePVuvVNjT08O2bdtIJpP4fD5dROTrN893YT2z7UzObDsz39OZ0FiTpdTuiVJbNrKZaO+Jg4F3AY1CiG3APxgUDDLPO9+uXbv0amgPPfQQ8+dnOt2df/75XHrppXzpS1+iq6uL9evXc+yxxyKlZP369WzevJmWlhbuu+8+/vSnP405RjksDYau17G8fDuJQy7ar4CTsjRkREJ2u2hA39V0dHSM28OjUrI0qolUIEDvt66HdJqayy7DdsIJE36veDzOQDCIHejeswePq3WIuTvw+qt4gbpjTpz0vEtNpQZCToaRxsmuVAiZcseBQICenh62bNlCOp3WRYTP5xtXRKg6DYVjPJFSzHPPJ6ZBSCmlEOJU4LvAeuBF4N2AA/gWENBeN8p7/Bk4de3atbS2tnLDDTfw3HPPsWzZMoQQtLe386tf/QqAQw89lEsuuYR58+ZhMpm488479d3mHXfcwdlnn00qleLyyy/n0EMPHXPuuYiGQu/8RTJKumkB0Xd9f8TxDjTRkF1fPRAIIKXE4/Hk1eirHBwo4kSm0/hvuIHUnj1YDjsM96c+mdfxqVRKL5T12muvYTAYaLa2YD/8CsJpM1vefJNkMkkikWDfvn1YVm8CYPpxpxX2PFQgZN7ken0bjUbq6uqoq6sDMsJf6964aVPm+8wWEcN/0/l+N3e+eSdv9b7Fz0/7ec7HaJRj519J7oli3rPyuVMLMvEK7wPul1L+YvDx3wshbidjeVie9br9kFJqlWH056+44opRB7zuuuu47rrr9nv83HPP1Ws55MJ42RPFCIRMtZ1I+IMPwwgXUinrJmjjlVo0pFIpvX56IBDQ20VraZCTTQmqtsW83OfT/6c/E/3viwi3m9qbfoAYR8Rld/rs7e0llUrhdrsxm80cccQR+oJhNL6bdqORdjLCYvHixYQ2bsQRiJJ02NmeSlHn9+/X4bHSmYqBkIUex2Qy0dDQoNfYSSaT9Pb20tPTw4YNG3R3hyYi8h1nx8AOdodHLfszJso9UTwmsr0LknFLmMh0uUwBLjIlpCuSXERDoRZx47YXMXa9Rnzhp2GUVKFqtDRokdhaIJWW7uXz+WhtbZ10ENVwqi3WoBSMdlOLrVhB8I47AKj99rcxDXZgzEZmld7u7e0lGo3qnT7nz5+v/8ZWrlz59g4zGYNYBJy1YDBhNBozDZr27SMAuI48CuFysXPnTlatWqX3Vairq6voksjVcj1oFGqBNZlMQ1pAJxIJent72bt3L+vWrdPH6enpwev1jtshuC/eR425ZkJzORDcE6UsJpXNRCpC/gG4iUxlyBeA08mUkn4MIN90y1KQS52GgtwIEpFM1UchiB/9CRjlN1GqYlIaxVj4sneafr+fRCKh7zSnT5+ux6kocqNc4iQdCtF73bcglcJ16Qexv/PtQkuxWEwXCX19fXrp7eH9OUbDtOFx7P/8LPFPvIisezvgcc8b/8UCiEPnDunwGA6H6enp0Usiu91uXURUWmfRSrYATIRijGM2m2lsbNSD3bu7u9m+fTvd3d2sXbsWk8mktwEfydLUG+2l0dE40luPS7VnT0yVlEutIuQaIcT7gXcAhwDXSylfKdL8CoLJZCqJaLC+dBuG4FbC778fzPaij5crhRApWnU5TSTE43F9pzlv3jw9yG3Tpk0lUcDK0jAxss9FSknv975HatcuzPPm4fzUp9i3bx+9vb0Eg0FMJpNuKSpkJ73w8mVYAPNhQ2ORtFK4M2bM0K+3np4eVqxYoaf/aTUEyrXLguoLhCzVOCaTCafTySGHHAJkRGlvb69uabJYLLqIcLvd+GN+Dqk9ZEJjlWPnX2njVVrKpRPYAwwANiHE+cA6KeWags2sgIz34RbCPWHoXoH59V8TP+yDpNrGjgifCu4JOVjHXotJ0Hq6+3w+Dj744FF3fqVczBWTo+/++4k+9x+kw0HXpR9k+1tvjZnmWhCSSVxb9gDgO2L0hjrZ1Qy1QkR+v5+enh42b94MoC8wPp9P/42rQMj8KfUGRsNqtQ6xNEWjUXp7e9m+fTuhUIiZxpk0ykaCwSButzuv77Xad/5TKqZBCDEP+ClwMLCNTEyDj0xPiTUTqQhZCsZLT5nUD0dKbE99A+moJ3bKt8Z9eSXWaZAy0zFPEwnhcFgXCXPmzMm5C2i17cyryaIhZaYbXigUIrR0GZ6f/gwBmL9wDfNPP70ku3fDtm2YkpJAcw2z3CN3vxzxOINhSOS+5i/XTN0Wi4W6ujqsVmvViNZqszSMd8+z2WxMnz6d6dOnA3BU5Ch6enrYunUroVAIh8Ohp4COZ/k6ELInKt49kZVKeTaZPhP7Vd2oVMEAY6vpSS/iQhA94yZELAS28SsUVoKlITuwLRAIMDAwgNPp1Au75OKzznUsRfnQdm/aLj0cDjPN5aL27rtJJ5M43/9+fO99b8HGG7d41Hqts2XHpMYZ7i+PRqP09PSwa9cu/H4/y5Yt00WG1pipUJT6t1tsSrng5bM7ttvttLa26m3AI5GIbmnq6+vD6XTqImJ44GylpUBO9fGymYh7YjfQBiCE8Ga9T1RK2V+geRWF0S6kSS10Mg3CQLppQc6HlEM0pNPpISKhv79fD2zr6OgYtW3uRMaqJtEw1UzdiURCjzsJBoN6t8+ZM2diNpupr69H/r8fEenqwjx3Lt5rri7Y2MM/q3TDIcRP+SbSXvv2gxvWAuA9cnTXxESw2Wy0tLRQU1PDli1b6OjooKenR2/MpPVUqKurK0gmT6kW82oin/NZumcpX33xq9x28m0sqF+AEGK/mJeBgQF6e3v1wFmXy6WLiGq3NEypQEhgA3C1EOJfwEuD7+EmU+jpwbGKO5WL8T7cyVgarE9/ExDEzrh5xJoMo82nFB9RJBLB7/ezZ8+eIYGLk20XPRbVJhpKxUQ/t+yiWX6/HyHEkB4d2bsRIQTJfz5G/OmnEQ4HtTffhChwU6Js0nVzSU47ZEhsRO3WHgBmHHdGUcbUfL1ai+j29nbS6fSQcsjpdHpIPES+sRvK0jDxcXLdHe+N7iUQC+A0jdx3QgiBy+XC5XLR1tamx2D19vayfv16PZDXbrdTV1c3YctprlS7ZSObiVgaQmTSLXvIJBUmAAvQDfmXka4EJnrDNnSvwLz8TySOvjJnwTCZ8cYjGo3qloS+vj59l6k1pdF8hcVEiYbikp3F0tvbSzKZxOPxUFtby8yZM8esrCm2biX+i0xNNt+138Tc1lbcySbCiP4AeKaD0UKqtxfj3r0Iux1rZ2dxx84iu6dCZ2enXslQqx9gMpl0K4Tb7a6YIlPVKE5yZV9kHwD19tx6nwghdKE4c+ZMdu/erRcdW7NmDZFIhJqaGl0s2u2jZ7dNhFIv4lPC0pDFOjKBkAYyokH7e/SOUBXORFMSrS/cjLR5iR3/hbyOK9SXreXRBwIBQqEQFosFr9fL9OnTqamp0S/iHTt2FGS8XFGioXBovlxNJITD4RFTXccjHQ5j+dn/QiKB88ILcZx9dpFnDqZNz2B/9NPEr3oBWX8Q/W8uBSA8e/q4FSeLOq9hlQxjsRg9PT161L62O62rq8PpdI7q0iw21ZYJks/57Ivsw2Qw4bFMvIutzWajvb2d9vZ2pJSEQiF6e3tZtWoV0WhUrwNSW1s76ToglWRp0O6/lZRyeRxwF7CLjFgwAs3A34CvCyGMcrCN9lRhImWdjdtexLT1eaLv/HZOwY+FIB6PD+kEaTab8Xq9NDU1MXfu3FEvolKXkVbkT/Z3FI/HhxRVstls1NbWMmvWrAnFnkgpCdxyK4ZduxDt7Xi+/KVinMK47F7yPGYgMmdGWcYfDavVqkftawHCPT09rF+/noGBAdxuN/X19friokTxxMhnYe2J9lBnq5vw/WR4TIMQAo/Hg8fj0VN4NRGxYsUK4vG4HvdSW1ubsxjPHk8FQo7OcuD9QIyMdaEJ+B8yVSEBKjJ7wmAwkEqlRjTfTmRRtbxyO2lXM4kjPjqh+eQyXiKRGCISjEYjXq+XadOm0dnZmbMvdiKiaKKUcqxqIZVKEQ6H6e/vZ/PmzRiNRnw+334Wo4kS/sejhP/1L6TViu26azGUqbpiePkyPEDDUe8oy/i5IITA6XTidDp1X3koFBpSZMput5NOp0kmk0VttHYgWxoOqz+M/8/eVYfHVaXv947HM5KZuKeSulKkUKjT0qQGRRZncYotlMX54Syy6LIsUnYX2AptKBUqtNAW6p5a2riOxTM+9/dHeg53JjPJzGQsbd7n4QGSzNx7rpzzne97v/dVRigDdiwej4f4+HjEx8cjOzvbgfdSVVUFq9VKXXdlMplH5NlwIkIG8ly8fuJZlu0AcJzzowqGYUTodLn8DJ3lirDLNBApaVcvuS9ESOPMv4PXXAUI/DcBW61WGiQ0NTXRB7u3YjvBzjT078S6B5HgJq2Q5NmTy+UYMmSIX0WVLKWlaHrzzc7/vu02RAWax+AGrM2GiJIaAIAiwEGDPydM7g41OzsbNpsNFRUVqK+vx969e8Hj8WidPD4+Pmz4EOEIb4KGBbkLgnYswJH3AvxhA67X61FRUQGbzUbNt0KtSAr0sUzDuQAhD51ulkJ0mlUVAKg69ydhuWIIhUK6S3CGT4qJMcmwxfSOWGi1Wh3soskEJZPJkJWV5bddTH/QEFqQlDcJEojZk0wmQ0pKCkQiEcrKyhAdHe3XgMFuNEL31F/BmkyInDULRo6vRLBhKS2DyGhFc7wIyQrPyG2+INDPHp/PR1xcHMxmMwYNGgSz2Qy9Xo+6ujqcOHHC76ZbF2qmwWwzQ+TG8M/fx3IFZxtwYv2u1+tRXl4Ou93uEEQEG32NCJkH4Fd0qkHaARjRaVz1BBCehlVAZ9BgNptd/s6bhY5fugWi/f+EcebfwUZ3dQPsDtz2OIPBgEOHDlG76MzMzIClOvuDhuCD6Oo3NjZSIRpvzJ78gaa//Q3W0lIIMjMR/8RfoK+tDfgxubAph8A85RWwUUq0b9sMAGjLDHwHTzBA7p9IJEJiYiISzzmDkuCQaAfExMTQxcffjP2+Bk8XOqvdikuXX4r7ht+H2/Jv8/lY/tyJ8/l8KBQKKM4FvKQDR6/Xo7S0FO3t7Th16hS1AQ9k2QroY5kGlmWLAcgBgOm0x2b7AvFRJBJ1GzR4/D17PgavpRpshLzHv7XZbGhpaaGZBJvNRoOEiIgIjB071uPj9gb9QUPgQSYRwj8hDn5paWkhsXnuWL8BHUU/AGIx5K+9Cp6fVRE9ASvNhlWRBz6fD2txZ0VTOuiioJ+Hv9Hd800EiIiKYVtbG7RaLYqLi2EymajpllwuD3mKO9jwdCHXG/VgwSJW5LnMuDPsdntgvFPOwbkDZ+fOnZBKpdDpdDhz5gwYhqFZCF+0QHpCX8s0gGGYPAAPoDPrYGIYZjeAz1mW1fjz5PyJ7oIGT8Gr3Q9BzW4Yr3wB4Hd94QkjlwQJVqsVsbGx1CmQS6YpLy/v1bl4g/6gwf8gxCkSKLAsC6lUioSEBJ/4J/68bpaKCjS+9hoAIP6xxyDkaCIE9d6YWsC01wOKXBiPHAEAWLOzA37YcEnpc7UDCGO/qakJOp2Ovv9SqRQKhQLx8fEBXeTCAZ4udFqjdxoNvTmWv8AwDJRKJZTKTvIm6YAiWiB8Pt+v3Jc+lWlgGEYJ4J8AtgD4BJ1mVbeh07DqunBtuSREyF59x96PwUriYRl2A4A/CG1k4bBYLDRISE5O7rZtJ9TeE+fDsYIJruunXq+nLVokmxAuu0bWZIL+qb+CNRgQMX0aogoL6O+CvZgKKn5FxJp7YLzxJ5jOngV4gC3ARMxgPHu+LkiENCmTyZCXlwer1Qq9Xg+1Wo1Tp05BKBQ6iEydb/A4aDgn7CSX9JzN7e2xAgWRSOTgjUK4L/X19Th58iSEQiF9FuLi4nwKAPpSpkEMIIJl2ZfJDxiGKQawDgDCMWAA/iBC+gqmpQaCs5vQNuJOVNRq0NTUBJPJ5JPQDkGwHmxfxat8xfkSNBBRJYPBgD179lBt++6swUONpnffg6WkBIK0NEiXLAmLXbfpbAV4LKBPiQXjB9+H8wUCgcBhd0pMt4iro9FoRGVlJTXdCod72Rt4Ot/pjJ1S4wpJ38k09ARn7gvhPNXU1ODEiRM0YJTJZH5RJQ2rlksAbQDqGYa5BMBZAFEApgGoYxgmB0Aky7JH/XiOfoEv5Qnu7rJVUwNZ5p/QHj8RUSIRBgwY0CtiU7BTZ/3iTj2DmD3p9Xq0tLRALBbTHu3x48cHdGz+uEcdmzahfeVKQCiE7LVXwYuO9tPZ9Q6648cAANYBmQiPfEzvEYhngZhupaSkgGVZ7NixAyzL4tSpUzAYDL0SHwoHeLqQZ8dl48aBN/Y60xDO7a9isRhJSUlISkoC8IcbLVElJYJuJIgIp3nVl6DBjE6Xy58AHENn5iEdnR0U/0CnJ8Uif52gv+BJpoE4pxFOQkdHB6KjozudIAePQMToCX67eUQEKRh1zP7yhGuQbha9Xk91MaRSaReFzfr6+rB6aV3BWl2NxldeBQDEP/wwRAMHhviM/oD++HFEAYgdPhqGUJ+MHxCM55thGPD5fGRkZCAjI4PypYj4ENENIKZbgWbr+wOeBg0jFCMwQuG5a3BvjhUukEgkVJUU+KMLh2SdIiMjaRARExMT0nP15UnrAHADAAM6tRps6AwkhOhUiAzL8oRIJILJZHL4Gemf56agSWscV7KXX70LTOkOWAfPdUmA9AXBLBmcz0GDN5MDMXsirZBE9S3QLa+eoDfXjTWbofvrX8G2tyPiqqsQtbB3wjj+BnumU8IldcwVKLGEZUd22IOrYJiTk0O7dQhbn8fjUT6ErzXyQMPTd1Vv1CNSEAlJL4Tzghk0BGK+c+7CIUFEWVkZWltbYTQaUVFRAZlM5rI7K6zKE+dcLE8G4FwCCqLTUFxcDIlEAqPRiLa2NkRGRkIqlXabghbu+wz8+kOw5s/z2/mcrwt5OGUaiNkTCRKI052vHJRwRfMHH8Jy4iT4yUmQPvO02wkj2PfGphoBw6Q3EPW/92Hn8xAzaAhwNLCVy2AtFqHexTq3/JnNZuh0OtTU1OD48eMemW4FG57em8e2P4YIQQQ+vvLjgB/LHwj0sbjS5mlpabR0xTAM1QMhfCuZTIbIALdX93prxbi4WuFkj11RUYGff/4ZP//8M4qKipCWlobnn38e+fn5DhFaXV2d6y8wNkFQ9jMso24FeP7biQZ7IQ+m90SwAxTuI0icP4moUkREBKRSKXJycoImqhRMGLZtQ9t33wECAeSvvgpeiFOXXLBxaTDw8sGwLCSDBp83JMgwmt4oRCIRrZGTYJlkIdra2qijo1wuDxmJ1xsiZG/LE86GVYFEKNo7+Xw+0tPTqT9KW1sb9Ho9NVkbPXq0R34ZvqDXq6A3AQLDMF8AmD1kyBAcO9ZJjtLr9bjuuutQXl6OzMxMLFu2DFKpFCzLYvHixVi3bh0iIyPx1VdfYfTo0QCApUuX4uWXO5s3nnnmGdxyyy1djrV161Y88sgjSElJwZVXXolx48Zh8uTJmDNnjrtzc3nzhSXrwdgtsAwqcPk5X3G+L+TBOpbFYqFtr01NTRAIBJBKpUhJSUFMTEyfCRJ8uW7WujroX/o/AEDcgw9ANGRIIE7Ndxga0bZzLQBAOHhwiE/Gvwjn54phGJreJjtTZ9Mt4mlDvBaCAU8WV5ZloTVoe6XR4Omx/IVgBiiuwNUDycjIgM1mC6ywlS8fYhgmCp0ESOG57xBy/hGxLHvIzUe/Qqeew37yg9dffx2TJ0/GkiVL8Prrr+P111/HG2+8gfXr16OkpAQlJSXYvXs37r33XuzevRt6vR4vvvgi9u3bB4ZhMGbMGMyZM6fLwz9hwgTs3buX9s+/9NJLsNnc0y3cTdqCk0Wwx2fArupd5OuMfk6Db+Ba2ra1teHIkSOUEJadnX3eC+QQsFYr9E8/Dba1FZKJExF9/fWhPqUuEFT/Du2vKxABEXSZUvjuWRheCMdMQ3dwZbpFRKaIBHJJSUnATbc8WchbLa0w2819KmgIdqdGT88fwzABPR9fMw2b0El+JKuw/dw/NgB8hmGudqXXwLLsrwzDZHJ/VlRUhG3btgEAbrnlFkyaNAlvvPEGioqKcPPNN4NhGEyYMAFNTU2oq6vDtm3bMHXqVGoSMnXqVGzYsAHXO02azu2Q3XlPAH84XTosOjYzGGMzLIMKAT8/gOfTQh7IY3E7WvR6PUwmE2JjYyGTyRAVFYWRI0f2Cea4J/DmujV//DHMR4+Br1JB9vxzYbvzZRs7703KyMuCc7w+tqCHAlwzJpZl8dtvvyE2NpYKD4lEIvp7f2brPFnIdYZOjYbetFuSYwVrIQ92eSLUnSG+zrbpAGYBaMQfHRQkcPDKi6KhoYH2qiYmJqKhoQEAUFNTg7S0NPp3qampqKmpcfvzniAUCmG1Wt3+3uVixxeh40/rgQB4cPXlhbwn9PZYpGe5sbERbW1tiIqKgkwm66KNUVNTc94sEt5MAoYdO9D27/8AfD5kr7wCXlycx8cI5vUydxhhMkSjUirH+JScoB33QiBC+hM8Hs9BvZDwIQhTPzo6mgYRvSHZebLYxYnj8OioRzFUNtTn43h6LH8h2JLOfSpoYBiGOcdhsAAoZ1m22Z8nwzBMwC5GT+JOJNPgALsN4PEBxv8PxPnMafAWFouFetc3NzdDJBJBJpMhPT09JGZP4QybTofGF18CAMTeew/EI4aH+Iz+gN1uh8ViwZkzZ9DY2IgTe9V4f+oz4MEG2we78cBFUgyPM3dbJuwLOF8CVcD1WCIiIpCamupguqXT6XDixAkYjUZqukWEz7w5Vk/vskwiww0Db/B6HL4cy18I9iIeSt8JwPdMg70Xn3WASqVCXV0dkpKSUFdXRyVVU1JSUFVVRf+uurqaqqWRcgb5+aRJk3o8jkgkQltbm9vfd1lYbRZE/WsCzOMfgGWUb/as3eFC5jRwLcIbGxvBMAykUimUSiXy8vI8fiHCqb2zt/BkLCzLovGVV2FvaoJ43DjE/OlPQTo79+dD+sdJ6YiQ7OJUqbh3YxtMgnPlPjvw0d4mvDqBj4MHD0IsFlOr4b4YGPa183WHnhY8LskuMzOTGrVptVpUVFTAbrdTIyZP3Bx7um4NHQ0wWA3IiMno1TUOJjkx2ETIPpVp4GAdADHDMAoAIgBWlmXVvnzRnDlzsHTpUixZsgRLly5FQUEB/fmHH36IRYsWYffu3YiLi0NSUhKmT5+Ov/71r2hsbAQAbNy4Ea+dc/TrDmKxGHq93u3vnTMN/Nq94LU1gI1O9GVYPSLcFvJAHovbEqTX62G1WqlFeEZGhs+chGCOK9QvKgB0/PADjNu3g4mOhvS558CEYLdBpLZ1Oh1taSWlI6FQiCNHjkChUOBYbSsEYMGVU7PbgX06AR6YORLRYgG0Wi3tM4+Li4NCoYBcLg9Yq5i/cL4EqoD3zzVRTSXEc2K6RdwcBQKBg8gU97s9WVy/PfUtlp9Zjh0Ldvg2oHM4n4mQfSrTQNorWZZ9kGGYZwFMB5AE4BeGYf7Osuzh7j7PMMy3ACadOnUKqampePHFF7FkyRJce+21+Pzzz5GRkYFly5YBAK6++mqsW7cOubm5iIyMxJdffgkAkMlkePbZZzFu3DgAwHPPPUdJkd3BW04Dv/xXsDwBrBkTe/xuX3A+lyecRZXa29sDIqoU6kU8mLDW1KDpnXcBANInnoAgURWU4xInV51ORwN14uIaExPjMHlx36/kODGsfCFg++O5s9hZfHvCiLVl+7DrySuQmpoKSXwCZJFCtLS0QKvVorKyEizLQiaTUctobybIcAju+hp6c72cTbdMJhOVui4uLkZkZKQD6bJHIqRRB7lE3ut7eKGXJ8JGEZJwGhiGeQdADDrJkKsAbATwFMMwj7MsW+3u8yzLkhYHhxVsy5Ytro6Fjz76yOX33H777bj99tu9OfUeOQ1dgobq3bCrhgOiwJj+hHr3728Q/3itVovGxkaUlJR0enZkZQXUoS8Y19Cdhoe/j+EuiGRtNuhffBFsRwciJl+FiBnTA3YeAGjAp9frqYqmXC7v0QLcbreDZVlYLBbEiBg8f3UOXlxfCiGfgdXG4vnZA9ChroZImgQ+r/Na3vb1QTS2m3FZrhwTc+W4ZFg6ooUM9Ho96urqcOLECURERNBSRqDV7jzF+RKY+Pu5FovF1EOBlK90Oh1Onz4NnU4Hm82GxMREyOVyl5sHrUHbK3dLgvM5aAh1YOxtXphB54I/DsBtLMs2MwwjBPA9Ov0o4gC4DRpCCZFI1K1hlUN5wmIAv+EwLKO8C0y8QV/nNJBebyKqRNKWKpUKZrMZw4cHnqB3PnEaukPbN9/CfPAQeHI54nthd+3uetlsNtrS2tTURN09uf4r7mC322mwQP45evQo5HI5rsyW47IHL8LZ+iZIbO2wttfCGmPH6OEqSoa8/eJ07Dirw9ZTWqw6VAeGAe66NBOPTc2FSqWC1WaHyWiAVqulRDyiyyGXy0PSbns+PXOBHAvDkT9OT0/HwYMHkZSUhPb2dhw+fBhWq5XeS5lMBoFAAJ1Rh4zYjF4fO5glg2CXC/pUpoEDKwAlgDPoDCKuRmdHRdjSor3KNNjMMI+7D9bMSQE7n2AueP4IUEiampQcbDYb4uPjIZPJkJWVRQlQFovFgcAaSATrGoYyOLGUlaH5k08AANJnngY/Pr7X3+mKYyKVSqFQKJCTk9MtmY0ECDabjU5MPB4PPB4PIpEIF110Edra2lBVVYWjR4/CZDJBJBIhRi5H9oABiImJAcuyNECfPTQB1wxTws4CJ+rbsP2MDkNTOltIqxsNmP/pHlySI8PEXDkuGzAUiigh5VSUlpaCx+PRLERsbGyvr82FhmDvWmNjY5GYmIicnBwarOp0Opw9exY8Hg/qdjWGxA3p9ULcn2kIHHwNGvYDIGIJZwC8A2Axy7Jha2TVkzW2Q6ZBEgfzpY8H9HzCXTuBpBbJDtRoNCImJgYymQwpKSndktXOp51YsOCSQGqzofH//g+wWBBZMAcRl/kukGQ2myk3oaysjBrc9MQxIe+EzWZzmKz4fD74fD79fyJTTMjGMpkMw4YNQ0xMDD3uqVOnHNj2XKIcAxb5iVHIT+w0V7LZbLDZ7bhqoALbz+qw7linfstAVTRen5uP/AEDAPxRQycWwkKhEHw+H0ajMWAeC6GetP2JUC6ufD6fBnxA5zP6QMQDEJvE+P333yGRSGhGydsOm2B3T4RbpiGQ8JYIaT/3b+6K+hAAI4BkhmEiWZbt8OP5+Q09lSe4kzZPdxr2KBUg8Uw0xxcEmwjpCUwmE80ktLa2Ug/33Nxcj82egjmZnu+Zhrb/LYP56DHwEhIQv3ixV5+12+1U+4KUjxiGgUKhQHp6eo8lB5INIBM9wzAQCAQ0q2A0GqHRaKDT6dDe3o7Y2Fj63c68B66EMem+qKurw8mTJx2IchEREQ5ljuRYEf7vmoEAgBJNB3ac0ePXMzqoYjqDgeX7a7D1tLYzC5Gbh2HxElRWVqK+vp56LBBCpSftgBcqwmVHLhKJsGD4H7buhA9BOmwIt4Y8K705lj/Rn2nwEAzDCNDJYUgBcCmAWwDcB+AARwQqbOCNuFPE9zfDljQGxtmuiZj+QDA5De5gtVodRJUEAgFkMhlSU1N9lo893wieoYK1uhotH3daA0uXLOnRvdKVZkJcXBzkcjkyMzMhEAhQXl7uMvjjBgkEDNPppEeCDZZl0dTURImuRGo4OzvbK+tloVBI2fZcotzJkydhMpkchIPIboplWeQqIpCrSMFtF6fS87HY7DhZ34otJzUAgEx5JCakReH6/HgMGjgQVqsVjY2NtB1QJBLRts7eakMEetIOZitxsNDTYtdsasapxlPIl+UjWhTdxXSLZKyKi4thNpsdnhXnQPV8Dhr6VKaBgGEYJYCp6OyeyAWwHcCtpDwRbgED4EWmwdgMXks1LMNvCuj5hGLBI8IsRFSJZVmPa9meItzLLr4gGGPiHqNTxOkVsCYTIqZPQ8Tlrtt+ya5dr9ejpaXFQTPB1U6MewwugZGAx+PRkgPDMGhvb4dOp4NOp4PZbKaktdzcXL89K1yinLORErfnPzr6jy4mcu4LRyXi2tFJqGg0YscZPbaf0aFEawCP6Rz7f/fWIlMRiYvzBkIk4MFg6CRUnjlzBu3t7T5rQ4Th9OYzwmlxPaY7hsW/LsYXU77AcIUjkZphGMTGxiI2NhZZWVk0k0bKbQBo2Ss+Pv68lpEOtaumty2XfLbTV2IpgGEAHgPwPcuy7lfjMIGnmQa+tpOWYUsIrJVvMBYilu00e9Lr9ejo6MC+ffuoqFJP7XO+ItiZhvMR7atWw7RvP3hSKeIf/6MSyLIsdfgk3AGpVIrExEQMGDCg24mLLLRms5kGz6TUQDIKFosFWq0WOp0Ozc3NtHQwePDgHtPB/gDXSAno9CAhiwIpgZDfC4VCWsZIjxfjhrFJuHFcMurq62Ho6IDJYsPHv5ahqcOCaDEfkwYoMGWwEpfnJtGdK1E2JNoQcrkcCoUCcXFxId3JAcFbzMMpaNAbz/FhJD3r7vB4PMhkMshkMuTl5cFisUCv16OhoQGnTp1Ce3s7ysrKIJfLERsbG9AxhqI80ZcyDSR/+TqABwE8AWAqwzA/ASgBUMKybLsfz89v8FTciac5DgCwJ+QH9HwCxWkwGAx099ne3o7o6GhIpVJIJBKMHz/e78dzRj+noXewaTRofv99AED844/DIpGgobYWOp0OHR0d1OEzNTW1R80EwJHAGB8fj4qKCtTV1dGsgUAgoAx2IqqUnJyMQYMGhXzhlEgkVDqeBExarZZ258hkMkilUtjtdio+JRQKkZ2dDR7s2Lr4Yuwqb8KWk1psOaXBj0cb8MjkHNxzeRYsNhbCiGjk5sYjNzcXFosFOp0ONTU1OH78OA2YXGlDBGuRCFbQECz0dN10pk6HS5m456DBGUKh0MF0a8eOHRCLxZQg6y/TLVcIx/JE2LRckrIDy7K/APgFABiGmYZOPsNIdHIafglHToNYLPao5ZLXVA5WGBkw+WgCHo/XbRDjKUiKurGxEc3NzRCLxZBKpcjMzHSoNXviBNrXEMygIRjHYFkWje++B7a9HdbRo1AcHwfhyZO0rbUn7kBPBEaFQoGYmBhoNBrU19ejvr4eLMtCIpHQCTcqKirgY/UFDMNQQmVycjIaGhpQX19PA4jIyEikpKQgISEBEokELMtCyAcm5kgxMUeK567Ow6HqFqTJOsmWP5/S4MlVxZg0QIGrh6pwRZ4CiYmJSExMpBk6og1BuBYKhcIj9Vl/IJjTZzhlGiR8CSKFvV/UeTyeQ8DJvZ9Go5HyffwhWx5uLpeBvp+9IUIKAUgBHAKwCUAs0Ck1H24BA+B5ecIy9DrYUi8CAnzhfV3wiNkTYcUzDENFlbwxe+qHdwjUI82d0Ex794K/aRNYkQjRDz+MtAEDPNJM6I7ACIBmEhobGylPYODAgZQMSGr9JSUlXVwMw6HjgNvP39jYCLFYDLlcjuHDhyMyMpJeQ51Oh+PHj1P+BVeGms8Ao9M6dRysVisypRLMG5mEn46rsaFYjUgRH1MGJeCF2YMQJRYgOjoa0dHR1KSJqJ2ePXu2U/EyJobW2AMxSV+o5Qm5RO734zIM0+V+Njc3Q6fTobKyEna7nWbepFKp14Jh4ZZpCPTy2xs5tQUAbgOQDaACwNvoDB7CEp4SIe0J+QEvTZDjeVKeIKxh0gpJzJ5kMhllxV+o6KuZBrPZTHkJra2tiIqKghBAzPerAABxd96J2MGuOTWeEBhJR4JOp3PoSHBHdo2IiEBaWhrS0tIowUyr1aK0tBRCoZDuyLzpkugtSBCg1WodggBXJEzuopCRkUGDDBIIkU4PMgYAyFVG4a/Tc/HE1Bzsq2jChuManFa3I0LYORmvOlSLpDgJxmdIwePxHLgWZ8+eRUdHB019x8TEUL0Bf/mqBAvhFDTcln8bmkxNAT8PrulWbm4u7bLR6XQ4c+aMA7cmNja2x41YuGUaAg1fvSduBHAtOnkNN6HT6fISdLZgfsswDI9oOoQLPJWRFpz5CTbFILDxvZcy7Q7uFjyWdTR76ujooKJK/jR7Oh8QTK5Bb45DdjbknhISF7e1te6DD2Grq4MgMxMxN93o8FnnbIIzgdFqtdIgoampCREREZDL5Rg0aJDXBEYuwQzoJCOSHXZHRwftOCCyv/6CzWaDXq+nYyDCPr6QMJ1FgwwGA+33J2MgmRSRUIiLs2WYkCWlSpc2mw3v/1yK2mYjkmLFmDMiCQUjkpCT0BlwCAQCSKVSpKam0qBeq9Xi8OHDsNlsDtoQvi4m52OmAeg+AM+JywnaeXAhEAiQkJCAhIQEAH/o1VRXV6O5uZm+T+4C52ATE/tayyXxnhgG4FeWZU8xDBMFYBuARACBXWl7AU9kpGE1IqLoDpgufQLmCQ8F9Hy4Og1k50lElSQSicfa/xc6wpEIyQ38iJomyQ65sgK31tTA9t13AIC4vzwOls+H1WLposBISg4Mw9CedZ1OR9OriYmJGDhwoF8nFIlEgtTUVKSmptLgR6vVoqysrEtLpDfPKbekoNVqqZS1UqnssRPEW0RERDiMgRAqKyoqwDCMw66SoOiesdh6Soc1Rxvw2Y5yfLq9HI9MzsHdEzMd7gu3FTA7O5taRRMWP9GGUCgUXmVqQr2bDAV+qvgJufG5IQseCMRiMZKSkpCUlOSgJVJSUkI3ceSZIfyZYJcnQplh9vXIJnTyGQDAgE5xpzYAGn+cVCDgiYw0v6Pz9O0BJkFarVaHSZ/P51PWurPdcD/cI5wmVZLiJEJZJPAj1u7dofHttwGzGZYJE8AMH059HbgKjGazGWq1Glqt1kEdb/jw4b0mcnkKbloX+EPCmdsSSbIQrjo7yIKq1WodWjqHDBkSMMlnV2OIj49H/DkPDxKwV1dXo6WlBVFRUXQMs4cnYtYwFdQtRqwrVuOizHhYLBYcrGrCDyVGXDuej6sGJkAs/KNc4mwV7bzgcLUhAtHy7C3CJTix2W14dtezuD3/duQMC23QwIWzlgjp4tHpdFR1lLwXVqs1KIt5X2u5JNutUwAGnvvvE+j0nvgYnfoNCLfSBNCzAiPDMOCZWwEArCTer8d2Nnuy2+2QSCSQSCTIz88PGtksXCYIfyGULZdchTpyT8lOuSdCKtf0ybxzJ0zbd4CJjITlxhtx5MgRSCQSKBQKCIVCtLa20pKGXC5HRkaGz2qd/gbXBtl5B0/KHJGRkTTrYrVaIZPJkJSUFBYtnUBnBpLbNdHW1kZVB0n2IyYmBlPT+dCqS7GnwgBtuxintSY8vPwYYiUCXD1UiQWjUzAkqWvAz1U15GZqysvLAcCtNsT5Wp5whyZzE+ys3SONhlCC28WTnZ0Nm82G4uJiqoPDMIyDyFQgnvG+2nL5DefHa9Ap8NTBMAzvXFeFLdwCh54uIjdogKR3bnkk9Up2niaTCbGxsZBKpdTsicjbhgM7vS8jmI06RqORlhza29s9NvAC3BAYbTa0vv8BACD+vnuhGDUS0TodGhoaqModwzBQKpVISEgI2CTkD5AdfFRUFGJiYqBWq1FdXU0Drri4OKSkpITNDtsVGIZBTEwMoqKiEB8fD7VaTdtTgc4yR3JyMoYrFLj5qgjsKmvED0fqsepQPdYdU2PbwxdDIhLAxrIQcsy8CLiZmry8PJrlqKmpQXFxMc1yKBSKoN3ncAkavBF2Cifw+XxEREQgLi4OSqWS3tO6ujqcOHGCdvooFIpeS5cThPqe+SojnQXgYnQaVQkBCM8FC0AnGXIfgB1+OcMggcfjgbF06lKxPvQJG41GGiS0tbUhKioKUqnUraRvsL0nyOQdDhOEvxDosRBZ47a2Nhw9epSy8J01MFzBEwJj49KvYauuhj0lGcczMiA+dQpyuRz5+fm0pEEIgqRGHhkZGVZMfW7GhfArZDIZ0tLSMGTIEPqcOwszcXkE4fBMms1maLVaaLVaB4np7OxsmnLmtqYaDAbI4+Px+GUJWDItB2V6I8RCPmw2G+b9cz9yEiIxf1QSLs6WQXBuY+A8TucsB2m9LS4uhtFohM1mg1qt9jvplItw6Y7XGTuFneRi/7dcBhrcnT/3ngJ/kHBLS0vR2tqK6OhoWp7yVWW1TxEhOaJNuehst6xHJznSdu4fE4BoALV+Ps+Ag2EYtEmHoOPa5bBLs3v8e4vF4mD2JBKJIJVKkZ6e7lFEGUzmPxAeBln+hr+vIVd2W6fTwWq1Ij4+HiKRCLm5uQ5EOWd0ZyHNJTCS9Le+vBzSf/4TPABR992H8Rdf7HIi4PP5lNnNXViOHTvmwNTn2kwHGkQ9UavVOkyE7vgV3JRuTk4O3Y1VVVWhtbXVgVgWLH4GN5DR6XS0/JOVleX2/XVuTSW9/vrycvB4PJTb5IiKleKirHisOdqADcc1SIoVo3BEIuaPSkJSnKQzo3nuPnOP4awl0N7ejiNHjkCv1+Ps2bOUdEoEuvx5r8MhaOurmQag+50/l4TLLX8dP368iyaKp89+qDd/vpYnNqEHTYZwVIUE3F9wHo8HsyAGtjT3/fFcUSUAiI+P96iG7QrBDhqCfbxgwB9jMpvNtEebaCbIZDIMHjyYkvOOHz/u8v5ySw7kuSLZBGcCI/l+Imeb9tvv6DAYIJkwAQkzZng0CTgvLKTVsqamBidOnHDYxfhz8eWSv3S6c1K/57IJvmQKnHfY3JZF9pwHhFwu93sg5BzsEH0FV3bePcGZFGo2m6HT6aCuq8aVca2YPjUOJ1tF2FLWgX9sr8AAVTQSY8VoM1og4PMgEf6hq0H+cf5+sViMQYMGAXD04WhtbaWkU7lc3quMU6gXIILLky/H0qlLkRSV1OvvCvaYPD0eKX/FxMRQkSliulVRUUGzdERkyl3puk9lGrhg/rhKrq4WG24Bgyc7f2FHAwTHj8OaPRmsOA5tbW2UvGixWKjuvy+TjKvjBcJ7orvj9QVNg0CDEPYIgZEQl1JSUnpcALkERm7LHZ/Pd3jB6Q5Ur6ctfdwF1lJWhtpVqwAeD9JHHvZ5ghMIBFT+mexinBdfhULh08JOFkFut4ZCoUBqaqpfAxLnlkViPEQCIVLn92Vx5F4TrVYLAF3uhb8gEokc2vRaW1sh0+kwMKINCzIikMZrQlOTAN8cacI3e2tw7ZhkLBqTDGWMmF4HbhbCeSFy58PRW22IcAkaokXRGCIf4pfvCjeFRndw1kQh3UXEyp0rrMZ9XkN9z3wOGjhBQfiuEF6Ax+NBoitGxNHXcPiST6DhKREdHQ2ZTIZBgwb5vSUsVJyG8wmejqmjo8NBM4G4JXoS/JFAob29HSKRyCFIIJO8wWBAQ0MDNZUi4kEZGRkuv7/p408Amw3Rc+dClJfn8/i54O5isrKy6K6aWwLortWPZVka7Oh0OhrsBLtbg2s8xF30jx496rATc+dESYIOrVZLjYoUCgVGjBgRtNIHNxDKyspy0G6I7dAjN47BZzsq8cVvVXhkcjZuuSgVwB+ZK6DzmeVmsJy/n1vu4X7/yZMnafcNMdvq7t6FegEi2Fy1GQJGgEmpk3r9XeGaaegJzu26hHhdUVGB1tZW2qJsMpncHi8Yc3yv2TUMw4gAMCzLmvxwPkEFSU03NjaiqakJcqMRAJCcnIys9NEBffDO5/JEsF5Yd2Ny1kwgDObc3FxERER4TWBMSkpCdXU1KioqqEY9y7L02SECPkSTobvvNx0/jo4tW8CIxYi75+7eXYBuIBQKHUoAZGdaWVkJhmFoBoKkvbk6C/7IpPkDzoEQWRzr6upw8uRJOolGRETQEgcJLFJSUpCfnx8WCyJ3MRg8GFjQ0YGjZXX4aGcd3tp0Fu2NWiwckwIej0czm2KxGGlpabBarV2yEM5jcqUNodVqcerUKRgMhrDThnCF/5z8DyIFkX0yaAhUuUAikdCWZq4YWnNzM44cOULnIldZuLBpuSRgGEYMQAlgOIB0ADyGYeoAVAGoY1m22n+n6D/weDysXr0ae/fuxbx582hdMikpCRkZGdD8fgIAECWwwxbghy4UQUMwyyHB7DMn6WCSTfBWMwHonsCoUCgQEREBjUZD3RWBP5wVlUqlx6nzpo8+BgDEXHcdBOdkawMNsjMlLaJqtRo1NTVUETE+Ph7Z2dnUKjtcQRZHuVwOnU6H+vp6nD17FgCoi6dKpQrr1lSg87m5aEgOhuek4u+bTkIpMuDEic65RywW0wAgOjqafoabhegpiIiMjER6ejrS09Md6ubl5eU0g0TIs+GSaVB3qHFR4kV++S673d4nMw3dgctnampqohoROp2OlqgIqZLwbAIFr2cIhmGyAfwFnSqQpwGUArADuAxAKoB9DMMsY1n2d3+eqC+wWq3Yv38/Nm/ejJ9//hnl5eXYsGEDpkyZghEjRjhE3WazGRb+uRYYU0vAz+185jQEo73TZDKhtbUVBoMBlZWVdEEcOnSoV5oJ7giMFosFGo0GOp2OKgXK5XKMHDmSSsd2dHRAo9HQToaeOATG/Qdg/P13MFFRiL31lkBdGsdjnsskaLVaB0XCnJwcCASCLqJMxKzHW9njQIJca9LpYLFYKBFz6NCh1H+jsbGRtqZGRET0urXN3yDBLXmueDwerhsqR0JCDr3WRGWzvLzcQfmTkFvJM0uyYc5kSleESlI3J9oQpGx17NgxCAQCiEQiGAyGkF0nq90KrVELVaTKL9/XV8sTnsJut4PP5yMmJgbx8fHIyclxMGmz2+0OAae/4W3LpRDAdAArWZa9183fXApgLACPgobMzEzExMSAz+dDIBBg37590Ov1uO6661BeXo7MzEwsW7YMUmmnoczixYuxbt06REZG4quvvsLo0aPdfvebb76Js2fPYsqUKbjzzjsxb948/O1vf0NMTIyr84aF1/nSMKZWT069VzifOQ2BOBbXEpxYPBP57aysrF4TGBmGcSAwAug2zc0wf8jLZmZm0lo6l0OQkJBAJZVZlkXTRx8BAGJvugn8czLG/gZ3Z6nX62mrXk5OjssgwFlWmQQZxNwpPj6eyioHU4iMOwk2NjbSICA/P98lv4hrOsT1Czhx4oSDS2ZvTKR8AZfcxuVYpKenwwoeVh+qx9zUP0pmXJVNbtcKIbc6czqcS2k9ZSGcCZvl5eXQ6/U4duwYLBYLvU7BvN9agxZ21t5ng4ZwyGwQkzbixBpIeNtyaQHwCQAwDBONzs4JPvffLMvuBLDTm+/dunUrdaQDgNdffx2TJ0/GkiVL8Prrr+P111/HG2+8gfXr16OkpAQlJSXYvXs37r33Xuzevdvt9/71r391+P/u/Cd4PB4MYiXab1oPe1y6N6fvE853TkNvj8Wd+PV6PSwWCzV9ysrKAp/PR01NDT2eM1wpMDoTGI1GI22HJDV9TwmSznAm8LW0tECj0dDdu6K6Gjh0CLy4OMTeeEOvro0ziICMVquFwWCgC31WVpbX5QYuS59rk3327FkH86We/DR8HQfpdDCZTJBKpUhISPDawIob0KWnp9MARKPRoKSkBGKxmE6wgRgHyYpotVqaFXEVfL7zUwmW7q7GAFUUxqTHuxwHV7KYBKbOnA6STSHPOreUwdUIcRX4Eo+UrKysLpbiQqGQ3u/eqhl2Nx80GBoAAMoIpc/f73ysYFtV97tc9gCGYRIBPA2gFZ3BghCAAsBhAG8zDCNgWdbq60kVFRVh27ZtAIBbbrkFkyZNwhtvvIGioiLcfPPNYBgGEyZMQFNTE+rq6pCU5Flvb3dOlwzDwMYTwq4a5utpe4XzOWgAfGPxkklRr9ejpaUFkZGRkMlkGDhwYI+pU08UGInCI9m9ikQi6ibqz1Q8d7IHOnfvDe+/DwBouuIKdNTU9GrXa7fbHXbhZDHPy8vzqyuqc0sYWdRPnTpFF3WFQoH4+HifdqXO4yCL+cCBA/26mDtbZZNglIyDBFnd9cb3NI6mpiZoNBqHcXRn673iQC2W7q7GDeNSXAYMruAcmLrKpnB7/D3JQjgH1dzrxLVFb2tro0RZhULh106UYfJhWF+wHjHCrhlgX3C+lydCzUPxlfVkRCeXoRWdfIZ4dKpEEmaXzdMvYhgG06ZNA8MwuPvuu/HnP/8ZDQ0NNBBITExEQ0NnJFpTU4O0tDT62dTUVNTU1PgtaGBZFoJj/wMbmwpb+qWeDsEnnO+cBk9A6umk5ACAun32ZPFMggSr1Qqz2eySwMgwDJ1YtVqtw8Sam5sbtPQrc7oEOHoMTHQUBj/6CJrP8SVKSkogkUiQkJDQoyw0dxzchS6Y4+AqInIDMO7unZBG3YEsRCQrQgKPYI6DayLFHceZM2doAEayEO6eZSI7rdFoaBknISHBo3FsPqnBi2tP47IcGZ6cluvTGFxlU0hZ6syZM7THn3BTCJwJlVZr597O1ULEtUXnduAcPHgQdrudfr8nxNPuFjoew0NChP9IwcEuFwR7598nMw0syzYBeJf7M4Zh/gNgFflfeKjfsGPHDqSkpECtVmPq1KlUAY3zvX57ALorT9Ca4s43Yc28MihBw/maaejuWMTxUK/Xw2AwUMGstLQ0jzQTuATG6OhonD17FjqdDgqFAkqlEnw+nxLmuPbL3e36Ao3mL78EAMQsvBaC2FjIAdq26Y5MGRUVRRezpqamgO3CfQUhTJIaKknJk10vERuKjY2l7ZCEYxGIrIi/xkFKPcRfgrt7J/eKKzvtjiviDi1GC54uOomhyTF4d+EQCPn+mfydx0G4KaWlpQ6lN7lcDrPZDI1GQ0lzAwYMoHyf7koZztoQOp2OGjNxtSG4QQpBd0HD2rK1aDG34PqB1/vlWpzvO/8+GTQwnVco+dznRQAiAEwG0HjuTzxenVJSUgAASqUSc+fOxZ49e6BSqWjZoa6ujvYfp6SkUMMbAKiurqaf9wQikcht0EDASuLBGJs8/k5fEezJMlRBg9VqpR4dZPEjJYGeFo2eCIxisRjjxo2DTqdDdXU1KisrYbPZEB0djcTERAwYMCDkLYTmM2dg+OUXMGJxFy4Dd7eYkZGBlpYWVFdX4/Dhw7BYLIiIiIBSqaQdG+EMbptfR0cHKisrcfz4cZhMJohEIiQkJGDo0KEuF5RwAtcrwGw2o6qqCmfOnEFHRwcEAgHtQoiPj/fqHSbvQ6xEiM9uGoGchEhEiQL3bHK5KTabDTU1NfSe8Hg8xMXFISMjAwqFgr6v3hAquWqkAKgnCtGGIJkw0sbb3cK6vmJ9nw4awoEIyUWgz8XXpzYBQAUAzbn/FwFoAXA94KAW2S3a29tht9sRExOD9vZ2bNy4Ec899xzmzJmDpUuXYsmSJVi6dCkKCgoAAHPmzMGHH36IRYsWYffu3YiLi/O4NAF0ZhrclScIghU0BBvBChrIIl9VVYWWlhbYbDaHFHRPEbInBEaTyUR3SsSiWqVSIT8/HwKBgJLe9u7di8jISJr+D5YiIBctXy0FAEQXFIAvczTjIQ6WJJtAOgSys7MhkUgomfLIkSMO9eZw2KFzQdQkSTaBaCaMHDkSkZGRtLRy8uRJWK1Wh9bUcNNTcEViHDx4MOLi4mg7ZGVlJU6ePEnbV3tyobTY7Hh5fQlyE6Lwp4tSMTzFvfGZv2CxWGj5pL29nWpxSKVS2O126PV6qNVqnDlzhrYTy+Vy2k4MeE6oBOAQ/HIJtKWlpVQPx1kLhaC2vRYD4gf4beyhyDQE+znuc5wGlmXVzp9lGGY0gLsA7PL0exoaGjB37lwAnTvSG264ATNmzMC4ceNw7bXX4vPPP0dGRgaWLVsGALj66quxbt06qrz35bm0r6fwNNPAa6rw6nv7AgIZNJhMJlpyaGtrg9VqhUKhwJAhQ3oUPfKEwOiujdCdIyGZAImKmkajweHDhwEACoUCCQkJQdEgsNbXo/2nnwA+H7E3/8lB1U2r1cJqtUImk0GlUrnkcDiTKQl/wGg0hqyFkMDZm4KQ5FxJZxNRmoyMDNqCWFtb6+AtEaqgzhsSo3NnCQmUysrKHFreuM9kU4cFj6w4ht3lTbj7soyAjoU861qtlnqPuHpH+Hy+A6GSZAmOHz/u0J5KCK7eZiGcCbRmsxn19fUwmUzYuXMnbTtVKBQQiUWoa6/DpJRJfrsOF9oiHmz0xrAqGgDv3HewAAwALvfmO7Kzs+lkzoVcLseWLVtcHRMfnet19wXdESEpxPFgjEd8PoY3COaD5s+ggUy0hMBI9BKILXhxcbFbYh83SHCnwMglMOp0Okr8I5OgpyUHhvlDRS0rK4uS14gGAWnpC9TC27piJWCzgX/55Tjd1ITmigpERkbSgMqbkgOXlEa6DrwlU/YGRJiI8EUA+ORNwZU85npLHDlyxIFc529DKS56Q2IkcHa5JFmIsrIyyiHo4MfgmY01qG814fXCwZgzPNGv43AOeMhzMGzYMI+fA+47kpmZ2aXtUiQS0XvC5dJ4o1ApEomgUqmgVqsxZswYBz8RtUENi92COMTBZrP5hQwb6u6C8x2+choEAF4AYEUn6VEIIA/AunO/D0tbbE/KE6aJS4CJTwbpjIKH3ohJEcIeySaQRVwmkyEzM7PLIu4coJAJhlv7c1ZgJMQqnU5HU/VyudyvxD+RSESFc7gL7+nTp/1WxiALoa6uDuyyZeABME6+CklJSRg0aJBfghNCwuuJTNnbhdfZ/ImoE/rL/IlhXJtsVVdX0+P5wzPBlRKjLyTG7sAVZbLb7ahW63HbV8XgwY4l4yMxLMZAx9Tbe+JcdvA24OkOzm2XhBhKeB3EjI0rWgbA4f12RagkC7nzPT+iOQJ+HR8SkwS7d+/2izZEsDkG4Yaw5DSwLGtlGKYUgAWdLZcmAN+xLLvn3O/DLmAAPCxPRAXHDyDY8DbTYLFY0NjYSGWUiWbCgAEDPOpCsNlsDq2QDMNQFUfy/62trTRQIH4R7lL1/obzwtubMobz4hoVFQXZkSOwtbVBOHAg0mfPDtiLzCVTulKmJGUDT3wluDt/ck/kcjlSU1MDuvMncDbZIpkNQn4mwZAnC293SoyBNG0iqfH0RAWemjEAF2VJoYjgQafToaKiwsFm3JNgiBsU9lR2CAS4xFBSkiFjYRimi3Wzu1KGu4V8eMJw/LbwN7BgIeAJaJBCtCG4ZlueBqr9mYbAwhfvCQE6lR8/dvN7EYABLMse6+3J+RuelCd4mhMQlKyDefSdgCQuoOcTTi2XdrudLuJEM4GYeXmyiHMJjCKRCGfOnIFSqURCQgIkEgl4PB7MZjO1kG5tbUV0dDTkcrlX6dRAwF0Zg7SrOZcxyIJGavpE3per+lf3t7dhAxBz3bVBncB6VKZ0IlOSxVWr1aK5uZlyDMLhnhB76ezsbMqhIAsvCYbIjhfwXIkxUNC3m/HkquO47ZJ0XJItw9yRf5C0udLNRO+ABEPc9lSywHLLDoQgG+p74lyS4fpYtLa20meHuC6yLEvbO9VqNSIiIrq0dgIAn/dHhoQbpHAJtpWVlTRgksvl3WpDXMhBQzDWFF8yDTcASGQYZi0APTr5DDx0tl3GAxgCYCI6SZFhBU8yDYzuNMS/vwvrwGtgD3DQEEyQyYgL0sut1+vR0dHhtWaCOwLjgAEDqEQzaR8EOlO4CQkJSE9P73WaNpBwVcZoaGjA8ePHAXS+mHFxcVAqlS5T9eazZ2E+dgxMdDSipk8PxRAAuFam1Gg0OHHiBDo6OmgdOiEhwa/lk0DA2TOhubkZGo0GZ8+epQJFkZGRUKlUIdHkOFLTgoeXH4O+3YKCEe7nGGe9A7PZDL1ej4qKCjQ1NdF3ghBkgyl65S2c7wnJUh0+fBhGoxHAH9kjUmb0hlDJMAz1RcnNzaXlK0KiJcGUM9/iQg4agDAsT7As+zXDMNcC+AhALIBydJYnYtBpl70RwKN+PEe/oSdOA8MwYMWdEyxjaArSWQUHDMPAZrPRtrimpiYHGWVPNRO6IzDyeDx0dHSgvr4eOp2O9mvHxcXRNq+GhgZYLBZYrdawtjDm7giJgVVycjKioqJoCrW6uhpGo7FL/bV9zY8AgKjp08ELA4dF0tpJskiRkZGUUEpMwAwGA52AQ7mb7QnOJEapVIr4+HjqclldXY3W1laPWiH9AZZlsfxAHV7ZcBoJ0WJ8c/to5Cf1LIfM7Vog2arU1FSHFtXS0lKahYiLiwvbhZCULTQaDfR6PSIiIpCUlESfr4aGBjQ1NdEsga+ESufyFVdQjNtRZLVaw3ZeOR/gK6dhGYBlDMPw0ZlZiARQw7JsVfefDC16yjQwDAOb6Fx2IUgCT4GMikn0T0xu7HY7lEoltUbuaQfjCYGRuyAR8Sa5XO5S8Y/L/Fer1Th16hSio6ORkJDQa7KbP+DcRkhqz2lpaV2yCaSMwWXMS6VSyKVSGNeuBQBEX3NNKIYBwDFVTxQalUplF/MnsksMFJmyt+ByG7RabbckxrS0tC6tkESBMlD6FjvO6vHC2lO4LEeGN+fmIz7S/TPs7LURERGBhIQEDB8+vMvzxTWoqqmpcWhPJen/UIIQlzUaDVpbWxEXF4eEhIQu8wrR0SGBEFHaJN1QJLDzlFBJwOXyEG0Icm0bGhro94XDM+xPhANdsDctlwzLsjYARzg/4wEAy7LBM1XwAj0FDTweD3aSaQiSwJO/gwaS7tTr9ZQ3IJPJaOTfnYKmOwVGZwJjW1sbJTBarVav3AidCYiE1V5ZWQk+n0/tjYORXnYlSuRNGyE3PUsmLf2mTRDpdLAlJkIrlyHBbA6K/oA78ydPUvX+JFP6A+5IjKNGjeoxsHSuu3P1LbheF76aUxFYbHYI+TxcliPD3+blY3q+Enxe1+eFZEaIEBk5fl5eXo/vijM/hbx3R48ehc1mc8hCBGNnTcpbGo0GFosFcrkcaWlpHi3KXL8Pru5KeXm5w5xA3jtftCG439He3o6IiAhUVFR06cQJd3XV7hAOpRefZwBXHRLhGiwQiEQiWmtzhc6goVOtjTE2uv07f6E3bZAEZGdFNBOIsEpqaqrDwldbW+vSIMsTBUZnAiPZ8XirNeAMLtktJyfHoeZOJqWEhAS/7hRIPz2ZxLsTJfIGZNKyHzyEDgAxc+ag3WLBkSNHwLKs3yyGueBaYhuNRr+ZWHlLpvQHAkVidKVvQcypPDXZcsamExq8sfEMvrx5JNKkEbh6qIr+zlXZgdiU9+bec1sVMzMzaWDFtcn296JIAhViH0+C+t5yRpzFn4g4HLe7hAQAIpHIa4VKlmUhFAopL4mbrTpy5AgVVfNH8Bhs9OmgoS9CLBajpaXF7e8ZhoFNEIXW+48B4sBLvXrbBgl0PjRksSCaCXFxcZDJZMjIyHC7E+RG754oMHLr+aS1ytNdha+QSCTURZGkP8lul/Sje/uSc9PVer2eLnqBaFmzGwwwbN8OAJAWzEFCUhIyMzNdljFIzd2bHSJ3h6bT6RwssQPl6eCKTOkPZUqu1LBer/cqM+IruLtRAA7y1lyrb3djMdvseHfzWSzdXY1hyTHgnXt2vCk7+AvOIllEabS4uJguij11GbgCV7+ksbERUVFRlLwcqPKhWCx2IFSSzqQjR47QjAp3LD1lIZwXVudOHG4m6/Tp0/Q9ImZb3swJwS4XhNqsCrjAgobuXC6BcwsrAEjig3I+ngYN5CHX6/VoaWmBRCKhxjk9CR9xg4SWlhbKHXAmMBoMBppN4Iq49HYH7iu4hjjcFrQzZ87QSdmdEBPpCtFqtXQsJFAIZHrduGsXWKMRoiFDIOB4ojiXMZzHQjQhXI3FZDLRXStRLyT+FKHYIXWnTMlls7uqubtSYvSUXxMIOFtkc8W+uGORSCSoazbisZXFOFTdghvHp2Dx5eloadLjSKXWoS3Xk7KDv8FtGc7IyKA8o4aGBpw6dYqORS6XuwzInAWjvCk3BmIsZIHPysqicx93LFxCpXMWwmq1orm5GdHR0fR3zkEAN+ACOjN2JBAmglkkqO8p6AuFz0VPxwu77om+DI84DXY7RHs+gj1KBeuQBQE9H1dtkMAfzH0SKLAsC6lUSp0bPdVM4BIYFQoFLBYLTpw4QW10RSIRWltb0djYSOVi/amS5y9w05nOQkwkCyIWi9HW1obGxkZKfgv2WDp+3goAiLzqSo/HQgiIpIwhk8kQERFBFTjJvQrX+9KdMqVMJkNkZCTNjAVCidFf4JZduMx8snNfXsrgdIMBT05UID+6GSeKj9LgLRzHQrhBZCw6nY7alkulUsTExNAMmM1mC1j2rbdwzqiQsZw6dYoq08bExNDMpMVioUG41WrtkVAJdGpDkAwnNzNZXl4O4A9RMVfckWCrT/ZnGoIMjzINLAvB8e9hl2UHPGjgchqMRiMNEohzo1wuR0pKSo/RbncW0mRnzTAMVCoVBAIB1Go1FZbh8XhQKpVITEwMuwnDFciuis/nQygU0rGQCSEhIQEqlSroLWqsxQLDr78CACKvusqjzxAColAohFgshlqtRk1NTZde/b5QdyVjEYvFiIyMRENDA+rq6gCABr1KpTJoZMregIxFJJbAyIhhb2/EjCQNJsgYKPmNEApj6VhC3cXQE8hYIiMjERcXh4aGBiq2xLIsIiMjkZSU1KUVMhzBHYtMJoNarUZ9fT00mk6zZbFYDJVKRTdEvhIqCZE2Ly+PEstrampQXFzs0MFCMh3BXMT7g4YgQywW96jTYLfbAVEkGHNHQM/FZrPBYrGgrKwMbW1tEAqF1MvBk52LJwRGi8VC5WeJFDRRYCRkKSKYQurtMpkMCQkJYaehYLPZaA2cZEYUCgUVjSE6FFwHxdjYWNrOGehF17h/P+ytrRDm5ECY0b2bIVcDQqfTgWEYumslgZu7MkY46ii4IjGmpaVh6NChdOIOBpnSHyAllJKqBvx9TwtarQyW3jCYqqJyiY5Hjx6F3W4PWy0F8j5oNBo0NzfT9yE7O5sGbq527uFIECSdTmq1mmpBKJVKjBs3jpZPycaLzGW9JVQCndlprjaEsyNobGws1Z0JRjDcX54IMnoSdyKTAiuMAmNp9+uxyQNHNA2sViusViuSkpIwYMAAjzQTeiIwkheLkCQBUBb64MGDXQYBXMEUrgDTqVOngrrougKZ0LRaLSWqyeVyt90BzmlZIjhTWlpK1SgTEhICsugaf+90hI+YeJnL35PgTKvVorW1lbaAuSOYuStjkIWKpGBDkR3ylsQYKDKlP8Atd2m1WgBAnS0ab+1sR7sJeG5WHpJVf/jRcPkD3PZUoqVA2kO98UrwJ4hss0ajgdFopO3WgwcPdvmcOPM6yH09c+YMDczJrjrYz5lz0ONOC4JAIpE4dEy0tLRAp9Ph8OHDtPRHdBs8IVS60oZwdgQlnSV79+51CIYDpXjbn2kIMkQiEZWcdQXCaYBADBibe308Z82EqKgoyGQyDB48GBKJBMXFxYiNjXX5ArgKEkjJgUtgJHLNOp2OthDK5XKf2M48Hs+hrtvS0gK1Wo3S0lJIJBIqDBWoyZBry0uEorjZBG/AMH9I0Obl5QV80TXu3QMAkFx0EQBH8yeu0ZAvHSiudBSIeBHX6TCQu0N/khh7Q6b0B5w7BIjD6bDhw/H13nq8v7UUGbJIfH7TSAxQRXf7Xc7tqaS1jxifeWOy5QtcBT2EkOltRw3hz5DuEsJF4QoyEYJgoJ4z8myr1WoYDAbIZDIkJye7DXrcgRuocoWySBaSZF0JOdRVFqKnIILP51NOxejRoykBu6yszGFj4M9nORxaLpkQKUyF5KA7d+7EF198gffee8/l78+cOdP5kO54ErymCnTcvNGr73elmUB2x64mjePHjyMtLQ0xMTH0854oMJK2O71eD6FQSCemQBKyyMSk0WgodyAhIaFXdVAusYkoFwZj1+nMFu9tScbW1ITqyVMAoRCS5cuga211MH8KZKDlbG4kkUhoZ0lvJip3SoyeOn/6ekwS3BGCnr+UKV3JT3NNyIBOwaabvjyAVGkEXpo9EFHi3u2pCNGQ6Ju4MtnyBa5km/1h697TMbnzjkAg8Nu8YzAY6Nxis9no3BLI54y0qOp0OjrvyOVyGniTdZHbgeGKUNnR0YFTp05h1KhRXY7BLUFyxbh6M7c1NTWhpqYGQ4YMcfl7u90OkUjkr6DO5cW/oIKGvXv34oMPPsBHH33k8vdnz57tlDeVyQAPH1bCctfr9TAajVQzQSqV9ljjOnHiBBITEx1eDvJAcgmMzgsrV4I1FGUDk8lEX3Kz2Qy5XA6lUunRboqkHEk2oad2sEDDedfpjaw1rXH+sAbM3/4G88ABYP7v/xxSoMEGd9fpbUbF2fGSpNoVCkVI2m7J7pBIFXtr8+28A3dnd/5LiQ4jUmIRHylEq9GKaDHf74uV8yJCgjBPBb/cyTaHag5w19bsid+Hs2iUQCCggUIo1Bqd+VJCoZA+Z+RZYVnWgT9G5umOjg6cPXsWI0eO7PYY3HeLBPe+BF2NjY2oq6tDfn6+y9/3Bw1+xqFDh/D666/js88+c/n7srIyumi4AzHG0ev1aG5uppoJpFXOGwJjVVUV9Ho9VCoVlEoltZAmk6VOp0Nzc3OXVFo4gUxmarUabW1tLm2kCXmIcDl8FZ4JNNwp4HFlrZ2DnsjISEiXLQe7fj3i77sPcXfeEeJR/AGSUSFeGq7KGK5IjAkJCWFH6uOSKbkiXVwypSthou4yPUaLDX/bfBbf7K3BrRPS8MS03KCNx1mZ1NWi60q22d8Kqf4AyXyQLISrgIibEdPr9YiKiqIdKKH2nHGGc0DknCEilt9qtRoNDQ2Ii4tDXl5et4RKZ5D3jquLQwKV7q4HCRwHDRrk8vf9QYOfcfz4cTzzzDNYunSpy9+Xl5cjMjISybqd4NcdhOmqlxwUyhobG2G32yGVSiGTyTzSfHdHYCT8BJPJBLVajbq6OlgsFpplIA9QsHTl/QGujTTZTdntdsTExNDde1/SfSeTdn19PQwGA71vJBVMgp66G26E+eRJqP71L0hGj+r5i0MA7qRNWtRIyx3hqoRbQNodCJlSrVajvb2dTtQk69VTCrhE3Y7Hvy9GibodN1+UikcmZ0MsCE23ALfcQDJELMvSFkKlUtmn7g0JiIh3CNmpE60Zb5VQQwkiikfGQ1r2BQIBkpKS6L1xlYVwx4VwdQyiDUG6qcgm0Xn+J0HXwIED3X6XWCz21/V1eeIXFBFSLBZ7RoSs3gv+ie9xTHktbd0hXQieaib0RGAkKX6dTkf11rkW0uThEQgEYa+fwCX96XQ62O12JCYmUptfvV5P+8ID1b3gTzinK8ViMTIyMsDj8eiOymq1wm63Iz4qCuYzZwCGgWjggFCfuks4myYRjg0h6pKANVTdGN7AmWAKgL6Xree4JGazmVqWu3rWtp7S4tGVxYgS8fHJ9cNxRZ482MOgcM6OkHmAZVk0NTWhtrYWBoMhpOVIb0B4HGq1GkajEYmJiYiIiHBoh2xpaQkoOdRfIBwbMh8TZVcej4eWlhbU1dVRlV2yIfKFUOlKG0Kn06G6utpBG4IQ1EMdcF1QmYaqqircddddWL58ucPPySJRUVEBo9GI/JpvkVKzDg13HvZKM6E7AqMzkYgwld3VNK1Wq8NOiuygwiVtTEooRAOiJ9teQnDTaDQ0eCD15XAAkZLltneSbILzRM3dtbcePoyE198AUlOQtGJFSNrsnOEtidFVGSPQLHlv4E3ZoTsyZUxMDHg8HrRtZvxt8xk8NiUHCdHBD2DdyTa7yo44t7dyfRLCRYzJm3fbmRxKOgw8kWwOBrhdYzqdjupBuOL1OJdeSXmPlF69IVR2dz7E3ZQE/WKxGDk5OS55c8HINFxQQUNDQwNuuOEGfP/996irq6P1aYvFQqP7yMhI5FR8C9GeD9H2aKXL73GnwMglMPJ4PIe6FdeF0BOSJBfkPNVqNVpaWhAXF0eVAoMVdXIXIp1OR1sISQrNm0DGuZecBETBrNX6azJuXfk99K+8AnbiZdDcdBMVagp2QOQvEqPzdZFIJHQ8wcwQOXc7+Mo8J/oY3+2twu9VHXj6cjlU50plwVSmJAurVqulss2+ZHbcBbehmAvIwioSiXzSQOFqKeh0OgBw0FII9lygVqtptofwLbwJmsk8rdPp0NTU5FLnwh2h0tNSRk1NDe2ac+6ei4mJoWWt/qDBD9DpdFi9ejXeeecdGAwGTJs2DY888ghkMhmtsxP76AzrWfArd8I8cQnAdF58VwqMRFiJ3HQycZOHhky4/pRodX7Ao6OjaSTs710hSV9zBYm4Cmv+gM1mo+lM4mbpSU3aFzgTnPyxo9a9+iraVqyE9JGHEfunP1GDKW5AFChiYTBIjFybZ7JrT0hI8Htq2VXZgXBHetN6p2414bk1J/HrGT3GZ8bj/6anw9Ta6JZM6c/xEOImd2ElBlj+gLOuCXe+8TcHwt2848/giwR4Op0OLS0tARXKCsa8Q3QunE0AuYRKAF3WlO6yEDU1NbBYLMjMzATwB7eHZAlVKhXy8/Mv3KBhw4YNWLx4MWw2G+68804sWbLE6wO99tprWLNmDQQCAS6//HJs2LABmzZtcvmg19XVwWq1UuOS7giMpDOAkCS5vbjB6gzgTkxarZYKMCUkJPjESOa2hRFFSRIkBCPyd8ewVigUPk1MXItv0trlb02L+ltvg+nIESj/8Qkixo93+J07GV9fFTbdKTEGi8RIJnWNRoO2trZet/0R/g7hjhAbZn8sEizLYn2xGi+tOw2z1Y5Hp+TghnEp1M4acJxw/aFM6e5+e9KG6A8Q7QHSmk3eXV/nIuc2z+7KKP6G89zqD7luZ+GoQAb0znDuMOGSHcnc6kkWorq6GjabDRkupOpZloXRaPRnu3ffChpsNhsGDBiATZs2ITU1FePGjcO3337rtj/VHXbs2IGhQ4ciPj4eFosFEyZMwLZt27r8nd1uR0NDAzo6OpCeng4A9IZxCYzONbno6Gh680NN8Gtvb4darYZGowGfz6cBRHc7GzIeEqkSRclQt0L52svtTPrzpn/cF1RddRXsTc1I+WkDBN206jrXSj2VtXYeT7jwDZwFhjwtY5DSlFarhcFgoAuRv4Nss9WOaz7ZA2mkEK8XDkamvGcLecKb4OqH9CSS5Uq2ORy4R65agz0ZT280WAIJbzlUBGQ8arWakn2VSmXInUl7WkdcZSEYhkFVVRX4fD7S0tJcnv8FzWn4/fff8cILL+Cnn34C0JkxAICnnnrK54Pa7XaMHj0a27dvp//PJTAaDAacOXOGknkSExMhFou79CCTiDfUL1J3IPLSGo0GdrvdQW+Am03g2huH83jcqcZFRkY6cC28Fc3pDWwtLaiedCUYiQRpO3d4dSx3Ne6oqCiHNH0wlBj9AXdljOjoaCqyxDXnCoSCqZ1lUXS4HjOGKBEh5KOmyQBVrBgCLyfQnsiU3HsXKg6LN3Am7HHVCePi4hyIjP5Sew0kuORArvYLGQ9pY1er1XQ84dy2yi3N6fX6Llo2ZrMZDQ0NUKvVAICBAwfSudq5lGG32yGRSPz1XvWtoGHFihXYsGED/vWvfwEA/v3vf2P37t348MMPfT8oy2LYsGH45ZdfXBIYyX83NzejsrKSvmDR0dFISkpCUlJS2AmReILW1lZUVlZCq9XCarVSO9yUlJQ+OZ729nY6HrPZjIiICCQmJiI1NTWoDGzzyZOou+FGCHNzkLxsmc/fYzAYUFlZCY1GA5PJBIlEApVKhbS0tJBnr3yB0WhEVVUVbbsjWZWMjIyA6XSUatvx3JpTOFDVjOdnDcB1Y1L89t0mkwnV1dVoaGiAwWCgBLeMjIywXVi7g8ViQXV1Nerr69HR0UEVENPT0xEd3b3XRjjCYrGgtrYWdXV1aG9vh0AggEwmQ0ZGBmJjY0N9el7DarWivr4etbW1aG1tBZ/Ph1QqRUZGBuLj4wHAZSkD6FSMTElJCWjQcEHpNNjtdrS2tmLWrFmYNWsWCgoKkJOTg9bWVvz222/IzMykRklyuRzZ2dkQCoW0DlZXVweFQgGlUhnW/excsRCuTnx6ejokEgklANXV1dF0anx8fNiOxxVJTi6XY/jw4YiKikJjYyPUajX2798fVHld2zneB1+u8PqzrkiMQ4cORUxMDOV1HDhwwCtZ61CCEEC5ZYfBgwcjNjYWra2t0Gg0OHToEA0g/EUINNvs+HxnJf6xvRwRQj5emTMIhSMSe/29rmSb8/LyIJVKaebk2LFjYW3zzQUpv6jVajQ1NSEmJgY5OTmQyWS0I+PEiRO0KyrYHQzewpVVdkZGBhQKBRWXOnPmDCwWi0P7dKg1DroDKcdqNBqIRCKkpKQgISGBPotlZWW0C6+yshLjx4+n/11UVIQff/wRAoEAGzduDOjmKWwzDYEoTwCdD1tDQwM+/PBDLFu2DK2trYiMjMSECRPw2muvdesUyNVO6OjoCEmroDsQUhdh6nL9KdzV8u12O50YifWsUqkMC8U25xqmJ0xqIohD0spctcNALLhtP66F7rnnEDlzBhJeeaXbv/WFxOiJrHWoQM7NuexA0tru3gfnskxvuzGeXXMSKw/WYeYQJZ6angdFtO+TpS+yzf4mU/oTzlovnhizubNwD4eg1Tnw8YRYzG2DbGxsREREBA2KwuUdamhooER2lUrV7XxFrsELL7yAX375BR0dHYiIiMCCBQvw4IMP+jPLAPS18oTVasWAAQOwZcsWpKSkYNy4cfjmm2/cunt5io8++giffvop8vPzMX36dIwdOxZ79+7FypUrUV9fj+nTp6OwsLDHthXnlh2ZTAaVShU0AhR3ESImK4Sb4EutmCy4JHIPREtVT8fn1sV7y5Ym36dWq6HVaumCSzw+/IGWf/8bje++h5jrr4fsL493+b2/SYyh9iIgLX6ELEi6HXwNynztxtC0mjqDlGgRStTtqG404MqB3md7/B2U+Uqm9Cecn5HeZEadTba4fJRgZVqd51mpVEozo74EZc4dJt2JuAUC5Jo2NDRAr9cjMjISKpWqx3mWZVmcPHkSP/zwA9atWweZTIZ58+bhkksuwaFDh7BhwwYcOXIEf/rTn/DEE0/463T7VtAAAOvWrcPDDz8Mm82G22+/HU8//XSvD6zVat1mE5qamrBmzRqsXLkS5eXlmDp1KgoLCzFixIhuH1CyYyfiS/Hx8VCpVH5Ph5E0IlcsKhDyslzxFq1WSzXw/W296yvD2xeQyVStVvdKXIeLxvffR8tXSxF///2Iu+P2LgJYpK0qECTGYLkeOutOBKrbwbkbw1UZw2q349u9NfhgWxmuHKDAG3O966Qix/HV1dQbBNLm2/k4XDdPHo8XsGxUsDqTXLVGBiKjS4JgkoUgZWl/q22SDVlDQ4NX4lF2ux3FxcVYtWoVNm7ciOTkZMyfPx8FBQWQyWQu/16n03VruOgl+l7QEEq0trZi7dq1WLlyJU6dOoWrrroKBQUFGDduXI8BhHMKTaVS+ZTyd/ZA4CqMBZOp7dzK2ZsdOzfSJ7V8kk0IVjqXK+Pb0dHhsHvxZlLSvvAi2n/4AcLFD6Fp3LiQ2Uk7L7gRERF0wfU2yOOWHcgiFIruAOcyRr0tCp8dbMVZrQGX5cjw1xl5PbZREjjLNnuSpvc3emPz7QxSzycBSW/ut6/gaqA4y+L7EiCTjgeNRgOr1UozJMHsGOro6KBzk8lkclDw9TYQ55r3eVP6tdvtOHToEFavXo1NmzYhJycH8+bNwzXXXIO4uLjeDtFb9AcNvsJgMGD9+vVYuXIljhw5gokTJ6KwsBAXX3xxtw+Tc8rfkwiTKz1NZGLlcrlPD24gwG3lJK2P5OV2Ba5qHakpkkU1HBwvicCQWq32WICJ3CPjK69CvHcvrA89CHlhYch784GuO08APfp8+Lvs4G/8b18VXlx3BvIIHhYN4GNSrpROwN3dI3/INgcC3dl8d3ePnIWjeroGwYQvaqsdHR10Lgm31kiy6JNWe5FI5JCFcKeRwM04k82IVCrt9pmz2WzYu3cvioqKsHXrVgwaNAgLFizA1VdfHepulv6gwR8wmUzYvHkzli9fjn379uHiiy9GYWEhLrvssm4nWGdxH0LSk0qlVH+ddG74W3o6UCDpStJaR3YHAoHAIWIPJ3JYd3DewRGFTZlMRgMFLolR+PY7MP36KxRvvYmoyZNDffou4U58iHTRBLrs4Cs6zDY0dpiREh8BbZsZ3+6txh2XZiBCyKPZN65Illwup2MNlGxzoOCOTBkdHU0DWoPB4JAhCXXg0x3c+brI5XLY7XZa9iT3SKlUhoVZVXdwloQmQVFsbCzdGLa1tXlsLGi1WvH7779j9erV2L59O0aNGoX58+dj+vTpYRE0nUN/0OBvWCwWbN26FStWrMDOnTsxbtw4FBYWYtKkSd0y/Nvb21FbWwu1Wg2TyQSxWAylUomMjIw+2ZdPIuzq6mo0NTWBZVnExsYiNTUVKpUqrCc4dzCbzaipqXHoZZfL5cjIyKDRv3rxwzBs346Ed99B5BVXhPiMuwcJiKqqqqDX62Gz2RAVFUX1OsJhtwoANjuLoiP1+PvPpUiNl+A/t412+/zYbDbU1dWhtrYWbW1tVHgtNTW1x91duKKjowMVFRWUyBgREQGVSoWUlJSwD35cgWVZqNVqVFdXo7m5GQzDIC4uDqmpqT7LqYcaZrMZlZWVaGhogNFopMFPSkpKt5ksi8WC7du3o6ioCL/99hvGjx+PhQsXYvLkyeE67/cHDYGE1WrF9u3bsWLFCvzyyy8YMWIECgsLMXnyZBiNRqxbtw55eXlUXIl0OkRERDhwBgQCAZRKZdhH39zdEenLJ9kEhmG6pPxJWSYcdrGu0BOJkexiiRytQqGA5M23YN27F8oPPkDEpZeEeghd4Ew05fItBAJBwA2VvMWuska8uekMTta3YXhKLJ6clotRaY513O4MwYhhHJccSna44bo4OXNIuPLvYrE4KGRKf8O5ns8tpQBw4GkF2z/FV1gsFmg0GjQ0NMBsNkOhUEClUiEqKorqQuh0OmpdXVxcjFmzZiEqKgrbtm3D6tWrsW/fPkycOBHz58/HpEmTwqL01wP6g4ZgwWq14ttvv8U///lPHD16FFKpFCNGjMBTTz2FIUOGdLtwGgwGNDQ0QKPRgMfjeeQfEQy4EozyRNTGmdfRWxMqf8JXO2nS/97++OMQHD8B01+fguKqq8IitU+09kmqmxBNezq3UHMA1her8djKYiTHSfDo5GzMHKKkJj5cjoanss3kueOWMcjnQv0uuXonPOGQ+JNM6W/YbDYazHnTGskVOTObzR4/r8EA17fCarX2yN8COufJkpISvPLKKzh48CB0Oh3y8/Nx++2345ZbbukLgQIX/UFDMPDrr7/iwQcfxMCBAzFjxgxMmzYNtbW1WLFiBX766SdkZ2djzpw5mDlzZo8Sp4R0qFarwbIszUAEKyInEbS/Wqy4ffGkpkmComBlVfxpJ11/159h2r8fkr+9BX1SElXaIwtAsPq+ieIi0RroiVTXE5y7DQLlbqhtM6OmyYARqXEwWmxYfqAO145JgpDHUJEuQp7tbXcAue+EwBvsHTvRG9BoNGhpaaFsel8Jzr6QKf0NsvsmnKbetka6a8GWy+VBC/R8nXPb2tqwadMmrFq1CqdPn8aUKVMwf/58ZGZmYsuWLVi/fj2Ki4vx5ptvYsaMGUEZix/QHzQEA0ajEQKBwOWiarfbceTIESxfvhzr169HcnIy5syZg1mzZkEqlXb7vWazmT7Mnka93oLUvblmVoEyFwK6sqfJC+rPCSKQdtL1t98B06FDUP3rX5CMHuUwkZOUfyCCou7KDv7eyQRC16DZYMGXv1fh37uroIwRY+39F8HOWVRbW1sRHx9PAxV/B1+uNC4CUcZwJgoH0oo5WMqUznonpDPH3yx/kmEimxar1eoQ6PlzTNx5iGR3lUpljzyDlpYWrFu3Dj/88APKysowY8YMLFy4EKNHj3Z5fjabjXrl9BH0Bw3hBJZlcfz4caxYsQJr166FVCpFQUEBZs+eDYWie3U7V/U1X1XfXFljk2xCMFNp/pyMgmUnXXfLrTAfPQrVl19AMmJEl9+TtLpGowEAGuj50hXja9nBn+itgmKH2Yb/7KnGF79VotVoxYzBCiwcHAmRuTkkCpeAY8cMl+nvaxnDYDDQBYhlWQe9gWDB38qU3Oc4kOJR3cG5lEissX3NPnF9HoRCIVQqlUfBvV6vx9q1a1FUVISGhgbMnDkTCxcuxLBhw0JeTgkA+oOGcAXLsigpKcGKFSuwZs0aREREYM6cOZgzZ06P3Qekvk4c+HpKEToT/gA42P6GA7nK27RnMJUYuaj7080wFxcjcelXEA8b1u3fEgIf6ZghC1NPYyJZCzJZBzP93BO8lbX+6bgaj6woxviUCFyTCWTGC8PGS4PAuYxBylee3CetVguhUEg5O6HmTpDz85ZMyfVECGTGzFdwDex0Oh3sdrtXY/LU54FAo9FgzZo1+OGHH9DU1ITZs2djwYIFGDx4cFjMlwFEf9DQF8CyLMrLy7Fy5UqsXr0aPB4P11xzDQoLC5GcnNyjSIhOp0NDQwPa2tqoH0ZkZCQVWGppaUFMTAzt3giHSaA7uCNYRUdH07JDqJQY6264EeaTJ5H4n39DnO+5pLFzejw+Pp4GRaSWT8bUFxwuAdcp/3iZHNurzGjrMOBSlR06vR5aawQuGpDUJ8dEhL+kUimVWeeWbMKB3NsT3JEpZTIZ3X2HG2G5J7gz2SIOnr74PDQ0NKCoqAg//PADTCYTrrnmGixYsAC5ubnne6DAxYUTNGzYsAGLFy+GzWbDnXfeiSVLlgTycAEDy7KoqanBypUrsWrVKpjNZsyePRsFBQXIzMzstmOhtbUVlZWV0Ol0sFqtiIqKQkpKCpKTk8O2/awntLW1oaqqiu5sIyMjkZiYiLS0tJBMbLWLrofl9GkkffNfiAYN8uk7DAYDKisroVarYTabIZFI6JjCPaBzh7YOA7769RT+d6QROiMwWMrg1WlJyMjICIvdty+wWq2orKxEfX09DAYDzSikp6eHvQibO9hsNlRXV6Ourg7t7e1UiyQ9PR0xMTGhPj2fYLfbUVtbi9raWrS2tlKCaFpaWrdlLzLXrl69GmvWrAEAFBYWYv78+cjIyOjTgUIv1sMLI2iw2WwYMGAANm3ahNTUVIwbNw7ffvst8r3YCYYjSPT7/fffY9WqVWhubsasWbNQUFCAvLw8NDc349dff0Vubq5DzY/s6Lh+GOFkgd0duiMxSiQSNDc30/p6KHZGtddeC8uZs0j67juIBuR59Jnuuh0iIyNdprpJz344g6TAtxyvwxdHjdAbWQxJjML9k7IwJklCOSZAz7LW4QKuNofZbHYov5DSDOnCCQUfwxeQ7AlRMCQKofHx8bSEFo42393B2e+HO7+R8XI5W6Wlpbj44oshl8tRVlaGoqIi/Pjjj5BIJJg7dy7mz5/fY1a3r6CX6+GFETT8/vvveOGFF/DTTz8BAF577TUAwFNPPRWoQ4YEGo0Gn376Kf773//SFOlFF12EN954o1tynC9+GMGELyRGV62cwZCnrZ2/AJayMiQtXwZRTo7bv3P2DfC07BAOpDp34BII6zVagC9CVooK9RYJ3tlagfsuz8SlObIuE68rWetwkkbmMukBzwIcd2WMcHunnOXeu+MwhYPNd3dw5/Pgydz33HPP4ddff0VbWxtiYmKwaNEi3HfffX1WvbY79HI9dHkxwrtY5QNqamqQlpZG/z81NRW7d+8O4Rn5H59//jk++OADZGdn47HHHsOECRNw4MABrFy5Etdccw2mTp2KuXPnumT0MgwDqVQKqVTq4IdRWlpK/TCCuVt3R2LMzs72mMTIMAxiYmIQExODnJwcOvEfPnw4oEY4rN3eeXwXkxRpgdNoNDCZTJDJZEhKSsKgQYM83rVFREQgIyMDGRkZdOIvKSkJePueOzgHP8KIaOzS8LHimB2X50bhpYtSkQrgv5lyt+ckEomQkpKClJQU+n11dXU4efIkXWz9bbXcHbhtssQGXqlUYvjw4R4vjgKBACqVCiqVyiGYKisrg1AopHyHYJI9XRnL5eXleRxw8ng8ynvikimPHTsWMmVKwm/iZklSUlKQn5/f7TnY7XacOHECq1atwk8//YTExEQsWbIEEyZMwN69e7Fu3TpMnz4dd955Jx588MGgjCVYCMR6eN4FDRcCZs2ahT/96U8Ou+ihQ4fi5ptvRktLC9auXYt33nkHp0+fxuTJk1FQUIAxY8a4DCDi4uIQFxeH3Nxcyi4uLy+nZk0JCQl+J6y5U2IcOXKkX44VGRmJzMxMZGZmUsvdEydO+N9y12br/Def77bsMHDgQL/UvEUiEZKTk5GcnEwJrzU1NThx4kRAy02uZJsj4hOwqV6Cb7fXoMVoxfiMeFw9VEU/4+l15bZschfvsrKygMpaO6eziSBXZmZmr4MVhmEQHx+P+Ph4AJ3ZIo1GgxMnTgS8jOHKwn7IkCG9vn4MwyAqKgpRUVHIzMykZMqqqqqAK1NarVZaIiLdYRkZGT12etntdhw+fBirV6/G5s2bkZGRgfnz5+OJJ56g9wYAhgwZgltvvZV2bPWjZ/SXJ85jdHR0UEvvo0eP4oorrkBhYSEuuuiiHtOm7e3ttD3JH34Y/lRi9BVE6ZA7AfVGwa56xkzY1Gp0vPcumoRCytoOZmcAkff2VpLYHTyRbf6/dafx3b4aTB6kwB2XpGNEalwP3+o9nFsfeytrTVqTNRoN2traPJY59ie49fWWlpZeZ1ZIoErKciTQ741ypi/n4G9lyu58HnoKFPbt24fVq1fj559/xsCBAzF//nzMmjWrzxI7e4tAlCfOu6DBarViwIAB2LJlC1JSUjBu3Dh88803GDJkSKAO2SdgNBqxadMmLF++HAcOHMAll1yCuXPn4tJLL+1xwnKlmNaT+E0glRj9AbJbV6vVXmnlc8sO8Q8tBq+9HdHfr4Q0PT3kZLHuzI88uVfuZJtP1rfh898qccO4FIxKi0N9ixEdZhuyFcGTK/ZF1prrHUBMxhISEsJCj4SrvqrT6TwuYzhzkqKjoyknKRxaI31VpvTF5wHofI9///13FBUV4ddff8Xw4cMxf/58zJw5MyzmmVCjl+vhhRE0AMC6devw8MMPw2az4fbbb8fTTz8dyMP1OZjNZvz8889YuXIlfv/9d4wfPx6FhYW4/PLLe9yhdKfNHiwlRn/DOV3NJbLxeDy0tLTQyZ3spBISEqC5ajJgNiPtt53ghWErIUmNc3frZCK29SDbbLOz+KVEh3/vrsLu8iZEivh4ekYe5o5MCumYepK1Jil6kiUJFJ/F3zAYDDQwImUMhUKBuLg4sCxL71Vzc3Of6n7qjkzpq8+DxWLBzp07sWrVKvz+++8YO3YsFixYgKlTp4YFSTPc0Iv18MIJGvyBqqoq3HzzzWhoaADDMPjzn/+MxYsX44UXXsBnn32GhIQEAMCrr76Kq6++GkBn6ufzzz8Hn8/H+++/j+nTp4dyCB7BarXi119/xfLly7F9+3aMGjUKBQUFuOqqq3qshZpMJuorbzabaYtgSkpKQJUYAwmWZaHX61FdXY3GxkbY7XZER0cjJSUFSqWSpvxZmw2V48YDDIP0fXvDfqwWiwV1dXWoqamBwWAAn8+HXC532b/Osixu/PIADlW3IDFWjBvHp2LBqCTERYSXGBNJz1dXV1N/goiICCQlJSE5ObnP6lxYrVao1WqqNQAA8fHxSEtLg1zunmQaziBkytraWjpfEKXJ9PT0Hucas9mMbdu2oaioCHv37sUll1yCBQsW4Morrwx7kTCgz64n/UGDN6irq0NdXR1Gjx6N1tZWjBkzBqtXr8ayZcsQHR2Nxx9/3OHvjx8/juuvvx579uxBbW0tpkyZgtOnT4f1DtsZNpsNO3fuxMqVK/Hzzz8jPz8fhYWFmDp1KiXzNTU1oaOjA01NTQ4kxri4ODQ1NXldhwwXOHc7kJ2eQCCgO1euboLQZkPVZRPBREQgfeeOUJ++S7giZ5IaOslCNDc3IzY2FlZJPH6tNOK+K7LB5zH4/lAdIkV8TBmkgCDMdrN2ux16vR5qtZqeP+FckO6OvqSdQOBKF0KpVNKskDdljHCCK36UVCqlpTRCpiQKtTKZDEDnO7llyxasXr0ahw8fxhVXXIEFCxZg4sSJYVGK8QZ9dD25MFou/YWkpCQkJXWmYmNiYjB48GDU1NS4/fuioiIsWrQIYrEYWVlZyM3NxZ49e3DxxRcH65R7DT6fj8svvxyXX3457HY79u7di+XLl+PFF19EdHQ0rFYrDAYD3nvvPYwYMaKL9npkZCSSk5Mp4/ns2bOUcKhSqcKilkxACFzcskNCQoLLbgfSykl0E44ePQqmpQUKAAizdKi79H16errDjiw6OhoyuQI7z+rw/u5K7Cg9DR4DpDBNmDAgCbPzg0em8wTOvAZ3LaxRUVFIS0ujpEPC8I+Li6MBUzgF8tzWSLvdjoSEBAwYMKBLLV8qlSI3N5eWMbjdGCRoD6d3y9nnQalUYtSoUQ7PYFRUFG1TbWlpwcmTJ3HfffdBKBRCIpGgqakJM2fOxD333INLLrkkrO6btzif1pP+oMEDlJeX4+DBg7jooouwc+dOfPjhh/j6668xduxYvP3225BKpaipqcGECRPoZ1JTU7t9KMIdZ8+exbJly7B161bk5uZi2LBhMBqN+OWXX/Dxxx+joKAAV199tUP7EoFAIKAvCemtrqiocPDDCMUkR3ZspNWTtNo5L6juwNVNaC8thRaAVcDH7t27HYhbwR6XqwVVqVRiwIABbmveVY0G3Pb1IdQ2GyGLFOLPl2Vg0dhkRPE6A75Dhw557WLpbzg7nyoUCmRlZXnUQcHVTiAdJiSQdSZ6BhvOrZFKpdLj1siIiAikpaXRwEiv19PW20C2PvYEruaLTqejmi+etLG2tbXhp59+wg8//ACRSIRJkyYhKioKx48fxy+//AKg01Svr6v6EvT19aQ/aOgBbW1tmD9/Pt577z3Exsbi3nvvxbPPPguGYfDss8/isccewxdffBHq0wwIJk+ejJdfftlhwWBZFseOHcOKFStQUFAAuVxOLb3lcnmX7+Dz+Q6TN1dfIBhtb1y5X1J2SE5O7rVDncBoAgBI5AqMHj0aWq3WIbMS6HZSIrbD3aF2J4hls7PYeVaPJoMFc4YnIjlOglFpcXh8ag6uGqiAiP/H9Y+OjkZWVha9dmRX2xsLdk9A2j1JOYgELfn5+b0KWng8noOgGbl2hw8fBhB4WWtnASl3O29vwW2F5h6jvLwcQqGQEnYDFfC5VqFBTQAANXhJREFUU5fNzs7uMSvQ1NRELabr6uowY8YMPPfccxg+fLjDXGAymfDLL78gRGV0v+N8WE/6OQ3dwGKxYPbs2Zg+fToeffTRLr8vLy/H7NmzcezYsS79r9OnT8cLL7wQFumkQIFlWZw+fZpaekdHR2POnDm45pproFQqe+ypDoQfBnfy1Ol0EAgEdFfpT2Mhw+49UN97L8RjxyLxn5/Sn3O7ElpaWqiDZW/1+7lKg3q9noof9eRL0dBiwveH6rDiYC3qmk0YoIzCqrvHeb3oEydBtVpNsxlE/rm34yLtnnq9HhEREVRrIBgEt0DJWpM2Vq4TJhlXMNLszt0Y/tJF6c17q9Vq8eOPP6KoqAh6vZ5aTPek6Hi+oA+uJ/1ESG/AsixuueUWyGQyvPfee/TndXV1tDb17rvvYvfu3fjuu+9QXFyMG264gRJXJk+ejJKSkj5dh/MGLMuitLQUK1euRFFREQQCAebMmYOCggIkJSV1Oyn01g/DeaEmZYdApmnbN2+G9oknEXnVVUj421su/8Z54fBlXFzZZm89Db7eVYU3N52BnQUuyZZi4ehkXOmUVfAFhIhIWul8HRfxDQgXvoG76+2p+JKrcalUqpAbPpEyhq/vhy8+D8AfJntr1qxBUVERDAYDtZjOy8u7IAIFgj66nvQHDd5gx44dmDhxooN/w6uvvopvv/0Whw4dAsMwyMzMxKeffkpv+iuvvIIvvvgCAoEA7733HmbOnBnKIYQMLMuiurqaWnrbbDbMmjULc+fORVpaWo8BhHNtVKVSdZngSOrc3zspT9H6/ffQv/wKogoKoHj+uR7/3nlc7nbUrmSbPRkXy7I4XN2CoiP1uH5sCgaoorG/sgm/lOiwYFQy0mWBS1FzxyWRSGgGhMsXICp/Go0GBoOB8i7CicDHhXPGyp2sNVGaJBkY0vHQV8blroxBAvGGhgavuEgsy6K2tpZaTNvtdhQUFGD+/PnIysoKy2sSDPTR9aQ/aOhH8MGyLOrr66mld1tbG7X0zsnJ6XECIixsjUYDgUAAoVAIo9Ho0Hrmz7KDp2j+1+do+vhjxN56C6QPPeTVZ7m1e41GA4ZhIBKJYDKZHMSjPKmxVzUasOZIPX442oBKvQESAQ8vzB6IOcMTfR1ar0AkqAnXQiwWw2w2A3DkDvS1xYMra22xWCCRSGCxWGC32wPO9QgkuGUMs9kMsVgMm80Gq9Xqscw6y7KoqKhAUVER1qxZA5FIRC2mU1JS+tw16QdFf8tluCEzMxMxMTHg8/kQCATYt28f9Ho9rrvuOpSXlyMzMxPLli2jBK7Fixdj3bp1iIyMxFdffYXRo0eHegg9gmEYJCUl4f7778f9998PjUaD1atX44knnoBOp8PMmTNRUFCAQYMGdZlc7HY7DAYDTKZO0qFQKASPxwPDMGAYhl63UMCm0wEA+AqF159lWRZmsxkWiwUsy0IoFILP54NhGEr46m6itdrtEPB4MFltmPvpXhjMNozPjMfdl2Vg6uAERItDc01YloXdbofNZoPdbgefzwefzwePx4PNZqM/74sg94NlWfB4PPD5fNjtdlitVlgsFpjNZrAs2+cWSIFAQJ89APS/zWYzTCYTjEYjoqKiurxnLMvizJkzWL16NdauXYvY2FjMmzcP33//fZ+0mL4Q5mJ/oT/TEEJkZmZi3759UHAWnieeeAIymQxLlizB66+/jsbGRrzxxhtYt24dPvjgA6xbtw67d+/G4sWL+7zlt16vxw8//ICVK1eipqYG06ZNw7hx43D48GHs3bsXf/nLX9ym5135YSiVyqDJyGqeeAIdm7dA8dpriJo+rce/J7oB7mSbCcxmMx0XEclSKpWw8cXYelqH9cVq6DvMWHHXOADAz6e0GJQYjeS40MhYc30riGEW4Tdwyy5k/MTW2FP/iFDBuZODEGqdnzFnXYzeGoYFA+QZ687nwdmI6r333kN+fj7GjRuHAwcOYMOGDVAoFJg/fz4KCwsd5rC+iAt9LnaD/vJEuMHVgzpw4EBs27YNSUlJqKurw6RJk3Dq1CncfffdmDRpEq6//vouf9eXQUSkVqxYge+//x5msxnp6ekYOXIkFi1ahFGjRvW4qPiqYd8b1N9+B0yHDkH12T8hGTPG7XlxeRfeGiZZrVZsOlKB/+6tw2G1BTYWSIoVYeYQFRZflQ1hLwmNvsLZ7IsEQJ52vrgSoAoH0yVPeSfdfd7ZMCyUOhdc+PqO2O12HD16FN9++y0OHDiAqqoq8Pl8FBQUYMGCBZgwYcJ5Qfbun4tdor88EW5gGAbTpk0DwzC4++678ec//xkNDQ304UtMTERDQwMAoKamBmlpafSzROyjrz+oL774IioqKnDNNdfgueeeQ0xMDNra2rB+/Xp89NFHKC4uxpVXXomCggKMHz/e5QQlkUiQnp6O9PR06pZ34sQJr9zyvIVNqwUA8DnaFO5kmwcPHuzxotHYYcYvJTpcmi1DQowYFkEUag083DQ+FReniiBjW9HaqsGZ0xa/tHJ6CufWRHe+FZ6Ax+NBLpdDLpc72DuXl5d73ErqL7jrcPFEa8AZDMMgJiYGMTExyM7O7qJzEWxZa4PBQPlAJBs3dOjQHkWk7HY79u/fj6KiImzZsgV5eXmYP38+Xn75ZcTGxqK9vR2bN2/Gl19+idWrV+Ott1x3D/Ul9M/FnqM/aAghduzYgZSUFKjVakydOhWDBg1y+D2p3Z/PePHFF7v8LDo6GgsXLsTChQthNBqxceNGfPXVV3j44Ydx6aWXorCwEJdcconLXalYLEZqaipSU1MpY//06dN+98MgnAZGJqNlh+5km7tDmbYDP5/WYuspLQ5VN8POAs/OHIDrx6Xg6qFKzB6mAo9zvtyF7vTp07SFzt8aAFwBKZZlkZCQgLy8PL8GYAzDIDY2FrGxscjNzaXHPHr0KD2mv4WXnFsjiZZGdwqavkAikTioNwZD1ppLsCXiTyNGjOhR+dJms2H37t0oKirCtm3bMGzYMMybNw8vv/xyF6JxVFQUCgoKUFBQ4LfzDjX652LP0R80hBApKSkAAKVSiblz52LPnj1QqVS0d7eurg5KpZL+bVVVFf1sdXU1/fz5DIlEgjlz5mDOnDkwm83YsmULli1bhscffxwTJkxAQUEBLr/8cpcLtFAoRHJysks/DMIV8MUPw9TcDNZgACsUYu+xY5CdY5l7uui0GC1o7LAgQxaJpg4LrvlkN+wsMCgxGndPzMRVAxTIT4oGAJdmUTweDzKZDDKZzCGlXlZWRtUGExISvK6pc3f93DbDYcOGBY0rEhkZSaW6SXajpKSEZjc8YfO7ApHaVqvVtOUzJSUlaMJCgZK1JiURwr0Qi8Ueq01arVb89ttvWLVqFXbu3InRo0dj4cKFeOuttzyStD6f0D8Xe45+TkOI0N7eDrvdjpiYGLS3t2Pq1Kl47rnnsGXLFsjlckq+0ev1ePPNN7F27Vp8+OGHlHzz0EMPYc+ePaEeRshgsVjwyy+/YMWKFdixYwdGjx6NwsJCXHnllT0ucMQPg5DyPOmt5+66eQ0NkD/7HHhJSUj9cU2Pi462zYxjtS04UNmMXeWNOF7XiglZUvzrppEAgA3H1RieEusXMiOpqXN9DRISEtwuAuHKL3CGM4/CEyVCUqpSq9VBkcH2Fdw2VaBnWWt3Pg/ElbU7mM1m/PrrrygqKsLu3btx8cUXY/78+bjqqqvCyqAsmOifi92inwgZTigtLcXcuXMBdEb8N9xwA55++mnodDpce+21qKysREZGBpYtW0Z3lA888AA2bNiAyMhIfPnllxg7dmyIRxEesNls2LFjB1asWIFt27Zh6NChKCwsxJQpUzwierlTu+OK4IjFYjqZs8XH0XDnnVCn5WFc0Xf0uyw2O6oaDSjVdkDXbsZ1Yzp3H7d9fRC7y5sg4DEYkRqLizKluDRHhlFpcQG9LsT+mpDfCL9DJBL1qU4GZ7jq2CA7davVStPzhPCXkJAQEi0PX2A2m2lAy5W1jouLQ3Nzs0+qqUajEVu3bsXq1atx8OBBTJw4EQsXLsTll18eVoFhqNA/F7tFf9BwIeLUqVO47rrr6P+XlpbipZdeQlNTEz777DMkJCQA6FQnu/rqqwEAr732Gj7//HPw+Xy8//77mD59ekjO3RfY7Xbs2rULK1euxKZNmzBgwAAUFhZi2rRpiI6O7vazFosFlZWVqK+vh9FohEQigUqlQkZGhkOq13zmDCo/WwqbKgkDH70PS3dV4dt9NahtMsJq73y0BTwGe5dMhFjAx76KJgBAflIMIkWhYZq3tbWhvLwcWq0WNpsNsbGxSE1NhUql6hOBgjvY7XZoNBpUVVWhpaWFkiwzMjIQGxsb6tPrFSwWC6qqqlBfXw+DwQCxWEyfx56yAh0dHdi0aROKiopQXFyMq666CvPnz8ell17ap7odLrT5K8zQHzRc6LDZbEhJScHu3bvx5ZdfIjo6Go8//rjD3xw/fhzXX3891TyfMmUKTp8+3acmGgK73Y6DBw9i+fLl+Omnn5Ceno6CggLMnDkTcXGdu/yqqirYbDY0NTU5yDbHxsaiubkZDQ0NPfpG/HCkHttO65AmlSBbEYVsRSSyFJEhE1ki4Ka9GYZxkHfmSh8TSefemjQFC921RhLuikajgc1m63MqlMTXo6GhgZI0iXwzKT0RvolcLofNZkNWVhYAoLW1FRs3bsTq1atx5swZTJ06FQsXLsS4ceP6dGBIcKHNX2GA/pbLCx1btmxBTk4OMjIy3P5NUVERFi1aBLFYjKysLOTm5mLPnj190q2Tx+NhzJgxGDNmDF599VUcO3YMy5cvx5QpU8Dj8agc8DvvvINhw4Z1qSFz7ZRbWlrQ0NCAs2fPIioqCiqVinYrzBmeGDLZZi7c+UC4Ys8nJiYiMTGRlmdqa2tx8uRJv7mN+hvO7oruWiOFQiFtvyXdM4T8Gq5+F858DXckzbi4OMTFxSE3NxcGgwGnT5/GAw88gNbWVkRERMBkMqGwsBBPP/00Ro4cGVb3zx+40OavcEV/0HAB4bvvvqOCJADw4Ycf4uuvv8bYsWPx9ttvQyqVoqamBhMmTKB/Q3qQ+zrOnDmDr776Clu3bsXgwYMxZswYtLe3Y9OmTXj99dcxZ84czJ49GwkJCV0WFIZh6ITN9cMg3QokgAiFAiDZmarVajQ3N3utM8Dj8f7ganDcRktKSoJu5+wM58WU8E0GDhzo0YLI7Z4hbZY1NTU4ceIEYmNjaXAUirFxja46Ojq80r3Q6XRYu3YtVq9eDR6Ph/nz5yMuLg6HDh3C+vXr0dHRgT//+c8YOnRokEYTHFzI81c4ob88cYHAbDYjOTkZxcXFUKlUaGhogEKhAMMwePbZZ1FXV4cvvvgCDzzwACZMmICbbroJAHDHHXdg5syZWLBgQYhH0DucPHkSZWVluPLKKx06CViWxdmzZ6mlt1gsxjXXXIOCggIkJib2OIFz292EQiEl3gWSiW6xWOhiSsoLCQkJPVoVewNu+6VWq+1VK6c3cG6N7E2bpTuwLOtAKiQtj8EYGyGmmkwmj7s5WJaFWq3GmjVrsGbNGrS2tlKL6QEDBjh8lnRHKJVKDB8+PGBjCTYu9PkrROgvT1zIWL9+PUaPHg2VSgUA9N8AcNddd2H27NkAzt8e5EGDBnURbAE6swi5ubl48skn8cQTT6CyshIrV67EbbfdBpZlMXv2bBQWFiI1NdXlxB4dHY3o6GhkZ2dTP4zDhw/73Q+DK0lNHAizsrIC1j7oLLpERIMOHjzoUSunN+C2RlqtVigUCuTk5ASMh8AwDOLj4xEfH+/gMUHG5k/pZ1c+D54IZLEsi7q6OuocabFYUFBQgH/84x/Izs52e11EIhGmTJnS6/MON1zo81c4oT/TcIFg0aJFmD59Om677TYAoKIlAPDuu+9i9+7d+O6771BcXIwbbriBEokmT56MkpKSC45IRCbt77//Ht9//z0MBgO19O5u0ibgav0DoO2Oni5EZDHjai6Em48Bl2zorVQ313CMkDQD7RfiCUhwxg1gvNV24F4fu92OhIQEqFSqHsfGsiyqqqqwevVqrFmzBgKBAIWFhViwYIHboPVCQf/8FRL0d09cqGhvb0d6ejpKS0tp18Cf/vQnHDp0CAzDIDMzE59++il9CV955RV88cUXEAgEeO+99zBz5sxQnn5YQK1WY9WqVfj++++h1+tx9dVXo6CgAAMHDuxxMjeZTDSAIIusSqXqoh0QqrR5b0B0BRoaGhxS7s5Km87KhdxSTrDUJr0FKZVoNJoey0DOPg8kCOopE0PKY0VFRVi7di2ioqIwb948zJs3z6Py2IWA/vkrZOgPGvrRD39Ar9ejqKgIK1euRF1dHaZNm4a5c+ciPz+/R04BkUZWq9Uwm82QyWSQSCRoaWlBS0tLyAl6vYEr++uoqCgYDAbo9XpERkaGvW20OzgTTknpxmw2Q6fTUZ8HIp7VHViWxcmTJ/HDDz9g3bp1kMvlmDdvHubOnUt1B/rRjzCAy6Dh/OrJ6UfQcPvtt1PXPAK9Xo+pU6ciLy8PU6dORWNjI4DOSfKhhx5Cbm4uhg8fjgMHDtDPLF26FHl5ecjLy8PSpUuDPg5fIJPJcNttt+HHH3/Ezz//jCFDhuD111/HZZddhueffx4HDhyA3W53+VmRSASlUonExESIxWLU19ejoqICjY2NUCgUSEtLC1m3Qm8hEAiQkJCA5ORkxMXFQaPRoLKyEg0NDYiJiUFycjJUKlWfCxiAP5w509LSkJCQgObmZlRUVKC2thYCgQCJiYndBgzEYvqll17CxIkT8cILLyArKws//fQTNmzYgD//+c99ImC4kN/7fnSiP9PQD5/w66+/Ijo6GjfffDOOHTsGAHjiiScgk8moVntjYyPeeOMNrFu3Dh988AHVal+8eDF2794NvV6PsWPHYt++fWAYBmPGjMH+/fshlUpDPDrf0NbWhnXr1mHFihU4efIkrrrqKhQUFGDcuHE4e/YsNmzYgEsuuQQ2m42m8QnZzxc/jHCBu9ZIksbntnIS2WeVShV2/hau4InPAyFSarVaMAyDPXv2YNKkSRg0aBAOHjyIoqIibN68GTk5OZg3bx5mz55N0+x9Df3v/QWF/vLE+Y6Ojo6gauyXl5dj9uzZdPIYOHAgtm3bRl3hJk2ahFOnTuHuu+/GpEmTaI81+Tvyz6effgoAXf6uL6OjowP//Oc/8eWXX6K6uhqJiYm44oor8PzzzyMmJqbbzzpbN5NFWCqVhk0AQdoHNRqNV62Rrpw0g9Gm6g0It6ShocFrn4eOjg68/PLL2LJlC2pra5GYmIibb74Z9913X4/3va+g/72/YNDfcnk+o7q6Gtdddx3+97//ITU1NSTn0NDQQMlIiYmJaGhoAADU1NQgLS2N/h0RXHH3876OL774Au+//z4GDhyIJ598EpMnT8a+ffuwYsUKTJ48GZdccgkKCgpw2WWXuUzVczsliBJifX09Tp06hbi4OKhUqpCYS7kidObk5PTo6cGFq1ZOjUZD21Q9JRD6G8QEq6GhAU1NTZRbkpeX1+N1JhbTRUVF2L59O0aNGoWXX34Zl1xyCbZt24bVq1fj0ksvxV133YUHH3wwSCMKHvrCe8+ybNgE3H0d/UHDeQCWZZGamopx48bhu+++w+OPP47GxkZs2rQJERERuOaaa4J+TgzDXLAv6fTp03HjjTc6dAXMmjULs2bNgsViwbZt27By5Uo8+eSTGDt2LAoLCzFp0iSXO21SS5fL5WBZlkopnz59GjExMVCpVAElTTq3RiqVSuTn5/utNTIqKgpRUVHIzMyk7Y7FxcU+t3J6A1c+D54qTlosFmzfvh2rV6/Grl27MH78eCxcuBB///vfHe7jwoULsXDhQpjNZrqYns8I1/f+1ltvxcKFC6meQz98R3/QcB6AvKSJiYng8/nUulUgEFBlNLvdHvCdqUqlov3TdXV1UCqVANwLrqSkpGDbtm0OP580aVJAzzEY6E5MRigUYurUqZg6dSqsViu19H7mmWcwYsQIFBQUYPLkyS4XZYZhIJPJqD0v8cM4c+ZMFz8MX+HcGknKB678K/wNiUSCtLQ0pKWl0fJHSUkJjEaj21ZOb+HK5yE5ObmLz4MrmEwmbN26FUVFRdi/fz8uu+wyLFq0CJ988kmP5E6RSOSwuz6fEI7vvc1mc3gPFi5ciF9++QUCgQAzZszw67EuNPRzGs4jVFZW4tprr0VaWhqys7Px17/+NaCEK+fa5l/+8hfI5XJKiNLr9XjzzTexdu1afPjhh5QQ9dBDD2HPnj3Q6/UYM2YMZVWPHj0a+/fvh0wmC9g5hytsNht27dqFFStWYMuWLRg4cCC19PZEPZAr+cx1ffSkU8G5hh8VFdWF7BdKOJNEveV4uPJ58FSa2mAwYPPmzVi9ejWOHTuGSZMmYcGCBbjsssv6ZIeLPxCO7z3LsrDb7V3uicFgQEREBCwWCzZv3oz333+fCmf1o0f0EyHPV5B63cGDB3HnnXdi0qRJePvtt736jpqaGq/kVq+//nps27YNWq0WKpUKL774IgoLC3HttdeisrISGRkZWLZsGd0VP/DAA9iwYQMiIyPx5ZdfYuzYsQA66/+vvvoqAODpp5+mim8XMux2O/bv348VK1bgp59+QlZWFubMmYOZM2ciNja2x8+TTIFGo3FLNHSlO9AX9CE8PW9ffR6Azuu3adMmrFq1CiUlJZgyZQrmz5+PCRMmnHfOkd4iXN57o9EIk8nkclPEsixefPFFfPfdd5g2bRqee+45KBQKAMAVV1yBu+++GzfccEMvr8QFgf6g4XwFCRr+97//4cSJE7j++usxcOBAhxQduc+uJsyzZ88iLy8P//rXv3DrrbeG3cR4++2348cff4RSqXTY3axZswYikQg5OTn48ssvER8fj/LycgwePBgDBw4EAEyYMAH/+Mc/AAD79+/HrbfeCoPBgKuvvhp///vfw7L+ygXp71++fDnWr1+PxMREFBQUYNasWR61qDlzEiIiImC1WtHR0REQo6tggqugqdPpEBERAZFIBIPB4DUnorm5GevXr8cPP/yAiooKTJ8+HQsXLsSoUaPC/tpcaO9HR0cHHn30USxevBiDBw8G0Oli++mnn+LHH3/E/fffD7PZjLvuugu33norcnNz8cYbbwAA3n//faxfvx7r168P5RD6CvrFnc5XMAwDq9WKU6dOITIyEllZWQDgsPPqjqB08OBBAMAvv/wCHo+H5uZmPPPMM/Tnocatt96KDRs2OPxs6tSpOHbsGI4cOYIBAwbgtddeo7/LycnBoUOHcOjQITohAsC9996Lzz77DCUlJSgpKenyneEIHo+HESNG4OWXX8a+ffvw1ltvob6+HnPnzsXcuXPx5ZdfQqPRuP28UCiESCSCUCiExWKB0WiEwWCAQCBAREQEIiIiwn5RdAeGYSCRSGiwQMZmNpsdxu0Oer0e//73v7FgwQJcc801KC8vx0svvYT9+/fj9ddfx5gxY/rEtbmQ3g+WZREZGYmKigqYzWYAwP3334/rr78e+fn5ePvtt/Gf//yHtsrefffd2Lp1K/38zJkz0djYiBBtls8L9Bd2zhOcPn0aZWVlmDJlikMammVZ/Pjjjzh06BDmzp3roORGsGbNGlxxxRXIy8sD0LnjqK2tRWtrK/0OQqQMxc7j8ssvR3l5ucPPpk2bRv97woQJWLFiRbffUVdXh5aWFkyYMAEAcPPNN2P16tV9SpeeYRjk5+fjueeew7PPPoszZ85gxYoVuP766yGRSDBnzhzMmTMHHR0dWLZsGQYNGoTk5GSXzoqkffL48eOw2WxUAjmYOh++wmAw0NZP0tExZMgQhzZNruOoRqPBgQMHcN111yE+Ph5r1qzBDz/8gObmZsyePRtvv/02Bg0aFJa7ak9wPr4fZWVl1FcC+CObyjAM1Go1Ro0aBb1eDwCYM2cONm/ejNmzZyMhIQGlpaWUgDlt2jQsXrwYR48exbBhw2C1WjF+/HiUl5fTzVU/vEP4h9H98AiDBg3C4sWLMXHiRACO5YhRo0ZBo9Hg5ZdfRnV1tcPnqqursX//fnzyySfYvn072tvbcezYMaSlpdEggmEY8Pn8sJ1Uv/jiC4fJraysDKNGjcIVV1yB7du3A+jkbHD1K/q6JgTDMMjLy8NTTz2FnTt34plnnsGmTZswevRozJ8/HyUlJcjIyMC4ceOQlZXVJUUvFouRlpaGMWPGYOTIkRAKhTh16hR2796N0tJStLW1hWhkrtHe3o6ysjLs2bMHJ06cAJ/Px4gRIzB27Fikp6d30XWIjIxEZmYmxo4di4yMDFRWVmLRokUYPnw41qxZg0cffRS7du3Cs88+i8GDB4fts+0P9JX3w2azUfn1/fv347vvvkNjYyMOHDhAVVOBzpJdbW0tvefTp0+H1WpFS0sLACA7OxtNTU04fvw4gM658YsvvgDQOd/ZbDZkZWX1Zxt8RH+m4TwBj8fDyJEj6f9zJ8HU1FS8//77ANDlRdm8eTPy8vKQnp6O9vZ2mM1mnDhxAhMmTEBSUhKKi4vxwQcfYODAgbjxxhuhVCod2jedW5uCjVdeeQUCgQA33ngjACApKQmVlZWQy+XYv38/CgsLUVxcHLLzCzSOHDmCO+64A0lJSViwYAG++uormM1mrFy5Es888wxMJhNmz56NgoICZGZmulwcRSIRbYUjzo5nz56FwWDwW6ujtyDW4A0NDbT1U6VSYdSoUT12hLAsi+rqaqxevRo//vgjGIZBYWEhXnnlFcTExGDdunX45z//iaeffhoff/wxLrrooiCNKvjoS+8Hdx6RSCR4+eWX8dVXX2HChAn48ssv6e8TExNhNBpRXl6OMWPGQCQSYcyYMVi+fDmWLFmC7Oxs8Hg8/Pzzz8jPz8cTTzyB2tpaAJ2qlKRz4nwOFAOJ/qDhAgC3Hcn5Rdm0aRMmT56MyMhITJgwAW+99RYEAgFGjx6NXbt24Z577sGDDz6IPXv24N5778WKFSvA4/GgVquhVCrpi7xr1y4olUqkp6cHrZ3pq6++wo8//ogtW7bQcYnFYiqqNGbMGOTk5OD06dNISUlxyLKQnvG+jry8PGzdurWLKuNDDz2EBx98kFp6P/LII2hubqaW3nl5eS4nTaFQiKSkJCQlJdFWx/LycrS3twfcD4O0jjY0NFBio0qlQkZGRo/PFMuyKCsrQ1FREX788UdERERg3rx5+N///oekpCSH873ppptw0003oaOj47zebYbj++Gu1GkwGPDf//4Xa9euxcSJEzF+/HgMGzYMDz/8MK677jr6d2STctlll2HXrl2YMGECsrKysHDhQrz00ktYsmQJUlNTMWXKFKSnpwMALr74Yvp5hUKBF1980e/jupDQX564AEDKC86orq7Gtm3bUFhYCKAzbbl7925kZGQgPT0dX3zxBQoLC3HHHXfgvffeQ1RUFPbu3YuDBw9i2rRp+L//+z+88847KC0txX/+8x9qEQwA77zzDo3uA4ENGzbgzTffxA8//OBQh9doNDSNWVpaipKSEmRnZyMpKQmxsbHYtWsXWJbF119/jYKCgoCdX7AQERHhVsaZYRioVCrcc8892LhxI9atW4fU1FQ8/fTTuOKKK/DKK6/g+PHjbhdOPp8PlUqF4cOHY/z48ZBKpaiursauXbtw8uRJ6PX6Xi+6xMzq1KlT2LVrFyoqKhAXF4dx48ZhxIgRSExMdBswsCyLU6dO4Y033sCVV16Jxx57DAqFAkVFRdiyZQseeOABJCcnuw1wIiMjA6Y2GWqE0/tx5MgRGpBwS50Wi4X+zUsvvYRt27bhoYcewk033YTLLrsMhYWF2LdvH1pbW+lzRjKcBQUFEAqF+PHHHwEA8+bNw5gxY9De3o7o6GjMnz8f48aNo99PPh8ZGYn4+Hi/jOtCRX+m4QKGWCzG448/jtTUVNjtdowcORJ/+9vfcNNNNyEuLg4///wzfvrpJwCdixNp2zt48CDEYjFkMhkiIiLw1ltv4ZtvvkFrayveeecdNDU14T//+Q+Vr+5tCYPbG56amooXX3wRr732GkwmE6ZOnQrgj9axX3/9Fc899xyEQiF4PB7+8Y9/UNGYjz/+mLaUzZw5s0+RIP0BuVyOO+64A3fccQeampqwZs0avPzyy6ioqMDUqVNRWFiI4cOHu+wY8KcfBvF5UKvVaGxs9MrnwW6348SJE1i1ahU2btyIxMREzJs3D+vXr4dcLvf52vRlhOP7sWPHDnz//ffYuXMnhEIhPvzwQ6SmpqKpqQn//e9/8c0332DYsGG4+eabcckll8BoNEKlUiE7OxsdHR0AOqXXH374YbS1tVGzLxIApqWl4fbbb8cTTzyBcePGYcKECfjqq68czoHrN9FfivAf+nUa+kGxYcMGPPbYY/j666+RnZ2N+fPnY8WKFZDJZNi5cycefPBB7Nu3D4WFhbjhhhuwaNEiAMAbb7yB0tJSWCwWzJgxA42Njfjtt9/w1FNPYdCgQSEeVT96QmtrK9auXYuVK1fi9OnTuOqqq1BYWOhRyyHXD4MbADiLLTmLMhGfB08CDbvdjsOHD2P16tXYvHkzMjMzMX/+fFxzzTV91mL6fEZJSQkmT56M6dOn4+WXX4ZKpaK/W7VqFXbs2IGHH34YO3fuxPvvv4+ff/4Zhw8fxpIlSzBq1CiUlJTAbrdj7dq1mDdvHmbMmIHW1lbMnDkT+fn5DiTvf//737BYLJg1axZUKlW/MZV/4fpCsiwbin/6EQaw2+0uf261WlmWZdl3332XHT16NHvPPfewN910E/v555+z1dXV7JQpU9iysjKWZVnWYDCwt956K1tUVEQ/f9NNN7Fz585lFy1axGZnZ7Nbt251ew4ajYY1GAx+G1NvcNttt7EJCQnskCFD6M+ef/55Njk5mR0xYgQ7YsQIdu3atfR3r776KpuTk8MOGDCA3bBhA/35+vXr2QEDBrA5OTnsa6+9FtQx9BYdHR3sypUr2RtuuIEdOnQoe//997MbN25kW1pa2Pb29m7/aWtrY2tqatiDBw+ymzdvZn///Xf24MGD7K5du9jNmzezBw4cYKurq9m2trYev6u1tZX9+eef2cWLF7PDhg1jFy5cyH733XdsS0tLqC+Rx7hQnye9Xs8+8cQT7MqVK1mWZdn6+np2xYoVrNFoZO12O1teXs4++uij7MiRI9m0tDR23bp1Dp9vampiZ8yYwR4/fpw9dOgQe+edd7IzZ85kjx071uVYVquVNZlMbueyfvQKLtfv/qChHxQkWODiwIED7FtvvcXu3buXZVmWfeaZZ9h77rmHbWtrY1mWZbdv387eeuut7I4dO1iWZdny8nJ24sSJ7Ndff82yLMt+8skn7JIlSxy+22azsSzLsnv27GEfeOAB9osvvnD4eajwyy+/sPv37+8yyb/11ltd/ra4uJgdPnw4azQa2dLSUjY7O5u1Wq2s1Wpls7Oz2bNnz7Imk4kdPnw4W1xcHMxh+A1Go5Fds2YNe8stt7BDhgxh77rrLnbdunVsc3Oz28W+ubmZPXv2LPv777+zGzduZLdu3cpu3LiR3blzJ3vmzJluP9vS0sL+9NNP7H333ccOHTqUvfHGG9lVq1axHR0dob4UPuFCfZ6sViv7zTffsMOHD2evueYadtSoUeyf/vQnVq/XsyzLsk8++ST75JNPsizLsg8++CD72GOPsY2Njezp06fZl19+mZ02bRp72223sSaTKZTD6Ieb9buf09APCle8g1GjRmHUqFH0/wcOHIjLL7+ckquqqqqQnJyM8ePHAwDWr19PzZYAICYmBgcOHKDumwzD0HT0I488gldeeYUKynDbOEMhJOVKJMcdioqKsGjRIojFYmRlZSE3Nxd79uwBAOTm5iI7OxsAsGjRIhQVFSE/Pz9Qpx0wiMVizJ49G7Nnz4bZbMbWrVuxcuVK/OUvf8H48eNRUFCAK664As3NzVi+fDmGDRsGoVAIhUKBrKwsB5+HtrY2NDQ0YP/+/WBZFnv27MG1114LuVyOnTt3YvXq1fjtt98wbtw4LFiwAO+8846DtXhfxPnwPJGFYteuXbjkkks8+gyfz6fcmJkzZ+Lee++lv2tubkZVVRWuvvpqAJ1mYtu2bcNdd92FsrIyVFVV4amnnuriemm328PWdvtCQ3/3RD96BMvhvdx0002YOnUqfXlHjRqFH3/8kU4M27Ztw6WXXkqtndesWYMpU6YAAGVtA8B///tfCAQCXHHFFbDb7di6dSvtF+e2htrtdofPhQIffvghhg8fjttvvx2NjY0AOsVwuFbHRAzH3c/7OkQiEaZPn45//vOfOHToEObMmYN3330XWVlZuOqqq3DgwAEkJydjwoQJyM3N7aLrEB0djZycHFx00UVIS0vD8ePHMX36dGRlZeG1117DlClTcPDgQXz55ZeYNWtWnw8YukNfeJ6IRDPDMNi7dy/uuOMOt++hq58nJSXhyiuv7NL5EhkZiSlTpuCjjz7C5ZdfjqamJtx///1ISkrCjBkz8I9//IMGDNx5J1RqtP3oiv6goR89gvuycl9koFNt7fvvv8fEiRNRUlKCsrIyjBgxAgKBAO3t7Th8+DAlTJJMglqtxqZNm6izXUNDAz766CPcfffdGD9+PB555BE0NTXRz3AzIBs3bnRo1Qo07r33Xpw9exaHDh1CUlISHnvssaAdOxyxZ88ezJgxA2+//TZmz56NPXv24KuvvoJSqcSNN96I2267DUVFRZQBT2A0GrF27VrcddddmDdvHmJjY/HZZ59h3759mD9/Pj7++GNMnToVv/76a4hGFhz0heeprKwMgwYNwu+//w6gU8vl3nvvddsB5ernsbGxGDt2LPbu3QsAOHbsGJ5//nmsWrUKt912Gx577DH87W9/wzfffIO7776bureSzAbQ3/EQrugvT/TDK7h6kXNycpCTkwMA1AYX6CxVmEwmpKWlgWVZGjTo9XrU1dXRlq6zZ8+isbERzz//PKZOnYqCggK89957qKmpgV6vx6uvvoqBAwfCZDJh586diIqKwqWXXhqU8XKZ33fddRdmz54NAEhJSaH69oCjGI67n58PyMjIwFdffeUgOZyXl4eJEyfCbrdj3759WL58Od544w3k5OQgNTUVtbW1OHXqFCZPnoz77rsPEyZMcFhoHn74YTz88MOoq6ujMsLnK/rC80SyP6+88goKCgpoZglwbGMEOi3I//e//2H79u144403qAaCQCDA4MGD8de//hX5+flITEzE2LFjqfrm/Pnz6Xdwv7M/UOgDcEd2CPA//bgA0NzczO7bt49l2U5yFCE6rlmzhr3iiitYlu3svvjkk0/YRx99lJIlk5KS2Jdeeolta2tj58+fzy5dupR+55NPPsm+8847LMu67/7oDcrKyhyIa7W1tfS/33nnHfa6665jWZZljx075kBcy8rKYq1WK2uxWNisrCy2tLSUEtdcsb7Pd9hsNvbAgQPs/Pnz2T179oSc5Boq9OXnaceOHewNN9zAZmVlsdXV1S7/ZunSpeytt97KLl26tMs9bmlpYZcvX84ePXo0GKfbD/+jnwjZj+AiNjYWY8aMAQBKhAQ6U9xXXnklgM5dVGVlJXJzc8Hn8/Hbb79BpVLh2WefBQBceumlKC8vpwJRx48fx4wZMwD4f1fiSiRn27ZtOHToEHXc+/TTTwEAQ4YMwbXXXov8/HwIBAJ89NFHdPf84YcfYvr06bDZbLj99tsxZMgQv55nXwCPx8OoUaN6dFc8n9HXn6dLL70UOp0O3377Ld577z0sWbKECmix57IDN998M26++WaXn4+JicGCBQvo/3M9a/rRd9Ev7tSPoKOoqAilpaV45JFH8PPPP+Mf//gHHn74YVxyySVYvHgxeDwe3n33XZSXl+Pzzz+HUqnEgw8+iNraWrz88suYP38+Jk+eHOph9KMf5y1IULB48WKkpqaiuroazc3NePTRRzF8+PAuf0u8bfpxXsHlrqw/7OtH0DFmzBgYDAYAnW1pTz75JG27/Oabb2idt7KyEjqdDmPHjgUAHD16FCKRiHZm9HXcfvvtUCqVGDp0KP3Zddddh5EjR2LkyJHIzMykzqXl5eWIiIigv7vnnnvoZ/bv349hw4YhNzcXDz30UBeyaj860X+9PQfDMLBarWhtbcVFF12EF198ERdddBEWLVpELae5f9sfMFxAcFe3CPA//biAYbfbuyj7kXroxo0bWZbt5EB8+OGH7M0330wVI//yl7+wb7zxBqvRaIJ7wv/f3t2ERPHHcRz/LP2hTkYPZIN10N0BtXJ7oDKIomRY66CZQkiQhzp16CDU3ZPXukQXo/VSdAg9CCWd2kAhtiAIyuiBrBardSM6CMV+/4fF+ftYv+zv0/p+wV5Gd/fHgOzb2ZnvzJOZhv9M1N7ebh0dHWY2/bvxifbu3WsDAwOWz+etvr5+2oQ9FLC//8ynT5+surraxsbGwm09PT3LdtgW/tiMn98cacCCi0Qi4Q1oxo1/1xkEgcxMq1atUl1dnU6dOqU1a9ZoaGhIDx8+VFNTkzZu3LgYy/7fHTp0KLxZ0FRmptu3b6u1tfWXr5HJZPTt2zfV1taG3zH39PTMw2qXP/b3n3n+/LlaWlrCS5zz+bwaGxuL5kgf5oZowJIzfoJjZWWljh8/rlevXunGjRs6duyYfN8vysPBU6VSKZWWlsr3/XDbmzdvtGvXLh0+fFipVEpSYSjQxMsfi2WY1EJjf0938OBBdXR0hLde5yRGSMxpwDLw9OlTJRIJxeNxSSvjWu6bN29O+q/X8zy9e/dOGzZsUDqd1okTJ8IJmvh77O/pxv/OzLhzJP5DNGDJa2pqWuwlLKifP3/qzp07SqfT4bbVq1eHo5X37NmjaDSqoaEhlZWV6f379+HvFdswqYXA/v41ggETcbwJWGLu37+vysrKSYfBP3/+HM74f/36tV6+fKmKigp5nqeSkhINDg7KzNTd3a3GxsbFWvqyxP4G3BENwCJpbW3VgQMH9OLFC23ZskVdXV2SpFu3bk07Ie/BgweqqanRzp071dLSomvXroUn9V29elXnzp1TLBZTNBoNx3NjMvY38PcY7gQAAKZiuBMAAJg7ogFYAYaHh3XkyBFVV1dr27ZtunLliqTCHUeDIJDv+wqCQLlcTlLhjPkLFy4oFouppqZGjx8/Dl8rmUzK9335vq9kMllUawLwG7NNfZrnB4AF9PHjR0un02ZWuPug7/v27Nkzu3jxonV2dpqZWWdnp126dMnMzPr6+qy+vt7y+bwNDAzYvn37zMwsm81aeXm5ZbNZGx0dtfLychsdHS2aNQEIMRESWKk8z9Pu3bslFe4+WFVVpQ8fPqi3t1dtbW2SpLa2tnC6YW9vr86cOaNIJKLa2lp9/fpVmUxG9+7dUxAEWr9+vdatW6cgCHT37t2iWROAXyMagBXm7du3evLkifbv36+RkRF5nidJ2rx5s0ZGRiQVJh9u3bo1fM745MPZthfjmgBMRzQAK8j379/V3Nysy5cvq6SkZNLPIpHIogzyWYprAjAzogFYIX78+KHm5madPn1aJ0+elCSVlpYqk8lIKtyMadOmTZKksrIyDQ8Ph88dn3w42/ZiWhOA2RENwApgZjp79qyqqqrU3t4ebm9oaAivNkgmk+F0w4aGBnV3d8vMNDg4qLVr18rzPCUSCfX39yuXyymXy6m/v1+JRKJo1gTgN2Y7Q3KeHwAWUCqVMkm2Y8cOi8fjFo/Hra+vz758+WJHjx61WCxmdXV1ls1mzcwsn8/b+fPnraKiwrZv326PHj0KX6urq8ui0ahFo1G7fv16Ua0JQGjGz28mQgIAgKmYCAkAAOaOaAAAAE6IBgAA4IRoAAAATogGAADghGgAAABOiAYAAOCEaAAAAE6IBgAA4IRoAAAATogGAADghGgAAABOiAYAAOCEaAAAAE6IBgAA4IRoAAAATogGAADghGgAAABOiAYAAOCEaAAAAE6IBgAA4IRoAAAATogGAADghGgAAABOiAYAAOCEaAAAAE6IBgAA4IRoAAAATogGAADghGgAAABOiAYAAOCEaAAAAE6IBgAA4IRoAAAATogGAADghGgAAABOiAYAAOCEaAAAAE6IBgAA4IRoAAAATogGAADghGgAAABOiAYAAOCEaAAAAE6IBgAA4OSfRXrfyCK9LwAAmCOONAAAACdEAwAAcEI0AAAAJ0QDAABwQjQAAAAnRAMAAHDyL796IiOI/tR5AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n", + "Trajectory Kinematic Plots\n", + "\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAALJCAYAAAByYL20AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAADweklEQVR4nOzdeXxcVfn48c8z2Zs2k+50g6ErlK2UfQ+bAgOCKAgqiyKgooK4MMhPvYJ8GVFRFBSKIIusiqwDZamEfS0UKJRCgSlt6d502jRJm+X8/jh30kk6M5nMnuR5v17zmjvn3nvuOXOT5uk5554jxhiUUkoppVT6PIUugFJKKaVUX6cBlVJKKaVUhjSgUkoppZTKkAZUSimllFIZ0oBKKaWUUipDGlAppZRSSmVIAyrVb4iIT0SMiJRmmE+jiEzMVrkKTUTeE5G6LOYXFpGjMjjXl62yZMr9eZmcx+v1q5+tWMX0c6ZUIWhApYqKiMwWkcvjpJ8oIisyDZZSYYwZbIz5xL3urSLy23Tzcv8obBGREd3S33L/mPsyLG6PjDG7GGPq3es6IvKvXF8zEyJS5343lxS6LJkQkXoR+U5sWuzPVpavpT9nShWYBlSq2NwGfFNEpFv6GcCdxpi2ApQpU58Cp0c/iMhuwKDCFafonQWsA84sdEESyUdgnwb9OVOqgDSgUsXmQWA4cEg0QUSGAscDt4uIR0QCIvKxiKwVkftEZFi8jERkrIg8LCLrRGSRiJwbs69ERH7h5rNRROaKyAR3nxGRySJyHvAN4OduV80jIvIzEbm/23X+IiLXJqnTHXQNDs4Cbu+Wh99tTdggIktExOm2/0wRWezW+Zex3SFua8B9InK7W5f3RGTvmHPDInKUiBwD/AL4mluft2P3xxzfpXVBRM6IufZl3cqV8v1IhYhUA18FLgCmxNbD3X+uiCxw6/m+iMx00yeIyH9FZLVbjutizvm2e06DiDwhIjskuHaFiPxBRD4TkZUicoOIVLn76kRkqYhcIiIrgH+KyFARedS9ZoO7Pd49/krsz/B17nd9nZve2cUoIl73nq12v9//JyIed9/ZIvKCW54GEflURI7t4evTnzOlCkgDKlVUjDHNwH10/cNwKvCBMeZt4IfAScBhwFigAbg+QXb3AEvd474K/J+IHOHuuxj7v/njgBrg20BTt7LMAu4Erna7ak4A/gUcIyK10NlScRrd/nB18wpQIyI7i0iJe3z37pBNbp1rAT/wPRE5yb3GdOBv2OBuDOAFxnU7/0tufWuBh4Hruu3HGDMb+D/gXrc+eyQpMzHX/ju2hXAsNtgdH3NIb+5HKk4GGoF/A09gg4JoWU4BHOz3VIOt81r3O30UWAz4sN/NPe45J2L/uJ8MjASeB+5OcO0gMBWYAUx28/lVzP7tgGHADsB52H8//+l+3h5oxv3ejTGXudf6gftd/yDO9f6KvZcTsd/fmcC3YvbvBywERgBXAzeLbNNyG0t/zpQqJGOMvvRVVC/gYGA9UOl+fhH4sbu9ADgy5tgxQCtQiv1jatztCUA7MCTm2KuAW93thcCJCa5vgMnu9q3Ab7vtfxw4190+Hng/SV3CwFHA/3OvfwzwlFtGA/gSnPdn4E/u9q+Au2P2DQK2AEe5nx3g6Zj904Hm7mWIOfZf8coY87nzGPfa98Tsq+527YT3I8n3EbfO7v6ngT+726cDq4Ey9/MTwIVxzjnAPW6ba7r36pyYzx5s4LxD7L0GBBtsTOqW76fudp1b78okZZ8BNMR8rge+E+9nCyhx85ses+98oN7dPhtY1O2eG2A7/Tnr+edMX/oqxEtbqFTRMca8AKwBThKRScC+wF3u7h2AB0RkvYisx/5D2w6M7pbNWGCdMWZjTNpitv6PewLwcZpFvA34prv9TWxXS0/uAL6O/UO5TWuWiOwnIs+43T8R4LvYlgmwdVkSPdYY0wSs7ZbFipjtJqBSsjPOp/u1N3W7dqr3o0diu1wPx7YKAjwEVGJbUiDxPZsALDbxx9ftAFwbU7512OCpe8vLSGwAMTfm2NluetRqY0xLTHkHiciNbjfVBuA5oNZtHerJCKAM+zMZFfvzCTH31L3nAIN7yFd/zpQqEA2oVLG6Hds18U3gCWPMSjd9CXCsMaY25lVpjFnW7fzPgWEiMiQmbXtgWUw+k1Ioh4mT9iCwu4jsim2hujPOMV0zMWYxdtDwccB/4xxyF7YLZYIxxgvcgP3DD7CcmO4Pd1zP8BTKHrcocdI20XXw8nYx28uxAUv02oO6XTvV+5GKM7D/Jj3ijlP6BBtQRbv9Et2zJcD2Cf6wLwHO71a+KmPMS92OW4Ptstsl5jivMSY2gOn+3f0EmAbsZ4ypAQ510yXB8d2v14oNFKJifz7Toj9nShWOBlSqWN2O7cI4F9siFHUDcKW4A4tFZKQ7TqYLY8wS4CXgKhGpFJHdgXPYOqbkH8AVIjJFrN1FJN4fj5XYMS6xebcA/8H+cXrNGPNZinU6BzjC/d93d0OwLWotIrIvtpUh6j/ACSJyoIiUY7tKko2lSWYl4IsOfnbNA04TkTJ3kPFXu137eBE52L325XT9dyOl+5Gis4DfYLvOoq+vAMe59+YfwE9FZC/3nk12r/sa9g9yUESq3ft9UEz5LhWRXdzyed2xWF0YYzqAm4A/icgo99hxIvLFJOUdgg3C1rsDpH/dbf82Pzsx12vHjhW8UkSGuPW4mG3HPKVDf86UKgANqFRRMsaEsQFRNfZ/1FHXup+fFJGN2IG4+yXI5nTsuKrPgQeAXxtjnnb3XYP9g/YksAG4GaiKk8fNwHS3q+HBmPTbgN1IrbsvWqePjTFvJNj9feByt06/cssWPe897KDce7CBQyOwCtic6rVj/Nt9Xysib7rbv8S2/DRgA5po92r02he4acvdY5bG5Neb+5GQiOyPba253hizIub1MLAION0Y82/gSrcsG7EthcPc4OQE7Nikz9zyfc0t/wPA74B73G65+UCip+Uuca/1invs09gWqET+jP2ZWePWe3a3/dcCXxX7lN5f4pz/Q2yrzSfAC269bklyvZToz5lShSHGJGuVVkrFIyLbAx9gBwlvyPO1B2MH7U8xxnyaz2tnSkTCQJ0bMKsi1pd/zpQqBG2hUqqX3G6Mi7FPJeUlmBKRE9xB0NXAH4B3sU9NKZU1+nOmVPpyN9uv463EPvVS4V7nPziRX+N4d8Q2KQ8H5gJn4ES24HgrsONm9sI+3fE1nEg4Z+VTKg3uH5qV2CeyjsnjpU/Edi8K8AZwmumbzct/xrZ6qOLUX37OlMq7XLZQbQaOwInsgR1cegyOd3/seIY/4UQmY/vJz3GPPwdocNP/5B6nVFExxmwydrLCXdyB7/m67ndinjw70hizMF/XziZjzJ+NMesLXQ4VX3/5OVOqEHIXUDkRgxNpdD+VuS8DHIF9ogPswN6T3O0T2fo013+AI3G86T5hopRSSimVN7ld4NPxlmC79SZjlwn4GFiPE4lOwLeUrRPZjSM6sZsTacPxRrDdgmsSZe/xeExVVbwHs/q3jo4OPJ6BN/xN6z2waL0HFq33wJKo3k1NTcYY0ye/kBwHVJF2YAaOtxb72PpOmefpPQ+7jhYVZSWEQqGMs+xrGhsbGTy4pwmT+x+t98Ci9R5YtN4DS6J6H3744c0FKE5W5DaginIi63G8z2DXxqrF8Za6rVTj2Toz8DLsTLlLcbyl2IU5uy97AE5kFjALwAQrTV1dXe7LX2Tq6+vReg8cWu+BRes9sGi9+48cjqHyjnRbpsDxVgFHY9dfeoatM+SehV2vC+ykbdElJr4K/A8nok+XKKWUUqro5bKfcgzwDI73HeB14CmcyKPY2YgvxvEuwo6Rutk9/mZguJt+MRDIYdmUUkoppbImh/NQRd4B9oyT/gmwb5z0FmCbNbaSMTVjWNO4mRGDK7bdufhlmH0JHPlrmHxkb7JVSimllOqVPjmSvlNJKXMWrIy/79W/w/K34cHvQ9uW/JZLKaWUUgNK3w6oklkxH0rKoXEFLHq65+OVUkoppdKUn6f88s0YWL8Y9vsuzLsT3n8Qdjqu0KVSSimlVAZ8gdAtwPHAqnDQv6ubNgy4F/Bh1548NRz0N/gCIQGuBY4DmoCzw0H/m7kqW/9soWpZDx1tUDMWph4DHz4B7a2FLpVSSimlMnMr266jGgDmhIP+KcActj7UdiwwxX2dB/w9lwXr8wFVpLmVw37/DKfc8BKfrHZXutnkTl81aATs5LcB1uKXClZGpZRSSmUuHPQ/B6zrlhy7dF33Je1uDwf9Jhz0vwLU+gKhMbkqW5/v8ntz8XoWr21i8domrp3zEdeetic0uavVVA+H7Q+A0kr4IAQTDytsYZVSSimVkKeqptQXCL0RkzQrHPTP6uG00eGgf7m7vQIY7W5vXdLOii53t5wc6PMB1fzPIwAcNnUkr3/qBq2b3IBq0Agor4ZJR9iA6tjfgeh6y0oppVQx6mje0BYO+vdO9/xw0G98gVBBJgXv811+SxuamTiimiN3HsXnkRaWNjTFtFCNsO87+WHDUjuNglJKKaX6k5XRrjz3fZWbHl3SLip2ubus6/MtVAC7jPOyj28YAK99uo7xsS1UYAemiwcWPAJjZxSmkEoppZTKhejSdUG2XdLuB75A6B5gPyAS0zUYly8Q2hs4BBgLNAPzgafCQX9DT4XoFwHVbuNqmDZ6CDWVpbweXsfJg9ZC+WAoq7QHVI8A3yHw3gNwxP/Tbj+llFKqD/IFQncDdcAIXyC0FPg1NpC6zxcInQMsBk51D38MO2XCIuy0Cd9Kku+3gB8CnwJzgYVAJXAwcIkvEJoP/DIc9H+WKI9+EVDtPKYGj0eYucNQ3vpsPUxYA4OGdz1o16/AIz+y3X7aSqWUUkr1OeGg//QEu7ZZYy4c9BvgghSzHgQcFA76m+Pt9AVCM7DTL/TvgGq7GtsSNXX0EF76eC3tw9ZSEh0/FbXzCRC6GObfrwGVUkoppTqFg/7re9g/r6c8+kVAFV0cefLIwWxp62BZZAvbD+sWUA0aZp/2e+8BOPpy7fZTSimlFAC+QOhKYEfg+8Bl4aD/Z73No88/5QfgrSoDYNKoagAWNZZvfcIv1i4nQ2QJLH09n8VTSimlVHEbD1wEXANsl04G/SKg8nhsa9OkkYMB+Li5etsxVGDX8yupsN1+SimllFJWJBz0rwIc4PB0MugXAVVU7aByRlSXsah9dPwWqkovTDka3nsQOtrzXj6llFJKFZ9w0P8j9/0zYId08uhXARXAxKFlfNwxduscVN3t+hVoXAGfPpvfgimllFKqqPkCoauBal8gVOYLhOb4AqHVvkDom6mc2+8CqslewyIzFhOvyw9g2nFQ4YV5d+e3YEoppZQqdl8IB/0bgOOBMDAZSGmAep8PqGoHlXX5PKm6hfUMYZ0nQUBVVgm7fcXOmt6yIQ8lVEoppVQfEZ39wA/8Oxz0R1I9sc8HVMOry7t8nlxpg6RFzYMSn7TH16GtGd5/MIclU0oppVQf86gvEPoA2AuY4wuERgItqZzY5wOqsbVVXT5PKrXr+H28sSze4db4vWH4FJh3Vy6LppRSSqk+wBcIjQUIB/0B4EBg73DQ34pdsubEVPLo8xN7Xn7irl0+jzUrGcx2vL9qc+KTRGDG12HOb2DtxzB8Uo5LqZRSSqki9g9fIDQMqAdmAy8AhIP+TcCmVDLoOaByvHFXXsaJ9Ljycj7UVnVtifK0NLB72VLmLR2d/MQ9ToP/XQFv3wNHXJbDEiqllFKqmIWD/uN8gVAlduHlLwN/8AVCn2GDq9nJFkWOShxQOd6kKy/jeOcDv8SJ9HiRXPJ0X0KmuYEZlSuZtXwjW9o6KC9N0KtZMxYmHm67/eoC4CnJfWGVUkopVZTCQX8LbgAF4AuEdgSOBa7zBULbhYP+fZOdn6yFahBwEE4k7srLON4Z9LDycl50X5KvJcJ2Ve20bTRsaGntXOcvrr3OgvvOhI+ehGnH5rSYSimllOobfIFQDRAB7nFfjT2dk6SFKpJ05WWcyLxelS5HtlnjuLmBwRW2Wps2tyUPqKYdB4O3g9dv1oBKKaWUGuB8gdD5wG+wT/YZN9mEg/6JPZ2byhiqq4HfYsdPzQZ2B36ME/lXugXOqeb1DK61QdTGlrbkx5aU2VaqZ6+GhjAM9eW8eEoppZQqWj8Fdg0H/Wt6e2IqT/l9ASfycxzvl7Gzhp4MPAcUaUDVwOAxlQA0bu4hoAKYeSY893uYeysc5eS0aEoppZRKny8QmgbcG5M0EfgVUAucC6x2038RDvofS+MSH2OnSui1VAKqLrOG4kQiON50rpUTXXr82luhdRMVVXZSz5bWFBZA9o6HqcfCm3dA3aVQmqSLUCmllFIFEw76FwIzAHyBUAmwDHgA+Bbwp3DQ/4cML3Ep8JIvEHoV6Jx/Kbp4cjKpBFSP4ng/wHb5fQ/Hm9qsoY53AnA7MBrbDzkLJ3ItjncYNrr0YVu8TsWJNOB4BbgWOA4bHZ6NE3kzhfJt1bwegJLKIQB0GJPk4Bj7fBsWhuxyNLt9tVeXVEoppVRBHAl8HA76F/sCoWzleSPwP+BdoKM3JyabNmEsTuRznEjAHUcVwYm043hTnTW0DfgJTuRNHO8QYC6O9yngbGAOTiSI4w0AAeAS7KOJU9zXfsDf3ffUNdupsUoqBwPQnupXMfEIGLojvDZLAyqllFKqbzgNuDvm8w98gdCZwBvAT8JBfzrzZZaFg/6L0ylMshaqf7itSfXEzBqKE0lt1lAnshxY7m5vxPEuAMZhg7E696jb3PwvcdNvx4kY4BUcby2Od4ybT2pa1gPgqawBWmnvSLGFyuOB/b4Lsy+BpW/YpWmUUkoplVeeqppSXyD0RkzSrHDQP6v7cb5AqBz4EraLDmwjzBXYHrErgD8C306jCI/7AqHzgEfo2uW3rqcTk02bcByOt8usoTjezllDezWhp+P1AXsCrwKjY4KkFdguQbDB1pKYs5a6aV0DKsd7HnCe/TCKF154gapSO5Jq2No32B1Y+OkSYDvenT+fyjUfpFTEkrbtOaCkmnUP/Zr3d/lZylUrhMbGRurr6wtdjLzTeg8sWu+BRes9sCSqd0fzhrZw0J9Kq8axwJvhoH8lQPQdwBcI3QQ8mmbRTnffL41JM9jB70klH0PlRLrMGorj7Zw1FMe7HU4k6ayh7jmDgfuBi3AiG7oMaHciBsebYjNS5zmzABut3jjFHHLIIZ3zTvH2SngXdpt5ALz9KTvtPJ26PcamnnfHOYx6+XpGzZgItdv3qlj5VF9fT11dXaGLkXda74FF6z2waL0HlizU+3Riuvt8gdCYcNAfbYD5MnaZvF4LB/07plugBOuyxOF4Y2cNPRu7BE1P55Rhg6k7cSL/dVNX4njHuPvHAKvc9GXAhJizx7tpqXPHUNkuv14MSo/a73z7/uqNvTtPKaWUUnnhC4SqgaOB/8YkX+0LhN71BULvAIcDP+5lnkljGl8gVOMLhHZNdkwqE3vGnTUUJ5K8+cs+tXczsAAnck3MnoeBs4Cg+/5QTPoPcLz3YAejR1IZP9Vl2gR3DFVJlX3KL+UxVFHe8bDLl+HN2+36fhVDene+UkoppXIqHPRvAoZ3Szsjw2y/4guErsb2yM3FzmdVCUzGBmg7AD9JlkEq0yb8FNgVJ9LbWUMPAs4A3sXxznPTfoENpO7D8Z4DLAZOdfc9hp0yYRF22oRv9fJ6toWqooaS0jIgjYAK4IALYP5/7LxUB3y/9+crpZRSqk8JB/0/9gVCw4CvAKcAY7DTRS0AbgwH/S/0lEcqAVV6s4Y6kRfYduniqCPjHG+AC3p9nVjN66GqFo/HXrbXXX4A42bC9gfCy9fDPt+B0vKMiqSUUkqp4uc+yXeT++q1VAKqS4GXcLxdZg3FifQ4a2g+dFkcubkBKmspcRNTnoequ0Muhju/Cu/cCzMzbUVUSimlVH+XSkCV9qyhedeyHqqG4nGH2ren00IFMPkoGLMHvPAnmPF18JRkrYhKKaWU6n9SCajKcCJpzRqad80NMGrnzhaqjnTGUIFt9jrkJ3DfmfDeAzp7ulJKKaWSSiWgetydTLPLrKE4kR5nDc275vVQNZQST7TLL82ACmCnE2DENHj+GtjlZDqbvZRSSinVb/kCoQOx6w13xkjhoP/2ns5LJaBKe9bQfJDouHdjbJdfZYaD0qM8HjuW6oHz4cPZsNNxmRdWKaWUUkXLFwjdAUwC5gHtbrIBshBQOZG0Zw3Nq9YmaN8CVbGD0jMIqAB2/So883/w/B9g2rHdRsArpZRSqp/ZG5geDvp7HUAk7sdyvMlnQne8NTjepLOG5lXzevse2+WXSQsVQEkpHPxjWDYXFs3JLC+llFJKFbv5wHbpnJisheorON6MZg3Nh85GI3fZGSprO9PSHpQea8Y37NN+/7sCJh+prVRKKaVU/zUCeN8XCL1GzLjxcND/pZ5OTBxQOZEf43gTzhrqTtxZPNxlZ6gauvUpvyzEU5SW22VoHvwefPAo7HxCFjJVSimlVBFy0j0x+Rgq+yRf2rOG5lW0haqqNjtP+cXa7VT7tN//roRpx+m8VEoppVQ/FA76n/UFQqOBfdyk18JB/6pUzu0/cwHEjKESEUQyfMovVkkpHH4prF5g56VSSimlVL/jC4ROBV7D9sydCrzqC4RSmoyyHwVUW8dQAZSIZK+FCmD6l2HULvapv/a27OWrlFJKqWJxGbBPOOg/Kxz0nwnsC/wylRP7T0DVsh6kBCqGAODxSOZP+cXyeOCIy2Ddx/D23dnLVymllFLFwtOti28tKcZKKcxD5Z0L3ALchRNpSKt4+dDcAFW1nU/hlYhk5ym/WNOOg7Ezof4quxxNWVV281dKKaVUIc32BUJPANGWk68Bj6VyYipR19eAscDrON57cLxfxPEWzdwBW6dNWA9VQzvTSzxCe7aXchaBL1wBG5bBK3/LcuZKKaWUKqRw0P8zYBawu/uaFQ76L0nl3FRmSl8EXIbj/SVwPLa1qh3H+0/g2qJZ06+5oXP8FIAnm4PSY/kOhqnHwvN/gplnQfWI7F9DKaWUUnH5AqEwsBG7NExbOOjf2xcIDQPuxa7BFwZODQf9afWqhYP++4H7e3teKmv5gePdHfgWcJx7kTuBg4H/ATN6e9GcaFkPg7YGN7aFKgcBFcDRv4G/HQDP/g6O+31urqGUUkqpRA4PB/1rYj4HgDnhoD/oC4QC7ueUWpYAfIHQC+Gg/2BfILQRu3ZflAAmHPTX9JRHqmOo1gM3AwGcSHTm0FdxvAelWthc6VwcuXk9DJ/cmV6S7UHpsUZOg5lnwhu3wL7nw4jJPZ+jlFJKqVw5Eahzt28D6ulFQBUO+g9234ekW4BUxlCdghM5EidyV2cw5XjtgslO5OR0L5x123T55WBQeqy6S6GkAuY4ubuGUkopNYB4qmpKfYHQGzGv8+IcZoAnfYHQ3Jj9o8NB/3J3ewUwOp3r+wKhO1JJiyeVLr//ADPjpO2VygXyoqMDWiJxBqXnMKAaMhoOuhDq/w8+ewW23z9311JKKaUGgI7mDW3hoH/vHg47OBz0L/MFQqOAp3yB0AexO8NBv/EFQukGALvEfvAFQqWkGO8kWcvPu5ObsRfHG9sSVYNdJLkoiACbI4Cx0ya4PJLDLr+oA39gu/2e+AWc87Sdq0oppZRSORMO+pe576t8gdAD2Mk3V/oCoTHhoH+5LxAaA6S0XEyULxC6FPgFUOULhDa4yQJswT7116NkLVTTsE/11QKxKwJvBM7tTUFzLmbZmagST467/ADKq+0A9QfOt5N97vmN3F5PKaWUGsB8gVA1dvLNje72F4DLgYeBs4Cg+/5Qb/INB/1XAVf5AqGrwkH/pemULUkLVeQh4CEc7wE4kZfTyTxvui07A9FB6Xm49m6nwus3w9MO7Hw8VHrzcFGllFJqQBoNPOALhMDGMHeFg/7ZvkDodeA+XyB0DrAYuw5fr4WD/kt9gdBQYAoxvXHhoP+5ns5N1uX3c5zI1cDXcbynb7s/8qN0CpsTLevte0wLlUfIfQsV2G6+Y38HNx0Bz14NX7wy99dUSimlBqBw0P8JsEec9LXAkZnm7wuEvgNcCIwH5gH7Ay8DR/R0brJBPwvc9zeAuXFeRUFgawtVzBiqnA9KjzVuJsw8A169AVZ/mJ9rKqWUUirbLgT2ARaHg/7DgT2xU0f1KFmX3yPu+20ZFy/X4oyhysug9FhH/AreewhmXwLf/G/MmjhKKaWU6iNawkF/iy8QwhcIVYSD/g98gdC0VE7s+bE0x/sUjrc25vNQHO8TaRc1FxKMocpLl1/U4JFw+KXw8f9gYUrrKCqllFKquCz1BUK1wIPYKRkewo7J6lEq81CNxIms7/zkRBpwvKN6X8bcEBE7hqq0Csq2zuaQ9xYqgH2+A3NvhdmXwqQjoKwqv9dXSimlVNrCQf+X3U3HFwg9A3iB2amcm0pA1Y7j3R4n8pm9hHcHuq5zU3jNDV3GTwF4PEI+G6gAKCmza/vddgI893s48ld5LoBSSiml0uELhEqA98JB/04A4aD/2d6cn0pAdRnwAo73WewY8EOAeFPBd+V4b8HOY7UKJ7Krm7bNatBui5cA12IXX24CzsaJvJlyLZrXdxk/BVCSr6f8utvxUNjjdHjxL7DbKTBq5/yXQSmllFK9Eg76232B0EJfILR9OOj/rLfnpzCGKjIbu/TMvcA9wF44kVTGUN0KHNMtLQDMwYlMAea4nwGOxc75MAUbrP09hfwB9ym/lkiX8VOQ56f8uvvCb6FiMDz6Y7ssjlJKKaX6gqHAe75AaI4vEHo4+krlxFTXSjkQu4pzHXZOhp45keeAdd1ST8SuAo37flJM+u04EYMTeQWoxfGOSbFsbpdf1xaqgoyhiqoeAUdfAZ+9DPP+VZgyKKWUUqq3fontXbsc+GPMq0c9d/k53iB2ToY73ZQLcbwH4kR+kUZBR+NE4q0GPQ5YEnPcUjdtOd053vPo7HIcRf2z9Ry4fgUNMoqF9fWdh22INNPWAfUxaXllxjPDO53qxy7ltTU1tJbXZi3rxsbGwtWrgLTeA4vWe2DReg8sxVrvcND/rC8Q2gGYEg76n/YFQoOAklTOTWUM1XHADJyI7btyvLcBb2EXEUyfEzE43t43ITmRWUQXKrxxiqk7rA7PS82M8e3MmLq6zsNu/vhVGje3UVd3UEbFzMgu/4QbDuagxsfh5Buzlm19fT11MXUdKLTeA4vWe2DReg8sxVpvXyB0LrbRZhgwCdu4cwMpzMKeapdfbcx2JovVrezsyrPv0dWglwETYo4b76b1SNq3QOumuF1+BRmUHmvUTnDQhfDOPfBJrx4WUEoppVT+XQAcBGwACAf9HwEpTRWVSkB1FfAWjvdWt3VqLpDugnXR1aCh62rQDwNn4ngFx7s/EInpGkyucx2/2i7JdnHkIpjd4dCfwrCJ8MiPYMumQpdGKaWUUoltDgf9W6IffIFQKSlOFZXKU353Ywei/xe4HzgAJ3Jvz+d578YuKDgNx7sUx3sOEASOxvF+BBzlfgZ4DPgEWATcBHw/lcIDcZedAXdQejE8YFdWBV+6DhrCMOfyQpdGKaWUUok96wuEfgFU+QKho4F/A4+kcmKStfy8M7ulLHXfx+J4x/Y4T5QTOT3Bnm37IZ2IwTaz9ZpEW6i2mTahQPNQxeM7CPY9D169EaafBDscUOgSKaWUUmpbAeAc4F3gfGyDzz9SOTHZoPRkjwka4IhUS5dTnV1+3Sb2LJYuv6gjfw0fPgEPXQDffQHKBxW6REoppZSKEQ76O7A9ZTf19twkLVSRwzMoU/5EF0buvvRMMQxKj1UxGL70V7j9S/DMlfDFdIehKaWUUiqbfIHQuyQZKxUO+nfvKY9U5qEaBFwMbI8TOQ/HOwWYhhN5tBdlzZ0EY6iKroUKYOJhsPe34eXrYfqJMGHfQpdIKaWUUnYyz4ykMg/VP7FP9h3ofl6GHaRVJAGV20JVUdMluUQKuPRMMkdfDh89BQ9+H777vB20rpRSSqke+QKhCcDt2InBDTArHPRf6wuEHOBcYLV76C/CQf9jqeYbDvoXx1wjdmLPKlKLlVKaNmESTuRqoBUAJ9KEu4ReUWhugEovlHStr8dTZF1+URVD4Et/gbUfwdNOoUujlFJK9SVtwE/CQf907AwEF/gCoenuvj+Fg/4Z7ivlYCqWO7Hnf4DobNzjgQdTOTeVgGoLjreKaN+i450EbO51KXMlzjp+4LZQFVuXX9SkI2C/78KrN8CipwtdGqWUUqpPCAf9y8NB/5vu9kZgAXY282xJe2LPVJqxHGA2MAHHe6d7obPTKWXWGRIGVB5PkcxDlchRjp09/cHvw/dehurhhS6RUkopVVCeqppSXyD0RkzSrHDQPyvesb5AyAfsCbyKjU1+4AuEzgTewLZiNaRRhM3hoH+LLxCKXiPliT2TzUN1PXAXTuRJHO9cbNOaABfiRNakUcjcSNRC5YGOYm2hAjt26is3wU1H2FnUv/YvkOLpSVVKKaXyraN5Q1s46N+7p+N8gdBg7GTjF4WD/g2+QOjvwBXY4OcK7NRP306jCN0n9vw+KU7smazL70PgDzjeMHAJ8DlO5NGiCqYgeZdfh+GYPz/H1bM/KEDBUrDdbnDkr+CDR+GtOwpdGqWUUqro+QKhMmwwdWc46P8vQDjoXxkO+ttj5pFK9zH6AHZge+zEnv8vlRMTB1RO5FqcyAHAYcBa4BYc7wc43l/jeKemWdDsSxBQiQiNm9v4YMVG/lb/MU+9v7IAhUvB/hfAjofC4wFY/WGhS6OUUkoVLV8gJMDNwIJw0H9NTPqYmMO+DMxP8xJVwC3hoP+UcND/VeAWN61HKcxDFVkM/A74HY53TzfzXwElaRY2u1rWJ+jy6zptwo/ufotfnzCdr+0zASmmrjWPB758I9xwMNx3Jpw7B8qrC10qpZRSqhgdBJwBvOsLhOa5ab8ATvcFQjOwXX5hbOtSOuZg1xpudD9XAU+ydeqohFKZ2LMUOBY4DbsOXz12oHpxMB0JA6qoX58wnacXrCTw33d58v2VXH7iLowfWkRLv9SMha/8A+44GR69GL58g46nUkoppboJB/0vEH/qprSmSYijMhz0R4MpwkF/oy8QSilgSNLl5z0ax3sLdlHkc4EQdk6q03AiD2VY4CxxW6DiPeUXE5BMHDmYO769H788fjovf7yWo695jr/VL6KltT1fBe3ZpCOg7lJ45x5487ZCl0YppZQaiDb5AqGZ0Q++QGgvoDmVE5O1UF0K3AX8BCeSzqOH+ZPgKb+omspSPB7hnIN35Jhdt+M3D7/H1bMXcvtLi/nhkZM5de8JlJWkMiVXjh36M1jyCjz2c9hudxg3s+dzlFJKKZUtFwH/9gVCn2NbwrYDvpbKickGpR+BE/lH0QdTkPApv6ghlWWd2+Nqq5h15t7cfe7+jK2t5LIH5nPUNc/y4FvLCr9UjccDJ/8DBo+Gu0+HyNLClkcppZQaQMJB/+vATsD3gO8CO4eD/rmpnFsEzTJZkGBiz6iaym0b4g6YNJz7v3cgt5y9N4PKS7no3nkcd+3z3Pf6Eja2tOa0uElVD4dv/Btam+DOU6FlQ+HKopRSSg0gvkDoAqA6HPTPDwf984HBvkDo+6mc228DqtgWqpqqsm32g51a4YidRhP64cH89fQ9aevo4Of3v8Pev32aH9z1JrPnryhMcDVqJzj1Nlj9Afz7bGgrnpV+lFJKqX7s3HDQvz76wZ1t/dxUTkxpBeWiV1m7TVJsC1VFafK40eMRTthjLMfvPoa3lqzngTeX8cg7n/PoO8sp9Qh7+4Zy4KQR7LXDUPaYUMvgijx8bZOOgBP+DA//EO49A069Hcoqc39dpZRSauAq8QVCEg76DYAvECoBylM5se8HVOWDoXTbukanTagqK0l53ikRYeb2Q5m5/VB+dcJ05i5uoH7hap79cDV/evpDjAGPwLTtath1bA1TRw9h6nZDmDp6MNvVVGZ/fquZZ0JHGzz6Y7jn63DKP6HSm91rpMIY6GgH07713XTYdE8JiAfEfe/8rNM+KKWU6nNmA/f6AqEb3c/nu2k96vsBVZzuPtja5VedZmtSWYmH/ScOZ/+JwwkcuxMbWlqZ99l65i5u4M3PGnhm4Wr+PXfroPEhlaVsP2wQ44dWMX7o1vfRNRUMqy5nxOAKKsvSmAt172+DpwweuRBm1cFX/7ntMR0d8OFs2LwBdj4h/sSgbZth4wpoXBnzWuW+r7bnbmmELZvcVyNsabIBXWrrQm5rmyDLDbw8JeAphZKyrdueMve9xE2Ppm09dpd1DbDqlphjS6GkNO6xnXlFj+3ltRKfX+Zul8Wc76ZpEKmUUn3dJcB52EHpAE9hl7LpUT8IqGrjJke7/KorsjOhe01lGYdOHcmhU0d2pq3btIUPV27ko5Ub+XBlI0sbmvhk9Sae/XA1La0d2+QxqLyE4YPLGVZdwfDqcmqryhhcWUp1RSmDK0qpLi+huqKUIZWlVJaVUF7qoaLUQ/moL1F+go+KpwOU33gy2w3fkw2DV1M6qJbWFQvY/O4DfLRmM6OlgcnlF8Ko6VBZA+1tdib5DZ9D87o4tRIYNBwGj7LdpoNGQO0OttWvvNou4FxStjUI6gyO3M9gW6o6oi1W7bbVapu0DjetY2srV0erDdY62qE9uh3zam+1+9o2Q0cjdLRR1RyBVevdY9z9scd2prfZ6+WbdAvIYoO1ktKYYCw2MCuNObasa4DonjN5xSpoeaLrcZ3BZOr5bFu2FPLxlGigqJQaMNy1AG9wX/gCoUOAvwIX9HRuPwioErVQ2ffq8txVcVh1eWcrVixjDGs3bWFpQzOrN25m3abNrN20hbWNW1i3aQtrGjezItLCwhUb2bSljU2b22htT6UV6Bf27XPgPwBbgEnATzuP+OSAF/CsWQibN9o/irU7wIT9YMgYGLKdnZJhyGj7PmiE/WPaR7xRX09dXV1qB3d0xARo3YOvBMFbbEDW3tb1/PbY7dZu53bfn+S4zgAyZn9by9btznO25jN6c4tdqjN6jsnzhLSeRAFXssCsp6AxXoDX9bixyz6FNz5JMWhMnM+2ZSuzU5QopVQcvkBoT+B04FTgU+C/qZzXd/6aJpIooMpyC1VviAgjBlcwYnBFyudsbmunsaWNTZvbadzcRnNrG5vbOtgSfbVv3X7v/QXsMGoIbVtaKB88jIohQ5k9fwXPf7SGFydfzCHHjuz5gv2dxwOeclIcS1jUXuweSBqTJJhLHJhtDRRbkwR47T0EjfHyiXNc2xbo2BRnf4KytbfSvWt5KsBHufpWJXlg1uugMUGrYEm53S4pd19lMellMelbjxmy4SNYPizOMWVbP2tQqFRW+QKhqdgg6nRgDXAvIOGg//BU8+i3AVW0y29QDluosqmitISKwSUMH9zzsfVNn1BX13Wdxq/MHE/d7+u55qkPOXjyiOJaAFpll8jWP679SUdHl2Dvxeef46D9900QuCULGltJ3irYLWjsTT5bmlJosYw9p63XX8NeAG+mcKCnNE5w1i14iwZfCYK3znGD0e7qznGGsdsxabFjIJMeE29f7DGeri+gsnkFNCyOSZdux8i2aXGPiabrv4GqVz4AngeODwf9iwB8gdCPe5NB34g2kulhUHpepjgoApVlJfz46Clccv+7/OuVxZxxgK/QRVKqdzwe8FRAqW3ZbS33Qs2YAhcqQ8bY4Kp9y9bgq32L+2qL2d56zDvz3mT36dOSHpNKPluPabVjETdv7Hae233c2bUdHd/ofs5z1/L+AK9mM8d4AVhs0BUTeHUP2qJr78bb7gzUJGaJ3u7pyba75rfPpk3w/uAE12Tb9JSvk8r1idlOVOc4ZejNvu6Brft5l9Vr7ENG2+RRMCcDpwHP+AKh2cA9xF+EOaG+H20kCKiiBpXnv8uvUE7ZawKz56/g8kffZ2xtFUfuPLrQRVJqYBOx07rEmdolkXVLPLBzXe7KlKrOB0zaEgdd0TTTPS3OeSZmHKPpAMzWa5gOFix4n52nTdv6EEvnMR0xx5mu+7scE92fxjHd99svoNu2+x79btLZjpN3k1lN9bCYcbgJr5/mNWPzjM2vo2PrdqJrJitPj/sSHOd+HtTUCKsbEuSRf+Gg/0HgQV8gVA2ciF3Tb5QvEPo78EA46H+ypzz6bUDVtMX+7yrdaRP6Io9H+NPXZnDmLa9x7u1vcNFRU/nuYZMo72FiU6WU2oZIzBO9qY8HTdfKhnp23rMu59cpNu/15mGbfuT1RPX+UWG7asNB/ybgLuAuXyA0FDgFO5XCwA2oNm22YxcKMSi9kGoHlXP3uftzyf3vcM1TH3LPa59x1oE+vrbPBGoH9f0B2koppVQ+uMvOzHJfPSqugMrxHgNcC5QA/8CJBHs8J0FA1bjFBlR9ZVB6NlVXlHLd12dy6t6r+Vv9Iq56/AN+/8RCDpg0nCN2GsU+vmHsPKam80lIpZRSqq/wBUJdYoVw0N9zrJAHxRNtON4S4HrgaGAp8DqO92GcyPtJz0sQUG12J9ZMa3byfiI6Een7n2/g4bc/54n3VvCbR+zXObiilBkTapk6egiTRw1myujB7DBsEMMHV2igpZRSqii5a+t1iRV8gdDD4aA/eayQB8UTUMG+wCKcyCcAON57sAPD0gqo6qaN5NaXwuy347DslrIPmj62huljawgcuxPL1jfzRngdb4QbeGtJA3e9trjLrO4lHmHk4ApG11Qwckgl3qoyhlTamdwHV9pZ3KvcWdzLSjyUl3g6t6OBmLgPv4iI+27zFmTrttjPPTExcxMt3tDOe59Htj0mS+MYU8kntjyZ5ZNKeexRH69vx/tZQwb5pHBQXuuVyjGGhevaqfpkbe6vlUpOeaz7/DXtlHy0OuN8evMzlmk+vV6dSrbdfGd1G/Lh6u67u/z70T2ty7Fd0iThcSIx/w5tk1+8fdL5uXtZtnlQrtu+RMfH5vV5YwefrG7s/PfSI13/nYx+FgRP9EG/3j18VpQimw2rN25O59R9gUXhoP8TAF8glFqskAfFFFCNA5bEfF4K7NfjWdXxJ7GsmzaKj648lrISHZAda1xtFeNmjOPEGeMA6OgwLFvfzKJVdumclRs2s3JDCys3bmZpQxMLlrexsaWVxs1tdBTuAYytXnqh0CUojFdeKnQJCuO1VwpdgsJ447VCl6Aw5g7Qer/wbKFLUBjPPJ3OWenFCnlQTAFVahzvediFC/E0dlD//IsFLlD+NTY2Ul9fn9U8BZgATKgARrovADxABcaUs6UdmtoMW9qhzUBbh6Gtg85Xh9n6f31D1/9Fd6abrtu9mXakpaWFysrKhOXvsY5Z+k9dtv5vmEp5BGhubqGqKn69U75WlsqTSk7ZulZzczNVVVUZXysVqd6LfFyruamZQYOS1zvla2XpoJTuaSrXomtjVux2U1Mzg6qq4jZ2dTknzgHp7Dfd9sb+29T9vHj/lsXPa2t6oryI/TcQ++9aRUWl+2+m3dMRk2/3fzOjkyH09TaqzZs3U1Gx7dOjV1bVlPoCoTdikmaFg/6UBoUXWjEFVMuwf9OjxrtpXTmRzhH3JlhpBuLjpvUD9DFbrffAovUeWLTeA0uiel9x1oa2cNC/d5JTU4sVCqCYAqrXgSk43h2xX85pwNcLWySllFJKFZHXgSm+QKjoYoXiGWDkRNqAHwBPAAuA+3Ai7xW2UEoppZQqFuGgf5tYIRz0F0WsUEwtVOBEHgMeK3QxlFJKKVWcwkF/UcYKkspjs8VKRDqA5kKXowBKgd4vY9/3ab0HFq33wKL1HlgS1bvKGFM8vWe9UFwtVL33pjEm2eC1fklE3tB6Dxxa74FF6z2waL37jz4ZBSqllFJKFRMNqJRSSimlMtTXA6o+MdlXDmi9Bxat98Ci9R5YtN79RJ8elK6UUkopVQz6eguVUkoppVTBaUCllFJKKZWhPhtQicgxIrJQRBaJSKDQ5ckFEZkgIs+IyPsi8p6IXOimOyKyTETmua/jCl3WXBCRsIi869bxDTdtmIg8JSIfue9DC13ObBKRaTH3dZ6IbBCRi/rjPReRW0RklYjMj0mLe3/F+ov7+/6OiMwsXMkzk6DevxeRD9y6PSAitW66T0SaY+77DQUreIYS1Dvhz7WIXOre74Ui8sXClDpzCep9b0ydwyIyz03vF/c7yd+u/v37bYzpcy+gBPgYmAiUA28D0wtdrhzUcwww090eAnwITAcc4KeFLl8e6h8GRnRLuxoIuNsB4HeFLmcO618CrAB26I/3HDgUmAnM7+n+AscBjwMC7A+8WujyZ7neXwBK3e3fxdTbF3tcX34lqHfcn2v337m3gQpgR/ff+5JC1yFb9e62/4/Ar/rT/U7yt6tf/3731RaqfYFFxphPjDFbgHuAEwtcpqwzxiw3xrzpbm/Erls0rrClKrgTgdvc7duAkwpXlJw7EvjYGLO40AXJBWPMc8C6bsmJ7u+JwO3GegWoFZExeSlolsWrtzHmSWNMdNboV4DxeS9YjiW434mcCNxjjNlsjPkUWIT9d7/PSVZvERHgVODuvBYqx5L87erXv999NaAaByyJ+byUfh5oiIgP2BN41U36gds0ekt/6/aKYYAnRWSuiJznpo02xix3t1cAowtTtLw4ja7/0A6Ee57o/g6k3/lvY/+3HrWjiLwlIs+KyCGFKlQOxfu5Hij3+xBgpTHmo5i0fnW/u/3t6te/3301oBpQRGQwcD9wkTFmA/B3YBIwA1iObTLujw42xswEjgUuEJFDY3ca21bcL+f9EJFy4EvAv92kgXLPO/Xn+5uIiFyGXd/sTjdpObC9MWZP4GLgLhGpKVT5cmDA/Vx3czpd/9PUr+53nL9dnfrj73dfDaiWARNiPo930/odESnD/kDeaYz5L4AxZqUxpt0Y0wHcRB9tCu+JMWaZ+74KeABbz5XRpmD3fVXhSphTx2LXqlwJA+eek/j+9vvfeRE5Gzge+Ib7xwa3y2utuz0XO5ZoasEKmWVJfq4Hwv0uBU4G7o2m9af7He9vF/3897uvBlSvA1NEZEf3f/KnAQ8XuExZ5/av3wwsMMZcE5Me27f8ZWB+93P7OhGpFpEh0W3soN352Pt8lnvYWcBDhSlhznX5n+tAuOeuRPf3YeBM92mg/YFITNdBnycixwA/B75kjGmKSR8pIiXu9kRgCvBJYUqZfUl+rh8GThORChHZEVvv1/Jdvhw7CvjAGLM0mtBf7neiv13099/vQo+KT/eFfSrgQ2wEf1mhy5OjOh6MbRJ9B5jnvo4D7gDeddMfBsYUuqw5qPtE7FM+bwPvRe8xMByYA3wEPA0MK3RZc1D3amAt4I1J63f3HBswLgdasWMmzkl0f7FP/1zv/r6/C+xd6PJnud6LsGNIor/nN7jHfsX9+Z8HvAmcUOjyZ7neCX+ugcvc+70QOLbQ5c9mvd30W4Hvdju2X9zvJH+7+vXvty49o5RSSimVob7a5aeUUkopVTQ0oFJKKaWUypAGVEoppZRSGdKASimllFIqQxpQKaWUUkplSAMqpVTWichwEZnnvlaIyDJ3u1FE/paja14kImcm2X+8iFyei2srpZROm6CUyikRcYBGY8wfcniNUuy8PTPN1kWGux8j7jEHmZjJM5VSKhu0hUoplTciUicij7rbjojcJiLPi8hiETlZRK4WkXdFZLa7dAUispe7UOxcEXkiwSr0R2CX6mlzz/mRiLzvLrp7D3SuHVaPXd5FKaWySgMqpVQhTcIGQ18C/gU8Y4zZDWgG/G5Q9Vfgq8aYvYBbgCvj5HMQMDfmcwDY0xizO/DdmPQ3gEOyXgul1IBXWugCKKUGtMeNMa0i8i5QAsx2098FfMA0YFfgKdtjRwl2GY/uxgALYj6/A9wpIg8CD8akrwLGZq/4SillaUCllCqkzQDGmA4RaTVbB3V2YP99EuA9Y8wBPeTTDFTGfPYDhwInAJeJyG5ud2Cle6xSSmWVdvkppYrZQmCkiBwAICJlIrJLnOMWAJPdYzzABGPMM8AlgBcY7B43FZif81IrpQYcDaiUUkXLGLMF+CrwOxF5G7tq/YFxDn0c2yIFtlvwX2434lvAX4wx6919hwOhXJZZKTUw6bQJSql+QUQeAH5ujPkowf7RwF3GmCPzWzKl1ECgAZVSql8QkWnAaGPMcwn27wO0GmPm5bVgSqkBQQMqpZRSSqkM6RgqpZRSSqkMaUCllFJKKZUhDaiUUkoppTKkAZVSSimlVIY0oFJKKaWUypAGVEoppZRSGdKASimllFIqQxpQKaWUUkplSAMqpZRSSqkMaUCllFJKKZUhDaiUUkoppTKkAZVSfYCI+ETEiEhphvk0isjEbJWrl9d2RMQpxLXjEZFbReS3ebzeDSLyy3xdTymVXxpQKZUnIjJbRC6Pk36iiKzINFhKhTFmsDHmE/e6aQcUIvINNzjr/jIi8qt0yyfWJyLyfrp5FAMROVtEXohNM8Z81xhzRQ6uFe8+tIrIJ9m+llIqMQ2olMqf24Bvioh0Sz8DuNMY01aAMqXFGHOnG5x1voCLgJXATRlkfSgwCpgoIvtkoahZl4/Atzfi3IepwDog68GbUioxDaiUyp8HgeHAIdEEERkKHA/cLiIeEQmIyMcislZE7hORYfEyEpGxIvKwiKwTkUUicm7MvhIR+YWbz0YRmSsiE9x9RkQmi8h5wDeAn7stGo+IyM9E5P5u1/mLiFzbU8VEZE/gz8Bpxpjlvf1iYpwFPAQ85m7HXmMXEXnKrfNKEflFCvXdKeachSJyapI6HC8i80RkvYi8JCK7x+wLi8glIvIOsElESmPu1UYReV9EvuweuzNwA3CA+92ud9O7tAiKyLnuvVvn3suxMfuMiHxXRD5yy3N9nEA8Xh1KgfuAR4wx/+zx21ZKZY0GVErliTGmGfvH7syY5FOBD4wxbwM/BE4CDgPGAg3A9QmyuwdY6h73VeD/ROQId9/FwOnAcUAN8G2gqVtZZgF3Ale7LRsnAP8CjhGRWuj843wacHuyernH/we4whhTn+zYHvIZ5NblTvd1moiUu/uGAE8Ds906TwbmJKuviFQDTwF3YVu9TgP+JiLT41x7T+AW4Hxs0Hsj8LCIVMQcdjrgB2rd1sSPscGxF/gN8C8RGWOMWQB8F3jZ/W5r41zvCOAq7P0fAyzG3tNYxwP7ALu7x30x+TcIwNVANfCDFI5VSmWRBlRK5ddtwFdFpNL9fKabBvaP8GXGmKXGmM2A4x7bpYvJbX05CLjEGNNijJkH/IOtgdp3gP9njFlorLeNMWt7KpjbsvQccIqbdAywxhgzN9E5bqvJ7cB87B/zTJwMbAaeBEJAGTaAARtcrDDG/NGt80ZjzKvuvkT1PR4IG2P+aYxpM8a8BdwfU79Y5wE3GmNeNca0G2Nuc8uyf8wxfzHGLHEDY4wx/zbGfG6M6TDG3At8BOybYl2/AdxijHnTvdeXYlu0fDHHBI0x640xnwHPADOSZSgiXwG+BXzFGNOSYjmUUlmiAZVSeWSMeQFYA5wkIpOwf4DvcnfvADzgdvGsBxYA7cDobtmMBdYZYzbGpC0GxrnbE7CtJ+m4Dfimu/1N4I4ejr8E2AU4yxhj0rxm1FnAfW7w04INfqLdfsnqlGjfDsB+0e/T/U6/AWyX4NifdDt2Ava7jloSe4KInBnTRbge2BUYkUI9cfNdHP1gjGkE1rL1HgKsiNluAgYnykxEpgI3Y++DDkZXqgCKanClUgPE7djWpGnAE8aYlW76EuDbxpgXu5/QreXic2CYiAyJCaq2B5bF5DMJ22qUTLwA6EHg7yKyK7aF5+eJThaROuAy4FBjzPoerpWUiIwHjgD2dVtaAAYBlSIyAlun0xKcnqi+S4BnjTFHp1CEJcCVxpgrkxzT+X2JyA7YwfdHYrv22kVkHiDdj03gc2wQF82vGtvVuCzhGQm4XaX3AzcYYx7u7flKqezQFiql8u924CjgXLZ294EdyHyl+8caERkpIid2P9kYswR4CbhKRCrdwdPnYMdAge3+u0JEpoi1u4gMj1OOlUCXOanclqH/YFvNXnO7m7YhImOwY34ucrvSMnUG8CE2yJzhvqZix4mdDjwKjBGRi0SkQkSGiMh+7rmJ6vsoMFVEzhCRMve1jztovLubgO+KyH5uHtUi4nfHbsVTjQ2aVgOIyLewLVRRK4Hx0TFgcdwNfEtEZrjjtP4PeNUYE+7pi4rjBmzr1mVpnKuUyhINqJTKM/eP5kvYP8qxLQrXup+fFJGNwCvAfttkYJ0O+LAtHQ8AvzbGPO3uuwY7+P1JYAO2K6gqTh43A9PdLqsHY9JvA3YjeXffudiuyGtl2zmQbkhyXiJnAX8zxqyIfWGDhbPclrijgROwXWEfAYcnq697zhewLVufu+f9DogdaA6AMeYNt07XYR8GWAScnaiwxpj3gT8CL2ODp92A2JbF/wHvAStEZE2c858GfoltWVqObWFL1AKXkIhsjw1G9wci3e9Fb/NTSqVPMh/2oJTqT9w/0h8A2xljNmQxXwfAGONkK0+llCoW2kKllOokIh7sNAT3ZDOYUkqp/k4HpSulgM6B0SuxT58dk4NL1OcgT6WUKgra5aeUUkoplSHt8lNKKaWUylCf7vLzeDymqirew0v9W0dHBx7PwIuFtd4Di9Z7YNF6DyyJ6t3U1GSMMX3yC+nTAVV5eTmbNm0qdDHyrr6+nrq6ukIXI++03gOL1ntg0XoPLInqLSLN+S9NdvTJKFAppZRSqphoQKWUUkoplSENqJRSSimlMtSnAyozdAJLG5ri7/zwCfjDNHj3P/ktlFJKKaUGnD49KB3gxUVr+No+22+74/WboXEFPHoxTD0GKgbnv3BKKaWUyhpfIHQLcDywKhz07+qmDQPuxa5vGgZODQf9Db5ASLBrpB4HNAFnh4P+N3NVtj7dQpXUinehdgfYHIH3Hyp0aZRSSimVuVvZdiWHADAnHPRPAea4nwGOBaa4r/OAv+eyYP0zoGpvhY2fwx6nwVAfvPffQpdIKaWUUhkKB/3PAeu6JZ8I3OZu3wacFJN+ezjoN+Gg/xWg1hcIjclV2fp8l197B9z16mfsOKKa/XYchscjsGmN3Tl4FEw/CV6+DprWwaBhBS2rUkoppbJudDjoX+5urwBGu9vjgCUxxy1105aTgC8Q2hs4BBgLNAPzgafCQX9DT4Xo8wHV8x+t5vH5KwC46KgpXHTUVNi0yu6sHgXj9oIX/wwfhGDmGYUrqFJKKaWS8lTVlPoCoTdikmaFg/5ZqZ4fDvqNLxDq9SLFvkDoW8APgU+BucBCoBI4GLjEFwjNB34ZDvo/S5RHnw+oXvlkLQC+4YN48K1lXHjkFKRxtd05eBSMmWHHUr3/oAZUSimlVBHraN7QFg769+7laSt9gdCYcNC/3O3Sc1tVWAZMiDluvJsWzyDgoHDQH3emdl8gNAM7Fqv/BlQNTa3M3L6WL+85jl8+9B4fr97E5E1uQFU9EkRg+onwyt+0208ppZTqfx4GzgKC7vtDMek/8AVC9wD7AZGYrsEuwkH/9ckuEA765/VUiD4fUAHss+MwDp06ErAtVpPb3eB08Cj7vstJ8NJftNtPKaWU6sN8gdDdQB0wwhcILQV+jQ2k7vMFQucAi4FT3cMfw06ZsAg7bcK3kuR7JbAj8H3gsnDQ/7Pelq1/BFQ7DGP7YYMYOaSCN8Lr+ObQVVBaCeXu3FNjZ9qn/d79twZUSimlVB8VDvpPT7DryDjHGuCCFLMeD1wEXAOUpVO2fjFtwuRRgxER9vUN4/VwA2xabQeki9gDRGD3r8Gnz0EkUfepUkoppQaoSDjoXwU4wOHpZNAvAqrtvJUAzNxhKMvWN7OqYSMMHtn1oN2/BhjbSqWUUkop5QoH/T9y3z8Ddkgnj34RUFWWlQCw+3gvAPPXl9sWqljDJ8H4feGde8H0+olKpZRSSvVzvkDoaqDaFwiV+QKhOb5AaLUvEPpmKuf2i4AqaucxNYjAu5uGbNtCBbDH12DV+3ZZGqWUUkqprr4QDvo3YNcLDAOTgZQGqPergGpwRSk7Dq9mfssoO2VCd7ucDJ4y20qllFJKKdVV9GE9P/DvcNAfSfXEfhVQAey2XSXvdeywbZcf2Dmopn4R3rkP2tvyXzillFJKFbNHfYHQB8BewBxfIDQSaEnlxD4fUG1XU9nl867DDJ8zgrWlcVqoAPY43S5Ns+jpPJROKaWUUsXOFwiNBQgH/QHgQGDvcNDfip2/6sRU8ujz81CN9nYNqHapaQJgftMwDot3wtQv2tarubfCtGNyXj6llFJKFb1/+AKhYUA9MBt4ASAc9G8CNqWSQc8BleONu/IyTqTHlZfzIXDMTl0+7zJoPVDJ/EhF/ICqpAz2/KZdMHnD51AzNveFVEoppVTRCgf9x/kCoUrsLOxfBv7gC4Q+wwZXs5MtihyVuMvP8X4Lx/smcClQhV15eRV25eWncby34Xi3z7gWGdp5zJAun71t65gon/PGio7EJ808E0wHvPWvHJdOKaWUUn1BOOhvCQf9s8NB/4XuAs0/wTY8XecLhF7r6fxkLVSDgINwInFXXsbxzqCHlZfzQZCuCc0NHOj5nAeWTKC9w1DikW1PGrYjTDwc3rwdDvkJeEryU1illFJKFT1fIFQDRIB73FdjT+ckDqicSNKVl3Ei83pVulzpHi81rWNy2Vo2tbSzvmkLwwdXxD9vr7Pg32fDx8/AlKNyXUqllFJKFTlfIHQ+8Bvsk33RWcBNOOif2NO5qYyhuhr4LXb81Gxgd+DHOJGi6C+T7gFV8zq8FUALRJpbEwdU0/wwaATM/acGVEoppZQC+CmwazjoX9PbE1OZNuELOJG0Zg0tiOYGvJW2Cy/S3Jr4uNJyOzh94WOwvqC9lkoppZQqDh9jp0rotVSmTegyayhOJILjTedaObHNCKmmddRUDQNgY0sPk3fu8x146a/w2k3whStyUj6llFJK9RmXAi/5AqFXgc3RxOjiycmk0kL1KI63c9ZQHG/Ks4YWRPM6SisHA9DWkeRJP4DaCbDz8fDmbbAlpWkmlFJKKdV/3Qj8D3gFmBvz6lGSQenesTiRz3EiAXccVQQn0o7jTXnW0IJoWkfpaDuVQnsP8RQA+30P3n8I3r4H9jknt2VTSimlVDErCwf9F6dzYrIuv3/geLeZNRQnktqsoY53AnA7MBo7Un4WTuRaN897AR92TNapOJEGHK8A1wLHYfsvz8aJvNnTZSR2VHpHO7RE8FTWANDeUwsVwPb7w5g94NUbYe9vxxnlrpRSSqkB4nFfIHQe8Ahdu/zW9XRikok9I8dhZwytx84a+gqO97843vNSnNCzDfgJTmQ6sD9wAY53OhAA5uBEpgBz3M8Ax2LntZoCnAf8PYVrdNW8HjCUVkUDqhTOEbGtVGsWwsf/6/UllVJKKdVvnI47joqt3X1vpHJi8kHpTqQFd9p1+9m7IzbwuQ7Hux1OZN8k5y4HlrvbG3G8C4Bx2O7COveo27AB2yVu+u04EYMN3mpxvGPcfFLTbFfD8bgBVY9jqKJ2PRme+hW8fD1MPjLlyymllFKq/wgH/Tume24qg9Itxxs7a+jZ2CVoUj3XB+wJvAqMjgmSVmC7BMEGW0tizlrqpiXVpYOu2bbIlQ6qBaDDmG2Oj6u0AvY7Hz6eA8vfSe0cpZRSSvULvkAoaUzjC4RqfIHQrsmOSWViz7izhuJEepw11D1/MHA/cBFOZEOXKReciMHxphj1dOZ3HrZLEBjF888/T2WpDauGr3md3YD3P14CbMf89xYwNLIopWxLW3di/5Iq1v33Ut7fpXin2QJobGykvr6+0MXIO633wKL1Hli03gNLEdb7K75A6Gpsj9xcYDVQiZ1783BgB+zafgmlMg/VT4FdcSK9njUUx1uGDabuxIn8101d2dmV53jHYBdcBlgGTIg5e7yb1i3PyCxgFgA3TjGHHHII1RVuNeZ9DvNhxr4Hw5uLmDJ1GnX79mb95vMY9dJfGbXbBBg+qRfn5Vd9fT11dXWFLkbeab0HFq33wKL1HliKrd7hoP/HvkBoGPAV4BRgDHaFmAXAjeGg/4We8kgloEpv1lD71N7NwAKcyDUxex4GzgKC7vtDMek/wPHeA+yHnaahx/FTXR7Ka4p2+Q0FoD3VLr+o/b8Pr9wAL/0FTri2d+cqpZRSqs9yn+S7yX31WioBlR3t7ni7zBqKE+lp1tCDgDOAd3G889y0X2ADqftwvOcAi4FT3X2PYadMWIQN4L6VWhViNK8DKekclN7e0cuAash2MOPrMO9OqLvUflZKKaWU6kEqAVV01tB3gRQfmwOcyAvEWRnGte2jdPbpvgtSzt8lsZdoboCqWkpL7Fj7XgdUAAf9yM6c/vJ18IXf9v58pZRSSg04qQRUZTiRtGYNzbumdVA1DI/HBllpBVTDJsKuX4HXb4YDL4TBI7NcSKWUUkr1N6lMm/C4O5nnGBzvsM5XMWpeB4OGUeoGVG3pBFQAh10CbS3wko6jUkoppfo7XyB0ty8Q2jnBvjtSySOVgCrtWUPzoeug9AaoGkZJJi1UACOmwO5fg9f+ARtXZl5IpZRSShWzo4DZvkAo3tCjXVLJIIV5qCJpzxqad83rYMzulEiGARXAoT+Dd+6DF/8Mx1yVnfIppZRSqhgtxa4Ec5svEDoWODsc9Pdquqgka/l5k8+E7nhrcLxJZw3Nu6Z1UDU08xYqsPNQzTjdjqXakPrqN0oppZTqc0w46F8RDvq/iH0Q7w1fIHSMuy/RA3ZdJGuh+gqON6NZQ/OqtRnamqFqKCKCRzIMqMC2Ur19D7xwDRz3++yUUymllFJFKxz0X+MLhOYA//IFQn6gPJXzkrRQRX4MHI9d4PgU4ArgYmAKcCNO5FCcyOuZFjxr3IWRGWTHy5d6PL2f2LO7oT7Y85sw91ZY/1lmeSmllFKqWHVphQoH/W8D+2DjpJ1SySD5GConktGsoXnlzpJOlQ2oPJ4stFABHPpz20r1vyvh5Bszz08ppZRSxWav7gnhoL8FuMAXCKU0KWUq81AVtc6n/JrdgCqmhaqtPQsBlXcc7PddePFaOPAHsN1umeeplFJKqbT4AqEwsBFoB9rCQf/e7jp89wI+IAycGg76G1LNMxz0J5y4PBz0pzSQOpVpE/qGbi1UJR6hI9Muv6iDfwyVXnjq19nJTymllFKZODwc9M8IB/17u58DwJxw0D8FmON+zqs+H1B1Lj3TrYWqxCO0daS+Uk5SVbVw6E/h4znwSX128lRKKaVUtpwI3OZu3waclO8CJO7yc7x3A5fjRBbE2XcHTuSMHJar96KD0quGAjagas9SPAXAPufCqzfCU7+Cc+vtIC2llFJKZY2nqqbUFwjFTh4+Kxz0z+p2mAGe9AVCBrjR3T86pmtuBTA63TL4AqEDsV2HnTFSOOi/vafzko2hOgo4EMd7NU7k+m77Upo1NK+a1kFpFZRVAVAiQnu2WqgAyirhiP8HD5wP7/0Xdvtq9vJWSimlFB3NG9piuvESOTgc9C/zBUKjgKd8gdAHsTvDQb9xg61ec5eZmQTMw47RAhvAZRRQdc4aiuM9FjgbJ9KrWUPzYeug9IbO7j7IQQsVwG6nwkvXwZzfwE7H2yBLKaWUUnkTDvqXue+rfIHQA8C+wEpfIDQmHPQv9wVCY4BVaWa/NzA9HPT3OiBL1m9lcCIrcCKds4bieHs1a2heNa3rHJAO0YAqyxGVxwNfvNLOSfXyddnNWymllFJJ+QKhal8gNCS6DXwBmA88DJzlHnYW8FCal5gPbJfOialNm+BErsHxzgH+heNNedbQvGpeB4OGdn4s9Qht2ZiHqruJh8HOJ8Dz18CMr0PN2OxfQymllFLxjAYe8AVCYGOYu8JB/2xfIPQ6cJ8vEDoHWAycmmb+I4D3fYHQa8DmaGI46P9STycmC6i6tkI5kbdxvPsAfyTFWUPzobOQTetg9NahXVmdNqG7o6+AD5+Epx04uftYOaWUUkrlQjjo/wTYI076WuDILFzCSffEZF1+28waihNpwYlcAIxP94I509zQ+YQfuNMmZGNiz3iG7Wgn+XznXljyWm6uoZRSSqm8Cgf9zwIfAEPc1wI3rUfJ1vJLPADJiaQ0a2jeGBN3UHrOWqgADr4YhoyBxy+BbI/VUkoppVTe+QKhU4HXsGsYnwq86guEUnqsv89PpiQi0BIB077NoPScjKGKqhgMR/0GPn8T3rknd9dRSimlVL5cBuwTDvrPCgf9Z2KfIPxlKif2+YAK2GaWdIg+5ZfDgApgt1Ng/D52LFXLhtxeSymllFK55gkH/bFTLqwlxVip56f8HO9c4BbgLpxIygsN5osANEVnSd8aUJXmI6DyeODYq+GmI+CZ/4Njg7m9nlJKKaVyabYvEHoCuNv9/DXgsVROTCXq+howFngdx3sPjveLON7imocqTguVR3Lc5Rc1bibscw68diMsfzv311NKKaVUToSD/p8Bs4Dd3descNB/SSrnptBCFVkEXIbj/SVwPLa1qh3H+0/gWpzIunQLnjXd1vEDKC0RNrfmabD4Eb+E9x+CRy+Gc57Sdf6UUkqpPioc9N8P3N/b81Kc2NO7O/At4Dj3IncCB2NnUJ/R24tmkwh2Diro0uWXtxYqgKpa+MKV8MB58OatsPe383NdpZRSSmXMFwi9EA76D/YFQhuxa/dFCWDCQX9NT3mkOoZqPXAzEMCJRGcOfRXHe1CvS50LzesAsYGNqzTX0yZ0t/up8NYddoD6TifA4JH5u7ZSSiml0hYO+g9234ekm0cqfVOn4ESOxInc1RlMOd4d7Xvk5HQvnFVN66DSC56SzqScTuwZjwj4r4EtTfDk/8vfdZVSSimVFb5A6I5U0uJJpcvvP8DMOGnbzqQey/Hegh1ztQonsqubNgy4F/ABYeBUnEiDO8j9WmyXYhNwNk7kzVQqICLuOn7DuqTnZdqE7kZOhYN+BM//Efb8Jux4SH6vr5RSSqlM7BL7wRcIldJTvONKHFA53p3cjL043tiWqBqgMoW8bwWuA26PSQsAc3AiQRxvwP18CXAsMMV97Qf83X1PTXNDl/FTAKUeD+357PKLOuSn8O5/4NEfw3dfgLJUviqllFJKFYovELoU+AVQ5QuEohNLCrAF+9Rfj5K1UE3DtjDVAifEpG8Ezu0xZyfyHI7X1y31RKDO3b4NqMcGVCcCt+NEDPAKjrcWxzsm5SVumtZBddcxS55CtFABlA+C4/8E/zoZnvs9HJnSBKtKKaWUKpBw0H8VcJUvELoqHPRfmk4eSVqoIg8BD+F4D8CJvJxmGbsbHRMkrQBGu9vjgCUxxy1107YNqBzvecB59sMo6uvr2a/hcyIdtXxQX9952JrVLTRu6qA+Ji1/Sthp9BGMeuFPzG0ez6bBO2Y198bGxgLVq7C03gOL1ntg0XoPLMVa73DQf6kvEBqK7TGrjEl/rqdzk3X5/RwncjXwdRzv6dvuj/wordJuPd/geHvfhOREZhFtfrtxiqmrq4OXmqny7cx2dXWdhz2y6m0+a1pLXUxaXu27O1y/L/ssuxW+MwdKUpuhIhX19fWFq1cBab0HFq33wKL1HliKtd6+QOg7wIXAeGAesD/wMnBET+cme8pvgfv+BjA3zisdK3G8YwDc9+h6OcuACTHHjXfTkjNA2xbYsnGbQel5WXommUHD4Ljfw/J58MrfClcOpZRSSqXqQmAfYHE46D8c2BM7dVSPknX5PeK+35Zx8bZ6GDgLCLrvD8Wk/wDHew92MHok5fFTcWZJBzuGKm8TeyYy/SSY5rfr/O18PAybWNjyKKWUUiqZlnDQ3+ILhPAFQhXhoP8DXyA0LZUTe56HyvE+heOtjfk8FMf7RArn3Y1tJpuG412K4z0HG0gdjeP9CDjK/Qx24cFPgEXATcD3Uyk8kDCgsi1UeVp6JhER8P8BSsrg4R9BIZ46VEoppVSqlvoCoVrgQeApXyD0ELA4lRNTGdgzEieyvvOTnTdqVI9nOZFtx11ZR8Y51gAXpFCWbcVZGBkKNA9VPDVj4QtXwCMXwpu3w15nFbpESimllIojHPR/2d10fIHQM4AXmJ3KuakEVO043u1xIp/ZS3h3oOs6N4UVZx0/KKKACmDmWXZuqid/CVOOtkGWUkoppYqGLxAqAd4LB/07AYSD/md7c34qS89cBryA470Dx/sv4DkgrTkaciJBC1WpRwozsWc8IvClv0BHKzz8Q+36U0oppYpMOOhvBxb6AqHt0zk/hcWRI7NxvDOxjw4CXIQTWZPOxbLPJGyhKtjEnokMmwhHXw6P/VS7/pRSSqniNBR4zxcIvQZsiiaGg/4v9XRiqpMjHQgcGvP50V4VL5ea10FJOZRXd0kuLYan/Lrb+xx4/yF44jKYdDjUphUEK6WUUio30l7eJJWn/ILYeRned18X4nj/L90LZl1zg33CT6RLcolHMAY6iimo8njgxOsBAw9dAIV+ClEppZRSndxxU2GgzN1+HXgzlXNTGUN1HHA0TuQWnMgtwDHYNf6KQ9O6bbr7AErcAKtoxlFFDd0BvnglfPocvHFzoUujlFJKKZcvEDoX+A9wo5s0DjuFQo9SCajALpAc5U21YHnRtA4GDd8muaTEDaiKqYUqauZZMOlIeOpXsO6TQpdGKaWUUtYFwEHABoBw0P8R0PNUUaQWUF0FvIXjvRXHext22Zkr0yxo9jWvg0FDt0nubKEqxoBKBL70V/CUwYPa9aeUUkoVic3hoH9L9IMvEColxamiUhhDFbkb+4Tff4H7gQNwIvemV84cSNTl5ynSLr8o7zg4NgifvQSv/r3QpVFKKaUUPOsLhH4BVPkCoaOBfwOPpHJikrX8vDO7pSx138fieMfiRFIapJVzzQm6/KIBVXuRBlQAe5wO7z8Mcy6HyUfDyKmFLpFSSik1kAWAc4B3gfOxS+P9I5UTk02b8Mck+wxwRKqly6mOtm0m9QQ7bQJQfFMnxBKBE66Fv+0HD5wH5zxl1/1TSimlVN6Fg/4O7JrCN/X23CQtVJHDMyhTfsXt8rO9mR3F2uUXNWS0DaruOxOe/R0c8f8KXSKllFJqQPEFQu+SZKxUOOjfvac8Upgp3TsIuBjYHidyHo53CjANJ1I8k3vG7fKz70XdQhU1/UTY4+vw/B9t19/2+xW6REoppdRAkvF0UKk85fdPYAt2tnSAZcBvM71wVsXp8utsoeoLARXAsb8D73jb9bd5Y6FLo5RSSg0Y4aB/cfTlJk1xt1cB61LJI5WAahJO5GqgFQAn0gRI0jPyLW6Xn33vEy1UAJU18OUbYf1nMLt41p5WSimliokvEDrGFwgt9AVCi3yBUCDLeXef2HM8WZzYcwuOt4po36LjnQRs7nUpcylJC1V7X5rjaYcD4aCL4K07YEHx9KgqpZRSxcAXCJUA1wPHAtOB032B0PQsXiLtiT1TWRzZAWYDE3C8d7oXOjudUuaEeKCydpvkilIbULW09qGACqDuUvh4DjzyIxi/jx20XgSMMXQYaOvooL3D0NpuMDED/mPH/ptu53XJp8u+2PRuLYlxGhbXt3SwakNL7wvfx2m9Bxat98Ci9e61fYFF4aD/EwBfIHQPcCJ2reFs2BwO+rf4AiHc/FOe2DPZPFTXA3fhRJ7E8c7FTu4pwIU4kTUZFzkrjA2mPNs2tFWX26o1bWnPc5kyVFoOJ98ENx5qF1D+xr+3Wfg5nkv+8w7/fWsp3z1sEnv7hjHGW8mQylJa2wyb29pp2tLOhpZWNjS3ue+tcT63daY3b2mnvcPQ1mE634tC/ZxCl6AwtN4Di9Z7YNF698Y4YEnM56VANp/k6j6x5/fJeGJP+BD4A453DHAfcDdO5K2Mi5pFno0rYdBOcfdVlZcA0LSlLZ9Fyo6R0+Doy+Hxn9sFlPf5To+nvPlZA63thuufWUSqsU+JR6ipLKWmqoyayjJqqkoZNWQwNZVlVJZ5KC3xUFoilHqEEo/HfZfOd49Il1gvNuyTmB3d48EuH2OP61a+7ud9uPBDpk4beJOfar0HFq33wKL13soYOOsvNaW+QOiNmORZ4aB/Vh6LloOJPZ3ItcC1ON4dgNOAW9yxVHdjg6sPMyx0xqS1Oe74KYDqimhA1cdaqKL2ORc+nA1P/D/Y8TAYMSXp4UMHlbP/xGHcdObevLsswtrGLTRubqOsxEN5qYdBZSV4B20NnGoqyxhUXtIl8Cl29c2fUrffDoUuRt5pvQcWrffAovXu6ozmDW3hoH/vJKcuAybEfB7vpmVLFXBLOOi/CTrHbFUBTT2dmMI8VJHFwO+A3+F49wRuAX4FlGRQ4CwxcZ/wAxhU1ke7/KI8Hjjxb/D3A+C/5/Y4i7rBIHgYUlnGgZNG5LGgSimlVN68DkzxBUI7YgOp04CvZzH/OcBRQKP7uQp4kq1TRyWUwuLI3lIc7wnugPTHgYXAyWkXNYsE4k7qCVu7/DZt7oNdflE1Y+ws6p+/Bc9cmfRQY1IaaqWUUkr1WeGgvw34AfAEsAC4Lxz0v5fFS1SGg/5oMIW7PSiVE5MNSj8aOB04DngNuAc4DyeyKaOiZpWBQUPj7qmpslXb2NKazwJl3/QTYeaZ8MKfYeLhMPGwuIcZNKBSSinV/4WD/sewY5tyYZMvEJoZDvrfBPAFQnsBzamcmKzL71LgLuAnOJGGzMuYIwm6/CpKSxhUXkJDUx8PqACOCcLil+CB8+F7L8U9xBiDFNl8q0oppVQfcxHwb18g9Dm2I2w74GupnJhsUPoR2ShZziXo8gOorSpjfX8IqMqr4Ss3wz+Ogod/CKO3fepPW6iUUkqpzISD/td9gdBOwDQ3aWE46E8pkEhlYs/iluApP4DaQeWsb9qSx8Ik1treQcOmLUSaW2nc3Mamze00bm6lcXM7jS2tbNrSTtOWNja3drClvWPre1v71u3KG9j89jI2VaziD/Oft9MWYKco+GjlRmbuEL/7UymllFI98wVCFwB3hoP++e7nob5A6PRw0P+3ns4troDK8R4DXIt9gvAfOJFgj+ck6PIDqB1Uxvrm3LZQtbZ3sCLSwrL1zSxraGbZ+maWR5pZ07iFdZvsa23jZja09Dw4vsQjVJbaaQ4qSkvcd8/Wd+84ajevYXjzIigfhSmvpsNAhzHsOs7LCbuPzWldlVJKqX7u3HDQf330Qzjob3DX9+tDAZXjja7PczR25tPXcbwP40SSTyefpMtv6KByFqzYkJXitbS288GKjXy4YiMfrdrIolWNLFrdyLKG5m0m0hwxuJzh1RUMqy5n+tgahleXM6y6nOHV5Z2TaFZXlDI4+qospbqihIrSFGai2LgjW/6yD+Udj8M3n4ayyqzUTymllFKU+AIhCQf9BjrnoSpP5cTiCajc9XlwIp8A4HhTW5+nOvGcS7WD0h9DtaZxMy8uWsPcxQ3MW7KeBcs30NpuI6fyUg8TR1QzY8JQvjxjHOOGVjGudhDjhlYxxltJZVkOp+gash0Lp/2I3eb/Fub8Bo65KnfXUkoppQaW2cC9vkDoRvfz+W5aj4opoEptfR7Hex5wXvRj/WvvJhyNHVm9hYZNrfzvmWfwpDBie8nGDl5b3sY7a9pZvMEuqlxZAjt6PRy9fSk7ej1sP8TDyEGCRzqAiH1tgrZNsHgZLE69vmlrrNyZoeP8jH/lb7yzaQTrhu+Vh6sWXmNjI/X19YUuRt5pvQcWrffAovUuOpdgY4zvuZ+fAm5K5cRiCqhS40RmAbMA2oOVpu7wwxMeuqjkEx79ZAF77X8w3qr4s4w3bm7jntc+4z9zl/LBik2UeIS9th/KKfuP4NCpI9llrJcST3E9PldfX8/4s2+Gm45g90/+Dl98CQaPKnSxcq6+vp66urpCFyPvtN4Di9Z7YNF6F5dw0N8B3OC+8AVChwB/BS7o6dxiCqiyvj5PNIiKNLVuE1Ct3riZW1/6lDteXsyGljb23L6Wy0/cBf9uYxg+uCKTy+ZHWZWdSmFWHTz4Pfj6v+1yNUoppZRKmy8Q2hM7sfmpwKfAf1M5r5gCqteBKTjerK3PM3SQHUfW0LSF7YfbmeNXbmjhuv8t4t43ltDa3sExu2zH+YdNYsaE2owKXxCjp8MXr4THfgqv3Qj7f6/nc5RSSinVhS8QmooNok4H1gD3AhIO+hN3g3VTPAGVE2nD8UbX5ykBbsGJZLQ+z9Bq2yq1vrmVSFMrf3t2Ebe9FKat3XDK3uM579BJ7DiiOvOyF9I+34FFT8NTv4LRu8DoXaFqqM7yqZRSSqXuA+B54Phw0L8IwBcI/bg3GRRPQAXgRLK6Po+3yrZQPfjWMi6+dx7rmrbw5RnjuOioqZ0tVn2eCJx4Pfz9QLjtBJtWUQPDdoThk2HYJPs+fDIMn2iDLaWUUrlljH3ZD1vTop/dbelohbbN7uc4x3V+7s2+RMd1vXZ29sW5dgplHrTpM1i1YNt9hXMytmfsGV8gNBu7fnGvWibEdP8S+pDKykrT0tKScP/axs3s9dunAdh5TA1/OGV3dhnrzVfxcibuYL7IUgi/CE1roeFTWPsxrF0EkSVgOrYeN2g41G4Pg0ZA9UioHm7fywfbcVmllfY9ui0lIB4buIkn/gvY5pct5e14v5jETX/zzbnM3HPPNK8T75rxr9Or7R6vSYplSby9cOFCpk2b2sPxPV2nN99L7+5Let9LT9+XYcnSJUwYNz71a6ZUFmK2s/W9xLkXGXwv69atY9jQoSl9R9n7XvLxHcXJP2Zfy+ZmKssr4u7b5pop7TNdknosV9Iy9+LaKiPymw1NxpiCdR35AqFq7JRNpwNHALcDD4SD/id7Ore4WqiyLHYg+t3n7kftoJTm5uqbvONhjzjrN7Zthobw1gBr7Uew4XPYtNr+76BpDbQlDkqLyUyAtwpdivybBvBhoUvRG+J2Obv/uUtze0x7O6wudfPrnndvt3u6JsmPSeua0e3efS8l7c2wpTy170ti8s/J9xLzH/RUytLTNRPmLzSsWM6YMWPi7kt2XtJ9cY/rvo8Uz8tiuTrfhE8+/ZSJEyf2ssyp7otzH3NRnzS+5/feX8Auu+yy7Xm/OYlCCgf9m4C7gLt8gdBQ4BTsVAoDO6AqLfHw0AUHsePIamoq40+b0O+VVsDIafYVjzGwZRNsaYTWZhtctTZv3TYGTEfyV1S6f0RT/KP09jvvsMfue6R/nZSuSYL0ZNu9vX6376uH67z88isccOCBaZSl23Uy+l562M7BmL0XivSx6lx7a4DWe2F9PWMGYL0/66hn4iF1hS5G3q1eUw+71BW6GEmFg/4G7DRNs1I5vl8HVAB79MWn9/JJBCoG21eRa1haCpPrCl2MvNtcOQJqdJ1GpZQqZjpxkVJKKaVUhjSgUkoppZTKkAZUSimllFIZ6tPTJohIB9Bc6HIUQCnQVuhCFIDWe2DReg8sWu+BJVG9q4wxfbKxp68PSn/TGLN3oQuRbyLyhtZ74NB6Dyxa74FF691/9MkoUCmllFKqmGhApZRSSimVob4eUKU02VY/pPUeWLTeA4vWe2DRevcTfXpQulJKKaVUMejrLVRKKaWUUgWnAZVSSimlVIb6bEAlIseIyEIRWSQigUKXJxdEZIKIPCMi74vIeyJyoZvuiMgyEZnnvo4rdFlzQUTCIvKuW8c33LRhIvKUiHzkvg8tdDmzSUSmxdzXeSKyQUQu6o/3XERuEZFVIjI/Ji3u/RXrL+7v+zsiMrNwJc9Mgnr/XkQ+cOv2gIjUuuk+EWmOue83FKzgGUpQ74Q/1yJyqXu/F4rIFwtT6swlqPe9MXUOi8g8N71f3O8kf7v69++3MabPvYAS4GNgIlAOvA1ML3S5clDPMcBMd3sI8CEwHXCAnxa6fHmofxgY0S3taiDgbgeA3xW6nDmsfwmwAtihP95z4FBgJjC/p/sLHAc8DgiwP/Bqocuf5Xp/ASh1t38XU29f7HF9+ZWg3nF/rt1/594GKoAd3X/vSwpdh2zVu9v+PwK/6k/3O8nfrn79+91XW6j2BRYZYz4xxmwB7gFOLHCZss4Ys9wY86a7vRFYAIwrbKkK7kTgNnf7NuCkwhUl544EPjbGLC50QXLBGPMcsK5bcqL7eyJwu7FeAWpFZExeCppl8eptjHnSGBOdNfoVYHzeC5ZjCe53IicC9xhjNhtjPgUWYf/d73OS1VtEBDgVuDuvhcqxJH+7+vXvd18NqMYBS2I+L6WfBxoi4gP2BF51k37gNo3e0t+6vWIY4EkRmSsi57lpo40xy93tFcDowhQtL06j6z+0A+GeJ7q/A+l3/tvY/61H7Sgib4nIsyJySKEKlUPxfq4Hyv0+BFhpjPkoJq1f3e9uf7v69e93Xw2oBhQRGQzcD1xkjNkA/B2YBMwAlmObjPujg40xM4FjgQtE5NDYnca2FffLeT9EpBz4EvBvN2mg3PNO/fn+JiIil2HXN7vTTVoObG+M2RO4GLhLRGoKVb4cGHA/192cTtf/NPWr+x3nb1en/vj73VcDqmXAhJjP4920fkdEyrA/kHcaY/4LYIxZaYxpN8Z0ADfRR5vCe2KMWea+rwIewNZzZbQp2H1fVbgS5tSx2LUqV8LAueckvr/9/ndeRM4Gjge+4f6xwe3yWutuz8WOJZpasEJmWZKf64Fwv0uBk4F7o2n96X7H+9tFP//97qsB1evAFBHZ0f2f/GnAwwUuU9a5/es3AwuMMdfEpMf2LX8ZmN/93L5ORKpFZEh0Gztodz72Pp/lHnYW8FBhSphzXf7nOhDuuSvR/X0YONN9Gmh/IBLTddDnicgxwM+BLxljmmLSR4pIibs9EZgCfFKYUmZfkp/rh4HTRKRCRHbE1vu1fJcvx44CPjDGLI0m9Jf7nehvF/3997vQo+LTfWGfCvgQG8FfVujy5KiOB2ObRN8B5rmv44A7gHfd9IeBMYUuaw7qPhH7lM/bwHvRewwMB+YAHwFPA8MKXdYc1L0aWAt4Y9L63T3HBozLgVbsmIlzEt1f7NM/17u/7+8Cexe6/Fmu9yLsGJLo7/kN7rFfcX/+5wFvAicUuvxZrnfCn2vgMvd+LwSOLXT5s1lvN/1W4Lvdju0X9zvJ365+/futS88opZRSSmWor3b5KaWUUkoVDQ2olFJKKaUypAGVUkoppVSGNKBSSimllMqQBlRKKaWUUhnSgEoplXUiMlxE5rmvFSKyzN1uFJG/5eiaF4nImUn2Hy8il+fi2koppdMmKKVySkQcoNEY84ccXqMUO2/PTLN1keHux4h7zEEmZvJMpZTKBm2hUkrljYjUicij7rYjIreJyPMislhEThaRq0XkXRGZ7S5dgYjs5S4UO1dEnkiwCv0R2KV62txzfiQi77uL7t4DnWuH1WOXd1FKqazSgEopVUiTsMHQl4B/Ac8YY3YDmgG/G1T9FfiqMWYv4Bbgyjj5HATMjfkcAPY0xuwOfDcm/Q3gkKzXQik14JUWugBKqQHtcWNMq4i8C5QAs930dwEfMA3YFXjK9thRgl3Go7sxwIKYz+8Ad4rIg8CDMemrgLHZK75SSlkaUCmlCmkzgDGmQ0RazdZBnR3Yf58EeM8Yc0AP+TQDlTGf/cChwAnAZSKym9sdWOkeq5RSWaVdfkqpYrYQGCkiBwCISJmI7BLnuAXAZPcYDzDBGPMMcAngBQa7x00F5ue81EqpAUcDKqVU0TLGbAG+CvxORN7Grlp/YJxDH8e2SIHtFvyX2434FvAXY8x6d9/hQCiXZVZKDUw6bYJSql8QkQeAnxtjPkqwfzRwlzHmyPyWTCk1EGhApZTqF0RkGjDaGPNcgv37AK3GmHl5LZhSakDQgEoppZRSKkM6hkoppZRSKkMaUCmllFJKZUgDKqWUUkqpDGlApZRSSimVIQ2olFJKKaUypAGVUkoppVSGNKBSSimllMqQBlRKKaWUUhnSgEoppZRSKkMaUCmllFJKZUgDKqWUUkqpDGlApVQfISI+ETEiUpphPo0iMjFb5erFdetEpD7f101ERM4WkRfyeL1viMiT+bqeUiq/NKBSKo9EZLaIXB4n/UQRWZFpsJQKY8xgY8wn7nVvFZHfppOPiPxLRP7ZLe0wEVkrImPSLZ9bprZM8ii0eMGvMeZOY8wXsnyd0SKyRkTquqXfIiL3ZPNaSqnkNKBSKr9uA74pItIt/QzgTmNMWwHKlK4LgWNF5GgAEakEbgJ+YoxZnk6GIlINfAWIAN/MVkGzTURKCl0GAGPMSuDHwE0iUgUgIkcCxwM/LGTZlBpoNKBSKr8eBIYDh0QTRGQo9g/g7SLiEZGAiHzstvTcJyLD4mUkImNF5GERWScii0Tk3Jh9JSLyCzefjSIyV0QmuPuMiEwWkfOAbwA/d7sBHxGRn4nI/d2u8xcRubb79Y0xa7F/tGe5gdCvgY+NMbdm8P18BVgPXA6c1a0cw0TknyLyuYg0iMiDMftOFJF5IrLBrfMxbrpXRG4WkeUiskxEfpsoGBKRnUTkKff7XCgip8bsu1VE/i4ij4nIJuBwEfGLyFvuNZeIiBOT3XPu+3r3uz2gexejiBwoIq+LSMR9PzBmX72IXCEiL7r370kRGRGv3MaYO4CFwOVuUHUj8CNjzOoev22lVPYYY/SlL33l8YVtxflHzOfzgXnu9oXAK8B4oAL7x/Fud58PMECp+/k54G9AJTADWA0c4e77GfAuMA0QYA9guLvPAJPd7VuB38aUZQywCah1P5cCq4C9ktTnfuBhYC0wIclxdUB9D9/NHOBqYDTQFntdIATcCwwFyoDD3PR9sS1aR2P/kzgO2Mnd94D7HVYDo4DXgPPdfWcDL7jb1cAS4FtunfcE1gDTY76nCHCQe41Ktz67uZ93B1YCJ8W7V3GuNwxowLZMlgKnu5+j96ge+BiYClS5n4NJvrfx7vf/EPBgoX/G9aWvgfjSFiql8u824KtuFxnAmW4awHeBy4wxS40xmwHHPbbL2Cq3tekg4BJjTIsxZh7wDzcvgO8A/88Ys9BYbxvbopSUsV11zwGnuEnHAGuMMXOTnPZ94AjgcmPMkp6ukYiIbA8cDtxlbFfWHNz6uOOpjgW+a4xpMMa0GmOedU89B7jFGPOUMabDGLPMGPOBiIwGjgMuMsZsMsasAv4EnBbn8scDYWPMP40xbcaYt7CB4ikxxzxkjHnRvUaLMabeGPOu+/kd4G7gsBSr6wc+Msbc4V7vbuAD4ISYY/5pjPnQGNMM3IcNmuMyxiwFfgUcBXwvxTIopbJIAyql8swY8wK29eMkEZmEbWG5y929A/CAiKwXkfXAAqAd22ITayywzhizMSZtMbZ1BmACtoUjHbexdfzSN4E7kh3sBj9rgPfSvF7UGcACNzgEuBP4uoiUYeuzzhjTEOe8RHXdAduStTzm+7wR21IV79j9ose5x34D2C7mmC7BoojsJyLPiMhqEYlgg+G43XJxjMXer1ix9w9gRcx2EzC4hzzfAxpMmuPXlFKZyfkTRUqpuG7Htr5MA55wgxKwf7S/bYx5sfsJIuKL+fg5MExEhsQEVdsDy2LymQTM76EcJk7ag8DfRWRXbMvNz3usTXacCWwvItFAohQ73uw4bFfdMBGpNcas73ZetK7dLQE2AyNMz4P9lwDPGmOOTnJM9+/qLuA64FhjTIuI/JmtAVW87zXW59ggLtb2wOwezlNKFSltoVKqMG7Hds+cy9buPoAbgCtFZAcAERkpIid2P9ntWnsJuEpEKkVkd2zX17/cQ/4BXCEiU8TaXUSGxynHSqDLnFTGmBbgP9iA4TVjzGeZVDQVInIANijaF9u1NQPY1S3DmW6ry+PA30RkqIiUicih7uk3A98SkSPdQf3jRGQn95wngT+KSI27b5KIxOuWexSYKiJnuHmXicg+IrJzkmIPwbaatYjIvsDXY/atBjro9t3GeMy93tdFpFREvgZMd8uhlOqDNKBSqgCMMWFsQFSNHdAdda37+UkR2YgdoL5fgmxOxw5+/hw7+PrXxpin3X3XYMfdPAlswAYdVXHyuBmY7nZzPRiTfht2wHXS7r4sOgs7RuldY8yK6Av7fRwv9knHM4BW7FijVcBFAMaY17CDyf+EHTj+LFtbf84EyoH3sYO+/4MdeN+F28r3Bez4qs+x3W2/wz4YkMj3sU/WbcSOX7ovJr8m4ErgRfe73b/b9dZiW/9+gh1M/nPgeGPMmh6/KaVUURJjemqZVkoNNO4A8Q+A7YwxG7KUZx3gGGPqspGfUkoVE22hUkp1ISIe4GLgnmwFU0op1d/poHSlVCd3gs6V2CfOjsly9mHsfE5KKdXvaJefUkoppVSGtIVKKaWUUn2CLxC6BftAx6pw0L+rm+Zgn5iOLrf0i3DQ/1i+y9anAyqPx2OqquI9uNS/dXR04PEMvOFvWu+BRes9sGi9B5ZE9W5qajLGmGRfyK3Y+d9u75b+p3DQ/4fslbD3+nRAVV5ezqZNmwpdjLyrr6+nrq6u0MXIO633wKL1Hli03gNLonqLSHOy88JB/3O+QMiXo2JlpE8HVEoppZRSwA98gdCZwBvAT8JBf7xlqnJKAyqllFJKFQVPVU2pLxB6IyZpVjjon9XDaX8HrsAu+XQF8Efg2zkqYkL9IqAyxtBhoMQj3XfY1wDsn1ZKKaX6mo7mDW3hoH/v3pwTDvqja6HiC4RuokBLOPWLSOOKRxdw6NXP0NERMwVEZBn8aVf4656wQRdfV0oppfojXyAUu5zUl+l5Ufic6BctVLe8+CkAKza0MLbWfervzdtgw1K7/fjP4Wv5WpJMKaWUUrngC4TuBuqAEb5AaCnwa6DOFwjNwHb5hYHzC1G2fhFQRa1p3Lw1oPr8LRg1HXY9Gf73W1g0ByYfWdgCKqWUUipt4aD/9DjJN+e9IHH0iy6/qH88/ylvL1lvP6z5EEbtDAf+CIZNtK1UbZsLWj6llFJK9U/9KqB6+O3P+f6db9oPm9ZC9SgorYBjfw9rF8HL1xW2gEoppZTql/p8l197R9e1CJetb7YtUVs2wqDhNnHKUbDzCfDs72G3U6F2QgFKqpRSSqli4QuEKrHL2BwCjAWasQPaQ+Gg/73e5tfnW6g2bWnbNrFpnX0fNGxr2hevsu9PXJr7QimllFKqaPkCod8ALwIHAK8CNwL3AW1A0BcIPeULhHbvTZ59voVq0+ZtA6qOTWtspFg9Ymti7QQ47Gcw53L48EmY+oW8lVEppZRSReW1cND/6wT7rvEFQqOA7XuTYd9vodrcvk3aw++4c3xFu/yiDvgBjNwJHroAGlfloXRKKaWUKjbhoD8U3fYFQtvEQuGgf1U46H+je3oy/SCg2raF6qJn3Kf5ugdUpRXw1X/C5g3wwPnQ0ZGHEiqllFKqmPgCoZt9gdAjvkBoB+CGbOTZbwKq8w6dyH47bh0z1W5k24AKYPR0OCYIH/8PXvxznkqplFJKqSJigFOBXwJxgoXe6/MBVaMbUJ2w+1juOGc/JgyzE3s+3bEXVA2Nf9JeZ8MuX9464adSSimlBpKl4aC/GfgZsEM2MuzzAVXTFjuGqrqihPJSD//35d0AOL/1Yigpi3+SCJzwFzue6r6zYEVBlv1RSimlVAGEg37HfW+ILsbsC4Q8vkCoJt08+3xAFW2hGlxhH1jceczW76KtPckYqcoa+Ma/oWIw3HkKrP8sp+VUSimlVHHxBUJ3+QKhGl8gVI2dg+p9XyD0s3Ty6vMBVXQMVbUbUI0YXMEV270AwLqmLclP9o6zQVXrJvinHxrCuSyqUkoppYrL9HDQvwE4CXgc2BE4I52M+kVAJQJVZSWdaSPb7bQJqzemsHbfdrvBmQ/ZJ//+6Ye1H+eqqEoppZQqLmW+QKgMG1A9HA76W7ED1nut7wdUW9oZVFaCxyOdacO2rACgYVNrapmM3RPOegTamuEfR0L4xVwUVSmllFLF5UYgDFQDz7nTKGxIJ6P8z5TueCuB54AK9/r/wYn8Gse7I3AP9vHFucAZOJEe+uxsC1W0uw8AYyjbbJeeae3NPFNjdofvPA13fQ1uPxGODcLe59gB7EoppZTqN3yB0AHAK+Gg/y/AX2LSPwMOTyfP9AIqGxTFXVAQJ9LTgoKbgSNwIo043jLgBRzv48DFwJ9wIvfgeG8AzgH+3lNRGje3dQ5IB2DLJso6mgFoa+9lq92wiXDOU3D/ORD6CXzyLHzpL4mnX1BKKaVUX3QmcL0vEPoQmA3MDgf9K8JBv8Gu59drvQ+oHO9vsMFUPXZBwVVAJTAVCLrB1k9wIu/EPz9igEb3U5n7MsARwNfd9NsAhxQCqo0tbQypipkeoWktpdipFJI+5ZdIVS18/d/w8nUw5zdw/Wtw7O9g+onaWqWUUkr1A+Gg/3sAvkBoJ+BY4FZfIOQFnsEGWC+Gg/5t17ZLQozpZSuO4/XjREJJ9tsFBZ1I4jVwHG8JtltvMnA98HvgFZzIZHf/BOBxnMiucc49DzgPoOqqpr0OdB6mshR+to+d0HPIho/wvnENR235A9/bo4L9xqTfqzl44yKmLbyeIY2fsHbY3iya/G2aB41LO79saWxsZPDgwYUuRt5pvQcWrffAovUeWBLV+/DDD28yxlQnOs8XCN2CbdRZFQ76d3XThgH3Aj7seKhTw0F/Q2/L5AuEqrDdfccCB0Tnp0pVGi1UcYIpx+sBBuNENuBEVmFbrZLl0Q7MwPHWAg8AO/Xi+rOAWQAmWGkor8K3XQ11dTPt/kVthN+wQeXUnXaibs/xKWe9rTo47mx47UaGP/N/DH/9hzDj63DYJVA7IYN8M1NfX09dXV3Brl8oWu+BRes9sGi9B5YM6n0rcB1we0xaAJgTDvqDvkAo4H6+JNUMfYHQUGACNiZaAfwzHPT/sLcFS/8pP8d7F463BsfbORkWjrd3k2E5kfXY5rUDgFocbzTAGw8sSyWLDS1t1FTFxIXN6ykVG1C19nYMVTwlpXDABfCjebDvefDOvfCXPeG/58Pn8zLPXymllFIpCQf9zwHruiWfiB0qhPt+Uqr5+QKhK4B3gL8Cf3Rff0inbJk85Tfdtkh5v4GdDCuA7cb7fdKzHO9IoBUnsh7HWwUcDfwOG1h9Ffuk31nAQ6kUYkNzKzWVMWOomhs6x1C1d2QhoIoaPNI++XfABfDSX+Gtf8E798CE/WHG6TD9JDv+SimllFJp8VTVlPoCodghQ7PCQf+sHk4bHQ76l7vbK4DRvbjkqcCkcNDf46wCPckkoCpzn9I7CbgOJ9KK400lghkD3OaOo/IA9+FEHsXxvg/cg+P9LfAWcHOPOYmwua2DmthB6S3rMxuU3pPaCXDc1XD4L+CtO2DubfDIhfDYz2HqF2Gn42HyUVCdlcWrlVJKqQGjo3lDW2/HLsUKB/3GFwj1pjVlPlBLT0OVUpBJQBWdDOtt4Dkcb2qTYdmn//aMk/4JsG+vSiC2x9IbG1A1r6esrBw2Z6nLL5GqWjjwh3DAD+DzN+Hte+G9B2DBw7Zc4/eBSUfADgfCuL2hfFDuyqKUUkoNXCt9gdCYcNC/3BcIjaF3wdFVwFu+QGg+dlonAMJB/5d6W4h0pk04APtEXpfJsHC8aU+GlTaPDaTGDa3amta8npLKGmiEtt5M7JkuERi3l30dE4Tl8+DDJ+CjJ+DZ34HpsOUctxeM3xu2291OIjp8ih2fpZRSSqlMPIwdKhSkF0OGXLdhhx29C2QUNKTzF/1M4Hocb+dkWDiRFe78UmlNhpUuM2QkAONrYwOqBkoHDQGgLZtjqFLh8cC4mfZ1+KXQEoHPXoXFL8Dil+C1m6DdDYBLq2D0dBi5EwyfBMMn29ewiVBWlfw6Siml1ADkC4TuBuqAEb5AaCnwa2wgdZ8vEDoHWIwdF5WqJne29IylM23C9+y7t3MyLBxvl8mw3GkR8qZLC1XLesoqa4A0ZkrPtkovTP2CfQG0t8GaD2HFO7D8Hfu+aA7MuzPmJIGasVAzDrzj3Pfx9r1mHFQPp6StCYzRiUaVUkoNKOGg//QEu45MM8vnfYHQVdhWrtguvzd7m1H6fU5O5APgA+BP7tN6hwOnANcAaQ8oS8eg8thpExrwDJ0I5GhQeiZKSm2r1OjpsMdpW9M3b4S1H8PaRfa9IQwbltqga+Hj0NbSJZtDAF4qg0HDoGqYHc9VWWvz3OWkvFVHKaWU6uOiY7r3j0mLrt7SK5kN4nG820yGhRPp9WRYWdXcgIyrpaxE8t/ll66KITB2hn11Zww0rbMB1obPoWkdH7/7GpPGDrXpzeugeT189hJsWqUBlVJKKZWicNCftbHfGbRQea8AzgY+YetArrSiuqxqXg9VQyn1ePpOQJWMiJ2CoXo4jNkDgCWRcUzqPsPsoz+G+fdrV6BSSinVA18g9E3grnDQH7cryxcITQLGhIP+F1LNM5MWqlOBSTiRjCfDyprWFmhrhspaSj1Ca7F1+eXS8Ml2EHzTOp0DSymllEpuOHa6hLnYSclXA5XYNYYPA9ZgJyxPWSYBVdYmw8qalvX2vWoopSWS3ZnSi92wSfZ93ccaUCmllFJJhIP+a32B0HXYXrWDgN2BZmABcEY46P+st3lmElBdBbyF4+0yGRZOpNeTYWVNs7u4dFUtpSWe3E7sWWyGT7bvaxfBhN7Nj6qUUkoNNOGgvx14yn1lLJOAKmuTYWWiojRmfef/3959x7dVnY8f/xxJ3nYUO3srO4QQSNgjEGYBUWgppdBN+4PyLS3QRQV8294OvoiWDtrSkQJlj5YNgrDDJiEJCVmELGXv2Eq8ben8/jhXtjzkoWHZ1vN+5b4k3Xt17zmRJT0659zn1FSY24JSXA7d+67yS6dSDzjzYM/qTJdECCGEyDrJBFTVdrb0jDphQkz3VlMLVSkuZ3l2dfk5XTB0GuxamemSCCGEEFknmYDqbSx3m2RYWKFuJ8NKxq0XH9H8IDqGKn8gOY4QDdkUUAEMO8JMeSOEEEKIuDy+gCfo9wZTecxkAqqUJcNKRlFey6SeABSU4nRsya4uP4DhM2DZg3BoN5QMy3RphBBCiN7qVY8vcBdwe9DvTcm0eclkSu/ZiZDjaJFyqaYCUJA3AJezn+Sh6o5hh5vb3SskoBJCCCHimwX8Clji8QW+F/R73072gAnM5ef+KvAwVqj95h/LPREYgRXqcjKsZLRIYVlTbqZhcThMpvRsa6EaNsPc7l4Fk87KbFmEEEKIXiro9x4CfuDxBY4GXrMnWo5gwgod9HtndveYibRQDcKkS0hZMqyUqSk3c9oBTkcfmnomVQrLYMBo2LEs0yURQgghejWPL3AGcAdwF3AnSWYsSKCFKnQHljtuMiysULeTYSVDxfb51VZAQSkAOQ4HjdmUhypqzHGw5QOZgkYIIYSIw+MLPAqMBr4c9HtXpOKYiY2hskIpTYaVjLZdfiagcjmzbOqZqHEnwaonoWILlI7LdGmEEEKI3ujVoN97VyoP6Oh8lz6kpsKMocJ0+WVVpvSosfZFl1vez2w5hBBCiF4q1cEUJJc2ITGWewxwPzAMk2Zhnt2NWAY8BniAIHApVqi8s8O1vMqvuYUqx+nIrsSeUUOnQ54bNr8HR16W6dIIIYQQWaH7LVSW25PkORuBH2GFpmNyWF2D5Z6OGcj+GlZoMvAaXRzYrqKdfpGIGUNlD0p3ObK0y8/hNOOoNr+b6ZIIIYQQKefxBYIeX2CFxxdY5vEFFme6PFGJtFC9iuW+C7gdK9T9ZFhWaCew075/CMu9BhgFXATMtfe6D1gA/LTLx60/BDrSYgxV1l3lFzXpTJjvgwOboGx8pksjhBBCpNrpQb93XyoO5PEFTsL0jjXFREG/9/7uHieRMVSzMN11S7DccxJ4fjPT2jULWAgMs4MtgF32OTrV1OXXNDHyQABcjizt8gOYfI65XfdyZsshhBBC9GIeX+AB4HbgFOBYezkmkWMprRMMOiz30ZiuuRbJsLBCXUuGZbmLgTeBW7BCT2K5K7BCA2O2l2OFStt53lXAVQB5/xx69HMPziPXqSg+tJFjlvyAlYffyL4hJzDv4zo+LQ9z+2mFidWvF6usrKS4uLjDfY5b+F1q84fy8ZFWzxSqB3Sl3v2R1Du7SL2zi9S7pTPPv6h+zLUPx6YxmBf0e+fF7uPxBTYB5Zhx2P9svb07PL7AGmB60O9NugUmwbQJ7uSSYVnuHOAJ4CGs0JP22t1Y7hFYoZ1Y7hHAnvafG5oHmP+8f07Wp556Kvk5TtioYAnMOOZkGD+HF/YtZ2PlPubOnZtABXu3BQsWdF6vus9TuGgec088GvJKeqRc6dalevdDUu/sIvXOLlLvliI1BxuDfm9nLUSnBP3e7R5fYCjwiscX+CTo976VYFFWAsOJDkVKQiJTzzQlw8IKdT8ZluVWwN3AGqzQH2K2PAt8A/Dbt8905XBNXX61FeY22uWXjXP5xZp+Ebz/V1j9LMz6SqZLI4QQQqRE0O/dbt/u8fgCTwHHAYkGVIOB1R5fYBFQF3OOC7t7oAQHpYeSyd9wMvA1YAWWe5m97iZMIPUfLPe3gc3ApV05WNNVfrUhcxtzlV9jJAuv8osafSyUTYCPH5WASgghRL/g8QWKAEfQ7z1k3z8HM8lxoqyUFIzEpp5JLhmWmTQ53pwoZ3b3cB0NSs/KqWeilIKZl8GCWyG0DdyjM10iIYQQIlnDgKc8vgCYGObhoN87P9GDBf3eNz2+wDDMYHSARUG/t/0hR53o+cSe6VJbAcoJuWaQW062Tj0Ta+alsOD/4OPHYM6PMl0aIYQQIilBv3cjcGSqjufxBS4FfodJ1aSAv3h8gZ8E/d7Hu3usPh9QNTV11VRAvrupycrpUNmbNiGqbDyMOxmW3AsnXQfOPv9yCyGEEKl0M3BstFXK4wsMAV4Fuh1QJT6Xn+VeguW+BsvdNrVBD1LRPr/aiqbuPmgelJ5wWoj+4sRrzETJq5/OdEmEEEKI3sbRqotvPwnGRsk0WXwJuAL4EMu9GPg38DJWKDMRTG2oaUA6QI7DBFqNEU2OM96QrSww5TwYPAXe/RPM+EKryQ+FEEKIrDbf4wu8BDxiP/4S8EIiB0qihSq0Hit0MzAFeBi4B9iM5f6lPdFxj2jR5RfTQuW0g6is7/ZzOOCka2HXCtjweqZLI4QQQvQaQb/3J5jcljPtZV7Q7+36tHcxkhtUY7lnYlqpzieaqNOkb38dOCqpY3dRizxUA8c2rc9xmFixIRwxiT+z2cxL4Y1b4K3fwcQzpJVKCCGEsAX93icwMUxSEg+oLPcSoAKTpNOHFYomxFqI5T452YJ1W3RQus1lt1BldeqEKFcenPZTeP56WPWk6foTQgghspTHF3gn6Pee4vEFDmGmsIlSgA76vQO6e8xkWqi+iBXa2GKN5R6PFdqEFbo4ieN2i1IKtDZjqGIHpceMoRLA7K/D4nvg5Z/BlHMhtyjTJRJCCCEyIuj3nmLfpmxutsTHULV/SWG3LzNMiYZqiDS0GJTucpqqZXW29FgOJ5z/Ozi4Hd7+faZLI4QQQmScxxd4oCvruiKRufymAYcDbix3bEvUACA/kUIkrVWWdIhpoZIuv2ZjTzDZ09+9A6ZdAKNmZ7pEQgghRCYdHvvA4wu4gKMTOVAiXX5TgQuAgcBnY9YfAq5MpBAJi8ZK0YmR2xtDJV1+LZ3nh01vwZNXwpWvt/g/E0IIIbKBxxe4ETOPcIHHFzhor1ZAPeaqv25LZC6/Z4BnsNwnYoXeT+SkKRdtoYrt8rOv8mvM9ulnWisohS/8C+6/CP57BXz5P5JBXQghRFYJ+r23Ard6fIFbg37vjak4ZiJdfjdghX4LfBnLfXnb7aFrU1CuLrJbn2pD5jamyy+azLNBuvza8pwC3t/Dc9fBSzfB+b/NdImEEEKIHhf0e2/0+AKlwGRihi0F/d63unusRJom1ti3ixN4bno0dfkNbFrltFuosj6xZzxHfxP2fgof3AlFQ+DUH0t+KiGEEFnF4wv8P+A6YDSwDDgBeB84o7vHSqTL7zn79r5uPzdd2hmUXmAn86yub+z58vQV5/waqvfDG78xQek5v5GgSgghRDa5DjgW+CDo957u8QWmAf+XyIGSmRz5FSz3wJjHpVjulxI+XjKiLVR5zXm4BhbmABCqachAgfoIhxM+93c47jvw/l/hqe9AfXWmSyWEEEL0lNqg31sL4PEF8oJ+7yeYi++6LZk8VEOwQhVNj6xQOTA0ieMlrqYC8twmQLC5C0xAVSEBVcccDjjvNjjjf+Hj/8BdZ5p5/4QQQoj+b5vHFxgIPA284vEFngE2J3KgZC7vCmO5x2KFtgBgucfRMn17z6kNQUHLy/9Li3IBqKiuz0SJ+hal4NSfwMjZppVq3lw48Ro45QfmqkAhhBCil/D4AucCdwBO4K6g3+tP9FhBv/fz9l3L4wu8AbiB+YkcK5mA6mbgHSz3m5jcDXOAq5I4XuJqK1oMSAcoynWS53Kwv1ICqi6bdCZcswheuhne/TMsvhdOvhaOvxryijNdOiGEEFnO4ws4gTuBs4FtwIceX+DZoN+7OsFjrQr6vdMAgn7vm8mULYnJkUPzsdyzMSPiAa7HCu1LpjAJq6loMSAdzBx/g4vz2FtZ1+5TRByFZfD5v5sWqjdugdd/bYKrIy+DWV+B4TNl4LoQImlaa7SGiNZENNSHNTX1YfuxWaft2+g6nWQfSNLPT0EnjELhcIBTKRxKUdWgqaxrxKHAoRROh8KpFErZc9WK1o4D1gf93o0AHl/gUeAioNsBVdDvDXt8gbUeX2Bs0O/dkmzBks3oeBJwaszj57v0LMt9Dybb+h6s0Ax7XRnwGOABgsCl9risztVWwODJbVYPLs7tFS1UDeEItQ1hqurCVNY1UlMfprq+keqGMLX1YeoaI9Q3RqgLm9sG+7a+MUJ9uPm2oTFCY0SzfWctj21bQkNY0xiJ0BjW5Oc4+fLxYzhj2rDUFHr4DLj8Edi2GBb+A5b8Gxb9E9xjYep5MO18GHcytREH+6vqOVBZz6HaBqqidasPm6WukZqGMA3hCA1hTThiytwQ1jSGTX0a7XqEI+bjSmvsW/PhFf0gLS+v4R+fvt+0HcwUQ3kuB7kuB7kuJ7lOcz/PXnKcDhz2B5NDKfOh5TAfVtEPNGV/kDVtgy4FjV35qOvK56Hq5Eifbm1g56Kuv9djvzRivwBaro//JN3+6qbXo73nxzu2jvMN1np1e+XcsKmeT9SGOOdov15tz9N5/btSluhzIhFNWGtza9/Xmqb7rddHz9+d/689e2p5fMfSts+LU/82x+vqfk2PdYv3XOv3oLkfrU/Mffsgup3nRyLafK7F+UxrjMQJjl5JqKel73ut/eu5Yj8/VIv1Ks762P3bf3JX9o/3udWdv62WG9s+LxLROF55IZEgdxSwNebxNuD4bh+lWSmwyuMLLAKqoiuDfu+F3T1QEi1Ubj/mUsOH7DXXYblPwgrd1IVn3wv8Fbg/Zp0PeA0r5Mdy++zHP+3oIKrKbhCrqWjT5QcwqDiP3Qdru1Cc7tNas/tgHcH9VQT3VbH7YB0HqupMcGEvtQ1h9lfWc6gusdQNDoUJFOwgIcfpwOVU1NdGKI9U4nI6yHGaXzTvrN9HfTiSuoAqWs9RR7PjzL+w0vNTNnzyEdu2b2fru/Vse3s9u/V+qrswfaPLoZrK7nIoU2771jxWuBwOnHagEw1olP1/oOz7YQ2RCKCaPxTqGyMcqm1sEXyaANUEqg3hSMwXRx+2KksvFFj7SaZL0IJDgdOhWrQkOByqzXqHMq0QjjhffBD/S7G6JsK+8MF2t8V7jtkWc78LX47R4yl7H/Pea/kedNj3W+xnvwEVoBygcLR5vkMp+0eOgzyn+ezKdTUvOQ7V5kfOpk0bmTRxYlNLjYpui5Yj2mrTpZ8yHdU5qacneXaIaOyA2wTfn65bz4QJEwnbjyMR3bQP7QTk3f3BFDcI6sKPIK3b/n919DdInL9B87yWu23ZsoWxY8e22eb70wCXxxeIzXM5L+j3JjQVTBf9LFUHSqaF6nzgKKyQmdvFct8HfISZG6djVugtLLen1dqLgLn2/fuABXQSUNFgB0u1FW26/MC0UK3aEeq0OPFordl7qI5N+6pM4LS/muC+Kjbtq2Lz/mpqGsIt9i/JdzG4OI+yolxGlxZSkOtkUFEug4pyyc9xUpTnoijPSWGui8JcJwW5TgpynDEtLM3BU67TgcvZ/kWYCxYsYO7c01qs+9yd7yZcz9Z1Xr3zIG99uo/3Nuxj5fYQ5dXRKyWLKCuawehheUzPPcQZjdspqw5SVvkpZbqcAVRR5Gik0D2YorKRFA4eTcFQD7mDJ8CAUVAyHPJKEi6bqfeJCdcr2r0Q1i27GiJaoyO06Gro9HhdafpPzS689957nHjiSZ2WJ96XaIuPtW584DWv7/zXcJvjqfb3i3fc9o799ltvM+fUOV0KDjoqS3fr1eY5PdztYv7O5/boOXuDBWobc0+bmOli9LgFDZuZe+qETBejxy1YsIu5c6e1WX9DzcHGoN97TAdP3Q6MiXk82l6XkKDf+6bHFxgHTA76va96fIFCzGD3bku2y28gcMC+n+wsu8OwQjvt+7uA9ptaLPdV2IPflQ7z1msvc2pjLRt3lrNlwYIWu1btr2ffoQbeeOONLn0ohiOaTQcjrD0QZm15hE0VYQ7FZF1wKhhSqBhW6GDOSMWwolyG2Y9L803ri1FvLzEiQI29AA32cpDuq6ysZEGruh48WENjjWqzvqu2HAzzzvZGFu4KE6ozX/OjixVHlDnxeHIZO8DBqGIHBS5lV6YImAJMQUVOp7gySFHVZgpqdlBYvYOCvYsp2PIczkjL/4dGZwH1uWXU5ZVRn1tGfa6bhpwBMUtJ0/1GVzHa0fwn2l69s0FOYzWffPRBpovR4xpqq1j03juZLkaPy9a/c6l3dkmi3h8Ckz2+wHhMIHUZ8OVEy+HxBa7ExBRlwERMl+I/gDO7e6xkAqpbgY+w3G9gfuCdiummS54V0lju9n+8W6F52DNBa3++PvW4mfA2TJg+iwnHzm2x6wbXJgKbVjPr+JMZWJjb7uEawhHeWb+PJ5Zs461P93Kw1nTPTR5azHlHDuTwkW48g4sYP6iIkQPz47Ya9aT2fsH+adW7lOS7mDu3613JkYjm5dW7+NuCDXy8rYpcp4Mzpg3jrOnDOHXyYIYO6Lw7r5MTwKEdcGAjHNoFh3biOrQL16GdFB7aBQeDULEf6ivjHyPPbQbKF5SyvxYGjZpkPy5rWt98OwiKh4Or/de6r8raFgupd1aRemeXROsd9HsbPb7A94CXMC1J9wT93lVJFOUazED3hfbx13l8gYRyaiZzld8jWO4FmHFUAD/FCu1K+HiwG8s9Aiu0E8s9AtjTpWdFp51pZwzV4GLzxbqvsq5NQLVxbyV3v7OJwIqdVFQ3UJLv4rwZwzl1yhCOG1/G0JIkg4ke1t1eiffW7+NXz6/mk12HGD+4iF9eeDgXHjmyKX9XSjgc4B5tlo401ELNATMNTnX01r5fcwCq9kHNAXIObYGtC6GmHOrite0p07U4YFTzud1jwD0KBo6F0vGQPyDOc4UQQvR2Qb/3BeCFFB2uLuj31nt8AQA8voCLBHNqJjCXn3t2qzXb7NuRWO6RWKGliRQEeBb4BuC3b5/p0rNq7TFS7Y6hygNgX2U9k4ZCbUOYv76+npdW7WLdnkryXA7OmzGcC2aOZM6UweS5Euo27VNC1Q3c8sJq/rN4G+MGFfKnLx3FBTNHZLblLScfckbCgJEd7rY09hdNuMEEVtGgKxqIHdwBoW0Q2gq7V8Kn86Gx1YUJhYOhbDyUTTABVuz9osGSFkIIIbLHmx5f4CagwOMLnA18F3gukQMl0kL1+w62aboyQ7PlfgQzAH0wlnsb8AtMIPUfLPe3MWnfL+1SaaLz+LV7lZ9pbVm94yDPf7yDZ5bt4FCtyffx/TMm8fUTPQwpyevSafqDdbsPccW9H7IzVMv/zJ3IdWdOJj+njwaRzhwoHmqWjmhtAq3QVqjYYrofD2yC8k2w+T0z3U7sj5HcEhNgDZrUapnYbtAuhBCiT/MB3wZWAN/BtHzdlciBEmihCp2eyIlaHePyOFu6PQis4y4/Eyz96vnV5LoceI8YwRePGc0J4wfhcGRXK8S76/dx9QNLyMtx8vjVJzJrbGmmi9QzlDKtTkWDYeSsttsb66B8swmwDmyyA64NsOMjWP006EjzvoWDWwZY0ftl4yGnoMeqJIQQIjWCfm8E+Je9JCWZPFSFwA+BsVihq7Dck4GpWKGuJfdMlWgLVTutB6WFuQwszMHlUDx61YlMGtp/p0/pKDxcuHE/37r3QzyDirjnimMZNVC+/Ju48mDIFLO01lgP5UHYvz5m2QDrX4VlD8bsqMw4rdggKxp0DRzbYtJuIYQQmefxBVbQwVipoN87s7vHTOYqv38DSzDZ0sFcvvhfupotPVWq9wOq3RYqp0Px9g2nU5Dj7BVX52XCtvJqvvPgEkaXFvDwlcczqDh7ujiT5sqNH2zVHTLBVTTIigZcHz/WcsC8IyemC7FVwFU8TMZrCSFEZlyQ6gMmE1BNxAp9Ccttuu+sUDWWu+e/HSp3m+4cZ/tVKcnP6eEC9R6RiOa6R5cRDmvu+saxEkylUl4JjDzKLLG0NlcltmjVirZsvQbhmLklc4vbb9UaNAnyk03rJoQQIp6g37s5er9VYs8CEoyNkgmo6rHcBUSbzCz3RKDnZyI+tNv80hdtpld5eNEWlmwu5/dfPJLxg4syU6hsoxQUDzHLuFZZ3SNhcwVi61atbYth5ZO0aH0uGtIUYI0JOWDNISibKOO1hBAihdpJ7DmaDCT2tID5wBgs90PAycA3kzheYioloIK202PU1If5wyufcsKEMi6ePSpDpRItOJxQOs4sk1q9Vxvr7EHxG1q2aq17hYmVu2FjdNpLZXJrlU0wrVllE2PGa43rd0lNhRAizTKY2NNy3wk8jBV6Gcu9BDgBMyb6OqzQvkQKkZTK3TCk7XxA2e6xD7dwoKqeH50ztcfnIhMJcOXB0GlmaeXtV19gzmHDzRWI0ZatAxtMq1b0ogwA5YSBY+wrDyfGBFwTwD02bre4EEJksQwm9oRPgdvtbOb/AR7BCn2UyMlTonI3lEgLFTRP2BuOaP719iaOGVfKsZ6yDJdKJCvsKoRRs83SWvWBlkHW/g3mdssHLaf0ceRAqScmyIoJuAaMMlnthRAi+2QwsacVugO4A8s9DjMp4T32WKpHMMHVp4kUJGGRRjN/W5aLbYNauGk/2ytquPF8abnr9wrtOQ3HHNtyvdZQuadlkLV/PezfCBvfhMaa5n1d+SZLfGyQFR0cL1ciCiH6twwm9oyyQpuB24DbsNyzgHuAn2MmK+wRKtoq11m27CzzwoqdFOQ4OXOatNxlLaVMy23JMBh3UsttkQgc2hkTZG0w3Yn71sG6lyFc37xvbrE9NY89IL7U07wMGC3diEKIvq4AM8HyvwA8voDTXlfd3QMlk9jTBZyHaaU6E1iAGajeg+yAqkRaqKLCEc38lbs5Y9pQCnIloaRoh8NhJot2j4Lxp7bcFgmbaXqiQVa0dWvXCvgkAJGGmOO4TELTUk/bYEsmoRZC9A2vAWcB0TESBcDLNOfY7LJEBqWfDVwOnA8sAh4FrsIKVXX7WMmKDhuTq/wA08uzdEs5+yrrOO8ICTJFAhzO5qCo9VXDkbCZfLp8k8kgH10ObIJVT5tJqmMVlDUfq03r1ijJIC+E6A3yg35v04DToN9b6fEFChM5UCItVDcCDwM/wgqVJ3LS1Il2+UlAFR3msmiT+VI7ZdLgDJZG9EsO+yrCgWPatmwB1IZaBlrRYGvHR7DmWTPeselYOWZanngBV15J2qsjhBBAlccXmB30e5cCeHyBo4GaTp7TrkQGpZ+RyInSQaHNGI+8/jtHX3ctDh5g0tBiBhZKPiLRw/LdMOJIs7QWboSD21u2bh2w729f0jL9A0DhYGY7y2DfzLYBV8lIuSpRCJEq1wP/9fgCOzDXdw0HvpTIgfr2iFKtZUB6jIjWLNlczvlHjMh0UYRoyelqTmranpryNi1b4Y0fwbYPYdVToMMxx8o1SUxbjNka17xOxm4JIboo6Pd+6PEFpgFT7VVrg35vQ0fPiadvB1QgKRNirN9TxcHaRo4eV5rpogjRPQWlZhk5q2nV8gULmDt3LoQbzED51l2J5UHYurDlZNTRYzUFXNFAa5wZKO8eI9nkheinPL6ABVwJ7LVX3RT0e1/o5DnXAA8F/d6V9uNSjy9wedDv/Vt3z9/HAyotST1tCsW+SjOV4lFjBma2MEKkkjPHTLVTNqHtNq1N61bFZjvY2tx8f9cKWPtCyzQQKBgw0gRb0UArNvgqHi7diUL0bX8M+r23d2P/K4N+753RB0G/t9ye3y+7AiqFlgHprbgcCo9MhCyyhVLNyU1jWreaRHNulQftQCsm4Nq4wGyLnWXCmWcPlh/XfitXgbT+CtHPOD2+gAr6vRqa8lAl1IzdpwMqQAKqVjyDi8hxyi9sIYCWObc4ue32xjqosLsTK4ItA65ti9sOls93NwdXJSNNDrySES1v892SXV6IBDkKBrg8vsDimFXzgn7vvG4c4nseX+DrwGLgR0G/t7NsBPOBxzy+wD/tx9+x13Vb3w+oJKlnC5OHyhWPQnSZKw8GTzJLe2pDJshq3cK1bx1sestsb3PMguYAq3gIFA2FoiH2/ejjweZ+XokEX0LEiNQcbAz6vcfE2+7xBV7FXInX2s3A34FfY5qdfw38HvhWJ6f8KXAV8D/241eAf3Wz2EBvC6gs97nAHZjpa+7CCvk7fY5c5QdAfTgCwCQJqIRInXw3jJhplvbUV0PlLji403QfHtoVc7sL9qyBqrfMOK/2uPLtIGtIU9A1fn8N5K1uG4QVlkkyVJH1gn7vWV3Zz+ML/At4vgvHiwD/sBc8vsAc4C/ANd0tW+8JqCy3E7gTOBvYBnyI5X4WK7S6w+fJVX4AbCs3ecjGy/gpIXpObmH8AfOxGuuhej9U7YGqvVC519zGLod2wq4VjKncA1ueaHsM5YDCQXaAZbdwFQ429wsH2beDm28LSmWAvcgqHl9gRNDv3Wk//DywsovPm4WZAeZSYBPwZCLn7z0BFRwHrMcKbQTAcj8KXAR0HFANGJn2gvUF0Sv8RpcmlDFfCJFOrlwYMMIsnXjrjTeYe8JR7QddlXua7+9YBtX72u92BBOAFZTFBF+tg65WjwvKZLJr0df91uMLHIXp8gtixkO1y+MLTMEEUZcD+4DHABX0e09P9OS96d0zCtga83gbcHybvSz3VZj+TjQOFiz6uEcK15tUVlayYMGCdrdt/WQZ1Zv756/Sjurdn0m9s0tlVRULFi6PWTPQLGoylGCWGCrSSE7DQXIaQuTWh5ru5zQcbH5cvp+cPZvIrQ/haqw0V0i3olE0uoppyBlAfa6bhhx3zP0B7TwegHbkpK7e2fp6S71TJuj3fq0bu38CvA1cEPR71wN4fIEfJHP+3hRQdY0VmgfMA4j48/XcuXMzW54MWBBNeBhrfgCAz33mdJyO/jnItd16ZwGpd3ZJe73DjWYi66p9poWrah9U70dV7SOneh85VfsorN5v1h9cb7oqdaT9Y+W5oWiQ3co1JOa+3QKWU2DGibnyWt46cpoH4ysFKD5YuIgTjjzCPFYOQJnz6ojJlK+1maBbh826SLhr2yKxx4jdFmnnOWH7VsfcD3fhOTHnaLE90ur5bY+1f/9eBg10mzo7XPYSe99lxs61eOwy+dmcuTG38e7ndWGfVvd7oKu4F7y/LwYuA97w+ALzgUcxU88krDcFVNuBMTGPR9vrRDf012BKCJEiTpe5mKerF/REImZQfVPw1RyEtXhcsdnMy1i9r+VE2F10AsDCbj8tQ5QJcpQDlNO+7zTBYPR+i+32rXLEbHeAcpDTUA31TjsobDQBV6TRDr4aW66LLuFGiDS0SlqbQg5X14OvFvc72e5qXjd85yZYvqvtvj0k6Pc+DTzt8QWKMMOLrgeGenyBvwNPBf3el7t7zN4UUH0ITMZyj8cEUpcBX85skYQQIss5HKblqWgQDJna+f5am/xd1QegsdZe6sxtQy001jS3AqGbbj9Zs4Zp06bGrI80ByRNgYij1f3YbaptINOlbY5uBkfOlKa6WJpMS000CAvX20uD+b+O3m9x29H9+i7s0+p4jXXmfkMNhOtMkBf3OXVtij4NYG0y/3OpEfR7q4CHgYc9vkAp8EVMKoU+HFBZoUYs9/eAlzBpE+7BCq3KcKn6jOU/PwfdzrgIIYToUUo1z83YDbsqFjBt1ty0FKnfUspu4ckBevEV3u0Efu+/8yYnHnd0ywCssR5+eVLGimknAW0aVtRdvSegArBCLwAdTmQo2ucu7LmmUiGEEKLL2gn86vKHdJ5upI/pn5eDCSGEEEL0IAmohBBCCCGSJAGVEEIIIUSSlNZ9dyCzUioC1GS6HBngArp/XXLfJ/XOLlLv7CL1zi7x6l2gte6TjT29a1B69y3VWsedlbq/UkotlnpnD6l3dpF6Zxepd//RJ6NAIYQQQojeRAIqIYQQQogk9fWAKqHkW/2A1Du7SL2zi9Q7u0i9+4k+PShdCCGEEKI36OstVEIIIYQQGScBlRBCCCFEkvpsQKWUOlcptVYptV4p5ct0edJBKTVGKfWGUmq1UmqVUuo6e72llNqulFpmL+dnuqzpoJQKKqVW2HVcbK8rU0q9opRaZ992bwbWXk4pNTXmdV2mlDqolLq+P77mSql7lFJ7lFIrY9a1+/oq48/2+/1jpdTszJU8OXHq/Tul1Cd23Z5SSg2013uUUjUxr/s/MlbwJMWpd9y/a6XUjfbrvVYp9ZnMlDp5cer9WEydg0qpZfb6fvF6d/Dd1b/f31rrPrcATmADMAHIBZYD0zNdrjTUcwQw275fAnwKTAcs4MeZLl8P1D8IDG617reAz77vA27LdDnTWH8nsAsY1x9fc+BUYDawsrPXFzgfeBFQwAnAwkyXP8X1Pgdw2fdvi6m3J3a/vrzEqXe7f9f259xyIA8Yb3/eOzNdh1TVu9X23wM/70+vdwffXf36/d1XW6iOA9ZrrTdqreuBR4GLMlymlNNa79RaL7XvHwLWAKMyW6qMuwi4z75/H/C5zBUl7c4ENmitN2e6IOmgtX4LONBqdbzX9yLgfm18AAxUSo3okYKmWHv11lq/rLWOZo3+ABjd4wVLszivdzwXAY9qreu01puA9ZjP/T6no3orpRRwKfBIjxYqzTr47urX7+++GlCNArbGPN5GPw80lFIeYBaw0F71Pbtp9J7+1u0VQwMvK6WWKKWustcN01rvtO/vAoZlpmg94jJaftBmw2se7/XNpvf8tzC/1qPGK6U+Ukq9qZSak6lCpVF7f9fZ8nrPAXZrrdfFrOtXr3er765+/f7uqwFVVlFKFQNPANdrrQ8CfwcmAkcBOzFNxv3RKVrr2cB5wDVKqVNjN2rTVtwv834opXKBC4H/2quy5TVv0p9f33iUUjdj5jd7yF61ExirtZ4F/BB4WCk1IFPlS4Os+7tu5XJa/mjqV693O99dTfrj+7uvBlTbgTExj0fb6/odpVQO5g/yIa31kwBa691a67DWOgL8iz7aFN4ZrfV2+3YP8BSmnrujTcH27Z7MlTCtzsPMVbkbsuc1J/7r2+/f80qpbwIXAF+xv2ywu7z22/eXYMYSTclYIVOsg7/rbHi9XcDFwGPRdf3p9W7vu4t+/v7uqwHVh8BkpdR4+5f8ZcCzGS5Tytn963cDa7TWf4hZH9u3/HlgZevn9nVKqSKlVEn0PmbQ7krM6/wNe7dvAM9kpoRp1+KXaza85rZ4r++zwNftq4FOAEIxXQd9nlLqXOAG4EKtdXXM+iFKKad9fwIwGdiYmVKmXgd/188Clyml8pRS4zH1XtTT5Uuzs4BPtNbboiv6y+sd77uL/v7+zvSo+EQXzFUBn2Ii+JszXZ401fEUTJPox8AyezkfeABYYa9/FhiR6bKmoe4TMFf5LAdWRV9jYBDwGrAOeBUoy3RZ01D3ImA/4I5Z1+9ec0zAuBNowIyZ+Ha81xdz9c+d9vt9BXBMpsuf4nqvx4whib7P/2Hv+wX7738ZsBT4bKbLn+J6x/27Bm62X++1wHmZLn8q622vvxe4utW+/eL17uC7q1+/v2XqGSGEEEKIJPXVLj8hhBBCiF5DAiohhBBCiCRJQCWEEEIIkSQJqIQQQgghkiQBlRBCCCFEkiSgEkKknFJqkFJqmb3sUkptt+9XKqX+lqZzXq+U+noH2y9QSv0qHecWQghJmyCESCullAVUaq1vT+M5XJi8PbN18yTDrfdR9j4n65jkmUIIkQrSQiWE6DFKqblKqeft+5ZS6j6l1NtKqc1KqYuVUr9VSq1QSs23p65AKXW0PVHsEqXUS3FmoT8DM1VPo/2ca5VSq+1Jdx+FprnDFmCmdxFCiJSSgEoIkUkTMcHQhcCDwBta6yOAGsBrB1V/AS7RWh8N3APc0s5xTgaWxDz2AbO01jOBq2PWLwbmpLwWQois58p0AYQQWe1FrXWDUmoF4ATm2+tXAB5gKjADeMX02OHETOPR2ghgTczjj4GHlFJPA0/HrN8DjExd8YUQwpCASgiRSXUAWuuIUqpBNw/qjGA+nxSwSmt9YifHqQHyYx57gVOBzwI3K6WOsLsD8+19hRAipaTLTwjRm60FhiilTgRQSuUopQ5vZ781wCR7HwcwRmv9BvBTwA0U2/tNAVamvdRCiKwjAZUQotfSWtcDlwC3KaWWY2atP6mdXV/EtEiB6RZ80O5G/Aj4s9a6wt52OhBIZ5mFENlJ0iYIIfoFpdRTwA1a63Vxtg8DHtZan9mzJRNCZAMJqIQQ/YJSaiowTGv9VpztxwINWutlPVowIURWkIBKCCGEECJJMoZKCCGEECJJElAJIYQQQiRJAiohhBBCiCRJQCWEEEIIkSQJqIQQQgghkiQBlRBCCCFEkiSgEkIIIYRIkgRUQgghhBBJkoBKCCGEECJJElAJIYQQQiRJAiohhBBCiCRJQCVEH6CU8iiltFLKleRxKpVSE1JVrm6e+5tKqXszce72KKUspdSDPXi+m5RSd/XU+YQQPUsCKiF6iFJqvlLqV+2sv0gptSvZYKkrtNbFWuuN9nnvVUr9JpHjKKWKlVJBpdRXYtaVKKW2KKUuSaaMSqkFSqlypVReMsfJJKXUXKXUtth1Wuv/01r/vzSc6/tKqZVKqdyYddcrpT7qib8pIYQhAZUQPec+4KtKKdVq/deAh7TWjRkoU0K01pXAd4A/KaWG2Kt/CyzWWj+e6HGVUh5gDqCBC5MtZzooozd9dt4JVAA3A9gtkL8Evt2X/qaE6Ot604eCEP3d08AgTMAAgFKqFLgAuF8p5VBK+ZRSG5RS+5VS/1FKlbV3IKXUSKXUs0qpA0qp9UqpK2O2Oe3upQ1KqUNKqSVKqTH2Nq2UmqSUugr4CnCD3Q34nFLqJ0qpJ1qd589KqTvaK4PW+iUgAPxZKTUXuBT4bsL/O8bXgQ+Ae4FvtCrLGKXUk0qpvfb/z19jtl2plFpj13e1Ump2zP/TE/ZzNimlro13YqXUCUqp95RSFUqp5XadotsWKKVuUUq9C1QDE5RSV8Scc6NS6jv2vkXAi8BI+/+20i5Hiy5GpdSFSqlV9vkWKKUOi9kWVEr9WCn1sVIqpJR6TCmV3165tdYR4NvAD5RSRwD/Av6mtV7atf9yIURKaK1lkUWWHlowX3Z3xTz+DrDMvn8dJpgYDeQB/wQesbd5MK02LvvxW8DfgHzgKGAvcIa97SfACmAqoIAjgUH2Ng1Msu/fC/wmpiwjgCpgoP3YBewBju6gPqXATmAfcEUndf8mcG8n+6zHBGVHAw3AMHu9E1gO/BEosut9ir3ti8B24Fi7vpOAcZgfjEuAnwO5wARgI/AZ+3kW8KB9fxSwHzjfft7Z9uMh9vYFwBbgcPv/JQfwAhPtc56GCbRm2/vPBba1qlvs+abY/9dn28e6wa57rr09CCwCRgJlwBrg6k7+7260X4e1QH6m/9ZlkSXbFmmhEqJn3QdcEtPa8HV7HcDVwM1a621a6zrMF/AlrcfB2K1NJwM/1VrXaq2XAXfZxwL4f8D/aq3XamO51np/ZwXTWu/EBGpftFedC+zTWi/p4DnlwCqgEHiys3N0RCl1CiYQ+o99zg3Al+3Nx2GCi59oravser9jb/t/wG+11h/a9V2vtd6MCbCGaK1/pbWu12bs2L+Ay9o5/VeBF7TWL2itI1rrV4DFmAAr6l6t9SqtdaPWukFrHdBab7DP+SbwMjGtj534EhDQWr+itW4AbgcKgJNi9vmz1nqH1voA8BwmcO7I25gW0Me11rVdLIcQIkUkoBKiB9lBwD7gc0qpiZhA4WF78zjgKbsLqALTKhEGhrU6zEjggNb6UMy6zZhWFoAxmGAkEfdhggvs2wc62lkp9VVM69mrwG0JnjPqG8DLWut99uOHae72GwNs1u2PCYpX33GYbreKmP/Tm2j7/xnd94ut9j0F02oXtTX2CUqp85RSH9jdrhWY4GtwF+oJ5jXcHH2gTbfdVppfQ4BdMfergeJ4B7MHpP8T+AvwPZWhKzmFyGZyBYgQPe9+TGvSVOAlrfVue/1W4Fta63dbP8EerB21AyhTSpXEBFVjMd1e0eNMBFZ2Ug7dzrqngb8rpWZgxnbdEO/JSqmhmC64S4FPgFVKqYe01m93ct72jlVgH8eplIoGEnnAQKXUkZg6jVVKudoJqqL1bW0rsElrPbkLRdgKPKC1vrKDfZr+v+wrEJ/AvI7PaK0blFJPY7r/Wuwbxw7giJjjKUxguD3uMzr2M0z37HVADSa4OjvBYwkhEiAtVEL0vPuBs4Arae7uA/gHcItSahyAUmqIUuqi1k/WWm8F3gNuVUrlK6VmYgYlRwc83wX8Wik12b4ibaZSalA75diNGVcUe+xa4HFM69AirfWWDurxV+BprfUbdnfhDcC/VGLpDj6HaY2bjunaOgo4DNON9XXMeKKdgF8pVWTX++SY+v5YKXW0Xd9J9v/hIuCQUuqnSqkCe7D+DKXUse2c/0Hgs0qpz9j75SuT+mB0nPLmYgK+vUCjUuo84JyY7buBQUopd5zn/wfwKqXOVErlAD8C6jCva7fYAee1wJVaa43pKvYopa7o7rGEEImTgEqIHqa1DmK+OIuAZ2M23WE/flkpdQgzQP34OIe5HNPVtgN4CviF1vpVe9sfMF/YLwMHgbsx43NauxuYbndxPR2z/j5M60nc7j6l1OcwXWI/ianXXXZ5fh7veR34BvBvrfUWrfWu6IIJ2r6Cafn5LGbA+RZgG2YcElrr/wK3YILAQ5hWtjKtdRjTynYUsAnT1XoX0CbIsYPUizBdgnsxLVY/Ic5npN0yeC3m/7kcM9br2ZjtnwCPABvt/9+RrZ6/FtOl+he7XJ8FPqu1ru/qfxiYKzoxr+MtWuv19rFrMMH675RS7XVvCiHSQJkfNEIIYSilxmK68IZrrQ+m8LjfBOZqrb+ZqmMKIURvIS1UQogmyiSs/CHwaCqDKSGE6O9kULoQAmhKSLkbc/XZuWk4xTJMRm8hhOh3pMtPCCGEEH2Gxxf4ASb/nMYkMb4i6PdmPPeadPkJIYQQok/w+AKjMBeEHBP0e2dgZlFoL1lvj+vTXX4Oh0MXFLR38VL/FolEcDiyLxaWemcXqXd2kXpnl3j1rq6u1lrrzv5DXECBxxdowMzSsCMNRey2Pt3ll5+fr2trM97K1+MWLFjA3LlzM12MHif1zi5S7+wi9c4u8ertLHTXj7n24RUxq+YF/d55sft4fIHrMKlSaoCXg37vV9JZ1q7q0y1UQgghhOg/IjUHG4N+7zHxtnt8gVJMzrjxmItc/uvxBb4a9HsfjPecnpJ97YxCCCGE6KvOAjYF/d69Qb+3ATMp+0mdPKdHSAtVP1HXGAYgz+Xs2ROHG6GmHOoOQiQMThc4XJBTCAWl4Ojh8gghhOjPtgAneHyBQkyX35nA4swWyZCAqp84+tevUh+O8OlvzkvfSSIR2LoQNr0F2z6EfWshtB10OM4TFBQOguKhUDoeBk2AsokwaCIMmgQlI0CpOM8VQgghWgr6vQs9vsDjwFKgEfgImNfxs3qGBFT9RGVdYxoPvgc++DssfwQO7QQUDD0MxpwAM8dB8TDIKzEtU+EGiDRAQw1U7YOqvVC5Gw5sgPWvQriu+bg5hTB4CoyYCcNnwvAjYNgMyCtOX12EEEL0aUG/9xfALzJdjtYkoBLx1VfBm7fBwn9CYx1MPQ9m/AYmnw35beaX7VwkDAe3w/4NsH89HNgIe1bDmudh6f32TgrKJpgga+Qss4w4MrHzCSGEED1EAirRvu1L4L9XQMVmOPJymPNjGDwpuWM6nDBwrFkmnt68Xms4uAN2rbCXj2H7Ulj1VPM+gyZxmHMk5K0yQdbwmdKSJYQQoteQgEq0tfwxePb7pivvmy+A5+T0nk8pcI8yy9SYKeSqD8COj5oW96YP4KW3ok+CIVNh5OzmlqzhMyAn+xK9CiGEaMvjCxwDzAFGYgawrwReCfq95ek4nwRUoqUl98Jz14FnDnzxPigalLmyFJbBpDPNAnywYAFzjz4Mdi5rDrTWvwrLHzb7KycMnQ4jj2oOsoYdDq68jFVBCCFEz/L4AlcA3wc2AUuAtUA+cArwU48vsBL4WdDv3ZLK80pAJZqtfNIEU5POhi89CDn5mS5RWyXDoOQzMOUz5rHWZqD8jo9MN+GOj+CTAHz0gNnuzDVBVTTAGjkLhkwDZ07m6iCEECKdCoGTg35vTXsbPb7AUcBkTAqGlJGAqp9pCEfIcSaQr3X7Unj6f2DsiXDZQ32nVUcpGDDSLNO8Zp3WULGlRXchK56AxfeY7a58c0VhbJA1eIrkzBJCiH4g6Pfe2cn2Zek4b88HVJZ7DHA/MAzQwDys0B1Y7jLgMcADBIFLsUJp6efsz2oawt0PqGoPwn++AUVD4NIH+k4wFY9SUDrOLId/zqyLRKB8U8sg66OHYJGdviSnyFxNOHKW6TIcfgQMmmwSlQohhOgzPL7ALZipab4L3Bz0e3/SE+fNxLdFI/AjrNBSLHcJsATL/QrwTeA1rJAfy+0DfMBPM1C+Pq22PsyA/G52Z833wcFt8K2XoXhIegqWaQ6HnVB0IhxxiVkXCZv0DdGuwh0fweK7odGecNuVb8ZkjbBzZA0/EoZNh9yizNVDCCFEZ0YD1wN/AHpsfEcGWqhCO4Gd9v1DWO41wCjMZIdz7b3uAxYgAVW31TTEy1oex6a3YdlDcMoPYcyx6SlUb+VwmisFh0yFoy4368KNJgP8rhWw82OTwmHVU2awPoBymCzvw49oTkY6fGb/DUSFEKLvCQX93j0eX8AC3uupkyqtdU+dqy3L7QHeAmYAW7BCA+31CihvetzyOVcBVwEU3Fp99IsvvdIzZe1FKisrKS5umYPpm/OrAPj1yQWMKelal5+KhDlm8fU4IrV8eOxfiTh7d1dfe/XuEVqTV7eX4spNlBzaSHHlJoorN5Jft7dpl7rcMiqLx1NZPIHK4vEcKplAbf4wE4AlKWP1zjCpd3aRemeXePU+/fTTq7XWKesG8PgCzqDf282WhsRkLqCy3MXAm8AtWKEnsdwVLQIoy12OFSrt6BD5+fm6trY2veXshRYsWMDcuXNbrPP4AgA8+d2TmD22w/+2ZkvvN/mmLn0Apl+Y4lKmXnv1zqjqAy2Tke5aAXvXNs9tmFtit2Ad0dxtOGRat8eo9bp69xCpd3aRemeXePVWSqUsoPL4Ar8FfoPJQTUfmAn8IOj3PpiK47eWmRG3ljsHeAJ4CCv0pL12N5Z7BFZoJ5Z7BLAnI2Xr42rruxiIN9bBm7+FUUfDYZ9Nb6H6q8IymHCaWaIaamDPmpZB1kcPwiLTgogjxwRVsUHW8CNkah0hhEi9c4J+7w0eX+DzmIvdLsb0ivWTgMp0590NrMEK/SFmy7PANwC/fftMj5etDyvIcVLTEKa6qwHV8kcgtBU+e4e5Kk6kRk4BjJptlqhIGA5sgl3Lm8dmrX+lOSEpwMBxMZNE24HWgJHy2gghROKiMY4X+G/Q7w1Fe3PSebKedDLwNWAFlnuZve4mTCD1Hyz3t4HNwKUZKFufVZBrAqouDUqPROD9O02agIlnpL9w2c7hNPMgDp4EM77QvP7QLjvAWt7corXmuebthYNg+BFMaBgIZXtNkDV4suTLEkKIrnne4wt8guny+x+PLzAESNs4oUxc5fcOEO9n95k9WZT+pCDHfMl2KaBa/yrs+xQuvktaQDKpZLhZJp/dvK7uEOxaGdNl+DGjd70DW582210FJnVD7BWGww6H3MKMVEEIIXobjy8wMuj37gj6vT57HFUo6PeGPb5ANSajQFokHlBZ7nYnHZRknJlRmGsCqqq6xs53Xnw3FA9vTnopeo+8Ehh3ollsb7/+KqdNH95yAPyqJ2HJv80OTakcZsaMzZoJRYMzVAkhhMiouzy+QBkm/dJ84B2AoN9bBVSl66TdD6gsd4eTDmK5VwI/wwqldI4c0bGiPPNSdhpQHdwB616Gk6+X+ez6CO1wwfAZZsHOlxWdXic2yNq6EFY+3vzEkpFtB7+XjpdWSSFEvxb0e8/3+AL5mNyWnwdu9/gCWzDB1fxUT4oclUgLVSFwMlao3UkHsdxHkYZJB0XHcl0m31FlXSddfsseBh2BWV/tgVKJtImdXuewC5rXt5fKYf2rzakc8gbAsBkxQdZMGHqYBNdCiD7D4wsMBO7C5LDUwLeCfu/7sfsE/d5a7ADKfs544Dzgrx5fYHjQ7z0u1eVKoIUq1OGkg1ihZQmWRaRAZV1D/I1aw8ePwbiTzRQsov9pN5VDLexZ3TLIWvoANNgt364CGH0MjDsJxp4AY06QMVlCiN7sDkxL0yUeXyAX09ATl8cXGACEgEftpTIdhUpmDFW7CbOwQmnJ7yC6prK2gy6/3avMYPTjr+65AonMy8lvJ5VDBA5sNKkcti6Cze/BW78zrZfOPDOGa+IZZhl6uJkLUQghMszjC7iBUzHz/xL0e+uB+jj7fgf4JebKvmgWcx30eyeko2zJXOV3DlboBix3jyTMEl3TYZffqifNAObDen9WdJFmDkfbVA61B804rA1vwIbX4ZWfm6VoKEw8HSacbm5Lhme27EKIbDYe2Av82+MLHIkZy32dPeC8tR8DM4J+776eKFgyAVWLhFlYoRCWZHvOGDv27rDLb81z4JkjE/mK9uUPMCkcomkcDu5oDq7Wv2a6i8G0WE35DEw513QVSl4sIUSKOAoGuDy+wOKYVfOCfu+8mMcuYDbw/aDfu9DjC9wB+ICftXO4DUB1+krbUjIB1fNY7qaEWVjutCbMEl1TFa+Fav8G0913zLd7tkCi7xowEmZ9xSyRCOxeYYKrda/Cu3fAO3+AgjKYfI4JsCaeAQUDM11qIUQfFqk52Bj0e4/pYJdtwLag37vQfvw4JqBqz43Aex5fYCFQF10Z9HuvTUlhW+n+wAjLPdLchnzAScAxWKEGTBSYtoRZomsq46VN+PQlczv13J4rjOg/HA6TWf+UH8AVAbhhI1xyj2nNWvcSPH4F/G4i3HsBvPdX2Lc+0yUWQvRDQb93F7DV4wtMtVedCayOs/s/gdeBDzBdg9ElLRJpoboLy90mYRZWKK0Js0TXHIo3KH3dSzDkMCj19Gh5RD9VMNCMvZrxBTNX4bYP4dP5JnB/+WazlE003YJTzjFXlkpqBiFEanwfeMi+wm8jcEWc/XKCfu8Pe6pQiaRNOB/L3SJhFpa7KWGWJPTMrHYTezbUwOb34bgre75Aov9zOE26hbEnwFkWlG82yWM/fQk+vAs+uBPy3DD5LJhynrktKM10qYUQfVTQ710GdNQtGPWixxe4CniOll1+B9JRrsTGUFmhFgmzsNxNCbOw3MOxQilPmCW6pqYhTGM4gssZ05u75QMI18GEuRkrl8gipeNM8H7clVBfZQa2f/qiCbBWPgHKaXJeTT3PLGVpuYJZCCHsqSW4MWadBnpd2gTDcvdIwizRdVV1YdyFMQHVpjfBkQNjT4z/JCHSIbfIZHI/7AIzsH37Elj7gukefOkmswyZZgKrKefJVYNCiJQJ+r3je/J8yST2bDdhFlZIfm5mWGV9I+7CmPEqm96C0cdCXnHmCiWEwwFjjjXLWb+AA5tMYLX2BXjvL/DOH6FwsBl3NfVcnI3J/94TQmQfjy9wStDvfaeD7QOAsUG/d2Uqz5vMJ9aPgRlYoR5JmCW6rkW29Poq2LkcTr4ucwUSoj1l4+GE/zFLTYWZc3Dti/DJc7DsQU5WObD7dDvAOs+kcRBCiM59weML/BYzLGkJJhFoPjAJOB0YB/wo1SdNJqDq0YRZousO1sYk99y+BCKNZn42IXqrgoFwxCVmCTfAlvfZ/to8xuxbYQa4B34II45qHnc1fKaZIFoIIVoJ+r0/8PgCZcAXgC8CIzA5M9cA/+yo9SoZyQRUNwLvYblbJMzCCqUlYZboXFGuk6r6MBXVMQHVloWAMt0sQvQFzhwYfyobJkUYc9ppsHdt87irBX5YcCsMGGW3XJ0P4+eAKy/TpRZC9CL2lXz/spcekUxAFU2YtQKIpKY4IlEaTWlRLlX1NZRXx8wTufUDGHqYXKYu+ialYOg0s8z5IVTuNTnV1r4Iyx+BxXdDbrGZY3Dq+TD5M1A0KNOlFkJkoWQCqhysUI8lzBKdKyvKZVt5DRXRgEpr0+U37YLMFkyIVCkeArO+apaGWnPBxacvmgBrzXNm8u8xxze3Xg2eLF2DQogekUxA9SKWu03CLKxQWhJmic4V5bpwORTl0S6/ii1QUw4jZ2W2YEKkQ06+ycI+5Rzw/gF2LjOB1doX4dVfmKVsYvO4qzEngFOuHBRCpEcyny49mjBLdE4pGFiY29xCteMjcysBlejvlDJ/5yNnwek3QWibCaw+nQ+L5sH7f4X8gWYi56nnwaQzId+d6VILIdLA4wv8CPhj0O+NtFo/CPht0O/9djrOm0QeqlCPJswSXVNamMOBqpiAypEDww7PbKGE6Gnu0c3Z2usOwYbXYe18E2Ct+I95X3hONt2CU8412d2FEP3FVGCpxxe4Juj3vgvg8QW+C9wA/CldJ01gLj/3KVih+JccmszpY7FCKU2YJbqmtCi3uctvx0cwbLpcASWyW14JTL/ILJEwbF3UPO7qxRvMMvRwu2vwfNPK5XB0flwhRK8U9Huv8vgCJwF3enyBlcA0YB1wYtDv3Zmu8ybSQvUFLHePJ8wSXVNamMOmfVVmQPquFTDt/EwXSYjew+GEcSea5exfwf4NzeOu3vkjvH07FA+DKZ+xUzKcBrmFmS61EKL7VgKLgHMBB/CjdAZTkFALVegHWO64CbM6bL0SaVdamMvS6gqo3A01B2DYEZkukhC916CJcNL3zFJ9wM7W/gKsfAqW3g+uAjOp+NTzTNdgybBMl1gI0QmPL/A1zNR4/wQmAkdiWqs+BX4c9Hv3pOO8iY2hMlfy9WjCLNE10UHpetdKFMj4KSG6qrAMZl5qlsZ62PyOGXe19kXTRYiCCafBkV82kz3nFmW6xEKI9l0CnB70ezfbj5d4fIETgauBD0jTxXNyDXE/U1qYQ0NYU7VzLcUgAZUQiXDlwsQzzHLebbBnNax+BpY/Ck9dBYESmPUVOO4q08olhOg1gn7vRe2s08DfPb7A4+k6rwRU/UxpUS4A5bs2U1w42PzqFkIkTinzw2TY4XCaD7a8D0vvgw/vhoX/NOOtjr/adA1KElEherWg37s3XceWS1n6Ca3NbWmhHVDt322yRAshUsfhMOkWLp4HP1gJp91gZiN44HPwj1NgxePmSkIhRNbpfkBluX+E5W77PMs9CMt9dyoKJRKjFAwuNgHVvgPlMGhShkskRD9WMtwkEb1+JVz0Nwg3wBPfhr8eC0sfMOOwhBBp4fEFnB5f4COPL/B8pssSlUiX31RgKZb7GqzQuwBY7rQnzBJdM9ydD8DOGicMnpLh0giRBXLyzXiqIy+HT56Dt26HZ78Hb94Gc35k5h105mS6lEL0N9dhsgsM6GgnOx+Vh5h4J+j33p+OAiWSNuEqLPdJwJ1Y7hYJs7BCac3xIDo3pDgPh4Lduky6/IToSQ6HSR562IUm/cKbt8Hz18O7fzJjr2ZeavJgCSGS4vEFRgNe4Bbghx3s9wAmbcIyINoXr4FeElAZbRJmSTDVO7icDobmR9hZXyYtVEJkglIw+WyYdBasewVe/zU8fTW88weYeyNM/5xkYhciDkfBAJfHF1gcs2pe0O+d12q3P2F6xUo6OdwxwHT7Cr+0S2TqmXYTZmG5PwV+jBVKS8Is0XXDcqrZVTcIBsr8ZEJkjFIw5RwTXK15Dt64BR6/Aob9Hk6/2SQLlasChWghUnOwMej3HhNvu8cXuADYE/R7l3h8gbmdHG4lMBzokQafRFqoLgFOxwo1JczCcqc9YZbouhGqnA2OYeCUrBhCZJxSMP1CmOaFlU/Cgv+DRy+HkbPhjP81ua4ksBKiq04GLvT4Audjpr0b4PEFHgz6vV9tZ9/BwGqPL7AIqIuuDPq9F6ajYImMoWqTMAsrpIG/Y7nTljBLdN1wvZt3IzMzXQwhRCyHE2Z+EQ7/PCx/xIyxevBiGHcKnP1LGB33R7kQwhb0e28EbgSwW6h+HCeYArB6qFhAqvNQWaG0JcwSXTe8YRuHIrlU1jVmuihCiNacLpj9Nfj+Ejjvd7BvLdx1Jjz2Vdj7aaZLJ0S/EfR73wQ+wYy1KgHW2OvSQkZG9jf1VYxo3AbArlBthgsjhIjLlQfHXwXXLoO5N8GGN+BvJzBl7Z1wcEemSydErxf0excE/d4L4m33+AKXYi6g+yJwKbDQ4wtckq7yZGaQjeW+B7gA2IMVmmGvKwMew+SLCAKXYoXKM1K+vqxiK8PVAQB2H6xl0tDiDBdICNGhvGKY+1M45lvw9u0MX3QX/HmWmc7mlOuhoDTTJRSir7oZODbo9+4B8PgCQ4BXgbQMT0q8hcpyLzHJPd2JvNvvxaRciOUDXsMKTQZesx+LLmq6JrRiC8MxAdVOaaESou8oHgLn3cai4/5m8lm9ewfccZS5bajJdOmE6Isc0WDKtp809swl00L1JeAK4EMs92Lg38DL9gD1jlmht7DcnlZrLwLm2vfvAxYAP02ifFlHoSC0hWGqHAVsL5cPYSH6mtqCYXDePDjp+/DqL+GVn5tJmOfeaLKxy9W7QnTVfI8v8BLwiP34S8AL6TpZEi1UofVYoZuBKcDDwD3AZiz3L+3uu+4aFpMcdBcwLOGyZbOKLeS7FCMHFrBxX2WmSyOESNTwI+Crj8M3njfzBj77Pfj7SfBJoHk2dCFEXEG/9yfAPGCmvcwL+r1pa6hROpk3puWeiWmlOh94CXgIOAX4GlboqE6e6wGejxlDVYEVGhizvRwr1LY70XJfBVwFUHBr9dEvvvRK4uXvoyorKykubjk26jcf1JDnhH8X/pXiyg1c6vgTlQ0a66SCDJUy9dqrdzaQemeXduutNYP3fcCEjQ9QWLOd0IBpbJzwdUIDD89MIdNAXu/sEq/ep59+erXWuigDRUpa4m3HlnsJUAHcDfiwQtGkWQux3CcncMTdWO4RWKGdWO4RQPsZ163QPEzEifbn67lz5yZwqr5twYIFtK73X9a8R0GOk6G6FoZP4ZjSMfx38VZOO+00VD9JGthevbOB1Du7xK/36RD+CSx7EPcCP7OW3QRTzoUzfwHDpvd0MVNOXu/sks56e3yBd4J+7ykeX+AQMUOMAQXooN/b4YTKiUqmM/6LWKGNLdZY7vFYoU1YoYsTON6zwDcAv337TBJly16hbTDpLCYMKaKqPsyeQ3UMG5Cf6VIJIVLB6YKjvwlHXAqL/glv/9F0Ax55OZx+Iwwcm+kSCpFxQb/3FPu2s7n+UiqZ0e7tXXbYtUsRLfcjwPvAVCz3Niz3tzGB1NlY7nXAWfZj0S0aqvZCyXAmDjFNqRv2yjgqIfqd3EI45Qdw3TIzeH3lE/CXo2H+TVC1P9OlE6JX8PgCD3RlXaokMjnyNOBwwI3ljm2JGoCZV6cLxwhdHmfLmd0uj2gWbgAdhuJhTBhiuqA37K3ipImDM1wwIURaFJbBOb+G478DC26FhX+Hjx6Ak6+FE74LuX1yKIoQqdJikKHHF3ABR6frZIl0+U3FJOUcCHw2Zv0h4MoUlEkkKlxvbouHMnxAPoW5TjZKC5UQ/Z97NFx0J5z4fXjtV/D6b2DRv+C0n8Lsr4MzJ9MlFKLHeHyBG4GbgAKPL3DQXq2Aeuwx2OmQyOTIzwDPYLlPxAq9n/oiiYQ12tcFlAxHKcXEIcWs2y0BlRBZY+g0uPxh2LIQXrUg8EN4/04443/NpMz95AIVIToS9HtvBW71+AK32pMp94hEuvxuwAr9Fvgylrtt150VujYF5RKJiGmhAjh85ADmr9qF1rrfXOknhOiCscfDFS/AupdNYPX4FfDen+EsCybMzXDhhOgZQb/3Ro8vUApMJmZIUtDvfSsd50tkUPoa+3YxsKSdRWSA1jomoDI5UWeMclNR3cA2yZguRPZRCqZ8Bq5+Bz73D6jaB/dfBPd/DnYsy3TphEg7jy/w/4C3MHkyf2nfWuk6XyJdfs/Zt/elujAiOSpcD7klTQNRZ452A7Bie4gxZYWZLJoQIlMcTjjqctPlt/hueOt2mHcazPiC6Qosm5DpEgqRLtcBxwIfBP3e0z2+wDTg/9J1smQmR34Fyz0w5nEplvulFJRJJCpc39TdBzB1eAk5TsWK7aEMFkoI0Svk5MOJ15hUC3N+DGtfhL8eC4EfQ2X7eZSF6ONqg35vLYDHF8gL+r2fYC6sS4tk8lANwQpVND2yQuXA0Lh7i/RrrG/q7gPIczmZOryEZVsqMlcmIUTvku+GM38G134Es78BS/4NdxwFr98CtQc7fboQfcg2jy8wEHgaeMXjCzwDbE7XyZIJqMJY7ua0vJZ7HC1TvIueFq5r0UIFcKynjI+2llPXGM5QoYQQvVLJcLjgD3DNIphyDrz1W/jzUfDB35uvGBaiDwv6vZ8P+r0VQb/XAn6GmSrvc+k6XzJTz9wMvIPlfhOT32EO9qTFIkPC9eZDMsYJEwbx73eDfLwtxLGesgwVTAjRaw2aCF+8F0661lwRON8HH/wNTr8ZjviiGYMlRB/j8QWcwKqg3zsNIOj3vpnucyYxhio0H5gNPAY8ChyNFZIxVJmiIxBpbNNCdZwdRC3cKNNRCCE6MGo2fONZ+NpTUFAKT30H/nkqfPoyaOl8EL2DxxcY4/EF3vD4Aqs9vsAqjy9wXXv7Bf3eMLDW4wv02ASXyXT5AZwEzLWXE5ItjEhCpNHcFg1psbq0KJdpw0t4b4MEVEKILph4Bly5AC65B+qr4OEvwr1e2PphpksmBEAj8KOg3zsdE3dc4/EFpsfZtxRY5fEFXvP4As9Gl3QVLPEuP8vtx1yO+JC95jos90lYoZtSUTDRTWE7oCoc1GbTaVOHcPfbmzhU20BJvkxBIYTohMNh0ipM+ywsvQ/e/C3cfRZMuwDO/AUMmZLpEoosFfR7dwI77fuHPL7AGmAUsLqd3X/Wk2VLpoXqfOBsrNA9WKF7gHMxc/yJTIi2UBW0HSd11mHDaIxo3l63r4cLJYTo01y5cNyV5orA02+GjW/C346HZ78PB3dkunSiH3IUDHB5fIHFMUvcsdkeX8ADzAIWtrfdHjcVBHLs+x8CS1NfaiOZQelgJkg+YN93J3kskYxIg7ktbBtQzRozkIGFOby6ZjfnHzGihwsmhOjz8orhtBvgmG/B27+HD++Cj/8Dx38HTvmBGXMlRApEag42Bv3eYzrbz+MLFANPANcH/d528314fIErMRfLlQETMS1Z/wDOTF2JmyXTQnUr8BGW+14s932YaWduSU2xRLd10ELlcjo4c9owXlm9W9InCCESVzQYzr0VvrcYpn8O3v0z3HEkvPMnaJAprkTP8PgCOZhg6qGg3/tkB7teA5wMHAQI+r3rSGO+zGSu8nsEMyDsSUzFTsQKPZaicolu0mE7UIrzS/GzR47gUG0jb67d24OlEkL0S6Xj4OJ/mnkCxxwPr/4C/jwbltzXPJ5TiDTw+AIKk09qTdDv/UMnu9cF/d76mOe6SGO+zATm8nPPbrVmm307Ess9EiuUtv5J0YFIIzhc4Gz/JT150mDKinJ5ZtkOzjl8eLv7CCFEtwyfAV/5LwTfNUHVc9fC+381cwRO+6wZ3C5Eap0MfA1Y4fEFltnrbgr6vS+0s++bHl/gJqDA4wucDXwXeC5dBUtkDNXvO9imgTMSLItIRjSgiiPH6eDCI0fy8MItHKiqp6wotwcLJ4To1zwnw7dfgU+eh9d+Bf/5OgyeasZXHXEJOOXqYpEaQb/3HUwy8a7wAd8GVgDfAV4A7kpT0RJpoQqdnoZyiEREIlC1F0LboLG20w+tLx8/lnvfC/L4kq1cderEHiqkECIrKAWHfRamnAern4Z3/ghPXw2v/dIMZj/6m20SDwuRTkG/NwL8y17SLpk8VIXAD4GxWKGrsNyTgalYoedTVThh0xr2b4AdH8HeTzh8zbuwygcHNpr5+wDqfwklAzo8zJRhJRzrKeWBDzbz7VMm4HR0NcgXQogucrpMq9SML8C6V2DhP+CNW+Ct38HhnzdXBo46OtOlFP2YxxdYQQdjpYJ+78x0nDeZtAn/xlzZd5L9eDvwX0ACqmTVhmDbh7BtsbndvgRqys025aQofxiMPQomnwXusTBwDLzoguKSTg/97VPGc/WDS5m/chfemZJCQQiRJkqZSZennAP71sGiebDsYfj4MRg5C2Z/HWZcAvkd/xAUIgEZyYmZTEA1ESv0JSz35QBYoWostzR5JKKxDrYuNEnzNi6AHUvN3HwoGDodDrsQRh9jftUNmsyid95j7ty5LY/x2rvmA6wTZ08fzvjBRfzjzQ2cf8RwVBeeI4QQSRk8Gc7/HZzxM1j+iLka8PkfwEs3m/QLs78m8wWKlAn6vZuj9z2+wDhgctDvfdXjCxSQfP7NuJI5cD2Wu4Bos5rlngjUpaJQWaFqP3z6Iqx53gRRjTWgnCZwmvNj8JxiJivN67zVqTucDsXVp03gp0+s4JXVu+WKPyFEz8kfYLr8jrvK/HBcej+seAKWP8xxBSPBcQXMvBRKPZkuqegH2knsOZo0JvZMJqCygPnAGCz3Q5hLGb+ZgjL1X9UHYNWTsPIp2PKeaYVyjzG/ziaeAeNO7pHm7y/MHs0/39zI7S+v5czDhslYKiFEz1LKtLiPOho+83+w6mnq3vwbhW/cYsZbjT0RZn4JDv+cZGEXybgGOA57apqg37vO4wuk7cqIRPJQ3Qk8jBV6Gcu9BJPcUwHXYYVksrjWwg2w/jVY/jCsfRHC9eZy4jk/MhONjjiyS111qeRyOvjROVO55uGlPPrhFr5y/LgePb8QQjTJLYJZX2F5aBRzj5oIK/4Dyx+F56+HF2+AKefCkZfBpLPN3IJCdF1d0O+t9/gCQG9M7AmfArdjuUcA/wEewQp9lNpi9QOVe2DJvfDh3VC5CwoHmUuHj7w8I0FUa+cfMZwTJpTx2/lrOW/GCMlLJYTIvIFjzI/NU35ormr++DFY8TisedZMqzXjYjjiizD6OEkaKrqilyf2tEJ3AHdguccBlwH32GOpHsEEV5+mtoh9zM7l8MHfYeUTpjVq4png/T1MPietv666O55TKcWvLpqB989v84tnV/GXy2elp2BCCNFdSpkxpKNmwzm/gQ1vwMePwkcPmomZ3WNMCoYjLoHhMzP+A1X0Wr08sWeUFdoM3AbchuWeBdwD/BxwpqZofczWD02elXUvQW6xSWJ33FXm6pYe0t0r9qYMK+G6Mydz+8ufcvb0YVx45Mg0lUwIIRLkzGlOv1B3CD55AVY+Dh/8Dd77MwyabHJeHXFJj37eij6hALgn6Pf+C8DjCzjtddXpOFkyiT1dwHmYVqozgQWYgerZZdsSeP3XsPEN0yR9xv+aQCrfnemSdcnVp03k9U/2cNOTKzh85AAmDinOdJGEEKJ9eSVw5JfMUn0AVj9jegPevA3e9MPwI0xuqxlfMN2HItu9BpwFVNqPC4CXac6fmVLd74S23Gdjue/BTIp8JRDA5KS6DCv0TIrL13uVB+Hxb8FdZ8DulXD2r+H6FXDqT/pMMAVmgPpfvzybXJeDK+9fTHlVfedPEkKITCssg2OugG8+Dz9cA5+5FZy5ZpLmP82Au8+BhfPMeFaRrfKDfm80mMK+X5iukyUyqu9G4D3gMKzQhVihh7FCVSkuV+9VUw4v/y/89VjT9HzaT+HaZXDytZDXN1t3Rg4s4B9fPZpt5TX8v/sXU1MfznSRhBCi6waMgBO/C1e+bj6Pz/iZ6R588Sfw+6lw/0Ww9IHmGSdEtqjy+AKzow88vsDRQE26TpbIoPQz0lCO3k9r+Pg/8NJNUL0fjvoKnHEzDOgf446OG1/Gn750FN97eCnf+Pci7vnmsRTnpS2hrBBCpEfZeDj1x2bZvdp0Ca58HJ79HgR+CJPOMl2CU88zKRtEf3Y98F+PL7ADk95pOPCldJ1MvjFjNIYjuJztNNod2AjP/9CMkxp1DHztKRiRlrkVM+r8I0bwp8tm8YPHlnHZvPf519ePYYS7INPFEkKIxAybbpYz/he2LzXB1aonYe0LkFMIUz4Dh18Mk8+GHPms62+Cfu+HHl9gGjDVXrU26Pc2pOt8WR1Q1dSHWbK5nMWbD/DgB1vYV2lmzpk7dQhHjh5IrlMzZNfbDPj0CcocNYw47Y8MOO7LuIvyM1zy9LnwyJEU5zm59pFlfPYv7/LHLx3JnMlDMl0sIYRInFIw+miznPNr2PyeCa7WPAurnjJXZk893+S5mngGuPIyXWKRAh5f4BrgoaDfu9J+XOrxBS4P+r1/S8f5si6g2lZezWtr9jDvrY1sr2i/K3XB2r0sWLvXfjQC+J65+xI4Xn6NkvwcpgwrZuiAfKYMLWFQcS7jBhUywp3P0AH5lOS5+vSkw2dMG8ZT3z2J/3loKV+7exFfPn4sPz5nqiT/FEL0fQ4njJ9jlvNvh+BbsPJJWPOcydKe54ZpXhNcTZhr0jaIvurKoN97Z/RB0O8tt+f3k4AqWXsP1XHKbW80PZ4wpIjrzpzMKZMGs3hzOe6CHEaWuMj/6G5c7/8ZR76bg6ffwsFRc1i35xAb9lSx91AdSsGnuw+xYluIwMc725ynIMfJcHc+wwbkMXxAPsPc+QwfYJYhJXkMKcljcHEeRb14jNLkYSU8//1TuP2ltfz7vSDPLd/Bd+dO4isnjGVAvnzACCH6AafLtEhNPAO8fzAT1a96Ej553kwXVlAKh33WdAt65pj9RV/i9PgCKuj3amjKQ5W2loF++9dR3xjh+sc+YvbYUgpynTy/fCfvb9zftP2Oy47ioqNGNT3+zOHDYc8aePJq2LnMDFo8/3YGFpYBMGNU+6kQ6hrDHKiqZ8v+anYdrGX3wVp2herM7cFaPgyWs+dQLQ3htqnM81wOSgtzKS3KpbQwp/m2MJfSwlwG2vcHFuYwsNBsixfMpGNyovwcJ/97wXQuPXYMtwTWcNv8T/jbG+u55JjRfGH2aA4fOaBPt8QJIUQTV25zAtHGOjMH66onTevV0vuhcDBMv9AEV+NOMi1dIiM8vsC5wB2YROJ3Bf1ef5xd5wOPeXyBf9qPv2OvS4t+F1BFIpqbnlrBox9uBeCFFbuath02YgBXnzaB48aXtRxsHQnDe38xs5znlcAX7zOznHdBnsvJCHdBh4O3IxFNeXU9uw/Wsa+yjj2H6th7qI7y6nrKq+rNbXUDa3YepLyqnoqahrhTyTgUDMxTTPrkfUaXFjCqtIADVfUs31rBGdPSM4n2lGEl3Pet41ixLcS8tzfy0Adb+Pe7QcYPLuL0qUOZM2Uws8eW4i6QlishRD/gyoNp55uloQbWvWKCq+WPwuJ7oHgYTP+cmf5mzPG9Yl7BSERTH45QH47Q0BghrDVoiGjQaHOrNVqbi9YjWqOxb6PbYh5Hb2PF/n5WqLbrOtsec6wdlRHW7znUtFYp8yO+M3Yr053A2Zh8mB96fIFng37v6nZ2/ylwFfA/9uNXgH91epIE9a6AynK3iDqxQvGiTgD0gOF8694P+euXZ1GY66Kiup5TbnuDyrrGNvv+7SuzOW/G8LYtKrtXwzPXwI6lpmnX+0coTu0gbIdDMag4j0HFXRvoGIloQjUNVNQ0UF5dT0V1PeVV5vGBqjo+WruZRgULNx1g57Ia8lxOvDNH8L3TJ6W03K0dMdrNXy6fRUV1Pc9/vJNXVu/mwYWbuefdTSgF4wcVMXV4CVOGlTBpaDGjSgsYNbCAIcV5OBzSkiWE6INyCkzL1PQLob4KPp1vWq2W3AuL/gkDRpngasbFMOrohOcVbAxH2HOojp2hGrZX1LKjooby6noO1TbaS0PTbVVdmLrGMPWNERrCJpAKR9LRT5Fm77yVyLOOA9YH/d6NAB5f4FHgIqBNQBX0eyPAP+wFjy8wB/gLcE2CJe5Q7wmoLHebqBPL/SxWqL2os8nrn+zhyaXbOVjbwG/nr21av+DHc5l7+wIAHrvqBI6fMKjlExtq4J0/wdu/N5nNv3C36ebrBV1YDocy3X9FuYynbZ6UBXm7mDv3RMC8CR1K9WjAMrAwl6+eMI6vnjCO6vpGlm2pYPHmclbtCPHJrkPMX7WrxS8bp0PhLshhYEEOAwpyzP1Cc1uY6yLX5SDXqexbB7kuJ7kuBzlORZ7LQa7LgVKKFXsbYa3JehwNjKO1bv5lpQlHmu9H7F9a0V9nEa2JRFr9CoupW+tfZLpVZ2rb7a202qH19jbP72R/gHXBBja+s6mDY3b8Qdp6s8OhKMp1UpTnojjPRVGei6I8J0W5rqZ1+TkO6c4VorXcIvM9MeMLJnHo2hdNcLVoHnxwJ7jHmt6NGRfDiKPifp+EahpYuqWc1TsO8sayWqwP32BreU2boCjX6aAk32UvOZTkuxg8uIjivBzycqKfl+azMse+n+t0kON04HAoHMq0FDmUKYpSpt3IoRRKNd+2XQ9gb7PL0v7npG5nXfPaluta7rt69WoOmz69aV0koqltCPOVPw9weXyBxTGnmxf0e+fFPB4FbI15vA04vt3/aMDjC8wCLgcuBTYBT8bbN1m9J6Cyo06s0EYALHfcqDNKHdzF6NJ83l63l5dW7W5a//qPTsMzuIgnv3sSq3ccbBlMNdTAsodNIHVwO8z8kpmyoGhQO2fo/drNm9WDCnNdnDRpMCdNGty0rrYhTHB/FTsratleUcOuUC0VNfVUVDeYlrfqeoL7qwjVNFBdb35lddmSD9NQiz7gkw5/V6ScQ2ECrVw72Mpz4XQonHbw7nIonA6FQ5nb6DanQ7XqAmj5hRL7KF5XQPQ5u3bX8uzuZe3upOg82GsdDMds6M5qAAYW5jBxSLFZhhYxpDhPAs4U0FpT2xChur6R/TURth6opjGiCUcihCPQGIkQid5qTWNYE9aacKR5icYgOubHUesv/Ojj1tt13O3t/5Bqs78+CaaehB5fDbuWo7ctgXc+Rr+13PR0jJxtWq0GjKSuMcKOUC0LN+5n2daKpnIPKVAcM3EAF8wcyciBBYwcmM/IgQWMcOdT0l8vANKagXuXMccTgdqDUBuCOnN7ec3BxqDfe0wyh/f4AlMwQdTlwD7gMUAF/d7TU1D6uHpTQNWtqBPAGanjxIPz+W/53KZ13zltAhPsCX5njy1l9vBc2LUS9q+DDa/Dmueh5oBJ0HnxPPCckvqaZLn8HCfThg9g2vABXdpfa93UbF3fGLGbsSPU2ffrwxG01ixZupTZs2e3+2GplPkV5lCq6VdW9Avfodrf7nA0/yqL1fp7ss3XZpvt3Xt+R0FGe89/5513mXNKq7/T1ufoxjkbwxGq6sNU1zVSWddIVV3Yvm2kqt48rmraZtZV14dbfIk1hCPUNGgikegXHPaXYEwY00FrXuwXVrwWwpqaCNtqD7RZ30mDXKt6d3N9O4GaRrPvUD01Dc1TMhXnuRg6II+hJXkMKclnSHEeZUU5TS18JfmmtS/P5WzRepAT06LQ1JKgmoNQpaDR/v912K0G0RaE3i4c0eyrrGNHRQ07Q7XsDNWyv7KO/ZX17K+qo7y6gao687dUXR+mpr6R6oZwy9fzzTfiHr/3KwTm2AtQYS+r9wPmgiinghmjB/K90ydxwsRBzBjlZukH7zJ37tGZKHDiwg0mEKoLmWCoNtQmMGp63LSuosU+c3QE3kno7NuB2JmvR9vrYn0CvA1cEPR71wN4fIEfJHS2buhNAVXXWO6rMIPM0DgYN2Qg2OPO/1XwV45eE2LvhgHk1ldQULOT3IaKpqc2Ogs4UHY026eeT8g9HYKNEFzQ41VIVmVlJQsWLMh0MXrccFcNBzcuz3Qxel59FR8tejetp8i3l6Z22jx7SZvOA4TKygjFxZkf7AuKiM6jvFazs0qzsyrC7qoIofpaDpTXsGmXpqJOU5fKKTBffjFOSexbuyvG7plpvh+jTddw64N11n3d2fG68HyHgpJcxYBcRXEOFLgUA/Mgv1CR51TkunLId0KeUxFpqKOwIK/pR5BDmQCk5f3mbU1LzPnaa/WM9wNGtVrR5kdIO8fsyvrYsrjqDzHowBLKDnzI4INrGEwF9YeGUb7pSCrKZ7Bm7SSqwkU9+3muIzjDtTjDNbgaq+ylOuZ+Fc5wdattlS32cUbqOj1No7OQRlchja6i5iVvEOFCs64qkoOzsNTeVth0C1/r7NAfApM9vsB4TCB1GfDlVvtcbK9/w+MLzAcepSsfOklSnY2/6DGW+0TAwgp9xn58o7kN3RrvKfn5+Xrllr2c9QczsG35sS/jrvjETIBZNNjM6VQ6vvl22AxzaWwft2DBAubOnZvpYvQ4qXd26Wv1rm+MNLXsHao1tw32VVfRVteGcISGRtMa22Cvj16FFf0o3rBxI+M941us1wB2l5aOWR/dx/6XhtbUrj9fKcWQkjxGDMhnxMB8RrgLGFiQ0+XxnX3t9e62Q7tNZvYNr0PwHdNqA0SUC8egCWZe2IIyKCxrvs0pNFccOlzmavRIY8wS+7gB6quhvtIsdZVmAH17jxuqOy+rw2XGFkeXvAH2/QGQP7CddbGP3eZq+U7SSsR7vZVS1VrrDidZ9PgC5wN/wlzAdk/Q770lzn5FmKFDlwNnAPcDTwX93pc7/T9IQG9qofoQmIzl7ijqbGPC4GLGDSpk1MAC3F+4I91lFEKIduW6HOS6zMUkyVigtjF37uQUlUr0GiXD4LgrzRJuhD2rYNcKtn70OuMK66ByN1RsNUNSairodnZB5YDcEjNwPq/Y3OYWw4DRLR/nFjfvkxcNkAa0DJ5yCnrFBVrxBP3eF4AXurBfFfAw8LDHFygFvohJpdDPAyor1Ijl/h7wEnbUiRVa1dnTHA7FC9fOweXsvS++EEII0cTpghFHwogj2RQazbjWLTWRsBlr1FBtkoxGwqbFx+FqtcSsc+X16iAo04J+bzkwz17SovcEVABWqEtRZ2u9eQoXIYQQolscTtPlR1mmSyK6oTeM+BRCCCGE6NMkoBJCCCGESJIEVEIIIYQQSeo9aRMSoJSKADWZLkcGuIC2Exb2f1Lv7CL1zi5S7+wSr94FWus+2djT10dzL9VaJ5Wivi9SSi2WemcPqXd2kXpnF6l3/9Eno0AhhBBCiN5EAiohhBBCiCT19YAqbQm6ejmpd3aRemcXqXd2kXr3E316ULoQQgghRG/Q11uohBBCCCEyTgIqIYQQQogk9dmASil1rlJqrVJqvVLKl+nypINSaoxS6g2l1Gql1Cql1HX2eksptV0ptcxezs90WdNBKRVUSq2w67jYXlemlHpFKbXOvi3NdDlTSSk1NeZ1XaaUOqiUur4/vuZKqXuUUnuUUitj1rX7+irjz/b7/WOl1OzMlTw5cer9O6XUJ3bdnlJKDbTXe5RSNTGv+z8yVvAkxal33L9rpdSN9uu9Vin1mcyUOnlx6v1YTJ2DSqll9vp+8Xp38N3Vv9/fWus+twBOYAMwAcgFlgPTM12uNNRzBDDbvl8CfApMByzgx5kuXw/UPwgMbrXut4DPvu8Dbst0OdNYfyewCxjXH19z4FRgNrCys9cXOB94EVDACcDCTJc/xfU+B3DZ92+Lqbcndr++vMSpd7t/1/bn3HIgDxhvf947M12HVNW71fbfAz/vT693B99d/fr93VdbqI4D1mutN2qt64FHgYsyXKaU01rv1Fovte8fAtYAozJbqoy7CLjPvn8f8LnMFSXtzgQ2aK03Z7og6aC1fgs40Gp1vNf3IuB+bXwADFRKjeiRgqZYe/XWWr+stY5mjf4AGN3jBUuzOK93PBcBj2qt67TWm4D1mM/9PqejeiulFHAp8EiPFirNOvju6tfv774aUI0CtsY83kY/DzSUUh5gFrDQXvU9u2n0nv7W7RVDAy8rpZYopa6y1w3TWu+07+8ChmWmaD3iMlp+0GbDax7v9c2m9/y3ML/Wo8YrpT5SSr2plJqTqUKlUXt/19nyes8Bdmut18Ws61evd6vvrn79/u6rAVVWUUoVA08A12utDwJ/ByYCRwE7MU3G/dEpWuvZwHnANUqpU2M3atNW3C/zfiilcoELgf/aq7LlNW/Sn1/feJRSN2PmN3vIXrUTGKu1ngX8EHhYKTUgU+VLg6z7u27lclr+aOpXr3c7311N+uP7u68GVNuBMTGPR9vr+h2lVA7mD/IhrfWTAFrr3VrrsNY6AvyLPtoU3hmt9Xb7dg/wFKaeu6NNwfbtnsyVMK3Ow8xVuRuy5zUn/uvb79/zSqlvAhcAX7G/bLC7vPbb95dgxhJNyVghU6yDv+tseL1dwMXAY9F1/en1bu+7i37+/u6rAdWHwGSl1Hj7l/xlwLMZLlPK2f3rdwNrtNZ/iFkf27f8eWBl6+f2dUqpIqVUSfQ+ZtDuSszr/A17t28Az2SmhGnX4pdrNrzmtniv77PA1+2rgU4AQjFdB32eUupc4AbgQq11dcz6IUopp31/AjAZ2JiZUqZeB3/XzwKXKaXylFLjMfVe1NPlS7OzgE+01tuiK/rL6x3vu4v+/v7O9Kj4RBfMVQGfYiL4mzNdnjTV8RRMk+jHwDJ7OR94AFhhr38WGJHpsqah7hMwV/ksB1ZFX2NgEPAasA54FSjLdFnTUPciYD/gjlnX715zTMC4E2jAjJn4drzXF3P1z532+30FcEymy5/ieq/HjCGJvs//Ye/7BfvvfxmwFPhspsuf4nrH/bsGbrZf77XAeZkufyrrba+/F7i61b794vXu4LurX7+/ZeoZIYQQQogk9dUuPyGEEEKIXkMCKiGEEEKIJElAJYQQQgiRJAmohBBCCCGSJAGVEEIIIUSSJKASQqScUmqQUmqZvexSSm2371cqpf6WpnNer5T6egfbL1BK/Sod5xZCCEmbIIRIK6WUBVRqrW9P4zlcmLw9s3XzJMOt91H2PifrmOSZQgiRCtJCJYToMUqpuUqp5+37llLqPqXU20qpzUqpi5VSv1VKrVBKzbenrkApdbQ9UewSpdRLcWahPwMzVU+j/ZxrlVKr7Ul3H4WmucMWYKZ3EUKIlJKASgiRSRMxwdCFwIPAG1rrI4AawGsHVX8BLtFaHw3cA9zSznFOBpbEPPYBs7TWM4GrY9YvBuakvBZCiKznynQBhBBZ7UWtdYNSagXgBObb61cAHmAqMAN4xfTY4cRM49HaCGBNzOOPgYeUUk8DT8es3wOMTF3xhRDCkIBKCJFJdQBa64hSqkE3D+qMYD6fFLBKa31iJ8epAfJjHnuBU4HPAjcrpY6wuwPz7X2FECKlpMtPCNGbrQWGKKVOBFBK5SilDm9nvzXAJHsfBzBGa/0G8FPADRTb+00BVqa91EKIrCMBlRCi19Ja1wOXALcppZZjZq0/qZ1dX8S0SIHpFnzQ7kb8CPiz1rrC3nY6EEhnmYUQ2UnSJggh+gWl1FPADVrrdXG2DwMe1lqf2bMlE0JkAwmohBD9glJqKjBMa/1WnO3HAg1a62U9WjAhRFaQgEoIIYQQIkkyhkoIIYQQIkkSUAkhhBBCJEkCKiGEEEKIJElAJYQQQgiRJAmohBBCCCGS9P8BydleHXFmMP4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n", + "Angular Position Plots\n", + "\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi4AAAGDCAYAAAAMIJtyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABmEklEQVR4nO3dd3hUVfrA8e87k0kPCSWEQEAQIdKRZsECuip2XRQVC66uuGvdqu66q25xf+6ua2+ray8o9u5ao6hrAUGliHQJhJ6QXmbm/f1xb+IQkhDIZCYzeT/Pc5+Z285952RkXs859x5RVYwxxhhjYoEn2gEYY4wxxrSWJS7GGGOMiRmWuBhjjDEmZljiYowxxpiYYYmLMcYYY2KGJS7GGGOMiRmWuBjTzkSkv4ioiCS462+IyIxWnlsgIj9t3whbR0QeFpG/Runa7V4PIlIuInuHsTwVkX3CVV64iMhqEflRtOMwZk9Z4mJMmLg/CFXuD2D90rvxcap6jKo+Eobr7ZAQNXPM9SJS58ZSIiKfiMiBrSj7PBH5qK0xRpIbs4rI6Y22Xy8ijzfatlMipKrpqrrS3R+1JK2eiExyP89V0YzDmI7GEhdjwusE9wewflkf7YCAp1U1HcgGPgKeFxGJckztYQawDTg32oGESbx9HmPCwhIXYyIs9P/2RcQrIv8SkS0iskpELm2iFWUvEflYRMpE5C0R6eFu/9B9LXFbVFpsSVHVOuARoBfQXUSuFpEVbrmLReQUN6YhwL3AgfUtNSHFdBWR19xzPhORgS18zmdEZIOIbBeRD0VkWMi+h0XkrubKEpEjReRb99w7gRYTLRHZCzgMmAkcLSK93O1TgN8Dp7uf5SsRuQE4BLjT3Xane6yKyD4iMhM4C7jS3f9K6P5Gn+GvIeu/FZEiEVkvIuc3ii9JRG4Ske9FZKOI3CsiKS18njTgVOASYJCIjAvZV9/SNsMtb4uIXBOyP0VEHhGRYhFZIiJXikhhM9fxhHwPtorIbBHp1lJdGxNtlrgYE10XAscAo4ExwMlNHDMd+AnQE0gEfuNuP9R9zXJbd/7X0oVEJAk4D1irqluAFTg/4JnAn4DHRSRXVZcAPwP+55abFVLMGe6xXYHlwA0tXPINYJAb95fAE432N1mWm5g9D/wB6OHGObGlz4bTKjFXVZ8DluAkHqjqm8DfcFudVHWUql4DzAEudbddGlqQqt7nxvoPd/8Ju7h2fYL0G+BI9zM3HkNyIzAY5++8D9AHuLaFIn8MlAPPAP/FaX1p7GAgHzgCuNZNOAGuA/oDe7vxnN3CdS7D+c4dBvQGioG7WjjemKizxMWY8HrRHUtSIiIvtuL4acBtqlqoqsU4P3CNPaSq36lqFTAb58dvd0xzW03WAmOBUwBU9RlVXa+qQVV9GlgGTNhFWS+o6ueq6sf5cW82FlV9UFXLVLUGuB4YJSKZrSjrWGCRqj7rthLdCmzYRVznAk+6758k8t0r03D+TgtVtQLn8wLgdsvNBH6pqttUtQwnmTqjhfJm4CRbAZzPc4aI+Bod8ydVrVLVr4CvgFEhsfxNVYtVtRC4vYXr/Ay4xv3+1f+dTpUWxk0ZE22WuBgTXierapa7nNyK43vjJBT11jZxTOiPdiWQvpsxzXbj6amqh6vqPAAROVdEFtQnWsBwnBaOlrQqFrcL7Ea3C6IUWO3uCi2/ubJ2qBN1ZoJtql7qrzURGAA85W56EhghIqN38VnCqfHfcU3I+2wgFZgXUtdvutt3IiJ9gcn80EL1EpAMHNfo0FbVHy3UHbAX8EJIXEuAAJDTwjnGRJUlLsZEVxGQF7LedzfO3eOp3d0xIfcDlwLd3e6ghfwwlqSt08ZPB07C6TLJxOm6gF2MVXEVEVIPbotFS/Uywy13gYhsAD4L2Q5Nf5Zdfb6m9lfiJCD1ejUXM9Av5P0WoAoYFpLUZroDpptyDs6/za+4n2clTuLSqlvo2b3v1FrgmJC4slQ1WVXXtfJaxkScJS7GRNds4AoR6SMiWcDu3Pq6GQjijGXYXWk4P86bAUTkJzgtLvU2AnkikrgHZQNkADXAVpwf+7/txrmvAcNE5Mdul8Xl7JgkNBCRZJyukZk4XU31y2XAdPf8jUB/EQn9924jLddbU/sXuGV63TEth4Xsmw2cJyJDRSQVZ5wJAKoaxEkSbxGRnm7cfUTk6GauPQNn7E/o55kKHCsi3VuIOTSW34lIVxHpg5OcNude4AY3kUVEskXkpFZcw5ioscTFmOi6H3gL+BqYD7wO+HGa61ukqpU4A1o/dpv6D2jtRVV1MfAv4H84P9IjgI9DDnkPWARsEJEtrS03xKM43SXrgMXAp7sR2xbgNJzxPltxBrt+3MzhJ+O0ZjyqqhvqF+BBIAGYgjPAFWCriHzpvr8NZyxHsYg0NQbkAWBoo7FKVwAnACU4g3/rt6Oqb+CMxXkPZ6Dxe43Ku8rd/qnbdfYOzsDaHbh/w72Au0I/j6q+7J5/ZjP1EOrPQCGwyr3OszhJZFNuA14G3hKRMpy/0/6tuIYxUSNO97ExpiMQkWOAe1V1r2jHYuKDiPwcOENVD9vlwcbEAGtxMSaK3GduHCsiCW6z/nXAC9GOy8QuEckVkYnuM1rygV9j3ykTR6zFxZgocsdDfADsi9Pl8RpwhaqWRjUwE7Pc8Sqv4dxpVYJzt9XvVLU2mnEZEy6WuBhjjDEmZlhXkTHGGGNihiUuxhhjjIkZcfFY56ysLN1nn312faAJi4qKCtLS0qIdRqdh9R05VteRZfUdWbFU3/Pmzduiqk0+XTouEpecnBzmzp0b7TA6jYKCAiZNmhTtMDoNq+/IsbqOLKvvyIql+haRNc3ts64iY4wxxsQMS1yMMcYYEzPioqvIE6xh7bdzqVNBxIvH6wFPAoIHT4KXJF8iKUkJpCSn4E3JAo/la8YYY0wsiovEJa1iLX2fOqJVx9apl22SyTbpxhZvTzb5+rA1qQ/bk/MoT+uHP60XGSlJdElJoEuyj4zkBLqk+OiS7CMzJYG0pAR8Xg8+j4cErzjvvYIzga0xxhhj2lNcJC7Fvl5cXHs+0yf0Jc0HGgyCBiAYQINB/AE/dXV+/HU1+Kq3klyzmbSaLQyqXcsBVV/gq6prKKsGH99rT1YHc9ig3diOUE6QEqkmnSoypIo0qkinijSpoQ4v1ZpIDYnUio9akqiVROokEb/48Ah4BTyiBMRHwOMjID6CkkBQvE7CIx438fGACOLxoPXbxAvicRaPB8SLiAc8znZxX/E425taF4/TAoUnAfEkNKw7+xLAm4DH40W8Xne/F/Em4PEkIF7nHI/Hg3h9eLxeCrduZ/GqQsSTgDchAY/Xi8eTgNfrwSOCxyN4RfB4wCuC1/PDNq9H8DS8YgmfMcaY3RIXiUuVJ43Xgwdw3eFHkNMlefdODgagdB1sWwnbVpK0bRX7bFvJwG0rofRLFAjiwZ+QQq03nRpPCrUJPajxpLHVkwxBP55ADb5ANcmBWrzBaryBKhKC2/FqLUEEVUEBT9BPQqAOr/pJ0Dq8BABFVBFACDrrgMc5Ew8d78nGIwG+2Xl7QAU/XoJ4CIQszid117V+u7Mt6L4PivuKh4B4UTwN21Q8BN1jFK+zXzyoJLivXlS8IF7U47zicbd5vKgnAXHfO0uCu7iJmjfBSQi9znaP14t4fG7S5sXjJm/eBDeJ8zrnOEmbD6/Xi3h97noCXq8Pr899TfDh9fpITEzEl+AlwSskej34vB68HkvajDFmd8VF4tImHi9k9XOWvScBuEnED7yAD0iJfHSg6i4B0KCTaGkwZD3YsK7BAMFgkEDAeR8I+AkGAwQDfncJEAwE0KCz3vAa8DvnuvvU3afB+vX61itn2/rC78ntlYMGA4i7jaDfiSHgD4nTjwQD7nvnWDSIuK1hHg3gVT8+DSLBAKKhSxDROjxa07DNo0EE5zyPBpCgmyK5270aQAjiVSclSiAQjb9Ys/zqJGJ+PNS6r34SCOIlUJ+4iZcATmtc/dItAAs/SSboJmMqCagngaDHh3oSUE8ieBJQrw88PtSb6LakJYLXh3h9SEJiw6s3wYfXl4Q3IRGvL4kEXyJeXyI+XxIJiYn4EpPw+ZLwJSaRmJiIeJPA63MWT/2rN9rVaYzppOIqcYnL/38VcZZW3AAmOElWe/+krC8oID9GngVAQ7eh313qE76Q9WB9EhcgEKgj4HeXQICgv45goP69n2CgjmDQ7773Ewz6Ub+/iWQwgAbrGhJBGhLEOnefH3H318cibiJI0I+4SZ+oHw1W49U6fP5qxE32vPjdljs/CTjrCRrAh58EAvikfZO2+lYzvyQQIIGAx+n+DEiC0w3q8aENiZXzviHxaUiikvD4kt0lCa8vBW9iMgmJySQkpeBLTMbjS4GEpB8Wb/375Ka3eX3ufy/GmHgVV4mLMTvxeACP84PWgkglfXtidx8aparU+gP4/bXU1dRQV1dLoK4Gf10tdbXOq/O+moC/Fn9tjZOo1dUQ8NcSrKt1Xv21TqLmr4OAs06gzl1qIViHBOuQoB8J1LrJlh9PoA6P+vFqndM9SjUJVODDj4+A++rHJ3581JFIHUnUkST+sNSX35PkJFKeJILeJDQhCRJSwJeKJKYgial4E1PxJjmvkpgKvlTwpdB7XSF8uRZ8KQ3bfnhN2XE9IdmSJGOiIL4SF/s3xBhEhERfAom+BEhJjXY4qCp1AaXGH6DGH6S6LkB1XYDyuiBV7vuq2gDVdX5qq6upq62krqYaf001/toqArXVBOqqCNbVEKyrQutqCPprEH81BGoQfy0SqEGCNXgDtST4a51EiDoSxU8yNSRTSwpVJMt2UqglmRpSpJYUd1+yOAP0BwMsa+XnEg/BhDQ0MQ2SMvAkZSDJ6UhiBiSlQ2L6D6+h75MyfnhNyYKUrk4yZEmQMa0SV4mLWOZiTIcjIiQmCIkJHjIicD1/wEmIquoCVNYEqKj1U1kboKLGz/baAJW1ASpr/VTU/PBaVVNLXU0lm9YXkpmWRKC2kmBdFdRWIv4qpK6KhGANyVJDCrWkUkOKVJNeV01aVTVpUkU61aTLRjI8a8iQatKoIkWrSKRulzGrx0cwOQtJ7YonpauTzKR0heSsH96nZO28PTkTvHH1z7gxu2TfeGNMXEnwesjweshI9rG7mVJL3XK1/iBVtQHKauoor/FTVu2nvNpPaXUdJdV+Cmv8lFXXhWx31iurqgnUlKPVpVBbTnKwijT38QqZUkEW5c5rbTmZZeV09VTQ3bOJLCrIoJxUrWwx5mBiBqR0xZPaVKLTDdKy3aXHD68JSbtXMcZ0IHGRuNTfMGwtrcaY9pKY4CExwUNmasvjpVqiqtT4g5TukODUsb3KWVZX1vFVVR0llbWUVNZRUlVHeUUVgapiqCohNVBGppSTRUVD0pPlL6dLVQXdSyro7tlAlmcFXbSc9GCZ+8iFJuJI6oLslNA0sZ7e00mC7B9X04HEReJijDGxQERI9nlJ9nnpuQf9ZtV1AbZX1TlJTWUtJW6Ss6mijm8rathaXsvWilq2VtSwrayGqsrtZAS204PtdJdSZ6GUHv7t5FSXkVNSRg8poivbSQ+U4iG40zU1IRnJ6AUZvaFLLmS4S5fcHbdZK46JkLhKXOz/CYwx8aw+6WntgzZVlYraAFvLa5yEpry24f3c8lq2VdSwubyGTaU1bCmtxFNd3JDg9GA72bKd3oFi+gW307u8mJ7rV9M1sAWf1u58sZRukNkHMvtBVl/I7Bvy2g9Su1vLjQmLuEpcjDHG/EBESE9KID0pgb26p+3y+Oq6AJvLathYWs2mkNfFpdUN24u2VyHV2+klxfSSbeRIMb2lmAG12+lXXExu8WK6171PYrDR2BxfKmTm/ZDQZPUje1MlrM+C7gOdu6yMaYW4Slxs3htjjNlzyT4vfbul0rdby7fRl1bXUVRSzfqSKtaVVLG+pIqCkirWl1SzrqSKDdVVpAfLyZMt9JHN9PFsId9bwoDybfQpL6T79/NIqSthGMDim5xC03o6CUy3gdB9b/d1IHTbGxJ3nXSZziOuEhdjjDHtr0uyjy69fOT3arqVJBBUNpVVs664iu+3VbJmayWfb6vkGff9lvIaUqlmL9lIf9nA0KTNDAtuYcCWjeRseJPU2i2NLpgHPfeFnkMge4j7mm8JTScVV4mLtbcYY0z0eT1CbmYKuZkpjOvfbaf9FTV+vt9Wyesffk5G7tGs2lLJnE3lLN9czraKWtKoor9sZJBvI/ulbmMIG+hftIbuKz/EG6wfXyPQda8fEpn6pUc+JCRG9gObiIqrxMUYY0zHl5aUwJDcLmzMSWDSoQN32LetopYVm8tZvqmcFZvKeX9zOf/ZXE5hcRUeDdBPNjE8YR0HZGxiRHA9fdd/R+ayt/GoO2WENxF6DoXeoyF3tPPac5glM3EkrhIXG+JijDGxrVtaIt3SujG+UUtNVW2AFZvL+XZDGUuKSnmtqJSbikoprqzDh58BUsRBGZuYmFbI0OpV5Hz9HAnzHnZO9vggZ+gPiUyfcZAzzGY5j1FxlbgYY4yJTymJXob3yWR4n8yGbarKhtJqlhSVsqSojEXrt3P92u2sK6kClL09mzmyaxETU9eSX7eSHotexPvlI87JiemQNw76HgB9J0DeeEjuEp0PZ3ZLXCUuNleRMcZ0HiI/jKU5fN+chu2byqr5au12Fqwt5qu123lybQllNX5AGZK0lRN7rOfgpBUMLFlIyqp/IBoEBHKGw4BDYMBh0H+i3aLdQcVV4mJ5izHGmJ4ZyRw5NJkjhzrJTDCorNxSzvzvS1iwtoQXVvfn7+tGAqfQ3VfNqTkbmJy6miG1C+nyxQPIp3eDeKHPWNj7MCeR6TvBng7cQUQ1cRGR1UAZEAD8qjpORLoBTwP9gdXANFUtjlaMxhhjYpvHI+zTM4N9emZw2ri+AGwtr+GL1dv4dOU2PliZzb+/6w9MoltSkLN7b+Co1KUMrphH4px/wYf/hIQU2OtAGHQ05E+Brv2j+ZE6tY7Q4jJZVUNv2r8aeFdVbxSRq931q1pTkA3ONcYY0xrd05OYMjyXKcNzASiprOXTlVv54LstPLs0ldtX9QYmMypbmJ6zloO9i8jd8gmeN6+CN69y7lzKPwYGH+O0zHg80f1AnUhHSFwaOwmY5L5/BChgV4mLtrjXGGOMaVFWamJDIqOqLN9UzgffbeaD7zbzxyVCbSCPFN+xTNu7lmldFrJv6cd4P7oV5vzLeerv4KMg/zjY5wjrUmpn0U5cFHhLRBT4t6reB+SoapG7fwOQ0+zZjViDizHGmLYSEQblZDAoJ4OfHrI3lbV+Plu5jXe/3chrCzfyyNJRJCXsxzEDf8NZPZYxuvITfItfgfmPQ3ImDD0JRpwGe020W67bgahGr7lCRPqo6joR6Qm8DVwGvKyqWSHHFKtq1ybOnQnMBOjSM29s15/cyz0/SiUlwdKX9lZeXk56enq0w+g0rL4jx+o6smKxvoOqLCsOMnejny82BCipURIERnZXpnVZxCF1n5Cz7VMSAtXUJHZjU89D2JhzKOXpA6M+niGW6nvy5MnzVHVcU/uimriEEpHrgXLgQmCSqhaJSC5QoKr5LZ3bq/9gTT7jFhb+6WjSk6LdiBT/CgoKmDRpUrTD6DSsviPH6jqyYr2+g0Fl/tpiXv9mA298U8T67dWkJXr58Yhu/CT7WwYUvYEsexuCddB9Hxh5Oow+CzL7RCXeWKpvEWk2cYnaaCIRSRORjPr3wFHAQuBlYIZ72AzgpehEaIwxxjTP4xHG7tWNPx4/lI+vPpzZFx3IsSNyee6bbRz+ZneOWH8RDx70NqVH/gsycuH9G+DW4fDEabDkVQjURfsjxKRoNk/kAC+I03SWADypqm+KyBfAbBG5AFgDTGttgdZJZIwxJhpEhAkDujFhQDeuO3EYr39dxOy5a/nzO+u5wdObSYOv4yfHwkGlb+JZ8Dg8fZaTzIw7H8aeB+k9o/0RYkbUEhdVXQmMamL7VuCIyEdkjDHGtF16UgLTxvdl2vi+rNhczrPzCnluXiFnf1tDXteJzNh/GtO7LiXt64ecVpgP/gHDToEDfg59xkQ7/A4vrm48t+e4GGOM6UgGZqdz1ZR9+eTqw7nnrDH0zkrhhjeXM/ZZH9ek/5nCsz6E8RfA0jfg/snw8PHw3VsQDEY79A7LRrIaY4wx7SzB6+GYEbkcMyKXxetLeeST1Twzt5AnPw9yzPBp/Pz0Sxmx8UX49B548jTIHgIH/xKGTwWv/VSHiq8WFxvlYowxpoMb2rsLfz91JB9dNZmfHzaQOcu2cML9X3PW4vF8cdL7cMp9IB54YSbcNQEWPAkBf7TD7jDiK3GxvMUYY0yM6NklmSun7Mv/fncE1xw7hKUbyjnt/rmc+dlefHr0S3D6E5CYBi/+HO4cC189BcFAtMOOurhKXIwxxphYk56UwIWH7s2cKyfzh+OGsHxzOWfc/zlnfdyDr497Gc582nki7wsXwb2HwNI3oYM8gy0aLHExxhhjOoCURC8/PeSHBGbx+lJOvOsTLp6bzYpTXoVTHwJ/Fcw6HR6cAms/j3bIUWGJizHGGNOBJPucBObDKydz+RGDKFi6maNu/YhrVwxm23kfwfG3QPFqeOBIeO5C2L4u2iFHVFwlLjbGxRhjTLzISPbxqyMH8+GVk5k+oR9PfPY9k27+iAerJ1N3yRdw6G9h8Utw5zj44J9QVxXtkCMirhIXY4wxJt70SE/iLycP540rDmFU3yz+/Opijr77Sz7Iuwgu/RwGHQnv/9W5A2nZ29EOt93FVeJit0MbY4yJV4NzMnj0/Ak8MGMcqjDjwc+55PVtbDj6PpjxCiQkwxOnwjM/gbIN0Q633bSYuIhInoj8RkReEpEvRORDEblbRI4TkQ6T9HTesdXGGGM6ExHhiCE5vPmLQ/j1kYN5Z8lGfnTzBzy4ri/+Cz+EydfAt6/BnRPgiwfi8gm8zSYfIvIQ8CBQC/wdOBO4GHgHmAJ8JCKHRiLI1rIxLsYYYzqDpAQvlx0xiLd/eRjj+nflz68u5qR/z2XRoIvg559A71Hw2q/g0ROheE20ww2rlp4j/C9VXdjE9oXA8yKSCPRrn7CMMcYYsyv9uqfy0HnjeWPhBq59aREn3fkxP580kEunv0DS10/Af6+Bew6Co/4K2j/a4YZFsy0uzSQtoftrVXV5+EPac9bgYowxprMREY4dkcs7vzqUk0b34Y73lnP8HR8zP/tEuPgTZ8bpV3/ByK//BKXrox1um7XUVTRERB5wl2GRDMoYY4wxuycrNZF/TRvFQz8ZT0WNn6n3fMLfP62kdvoLcOxNZG5f7LS+fPt6tENtk5YG2N4PXA1cBdwXmXDaRmyQizHGmE5ucn5P/vvLQzltbF/uKVjByXf/j6X9zmDuuJshMw+eOhNe/y3UVUc71D3SUuKyAjjVXb6PTDhtY2mLMcYY4zy87u+njuT+c8exqayaE+74iOc35hA8/x044GL4/D74zxGweWm0Q91tLSUu5wErcZKWsyMSjTHGGGPC5sihOfz3F4cyKT+bp5fWcs6jC9h00HUwfTaUFcF9k2Hhc9EOc7e0NDhXVfW/qvq6qsbEPNrWU2SMMcbsqHt6Ev8+Zyw/GZ7IvDXFHHv7HD5gDPzsY+g1HJ49H978HQTqoh1qq7Q0OPd+ERnRzL40ETlfRM5qv9CMMcYYEw4iwmF5Pl659GC6pyUx48HP+b+PS6g752XY/2fw6d3wyAkx8cTdlrqK7gL+KCJLROQZ94m5D4rIHOATIAN4NiJRtpINzjXGGGOaNygng5cuncj0/fvx7w9WMu0/81i7/3Uw9QEo+gruPQQK50Y7zBa11FW0QFWnAeNxkpg5wMvAT1V1lKrepqo1EYrTGGOMMWGQ7PPyt1NGcNf0MSzfWM6xt8/hDSbChe9BYio8dCx806HaJXawy/mGVLVcVQtUdZaqvqiqsTcE2RhjjDE7OG5kLq9fcQh7Z6fz8ye+5A+f+Kk+723oMxaeuwAKbgTteLMBdpiJEo0xxhgTWX27pfLMRQcy89C9efzT7zn5oW9ZeezjMGo6FPwfPPfTDve8l7hJXGx4izHGGLP7EhM8/P7YITz0k/FsLK3mhLu/4NW9/wA/uh4WPguPHA/lm6IdZoNWJy4iktqegbRFx2vIMsYYY2LL5PyevHb5IeT3yuDSWQu4fttR1J36GGxcBPcf7rx2ALtMXETkIBFZDHzrro8SkbvbOzARmSIiS0VkuYhcvcvj2zsgY4wxJs71zkrh6YsO5IKDB/DwJ6s59YPubDz1BQj64YGjYPk70Q6xVS0utwBHA1sBVPUr4ND2DEpEvDh3Mh0DDAXOFJGhzZ5gTS7GGGNMWPi8Hv54/FDuPXsMKzeVc9RTpXx8+DPQbQA8eTp89VRU42tVV5Gqrm20qb2fpDsBWK6qK1W1FngKOKm5g7fXKkFLXowxxpiwmTI8l1cuO5jeWSmc9fT33Jp3K8G9JsILF8FHt0TtjqOEVhyzVkQOAlREfMAVwJL2DYs+QGiyVAjsH3qAiMwEZgKk5uzFsQN8FBQUtHNYBqC8vNzqOoKsviPH6jqyrL4ja0/r+5fDlce9Cdz60Ube6Xoh93QP0ved6ylcMpfl+1wAEtn7fFqTuPwMuA0nmVgHvAVc0p5BtYaq3gfcB5Cfn693X3RUlCPqPAoKCpg0aVK0w+g0rL4jx+o6sqy+I6st9X3UEfDcvEKuefEbptZdzotDBpG35EHyshLhlH9DQmJ4g23BLhMXVd0CRHpOonVA35D1PHebMcYYY6Jg6tg8hvfJ5OdPzOPgBT/i8X3TOWjR7VBTBtMedZ66GwHNJi4icgctDHtV1cvbJSLHF8AgERmAk7CcAUxvx+sZY4wxZhfye2Xw8qUH87vnv2H6VwdwXW8v5y2/FXl8Kkx/CpIz2z2GllpcojbLkqr6ReRS4L+AF3hQVTvGDeTGGGNMJ5aelMDtZ4xmQv+u/OVVD6tSf8Wf1t6GPHw8nPMCpPVo1+s3m7io6iPteuVdUNXXgdejGYMxxhhjdiYinHNgf0b1zeLiJ5JYV5XAvzfdhvehY5BzXoDMvHa7dmseQPeKiLzcaHlMRK4QkeR2i8wYY4wxHdrIvCxeu+wQZNCRnFl1JdXb1hF84GjYuqLdrtmae5hWAuXA/e5SCpQBg911Y4wxxnRSmak+7jtnHEdMOZnTa66htLQU/3+Ogg3ftMv1WnM79EGqOj5k/RUR+UJVx4uIjTsxxhhjOjmPR/jZYQPZr+8ZXPhkGrdX/onu/zkG37nPIv0OCO+1WnFMuoj0q19x36e7q7VhjcYYY4wxMWv/vbtz9xVn8n+9bqWwNo3ah06ifNF/w3qN1iQuvwY+EpH3RaQAmAP8RkTSgKgO4DXGGGNMx5KdkcQtF53InEMeY0Ugh6RnpvPte4+HrfzWPIDudREZBOzrblqqqtXu+1vDFokxxhhj4oLXI8w4cgKL9n6Vb5+YxtAPLuWNtYUccdaVJCa0bYqA1p49FhgGjAKmici5bbqqMcYYY+LesIH9GPir/7K8y/4cs+r/mHXzL1ixqaxNZbbmdujHgJuAg4Hx7jKuTVc1xhhjTKeQmp5J/i9eZX3f45lR+Qgf3nkR//lwOYHgns0u3Zq7isYBQ1WjNH+1McYYY2Kb10fvnzxG5cu/5icLHuTZt8s4Y+GV3HjafgzMTt/1+SFa01W0EOi1R4EaY4wxxgB4PKSedDM66Xec6v2Qizddzym3vcv9H67crdaX1rS49AAWi8jnQE39RlU9cfejNsYYY0ynJYJMuhpSuzPp9d/ybPo/Oe31y3h9YRH/PHUU+/TcdetLaxKX69sapzHGGGNMgwkXIildGfTiz/mox42cvvlXHHtbKT89ZACXTN6nxVNbczv0B6HrInIwcCbwQdNnGGOMMcbswohTkYxcMp46k1dTrue2/n/jtoIVPPdlYYuntep2aBHZT0T+KSKrgb8AS9oesTHGGGM6tf4T4YK38SSm8su1V/DeMcXkdGl5/uZmExcRGSwi14nIt8AdwPeAqOpkVb0zvJEbY4wxplPKzoefvgu5I9n7/Ut4aUhBi4e31OLyLXA4cLyqHqyqdwCB8EVqjDHGGAOk94QZr8B+ZyNz/tnioS0lLj8GioD3ReR+ETkCkDCGaYwxxhjjSEiCE++EKX9v8bBmExdVfVFVz8CZo+h94BdATxG5R0SOCmesxhhjjDGIwAE/a/GQXQ7OVdUKVX1SVU8A8oD5wFXhidAYY4wxpvV2a4pGVS1W1ftU9Yj2CsgYY4wxpjltm1vaGGOMMSaCLHExxhhjTMxozSP/Y1JdXR2FhYVUV1dHO5S4k5mZyZIl8fsMwuTkZPLy8vD5fNEOxRhjTCNxm7gUFhaSkZFB//79EbG7uMOprKyMjIyMaIfRLlSVrVu3UlhYyIABA6IdjjHGmEbitquourqa7t27W9JidouI0L17d2upM8aYDioqiYuIXC8i60RkgbscG7LvdyKyXESWisjRbbxO24M1nY59b4wxpuOKZlfRLap6U+gGERkKnAEMA3oD74jIYFW1qQaMMcYY0+G6ik4CnlLVGlVdBSwHJkQ5pj3m9XoZPXp0w7J69WoKCgo4/vjjAXj55Ze58cYbWywj9PjGbr31ViorK5vcN2nSJPLz8xk1ahQTJ05k6dKlzV5j9erVPPnkkw3rDz/8MJdeeumuPh4AW7Zswefzce+997bq+JZiGD58eJvKMMYYE/+i2eJyqYicC8wFfq2qxUAf4NOQYwrdbTsRkZnATIDs7GwKCgp22J+ZmUlZWVk7hN16KSkpzJkzZ4dtixcvxu/3U1ZWxuTJk5k8eXKLcVZWVjYc39gtt9zCySefTPfu3XfaFwgEuO+++xgzZgwPPfQQv/zlL3n66aebvMbixYt59NFHOeGEEwBnfFBtbW2zcQUCgYZ9jz32GOPHj+fxxx/nrLPOavZz7Ep5eTnBYDDqf7N61dXVO32noqW8vLzDxBLvrK4jy+o7suKmvlW1XRbgHWBhE8tJQA7gxWnxuQF40D3nTuDskDIeAE7d1bUGDx6sjS1evHinbZGWlpa207b3339fjzvuOFVVfeihh/SSSy5RVdXly5fr/vvvr8OHD9drrrmm4dz3339fDzvsMJ06darm5+fr9OnTNRgM6m233aY+n0+HDx+ukyZN2uk6hx12mH7xxReqqrpkyRIdMmSIrlq1Sg8++GDdb7/9dL/99tOPP/5YVVX3339/7dKli44aNUpvvvlmfeihh/SUU07Ro48+WvfZZx/97W9/u0PZpaWlDe8POeQQ/eyzz3TgwIG6du3aHT7773//ex05cqTuv//+umHDhhY/56pVq3TYsGGqqur3+/U3v/mNjhs3TkeMGKH33nvvHtR+23SE70+9999/P9ohdBpW15Fl9R1ZsVTfwFxt5je/3VpcVPVHrTlORO4HXnVX1wF9Q3bnudva5E+vLGLx+tK2FrODob27cN0Jw1o8pqqqitGjRwMwYMAAXnjhhWaPveKKK7jiiis488wzd+p2mT9/PosWLaJ3795MnDiRjz/+mMsvv5ybb76Z999/nx49erQYxyuvvMKIESPo2bMnb7/9NsnJySxbtowzzzyTuXPncuONN3LTTTfx6qvOn+Hhhx9mwYIFzJ8/n6SkJPLz87nsssvo27fvDuWuXbuWoqIiJkyYwLRp03j66af59a9/DUBFRQUHHHAAN9xwA1deeSX3338/f/jDH1r8nPUeeOABMjMz+eKLL6ipqWHixIkcddRRdnuyMcaYqN1VlBuyegpOSwzAy8AZIpIkIgOAQcDnkY4vXFJSUliwYAELFixoMWkB+N///sdpp50GwPTp03fYN2HCBPLy8vB4PA1jZVrjrLPOYvTo0Xz88cfcdNNN1NXVceGFFzJixAhOO+00Fi9e3Oy5RxxxBJmZmSQnJzN06FDWrFmz0zFPP/0006ZNA+CMM85g1qxZDfsSExMbxuaMHTu2IeaWPme9t956i0cffZTRo0ez//77s3XrVpYtW9aqz2yMMSa+RWuMyz9EZDSgwGrgIgBVXSQis4HFgB+4RMNwR9GuWkY6uqSkpIb3Xq8Xv9/fqvOeeOIJxo0b17B+/fXXk5OTw1dffUUwGCQ5OblN15w1axYbNmzgiSeeAGD9+vUsW7aMQYMG4fP5Gm4r3p2Ywem+vOOOOzj66DbdDW+MMSYORaXFRVXPUdURqjpSVU9U1aKQfTeo6kBVzVfVN6IRXzQccMABPPfccwA89dRTrTonIyNjtwazbt++ndzcXDweD4899hiBQGCPygH47rvvKC8vZ926daxevZrVq1fzu9/9bodWl6a05nMeffTR3HPPPdTV1TVcq6KiYrfiM8YYE5862u3Qndatt97KzTffzMiRI1m+fDmZmZm7PGfmzJlMmTKFyZMnt+oaF198MY888gijRo3i22+/JS0tDYCRI0fi9XoZNWoUt9xyS6vKmjVrFqeccsoO26ZOnbrLxKU1n/OnP/0pQ4cOZcyYMQwfPpyLLrpot1psjDHGxC9xBu/Gtvz8fG38nJIlS5YwZMiQKEW0+yorK0lJSUFEeOqpp5g1axYvvfRStMNqUlvmKoqVz9mRvj8FBQVMmjQp2mF0ClbXkWX1HVmxVN8iMk9VxzW1L24nWYw18+bN49JLL0VVycrK4sEHH4x2SO2is3xOY4wx7cMSlw7ikEMO4auvvop2GO2us3xOY4wx7cPGuBhjjDEmZljiYowxxpiYYYmLMcYYY2KGJS7GGGOMiRmWuLQjr9fL6NGjGT58OCeccAIlJSW7XUZBQUHDo/Nb4+GHH2b9+vXN7vf7/WRnZ3P11VfvsP1vf/tbw/uSkhLuvvvuhvX169dz6qmnArBgwQL++9//tjqeetdffz033XTTbp938sknc8ABB+z2eY1NmjSJuXPntrkcY4wx0WWJSzuqn6to4cKFdOvWjbvuuqvdr7mrxOXtt99m8ODBPPPMM4Q+w6elxKV37948++yzgJO4vPXWW+0Q+c5KSkqYN28e27dvZ+XKlRG5pjHGmI7NEpcIOfDAA1m3zpnoesGCBRxwwAGMHDmSU045heLiYgCWL1/Oj370I0aNGsWYMWNYsWLFDmV88cUX7LfffqxYsYJ58+Zx2GGHMXbsWI4++miKiop49tlnmTt3bsPkilVVVTvFMWvWLK644gr69evH//73PwCuvvrqhpmszzrrLK6++mpWrFjB6NGj+e1vf8vq1asZPnw4tbW1XHvttTz//POMHj2ap59+eqeWlOHDhzdMqHjDDTcwePBgDj74YEIfELhixQqmTJnC2LFjOeSQQ/j222+brLPnn3+eE044gTPOOGOH6QHOO+88Lr/8cg466CD23nvvhqQqGAxy8cUXs++++3LkkUdy7LHHNuwL9dZbb3HggQcyZswYTjvtNMrLy3f59zPGGNMxdI7nuLxxNWz4Jrxl9hoBx9zYqkMDgQDvvvsuF1xwAQDnnnsud9xxB4cddhjXXnstf/rTn7j11lsbkoZTTjmF6upqgsEga9euBeCTTz7hsssu46WXXiI3N5dzzjmHl156iezsbJ5++mmuueYaHnzwQe68805uuummHSZXrFddXc0777zDv//9b0pKSpg1axYHHXQQN954I3feeScLFiwAYPXq1SxcuHCHdXBmfP7zn//MJ598wn333Qc4XUBNmTdvHk899RQLFizA7/czZswYxo4dCzhTFdx7770MGjSIzz77jIsvvpj33ntvpzJmzZrFtddeS05ODlOnTuX3v/99w76ioiI++ugjvv32W0488UROPfVUnn/+eVavXs3ixYvZtGkTQ4YM4fzzz9+hzC1btvDXv/6Vd955h7S0NP7+979z8803c+2117bqb2mMMSa6OkfiEiX1rRjr1q1jyJAhHHnkkWzfvp2SkhIOO+wwAGbMmMFpp51GWVkZ69ata5j/J3Tm5iVLljBz5kzeeustevfuzcKFC1m4cCFHHnkk4CRGubm5u4zn1VdfZfLkyaSkpDB16lT+8pe/cOutt+L1esP+2efMmcMpp5xCamoqACeeeCIA5eXlfPLJJ5x22mkNx9bU1Ox0/saNG1m2bBkHH3wwIoLP52PhwoUMHz4ccMa+eDwehg4dysaNGwH46KOPOO200/B4PPTq1avJOZw+/fRTFi9ezMSJEwGora3lwAMPDO+HN8YY0246R+LSypaRcKsf41JZWcnRRx/NXXfdxYwZM3a7nNzcXKqrq5k/fz69e/dGVRk2bFhDV09rzZo1i48++oj+/fsDsHXrVt57772GBGhPJCQkEAwGG9arq6tbPD4YDJKVldXQmtOc2bNnU1xczIABAwAoLS1l1qxZ3HDDDQAkJSU1HLs7822pKkceeeQuJ4M0xhjTMdkYlwhITU3l9ttv51//+hdpaWl07dqVOXPmAPDYY49x2GGHkZGRQV5eHi+++CLgtEJUVlYCkJWVxWuvvcbvfvc7CgoKyM/PZ/PmzQ2JS11dHYsWLQIgIyODsrKynWIoLS1lzpw5fP/996xevZrVq1dz1113NfyA+3w+6urqWiyjfl/omJD+/fvz5ZdfAvDll1+yatUqAA499FBefPFFqqqqKCsr45VXXgGgS5cuDBgwgGeeeQZwEommpgCYNWsWb775ZkOs9V1PLZk4cSLPPfccwWCQjRs3UlBQsNMxBxxwAB9//DHLly8HoKKigu+++67Fco0xxnQclrhEyH777cfIkSOZNWsWjzzyCL/97W8ZOXIkCxYsaBhf8dhjj3H77bczcuRIDjroIDZs2NBwfk5ODq+++iqXXHIJ8+fP59lnn+Wqq65i1KhRjB49mk8++QRwBq7+7Gc/22lw7gsvvMDhhx++Q0vFSSedxCuvvEJNTQ0zZ85k5MiRnHXWWXTv3p2JEycyfPhwfvvb3+7wOSZPnsy3337bMDh36tSpbNu2jWHDhnHnnXcyePBgAMaMGcPpp5/OqFGjOOaYYxg/fnxDGU888QQPPPAAo0aNYtiwYTvNDr169WrWrFmzw23QAwYMIDMzk88++6zZOp46dSp5eXkMHTqUs88+mzFjxpCZmbnDMdnZ2Tz88MOceeaZjBw5kgMPPLDZwcHGGGM6HtmdZvaOKj8/X0PvWgFnXMiQIUOiFFF8KysrIyMjI9phNKm8vJz09HS2bt3KhAkT+Pjjj+nVq9dul9ORvj+xNBV9rLO6jiyr78iKpfoWkXmquvNdJnSWMS6m0zj++OMpKSmhtraWP/7xj3uUtBhjjOm4LHExcaWpcS3GGGPiR1yPcYmHbjATefa9McaYjituE5fk5GS2bt1qP0Jmt6gqW7du3eE5OsYYYzqOuO0qysvLo7CwkM2bN0c7lLhTXV0d1z/sycnJ5OXlRTsMY4wxTYjbxMXn8zU8vMyEV0FBAfvtt1+0wzDGGNMJxW1XkTHGGGPijyUuxhhjjIkZlrgYY4wxJmbExZNzRaQMWLrLA0249AC2RDuITsTqO3KsriPL6juyYqm+91LV7KZ2xMvg3KXNPRrYhJ+IzLX6jhyr78ixuo4sq+/Iipf6tq4iY4wxxsQMS1yMMcYYEzPiJXG5L9oBdDJW35Fl9R05VteRZfUdWXFR33ExONcYY4wxnUO8tLgYY4wxphOwxMUYY4wxMSPmExcRmSIiS0VkuYhcHe144p2IrBaRb0RkgYjMjXY88UREHhSRTSKyMGRbNxF5W0SWua9doxljPGmmvq8XkXXu93uBiBwbzRjjiYj0FZH3RWSxiCwSkSvc7fYdD7MW6jouvt8xPcZFRLzAd8CRQCHwBXCmqi6OamBxTERWA+NUNVYeYhQzRORQoBx4VFWHu9v+AWxT1RvdxLyrql4VzTjjRTP1fT1Qrqo3RTO2eCQiuUCuqn4pIhnAPOBk4DzsOx5WLdT1NOLg+x3rLS4TgOWqulJVa4GngJOiHJMxe0RVPwS2Ndp8EvCI+/4RnH98TBg0U9+mnahqkap+6b4vA5YAfbDveNi1UNdxIdYTlz7A2pD1QuLoj9NBKfCWiMwTkZnRDqYTyFHVIvf9BiAnmsF0EpeKyNduV5J1W7QDEekP7Ad8hn3H21WjuoY4+H7HeuJiIu9gVR0DHANc4ja3mwhQp183dvt2Y8M9wEBgNFAE/Cuq0cQhEUkHngN+oaqlofvsOx5eTdR1XHy/Yz1xWQf0DVnPc7eZdqKq69zXTcALON11pv1sdPur6/utN0U5nrimqhtVNaCqQeB+7PsdViLiw/khfUJVn3c323e8HTRV1/Hy/Y71xOULYJCIDBCRROAM4OUoxxS3RCTNHeiFiKQBRwELWz7LtNHLwAz3/QzgpSjGEvfqf0Bdp2Df77AREQEeAJao6s0hu+w7HmbN1XW8fL9j+q4iAPd2rlsBL/Cgqt4Q3Yjil4jsjdPKAs7M4k9afYePiMwCJuFMPb8RuA54EZgN9APWANNU1QaUhkEz9T0JpxldgdXARSHjL0wbiMjBwBzgGyDobv49ztgL+46HUQt1fSZx8P2O+cTFGGOMMZ1HrHcVGWOMMaYTscTFGGOMMTHDEhdjjDHGxAxLXIwxxhgTMyxxMcYYY0zMsMTFGNNuRKR7yEy0G0Jmpi0Xkbvb6Zq/EJFzW9h/vIj8uT2ubYxpf3Y7tDEmIiIx87KIJABfAmNU1d/MMeIeM1FVK9srFmNM+7AWF2NMxInIJBF51X1/vYg8IiJzRGSNiPxYRP4hIt+IyJvuo8sRkbEi8oE7wed/Gz0FtN7hwJf1SYuIXC4ii91J5Z6ChvlwCoDjI/JhjTFhZYmLMaYjGIiTdJwIPA68r6ojgCrgODd5uQM4VVXHAg8CTT21eSIwL2T9amA/VR0J/Cxk+1zgkLB/CmNMu0uIdgDGGAO8oap1IvINzvQdb7rbvwH6A/nAcOBtp6cHL87sto3lAktC1r8GnhCRF3GmT6i3CegdvvCNMZFiiYsxpiOoAVDVoIjU6Q+D74I4/04JsEhVD9xFOVVAcsj6ccChwAnANSIywu1GSnaPNcbEGOsqMsbEgqVAtogcCCAiPhEZ1sRxS4B93GM8QF9VfR+4CsgE0t3jBhOjM+Ma09lZ4mKM6fBUtRY4Ffi7iHwFLAAOauLQN3BaWMDpTnrc7X6aD9yuqiXuvsnAa+0ZszGmfdjt0MaYuCIiLwBXquqyZvbnAE+q6hGRjcwYEw6WuBhj4oqI5AM5qvphM/vHA3WquiCigRljwsISF2OMMcbEDBvjYowxxpiYYYmLMcYYY2KGJS7GGGOMiRmWuBhjjDEmZljiYowxxpiYYYmLMcYYY2KGJS7GGGOMiRmWuBhjjDEmZljiYowxxpiYYYmLMcYYY2KGJS7GGGOMiRmWuBhjjDEmZljiYowxxpiYYYmLMcYYY2KGJS7GGGOMiRmWuBhjjDEmZljiYowxxpiYYYmLMaZNRKS/iKiIJLTjNc4SkbfCWN55IvJRuMoLFxGZJCKF0Y7DmI7MEhdjYoSIrBaRH+3BeQUi8tP2iGkP4igWkaRG23f4XE0lQqr6hKoeFXKMisg+kYm8aSLysIj4RSQ3mnEY09lY4mKMaZGIeMNQRn/gEECBE9taXrSJSBowFdgOnB3lcIzpVCxxMSbGiUhXEXlVRDa7LRqvikieu+8GnIThThEpF5E73e37isjbIrJNRJaKyLSQ8h4WkXtE5HURqQAmi8hxIjJfREpFZK2IXL+bYZ4LfAo8DMwIudZjQD/gFTe+K4EP3d0l7rYDQ7t2RKR+/1fu/tOb6voJbZURke4i8rIb/+fAwEbHNlsfzZgKlAB/Dv08blnXi8hsEXlURMpEZJGIjAvZP8atyzIReUZEnhaRvzZ1ERHpLSLPuX/bVSJy+S7iMibuWeJiTOzzAA8Be+EkAVXAnQCqeg0wB7hUVdNV9VK3teBt4EmgJ3AGcLeIDA0pczpwA5ABfARU4CQfWcBxwM9F5OTdiPFc4Al3OVpEctz4zgG+B05w4/sHcKh7Tpa77X+hBalq/f5R7v6nW3H9u4BqIBc4312AhtaTXdVHYzOAWcBTwL4iMrbR/hPdfVnAy7h/DxFJBF7ASeC6uWWc0tQFRMQDvAJ8BfQBjgB+ISJHt+LzGhO3LHExJsap6lZVfU5VK1W1DCfhOKyFU44HVqvqQ6rqV9X5wHPAaSHHvKSqH6tqUFWrVbVAVb9x17/G+cFt6RoNRORgnKRqtqrOA1bgJEYR4XZ1TQWuVdUKVV0IPBJySGvqI7S8fsBk4ElV3Qi8i5OYhfpIVV9X1QDwGDDK3X4AkADcrqp1qvo88HkzoY8HslX1z6paq6orgftxEitjOi1LXIyJcSKSKiL/FpE1IlKK09WS1cLYlL2A/UWkpH4BzgJ6hRyzttE19heR990ui+3Az4AerQxxBvCWqm5x15+kUfdKO8vGSRZCP9OakPetqY9Q5wBLVHWBu/4EMF1EfCHHbAh5Xwkku4ONewPrVFVD9u9Q143i6t0ort8DOc0cb0yn0G63LxpjIubXQD6wv6puEJHRwHxA3P3a6Pi1wAeqemQLZTY+50mc7o5jVLVaRG6lFYmLiKQA0wCviNT/mCfhJFajVPWrJq7VeL01KoDUkOuGJh2bAT/QF/jW3dYvZH9r6iPUuUC/kM+TAHQHjgVe2sW5RUAfEZGQ5KUvTitUY2uBVao6qJVxGdMpWIuLMbHFJyLJIUsCzjiUKpzBrN2A6xqdsxHYO2T9VWCwiJwjIj53GS8iQ1q4bgawzU1aJtD6rp6TgQAwFBjtLkNwxt3Ud680jm8zEGy0rbHG53wFDBOR0SKSDFxfv8PtrnkeuN5tnRrKji0+ra4PETkQZ2DvhJDPMxwnsWvcXdSU/+HUx6UikiAiJ7llNeVzoExErhKRFBHxishwERnfiusYE7cscTEmtryOk6TUL9cDtwIpwBacO3febHTObcCp4txxdLs7DuYonLES63G6Nf6O0xLSnIuBP4tIGXAtMLuV8c4AHlLV71V1Q/2C03pzlpt4/R/wB7c75DeqWokzTudjd9sBTZR7PfCIu3+aqn6Hc4fPO8AynAHFoS4F0t3P+jDOYGYAdrM+ZuCM//mm0ee5DTjeTRybpaq1wI+BC3DuSjobJ3GqaeLYAM74m9HAKpy/73+AzJauYUy8kx27Wo0xxkSSiHwG3KuqD+3yYGOMtbgYY0wkichhItLL7SqaAYxk51YyY0wzbHCuMcZEVj5OV1sasBI4VVWLohuSMbHDuoqMMcYYEzOsq8gYY4wxMSMuuoqysrJ0n32iOlFsp1JRUUFaWlq0w+g0rL4jx+o6sqy+IyuW6nvevHlbVDW7qX1xkbjk5OQwd+7caIfRaRQUFDBp0qRoh9FpWH1HjtV1ZFl9R1Ys1beIrGluX1QTFxFZDZThPJDJr6rj3OcgPA30B1YD01S1OFoxGmOMMabj6AhjXCar6mhVrZ/2/WrgXfcx1++668YYY4wxHSJxaewkfpi59RGcR4YbY4wxxrT9dmh37o6zgUOAXJzHkC8EXgMeV9XtLZy7CijGmVTt36p6n4iUqGqWu1+A4vr1RufOBGYCZGdnj509u7VPIDdtVV5eTnp6erTD6DSsviPH6jqyrL4jqy317Q8qy0uCbKkKUlqreEXISBT6Znjoky54RHZdyG6YPHnyvJCemB20KXERkTdw5vZ4CZgLbAKSgcHAZOAE4GZVfbmZ8/uo6joR6Qm8DVwGvByaqIhIsap2bSmO/Px8Xbp06R5/DrN7YmmAVzyw+o4cq+vIsvqOrN2t7xp/gI+WbeGNhRt4e/FGtlfVNXlc97REjhnRi59MHMDA7PAkoiLSbOLS1sG556jqlkbbyoEv3eVfItKjuZNVdZ37uklEXsCZJXWjiOSqapGI5OIkQ8YYY4yJgEBQeWbuWm566zu2lNeQkZzAkUNzmDKsF/m9MuienkSdP8iW8hq+KtzOnGWbmT23kMc//Z6TRvfmuhOG0S0tsd3ia1Pi0kTS0upjRCQN8Khqmfv+KJzZXV/GmYH1Rvf1pbbEaIwxxpjW+Xj5Fv7y6mK+3VDG2L268s9TRzJxnx4kJjQaEpsEXdMSGZSTwalj8/hjeQ0PfrSK++es5OPlW/jrySOYMrxXu8TYpsRFRA7BmS4e4B5VLdiN03OAF5xhLCQAT6rqmyLyBTBbRC4A1gDT2hKjMcYYY1pWVRvg2pcW8sy8QvK6pnDX9DEcO6IX0sqxKz3Sk7hyyr6cMKo3v579FT97fB5njO/LX08eToI3vPcBtbWr6F/Aoe77OcD41p6oqiuBUU1s3woc0ca4jDHGGNMKKzeXc/ETX7J0YxmXTB7IZYcPItnn3aOyhuR24aVLJ3LL299xd8EKtpTXcuf0/fa4vKa0NXEpAP4EBIH/tTkaY4wxxkTMq1+v56pnvyYxwcND541nUn7PNpfp83q4csq+9MpM5rqXFzHjwc+5f8Y4uiT7whBx28e4XCki+YBXVReHJSJjjDHGtKtgUPm/N5Zw/5xVjOmXxZ3Tx9A7KyWs1zj3wP5kpvj49eyvOOeBz5l14f6kJrb9gf1t7nhS1aWWtBhjjDGxodYf5JezF3D/nFXMOHAvnr7owLAnLfVOGt2Hu84awzeFJVw+awGBYNueHQdtTFxE5BUROUFEdmr/EZG9ReTPInJ+W65hjDHGmPCoqPHz00fn8tKC9Vw1ZV+uP3EYvjAPnm3s6GG9uP7EYbyzZCN/fmURbX3wbVvbbC4EfgXcKiLbgM04D6DrD6wA7lRVu53ZGGOMibKyWmX6fz7jm8IS/j51BKeP7xexa597YH8Ki6u478OV9O2Wyk8P2XuPy2rrGJcNwJXAlSLSnx8e+f+dqla2pWxjjDHGhMfmshr+77MqttRUc+/ZYzlqWPs8Y6UlV0/Zl8LiSv72+hKG9u7CQQObfT5ti8LWPqSqq1X1f6q6wJIWY4wxpmPYVlHL2f/5jC3VyqPnT4hK0gLg8Qj/PHUUA3qkcfmsBWwqrd6zcsIclzHGGGM6iO1VdZz74Ges2lrBL8Ykc8De3aMaT1pSAvecPZbymjoumzUffyC422VY4mKMMcbEofIaP+c99DlLN5Tx77PHMrR7+B4C1xaDczK44eQRfLZqG7e8891unx+2xEVEUtxnuhhjjDEmiqpqA1zw8Bd8XbidO87cj8n7tv3BcuE0dWwep4/ry90FK/hs5dbdOjcsiYuInAAsAN5010eLyMvhKNsYY4wxrVfjDzDzsbl8vnobN08bxZThudEOqUnXnjCUft1S+fUzX1FWXdfq88LV4nI9MAEoAVDVBcCAMJVtjDHGmFaoCwS55In5zFm2hb//eCQnje4T7ZCalZaUwM3TRrG+pIq/vrqk1eeFK3GpU9Xtjba1/fF4xhhjjGkVfyDIL55a4Dzo7aRhTBvfN9oh7dLYvbrxs8MG8vTctby9eGOrzglX4rJIRKYDXhEZJCJ3AJ+EqWxjjDHGtCAYVK589mte+6aIa44dwrkH9o92SK32ix8NZkhuF373/NdsLa/Z5fHhSlwuA4YBNcAsoBT4RWtOFBGviMwXkVfd9QEi8pmILBeRp0UkMUwxGmOMMXFHVbnmxYU8P38dvzpyMBceuudPpY2GxAQPt5w+itIqP79/4ZtdTgkQlsRFVStV9RpVHa+q49z3rX2yzBVAaOfW34FbVHUfoBi4IBwxGmOMMfFGVfnzq4uZ9fn3XDxpIJcdvk+0Q9oj+/bqwq+PGsx/F23k+S/XtXhsmx75LyKv0MJYFlU9cRfn5wHHATcAvxIRAQ4HpruHPIIz8PeetsRpjDHGxBtV5R//XcpDH6/mJxP789uj83F+RmPTTw/Zm3eXbOL6lxe1eFxbJ1m8qY3n34oz11GGu94dKFFVv7teCHTcIdHGGGNMlNz53nLuKVjB9P37ce3xQ2M6aQHweoSbThvFMbd92OJx0tbppfeUiBwPHKuqF4vIJOA3wHnAp243ESLSF3hDVYc3cf5MYCZAdnb22NmzZ0coclNeXk56enq0w+g0rL4jx+o6sqy+99wbq+p4emktE3sncMGIRDytSFpipb4/WlfHH88+ap6qjmtqf1gSFxH5hp27jLYDc4G/qupOj8UTkf8DzgH8QDLQBXgBOBropap+ETkQuF5Vj27p+vn5+bp06dI2fw7TOgUFBUyaNCnaYXQaVt+RY3UdWVbfe+ax/63mjy8t4riRudx2+mgSvK0brhpL9S0izSYu4bqr6A3gNeAsd3kFJ2nZADzc1Amq+jtVzVPV/sAZwHuqehbwPnCqe9gM4KUwxWiMMcbEtNlfrOWPLy3iR0NyuHU3kpZ40tYxLvV+pKpjQta/EZEvVXWMiJy9m2VdBTwlIn8F5gMPhClGY4wxJma9tGAdVz3/NYcM6sFdZ+2HrxMmLRC+xMUrIhNU9XMAERkP1E9D6W/+NIeqFgAF7vuVONMHGGOMMQZ4c2ERv5r9FfsP6MZ954wjKaFjzPQcDeFKXH4KPCgi6YDgPIDupyKSBvxfmK5hjDHGdDrvLN7IZbPmMyovk//MGE9KYudNWiBMiYuqfgGMEJFMdz103iK73ccYY4zZA28t2sAlT37J0NwuPPSTCaQnhau9IXaFpQZEJAmYCvQHEurvJVfVP4ejfGOMMaazaUhaemfy6PkTyEzxRTukDiFcqdtLOLc/z8OZr8gYY4wxe+jNhRu49MkvGd4nk0cvmECXZEta6oUrcclT1SlhKssYY4zptN5cWMSlT85nRF4mj5xvSUtj4bqX6hMRGRGmsowxxphO6Y1vnKRlZJ7TPWRJy87C1eJyMHCeiKzC6SoSQFV1ZJjKN8YYY+La698Ucdms+Yzum8XDPxlPhiUtTQpX4nJMmMoxxhhjOp3Xvi7i8qecpOWR8+3uoZaEpatIVdfUL8AW4BDg7nCUbYwxxsSzZ+au5bJZX7KfJS2tEpbERUQSReQUEXkGKAKOAO4NR9nGGGNMvHrwo1X89tmvOWhgD0taWqlNNSQiRwFnAkfhTI74KDBeVX8ShtiMMcaYuKSq3PLOMm5/dxlThvXitjNHd+rH+O+OtqZ2bwJzgINVdRWAiNzW5qiMMcaYOBUIKn95dTEPf7KaU8fmceOPR3TKWZ73VFsTlzHAGcA7IrISeIofJlc0xhhjTIjqugC/mr2A17/ZwAUHD+CaY4fg8Ui0w4opbUpcVHUBsAC4WkQOwuk28onIG8ALqnpfmyM0xhhj4sD2yjoufHQun6/exh+OG8JPD9k72iHFpLC1TanqJ6p6GZAH3AIcEK6yjTHGmFi2rqSKU+/9hPlri7n9zP0saWmDsA9fVtUg8Ja7NEtEkoEPgSQ3jmdV9ToRGYDT5dQdZ+6jc1S1NtxxGmOMMZHw1doSLnx0LlW1AR45fwIHDewR7ZBiWjRHA9UAh6vqKGA0MEVEDgD+DtyiqvsAxcAF0QvRGGOM2XOvfV3EtH//j8QED8/+/CBLWsIgaomLOsrdVZ+7KHA48Ky7/RHg5MhHZ4wxxuw5VeWOd5dxiTvD84uXTCS/V0a0w4oLYUtcRORgEfmJ+z7b7fLZ1TleEVkAbALeBlYAJarqdw8pBPqEK0ZjjDGmvVXVBrjiqQX86+3vOGW/Pjzx0/3pkZ4U7bDihqhq2wsRuQ4YB+Sr6mAR6Q08o6oTW3l+FvAC8EfgYbebCBHpC7yhqsObOGcmMBMgOzt77OzZs9v8OUzrlJeXk56eHu0wOg2r78ixuo6seKzvzZVBbp9fQ2FZkKmDfBy3tw+RjnG7cyzV9+TJk+ep6rim9oVrcO4pwH7AlwCqul5EWt0mpqolIvI+cCCQJSIJbqtLHrCumXPuA+4DyM/P10mTJrXtE5hWKygowOo7cqy+I8fqOrLirb4//G4zNzw1n2DQw0M/Gcuk/J7RDmkH8VLf4eoqqlWn6UYBRCRtVye43UlZ7vsU4EhgCc7UAae6h80AXgpTjMYYY0zYBYPKXe8v57yHPqdXl2ReuezgDpe0xJNwtbjMFpF/47SWXAicD9y/i3NygUdExIuTQM1W1VdFZDHwlIj8FZgPPBCmGI0xxpiw2lpewy+eXsCcZVs4cVRvbpw6gtREmyixPYWldlX1JhE5EigF8oFrVfXtXZzzNU73UuPtK4EJ4YjLGGOMaS+frdzK5U/Np7iyjr+dMoIzJ/TtMONZ4lnY0kI3UWkxWTHGGGNinT8Q5K73V3Dbu9+xV/c0HjpvAkN7d4l2WJ1GmxIXESnDHdfSFFW1v6Qxxpi48f3WSn45ewHz1hRz8uje/OXk4WQk+6IdVqfS1kkWMwBE5C9AEfAYIMBZOGNYjDHGmJinqjz/5Tque3kRInDbGaM5abQ9ZiwawtVVdKL76P5694jIV8C1YSrfGGOMiYpNpdVc8+JC3l68kQkDunHztFHkdU2NdlidVrgSlwoROQtnckQFzgQqwlS2McYYE3Gqygvz1/GnVxZTXRfg98fuywUH743XYwNwoylcict04DZ3UeBjd5sxxhgTczZsr+b3L3zDe99uYuxeXfnHqSMZmB0bT52Nd+G6HXo1cFI4yjLGGGOiJRhUnvj8e/7xxrfUBYP88fihnHdQf2tl6UDCkriIyEM0cXeRqp4fjvKNMcaY9rZ4fSm/f+EbFqwt4aCB3bnhlBEM6LHLB8GbCAtXV9GrIe+TceYuWh+mso0xxph2U1JZy63vLOOxT9eQleLjltNHcfLoPvYwuQ4qXF1Fz4Wui8gs4KNwlG2MMca0B38gyJOff8/Nb39HaVUd0/fvx2+OyicrNTHaoZkWtNeECoMAm2HKGGNMh/TRsi38+dVFfLexnIMGdufaE4ayby97ZmosCNcYl8ZP0N0AXBWOso0xxphwWb2lgr++toR3lmykX7dU/n3OWI4ammPdQjEkXF1FGeEoxxhjjGkPRduruOO95cz+Yi1JCR6umrIv5x/cn6QEb7RDM7spXC0u76rqEbvaZowxxkTS1vIa7i5YwWOfrkFVmb5/Py49fB96ZiRHOzSzh9o6yWIykAr0EJGuOPMUAXQBbBIHY4wxUbG9qo7/zFnJAx+torouwNQxeVx+xCD6drNH9ce6tra4XAT8AugNfBmyvRS4s6UTRaQv8CiQgzM+5j5VvU1EugFPA/2B1cA0VS1uY5zGGGM6gZLKWh75ZA0PfryK7VV1HD8yl18eOdieehtH2jo79G3AbSJymaresZun+4Ffq+qXIpIBzBORt4HzgHdV9UYRuRq4Ghvoa4wxpgWbSqt54KNVPP7pGipqA/xoSA6/PHIQw3pnRjs0E2Zt7So6XFXfA9aJyI8b71fV55s7V1WLgCL3fZmILMHpXjoJmOQe9ghQgCUuxhhjmvD91krum7OC2XML8QeCnDCqNz+fNNBubY5jbe0qOgx4DzihiX0KNJu4hBKR/sB+wGdAjpvUgHNbdU4bYzTGGBNHVJUvVhfzwEcreXvxRhI8HqaOzeNnh+3NXt3tEf3xTlR3mmJo9wsRGaCqq3a1rZlz04EPgBtU9XkRKVHVrJD9xaratYnzZgIzAbKzs8fOnj27rR/DtFJ5eTnp6dZfHClW35FjdR1Zu1vf/qDy+YYAb62uY3VpkDQfTO7r44h+CXRN9rRjpPEhlr7fkydPnqeq45raF67E5UtVHdNo2zxVHbuL83w48xz9V1VvdrctBSapapGI5AIFqprfUjn5+fm6dOnStn0I02oFBQVMmjQp2mF0GlbfkWN1HVmtre+i7VXM+nwtT33+PZvKatg7O43zJw5g6pg8UhLtOSytFUvfbzeHaDJxaesYl32BYUBmozEuXXAmW2zpXAEeAJbUJy2ul4EZwI3u60ttidEYY0zsCQaVOcu38Pina3h3yUYUOHRQNn+f2p/DBmfj8diTbjurto5xyQeOB7LYcZxLGXDhLs6dCJwDfCMiC9xtv8dJWGaLyAXAGmBaG2M0xhgTI9aVVPHCl4XMnlvI99sq6Z6WyMxDBzJ9Qj/6dbdnsJi23w79EvCSiByqqh+G7hORibs49yN+eGBdY/bEXWOM6SQqa/38d9EGnp1XyCcrtqIK+w/oxq+PGsyU4b3ssfxmB+GaHfpWYEyjbXc0sc0YY4xBVVm6LcDrz37Fa18XUVEboG+3FK44YhBTx+TZE25Ns9o6xuVA4CAgW0R+FbKrC2ApsjHGmAaqyqL1pbz2TRGvfr2etduqSUss4tgRuZw6No/x/bvZ2BWzS21tcUkE0t1yQmeILgWmtrFsY4wxMU5V+XZDGa99XcRr3xSxaksFXo9w0MDuTOkT4JenTSY1MVyN/6YzaOsYlw+AD0TkYVVdU7/dnYfoDOCfbYzPGGNMjKlvWXlr0QZe/aaIlZsr8AgcNLAHMw/dm6OH9aJbWiIFBQWWtJjdFpZvjKquEZFs4DTgTJxJF18IR9nGGGM6vlp/kE9XbuXtxRt5Z8lGirZX4xHYf0B3zp84gCnDe9EjPSnaYZo40NYxLhnAj4HpwGCcR/wPUNW8MMRmjDGmAyuuqOXDZZt5e/FGPli6mbIaPyk+L4cM6sGvjhzM4fv2pLslKybM2trisgn4HPgD8JGqqoic0vawjDHGdDSBoPJ1YQkFSzfzwXeb+aqwBFXokZ7EcSNz+dGQHA4e1INkn92bYdpPWxOX3+GMZbkbmCUiT7c9JGOMMR3FprJq5ny3hYLvNjNn2WZKKusQgdF9s7jiiEEcNjibUXlZdjeQiZi2Ds69FbhVRPbGSWBeBHqLyFXAC6r6XZsjNMYYEzHFFbV8tmor/1uxlU9WbGXZpnLAaVU5Yt8cDsvP5pB9etA1LTHKkZrOKlyDc1cCfwP+JiLDcQbovg7sE47yjTHGtI/S6jq+WLWtIVFZsqEUVUjxeRk/oBs/HpPHIYN6MDS3i7WqmA4h7PehqepC4Bp3McYY00GoKoXFVcxds415a4qZu7qYpRvLUIXEBA9j+3XlVz8azIEDuzMyL4vEBE+0QzZmJ3YDvTHGxKm6QJBF60uZt6aYeWu2MXd1MZvKagBIT0pgv35ZHDM8l/EDujKmX1cbVGtigiUuxhgTJzZsr+arwhK+WlvCvDXFfFVYQnVdEIC8rikcNLA7Y/fqyti9upHfKwOvdf2YGGSJizHGxKCSylq+LtzO14UlLFjrvNa3piR4hKG9u3DmhH6M26sb4/p3JadLcpQjNiY82voAum8AbWoXoKo6si3lG2OMcW5JXlJUxpKiUhatL+XrwhLWbK1s2L93dhoT9+nByLxMRvXNYmhuF+v2MXGrrS0ux7flZBF50C1jk6oOd7d1A54G+gOrgWmqWty2MI0xpuOrCwRZsbmcJUWlDYnKkqJStpTXNhzTOzOZkXlZnD6+L6PyshjeJ5PMFF8UozYmstr6HJc1uz6qRQ8DdwKPhmy7GnhXVW8Ukavd9avaeB1jjOlQtlXUNiQmi91EZfmmMuoCTiN2YoKHwTnpTM7vyZDcLuybm8HQ3C5kpdrzU0znFpYxLiJyAHAHMARIBLxAhap2aek8Vf1QRPo32nwSMMl9/whQgCUuxpgYpKpsLK1hxeZyZ9lUzorNFSzbVMbG0pqG47IzkhiS24VDBzvPSxmS24UBPdLwee12ZGMaC9fg3Dtxnpz7DDAOOBdn0sU9kaOqRe77DUBO28Mzxpj2U+MPsGZrpZuYOMlJfaJSURtoOC49KYGB2WlMHNiDfXMzGOImKTZrsjGtJ6pNja3dzUJE5qrqOBH5un5ArojMV9X9WnFuf+DVkDEuJaqaFbK/WFW7NnHeTGAmQHZ29tjZs2e3+XOY1ikvLyc9PT3aYXQaVt+R01Jd1wWVLZXKpqogmyrc10plQ4XzGvovabdkITdNyE3zkJvucV7ThKwkQcRuQa5n3+3IiqX6njx58jxVHdfUvnC1uFSKSCKwQET+ARQBe9rGuVFEclW1SERycWag3omq3gfcB5Cfn6+TJk3aw8uZ3VVQUIDVd+RYfUfO62+/T49B+7FmayVrtlXw/dZK1myt5PttlazfXkXo/+elJnrp1y2VcQPTGZidxsCe6QzMTmdAjzTSkuxJE61h3+3Iipf6Dtd/XefgJCqXAr8E+gJT97Csl4EZwI3u60vhCNAYYypq/KwrqWJdcRWFxZUUuu/XFlfx/dYKiivr4N2PGo7vkZ5Iv26pTBjQjX7dUtmru7P065ZGj/REaz0xJgranLiIiBf4m6qeBVQDf9qNc2fhDMTtISKFwHU4CctsEbkAWANMa2uMxpj4p6psr6qjsLiKwuKqhgRlXUkl60qcbSWVdTuc4/MKvbNSyOuawpThuQRKipg8fgR7dU+jX/dU0q3lxJgOp83/VapqQET2EpFEVa3d9Rk7nHtmM7uOaGtcxpj4oaoUV9ZRtL2KDdurKdpe/cNraVXDemXIQFhwunP6ZKXQp2sKo/Ky6NM1hbyuqfRxk5Xs9KQdZjwuKNjKpBG5kf54xpjdEK7/nVgJfCwiLwMV9RtV9eYwlW+MiVMVNX42l9WwqazGfa1mY2kNG7a7CUmpk6DU+oM7nOf1CDkZSfTKTGZIry5Mzu9JbmYyeV1T6JOVSp+uKXRN9Vl3jjFxJlyJywp38QAZYSrTGBOjAkFla4WTiIQmJZtDkpP69xWNWknA6cLplZlMbhenpWTKsGRnPTOZXpkp5GYm0yM9ySYJNKYTCkvioqp/AhCRVFWt3NXxxpjYVFnbqHWktJrN5TWNWkxq2FpeQ7CJJy1kJCeQnZFEdnoSI/KyyE5PomeXpB9e3X1dUxN36MIxxph64Xpy7oHAA0A60E9ERgEXqerF4SjfGNN+/IEg2ypqncSjfMeWkYbF3V5e49/pfK9HyE53ko6cLsmM6JNJdkYSPTPcRCQjiZ4ZTgtJSqJN/GeMaZtwdRXdChyNcyszqvqViBwaprKNMbtJVSl3x47s0FVTvnPXzbaKXbeODO+TSY/0RHpmJO+QlPTMsNYRY0xkhe1eP1Vd22gQ3M4d18aYNqkLBNlaXrvTOJHN5TVsKt2xxaSqrumxI/WtI32ykhndN6uhVSS02yY7I4lkn7WOGGM6nnAlLmtF5CBARcQHXAEsCVPZxsS1+uePbClvNIi1vIbNpTUs/b6KGxd8yKayGrZVNP3EgaxUX0PCMaZfSDLidtPUJyaZKT5rHTHGxLRwJS4/A24D+gDrgLcAG99iOi1VpaI2wJaymh3urtncxDiSLeW11AaCO5WR6PWQnZFEksI+OamM3avrzslIRhI90hNJSrDWEWNM5xCuxCXffXJuAxGZCHwcpvKNibpaf5CtFTVsKatlS3kNW8prKK6sZWtFLdvKa9lWUb/dea3x75yMiED3tB9aQ/bpmbFD60h9q0l2RhJdkhMQEXd+kSbnGjPGmE4nXInLHcCYVmwzpkOpCwQbnsBatN15TPyWslpKqmopqayjpNJ53ea+NsXnFbqlJdItzWn9GJidTvf0RHqkJ9E9PYnu6YkNg1m7pSaS4N3T+UeNMca0KXFxb4M+CMgWkV+F7OoCWNu1iboaf4D1JdXOhHrFVazdVunOZePMX7OprGaHGX8B0hK9ZKUmkpXqo2tqIrlZzhNYs9OT6ZGRSHZ6Ej0ykuielki3tETSkxLs6azGGBMhbW1xScR5dksCOz4xtxQ4tY1lG7NLdYEgRW5isra4smGCvfoEZWNZ9Q6JSYLnh0n1Dh2UTW5WCn2yksnNTKF3Vgq9s5JJTbSJ9YwxpqNq07/QqvoB8IGIPKyqa8IUkzEN/IEgG0qrWbut6odWE/d1XXEVRdurdngGiUcgNzOFvt1SOHhQD/K6ptC3ayp5XVPI65ZKry7J9ph4Y4yJYeH6X8tKEfknMAxIrt+oqoeHqXwTp2r8AYpKqllX4iQihcWVFLrv15U4k+wFQjITEejVJZm+XVPZf0C3hoSkPkHplZmMz8aQGGNM3ApX4vIE8DRwPM6t0TOAzWEq28Sw8hp/Q7fNuuJK1m93kpT1bnKyuXzHMSYegZwuzgy/4/bqSp+GFpNU+nZLITczhcQES0yMMaazClfi0l1VHxCRK0K6j75oS4EiMgXn2TBe4D+qemM4AjVto6pU+ZW12yrZVlFLcaW7VNSxubyGjaXO01w3llazsbSG7VU73omTlOChT5YznuSwwdn06ZpCXtdU+rjjTqzFxBhjTEvClbjU/zoVichxwHqg254WJiJe4C7gSKAQ+EJEXlbVxW2O1DQIBJWSylqK3dt+iyvrKK6sDdnmbN9WEXpLcC11AYV33t+pPJ9XGh6MNqBHGvsP6E7vLGe8Sd+uqfTpmkL3tES7A8cYY8weC1fi8lcRyQR+jfP8li7AL9pQ3gRguaquBBCRp4CTgCYTF38QVm2pIKiKqhJU3Pc7vtZvDwSVmrogtYGA+xqkpi5ITSBITV2A2kCQWn+QGn+QQFBJ9HpI9nlI9nkblhSfl2Sfp9nWAY8ICV4hwSMkeD3uq5Dgcd57Q9a9HsEjIAjicc71iPMqUr/uHtPMj34wqBRX1rKlvJat5TVsrahle1Ud26tCkpKGFpI6trn7m5PgEbJSfWSlJtItNZH+PVLZLzWLrmmJbCtay7gR+9I1NZGuaYl0dW8btsfJG2OMaW9hSVxU9VX37XZgMoCI/KINRfYB1oasFwL7N3dwYXmQyTcVtOFyTfN5nQSj1h9scvbcaAlNasRNaOoCusMg1lApPq+TXKQl0jU1kT5dU+nmJiX12xveu88vaenZJAUFG5g0rm97fkRjjDGmSe35wIpfAbe2V+EiMhOYCZDZsw8zRybhAffHHAR3EdzWjB+2e0TwecDnBZ/HeZ/gLqHrHveHW1UJKNQEnAShNgi1AagNKk1MMQPgtu5AQBV/EALqLA3bg9qwTd0lGHKuojtsVwWl0Xr9NiBBoEuSkJkoZCQKXRKFVB+k+YREb30CEgCq3MVVB5SAlsA2nGVXysvLKSgoaM2fyYSB1XfkWF1HltV3ZMVLfbdn4tKWPoN1QOj/0ue52xqo6n3AfQD5+fn6++k/asPlzO5w5s6ZFO0wOg2r78ixuo4sq+/Iipf6bs/bN9rSufIFMEhEBohIInAG8HJ4wjLGGGNMrGrrXEVlNJ2gCJCyp+Wqql9ELgX+i3M79IOqumhPyzPGGGNMfGjrI/8zdn3UHpf9OvB6e5VvjDHGmNhjT/oyxhhjTMwQ1Q50n+8ecruslkY7jk6kB7Al2kF0IlbfkWN1HVlW35EVS/W9l6pmN7WjPe8qiqSlqjou2kF0FiIy1+o7cqy+I8fqOrKsviMrXurbuoqMMcYYEzMscTHGGGNMzIiXxOW+aAfQyVh9R5bVd+RYXUeW1XdkxUV9x8XgXGOMMcZ0DvHS4mKMMcaYTiDmExcRmSIiS0VkuYhcHe144p2IrBaRb0RkgYjMjXY88UREHhSRTSKyMGRbNxF5W0SWua9doxljPGmmvq8XkXXu93uBiBwbzRjjiYj0FZH3RWSxiCwSkSvc7fYdD7MW6jouvt8x3VUkIl7gO+BIoBBnjqMzVXVxVAOLYyKyGhinqrHyLICYISKHAuXAo6o63N32D2Cbqt7oJuZdVfWqaMYZL5qp7+uBclW9KZqxxSMRyQVyVfVLEckA5gEnA+dh3/GwaqGupxEH3+9Yb3GZACxX1ZWqWgs8BZwU5ZiM2SOq+iGwrdHmk4BH3PeP4PzjY8Kgmfo27URVi1T1S/d9GbAE6IN9x8OuhbqOC7GeuPQB1oasFxJHf5wOSoG3RGSeiMyMdjCdQI6qFrnvNwA50Qymk7hURL52u5Ks26IdiEh/YD/gM+w73q4a1TXEwfc71hMXE3kHq+oY4BjgEre53USAOv26sdu3GxvuAQYCo4Ei4F9RjSYOiUg68BzwC1UtDd1n3/HwaqKu4+L7HeuJyzqgb8h6nrvNtBNVXee+bgJewOmuM+1no9tfXd9vvSnK8cQ1Vd2oqgFVDQL3Y9/vsBIRH84P6ROq+ry72b7j7aCpuo6X73esJy5fAINEZICIJAJnAC9HOaa4JSJp7kAvRCQNOApY2PJZpo1eBma472cAL0UxlrhX/wPqOgX7foeNiAjwALBEVW8O2WXf8TBrrq7j5fsd03cVAbi3c90KeIEHVfWG6EYUv0Rkb5xWFnAm6HzS6jt8RGQWMAlnBteNwHXAi8BsoB+wBpimqjagNAyaqe9JOM3oCqwGLgoZf2HaQEQOBuYA3wBBd/PvccZe2Hc8jFqo6zOJg+93zCcuxhhjjOk8Yr2ryBhjjDGdiCUuxhhjjIkZlrgYY4wxJmZY4mKMMcaYmGGJizHGGGNihiUuxhhjjIkZlrgYY9qNiHQXkQXuskFE1rnvy0Xk7na65i9E5NwW9h8vIn9uj2sbY9qfPcfFGBMRInI9UK6qN7XjNRKAL4Exqupv5hhxj5moqpXtFYsxpn1Yi4sxJuJEZJKIvOq+v15EHhGROSKyRkR+LCL/EJFvRORNd84VRGSsiHzgzkz+30aPL693OPBlfdIiIpeLyGJ3NtynoGEivwLg+Ih8WGNMWFniYozpCAbiJB0nAo8D76vqCKAKOM5NXu4ATlXVscCDQFPTTUwE5oWsXw3sp6ojgZ+FbJ8LHBL2T2GMaXcJ0Q7AGGOAN1S1TkS+wZl37E13+zdAfyAfGA687fT04AWammMlF1gSsv418ISIvIgz71O9TUDv8IVvjIkUS1yMMR1BDYCqBkWkTn8YfBfE+XdKgEWqeuAuyqkCkkPWjwMOBU4ArhGREW43UrJ7rDEmxlhXkTEmFiwFskXkQAAR8YnIsCaOWwLs4x7jAfqq6vvAVUAmkO4eNxhY2O5RG2PCzhIXY0yHp6q1wKnA30XkK2ABcFATh76B08ICTnfS427303zgdlUtcfdNBl5rz5iNMe3Dboc2xsQVEXkBuFJVlzWzPwd4UlWPiGxkxphwsMTFGBNXRCQfyFHVD5vZPx6oU9UFEQ3MGBMWlrgYY4wxJmbYGBdjjDHGxAxLXIwxxhgTMyxxMcYYY0zMsMTFGGOMMTHDEhdjjDHGxIz/B3GQXJ1iZjEgAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n", + "Path, Attitude and Lateral Attitude Angle plots\n", + "\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjQAAALJCAYAAACjh7nEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAACkI0lEQVR4nOzdeZwdVZ3//9fn3tv7nk5n3xdCFkIgYV8MIAgoOyo6CgiIzojbjD9F/c6IzjCi4z6iiIKDorKvgiAoEVC2BBJCErLv+9rpTm93+fz+qOrOTae705109+3l/eRxH7fq1Kmqzz196f7knFNV5u6IiIiI9GaRTAcgIiIicqSU0IiIiEivp4RGREREej0lNCIiItLrKaERERGRXk8JjYiIiPR6SmhE5LCY2RwzuyHTcYiIgBIakX7NzNaYWa2ZVae9fpqBOMaYmafFsMbMbu7uODrKzK41s5czHYeIQCzTAYhIxl3k7s9318nMLObuiVY2l7p7wsxOAf5iZvPd/ZlOOnaP09viFenJ1EMjIi0ys1vM7N609cZelBb/IWRm15nZEjPbbWbPmtnotG1uZp8xs+XA8kOd291fARYB08zsRDN7xcz2mNlmM/upmWW3dWwz+7GZrTezvWY2z8zOaPa5HjSze82syswWmtlRZvZVM9sW7ndeWv0SM7srPPdGM/svM4ua2WTgDuCUsFdpT1g/x8y+Z2brzGyrmd1hZnnhttlmtsHMvmJmW4Bfm9lAM/tj+Pl2mdlLZqbfzSIdpP9pROSImdklwNeAy4EK4CXgD82qXQqcBEw5xLHMzE4DpgJvAUngi8BA4BTgHOBfDnHsN4AZwADg98CDZpabVv8i4LdAWXiOZwl+Hw4HvgX8Iq3u/wEJYAJwHHAecIO7LwE+Dbzi7oXuXhrWvw04Kjz/hPCY/5F2vCFhXKOBG4F/AzYQtNtggnbUM2lEOkgJjYg8FvYONL4+eRjH+DTwbXdfEg6h/DcwI72XJty+y91r2zjODmAX8CvgZnf/i7vPc/dX3T3h7msIko33NNvvgGO7+73uvjPc5/tADjAprf5L7v5sGOuDBMnEbe4eB+4DxphZqZkNBi4EvuDu+9x9G/BD4KqWgjczI0hSvhjGUxW2RXr9FPANd68P440DQ4HR7h5395dcD9kT6TDNoRGRSzthDs1o4Mdm9v20MiPonVgbrq9vx3EGNp9TYmZHAT8AZgH5BL+35jXbb32zfb4EXA8MI+jtKCbo4Wm0NW25Ftjh7sm0dYDCcP8sYHOQqwDBPwRb+ywVYYzz0uobEE2rs93d69LW/we4BfhzuM+d7n5bK8cXkVaoh0ZEWrOP4I9zoyFt1F0PfMrdS9Neee7+j7Q6h9vr8HPgXWCiuxcTDMlYszpNxw7ny3wZ+BBQFg4FVbawT3usB+oJEq3Gz1Xs7lObnze0gyAhmppWv8TdC1uKFcDdq9z939x9HHAx8K9mds5hxCrSrymhEZHWzAfONLNRZlYCfLWNuncAXzWzqdA0kfaDnRRHEbAXqDazo4F/bkf9BLAdiJnZfxD00HSYu28G/gx838yKzSxiZuPNrHHIayswonGSsrungF8CPzSzQQBmNtzM3tfaOczsA2Y2IRyuqiSYM5Q6nHhF+jMlNCLyZLP70DwK4O7PAfcDbxMM8fyxtQO4+6PAd4D7zGwv8A5wQSfF9yXgo0AVQbJw/yHqPws8AywjGO6qo33DXa25GsgGFgO7gYcI5rwA/JXgaqwtZrYjLPsKsAJ4NWyL5zlw/k5zE8M61cArwM/c/YUjiFekXzLNPRMREZHeTj00IiIi0uspoREREZFeTwmNiIiI9HpKaERERKTX69M31istLfUJEyZkOox+Y9++fRQUFGQ6jH5D7d291N7dR23dvXpbe8+bN2+Hu1c0L+/TCc3gwYOZO3dupsPoN+bMmcPs2bMzHUa/ofbuXmrv7qO27l69rb3NbG1L5RpyEhERkV6vxyQ0Zna3mW0zs3da2W5m9hMzW2Fmb5vZ8d0do4iIiPRMPSahAf4POL+N7RcQ3FFzIsHTbH/eDTGJiIhIL9Bj5tC4+4tmNqaNKpcAv/Hg1savmlmpmQ0Nn7XSog1VKU677a+tHtDsEOvNnmV38Pbm+1ur25oXtLVvy9s7FtsRHfsw22FvVS0/XPT3jp2rjVjtgPJW4rH21z2gvB11OhKXdaBu8y128MdpV4zbt9fxwMZ5B21vZbGdbXuI+u1p2w58hubLh2qXto5naTGbQcQsLAvKLTyQYU31I7Z/mfT6YZ2I7T/m6tUNLGFl2rnSjnXAvuH6Qct20L4cFOf+erD/uJFmx4tGjIhBJGJEzYiYEYkQLEfCdSOsF7xa22f/tv37NJ4jGp43fXvz3yciPUWPSWjaYTgHPo9lQ1h2QEJjZjcS9OBQOHgUYwviABzqCQ/NN3vzkrZXD9zWgbotnruDsaYXdvjcRxgrvr8sL5IkVVvVZt0DV1s/W/qW1trD27n9oHLvpDotVPCWth/W+Vve4mnvqVSKTfu2tu/8Hfk8tNymHfmZHFR+ROf3g/drdrz070LzZQ8rNV9u2tdbj+kgy95tb80+K0iwguQrGiZ9saakJyiLRsJ3s7TloDxiRtQgFtm/f/N6qUScB5b+mWgEsiKQFTGyIsE+TetRwjILy9KWowfuE1ES1qbq6mrmzJmT6TCOWG9KaNrF3e8E7gSYNGmS3/vZVh9yK52st82U7+3U3p3P3fcnQh6k3Kmw7MUXX+SMM87EObiOp2i53NPKvYU6YSaVauG8HmZfjeWNdVLupFLBe9IddyeZgmQqXHYn5ZBKOcmUB/XDsvT1ZKrxWAfuE2xrtk8qXG46X7hPyoknnUQqRbJxOZkikXISYXk86eG2sDwV1KlroW4iGdRriBspSxJPpg75D7z2yIoauVlR8rOj5GfHwvcoedkxCrKj5IXrBdmxpuX87BjFeVkU56a952ZRnJdFTizSp3qq+srvkt6U0GwERqatjwjLREQ6RePwULh2wLbsqJGXHe32mPqjxj+w7kECVJ9I0ZBIUZ9IUh9P0ZBMhe/Ben2i8ZVMqxusNy7XNiSpbUiyryFBbUOSmoYklTUNbN4TLNc0JKhpCPY/lOxohKLcAxOe0vxsyguyGVCQTVnB/uXygmzKC3Moy8/qU0lQT9SbEpongJvM7D7gJKCyrfkzIiLSu5kZWVEjKxqBnO45ZzLlTclNVV2cytoEe+vi7K2Ns7cuQVVdnL3NyvbWxlm3q4Zd+xqoqku0eNzsaISKohyGlOQyuDiHQUW5TctDivMYVZ7PkOJcohElPYerxyQ0ZvYHYDYw0Mw2AN8AsgDc/Q7gaeBCYAVQA3wiM5GKiEhfFY0YRblZFOVmMbg4t8P7NyRS7K5pYGd1Q/C+r4Gd1fVs3VvPtr11bNlbx9ItVby4bAfV9QcmP1lRY3hpHiMH5DNyQD6jBuQzsiyfMQPzGV9RSG6Wegjb0mMSGnf/yCG2O/CZbgpHRESkw7JjEQYX57YrGaquT7Btbx2b9tSxfncN63bVsD58/WnhZnbXxJvqRgxGlxdw1OBCjhpcxMTBRRw1uJCxAwvIiSnRgR6U0IiIiPQnhTkxCisKGVdR2OL2qrpgKGvV9n0s31rFsq3VLNtWxfNLtpFMBbOloxFj4qBCpo8o4ZgRpUwfXsLRQ4v6ZZKjhEZERKQHKsrNYuqwEqYOKzmgvD6RZNX2fSzbWsXSLVUs2rSX5xZv5YG5G4Cgl2jGiFJmjSnjhDEDOH50GSV5WZn4CN1KCY2IiEgvkhOLMnloMZOHFjeVuTsb99Ty9oZK3lq3mzfW7ObOF1fxszkriRgcM6KU0yeUc/qECo4fXdone3CU0IiIiPRyZsaIsnxGlOVz4TFDAahtSPLW+t28tmoXf1+xgzv+torbX1hJXlaU0yYM5Lwpgzl78qAMR955lNCIiIj0QXnZUU4dP5BTxw/ki+ceRVVdnFdX7eLFZdv5y5KtPL9kK2YwviTCsshKPjB9GMNK8zId9mFTQiMiItIPFOVmce6UwZw7ZTDfumQqizfv5fnF23jk9RX899Pv8t9Pv8uJYwdw8bHDuPCYoQwoyM50yB3SoYTGzAqAWndPmdlRwNHAn9w9fohdRUREpIcws6YJx8fGNjJ62gk8uWATTyzYxP977B2++eQizp0ymKtOGMXpEwYS6QU3/OtoD82LwBlmVgb8GXgD+DDwT50dmIiIiHSPsQML+Nw5E/ns2RNYsrmKh9/cwCNvbuDphVsYUZbHh2eN5CMnjWJgYTfdsvkwdDShMXevMbPrgZ+5+3fNbH4XxCUiIiLdzMyYMqyYKcOm8OXzJ/Hsoq3c9/o6vv/cMn76wgqumDmCT54xjrEDCzId6kE6nNCY2SkEPTLXh2V979ovERGRfi4nFuXiY4dx8bHDWLGtmrteXsVD8zbwh9fXcd6Uwdx45jhmjh6Q6TCbdDSh+TzwVeBRd19kZuOAFzo/LBEREekpJgwq5NuXT+dfz53EPf9Yw29fXcuzi7Yyc3QZnzpzHOdOGZzxp4m3O6Exsyhwsbtf3Fjm7quAz3VFYCIiItKzVBTl8KX3TeKfZ4/nwbnr+dXLq7nxt/OYPqKEfztvEmdOHJixxCbS3orungRO78JYREREpBcoyIlx7WljmfOl2fzPldPZWd3ANXe/zod/8Sqvr96VkZg6OuT0lpk9ATwI7GssdPdHOjUqEREROSLxeJwNGzZQV1fXZr2SkhKWLFly2OeZVgC/vHgI+xqSVNUlqNy8hpd2rKMkL4usaLv7TQ6Sm5vLiBEjyMpq33OoOprQ5AI7gbPTyhxQQiMiItKDbNiwgaKiIsaMGdPmMFBVVRVFRUWdcs5Uytmxr57tVfWkUlBckM3g4hxiHUxs3J2dO3eyYcMGxo4d2659OpTQuPsnOhSRiIiIZERdXd0hk5nOFokYg4pyGZCfzdaqenZVN7CntoFBRbmUF2YTaWcsZkZ5eTnbt29v/7k7EqiZHWVmfzGzd8L16Wb2/zpyDBEREekemZqgG4tGGF6ax8TBheRnx9hcWcuKbdVU1yfafYyOxt7Rwa1fEly2HQdw97eBqzp4DBEREekHcrOijCnPZ3R5AamUs2p7Net31RBPpjr9XB2dQ5Pv7q83y5ran26JiIhIv2JmlORlUZQTY1tVHdurG9hbG2dwSS7lBdmd1ovU0R6aHWY2nmAiMGZ2JbC5UyIRERGRPmf16tVccsklnHjiCVx87ntg90bysqNs2hMMQ9U0dE6/SEd7aD4D3AkcbWYbgdXowZQiIiI92jefXMTiTXtb3JZMJolGO/4UoynDivnGRVPbrBOPx7nhhhu48847GT9+PE8//TQ/+P7/cPfdd1NZG2dzZR0rtlVTXpDDkJIcopHDv8y7owmNu/t7zawAiLh7lZm173oqERER6Vcee+wxFi1axBVXXAFAIpHgjDPOoKamhs//y7+QlZXFjBNP4z0XXkZlXZxhJbmU5GUd1jBURxOah4Hj3X1fWtlDwMwOn1lERES6RVs9KZ15H5rmFixYwK233sr1119/QPlvf/tbrrzySi666CI+/OEPc921H2fj7lrW7aqhKDeLYaW55MQ61mvUrr4dMzvazK4ASszs8rTXtQQ32ztiZna+mS01sxVmdnML2681s+1mNj983dAZ5xUREZGuMXToUJ599llSqeCqpoULF+LubNiwgZEjRwIQjUbJz44xYVAhw0ry2FefYPnWarbtrcPd232u9g5WTQI+AJQCF6W9jgc+2e6ztSJ88OXtwAXAFOAjZjalhar3u/uM8PWrIz2viIiIdJ3rrruOVCrF5MmTmTFjBt/5zncwM0aMGMGGDRsAmpIdM2NgUQ5HDS6iKDfGlr11bKuq54017Xs2VLuGnNz9ceBxMzvF3V85vI/VphOBFeHTuzGz+4BLgMVdcC4RERHpBnl5eTz00EMHlV9++eXcdNNNPPXUU1x00UUHbMuORRhdXsDe2jg7N8AH73iFy48bzs0XHM2g4tYHhTo6h2anmf0FGOzu08xsOnCxu/9XB4/T3HBgfdr6BuCkFupdYWZnAsuAL7r7+uYVzOxG4EaAiooK5syZc4ShSXtVV1ervbuR2rt7qb27j9q6c5SUlFBVVXXIeslksl31OttPfvKTpuWWzm9ASQ68f2wWT8zfyNNvb+Ti8a0/qLKjCc0vgf8P+AUEdwo2s98DR5rQtMeTwB/cvd7MPgXcw4EPySSM6U6CS8uZNGmSz549uxtCE4A5c+ag9u4+au/upfbuPmrrzrFkyZJ2TfbtyknBRyovN5fbP3Uea3bs4z//uJgH3t3Wat2OXvCd7+6vNyvrjDvibARGpq2PCMuauPtOd68PV3+FrqwSERHpF8YMLOCua0/gj589vdU6PeVOwW8AE81srJllEzwf6on0CmY2NG31YmBJJ5xXREREeolpw0ta3dYZdwr+2OGHFnD3hJndBDwLRIG73X2RmX0LmOvuTwCfM7OLCXqEdgHXHul5RUREpG/oUEITXoV0wJ2COysQd38aeLpZ2X+kLX+V4EnfIiIiIgfoUEJjZqXA1cAYINZ4a2J3/1xnByYiIiLSXh0dcnoaeBVYCKQ6PxwRERGRjutoQpPr7v/aJZGIiIiIHKaOXuX0WzP7pJkNNbMBja8uiUxERESknTqa0DQA/wO8AswLX3M7OygRERHpG1avXs0ll1zCrFmzOPHEE1m6dGmXnKejQ07/Bkxw9x1dEYyIiIh0gT/dDFsWtrgpL5mAaEfTAWDIMXDBbW1Wicfj3HDDDdx5552MHz+ep59+mttuu41f//rXHT/fIXT0E6wAajo9ChEREelzHnvsMRYtWsQVV1wBQCKR4IwzzmDVqlXceuutVFZWtvjwysPR0YRmHzDfzF4AGh9DoMu2RUREerI2elJqu/BZTgsWLODWW2/l+uuvP2jbXXfdxZVXXtlp5+roHJrHgFuBf7B/Ds28TotGRERE+oyhQ4fy7LPPkkoFd3pZuHAh7t4l5+ronYLv6ZIoREREpM+57rrreOGFF5g8eTJ5eXlMmzaNe++9t0vO1dE7BU8Evg1MAXIby919XCfHJSIiIr1cXl5ei3Nkdu7cyde//nXeeustvv3tb/PVrx75k406Oofm18A3gB8CZwGfoOPDViIiItKPlZeXc8cdd3TqMTuajOS5+18Ac/e17n4L8P5OjUhERESkgzraQ1NvZhFguZndBGwECjs/LBEREZH262gPzeeBfOBzwEzgY8A1nR2UiIiISEe0u4fGzKLAh939S0A1wfwZERERkYxrdw+NuyeB07swFhEREZHD0tE5NG+Z2RPAgwR3DQbA3R/p1KhEREREOqCjCU0usBM4O63MASU0IiIikjEdvVOw5s2IiIhIj9PROwXnAtcDUznwTsHXdXJcIiIiIu3W0cu2fwsMAd4H/A0YAVR1dlAiIiLSN6xevZpLLrmEWbNmceKJJ7J06dIuOU9H59BMcPcPmtkl7n6Pmf0eeKkrAhMREZHO8Z3Xv8O7u95tcVsymSQajXb4mEcPOJqvnPiVNuvE43FuuOEG7rzzTsaPH8/TTz/Nbbfdxq9//esOn+9QOprQxMP3PWY2DdgCDOrckERERKQveOyxx1i0aBFXXHEFAIlEgjPOOIPHHnuMp556ir1793L99ddz3nnnHfG5OprQ3GlmZcC/A08QPPbg3484CsDMzgd+DESBX7n7bc225wC/IbhD8U6Cm/yt6Yxzi4iI9GVt9aRUVVVRVFTUJeddsGABt956K9dff/1B2y699FJ2797Nl770pe5NaMzsUqAUONHdnwXGHfHZ9x87CtwOnAtsAN4wsyfcfXFateuB3e4+wcyuAr4DfLizYpDMc/eWCtteb29ZC3W8pe3p9VpaTis78JBt7N/KMQ/5edvY392JVFYS37at+Qc5gs/R/n1a/BwtxdGOz9HSLu39HC3uf0C7dt7nyFqxgpqioo59jqbyrv0c3uLPq4XPccjP3trPo3k8LVRoz/9zB9Vp+Ry5SxZTWVXd4XO09/htxXiocx58jg6es6PHP5xzhOupyUeT2LGzhR0OFKmvJ1Ff32adNs/fyNKXg5VBxcU88+STfPySS4hEIixcsoRpkydjZmDGt/793/nU1VeT2LMnKGu2f6qujqoXXsAiEYhEwFqf+tuuhMbMfkZwZdM/gP80sxPd/T/bs287nQiscPdV4fnuAy4B0hOaS4BbwuWHgJ+amXmLP/1AZP06Xps5Zf/naKGmHVzUYr321DnoWO08X/N6hxtTe+u1tx3wtHKj5c+TVlaBs9gs/J/J0uq0M3jpkApgRaaD6EcGAGszHUQ/UQJsynQQfUDy9p8S37L5kPUi7J9P0tk+dvbZvPD880w74QRyc3KYOmECd992G+7Ov//wh7z3lFM4pryc+IYNLe6f3LWLDZ+5qV3nam8PzZnAse6eNLN8gonAnZnQDAfWp61vAE5qrY67J8ysEigHdqRXMrMbgRsBRpfks2bq0AMO4i385fYW1lqqd9B+aXVazvO9KctsVnqIGA4+frBfC8c65Odp6dj743IcdydFCofwPfzPD1hrWk6Rwj1tuekM1vR+YFzWckLfYuxpiRBGxCKYRWj6z4JXtHGZaFPZAXWIEok0rkebyqONy03HCtajFsEsuv+4TftEiVoUw5pld42L6cstbT/4c7X0r5iW9jlgpYV96uvrycnJbdc+fsD3sIVjtnGeQ+6Tvpi2zwE/8zY/Z+e1jR9Be7a6PVypraslLy/voH2aPmdLx0lfPOh3QfPy9u9zyM/Z0n5HtE943kNsP+h/6hb/dXaIX65m1NTUkJ+f375jHuJ43kUxduiYHTxey78vm5/j0McsLisjMWLEIc+ZSiaJHMak4Fal/SM2C/jNAw8cUJZw+Pkv7uCvb77JHneW793L9Z/4RIs9UcnaWvbe/JXgz5angjo33NDyR2qjg2N/JbM33f341taPlJldCZzv7jeE6x8HTnL3m9LqvBPW2RCurwzr7GjpmABHHzXB313wRtBFZdHgPRJNW7dDfynkkNydpCf565y/curpp5JIJYin4vtfyfiB62llDakG4sk4iVSChmRDU1l9sp54Mk5DsoGGVEPwHi43bWtWrz5Z33S8xuVEKtEpnzFqUbKj2WRHs8mKZJEVySIWiRGLxA5YjlmMrGiwnmVZwbKF9aJZTfsesNxa2SHW570xjzNOPaMphsY6MYsd2HUrnWLOnDnMnj0702H0C2rrzrFkyRImT558yHpdOYfmSLX0GcxsnrvPal63vT00R5vZ243HAsaH6wa4u08/koCBjcDItPURYVlLdTaYWYygV3JnWwctrF4N3xlziFNbkOTE8qCgHPIHQuFgKBkBJcOD9+IRwXvRkKDuoSQTQaLUnrp9gJkRsxjZkWwKswszHc4BUp46OCkK19MTn+bbWkygwqQpnoo3JW2JVOLAZU9Qn6hnX2ofCU8EyVrje7NEryHZ0Ep/XQc81HJxa0lQ84TskEnUIRKrFo9xiH0aY4hFYkTaGA8XEemI9iY0h07xjswbwEQzG0uQuFwFfLRZnSeAa4BXgCuBv7Y1fwagPrcCzv8GpJLgqfDVuOwHljfsg5odsG8H7FoFa16C+r0HHtCiUDQUiodCJAtwiNdCvCbYv2FfsJxs2F8/lgPRbIjlQiwbojlBGYTdax7Ui8aCY0azIBILe5EMsP3LFmm2nr49/WWtLDd7NT/WAWUtnTMSpLCt1BuxfiW8+m7aOVuI/6Dzpk3yale9xljbF2/EINci5LZYLwqRQohGILul9mypzdNiaPpehPulL6d377exPZlKEfcE8cZkxxPEk4mwrHF9fxKUSO1ff3vR20yYNOGgHrDGnq6WesfS92+su69hX6s9aOn7dYUDerQ60luVVta0bzsTq+xIdvsSs3A9J5qjxEukF2hXQuPua7syiHBOzE3AswSXbd/t7ovM7FvAXHd/ArgL+K2ZrQB2ESQ9bWrIKoGT//nwA6urhMqNsHcjVK4Plis3QNXmIAkCKBwEWfmQXQjZ+eFyQZCsJOshUR8kOInG5XpINCY84R85T0EyDql40LuTqAv29xTg+xOwpmUO3ubJ/fscVL+FV6px/7Q6BxwvraydJgCsPPzm7o+i4Su3zVrNk63g/dxUiuiCrGaJFm0nYQdso41tjesxsGzcnARG3CLEjeAdiJsF6xhxMxqMcD3tvWk5qJNovt0g7hBPQjzlxIkTpyHc14m7E8epJhWup0iE73FSwXu43ODJI+3zalGWxYgRpeC+fHKi2eRGc8iJ5pITzSEnlkNuLC9Yz8ojN5pLdjSb3FiwPTeaG9RprB/u09K23FguebE8siJZGjYU6aCO3oemy7j708DTzcr+I225DvhgtwaVWxK8Bk85dN2+zNuX+Lz80kucftqpLSdjB6ynl9FCWUv10mM4VL20pK+tRK2prJV4WywLE8XGdmmMKyg4zO0cev/mbYCzcd1aRo0Y0Sx5bbbcYlLcymducb/gZZ4iCyerzZ9ts2MfVDcZ9op62nKq2XIqXE6mLbdS3vJ0d5IcnGgFSZgRx0ikr5ulJWYHrzcY1FuEOjMazKgzoz5i1Dcum1Fjxp5WtiUPMymJYeRZlDyLkR+JkR/JDl7RHPKjueTFcsmP5ZEfyyc/K5+87ELyswrIyy4mP7uI/NwS8nOKyc8pIy+3JNgWyyMW6TG/8kU6nb7dcmhNw1ttd7snsgohf0D3xCSsmjOHUf154uQBw8ZBUmSeIuZJYqkUeQclSy0lVC0lTon9r2TjcpxF77zN1ElHNa03337wepJ4IpijVZespz4Vpy7ZQH0qTn2qgfpUIihLJaj3RNO22lScGk9S63XUeJIaUtQY1JixPRKh1oyaiFFrEWoiHUuactzJdyMfo8CiFFqMwkgWhZFsiqK5FMbyKIwVUJRVQGF2EUU5xRRml1CYW0ZhXhmFuQMozK8gklMY9ERnFQTD5SI9QEdurBcFfuPu/9SF8YiItI9Zt/4x3b6tBI6d3aF9ssJXwZGePJUMh63rgle8FhL1eLyGhoZ91NTvobahmpqGvdQ0VFMT3xe+aqhN1lKTqKUmUUdtsp6aZD01qQaqUg1Up+JsSzawkir2mVNtkGhHglSQSlGYSlGUSlHoUOIRSohSEolREsmhNJZHSVYBxdkllOaUUpJXTmn+QPJzy7G8UsgtDnq/c9LelRjJEWr3Nyi8B81oM8t294auDEpERNJEosEcvez8A4oNyAlfZZ1wGnenLl5Dde0OqvZtp7p2B9W1u6iq30113R6q6/dSFa9iX0M1VfF9VCdrqUrUsjVZz9JUA5Uep5YaoAbiO4NJUvv2Hz/mTkkyRUkqRUkqSUkyRWkqxYBkkgHEKI/mMiCWT2G9sX39cEpzy8gqqID88qD3N7/84OXGiyyk3+toSrwK+LuZPUHa19Tdf9CpUYmISLczM/KyC8jLLqCiZPRhHaMh2UBlfWXwaqhkT/0e9tbuZk/NViprtlNZt4vKut1U1u9lc7yaxYl97ErUkiCcU0c95AGplVADpdUpBiSSQdKTTDIglWJQIsmgZJKKRJLBkWwGZZdSmD8Ayx8YJDkFFcHtNwoHBxduNC7nlQW3z5c+qaMJzcrwFQF65l14REQkY7Kj2VTkV1CRX9HufdydqngVu2p3satuFy/OfZGh44eyq24XO+t2sqt2J7tqtrG8dic76ndRlag96Bh57GZQfA+Ddi2jYksdg+MNYdKTYHAyyZBEkgo3ogWD0pKcQVA8DIqHB/cdKw5fucWd2STSTTqU0Lj7NwHMLN/da7omJBER6U/MjOLsYoqzixlTMoa9BXuZffTsVuvXJerYXrOdrTVb2V67nW0124LlmmB5QbjckDpwdkQMY0gkh2GpOobVrWRY5UKGLa9kWCLBsESCwYlk8EcxpzgtyRkW3Fy1bDSUjYHS0UEypJ6edlu9ejVf+MIX2LhxI5FIhN/+9rdMmjSp08/ToYTGzE4huB9MITDKzI4FPuXu/9LpkYmIiLQgN5bLyOKRjCwe2Wodd6eyvpKtNVvZVrONLTVb2FS9qen1j+pNbI/F8YLypn1iRBieVcgoy2F00hlVt4HRO99hVNV2hiaSNN37PZYbJDZlY8LXaBgwHgZODMp74ATnLf/939QvebfFbYlkkl2H8SynnMlHM+RrX2uzTjwe54YbbuDOO+9k/PjxPP3009x22238+te/7vD5DqWjrf4j4H0Ed+3F3ReY2ZmdHZSIiMiRMDNKc0spzS1l0oCWewMakg1s2beFjdUb2bxvM+ur1rN271rWV61n7t611GbVQmk2lA4nKxJjRM4ARkXzGZuKMr6hgQnV6xi37h/k11ftP2gkCwaMhfKJMHBC+D4RKo6GvNLu+fA9yGOPPcaiRYu44oorAEgkEpxxxhksWbKEH//4x+zYsYNzzjmHf/7nI7gJbqjDaaS7r292B8vkEUchIiLSzbKj2YwqHsWo4lEHbXN3dtTuYO3etayrWhe8713H2qq1vFK5NhjOygWGlTG8YAoTcgcxPpLHhESCCdWVjN+1guwVz+1/FA4EQ1eDp8CgyTBoarA88KhuuVKrrZ6Urnw45YIFC7j11lu5/vrrD9p2xx13kEqluPrqqzOS0Kw3s1MBN7Ms4PPAkiOOQkREpAcxs6bJzbOGHPhg50QqwYaqDazcs5Lle5azcs9KVuxZwd93L2p67lmsKMb4kWcyuXAkk6NFTG6IM6lyG/nbl8LKF4KbL0Lw7L7yiTBsBgydAcOOgyHHHHSJfm81dOhQnn32WT7xiU8QiURYuHAh06ZNw8x44okn+PnPf87HP/7xTjlXRxOaTwM/BoYTPETyz8BnOiUSERGRXiAWiTGmZAxjSsZwzuhzmsrjqTjr9q5j+Z7lLN21lCU7l/Di9rd4rG4XAIYxeshopky5jul5gznWs5hUtYusrYth5V9hwR+CA1kkGKIaOiNIdIbPhCHTgwcc9zLXXXcdL7zwApMnTyYvL49p06Zx7733AnDxxRdz8cUX8/73v5+PfrT586g7rqNXOe0AdKdgERGRZrIiWYwvHc/40vGcP+Z8IBi62lazjSW7lgSvnUuYu20eT9dsAyAnmsOU8ikcO+lTHFswiunxJIN2roJN82HF87Dg98HBY7kw7HgYdRKMPBlGntgrHjWTl5fHQw89dFD5nDlzeOSRR6ivr+fCCy/slHO1K6Exs/+lpSfBhdz9c50SjYiISB9iZgwuGMzggsHMHjm7qXzLvi0s2L6ABdsX8Pb2t/ndkt/xf+Ew1PDC4cwaPYsTT/onTigYxdDd62Dda7D+VfjH/0Lqh8FBBh4FI0+CMafD2PdA8dAMfMLDM3v2bGZ38rPo2ttDM7dTzyoiItKPDSkYwpCCIbxvzPuA4IqrJbuWsGDbAt7a9hZzNszh8ZWPAzCicAQnDj2RE875V04YMI3BezYGyc2612DJk/DWb4ODDjwKxs0Okpsxp2fok2VOuxIad7+nqwMRERHpr7Kj2RxbcSzHVhzL1VOvJuUplu9ezhtb3uD1La/z3NrneGT5IwCMLRnLGcPP4Iyz/5XjB84ge8dSWPU3WP03eOteeP3OYB7OBY/C3hLIKQqejm59+2aAHb2x3gu0MPTk7md3WkQiIiL9XMQiTBowiUkDJvGxKR8jmUqydPdS3tjyBn/f+Hf+8O4f+M3i35AXy+PkoSdz+vDTOePYnzI0txw2vBEkNwZUb4PqrUEyk1OU9nTzrEx/xE7X0aucvpS2nAtcASQ6LxwRERFpLhqJMqV8ClPKp3DN1Guoidfw+pbXeWnDS7y88WVeWP8CABNKJ3DmiDM595iLiW6P4oMnYg37oL4S6vZCXWVwwKz8/cmNtzpFNqO8g3F19Cqnec2K/m5mr3fojCIiInJE8rPymT1yNrNHzsbdWVW5ipc3vsxLG17iN4t+w93v3M3XJn6N2OYYwwYNI79kJFYCxGuhPkxsqjZD1WYKLAap0uBOxtmFcODNczPC3dm5cye5ubnt3qejQ07p14hFgJlASUeOISIiIp3HzJouF79m6jVU1lfywvoXeHndyzSsbmD45uHELEZuLJfcWC7ZkWzMDFJZkKgjWV9JNLUFPAUWhay8oAcnlpPR5CY3N5cRI0a0u35Hh5zmEcyhMYKhptXAwfczFhERkYwoySnh0gmXcumES6luqObFDS/y1NqneHnjy9Ql6yjLKeO8MefxgXEf4NiKmfztb39j9qmnBfe9WfIELH0GGqqCIalJF8KUS2DcWZDV/t6STOjokNPYrgpEREREOldhdiEXjruQC8ddSE28hr9v+jt/XvNnHlvxGPcvvZ+RRSOZFpnGuLpxjJpyMUy5GOJ1sGoOLH4clj4V3ME4uwgmnQ9TL4cJ53TL86c6qr031vuyu383XP6guz+Ytu2/3b3t54eLiIhIRuVn5XPu6HM5d/S5VDdU8/y65/njyj/yzJZn+NOjf2J6xXQuGncR7xvzPsomnR8kMIkGWPMiLHoM3v0jLHwwmEg86UKYdnnQc9NDHsnQ3ovSr0pb/mqzbed3UiwiIiLSDQqzC7l0wqX86n2/4pvDv8kXZ36RmngNt752K2c/cDaf++vnmLN+DolIBCa8Fy75KXxpOXzsYZh8MSz7E/z+Q/C9CfDYv8Dy5yEZz+hnau+Qk7Wy3NJ6h4QTje8HxgBrgA+5++4W6iWBheHqOne/+EjOKyIiIlAWK+OyaZfxiamfYNnuZTy58kn+uOqPvLD+BSryKrh0wqVcNuEyRhaPDJKbCe+FxA+DYalFjwR3K57/O8grg6M/EPTcjDkToh2dpntk2ns2b2W5pfWOuhn4i7vfZmY3h+tfaaFerbvPOMJziYiISAvMrOlmfp+f+Xle3PAijyx/hLveuYtfLvwlJw05iSuOuoKzR51NTiwHjjoveCXqg6eFL3o0GJp667eQXw6TL4Kpl8Ho07sluWnvGY41s70EvTF54TLh+pFOe74EmB0u3wPMoeWERkRERLpBViSLc0adwzmjzmHLvi08vuJxHl3xKF9+8cuU5JRw0biLuHzi5UwsmxhMEJ50QfCK1wVXSy16FN5+EOb9HxRUBMNUUy+D0adCJNolMVtH78TX6QGY7XH30nDZgN2N683qJYD5BJeL3+buj7VyvBuBGwEqKipmPvDAA10StxysurqawsLCTIfRb6i9u5fau/uorbtXe9s75SmW1S3jH9X/4O2at0mSZEz2GE4pPIWZBTPJiRx45VMkWc+AXW8yaNtLlO+cSzRVT312GdsrTmV7xWlUlkw+rOdLnXXWWfPcfVbz8m5JaMzseWBIC5u+DtyTnsCY2W53L2vhGMPdfaOZjQP+Cpzj7ivbOu+kSZN86dKlRxa8tNucOXM6/XHw0jq1d/dSe3cftXX3Opz23l23mydXPskjyx9hZeVK8mP5XDD2Ai6beBnTB04PbtyXrmEfLP9z0HOz7M+QqIWioUHPzVHnBcNS7bzPjZm1mNB0y4wdd39va9vMbKuZDXX3zWY2FNjWyjE2hu+rzGwOcBzQZkIjIiIina8st4yrp17Nx6d8nAXbF/DI8kd4evXTPLz8YcaXjOeyiZfxgXEfoDyvPNghuyAYcpp6GdRXw7JnguTmzXvg9V9ALA/GngkTzw0mHQ/o+G3vuncKcsueAK4BbgvfH29ewczKgBp3rzezgcBpwHe7NUoRERE5gJkxY9AMZgyawZdP+DLPrHmGR1c8yvfmfo8fzfsR7xn5Hi6feDmnDjuVWCRMOXIK4Zgrg1e8Ftb8Pei9Wf5nWP5sUKd8Aow+LZhzM+oUKB11yMcw9ISE5jbgATO7HlgLfAjAzGYBn3b3G4DJwC/MLEVw75zb3H1xpgIWERGRAxVmF3LlUVdy5VFXsmL3Ch5b8RhPrnqSv6z7C4PyBnHxhIu5dMKljC4evX+nrDyY+N7gxXdh50pY/lxw1dTix4IeHICiYTD6FBh5cqvnz3hC4+47gXNaKJ8L3BAu/wM4pptDExERkcMwoWwCXzrhS3z++PDy7xWPcPc7d/Orhb/i+EHHc+HYCzlvzHmU5TabMls+Pnid/GlIpWDbYlj3Cqz9R/B65+FWz5nxhEZERET6pqxoFueMPodzRp/DtpptPLHyCZ5c+ST/9dp/8e3Xv83Jw07m/WPfz9mjzqYgq+DAnSMRGDIteJ34SXCHvZvgmy0/gVsJjYiIiHS5QfmDuOGYG7h+2vUs272Mp1c/zTOrn+FrL3+NnGgOZww/g7NGncXpw09nQO6Agw9gBiXDWz2+EhoRERHpNul3JP7C8V9gwfYF/Gn1n3hu7XM8v+55DGN6xXTeM+I9vGfke5hYOvHgy8BboIRGREREMiL9KqmvnPgV3t31Ln9b/zf+tuFv/OStn/CTt37CkIIhzBw8k+MHHc+MQTNaPZYSGhEREcm4iEWYUj6FKeVT+OcZ/8z2mu28tPElXt74Mq9tfo2nVj3V5v5KaERERKTHqciv4PKJl3P5xMtxdzZUb2D+tvlczMUt1ldCIyIiIj2amTGyaCQji0a2WqfjT4USERER6WGU0IiIiEivp4RGREREej1z90zH0GXMrApYmuk4+pGBwI5MB9GPqL27l9q7+6itu1dva+/R7l7RvLCvTwpe6u6zMh1Ef2Fmc9Xe3Uft3b3U3t1Hbd29+kp7a8hJREREej0lNCIiItLr9fWE5s5MB9DPqL27l9q7e6m9u4/aunv1ifbu05OCRUREpH/o6z00IiIi0g8ooREREZFer88mNGZ2vpktNbMVZnZzpuPp68xsjZktNLP5ZjY30/H0NWZ2t5ltM7N30soGmNlzZrY8fC/LZIx9RSttfYuZbQy/3/PN7MJMxtiXmNlIM3vBzBab2SIz+3xYru93J2ujrfvE97tPzqExsyiwDDgX2AC8AXzE3RdnNLA+zMzWALPcvTfdnKnXMLMzgWrgN+4+LSz7LrDL3W8Lk/Yyd/9KJuPsC1pp61uAanf/XiZj64vMbCgw1N3fNLMiYB5wKXAt+n53qjba+kP0ge93X+2hORFY4e6r3L0BuA+4JMMxiRw2d38R2NWs+BLgnnD5HoJfTHKEWmlr6SLuvtnd3wyXq4AlwHD0/e50bbR1n9BXE5rhwPq09Q30oR9aD+XAn81snpndmOlg+onB7r45XN4CDM5kMP3ATWb2djgkpeGPLmBmY4DjgNfQ97tLNWtr6APf776a0Ej3O93djwcuAD4TdttLN/Fg7LjvjR/3HD8HxgMzgM3A9zMaTR9kZoXAw8AX3H1v+jZ9vztXC23dJ77ffTWh2QiMTFsfEZZJF3H3jeH7NuBRgmE/6VpbwzHxxrHxbRmOp89y963unnT3FPBL9P3uVGaWRfAH9nfu/khYrO93F2iprfvK97uvJjRvABPNbKyZZQNXAU9kOKY+y8wKwglmmFkBcB7wTtt7SSd4ArgmXL4GeDyDsfRpjX9YQ5eh73enMTMD7gKWuPsP0jbp+93JWmvrvvL97pNXOQGEl539CIgCd7v7rZmNqO8ys3EEvTIQPMH992rvzmVmfwBmAwOBrcA3gMeAB4BRwFrgQ+6uyaxHqJW2nk3QHe/AGuBTafM75AiY2enAS8BCIBUWf41gboe+352ojbb+CH3g+91nExoRERHpP/rqkJOIiIj0I0poREREpNdTQiMiIiK9nhIaERER6fWU0IiIiEivp4RGRLqdmZWnPdl3S9qTfqvN7GdddM4vmNnVbWz/gJl9qyvOLSJdT5dti0hGdceTrM0sBrwJHO/uiVbqWFjnNHev6apYRKRrqIdGRHoMM5ttZn8Ml28xs3vM7CUzW2tml5vZd81soZk9E97CHTObaWZ/Cx+M+myzu542Oht4szGZMbPPmdni8GF890HT84LmAB/olg8rIp1KCY2I9GTjCZKRi4F7gRfc/RigFnh/mNT8L3Clu88E7gZaukv1acC8tPWbgePcfTrw6bTyucAZnf4pRKTLxTIdgIhIG/7k7nEzW0jwGJNnwvKFwBhgEjANeC4YMSJK8LTg5oYCS9LW3wZ+Z2aPETxCotE2YFjnhS8i3UUJjYj0ZPUA7p4ys7jvn/SXIvj9ZcAidz/lEMepBXLT1t8PnAlcBHzdzI4Jh6Nyw7oi0stoyElEerOlQIWZnQJgZllmNrWFekuACWGdCDDS3V8AvgKUAIVhvaPopU8aFunvlNCISK/l7g3AlcB3zGwBMB84tYWqfyLokYFgWOrecBjrLeAn7r4n3HYW8FRXxiwiXUOXbYtIv2BmjwJfdvflrWwfDPze3c/p3shEpDMooRGRfsHMJgGD3f3FVrafAMTdfX63BiYinUIJjYiIiPR6mkMjIiIivZ4SGhEREen1lNCIiIhIr6eERkRERHo9JTQiIiLS6ymhERERkV5PCY2IiIj0ekpoREREpNdTQiMiIiK9nhIaERER6fWU0IiIiEivp4RGpB8yszlmdkOm48gkM/uamf0q03F0lJmtMbP3ZjoOkZ5GCY1ILxX+Yas1s+q0108zEMcYM/O0GNaY2c3dHUdHuft/u3uXJXVmNjtsl6901TlEZD8lNCK920XuXpj2uqkrT2ZmsTY2l7p7IfAR4D/M7PwO7t/XXAPsAq7OdCAi/YESGpE+yMxuMbN709Ybe1FaTCjM7DozW2Jmu83sWTMbnbbNzewzZrYcWH6oc7v7K8AiYFrYS7HBzL5iZluAX5tZxMxuNrOVZrbTzB4wswFp5zvdzP5hZnvMbL2ZXRuW55jZ98xsnZltNbM7zCwv3DbQzP4Y7rPLzF4ys0i47StmttHMqsxsqZmd00obXWxmi8JjzDGzyWnb1pjZl8zsbTOrNLP7zSy3jfYvAK4EPgNMNLNZLfwsrgk/yw4z+3ra9jwzuyf8WSwxsy+b2YZWztNmW4r0J0poRPo5M7sE+BpwOVABvAT8oVm1S4GTgCmHOJaZ2WnAVOCtsHgIMAAYDdwIfDY83nuAYcBu4PZw/9HAn4D/DWOZAcwPj3MbcFRYNgEYDvxHuO3fgA3hPoPDz+NmNgm4CTjB3YuA9wFrWoj7qPAzfyE8xtPAk2aWnVbtQ8D5wFhgOnBtG01xOVANPAg8S9Bb09zpwCTgHIIercYE6hvAGGAccC7wsTbO02pbivQ3SmhEerfHwh6FxtcnD+MYnwa+7e5L3D0B/DcwI72XJty+y91r2zjODoIhll8BN7v7X8LyFPANd68P9/808HV33+Du9cAtwJVh79FHgefd/Q/uHnf3ne4+38yMIBn6YhhHVRjnVeE54sBQYHS430vu7kASyAGmmFmWu69x95UtxP5h4Cl3f87d48D3gDzg1LQ6P3H3Te6+C3iSILFqzTXA/e6eBH4PXGVmWc3qfNPda919AbAAODYs/xDw3+6+2903AD9p4zxttaVIv6KERqR3u9TdS9NevzyMY4wGftyYFBEkJUbQA9JofTuOM9Ddy9x9srun/xHe7u51zc73aNr5lhAkHoOBkUBLCUcFkA/MS9vvmbAc4H+AFcCfzWxV46Rkd19B0OtyC7DNzO4zs2EtHH8YsLZxxd1T4WdOb4Mtacs1QGFLjWBmI4GzgN+FRY8DucD7m1Vt7XjDOLC922r7ttpSpF9RQiPSN+0jSAAaDWmj7nrgU80Sozx3/0daHT+CWJrvux64oNn5ct19Y7htfAvH2AHUAlPT9ikJJyHj7lXu/m/uPg64GPjXxrky7v57dz+d4I+/A99p4fibwu1AMHRGkFxtPIzP+3GC361PhvOGVhEkNC0NO7VkMzAibX1kG3XbakuRfkUJjUjfNB8408xGmVkJ8NU26t4BfNXMpgKYWYmZfbALY7sDuLVxSMvMKsJ5PBD0arzXzD5kZjEzKzezGWGPyS+BH5rZoHC/4Wb2vnD5A2Y2IUxEKgl6KVJmNsnMzjazHKCOIClKtRDTA8D7zeyccGjo34B64B8t1D2Ua4BvEgxJNb6uAC40s/J27P8Awc+jzMyGE8wBak1bbSnSryihEendnrQD70PzKIC7PwfcD7wNzAP+2NoB3P1Rgl6L+8xsL/AOcEEXxvxj4AmC4aEq4FWCCce4+zrgQoKEYhdBYtY4t+QrBMNKr4ZxPk8wqRZgYrheDbwC/MzdXyCYP3MbQQ/PFmAQLSR37r6UYPLt/4Z1LyK4JL6hIx/MzE4m6Om53d23pL2eCGP/SDsO8y2CCc6rw8/0EEFy1ZJW21Kkv7Fg3pyIiPREZvbPwFXu/p5MxyLSk6mHRkSkBzGzoWZ2WniPmUkEvVWPZjoukZ5Ol/aJiPQs2cAvCO53swe4D/hZJgMS6Q005CQiIiK9noacREREpNfr00NOpaWlPmHChEyH0W/s27ePgoKCTIfRb6i9u5fau/uorbtXb2vvefPm7XD3iublfTqhGTx4MHPnzs10GP3GnDlzmD17dqbD6DfU3t1L7d191Nbdq7e1t5mtbalcQ04iIiLS6ymhERERkV5PCY2IiIj0en16Do2IiEhvk0o5dYkktQ1JauNJ6uJJahtS1MaD9fp4knjSaUgmiSec+mSKeCJFQzJFQyJFPHxvvh5POvXheiKVIplyUinYtaeWHy36Oyl3Ekkn5U4y5STdSYXvyWT4nqJpeyrlJFKOh8+fNSx4D94wwMIVa/xwtn/ZzDCDqBmRiBE1IxoxIpEWysL3aKTpSAdRQiMiInIY6hNJ9tUn2VefoLo+kfberKwhQV2YnNTGU9Q2hElKPHngcrhen2jp+antZwbZ0QjZsQg5sQhZ4XJ2NFjOikXIioQJQ8TIiUJxXhZRoyl5iEXTkoi05CLYhzDRiBCNQMSMxjvaNd7bzp20svAdp/mt75qSo8YkKi1hanqlJ1ap1u+dp4RGRET6nVTKqW5IUFkTp7I2zt7a8L0ueN//SrC3Nt4sYQmSloZk+xKP7FiE/OwoeVnBKzcrSl64XpafHS5Hmralb8/LipJ7wL4RcrOi+5OUWISsqJETjTYtx6Idm00SXOV04uE0Y0bce0PL5UpoRESkV6tPJNlTE2fXvgZ21zQ0Le+paWDXvnjwXtPA7ppgeU9NnKq6OG38Y59oxCjJy6I4N0ZJXhaFuTHKC/IpzIlREL6KcmMUZEcpyIkdUB4sR5vKsjqYYMjhUUIjIiI9SjzlbNhdw7aqerZX1bOtqp6d1fXsqYmzu6YhTFb2Jy37GpKtHqsgO0pZQTZl+dmUFWQzekA+pflZlOQFr+K8LIpz96+XhNsKsqNN8z+kd1BCIyIiXc7dqa5PsK2qnm1769lWVcf2tISlcX1bVZC48OcXDjpGUW6sKTEpL8xm4qBCSvOzGVCQFb5nU5qfxYAwgSnNzyInFs3Ap5VMUEIjIiKHLZVydtU0NCUpjb0q28MkJSgP1mvjB/ekZEcjVBTlMKg4hzHlBZw4dgD7dmzmpOlHB+VFuQwqzmFAQbaGbqRNSmhERKRF7s6emjgb99SycU8tm/bUsnF3LZsqa9m4p44tlbXsqG5o8cqTopwYFcU5DCrKYcbI0jA5CRKXQUW5DCrKoaIoh5K8rIOGdubM2cnsE0d118eUPkIJjYhIP5VIptiyt45Ne+rYuKeGTXvq2LA7TFzCBKam2fyUnFiE4WV5DC/N46hBFQwqzqGiMIdBxUGSMqgol4qiHPKyNdQj3UsJjYhIH7WvPtHUu7KxWaKycXctW/bWHXSlT3lBNsNK8xhfUcCZEysYVprLiLI8hpUGScyAgmxNlpUeSQmNiEgvVlUXZ9X2fazaUR2+72PNjn1s2F1LZW38gLqxiDG0NJdhJXmcPL6c4WGSMqw0j+FleQwryVPPivRaSmhERHowd2fnvgbW7aphffhat6uGNTtrWL1jH9ur6pvqRiPGyLI8xg4s4PhRZUGSEiYtw0vzqCjKafPW8SK9mRIaEZEMiydTrN1Zw7pd+1i3s4Z1u2pZv3t/8tJ8HktFUQ6jBuQz+6gKxlUUMq6igPEVBYwaUEB2TFcCSf+khEZEpJu4O5sr61iwfg9LNu9l+bZqlm+rZs2OfSTSJrPkZUUZNSCfkQPyOXX8QEYOyGPUgHxGDchnRFm+hoVEWqCERkSki+ypaWDBhkoWrN/D2xv2MH99JTuqgyGiiMGY8gLGDyrkvCmDmTCokDEDCxhZls/AQk28FekoJTQiIp0gkUyxdGsV89buZt7a3cxfv4e1O2uA4OnH4wYWcOZRAzl2RCnHjizl6CFF5Gapp0WksyihERE5DJW1cd5at5s31+5m3rrdzF+3p+mZQoOKcjh+VBlXnTCKY0eUMG1ECcW5WRmOWKRvU0IjInII7s6WfSkemrch7IHZxfJt1bgHQ0eThxZz5cwRHD+6jJmjyxhemqchI5Fu1mMTGjOLAnOBje7+ATMbC9wHlAPzgI+7e0MmYxSRvqkunmThxkrmrd3N3DW7eXPdbnbtawAWUJwb4/jRZVw0fRgzR5dx7MhSCnJ67K9SkX6jJ/9f+HlgCVAcrn8H+KG732dmdwDXAz/PVHAi0nds3VvXNPdl3trdLNpUSTwZXHU0bmABZx89iMK6bXz0vJOZUFFIRPdyEelxemRCY2YjgPcDtwL/akHf7dnAR8Mq9wC3oIRGRDoomXKWbqli7tpdTQnMht21QPCcomNHlHL96eOYObqM40eVUl6YA8CcOXM4anBRJkMXkTaY+8FPSc00M3sI+DZQBHwJuBZ41d0nhNtHAn9y92kt7HsjcCNARUXFzAceeKC7wu73qqurKSwszHQY/Ybau33iKWd1ZYplu5Is251i+Z4ktYlgW2mOMaE0wsSyKBNLI4wqjhBrpfdF7d191Nbdq7e191lnnTXP3Wc1L+9xPTRm9gFgm7vPM7PZHd3f3e8E7gSYNGmSz57d4UPIYZozZw5q7+6j9m7ZvvoE89bu5rXVO3lj9W7mb9hDQyIFwIRBhVx6/ABOHFvGrNEDGFHW/sm7au/uo7buXn2lvXtcQgOcBlxsZhcCuQRzaH4MlJpZzN0TwAhgYwZjFJEeoqouzty1u3l11U5eW7WLdzZWkkg50YgxbVgxV588mhPGDuCEMQMYUJCd6XBFpIv0uITG3b8KfBUg7KH5krv/k5k9CFxJcKXTNcDjmYpRRDJnb12cN1bvChKY1UECk3LIihrHjijlU+8Zx0ljy5k5ukxXH4n0I73p//avAPeZ2X8BbwF3ZTgeEekGNQ0J3lizm3+s3MGrK3eyMExgsmMRZows5aazJnDSuHKOH1WmZxyJ9GM9OqFx9znAnHB5FXBiJuMRka5X25BkXjiE9MqqnSxYv4dEysmKWlMCc8r4gRw3qlSPDhCRJj06oRGRvq8unuTNtARm/vo9xJPBHJhjhpfwyTPHccq4cmaNKSM/W7+yRKRl+u0gIt0qmXIWbqzkb0u38/eVO5i/bg8NyRQRg2NGlHLd6WPDBGYAhZoDIyLtpN8WItLltlXV8eKyHfxt2XZeWr6dPTVxzGDasBKuPW1MUw9MkR7gKCKHSQmNiHS63fsaeG31Ll5bvZNXVu7k3S1VAAwszOGcowfznkkVnD5hoC6jFpFOo4RGRI5YfSLJ3DW7mbN0Gy8t39GUwORmRZg1egD/3/uGMXtSBZOHFOs5SCLSJZTQiMhh2bC7hjlLtzNn6Xb+sXIHNQ1JsqMRZo0p40vnHcXJ48qZPqKU7Fgk06GKSD+ghEZE2qWqLs6b6/bw0rLtzFm2nRXbqgEYXprHZccNZ/akQZw6vlw3sxORjNBvHhFp0ZbKOl5fs4u5a3Yxd81u3t2yN7ihXTTCSeMGcNUJI5k9aRDjKwra/TwkEZGuooRGRABIpZw31+3mqYWb+eu721i7swaAguwox40q47NnT2TWmDJmjtb9YESk59FvJZF+bvWOfTw8bwOPvrWRjXtqyY5FOGPCQD5+8mhOGlvO5KFFxKKaByMiPZsSGpF+qLI2zlNvb+bhNzcwb+1uIgZnTKzgS+87ivdOHqz7wYhIr6OERqSfSCRTvLRiBw/P28CfF2+lIZFi4qBCbr7gaC47bjiDi3MzHaKIyGFTQiPSxy3bWtU0pLStqp7S/Cw+csJIrpg5gmOGl2hCr4j0CUpoRPqgypo4TyzYyIPzNvD2hkpiEWP2pEFcOXM4Zx09iJyYnlItIn2LEhqRPiKVcl5ZtZP731jPM4u20JBIMXloMf/+gSlcMmMYAwtzMh2iiEiXUUIj0stt2F3DQ/M28ODcDWzcU0tJXjCk9MFZI5k2vCTT4YmIdAslNCK9UEMixetbEtx112u8vGIHAKdPGMhXLjia86YMJjdLQ0oi0r8ooRHpRVZsq+b+N9bx8Jsb2bWvgWElxufOnsgHZ41gRFl+psMTEckYJTQiPdy++gRPLdzMg3PX88aa3cQixnsnD2ZK7m4+c8XZRPX0ahGRrktozGwEcBVwBjAMqAXeAZ4C/uTuqa46t0hv5+68sWY3D85dz1MLN1PTkGRcRQE3X3A0Vxw/goqiHObMmaNkRkQk1CUJjZn9GhgO/BH4DrANyAWOAs4Hvm5mN7v7i11xfpHeqrImzkNvbuB3r65l1Y59FGRHufjYYXxw1giOH1Wme8aIiLSiq3povu/u77RQ/g7wiJllA6O66Nwivc7bG/Zw76treWLBJuriKY4fVcr3PngsFx4zRA+CFBFphy75TdlKMpO+vQFY0RXnFuktKmvj/PHtTTzwxnoWbKgkLyvKZceN4GMnj2LqMF1uLSLSEV015DQZ+FK4+gN3X9QV5xHpbdyDm9/94fX1PBve/G7S4CK+efFULjt+OMV6KKSIyGHpqr7sXwKXAQ48DpzWRecR6RX21Sd49K2N/OaVNSzbWk1JXhZXnTCSK/U8JRGRTtFVCc1K4EqChGZdF51DpMdbtb2a3766lofmbqCqPsHUYcV898rpXHzsMN38TkSkE3VVQnMtcB4QBT7WRecQ6ZH21Sd4dtEWHn1rIy8t30EsYlx4zFCuOXUMx48qVW+MiEgX6KpJwQ482xXHFumJGhIpnlu8lacWbuKv726jLp5ieGkeX3jvRD564igGFedmOkQRkT6tqyYF/xL4ibsvbGFbAfBhoN7df9cV5xfpLnXxJA/OXc/P56xkU2UdAwtzuHLmCC6ZMZyZo8qI6MZ3IiLdoquGnG4H/t3MjiG498x2ghvrTQSKgbsBJTPSa1XVxbn/jfX88qVVbN1bz6zRZdx6+TGcObFCd+8VEcmArhpymg98yMwKgVnAUIJHHyxx96VdcU6RrranpoGXlu/ghXe38dzirVTVJzhp7AB++OEZnDKuXHNjREQyqEtvQeru1cCcrjyHSFdKpZznl2zlrpdX88aaXaQcSvOzOG/qEK4+ZTTHjizNdIgiIoKeti3SqsWb9vLVRxeyYP0eRpTlcdNZE3jPpApmjCzTsJKISA+jhEakmdqGJD/6yzJ+9dJqSvOy+J8rp3PZccOJRSOZDk1ERFrRIxMaMxsJ/AYYTHBzvjvd/cdmNgC4HxgDrAE+5O67MxWn9D0vLd/O1x5dyPpdtXx41ki+euHRlOZnZzosERE5hC5NaMysiiAhMSAFLACudvc1h9g1Afybu79pZkXAPDN7juCGfX9x99vM7GbgZuArXRW/9B976+Lc+scl3D93PeMGFnDfjSdz8rjyTIclIiLt1NWTgovS183sCuB/gA8eYr/NwOZwucrMlgDDgUuA2WG1ewgmHCuhkSPywrvb+OojC9lWVcen3jOOL773KD2WQESkl7Hgpr5ddHCzJwl6aJqKgPcQXvnk7he34xhjgBeBacA6dy8Nyw3Y3bieVv9G4EaAioqKmQ888MARfgppr+rqagoLCzMdRrvtizu/X9LA3zclGF5oXH9MDuNKek8i09vau7dTe3cftXX36m3tfdZZZ81z91nNy7t6Ds33mq3nAUcB32/PzuF9bB4GvuDue9Pv8+HubmYHZWPufidwJ8CkSZN89uzZhxe5dNicOXPoLe393OKt3PLoQnbtS/LZsydw09kTyIn1nmQGeld79wVq7+6jtu5efaW9uzqhmZm2nA1cCPzc3f92qB3NLIsgmfmduz8SFm81s6HuvtnMhgLbOj1i6dMqa+N888lFPPLmRiYPLebX157AtOElmQ5LRESOUFcnNOlzaOqAb7r7Xw61UzicdBfBnYV/kLbpCeAa4Lbw/fFOjFX6uBeXbefLD73N9up6PnfORG46awLZMV2KLSLSF3T1pOBvHuaupwEfBxaa2fyw7GsEicwDZnY9sBb40BEHKX1edX2C/356Cb9/bR0TBhVy59UzmT6iNNNhiYhIJ+qR96Fx95cJJhC35JzujEV6t5eX7+ArD7/NpspaPnnGWP7tvEm6gklEpA/qkQmNyJGqrk/w7aeX8LvX1jFuYAEPffoUZo4ekOmwRESkiyihkT5n7ppdfOH++Wzco14ZEZH+QgmN9BnxZIqf/GU5t7+wghFl+eqVERHpR5TQSJ+wesc+vnD/fBas38OVM0dwy8VTKczR11tEpL/Qb3zp1VIp5zevrOG2Z94lOxrh9o8ez/unD810WCIi0s2U0EivtX5XDV96cAGvrd7F7EkV3Hb5dIaU5GY6LBERyQAlNNIrPT5/I//v0Xdw4LtXTOeDs0aQ/mgMERHpX5TQSK9SXZ/gG48v4uE3N3D8qFJ+fNVxjByQn+mwREQkw5TQSK+xYP0ePn/fW6zbVcPnzp7A586ZSCyqRxeIiIgSGukFEskUd760ih/8eRkVRTn84ZMnc9K48kyHJSIiPYgSGunR3tlYyc2PvM07G/dywbQhfPvyYyjNz850WCIi0sMooZEeqbYhyY+eX8avXl7NgIJsfv5Px3P+tCGa+CsiIi1SQiM9zuod+7jxN3NZvq2aq04YyVcvmExJflamwxIRkR5MCY30KC+8u43P3fcWsYjx2+tP5IyJFZkOSUREegElNNIjJFPO7S+s4IfPL2PykGJ+8fGZuhxbRETaTQmNZNzrq3fxzScXsWjTXi47bjj/fdkx5GXr6dgiItJ+SmgkY/bUNPCtPy7mkTc3MrQklx9fNYOLjx2mib8iItJhSmgkIxZuqOS6e95g974G/mX2eG46ewL52fo6iojI4dFfEOl2Ly/fwad+O5fS/Gwe+8xpTBtekumQRESkl1NCI93G3Xlg7nr+32PvMG5gIfdcd6Keji0iIp1CCY10uVTKeW7JVv73r8t5Z+NeTp8wkNs/erzuLSMiIp1GCY10mWTKeeadLfzvX5fz7pYqRpfn890rpnP58cP1UEkREelUSmik09U0JHhw7gbu/vtq1u6sYVxFAT/88LFcNH2YEhkREekSSmik0+yuS/GdZ97l96+to7I2zoyRpXz5fUdz/rQhRCO6FFtERLqOEho5Yut21nDHiyt54PVaUqzk/GlDuP70ccwcXZbp0EREpJ9QQiOHxd15c91ufvXSap5dtIVYNMIZI2J886ozGFWuRxaIiEj3UkIjHZJKOc8s2sKdL65i/vo9lORl8en3jOfaU8ew+M1XlcyIiEhGKKGRdmlMZH78/HKWbq1iTHk+37pkKlfOHNF0h9/FGY5RRET6LyU00qZEMsVTCzfz8zkreXdLFeMqCvjxVTP4wPRhmugrIiI9hhIaadHGPbX84bV1PDB3Pduq6pkwqJAffvhYLj52uBIZERHpcZTQyAGq6uL8bM5K7nppNYlUirMmDeKjJ43irEmDiCiRERGRHkoJjQCws7qeR9/ayM/nrGTnvgYuP344/3ruUYwo0yRfERHp+ZTQtFM8mWJLZR0AFUU55GZFMxxR55izdBv3vrqOOUu3kUg5J48bwN0XTObYkaWZDk1ERKTdlNC0Iply3lizi6fe3syrq3ayesc+EikHwAwmDynmtAnlnDd1CDNHlfW64Zhte+v4j8cX8cyiLQwszOH608dy6XHDmTy0ONOhiYiIdFivS2jM7Hzgx0AU+JW739ZZx3Z3Fm3ayyNvbuTJtzexvaqe3KwIp4wr571TBjOmPB/D2LinltdW7+Sef6zlly+tZnhpHpceN4xLZgxn4qBCzILkJpVydtc0sKO6gexYhGGlueTEMtez4+6s2VnDc4u38NO/rqAukeLL50/ik2eMI0vPWBIRkV6sVyU0ZhYFbgfOBTYAb5jZE+5+WLdAiSdTbNpTy+od+3h99S6eW7yV5duqyYoaZ00axEXHDuPsowdRkNNyM+2rT/DnxVt49K1N/HzOSm5/YSXFuTEKcmLEk0Eykwx7dQCyYxGOHVHC8aPLmD68lAmDCsnLihLmP+RmRRlYmN2UEHWW2oYkP5uzggfnbmDL3mDY7LQJ5XzrkmmMryjs1HOJiIhkQq9KaIATgRXuvgrAzO4DLqGVe7qtr0ox67+eD9eCxMJ9/9qemgYa841oxJg5uoxbL5vG+48ZSml+9iGDKciJcdlxI7jsuBFsr6rnz4u38O7mKuriSWJRo7wgh4GF2ZQX5tCQSPHulr28vmY3d7+8mnjSWzxmXlaU0eX5jK8oZOzAAgYV51Can01pXhZl+dkMKMxmcFFOu59avXFPLdf/3xu8u6WK904ezGfPmcDJ48oZN7Cg0xMnERGRTDH3lv+w9kRmdiVwvrvfEK5/HDjJ3W9Kq3MjcCNA4eBRM6/4f3dC+He78c9343thtlGRZ1TkRxhdHCEv1j1/4OMpZ2NVim01TkPKcQ/m5dQlYHtNii01zpZ9KbbXOqkWfjwGlOYYpTlGUY5RnB28SnKMkvC9IAu21Tj3LmmgPun887E5TK/o2vy1urqawkL1+HQXtXf3Unt3H7V19+pt7X3WWWfNc/dZzct7Ww/NIbn7ncCdAJMmTfL/u+l9GY7o8MWTKfbUxKmsbWB3TZw9NXF2VNezeU8tmyrr2F5Vz659DayqrmdHdQMNydRBxxhTns+dV8/iqMFFXR7vnDlzmD17dpefRwJq7+6l9u4+auvu1Vfau7clNBuBkWnrI8KyPikrGqGiKIeKopxD1nV39tYl2F5Vx7aqevbWxinKzeKEMQPIjmnCr4iI9G29LaF5A5hoZmMJEpmrgI9mNqSewcwoycuiJC+LCYO6vjdGRESkJ+lVCY27J8zsJuBZgsu273b3RRkOS0RERDKsVyU0AO7+NPB0puMQERGRnkOTK0RERKTX61WXbXeUmVUBSzMdRz8yENiR6SD6EbV391J7dx+1dffqbe092t0rmhf2uiGnDlra0rXq0jXMbK7au/uovbuX2rv7qK27V19pbw05iYiISK+nhEZERER6vb6e0NyZ6QD6GbV391J7dy+1d/dRW3evPtHefXpSsIiIiPQPfb2HRkRERPoBJTQiIiLS6/XZhMbMzjezpWa2wsxuznQ8fZ2ZrTGzhWY238zmZjqevsbM7jazbWb2TlrZADN7zsyWh+9lmYyxr2ilrW8xs43h93u+mV2YyRj7EjMbaWYvmNliM1tkZp8Py/X97mRttHWf+H73yTk0ZhYFlgHnAhsIHmr5EXdfnNHA+jAzWwPMcvfedHOmXsPMzgSqgd+4+7Sw7LvALne/LUzay9z9K5mMsy9opa1vAard/XuZjK0vMrOhwFB3f9PMioB5wKXAtej73anaaOsP0Qe+3321h+ZEYIW7r3L3BuA+4JIMxyRy2Nz9RWBXs+JLgHvC5XsIfjHJEWqlraWLuPtmd38zXK4ClgDD0fe707XR1n1CX01ohgPr09Y30Id+aD2UA382s3lmdmOmg+knBrv75nB5CzA4k8H0AzeZ2dvhkJSGP7qAmY0BjgNeQ9/vLtWsraEPfL/7akIj3e90dz8euAD4TNhtL93Eg7Hjvjd+3HP8HBgPzAA2A9/PaDR9kJkVAg8DX3D3venb9P3uXC20dZ/4fvfVhGYjMDJtfURYJl3E3TeG79uARwmG/aRrbQ3HxBvHxrdlOJ4+y923unvS3VPAL9H3u1OZWRbBH9jfufsjYbG+312gpbbuK9/vvprQvAFMNLOxZpYNXAU8keGY+iwzKwgnmGFmBcB5wDtt7yWd4AngmnD5GuDxDMbSpzX+YQ1dhr7fncbMDLgLWOLuP0jbpO93J2utrfvK97tPXuUEEF529iMgCtzt7rdmNqK+y8zGEfTKQPAE99+rvTuXmf0BmA0MBLYC3wAeAx4ARgFrgQ+5uyazHqFW2no2QXe8A2uAT6XN75AjYGanAy8BC4FUWPw1grkd+n53ojba+iP0ge93n01oREREpP/oq0NOIiIi0o8ooREREZFeTwmNiIiI9HpKaERERKTXU0IjIiIivZ4SGhHpdmZWnvZk3y1pT/qtNrOfddE5v2BmV7ex/QNm9q2uOLeIdD1dti0iGdUdT7I2sxjwJnC8uydaqWNhndPcvaarYhGRrqEeGhHpMcxstpn9MVy+xczuMbOXzGytmV1uZt81s4Vm9kx4C3fMbKaZ/S18MOqzze562uhs4M3GZMbMPmdmi8OH8d0HTc8LmgN8oFs+rIh0KiU0ItKTjSdIRi4G7gVecPdjgFrg/WFS87/Ale4+E7gbaOku1acB89LWbwaOc/fpwKfTyucCZ3T6pxCRLhfLdAAiIm34k7vHzWwhwWNMngnLFwJjgEnANOC5YMSIKMHTgpsbCixJW38b+J2ZPUbwCIlG24BhnRe+iHQXJTQi0pPVA7h7yszivn/SX4rg95cBi9z9lEMcpxbITVt/P3AmcBHwdTM7JhyOyg3rikgvoyEnEenNlgIVZnYKgJllmdnUFuotASaEdSLASHd/AfgKUAIUhvWOopc+aVikv1NCIyK9lrs3AFcC3zGzBcB84NQWqv6JoEcGgmGpe8NhrLeAn7j7nnDbWcBTXRmziHQNXbYtIv2CmT0KfNndl7eyfTDwe3c/p3sjE5HOoIRGRPoFM5sEDHb3F1vZfgIQd/f53RqYiHQKJTQiIiLS62kOjYiIiPR6SmhERESk11NCIyIiIr2eEhoRERHp9ZTQiIiISK+nhEZERER6PSU0IiIi0uspoREREZFeTwmNiIiI9HpKaERERKTXU0IjIiIivZ4SGhFpYmZzzOyGTMfRmczsDjP790zH0VFm5mY2IdNxiPQWSmhE+hgzW2NmtWZWnfb6aQbiGBP+UX66Wfm9ZnZLO4/xf2b2Xx0457Vm9nJ6mbt/2t3/s73H6KjwnG5mH+6qc4jIoSmhEembLnL3wrTXTV15MjOLtbH5JDM7tSvPn2HXALuAqzMdiEh/poRGpB8xs1vM7N609cZelBYTEjO7zsyWmNluM3vWzEanbXMz+4yZLQeWt3Ha7wK3tnL8g3pUGodazOxG4J+AL4e9TE+G2282s5VmVmVmi83ssrB8MnAHcEpYf09YfkAvj5l90sxWmNkuM3vCzIY1O/enzWy5me0xs9vNzFr7YGF7vAe4EXifmQ1J2zbbzDaY2b+Z2TYz22xmn0jbXm5mT5rZXjN7w8z+q3lbpNXNMbPvmdk6M9saDqPltRaXSH+khEZEWmRmlwBfAy4HKoCXgD80q3YpcBIwpY1D/Qw4ysze25Hzu/udwO+A74a9TBeFm1YCZwAlwDeBe81sqLsvAT4NvBLWL23hM50NfBv4EDAUWAvc16zaB4ATgOlhvfe1EebVwFx3fxhYQpCApRsSxjkcuB643czKwm23A/vCOteEr9bcBhwFzAAmhMf7jzbqi/Q7SmhE+qbHwh6GxtcnD+MYnwa+7e5L3D0B/DcwI72XJty+y91r2zhOLUEPTbvnwrTF3R90903unnL3+wl6h05s5+7/BNzt7m+6ez3wVYIenTFpdW5z9z3uvg54gSCJaM3VwO/D5d9z8LBTHPiWu8fd/WmgGphkZlHgCuAb7l7j7ouBe1o6QdhDdCPwxbCtqwh+Fle18zOL9AtKaET6pkvdvTTt9cvDOMZo4MeNSRHBPBEj6B1otL6dx/oVMNjMLjpkzUMws6vNbH5aXNOAge3cfRhBrwwA7l4N7OTAz7QlbbkGKGwljtOAsezv4fk9cIyZzUirtjNMBpsfrwKIcWD7tdaWFUA+MC/tMz8TlotIqK2JfCLS9+wj+OPYaEhrFQn+wN7q7r9ro46356Tu3mBm3wT+E1jUWjzpc1BaOn7YO/RL4ByCoaWkmc0nSLTaE88mgkSt8XgFQDmwsT2fo5lrwvPObzbN5hpg/iH23Q4kgBHAsrBsZCt1dxD0ck1198OJU6RfUA+NSP8yHzjTzEaZWQnBkEtr7gC+amZTAcysxMw+eATn/i2QC5yfVrYAmGpmM8wsF7il2T5bgXFp6wUEScv2MKZPEPTQpNcfYWbZrcTwB+AT4flyCIZuXnP3NR35IGGsHyIYCpqR9vos8NFDXPWFuyeBR4BbzCzfzI6mlauk3D1FkMT90MwGhecfbmZtze0R6XeU0Ij0TU/agfeheRTA3Z8D7gfeBuYBf2ztAO7+KPAd4D4z2wu8A1xwuAGFf8T/AxiQVrYM+BbwPMFcmOZX+dwFTAmHWh4L55p8H3iFIHk5Bvh7Wv2/EvQAbTGzHS3E8Dzw78DDwGZgPIc3F+VSgl6T37j7lsYXcDdBz/f5be0cuolgwvAWgmTvD0B9K3W/AqwAXg1/Fs8Dkw4jbpE+y9zb1WMsIiJdyMy+Awxx97audhKRVqiHRkQkA8zsaDObboETCS7rfjTTcYn0VpoULCKSGUUEw0zDCIbPvg88ntGIRHqxXjfkZGbnAz8GosCv3P22DIckIiIiGdarEprwZlTLgHOBDcAbwEfCiYIiIiLST/W2IacTgRXuvgrAzO4DLgFaTGhKS0t9woQJ3Rhe/7Zv3z4KCgoyHUa/ofbuXmrv7qO27l69rb3nzZu3w90PurFkb0tohnPg3TQ3EDxHpkn4QLsbASoqKvje977XfdH1c9XV1RQWtnhTVekCau/upfbuPmrr7tXb2vuss85a21J5b0toDil8oN2dAJMmTfLZs2dnNqB+ZM6cOai9u4/au3upvbuP2rp79ZX27m2XbW/kwNuDj+DwblkuIiIifUhv66F5A5hoZmMJEpmrgI+2VjnlUFkbJxoxIgYRs3A5WG/2/BURERHppXpVQuPuCTO7CXiW4LLtu919UWv111WlOPabf271eGYQNSM3K8rg4hyGluQxckAeU4YWM2VYMZOHFpOf3auaSEREpF/qdX+t3f1p4On21B2Qa/y/90/GHZLuJFOOu5NMBeseltXGk2zdW8emPXX86Z0t/OH1YN5xxGDSkGJmjCzluJGlHDOihJED8inM2d9syZSzp6aBXfsa2LkveK9tSFKSl0VZQTYDC7MpL8yhIDva1COUTDnxZIpEGE9OLEpW1NRjJCIicph6XULTEcXZxg1njDt0xTTuzqbKOhZtrGThxkrmr9/DH9/exB9eX9dUpzAnRjRipFJOdUOC9tzKJzcrQlYkQl0iSTx58A4Rg5xYlJysCDmxCIYdsC0aNWKRCNGIETUjEjGiEYhGIkQNopEgIYo2DquFw2xNdcPyWDR4z4pEiEWNrGiEWMSINb0fWJbVrH4sGiGrWf1YJKi3ak+SgRsryYoGcWY1rx+1YJ+wvhI4ERHpLH06oTkcZsbw0jyGl+Zx3tQhAKRSzqod+1i8eS+b9tSypbIOdycSMYpysxiQn8WAwhzKC7IZUJBNXlaUyto4u2oa2FXdwI7qenZU15NIOblZUXJjUbJiwR93gIZEivpEirp4kvpEivp46oCYUmFPUiLlJFIpkqmglynlQVkqFWwP1lPUJ5yk09QD1bitcTmeDOolkvt7ihJhWepI77P4avOHJbcuGgna4IAEqFmiFQ23x6IHJlWxtH3Tk6qm+mkJWeMxWyoL9jkw6cpqVj/WLIZo1FqtryRNRCQzlNC0QyRiTBhUyIRBvec6/cOVSjnxMNlJJIPlpiGyMOmJJ/cnQIm0bW/OX8DkqdNaqR8mTqlg+cCkykmmUsTDbcF50/ZJ7j9PQyLFvoYkyRYSsngydcBwXmP83Xkz7GiHEq20ZKupJys9YQvrHXCc/QnZ+rUNLIusTEvYgvecWITsaITsWIScWDR8D9bTl3OiQY9gdjRCJKJETER6NyU0coBIxMiJRMk5jG9GalOM2WGvVk+STO1PnhqTnPRkKJmWpO1P5lJNPWLpCVxT8pVMT7QOrN+YpKXXT0/S0pO5RGp/krY/mQsSs/QYGxPEZKpZkrb83U5po6yotSMJiqYlQ5GmZKj1faLNEqjGfaLN9t2/T3Y0ol4uETksSmikz4tGjOhhJmk9VTLl/OWFOZx6+hlpPVlB4hNPBkOYjUOZDYkUDckk9fEUDeG2/duTwfb0uo3lydQB+1TWxsPtybTjBnXqE8kjH64MNSY5ObEoedkR8rKi5GXHyMuKkJ8dC9ej5GVFyc+Okhu+56UvH1AnbZ+wLKoeKZE+pw/9ihfpP6IRIztqB1xxl2mJZJDgNCQOTKgak6YDE6YgyTq47v6Eqj6Roq4hSW08SU34vr2qntp4ktqm8gR1zeactUd2LNKUEDUmOwU5MQrDV0FOjKLcGAXZMQpzYxTlxFizJYEt205hTpTCnCwKcqIUhe+xaG+7R6lI39NzfhuKSK8WTJKOkJ/dvedNpZy6RJDk1DQkqYsfmATVNoTb4knqGtLLE/vrNSTZ15BgW1Udq3ckqapLsK8+2J7uZ/NfbzGG3KxIUzJUGCZCRblZlORlUZofvDe9mq/nZZGlhEjkiCmhEZFeLRIx8rNj5GfHKO/kYyeSwfym6voEL7z0CpOnH0d1fZDsVNclqK5PNK1XhWWNyxt217B4U5zK2jj7GpJtnqcgOxomO9mUh/evGliYw8CinOA9XK8oCq6mVI+QyMGU0IiItCIWjVCSF6EkL4sRRRFmji47rOPEk8EcpANeNfuX9zQtN7CjuoE1O/exo7q+1eG0svwsKpqSnfBVFCY9aevlBTlkx5T8SP+ghEZEpItlRSNNiUd7uTv7GpLsqKpvupfV9uqGA9Z3VDewYMMedlTVt9oLVJKXxcDCbAYV5TK0JJchJbkMLc1jWEkuQ0vyGFqSS2l+lq4uk15PCY2ISA9kZk3zcsYMLDhk/dqGZJj01IdJz/6bem6vqmdbVT2vrd7Flr11JJtdkpaXFWVoSS5DS3MZUpzHsNIw2SkNkqChJXkU58aU9EiPpoRGRKQPyMuOMnJAPiMH5LdZL5lydlTXs2lPLZsr64JXuLypspZ/rNzB1r11B12GX5AdZWhpHiPK8hg9IJ9R5QWMHpDP6PLgnLlZ0S78dCKHpoRGRKQfiUaMwcW5DC7O5bhW6iSSKbZV1bO5Mkx69gTJzuY9dazbVcPcNbuprk8csM+Q4lxGlec3JTmjygsYN7CAcRUF5GfrT410PX3LRETkALFohGGleQwrzWtxu7uza18Da3fVsG5nDWt31rB21z7W7axhzrLtbK+qP6D+sJJcxg8qZHxFYfhewISKQiqKcjSMJZ1GCY2IiHSImVFemEN5YQ7Hjzr4yq+ahgTrdtWwevs+Vm6vZmX4/uDc9QdMXi7KjQVJTkUh4wcVcPSQIiYPLca78wFs0mcooRERkU6Vnx3j6CHFHD2k+IByd2fL3jpWbmtMdILXyyu28/CbG5rqFWTBtGWvMHloMZOHFnH0kGImDSnSPB1pkxIaERHpFmYWXiqex+kTBx6wbW9dnGVbqliyeS9/eXMplckUD8xdT03YoxOLGEcNLmL6iBKmjyhl+ogSJg0p0l2WpYkSGhERybji3CxmjRnArDEDGFm/htmzTyOVctbvrmHJ5r0s3FjJ2xsq+dM7W7jvjfVA8EyuyUOLOXZECTNGljJr9ABGDsjTvJx+SgmNiIj0SJGIMbq8gNHlBZw/bSgQDFut31XLgg17WLixkgXr9/DwvA385pW1AAwqymHWmDJmjh7ArNFlTBlWrF6cfkIJjYiI9BpmxqjyfEaV53PRscOA4N46y7ZWMXftbuat2cUba3bz9MItQHDTwBkjSzlx7ABOHV/OcaPK9DiIPkoJjYiI9GrRiIUTiIv5+MmjAdhSWcfctbuYu2Y3c9fu4id/Xc6P/7KcvKwos8aUcer4gZw2oZypw0qIRjRE1RcooRERkT5nSEkuH5g+jA9MD3pxKmvivLp6J6+s3Mk/Vu7gO8+8CwQP+jzzqArOmjSIM4+qYEBBdibDliOghEZERPq8kvws3jd1CO+bOgSAbVV1vLJyJ39bup05y7bz+PxNmMGMkaXMPmoQZx89iGnDizXBuBdRQiMiIv3OoKJcLpkxnEtmDCeVct7eWMmcpdt4Yel2fvSXZfzw+WUML83jfVOHcMExQ5g5qoyIhqZ6NCU0IiLSr0UixoyRpcwYWcoX3nsUO6rr+eu723j2nS3c++pa7v77aiqKcjh/6hAumDaEE8cOIKYrp3ocJTQiIiJpBhbm8KFZI/nQrJFU1cX567vb+NPCLTw4bz2/fXUtAwtzuPz44Vxx/AgmDSnKdLgSUkIjIiLSiqLcrKahqZqGBH9bup1H39rI3S+v5s4XV3HM8BKunDmCi48dRpkmFGeUEhoREZF2yM+OccExQ7ngmKHsrK7n8fmbeGjeBr7xxCL+66nFvHfyYK44fgTvmVShm/llgBIaERGRDiovzOG608dy3eljWbxpLw+/uYHH3trIn97ZwsDCbD40ayT/dPJohpfmZTrUfkMJjYiIyBGYMqyYKcOmcPMFRzNn6Xbuf2M9d/xtJXf8bSXnTB7MNaeM4bQJ5boEvIspoREREekEWdEI504ZzLlTBrNhdw2/f20d972xnucWb+XoIUXccMY4Lj52mB690EXUqiIiIp1sRFk+Xz7/aP5x89n8z5XTcYcvPbiAM777V34+ZyVVdfFMh9jnKKERERHpIrlZUT44ayTPfOEM7rnuRCYOKuI7z7zLabf9lR8+t4w9NQ2ZDrHP0JCTiIhIFzMz3nNUBe85qoK3N+zhp39dwY//spy7Xl7N1aeM5sYzx1Gar8u+j4R6aERERLrR9BGl3Hn1LP70+TN4z6QKfv63lZzx3Rf46V+Xs68+kenwei0lNCIiIhkweWgxt3/0eJ7+3BmcNLac7/15Ge/5nxf4v7+vJp5MZTq8XkcJjYiISAZNHlrMr66ZxSP/cioTBxVxy5OLed8PX+T5xVtx90yH12v0uITGzG4xs41mNj98XZi27atmtsLMlprZ+zIZp4iISGc6flQZv//kSdx1zSwwuOE3c/nYXa/x7pa9mQ6tV+hxCU3oh+4+I3w9DWBmU4CrgKnA+cDPzCyaySBFREQ6k5lxzuTBPPuFM7nloiks2rSX9//kZf7zj4up1vyaNvXUhKYllwD3uXu9u68GVgAnZjgmERGRTpcVjXDtaWOZ86XZfPiEkdz999W89/t/4+mFmzUM1QrraQ1jZrcA1wJ7gbnAv7n7bjP7KfCqu98b1rsL+JO7P9Rs/xuBGwEqKipmPvDAA90Yff9WXV1NYWFhpsPoN9Te3Uvt3X3U1gdbsSfJbxY1sK4qxfSKKNdOzWZAbuf0SfS29j7rrLPmufus5uUZSWjM7HlgSAubvg68CuwAHPhPYKi7X9fehCbdpEmTfOnSpZ0ev7Rszpw5zJ49O9Nh9Btq7+6l9u4+auuWJZIp7nllLd97dimxiPG190/mqhNGHvEzonpbe5tZiwlNRm6s5+7vbU89M/sl8MdwdSMwMm3ziLBMRESkz4tFI1x/+ljOnTyYrzz8Nl99ZCF/fHsT37liOiPK8jMdXsa1u7/KzMrMbKqZjTOzLpt7Y2ZD01YvA94Jl58ArjKzHDMbC0wEXu+qOERERHqiUeX5/O6Gk7j1smksWF/JBT96icfn69/3bfbQmFkJ8BngI0A2sB3IBQab2avAz9z9hU6O6btmNoNgyGkN8CkAd19kZg8Ai4EE8Bl3T3byuUVERHq8SMT4p5NGc+bECr5w/3w+f9985izdzrcumUpRblamw8uIQw05PQT8BjjD3fekbzCzmcDHzWycu9/VWQG5+8fb2HYrcGtnnUtERKQ3Gzkgn/tvPJnbX1jJT/66nLlrd/GjD89g5ugBmQ6t27U5dOTu57r7b5snM+G2ee7+hc5MZkRERKRjYtEIn3/vRB741CkAfOgXr/Krl1b1u8u7DzkXxszyzaygO4IRERGRwzNzdBlPfe4Mzjl6EP/11BI+8/s3qaqLZzqsbtNmQmNmnwPuAn5pZl/snpBERETkcBTnZvGLj8/kqxcczbOLtnLJ7X9n2daqTIfVLQ7VQ3MN8FHgY0Crc1tERESkZzAzPvWe8fzuhpPYW5vgkp/+nWfe2ZzpsLrcoRKa7wKPAA8DP+ryaERERKRTnDyunKc+dzqThhTx6Xvf5PYXVvTpeTVtXuXk7vcD93dTLCIiItKJBhfnct+NJ/Plh97mf55dyspt1Xz7imPIifW9Zzsfag7NIR/u0J46IiIikhm5WVF+fNUM/vXco3jkrY189JevsaO6PtNhdbpDDTk9bmbfN7Mz0690Cu8WfL2ZPQuc37UhioiIyJEwMz53zkRu/+jxvLOxkit//g/W7azJdFid6lD3oTkH+AvB3XoXmVmlme0E7iV4uOQ1bT0cUkRERHqO908fyu8/eTK7a+Jc/vN/sGhTZaZD6jSHvA+Nuz/t7v/k7mPcvcTdy939VHe/1d23dEeQIiIi0jlmji7j4X8+heyo8eFfvMrinX3jKUJd9pBJERER6ZkmDCri4X85lWGlufxgbh1Pvd37L+tWQiMiItIPDS3J48FPncrYkgif/cObPPLmhkyHdESU0IiIiPRTJflZfGlWLiePK+ffHlzAA2+sz3RIh+1QT9vGzPKBC4BRYdFa4Bl371vTo0VERPqhnJhx97Un8KnfzuPLD79NfTLFx08enemwOuxQ96G5EngROBH4V6CQ4DLtt8zssq4PT0RERLpablaUO6+eyXsnD+LfH3uHu19enemQOuxQPTTfBE50931mdp67/yeAmQ0E/g482tUBioiISNfLiUX52T/N5PP3vcW3/riYWNS4+pQxmQ6r3Q41h8aAVLic/gCIZLhNRERE+ojsWISffOQ4zp0ymP94fBH3v7Eu0yG126ESmluAF83sW8AgM/uamf2MoHfm5q4OTkRERLpXVjTCTz96HGceVcHNjyzk8fkbMx1SuxzqTsEPAGcBbwM/AOqAvwInuPsjXR+eiIiIdLecWJRffGwmJ40dwL8+sIBn3un596lpz52Cq939IXf/Qfh6yN33dUdwIiIikhl52VF+dc0JHDuihM/+4S3+tmx7pkNqk+5DIyIiIi0qzInx60+cyIRBRfzzvfN4Z2PPffaTEhoRERFpVUleFv/3iRMoy8/m2l+/wfpdPfM2dEpoREREpE2Di3O557oTiCdTXHP36+za15DpkA6ihEZEREQOacKgIu66ZhYb99Ry/T1vUNvQs57SrYRGRERE2mXWmAH8+KrjmL9+D5/9w1skkqlD79RNlNCIiIhIu50/bQjfvHgqzy/Zyr8/vgh3P/RO3eCQD6cUERERSXf1KWPYXFnHz+esZFhJLp89Z2KmQ1JCIyIiIh335fdNYmtlHd9/bhmjyvO5ZMbwjMajIScRERHpMDPjtiumc+LYAfx/D73NW+t2ZzQeJTQiIiJyWLJjEe742EyGFOfyyd/MY9Oe2ozFooRGREREDtuAgmzuumYW9fEk198zl331iYzEoYRGREREjsjEwUX85KPHsXTLXr54/3xSqe6/8kkJjYiIiByxsyYN4uvvn8KfF2/le39e2u3n11VOIiIi0imuO20MK7ZV8bM5K5kyrJgPTB/WbedWD42IiIh0CjPjlouncvyoUv6/B99myea93XZuJTQiIiLSaXJiUe742EyKcmPc+Nu57KnpngdZKqERERGRTjWoOJc7Pj6TrZX13fbMp4wkNGb2QTNbZGYpM5vVbNtXzWyFmS01s/ellZ8flq0ws5u7P2oRERFpr+NHlfGtS6by0vId/M+zXT9JOFM9NO8AlwMvphea2RTgKmAqcD7wMzOLmlkUuB24AJgCfCSsKyIiIj3UVSeO4mMnj+IXL67iiQWbuvRcGbnKyd2XQDB5qJlLgPvcvR5YbWYrgBPDbSvcfVW4331h3cXdE7GIiIgcjv/4wFSWbqniyw8tYEJFIVOGFXfJeXraZdvDgVfT1jeEZQDrm5Wf1NIBzOxG4EaAiooK5syZ0/lRSouqq6vV3t1I7d291N7dR23dvbqjvf9pbIpvbnau/uXL3HJKHoXZB3VoHLEuS2jM7HlgSAubvu7uj3fVed39TuBOgEmTJvns2bO76lTSzJw5c1B7dx+1d/dSe3cftXX36q72HjNlDx/6xSvcty6f//vECcSinTvrpcvm0Lj7e919WguvtpKZjcDItPURYVlr5SIiItILzBhZyq2XTuPlFTv4zjPvdvrxe9pl208AV5lZjpmNBSYCrwNvABPNbKyZZRNMHH4ig3GKiIhIB31w1kiuPXUMv3xpNY+91bn9Epm6bPsyM9sAnAI8ZWbPArj7IuABgsm+zwCfcfekuyeAm4BngSXAA2FdERER6UW+/v7JnDxuAF95+G0WbqjstONmJKFx90fdfYS757j7YHd/X9q2W919vLtPcvc/pZU/7e5HhdtuzUTcIiIicmSyohFu/+jxDCzM4VO/ncuO6vpOOW5PG3ISERGRPq68MIdffHwmu2oa+JffvUm8E+4krIRGREREut204SV854rpvL56F//5xyO/rVxPuw+NiIiI9BOXzBjO4k17+cWLq5g6rJgPnzDqsI+lHhoRERHJmC+ffzRnTBzIvz+2iDfX7T7s4yihERERkYyJRoz//chxDCnJ5dO/ncfWvXWHdRwlNCIiIpJRpfnZ/PLqWVTXJ/j0vfOoTyQ7fAwlNCIiIpJxk4YU8YMPHctb6/bwH48twt07tL8SGhEREekRzp82lM+ePYH7567nrpdXd2hfXeUkIiIiPcYX33sUK7ZVc+vTSxg1IJ/zprb0nOuDqYdGREREeoxIxPjhh2cwfUQpn79vfrsfj6CERkRERHqU3Kwov7p6FgMKsrnunjfYsLvmkPsooREREZEep6Ioh19/4gTq40muvut1dh7imU9KaERERKRHOmpwEXddewIb99Ry3f+9wb76RKt1ldCIiIhIj3XCmAHc/tHjeWfTXj5977xW6ymhERERkR7tvVMG850rpvPS8h2t1lFCIyIiIj3elTNH8NwXz2x1uxIaERER6RUmDi5qdZsSGhEREen1lNCIiIhIr6eERkRERHo96+jTLHsTM6sClmY6jn5kIND6FHTpbGrv7qX27j5q6+7V29p7tLtXNC/s6w+nXOruszIdRH9hZnPV3t1H7d291N7dR23dvfpKe2vISURERHo9JTQiIiLS6/X1hObOTAfQz6i9u5fau3upvbuP2rp79Yn27tOTgkVERKR/6Os9NCIiItIPKKERERGRXq/PJjRmdr6ZLTWzFWZ2c6bj6evMbI2ZLTSz+WY2N9Px9DVmdreZbTOzd9LKBpjZc2a2PHwvy2SMfUUrbX2LmW0Mv9/zzezCTMbYl5jZSDN7wcwWm9kiM/t8WK7vdydro637xPe7T86hMbMosAw4F9gAvAF8xN0XZzSwPszM1gCz3L033Zyp1zCzM4Fq4DfuPi0s+y6wy91vC5P2Mnf/Sibj7AtaaetbgGp3/14mY+uLzGwoMNTd3zSzImAecClwLfp+d6o22vpD9IHvd1/toTkRWOHuq9y9AbgPuCTDMYkcNnd/EdjVrPgS4J5w+R6CX0xyhFppa+ki7r7Z3d8Ml6uAJcBw9P3udG20dZ/QVxOa4cD6tPUN9KEfWg/lwJ/NbJ6Z3ZjpYPqJwe6+OVzeAgzOZDD9wE1m9nY4JKXhjy5gZmOA44DX0Pe7SzVra+gD3+++mtBI9zvd3Y8HLgA+E3bbSzfxYOy4740f9xw/B8YDM4DNwPczGk0fZGaFwMPAF9x9b/o2fb87Vwtt3Se+3301odkIjExbHxGWSRdx943h+zbgUYJhP+laW8Mx8cax8W0ZjqfPcvet7p509xTwS/T97lRmlkXwB/Z37v5IWKzvdxdoqa37yve7ryY0bwATzWysmWUDVwFPZDimPsvMCsIJZphZAXAe8E7be0kneAK4Jly+Bng8g7H0aY1/WEOXoe93pzEzA+4Clrj7D9I26fvdyVpr677y/e6TVzkBhJed/QiIAne7+62ZjajvMrNxBL0yEDzB/fdq785lZn8AZgMDga3AN4DHgAeAUcBa4EPursmsR6iVtp5N0B3vwBrgU2nzO+QImNnpwEvAQiAVFn+NYG6Hvt+dqI22/gh94PvdZxMaERER6T/66pCTiIiI9CNKaERERKTXU0IjIiIivZ4SGhEREen1lNCIiIhIr6eERkS6nZmVpz3Zd0vak36rzexnXXTOL5jZ1W1s/8D/396dh0dZ3vsff39nMtn3EAKBEHZQUEB2UBZbFa37sdbT06qtrbXa0/Ucte3pqafbr9tprV2serRad1v3tdVWwA1kBxHZwhL2JSwBsuf7+2MmEDBElmQmM/m8rmuumXm2+c7tXOHjfd/P85jZD9rjs0Wk/em0bRGJqWjcydrMkoD5wBnuXn+UbSyyzUR3P9BetYhI+1APjYh0GGY2xcxeiLy+zcweMLM3zGydmV1uZj83syVm9krkEu6Y2UgzmxG5MerfjrjqaZOzgflNYcbMvmpm70duxvcYHLxf0HTgwqh8WRFpUwo0ItKR9SMcRi4GHgJed/fTgCrgE5FQ81vgCncfCdwHtHSV6onAvGbvbwVGuPvpwA3Nls8FzmrzbyEi7S4p1gWIiLTiZXevM7MlhG9j8kpk+RKgNzAIGAq8Gh4xIkj4bsFH6g4sa/Z+MfCwmT1D+BYSTbYBxW1XvohEiwKNiHRkNQDu3mhmdX5o0l8j4b9fBix19/EfcZwqILXZ+08Ak4CLgO+a2WmR4ajUyLYiEmc05CQi8Ww5UGhm4wHMLGRmQ1rYbhnQP7JNAChx99eBW4AcIDOy3UDi9E7DIp2dAo2IxC13rwWuAH5mZouAhcCEFjZ9mXCPDISHpR6KDGMtAO5w992RdVOBF9uzZhFpHzptW0Q6BTN7GrjZ3VceZX0R8Ii7fyy6lYlIW1CgEZFOwcwGAUXuPvMo60cDde6+MKqFiUibUKARERGRuKc5NCIiIhL3FGhEREQk7inQiIiISNxToBEREZG4p0AjIiIicU+BRkREROKeAo2IiIjEPQUaERERiXsKNCIiIhL3FGhEREQk7inQiIiISNxToBGRk2Jm083sC7GuA8DM9plZ31jXcSQzu9/MfhTrOkQSmQKNiGBma82sKhIImh6/i1Et15nZB2ZWaWZbzewlM8s6ln3dPdPdy07iszMj3/3lEz2GiMRGUqwLEJEO4yJ3fy1aH2ZmSe5ef8SyycBPgGnuvsDM8oGLolUT8C9ADXCOmXVz9y1R/GwROQnqoRGRVpnZbWb2ULP3vc3MzazF/yEys8+b2TIz22VmfzOz0mbr3MxuMrOVwMoWdh8NvOPuCwDcvcLdH3D3ysj+95vZH83s1UgPzowWjt+/2ba/N7MXI9vONrN+H/F1rwH+CCwGPnPE91prZv9hZovNbI+ZPW5mqc3W32xmm81sk5l9oXktLbTRhWa20Mx2m9nbZnb6R9QlIh9BgUZE2oyZXQJ8B7gcKATeAB49YrNLgbHAqS0cYjZwnpn9j5lNNLOUFrb5N+CHQBdgIfBwKyVdBfwPkAesAn7cSu2lwJTI8R4Grm5hsyuBaUAf4HTg2si+04BvAh8H+keOc7TPGQHcB3wJKADuAp47yncVkWOkQCMiTZ6J9Bg0Pb54Ase4Afh/7r4sMpz0E2B4816UyPoKd686cmd3f4NwGDoDeBHYaWa/MrNgs81edPeZ7l4DfBcYb2YlR6nnaXd/N1LLw8DwVmr/LLDY3d8HHgOGRMJHc3e4+yZ3rwCeb3a8K4E/uftSdz8A3NbK51wP3OXus929wd0fIDzMNa6VfUTkIyjQiEiTS909t9njnhM4Rinwm6ZQBFQABvRotk15awdw95fd/SIgH7iEcC9I87Ooypttuy/yGcVHOVzzOTAHgMxWPvpqIr097r4RmEF4COpYjlfM4d+rte9YCnyreXgESlr5DiJyDBRoROSj7AfSm73v1sq25cCXjghGae7+drNt/Fg+1N0b3f0fwD+Boc1WHeyNMbNMwsFn07Ec82jMbAIwAPi2mW0xsy2Eh8U+fbS5QkfYDPRsqcYWlAM/PqKN0t39yKE5ETkOCjQi8lEWApPMrJeZ5QDfbmXbPxIOBUMAzCzHzD55rB9kZpeY2VVmlmdhY4DJwKxmm11gZmeaWTLhuTSz3L3VXp9jcA3wKuF5PcMjj6FAGnD+Mez/BPA5MzvFzNKB77Wy7T3ADWY2NvIdM8zsE8d6arqItEyBRkSaPH/EdWieBnD3V4HHCZ/5Mw944WgHcPengZ8Bj5nZXuA9ji0QNNkFfJHwGVB7gYeAX7h784m/jwDfJzzUNJIjzkY6XpEzla4EfuvuW5o91gAP8uFhpw9x95eBO4DXCU8+bgpgNS1sO5fwd/wd4e+7isjkYhE5ceZ+TL2/IiIxZ2b3Axvc/b9iXUtrzOwUwmEu5chr7YhI+1APjYhIGzCzy8wsxczyCPdSPa8wIxI9CjQiIm3jS8A2YDXQAHw5tuWIdC4achIREZG4px4aERERiXsJfXPK3Nxc79+/xVupSDvYv38/GRkZsS6j01B7R5faO3rU1tEVb+09b968He5eeOTyhA40RUVFzJ07N9ZldBrTp09nypQpsS6j01B7R5faO3rU1tEVb+1tZutaWq4hJxEREYl7CjQiIiIS9+Iu0JjZNDNbbmarzOzWWNfT0bg7FftrWb/zABX7a2NdjoiISFTE1RwaMwsCvwfOATYAc8zsOXd/P7aVRce+mnq27Kli855qtkQeWyur2ba3hm2VNWyvrGFbZTV1DYdOxT/31CJ+fsXp5KYnx7ByERGR9hVXgQYYA6xy9zIAM3sMuARoMdBU1jqPzF6PWfi9QbPXRn5GMr0K0inJSyctOdj+1TdTW99Ixf5a9lbXUd/gNLpT3+hs3VtNecWB8GNXFeUV4Z6Wyup6ahsaP3ScvPQQXbNS6ZqdQt/CDLpmpVKYlUJ2ahLlFQf444wyLr/zbe69ZjR9usTPLHYREZHjEVcX1jOzK4Bp7v6FyPvPAmPd/SvNtrkeuB4guVv/kd2vuf2Yjt0z0zi9MInxxUmUZB3/SJy7s2m/s35vI1X1TmqSUZBq5KYYaUlGTYOzvrKRFRUNrNjdyPq9jTS00vRpSVCYFqAw3chODh8jMwR5qQHyU428yLGTg9ZqXcsrGrhjQTWNDhf2DTGsMIkemYZZ6/udiH379pGZmdnmx5WWqb2jS+0dPWrr6Iq39p46deo8dx915PKECzTN9R84yN+cswgAx2n6qg40Njo799eybud+1u44wOw1O3l3TQX1jc6Q4mwuP6MnFw8rpjArpdWaNu6u4pkFG3l6wUZWbdv3kd8hJSnAsJJcRpbm0TMvjZy0EEkBI2BGMGB0zUqlJD+8vK1CR3nFAW55cjFvr94JQJfMZD47rjdfmtyX1FDb9UzF26l/8U7tHV1q7+hRW0dXvLW3mbUYaOJtyGkjUNLsfc/IshYFDbrlpB71YCX56QwvyY28G8DOfTU8v2gTT87fyA9feJ+fvLSMif27MGlAF84ozaN75Fgbd1Uxq2wnM1fs4N21FQCMKs3jR5cOZUyffHLTQ+ytqmPT7mq2V9awr6aetOQg/QozGNojh5Sk6A5vleSn88gXx1FecYB3ynby96Vb+PVrK3hu0UZ+8clhnNErL6r1iIiItLV4CzRzgAFm1odwkLkK+HRbHbwgM4VrJ/bh2ol9WLm1kqcXbOSlJZv50YrtLW5/avdsvvHxgVw2oge9CtIPW9c1K5X+XbPaqrQ2UZKfTkl+OleOKmHGiu3c+uRirrjzbS48vZirRpcwrm8BgUDbD0WJiIi0t7gKNO5eb2ZfAf4GBIH73H1pe3zWgKIsbp42mJunDWbLnmqWbNzD9soaALpmpTCiVy4Fma0PR3VkkwcW8vdvTOL211byxNxynlu0ie45qXx+Yh+unlAa9V4kERGRkxFXgQbA3V8CXormZ3bLSW116CpeZaWG+N6Fp/Kf5w3i1fe38tic9fz4pWX8edZavnvBqZw3pKhdJg+LiIi0tbi7sJ60vdRQkIuGFfPwF8bx4HVjSAsFueGheVz6h7f5y9xyqmobYl2iiIhIqxRo5DBnDSjkpa+exY8uHcq+6jr+86+LGf/Tf3D7ayvYfUBXHhYRkY4p7oacpP0lBQN8Zlwp/za2F7PXVHDvm2u4/bWV3PvGGq47qw+fP7MP2amhWJcpIiJykAKNHJWZMa5vAeP6FrBs815uf20Ft7+2kj+9tZbrzuzDZ8aVkp+hWyqIiEjsachJjskp3bO567OjeP4rZzKyNI9fvbqCCT/9B9975j3W7tgf6/JERKSTUw+NHJfTeuZw37WjWbG1kv97o4zH55Tz0Ox1XDC0O2OzNHlYRERiQz00ckIGFmXx8yuG8eatU/ny5H7MWLGd/367muvun8Pssp3E0y01REQk/inQyEnpmpXKzdMG89YtZ3NZ/xALy3fzqbtncenv3+L5RZuob+EO4SIiIm1NgUbaRE56iEv6J/PWrWfzk8tOo7K6nn9/dAFTfjmdR2avp7ZewUZERNqPAo20qdRQkE+P7cVr35zMPVePoktmCt95eglTfzmdh2ato6Ze82xERKTtKdBIuwgEjHNOLeLpGyfwwOfH0DU7hf965j2m/mI6M45ys08REZETpUAj7crMmDywkKe+PIE/f34MWakhPvend3l8zvpYlyYiIglEgUaiwsyYNLCQp26cwFkDCrnlySXcOX21zoYSEZE2oUAjUZWRksQ9V4/i4mHF/OyVD/jWXxaxt7ou1mWJiEicU6CRqEtOCnD7p4bz1bP788yCjXz8f2fw3KJN6q0REZETpkAjMREIGN88dxBP3ziRouxUvvroAj5z72zW6DYKIiJyAhRoJKaGleTyzE0T+eElQ1i8YQ8X3vEGLy3ZHOuyREQkzijQSMwFA8Znx/fm79+YxMBuWdz48Hx+/OL7usqwiIgcMwUa6TC656Tx+PXjuXp8Kfe8sYZ/+7/ZbKusjnVZIiISBxRopENJTgrwg0uG8utPDWPRht1c8Js3eWnJZk0YFhGRVinQSId02YiePHPTRIqyU7jx4fl88c/z2LJHvTUiItIyBRrpsAZ3y+bZmyby7fMH88bK7Uz7zUxefX9rrMsSEZEOSIFGOrSkYIAvTe7Hy187ix65aXzxz3O57bmlVNfpJpciInKIAo3Ehb6FmTx14wQ+N7E397+9lsv/8Dart++LdVkiItJBKNBI3EhJCvL9i4Zw7zWj2Lyniot++yZ/mVuuCcMiIqJAI/HnY6cU8fLXJnF6zxz+86+LueGheezYVxPrskREJIYUaCQudctJ5eEvjOM7Fwzm9Q+2c96vZ/K3pVtiXZaIiMSIAo3ErWDAuH5SP1746pl0z03lSw/O49tPLeFAbX2sSxMRkShToJG4N7Aoi6e+PJEbJvfjsTnruei3b7J0055YlyUiIlGkQCMJITkpwK3nD+ah68ZSWV3PZb9/m7tnrqahUROGRUQ6AwUaSSgT+3fhla9PYsqgQn7y0gd86q53WLtjf6zLEhGRdqZAIwknPyOZuz47kl9dOYzlWys5/zdv8MDba2lUb42ISMJSoJGEZGZcfkZPXv3GZMb0yef7zy3lM/fOZuPuqliXJiIi7UCBRhJat5xU7v/caH56+WksKt/NtF/P5Ml5G3QxPhGRBKNAIwnPzLhqTC9e/tokBnfP4lt/WcSXH5rPTl2MT0QkYXS4QGNmvzCzD8xssZk9bWa5zdZ928xWmdlyMzsvhmVKHOpVkM5j14/n2+cP5p8fbOPcX8/k5SWbY12WiIi0gQ4XaIBXgaHufjqwAvg2gJmdClwFDAGmAX8ws2DMqpS4FAwYX5rcj+f//UyKc9P48sPz+coj86nYXxvr0kRE5CR0uEDj7n9396ZLvc4CekZeXwI85u417r4GWAWMiUWNEv8GdcviqRsn8K1zBvK3pVs499czeOU93TpBRCRe2YlMjjSznoR7S84CioEq4D3gReBld29sk+LMngced/eHzOx3wCx3fyiy7t7IZ/31iH2uB64HKCwsHPnEE0+0RSlyDPbt20dmZmasyzhu5ZWN/N+SGtbtbWRc9yCfOSWFzGSLdVkfKV7bO16pvaNHbR1d8dbeU6dOnefuo45cnnS8BzKzPwE9gBeAnwHbgFRgIOGhoO+a2a3uPrOVY7wGdGth1Xfd/dnINt8F6oGHj6c+d78buBtg0KBBPmXKlOPZXU7C9OnTidf2vuqCRu6cvprf/nMlqyrr+f5FQ7jw9O6YddxgE8/tHY/U3tGjto6uRGnv4w40wP+6+3stLH8PeMrMkoFerR3A3T/e2nozuxa4EPiYH+pC2giUNNusZ2SZyEkLBQN89WMDOOfUIm59cjH//ugCnlmwkR9eOpTi3LRYlyciIh/huOfQHCXMNF9f6+6rTrQgM5sG3Axc7O4Hmq16DrjKzFLMrA8wAHj3RD9HpCWndM/mqRsn8r0LT+Xt1Ts551cz+L83yqiqbYh1aSIi0ooTGXI6BfiPyNtfufvSti2J3wEpwKuR7v5Z7n6Duy81syeA9wkPRd3k7vpXRtpcMGBcd2Yfzj21iP965j1+9OIy7py+mouGFTNlUCHj+haQGtIJdiIiHcmJDDndA1wGOPAsMLEtC3L3/q2s+zHw47b8PJGjKclP54HPj+HdNRXc80YZj767nvvfXktaKMjkgYVcPaGU8X0LOvQ8GxGRzuJEAs1q4ArCgWZ925Yj0vGM6ZPPmD75VNc18E7ZTl7/YBsvLt7MK0u3MKxnDl/7+ACmDuqqYCMiEkMnch2aa4EywmHmM21ajUgHlhoKMnVQV35wyVDeuvVsfnLZaezcX8vn75/LJb9/i78v3UJdQ5tcsUBERI7TcffQRM46+ls71CISN1JDQT49thefHNWTp+dv5Levr+T6B+eRlx5i2tDuXDq8mNG98wkE1GsjIhINJzIp+B7gDndf0sK6DOBTQI27H9f1Y0TiUSgY4MrRJVx2Rg/+GRmKenbhRh59dz09ctP45KiefHpsL7pmpca6VBGRhHYic2h+D3zPzE4jfO2Z7YQvrDcAyAbu4zgvhicS70LBAOcN6cZ5Q7pxoLaevy/dypPzN3D7ayv5/euruPD0Yq6Z0JvhJbmxLlVEJCGdyJDTQuBKM8sERgHdCd/6YJm7L2/b8kTiT3pyEpeO6MGlI3qwevs+HnxnHX+dt4GnF2xkeEku107ozQWndSc5qcPdSk1EJG6dSA8NAO6+D5jedqWIJJ5+hZncdvEQvnXuQJ6ct4E/v7OOrz++kB+9+D6Xn9GTT47syYCirFiXKSIS90440IjIsctKDXHtxD5cPb43b6zawSOz13Hfm2u4e2YZw0ty+fTYXlw8rFgX7BMROUEKNCJRFAgYkwcWMnlgITv21fDMgo08Nqecm/+6mJ+8tIwrR5XwmbGl9CpIj3WpIiJxRYFGJEa6ZKbwhbP6ct2ZfZhVVsGDs9Zy75truOeNMqYMLOTfxpYyZVAhSUHNtRER+SgnHGjMbBBwBzCS8L2V3gC+6e7lbVSbSKdgZozvV8D4fgVs2VPNo++u59F31/OFP8+la1YK/zIyPNemb2FmrEsVEemwTqaH5kHgNg5dZO9fgIeAySdZk0in1S0nlW+cM5CvnN2f1z/YxhNzy7l7Zhl3Tl/NmN75fGp0CRec1p20ZM21ERFp7mQCTRrw78ANkfcGDDOz5wDc/eKTrE2k0woFA5w7pBvnDunG1r3VPDl/A3+Zu4Fv/WURtz2/lMtH9KB/QLdZEBFpcjKB5h5gAYfuBxUChgL/e7JFicghRdmp3DilP1+e3I9ZZRU8Nmc9j84pp7a+kSfXv8W/jinhwtOLyUjRlDgR6bxO5i9gMXAN8Hzk/SeAP7r7jJOuSkQ+pPlcm9v21/Lzv8xgbkU9tzy5hB88/z4XDSvmytEljCjJ1Z2/RaTTOZkL691qZs8CYwAHrnf3BW1WmYgcVV5GMuf1DvGTayYxf/0uHp9TznOLNvHYnHIGdM3kU6NLuGxEDwoyU2JdqohIVJxUH7W7vwO800a1iMhxMjNGluYzsjSf/75oCC8s2sTjc8v50YvL+NkrH/DxU4r45KieTBqg079FJLFp0F0kQWSmJHHVmF5cNaYXK7ZW8viccp5esJGX39tCYVYKl4/owRW61YKIJCgFGpEENLAoi+9deCq3TBvM68u38dd5G7j3zTXcNbOMYT1zuGJUCRefXkxOeijWpYqItAkFGpEElpwU4Lwh3ThvSDd27Kvh2YWb+Mvccr73zHv88Pn3OWdIEVeM7MlZ/btoSEpE4poCjUgn0SUzhevO7MPnJ/Zm6aa9/HXeBp5duJEXF2+ma1YKl47owcXDihlSnK2zpEQk7ijQiHQyZsbQHjkM7ZHDdy44hX9+sI2/zis/ePfvvoUZXHhad8b368KIXrm6A7iIxAUFGpFOLDkpwLSh3Zg2tBu79tfy8ntbeG7RRn77+iru+OcqQkHj9J65jOqdx+jSfEaW5pGXkRzrskVEPkSBRkSA8LVtPj22F58e24s9VXXMW1fB7LIK5qyt4L4313DXjDIATu2ezZRBhUwd3JURJbmaeyMiHYICjYh8SE5aiLMHF3H24CIAqusaWFS+m7nrdjFzxXbumlnGH6avJjs1ibMGFjJlYCGTBxXSNSs1xpWLSGelQCMiHyk1FGRs3wLG9i3gpqn92Vtdx1srd/D68m1MX76dFxdvBmBoj2ymDOzKhH4FnFGap/k3IhI1CjQictyyU0Ocf1p3zj+tO+7O+5v3Mn35dqYv38Yfpq/id6+vIjkYYHhJLuP65jOxfxfOKM0jpOEpEWknCjQiclLMjCHFOQwpzuGmqf2prK5j7tpdzCrbyayynfwuMsE4KyWJif27MHlQIZMHFlKcmxbr0kUkgSjQiEibykoNMXVwV6YO7grA3uo63l61gxkrtjN9+XZeWboFgIFFmZw1oJDxfQsY3SefnDRdtVhETpwCjYi0q+zUENOGdmfa0PDw1Mpt+5ixfDvTV2zjwVnruPfNNQQMhhTnML5fwcGAk5miP08icuz0F0NEosbMGFiUxcCiLL44qS/VdQ0sLN/NO6t38k7ZTu5/ay13zywjGAhf/G983wLG9ytgdO880pP150pEjk5/IUQkZlJDQcb1LWBc3wK+Qfj08PnrdvFO2U7eWb2Te98s448zVhMKGsN65jKhXwHj+hVwRi+dQSUih1OgEZEOIzUUZEL/Lkzo3wWAA7X1zF0bDjhvrz40wTg5KcAZvXIZ17eAsX0KdIsGEVGgEZGOKz05iUkDC5k0sBAITzCes6aCd1bvZNaandzxj5U0+srwKeK9chnXJ59xfQsY0SuPtGQFHJHORIFGROJGdmqIj51SxMdOCV/BeE9VHXPXVjB7TcVhp4g3DVGN7pPPmN75jOydR3aqzqISSWQdNtCY2beAXwKF7r7DzAz4DXABcAC41t3nx7JGEYmtnLTDA05ldR1z14WvgTO7rIJ7ZpZx5/TVmMHgbtmM6Z13MOR0zdZtGkQSSYcMNGZWApwLrG+2+HxgQOQxFrgz8iwiAkSugTOoK1MHha+Bc6C2noXrd/Pu2vBNNp+Yu4EH3lkHQGlBOiN75XFGaR6jeucxoGsWwYDFsnwROQkdMtAAvwZuBp5ttuwS4M/u7sAsM8s1s+7uvjkmFYpIh5eenHTYJOO6hkbe37SXOWsreHdNBTNXbuepBRsByEpJYnivXEaW5jGqNJ/hvXJ1LRyROGLhfNBxmNklwNnu/jUzWwuMigw5vQD81N3fjGz3D+AWd597xP7XA9cDFBYWjnziiSei+wU6sX379pGZmRnrMjoNtffJc3e2VzkrdzWwancjq3Y3sqGyEQcM6JkVYEBugP55QYqTqyktyCA8+i3tSb/t6Iq39p46deo8dx915PKY/O+Hmb0GdGth1XeB7xAebjoh7n43cDfAoEGDfMqUKSd6KDlO06dPR+0dPWrv9lFZXcfC8t3MXbuL+et38e763fyzvAYwCrMaGNkrj5Gl4aGqoT2ySUnS2VRtTb/t6EqU9o5JoHH3j7e03MxOA/oAiyL/F9QTmG9mY4CNQEmzzXtGlomItJms1BBnDSjkrAHhU8UbGp0VWyt59NXZVKZ0Yd66XQfvR5WcFOD0HjkHA87I0jy6ZKbEsnyRTqtDDRC7+xKga9P7I4acngO+YmaPEZ4MvEfzZ0SkvQUDxindszm7V4gpU4YDsK2ymvnrdjNvXQXz1u3iT2+t5a6ZZUB4svGwnrkML8llWEkuQ4qzddE/kSjoUIHmI7xE+JTtVYRP2/5cbMsRkc6qa1Yq04Z2Y9rQ8Mh5dV0DSzftYd66Xcxft5s5ayt4btEmAJIigagp4AwvyaFPl0ydUSXSxjp0oHH33s1eO3BT7KoREWlZaijIyNJ8RpbmH1y2dW81C8t3s7B8N4vKd/P0go08OCt8ynhaKMjAokwGdcticLdsBnXLold+Ot1yUgkFA7H6GiJxrUMHGhGReFWUncp5Q7px3pBwL05Do1O2fR8Ly3ezbHMlH2zZyz+WbeOJuRsO7mMGRVmp9MhLozg3jR65aZTkp1Gan0FpQTrFuWnq2RE5CgUaEZEoCAaMAUVZDCjKOmz59soaVmytZOOuKjbsrmLjrio27a5iUfluXnlvM3UNhy6tEQoaPfPS6V2QTp8umfQtzAg/umRSlJ2iU8qlU1OgERGJocKsFAqzWj4zqqHR2bK3mnU797N+5wHWVRxg3c79rNlxgHfKdlJd13hw24zkIH0KM+jTJZM+XTLomRfu4SnOTaN7TqomJkvCU6AREemgggGjR2ToaUK/w9c1RsLOmh37Kdu+j7Id+ynbvp+F5bt4YfEmjrxmapfMZIpz0yjOCYec4tzUg4GnODeNgoxkAhrOkjimQCMiEocCATsYRiZGbu3QpLa+ka17q9m4Ozx8tWl3FRt3V7NpdxWrt+9j5srtHKhtOGyf5KQAxTmpB4952OtIAEpP1j8Z0nHp1ykikmCSkwKU5KdTkp/e4np3Z29V/aHAs6cq8jocet5atYOte6tpPKKXJy89FBnCSqNrdgpdI8NlXbNSI88pdMlMITlJZ2pJ9CnQiIh0MmZGTnqInPQQpxZnt7hNXUO4l6cp5DTv7dmw6wDz1++iYn9ti/vmpYcOzg1qHnYOLUuhMCuV7NQkTWSWNqNAIyIiHxIKBuiZl07PvJZ7eSAcenbsq2F7ZQ3b9tawfV/Tc3V4WWUNc9ZWsK2yhtr6xg/tn5IUOCzk5GekkJ8RomJzHbsWbCAvPZmCjBTyMkLkZyRryEtapV+HiIickFAwQPec8BBUa9ydvdX1bK+sZltlOAA1BZ7wczVl2/czb90udh2oo6HRefSDRR86TmooQH56MnkZyeRnJJOXnkxOWuiwR3ZaEtlHLMtMUU9QZ6BAIyIi7crMDoaL/l2zWt22sdF5+R/TOWX4aHYdqKVifx0V+2uo2F8XeX/osb7iAHur6thTVfeh+T7NBQNGdmpSJPCEDntu/shKTSIjJYnMlCTSk4NkpoTfZyQnkRoKKBR1cAo0IiLSYQQCRkbI6FuYecz7uDv7aurZEwk3e6rqDgadvVWHL296bNxVdfB1fWtpKCIYMNKTg2QkJ5GREoyEnqYAFCQtOUhKUpDUUJDUUCD8nBQgLTm8LLwusjyyTVqoaV2A5KQAoWCApIApOJ0gBRoREYlrZkZWaois1BA9845vX3enqq6BPVV1VFbXs6+mnv019eyvaQg/1x563bTuQG3Dwdcbd1exv6aeqroGqusaqKlrpLbhw/OFjkdyMEAoaISSApHXTYHHCDW9DwYIJdnBEBQwIxgwAgEj2PTajGCAZq8PPTdfX76+lgV1KyJtCYZFnjm0LBKymrJW822a9jlsvdnh+zctO7h/eEVL+x+5jOb7t9JuCjQiItJpmRnpyeHelu45bXPMhkanOhJwqusbD72ua6SmriESfiLL68Ov6xsaqWtopLbBqa0Pv2561Nb74e8bnNrIfnur6mlodBrdaWh0GtxpPPjMh5Y1NB6xPrKM1Svb5svHkAKNiIhIGwoGLDz3JiU+/omdPn06U6ZMwd1xByfccwVNr8Hxw64+3XyZH1zmB7dvWth8m5aOyWH7H+WYfvj63j9r+XvER2uLiIhIu2o+JESrgzsdky7nKCIiInFPgUZERETingKNiIiIxD3zI+8xn0DMrBJYHus6OpEuwI5YF9GJqL2jS+0dPWrr6Iq39i5198IjFyb6pODl7j4q1kV0FmY2V+0dPWrv6FJ7R4/aOroSpb015CQiIiJxT4FGRERE4l6iB5q7Y11AJ6P2ji61d3SpvaNHbR1dCdHeCT0pWERERDqHRO+hERERkU5AgUZERETiXsIGGjObZmbLzWyVmd0a63oSnZmtNbMlZrbQzObGup5EY2b3mdk2M3uv2bJ8M3vVzFZGnvNiWWOiOEpb32ZmGyO/74VmdkEsa0wkZlZiZq+b2ftmttTMvhZZrt93G2ulrRPi952Qc2jMLAisAM4BNgBzgH919/djWlgCM7O1wCh3j6eLM8UNM5sE7AP+7O5DI8t+DlS4+08joT3P3W+JZZ2J4ChtfRuwz91/GcvaEpGZdQe6u/t8M8sC5gGXAtei33ebaqWtryQBft+J2kMzBljl7mXuXgs8BlwS45pETpi7zwQqjlh8CfBA5PUDhP8wyUk6SltLO3H3ze4+P/K6ElgG9EC/7zbXSlsnhEQNND2A8mbvN5BA/9E6KAf+bmbzzOz6WBfTSRS5++bI6y1AUSyL6QS+YmaLI0NSGv5oB2bWGxgBzEa/73Z1RFtDAvy+EzXQSPSd6e5nAOcDN0W67SVKPDx2nHjjxx3HnUA/YDiwGfjfmFaTgMwsE3gS+Lq7722+Tr/vttVCWyfE7ztRA81GoKTZ+56RZdJO3H1j5Hkb8DThYT9pX1sjY+JNY+PbYlxPwnL3re7e4O6NwD3o992mzCxE+B/Yh939qchi/b7bQUttnSi/70QNNHOAAWbWx8ySgauA52JcU8Iys4zIBDPMLAM4F3iv9b2kDTwHXBN5fQ3wbAxrSWhN/7BGXIZ+323GzAy4F1jm7r9qtkq/7zZ2tLZOlN93Qp7lBBA57ex2IAjc5+4/jm1FicvM+hLulYHwHdwfUXu3LTN7FJgCdAG2At8HngGeAHoB64Ar3V2TWU/SUdp6CuHueAfWAl9qNr9DToKZnQm8ASwBGiOLv0N4bod+322olbb+VxLg952wgUZEREQ6j0QdchIREZFORIFGRERE4p4CjYiIiMQ9BRoRERGJewo0IiIiEvcUaEQk6sysoNmdfbc0u9PvPjP7Qzt95tfN7OpW1l9oZj9oj88Wkfan07ZFJKaicSdrM0sC5gNnuHv9UbaxyDYT3f1Ae9UiIu1DPTQi0mGY2RQzeyHy+jYze8DM3jCzdWZ2uZn93MyWmNkrkUu4Y2YjzWxG5MaofzviqqdNzgbmN4UZM/uqmb0fuRnfY3DwfkHTgQuj8mVFpE0p0IhIR9aPcBi5GHgIeN3dTwOqgE9EQs1vgSvcfSRwH9DSVaonAvOavb8VGOHupwM3NFs+Fzirzb+FiLS7pFgXICLSipfdvc7MlhC+jckrkeVLgN7AIGAo8Gp4xIgg4bsFH6k7sKzZ+8XAw2b2DOFbSDTZBhS3XfkiEi0KNCLSkdUAuHujmdX5oUl/jYT/fhmw1N3Hf8RxqoDUZu8/AUwCLgK+a2anRYajUiPbikic0ZCTiMSz5UChmY0HMLOQmQ1pYbtlQP/INgGgxN1fB24BcoDMyHYDidM7DYt0dgo0IhK33L0WuAL4mZktAhYCE1rY9GXCPTIQHpZ6KDKMtQC4w913R9ZNBV5sz5pFpH3otG0R6RTM7GngZndfeZT1RcAj7v6x6FYmIm1BgUZEOgUzGwQUufvMo6wfDdS5+8KoFiYibUKBRkREROKe5tCIiIhI3FOgERERkbinQCMiIiJxT4FGRERE4p4CjYiIiMS9/w9EwlrdM1EPsgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n", + "Trajectory Angular Velocity and Acceleration Plots\n", + "\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnMAAAIsCAYAAACZaC8sAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3xb1dn4v0eSJW95xE6cqexJEgJhBggbKlYpGwq0UFpaKP317VDfFt7biTqhgw5KKXvPgNjD7JFBSCCbRJm2Ey95ylr398e5kmVb3tcz5/v53I907z333OceHVuPnvMMoes6CoVCoVAoFIqRiWWoBVAoFAqFQqFQ9B2lzCkUCoVCoVCMYJQyp1AoFAqFQjGCUcqcQqFQKBQKxQhGKXMKhUKhUCgUIxilzCkUCoVCoVCMYJQyp1AoFAqFQjGCUcqcQqFQKBQKxQhGKXMKhUKhUCgUg4DL48tyeXxWs/sVqgKEQqFQKBQKhfm4PD4LcAlwObAUaAEcQCXgA/7l97q39fc+yjKnUCgUCoVCMTC8CUwHfgKM83vdk/xedzGwDPgQ+K3L47uivzdRljmFQqFQKBSKAcDl8aX5ve5wf9t0h7LMKRQKhUKhUAwMk1we32EALo/vuFQN+qvIgVLmFApTEEL4hRCnDLUcYI4sQojPhRDLzZHIPIQQmhBCG2o5UjGc5kBfGGz5h+scUyhM5h/AhS6P70rgqwN1E6XMKUYdQohSIUSNEMIx1LL0FiHES0KIX6Q4fq4QolwIYRsMOXRdn6/reqlx7xGnpIzkOdCe0fAsqeZQ8hxTKEYxW/xetwcoAI4aqJsoZU4xqhBCuIDjAB04Z2il6ZpOFLN7gSuEEKLd8a8CD+q6Hhl4yUY2I2kOQKfzIH7OxTB/lsH6gaFQjFBeAPB73bcDdw7UTZQypxhtXImMELoHuCr5hGEd+IEQYp0QIiCEeFQIkW6cWyKE+EQIUS+EeNw496uka3UhxIyk/XuSz7e7j0cI8YXR1wYhxJfbyfBjIcQ6oDHFF+EzQCHyCzx+TT5wFnCfsT9eCPGkEOKAEGKHEOK7nQ2GEGKuYdmpNZa1zkk6N0kI8ZTRT5UQ4m/t5DxFCHE/MBl4TgjRIIT4kRDih0KIJ9vd5y9CiD93IkOOEGJP+yU1IcREY1wLO5O/j/RpDhjnh8s86MmzpPz8uvlcezN3Om2bSv7OnjfVHErq45SkPruaq11+bu3ktgkhbjauqRJCXGbM25929qwKxUDh97pfBHB5fBcif6zj8vh+5vL4nnJ5fEvMuo9S5hSjjSuBB43tdCHE2HbnLwLOAKYCC4GrhRB24GnkF2YB8DDwZfrOF0hlzAn8HHhACFGSdP5SwA3ktbe06breDDxmPEeyzJt0Xf9UCGEBngM+BSYAJwPfE0Kc3l4IIUSa0fYVoBi4EXhQCDFbCGEFngd2Ai6jr0fa96Hr+leBXcDZuq5n67r+O+AB4AwhRJ5xHxsyj9J9nYzH/wCfp1hS2ws0Aod0cl1f6fUcABhO86C7Z+ns8+vqc+3l3OlJ2/byp3zeTuZQ+/t1OleTmqX83FLwK+AEYJHR5makIvyXTtorFIPBzX6vu97l8S0DTgH+g/SnMwWlzClGDUKIZcAU4DFd11cjv1wua9fsL7qu79N1vRr55bEY6cdgM86FdV1/Cvi4r3Louv64cY+YruuPAluBI9rJsNtQ3FJxL3BBkuXhSuMYyKSTRbqu/0LX9ZCu69uBfyOVqfYcBWQDXqPtG8gv+ksNecYDP9R1vVHX9aCu6+/28PnKgLeBC41DZwCVxpi3wVAurgfuMvaLhBDTjH50IAJkCCGcQoiPDcvNgp7IkYp+zAEYZvOgm2fp7PPr6nPtzdzpSds28vfgebuiq7mafL9Un1vymOUC3wOu03U9AHwEzEG6KNSbNc8Uij4QNV7dwJ1+r9sH2M3qXClzitHEVcAruq5XGvsP0W5pCihPet+E/AIZD+zV2yZd3N1XIYQQVwoh1hrLRbXAAmBMT/s2vnwrgfOEENORX4gPGaenAOPjfRv9/y/Q3voE8rl267oeSzq2E2lpmQTs7IcP3r1APNHlFcD9nbRbgLS0vGzsfx+4DkAIkQHkAPuRn4UbeKKP8sTp6xyAYTYP6PpZOvv8uvpcezN3etK2jfw9eN6u6Gquxunsc0vmJGCLoXyC/LIMAH9Nus6MeaZQ9Ja9Lo/vX8DFwAsuj8+BiTqYeY6rmjMLCKIFot22VShMxlAMLgKsQoj4P30HkCeEWKTr+qddXF4GTBBCiKQv8klIS0icJiAzaX8csCeFHFOQFoyTgQ90XY8KIdYCyQENPcnUfR/SIjcbeFnX9Qrj+G5gh67rM3vQxz5gkhDCkvQlORnYYvQzWQhh64FCl0reZ4B/GNaNs4AfdXLtBKBG1/U6Y/8MWhW/E4Aa4BNDvgOiQ9xHz+nnHIBhNA+6exY6//y6+lx7M3d60jYhfw+et7s539Vc7Q3jjb7iXIdU0OsBdF0P0895plD0BpfHdzTS7zXuJvAHv9dd6/L4SoAfmnWfvmuFmtOC5rwMzelDc+4HNgFlaM4NaM7fozlndNeFQmEi5yHN2POQyy+LgbnAO7T1P0vFB8a1NxjO0+fScXloLXCZEMIqhDgDqYikIgv5xXUAQAjxNaSForfch/Sr+AatS6wgl/3qDefzDEOeBUKIpSn6+AipfPxICJEmZADC2Ugfqo+RyotXCJElhEgXQhzbiSwVwLTkA7quB5HWjYeAj3Vd39XJtdVArhBiqhDiUqSlZJ7hb6cBt7ezxvSH8+j7HIDhNQ/Oo+tn6ezz6+pz7c3c6U3bnjxvhznUjq7mam/YAywWQpQIIY5ERoEXG/6QCsVQcCWwGrgbyAXqAfxed5nf637FrJv0x8TXpt4YWmASWqBNvTE0Z7/rjSkUPeQq4L+6ru/Sdb08vgF/Ay4XXaRP0HU9BJwPXAPUIpcNn0cWRI5zE/LLpRZZMPmZTvraAPwRqRhUIJ373+vtw+i67gfeR35Jrkg6HkVawhYDO5DLsXchnc5TPdfZwJlGu78DV+q6vsno52xgBtI5fQ/S/J+KW4GfGctnP0g6fq/xfJ0tsQKsRH4hr0WO7znAMUh/qo+A33ZxbW/p8xyAYTcPunwWpMWrw+fX1efay7nT47Y9fN7O5lD8+k7navdD1YaXkEEUG5EBLOcj594bvexHoTAFv9d9vd/rXoL88ZoP3OPy+D5weXy/cXl8x7s8PqsZ9+l7bVbNmYYW6LoERU/aKBTDECHER8A/dV3/71DLMlwRQkxGWuTHJS2j9rfPe4A/6Lr+WSfnNQBd1zUz7tcDedQ8GIV0N88UioHE5fFlACcif7wc7fe6D+9vn333mYsraZrzQuAltEA9mvNm4FDgV2iBNUqRU4wUhBAnAJuRVoHLkakPXhpSoYYxQqau+D7wiImK3AtIS9BsIcS/dF2/x4x+eymDmgejnOEwzxQHDy6P7/tdnN7h97pvNOM+ZgRA3IwWeBzNuQzp/Pp7ZO6UI03oW6EYLGYj87tlAduBC4wUHIp2CCGykEtpO5EOvaag6/qXetCs1Kz7dYKaB6OcHs4zhcIscozX2ciUP3G3mbPpR+qj9vR9mTWO5vwELXAomvNWYD1a4KHEMYVCoVAoFIqDHJfH9zbg9nvd9cZ+DuDze93Hm9G/GZa5vWjOfwGnIoMeTM2dolAoFAqFQmEWLo/vDODPgBW4y+91eztp9xVk1P5Sv9e9qp+3HQuEkvZDpM7x2CfMUOYSuVPQArVoTlNzpwwkFotFz8jIGGoxDgpisRgWi9LxBws13oOLGu/BRY334DHSxrqpqUnXdb1TgY3o0TuQBqg9wEqXx7fC73VvaNcuBxm9/pFJot0HfOzy+J429s9Dlg40hX4EQDhlIjwt0AQ81Xo8UIbMczTssdvtNDY2DrUYBwWlpaUsX758qMU4aFDjPbio8R5c1HgPHiNtrIUQnZVJjHMEsM3vdW8HcHl8jwDnAhvatfslMnWSKcYpv9f9a5fH9yKyfjHA1/xe9ydm9A39s8xdCdyB5tyCjPZ6CS1Q3s01CoVCoVAoFEPFBNqWottDu4BNl8e3BJjk97p9Lo/PtJVGv9e9BlhjVn/J9Cc1yfXy1TkHmSvlHjSnE5lM+CXgPVXaS6FQKBQKxWBhyci1uTy+ZP+2O/1e9509vd7l8VmAPwFXmy2by+PLB2YC6fFjfq/7bTP67r/PnBbYhEwcehuaM54I70LkYPQ7Ed5I4/4P/Mwb7+SwKfnywO6VsOsDOOZGUPUAFQqFQqEYMGLNdZFukvDuRdZcjjPROBYnB1mKrtTl8YGsv7zC5fGd058gCJfHdy3SB28isirJUciKKSf1tc9k+uMz12UiPLSAKYnwRhLBcBTtuQ1MzM/g1f93AvbqLfCfU+TJjDxY0pPykAqFQqFQKAaIlcBMl8c3FanEXQJcFj/p97oDwJj4vsvjKwV+YEI0603IPHMf+r3uE10e3xzgN/3sM0F/QlRyjO1w4HrkOvQE4FvAkv6LNvLYWtFANKazs6qJR1fthjd+CRkFkJ4Ha7oqX6lQKBQKhWKg8XvdEeAG4GVkDd/H/F735y6P7xcuj++cAbx10O91BwFcHp/D73VvQiYSNoX++Mz9XL463waWoAXqjX0N8PVftJHHxjJZ1Sg33cYbGyv46v73YLYbCqZKxa5hP2QXD7GUCoVCoVAcvPi97heAF9odu6WTtstNuu0el8eXBzwDvOry+GqQVXRMwYw8cwOaCG8ksaGsjky7lUMn53OgJgDNNeA6Fgqmywa7P4a5Zw2tkAqFQqFQKAYNl8cngO/6ve5aQHN5fG8CTkys+2yGMncf8DGaMzkR3r0m9Dvi2FhWx+xxOYzNdbBxl5HqZsqxkD0WLGmwJ7Uy99iq3by15QB3XHZQrk4rFAqFQjFq8XvdusvjewE4xNh/y+x79D+tsxb4NfA1oMbYvoYWMM2pb6Sg6zoby+qYW5JLcU46lUFBNGcS5E2GtHQongvln3W4rrYpxI+eWIdvXRktEZXJRaFQKBSKUcgal8e3dKA6N8MyB7DD6CsdyEFzHo8WMCV3ykihtilMXTDCtDFZpFktxLBQXXwkRfF0JEVzYOf7Ha7bVd2UeL9/jY9Jpd+DUzQV+apQKBQKxejhSOByl8e3E2gEBKD7ve6FZnRuQp4554DmThkpHGhoAWBsbjo2YgDsz55FUbxB0WxY/xgE6yA9N3FdVUOru2HFm3cyqbkKXrkZFlwA9szBEl+hUCgUCsXAcfpAdm6GZS6ROwUtcKJREeKgW2bdXyeVuaIcB2n1+wA44HC1NiiaI18rt8LEwxKHqxqTlLmGECz8Mnz+tLTizTxlwOVWKBQKhUIxMLg8PuH3unW/191p5Gq8TX/u03+fOQiiBYIAaE6HURHCtNwpI4UDDXIIinMcFIVl2bf9tpLWBnFl7sCmNtdVGRY9gAo9H066GawO2P5m6huVrYPa3anPKRQKhUKhGE686fL4bnR5fJOTD7o8PrvL4zvJ5fHdC1zV35uYYZnbg+bMw8idguY0NXfKSKGNZa7pC2AaB8hvbZDvAqu9ozLXGMJhs6BHI1RYx0HBNBh/KOxZ2fEm+z6BO5eDxQY3rpZ9KhQKhUKhGK6cAXwdeNioOlGLjC+wAq8At/u97k/6e5P+KXOaUwDfRQvUAhqa0/TcKUn3OgP4M3IA7kILeNuddyDTpBwGVAEXowX8psvRCQfqW8hIs5LtsCFqNpMjxnEgmGT4tNqgcGYHZa6yoYUx2Q6C9Q3Up4+X9VsnLIFV/4VoRF4X593b5WssIt+ffXtbIfauBls6jJ0/EI+oUCgUCoWiFxhVH/4O/N3l8aUhS4U1GznnTKN/y6xaQCc5i7IWeAstsAItEOr8or7cx2kF7gDOBOYBl6I557VrdQ1QgxaYAdwG/LZHfUfDHbdYrNci7q9voSjHgRACqrZRZGthf32wbaMxM6XPXBL1wQg56Tay9EYa7UY5uPFLINIMBza2Noy0wLbX4LCrZXDEhmekrHHWPwH/Pklue1e3vW/ZOpmweLij6/DZk/D89+GLN1K3CQdTHx9qmmuh7FNoODDUkigUCoViGOL3usN+r7vMbEUOzFlmXYPmXIoWSLEuaBpHANvQAtsB0JyPAOcCG5LanAtoxvsngL+hOYWhcKbEGmuBX47peCLdCde/D86JPRbwgKHMAVC5laIMncr6djrtmJmwcYVUzGyybTAcJcMSReiNNNrGyXYTjOTBe1fDuEPk+z0rIdQAM08HdPjsCdj+lgySiMXg9Z9D7gRoaYDXfwlXPiOvW/cYPPUN+f64H8DJN/f4mQadt34Hpb+Ry8ir/iP9B4/7H2mt3PIyvPxTqNoq/Q+XfR8WnA/WNNi/CdY9Kq2eGfkwcSlMOQbGzIKmaihbCwc2g8Uql6aLZkPeFKk8Nh6A+jJoqgJHLmQWQO54SMuQMkVaoKVebjaH7D9+Ttdh3xr4+C6phEYN/8dxC2HhRTDrTCn7/o0yYfTuldC4H7KKpAzjDoFiw4raVAU1O6B2l7S82tJl6bfscZAzFjILIRY1fnCEjC0s26bnyvP2LNkmFiGrwS+X5aNhEFY5TjaHfLU65JK/zS5fhbX1M7DYwNKD33jRCISb5P0dObJfhUKhUAwJZihzRwKXoznb5E5BC5iSO8VgApDs9b/HuG/qNlogguYMAIVAZZtWmvM64DoAHQvbp17e5rTQY0zZ+Rj7HvsR22Ze12MB/RVNTMi28O6rz7GsqRJrWoTdVbWUlpYm2hQfiDBPj/Hxy4/SlCV9ISsqm0mP1JNNkPJGZHtd51hbFgdW+dhS7wJgiv8xpgLv7o4RtTo41prJgdfvYPNeG3k161hcu4sNc/8HR0sl07ffy+oV/yKYPo4jPv4eTbmzac4oYdw7f2D7ngoqxxyJy/8IWY07qc+ZSVnJKQSc88hs2s2Yyo+xh2pozhhHfc4sGrMm4mipIqtxN9ZoM+G0XJozxhOy52GNBrFF6kkL1wOCmMWGLmzowmq8TyNmsRGzpNHUHKX0zeSgDkPHFlJxKNn3CrO33EH52BPZMut6Zm++g7Fv/JID615D6BHGVK2kMXMiB6ZcwpjKD8h++jpCz/+QqNVBRnA/MWGlKXMi9lAt9rUPAhATaVj0JOtlL4gJG0KPIehopY1a7MQsUhlPi9QTsaZTMfYkavIXkdm0lzGVH5L7ys/glZ+16a8hexrB9LHYAzVk7XuCtNX3dOg7Ys0iZrFhjbZgjfXdCrkUYFXfro0J+ZnFLHbj87MDAmu0BUssKF/1SJtrohY7EVuWsWUTsWWhCyu6sAACXVhS7MePpRn3S0MXVuM8yH8lMk9jqzz2xPuo1d7mmOwref5Zk87ZpGI9QDQ0NLT5W1cMLGq8Bw811iMDM5S5Ac2dYjpa4E7gToCYN12fdtXfO7Z5xsLEz59m4pX/klaHHtBY+jLzpk1g2ZwmeA/GFRezq9rB8uXLWxvtzYWNt3HE1DyYJ4//Yf07FIXriDYGackubG2/+wjGN5UxPr5//1+gaC7LTjXKgQXOpWTTC5QsOxqefwzsOcz78g9Aj8Gfn+ewA09Jy06sBecV9+EcMxOe/ibT1t/PtB33g8MJk48ia9cHjKt4A2wZcmkXwJ4DofrejGrfsaRJK1SoHqafzLhLH2aczQEnngpv/46i9/4i/QZPupmsY75Lls0uLZHbXsW+/nFpOZt6PJZ555GdXSStZdXbYef7WPZvBOcE6UM49hDQo1C9A/Z/DvXl8v5ZRZAzTlq2Qo3SUhfYiyXcKBXNtExpsXNkQyQITdVYg7VYw0GIhWH8odjmn8+E9FwmJD9X5TbY/aF8vnwXlpJF5Kalk8gwqOsQ2C2tihartAjmu7BlJAXNtDRAQ4WUtbla9mVNk9Y0q12+t1hl7sKmKim/xQYWK59v3Mz8RUvkNXpMWg2jIYiEjPdhOXbRFimLFApiUSyRIJZIizwfaZHPrUel5S8tS1om7carsEKoEWtLAGswgCMYkEvOwQDEQvLeelRaDBOveuv7WMSQq6XVsjkgCDnPbA75mpbedt/mkH8DaelJr8Zmz5LzwJ4pn9+eaexnJV7fX7WWY446Tp63mpWLXdEZpaWlbf+3KgYMNdYjg77/14kvYWqBziNXu1nm7AV7gUlJ+xONY6na7EFz2pCBGFV9utuSq2Dtg7BhBRx6ebfNg+EodcEIxTkOqPwUgOzcPBrKGts2LJwhX6ta/eaaQ1HSowFIg13JRqQJS2SQQ7hZfkHv/ggWXdJ6fv758OnDsOFZ+PwZueQYTzJ8ys9hxQ3y/Yk/g2IjLcp5/5RLlJEgHPktyBojFYDPn4HydXJZcvaZcpmxbh/sWQXVX8jl2zGzICMPGiuhaptUHuxZkFEglx7Rk3wO40uB8S/qIF9sWs/0SUaqlmQLSSQonzF/Khz+dbn0B3Kpb7kHTvix/PJPXvqzWGDW6XJrjxBQOF1uqcguhsntjboDwJgZcusMIWSpt7zJnbdxZMuts2fpggNVpTB7ea+vG1J0qUyCbiiYSa/RkPSXjCRtiX1D4YyF5ZyLhVuXoOPnunxtln0FA0afza19h5tlf91wDMhU6SAV7TbKXudKYMo2OeNh3ILW5XyFQjFqcXl8P/Z73T3z8e+C/vyEfBPN+STwLFpgV+Ko5rQDy5B5U94E7umPgAYrgZlozqlIpe0S4LJ2bVYY9/wAuAB4o8+K5KQjpOK19sEeKXOVRq64MdkOqahZ0sjOzachGEDXdRkUAdK3KXuctNoYBMMx0sPV2DIyaGxJWroav0RaL8rXSwtRqAGmHNt6ftpySM9r9Ydbek3ruSVfNSxNDTJYIo7VBsf/oK3w9izjGds9Z+54mHdOx4fNd8HEw7sdk/bsbiplel9+3QkxoMtjimGEEJ1btdIypC/rUBANyx894SYINUG4sd1rE1s++4RZUyd2ON7muqYqCO1uezzSyVK61QFzvgSHXgHTTpQWWIVCMeJxeXyPJe0KYDE9Ddjsgv4oc4ncKYaSVUu73ClogX7nTgHiPnA3AC8b/d+NFvgczfkLYBVaYAXwH+B+NOc2oBqp8PUNIWDxZfD6L+SSXcG0LpvXNMpf7gVZdti+FQqmkp1hJxLTaYnESE9L+kc8ZmYby1wwHCWj5QD2/Dk0Hoi2tksEQaxp/YfvWtZ63maXlqx3/wSHXCRz0yUz50u9fmyFQpECa5q0SmfkddpkX804Zh2zvPd9x6IdlcTanbC9FNY/LqvB5E2Wf+sLL5Y/slLRWAn7N8hgmxq//CFndUD2WGnZnXSkdDlQKBRDTZ3f6742vuPy+P5hRqf9WGYNJHKnoDkTuVOMnHPmowVeIDkNijx2Szt5LjTtfgsvkVGhax+Gk37aZdPqJhm1WpBll6lHCmeS45BD29AS6ajMffaUXD4SguZQmHS9mYzcAhr3RlotebnjpRVv7yporuVOx9Xoq+v55gnFrX2dfAssurRPy3AKhWIYYLFKv9xk39xxC2COG077FWx+AVb+B17T5DZmNoydJ9uHg1Lxq94ufT3jpGUZPp4tEKxtPZ7vktZ91zJwHQd5yZ4rCoViIHF5fIf5ve7VwK/bnepawegh5njqaoEwUGZKX8MF5wSYfqL0S1v+ky7TNdQaylxeukX+Y519JtnphjIXjMjl1ziFM+U/2MZK9KwxBCMxMiwhsvKL0PV6mkJRsgxFkGnLYd0j6Dr8puUheHET3zwhSXETAopmmfzgCoViWGBzwPwvy+3AZpmeZ3splH8mU+VY7ZA/RfqOFs2F4rky2Cd7bKtrQqhJpuzZ9SHseh82vyjdR0Ba/MYtlEpeZoH0f+1JwFd2sbwmd4Ja/lUoes5VLo/vJ8AfgB0ALo/vT36v+/tmdK7Crrpi8eXw5DWw812YenynzaobDctcuEI6S4+ZSbZD5t1qaGmbwoExM+Vr1VZC6QXEdEG6CJGVXwLU09gSaVXmDv86rHuEPXprLrw2PngKheLgoGi23I79bu+us2dKl40JS+Dob8tI8P0bwP8O7PoAKj6Hba+3RrL3BqtdKpAli4ztUKlMpqX3vi+FYvSzHzgHeMrl8dUDdlrDpvqNUua6YvaZMjXBxue7VOZqmsIIAc4GmdOYwplkh+XQ1gc7UeYObCZYtBSA9MxssrNk5FpjKMlvbvKRcOWzbNiTBi/UAlJxLEy29CkUCkVPsVjkMu64BXDU9a3Hw83QXCPT4XT1Y1GPyVQ5NX4Z1V6+DjY+B2vuM/q3SQVv/KHS6jdmpgwmyxnfs2TUCsXo5Qpgtt/rbnF5fOOBWwFz4gpQylzX2LNkJNnmF+DM33b6T66mMYQzIw1rzWZ5YMxMsqvl8kMHy1zeFBmFum8NwVmXApCRN450m2wfDEfbtp+2nED1bmR8CeytbVbKnEKhMJe0jJ6nQimaDZzQuh/Pmbhvraw6Ura2rYIH8kdx7gTpvpI70Xgdn/R+goxWVqsOitHLbmAqsMnvde9DLrtuBG43o/OBU+Y054/RAv0Otx1y5rhhy4vyF2jJopRNappC5GcawQ+ZhZBZQHaTzDHX0NIuR5UQMrXHnlU010qn5fTCSYkgiQ7KHFDX3NrHvtogC3teZUyhUCgGluScifF0Rrouy+RVbTO2L6BuLwT2wo635Dm9XXUVe3arwpfvMpZuF0PxvNb8kwqFCbg8vjOAPyOzY9zl97q97c5/H7gWiAAHgK/7ve7Oc+r2jJuAJ10e3xqkRW4CsmqWKZinzGnOAcmdMuTMOgMQsPmlbpS5NPlPq1Auo2Y7WgMgOjBxKZR6CW56FRhLxtgZOGxyCSIY7lg+qi6pj/pg38pTKRQKxaARj8jPHZ/aRSUagYZyqdzV7TFe90Jgj5Gw/ElYdbdsa0mTEbwTj5A1l5PzbSoUvcTl8VmBO4BTkaVBV7o8vhV+rzu51vsnwOF+r7vJ5fFdD/wOuLg/9/V73RtcHt8S4BSkflSOrClvCmZa5urQAoncKWhOU3KnDDnZRVL52vIiLP9xyiY1jWFKnOlwYEuiKkGOEc1a336ZFWDOWVB6K83v/g34JeljZ+KIW+YiHS1zyQpch2VbhUKhGGlYbeCcKLcOZbaRgRq1frl0W7ZWvq59CFb+G4AjMsZD3SlSsZtyTNeVVBSKthwBbPN73dsBXB7fI0ilKqHM+b3u5ELiHyL93fqN3+tuAXzGZipmKnO/ardvSu6UYcGs0+GNX0JdGeSWdDhd0xRiXrFD5noaI1OFOGwWbBbRtqpDnHELYOJSmndKC2u6PY30NGmZa0m5zCpLhe2vb0ndn0KhUIwmLBaZrL1gmixVCNKaV/4p+N+jac0KMjc82+qX55xsWO2OkXn0CqYp/7uDFEtGrs3l8a1KOnSn3+u+M2l/AtJ/Lc4eUv6iSHAN8KKJIg4I/VfmNOdfgDmAjub8FHgILbAWLVDd776HC7PPlMrc1lfgsKs6nK5pCpGvB+TO2PkACCHITrelXmYFuPwJWt55G96ADLs1yWcu1TJrmMJsB7XN4dSWPoVCoRjtWG0w4TCYcBifhRey/PjjZZqVne/L9FFfvA7rHpFtc8YbyZGXKeXuICPWXBfxe929rzmZApfHdwVwOG0ifoYnZljmNgDPAWnAPOABNOc/0QJ/M6Hv4UHxPPnLb8tLHZS55lCUYDhGfmS/PDD2kMS5bIetc+UrI4/mkqXAGjLSWpW5lhTLrHXNYXLTbeQ4ulAOFQqF4mAiOc3KkdfJoIvKrVKx878rAy3WG67cceVu6nHyNX+qUu4OXvYCyeVPJhrH2uDy+E5BrjCeYCyPmobL4xvn97rLzezTBMtc4J9Jey+gOf8GrARGjzInhFxq/eQBmY8pKYS/xqj+kB/cDVlFkDM2cS67G+Wr2cgpl55mIb2bAIgJeRlkp9vUMqtCoVCkIl4Rp2iWTLiu6zIobcfbUrnbXtqq3OVOkErdzNNgxsmQkT+koisGlZXATJfHNxWpxF0CXJbcwOXxHQr8CzjD73XvHwAZXgCWmNmhmdGs3wJmADlAnWn9DhdmnyGdb3e8A7NOSxyOV3/Ib9iWWGKNk5Nu6zJgIR7skGyZS5WapD4YJjc9hyx71/0pFAqFwkAImbR4zExYek2r5c7/jlTutr0O6x4FYYXJR8v/8bPOhDEzhlpyxQDi97ojLo/vBuBlZGqSu/1e9+cuj+8XwCq/170C+D2QDTzu8vgAdvm97nNMFMN0s7CZARAvIEN9z0dmNh5dTFkmC1hvebGNMlfbJCNN8+s3w/y2IfjZDhtVhrKXioRlrhufuWA4SobdKn3wUihzFXVBVqzdx7XHTVWlvhQKhSIVyZa7pddALAp7V0v3mc0vwSs/k1vRXDjkKzD/fCic3n2/ihGH3+t+AamzJB+7Jen9KQMswr/N7tCMAIjHgVvQAhuB/6A5/4vM0fJ8v/seTqSlw/QTZbFrXU/4W1Qby6wF0SpZviaJLIeNnVVNnXYZt8Kl26xYLYI0q0iZmqQ5FCU9zUqOw0ZFfbDDefdf3qGyIcTJc4uZVpTd50dUKBSKgwaLFSYdIbeTb4GanVKx+/xpeONXcptwOBx2tYyotWcNtcSKUYLf6/672X2aYZm7H3gUzSmA1UjTZEfz0mhgjhs2PQ97VsEkWVe11lDm8kQ9uNoms8yy22gMdbHMGo4llDiQSl2qZdZgJEZGmpUsh42GA23703WdygYpQ1kgqJQ5hUKh6Av5U+DIb8otsAc+ewrWPggrboCXfgILL5KKXcnCbrtSKAab/lc+1gIr0AILgcuBN5AWudP73e9wZM5ZssZgPPydVp+5vIJiIwFmKxl2K02hjspZnOZwlHSbJbE06kizdFhmDUdjRGM66WkWqcy1tO0vOVq2LNDRaqdQKBSKXuKcCMd+F779IXz9ZZh7llTs/nUc3LkcVt8Doc5XXRSKwcbEAIjAOmCdaf0NR9JzpXXusyfh9FvBZqe2sYUcmkibtqxD80y7NeEXl4pmwxcujsNm7ZA0uDm+FJtmJSOto+WuuqHVJ6880Nynx1IoFApFCoSAyUfJ7YxbYd1jUpF77iZ47efSinfEdZBZMNSSKoY5Lo/PAXwFcJGke/m97l+Y0X//LXMHGwsvgeYa2CyrcVQf2EeBqEtZfzDLYSMS0wlFUq86B8PRROADyBQl7X3mgknKXKbdSnM4iq7rifNxnz2Afcoyp1AoFANDRr5U3q5/H772ovS1K70VbpsPL/4YancNtYQHNbquc9urW4ZajK54Flk2LAI0Jm2mYGY068HB9JOgYDq8/UeYew41ZX7yrBEZ0t6ODENRawpFsNvsHc53VOastLRbZg2GYolzGXYr0ZhOKBrDYZPX1SRFy+6vMzWvoUKhUCjaI0Rr6bCKDfD+X2DlXfDxv2HBV2DZ9zqkqVIMPPe+7+fPr28dajG6YqLf6z5joDo31zKnOceZ2t9wxGqDE/8XKtbD3adT0xSmoGAM2DM7NM20x5W51EutzaFoQuEDqbB1sMwl5aKLt40reNDqszfemU59MNyPB1MoFApFrxg7D778T/juWjjyW7DJB/84Bh6/Wua0UwwKq3fW8CvfxqEWozved3l8h3TfrG+YbZkzPavxsOSQC6B8HXxwBzXWa5hVkjoXUUY3ylwwHGunzHUMgEiuEhHvrzkcxUka0FqBYkphFrXNSplTKBSKQSdvEpzxGzj+B/DBHfDhP2DDs7DoUjjhxzJSVjEgVDa08J0H1zA+LwMdnZ1DLVDnLAOudnl8O4AWZOJg3e91mxIebbbP3MGTsfbUX8BPy6mx5JOf09EqB5Bpl7pyZ0EQzeEojrTWjyBVapL4fobhMwdy2TZOTVOYNKugxJlOXTtlbn99kAv/+T6rd9b08uEUCoVC0WsyC+Dkm+GmT+HI62H9E/DXw+CFH0Jj1VBLN+qIRGN89+FPqGkK8Y8rlpCbnjbUInXFmcBM4DTgbOAs49UUzLbMmZ7VeDgTjFloCkXJz0w9gVIpX22uD0cpznEk9tNTRKsGjeAJR1LJr+akNo0tEbIcNnIz0qhrt8x626tbWemv4blP93HYFFV7UKFQKAaF7CJpqTvmBnjrd7DyP/Dpo3DCD2X0q83RfR+KbvnTq1t4/4sqfnfBQuaPd2KzDF97kt/rHlCjobnKnBYwPavxcCZRyiurY3ADJC2zpkgEDK1luuKkyjPXZpk1rswlWfoaWiJk2aUy19ASIRbTsRgT2l8pA2X2p6gaoVAoFIoBJnc8nH279KeLlwtb+R84/dcw+0uJSkKK3vPqhgr+XvoFlx4xiYsOnwSAdRgrcwAuj28RcJyx+47f6/7UrL6Hf2oSzVmA5nwVzbnVeE1tYtKcL6E5a9Gcg1ZGLO6vlp+ZWpnL6sEya7qtXZ65dgEQLZGOy6zJlrmmlihZDiu56TZ0vW0S4d01Mqnltv0NvXquoSIcHZ2FQxQKxUFO8Ry44gm44kmZeP6Ry+DhS6DGP9SSjUh2VTXx/cfWsmBCLv93dmvksM0yfFUal8d3E/AgUGxsD7g8vhvN6n/4PnkrHuB1tMBM4HVjPxW/B746aFLRvTIXV74aWzpbZo21scx1HQDRusyaHFDRGGpdZgXa+M0dqJepSvbUDP9kwh/vqGb+LS/z6EqVq0mhUIxSZpwC33oHTvsV7HgH7jgK3v49RFRaqZ4SDEf51gOrEcA/Lj+sTXqvYazLAVwDHOn3um/xe923AEcB3zCrcxPKeTlv7NRaZg7nAvca7+8FzkstR+B1oH4A5ehATWN8mTW1z1xGCktaMs0p8sz1JAAi2N5nzm5LOH7G/eaC4SgtkRjZDhtNoWjKmq/DCd+6fYSiMR78SClzCoViFGNNg2NuhBtWwqzT4I1fwb9OgL1rhlqyEcH/Pfs5G8rquP2SxUwqaBt8OJwtc8gA0eQv4igmBo2a4TM3FliJ5lwD3A28jBbQu7mmd/1rgTLjfblxv76jOa8DrgMQepTS0tI+d/XBTqk4bf50NeWbOn4mLRE5DJ9t3EJpi7/NuZguK0OU791FaWk5AOV7QkRiOq+/8WZi7X/Ddmn9+/jD92gMy/4+Wb8BZ63MYbS/uoniTAs7Nsul1Lc/WMWBQis1QWnhK3LEaGgB32tvUZgxdBO9oaGhy7H+eLO0Hn6+N8Arr7+J3Tq8fR+GO92Nt8Jc1HgPLqNmvIu/ToF1IbM3/x37v09m1+Qvs3PKJcSsqVd7hoLhNNZv7wnz6Gchzp6WhqV8I6XlbXPLBWqHtX/4f4GPXB7f00gl7jykzmQK/VfmtMDP0Jw3I8Ntvwb8Dc35GPAftMAXPevD+RqQKuHwT9vdS0dz9k9R1AJ3AncC6N50ffny5X3uas2rWxCbtuI+5QRs1o6KUiymw2svMG6Si+XLZ7U51xSKwMsvM3fmdJafIPPUbRZfwLZNHHXscWQ55EfzSXgLbNnKqScupz4YgdJXmDx1BsuXTZUdffQGrgkFHHfUVH678l2mzZnP8vnj2FxeD6Vvs3DaOHas3cesQw7jkInOPj9rfyktLaWrsf7Bu6+SaY/SFIoyad5hzC3JHTzhRiHdjbfCXNR4Dy6ja7yXQ/O18MpPmfLJA0xp+gzO/xeMP3SoBQOGz1h/tjfAg6+9z7EzCrn960emDHa4379yCCTrGX6v+08uj68UONY4dJXf615rVv/mmGqkJa7c2CJAPvAEmvN3Pbz+FLTAghTbs0AFmrNEtnOWAPtNkdkEqhpaKMi0p1TkACwWQUaaleYUqUmSfeHixN8nL4kGI1EcNgsWiyDdLu/TJgAiFCXTYcXZzmeu1vDnmzYmW8ra2OqTsbWivk0ZsKGmujFEZUOI0+dLfX77gbbl6uqDYf5euo1dVU1DIZ5CoVAMLBl5cO4dcPmT0FIPd50K7/0FYiooDGTZym8/uIb8TDt/vuTQTqNWLcMwmtXl8b1rvNYDpcBvjO0dl8dXZ9Z9TLDMOW8CrgQqgbuAH6IFwmhOC7AV+FE/77ACuArwGq/P9rM/06hqCFGY3bU5PNNuTVkBojnJFy5OupFAOJ5bDiAYavWrs1stWC2iY2oSR7LPnFQcA4ZSN60oC2gt+7W/Loj7L+9SlOPg7R+dOCxCubdWSFfH0+aN5elP9rKjsm307a0vbuKhj3bx+sb9PHn9MUMhokKhUAw8M0+B69+DFTfCqzfD9jfhvH9CTv+8i0YyLZEo37x/NeWBIA9fdxRjsjvP0Tcc88z5ve5lxmvOQN7HDMtcAXA+WuB0tMDjaAGpRWiBGDLDcX/xAqeiObcCpxj7oDkPR3PelWilOd8BHgdORnPuQXOebsK9u6SqsYXCrK6TP2Y6Uitz8ajVdHs3lrmkkl9CSEtfvL9wNEYoEiPLbiM7XerlCctcJ8rc2t21hKIx9tY2s35voJdPPDDEo23nluQyNtfBjspWC1w4GsO3TrpMrt5Zk8idl0ygKSyXtIeA217dwmm3vcX72yqH5P4KhWKUkVkAFz8AZ90GO9+XtV6/eGOopRoSYjGdHz6+jo/91fzhokXdJr8fDsaJznB5fL/tybG+YoYyl44WaJvZWHNKAbVA/yvfaoEqtMDJaIGZxnJstXF8FVrg2qR2x6EFitACGWiBiWiBl/t9727okWUuzZayAkRcYUu3tX4EDuN9S1J6Ehnx2tomw25NWPWaWuRrlsOG1SLIcdgS0awBI6HxpIJM0qyCKkOZq6hvXW79eEdreRl/ZSOn3/Y2f3h5c3ePbTplAanMjXOmMyk/kz01rcrc1ooGAs1hfnj6bADe3Nx2lf2Vz8tZ/MtXOOuv7w56xO6bm/bz59e3sqWige8+srbTFDTVjSH21w1rx1yFQjGcEAIO/zpc9xZkjYEHvgLv/An0ofnROlT86dUtrPh0Hz86YzbnLBrfbfvhaJlL4tQUx840q3MzollPBX7c7tiZKY6NOiobWro0+YJUvrpcZm1TAcKwzEWSLXNt05ck++A1Gq/xlCW5GWnUNbcus8YVvPxMO9UNhjIXCGK1CCbmZ/DxjmquO14GX9z22hY2V9SzuaKeU+eNZdGkPEAqIv99bweHTHBy2vxUMSr9pywQpCDLTnqalYn5Gaz0t9aS3VgmXQpOnz+WR1bu4qPt1XztWBn8EY3p/N+Kz9F12FBWx7/f3s6NJ89MXBsMR7n9ta3UNIa48eQZTMxPXUO3rzz88S6Kcxz85dJDueTOD3lqzR6+erSrTRvfujK+9+gnRGI6PzhtNt85cUbKvppCEWI6ZDvMrrCnGM2UB4K8t62SmqYQkwoyOXJqAXmd5L1UjECK58C1r8OKG+D1n8Pe1XDePyB99AeI/efdHfztzW1cesQkrjeCBLujpz5zLo/vDODPgBW4y+91e9uddwD3AYcBVcDFfq/b33Pp2/R1PfBtYJrL41uXdCoHeL8vfaai798cmjMhIJqzvYDv9VOuYU8oEqMuGKGwk1JecTLt1pQVIIKpfOZsqQIgYh2VubhlzlDm4pGvOemtlrna5hDOjDSEEBRk2Vstc3VBirIdHD6lgLe27EfXdaIxnTc37edLh4zjrc0HuP/DnSyalIeu63z7wdV8uF0aQ/95xRLOWCBjUVb5q/njK1twZqTxozNmM61IBlpEYzrvbauktjnMCbOKEoEZIH0fKgItjHU6cCRVvigLBBmXmw5IS+KKT/cRjsZIs1rYVF6H3WbBVZjFUlcBb20+gK7rCCF4/4tKygJB7rhsCY+t2s0DH+3kW8unk2YEpPzv0+t5as1eAD7cUcWz3zk28UXXHIry6xc28OqGCuaMy+Xms+Yxozg7IVM0pvPC+jK2VNRzyAQnx88qavM5BJrClG4+wJVHT+HIqQXMH5/Lgx/t4oqjpiCMEj17a5v54ROfMn+8kxJnOr9/eTNTx2TxpUNKEv2EIjF+88JGHvhwJzrw5UMnoJ0zv4NSV1EX5MX1Zeyvb2H+eCcnziki097xz7c5FGXr/nq210ZZ2BiioIv5GV+mz7RbEzKnQtd1qhtD+Ksa2VLRQF1zGNeYLJZMzqcop/MfM6FIjAMNLYQjMcbkOJSiaiL764L8yreR59ftI9nDwGGz8OVDJ3DjyTOZkJfRp74bWyI0tkTQka4fyX/DiiHAkQ0X/BcmHA6v3gL/PgkuexQKe6bgjET+8+4Ofvn8Bs5cMI5fnLugy/9PyfTEMufy+KzAHUhD1B5gpcvjW+H3ujckNbsGqPF73TNcHt8lwG+Bi3v7HAYPAS8Ct9K26EG93+uu7mOfHejPf9dOBUwshQ5z9NwSlv22oy9CUY6Dh79xVJsv7/bEfdAKu7HMZdqtiRquyaSKZnWkdVxmlQEQbZdZ45a+xvgyaxvLXDyaNUye8U+4MNtOtRHNWlHfwthcB4snOXlyzR721jazp6aZumCEcxaNx5lh5+lP9nDzWfNYt6eWD7dX8zP3XJ77dB+ep9azeFI+lQ0tXHn3x+Smp9EUiuD+ywFuPmseCybk8r9Pr+ezvXWJZ//KkoksmpTHE58GueHN12hoiZCeZuHwKVIBCjSHeWPTfk6cXQTApPxMYjrsq21mSmEWG8vqmT02B5vVwhGuAp5as5ftlY1ML8rmhfXlZNmtnDy3GIfNwrX3reK1DRWceUgJa3bV8NSavVy/fDqnzB3LJXd+wP889in/vvJwwrEY192/ine3VXLq3LGs9Fdz7t/e5davLOTshSV8vKOaXzy/gc/3tQYajcl28I3jpnLczCJqm0I8umo3oWiMcxdPQAjBFUdN4SdPrWf1zhoOdxUA8OfXthCJ6fztskMpzkmn7F8f8KMn1jG3JJepY7KIRGPc9MgnvPhZOZcsnUSG3cq97/tZs7OGP19yKIdMdBJoDvPPt77gv+/tIBiOYbUIojGdLLuVrxw2kbMWjifbYWPdnlpe3VDBu9sqaTECaH7x4atMyMtg/vhcFkxwMibbQXldkC3l9WzZX4+/spGYLgNvJhdkMik/k0kFmWQ7bDSHoxyob8Ff1ciOykaZFqcdQsBSVwFnLhjH/PFOshxWdlc3sW5PgFU7a/h0d21CFoDiHAfzx+cyf7yTsbkO0tOsBJrDlAWC7KxqYnd1E1WNISKxGALITreR40gjJ91GTnoauRky0MeRZqGxJUJdc4S6YJi65jDBcAy7zYLDZiHLYSPLYSPbYSXLLl0QWiIxWiJSeY3EYkRiOtGoTtT4MWO1CNKsgjSrBZvF0vreKrAbPw6iMdk+FtOJxHRixrUxHfZXtPBqzXpsFoHVIq+zWoSxL7AaX0YxHXTkNbquo+sy56TVInDYLJw4p5j547tOIfTR9iq+/eAa6lsifOP4aXz50AmMzUnniwMNPPXJXp5YvYenPtnL14518e0TZuDM7FoZi0RjfLi9Gt/6fby3rYpd1W2jxicXZHLIRCeLJjo5dHI+Cyc62/wY6w2NLREaQxHCUR1d18m028hyWPvc30GDEHDMDVCyCB67Eu46GS55CKaMvoCwuw1F7oz54/jLpYcmfpz3BGvPkgYfAWzze93bAVwe3yPI4gTJyty5gGa8fwL4m8vjE36vu9fr3H6vOwAEgEtdHl8+MBNIN+6N3+t+u7d9pqIflrlAQkAzBBkSoi0cMbWgzaGdVU2s3llDZUNLl8tylQ1SOerOZy7DbktZASJ+LD2FZS65PmswEm1j/ctIqhLRuswqP8bc9DT21kr/s0BzOFHiqyDLwfqaWkAus04pzEwso366O8Cne2pJswqWzSxiYn4mD3+8i6fX7OHFz8oZl5vOV4+ewklzinH/5V2u/u/HHKhvIT/TzlPfPgZdhx88/in/+/R6AMZk27nt4kVMLsjiwY928ujK3dz/4U5y0sC9aBKHTs5jU3k9H+2o5q53dyQUzkMmSnkmFkhrwp6aZiYXZLKxrI6T5xYDJJSklTuqmTYmizc2VSQsZifOKWZCXgb3f7iT0+eP4+crPqc4x8ENJ84gy2Hjp1+ai/bcBm5Z8Rn+yibe3VbJ776ykIuWTqIs0Mx3HlzDdx/+hJ89vZ66YIQSZzp/vfRQTps/lg+3V/OP0m3c+uImbn1xEyAjiy8+fBILJsjljnMWjefXvo08+NEuDncVsKOykSfX7OWqo12JeXTH5Utw/+Udrn9gNfd87QhufXEjL35Wzs1nzeMaI2/g6fPH8b1H1nLOHe8yrySXHZWNNIejnLtoPN89eSZTCrP4aEcVT6zewyMf7+a+D1rdVSfkZXDpEZM5alohmzZ8Rta4aazfG+CzfQFe3ViBroNFgKswi5ljs/nSghKy021U1rews1oqUx/tqKYpFCEjzUpepp1pRVmct3gCrjFZTB2TycziHJyZaWzb38DbWw7w4vpyfv5c8v9A+et4/vhcrjhqCrPGZmOzWKioD7JtfwMb9tXx9tZKoknmpLgyObkgiyVT8kizWmSd4WCY+mCE+mCEPTVN1JdFqA9KxS073UZuuixjl5ueRkGWhVBUJxiOsr8+SGNllAbDwhTTdexWC3abFYdNKloJJctiwWqBaExaKiPRGOGoLt/HdMKRGCGjZrA1cY1UziyGsiaApmCUDbXlCSUxEpOKXiQWo7PYHCHAIuT1UUOx+8MrWzhn0Xj+cOEi7La2X0y6rnP/hzv5xXMbmFyQyaPfPIoZxa0BcodnFXC4q4DvnDiDP76ymTvf3s4jH+/mOydO54LDJrWx0oajMVb5a3h+3T5e+qycqsYQWXYrx80s4qLDJ5KXaUcI+X9k/Z4Aa3fVJgKR7DYLiyfmsWRKPrPHZTMuN4OcdBvhqFSYm8NRDtS1sC/QTHkgSFkgSFmgmbJAMOWPAoAch42iHAdjchwU5TgoyjZek/aLcxwUZHWeCuqgYOpx8I3X4cGL4N5zZDqTRX01GA0vdF3nz69v5fbXtnL6/LH89bLeKXIAFx4+kd9l5NpcHt+qpMN3+r3uO5P2JwC7k/b3AEe26yrRxu91R1weXwAoRGbt6BMuj+9a4CZgIrAWWc7rA+CkvvaZTH+WWd9FCyxDc9YDyf+uBKCjBYb9or5orOZPFy1uc+zJ1XtYvbOm2/Q+8WXLMd0GQFhTBkDErW/ta7MCbeqzNoeipOe1tsm0WymvCyfOAWQ54pY5GxvLjACI5nDin3dh8jJrfZAjphYwZ1wudquFdXtqeX1jBUdNKyTbYWPBBCcLJzrRjC9o7ex5OGxWphVl88vzFuB5ch1FOQ7uu+YIxhpLo/d9/QhWfLqPhpYIZy8cn7AEHDYln1vOmkdFXQt7Nqzi5JMWthmDWEzHYhFEorFEFNIkQ/HZXd3EgeJsqhpDiQTC04uyKMyy87G/mvnjnVTUtXDyXBmyb7UIrjx6Cre+uImv3v0Rn+4J8KeLFiWWoK86xsXn++p44MNdpFkFv/3KIVy0dBIAJc4MHrnuaJ75ZC+f7K5l9thsLl46OfHZnDCriBNmFeGvbGT93gDZ6TaWugraLBtmOWycv2QCj3y8mx+ePpvfvbQJu9XC9ctbl0Im5GVw28WLueaelRx16+sA/PD02QlFDuCoaYW89L3juPvdHXyyu5ZFk/K4/MjJbaw1x0wfwzHTx3DLWfNYs6uG5lCMmWOzmVmcnViOSK/cxPLjpyWuaWiRilB+pr1LizOQWMbuiiWT81kyOZ/vnTKLXVVN+KsaaWyJMDE/k+nFWSmXgOOEIjFqm0MEQzGcmWnkptt6vIwyXOkqsWrMsOgJZES6RZDyeQNNYe56dzt/fWMbLZEot128ODGOjS0R/vfp9Ty7dh8nzSnm9ksWJ9IRtWdCXgZ/umgx1y6bhvelTfzmhU387qXNzBqbQ1GOg7pgmI1ldYlI+ZPmFnP2whKWzy7ucm5UNrSwZmcNK/3VfOyv4a53thPpJoq8KMdBiTMdV2EWx0wfw9jcdHLSbQlrZ1MoQkNLhMqGEAcaWjhQ38LGfXW8Xd9CfYqAIouAnPQ0YpEwjndfSyjl8eFsHx+gGwcsFkGm3UqG3UamURoxy2EjPzONgiwHhdl2CrPsFGTZKcy2U5DlIC8jbVjmLaNgGlz7Kjz6VXj6OqjeDss9MIL/hoLhKD96Yh0rPt3H+Usm4D1/Ya8VOZD/l2LNdRG/1334AIjZX24ClgIf+r3uE10e3xxkvjlT6I9lbpnxOqC5UwabuFIR7SZqqCpumesmNUmG3ZqIOk2mOVU0aydJg9tY75KiWRsNZS7ZMpfwmWsKM22MTEtSkGU3LBxhapvCjM11YLdZmD8hl8dW7aamKcwVR01J3OP6E6bz7YfWsGhiHpcnHb/gsImcsWAcDpulzR+axSI479AJKZ8/L9NOXqadshTlzuL/KJN/aZc407FaBLtrmthgBD/ElTkhBEtdBby3rZK8DDtpVsHJc4oT1159rIunP9nLe9uqWD67iPMWt8okhOD3Fy7imydMJz8zrcPyuN1m4aKlkxIKXipcY7JwGWOaim8cN43HV+3hzD+/Q6A5zA9Om9XBp+zE2cWsuGEZb205wBFTC1jqKujQT16mne+fNrvT+yS3O2lOz/JPZTtsPfZZ661iNbkwk8mFPQ8usdssFOek9+oeIxmLRWDpQQlGZ2Ya/3PabAqy7Pz8uQ2ccfs7XHn0FELRGA99tIt9tc388PTZXH/C9B4pGfPG53Lf14/g830BfOvK2FBWR1VDiJx0G5csncxR0wo4flZq38tUjMl2cNr8cYlAqFAkxq7qRvbXtVAXjOAwlrkdaVaKcxyMzU3vYF3sDc2hKJUNLeyvb6HSUPQO1LcQaA6za88exo4bm1CUYzE9UeVSGG9EYl8ukTeFojSFozSHIpTXhWlsiVDdGErk5myPRUB+plTwkrfCLDv5ifcO8rPSEq+DtlyckQ9XPAXP/z94ywsN5eD+E1hG3nJ1RV2Qbz2wmk921fKjM+T8HuAfd3uB5H/0E41jqdrscXl8NsCJDIToD0G/1x10eXy4PD6H3+ve5PL4uv9H30OUR3I74v8ko9384qxqiPvMdW2Zy3JYaQpHO1g7gimiWeOKXbKfUXOobQBEZlprQEVTS8do1oaWCLGYTqA5nHBcjlvoNpXL5Lxxi9opc8fyeyMVyelJkapnHlLCyp+eQl5GWocljYF2YrdZLUzIy8Bf2US2Q8o/d1yrkffcxeN56fNy7n5vB6fNG0t+0tKRw2blme8cy+byeuaPz035hZcc5GA2kwoyue3iRfzxlS2ct3g81y9PHbm6YIKTBROGrrSaYnjztWOnMrckl1ue/Yxf+WR2p0WT8vj9BYs4enphr/ubP97ZrR9eX7DbLMwozmmz1GsmGXYrkwoyOxRTBygtPcDy5YeYcp9wNEZNY4iqxpBRjaaFauN9VWMocW7r/gZqGkPUNIU6XTrPdtgS1r3CLAdjsuPWPvm+MEsuFY/Nla/9Ulpsdjj3b5BdDO/+CZpr4Px/g61rA8Nw4qXPyvA8tZ6WcKxNgN0AsxKY6fL4piKVtkuAy9q1iRcr+AC4AHijL/5y7djj8vjygGeAV10eXw2ws8sreoEZFSDuBW5CC9Qa+/nAH9ECX+9330NAq6Ny159bZWMLdpulW+Um024jGtMJRWNtfrW1Wua6Thrc0kWeubhlLithmbOh63KJtS4YxpnZuswKrWk+4srclUdP4dPdtSybOYbx7SLfuku5MpDMHpfDpvI6rBbBhLyMNg7cp8wby7EzClm/J4DnzDkdrk1Psyb8AYeCMxaUDNY/JMUo5qhphbzy/06goi6I3Wpp86NFYS5pVgvFuekU5/bMWhw1fixXN7ZQ3ShfqxpDVDeEqG4KUdUgFcE9NU2s21NLVWMopXHAbrMwLjedcc50SpzydbwzI5Fvc3JhZvc/noWAU/5PJhp+5WcQrJMJhx0D96PVDMoDQX7l28Dz68o4ZIKT2y9ZzPSiwZHZ8IG7AXgZmZrkbr/X/bnL4/sFsMrvda8A/gPc7/L4tgHVSIWvv/f9svFWc3l8byKtfS/1t984ZphZFiYUOQAtUIPmHB4VgvtA3BDVE8vcmB78soqnHmkORTsoc3aj5mqceNLgZJ+5YCTaJn1JcjRr3DKXkWSZA5kSQ9dJWObiS4ob9rVV5nLS07jzyuHnWjB3XA6vb6ygoSXCQiMwIk6a1cID1xxJOKr3awlHoRgJjO2hgqEYPKwWkVhy7QmxmE5dMExlQ6vlb39dkLK6oAwQqQ2yZlcNFYGWRLBNnMIsO5MLM5lSkMnkwizjVe4X5Thav3+OuVEuva64Ee47F654UtZ7HWbUBcPc/e4O/v229Lf8f6fM4vrl0wf9f7nf634BeKHdsVuS3geBC826n8vjE8BEv9cdD6p4y6y+45ihzFnQnPloAZnpVXMWmNTvkGARPVtmrWxo6TYtCbQugTaFouQlrRa0JJXpimOzWrBZRCKaNR5Z1z7PXCgSIxrTaQxFjSg9+YeQa5T0iqcWyM9su8y6dnctABPz+5Z/arBYODGPmA4VdS0smzGmw3khBHbbyHX2VSgUBw8Wi0j4DndFLKZT3RSirDbIruomdlY3sru6iZ1VTaz017Di07Y5BTPSrDIKvDATV2EmrjHH4TruPqa8/QPG3/dlLFc+PWwUuj01TTz40S4e+mgXgeYwp88fy0+/NK9XvrYjGb/Xrbs8vhcAc3wDUmCG0vVH4AM05+NIX9MLgF+b0O+QEA+A6G6ZtTwQ7JFSlJGkzCXT3C5/XJz0NGvCMhc0fOeS28WVw+ZwlKZQhExHq6IXj26LK3N5hjI3IS8DIaTPXFGOIxHhOVw5YXYRmYYF8tR5B2+BaYVCcfBgsQjGZDsYk+3gkIkdfRxDkRh7apoSaYR2VsnNX9nI21sOGL7WFuBP2HeEmPybZ3FNncmU4jwZvFWYiaswi/F5GQNew1TXdb440MjrGyt4bWMFq3dKW8+p88Zy40kzD1af4TUuj2+p3+teORCdm+AzF7gPzbkKmStFB85HC2zo5qphS08DICrqghzu6rroL7RGmrZPT9IcjnawzIFU3OLlvOKBDhntLHPxc40t0YS/HLQus+6siitz8pdghl2Wydpd3YxrBPwSSrNaeP7GZdhtlg6+fAqFQnEwYrdZmFaUnai2k0wsplNeF8Rf1SgVvC2f4d/oZ+eOGO9uH5cwDIDMAznW8NVr77NX4kxnbG46Y7IdOGyWbt2IdF2uEFU3hPiisoHN5fVsKqtj7e5a/Mb30LySXG48aSYXLZ3U56oko4QjgStcHp8faMRI4+b3uhd2eVUPMctEk0YiMJwRXfulJwEQwXCUmqYwJc7uJ2ZmJ5a59jVX4zhs1kQOungghCOtY5BEc8iwzNlTWeYaARlWH2d6UbahzHWeWmM4keoflkKhUCg6YrEIxudlMD4vg2OmA0dMhi1WePQK9KJ5VJz/OP4GKzsNZa/c8NfbWFbHG5v2p0xsn2YV5KSnYdPDFKx9u41ip+s6tU1hqptChCJt/fxKnOnMK8nlmmVTOWnu2INdgUvm9IHs3Ixo1puAbwBPIhW6B9Ccd6IF/trvvoeARJ65LpIGlweCQM+ckxPLou2XWTtT5pIsc3HfuWTLXNzSJ5dZo2Q6ki1zbX3m8pJqKs4el0Pp5gMcM6P3qQ0UCoVCMcKYdTpc/ADikcsY9/xVjLviSY6a1vH/v67r1DVHKK9rrdRR0xRK5CbdtnMvOe2qIQngkAlpFGTbKciUefemFGQyZ1xut+XjDmJ2AZcD0/xe9y9cHt9kYBwmpScxwzJ3DXAkWkCagzTnb5G5WUakMteTAIjyOqnMlTh7oszFl1k7WuZSLrParLSE48uscZ+55GjW1szpTaFIoi4rtOaA213djBCty64AN540k8UT8xIJPxUKhUIxypl1Opx/JzxxDTz2VbjkYZmfLgkhBM7MNJyZacwe1zFnYGlpFcuXD7+sByOQvwMxpEvaL4B6pBFsqRmdmxEPLIBkTSUKPUh3PkzpSQBE3DI3rkfKXHyZta3PXDAca5MwOI4jzZJIGhy30LXJM5fWaplrbIm2yd5us7bmvXNmpLVxcs122DjzkJIBd3xVKBQKxTBiwVfg7Nth22vw1Dcg1nFJVTEoHOn3ur8DBAH8XncNYFoCSTMsc/8FPkJzPo1U4s4D7jah3yGhJ3nm4sXse2KZy0iKPk2mOdxJNKvNmvCVSxkAYW9NLNwUiiTqssbJTbfR0BJps8SqUCgUioOYw66GlnqZWPi5HDjnryO6lusIJezy+KwYtexdHl8R0lJnCv23zGmBPwFfQ9YtqwSuQgvc1u9+h4jEMmsXlrnd1U2MyXb0qKZhZwEQMjVJJ9Gs7QIg2pTzSuqvMRRtEwABrUurPbEaKhQKheIg4Zgb4fgfwif3w5sjNnvYSOYvwNPAWJfH92vgPeBWszrvu2VOc9ZjaJgGIumcjhbI7XDNCMBmMeqjhjtXmHdWNTG5oGcROvFyXfFqDXFaIp1HsyYscymUueTUJE0tkQ4KZTyidXwPIm0VCoVCcRBx4k+hvhze/j3kToDDvzbUEh00+L3uB10e32rgZOPQOX6ve5NZ/fdDmQsMTHXlIWZaURZ2m4UPt1dxxoLUwQK7qptY2oMccyBDxjPSrCktc53lmYv7zMUVyva1WUFa5prC0TYBEADpxn5JnrLMKRQKhSIJIeCs26RC5/sfyB0vgyQUA4bL4+vU8OXy+HS/122K4Wt4lwIYArIcNo6fWcTLn5dzy1nz2tROBZmFuyzQzOSCCb3o00pTks+crutdJA1utcy1BkB0tMxVN4bQddqkJgE4c8E43t5ygMWTeqZsKhQKheIgwpoGF94D93wJHr8arvbBhCVDLdWoxe91D4rhywSfOadAc16B5rzF2J+M5jyi3/0OIWcuGEdZIMine2o7nNtb20xMh0kFPa+kkGG3tskzF47qxHRSBkA4bJYuAyDiil1VYwtAB8vcpUdM5sWbjuOUucU9lk+hUCgUBxGObLjsccgaAw9dBDX+oZZI0U/MSE3yd+Bo4FJjvx64w4R+h4xT5o7FZhG89Fl5h3Oby+sBmFHc8woFmWm2NqlJUvnCxUlPs7amJgl3zDNntQgcNgtVDSHZd4ogjLklud2WYVEoFArFQUzOWLj8SYiG4aGLIRgYaolGNS6PT7g8vitcHt8txv5kl8dnmuHLDGXuSLRAIncKWsDU3ClDgTMzjWNnjOHFz8rR20W1rttTi80imFvS82XuDHtbn7m45S11njmpzMWXYu1WS4fccJl2KwfqDcuco2MfCoVCoVB0S9EsuOg+qNoGT3wdopHur1H0lQE1fJmhzIXRnIncKWhOU3OnoDkL0Jyvojm3Gq8dncE052I05wdozs/RnOvQnBf397ZnLhjHruomNpTVtTn+6Z5a5pTkpLSqdUZmJ8pcPNI1GYfNiKaNxAiGozhSLMXmZdoTJbuyHMrtUaFQKBR9ZNoJ4P6jTCr8yk+HWprRzIAmDTZDmYvnTilGc/4aeBf4jQn9xvEAr6MFZgKvG/vtaQKuRAvMB84Abkdz5vXnpqfOG4tF0GapNRbTWbcnwKKJveu6vTLX3IVlLq4ktoRjnaYvKciys9+wzBVmOXoli0KhUCgUbTjsajjqO/DRP2Hlf4ZamtHKME0arDnvQHMeixZ4EPgRMvldGXAeWuBxk+QDOBe413h/L7LCRDtZAlvQAluN9/uA/UBRf25amO3gmOljePqTvcSMahA7qhqpD0Z6rcxl2G00J/nMxX3hOktNAjKStbP0JQVZrcr8mJwRvaKtUCgUiuHAab+EmafDCz+EL94camlGIwnDl5E0+F2GRdJg2AL8Ac1ZAjwGPIwW+MQcsdowFi1QZrwvB8Z22VpG0tqBLzo5fx1wHYDQo5SWlnba1SFZEd7d1sLfnnydhUU23tkTBiBUvpXS0tTdpyJQ1UJtQ+u9NlZJy9ymz9cjytsqa/698h6l77zP7rIQ0VCsg4wtddIqJ4D1Kz8YEfVWGxoauhxrhbmo8R5c1HgPLmq8Bwbr2Ks5dN8mHA9fwZolf6A5s0SNtUm0SxosgPP8XvdGs/oX7R38e43mnAJcYmwZwMNIxW5LL/p4DUiVofenwL1ogbyktjVogdRJ1KRiWYosKfZhd7dNT0/Xg8Fgp+dbIlGO/92bTMjL4Mnrj+HCf37A/voWSn+wvEP+ua74+XOf88SqPaz/uUzO+Oam/XztnpU8/e1jOHRy20d56bNyvvXAanzfXcbvXtpMbVOIZ29Y1qbN717axN9LvyA/M41Pbjmtx3IMJaWlpSxfvnyoxThoUOM9uKjxHlzUeA8gNX6480TIKoJrX6P0wzUjaqyFEE26rmcNtRztcXl89wI3+b3uWmM/H/ij3+v+uhn99997XgvsBH4L/BbNeShwN3AL0PMIAS1wSufnnBVozhK0QJmhrO3vpF0u4AN+2hNFric4bFa+f+osfvzkem58+BNW7azh5hSJhLsj0y6TBuu6jhAiZc3VOPHo1KZQ1AiA6HyZ1W4zw+VRoVAoFAqDfBdcdC/cdx48dR2UXDfUEg0aLo+vAHgUcAF+4CIjUCG5zWLgH0AuEAV+7fe6H+1B9wvjihzIAAiXx3eoKYJjTtJgG5rzbDTng8CLwGbg/H7328oK4Crj/VXAsylksCPXou9DCzxh4r254LBJnL9kAs+vK2OpK5+Ll07qdR+ZdhvRmE4oKn3lEgEQKRS1THtbZS6Vwjc2V5bqKspRwQ8KhUKhMJmpx8OZv4UtLzJ1x4NDLc1g4gFe93vd3QZc+r3uRMCly+PL60HfFsMaByQUR9PSUfSjNqvzVGS+lC8BHwOPANehBRrNES2BF3gMzXkNsBO4yLj/4cC30ALXGseOBwrRnFcb112NFljb35tbLYI/XriI75w4g6mFWb22ykGr0tbUEsVhs3YZzRpPAtzUEqGhJcKE/IwObc5YMI4/XriI2eNGZXlchUKhUAw1S6+F8vVMWXMvrD8TDrlgqCUaDM4Flhvv70W6bf04uYHf696S9H6fy+OLB1zWdtP3H4EPXB5fPED0QuDX/ZbYoD9a4U+Ah4D/MRIFDwxaoArpMNj++CrgWuP9A8ADAyWCEILpRT2v+NCehLUtHCWfpMoOKfLMxds2hqI0tkTJSlHhIc1q4SuHTeyzPAqFQqFQdIkQ8KU/UPvFSvKevQEKZ8D4xUMtVbdYMnJtLo9vVdKhO/1e9509vHys3+vuccClUcGh84DLJPxe932GXCcZh873e90beihXt/TDMhc4qftGCmi1wMXTkzS1RNocTyZumWsORWhsiaikwAqFQqEYGmx2Pp//Y479/GfwyGVwXSlkD++637Hmuojf6z68s/Muj6+rgMsEfq9bd3l8nUaIujy+EuB+4Cq/192jfHGG8maaApeM0hQGgcTSqZE4uDEky3SlCmCIW+YaWqI0hiJkK2VOoVAoFENE2J4HlzwE/zkNHr0CrnoObCPXX9vvdXcacOny+CpcHl+J3+suM5S1lAGXLo8vEXDp97p7FHA50NGsKhxyEMhKCmoAaXXL7KSmaty/rrqxhZiuynUpFAqFYogpWQjn/R12fwS+/4H+pjQbvnQbcOny+BIBl36vuzcBlx2iWYFhEs2qOQWas/fhnQcZrcusrZa5zE5qu1osgky7NVGuK7sTpU+hUCgUikFjwflw/A/hk/vh4566oI04vMCpLo9vK3CKsY/L4zvc5fHdZbSJB1xe7fL41hrb4h70PUyjWQG0gI7mfAE4xBxxRifxZdbGuM9cKEJmFxa3TLuN/UaVB2WZUygUCsWwYPn/QsUGeOknUDQbpi0faolMxe91pwy49HvdiYBLv9fd14DL5GhWAVyAidGsZiyzrkFzLjWhn1FLZrtlVhml2rnFzZlhY29tM6CUOYVCoVAMEywWOP9fMGYWPH41VG8faolGDH6v+z5kDt4KZB3764CjzOrfDE3hSOByNOdOoBGpcepogYUm9D0qaL/M2hyKJqx1qSjMcvCxvxpABUAoFAqFYvjgyIFLH4J/nwQPXwbXviqPKXqCA5iCzDG3A3jSrI7N0BRON6GPUU0Hy1woQokzvdP2+Vlpifd5mWmdtlMoFAqFYtApmAYX3gP3nw9PfRMufkBa7RQdcHl8s5AFFi4FKpHlwoTf6z7RzPuYUM4rsBOoQybXm5K0KQziyYETeea6scwVZLWGfauSXQqFQqEYdkxbDmfcCpt9UPqboZZmOLMJmSj4LL/Xvczvdf8VWdPVVPpvmdOc1wI3AROBtcg14A9ozXJ80BOPUG31mYskrHWpKEiyzBVk2gdcPoVCoVAoes0R10H5enj791A8T0a8DhW6Ds98e+ju3znnA5cAb7o8vpeQpU97Xxe0G8ywi94ELAV2ogVOROZNqTWh31FFpt1Kk1GTtaeWOatFYLMq07VCoVAohiFCgPuPMOlIqUiVfTp0sux4Gz59aOju3wl+r/sZv9d9CTAHeBP4HlDs8vj+4fL4TjPrPmZoCkG0QBAAzelAC2wCZpvQ76gi026jIRhB13WaQhGyusgfV5glrXF2pcgpFAqFYjhjc0ifucwCGRDRcGDwZdB1ePM3kDN+8O/dQ/xed6Pf637I73WfjVzJ/AT4sVn9mxEAsQfNmQc8A7yK5qwBdprQ76jCmZFGXTBMSyRGTKdLy9yR0wo4dkYhR04tHEQJFQqFQqHoA9nFsuTX3WfAY1+FK1eAbRBdhL54A3Z/KK2EfGPw7ttHjOoPdxqbKZjgMxf4cvwdmvNNwAm81O9+RxnOjDQCzWEaW2QQRFc+cyXODB681rT0MwqFQqFQDCzjF8N5d8ATX4cXfgBn/1kuww40ug5v/hqck+DQrzISlLmBwNwkZlrgLVP7G0U4M9LYF2imLiiVudwMlT9OoVAoFKOIBV+Bis/hnT+CcyKc8KOBv+fWV2Dvajj7L3LJ9yCl7xqF5qwHdNpGZcT3dbRAbv9EG13kZqRR1xymtikEQF6GilJVKBQKxSjjxJ9BXZm0ltmz4egBjDCNReV98qbA4ssG7j79xOXxCWCi3+vePVD36IcyF1Apn3tBfJm1tiks91UyYIVCoVCMNiwWOOevEGqAl38CjmxYcuXA3OuDO2QE7fl3gXX4fqf6vW7d5fENaB17M/LM3ZL6eOAX/e57FOHMSCMc1SkzAn/zVf44hUKhUIxGrDb4yl3wyGWw4rvSQmd2DrqKDfDGL2HOWXDIBeb2PTCscXl8S/1e98qB6NwMx63GpPfpwFnARhP6HVU4M+Svhp3VcrjyMobvrwiFQqFQKPqFzQEX3Q8PfAWe+gboMfOUrkgInv4mOHLhrNsHJ9Ci/xwJXO7y+NrUsfd73abUsTcjmvWPbfedfwBe7ne/o4x4jVV/pVTmcpUyp1AoFIrRjD0TLn8MHr4UnrwWmmvgCBOiTd/+HZSvk+lQsov639/gMKB17AciK20mMiGeIomxuTLKZnN5PbnpNqyWEfFLQqFQKBSKvuPIgcsfh1lnyJQlL/0EopG+97f2YRktu+gymOM2T84Bxu91D2gdezN85tYjo1gBrEAR8Mt+9zvKKHFmAOCvamJyQeYQS6NQKBQKxSCRliGrRLx6M3z4d6j4DL58J+SW9K6fVXfD8/8Pph4P7j8MjKwDhMvjG9A69mZY5s4Czja204DxaIG/mtDvqKI4x0HcGDcxP2NohVEoFAqFYjCx2uCMW+Hcv8PulfD3I+HTR2TS3+7Qdfjg71KRm3kaXPYY2LMGXmZzSdSx93vdptexN0OZ+0rSdjHwXTTnNWjOxSb0PWqwWS2MzU0HYHpR9hBLo1AoFArFEHDo5fCtd2HMbBnE8K/jYZMPIi0d2+o6bHsN/nOqTHMy92y4+EFp6Rt5BP1edxDA5fE5/F63qXXszYhmPdzYnjP2zwLWAd9Ccz6OFvhdv3rXnAXAo4AL8AMXoQVq2rWZAjyNVE7TgL+iBf7Zr/sOABlGCS+1zKpQKBSKg5YxM+DrL8G6R6HUK1OY2DJgytEw8QiINENjpVyOLftUluo66zY49Epp4RuZ7HF5fHkYdexdHp+pdezNGJWJwBK0QAMAmvP/AB9wPLAa6J8yBx7gdbSAF83pMfZ/3K5NGXA0WqAFzZkNfIbmXIEW2NfPe5vKLWfN4+r/ruTIaQVDLYpCoVAoFEOHxSqrNhxyIWx7HbaXyu0tL1jtkFUMOeNk6pHFl4Nt4HOzujy+DsYjv9dd00nbXGAD8Izf676hu779Xneijr3L4zO9jr0ZylwxkGwfDQNj0QLNaM4UdtNecy6w3Hh/L1BKe2VOC4SS9hwMTJRuv1k+u5jtv/kSFhXJqlAoFAqFrNww+wy5AYSbwZY+VLnjPMDrfq/b6/L4OjMexfkl8HZfbuL3uk2vY2+GMvcg8BGa81lj/2zgITRnFlJr7S9j0QJlxvtyZFhvRzTnJKRFcAbww06tcprzOuA6AKFHKS0tNUFERXc0NDSosR5E1HgPLmq8Bxc13oPHQTbW3RuPAJfHdxhSF3kJ6WbWKS6Pr8s69n6v25Q69kLvSSRJd2jOw4Fjjb330AKrenn9a8C4FGd+CtyLFshLaluDFsjvoq/xyDXps9ECFV3dNj09XQ8Gg70SVdE3SktLWb58+VCLcdCgxntwUeM9uKjxHjxG2lhbM52hSd99aH3SoTv9XvedPbnW5fHV+r3uPOO9AGri+0ltLMAbwBXAKcDhPVlmHWjM8SSUylvvFLi215/S+TlnBZqzBC1QhuYsAfZ309c+NOdnwHHAE32WSaFQKBQKxYgi1lwX8XvdnVrLXB5fV8ajBH6vW3d5fKmsXd8GXvB73XtcHl+P5XJ5fCnr2Pu9blPq2JuRNNiBTEviatOfFjBFQGAFcBXgNV6f7dBCc04Eqgw/vXxgGXCbSfdXKBQKhUIxCvB73Z0aj1weX4XL4yvxe91lLo+vM+PR0cBxLo/v20A2YHd5fA1+r9vTza0HtI69GZa5Z4EAMnLVjICH9niBx9Cc1yDDeC8C4ku730ILXAvMBf6I5oyvQ/8BLbC+k/4StLS06EKI5gGQWdERG9CPGi6KXqLGe3BR4z24qPEePEbaWPcnCV23xiO/1315/L3L47sauczanSKH3+tuU8fe5fGZWsfenNQkWuAME/pJjRaoAk5OcXwVcK3x/lVgYR96X6PrepfOiwpzEEKsUmM9eKjxHlzUeA8uarwHj4NsrL3AYy6Pr43xyOXxHQ58y+91X2vivUytY9//AAjNeScySW+3lrDhxkE2SYcUNdaDixrvwUWN9+CixnvwUGNtDi6PL2Ude7/XbUr5UzMsc8uAq9GcO5DLrAKIoQUWmdC3QqFQKBQKxUjnrKT3EaDC73WbtnxthjJ3ZtJ7AUwCfmJCv4NBj8KVFaagxnpwUeM9uKjxHlzUeA8eaqzN4SvtD7g8vgCw2u91r+1v52blmTsUuAy4ENgBPIkW+Fv/O1YoFAqFQqEY2bg8vodIXcfeBTzu97r7Vfq075Y5zTkLuNTYKpH1zARa4MT+CKRQKBQKhUIxypgILPF73Q0ALo/P1Dr2/alhugk4CTgLLbAMLfBXINofYRQKhUKhUChGISnr2Pu97mZMSOvWH2XufKAMeBPN+W8058m0rT02bBFCnCGE2CyE2CaE6DY/jKJ/CCH8Qoj1Qoi1Qoi+VwpRpEQIcbcQYr8Q4rOkYwVCiFeFEFuN185L4Cl6RSfjrQkh9hpzfK0Q4ktDKeNoQQgxSQjxphBigxDicyHETcZxNb8HgC7GW83v/vMg8JHL4/s/wyr3HvCQy+MzpY69GalJspDFaS9FWuruA55GC7zSX+EGAiGEFdgCnArsAVYCl+q63u/BVKRGCOEHDtd1vXKoZRmNCCGOBxqA+3RdX2Ac+x1Qreu61/jBkq/reoeC0Yre08l4a0CDrut/GErZRhtCiBKgRNf1NUKIHORy1HnA1aj5bTpdjPdFqPndb4x8dYk69n6v2zTjhgnlvAKNwEPAQ0YprQuBHwPDUpkDjgC26bq+HUAI8QhSGVXKnGJEouv620IIV7vD5wLLjff3AqXIv0tFP+lkvBUDgK7rZcgVIHRdrxdCbAQmoOb3gNDFeCtMwFDeBmR1yozUJK1ogRpkGPNwDmWeAOxO2t8DHDlEshws6MArQggd+Jeu68N5fowWxhr/mAHKgbFDKcxBwg1CiCuR/6z/R9f1mqEWaDRhKNCHAh+h5veA0268j0XN737h8vhS1rH3e92m1LHvj8+cQtFTlum6vgSZk/A7xjKVYpDQpS+FCTmIFF3wD2A6sBhp2fhjl60VvUIIkQ08CXxP1/W65HNqfptPivFW87v/PIu0KEeAxqTNFMy1zI0M9iITG8eZaBxTDBC6ru81XvcLIZ5GLnW/PbRSjXoqhBAluq6XGX4w+4daoNGMrusV8fdCiH8Dzw+hOKMKIUQaUrF4UNf1p4zDan4PEKnGW81vU5jo97oHrI79wWiZWwnMFEJMFULYgUuAFUMs06hFCJFlONIihMgCTgM+6/oqhQmsAK4y3l+F/FWoGCAMhSLOl1Fz3BSEEAL4D7BR1/U/JZ1S83sA6Gy81fw2hfddHt8hA9W5ORUgRhhGWPXtyGK3d+u6/uuhlWj0IoSYBjxt7NqAh9R4m4sQ4mGkM/gYoAL4P+AZ4DFgMrATuEjX9eohEnFU0cl4L0cuQemAH/hmkk+Xoo8IIZYB7wDrgZhx+H+RflxqfptMF+N9KWp+9wuXx7cBmIGskpWoY+/3uk2pY39QKnMKhUKhUCgUg4XL45uStJuoY+/3uk3J2XcwLrMqFAqFQqFQDBp+r3snUADcgEyl8wvgBbP6PxgDIBQKhUKhUCgGHJfHl7KOvd/rNrWOvVLmFAqFQqFQKAaGTUg/xLP8Xvc2AJfH9//MvolS5hQKhUKhUCgGhvORWTPedHl8LwGPMAB17FUAhEKhUCgUCsUA4vL4Utax93vdppQ+VcqcQqEYVgghCoHXjd1xQBQ4gAzrv0/X9W8PwD2/hyzcfl8n588CjtB1/Raz761QKA4uXB5fvI79xX6v+2Qz+lTKnEKhGLYIITSgQdf1PwzgPWzAGmCJruuRTtoIo82xuq43DZQsCoVC0RdUahKFQjEiEEIsF0I8b7zXhBD3CiHeEULsFEKcL4T4nRBivRDiJaMkEUKIw4QQbwkhVgshXm6XyT7OScCauCInhPiuEGKDEGKdEOIRSNT/LAXOGpSHVSgUil6glDmFQjFSmY5UxM4BHgDe1HX9EKAZcBsK3V+BC3RdPwy4G0hVfeRYYHXSvgc4VNf1hcC3ko6vAo4z/SkUCoWin6hoVoVCMVJ5Udf1sBBiPbI030vG8fWAC5gNLABelaukWIFUJYhKgI1J++uAB4UQzyDLosXZD4w3T3yFQqEwB6XMKRSKkUoLgK7rMSFEWG91AI4h/7cJ4HNd14/upp9mID1p3w0cD5wN/FQIcYixBJtutFUoFIphhVpmVSgUo5XNQJEQ4mgAIUSaEGJ+inYbkZGyCCEswCRd198Efgw4gWyj3SzgswGXWqFQKHqJUuYUCsWoRNf1EHAB8FshxKfAWuCYFE1fRFriQC7FPmAs3X4C/EXX9Vrj3ImAbyBlVigUir6gUpMoFIqDHiHE08CPdF3f2sn5scBDuq6bkhNKoVAozEQpcwqF4qBHCDEbGKvr+tudnF8KhHVdXzuogikUCkUPUMqcQqFQKBQKxQhG+cwpFAqFQqFQjGCUMqdQKBQKhUIxglHKnEKhUCgUCsUIRilzCoVCoVAoFCMYpcwpFAqFQqFQjGCUMqdQKBQKhUIxglHKnEKhUCgUCsUIRilzCoVCoVAoFCMYpcwpFAqFQqFQjGCUMqdQKBQKhUIxCLg8viyXx2c1u19VzkuhUCgUCoViAHB5fBbgEuByYCnQAjiASsAH/MvvdW/r732UZU6hUCgUCoViYHgTmA78BBjn97on+b3uYmAZ8CHwW5fHd0V/b6IscwqFQqFQKBQDgMvjS/N73eH+tukOZZlTKExACOEXQpwy1HKAObIIIT4XQiw3RyLzEEJoQghtqOVIxXCaA31hsOUfrnNMoTCZSS6P7zAAl8d3XKoG/VXkQClzilGIEKJUCFEjhHAMtSy9RQjxkhDiFymOnyuEKBdC2AZDDl3X5+u6Xmrce8QpKSN5DrRnNDxLqjmUPMcUilHMP4ALXR7flcBXB+omSplTjCqEEC7gOEAHzhlaabqmE8XsXuAKIYRod/yrwIO6rkcGXrKRzUiaA9DpPIifczHMn2WwfmAoFCOULX6v2wMUAEcN1E2UMqcYbVyJdCq9B7gq+YRhHfiBEGKdECIghHhUCJFunFsihPhECFEvhHjcOPerpGt1IcSMpP17ks+3u49HCPGF0dcGIcSX28nwYyHEOqAxxRfhM0Ah8gs8fk0+cBZwn7E/XgjxpBDigBBihxDiu50NhhBirmHZqTWWtc5JOjdJCPGU0U+VEOJv7eQ8RQhxPzAZeE4I0SCE+JEQ4odCiCfb3ecvQog/dyJDjhBiT/slNSHERGNcCzuTv4/0aQ4Y54fLPOjJs6T8/Lr5XHszdzptm0r+zp431RxK6uOUpD67mqtdfm7t5LYJIW42rqkSQlxmzNufdvasCsUA8gKA3+u+HbhzwO6i67ra1DZqNmAb8G3gMCAMjE065wc+BsYjfyVtBL4F2IGdwE1AGnA+EAJ+lXStDsxI2r+n3Xk/cIrx/kLjHhbgYqARKElqtxaYBGR08gz/Bu5K2v8msNZ4bwFWA7cYck8DtgOnt5fFeJZtwP8abU8C6oHZgBX4FLgNyALSgWWdPE/ivbFfYjxTnrFvA/YDh3XyPBrwcorjAmgAlvfi89UAzew5YJzr1zxIMU79mgddPUtnn19Xn2t3c6fdZ96Ttm3k78HzntLu2ZLv1+lc7e5zSzFmXuA1wAmcbbT9HMgZ6v9Pajt4tyk/fv7CKT9+Psd4/7MpP37+qSk/fn6JWf0ry5xi1CCEWAZMAR7TdX018AVwWbtmf9F1fZ+u69XAc8BipOnbZpwL67r+FPKLo0/ouv64cY+YruuPAluBI9rJsFvX9eZOurgXuCDJ8nClcQxknqIiXdd/oet6SNf17Ujl75IU/RwFZANeo+0bwPPApYY844Ef6rreqOt6UNf1d3v4fGXA28gvb4AzgEpjzNsghLAC1wN3GftFQohpRj86EAEyhBBHCCE+EEK8LYR4WAiR1hNZUtyvr3MAhtk86OZZOvv8uvpcezN3etK2jfw9eN6u6GquJt8v1eeWPGa5wPeA63RdDwAfAXOQLgr1Zs0zhaIP3Oz3uutdHt8y5I/t/yD96UxBKXOK0cRVwCu6rlca+w/RbmkKKE9634T8AhkP7DWUizi7+yqEEOJKIcRaY7moFlgAjOlp38aXbyVwnhBiOvIL8SHj9BRgfLxvo///Bcam6Go8sFvX9VjSsZ3ABKRFZafedx+8e4F4bqQrgPs7abcAKAZeNva/D1wHIITIAHKQVr3dwEm6rh+PtMKc20e5+joHYJjNA7p+ls4+v64+197MnZ60bSN/D563K7qaq3E6+9ySOQnYYiifIK18AeCvSTKbMc8Uit4SNV7dwJ1+r9uHnJ+mYJ7jqubMAoJogWi3bRUKkzEUg4sAqxAi/k/fAeQJIRbpuv5pF5eXAROEECLpi3wS0hISpwnITNofB+xJIccUpAXjZOADXdejQoi1yCXFOD1J7ngf0iI3G7lEWWEc3w3s0HV9Zg/62AdMEkJYkr4kJwNbjH4mCyFsPVDoUsn7DPAPIcQCpD/fjzq5dgJQo+t6nbF/Bq2K3wlADfBJuy/xEJC83yP6OQdgGM2D7p6Fzj+/rj7X3sydnrRNyN+D5+1uznc1V3vDeKOvONchFfR6SFiV4/RpnikUfWSvy+P7F3AqMlGwAxMNan3vSHNa0JyXoTl9aM79wCagDM25Ac35ezTnjO66UChM5DzkL595yOWXxcBc4B2kUtQVHxjX3mA4T59Lx+WhtcBlQgirEOIMpCKSiizkF9cBACHE15AWit5yH9IU/w1al1hBLvvVG87nGYY8C4QQS1P08RFS+fiRECJNyACEs4FHjH7KAK8QIksIkS6EOLYTWSqQPlMJdF0PAk8grUUf67q+q5Nrq4FcIcRUIcSlyF+i84QQeUj/t9uTFTlDKTgNuYzWW86j73MAhtc8OI+un6Wzz6+rz7U3c6c3bXvyvB3mUDu6mqu9YQ+wWAhRIoQ4EhkFXiyEaGMB6ec8Uyh6jMvjO9rl8Qnkj7OXgdP9Xnct0vfzh2bdpz9aYZsSFWiBSWiBNiUq0Jz9LlGhUPSQq4D/6rq+S9f18vgG/A24XHSRPkHX9RDS2f0aoBa5bPg8soZenJuQXy61yBp7z3TS1wbgj0jFoAI4BHivtw+j67ofeB/5Jbki6XgUaQlbDOxALsfehXT2TvVcZwNnGu3+Dlyp6/omo5+zgRnALuSX4MWdiHMr8DNj+ewHScfvNZ6vsyVWgJXIL+S1yPE9BzgG6U/1EfDbeEPD3+l+4Gpd1/uSRLPPcwCG3Tzo8lmQFq8On19Xn2sv506P2/bweTubQ/HrO52r3Q9VG14CXkEGPTyM/DzXAm/EG5gwzxSK3nAlMpjobiAXGdiD3+su83vdr5h1k76X89KcaWiBrv8QetJGoRiGCCE+Av6p6/p/h1qW4YoQYjLSIj8uaRm1r33ZkErrH3Vdf72LdhqArutaf+7XC7nUPBhF9HSeKRRm4/L45iB/rJyO/FH0JvLHx3t+r7vf7mn9r82qOS8EXkIL1KM5bwYOBX6FFljTX+EUisFCCHECsBlpFbgc+CcwrZ2PjcJACGEB/gTk6rr+dRP6+ypwO7DeOPQPIyKyfTsNBk6ZU/NgdNPTeaZQDCQujy8DOBGp3B3t97oP72+fZgRA3IwWeBzNuQzp/Pp7ZLjtkSb0rVAMFrOBx5DLmtuBC9QXeGqEEFnIpbSdyICGfqPr+v10vVwbp9SM+3WBmgejmF7MM4XCFFwe3/e7OL3D73XfaMZ9zFDm2oTbogV8aM6UGdEViuGKrut3MpDZuUcRuq43kjotxGDcu3SA+1fzQKFQmEmO8Tobmb8x7gN9Nv3IY9keM5ZZnwf2IsNtlwDNwMdogUX9lk6hUCgUCoVihOPy+N4G3H6vu97YzwF8fq/7eDP6N8MydxFyqeUPaIFaNGcJJobbDiQWi0XPyMgYajEOCmKxGBaLylE9WKjxHlzUeA8uarwHj5E21k1NTbqu68NR4LHI3IZxQqRO2N0n+q7Mac6jgQ/RAk3AU63HA2XIPEfDHrvdTmNj41CLcVBQWlrK8uXLh1qMgwY13oOLGu/BRY334DHSxloI0VmZxKHmPuBjl8f3tLF/HrK2syn0R3uVuVM05yNozqvRnOPMEkqhUCgUCoVitOD3un8NfA1Z9aYG+Jrf677VrP77YZkLXC9fnfHcKfegOdvkTlGlvRQKhUKhUCjA73WvAQYkbVv/fea0wCZk4tDb0Jzx3CkXInNQ9Tt3yoimpR6aayBnPFjNK4NrNk2hCDaLBbttOLoZKBQKhUIx8nF5fPnATCA9fszvdb9tRt/98ZnrMncKWsCU3ClJ9zsD+DNgBe5CC3jbnXcg16QPA6qAi9ECflNl6CnV2+GVm2HLSxCLQEY+HPs9OOZGsFi7uG4HhBpg7AIQovN2JjPvlpc5wlXAY986etDuqVAoFAqFmXxxoGGoRegUl8d3LbIc4ERkibmjkOXvTjKj//6YiwYldwoAmtMK3IFMf7IHWInmXIEW2JDU6hqgBi0wA815CbLmY2e1JgeODc/CM9+W74/6NhROh43Pw2v/B/534Ct3SeUumaov4NnvwK4P5H7+VDjpZ7DgK61KXWAvfPRPqPgcxsyEuWfDlGPl+XAzbC+F2t3gyIZxh8CY2YAuFcSaHWDPhtzxkD0W7FkdlMWP/dUDOiwKhUKhUAwU0ZjOJXd+ONRidMVNSF3pQ7/XfaJR3us3ZnXeH5+5n8tX59vAErRAvbGvAb7+i9aGI4BtaIHtxj0eAc4FkpW5cwHNeP8E8Dc0p0ALdJpIz6JH4c1bpbVMWIxXK1jTYOx8mHQU2Ow9kzAWhTd+Be/+CSYcDhfdB84J8txhV8Pqe8D3A/j3SXDxgzB2Hug6rHsMfN+X9zztV1LR++if8OQ18PG/4bCrYM8q+OQB0KNQPBd2vi/bFEyHrCIoXw/hdlG5ljTZXo91lNVqh1N+Dkd/m3C09byu64hBtAgqFAqFQmEGn+yq4UB9y1CL0RVBv9cddHl8uDw+h9/r3uTy+Gab1bkZjlwDmjvFYAKwO2l/Dx3LhbW20QIRNGcAKETWWGxFc14HXAcg9Ai81Xa1NpmoJZ2a/IVUFR5OVeHhhByFKdvZW6qYs+kvFNSsZV/J6Wyd/g30T7YCW5Nauchd9Evmf/5b0v55HFWFS3G0VJJbv5Va5zw2zv0+LaEiOXqzf8445xtM234/9meuJ2qxs7/4OHZOuZhgxlgs0RaKDrxH8f53sNbV01h0ApVjjqQheypp4XqyG7aT1ehHF1aaMicQTC/BEgviaKnCHqqheP+7ZL1yC+83TKY6lpWQcM0Tf6KxYD4xa3r7R+w3DQ0NlJaWmt6vIjVqvAcXNd6DixrvwWOkjPWjm0PdNxpa9rg8vjzgGeBVl8dXgyyJaApmKHP3AR+jOZNzp9xrQr8DgxZIlOuJetN1/q9WWtX0aOtrpAV2f4R12+uM2foqY7b8XV47biHMOgOmnQCZhdCwH7a+AqvvhVgYzrqd8Yd/jfGd3nw5nHQ+vPVbira9Chk5cMJt5B16JUd3CJA4GcI3Q91erNnFlDhyKGlz/vTEuzykJttj9q6Gf5/EssJqvpi0HN58C4AZn/0R55SFcPULEE8S2XAA/G/D5GMgt6TzPrthpOUq6jXVO2CTD8YtgGnLh1qa0T/ewww13oOLGu/BY6SM9S9WlQLhoRYjJS6PTwDf9XvdtYDm8vjeBJzIzB+mYEY066/RnC8CxxlHvoYW+KTf/bZlLzApaX+icSxVmz1oThtyoKq67VkII9I0aSgcOTDHLTddhwObZDDDlpfhnT/A279Lut4K886Fk2+GgmndP0nOWDjrT923A0hLlz53ZjN+CeRNhk0+AmPOThxuKlqEc9f78OnDcOjlUOOHu06Fxv1y+feyx2DSERAOSovmxueheI4M7ph4uByr8vWw+UVAh8lHweSjwebA3lIjj8ci4JwERbMhLQMiIenTl1EA2UXmP+tgUPUF3HWyjFwGWPb/4KRbWhVigKZqWPUfKP9MBrgsvQYyCzr2FWqExgPStzFtGFcnKf8MtrwIlVvlUv+MU2Dq8V0H+MRiEKoHR+6gBvgoFIrRzbb9DWyvHL4FAPxet+7y+F4ADjH23zL7Hmbly9hh9JUO5KA5j0cLmBJua7ASmInmnIpU2i4BLmvXZgVwFTI65ALgja785XqMENJPrXiu/JJuqoa9ayBYK7+MSxan/lIezggBs78Eq++hYXHrH0DTVx4E38Xw6s3gWgYPXQzRFun/95oG954Dx/8APnsS9m+QFqgd78DG56SfYLAWqrYB8S9qHdIywZ7FMY0H5CeTkMEiz4WbpF+fxQYX3C0V4zixKGx/U/Y37cS2ytFwobESHviKfJ5vvg2r/gvv3gbBOnD/UY719rfgqeugoRzypsCGZ+CDv8Hyn8DhX5fXbi+FT+6DTS9IK68lDaYcIy3BM0+F9Dyo/gIqPoN9ayGwW45ZTgkUzpDbmJnSYly3j8LKj2HNbpkex54llcPc8VKJz8hrlT/cDMEANNfK/tKdUnFPlUonFoMvXocP/w5fvCGPOSdJ5fODv0HuRFjyVTjkQhnE01wD5etgx1vy+crWSct3WhaMmSEV/anHy7mTVSTHKhiAwB6o2gq1u+Q4OrLl8+dOgKJZ8p5dKY0KheKg4pUN5QDkZ6aZt25pPmtcHt9Sv9e9ciA6N8Ey5xzQcFt5j0AEzXkD8DIyNcndaIHP0Zy/AFahBVYA/wHuR3NuA6qRCp/5ZBbAzFMGpOtBZfaZ8NE/CW18EYyF4eaYFc7+M/zrOPjzQml1/OpTUmmbfAw8cim88UuZN++yx2HWadDSAB/fKa2W+VPh6Btg7jlgc4D/XfmlH2nmi1oL05dfJo/X+GVUbqhRKhoF02QfT35DRuEWz5FL3Q9fKpUHgBmnGpHAedICuOVlWPlvqazMPBUO+zpkGT6NwTp5XX2F7GvC4VIhiNPSAA0VUnnJHS+DT/pCuFnKWF8GVz0HJYvgrNsgPRfe+7N8zpxxsPYhqWxd/phsU7EBXv4JvPRjeP3ngJABLBkFsPRaGXxTtRW2vCLbvfyTtvfNyJf9xSJSQWq8v4NohwB81oncViOoR4/JPjogpFKYPVYqd+jy86jdCU1VkD0OTv4/WHKVHPNwEDb7YM39UHqr3BDyOpDjPHEpHPtd+Yx1++SPgdX3ykAekMqrsMgfD+1lod1vMlu6nDOOHPkssaicB6F6+drSIJ8ts1D+vWaNkTLnGFtGgbyXHAQ5BtGwfLVYpeXQkSPbZRVKRdOerayJCsUw5dUNFRwywdkmoG8YciRwucvj2wk0Yvxz83vdC83oXOh6P41XmnM9RrgtWmCxURHiN2iB802Qb0BJT0/Xg8HgUIsxNETDcPtCfLWT+E74JgAe++bRHDG1QFqH1j4Ih34VZp/Rek0sBnV7pDWolwpQt34XDfvhjiNkhO7VPnj6Opnm5YzfyvOv/FRaZI69CT5/Cna8La1c2cWwZ6X8gp9zFrTUSStQNMkZ1mqXykRahlSwqr6gVdFIk4pB/hQ5Js01UtmItEjFM2uMVACyx0nLYLhZKi/hJplPsHYXXHRvW4uirkvr1dt/kO2WXAmnaFJxTW6zvVT6XOoxaQmdeZq8ZzI1fmnZCzdJOYvnynFIViyaa6XVrnIbNFdDTgmrv6jgsOPOkEpJqFEqr3X7pLyN+wEhFZq41SvdKeVorpUKW0OF/Exa6lrHMLcEpp8Ec87uPMq7ZqdUpOv2SWVozExpgUtWpuNEWmD3x7B/I9Tvk0pZdrGcX2Nmyh8Hjhw55s010hpZuQUObJZjH26Sn5mwyHb2bPnqMLImNVdLS3rjAalw11ekUBZ7iNWYC5mFcq7FI98tcquqqaOweJz8u0jPk0pkZqGhEI6RCmF2MWSO6XmEvKJTRoof12hguI/1/vogR/7mdf7fKbN4YX0ZL/+/E5p0Xc/q/srBxeXxTUl13O91m2JMNGOZNYgWCKI5ZeJeLbAJzWlauK1igLCmwZd+R+iphxM+o81ho/ranC/JrT0Wi1ymGwiyi8H9J3jia/D76TJ58um/gaO+Jc+PXwxPfB2e/560TJ35ezj8a/I59m+SFp5NPqk0LP2GzMNXMA0q1kulaecHss/ieXIZMG+KXM6s3iEVhNqd8ks6awyULDSWgJulYlNfDge2SGUnLV2eS8uQCseXfg+zTm/7LELA0d+ReQbj++0RAqafKLeuyHfBYa6u22TkwYTD5GZQf6BUKqggFYu8SSkvNZ38KXLpuCfYHDD1OLl1hT1Tbs4J0g+zr+i6dAVoapdT0ZomrYcWm7TOtTRIC19TlVQEmyrlcnpTlXyNthjBUjGpkMYi2EM1UBOU+801ctM7qWZosbXOIVu63NKMV5tDzu+8yXKOFkyT8yx34vB0M1AohpjXN+5H1+HUeWN56bPyoRanAy6PT/i9br0rpS3epj/3MUOZ24PmzMMIt0VzmhpuqxhA5p5N6LRF8OR6AJpDqZbcBpEF58svyM+flsrYoqSV8slHwffWS58858S2Vq7iOXD27XJrT85Y6Zw/FKhlueGFEFJRap+02wRWt7dexGLSqhlXABsPSItoY5W0KIabIdJsvBpKYCQorb4VG2DzS22tiLYMwy9yhvQddOTK5fy0zLbKaPy91W4sMRdLq6CyBipGKa9uqGBifgZzxuUM13+5b7o8vieBZ/1e9674QZfHZweWIX393wTu6c9N+qfMaU4BfBctUAtoaE7Tw20VA0tLpNXHIGGZG0oOuUBuqbBYZRSsQjHcsVikxTQjr28R6bGYVP6qtsmI4cqt0o9y31rpS9k+SXiXCOkqkDe57eacJK1/zonSMqhQjDAaWyK8u62Sy4+cjBACy/DU5s4Avg487PL4pgK1yGBRK/AKcLvf6+53BpB+KnMBHc2ZCLdFC5gebqsYWEJJylw40v/gX4VCYQIWS2vAhmtZx/PRiLT8hZulu0A0IpeIY2HpRxhpMayC+6WvYGCPdCXY/TF89lTHJeBsQ9lzTmi15mUXydfkLUUpQIViqHhnayWhSIxT58k6BT2dmi6Pr02td7/X7W13/njgdmAhcInf636irzL6ve4g8Hfg7y6PLw0YAzQbOedMw4xl1jVozqVogQEJt1UMLMmWuZbhHQmkUCjiWG19T4kUjciAkNpdcgvslope7S4jOroSWgKpr7VlSP/WgqkyWKlwuvE6Q/p3pkppo1AMEK9trCA33cZSl/xb6Ek5SpfH16HWu8vjW+H3upPLg+4CrgZ+YKa8fq87DJSZ2WccM/7yjgQuR3O2CbdFC5gSbqsYWFraWOaUMqdQjHqsNhkQkzcJODZ1m0hLkq9fu62uTEYTf/aEzAuY6NchgzWKZkPRXOnLWjRHRiUrJU9hMtGYzhub9nPinGLSrDI4qIeGuSOAbX6vezuAy+PrUOvd73X7jXMj5kvRjL+w07tvohiuJC+zhpRlTqFQgIyqdU6QW2fouowMrv5C+vQd2CTTxuxZKROLx7HaoXBmq3IX3wqmKSVP0Wc+2VVDdWOIU+a2loIXAiwZuTaXx7cqqemdfq/7zqT9ntR6H3H0/S9JcwrpMxfoPHI13kYxbAlFYmSkWWkOR5VlTqFQ9BwhjKTKhbLMXzKhRqnYHdgkt/2bYM+q1Epe0WyZPzFu0SuY2vdE3oqDhlc3VpBmFZwwu7UMpEUIYs11Eb/XffgQijYk9Odn0ZtozieBZ9ECiXBbNKep4baKgaUlEiXTbiUYiQ737NkKhWKkYM+CCUvklkxCydsMBzbK172rZSLwOJa01uXa4nkyf+LEpTIVi0Jh8NqGCo6aVkhueqvi38Nl1p7Ueh8wXB7fqcBFwB1+r3uty+O7rp3lsE/0R5lLhNsaNVNraRduixbod7itYmAJRWLYbRbsVosKgFAoFANLV0pe5RZpwYtb8/Z9Ap8/A+iyykfxfJh8JEw6CkdQl8u8KrL2oGT7gQa+ONDIlUe72hzvYWqSlcBMI01IZ7XeB5KvA9cDP3N5fAXAYjM67ccyayARbovmTITbGjnnFCOEULRVmVOpSRQKxZBgz4Lxh8otmWAd7F0Fuz6C3R/Cp4/Ayrs4GmCDBq7jYNoJMPWErv37FKOK1zZWAHDy3OK2J3qgy/m97ojL42tT693vdX/u8vh+Aazye90rXB7fUuBpIB842+Xx/dzvdc83Sfx6Iy3JD1wenxdZDrXfmON9qgUGLNxWMbBEojo2i8Bus6hlVoVCMbxIz5X1gKefJPejEdj/OVveeIBZ9krY9hqse0SeK5zZqthNPW5AKn0ohgevbdjP3JJcJuZntjlu6aGh1u91vwC80O7YLUnvVyKXX03D5fEd5ve6VwO+pPt4XB7fjWb0r0KJDnIisRg2i4U0q6VNZKtCoVAMO6w2KFnEvgk1zFq+XFbK2L9B1l/e8RasfRhW3iWXZUsWwYxTZe3k8UtUbdtRQnVjiFU7q7nhxBkdzomees0NDVe5PL6fAH+MH3B5fH/ye93fN6Nzpcwd5ESiOjarIM0mOljmPtxeRZpVcNiUPiYnPQgoDwS57wM/31o+vY0jrkKhGAQsFhi3QG7H3ACRkAyo2PEWfPEGvPMHePt3kDlG1miedZp8TXcOteSKPvLmpv3EdDhl3tgO54a5vr4fOAd40uXx1QN24AOzOlfK3EFOOKZjs3YMgGiJRLnkzg+xWy1s+fWZQyjh8OZ/Hl/Le9uqcBVmcdHSSd1foFAoBg6bHaYcLbflHpkHb9vrsPVlua17RKZEmXYizDsXZp/Z90oaiiHhtY0VjM11sGB8R4V8mFvmrgBm+73uFpfHNx64FTAtSNQ8ZU5zJsJt0QJr0ZzXoQX6HW6rGFiisRg2iyDNammTZ648EARUIuHuqG0KA7ChrG6IJVEoFB3ILICFF8otFpUJjTc+BxtWSOXOYpM+dvO/LJU7lf5kWBMMR3lrywHOO3QClhQOcsM8uHk3MBXY5Pe69yGXXTcia8D2GzMtc4lwWzSnaeG2ioEl3EkAxN7a5sT7hpYI2Q5lxE1FRZ1UejeVK2VOoRjWWKww+Si5nfYrmfpkw7NyW3EDvPBDmHcOLL4MXMcP+zW7g5EPt1fRFIpy6tyOS6zQs9qsQ8hNyCXWNUiL3ARkCVRTMHO21qMFatECPwBOw6RwW8XAEonGSDOWWZOtcNWNocT7fUmK3WDx7QdXc+29q4jFhm+6lGA4SmWDHKeKupYhlkahUPQYIWSuu1N/Dt/9BK59HRZfCptfgvvOhT8vhDd+DdU7hlpSRRKvbawgI83K0dMLU54fzqqc3+veACwBHgEygPL/3959h8dRXQ0c/t1Vt8pI7kW2BxdMMTbFYIoJpkPWlBA6CT2EJCSkfWHTJ5AyaaRQkpheQ29hwWDAoplmjLHBNq5jW+5FHkuy+s73x8yuV9KqrDRatfM+jx5vmb1z92qsPXvLubh7wvrCz+6WF2O3DDuEofmy3FZ0rYaIQ1psmHVf4LSnqj52266qS3m9XlqyBYAlG22mji5M+fnbIzoUreVksL1cgjkheiWloHia+3P672F5GBY9Cm/92f2ZdCYc/S03p13P7vnp0xzH4bWl2/jS/oPJzkhLeEx7U5N0F8sM1uCmJgm3dWyyOh/MGdo/gQMAB0ObATzqzpmzb+t02aLL1TU4ZKQpHAJUxQVt5dWJb6dCRc2+QHLT7qoeG8xtst0eyynFGm+v3MHe2noGZMpwtBC9VkYOHHK++2NvhI/vgwX3whcvwbDJblA3+XzIyO7umvY7n23cw5Y91fz4oEktHtPDh1m7lB/DrEuBPwP/wF16+zCGdoMP5YoUiOaZy2ySZ25PXAAX30uXCvHDulu8OWk90ebdbt2mFhcCSO+cEH2JNgpO+gX84HM4+zZwIvD8d+BvB7tDsJU7uruG/crcZVsJKDhx0pAWj+npPXNdqfPBnGH/G8Oei2G/hGH/BZgGfLPT5YqUqI84pKUpMpvkmSuvro+7ndqeuY1lvSOY2+31ZO4/PB+QYE6IPikjBw6/HL41Hy5/AYqPdIdf/z4FXjPc9Ceiy722dCtHjC1iUF5WK0f1jmhOD4WH+12mn6lJrgcmAPmALO3rJeobHDICClCNFkBU1TYwKDeTnZW17KlObc9cfFC01e65wVyF1y6jCnOA7plbKIRIEaXc7cLGnQDbv4A3/wjv/B0+vMsdfj3mO7KFWBcpLdvL0s17CJ15QKvH9aJR1pdwF0P4xs/VrC8By3D3M/uDj+X2CrX1EX7w+CLO+PtbPLOwtN2vcxyHJaU2Dd20arO+IUJ6WqBZnrnq+ghaTgZZ6YFGQ66pED3fhKF5bOvBvV0VNXXkZKQxKDcTaDmY21VZ2yjVixCilxsyCc6/F779nrujRLSnbt4foGp3d9euz3lpibv1+5mTW+/Q6kXDrL7X1IdhVu1JDO1ADHs9hn0PcBbwu06Xu6/8gRjaXAxtpfdv4q8+hjYHQ9uNob2Y8Pku9vD763j2k43sqqzlDy8vp7quoV2v+8frKznr9neY/daaLq5hYvURN89cRnqA2oZ9AWV1XQNZGWnkZ6c3GnIF+O2LS/n2Ix93WZ3K43q8Uh1IJqO8up787HS0HHcbr5aCuYtnv8dx5huUxaV7EUL0AUMPhAsfgOvfdXvs3jThH1Phg/9AQ8/929XbvLh4M4eM0hg7KLfV43r4DhDx7vK7QD965h4CHsfQlmBo9wNPAH5uGxACXsewJwKve/cT+TPwdR/P224VNfX8842VHD9xMH+76FC2l9fwzMKNbb7OcRye+GgDAPe9uxbHSX3vXH3E3ZvVXQCxLwCtrmsgOyNAblY6e+NWl+6pruPud9by0pIt2Hu75o/Vnuo68rLSKRqQkfLFF8kor6knLzudglaCubU7KlmxtQKA/y3elNL6CSFSZPhkuOhh+OZbMGIqvPwT+NdxsOq17q5Zr7duZyWLS21mTRnR5rG9Jc+zZQbv9LtMPxZAvIBhTwEuA97AzTd3eqfL3ecc4AHv9gPAuS3U43Wg3MfztlvJF9vYvbeOG06cwLHjB3HA8HyeX9R2MLd6eyWb7GoOGaWxrbyG0rLUD8XVNXirWdMD1MX1zNXURchOT2NAZjqVtfuCvPU798Zud9WuB+XV9RR4QVKiACm8eDNn3/4ONfXt6/3sKuXV9eRnpZMWUORnpSes62cb7djtJaV2s+eFEH3IiKlw+fNw8X8hUgcPfxUeuQB2rOzumvVaLy52h1iD7QjmelHPnO98XABhLwYW+1bePsMw7M3e7S1A4n082svQrgOuA1BOAyUlJZ0qDuDhT6vJz4TKdYt5c71idFYNb64r57U35pHeyiD++5vcXqcji6pYshEef3U+04anNk9ZbV09mzeVkhFQ1NTva49tu6ooyFLU1zlsrK2IPf7Rln09ZXPmL6RqfUa7zlNRUdHutl5bWk2gIULZtk3sqarjjXnzCHgzWyOOw3decQPKu56bx+TB3ZfXbdO2KrLSoKSkhEzVwIq1pZSUbG90zOuralHA/kUB3l+xiZKSspTULZn2Fp0n7Z1aPb+9B6Am/4ni0hcZu+YJAncczfox57Nu7Pk4gfb9zewpurutH5tfxXgtwKpPP2RVG8du395zF8x1tZ6R4dTQXgMSzWz8eePjbAdD69xYpGHPBmYDOGa2M3PmzE4VV9cQ4XslcznjkGJOOnEqAJUDNzP30YUMnngYh7aS8PbDOctJD6zhB+fP5IGlc1EDRzNzZvOEiB+vK+PGxz7hz+dPbXEbk45y5r7MfmPHkpORRmTNCo7/0gnujhAL32TU0Dwqaxuwq+qYOfM4AFa9vQYWLQNg8Kj9mDlzQrvOU1JSQnvb+j8r3mdEToQpk4bzv9XLmHbMDAqy3T+ApWV74ZV5AOzMGsHMmQcn+Y798/tP3mT04DxmzjyCYZ++TY6WzcyZjXexe2rTQooH7uZLBw/nwffWccIJJ6QksWUy7Z2sqtoGcjITZ2Dvr7qyvUVzvae9T4WKn8Ocn6J/9hh6xcdw1t9Bn9HdFWu37mzr1dsr2DDnTX456yBmztivzeOf3vxJCmrVMXoonAV8FdCJi70sM3izH+X3jBFmwz4Fw56c4Od5YCuG5vavuv9u69a6NvHh2l3sqa7nlIP2dRhO0901Ggus1vMPrdhazvgheeRnZ1BclIMVN4QZ718lqyktq+I3//vcv4p76iIRMtIUGelugBHNNVdd30B2Rhp5WWmN5szZVXUoBbmZaV2WV628po787IzYwoI9ccOXG3btG4peta2iS87fXtEFEOBu6ZVomLW0rIoxAwdQXDSAmvpIbC/X3mru0q1M+c0r3Dp3RXdXRYjeIW8onH8PXPY0NNTC/UF44XtQ0y2zgnqVFz/djFIQPKTtIVbo8VnmnsedNlYPVMb9+MLfnjlDG45hb/G1THgBuAIwvX+f97n8Tpm7dCtZ6QGOnzg49tiwgmyKi3L4eF0Z1x7f8mvX7dzLuCHu6pziohy316mJSMRh/mo30/jKbRVU1tSTm+XPry0ScXAcSAu4CyAAahsiZGekUV0XITsjQFpAsTduztyeqjrys9IZlJfFjorGwdy2PdWs2FrBseMHEejEGvHy6nrGD0mnIMd9n3ZVHcXeGuYNu9w2mjq6kHUtBL+pUlHtLoAAN5hbs6N5cLmzsgZ9UBHFRW4uutKyvQzJb5708qUlm9lZUcPXj9G7tM6dUVsf4cdPfkpGWoB/vr6SMw4ezkEjC7q7WkL0DhNPgW+/DyW/h/m3w5oSOPdfoB/X3TXrsV5cvIkjxw5kuNa+7dN6eGqSYssMntFVhfvdM/eSz+WBG8SdiqGtBE7x7oOhTcPQ7o4dZWhvA08CJ2NopRian4swEnIch7lLt3L8xMHN9uScWlzIss0tLxBwHIfSsipGFw0AoLhwQMIFEOt27WVvbQNfPmQ4DRGHT0t3NzvG2lHJ3trkV33WRdxeuIw0dwEEEMs1565mTSM3M43K2sY9c9qADAbnZTYL5r5+z4d87Z4PeOXzzsXzlTX15GWlx4ZW41e0bijbS0DB0eMGsnF3FfUNjRdOr9tZyVX3fcjq7V3baxeJOFTU1pPv1bGlnrkd5bUMystilBfMJco3t21PNd9+ZCG/fP5z3li+tUvr3Rkfrt2FXVWHcfbBpAcUL3wqq3OFSErmADjtt3D1HFABt5fulZ9DXf+d69WS5Vv2sHJbBbOmtq9XDnr83qzz9VD4kK4q3O85c/63pGHvBE5O8PgC4Nq4+630gXWNpZv3sHF3Fd87ufm8sQlD83j5s82xoKipHRW1VNU1MHqgF8wV5bC9vKbZ8dGA8IIjRvPSki2s2FLOseP39QJu2l3FzL+UsN/gXF77oTvfrb3qvdWr6QFFhtczF13RWlMXidVjb01cz1x1PQXZGQzKzWJVXMBUXdfAF1vdYYP5q3dyZju7xROprGlgQGZaLOVHfK650rIqRmg5jB+cR0PEYbNdHWtDgJ8/+xnvrNqBUsu498ojm5Xtl8raehwH8r1eUm1A82CusqaeqroGBudlxXaJSBSwP/T+utjt+961OOmAzq3x6SqvL3d7oc+aMpL/fbqJ15dtbTMje31DhK3lNYzUsnv6H1ohUmfM0XD9OzD3V/Ce10t3wf0weGJ316zHeOKjUjLSVLuHWKHH7wAxA7hSD4XXAjW48ZJjmcEpfhTud8+c74nwerK5S7eiFAk/fCcOyyPi0GIP0QZvSDU6/FY8MPGHfXQo8cj9BpKflc7q7Y2H2B/9YD3g5jNbnKDXrqklpTZ6KMznm2zqvV0nGg2z1kdoiDjucGu62zNX2xCh1uux21NVh5aTweD8xj1zn2/al3bjw7WN5wo6jsP2vfvKaE0k4lBV18CAzMTJeHdU1DAkPyvWbtFhV4CGiMOH3jzFt1Zsp6q261KXRBMbx8+Zq66LNEqXstObHzc4L5P87AwKB2QkHEpfuL6MyaMKuPJYnY+sXd2ecqUl76/ZxVH7DSQnM43p+w1k5bYKdu9teQ5gdV0D5975LseZb3DDfz/ptl1OhOiRsvJg1q1w6ZNQvhn+cwJ8+nh316pHqKlv4NlPSjn1oGFt7MXaWA9PTXImMBE4DXdzhVnev77wN5gzbN8T4fVkc5du5fAxRQnnQO0/zN18vaVJ+tEgZF/PnPtv0w/70rK9FA3IIC8rnXFDcpvNy1q4vizW6/P+msZB1KMfrOenzyxpNAT78mdulpd5y7fFhigz0gJkpO+bMxcNJqJJg4FYGXZVHQXZGQzOy2L33rrYgonlW9xeuXMPHcnq7RWNhj//89Ya/u+tKv7w8rKEbRGvyts5o1HPXKNgrpZBuZmM8N7z5ri9W0vL9lJbH+H0g4dRH3GaBbd1DRFueXEpT33c/u3WWlLhLQqJzplLlDh4uxfsDvb+GI0qzGFjk2A9EnFYXGozpbiQY8cPorouwqL1jesd9avnP+PgX83h7rdTv1tIdV0DK7eWM6VYA+CIsQMB9/pryR3zVvHZxj0cPW4g4cWbedqHdheiz9n/NLeXbsRUePY6eO47UNu984G722tLt1G2t44Lp41O6nU9ec6cZQbXJfrxq/yesZq1F9q4u4rPN+3h1IMSD4npg3JJCyhWbk0czEV74GI9c0WJe+Y2lFXFAr3xQ/JYE9czFw0ETjpgKOOH5PJR3OrZrXuq+dmzS/jvh+u5710r9niDt8tEIKBiPXPuDhDu/4La+kisR8udM+cGK9HEwXuqvZ45L0DZ5W1RtWl3FekBxTHjB1EfcdjgvQ/Hcfjvh27v4RMfbYgFQVGfrC/DeOHzWN2jiy0GZKWTn5WOUo2DuV2VNQzKy2SENyF2s918desFR7h/ABY2CYoemG9xzztr+fGTn/L2ysb54JIV7ZnLy9rXMweN67qzSTDnLnJp/Pu1dlZSXl3P1GKN6eMGoRR8sLb5Kuh3Vu7gwffWUVnbwO9fWtYoGXFTe6rr2F3t5yYs7srr+ojD5JFuMHfo6ELSA4oFVuJgrrY+wiMfrOf0g4fx328czSGjNO4oWdVm79wXW8r566tfcO87a2NfFITo8wpGwhX/gy/9BBY9AveeBrvXd3etus1jH61npJbN8ROHJPW6Hj7Mih4KT9VD4Ru8n6l+li3BXAe9ttSdqN5SMJeZHkAfNICV2xIvPy8t28vgvMzYwolh+dlkpKnY8GvsuF17Ge0NwY4bkstmu5pKLyDaULaXipp6Jo8qYPIordGCi3nL3QwuRQMyeO6TfbtRNHhz4tJUXDAXUPsWQDREqPaGQ7MzAgzIis6bc8+5p6qegpz0WIASTU+yaXc1wwqymTA0D4C1Xg/i6u2VrNu5l+nD06isbeD91TtjdXn18y185c753D/f4nFvW7NoIDkgI42At7PCHi9wchyHXZW1DMzNIjsjjYG5mWyK65mLBnNH6gMZO2hAs565h99fx+FjChmSn8Vdb69t9jt5ZmEpZ/z9LX4XXtri1mrVdQ1EIg7l3jy++AUQ0HRI2Btmzc8E3N7XjburGpW9xAvKDhlViJaTwfgheXy6oXG9AR58z2JYQRYf/fwUBmSmt9g79/qyrcww3+AHJVXc/L+W30f0vazcWt6ufYQXrnODtsmj3GAuJzONg0cWsGBd4mDujeVb2VVZy8VHjUEpxfUnjGfdzr2tBtEfryvjq/+azx3zVnHzi0u57O4P2r3HcWVNvQR/ondLS4eTfg6XPQll62H2TFj7dnfXKuVKy/byzqodnD9tdFJzwKH9w6x6KHyGHgp/oYfCq/RQuNkWoXoonKWHwo97z3+gh8J6UhVJfM4bgUeAod7Pw3oo/N3Olhvlw3Ze2ncxtCIf6tKrzPlsC+OG5DJ+SF6Lx0wcms/KFodZqxhVtG/ifiCgGFnYuOcmEnEo3b1vxeu4IdFAye2di87HmzA0jwNHFLDZro7NYZq/eidD8rP47kkTWbmtIjZ8G10NO6wgOzYUmh4IxC2AiMQ+QJv2zNXWR6iqa/B65twAZWdcz9zIwmz2G+zWMdqDuGSje74vj8sgKz3Au16aFYB/v7ma/QbnMqwgK3bO6MrZXC+IjN/Sq7ymnroGh0G57rlHaNls3t24Z25wXhbagAwmj9T4LG4e38bdVVg79zJrykguPnI076zc3ihP3pJSm5ueXsyeqjruenst98+3Gv2+IhEH44XPOeCXczjEeIUnF7hDhvFz5qD5/D6AgV59RxXmsLe2gbK4PW1Xb68koIilqDl0dCGLNuxuFIRV1zXw9sodnH7wcIbkZ3H+EcWEvVQm8XZU1PCjJz9lVNEAZoxK59531zZaXBHvgzU7mf771zn1b29x8l/f5N1VOxIeB/DsJ6X8/uXlTBqWH+tBBneo9dMNuxPOhZzz2RYG5mbyJe+b9akHDWNgbiZPLNiQ8By19RF+8PgiBuZmMj90MrdeOJUP1+7i18+3nltxceluLvj3fA7+9Ssc9Ks5/PSZxe3Of1hV28CqbRWs37mXiMznEz3FxFPhG2/AgMHw4DnwwWzohn27u0t0GswFRxQn/dr27M2qh8JpwB24c9gOAi7RQ+GDmhx2DVBmmcEJwN+APyZdmeauAaZbZvBXlhn8FXA08A0fygX8Wc06DPgIQ1sI3Au8gmH3iivPyR3Edx5d2OzxIXlZ/HLWQS1+K9hsV/H+2p1876TWVx6NG5LLa8u2UtcQiQVLUaVleznY6+WIGlWY0yg42V5RQ219JPYBGg0cV2+vYPIojdXb3IBp3OA8KrwVp0s37+GYcYN4f81Ojhk3KJb/7p2VO7hg2mg+8obFsjMCjYZZM+IWQEQDq6z0NAZ4mf4ra+pjq0oLcjJiAcquSq9nzq7i8DFFDMzNpHBABmu8gPPzjXvISg9QnBfgSH0g73k9c6u2VbBw/W5+ETyQpxdupLrODQiiw6w5XhBZkJ0RG7rc5fV0DYwFc41z863aXsGEoW5QNHmURnjJZuy9biqVaLBy3AS3PW57YxVzPt/C148eC8DfX1tBXlY6L914PN9/fBF/fXUFZ08dGZt8e0t4KffPt/jq4cWs2VFBeIk797C1YG5nRQ0F2elkpbttGJ9rLvoeVm+vYPTAAbGVw1NHF/LUx6Vu2hpvPuU7K3dQVdfAKQe6vcCXTh/D/fMtnv1kI9cePy52vn+8tpLKmnr+efGhbFi6gIz8gfwuvIzjJgxu9KXj/TU7ueLeDykuyuGnZx7A3e+s5er7P+K+K4/k2An7Vko3RBz+/MoX/PvN1Rw9biD/uuyIRitSp+lF3PvuWj7fZHPYmH3f5+obIsz7YjsnHzg09n8oMz3AuYeO4qH3La93NZN4j36wjvW79nL/VUcyXMvmvMOLWbO9ktvnreLI/QZyfoI/7G+t2M51Dy2gIDuDG0+eyLbyGp7+uJTXl23jzssOZ5o+sNlrwL32/vbaCl5ftjV23Q3Oy+SsqSO56tj9GDNoQMLXgds7vGjDbj5Yu4svtpRT2xAhLzOdjMo6RmwpZ/9hee1atbt7by2rt1d6eSPTGD1wAEPz25dLK2rbnmreWbWD5VvKqaptYEh+FoeOLuSY8YOa/b0RvczgCXDta/DMdfDy/8GOL+DMP0Ggb++80hBxeHJBKTMmDG6UpaD92tUzdxSwyjKDawD0UPgx3GS+S+OOOQcwvNtPAbfrobCyzGBnYhsFxA81NLS3wu3R+WDOsH+Bof0Sd4XGVcDtGNoTwD0Y9upOl9+V0jJY3iQXXHl1PdvKa7j6uJb/qD+/aBOOA185bFSrxY8bkkd9xGH9rr2NPkwbIg4bd1dxxuTGS65HFuY0GoaKLpIo9i7qsYMGoBSxFa1rdlQwMDeTotxMDhzhLrhYtrmc0UUD2FZewzS9iAlD8xhWkMXbK3c0ej91DU5capJ9eeZqGyKxD7iczLTYAojKmvpYoBJNTQLuis1IxGGLXc0IzQ1W9hucy1qvjks37+GA4fmkBeo5dsIg/jTnC3ZU1MRy0c2aMpKXlmyOBZDRhRbRIFLLyYgFkTu9wHGQ1ys4sjCbD9e6waHjOKzaVsE5h44EYPIoN5nt55tsjp0wmPmrdjA4L4v9h7m/h/FDcgkv3sTXjx7Liq3lvL58G98/ZSKFAzL5RfAgTvvbm9w6dwW/+8ohvLliO/e9a3HlsTrG2QezYddejv+Tu6VY0zlz9t7Gw6yD41ZixXLNlVUxpbgQgNXbKhpdG4d5278t2rA79sds7tKt5Gelc/Q4dyu3/Yflc+joQp5YsIFrZuyHUopt5dU8vmAD5x1WzMRh+WxcpjC/egin/e0tfvzkpzx1/bGkBRQbd1fx7UcWUlyUwxPfPIZBeVmcdvBwLp79Htc8sIB7rzySY8YPory6ju8/tojXl2/ja0eP4ddnHdwsQJg21g3gPl5X1iiYW7h+N3ZVXSz4jLrwyGLufXctz32ykavjtubZU13HP99YxbHjB3HC/vvmyPzg1P35eF0Zv3huCYeM0pg0PD/23Idrd3HtgwsYPySPh645KtbOlx8zlusf/piLZ7/PL4IHcsWxeiy4sqvq+MdrK3nwPYucjDQunDaaw8cUUVXXwDsrd/DQe+t4YL7FaQcN5+oZ+3H4mELS0wI4jsOnpTbhxZt4acmWWK7AkVo2OZlplO2tY1dlLQ8ve4tRhTmcfOBQTjpgKEeMLSI/OwPHcdhZWcsHa3bx7uodzF+1I+FuL8VFOZx76CiuOk5vdQXfss17uO2Nlcz5bAsRB7LSA+RkprHbu/a0nAxOOXAY5x42kmPHD273UFVlTT3Wzkq2l9fQEHFITwuQl5XOhCF5aAN6136ifUJ2AVz8KLz2a5j/T7A3ujtJZOZ2d826zFsrt7Nxd1WbKY9actyEQQRyCtL1UHhB3MOzLTM4O+7+KCB+iKAUmN6kqNgxlhms10NhGxgEtDyE0bb7gA/0UPhZ3CDuXNwOMF/4k2fO3TN1C7AFd6uKIuApDG0uhv0TX87RBdSeLbz+o5mNHnt5yWa+9chC9tYlTsLrOA7PLtzI4WMK0Qe3/p8qOnS2Zntlow/sbeXV1DU4sblwUSMLc9hW7vbGZaYHYvPnosOs2RlpFBflsMYbXl29rZLx3jmG5mczOC+TZZv3xIZADx9ThFKK4ycOYe7SraSn7fuj3hBxYnOM3AUQ+/LM1USHWdPjV7M2xHrItJwMCnLSSQ8odlbWsqOihroGh1GFbs/CuMF5vLtqB47jsHTzHs6cPBzY5eXH+4L3Vu/k5c82M7VYY7j3gVgVC+b2rWYFKMhJjw0rR1N9RAPJ4Vo2e6rrqaxxf9ydI9x2PtibqP/ZJptjxg/i3dU7OW7CoNgHe3DKSG5/YyXb9lQz+601ZGcEuNzbfWHC0DyuOm4/7nlnLUUDMnnkg3XsPywv9gcm/htjbqwHMbpbxb7rZkdFTaNgbt+KZTcYiEQc1u6obLR7yKTh+WSlB1i0YTdnTR1JQ8Th9eVbOWHSkFjADXDhtNH87NklLC61mTq6kHveXkt9Q4TrZ46PHTM0P5vfnH0wNz62iN+Gl3LhtNF86+GPqauPMPvyabGAYWBuJo9cezQXzX6PS+9+ny9NHMLnm2zK9tZxyzkHt7grxdCCbMYMHMACq/FOJ68v30pGmmr0vgAOGF7A1GKNJxZs4Krj9gVZ/3lzNbsqa/npmQc26tVKCyj+ccmhBP/5Dt965GNeuGEGeVnpfLxuF9c+8BHFRTk8cu30Rr18B44o4IUbZvDDxxdh/G8pj320gZMPHMqO8lpeWrKZitp6Lj5yND86bVKj380lR41hi13Ng+9ZPPLBeuZ8voWMNMWowhx2VtZSXl1PRppixoTB/PDU/TnxgKGx8zqOwzNz5lE3aAKvL9/GkwtKefA9d3g7PyudmrjUPnlZ6UzfbyCXHDWGCUPzKByQQUWNO3fxvdU7uaNkFQ+9v46bzzmYs6eObNQen27YzZ0lq3jlcze4v+5L4zl76kgOGJ5PIKDYW1vP/FU7eemzzby6dAtPLyxlWEEW5xw6ihkTBnPA8HwG5WXREHHYULaXVdsqWLWtgmWb97B08x7W7qhscTRvSH4WE4fmMXFoHvsPz2fSsHwmDsuPfYkRXSQQgNNugcIx8PJP4P5ZcOnj7hZhfdDsN9cwvCCb0w9OtFV722ZNGUmkak+9ZQan+Vy1TrPM4K16KFwCRLf8uMIyg4v8Kt+HnjntRuBy3Ij1buD/MOw6DC0ArAR6bDCXSE5sWDHxxOsP1+7ii63l/PbcyW2WNT42f6wCdzTatW8la+Oev+LCHBzHXYk6euCA2D6k8fOU4le0rt5e0WgBxoEjCvhso01upjs8eoDXk3HW1JE89XEpzy/axAn7D+HNFdupjzixlYUZafsWQNTWR4h2wER3gAB3Llt0IUJBTjpKKQbmZrKroja2CCHaMzduSC5PLyxl9fYKdu+t46ARBVCzi8kjC9ByMvhteClb99RgnOVOU8hO39ersK9nbl+PV3QHiOjK2YHRnjktmp6kim3ePKnoAoyBuZmMKsxhyUY3i/j28hqOi0u2fO6hbjB31f0f8cWWci6bPqZRUPDj0ybxyfoybp+3ioNGFHDnZYc3Sub8+HVH89bK7bFty6K9GE3nzMX3Jmk5GeRnp8eGhjfurqKmPtIo0M9IC3DIKC22CGLRhjJ2VNQ2W2gza+oIfhteyp0lq/jVWQdz33yLcw4dxX5NvmCcPXUkC6wy7nvX4r53LfKy0nng6qOazfUckp/F8985jlvnruCDNbuYWlzIDSdNaNTjlsi0sUW8tdIN3KOBxxvLtjF9v0GxxSHxLpg2ml889xlLNrrpWLbY1dzzzlrOOXQkhxRrzY4fmp/NbZccxqV3vc9F/3mPqaMLefrjUkZo2Tx49VHNhmuj7XzX5dN45pON3PXWGv5Vspqs9DTOnDyca47fLxboNzVcy+YnZxzADSdN4NXPt7J8SzkbdrlD4lNHF3LqQcMSBi9KKQblBJh51BguPmoM1XUNvL9mJ19sKWfT7iqyM9IYkp/FYWOKmFKsJRwCPWH/IVx7/DhWbi3n/55azI2PLeL2N1Zx4gFDUQo+WruLhet3U5CdzvdOmsA1M8Y16y0bkJnOKQcN45SDhlFd18Dry7bx7Cel3PvOWma/1XI6m1GFORw8soBzpo5i4rA8huZnkZEWoD4SYffeOlZvr2DF1gpWbqvgqY9LYyvbwR2eHpqfzaC8TDLS3O3/0pSiriHipjnyci/W1Efcn7oGMtID5Gamk5eVTm5WGvnZGQzJz2J4QTZDC9x/hxVkM1zLTphwvV866hvuitenroF7ToWvPwsDx7X9ul7k0w27eW/NTn725QMafXHtAhuB+Jwnxd5jiY4p1UPhdEADdtIBeij8jmUGZ+ihcDngEDe0qofCjmUGfdkT0Y+euYHAeRh245nWhh3B0Gb5UH5KRXuimm5VBe438D+98gXDCrISzuFpShuQwaDczEbpRCBu+LSoec8cuB/ybjC3l6H5WY3+oI0bnMcHa3ZRVlnLzsraWO8fwNHjBvHnV75gR0WtmzrC+9A4fsJgLjlqNJ9usPn+KRN5c8V2GiIR6r3tvNKaLIBQXjySnZHGgGjPXE1DLFCJfqANzM1kZ2Utm6LDTl79x3kBxYuL3XllB40soHytG/BcdZzO319bSUaa4iuHuW2YnaBnLhpEFmTvWwARXWwRvwAC3JW063a6bRwN5gAOHukGt9GVvcfF9RSNG5LHZdPH8tD76xihZfOdExvv4pGTmcZT1x/LotLdHDyyIDbvLWr6uEFM94Y9o5pu6bWjopZjcxsPl40qzIkN00UXsIwf2jiwmjq6kIffX0dtfYRXl24lPaCYOanxN/GC7Ay+c+IE/vzKF3yyfjcBBT8+fRJNKaW45dzJnHrQMDaU7eXESUNjv6em8rMz+PVZByd8riVH6EU888lG1u3ciz44l/U797JyWwWXHDUm4fFnTR3JH19ezl9fXcH9Vx3Jb8NLiUTc4LklR48bxD8uPoxb567gmYVuItHfnH1wq0ORgYDi/COK2/X/tKkBmemc28YUitZkZ6Qxc9LQZr+z9pg4LJ+nrj+GFz7dxEPvr+P+dy0ijsMBI/L52ZcP4JKjxiQMkhPVIThlBMEpI6isqWfh+jLW7qhkV2UtacpdbDVhaB7jh+bFpgq05OS44XLHcaeIrNhaHgt2t+2pYWdlLfWRCPUN7pfEjLQAWRkBstIDFA7IJCs9QFZGGplpAeoaIlTW1FNRU8/2ihrW7Khk256a2N+AeFpOBsMKshgWDfAKshlWkMX2rfUMLN3NsIJsBudlJb3qsVc6IAhXvgiPnA/3ngmXPw9DOzYc2RPNfmsN+VnpLf7t8NFHwEQ9FN4PN2i7GLi0yTHRPeHfA84H3ujofDnLDM7w/s1v69jO8COYy24eyGl/xLBvwrDbzhLbw4wuGkBmWoD/e/JTSsuquGz6GLIz0nAchwfmW3y8rozff+WQdn9jTJToN9ozN6qwaTDnBifRxLIbyvY2mwQ6fmguVXUNvOXNrYvvYZkxYbAXzNXwrbjhtkBA8Yfz3B1Dtu1xe9HqI05s666MgCIjLs9ctMcuOyNAjvc+K2rqyYmbMwdub872ipq4YM6tf7Tn4z9vriEjTXHgiAI+9DKBfOP4cSgUp08eFutZyMlIo9oL4qJbh+XEzZmrqnNX0u6qrGVAZlqs7UcW7uuZW7WtgrysdIYX7JtEfvS4Qby6dCt/eHk5U0cXNmtv4+yDOXPycMYMGsDQguaTzwMBxeFt9EzFi195W1sfwa6qazSUB25vbLRnLjr3sWkv2YwJg7nnnbWUfLGNuUu3cvS4QQl7hK49fj+27anmvTU7ue2Sw5q9v3hfipuL5qdpXvLgBevK0AfnxvaWPfnAxIGMlpPB90/dn1teXMq5d7zLp6U2Pz5t/zYnO581dSSzpoyIzeXqy9LTApx3eDHnHV5MQ8QhoDq352RuVjrHTxySdM6uRJRSFBcNoLhogK/bzjmOQ3lNPVvtarbsqWbrnhq27qlm655qttjuvyu3VrC9oib29+mfn7wLuIliB+VlMSg3k6IBmd484gwGDnDnEw/MzYxtqTeiMLvZF7NepXgaXPkSPHQu3Hem20M38tDurlWnWTsqefmzzVz3pfHt+rLSqXO5c+BuAF4B0oB7LTP4uR4K3wwssMzgC8A9wEN6KLwK2IUb8HWKHgr/0TKDN7X1WEf5EcydCjStzJkJHusVhmvZPPPtY/n9S8u45cWl3P32Go4ZP4jV2yv5dMNuTth/CBdMa/+3/XGD83htWePN00vLmve4wb7gJBoclZZVxSaZx5cH8MIid5PzyXErYqcUawQPGUHp7ioubKGO0W+wDXHDrOlpjRdAKC/TRHZGGmkBRU5GGntr69lT7R4T3e1ghJbNiq3b2bS7mgGZabGAY/TAnFgP1LHjB8WGTMH9YLnxlMargHMy0mK57fbNmWu8s0J5dR07K2piix/ATa+ilNszt2p7BeOH5Db60Dvv8FHc/KK7QOm8BD0taQHVaPVmZ2k56ftW3lY2zjEXVVyUw/trduI4Dqu3V1A0IKPZUOGMiYMZnJfJdQ99DMC3ThhPIlnpafzmnLaH+7vSxKF5DMnP4tXPt3D+EcXMXbaV8UNyGTuo5fmkVx6rs7OihpeWbOY7J47n2zOb722ciFKq0bzP/qBf9Djh/m4LsjMoyM5g4rCWOzAaIg47K2oIz3uX4omT3cDPrmZ7eQ279tZSVlnLsi17KKusZXdVXbM5gErB0Hw3sCsuGhBLLzV+SB7jhuT2jmHdYQfBVS/Dg+fCA2e5eenGHN3dteqUu99ZQ3rAHblJBcsMvgS81OSxX8XdrgYu8Pm0XRordTyYM7RvAd8GxmFoi+OeyQfe7WS9utXkURqPfuNo3l21g7veXsO7q3YwND+bW86dzKVHjUnqD+y4IbnsXFAbS5EBbo65pkOs4AZPg/MyKS2ror4h0mwTeSC24OH15dsYmu8OP0Qppbj90sNitxNJD+xb6BBdABG/N2tdQ4Royq1s7xtsblY6lbUNBAJ1ZKYHYn/whmvugo11OysZWZgTO6dSii8fMpy73l7LWVNHttlG2RmBWLLgvbX1ZKUHYm1ckBNdWFDHTi9hcFRmeoDBeVls2u32zB3XJDArHJDJHZceTkVNHecfkdy2MB2h5WRg7XB73aLD9INym/bM5VBRU8+eqvpmK1mjMtICXDNjHH+cs5wDhudz3uHJDxWmSiCgOGfqSB54z+L9NTt5d9VOfnDK/q2+Ji2g+MkZB/CTM/rOEJFIjbSAYmhBNvtpacxsIWF7VEPEwa5yVxpvK69mY1kVG3dXxf79ZEMZ/1u8KRbwKeWOluw/LJ8DR+Rz4IgCDhxRENvNp0cZNB6uftnNQ/fQV+Cyp0A/ru3X9UA7Kmp4ckEpXzlsVKPPs75CD4VjsZIeCjeNleb7dZ7O9Mw9CrwM/AGIz6BcjmE334+oFzpuwuBmAUKyYrnhdlTEhuxKd+9tcfhu7KBc1u6sZLNdTUPEia1kjRqSn0W6txXXkQnyaLU1HJOWFu2Zi8RSk2Q0yTMXzT+Xnek+lpuVxt6aehyHRsN9I7VsHAfeW7OzWTv97MsH8sNTJ8WGS1uTk+HOmXMch721DbF5ixC3TVZ1Pbsqa5v9Z99/WB7zvtjOjooaDhzefB5pcMqIZo91lfg5c9FgbkiCnjlwh9BXb6/g5BaGqr41czxnTh5OfnZ6z/sgaeKCaaO59921XDz7fQZkpnH5MWO7u0pCkBZwF2kNzM1sNJc2XnVdA9bOSlZvq2T1dnd17xdbyr15xe7fwZyMNPYfns9BcQHeAcPzu3w4sE1asdtDd38QHrnAHXId0zTDRs/3nzdXU9sQ4Rtf6lsLOuK0GCtZZtC3WKkTPXO2DdjAJX5Vpi+KT09y+Jgit8dtdzXFUxPPbxo/JJc3lm9n3c5ojrnGxyml+MGp+/PnV77gug5c/OleYFAfceK28wo02s6rtj6CUsR66wZkuj1zdQ1OLAUHuEPS4A6NNu1hUkq1K5ADdwEEQE19hMra+tg8Pdg3Py/6DfvAEY0DtiPGFPHuKneR0fRxiZPEpkrjYM4bZk0wZw7gnVU72FFRy8GjWl7I1Fbqm55i0vB8/nLBVO5+ey2hMw+gKMEKUyF6ouyMNA4YXsABTb4I1tQ3sHKrm7Zl2eZylm3ew8ufbeG/H+5LT7bf4FymFGscMkpjSnEhk0cVNJpSkhJ5Q909Xe/7Mjz8VXdRRPERqa1DJ2zYtZcH5q/j/MOLWwy4ezvLDMZiJT0ULgImAtkAeiiMZQbf8uM8nRlmfQfDnoGhRZfbRinAwbB9WW7b240eOICMNBXbN3SzXU19gh63qHFD8nhiQSkfeMlwJyWYP/KdEyfwtaPHdijHUzSYa2hwYqtZ09NU7PHaendv1uz0tFgvX25mGpU19VQHVKNzxqd4iF9Vm6zocG51XQNVtQ2xrbyg8c4KOytrG82ZAzgirnfyoBHde8nFL9aIbrXVdMXl/sPyyc1M4++vrQBg+n6DmpXTG0Un7AvRF2SlpzF5lNZoTrLjOGzZU+3m5du0h8WlNh+u3cXz3vzlgHJX008tLuRIfSBH7jcQfdCATi1eaZf84W5Ad/+X3SHXK17oNYsi/vrqFygFPzyt9akZfYEeCl8L3IibCmUR7nZe7wEn+VF+Z3rmZnj/duly294uIy3AhKH5LPN2mlixtRyAicMSfwuZ7AVIj36wnuEF2S2mX+hoss60+J652A4QCqXceXO1DQ7VdQ1kZ+xbMTggmj/NcRr1ugzJ31e3EzqxWjLag1dV10BlbUNsKy/YtwBiw6691NZHGNKkPY6fMJi/XTSVMQMHdPsqR22A2za7q9xEytkZgViKlajM9ADHjB/Ma8u2UjQgg4l99NuoEH2NUooRWg4jtJxGK3m3lVezpNRmcanNko02ry3bypPe/qKD87I4Ui9ygzt9IAeOyO+av1PaKK+HLuiudL36FRjScrqfnmBJqc1zizbx7ZnjYzlK+7gbgSOB9y0zeKIeCh8A/N6vwlPcJ9w/HTSiIJZK5AsvmJswNHEMfNiYQsDNqdYV872UUqQFFA1xw6zR+XKZ6W4OqKrahkaruvKz3ES3kYjTbJXi49cdzd7ahk5NXI0Oq1bVNlBVW98oABqYm0lAEUui2/Q/fSCwL19ddxvi9RpuL6+JbeWV6Fv5uYeN5N1VO/jRaZNiSYeFEL3T0PxsTj4wO5aPLxJxWLOjgg/XlvGRtYuPrF28/Jm7fWFuZhqHjy3imPGDmLn/UA4cke9fz13hGLjiebjndLeH7ppX3Xl1PVB9Q4SfPruYwXlZjXat6eOqLTNYrYfC6KFwlmUGl+uhsG8Rtx87QDwA3Ihh7/buFwF/xbCv7nTZfcTBIwt4emEpm+0qvthSzvCC7BZ71nKz0glOGUF48WYu66LkiWneAor6uNWs4C6EiA2zxgVzRbkZlFXWEnGgsEnW+aaJczsi2gtYXRehsqaBkYX7zpGRFmBIfhaLvGAuOk+vJxribZS+rbyGLXZ1o5x38WZNGcmsKW2v8hVC9D6BgGLC0HwmDM3n0unu3/DNdhUfrt3FAquMD9fu4k9zvuBPc9wE9CfsP4SZk4Zy3ITBnd8ebeA4+NrT7qKIh86Dq+fAgO6dS5zIfe9afLZxD7dfelhsXnQ/UKqHwoXAc8BcPRQuA9a1+ook+NEzNyUWyAEYdhmGdpgP5fYZR+3n/md6f81OFlhlHD62sNXj/3HRoXz/5Imt5lvqjPSAor4hQl0sz5wbzEV75qrrGsiK205lYG4WZd52W00n9PshOmm4sraeqrqGZpOIh2s5cT1zPTeYG+oNO2/3Ep4eOFKmjQoh3BGFcw4dxTmHuvkut+6p5s0V23nzi+3M+WwLTywoJS2gOHxMITMnDeXUg4YxcWhex3rtRkyBS/7rBnOPXODOocvsOYupNuzay61zV3DyAUMJHpK6bAPdzTKDX/FuGnooPA93i7A5fpXvRzAXwNCKMOwyAAxtoE/l9hkHjSigcEAG989fx8bdVW2uQk1PC3RZIAfEUptEe+YyvNxzGWkBar1gLr5nblDcPLlEe2F2Vp63Qraipp7KmnoGNJlnNrwgi09xJxjHz9PraYYWuHXbuqeazXY1Jx7QNzfDFkJ0zrCCbC6cNpoLp42mviHCog27KfliO2+u2M6fX/mCP7/yBeOG5HLm5OGcOXkEB48sSC6w02fA+ffCE1+HJ66ASx6DtO7/WK6tj3DDfz8hPeBuM9jli0N6CD0UVkCxZQY3AFhm8E2/z+HHb/evwHsY2pO4K1nPB37nQ7l9RiCgOPfQUdw/30IpOKWNZJddLT0t4M6Za2jSM5cWoLbe3Rw7p9Ew674AbnCe/8FcvpdXrqK6nr21zXvmoit/3ZXBPXcrp6z0NAoHZLBqewVVdQ0tDrMKIURUelqAafpApukD+fHpk9i2p5pXlm5lzmeb+feba7hj3mpGD8zhjIOHc8bkERw2urB9c20PnAXBW+HF78Ocm+DLf3EzI3ejP7y8jE837OZflx3e4h7RfZFlBh09FH4JOKSrzuHDnDn7QQxtAe7yWgc4D8Ne2uly+5gbTppA2d5aDk2wR2iqRefM1XmpSZougKiub2jUG9fodhcMs0Z75vZU11FRUx+7H3XG5OHc/c5axrSxf2dPMDQ/i0/W7wZgRKEEc0KI5AwtyObrR4/l60ePZVdlLa8t3crLn23m/vkWd729luEF2Xz5kBHMmuoGdq32bk27Cnatgfn/hIHj4Zhvp+6NNPH8oo3c967FlcfqnNmPhlfjLNRD4SMtM/hRVxTuV79rBm6vXPS2aGJwXhb/uLhnTCVMD6hGO0CkxxZAuD1zTYdZ44dWuyIQzfN65rbtcXOzFTQJ5o4YW8Rvzj64xc3be5JhBdm8vXIHABNbWLEshBDtMTA3kwuPHM2FR45mT3UdbyzbRnjJZh5+fx33vruW4qIcglNGcNaUkS0PxZ7yGzege+VnMHA/mHRmyt/H2yu38+MnP+UofSA/+/KBKT9/DzEd+JoeCltAJV5OXssMTvGjcD9Ws94IfAN4GrdyD2NoszHs2zpdtugSra1mrWtwqK5rvJp1v7idCLpiAUKuN6y62a4C9gV3UUoprjhW9/28XeGQUVosmOtMImUhhIhXkJ3BuYeN4tzDRrGnuo65n2/lf4s3cc/ba/nPm2vYb3Aus6aMYNaUkUwaHvdFMhCA8+5ykwo/dY27p+uIqSmr98fryvjmQx8zfkged10xLbbbUD90elcW7kfP3DXAdAy7EgBD+yNuVmN/gjl3QcXjgA5YwIWxxRb7jjkU+BdQADQAv8OwH/fl/H2Qu5rVzTMXTRgM7jBrbUOEqiZJg7Mz0vjBKftT1xDpkgmrgYAiNzONzXY1QLNh1t7kiLHunruD87J69Pw+IUTvVZCdwVePKOarRxRTVlnLK59v4X+LN3HHvFXc9sYq9h+W56VAGsG4IXmQOcBdBHHXyfDoRfCNeVDQ9UOdj3+0nl8+9zkjCrN58OqjOp96pXdbD1wGjLPM4M16KDwGGI5P6Un8+LRRuAFUVAP7hlz9EAJex7AnAq/TeKPaqL3A5Rj2wcAZwN8xtEIf69CnxCcNji5+gLhh1iZJgwFuPGUiPz696zKK52Wnx4K5bt/AuhOOnziE0JkH8Nx3ju3uqggh+oGi3EwuPmoMj1x7NB/87BRuOedgCgdk8rfXVnDSX98k+M+3+VfJajbUFcClj0P1Hnjicqiv6bI61dQ38NNnlnDT00uYPm4gz337OIbKgrA7gWPYt599OXCHX4X7EczdB3yAoRkY2m+AD4B7fSg36hzgAe/2A8C5zY4w7BUY9krv9iZgG9Dx/aX6uIy0APWRCHUNkVhaEoCs9AA19RH21jU0Sw/S1fKy0tkS7ZnL6r09c5npAa4/YTzFLey9K4QQXWVIfhZfP0bniW8ew3uhk/nlrIPITA/wxznLOf5P8zjnaZu79v83a9avxwn/GByn7UKT9MWWci76z/v898P1fHvmeO6/6qhGGRH6semWGfwOUA1gmcEywLeG8WM1660YWglwnPfIFRj2ok6Xu88wDHuzd3sL0HpeD0M7CreBVrfw/HXAdQDKaaCkpMSvevYaVXur2Nqwl7pyhROpj7VBeVk123ZHaIg4bCldT0nJFt/OWVFR0WpbO7VVVNS4c/iWL/mE8rUyRNkZbbW38Je0d2pJe7fPeODGg2C7nsNHW+r5YMsefrchjd9xK2Pf38KhK+5ivD6OiUVp5KQnHlBrb1tbdgP/W1PHx1sbyEmHGw7NYlr2Ft5+y7/PkV6uTg+F03CzfqCHwkOAiF+FdzyYM7RyvEp5VNxzDobd/vT3hvYa7thxUz9vfJztYGgtf5UwtBHAQ7gBZeJGMuzZwGwAx8x2Zs6c2e5q9hWFn71DYW4mw7Rscsq2EW2Dl3Z8yqc7NwEOB0+ayMwZ+/l2zpKSElpr67tXfcAa2104cNLxx/SXjZe7TFvtLfwl7Z1a0t7Ju8D7d8OuvZQs30rJvA28snMo1TtrCCiYNLyAI8YWcviYIg4cUUBxUQ752RkttnVFTT2frC/j43VlvLd6Jx+s3UV+djrfO3kiVx+nUzhAeuOa+CfwLDBMD4V/h/sr+YVfhXcimLP9y7tg2Ke0/Jy2FUMbgWFv9oK1bS0cVwCEgZ9j2O/7Vrc+KDpnrq7BISMu+eSAzHSq6yLe7dQPsya6LYQQwj+jBw7g68fux9cPu5jq2afxYcUQFkz5DZ9sa+C5Tzbx8PvrY8dqORkUZjSgr/mQhohDbYM7Paeypp5V2yqIOG4e4gOGF/Dj0/bn8mP1/rTXalIsM/iIHgp/DJzsPXS2ZQaX+1V+b/jUfAG4AjC9f59vdoShZeJGvA9i2E+ltHa9UHog4K5mbYiQntZ41WpUTqqDOW8Fa2Z6QII5IYToajmFZF/6EF+66yS+tO1ncGWYBpXOiq3lrNleyYayvZSW7WXxqo3s3ltLelqA9IAiLyudQbmZnDF5BNPGFnHYmMJevWitq+mhcIujmHoo7Fhm0JdNvP3IM6fwltti2DdjaO5yW8P+sNNlu0zgCQztGtwlvBd6550GXI9hX+s99iVgEIZ2pfe6K32eu9dnuHnmIrHUJFHxvXFNt9TqatEAbmh+Vr/Zr08IIbrVkElw9j/hqavh9d+QdtpvOXBEAQeO2BdflJTsZObMGd1Yyd7NMoMpyR7vxyf2nbiT+E4CbsZdbvs0cKQPZYNh72Rft2T84wuAa73bDwMP+3K+fiA9TVFd7+7NGp+apHEwl9qeuXyvZ26QrHoSQojUmfxVsN6F+bfB2OO6ZYcI0Xl+LBmcjmHHltt6CX3lE7kHS4/lmYuQHugZw6yjvX1Xa+p9W9wjhBCiPU7/vbsrxLPXQ5kvOWxFE3oorPRQ+Gt6KPwr7/4YPRQ+yq/y/Qjm6jC02HJbDM3X5bbCf2nenLm6BoeMHtIzN7W4EICzpo5M6XmFEKLfy8iGC+4HJwJPXQX1td1do76oS5MG+zHMGl1uOxRD+x1wPj4utxX+a9QzF7cAIieuZy43xXPmJg3P58OfncygvKyUnlcIIQQwcBycc7u7O8TcX8GZZnfXKOX0ULjZ9qFect+mx80BjgbesczgrHYWP90yg4frofAn4CYN1kNh30YxO94zZ2h3YGjHYdiPAD8B/gBsBs7FsJ/0qX6iC6SlKW8HiMYLIOKHVofkpz6oGlqQTVpAFj8IIUS3OOgcmP4t+OBfsLR54oh+IAS8bpnB1rYPBfgz8PUky+7SpMGdGWZdAfwFQ7OAq4H5GPbtGPYyX2omukx6QFEfcVOTxG8GPyh3XwDXdG9WIYQQ/cCpN8OoI+D5G2DXmu6uTaq1vX0oYJnB13GHSZMRG8X0kga/g9sJ5ovOJA3+B/APDG0scDFwL4aWA/wX+C+GvcKfKgq/pQWUm2cu0ng1qz5Y9hMVQoh+LT0Tzr8P/nM8PHklgQm9a9ZUIKcgXQ+FF8Q9NNsyg7Pb+fJhlhls//ahSWiSNFgB51pm0LfOLz/2Zl0H/BH4I4Z2GHAv8CtAunZ6qIxAwJ0z12SYVRI/CiGEoGgsnPtveOwSxqt74eTTurtG7Rap2lNvmcFpLT2vh8Lt2j7UMoOOHgq3vH1okvRQ+AHgRssM3uHdL9JD4XstM3i1H+X7kTQ4HTgTt3fuZKAEMDpdrugy7py55qlJAH591kEMlFxvQgjRvx3wZTj2u4yafxsseQoOOb+7a+QLywy2uH2oHgpv1UPhEZYZ3KyHwi1vH9oxUywzuDuuHmV6KHyYX4V3YphVOxV3ie2XgQ+Bx4DrMOxKf6omuoq7mjXSLGkwwFXH7ddNtRJCCNGjnPxr7M/mov3vRhh5GAwa39016mptbx/acQE9FC6Kro71Vs76ljaiMwX9FHgU+JGXKFj0EmneAoi6SOMFEEIIIURMWgZLD/oxx3z6f/DkFXDNa25Our7LBJ7QQ+FG24fqofA04HrLDF7r3X8bOADI00PhUuAaywy+0kbZfwXe00PhaLaPC4Df+VXxziyAOMmvSojUiuWZazJnTgghhIhXkz3EnT/334vg1V9A8C/dXaUuY5nBhNuHWmZw3/ah7v3jO1D2g97CjGjsdJ5lBpd2tK5NpTYzrOgR4neASJeeOSGEEK2ZdAYccwO8dzvoM+Dgc7u7Rr2SF7z5FsDFk0/yfsjNMxehPhJptJ2XEEIIkdDJv3bzz73wXdi1trtr0+voofADeihcGHe/SA+F7/Wr/M4Fc4amMLTRPtVFpEh6miLiQF1989WsQgghRDPR/HMoeOpq2b81ec1WswK+rWbtZDBnO8BL/lRFpEp0nlxNfaTZalYhhBAioaKxcO4dsGkhvGZ0d216m4AeChdF7/Sk1axRCzG0IzHsj3woS6RAmtcbVx+RBRBCCCGScOBZcNQ34f073PlzB3y5u2vUW8SvZlXA+fi4mtWPMbbpwHsY2moMbTGGtgRDW+xDuaKLxAdwsgBCCCFEUk67BUZMhee+Bbs3dHdt9tnQc/uULDP4IHAesBXYDFwHHO1X+X70zJ3uQxkihdLigrkM6ZkTQgiRjPQsb//WE9z5c1e9BGndvB1kTTk8fF731qFtWcBY3Bxza4Gn/SrYn71ZDa0ImAjEZxNc1+myRZeInycnPXNCCCGSNmg8nPV3ePoaeOO3cOpvurc+nzwMNXu6tw4J6KHw/ri7ZV0C7AAeB5RlBk/08zx+7M16LXAjUAwswu02fI99ifFEDxO/glVSkwghhOiQQ84H62149+8w9jjY/7TuqUekAd7/F4w+Gni1e+rQsuXA28AsywyuAtBD4R/4fRI/umVuBI4E1mHYJ+Iutd3tQ7miizSaMyfDrEIIITrqDBOGHQLPfKP78s998RLsXgfHfLt7zt+683DnyM3TQ+G79FD4ZNwFEL7yI5irxrCrATC0LAx7OTDJh3JFF8lI33cdpckwqxBCiI7KyIGLHnJvP/41qK1MfR3euxMKx8ABs1J/7jZYZvA5ywxejLuX6zzg+8BQPRT+lx4K+9aV6ccneSmGVgg8B8zF0J5H5sv1aJlpabHbsgBCCCFEpwzcD86/F7YtdXeIcJzUnXvjQlg/H6ZfD4G0to/vJpYZrLTM4KOWGTwLd1raJ8BNfpXvxwKIr0RvYWjzAA2Y0+lyRZfJTN8Xw8sCCCGEEJ024WQ4+VduMuGRh8Gx303Ned+/EzLz4bCvp+Z8PvB2f5jt/fjCt+zDABj2m76WB2BoA3FXf+iABVyIYZc1OWYs8CxuT2MGcBuG/W/f69JHZMUFc/G3hRBCiA477vuw6ROY+ysYNBEmndG159u+Aj5/Fo66DrILuvZcPVzHgzlDKwccGk/ki953MGy/WjYEvI5hmxhayLvftGtyM3AMhl2DoeUBn2FoL2DYm3yqQ58S3zOXndFzu6WFEEL0IkrBOXfC7vXw5JVw5YtQPK1rzuU4MOcmyMiFGT/smnP0Ip0I5ux8H+vRmnOAmd7tB4ASmgZzhh2/428W/swF7LMaB3PSVEIIIXySlQeXPgn3nAKPXgjXzHVz0vnti5dg9Rvuatq8If6X7yM9FFZAsWUGu2y7DD/yzP0q8eP2zZ0u2zUMw97s3d4CDGuhHqOBMDAB+L8We+UM7TrcbTRQTgMlJSU+VbP3WLenIXZ76ZLFNGzs+t65ioqKftnW3UXaO7WkvVNL2jt1OtrWORNv4rBPbqLhri+z8PA/UpdZ6FudAg21HPnRD4gMGM2CvRNxevi1YJlBRw+FXwIO6apz+DFnLn4dcjYwC1iWVAmG9howPMEzP298nO1gaImXyRj2BmAKhjYSeA5DewrD3prguNikQ8fMdmbOnJlUVfuCVdvKYf5bABxz1BFMKS7s8nOWlJTQH9u6u0h7p5a0d2pJe6dOp9p6yv5w/yyOs/4Olz8P2Zo/lXrrz1C9FS5/nhPGdbBuqbdQD4WPtMxgl2wg68dq1r82vq/9BXglyTJOafk5bSuGNgLD3oyhjQC2tVHWJgztM+B44Kmk6tFPZKXv64mTOXNCCCG6RPE0uPABeOwyePAc+PqzkFPUuTK3LIG3b4UDz4beE8gBTAcu00PhdbidYApwLDM4xY/Cu2LC1ADcHCp+eQG4wrt9BfB8syMMrRhDy/FuFwEzgC98rEOfkimrWYUQQqTC/qfDRQ/D1s/hgbNgz+a2X9OSPZvgkQshuxDO/JNvVUyR04HxuFudnoU7inmWX4X7MWduCe4qVoA0YAhwS6fL3ccEnsDQrsFNRnyhd95pwPUY9rXAgcBfvSFYBfwFw17iYx36lCxZzSqEECJVJp0Bl/wXHr8c7j7ZvT1ianJl1JS7gVxNOVw9BwpGdE1du4hlBtfpoXARMBF3SlqUL5ss+DFnLn7/jHpgK4Zd70O5LsPeCZyc4PEFwLXe7bmAL12V/UFe1r5fu/TMCSGE6HITToFrXoFHL4J7z4DTboFp17jpTNpSU+GmOtm2FC57AoZP7vLq+k0Pha/F3cu+GFgEHA28h9tT12l+fJJ/Ne7nIuB7GNo1GNqhPpQtukD8rg/52RndWBMhhBD9xvBD4BvzYMwxEP4RPHQubF7c+mtWvgZ3HgOrXoNZt7pBYe90I3AksM4ygycChwG7/Srcj2DOHe6EUd7PN4EzgLswtJ/4UL7oQmmyN6sQQohUyR8GX3sagrfCxk/gP8e7w6cf/Ac2fgy1lbB1KSx5Cp68Ch75KmTkwNWvwBFXdnftO6PaMoPVAHoonGWZweXAJL8K92OYtRg4HMOuAMDQfo2b7+1LwMdAr5ulKIQQQoguohQceQ1M/ip88G/4+AFYmSAJRloWnHATHP8jSM9KfT39VaqHwoXAc8BcPRQuw6f5cuBPMDcUqIm7X4eb6LcKQ6tp4TWimz3z7WO7uwpCCCH6s5xCmBlyf+yNUPoR7FgBRToMO9jd3zU9M2XV0UPhZnvBW2awrMkxhwL/AgqABuB3lhl8vK2yLTP4Fe+moYfC8wANmONX3f0I5h4BPsDQoilDzgIexdBygaU+lC+6wOFjOpnrRwghhPCLNsr96V4h4HXLDJp6KNzSXvB7gcstM7hSD4VHAh/rofArlhnc3d6TWGbwTd9q7PEjafAtGNrLwHHeI9d7K00BLut0+UIIIYQQXa/NveAtM7gi7vYmPRTehpuSbXeiAvVQuBw3fVv8BPXofccygwV+VNyPnrlompAFbR4nhBBCCNFFAjkF6XooHB+PzLbM4Ox2vnyYZQbb3gveo4fCRwGZwOqWjrHMYH47z90pfiQNzsJNS6I3Ks+wb+502UIIIYQQ7RSp2lNvmcFpLT2vh8Lt2gveMoOOHgon3gveLWcE8BBwhWUGI23VSw+Ff5XoccsM+hIr+dEz9zxg465c7VULHmpqahylVFV316OfSMdNKi1SQ9o7taS9U0vaO3V6W1vntPakZQZbTFSnh8Jb9VB4hGUGN3vBWsK94PVQuAA3a8fPLTP4fjvrVRl3Oxt3w4Vl7Xxtm/xJTWLYZ/hQTndY6DhOixG88I9SaoG0depIe6eWtHdqSXunTj9r6+he8CYt7AWvh8KZwLPAg5YZfKq9BVtm8K9NyvkLkCAfS8f4kTR4PoZ2iA/lCCGEEEJ0FxM4VQ+FVwKnePfRQ+Fpeih8t3fMhbh5dK/UQ+FF3s+hHTjXANw8vb5QjtPikHD7GNpSYAKwFneYVQERDDvJXXRTr5994+hW0tapJe2dWtLeqSXtnTrS1v7QQ+EluKtYAdJwV8DeYpnB2/wo349h1jPjbitgNPBTH8pNhfaucBGdJ22dWtLeqSXtnVrS3qkjbe2PWXG364Gtlhn0bS5i53vmAAztMOBS4ALcHrqnMezbO1+wEEIIIUTvpofCP0zwsA18bJnBRZ0tv+M9c4a2P3CJ97MDdwsMhWGf2NlKCSGEEEL0IdO8n/9592cBi4Hr9VD4ScsMdmof+84Msy4H3gZmYdirADC0H3SmMkIIIYQQfVAxcLhlBisA9FD417jpTb6Em9qtU8FcZ1azngdsBuZhaHdhaCfTeLuKHkspdYZS6gul1CqlVKi769PXKaUspdQSpdQipZTsFOIzpdS9SqltSqnP4h4bqJSaq5Ra6f0rm/H6pIX2NpRSG71rfJFS6svdWce+Qik1Wik1Tym1VCn1uVLqRu9xub67QCvtLdd35w2lcS7eOtwdJ6rwIUevH6tZc3H3M7sEOAl4EHgWw361s5XrCkqpNGAFcCpQCnwEXOI4ztJurVgfppSygGmO4+zo7rr0RUqpLwEVwIOO40z2HvsTsMtxHNP7wlLkOE7TDaNFB7TQ3gZQ4TjOX7qzbn2NUmoEMMJxnIVKqXzcHoxzgSuR69t3rbT3hcj13Sl6KPxL4Cvsy113Fm5eu7/ibjnWqb3s/VkAEWVoRbiLIC7CsE/2r2D/KKWOAQzHcU737v8UwHGcP3RrxfowCea6nlJKB16MCy6+AGY6jrPZ+wNd4jjOpO6sY1+SoL0N5MOuyymlngdu937k+u5ice19HHJ9d5oeCk/DbUuAdy0z6NtIlb/BXC+glDofOMNxnGu9+18HpjuOc0P31qzvUkqtBcpwc+z8x3EcWeruswTBxW7HcQq92wooi94XnddCMHclsAdYAPzIcZyy7qpfX+S1+VvAZGC9XN9dq0l7/xC5vns0P/LMCdGWGY7jbFRKDQXmKqWWO47zVndXqr9wHMdRSvWvb22p9y/gFtwvLLfgDp1c3a016kOUUnnA08D3HcfZ48ZvLrm+/ZegveX67iQ9FM4CvgroxMVelhm82Y/y/djOq7fZiJvYOKrYe0x0EcdxNnr/bsPd0+6o7q1Rv7DVG36KzoNJuGG08IfjOFsdx2lwHCcC3IVc475RSmXgBhaPOI7zjPewXN9dJFF7y/Xti+dx1xfUA5VxP77ojz1zHwETlVL74QZxF+MmPBZdQCmVCwQcxyn3bp8G+PJNRLSqzQ2jhX+UUiMcx9ns3f0K8Flrx4v28YZQ7wGWOY5za9xTcn13gZbaW65vXxRbZvCMriq8382ZA/CWVf8dd3+0ex3H+V331qjvUkqNw+2NA/fLw6PS3v5SSv0XmAkMBrYCvwaeA54AxgDrgAsdx9nVTVXsU1po75nAobjDUBbwzbgPP9FBSqkZuPlMlwAR7+GfAR8g17fvWmnvS5Dru1P0UHg2cJtlBpd0Rfn9MpgTQgghhEgVPRReCkzA3fK0Bjcvb8Qyg1P9KL8/DrMKIYQQQqTSmXG3Fe7c/Z/6VXh/XAAhhBBCCJEylhlcBwwEbgBKcOeOv+RX+dIzJ4QQQgjRBfRQeH/cOYeXADuAxwFlmcET/TyPBHNCCCGEEF1jOe6iklmWGVwFoIfCP/D7JBLMCSGEEEJ0jfNwU6DN00PhOcBjuHPmfCWrWYUQQgghupAeCufiJg2+BDgJeBB41jKDr/pRvgRzQogeRSk1CHjduzscaAC24y7rf9BxnG93wTm/D+xyHOfBFp6fBRzlOM6v/D63EKJ/0UPhIuAC4CLLDJ7sR5kSzAkheixvA/sKx3H+0oXnSAcWAoc7jlPfwjHKO+Y4x3H2dlVdhBCiIyQ1iRCiV1BKzVRKvejdNpRSDyil3lZKrVNKnaeU+pNSaolSao63vyRKqSOUUm8qpT5WSr0S3c+ziZOAhdFATin1PaXUUqXUYqXUY+Bu5o6bTmBWSt6sEEIkQYI5IURvNR43EDsbeBiY5zjOIUAVEPQCutuA8x3HOQK4F0i0ldxxwMdx90PAYY7jTAGuj3t8AXC87+9CCCE6SVazCiF6q5cdx6lTSi3B3Wd5jvf4EkAHJgGTgbnuKClpQKL9JEcAy+LuLwYeUUo9h7vHbdQ2YKR/1RdCCH9IMCeE6K1qABzHiSil6px9E4AjuH/bFPC54zjHtFFOFZAddz8IfAk4C/i5UuoQbwg22ztWCCF6FBlmFUL0VV8AQ5RSxwAopTKUUgcnOG4Z7kpZlFIBYLTjOPOAmwANyPOO2x/4rMtrLYQQSZJgTgjRJzmOUwucD/xRKfUpsAg4NsGhL+P2xIE7FPuwN3T7CfBPx3F2e8+dCIS7ss5CCNERkppECNHvKaWeBX7iOM7KFp4fBjzqOI4vOaGEEMJPEswJIfo9pdQkYJjjOG+18PyRQJ3jOItSWjEhhGgHCeaEEEIIIXoxmTMnhBBCCNGLSTAnhBBCCNGLSTAnhBBCCNGLSTAnhBBCCNGLSTAnhBBCCNGLSTAnhBBCCNGLSTAnhBBCCNGLSTAnhBBCCNGLSTAnhBBCCNGN9FA4Vw+F0zr6etkBQgghhBAihfRQOABcDFwGHAnUAFnADiAM/Mcyg6vaW570zAkhhBBCpNY8YDzwU2C4ZQZHW2ZwKDADeB/4ox4Kf629hUnPnBBCCCFECumhcIZlBus6e0yU9MwJ4QOllKWUOqW76wH+1EUp9blSaqY/NfKPUspQShndXY9EetI10BGprn9PvcaESJHReih8BIAeCh+f6ID2BnIgwZzog5RSJUqpMqVUVnfXJVlKqTlKqZsTPH6OUmqLUio9FfVwHOdgx3FKvHP3uiClN18DTfWF95LoGoq/xoToh/4FXKCHwpcDX+9sYRLMiT5FKaUDxwMOcHb31qZ1LQRmDwBfU0qpJo9/HXjEcZz6rq9Z79abrgFo8TqIPqfTw99Lqr5gCNHHrLDMYAgYCBzd2cIkmBN9zeW4k0fvB66If8LrHfixUmqxUspWSj2ulMr2njtcKfWJUqpcKfWk99xv417rKKUmxN2/P/75JucJKaVWe2UtVUp9pUkdblJKLQYqE3wQPgcMwv0Aj76mCJgFPOjdH6mUeloptV0ptVYp9b2WGkMpdaDXs7PbG9Y6O+650UqpZ7xydiqlbm9Sz1OUUg8BY4D/KaUqlFI/UUr9n1Lq6Sbn+adS6h8t1CFfKVXadEhNKVXsteuglurfQR26Brzne8p10J73kvD318bvNZlrp8VjE9W/pfeb6BqKK+OUuDJbu1Zb/b01qXe6UuqX3mt2KqUu9a7bn7f0XoXoBi8BWGbw78DsTpfmOI78yE+f+QFWAd8GjgDqgGFxz1nAh8BI3G9Dy4DrgUxgHXAjkAGcB9QCv417rQNMiLt/f5PnLeAU7/YF3jkCwEVAJTAi7rhFwGggp4X3cBdwd9z9bwKLvNsB4GPgV169xwFrgNOb1sV7L6uAn3nHngSUA5OANOBT4G9ALpANzGjh/cRue/dHeO+p0LufDmwDjmjh/RjAKwkeV0AFMDOJ368BGH5fA95znboOErRTp66D1t5LS7+/1n6vbV07TX7n7Tm2Uf3b8X5PafLe4s/X4rXa1u8tQZuZwGuABpzlHfs5kN/df5/kR36a/oy96cULxt70Yr53+xdjb3rxmbE3vXh4suVIz5zoM5RSM4CxwBOO43wMrAYubXLYPx3H2eQ4zi7gf8ChuF3c6d5zdY7jPIP7wdEhjuM86Z0j4jjO48BK4KgmddjgOE5VC0U8AJwf1/NwufcYuPmIhjiOc7PjOLWO46zBDf4uTlDO0UAeYHrHvgG8CFzi1Wck8H+O41Q6jlPtOM477Xx/m4G3cD+8Ac4Adnht3ohSKg34FnC3d3+IUmqcV44D1AM5SqlhSqn5Sqk3lVJvKKVGtKcuCc7X0WsAeth10MZ7aen319rvNZlrpz3HNqp/O95va1q7VuPPl+j3Ft9mBcD3gescx7GBD4ADcKcolPt1nQnho19aZrBcD4Vn4H4Jvwd3Pl1SJJgTfckVwKuO4+zw7j9Kk6EpYEvc7b24HyAjgY1ecBG1oaOVUEpdrpRa5A0X7QYmA4PbW7b34bsDOFcpNR73A/FR7+mxwMho2V75PwOGJShqJLDBcZxI3GPrgFG4PSrrnI7PwXsAiOZA+hrwUAvHTQaGAq94938IXAeglMoB8nF79Xbg9iCdgDucfE0H69XRawB62HVA6++lpd9fa7/XZK6d9hzbqP7teL+tae1ajWrp9xbvJGCFF3yC28tnA7d59/26zoTwS4P3bxCYbZnBMO51mxSZuCr6BC8wuBBIU0pF/+hnAYVKqamO43zayss3A6OUUirug3w0bk9I1F5gQNz94UBpgnqMxe3BOBl4z3GcBqXUItwhxaj2JHd8ELdHbhLuEOVW7/ENwFrHcSa2o4xNwGilVCDuQ3IMsMIrZ4xSKr0dAV2i+j4H/EspNRl3Pt9PWnjtKKDMcZw93v0z2Bf4nQCUAZ80+RDPxx0WS0onrwHoQddBW++Fln9/rf1ek7l22nNsrP7teL9tXfOtXavJGOmVFXUdboBeDuA4TkPccx26zoTw2UY9FP4PcCpuouAsOtDRlnzPnKHlYmgd3j9MiC5yLu43nINwh18OBQ4E3sYNilrznvfaG7zJ0+fQfHhoEXCpUipNKXUGbiCSSC7uB9d2AKXUVbg9FMl6ELfL/RvsG2IFd9iv3Jt8nuPVZ7JS6sgEZXyAG3z8RCmVodwFCGcBj3nlbAZMpVSuUipbKXVcC3XZijtnKsZxnGrgKdzeog8dx1nfwmt3AQVKqf2UUpfgfuM8SClViDv/7e/RD2+l1KFKqQ+AG4CFLTVMK86l49cA9Kzr4Fxafy8t/f5a+70mc+0kc2x73m+za6iJ1q7VZJQChyqlRiilpuOuAh+qlIr1dPhwnQnRaXoofIweCivcL22vAKdbZnA37pzQ/0u2vLaDOUMLYGiXYmhhDG0bsBzYjKEtxdD+jKFNaKsIIVLgCuA+x3HWO46zJfoD3A5cplpJn+A4Ti3uZPdrgN24w4Yv4u6VF3Uj7ofLbty99J5roaylwF9xA4OtwCHAu8m+GcdxLGA+7ofkC3GPN+D2hB0KrMUdNrobd7J3ovd1FnCmd9ydwOWO4yz3yjkLmACsx/0QvKiF6vwB+IU3fPbjuMcf8N5fS0OsAB/hfiAvwm3fs4FjcedTfQD8Ma6+ixzHmQ78EneLm2R1+Brwzt+TroNW3wtuj1ez319rv9ckr512H9vO99vSNRR9fYvXattN1cgc4FXcRQ//xf19LgLeiDtXZ68zIfxwOe4io3uBAtwFP1hmcLNlBl9NtrC2t/MytDdxVwY9D3yGYUe8xwcCJ+JOyH0Ww3442ZML0VN539z/7TjOfd1dl55KKTUG98vd8Lhh1I6Wlel9oKOUOh131eQPExxnADiOY3TmfEnUS66DPqS915kQqaKHwgfgfok5HffL0jzcLyXvWmawobXXxmvPnLlTMOzmW0oY9i7gaeBpDC2jvScUoidSSp0AfIHbK3AZMAX3P5RIQCkVwF3M8FhnAznPoUqpv+AOLVYDV/tQZtLkOujzesR1JkSUZQaX434p/pseCufgdpJdANwKTGtvOW33zEUZ2gXAHAy7HEP7JXAY8FsMW+YciF5PKXUdcAvusOYa4KeO44S7t1Y9k1IqF3cobR1whuM4HV7x2YFzzwRwumgbKLkOhBCpoIfCrfYIW2bw1mTKS2Y16y8x7CcxtBm4K5b+jJsLZXoyJxSiJ3IcZzZ+ZOHuBxzHqSRxWohUnLuki8uX60AIkQr53r+TcPM6RudGn0UH8lsms5q1US4UDLtDuVCEEEIIIfozywz+xjKDvwGKgcMtM/gjywz+CHe3lzHJlpdMz9xGDC2WCwVD61AulJ4kEAg4OTk53V2NfiESiRAI9OrLpVeR9k4tae/UkvZOnd7W1nv37nUcx+k9FXYTcdfG3a8lcSLvViUTzF2Im/DzLxj2bgxtBB3IhdKTZGZmUllZ2d3V6BdKSkqYOXNmd1ej35D2Ti1p79SS9k6d3tbWSqmWtknsqR4EPtRD4We9++fi7vmclLaDOUM7Bngfw94LPLPvcXszbnJKIYQQQgiRJMsM/k4PhV8Gjvceusoyg58kW057euYuB+7A0FbgLtGfg2FvaeM1QgghhBCiDZYZXEgndyNpR8+c/S33Xy2a2O5+DK1RYjsMu92J7YQQQgghhEsPhYuAiUB29DHLDL6VTBntnzNn2LHEdhhahxPbCSGEEEII0EPha3G3CSzG3XruaNxt8U5Kppz2zJlrLbHdWgz7u8mcUAghhBBCAG4gdyTwvmUGT/S29/p9soW0Z/luvvczDfgWMMr7uR44PNkTCiGEEEIIAKotM1gNoIfCWd72XpOSLaQ9c+Z+4/6rvQUcjmGXe/cNQLa5EUIIIYTomFI9FC4EngPm6qFwGe5WiUlJJs+cL4nthBBCCCH6Oz0UVsD3LDO4GzD0UHgeoOEuLk1KMsHcg8CHGFp8YrsHkj2hEEIIIUR/Z5lBRw+FXwIO8e6/2dGy2r/lhWH/DrgKKPN+rsKwk56kJ4QQQgghAFioh8JHdraQZHrmANZ6r8kG8jG0L2HYSeVCEUIIIYQQAEwHLtND4XVAJaAAxzKDU5IpJIk8c5ovuVCEEEIIIQQAp/tRSDI9c7FcKBj2id6OEP4OsxraGcA/gDTgbgzbbPJ8Fu7cvSOAncBFGLYV9/wYYClgYNh/8bVuQgghhOj19FC4UaxhmUGzyfPNYg3LDFpxz8diDcsMdijW0ENhZZlBxzKDLa5cjR7TnvLaP2cOqjHsasANqtwdIZLOhdIiQ0sD7sDdMuwg4BIM7aAmR10DlGHYE4C/AX9s8vytwMu+1UkIIYQQfYYeCjeLNfRQOGGsYZnBrow15umh8He9wDC+fpl6KHySHgo/AFzR3sKS6ZkrxdAK8XKhYGgdyoXSiqOAVRj2GgAM7THgHNzoN+ocwPBuPwXcjqEpDNvB0M7FndNX6WOdhBBCCNF3HAWssszgGgA9FG5XrBHtJdND4XPxJ9Y4A7ga+K8eCu8H7MZdj5AGvAr83TKDn7S3sPYFc4amgO9h2LsBA0PrcC6UVowCNsTdL8WdGJj4GMOux9BsYBCGVg3cBJwK/LjVsxjadcB1AMppoKSkxIeqi7ZUVFRIW6eQtHdqSXunlrR36vS2tg7kFKTrofCCuIdmW2Zwdtz9pGINywzW66GwDQzSQ+H2xxpt8HZ9uBO4Uw+FM4DBQJWXcy5p7QzmbAdDi+VCwbA7nAulixjA3zDsCgytjSPt2cBsAMfMdmbOnNnVdRNASUkJ0tapI+2dWtLeqSXtnTq9ra0jVXvqLTM4rYuKN4C/WWawQg/5twGWZQbrgM2dKSOZOXMLMbRO50JpxUZgdNz9Yu+xxMcYWjpu7+BO3Kj6TxiaBXwf+BmGdkMX1lUIIYQQvU9SsYYeCjeLNfRQ2MKLNfRQuEfEGsnMmZsOXIahNcqFgmEnlQulFR8BEzG0/XAb8mLg0ibHvIA7IfA94HzgDQzbAY6PHeHuGVuBYd/uU72EEEII0Td8BEz05qm1O9bwVpXGYg09FDaACssM9ohYI5lgzpdcKC1y58DdALyCOwHwXgz7cwztZmABhv0CcA/wEIa2CtiF+0sQQgghhGiTNweuUaxhmcHP9VD4ZmCBZQZjsYYeCveaWEM5ThspTKKrRTt7TA+UnZ3tVFdXd3c1+oXeNu+it5P2Ti1p79SS9k6d3tbWSqm9juPkdnc9kqWHwtcDxwIvAV8DwpYZ/Fd7X9+eOXPzMLTvegl59zG0TAztJAwtqVwoQgghhBCikZNwY6mvW2ZwFjA1mRe3Z5g1lgvFm8+2mya5UDDsdudCEUIIIYQQjez08tj927tfk8yL2w7m3F0f7gTuxNBiuVC8nHNCCCGEEKID9FD4CMsMfoy7vRiWGfyf99QzyZSTzAIIMOxO50IRQgghhBAAXKGHwj8FYnu86qHwrZYZ/GEyhSQXzAkhhBBCCL9sA84GntFD4XIgEzclSlKSSRoshBBCCCH88zVgkmUGRwInAm8BHyZbiARzQgghhBDdYwOwH4BlBjdZZvAK4JvJFpL8MKuhNcuFgmG3OxeKEEIIIYQA4EbgaT0UXgh8AozC3WUrKR3pmYvlQsGwk86FIoQQQgghwDKDS4HDgceAHGALcE6y5XRkAcRODNvB0DqUC0UIIYQQQrgsM1gDhL2fDulIz9zfATDsDuVCEUIIIYQQ/ml/z5yh/RM4AHAwtE+BRzHsRRj2m11VOSGEEEII0bpkeuaWAn/GzVK8DXgYQ7uhS2olhBBCCNGP6KHw8I6+NomeOfvfcfdewtBuBz4Cbu/oyZufQzsDN1hMA+7GsM0mz2cBDwJHADuBizBsC0M7FTBxk+3VAv+HYb/hW72EEEII0SfooXCjWMMyg2aT55vFGpYZtPRQuFmsYZlBP2ONl3AXQyQt+TlzhnY9hvYX3IbY05GTtlBuGnAHcCZwEHAJhnZQk6OuAcow7AnA34A/eo/vAM7CsA/BXWn7kG/1EkIIIUSfoIfCzWINPRROGGtYZjBhrGGZwa6KNVRHX9iRBRAvAcuAYuAPHT1xAkcBqzDsNRh2Le4y3abLc88BHvBuPwWcjKEpDPsTDHuT9/jnQI7XiyeEEEIIEXUUsMoyg2ssM9juWEMPhZVlBj+xzGCjWMPrxfPLXR19YTILIJ4EfoVhLwPuwdDuw01w92JHT97EKNxMyFGlwPQWjzHsegzNBgbhRstRXwUWYtiJU6YY2nXAdQDKaaCkpMSHqou2VFRUSFunkLR3akl7p5a0d+r0trYO5BSk66HwgriHZltmcHbc/aRiDcsM1uuhcIuxhpdWxBeWGbyzo69NJs/cQ8DjGJoCPgbygEhHT9wlDO1g3O7Q01o+xp4NzAZwzGxn5syZKalaf1dSUoK0depIe6eWtHdqSXunTm9r60jVnnrLDE7rynPooXDbsUaKJbMA4gXgBQxtCnAo7hDtSz7WZSMwOu5+sfdYomNKMbR0QMOdnAiGVgw8C1yOYa/2sV5CCCGE6BuSijX0ULhRrKGHwrFYwzKDPSbW6MDerPZiYLH/VeEjYCKGth9uQ14MXNrkmBdwJx2+B5wPvOHtRlGImzk5hGG/2wV1E0IIIUTv9xEwUQ+Fk4o1LDPo6KFwIV6sYZlBX2INb87dVwGduJjMMoM3J1NORxZAdA3DrgduAF7BXWDxBIb9OYZ2M4Z2tnfUPcAgDG0V8EMg5D1+AzAB+BWGtsj7GZridyCEEEKIHswyg81iDcsMfq6HwjfroXCjWEMPhVuMNfRQeJH309lY43ncBRf1QGXcT1KU4zidrEfvlZ2d7VRXV3d3NfqF3jbvoreT9k4tae/UkvZOnd7W1kqpvY7j5HZ3PdpLD4U/s8zg5M6W07GeOUPrcJZiIYQQQggBwHw9FD6ks4UkP2fO1eEsxUIIIYQQAoAZwJV6KLwWqMFNHOxYZnBKMoV0NJjrcJZiIYQQQggBuDtRdFpHg7kOZykWQgghhBBgmcF1fpTTsWDOsDucpVgIIYQQQrj0UHgqcLx3923LDH6abBk9JzWJEEIIIUQ/oofCNwKPAEO9n4f1UPi7yZbT0WFWIYQQQgjROdcA0y0zWAmgh8J/xE1WfFsyhbS/Z87QvouhFSVTuBBCCCGEaJECGuLuN9CBRabJ9MwNAz7C0BYC9wKvYNj9N+OwEEIIIUTn3Ad8oIfCz+IGcefixlhJSaJnzv4FMBF3m4srgZUY2u8xtPHJnlQIIYQQor+zzOCtwFXATmAHcIVlBv+WbDnJLYBwe+K2eD/1QBHwFIb2p2RPLIQQQgjRH+mh8Dvev+VACfB77+dtPRTek2x57R9mNbQbgctxI8e7gf/DsOswtACwEvhJsicXQgghhOhvLDM4w/s334/ykumZGwich2GfjmE/iWHXAWDYEWCWH5URQgghhOgvvNWrbT7WlmSCuWwMu3GmYkNzT2jYy5I9sRBCCCFEP3dqgseS3uIrmdWspwI3JThh08c6ztDOAP4BpAF3Y9hmk+ezgAeBI3AnC16EYVvecz/FzdfSAHwPw37Ft3oJIYQQok/QQ+FGsYZlBs0mzzeLNSwzaHnPNYo1LDPYoVhDD4W/BXwbGKeHwovjnsoH5idbXts9c4b2LQxtCTAJQ1sc97MWWNzWy9vN0NKAO3ADxIOASzC0g5ocdQ1QhmFPAP4GeD2D2kHAxcDBwBnAnV55QgghhBAA6KFws1hDD4UTxhqWGWwUa3jHNYo1vPI64lHgLOAF79/ozxGWGbws2cLa0zP3KPAy8AcgFPd4OYa9K9kTtuIoYBWGvQYAQ3sMOAdYGnfMOYDh3X4KuB1DU97jj2HYNcBaDG2VV957rZ4xbzAX/Wa2j29BtKS+vp5/vbmiu6vRb0h7p5a0d2pJe6dOH2zro4BVlhlcA6CHwu2KNfRQOBZrWGawBlirh8LtizUSsMygDdi4wWQRbuq3bK9OWGbwrWTKazuYM+zYCZOtbJJGARvi7pcC01s8xrDrMTQbGOQ9/n6T145KeBZDuw64zr2TT319facrLtrBcaStU0naO7WkvVNL2jt1ellbB3IK0vVQeEHcQ7MtMxjfa5NUrGGZwXo9FE4+1mgnPRS+FrgRKAYWAUfjBocnJVNOO4I57R0MewaGVg7E7/igAAfDLkjmhN3OsGcD7i/WzHaevuXb3VuffqKkpISZM2d2dzX6DWnv1JL2Ti1p79TpbW2tfvudessMTuvueiThRuBI4H3LDJ6oh8IH4OabS0p7euZmeP/6kgulFRuB0XH3i73HEh1TiqGlAxru5MT2vFYIIYQQ/VtSsYYeCnd1rFFtmcFqPRRGD4WzLDO4XA+FJyVbSDKrWbvaR8BEDG0/3Ma5GLi0yTEvAFfgdkGeD7yBYTsY2gvAoxjarcBI3LHnD1NWcyGEEEL0Bh8BE/VQOKlYwzKDjh4KvwA8qofCfsYapXooXAg8B8zVQ+EyYF2rr0ggib1ZtQcwtMK4+0UYWtKbwbZcvl0P3AC8AiwDnsCwP8fQbsbQzvaOugcY5C1w+CHRBRmG/TnwBO4ExjnAdzDsBt/qJoQQQohezzKDzWINywx+rofCN+uhcKNYw1vgEIs1LDPYLNawzGCnYg3LDH7FMoO7LTNoAL/0zn1usuUox3HaPgrA0D7BsA9r87FeJDs726muru7uavQLvW3eRW8n7Z1a0t6pJe2dOr2trZVSex3Hye3uerSHt0K22DKDG9o8uA3J7AARwNCKYvcMbSA9a5hWCCGEEKJXsMygA7zkR1nJBHN/Bd7D0G7B0H6Lm6H4T35UQgghhBCiH1qoh8JHdraQ9vesGfaDGNoC3NwnDnAehr20jVcJIYQQQojEpgNf00NhC6jES/tmmcEpyRSS7DBphnei6G0hhBBCCNExp/tRSDKrWW8EHgEGA0OBhzG07/pRCSGEEEKIfmg9cDxwhWUG1+GOfA5LtpBkeuauAaZj2JUAGNofcXOw3JbsSYUQQgghBHcCEdwpbDcD5cDTuLtCtFsyCyAUEJ9PpYF9Q65CCCGEECI50y0z+B2gGsAyg2VAZrKFJNMzdx/wAYb2LG4Qdy7gX9JgIYQQQoj+pU4PhdNwh1fRQ+EhuD11SUlizpx9K3AV7v5kO4ArMOy/JXtCIYQQQggBwD+BZ4Fheij8O+Bd4A/JFtJ2z5yhleNFjB4V95yDYRcke1IhhBBCiP7OMoOP6KHwx8DJ3kNnW2ZwebLltCOYs/OTLVQIIYQQQiSmh8ItdpTpobBjmcGkOspkOy4hhBBCiBSyzKCvHWVJ7AChKeAyYByGfTOGNgYYjmF/6GeFhBBCCCFE+yXTM+dLLpSEDG0g8DigAxZwIYZdluC4K4BfePd+i2E/gKENAJ4ExuOmS/kfhh3qdJ2EEEII0W/ooXCzWMRLFdL0uEaxiGUGH9BD4WaxiGUG24xF9FA41lFmmcGb9VB4DDDcMoNJdZQlk2duOoYdy4XiBVtJ50JpQQh4HcOeCLzu3W/MDfh+jbuP2VHArzG0Iu/Zv2DYBwCHAcdhaGf6VC8hhBBC9A8h4HXLDLYYi3gBX6NYRA+FY7GIZQZjsYgeCrcnFrkTOAa4xLtfDtyRbMWTCebqMLRYLhQMrUO5UFpwDvCAd/sB3Bx2TZ0OzMWwd3mB5FzgDAx7L4Y9z62TXQssBIp9qpcQQggh+od2xyKWGdzl9drNBc6wzOBeywzOA7DMYDKxSMqTBkdzoQzF0H4HnM++bsbOGoZhb/ZubyHxvmSjgA1x90u9x/YxtELgLOAfLZ7J0K4DrgNQTgMlJSUdrLJIRkVFhbR1Ckl7p5a0d2pJe6dOb2vrQE5Buh4KL4h7aLZlBme38+XDLDPY6VhED4ULaSsW2ceXpMHtyTN3B/Aohv0IhhbNheLuAGHYy9p9JkN7DRie4JmfNz7OdjA0J8FxbZWfDvwX+CeGvabl4+zZwGwAx8x2Zs6cmfSpRPJKSkqQtk4dae/UkvZOLWnv1OltbR2p2lNvmcFpLT2vh8LtikUsM+jooXDSsYgeCsdiEcsMthyL7BPrKPOSBp8P/DLZ87anZ24F8BcMbQTwBPBfDPuTZE+EYZ/S8nPaVgxtBIa92TvPtgRHbQRmxt0vBkri7s8GVmLYf0+6bkIIIYTo8ywz2GIsoofCW/VQeIRlBjfroXCnYhHLDP69nfWJTxqsgHMtM9j+jjJP23PmDPsfGPYxwAm4W3ndi6Etx9B+jaHtn+wJW/ACcIV3+wrg+QTHvAKchqEVeQsfTvMeA0P7LaAB3/epPkIIIYToX9odi+ihcJG38CEWi+ihcNKxiB4KPwBssczgHZYZvB3YoofCSe97n8zerOsw7D9i2Ifhrro4F0g6emyBCZyKoa0ETvHug6FNw9Du9s6/C7gF+Mj7udldDKEV43aPHgQsxNAWYWjX+lQvIYQQQvQPJnCqHgo3ikX0UHiaHgrfDWCZwWaxiGUGd+mhcKNYRA+FF+mhcHtikSmWGdwdveMtgDgs2YonkzQ4HTgTuBi3O7AEMJI9YeKy7Z3s25cs/vEFwLVx9+8F7m1yTCnx+8UKIYQQQiTJMoMJYxHLDDaKRSwz2CwWscxgR2ORgB4KF0Xz2XmpT5Lenas9CyBOxe2J+zLwIfAYcB2GXZnsyYQQQgghRMxfgff0UPhJ7/4FwO+SLaQ90d9PgUeBHyXclUEIIYQQQiTNMoMPeqlUTvIeOs8yg0uTLacdPXP2SW0eI4QQQgghkuYFb0kHcPGS2QFCCCGEEEL4RA+FH/CSDEfvF3XtalYhhBBCCOEnX1azti+YMzSFoY1OtnAhhBBCCNGigJevDujK1awQ3WLrJeCQZE8ghBBCCCESil/NqnC380p6NWsyw6wLMbQjkz2BEEIIIYRozjKDDwLnAVuBzcB1wNHJlpNMV9504DIMbR1QiRtBOhj2lGRPKoQQQgghAMgCxuLmmFsLPJ1sAckEc6cnW7gQQgghhGhMD4X3x92Q4RJgB/A4oCwzeGJHyktub1bYAwzDjSCjP0IIIYQQov2W4yYKnmWZwRmWGbwNaOhoYcnszXotcCNQDCzCHdN9j31Zi4UQQgghRNvOw93rfp4eCs/B3Sq1w/vMJ7MA4kbgSGAdhn0ibh6U3R09sRBCCCFEf2SZwecsM3gxcAAwD/g+MFQPhf+lh8KnJVteMnPmqjHsagwNDC0Lw16OoU1K9oQJGdpA3PFiHbCACxPuA2toVwC/8O79FsN+oMnzLwDjMOzJvtRLCCGEEP2Cl+OtUSziJfFtelyjWMQygw80ef4FYJxlBtuMRSwzWAk8Cjzq5Zu7ALgJeDWZuifTM1eKoRUCzwFzMbTngXXJnKwVIeB1DHsi8Lp3vzE34Ps17qrao4BfY2hFcc+fB1T4VB8hhBBC9C8h4HXLDLYYi3gBX6NYpEnS3w7HIpYZLLPM4GzLDJ6c7GuTWQDxFQx7N4ZtAL8E7gHOTfaELTgHiEa2D7RQ7unAXAx7l9drNxc4w62blgf8EPitT/URQgghRP/S7ljEMoO7vF67WCyih8LdFoskvWUEAIb9ps/1GIZhb/Zub8FdMdvUKGBD3P1S7zGAW3CzKO9t80yGdh1uUj6U00BJSUnHaiySUlFRIW2dQtLeqSXtnVrS3qnT29o6kFOQrofCC+Iemm2ZwdntfPkwywymJhbxWdvBnKGVAw6NV1lE7zsYdkG7zmRorwHDEzzz88bH2Q6G5rSrTLfcQ4HxGPYPMDS97ePt2cBsAMfMdmbOnNnuU4mOKykpQdo6daS9U0vaO7WkvVOnt7V1pGpPvWUGp7X0vB4KtysWscygo4fC7Y5F9FD4UGC8ZQZ/oIfCejtfo4BiywxuaPPgNrQjmLPzO3sSr5xTWn5O24qhjcCwN2NoI4BtCY7aCMyMu18MlADHANMwNAv3/QzF0Eow7JkIIYQQQngsM9hiLKKHwlv1UHiEZQY366Fwh2IRPRS28GIRPRQusczgTFrgBYy+7HufTJ65XyV+3L65s5UAXgCuAEzv3+cTHPMK8Pu4RQ+nAT/FsHcB//LqqAMvSiAnhBBCiCS1OxaJW/RwGvBTywzGYhGvZ+7F1gK5OAv1UPhIywx+1JmKJzNnrjLudjYwC1jWmZPHMYEnMLRrcFfIXgiAoU0Drsewr3UXPmi3ANE3fLMXyAkhhBBCdJYJPKGHwo1iET0UngZcb5nBay0zuEsPhRvFIl4g11HTgcv0ULjRvveWGUxq33vlOO2fntaIoWUBr/TmXrDs7Gynurq6u6vRL/S2eRe9nbR3akl7p5a0d+r0trZWSu11HCe3u+vRXnoonHBbVMsMJpX6LZk8c00NwB0rFkIIIYQQSfKCtk7ve5/MnLkluKtYAdKAIbjLcIUQQgghRJL0UNiXfe+T6ZmbBZzl/ZwGjMSwb0vmZEIIIYQQIia2771lBju8730ywdxX434uAr6HoV3j5XkTQgghhBDJqbbMYDWAHgpnWWZwOZD0vvfJBHPuylI30/Eo4Ju4W1jchaH9JNkTCyGEEEL08JHd0AAACIpJREFUc6V6KFyIt++9Hgp3aN/7ZFKTFAOHY9juBrKG9msgDHwJ+Bj4U7InF0IIIYTorywz+BXvpqGHwvMADZiTbDnJBHNDgZq4+3W4e6pWYWg1LbxGCCGEEEK0wTKDHd73Pplg7hHgAwwtmhH5LOBRDC0XWNrRCgghhBBC9Cd6KNzqvveWGWzfvveeJFKT2LdgaC8Dx3mPXI9hL/BuX5bMSYUQQggh+ivLDPqz770nmZ45vOBtQZvHCSGEEEKIVumhcMJ97y0zmNS+98kkDc7CTUuiN3qdYSd1QiGEEEIIAfi0730yPXPPAzbuytU+seChpqbGUUpVdXc9+ol0oL67K9GPSHunlrR3akl7p05va+uc7q5AMiwz+Nf4+3oo/BfglWTLSS41iWGfkewJeriFjuNM6+5K9AdKqQXS1qkj7Z1a0t6pJe2dOtLWKdehfe+TCebmY2iHYNhLkj2JEEIIIYRoTA+Ffdn3PplgbgZwJYa2FneYVQERDHtqsicVQgghhBDMirtdD2y1zGDSw9rJBHNnxt1WwGjgp8mesIeZ3d0V6EekrVNL2ju1pL1TS9o7daStu9ZXmz6gh8I28LFlBhe1txDlOE7bR0UZ2mHApcAFwFrgaQz79vYXIIQQQgghAPRQ+FFgGvA/76FZwGLczCFPWmawXVultt0zZ2j7A5d4PzuAxwGFYZ+YdK2FEEIIIURUMXC4ZQYrAPRQuEP73gfaccxy4CRgFoY9A8O+DWjoUJWFEEIIIURUwn3vLTNYRRJp4NoTzJ0HbAbmYWh3YWgn03gvsV5HKXWGUuoLpdQqpVSou+vT1ymlLKXUEqXUIqWU7CDiM6XUvUqpbUqpz+IeG6iUmquUWun9W9SddexLWmhvQym10bvGFymlvtyddewrlFKjlVLzlFJLlVKfK6Vu9B6X67sLtNLecn13nUeAD/RQ+Nder9y7wKN6KJzUvvftnzNnaLnAObjDrScBDwLPYtivJlnxbqWUSgNWAKcCpcBHwCWO47S70URylFIWMM1xnB3dXZe+SCn1JaACeNBxnMneY38CdjmOY3pfWIocx7mpO+vZV7TQ3gZQ4TjOX7qzbn2NUmoEMMJxnIVKqXzcYadzgSuR69t3rbT3hcj13WX0UHga+/a9f9cyg0l3eiSxnZddCTwKPIqhFeEugrgJ6FXBHHAUsMpxnDUASqnHcINUCeZEr+Q4zltKKb3Jw+cAM73bDwAluP9fRSe10N6iCziOsxl3ZAjHccqVUsuAUcj13SVaaW/RhbzgrVOjVsmkJtnHsMtwlyv3xiXLo4ANcfdLgendVJf+wgFeVUo5wH8cx+mN101vM8z7wwywBRjWnZXpJ25QSl2O+0f5R47jlHV3hfoSL4A+DPgAub67XJP2Pg65vruEHgon3PfeMoNJ7XvfnjlzQnTWDMdxDsfNVfgdb5hKpIjjzqVIIgeR6IB/AeOBQ3F7Nv7a6tEiKUqpPOBp4PuO4+yJf06ub/8laG+5vrvO87g9zfVAZdxPUjrWM9e7bcRNeBxV7D0muojjOBu9f7cppZ7FHep+q3tr1edtVUqNcBxnszcPZlt3V6gvcxxna/S2Uuou4MVurE6fopTKwA0sHnEc5xnvYbm+u0ii9pbru0sVW2aw0/ve98eeuY+AiUqp/ZRSmcDFwAvdXKc+SymV602kRSmVC5wGfNb6q4QPXgCu8G5fgfvtT3QRL6CI+gpyjftCKaWAe4BljuPcGveUXN9doKX2luu7S83XQ+FDOltIcjtA9BHesuq/425qe6/jOL/r3hr1XUqpccCz3t104FFpb38ppf6LOxl8MLAV+DXwHPAEMAZYB1zoOM6ubqpin9JCe8/EHYJyAAv4ZtycLtFBSqkZwNvAEiDiPfwz3Hlccn37rJX2vgS5vruEHgovBSbg7qoV2/feMoNJ7XvfL4M5IYQQQojupofCY+Puxva9t8xgUrn8+uMwqxBCCCFEt7PM4DpgIHADboqdm4GXki2nPy6AEEIIIYToNnoonHDfe8sMdmjfewnmhBBCCCFSaznu/MRZlhlcBaCHwj/oaGESzAkhhBBCpNZ5uNk05umh8BzgMTqx770sgBBCCCGE6AZ6KJxw33vLDCa1VaoEc0KIHkUpNQh43bs7HGgAtuMu33/QcZxvd8E5v4+7cfuDLTw/CzjKcZxf+X1uIYQA0EPh6L73F1lm8ORkXivBnBCix1JKGUCF4zh/6cJzpAMLgcMdx6lv4RjlHXOc4zh7u6ouQgjREZKaRAjRKyilZiqlXvRuG0qpB5RSbyul1imlzlNK/UkptUQpNcfbkgil1BFKqTeVUh8rpV5pksk+6iRgYTSQU0p9Tym1VCm1WCn1GMT2/ywBZqXkzQohRBIkmBNC9FbjcQOxs4GHgXmO4xwCVAFBL6C7DTjfcZwjgHuBRLuPHAd8HHc/BBzmOM4U4Pq4xxcAx/v+LoQQopNkNasQord62XGcOqXUEtyt+eZ4jy8BdGASMBmY646SkgYk2oJoBLAs7v5i4BGl1HO426JFbQNG+ld9IYTwhwRzQojeqgbAcZyIUqrO2TcBOIL7t00BnzuOc0wb5VQB2XH3g8CXgLOAnyulDvGGYLO9Y4UQokeRYVYhRF/1BTBEKXUMgFIqQyl1cILjluGulEUpFQBGO44zD7gJ0IA877j9gc+6vNZCCJEkCeaEEH2S4zi1wPnAH5VSnwKLgGMTHPoybk8cuEOxD3tDt58A/3QcZ7f33IlAuCvrLIQQHSGpSYQQ/Z5S6lngJ47jrGzh+WHAo47jJJX7SQghUkGCOSFEv6eUmgQMcxznrRaePxKocxxnUUorJoQQ7SDBnBBCCCFELyZz5oQQQgghejEJ5oQQQgghejEJ5oQQQgghejEJ5oQQQgghejEJ5oQQQggherH/Byuqg82XcmZlAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n", + "Trajectory Force Plots\n", + "\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAGDCAYAAADahUEXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABrOklEQVR4nO3dd3hUVfrA8e87kwaE3hEh2BCQGHqHRHGxEXDVtSJW1oLYsKz6QyzrIqioIHYBBVew44qsWCJFEEFCl0UUEKQLUkPa+/vj3oRJn5TJZJL38zz3yZ17z733nZMJ83LuueeIqmKMMcYYE2o8wQ7AGGOMMaYkLIkxxhhjTEiyJMYYY4wxIcmSGGOMMcaEJEtijDHGGBOSLIkxxhhjTEiyJMaYECciV4nIFz6vVUROCWZMVZ2IxLi/h7Bgx2JMZWZJjDEVgIhsEpGjInJIRHaIyBQRifbnWFWdrqp/8fM6SSKS4l7nTxGZJyLtixlnf5/XQfmyFpF497qTcm1fICLXlmcsJZHr9521NAt2XMaEGktijKk4BqpqNBAHdAD+EaDrDHevUw9IAt4O0HUC7TAwRERiSnuiILWYDFTVaJ/l9+IcbK08xlgSY0yFo6o7gP/iJDMAiMgDIrJRRA6KyFoRuchn37UisqAE18kA3gXa+pxriog84fM6XkS2uutvAy2AT92Wg/uAeW7R/e62HiLiEZGHRWSziOwSkbdEpLZ7jqyWm6EiskVE9ojIQz7X6yoiS0XkgIjsFJFnC3kL+4EpwCP57fQzjhtEZAvwtVuPC0VkvIjsF5FfRKSnu/039xxDfc5/gYgsd2P9TURG+135BRCRSBF5TkR+d5fnRCTS3RcvIltF5H4R2QFMFhGviDzo89lYJiInuuVPF5G5IvKHiKwXkb+VNj5jKhpLYoypYESkOXAe8LPP5o1AH6A28CgwTUSalvI6EcBVwGJ/yqvqEGALx1sQxgJ93d113G2LgGvdJQE4CYgGJuY6XW+gNXA2MEpE2rjbnweeV9VawMnAzCLC+idwsYi0zmefP3H0A9oAA9zX3YCVQH3gHZwkrwtwCnA1MNHnNt9h4BqgDnABcIuIDC4i3qI8BHTHSWDPBLoCD/vsb4LTgtYSGAbcDVwBnA/UAq4HjohIDWCu+x4aAZcDk0SkLcZUIpbEGFNxfCwiB4HfgF34tDCo6nuq+ruqZqrqDGADzhdcSbwgIvuBg8BwnKSoLF0FPKuqv6jqIZzbYpfnuv3xqKoeVdUVwAqcL2yANOAUEWmgqodUtdAEy221ehl4rIRxjFbVw6p61H39q6pOdlupZgAnAo+p6jFV/QJIxUloUNUkVV3l/k5WAv/GSYr89bHb4rNfRD72ifkxVd2lqrtxfjdDfI7JBB5x4zkK3Ag8rKrr1bFCVfcCFwKb3PeSrqrLgQ+AS4sRnzEVniUxxlQcg1W1JhAPnA40yNohIteISHLWlx5whu/+YhqhqnWAajhfdu+LSGxpAs+lGbDZ5/VmIAxo7LNth8/6EZxWEoAbgNOAn0TkBxG50I/rPQUMEJEzc233J47fch2z02f9KICq5t4WDSAi3UTkGxHZLSJ/AjdTvN/JYFWt4y6DC4nZt8PvblVN8Xl9Ik4rXW4tgW4+SdJ+nASpSTHiM6bCsyTGmApGVb/F6evxNICItARew2k1qe8mIKsBKeV1MlV1Ps5tq6ynmw4D1X2K5f7Syz3tfe7XAL/jfIlmaQGkkzNBKCimDap6Bc4tkKdwEqwaRRyzF3gOeLwEceQXv7/eAWYBJ6pqbZwWoVL9Tsg/Zt8Ov7nj/Q3ntltuvwHf+iRJWbf7billfMZUKJbEGFMxPQec47Yu1MD58toNICLX4bTElJqI9MDp2LvG3ZQMnC8i9USkCXBnrkN24vQvybIb5xaH77Z/A3eJSCu3/8iTwAxVTfcjnqtFpKGqZuJ03MU9f1GeBXri9G8pdRx+qgn8oaopItIVuLIMzvlv4GERaSgiDYBRwLRCyr8OPC4ip4ojVkTqA/8BThORISIS7i5dfPoeGVMpWBJjTAXk9od4CxilqmuBZ4BFOElEe2BhKU4/UdyxSXAer35YVT93972N00dlE/AFTr8QX//C+ZLdLyIjVfUITufahe627sCb7nnmAb8CKcDtfsZ2LrDGje154HKf/ioFUtUDwFicTq9ZShOHP24FHnP7MY2i6E7I/ngCWIrTuXgV8KO7rSDPutf9AjgAvAFUU9WDOK1rl+O05OzAadmKLIMYjakwRLU0ranGGGOMMcFhLTHGGGOMCUmWxBhjjDEmJFkSY4wxxpiQZEmMMcYYY0KSJTHGGGOMCUmVbhbUOnXq6CmnnBLsMCqcw4cPU6NGoWOGVTlWJ3lZneRldZKX1UleVid5lWWdLFu2bI+qNsy9PahJjIicizMWhBd4XVXH5NofiTNWRidgL3CZqm4q7JyNGzdm6dKlgQk4hCUlJREfHx/sMCoUq5O8rE7ysjrJy+okL6uTvMqyTkRkc37bg3Y7SUS8wIs4s/W2Ba7IZ4bVG4B9qnoKMB5nsCZjjDHGmKD2iekK/OzOMJuKM+X9oFxlBgFT3fX3gbNFpLRzkxhjjDGmEgjaiL0icglwrqre6L4eAnRT1eE+ZVa7Zba6rze6ZfbkOtcwYBhA/UaNO7345jsljquyjl985MgRqlevXnRBwPcjob4/1fkZ6DoqTpbqEfCK+9OT9VrwCoR5ju/LL/c9dOgQ0dHR+Zy16rI6ycvqJC+rk7ysTvIqyzpJSEhYpqqdc2+vFB17VfVV4FWAyKan6v3zi5xqpQoSoGrWiwiEez1Eej1EhDlLZJiHtGMe6tUOIzLMQ2S4h8gwL1Huz8gwD1Hh3hzbo8K8RIW76+HHt0Xm2Oalms8+jye0Gg7tvn5eVid5lWedpKWlsXXrVlJSUsrleiVVu3ZtoqKigh1GhVKSOomKiqJ58+aEh4f7VT6YScw24ESf183dbfmV2SoiYUBtnA6+BWpQTRh/2ZmlCkyK1RYQGtauW0fbNoVPYFvQjToRp0ZEnLpxfhZcPrfiNPYVp5VHFTJUycjMJD1DychU0jKVjIxM0jOV1Axne1pGJqnpmaS6P4+lOz+37ThGregIjqVnkpKWyf4jaaSmZ5KSnkFKWibH0jJIccuWVITXk2+CE+mzXi3cm73fN0mqlis5igr3EhXmoVrE8XNF+pQN99qICaby2bp1KzVr1iQmJibfFtWK4uDBg9SsWTPYYVQoxa0TVWXv3r1s3bqVVq1a+XVMMJOYH4BTRaQVTrJyOXmnsp8FDMWZvfcS4Gst4v5XdLhwUYfmAQg3tNX5cwPxHU4IdhgVivO/ya5Flst0E6KUNCe5SUnLyE50nG1u0pPurB9NdZIf3/LH0t3taU6SdDQ1g/1H0zh2IIOjaTmPK2nS5PVInsSnoNdZiVNkrte//p5Oyurtzna3BapahDdPK1RkmKdCf6GYyiMlJaXCJzCmbIgI9evXZ/fu3X4fE7QkRlXTRWQ48F+cR6zfVNU1IvIYsFRVZ+FMK/+2iPwM/IGT6BhTrjweIcrjfImXh8xMzU6SjmYnSceTpaOpxxOflPRMUlIzshOro6luS1JqRnaydDQtg4Mp6ew+eOz4Odzjj+WXMK380a84I93bcr4tSL635CLCPER4j9++i/BZIrO3e49vz3W7L/un15tne1Z5S6aqBvsdVx3F/V0HtU+Mqs4GZufaNspnPQW4tLzjMiaYPB6hekQY1SMCf63MTHVvpzlJz7cLFhHboXOOROh4i5OT/Bzzvd2WoxXq+M8jqensP+rexvO5hZeansmxjNLdosvNN/nJLxHKnUhFhnlzHpOrbM5Eycv6nemwfhfhXo+7COHu8VmvI7wewnz2hXs9eEOsP5TJ36ZNm7jwwgtZvXp19rbRo0cTHR3NyJEjyy2O+Ph4tm/fTlRUFBEREbz22mvExcUVekzPnj357rvv8n0P4Ly3Nm3a0Lp1a1SVGjVqMHnyZFq3bl3oeZ988kkefPBBAPbv388777zDrbfeWqr3V1KVomOvMaZkPB6hWoSXahFOK1OTGh7aNqsV8OuqanYfJd/+SlkJz7F8t2fk27fpeNmMvElThrN+MCWdvVnn8L2uWyYto4jeWMt/KPZ79LgdysNzJTdZ62FeDxE+28Oy18VJiDw5y4W5ZSK8HsI8HsLDhHBPruM8HsLDnGOzyh8v4+zPKh+WfX73uKxruNstCQseVUVV8Xhy9nObPn06nTt3ZvLkydx7773MnTu30PN89913RV7r5JNPJjk5GYBXXnmFJ598kqlTpxZ6TO4kZtKkSZbEGGOqDhFxnwIrn1t0Rcnq95Qj+UnLIC1DWfT9EmI7dCQ13e0onumUSctwl3RnW1r68Q7laelKemZm9npaRqbzusD1TI6mOcekZxzvlJ6ekUlqRu7tmWSWw1gQIhDucZKZrMTH6xHCPUJa6jFqLk3KkQB53cTJWfdQLdzDK0PyPBFb6cTHx3PmmWfyzTffkJmZyZtvvknXrl0ZPXo0Gzdu5Oeff2bPnj3cd9993HTTTQCMGzeOmTNncuzYMS666CIeffRRNm3axIABA+jWrRvLli1j9uzZtGzZMt9r9ujRg3HjxgHOY8yDBg1i3759pKWl8cQTTzBokDPkWnR0NIcOHfL7vRw4cIC6desCMGXKFJYuXcrEiRMBuPDCCxk5ciRz5szh6NGjxMXF0a5dOzIyMti4cSNxcXGcc845jB07lvvuu4/PP/8cVWXUqFFcdtllJCUlMXr0aBo0aMDq1avp1KkT06ZNK/WtQktijDFVXmH9nrbX9tKxRd0gRFWwjMysBCgr0Tn+JF6aT9KTVSYtKynKdPfnWM8kzT1PVqKUkXl8e0au49MzlK3bt1O/QS13W87rHUvLJC0zg0MBeCL60U/XsPb3A2V6zrbNavHIwHalOseRI0dYuHAhy5cv5/rrr8++bbNy5UoWL17M4cOH6dChAxdccAGrV69mw4YNLFmyBFUlMTGRefPm0aJFCzZs2MDUqVPp3r17odebM2cOgwcPBpxHkj/66CNq1arFnj176N69O4mJiX4nB1kJyMGDBzly5Ajff/99oeXHjBnDxIkTs1tvNm3axOrVq7Nff/DBByQnJ7NixQo2bdpEQkICffv2BWD58uWsWbOGZs2a0atXLxYuXEjv3r39irMglsQYY0yI8XoEryd4rVhJSfuIj+8YtOuXp4KSAd/tV1xxBQB9+/blwIED7N+/H4BBgwZRrVo1qlWrRkJCAkuWLGHBggV88cUXdOjQAXBaUjZs2ECLFi1o2bJloQnMVVddRWpqKocOHcpOGlSVBx98kHnz5uHxeNi2bRs7d+6kSZMmfr0/39tJM2bMYNiwYcyZM8evY/OzYMECrrjiCrxeL40aNaJfv3788MMP1KpVi65du9K8ufP0cFxcHJs2bbIkxhhjTNVQ2haTkqhfvz779u3Lse2PP/7IMY5J7kQn63V+21WVf/zjH/z973/PsW/Tpk1Fzvg8ffp0OnXqxL333svtt9/Ohx9+yPTp09m9ezfLli0jPDycmJiYEg8MmJiYyHXXXQdAWFgYmZnHO+CXxWCDkZGR2eter5f09PRSn9NGxzLGGGMKEB0dTdOmTfn6668BJ4GZM2dOjhaEGTNmAE4rRO3atalduzYAn3zyCSkpKezdu5ekpCS6dOnCgAEDePPNN7P7qmzbto1du3b5HY+I8Pjjj7N48WJ++ukn/vzzTxo1akR4eDjffPMNmzfnO9mzXxYsWMDJJ58MQExMDMnJyWRmZvLbb7+xZMmS7HLh4eGkpaUBULNmTQ4ePJi9r0+fPsyYMYOMjAz27NnDvHnz6Nq16PG4SspaYkzJZKSDZoB4QTzgsXzYGFM5vfXWW9x2223cfffdADzyyCPZX/bg9Evp3bs3GRkZvPnmm9nbY2NjSUhIYM+ePfzf//0fzZo1o1mzZqxbt44ePXoATpI0bdo0vF7/bw9Wq1aNe+65h3HjxvHUU08xcOBA2rdvT+fOnTn99NOL9d6y+sSoKhEREbz++usA9OrVi1atWtG2bVvatGlDx47Hbx8OGzaM2NhYOnbsyPTp0+nVqxdnnHEG5513HmPHjmXRokWceeaZqCpjx46lSZMm/PTTT8WKy19BmwAyUOJa1NTkJ84KdhgBVLKe3H/s20e9uoV1TtTj8wNoJmRmQGY6ZKZB+jFIT3F+ph52lsy0fELLSmi8OZMbf7d7vO7cBlnrnlzrnlzbw6BeK2jS3lkanAZe/+bbAJsTJz9WJ3lZneRVnnWybt062hQxZUowxcfH8/TTT9O6descQ+wHYyyZiqakUzHk9zsXkco7AaQv0UxIq6QTHZYi4fRmHIXUIkZPEwHE+ekJg7BI52d4FIRFgTcSIqpDeHWIqOEkFJmZTotMZoaT/ORYzyxie0audS1ie2rO86Wnws9fQsYx901GQKM20LwLxPSGlr0humGJ68wYY0zFVumSmCPVm8MNXwQ7jApneWX932RGOuzdADtWw46VzpL8b/jBaRKlYRs4+Sw4/QJo0d1JvIwxpowkJSUB5OgXAk5LjAm8SpfEmCrGG+a0vjRqA7HuDBUZabB9BWyaD7/OdxKaxS9C9frQ+jxoOxhOSghq2MYYY0rPkhhT+XjDoXlnZ+l9Fxw76Nx2+ukzWDsLlk+DGg05pU53aF0Xmp4Z7IiNMcaUgCUxpvKLrAntLnKWrH40K/5Ns59mwyufOklMx2ug/aUQVTvY0RpjjPGTPRdrqpawCDj9fLjsbb7rORXOf9rpnPzZPfB0a/jkNtj2Y7CjNMYY4wdLYkyVlR4eDV1vgpvnw03fQOzfYPWH8FoCvNIPkt+BtABMAGOMCSnR0dFBvf6mTZuoVq0acXFxtG3blmuuuSZ7sLmCzJo1izFjxgBOJ+Onn346T5nRo0dzwgknEBcXx+mnn84tt9ySY5Te/CQnJzN79uzs10lJSX7Nlh0oRSYxIhIlIpeIyPMi8p6IvCUi94lI+Y//bEwgiMAJHSHxBbjnJ6d1Jj0FPr4FxreDrx6HA78HO0pjTBWR33D8WXMcrVq1iq1btzJz5sxCz5GYmMgDDzxQ5LXuuusukpOTWbt2LatWreLbb78ttHxIJTEi8iiwEOgBfA+8AswE0oExIjJXRGIDHqUx5SWqttM6c+tiuOYTOLEbzH8Gxp8B710LmxeVarweY0zlkJycTPfu3YmNjeWiiy5i37597Nq1i06dOgGwYsUKRIQtW7YAThJy5MgRdu/ezcUXX0yXLl3o0qULCxcuBJxWkSFDhtCrVy+GDBlS4HW9Xi9du3Zl27ZtAHz66ad069aNDh060L9/f3bu3AnAlClTGD58uN/vJzU1lZSUFOq6g6LGx8ezdOlSAPbs2UNMTAypqamMGjWKGTNmEBcXx1NPPcXLL7/M+PHjiYuLY/78+WzatImzzjqL2NhYBg4cmP3+r732WkaMGEHPnj056aSTeP/994tT3QUqqmPvElV9pIB9z4pII6BFmURiTEUiAifFO8u+Tc5j2j++BWs+gmYdoMdw51Ftr/WNN6bcfP4A7FhVtuds0h7OG1Psw6655homTJhAv379GDVqFGPGjGHSpEmkpKRw4MAB5s+fT+fOnZk/fz69e/emUaNGVK9enRtvvJG77rqL3r17s2XLFgYMGMC6desAWLt2LQsWLKBatWoFXjclJYXvv/+e559/HoDevXuzePFiRITXX3+dsWPH8swzz/j9PsaPH8+0adPYvHkz5513HnFxcQWWjYiI4LHHHmPp0qVMnDgRgKNHj+YYmXjgwIEMHTqUoUOHMmnSJEaMGMHHH38MwPbt21mwYAE//fQTiYmJXHLJJX7HWZBCW2JU9bMi9u9S1aWljsKYiqxuDPzlCbh7HVzwrPPI9gc3wAtx8N1ESDkQ7AiNMeXozz//ZP/+/fTr1w+AoUOHZt9S6dmzJwsXLmTevHk8+OCDzJs3j/nz59OnTx8AvvzyS4YPH05cXByJiYkcOHAgezLIxMTEAhOYrDmOGjduTNOmTYmNdW6CbN26lQEDBtC+fXvGjRvHmjVrivVesm4n7dq1i8OHD/Puu++WqE6yLFq0iCuvvBKAyy+/nAULFmTvGzx4MB6Ph7Zt22a3GJVWof+NFJHJQEFt56qqN5RJFMaEgoga0OUG6HQdbPivk8B88RAkjYFOQ6H7LVC7ebCjNKbyKkGLSXnr27cv8+fPZ/PmzQwaNIinnnoKEeGCCy4AIDMzk8WLFxMVFZXn2Bo1ahR43qw+MXv27KFXr17MmjWLxMREbr/9du6++24SExNJSkoq8UjB4eHhnHvuucybN4/LL7+csLCw7E6+KSll84BDZGRk9npZzdtYVMfe/wCf5VpWAmcDA8okAmNCjcfjjPx73WcwLAlanwuLX4Lnz4SPboZd64IdoTEmgGrXrk3dunWZP38+AG+//Ta9evUCoE+fPkybNo1TTz0Vj8dDvXr1mD17Nr179wbgL3/5CxMmTMg+V3JycrGu3aBBA8aMGcO//vUvwGkVOuGEEwCYOnVqid+TqrJw4cLs2bljYmJYtmwZQI7+KzVr1swxxULu1z179sxuzZk5c2Z2C1SgFHU76YOsBVgOnAfcCowBTgpoZMaEgmYd4OLX4Y4V0OUmWPsJTOoO71zmdAI2xoS8I0eO0Lx58+zl2WefZerUqdx7773ExsaSnJzM/fffDzhf/qpK3759AafPSp06dbI7zL7wwgssXbqU2NhY2rZty8svv1zseAYPHsyRI0eYP38+o0eP5tJLL6VTp040aNCg2OfK6pR7xhlnkJGRwa233grAyJEjeemll+jQoQN79uzJLp+QkMDatWuJi4tjxowZDBw4kI8++ii7Y++ECROYPHkysbGxvPvuu9l9dwJFimrSEZHTgYeBDsA4YJqq5n3+q4Jo3bq1rl+/PthhVDhJlXUCyFIISJ0c+QOWvAZLXoEje52nm3rfBaed684SXrHZ5yQvq5O8yrNO1q1bR5s2bcrlWqVx8OBBatasGewwKpSS1kl+v3MRWaaqnXOXLeoR6/eA2cAiIB6YBdQSkXoiUq/YkRlT2VWvB/H3w52r4bxxcHA7/PtyeLm3M5BeZkawIzTGmEqjqD4xXQABRuKME7MUWOYu9lSSMQWJqA7dhsHtP8LglyEjFd6/Dl7s5owEnFH4aJvGGGOKVlSfmBhVbeUuJ7lL9uvyCtKYkOUNh7grnMHzLp0CYVHOSMATOsIPb9i0BsYYUwpF3U6KKWK/iEixnyl1b0fNFZEN7s+6+ZSJE5FFIrJGRFaKyGXFvY4xFYbH68yiffN8uHImRDeGz+52nmha9CKkHg52hMZUWGX1OK6p+Ir7uy7qdtI4EflARK4RkXYi0khEWojIWSLyOM6UBCXpcfUA8JWqngp85b7O7Qhwjaq2A84FnhOROiW4ljEVhwicNgBumAvXzIIGp8J/H4Tn2sO8pyHlz2BHaEyFEhUVxd69ey2RqQJUlb179+Y7hk5BCh3sTlUvFZG2wFXA9UBTnORiHU6H33+qaknawwfhdBQGmAokAffnuvb/fNZ/F5FdQENgfwmuZ0zFIgIn9XOWLd/D/Kfh68fhuxecKQ26/d2Zx8mYKq558+Zs3bqV3bt3BzuUQqWkpBTry7cqKEmdREVF0by5/zd4ipz4RVXXAg8VK4qiNVbV7e76DqBxYYVFpCsQAWws4ziMCb4W3eCq9+D3ZPh2LHzzT1g00ZIZY3BGkm3VqlWwwyhSUlISHTp0CHYYFUp51EmR48SU+MQiXwJN8tn1EDBVVev4lN2nqnn6xbj7muK01AxV1cUFlBkGDANo2LBhp6KmKK+KDh06RHR0dLDDqFAqap1EH9xIzKYZNNj7PWlh0WxtPoitzS8gI6zgIcnLSkWtk2CyOsnL6iQvq5O8yrJOEhIS8h0nJmBJTGFEZD0Qr6rbs5IUVW2dT7laOAnMk6rq17zdNthd/mzArrwqfJ1ktcys/wyi6vi0zNQK2CUrfJ0EgdVJXlYneVmd5FWWdVKiwe4CaBYw1F0fCnySu4CIRAAfAW/5m8AYU6k0i4Mr3oFh30LLnvDNE04H4G/H2czZxhiDn0mM+yj11SIyyn3dwu2nUlJjgHNEZAPQ332NiHQWkdfdMn8D+gLXikiyu8SV4prGhKZmcXDFv53JJn2TmXnj4NjBoo42xphKq8iOva5JQCZwFvAYcBD4AGdE32JT1b04M2Hn3r4UuNFdnwZMK8n5jamUmnVwkpnfl0PSU/D1E87s2b3vgi43Qni1YEdojDHlyt/bSd1U9TYgBUBV9+E8LWSMKW/NOsCV78KNX0PTM+GLh+H5OGfiyfRjwY7OGGPKjb9JTJqIeAEFEJGGOC0zxphgad4JhnwE186GeifB7JEwoTP8+DZkVNiJ5o0xpsz4m8S8gNPJtpGI/BNYADwZsKiMMf6L6QXXzYarP4QaDWDWcHixK6x8z2bNNsZUan4lMao6HbgP+BewHRisqu8FMjBjTDGIwClnw01fw+X/dvrHfHgjvNQL1s4CG7LdGFMJ+ft0Undgm6q+qKoTgW0i0i2woRljik0ETj8f/j4fLpkMmekwcwi8Gg8/f2XJjDGmUvH3dtJLwCGf14fcbcaYisjjgTP+CrcuhsEvwdE/YNpfYcqF8NuSYEdnjDFlwt8kRtRnaF9VzcT/x7ONMcHiDYO4K2H4UjhvHOz5H7xxDrxzGexcE+zojDGmVPxNYn4RkREiEu4udwC/BDIwY0wZCouEbsPgjmQ4exRsWeT0l/lwGOzbFOzojDGmRPxNYm4GegLbgK1AN9wJF40xISSiBvS5B+5YAb3vdDr9TugMs++FQ7uCHZ0xxhRLkbeE3PFhxqvq5eUQjzGmPFSrC/1HQ9e/w7dPwQ9vwPLpxDS7ALp3gKjawY7QGGOKVGRLjKpmAC3dCRmNMZVJraYw8DkY/gOcNoCYzTOd0X+/mwhpKcGOzhhjCuVv59xfgIUiMgs4nLVRVZ8NSFTGmPJV/2S4dDJLo3rTef9n8MVDzrxM8ffDmVc6HYSNMaaC8bdPzEbgP275mj6LMaYSOVTzZBjyIQz9FGo2gVm3w6TusOYjyLSZRowxFYtf/71S1UcBRCTafX2o8COMMSGtVV+48Uv46TP4+nF471pnssmzR8HJZzuD6hljTJD5O2LvGSKyHFgDrBGRZSLSLrChGWOCSgTaXAi3fAeDX4aj+2DaxTDlAti8KNjRGWOM37eTXgXuVtWWqtoSuAd4LXBhGWMqDI8X4q5wBsw7/2nY+zNMPhemXQK/Jwc7OmNMFeZvElNDVb/JeqGqSUCNgERkjKmYwiKh600wIhn6Pwpbf4BX+8HMa2DXT8GOzhhTBRVnxN7/E5EYd3kYG7HXmKoporozUN6dK6Hvfc7EkpO6O6P//mH/LBhjyo+/Scz1QEPgQ+ADoIG7zRhTVUXVhrMegjtWQs/bj4/+O+t22P9bsKMzxlQBhSYxIvJXAFXdBzyiqh1VtZOq3uluM8ZUdTXqw18ed+Zl6nIjrHgXXugAn9wGezcGOzpjTCVWVEvMwz7rXwUyEGNMiKvZBM4fCyOWQ+frYNX7MLEzvHcd7Fgd7OiMMZVQUUmMFLBujDH5q90czh8Hd66CniNgw1x4uRe8czn89kOwozPGVCJFDXZXTUQ64CQ7Ue56djKjqj8GMjhjTAiLbgTnPOp0Al7yGiyeBG/0dwbS63MPtOpng+YZY0qlqCRmO5A1P9IOn3UABc4KRFDGmEqkWl3odx90vxWWTXYml3xrEJzQGfqOhNPOtWTGGFMihSYxqppQXoEYYyq5yGjnKaYuN0HydFj4HPz7cmjUDvrcDe0ucgbWM8YYP/n7iLUxxpSN8CjocgPc/iNc9ApkpsMHNzidgH98C9JTgx2hMSZEBCWJEZF6IjJXRDa4P+sWUraWiGwVkYnlGaMxJsC84XDm5XDrYvjb2xBZ0xlj5oU4WPwypB4JdoTGmAouWC0xDwBfqeqpOI9uP1BI2ceBeeUSlTGm/Hk80DYRhn0LV30AdVrCnPvhufYw/xlI+TPYERpjKqhC+8SISMfC9pfi6aRBQLy7PhVIAu7P5/qdgMbAHKBzCa9ljAkFInBqf2fZ/J2TwHz1GCx4HroNg263OAPrGWOMq6ink54pZF9pnk5qrKrb3fUdOIlKDiLica9/NdC/hNcxxoSilj2d5fflMP9ZmPc0LHoROl0HPYdDrWbBjtAYUwGIqgbmxCJfAk3y2fUQMFVV6/iU3aeqOfrFiMhwoLqqjhWRa4HOqjq8gGsNA4YBNGzYsNPMmTPL5k1UIocOHSI6OjrYYVQoVid5VdQ6qX54Cy22fEDjnfNQ8bCjydlsafFXUqrl909M2aqodRJMVid5WZ3kVZZ1kpCQsExV89yR8TuJEZEzgLZAVNY2VX2rJMGIyHogXlW3i0hTIElVW+cqMx3oA2QC0UAEMElVC+s/Q+vWrXX9+vUlCatSS0pKIj4+PthhVChWJ3lV+DrZtwkWPg/LpzlPNZ1xifN4dqM2Abtkha+TILA6ycvqJK+yrBMRyTeJ8atjr4g8AkxwlwRgLJBYinhmAUPd9aHAJ7kLqOpVqtpCVWOAkcBbRSUwxphKrm4MXDjemTm7+63w02cwqTu8exVsswHEjalq/H066RLgbGCHql4HnAnULsV1xwDniMgGnP4uYwBEpLOIvF6K8xpjqoJaTWHAP+Gu1dDvftg0H15LgLcvgk0LIEC3yY0xFUtRHXuzHFXVTBFJF5FawC7gxJJeVFX34iRFubcvBW7MZ/sUYEpJr2eMqaSq14OEB6HHcFj6JiyaCFMugBO7O/MznXqOTWlgTCXmb0vMUhGpA7wGLAN+BBYFKihjjCmWqFrORJN3roLzxsGfW+GdS+GVvrDmY8jMCHaExpgA8CuJUdVbVXW/qr4MnAMMdW8rGWNMxRFezRlTZsRyGPQipB2B94bCi90g+R3ISAt2hMaYMuT3iL0iEisiiUBH4BQR+WvgwjLGmFIIi4AOV8NtS+CSyRAWBR/fAi90hCWvQdrRYEdojCkDfvWJEZE3gVhgDc4jz+AMdvdhgOIyxpjS83jhjL86M2Rv+MIZNG/2SPh2rDNoXufrnTmbjDEhyd+Ovd1VtW1AIzHGmEARgdMGwKl/cZ5kmv8MzB3ljAbc7Wbo9nenk7AxJqT4eztpkYhYEmOMCW0i0KovXPMJ3PgVtOwF345xJpv84mE4uCPYERpjisHflpi3cBKZHcAxQABV1diARWaMMYHUvDNc8Q7sXAMLxjtzM33/KnQcAj1HQN2WwY7QGFMEf5OYN4AhwCqO94kxxpjQ17gdXPw6xP8DFj4Hy6bCsinQ/m/OY9vGmArL3yRmt6rOCmgkxhgTTPVPhsQJ0O8B+G6Ck8iseIf29TrBiZlwUoINnGdMBeNvErNcRN4BPsW5nQSAqtrTScaYyqX2CXDeGOg7En54g5oLJznTGTRqBz1uhfaXQlhksKM0xuB/ElMNJ3n5i882e8TaGFN51WgA8fezKLMj/eruhEWT4JPb4MvR0OUm6HKDU8YYEzRFJjEi4gX2qurIcojHGGMqFPWEOwPnxV0FvyTB4kmQ9KTzmPaZlzmzaTdqE+wwjamSikxiVDVDRHqVRzDGGFNhicDJCc6y+39OMrPi3/DjW3Dy2c7gedZvxphy5e/tpGQRmQW8BxzO2mh9YowxVVLD02Dgc3DW/zmzZ//wmttvpi30uM36zRhTTvwd7C4K2AucBQx0lwsDFZQxxoSEGvWh373O7NmDJgHi9JsZfwZ8Ow4O7w12hMZUan61xNiM1cYYU4iwSOhwFcRd6fSbWfQifPOE028m7gqn30yDU4MdpTGVjl8tMSLSXEQ+EpFd7vKBiDQPdHDGGBNSsvrNXP0+3LoYYi+F5dNhYmd45zL4dR6oBjtKYyoNf28nTQZmAc3c5VN3mzHGmPw0auMMnnfXGmc04K1LYepAeKUvrJgB6anBjtCYkOdvEtNQVSerarq7TAEaBjAuY4ypHKIbQvwDcNdqGPgCpB+Dj4bB87HOLNpH9wU7QmNClr9JzF4RuVpEvO5yNU5HX2OMMf4Irwadhjq3ma76ABqeDl89Cs+2hdn3wh+/BDtCY0KOv0nM9cDfgB3AduASwDr7GmNMcXk8cGp/uOZjuHkhtLsIlk6GFzrCjKthy/fBjtCYkOHv00mbgcQAx2KMMVVLkzNg8CQ4exQseQ1+eB3WfQrNu0CP4dBmIHi8wY7SmAqr0CRGREYVsltV9fEyjscYY6qemk3g7P+DPndD8jvOI9rvDYW6Mc7j2XFXQWR0sKM0psIp6nbS4XwWgBuA+wMYlzHGVD0RNaDrTXD7Mvjb2xDdGD6/D8a3cyaePLA92BEaU6EU2hKjqs9krYtITeAOnL4w7wLPFHScMcaYUvB4oW2is/y2BL6bAAufh+8mOlMa9BwOjdsFO0pjgs6fWazrAXcDVwFTgY6qas8EGmNMeTixK1z2NvzxKyx+CZa/DSvegZPPcvrNnHyWTTppqqxCbyeJyDjgB+Ag0F5VR1sCY4wxQVCvFZw/1hk87+xRsHMtTPsrvNTL6Udjg+eZKqioPjH34IzQ+zDwu4gccJeDInKgpBcVkXoiMldENrg/6xZQroWIfCEi60RkrYjElPSaxhhTKVSvB33ugTtXupNOKnx8CzzX3pmryQbPM1VIoUmMqnpUtZqq1lTVWj5LTVWtVYrrPgB8paqnAl+5r/PzFjBOVdsAXYFdpbimMcZUHlmTTt7yHVz9ITRuC189Bs+2g88fgH2bgx2hMQHn72B3ZW0QTv8a3J+DcxcQkbZAmKrOBVDVQ6p6pNwiNMaYUCACp5wNQz5yBs9rmwg/vAYvxMF718G2H4MdoTEBIxqEGVVFZL+q1nHXBdiX9dqnzGDgRiAVaAV8CTygqhn5nG8YMAygYcOGnWbOnBnI8EPSoUOHiI62cSZ8WZ3kZXWSVyjWSWTKHk7Y9h+a/f5fwjKOsL/2Gfx24mD21u8EUvr/u4ZinQSa1UleZVknCQkJy1S1c+7tAUtiRORLoEk+ux4CpvomLSKyT1Vz9IsRkUuAN4AOwBZgBjBbVd8o7LqtW7fW9evXlzL6yicpKYn4+Phgh1GhWJ3kZXWSV0jXScoB+PEt56mmA1uhwWnOE02xl0F4VIlPG9J1EiBWJ3mVZZ2ISL5JTMBuJ6lqf1U9I5/lE2CniDR1A2tK/n1dtgLJqvqLqqYDHwMdAxWvMcZUOlG1nDFl7kiGv77u9KP5dITTCXjeODjyR7AjNKZUgtUnZhYw1F0fCnyST5kfgDoi0tB9fRawthxiM8aYysUbDrGXwt/nwzWfQNNY+PoJZyTg2fc6Y9AYE4KClcSMAc4RkQ1Af/c1ItJZRF4HcPu+jAS+EpFVgACvBSleY4wJfSJwUjxc/YHzVFPWDNoTOsLMobB1WbAjNKZY/JrFuqyp6l7g7Hy2L8XpzJv1ei4QW46hGWNM1dC4nTOD9lkPw/evOMnM2o+hRU/oeTucdi54gvX/XGP8Y59QY4ypymo1g3MehbvXwIB/wZ+/wbtXwKRuTqfg9GPBjtCYAlkSY4wxBiJrQo9bYcTy452AZ91uIwGbCs2SGGOMMcf5dgIe8rFz2ylrJOA5/4D9vwU7QmOyBaVPjDHGmApOBE5OcJYdq+C7CbDkVfj+Fdo07A2n14cm7YMdpanirCXGGGNM4Zq0h7++CnesgO63UH/v9/Byb3hrMGz8GoIw8rsxYC0xxhhj/FW7OQz4J4s9Pegd9T/4/mV4+yInyek5wnlk2xse7ChNFWItMcYYY4olPTwa+twNd66CxImQngof3gQvdIBFk+DYoWCHaKoIS2KMMcaUTFgkdBwCty6GK2ZAnRbw33/A+Lbw5aOQejjYEZpKzpIYY4wxpePxQOtz4brZcONXzqjAqz8Ab0SwIzOVnPWJMcYYU3aad4a/vQWpR6x/jAk4a4kxxhhT9iKqBzsCUwVYEmOMMcaYkGRJjDHGGGNCkiUxxhhjjAlJopVspEUROQisD3YcFVADYE+wg6hgrE7ysjrJy+okL6uTvKxO8irLOmmpqg1zb6yMTyetV9XOwQ6iohGRpVYvOVmd5GV1kpfVSV5WJ3lZneRVHnVit5OMMcYYE5IsiTHGGGNMSKqMScyrwQ6ggrJ6ycvqJC+rk7ysTvKyOsnL6iSvgNdJpevYa4wxxpiqoTK2xBhjjDGmCrAkxhhjjDEhKaSSGBE5V0TWi8jPIvJAPvsjRWSGu/97EYnx2fcPd/t6ERlQroEHUEnrRERiROSoiCS7y8vlHnyA+FEnfUXkRxFJF5FLcu0bKiIb3GVo+UUdWKWskwyfz8ms8os6sPyok7tFZK2IrBSRr0Skpc++Svk5gVLXS1X9rNwsIqvc971ARNr67Kuq3z351kmZf/eoakgsgBfYCJwERAArgLa5ytwKvOyuXw7McNfbuuUjgVbuebzBfk9BrpMYYHWw30OQ6iQGiAXeAi7x2V4P+MX9Wdddrxvs9xTMOnH3HQr2ewhSnSQA1d31W3z+dirl56S09VLFPyu1fNYTgTnuelX+7imoTsr0uyeUWmK6Aj+r6i+qmgq8CwzKVWYQMNVdfx84W0TE3f6uqh5T1V+Bn93zhbrS1EllVWSdqOomVV0JZOY6dgAwV1X/UNV9wFzg3PIIOsBKUyeVlT918o2qHnFfLgaau+uV9XMCpauXysqfOjng87IGkPXETJX97imkTspUKCUxJwC/+bze6m7Lt4yqpgN/AvX9PDYUlaZOAFqJyHIR+VZE+gQ62HJSmt91Vf6cFCZKRJaKyGIRGVymkQVPcevkBuDzEh4bSkpTL1CFPysicpuIbATGAiOKc2wIKk2dQBl+91TGaQeMf7YDLVR1r4h0Aj4WkXa5smdjwJmzZJuInAR8LSKrVHVjsIMqLyJyNdAZ6BfsWCqSAuqlyn5WVPVF4EURuRJ4GKhUfaVKooA6KdPvnlBqidkGnOjzurm7Ld8yIhIG1Ab2+nlsKCpxnbjNm3sBVHUZzv3N0wIeceCV5nddlT8nBVLVbe7PX4AkoENZBhckftWJiPQHHgISVfVYcY4NUaWplyr9WfHxLjC4hMeGihLXSZl/9wS7g1AxOhKF4XSga8XxjkTtcpW5jZydWGe66+3I2bnqFypH56rS1EnDrDrA6Zy1DagX7PdUHnXiU3YKeTv2/orTWbOuu17V66QuEOmuNwA2kKsDXygufv7tdMD5B/bUXNsr5eekDOqlKn9WTvVZHwgsdder8ndPQXVSpt89Qa+MYlbc+cD/3D+gh9xtj+H8bwAgCngPp/PUEuAkn2Mfco9bD5wX7PcS7DoBLgbWAMnAj8DAYL+XcqyTLjj3cA/jtNSt8Tn2ereufgauC/Z7CXadAD2BVe4/UquAG4L9XsqxTr4Edrp/I8nArMr+OSlNvVTxz8rzPv+efoPPF3oV/u7Jt07K+rvHph0wxhhjTEgKpT4xxhhjjDHZLIkxxhhjTEiyJMYYY4wxIcmSGGOMMcaEJEtijDHGGBOSLIkxxpQLEanvM3PtDhHZ5q4fEpFJAbrmnSJyTSH7LxSRxwJxbWNM4Nkj1saYcicio3FmPH46gNcIwxmHoqM684blV0bcMr30+KSGxpgQYS0xxpigEpF4EfmPuz5aRKaKyHwR2SwifxWRsSKySkTmiEi4W66TO3ncMhH5r4g0zefUZwE/ZiUwIjJCRNaKyEoReRdAnf/FJQEXlsubNcaUKUtijDEVzck4CUgiMA34RlXbA0eBC9xEZgLO9AidgDeBf+Zznl7AMp/XDwAdVDUWuNln+1KgsszibkyVYrNYG2Mqms9VNU1EVgFeYI67fRUQA7QGzgDmOneD8OLMjJtbU2Cdz+uVwHQR+Rj42Gf7LqBZ2YVvjCkvlsQYYyqaYwCqmikiaXq8414mzr9ZgjO3U48iznMUZ+6wLBcAfXEmo3tIRNq7t5qi3LLGmBBjt5OMMaFmPdBQRHoAiEi4iLTLp9w64BS3jAc4UVW/Ae4HagPRbrnTgNUBj9oYU+YsiTHGhBRVTQUuAZ4SkRU4s+H2zKfo5zgtL+Dccprm3qJaDrygqvvdfQnAZ4GM2RgTGPaItTGm0hKRj4D7VHVDAfsbA++o6tnlG5kxpixYEmOMqbREpDXQWFXnFbC/C5CmqsnlGpgxpkxYEmOMMcaYkGR9YowxxhgTkiyJMcYYY0xIsiTGGGOMMSHJkhhjjDHGhCRLYowxxhgTkiyJMcYYY0xIsiTGGGOMMSHJkhhjjDHGhCRLYowxxhgTkiyJMcYYY0xIsiTGGGOMMSHJkhhjjDHGhCRLYowxxhgTkiyJMcYYY0xIsiTGGGOMMSHJkhhjjDHGhCRLYowxxhgTkiyJMaYSEpGrROQLn9cqIqcEM6ZgE5EkEbkx2HEYY8qOJTHGVFAisklEjorIIRHZISJTRCTan2NVdbqq/sXP6ySJSIp7nT9FZJ6ItC9mnP19Xse4SVOYv+coKyLyoIj86r6XrSIyo7xjyI+IXCsiGW5cWcvEYMdlTKizJMaYim2gqkYDcUAH4B8Bus5w9zr1gCTg7QBdJ2BEZCgwBOjvvpfOwFdBiKOg5G2Rqkb7LMOLeV4REfs32xgf9gdhTAhQ1R3Af3GSGQBE5AER2SgiB0VkrYhc5LPvWhFZUILrZADvAm19zjVFRJ7weR0vIlvd9beBFsCnbuvCfcA8t+h+d1sPEfGIyMMisllEdonIWyJS2z1HVsvNUBHZIiJ7ROQhn+t1FZGlInJARHaKyLMFhN8F+K+qbsyqM1V9NVeZliKy0K2zL0Skgc91uovIdyKyX0RWiEi8z77rRGSde9wvIvL33PUhIveLyA5gsr/17R7fU0R+cFvBfhCRnj77kkTknyKyEDgCnCQi7URkroj84dbHg25Zj89nYq+IzBSResWJxZhQY0mMMSFARJoD5wE/+2zeCPQBagOPAtNEpGkprxMBXAUs9qe8qg4BtuC2GKnqWKCvu7uOu20RcK27JAAnAdFA7tspvYHWwNnAKBFp425/HnheVWsBJwMzCwhnMXCNiNwrIp1FxJtPmSuB64BGQAQw0n3fJwCfAU/gtEaNBD4QkYbucbuAC4Fa7vHjRaSjz3mbuMe1BIYVEF8ebpLxGfACUB94FvhMROr7FBvinrMmsBP4EpgDNANO4Xhr0+3AYKCfu28f8KK/sRgTiiyJMaZi+1hEDgK/4XyRPpK1Q1XfU9XfVTVTVWcAG4CuJbzOCyKyHzgIDMdJisrSVcCzqvqLqh7CuS12ea5bL4+q6lFVXQGsAM50t6cBp4hIA1U9pKr5JliqOg3ni3wA8C2wS0Tuz1Vssqr+T1WP4iRDce72q4HZqjrbrc+5wFLgfPfcn6nqRnV8C3yBk0BmyQQeUdVj7rnz091t5claugMXABtU9W1VTVfVfwM/AQN9jpuiqmtUNR0nkdqhqs+oaoqqHlTV791yNwMPqepWVT0GjAYuCUbfJGPKiyUxxlRsg1W1JhAPnA743v64RkSSs74UgTN89xfTCFWtA1TD+aJ8X0RiSxN4Ls2AzT6vNwNhQGOfbTt81o/gtNYA3ACcBvzk3m65sKCLuB2a+wN1cL7UHxeRAX5coyVwqW+SgdMy1BRARM4TkcXuLZz9OMmNb13vVtWUguJyLVbVOj7LYvLWC+7rE3xe/+azfiJOC1x+WgIf+cS/DsggZx0bU6lYEmNMCHD/9z8FeBpARFoCr+G0mtR3E5DVgJTyOpmqOh/ntlXW002Hgeo+xZrkPqyI1wC/43zJZmkBpOPcHikqpg2qegXOLaCncBKsGkUck6aq7wErcZK7ovwGvJ0ryaihqmNEJBL4AKfuG7t1PZucdZ3fe/ZH7noBp262FXDu33BuxxX0Hs7L9R6iVHVbAeWNCXmWxBgTOp4DzhGRM4EaOF9uu8HpeIp/X9ZFEpEeOB1717ibkoHzRaSeiDQB7sx1yE5yfrHuxrm94rvt38BdItJKnMfEnwRmuLdIiornahFpqKqZwH53c2Y+5a4VkQtEpKbbyfU8oB3wfe6y+ZgGDBSRASLiFZEot8Nuc5y+M5Hu+0p3z+vX4+t+mA2cJiJXikiYiFyGU/f/KaD8f4CmInKniES677Wbu+9l4J9ugouINBSRQWUUpzEVkiUxxoQIVd0NvAWMUtW1wDPAIpwkoj2wsBSnnyju+CU4j1c/rKqfu/vexumjsgmnL0jusVf+BTzs3sYYqapHgH8CC336frzpnmce8CuQgtN/xR/nAmvc2J4HLi+g38kB4EGcjsb7gbHALapa5FNaqvobMMg9fjdOq8a9gEdVDwIjcPrQ7MPpHDzLz9iLuu5enNt39wB7gfuAC1V1TwHlDwLn4PSZ2YHTDyrB3f28G9cXbj+qxUC3/M5jTGUhqiVtBTXGGGOMCR5riTHGGGNMSLIkxhhjjDEhyZIYY4wxxoQkS2KMMcYYE5Iq3UiOderU0VNOOSXYYVQ4hw8fpkaNQofWqHKsTvKyOsnL6iQvq5O8rE7yKss6WbZs2R5VbZh7e6VLYho3bszSpUuDHUaFk5SURHx8fLDDqFCsTvKyOsnL6iQvq5O8rE7yKss6EZHcI1sDQb6dJCLnish6EflZRB7IZ3+kiMxw938vIjFBCNMYY4wxFVDQkhh3htkXcWbmbQtcISJtcxW7AdinqqcA43GGHDfGGGOMCWpLTFfgZ3dW21TgXZwRM30NAqa66+8DZ4tIqeaGMcYYY0zlELQRe0XkEuBcVb3RfT0E6Kaqw33KrHbLbHVfb3TL7Ml1rmHAMIBajZp3umXMmyWOq7KOX5x67BgRkZF+lVXfWlCnTjT3egAVJ0v1CnhEnJ8e57VXwOtxtoW528I8QrgHvB4I90C4R0hNOULt6OqEe4Rwr7PdU8Vz5EOHDhEdHV10wSrE6iSv8qwTEaFGjRp4vd5yuV5JqSr2f+ycSlInGRkZHD58mNy5SUJCwjJV7Zy7fKXo2KuqrwKvAkQ2PVXfXZ8a5IgqIgGsXnISIOcUPBFeD5FhHiLDPUSGeYny+RkV7iUq3EtkWNZ61j6f/WEeqkVklXO2Vwv3Zh9bLes4dz3cKxXqHz7rnJiX1Ule5Vknv/76KzVr1qR+/foV6m8lt4MHD1KzZs1gh1GhFLdOVJW9e/dy8OBBWrVq5dcxwUxitgEn+rxuTs7p533LbBWRMKA2ziRpBWpR08OPo0s3wWxF/kMpqfnz59OnT59Cy/i+a98qECT7tcjx1/7WUnFaborTMKgomZmQnplJRqaSnqmkZyjpmZmkZyhpGZmkuT9TMzJJS8/kWEYmx9Kc1ytXr6HVKadxLC2TY+mZpKRlkJrh/ExJy+RYegbH0pzXWfsPpKSRkuZTxt2XmpFnUmW/eIQcSY5vspQ74YkK9xAV5s1OkqLybMt9rM9xbvJVGT/bpnJLSUkhJibGPrtVgIhQv359du/e7fcxwUxifgBOFZFWOMnK5Tizw/qaBQzFman3EuBrLeL+l0egZlR4AMINbdXChOjIStHwlo+SNTPX2vc/4ru1LJMIMjKVY+kZHE3NICU9K8nJyE52UtIyOOqz7rvvqLt+NO140pSSnsGR1HT+OOxTPj3TPX9GsZI9X1kJTe7EKev1gX0pzNqZTKRP8uObCEWFeYksoFUqe5/7M8LrIcxr42ma0rMEpuoo7u86aN9qqpouIsOB/+J8C72pqmtE5DFgqarOAt4A3haRn4E/cBIdYyocr0eoHhFG9YjA/0mpKsfSnRallOzEyU2Istbdn0dTjydJx9KOJ1j5JVsHU9LZeyiTHZv+yJFspWeWvBeURyAizEloIsO92bfrIrIWryc74XG2ebPXI8N8ynp9jglzbuNlH1/o+TxEer3Z616PfRkaU5kE9b/mqjobmJ1r2yif9RTg0vKOy5iKTESyW0JqU7atjvn1dUjPyMyR/GTdWjuWfrxl6fi24z9Ts5YM57ZbakZmnu2p6ZmkpGVy4Gh6jm3H0p3beVnbyur5gzCP5Eh4cidFkV5Pnv17dx/jv3+sJNzryV4ivEJY9mvnnGGevOvhYR7Cc6+HiXOc77p7nqzjrOWh4ti0aRMXXnghq1evzt42evRooqOjGTlyZLnFER8fz/bt24mKiiIiIoLXXnuNuLi4Qo/p2bMn3333Xb7vAZz31qZNG1q3bo2qUqNGDSZPnkzr1q0LPe+TTz7Jgw8+CMD+/ft55513uPXWW0v1/kqqst5fMMaUkTCvh2ivJ2i3I1Wd/k5ZyU92IpSRX7J0PBFKdftApfomRLkSqOMJU9Y25zbe/qPOudIyMjl4OIP/Hdzl9LFKzyTNjSWQwjxCmPd4ghPmkeOJTo6kx6eMmwRFhDk/w7xCeNZP9xxhPsmSs/144hTmc50wn+1ej+/xzvbNBzJYv+NgjmtknT973eMkgab4VBVVxePJWX/Tp0+nc+fOTJ48mXvvvZe5c+cWep7vvvuuyGudfPLJJCcnA/DKK6/w5JNPMnXq1EKPyZ3ETJo0yZIYY4zJj4jzZRvu9VDDv1ECylR+rVNZiVV6hpKakUm6TyfytGKup7stVM75fLZnHi/rdFTP2u57rPPzSGp6dqLnex7fTu5Z8aZlllHL1nfzCt0dEebhf0+cVwYXqtji4+M588wz+eabb8jMzOTNN9+ka9eujB49mo0bN/Lzzz+zZ88e7rvvPm666SYAxo0bx8yZMzl27BgXXXQRjz76KJs2bWLAgAF069aNZcuWMXv2bFq2zL/PXo8ePRg3bhzgPO4+aNAg9u3bR1paGk888QSDBjlDrkVHR3Po0CG/38uBAweoW7cuAFOmTGHp0qVMnDgRgAsvvJCRI0cyZ84cjh49SlxcHO3atSMjI4ONGzcSFxfHOeecw9ixY7nvvvv4/PPPUVVGjRrFZZddRlJSEqNHj6ZBgwasXr2aTp06MW3atFK3OloSY4wxxXQ8sYJqJexYHkwZmb6JTc6EJzUj8/j+DM0uk555fD155SpOb9MuO6HKcH/6lguERz9dw9rfD5TpOds2q8UjA9uV6hxHjhxh4cKFLF++nOuvvz77ts3KlStZvHgxhw8fpkOHDlxwwQWsXr2aDRs2sGTJElSVxMRE5s2bR4sWLdiwYQNTp06le/fuhV5vzpw5DB48GICoqCg++ugjatWqxZ49e+jevTuJiYl+JwdZCcjBgwc5cuQI33//faHlx4wZw8SJE7NbbzZt2sTq1auzX3/wwQckJyezYsUKNm3aREJCAn379gVg+fLlrFmzhmbNmtGrVy8WLlxI7969/YqzIJbEGGNMFeP1CF5PyZMv7851xMc2LcOIKq6CkgHf7VdccQUAffv25cCBA+zfvx+AQYMGUa1aNapVq0ZCQgJLlixhwYIFfPHFF3To0AFwWlI2bNhAixYtaNmyZaEJzFVXXUVqaiqHDh3KThpUlQcffJB58+bh8XjYtm0bO3fupEmTJn69P9/bSTNmzGDYsGHMmTPHr2Pzs2DBAq644gq8Xi+NGjWiX79+/PDDD9SqVYuuXbvSvHlzAOLi4ti0aZMlMcYYY6qG0raYlET9+vXZt29fjm1//PFHjsHYcic6Wa/z266q/OMf/+Dvf/97jn2bNm2iRo0ahcYyffp0OnXqxL333svtt9/Ohx9+yPTp09m9ezfLli0jPDycmJgYUlJSiv0+ARITE7nuuusACAsLIzPzeN+vkp7TV6TPqPFer5f09PRSn9N6XRljjDEFiI6OpmnTpnz99deAk8DMmTMnRwvCjBkzAKcVonbt2tSuXRuATz75hJSUFPbu3UtSUhJdunRhwIABvPnmm9l9VbZt28auXbv8jkdEePzxx1m8eDE//fQTf/75J40aNSI8PJxvvvmGzZs3l/i9LliwgJNPPhmAmJgYkpOTyczM5LfffmPJkiXZ5cLDw0lLSwOgZs2aHDx4MHtfnz59mDFjBhkZGezZs4d58+bRtWvXEsdUlErXEiMopBWRMVbBxxclMw3SjxVcQH1mRdJMyEyHzAzISIP0FOfY9BRIOwKphyD1iFPO4wXxgHjddfFZ9+Ra9xSx3ZvPuqeA7d4q+Xs0xpS/t956i9tuu427774bgEceeST7yx6cfim9e/cmIyODN988PndfbGwsCQkJ7Nmzh//7v/+jWbNmNGvWjHXr1tGjRw/ASZKmTZtWrLmhqlWrxj333MO4ceN46qmnGDhwIO3bt6dz586cfvrpxXpvWX1iVJWIiAhef/11AHr16kWrVq1o27Ytbdq0oWPHjtnHDBs2jNjYWDp27Mj06dPp1asXZ5xxBueddx5jx45l0aJFnHnmmagqY8eOpUmTJvz000/FistfQZsAMlA6N/Pq0mE2WVuVIB6odxI0PgOatIcmsc7Pmk38SnBsTpy8rE7ysjrJqzzrZN26dbRp06ZcrlUS8fHxPP3007Ru3TrHPEHBGEumoinpfFL5/c5FpPJOAOnrWGR9OPuBQkpUrqTNX7/88isnnVTUhFrifvkLeMPBE+a0eIRVg7BIZwmvDhE1nJ+eMNAMp8VGM5zWnOz1zFzrmXm3Z7rHZK9n5lrPzGe7z3UyjsGeDfD7clj78fG3Uas5xPR2llZ9oE5La7UxxphKqNIlMakRdaHP3cEOo8LZkpHESX3igx1G4KT8CTvXwPaVsGUR/PwlrHzX2VfvJDj9Ajh9IDTv4tyiMsaYMpCUlASQo18IOC0xJvAqXRJjqqio2tCyp7N0v9lprdn9E/w6H/43Bxa/DN9NgBqNoM1AiL2seFNmG2OMqXAsiTGVkwg0auMs3YY5LTUb5sJP/4Hkd2DpG3SLagJyHcRdBXVODHbExhhjismSGFM1RNWG9pc4y7GDsO5TUpImUS3pX5A0Bk7pDx2vgdbnOf2BjDHGVHiWxJiqJ7ImxF3Jiv3NiD8zBpZPh+XTYOYQiG4CnYY6CU3t5sGO1BhjTCGsh6Op2urGwFkPwZ2r4Ip3oWksfDsWnmsPM4bApoXWd8aYKi46OrjDdmzatIlq1aoRFxdH27Ztueaaa7IHmyvIrFmzGDNmDOB0Mn766afzlBk9ejQnnHACcXFxnH766dxyyy05RunNT3JyMrNnz85+nZSU5Nds2YFiSYwxAN4w51bSVe/BHSug5+2waT5MOR9e7g3LpjoD/BljTIDlNxx/1hxHq1atYuvWrcycObPQcyQmJvLAA4UNN+K46667SE5OZu3ataxatYpvv/220PKWxBhT0dVtCec8BnethcQJzrZPR8D4tjB3FPy5NbjxGWOCLjk5me7duxMbG8tFF13Evn372LVrF506dQJgxYoViAhbtmwBnCTkyJEj7N69m4svvpguXbrQpUsXFi5cCDitIkOGDKFXr14MGTKkwOt6vV66du3Ktm3bAPj000/p1q0bHTp0oH///uzcuROAKVOmMHz4cL/fT2pqKikpKdStWxdwBvFbunQpAHv27CEmJobU1FRGjRrFjBkziIuL46mnnuLll19m/PjxxMXFMX/+fDZt2sRZZ51FbGwsAwcOzH7/1157LSNGjKBnz56cdNJJvP/++8Wp7gJZnxhjChJR3ekb02EIbF4I37/iPKa96EVodxH0GA7N4oIdpTFVx+cPwI5VZXvOJu3hvDHFPuyaa65hwoQJ9OvXj1GjRjFmzBgmTZpESkoKBw4cYP78+XTu3Jn58+fTu3dvGjVqRPXq1bnxxhu566676N27N1u2bGHAgAGsW7cOgLVr17JgwQKqVatW4HVTUlL4/vvvef755wHo3bs3ixcvRkR4/fXXGTt2LM8884zf72P8+PFMmzaNzZs3c9555xEXF1dg2YiICB577DGWLl3KxIkTATh69GiOkYkHDhzI0KFDGTp0KJMmTWLEiBF8/PHHAGzfvp0FCxbw008/kZiYyCWXXOJ3nAXxK4kRkc5AH6AZcBRYDcxV1X2FHljw+eoBM4AYYBPwt9znEpE44CWgFpAB/FNVZ5TkesaUisjxEYD3bXaSmR+nwqr3IKYP9LgNTh1gg+gZU0X8+eef7N+/n379+gEwdOhQLr74YgB69uzJwoULmTdvHg8++CBz5sxBVenTpw8AX375JWvXrs0+14EDB7Ing0xMTCwwgcma4+jXX3/lggsuIDY2FoCtW7dy2WWXsX37dlJTU3PMru2Pu+66i5EjR5KWlsYll1zCu+++y+WXX168CvGxaNEiPvzwQwAuv/xyRo0alb1v8ODBeDwe2rZtm91iVFqFJjEich1wO/ArsAxYD0QBvYH7RWQ18H+quqWY130A+EpVx4jIA+7r+3OVOQJco6obRKQZsExE/quq+4t5LWPKTt2WcO6TEH+/00/m+5fh35dD/VOh53CIvRzCo4IdpTGVUwlaTMpb3759mT9/Pps3b2bQoEE89dRTiAgXXHABAJmZmSxevJioqLz/TtSoUaPA82b1idmzZw+9evVi1qxZJCYmcvvtt3P33XeTmJhIUlJSiUcKDg8P59xzz2XevHlcfvnlhIWFZXfyTUkpYlJlP0VGRmavl9W8jUX917E60EtVL1bVJ1X1dVWdqKojVLUTMB44tQTXHQRMddenAoNzF1DV/6nqBnf9d2AX0LAE1zKm7EXVhl4jnE7AF7/h3Hr69A54PhYWjHcG1zPGVEq1a9embt26zJ8/H4C3336bXr16AdCnTx+mTZvGqaeeisfjoV69esyePZvevXsD8Je//IUJEyZknys5OblY127QoAFjxozhX//6F+C0Cp1wwgkATJ06tbBDC6WqLFy4MHt27piYGJYtWwaQo/9KzZo1c0yxkPt1z549efddZ8qXmTNnZrdABUqhSYyqvqiqRwvZn6yqX5Xguo1Vdbu7vgNoXFhhEekKRAAbS3AtYwLHG+4MoDfsWxjyMTRqC1+OhvFnOJ2AD+4IdoTGmFI6cuQIzZs3z16effZZpk6dyr333ktsbCzJycncf79zMyEmJgZVpW/fvoDTZ6VOnTrZHWZfeOEFli5dSmxsLG3btuXll18udjyDBw/myJEjzJ8/n9GjR3PppZfSqVMnGjRoUOxzZXXKPeOMM8jIyODWW28FYOTIkbz00kt06NCBPXv2ZJdPSEhg7dq1xMXFMWPGDAYOHMhHH32U3bF3woQJTJ48mdjYWN59993svjuBIoU16YjIqAJ3gqrq44Uc+yXQJJ9dDwFTVbWOT9l9qlq3gPM0BZKAoaq6uIAyw4BhAA0bNuxU1KNnVdGhQ4eCPtZBRROoOok+uJEWWz6k4e7vUPGwo8lZbGlxMSnV8vtzqFjsc5KX1Ule5VkntWvX5pRTTimXa5VGRkYGXq832GFUKCWtk59//pk//8zZmp2QkLBMVTvnLltUEnNPPpurAzcC9VW1RJ9iEVkPxKvq9qwkRVVb51OuFk4C86Sq+vU8VuvWrXX9+vUlCatSS0pKIj4+PthhVCgBr5M/foHvJjqjAWemOy02ve+GRqcH7pqlZJ+TvKxO8irPOlm3bh1t2rQpl2uVxsGDB6lZs2aww6hQSlon+f3ORSTfJKao20nPZC3Aq0A14HrgXeCkYkd23CxgqLs+FPgkdwERiQA+At7yN4ExpkKpdxJc+CzcuRK63wLrPoVJ3Z2RgLevCHZ0xhgT8op8JlRE6onIE8BKnKeZOqrq/aq6qxTXHQOcIyIbgP7ua0Sks4i87pb5G9AXuFZEkt0lrhTXNCY4ajaBAf+EO1dD35HwSxK80hemXwpbvg92dMZUeGX1JIup+Ir7uy7qEetxwF9xWmHaq+qhkod2nKruBc7OZ/tSnFtVqOo0YFpZXM+YCqFGfTjrYWdKgyWvOYPmvfkXZ6yZviOhVT9nTBpjTLaoqCj27t1L/fr1Efv7qNRUlb179+b7+HlBihrs7h7gGPAw8JDPB0ic62mtkgRqTJUWVdtJWrrfAksnO6MAvzUImneBvvfBqedYMmOMq3nz5mzdupXdu3cHO5RCpaSkFOvLtyooSZ1ERUXRvHlzv8sXmsSoqg1BakygRNRwBsjrciMkT4MFz8M7l0KzjhD/D0tmjMEZhK24o9AGQ1JSEh06dAh2GBVKedRJoUmKiBT59JE/ZYwxhQiPchKZ25fBwBfg8B4nmXntLPjfF2D9AYwxJl9FtbR8IiLPiEhfEckeD1lEThKRG0Tkv8C5gQ3RmCoiLAI6Dc2bzLx+NmyYa8mMMcbkUtQj1mcDXwF/B9aIyJ8ishenw20TnAHo7PFnY8pSjmTmeTi0G6ZfYsmMMcbkUuQs1qo6G5hdDrEYY3yFRUCna+HMK2HFOzDvGSeZOaGT02fmlP7WZ8YYU6VZx11jKrqsZCZPy0x/2PiNtcwYY6osS2KMCRW+ycyFz8HB7fD2YJhyIWxeFOTgjDGm/FkSY0yoCYuAztfB7T/CuU/Bnv/B5HNh2sWw7cdgR2eMMeXG7yRGRHqLyHXuekMRqfgP7htTmYVHQfeb4Y5k6P8obFsGryXAu1fBzjXBjs4YYwLOryRGRB4B7gf+4W4Kx6YEMKZiiKgBve+EO1ZC/IPw6zx4qRe8fz3s2RDs6IwxJmD8bYm5CEgEDgOo6u+AzTluTEUSVQvi74c7VkDvu2D95/BiV/j4Vti3OdjRGWNMmfM3iUlVZ2pJBfAd+M4YU8FUrwf9H3GSmW43w6r3YUInmH0vHNwZ7OiMMabM+JvEzBSRV4A6InIT8CXwWuDCMsaUWnQjOPdfMGI5dLgKfngDXoiDLx+Fo/uDHZ0xxpSaX0mMqj4NvA98ALQGRqnqhEAGZowpI7VPcMaXGf4DtD4fFjwLz8fCgvGQeiTY0RljTIn527G3FTBfVe9V1ZHAAhGJCWhkxpiyVf9kuOQNuHkBnNgdvhwNL3SApW9CRlqwozPGmGLz93bSe0Cmz+sMd5sxJtQ0aQ9XzYTrPoe6MfCfu5wOwKs/AM0s8nBjjKko/E1iwlQ1NeuFux4RmJCMMeWiZU+4fg5cORPCqsH719Np2Uj4+SubysAYExL8TWJ2i0hi1gsRGQTsCUxIxphyIwKnDYCb58NFrxKWfhCm/RWmDoStS4MdnTHGFMrfJOZm4EER2SIiW3AGvhtW0ouKSD0RmSsiG9yfdQspW0tEtorIxJJezxhTBI8XzryMJV0nwXnjYPdP8PrZzui/u9YFOzpjjMlXkUmMiHiBW1S1O9AWaKuqPVV1Yymu+wDwlaqeCnzlvi7I48C8UlzLGOMn9YRDt2EwIhkSHnZG/53UAz662QbMM8ZUOEUmMaqaAfR21w+p6qEyuO4gYKq7PhUYnF8hEekENAa+KINrGmP8FRkN/e51BszrORzWfGQD5hljKhx/byctF5FZIjJERP6atZTiuo1Vdbu7vgMnUclBRDzAM8DIUlzHGFMa1evBX57IOWDe82fC3EfgyB/Bjs4YU8WJ+vEUgohMzmezqur1hRzzJdAkn10PAVNVtY5P2X2qmqNfjIgMB6qr6lgRuRborKrDC7jWMNw+Og0bNuw0c+bMIt5R1XPo0CGio6ODHUaFYnWSV1F1Uu3IdmI2vUOjXfPJ8FbjtxMvYmvzC8kIq16OUZYv+5zkZXWSl9VJXmVZJwkJCctUtXPu7X4lMWVNRNYD8aq6XUSaAkmq2jpXmelAH5zxaaJxHumepKqF9Z+hdevWun79+gBFHrqSkpKIj48PdhgVitVJXn7Xyc418M2T8NN/oHp9Z8LJLjdCeLWAx1je7HOSl9VJXlYneZVlnYhIvkmMvyP2NheRj0Rkl7t8ICLNSxHPLGCouz4U+CR3AVW9SlVbqGoMzi2lt4pKYIwx5aRxO7h8Otz4NTQ9E754GJ6PgyWvQfqxYEdnjKki/O0TMxkn8WjmLp+620pqDHCOiGwA+ruvEZHOIvJ6Kc5rjClPzTvBkI/g2tlQ7ySYPdLpALxsCqSnFnm4McaUhr9JTENVnayq6e4yBWhY0ouq6l5VPVtVT1XV/qr6h7t9qaremE/5KQX1hzHGVAAxveC62U5CE90IPr3DmTF78cs2yaQxJmD8TWL2isjVIuJ1l6uBvYEMzBgTYkTg5LPgxq/g6g+gTkuYcz881x7mPwMpfwY7QmNMJeNvEnM98Decx6G3A5cA1wUqKGNMCBOBU/rD9Z87k0w2i4OvHoPx7eGrx+Gw/f/HGFM2wgrbKSLdVXWxqm4GEgsra4wxebTs6Sy/L4f5zzotMosnQadroeftUKtZsCM0xoSwolpiJmWtiMiiAMdijKmsmnWAy96G276HtoPg+1ecQfM+vQP++CXY0RljQlRRSYz4rEcFMhBjTBXQsDVc9DKM+BE6DIHkfztPM31wk000aYwptqKSGI+I1BWR+j7r9bKW8gjQGFMJ1Y2BC5+FO1dCj9vgp89gUndn1uxty4IdnTEmRBTaJwaoDSzjeIvMjz77FDgpEEEZY6qImk2cuZl63+3cYvr+ZWcU4JMSoO9IaNnL6ShsjDH5KDSJcUfLNcaYwKpeDxL+4cyY/cMbsOhFmHIBnNgd+twDp55jyYwxJg9/H7E2xpjAi6wJve90bjOd/zQc2AbvXAqv9IE1H0FmRrAjNMZUIJbEGGMqnvBq0PUmGLEcBk2CtKPw3rXwYjdYPh0y0oIdoTGmArAkxhhTcXnDocNVcNsSuHQKhEXBJ7fCCx2dySbTjgY7QmNMEBWZxLjTDPxUHsEYY0y+PF5odxHcPB+ufA9qNXUmm3wuFhY+D8cOBjtCY0wQFJnEqGoGsF5EWpRDPMYYUzAROO0vcP1/Yeh/oHE7mDsKxp8B3/wLjvwR7AiNMeWoqEess9QF1ojIEuBw1kZVtakIjDHlTwRa9XGWrctgwbPw7Rj4bgJ0uR56DHce3zbGVGr+JjH/F9AojDGmpJp3gsunw861sGC883j2969Ch6uh1x1Qt2WwIzTGBIhfSYyqfhvoQIwxplQat4WLX3PGm1nwHPz4FiybArF/cwbTa3hasCM0xpQxv55OEpHuIvKDiBwSkVQRyRCRA4EOzhhjiq3eSZD4AtyxArr9HdZ8DC92hRlDYPuKYEdnjClD/j5iPRG4AtgAVANuBF4MVFDGGFNqtU+Ac/8Fd612Rv395Vt4pS9MuwQ2Lwp2dMaYMuD3ODGq+jPgVdUMVZ0MnBu4sIwxpozUaABn/x/ctQrOHgW/L4fJ58Lk8+Hnr0A12BEaY0rI3yTmiIhEAMkiMlZE7irGsXm4s2DPFZEN7s+6BZRrISJfiMg6EVkrIjElvaYxpoqLqu20yNy5Cs59CvZtgml/hdcSYN2nkJkZ7AiNMcXkbyIyxC07HOcR6xOBi0tx3QeAr1T1VOAr93V+3gLGqWoboCuwqxTXNMYYiKgO3W+GEckw8AU4uh9mXA0v9YAVMyAjPdgRGmP85FcSo6qbAQGaquqjqnq3e3uppAYBU931qcDg3AVEpC0Qpqpz3RgOqeqRUlzTGGOOC4uATkNh+FK4+A0QD3w0DCZ0hKVvQvqxYEdojCmCv08nDQSSgTnu6zgRmVWK6zZW1e3u+g6gcT5lTgP2i8iHIrJcRMaJiLcU1zTGmLy8YdD+Erh5IVz+b6cPzX/ugufPhIUvEJZ2KNgRGmMKIOpHpzYRWQacBSSpagd32ypVbV/IMV8C+Q2Z+RAwVVXr+JTdp6o5+sWIyCXAG0AHYAswA5itqm/kc61hwDCAhg0bdpo5c2aR76mqOXToENHR0cEOo0KxOsnL6gRQpc7+lbTc/D51968k3RPFjqb92dr8QlKqNQ12dBWCfU7ysjrJqyzrJCEhYZmqds693d8Re9NU9U8R8d1WaPajqv0L2iciO0WkqapuF5Gm5N/XZSuQrKq/uMd8DHTHSWxyX+tV4FWA1q1ba3x8fOHvpgpKSkrC6iUnq5O8rE6yJAB3wPYV7Pl4FM23z6H5ts/g9AucKQ1adHemPqii7HOSl9VJXuVRJ/527F0jIlcCXhE5VUQmAN+V4rqzgKHu+lDgk3zK/ADUEZGG7uuzgLWluKYxxhRP0zP5qc1dcOdq6HM3bF7oPJ79WgKsfA8y0oIdoTFVmr9JzO1AO+AY8G/gAHBnKa47BjhHRDYA/d3XiEhnEXkdsmfPHgl8JSKrcDoWv1aKaxpjTMnUauqMMXPXWrjgGTh2ED68EZ6LdaY4OLo/2BEaUyX5O3fSEZy+LA+VxUVVdS9wdj7bl+KMBpz1ei4QWxbXNMaYUouoDl1uhE7Xw89znckmv3wEvh0LHYdAt5uhXqtgR2lMleFXEiMip+G0isT4HqOqZwUmLGOMqcA8HjhtgLPsWOUkMz+8AUtePd5v5sRuVbrfjDHlwd+Ove8BLwOvAxmBC8cYY0JMk/Zw0ctw9iPww2tOMrPuUzihM/S4DdokOo9xG2PKnL9/Wemq+lJAIzHGmFCW1W+mzz2Q/A4sngTvXwe1T3RuM3W8BqJqBTtKYyqVQjv2unMc1QM+FZFbRaRp1jZ3uzHGGF8RNaDrTTB8mTN4Xp0W8MVD8Gxb+O9DsH9LsCM0ptIoqiVmGc54MFk3du/12afASYEIyhhjQp7HA6ef7yzbfnRaZha/5CxtE51+M83zjN1ljCmGQpMYVbVu9sYYU1ondISLX4f+o+H7V2DZVFjzEZzY3ek3c/oF4LFZVYwprqJuJ3URkSY+r68RkU9E5AW7nWSMMcVUuzn85XG4ew2c+xQc3A4zh8ALHWDxy3DM5mkypjiKGuzuFSAVQET64gxK9xbwJ+4w/8YYY4opsiZ0vxlGLIe/vQXRjWHO/TC+LXw5Gg5sL/IUxpiikxivqv7hrl8GvKqqH6jq/wGnBDY0Y4yp5DxeaDsIbpwLN8yFVv1g4fPwXHv46GbYsTrYERpToRWZxIhIVr+Zs4GvffbZwAfGGFNWTuwKl70Nt/8Ina+HtZ/Ay73grcHw85eghc65a0yVVFQS82/gWxH5BDgKzAcQkVNwbikZY4wpS/Vawflj4a41zrgzu9bBtIvhpV6wfDqkHwt2hMZUGIUmMar6T+AeYArQWzX7vwIenEkhjTHGBEL1es7AeXeuhMHuWKOf3Orcapr3NBz5o/DjjakCirwlpKqL89n2v8CEY4wxJoewSIi7Es68AjZ+DYsmwtePw/xnoMPV0P0WqGdDdpmqyfq1GGNMKBCBU852lh2rnUknl06GJa9Bmwuh5winX40xVUhRfWKMMcZUNE3OgItegjtXQe+74Nf58MY58Po5sHYWZNo8vaZqsCTGGGNCVa2m0P8RpxPweePg0E5n8LyJneGH1yH1SLAjNCagLIkxxphQFxkN3YY5g+ddOhWq1YXP7oHx7eCbJ+HQ7mBHaExAWBJjjDGVhccL7QbDjV/BdXOgRXf49iknmfn0DtizIdgRGlOmrGOvMcZUNiLQsoez7NngPNGU/G9n4snW50PP250ERyTYkRpTKkFpiRGReiIyV0Q2uD/rFlBurIisEZF17qST9hdnjDHF0eBUGPi802+m332wZRFMPhde7w9rPrZOwCakBet20gPAV6p6KvCV+zoHEekJ9AJigTOALkC/8gzSGGMqjeiGkPCgk8xc8Awc2QvvDYUJHeH7VyH1cLAjNKbYgpXEDAKmuutTgcH5lFEgCogAIoFwYGd5BGeMMZVWRHXociPcvgz+9jbUaASf3+v0m/n6CTi0K9gRGuO3YCUxjVU1a675HUDj3AVUdRHwDbDdXf6rquvKL0RjjKnEPF5om+jMoH39F9CylzOdwfgzYNbtsNsGZjcVn2iAZkYVkS+BJvnsegiYqqp1fMruU9Uc/WLcSSafBy5zN80F7lPV+flcaxgwDKBhw4adZs6cWSbvoTI5dOgQ0dHRwQ6jQrE6ycvqJK+qVCfVjvxO862f0GTH13gzU9lTvytbWvyVA7Xb5ChXlerEX1YneZVlnSQkJCxT1c65twcsiSmMiKwH4lV1u4g0BZJUtXWuMvcCUar6uPt6FJCiqmMLO3fr1q11/fr1gQo9ZCUlJREfHx/sMCoUq5O8rE7yqpJ1cmg3/PCaM6XB0T+geVfoNcJ5ssnjrZp1UgSrk7zKsk5EJN8kJli3k2YBQ931ocAn+ZTZAvQTkTARCcfp1Gu3k4wxJtB8OwGf/zQc3gUzroaJXWDpm3gyjgU7QmOA4CUxY4BzRGQD0N99jYh0FpHX3TLvAxuBVcAKYIWqfhqMYI0xpkqKqA5db4Lbf4RLp0BULfjPXXRffBN8OxaO/BHsCE0VF5TB7lR1L3B2PtuXAje66xnA38s5NGOMMbl5vNDuImg7GDYt4OCnj1D/m3/CgvHQ4WrocRvUjQl2lKYKsmkHjDHG+EcEWvVhVewouHWxk9gsnQwvdID3roPflwc7QlPFWBJjjDGm+Bq1gcGT4M6VzjQGP38Jr8bDlAthw1wIwkMjpuqxJMYYY0zJ1WoG5zzmdAL+yxOwdyNMvwRe6gkpfwY7OlPJ2QSQxhhjSi+qltMi0/XvsPoDZ46mqNrBjspUcpbEGGOMKTthERB3hbMYE2B2O8kYY4wxIcmSGGOMMcaEJEtijDHGGBOSLIkxxhhjTEgKygSQgSQiBwGbATKvBsCeYAdRwVid5GV1kpfVSV5WJ3lZneRVlnXSUlUb5t5YGZ9OWp/fTJdVnYgstXrJyeokL6uTvKxO8rI6ycvqJK/yqBO7nWSMMcaYkGRJjDHGGGNCUmVMYl4NdgAVlNVLXlYneVmd5GV1kpfVSV5WJ3kFvE4qXcdeY4wxxlQNlbElxhhjjDFVQEglMSJyroisF5GfReSBfPZHisgMd//3IhLjs+8f7vb1IjKgXAMPoJLWiYjEiMhREUl2l5fLPfgA8aNO+orIjyKSLiKX5No3VEQ2uMvQ8os6sEpZJxk+n5NZ5Rd1YPlRJ3eLyFoRWSkiX4lIS599lfJzAqWul6r6WblZRFa573uBiLT12VdVv3vyrZMy/+5R1ZBYAC+wETgJiABWAG1zlbkVeNldvxyY4a63dctHAq3c83iD/Z6CXCcxwOpgv4cg1UkMEAu8BVzis70e8Iv7s667XjfY7ymYdeLuOxTs9xCkOkkAqrvrt/j87VTKz0lp66WKf1Zq+awnAnPc9ar83VNQnZTpd08otcR0BX5W1V9UNRV4FxiUq8wgYKq7/j5wtoiIu/1dVT2mqr8CP7vnC3WlqZPKqsg6UdVNqroSyMx17ABgrqr+oar7gLnAueURdICVpk4qK3/q5BtVPeK+XAw0d9cr6+cESlcvlZU/dXLA52UNIKuzaZX97imkTspUKCUxJwC/+bze6m7Lt4yqpgN/AvX9PDYUlaZOAFqJyHIR+VZE+gQ62HJSmt91Vf6cFCZKRJaKyGIRGVymkQVPcevkBuDzEh4bSkpTL1CFPysicpuIbATGAiOKc2wIKk2dQBl+91TGEXuNf7YDLVR1r4h0Aj4WkXa5smdjwBnue5uInAR8LSKrVHVjsIMqLyJyNdAZ6BfsWCqSAuqlyn5WVPVF4EURuRJ4GKhUfaVKooA6KdPvnlBqidkGnOjzurm7Ld8yIhIG1Ab2+nlsKCpxnbjNm3sBVHUZzv3N0wIeceCV5nddlT8nBVLVbe7PX4AkoENZBhckftWJiPQHHgISVfVYcY4NUaWplyr9WfHxLjC4hMeGihLXSZl/9wS7g1AxOhKF4XSga8XxjkTtcpW5jZydWGe66+3I2bnqFypH56rS1EnDrDrA6Zy1DagX7PdUHnXiU3YKeTv2/orTWbOuu17V66QuEOmuNwA2kKsDXygufv7tdMD5B/bUXNsr5eekDOqlKn9WTvVZHwgsdder8ndPQXVSpt89Qa+MYlbc+cD/3D+gh9xtj+H8bwAgCngPp/PUEuAkn2Mfco9bD5wX7PcS7DoBLgbWAMnAj8DAYL+XcqyTLjj3cA/jtNSt8Tn2ereufgauC/Z7CXadAD2BVe4/UquAG4L9XsqxTr4Edrp/I8nArMr+OSlNvVTxz8rzPv+efoPPF3oV/u7Jt07K+rvHRuw1xhhjTEgKpT4xxhhjjDHZLIkxxhhjTEiyJMYYY4wxIcmSGGOMMcaEJEtijDHGGBOSLIkxxhhjTEiyJMYYUy5EpL6IJLvLDhHZ5q4fEpFJAbrmnSJyTSH7LxSRxwJxbWNM4Nk4McaYcicio4FDqvp0AK8RhjOYVkd1Jj/Nr4y4ZXrp8ZmZjTEhwlpijDFBJSLxIvIfd320iEwVkfkisllE/ioiY0VklYjMEZFwt1wndwbcZSLyXxFpms+pzwJ+zEpgRGSEiKwVkZUi8i6AOv+LSwIuLJc3a4wpU5bEGGMqmpNxEpBEYBrwjaq2B44CF7iJzAScOZ46AW8C/8znPL2AZT6vHwA6qGoscLPP9qVAnzJ/F8aYgAsLdgDGGJPL56qaJiKrAC8wx92+CogBWgNnAHOdu0F4ge35nKcpsM7n9Upguoh8DHzss30X0KzswjfGlBdLYowxFc0xAFXNFJE0Pd5xLxPn3yzBmaCyRxHnOYozAWqWC4C+ODPqPiQi7d1bTVFuWWNMiLHbScaYULMeaCgiPQBEJFxE2uVTbh1wilvGA5yoqt8A9wO1gWi33GnA6oBHbYwpc5bEGGNCiqqmApcAT4nICiAZ6JlP0c9xWl7AueU0zb1FtRx4QVX3u/sSgM8CGbMxJjDsEWtjTKUlIh8B96nqhgL2NwbeUdWzyzcyY0xZsCTGGFNpiUhroLGqzitgfxcgTVWTyzUwY0yZsCTGGGOMMSHJ+sQYY4wxJiRZEmOMMcaYkGRJjDHGGGNCkiUxxhhjjAlJlsQYY4wxJiT9PyMAsPMnqMojAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAALJCAYAAAC0pSkNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3xb1fn48c+jLXmv2HGcvfeCQAiBsCmbMgqUTaEthZbSQueve38LpRQKhVL2LqPsHUMYISQhZO/pxHG8bdmStc7vjys7smMnDrHlxH7eeemlq3vPvffoWLEenynGGJRSSiml+gJbT2dAKaWUUipZNPBRSimlVJ+hgY9SSiml+gwNfJRSSinVZ2jgo5RSSqk+QwMfpZRSSvUZGvgo1cuJyBwRKenpfLQlIitEZE4XXu+nIvLvhNfnisg2EfGLyNSuuk9XEpErReTDns6HUn2JBj5KJZGIFItItYi4ezovPc0YM94YU7w/54jIEBExIuJo53p/MMZ8I2HXX4EbjDGpQHVH5yVc+1ciEo4HSjUi8rGIzNyf/B2oeB5HdNG1OiyrhDSJ77n5cWtX3F+pg5UGPkoliYgMAWYDBjjrAK7T4ReZamUwsGI/z3k6HijlAnOBZ7s8Vwefp40xqQmPv+zPyfp5VIcaDXyUSp7LgfnAQ8AViQdEpFBEnhORchHZJCLfTTj2KxH5r4g8JiJ1wJXx9C+JSJWIrBeRaxPSe0XkoXjN0krg8IRjt4jIc23ufaeI/D2+XSwivxWRj0SkXkTeEpHchLTPishOEakVkQ9EZHzCsYdE5J8i8nq85uAjESkQkTvieVmd2OQkIptF5MT4tj3eVLUhft9FIjJwfwo3Xk6PiYhbRPyAHfhCRDYAH8ST1cTztteaHGNMBHgcGCAiefHrZ4jIAyJSKiLbReR3ImKPHxshIu/Hy6VCRJ6O79+j1iVext9oe08Rac7jF/E8fk1EskTklfjnojq+XdTmWh39vPbrPbeTn7PEao6sid9nbMKxzSLyIxFZCjSIiENEjo7XktWI1cR4ZTytW0T+KiJbRaRMRO4VEe/+5EWprqSBj1LJcznWl+njwCkikg8gIjbgZeALYABwAnCTiJyScO7ZwH+BzPj5TwElQCFwPvAHETk+nvaXwPD44xRaB1mPAaeKSGb83g7gIuCRhDSXAFcB/QAX8MOEY68DI+PHFsfzkuhC4OdYNSZNwCfxdLnx/N/eQdncDFwMnAakA1cDjR2k3StjTFO81gZgsjFmOHBM/HVmvFbjk71dQ0RcWD+vSqA6vvshIAKMAKYCJwPNAcxvgbeALKAI+MeXyHdzHifH8/g01u/oB7FqrwYBAeCuNqd29PPar/ecSERGAU8CNwF5wGvAy/FyaXYxcDrWZ3IA1mfjH/H0U4Al8XR/AkbF942Ip/1FZ/OiVFfTwEepJBCRo7G+vJ4xxiwCNmB9YYFVI5NnjPmNMSZkjNkI3I8VkDT7xBjzojEmhhVEzAJ+ZIwJGmOWAP/G+qIGK/j4vTGmyhizDbiz+SLGmFKsmoAL4rtOBSrieWr2oDFmrTEmADyD9YXVfP5/jDH1xpgm4FfAZBHJSDj3BWPMImNMEHgBCBpjHjHGRIGnsQKG9nwD+LkxZo2xfGGMqey4RLvNhSJSgxVgXAucb4yJxIPU04CbjDENxphdwN/Y/TMKY/18C+M/ky7psGyMqTTGPGeMaTTG1AO/B45tk6zDn1cnXRivpWl+FAJfA141xrxtjAlj9ZfyAkclnHenMWZb/L6XAO8YY540xoTj+V4iIgJcB3w//nmsB/5A68+2UkmlgY9SyXEF8JYxpiL++gl218QMBgoTv3yAnwL5CedvS9guBJq/RJptwfpLuvn4tjbHEj0MXBrfvhR4tM3xnQnbjUAqtDRH/SneHFUHbI6nyU1IX5awHWjndSrtG4gVDPa0Z4wxmVhlvxyYHt8/GHACpQk/o39h1bIA3AoIsCDePHR1V2RGRHwi8i8R2RIv8w+AzOYmtrh2f1774RljTGbCYwfWZ6jlcxMPuLex+zMGrT9jHf388gAfsCih3N6I71eqR2inNKW6Wbw/w4WAXUSav6TcWF9gk7G+QDYZY0bu5TImYXsHkC0iaQnBzyBge3y7FOuLaEXCsUQvAveIyATgDKwv7c64BKvJ7USsoCcDqxlIOnn+3mzDappb3gXXao/Zd5KExMZUiMh1wEIReQIrf01Abrz/T9v0O7FqiJpr996J99mpjSfxAXXx7YL9yMoPgNHAEcaYnSIyBficzpX5fr3nNnYAE5tfxGtuBrL7M9b2+tuAGe1cpwIr4B1vjNneznGlkk5rfJTqfucAUWAcVjPEFGAsMA+reWoBUB/vLOqN16xMEJHD27tYvPnqY+CPIuIRkUnANVj9d8Bq7vhJvGNsEXBjm/ODWP1tngAWGGO2dvJ9pGF9+VdifZH/oZPndca/gd+KyEixTBKRnL2kd8ffe/NjX7/LyoEYMKyzGTLGrAHeBG6NNxG+BdwmIukiYhOR4SJyLICIXJDQ6bgaKyiIGWPKsYKFS+M/16uxAryOlLXJYxpW4FAjItlY/bc6a7/fc4JngNNF5AQRcWIFYE1Yn7v2PA6cKCIXxjs654jIlHhN0f3A30SkH4CIDGjTf02ppNLAR6nudwVWP4ytxpidzQ+sTqpfx/rr/QysgGgT1l/J/8aqUenIxcAQrL/MXwB+aYx5J37s11jNFJuwvqzbNmWB1dw1sYNjHXkkft3twEqsEWpd5XasL9u3sGpGHsDqU9IRP1ZA0Pw4fi9pMcY0YvWP+Sje5HJkJ/P1f8B18S/ty7E6D6/ECm7+C/SPpzsc+FSs0WQvAd+L99UCqyboFqyAcTwdBw9g9Zt6OJ7HC4E7sMqhAqu83+hkvg/kPTcHfZdidVauAM4EzjTGhDpIvxWrD9QPgCqsjs2T44d/BKwH5seb697BqsVSqkeIMQdSG6qUOhSJyCBgNVBgjKnbV3qllOottMZHqT4m3ix0M/CUBj1Kqb5GOzcr1YeISApWP5ItWEPZlVKqT9GmLqWUUkr1GdrUpZRSSqk+Q5u6gMzMTDNiRJcsiKw6oaGhgZSUlJ7ORp+h5Z08WtbJpeWdXIdSeS9atKjCGNPuRJka+AD5+fksXLiwp7PRZxQXFzNnzpyezkafoeWdPFrWyaXlnVyHUnmLSNsZ61toU5dSSiml+gwNfJRSSinVZ2jgo5RSSqk+QwOfbvL4wmUccddvOOfBfxKN6ZQBSiml1MFAA59u8uiqB2lMe5YNtntYV1G2x/FFW6pYv6u+nTOVUkop1V008OkmVaGSlu2Vu1p3Lo/FDOfd8wkn3v5BsrOllFJK9Wka+HSTgNmFM2ZNIbC2clurY2vKdtf0+JsiSc2XUkop1ZcdcoGPiGwWkWUiskRE9ph8Ryx3ish6EVkqItOSnccKfwPGUc2w1MkAbK3b0er451trWrZX7tA1IpVSSqlkOeQCn7jjjDFTjDGHtXPsK8DI+OM64J6k5gxYtH0TIjGm9psCMQc7G0pbHd9VH2zZLq9vSnLulFJKqb7rUA189uZs4BFjmQ9kikj/ZGZgadkGACbmD8dusqlsat25OTHYqfBr4KOUUkoly6G4ZIUB3hIRA/zLGHNfm+MDgMRONSXxfa2qXUTkOqwaIfLy8iguLu6yDH66cRHYIbS1Alc0ndpIWavrr9oUpDBVKPUbFq5Yy+DQ5i6796HA7/d3aXmrvdPyTh4t6+TS8k6u3lLeh2Lgc7QxZruI9APeFpHVxpj9Hh4VD5juAxg9erTpyvVH/q/kVQi7OO+ks3nwyXfYGvi81fomf1/5EcMzHIRK60nN6cecOZO67N6HgkNpvZfeQMs7ebSsk0vLO7l6S3kfck1dxpjt8eddwAvAjDZJtgMDE14XxfclTW1kF06Tg4iQ5y3A2OupDQRajpfXN5GX6iY31UV5fahlfyxmeGLBBgKhaDKzq5RSSvUZh1TgIyIpIpLWvA2cDCxvk+wl4PL46K4jgVpjTClJ1BStxW1LB2BAWn9EDKvKd8/rU+kPkZPqIjfVTWXD7j4+D332KX9cdQ4/eeOpZGZXKaWU6jMOqcAHyAc+FJEvgAXAq8aYN0TkWyLyrXia14CNwHrgfuD6ZGcyRD0+ewYAud4sAHb6q6xjkRiBcJQMr5M0jwN/cPc8PsXb3gdgrf/jJOdYKaWU6hsOqT4+xpiNwOR29t+bsG2A7yQzX23FpJ5UZyYAOT6r5qey0Zqvpz4YBiDN4yTV7Wg1geHGujVgh4aQjvRSSimlusOhVuNz0GsMN4E9QJY7G4BcXyYAVYFaAOrjNTzpXgepbWp8GsxOAGojJSillFKq62ng08W2VJcDkO2xmrjyUqwmr5qgtUxFXXONj9tJmtuBPxQhFl+9PYLferZVJjXPSimlVF+hgU8X21a7C4A8Xw4A+amZANQ0WU1ddYHmGh8nqR4HxkBjOEosZjA2K/ARe5BAKJzknCullFK9nwY+Xaykzqrx6Z+aC0C/VKvGpz7UusYn3esgxW11sWpoilDeUI/YwkgsDYCd/ppkZlsppZTqEzTw6WJlDRUAFKZbK7N7HC5MzIU/bNXmtO3cbO2LsKXaOs8n+QCU1le1pH/ms21YfbaVUkopdSA08OliuxqtgGVwZl7LPpvx0hgPfFqaujwO0jxW4ONvilBSZwU+Oa5C6zoNNQB898nPufW5pazQVdyVUkqpA6aBTxerDFRijI2BGbkt++x4CUYbgN01PikuB6luJwD+YIQyv9WheUBqEbA78Jm7xmo6K6luTEr+lVJKqd5MA58uVttUA1EfPpezZZ8DL00xK/BpCEVJcdmx2aSlqcvfFKY63vl5cIa12kZlYw3R2O7mrc2VGvgopZRSB0oDn/1013vruPi++by9sqzd4/5IDXaT1mqfy5ZCyFiBS2MoitdlBTzNTV31wQj+kNUUNjRrAADVwVrqArtHdm3RwEcppZQ6YBr47IfXlpXy17fW8kVJDT97YRmNocgeaRojtThpHfh47ClEjLVIaWMoQorbDtAyqsvfFMEfsgKbMblWjU9NsJ6qxt0LmFY3hFBKKaXUgdHAp5OiMcPvX13FhAHp/OfKw9lV38SzC/ecYTlk/HjsrQMfrz2FmFiBT0NTFF+8xsfnsgKgQDhKQ9gKfEbkFGKMUB+uaxXs1AZ0Xh+llFLqQGng00nzN1ayvSbAt44dzpHDcijK8vLppj1nWA7TgM/ROvDxOVMxklDjEw943A4bIhAMRWmMNGCMjVSnBzEugpEA1Y1WsNMvza2Bj1JKKdUFuiXwERGbiEwVkdNF5HgR6dcd90mml5bsINXt4MSx1jw70wZlsWhLdav5dYwxGGkg1Zne6txUZypii1AXDMT7+FiBj4jgddoJhKMEIo1IzI3NZgPjIhRtaqnxGZKT0hL4hCIxPt5QkYy3rJRSSvU6XRr4iMhwEbkPWA/8CbgYuB54R0Tmi8hVInLI1TKFozFeX17KyePz8TitoGX64CzK6prYURtsSVcfagCJkeHObHV+htsKhHbW18RrfBwtx7xOO42hKMFoI2LcANhw0RQLtvTxGZLra+nofNPLj/LND4/jvXVruu39KqWUUr1VVwchvwMeA4YbY04xxlxqjDnfGDMJOAvIAC7r4nt2u8+31lAXjHDyuIKWfdMGWYuQLt5S3bKvpNZq+sr2ZLQ6P8NtNX3taqix+vjEOzcDeOI1Pk3RADY8ANiMm1AsSG0gjMMmFGR4qW+KEI0ZltS8BsB7mz/thneqlFJK9W5dGvgYYy42xnxg2llfwRizyxhzhzHm4S97fREZKCJzRWSliKwQke+1k2aOiNSKyJL44xdf9n7NPlxXjk1g5vCcln1j+qfhddpZvHV34LO9efZlb1ar87M8Vo1PeUMtgXC0pVMzgNdlJxiOEooFsMcDH4e4icSaaGyK4HPZyfBacwLVBcLEjACwtHzFgb4tpZRSqs9x7DtJ54nIMXs7boz54ABvEQF+YIxZLCJpwCIRedsYs7JNunnGmDMO8F4tPlxfwaSizJYABMBptzGqII21ZfUt+3bUWzU++altAx+rxqcqUEdDU3SPpq5AKEqYIE7xAvHAxzTRGLJGgKUlDHtviO0EO1Q0be2qt6eUUkr1GV0a+AC3tLPPAJOAgYC9neOdZowpBUrj2/UisgoYALQNfLpMXTDMFyW1XD9n+B7HhuT4WJTQ1LWrwdouSM1ulS7DmwpAbbCBpoirZTg7WDU+jaEoEWcAn82qGXLY3DRFGmiM1w41d4ZuDEUx9loEaIrVo5RSSqn906WBjzHmzMTXIjIL+DmwE7ixK+8lIkOAqUB7nV1misgXwA7gh8aYPdqFROQ64DqAvLw8iouL273PojKrb02qv4Ti4tJWx0x9iO3VYd55by4Om7B862oAytZtoXjn7kVFt9Za5y3fsA4YT+m2zRQXbwcgUB/EHzZE+gWJhaC4uJhYCCISoKR0F9GQYcMaK657fd6HiM2aNDFk6ikuLiYaM5Q2GIrSvlyrZe32VYxafz8bJ/yAlJwBX+oa+8vv93dY3qrraXknj5Z1cml5J1dvKe+urvEBQEROAP4fVm3PH4wxb3fx9VOB54CbjDFtly1fDAw2xvhF5DTgRWBk22sYY+4D7gMYPXq0mTNnTrv3evfF5fhcJVx11nG4HK2Di4q0El7a8AUjJs1gSG4Kj/9vPtTA2SecTI4vpSVddulm7nsL3JlWzc/EcaOYc8RgAJ7atoiNFX6QCOm+DObMmUP69v9SH9yCNy0DV4rhiOmjYfF80or6w1rA2DG2AHPmzOGGJxbzytJSPvvZieSlufe3KPnkvucZazZQU7WAmef9fb/P/zKKi4vpqLxV19PyTh4t6+TS8k6u3lLeXT2c/XQR+Rj4IfBzY8xx3RD0OLGCnseNMc+3PW6MqTPG+OPbrwFOEcltm66zPlpfwRFDs/cIegAGZfsA2FJlzbpc21SHiTnJ9vpapcuKN3XVBK31uFLaNHUFwlGMhPDYrc7NbrsHI00E4ut6NXeGLqmtAsAZy0PsARpDIV5ZatUmbapo+FLvz1m/DQB7w64vdb5SSil1KOnq4ewvA0VYnZBvFZGXEh8HenEREeABYJUx5vYO0hTE0yEiM7De455TLHfC9poAGysaOHpkXrvHB+dYAc7WSivoqA/XYoulEL99ixyf1bm5rskKkNqO6gqEYhgJ43YkBj5hq3Oz096ytteOOivwSXNYw+rXVZS3XGdr1ZdbxNQbtK7ha9zxpc5XSimlDiVd3dR1XBdfr61ZWPMALRORJfF9PwUGARhj7gXOB74tIhEgAFzU3vD6zvhwnRUUHD2i/QqjvFQ3Tru0TGLYEKnDTsoe6XwuN8bY8IetAKl5cVKwRnX5m4I4JYo3XuPjdXjjMz2H4p2brfS7GqrBBv28A6hqXMLy0t19jr5s4OOL1safa77U+UoppdShpKs7N7/flddr5/ofArKPNHcBd3XF/T5cX0m/NDej8lPbPW6zCf3SPJTFA59g1I9L2k8rxkVD2Fqvy5tY4+O0E4yGcAI+pzWc3euwnqsb/XhdBS1re1UGaiEFBqcPZHUjrCkva7lOyZcMfNJiVhep1KiOElNKKdX7dXUfn5dF5Mx4P5y2x4aJyG9E5OquvGd3icYMH62v4OgRuXs0XSUqyPBQGg98QsaPt83K7M3EuAlGrMCnbR8fEWtpCq/TqvHxxQOfsGkixe1oCZRqglbtzIisQcDumaJtQsvyFo8vXExJddv+3u0zsRgZxgp40owGPkoppXq/ru7jcy0wG1gtIp+JyGsi8p6IbAT+BSwyxvyni+/ZLRZvraaqIcTxY/e+vmpBhoeyOivwiUoDKc72Ax8bbiLGSpfYx8fjtIPNWocrJV7j01zzgy2E12nHZbdhtwnBmNVUNizLGna+s94KhIblpVIXCPPFju38acUVXPbizzv1HhsbG3BKlDrjwyshwsEv10G6qzU0RajwN/V0NpRSSvVCXd3UtRO4Fatj8xCgP1Y/m7XGmC/XFtND3l5ZhtMuHDuq/Y7NzQrSPby3ahexWAxjayTNld5uOjtuxGbVyiT28fG57IjEAx+X1Vk61WUFPmILx48LPpedkK0JYo6WmaHLG6yanaG5KWws93P/Iqv/eLVZ2qn32OivJQUot/cjPbYZf/UusvoP7dS53eny/yxgQ7mfj398fKvJHpVSSiWPMYa6QISddUF21gWZVxJm00ebaAxFaWiK0BiKAlbLhddpPTK8Tgbn+Biam0JemnuvLSY9pdu+VYwxm4HN3XX97mSM4e2VZRw5LIc0zx6tdq30z/AQCEdZX1GFSJTMNiuzN3OIB+KBj69NH5/m/WnxgCc1HgAhoZa0PpedkITAuMlJsYKrmqCfVLeD3FQXS7ZFWFuzHIBYJ7tyB+KBk9+VB8HN+GurWgKf1Z+9S2PxHYy74Sk83j07bHeXsrogW7ZsJlsa+Gh9JSeNy0/avZVSqi+qbQyzemcd68v9bKlsZFNFA1sqG9hWFSAQjrZOvNyaUNduk5bvp2A4Sji65xdPisvO1EFZHDMql2NG5TE6Py0pgVB9MLzX4/rndDs2lPvZVNHA1bOG7DNtfrrVL+fzEms4eLYnq910TnEjthpsAu6EOYE8zt01PmluK+BJiwc+Ygu1jOjyuRzU2kLYcJETnxdI7E2kuh2ke53UBsI4IzVgA+OopKKhnt+9vJ5BOSncfNKodvPU5LcCn5AvH4LQ6N+9/IbrjR8wJrqJT994kCPOvWGf5dBVVpfW8ZTrtxRJOQ9vmgAa+CilVJcIR2NsLG9g9c46Vu+sZ3Wp9dzcTxXA5bAxONvHkNwUZo/Mo3+Gh/x0DwUZHjatXMJJxx6Nz211wUgMYiLRGMFIjCp/iM2VDWyubGDDLj+fbKzkD6+t5g+vrSY/3c1Zkwu55IjBDM3tvj+of/vK3lex0sCnHW+vtCbzO7ETX7q5qdZsyavjI6zyUjLbTee0WTU+KS5Hqw+L17W7j096PPBJ98Q/ELbWNT5IGBtuvE43JuYACZHqcZDhdRKKxAhEa1p6bb23biMvLrGCsZtOGInNtmeUHWyMd4JO6w9VEPTXthxLj8aDoK3zgeQFPv7tKxlhs/KdseUNYGbS7q2UUr2BMYby+iZWxYObNTvrWbWznvW76ltqZpx2YXheKkcOy2F0QRpjCtIYmZ9G/3RPu98XAA2bbWSluNo95rDbSLXbSHU7GJTj4xh2dxMprQ0wb20F76wq48GPNnP/vE2cNC6fm04cyfjCjC597++uKuOZhSV7TdNtgY+IeIFBxpg13XWP7vL2yp1MHJBB/wzvPtM2LxOxsdIKlvJTsttN57Z7EQm1GsoO8T4+8cAnw2MFPhnxAEgk3JLe57Ij0RAOse4nxm3V+DgdpMeb40LUYY/5MLZG5q7bBFj7t9cEGJjdejZpgHDAGsnlyBwAW6C+ppIVO2oZnuUglxoAUvyb91kGXSm6a/fHJatmjyXWiMUMUWNw2ru6X75SSh16GpoirNvlZ+3OelbtrGN1aT1ryuqpagi1pClI9zCmfxrHjspjbP80RhekMSw3td0VCQAwBgLV4C+DxioIVEFjFQO3LoLi+RBpij+CIDZwesARf7jTIb0QMgZAxkDw5dA/w8uFhw/kwsMHsqsuyOOfbuU/H23i9DvLOHfqAH562tgvteRSW9UNIX78/DLGFKSxZS/pumutrjOBvwIuYKiITAF+Y4w5qzvu15XK65v4fFsNN53QfvNQW3nxGp+tNRWQAoVpHQc+2KwamkRep1WTA5Adb8JqVePjtAIfr8sBwZDVVwiw4UFsVlNXhtcJGMTuJ1WGUc9a1laUEp/XkW3VjXhdNoyBvDRPy72bA5+UnCIA3lq8jkfmf8gdJ6ZxDhA1Qn54W6fKoas4qtYBsDVlEgP96zDGtNSQxWKGbz74IaVVdTxy/Ulkd/CXh1JK9TZNkSgbyxtYW1bPmp311nNZPduqAi1pvE47owrSOHlcPmMK0hjTP50xBWlk+tr8royGoXYL1GyB6oTn2hKoL4X6nRDdc2TtcICNgM0JDjfYXYCBcBAigT3SA5DSDwZMtx5F0+k38Ei+f9Iorj56KPd9sIH7PtjIu6vK+OWZ4zlvetEBldEvXlpBdUOIh646nDe/33G67qrx+RUwAygGMMYsEZGeHy7UCe+uKsMYOt2pNt3rwGW3UeqvwpkCRRntz/LssXsQW2iPztIe5+4an5wUK+BpXttLbKGWUU0pLjsSCuGyWR2b7XjAtruPD7YmxBahv3cI9YG1bKkppznwKakOcM2b38AhTpZ9+9mWe0eCVuCTkW+lc0at4exfrFjJOcAa72TGBZdQ568nPdUapr9lzRJ2vP5Xhn/tj/TrP7BTZbQ/0vwbqbDlUpM7jTH+R6n2B8hOs2qrFm4o5XtbbmCAVPDG+49w8WkndPn9lVKqJzU0Raw+MhWNrN/lbwlwNlU0EI2PXHHYhGF5KUwuyuTC6QMZVZDG6Pw0BmX7rGaqWMyqralZB+vaCXDqSsDEdt/U5oCMIquGZuARkFZgdYFI7Qe+HPBlgzebeQuXMfv4U8Bm3zPjxkA0BIEaqNtuPWq2wc6lsH0RrH3dSufwwvDjyJhwHrccfwZfnVbET55fxg+e/YIP11fw23MmkOre/9DklaU7ePmLHfzgpFEUZsf2mra7Ap+wMaa2Te/tL7VsRLK9vbKMAZlexvZvfz6etkSE3FQXFWIFDR3V+PicPsQWoe3P0+uyQ3wCw+bRXFnxGh+x7W7qsvoChXDZrBomR3ONT7yPj9itBVBHZo1gbeAtxN7AmII0Vu+s57mli3GkbACgpLYGf8BGhteJiQc+qbnWvEDpYkXs1WVbwAWNeVNh2xJ2lWwkfcxkAOqf/x4zm5bwydOGfjc93qky2h95wa2UewYjeaNwbYlSvnUt2eOnAFC28CXOtG22ymjZv6FN4NNc5Tu5KOOgGEL56mO3IyWfMfmy/2PAgAP7S0Yp1TsYY6gNhCmpDlBS3cimikY2VzSwqbKBzRUN7KrfXdMiYi2GPSo/jVPHF7QEOENzfLjCtfFAZoX1vCkxwNm6Z41NagFkDYHBMyFzMGQN3v2cVgj2fYcDUceG9oOe5sw63JCWbz0GTGt9PFADJQth3Vuw+lVY8xp4Mhg+7XKe/Nq3uXtRLne8s5ZVpXU8dNUMCjI87d6mPbvqg/y/F5czuSiDrx2ZydVv7n2e5O4KfFaIyCWAXURGAt8FPu6me3WZYDjKh+sruHjGoP364sxNc1MZCkDMic/Vfr+g5tmYm+fyaeZNqPHxxBcpbe7r03Y4u9hCVpMZ4LR5EVuNVePjcSB2q1f+oPQBsN2OzeFnQKaXCn+IZbtWYu9vXfKRRe/z4LtOCjO9/C7HCpa8qVn48ZKKFfhkixUQ+QZPg20PUrtzC4yZTKgpyIjgChAYWTOPaDSGvQv72hhjKIxu5x+Z/YjZNzIBq7Mz8cAnY+vb1EkaO7KOYEblBwSawnjdVg1aLGZ4/m83MrZxIc9N+wnnn/PVLsvXl7F62UJOX/9rAD56KsaAHzzdo/lRSiVHKBKjrC5IWV2Q7TUB61FtPe+IbzeEWg8Rz0lxtYyiGprrY2i2ixEeP4MdlXgaSqF2EdRug2Ul8GGJ1SQV8re+sSfTCmL6jYXRp8aDmiHWc+ZAcO67z2q38mbCyBOtx6l/gs0fwKKH4JO7sc+/l+9Ov4IZl1zLN/67hXP/+REPXTWD0QX7roAwxvDT55fTEIry/84eyHVvX8t2//a9ntNdgc+NwM+AJuAJ4E3gd910ry7zyYZKmiIxjhuz99ma28pLdbOmthGb6Xh4XopzdzBDOGBVAeaOtAIbWxhjBJfNaoe12WyYmBOxRVoCH4fNhkgYTzyA8tp9VNt2keK2JowSmxX45KVkYIulIfYGMn0u+md4WN1YS3OM/v7GNYSj49lS2Uidq5aoEewuHw2tAp86IsZG/ohp8CE0VljdxDYt+5jREmaldzrjAotYv34lI0ZPAGDRu89Q9MGtrBh6Fcdf+cv9Kr9mNdVVBB1NPOXeBru2cbrbTWTXWsD6cA8OrGBr+lRsI08mu+odli6bz6TDZgOw4oPnuSz4BNhg8Oc3UXnsceRk7Z5aYPW6tawtfoLMkTM5Zs4pXyp/e2OM4fnF2xmQ5eXIYTlUz3+CqBFWZh7L9Jp3qa6qICu7/WZQpdTBzxhDdWOYnbXBlsBmZ/NzbZCddU3sqgtS2RDa49wsn/XH5tBsDycPFoZ5GhjorKfAXkOe1OIJVlhNU3WlUFIC9TtaN0UB+HKt5qicETD8eEgf0LrWxtO1o6O6lc0Gw+ZYj+rN8OEdsPBBjvziKd6Z+X3OWTiR8+/9mAeuOJwZQ9tvRWn23OLtvLOqjO+fUsBvF32X0oZS7j7hbo7giA7P6ZbAJz5L88/ij0PG3DW78DrtHLGPgm5rYLYP8TfiaGdl9mYtszKbXXDXDKjdCtMux33mndZaXcbZqpbJxJyQMApsVWkduEIUplt9fLJ9aZQ2NVHTGCbd62yp8emXmoFTUmmyB8jyOclP97AmtHvtrk2124HxAFRWVREQL6ki1BsvadLI0NwUsmvqqZW0lskMozXW0MDazUsAkMOuhnmL2LHqE0aMnoCJxej34S/Il2qyNv2ddeu+xsiRYwBrWYz5//0bsdQCjj/nmg6HSQJU7tjAes/unv1v+jI4umwt//lwE1P7CVMpZXG/8xg+7Svw6a3Ur3wH4oGPWXAfu8im8fS7GfLqxXz48h0cfblV41KyZQOZj5/KWVQSKfk7H1X/kVnnfqvlPlVl21j63J+xB2tIm3EJU44+rVW+TCxGydYN2B1OCouGtJv391bv4gfPfgHAwp+fSF7ZB6x1jsF7zI14Xi5m6YfPMeOsb7Y6Z9eOrVT++6v4Yn4az7yXsdPndFg2SqmuZ4yhMRSlqiFEhb+JqoYQlQ0hKv3W6511QcpqrQBnV10ToWjrYESIMSwlzLDUELO9QYoGBujvCtDP5idL6smM1eALV+Jo3AX1ZbC5Ys+ABqyRUKn9rOaoobOtvjYZRdYjc5AV5Lj2HJnbK2QNgTPvgJnfgTd/RsH83/J+/8O4ru4qrnpwAU9edySTijLbPXVHTYBfv7SCqUNsvFPzK8oay/jnCf/ksILD9nrL7hrV9TZwgTGmJv46C3jKGNP1f2p3EWMMc9fsYtaIHGv9rP0wdVAmT29vJBrpuE0y1WUFRV+pfwway2H06bD4EWT8V8EWsQKdBGluHzW2MK5gFXgy+MrEfqxcF2FYjhWUFaZnsrK2CRGsod3xGp/CtCxctlTE3khWiotgJIrU1GOPZWCMYHPUMiwvhZLqAM5ogKDTQypQZ6wan2NG5pK9sJ46ySDHnUItadSWbeHOd9dxePlagsbJqNnnEZ73PSIliwHYuHoJw00pSwZdyZStD7Hp3X8zcuRfAVj87xs5vuo5AF7zV3Pa5bcAEA2HeP/xPxKu3kb2sd/m8GnTqS/bzHK3C6c4GJE1ksVNazi+ZAO/eWUlJ3jW8gBQkp9HXWgjw2xFpG7/EICyndsZ2/AZiwov4sjDT2P5O1MZt/FBwsFbcLhT2P70TUwxdZSd/QTVb/6Rw5b8nLWDxzBq2hw2r/iUtGcv5GhTR5O4SHnnZZYsOoWRl92BL7OAL95/Ad+Hf2RUND7aTArZMeoyxpx0DZm5+VRXlCHAu6t3tfzsXvl0FVdG1jFvwLXMmjyHmpdTMevfBVoHPiWPfpPJ0fU0iQv/y1fROHoJvtTWf7WZWIzlH79GY8VWxp9wCalpmZ34RPasBn8dDqcTt7uHq9Z7kaqGENurA2SlOBmQ6T0o+rD1hHA0Rk1jmJrGEDWBMMvKIzSt2EkwHKUpHCMYiRIMRwmGYwTCUQKhKI2hCIFwjEDIWmKhMWTt9zdFqGxooikcIY0AaTSSLo0tzzmOIKM8YY5xBcnzBslNaSATP2mxWryROpyhGmzBaiRqoBbrkcjmgNR8K6BJHwCFU63AJrVffH/+7u3eGtTsj9yRcMnTsOxZ3K/fykOhm7nDfRlXPCA8862jGJnfutkrFjP88NkviNpqaMx9mJrGSu498V6m5U/r4Aa7dVdTV25z0ANgjKkWkf1rP0qyDeXW9NzXHTO8/QSBGihfY81tkJIHBRPBYTVNTRuUhXwaINjUcVOG22YFRcObFsPMG+HYH8EdE2H+PYh4wbQOfPJSUpmdGUH+Nh4yB3H+5S9w27rdI76G5mRh2xHihyePBmjV1OUkBbFXkeVzYYzB5qjHY8vEGDshZy2jstPwOOykVgQI2awvp6ED+hNprKG0MJ0ssWp8AGqdeaQEd3L722v5t3M1O5wDGObyss01jIxqa4mMHQtfYjhQdPINbHjic0aUvkpd4A9UbV3FzMrn+bzfOWQ0bGLmhjtYvu58ItEoS/9+Hsf7PwCg7n+v8NymO+gfLWGZ28Wo9OFMzZ/O05WrGSylVv7C69joc/CzHQ/ADvhewWgu2f4hX2zeRfn7D3GiRBl07JUAhGbdQvZ7l/Dhs7cRzhzGcY0fsGj4d5g+7XScRVOpvOdYsl66gvc+PZfDdj5NQLys/+obDB01nnmP/JwjdjxC09+nUSppTGEXpZLHwtE/xGBI2/g6R675M5HV/0c1KWTF+0NtjNzM6LFN1NVlMLd4OVfaIWPULGwOB5vSDmdY3QKi0RiVDSFyUt1s27iSaYGPWTD4WtInnMqY185j/nN/5sgr/tDyGTCxGJ/ecy1Hlv8XgNIlt1N52SsMHj6m9YfLGJYVP0PjyreI+XIZeuK1FAwc0e7nMBaNUlVWgic1ndT09mcZ/7Ii4RCf3X8D08us/M7vfxGHXXMHDufepx2oKN2KMYbcgoGITednSvTZ5ir+9vZaPt5Q2bJvWG4KVx09lAumF+33H2mbKxr4fFs1O2qChCIx0jwOhuWlMDwvlaIsH/a91Mi2pykSpaQ6wOaKBsrqmmhoiuBvihCMRHHZbbjsNtxOG16XgxSXHZ/Ljs/lIMVtx2m3EY4awtEYkfhzXTBMhT9Epb+JyvhzbUMDDf56Qo31REONeGmyHhLCR5B1n7/Xsu0lhEea8BAmW0Kk2sOk2ML4JIxPQngkhIf4wwTxuhrw2PeyOHMo/nB4W0Y2kZYNvqHWdsKIJ2s7a/e2O83q8Ks6TwQmXQhDj0VeupHvr/s3I2U9V/87yhPfntNqPrp7P9jAJ1s2MnDcw9SGavnXSf9iSr8pnbpNdwU+MREZZIzZCiAig+miUV0icirwd8AO/NsY86c2x93AI8B0oBL4WnzdsL0qXmP9xT4ncVHSpnpY9TJ88RRs+qD1W/Dlwql/hEkXUpTlxeEMMLHfgA6vb49PPBiw2WD6VVbv98kXwSd348w6oaXvTjOP3U2wdIn1QahcR+DjvwPgjadLcaZgiOGu/BxiQ1uaulJcKTglFbEHSHHbcTm8iKOOdGd/7OLCH1pPfrobr8vOsqZaHst08Je6LQzOyoZwGV6XgxzqqHRbAWAotZDCJmsun2FSSo3Xmt8omDeRESWvs76sntSS99lmH8jAopEEp11M0Yc/5rl33qD/uicowMHQ83+HI1SN54Fj2fnk9dRLBidGP+CT4d9j2qlX0Xj/2Zyx9AaqSGX1kBTOyp/CmOwxhMXQ6Grgqa+No+zJu3g1JTdelnbeygjwjR1N/OW+/3Cz4wVKXIP5iI2s/PhVvjHlG6z6eCrT198FwFbnECZ/7f8BkN2vkJKLniL69CUcX/YgG9xjSL3sMcYMHAnA7G/ewcqlXycw9zYcYT87ht/IpK9cS39P88/nF6xfMo/KRS9iC1RifLkctvV+KoreoAw/pIM9OAQaYPhkqxmOESeQ9/lcvn/vg7xUVceUfuP4TvQVBhph5KnXk1U4jM/nzmTcpgepq/oe6dnWVArz/3cPM8v/y/x+F5I+6QyK3vk2kUfPZv1lLzNiuPVzqK+tYvMDlzOxbh6Nxo2HEOF/P8BHA69g0td+SVqa1TS6dcNqtr/xV8aUv0EuVrC20jGOqqFnMmT2JRQNGgJAdVUFG+a/QmzdW/SrXYbDhKlx5VOfO42U0ccybOpxpKa135dg0T3XMLPqJT7LOh1MhCN3Ps5nd5Uz7cYnsTv2/FWzY8WH+F+4mVERa9LKTbZB1E2/gUmnXoN0MMKkfMcWNn7yPLGKDeBMwTdsBmOO/Apuz97/Ym6or2X7hmXEwk2kZvenYNBIHM69r8MHEIvG8Df68ddWYhM7vvRMUn2p2PajU38oHKWmpopgoBFPahopvjS8Lsdem3231wS4763PWfb5p0z1lfHD4XXkO/z4ow5WVsLSl338/K18powbz8kzp1tTS7QTNDY0RVi4dgvLVqxk06Z12Pyl5FCHiwguCRNA+Mx4mIuHkM1LWnoWudnZFORmk56RjtftxWbCEGmirqGBmroG6urrafTXEmioIxyow2eC+CRIKkFyJchggvgkhI0odmIIBjsxbBhsxFpte4lhiz/sxLCJtd9JFK+E8NKEnXjTkACdmOPOIOD0Ig4POH3W5HpOrxW8ONOtfQ4PuFKsJiZPBnjSO9jOsLYdOmdYUqXlw8VPwQd/4YziPzIkvI1v3X0rv7rsZA4fks3nW6v529yPyRn5IGGC/OukfzE5b3KnL99dgc9PgQ9F5H2sj+ts4LoDvaiI2IG7gZOAEuAzEXnJGJO4MMc1QLUxZoSIXAT8Gfja3q5b12S4a+56huelMDDDBevetoKd1a9akzJlDYFjfghFh0NKrtUxef498Py11lwFs27C4QwwfVDHgc+wbOuv6+1pI60e9gBjzoSP/s4xRWHKHZmt0nsiTQSiTXDeA7D0KRpXvQQ57laBD0Djg6fidaaS4TmOQMyJ0+bEJamIrZFYNEZBuhdx1JPjnYhLvGwLLiIYjjKiXypP+hupdRjuW3ofv3enQ1M9o/PTSJN6Iv2tYWCDhoyEhuWcOCSTQVt2UZputVYWjp1J+vbnuPCOx3jJtYwVAy5gIFA062KaPvol0z/7IUVSzrLC85maPxAYyK7Dvs+JC28DYG3Recy89NcgQv735lL66DdorF5Bo83G0MxhjMyyApF1TienpFdRm7adGzMyGJlVxOlDT+eOxXewzZvB/a5/4wuV89yUy/ndp78HYEHpAp669Haanv02xkD+JY+wqGopb25+k6n9pnLGqDOQny2HhnKGp/UHEYwxxEwMu83OuEmHw6SnOvxZjpgymxFTZre8fuLPr1Dm9XPjxJ/y5pa3WRpbyOLGfKZlWoHakCPOYs2KXzPPcze+QWHWxJxU76pjTdoRjCscBkDa6b8h5dmT+efjN7B00AwG2tL57pLfscY9nhnX3YPN4aAkI5Ps5y6k/NGzeGr67bgIc9jiHzE2Vkbx4Bs46tJfsrN0M6X//RGzSv5NyW0vsSB9Fl7/VvpHl9AfWJp+LJEBMzANlfTf8Sbj1v2Z2Nq/sMlWhAEGxnZwmESpw8dG7ySiDi8ZjVsZW/Ig9u3/IfSug3mFl1J49q94aP526oJhrp41lKalz3NE1UvML7ycI6/7BwDzH/wRR265l0/vuoLDb3y0VbCw+MW/M/HzX2OTTD4ZfhNis5O34Xkmf3Yr2z6/CzPnpww66mtgs7U094Xm38ek+g85QqKEjR2nRGHrvTTM9bAidQbRkaeQN/pIvGlZ1FWUUr1pMWbbQnJqlzEksplRsrtvRcjY2WLrT7VnIIH0IUjWUMTpIRash7oSnP4dZARKKIjuIF0CpCf8/JuMgxpJp9aejd+ZS5Mnl5jTh0RDxPy1fPrZHXhC1aREa0iL1ZJp6uknkZbzY0ZowEM9KfhtaTTa0wjbU7DFQjhiTThjQbJiVfxaqqwv+ihQ5rGaRSJNjArXcq4zCDFgufUI46DKlkOlPY+QuPDEGvBG/WTHqjhWAhzbfPOEWM+IHTBIYp+Thvijs/OWxr9BYnYPxp2KuFIRdwri9GFsDozYiCHEjI0oNiJGiBohgo2YEcRmb/VwOB14nE6cThfi8sUDF6/13PJ6976FS1dx2MzZu9M0Bzxa03Los9lgzo+hYCJjn7uOByM/5dL76rng1BN4cOFHeAffi8dl518n/ZvxueP369JdHviIiA3IAKYBR8Z332SMqeiCy88A1htjNsbv9RRwNpAY+JyNNYEiwH+Bu0REjDEd1jiFmhqY1TSP7xRVwe3XQsMua2jglIth0kUwcEbr/0gDpsPo0+DFb8M7v8KfMZBwLEyOJ6fDjI+NWcPr3GOObn2dtP4E/Tvx5raeKdrdWE2T3QEjTwYgsOENoP/uwMdYXyKNWYPIqdvF7JS1zLNbwdCEgv5s2xHlpNenw4gzsNkbGJ7Vn3RXOotrw5yQthSTMppah1Ukb295m59lz8HXVM/ALLh8QAobzKf8ZcvbnJRVBKEaLhnaSGOJoS6/AID04TPgHfie51XcJkzu1NOtjHsziR11E0M++jN+ZzbjLvhFy3vqd/r/IzZiBsuWLmHyBT9qKVNJyaHwWy+wcOdCePMqhqQPYXjmcGzYWOtycUrJApyBrSyzDeaywqM5efDJ3LH4DuaOns3lS17BeLN5NLyF0VmjufXwW7nmrWt4YGcxN3//UwDe3fIuNxXfhCA8u/ZZPtv5Gb+c+Uvs6YWEY2HuXXIvT656kqZoEycMOoEbp93IwDQrOG0MN/LKxlf4tPRTPA4Pk/Mmc/yg48n1WkFNNBblhX6pFEaauGbKhcwZfARfe/ksHirsR3NLsyM7m+/m9ydFovz66Nu5d/7/8dv8EDcXzGBcPE3GsKFcM3g8i+yroWY184ElAzL4xozrGWWPj+wbNpr7Zl3DB5tfYEvlraTGYgzJtzF+0HWcc+TlOJ1OvPl5mK//jNsWj2TD1neImo/xuR286p3JlCkXMnXoLDI9mTSEG6htupxn1n/C2rXvEG7YgQPB4RlN0aCZTJpwAvmpBRgM4ViYBZVbWLPqA6o2F+MJvMCfnlvEZkcKdrEz74VUbgx/Ro1vJMde/ueWn/fUy3/DCw9Wk1X5Er+452RW5UzHbhyMq17MsQ2f81rqeEZ/7d8cOXAUIkJD0w94+dX7SV11P6kffo+P5/+RBkce/Zp2MCxajjfm4YP+5zL02G8xZNQ0gk0BVs1/Ff/ylyis+YjMpR8SXSZEgTQgxxiajJdS9yg+638F3oFTsbt8BKu3E63YgLt2I5mBbYzZuRBP2e7VnIPGSYUtl2pPEavSrH4ZNl8mGEMsUAvBWuyBSlzBcjJDu8gMrsJFiDBOwtgJRzw0OjIJeAup80ygxJuNpORic3qIhRoxTX4k5MfWVIcjVIMvXIc7upOIzUXU6SFiz6HGNwrvyKlkDp4IeaOtkTvx+VPEGGsZgboSyks2smLNKuoqN1PKFvxU4TABso2XYWY4lSmzySwYQtHg4biyBlpLCaTkgcON2OzWpHORIDT5IVRvPYcbaWioo76ulqamJozdhbG5SE9NISPVh8PltZpxXCngSgVXCrZ25naR+KM7Gy/9m5qsviGq9xpzOvZr3iT30XN5Tn7LucWbqSt6mxxfKg+e+m+GZQ7b70t2eeBjjImJyK3GmGeAV7r48gNo/bdICewxZq0ljTEmIiK1QA7QYeA1VHZyt/NOKHHCqFOsJqiRJ1vNUR1xuODsu6FqI1Wv3QwFGWR7Oh4N5l37BgDB/HG7d9psMOZ0gttfJcWW8KOIRfE2VFLri1exjjyJgNv6m7M58PGVWiOIGk74f1C+EVl+LwXZVr+OIzKivL4D/BmF2Na9CIMGMLFgIFk2J4+ug8GLvk/E4YX8TC5y5PFUpJwFppE5IT8vrnqSNW4XHrHzp0//xOyRV+IBhsp8vlJUSF3tk3z6cYhfzPgJNk8mJzTN4985eWwMfMhxW9ycOOhEvCf+BEYcTY3TxYq6lfSPVjMhdwI2sWEbcyqVpS421W3GLnYGpA7AHv+luaXOGjY/KH0QbrubIRmDWdfYAAsfZIHHQ4QYswbMYmD6QMZmj+Vtu43Lz/0XH3m9bPjk5/zh6D8wo/8Mzht5Ho+sfITThp2Gx+7hZx/9jAk5E3jglAd4YPkD3Lf0PoKRIOeOPJe7ltzF0vKlnDT4JHI8Ofxvw/94e+vbnDjoRJw2J8XbiqkP1zMgdQCBSICXNrzEHz79A2Ozx5LpyWRt9Vp22Zr4VVU19liEUU4PX6+r55EMYXXVakZnjeYXH/2CXQ7hwZ3lTCmayRzSuTG8nb+W/Q//kv5kuDO454t7CDqD3FId4OyaSuZ5PfyzaBQ/+uLP/H39o6S50lhXs46YiTGtcCoXhgW/ibBKmnis/DUee/k1bGIjlvDXe2FuIZmekayqKaUutp2Xlv0Vlv21/Q9oy4DEWti+FrY/3HG6lAyGhCo5Mm8wxu1hfekCbrenAk04np1FtiebUDREbVMtxmmgIA8ow9n0KmERVqXCc6l5QA3MPR+33U3MxAjH4sFHkQ3Ix2pa3oX1ayo+ERULkAWf4fvcRzgaJhQLWX9mZaRhhTvtqQTexbHrfVw2Fy67C3uGHZNhiJp0YrEUIrEoxsRAwGlz4bA5sNuiOGxbccgOHDaH9fA4sIsdQTDkArmYhCbwhvoGMjMysYvduobYsdnCOKQcu9ix2+zx5yzskosg1v+LhIcgDM0YypCR51rNM22JQEoOpOQQTc/n/chSXmYxTa0mrAvjsDVydOEQzhw+nQEDjwV7O7/PROK1JV5IWFQyEKigpHYzFcEKorEoMROjICWTIelDyPXm9tnO1aqHFEzAdvUbvP/U2VSn/I98Ry6PnvEYhamFX+py3dXU9Y6I/BB4GqviFABjTFU33W+/ich1xJvf0gb6+PqoYzkh4ySGpUyEMqDsk05dxz3o2zirrUVBtq3ZSvG24j3vFQszedn/oCibZevX0a98d5qspoEEMTjLd1BcbO3PqFmJJ9JErbG37KtPGwnsYM3S5YTXhZFlr0EmfLilhgrHOOrtTjx1lRTPfQ/n8kchHeaO+A79S14FNhBa+AapVcshAxYOOhN37TKgidl+N897XbxavoFjgYeXPcaEpibOS5vDrwPF3LbmfW4Bbt7wHDaBo30zeG7dc5SWlnJd7lHcHl3EUo8b35a5vLzpVYa5hzHFN4VVgVWsDq5u+VJIs6UxxjsGf9TPpqZNBLdafZKc4qTAWYBLXJSGS/HZfKxduJb1sp7McBar3SmwdQ3zcvNwiYu61XUUrylmeGw4r1S9wvOuc3mi8lEy7Bl4t3op3lbMjOgM3pK3+Nbr3yJmYogRLvBcwIKPFjCRiZyZeSYvb36Z1ze/jtfm5ercq5nKVAjChPwJvFn3Jh9v+xhjDGO8Y5idM5shriEA7AzvZFHjIjb4N7ClfguFjkIudQ7jq/XP8NkbT+IN7ODamlpeyMzn+tevZ6h7KAsaFnCR5yimBJ5i26PfoqjkXX486Bx+64twzxf3ADDUPZRLCi5hSK5QVfY+AzLH84OMMSxsWMjywHJCgRCnpJ/C4SmHk+fc/QV1IlCbWsuq4CoqwhX47D7ynfkMcg0izW4FAn78uFPclIZK2RXZRWOsEa948dq8ZDoyybZn47V5iRAhGAtSE62hJlJDfbQeEcGOnVR7Kmm2NFLtqWRHIhzx+Y+wlxUTcmXha9zG3LE3sjAlnZ3hndRF63A6naR50shz5JHnzGNEQznDyj8lhrCu35Fs9eVSHa2mJlJDdbQaGza8NitPKbYUUmwpeG1eYsQImzCBWIDGWGPLczAWxCEOnOJsedjEhh07NmzEiBExESJErGcTIWqiLdsxYgiCiGBr/ic2DIaosb7oo0R3b0eiRIlvm+juYEeanwSDwW3cBOuDxEyM5n/N6aMmau1pPmZimPi/GDGM2b3dGGvkn4v+yWU5lzHaO3qP3ymhWIj36t7j7bq3iZkYM1JnMM03jUJXIQZDaaiUFYEVLCpdRHFJMV6bl2m+acxImcFQ99BWgUvMxCgLl7GhaQMbmzayIbiBqmjHv6rd4qafsx8FzgL6O/tT6CqkwFlAuj0dp+zZbypqogRjQYImSCAWsLZj8W0TpCnWhMvmwi1uPDYPHvHgtXlJs1uft/au2czv97f8jlTdr6fKO2ZivFLzCm+nCtNChttLVrH1nRdZmzlu3ye3o7sCn+Y+Nd9J2GeA/a+Tam07kLhAVFF8X3tpSkTEgfX3YGWbNBhj7gPuA8ganmWWhjfhsi/m6jk37nem3nUsgu2vMScrzLiZc/ZMsOIFomE/kE3h4ELmTElIEzmK4MP3MdwWYs6c+P433+Z5BOP1tux717MI1jzEzHwHYwsy+OKT7ZBZwKiJozi66BjuKf8/sup2MKf8YT5r2A7p+QyfMpnA2KHw/veZvO0VCqIGMvrjOOxUygPTkaX/YsZXb+eoZf9k6c7FLPS42RGr5lt1fs494VyKNxte2rmA8n65rHdE+UedYc7VD3Dn4ju5f9n9fOwEryed22f9nuMHn8jz65/nniX38Hz18xSkFPDNyd/k+IHHs7F2I3O3zeXzss/J8GYwzTGN0yafRszEWFu9lk21m2iKNjEuZRyXj7+cMdnWqKX1y9bz98WLqbXZ+Cgzh6P6z+Ck404CYKR/JK8//zp3Vt5JZbCSH0z/ASdOOLGlWFO2pfCTD39CijOFu4+9m4l5E1uOzWEO36j9BptrNzM9fzoZ7taddc/m7L3+vC/m4tY7di6Htc9w+OBUKG0EcXHnif/gxve/z4KGBVw+7nJ+OP0H8PA2Bm55GdzpjDrvtzyaUcSWui1EY1GGZiR+Ge3uknYCnVuPbG95Li4u3v3Z6iqHTYG3f4GzoQLO+D3Hjzub4zt5am9evKOrynrhzoX8dv5v+Wf5P7lkzCVcM/Eacr25NIYbeXH9i9y/7H4qAhWcPPhkbj7sZgaktt+/MBqL8mnpp7y88WXe3fouH/k/Iteby+D0wbhsLmpDtWyt24o/bM0CnOPJYXrRdCbnTWZE5gj6+frhiNdGlzaUsqVuC1vqtrC5djPra9bzWc1nre6X5kzDaXe2BHFN0SYCHS1e2UmpzlSyPdnkeHPI9mST6c7E6/DidXjZWbuT8fnjcdldOG1OHDZHu897O+awOUhxpuCyawfmfemW3yX7UB2s5hcf/YLiumLOH3U+Px13Dc5HziZn5R/g8v9B0fT9vmZ3TWDYXQuSfgaMjC94uh24CLikTZqXgCuAT4Dzgff21r8HoJ+jH9dOvJb/LP8PdaE60l3pe0u+h+qB02H7a2R/eCdMutTqAJ1o0UPYMwbitrv3/CXgcBF0evDU7YBYFBBY8SLuvAEEo7tnAG3MsUZZeVe9AiVLSBHrP2ljpBEAvyeNfL8TVr5IxqgTILyOmqYa6uKTF+YdfSu5Q+fgmHsdpQ2l7GzcSf+UQjx5Yzmm6BiKtxXz/3JzSLO5+EpDI/hy+dHhP+K8l8/j3RQf19TUMiff6tB749QbGZY5jHXV6/jqyK8yOH0wABeMuoCvjvgq5YFy8rx5LU1YY3PGcvqw01veS3FxMXNGzNlnuTb30n/p7L+wfcmdXDlgVsuxAakDuHjMxTy26jFGZI7g4rGtg5FjBx7LvK/Ns/6ilz17GQzLGMawjAONw+NyR1qrFG9fBNsXQ+EUphcewTvnv0NjpLGlPxAXPgqfPwrDjrUmJoOWsjvk5I6Ei5/s6Vz0WocVHMaTpz/JXxf+lSdWP8Hjqx4n15tLdVM1kViE6fnTue3Y2/Y5Z4ndZueoAUdx1ICjaAg38M6Wd/i09FO2+7fTGGkky53FpGGTGJczjun50xmYNrDDZqyhGUM5qvCoVvvqQnWsr17PptpNVAQqqApWEYlFWq7htrtJdaWS5kwjxZlCmmvPZ6/DSzASpDHcSEOkAX/IT12ojupgNVXBKiqDlVQFqqgKVrGlbgtfNH1BIBIgEAkQMzFeXvByl5S51+Elw51BpjuTDFcGGe7dj0x3JpnuTLI8WWR7ssnyZJHlzsLn3PtoQnVgPt7xMT//8OfUNNXwkxk/4eIxF1ufrctfgge/Ao+dC1e8Av0n7dd1u2sCQyfwbeCY+K5i4F/GmHCHJ3VCvM/ODVhLYNiB/xhjVojIb4CFxpiXgAeAR0VkPVCFFRzt0+yi2dy/7H7m75jPyUNO3q98VTXVAJAVqIU3fwpfvS/h4EbYWAzH/Qxf6SstgUqigM2ONxSAzfOsYZZ1JXjHHEWwasnuNDErCPJufB+iUVKmfR2q59EYjgc+kQCpo0+H408lI38MPH8qtaFaKgJW16bco27CZneS78tnZ+NOttRuafnS/cqQr/C3BX9hO0GuduThMevBl8PA9AG8cPYL7Pjftzms+n045iuAtTDrGcPOaLcs7DY7BSkF+1V+HZmQOwGHzcFfltwJwKzCWa2O33r4rZw0+CTGZI/B3U7/BXtHi+l1NYcbhh4LSx6HUAMcZdUa+py+1r8YU3Lg6JuSkyd1yPM5ffxi5i+4bNxlvLn5TXb4d5DtyeaYomOY2m/qfvezSXGmcPaIszl7xN5rNPdHuiudafnTOjVp3N6kOFPI8XY8OKQ9xhjeKX6Hw2YeRigaImIihKNhIrEI4Vjnn8OxcLyzf631x2JTHTVNNayrWUdtUy21TbVETbTdPHjsHisIigdCzdvZnuyW1821VFmeLNJd6do/qhP8IT93L7mbx1Y9xrCMYfzzxH+2tAQAkDEArngZHjwNHj0Xrn4Tctufu6w93dXUdQ/WwMl/xl9fFt/3jQO9sDHmNeC1Nvt+kbAdBC7Y3+tOzJ1Iuiudedvn7XfgUx2sJsWZgvvom+GDv8DEC62F2ADm/tHqVDj1Urzl77Zb7Rs0UTx2F3z6L2s0mcODp99YguXzMcYgIi3neadfA5Egvjk/hhdOpSFsdaGqD9eT6suDESeQEbH6z9Q21VLRWEGmOxOn3Won75/Sn23129hSt4XThllLM6S6UvnP4T9n8SvXc35a/JePz3oekDqAAWc/AOvfhkl7nRWgy3kdXk4ZcgqvbnyVIwqOYGD6wFbHReSAf+F2mTGnWWUEML5nF0hVvcvQjKF8a/K39p2wjxERnOIky9O1E3G2ZYzBH/a31EDVNNW0bFcHq6lu2r29uW4zVcGqDpv3HOIg0xOvOXJbNUeZ7szdtUhtgqZMd2by/oA7CMRMjJc3vMzfFv2NymAlF42+iJsPu7llUE8rWYOtpq7/nGwFP9e8Ben990zXju4KfA43xiTOJvSeiHzRTffqEg6bg1mFs5hXMo+YibXbPNKRymAlWe4sa66flS9a8/tc+pw1x8+yZ+CYWyC9EK/Du8d/iOa/OjwDj4DFL1k7j7oRd3wUV1O0CY/DszvwOfUPYHPii4+AaQg3EI1FCUQCpDqtWZ09Dg9uu5u6pjrKA+W7m1qA0dmjeXzV4wCMyto9hH5MwXTG1PuhaZ01RNWZsPxGah5MaduimBw3TbuJEZkjOGv4WT1y/06bdBFsnW81Ae1ntWtvEQ6HKSkpIRgM9nRWekxGRgarVq06oGt4PB6KiopwdmKCRdX9RIQ0VxpprjQGpQ/q1DnBSNAKjpriwVHzo6m6VdC0qmoVVcEq6kP17V7HIQ7yU/IpSCmgMKXQek4tpH9Kf/qn9qfAV9ArmtuMMXxQ8gH3fnEvyyuXMylvEnedcBcTcifs/cTcEfD1/8LDZ8JjX4WrXgPvvgPh7gp8oiIy3BizAUBEhmFNw3VQm100m9c3v86qylX7NSFSdbCabG+21eRxydPw0Blw/3HWwfyJcPTNgFV13dw01ax5CKp36HGQORmiITj6+3jXPw9Y/4GaA5/mTnqANVGhzUVjuLGlY2Jz4AOQ4cpoaerK8+4eBZRYXTgpL+EL2hcPjkJ+a86Qg0RBSgHfmHjAFYXdz+Vr3cTZB5WUlJCWlsaQIUP6bHV+fX09aWkdDavfN2MMlZWVlJSUMHRod3WVVN3N4/DQP9UKTjojHAtT21S7uxYpHhyVB8opbSil1F/KwrKF7GrctUezW5Y7i4KUAvqn9KcwtZABqQPon9qfAakDKEwt3O8+q8nkD/l5deOrPL32adZVr2NA6gB+f/TvOWPYGZ2vfBgwDS56HB6/AJ64CC57YZ9rn3VX4HMLMFdENmIN+BwMXNVN9+oyswbMQhA+KPlgvwKfqmAVhSnx+QSyh8G178Hy58FE4fBrW2pP2qvxaX7tcfrgmKtb9nvs1jnBqPXXc2O4cY/qvhRnCo2R3YFPmmv3L9wMTwa1TbWUB8oZmrH7F+iEnN0R9IjMhDZRp8eq6Qn5W5q5lNofwWCwTwc9XUFEyMnJoby8vKezopLIaXOS681tVTvfnkgsQnmjFQztaNjBzoad7PDvaBlx90npJ3t8x6Q6UylMLdwdFKXsDooKUwrJcGck9f9sVbCK+Tvm887Wd5hXMo9gNMiY7DH8btbvOG3YaS1/3O+XYXPgq/fDs1daj4se32vyLg18RMRhjIkYY94VkZFA8wQUa4wxTXs792CQ7clmUt4k5m6by7enfLvT51UHq1tXyaUVwMzr90jndXjZ1bir1b5gvD+Ox9F6Zffm183HA5HAHlWaPqePhrA1CgJ2L2MBkOnOpCJQsUeNz4isEdx6+K0UpRa1DFNtle/K9dazUl+CBj0HTstQdcRhc7TUJE1jz/6NxhhqmmrY0bCDHX7rsd2/nVJ/Kdv92/ls52ct/UKb+Ry+lsAo35ffMm1AtiebHE8O2V7reX9rjkLREJWBSjbWbmRt9VrWVq9lddVq1tesByDXm8s5I87hrOFnMSF3woF/7sefA423was3w0t7n5amq2t8FkDLT+Ovxpj9nxSnhx038DjuWHwHOxt2dmp0kjGG6mC11cdnH3wO3x6jujoMfNrU+AQigT1qfFoCn+amLtfupq4CXwGvb3qdiInQP6V1detl4y5rP4PZw6zAJ2/PCdOUUkod3ESkpZP0+Jw9Wy2MMdSF6loHRQ1WULTDv4PlFcupDla3mo28mUMc+Gw+sl7Iwm1343F48Ng9CGKNkjMRIrEIjeFGKoOVe/RbyvflMzJrJKcNPY0j+h/B+JzxXd9x+/BroLES5v5+r8m6OvBJDNlmdZjqIHb8oOO5Y/EdvLf1PS4Zu+8OvXWhOiImstflKpp5nV4C4dbVkM2BjdfeZnX2NjU+jZF2mrocKVYfn3iNT5pzd1NXQUoBEWMtjNjZdmb6jYV1b0HBxH2nVeogZLfbmThxIpFIhKFDh/Loo4+SmZnZZdcfMmQICxcuxOFw8MQTT3D99XvW7HbWQw89xMknn0xh4Zebdl+p/SUiLXMTjc0Z226aSCxCTVONNYdSoJKqYFXL9srNK8nMziQQDdAUaaIp2oTB4LA5cIsbh83BgNQBHOk5klxvLjneHAanD2ZU1qg9JortNsfcAg3lQAfL89D1gc9eJwo8FAzNGMqQ9CHM3Ta3U4FPdbAaoFNDKvfax6eDpq7m4+3V+KQ4U6x5JkK1AK0+WInBTtsanw4dcyuMPt1ahV6pQ5DX62XJkiUAXHHFFdx999387Gc/6/L71NTU8M9//vOAA58JEyZo4KMOKg6bY3d/ozZfa8X1xcw5dk5PZKvzRODUP7O3wKerF84dIyJLRWRZwvZSEVkmIku7+F7d5vhBx7Nw58KWWY/3piporWnTqRofh5fGSCOJE0nvq6mredRXIBLA52inj0+kgbomK5+JbbDDM4a3bHd6dmB3Kgw6wlo8ValD3MyZM9m+3VrRZsOGDZx66qlMnz6d2bNns3r1agCeffZZJkyYwOTJkznmGGu+1Yceeogbbrih5TpnnHHGHusT/fjHP2bDhg1MmTKFW265Bb/fzwknnMDs2bOZOHEi//vf/wDYvHkzY8eO5dprr2X8+PGcfPLJBAIB/vvf/7Jw4UK+/vWvM2XKFAKBA1vWQSmVYB/fYV1d49N+3dkh5riBx/Gf5f9hXsm8VksttKe5xqczgY/P4SNqooRj4ZZ1YZqbupoDnWZ7NHWFGylKbb3Kkc9hDY9vDtASR3VN6TeFQWmDyPHm6Bo0Kul+/fIKVu7Y9x8O+2NcYTq/PLNzoy2j0Sjvvvsu11xzDQDXXXcd9957LyNHjuTTTz/l+uuv57333uM3v/kNb775JgMGDKCmpqbTefnTn/7E8uXLW2qXIpEIL7zwAiJCU1MTRx55JGedZc09tW7dOp588knuv/9+LrzwQp577jkuvfRS7rrrLv76179y2GGH7Vc5KKUOTJcGPsaYLV15vZ4yKW8SOZ4c5m6bu8/AZ1fAGqW1r2GIQEtTVSAS2B34xAObts1YnW3qagw3UttUS5ozrVVHMZvYePKMJ9tdykGp3ioQCDBlyhS2b9/O2LFjOemkk/D7/Xz88cdccMHuCd2bmqya1FmzZnHllVdy4YUX8tWvfvkZt40x/PSnP6W4uBiHw8H27dspKysDYOjQoUyZMgWA6dOns3nz5i99H6XUgeuueXwOaTaxMWfgHN7Y/AahaGivNSa7GnfhEEenm7rAqr1p7o/TYR+f9pq62gxnT3enUx+upzpYTbp7z6GGB/PEVap362zNTFdr7uPT2NjIKaecwt13382VV15JZmZmS+1MonvvvZdPP/2UV199lenTp7No0SIcDgexWKwlTWdmon788ccpLy/ngw8+IDs7myFDhrSc53bv/uPDbrdrs5ZSPUw7c3Tg+EHH0xBuYMHOBXtNV9ZQRp4vr1PD8poDl8QOzvszj0/bGp8cjzXR4Oa6zRrkKJXA5/Nx5513ctttt+Hz+Rg6dCjPPvssYNXOfPGFtYLOhg0bOOKII/jNb35DXl4e27ZtY8iQISxZsoRYLMa2bdtYsGDP3wFpaWnU1+8erltbW0u/fv1wOp3MnTuXLVv2Xfnd9hpKqeTolsBHRL7XmX0HsyP6H4HX4aV4W/Fe0+1q3EU/X79OXTOxqatZh8PZ7bubuppXEG4b+DTXMm2u25y8oYJKHSKmTp3KpEmTePLJJ3n88cd54IEHmDx5MuPHj2/pfHzLLbcwceJEJkyYwFFHHcXkyZOZNWsWQ4cOZdy4cXz3u99l2rQ9J4rLyclh1qxZTJgwgVtuuYWvf/3rLFy4kCOPPJJHHnmEMWPG7HFOW1deeSXf+ta3tHOzUknWXU1dVwB/b7Pvynb2HbTcdjeHFxzOJzs+2Wu6ssayVot97k1LU1fCJIbBSBC72PeYRdlus+O2uwlEAi2BUttRXc2BTyAS0MBHKcDv97d6/fLLL7dsv/HGG3ukf/7559u9zuOPtz/lfWL/nCeeeKLVsU8++aTdtbqWL1/esv3DH/6wZfu8887jvPPOa/c+Sqnu06U1PiJysYi8DAwTkZcSHnOBqq68VzLM7D+TrfVb2e7f3u5xYwxljWWdrvFpDlwSa3wCkQAeh6fd6bpTnCk0hBtaJj30OtvU+Hh39ytqWStMKaWUUh3q6hqf+UApkAvclrC/Hjhk5vFpNrNwJgCf7PiE80edv8fxulAdgUigU0tbQAc1PtHgHkPZE9M3Rhpb0nfUxwegKK31UHellFJK7amrA5//GmOmi0ijMeb9rrywiPwfcCYQAjYAVxljatpJtxkr0IoCEWPMl54kY1jGMPp5+3UY+JT4SwD2mF+nI801NonLVgQjwT06NjfzOa15eppriNoGPonz9mjgo5RSSu1bVwc+NhH5KTBKRG5ue9AYc/sBXPtt4CfGmIiI/Bn4CfCjDtIeZ4ypOIB7Ada6JkcWHsn7Je8TjUX3GLm1rX4b0Pmgo7mpq20fn7YBTWL6xkhjh318bGJjWMYwNtZuZGDawM69KaWUUqoP6+pRXRdh1bQ4gLR2Hl+aMeYtY+KrblpNakmp4phZOJPaplpWV63e41hJvVXj09mgo71RXYFooMOmruaZmRvD7Td1ATx06kP8dtZvNfBRSimlOqGrZ25eA/xZRJYaY17vymu3cTXwdEfZAN4SEQP8yxhzX3uJROQ64DqAvLy8PdbiaRaLWhOZPf7R45yccXKrYwsqF5BmS2PBR3uf66clY8YgCKvXr6a40rpfWYU1u2t792+sbaQ8XM7CLxYCsGLJCmpcNXukyyST4pL2838w8vv9HZa36nrJKu+MjIw+Py9NNBrtkjIIBoP6f6QT9HdJcvWW8u7SwEdELjXGPAaME5E91u3aV1OXiLwDtNdT+GfGmP/F0/wMiADtjzeFo40x20WkH/C2iKw2xnzQTl7uA+4DGD16tJkzZ06H+Xr4pYfZ5d5F2zSPvPkIw73D99i/N74nfOQNyGPODOuce1+5lyxPVrvXePvDtynfWc6w0cOgAo6ZeUyvqNkpLi7erzJTByZZ5b1q1ao9hnInm91uZ+LEiUQiEYYOHcqjjz5KZmYmAKeeeirz58/n6KOP5pVXXumW+7c3nP3L8Hg8TJ06tQty1Lvp75Lk6i3l3dVNXSnx51T2bOZK3dfJxpgTjTET2nk0Bz1XAmcAXzeJS5y3vsb2+PMu4AVgxgG+J2b2n8niXYtbNVEZY1hXvY5hmcP261peh3ePmZs76uPTPKqrIdzQ8lop1bHmJSuWL19OdnY2d999d8uxW265hUcffbQHc6eUOhh0aeBjjPlX/PnXbR/AAS3VLCKnArcCZxljGjtIkyIiac3bwMnA8vbS7o+ZhTMJx8IsLlvcsm9L3RZqmmqYlDtpv67VHMw029twdp/Thz/sb1l9PcOlkxQq1VkzZ85k+/bdc3CdcMIJPV4jpZTqeclcpPRm4I4DOP8uwI3VfAUw3xjzLREpBP5tjDkNyAdeiB93AE8YY/acrnU/TcufhsfuYe62ucwaMAuAJeVLAJjSb8p+Xcvn8LU7gWF7MlwZRGIRyhrL8Dq8OO3OL5V/pZLu9R/DzmVde82CifCVP3UqaTQa5d133+Waa67p2jwopQ55yQx89pyaeD8YY0Z0sH8HcFp8eyMw+UDu0x6vw8uxA4/l7S1v8+MZP8Zhc7Bk1xLSXGkMzRi639dq29TVUeCT5ckCYFvdNl2EVKlOCAQCTJkyhe3btzN27FhOOumkns6SUuogk8zAp90+OYeKrwz9Cm9ufpP5pfM5esDRfFH+BZPyJmGT/Wst9Dq8LX12jDF7bepqXn9rS/0W0t0a+KhDSCdrZrpacx+fxsZGTjnlFO6++26++93v9khelFIHp65eq6teROraedQDh/RiUrMHzCbLncXDKx5mc+1mNtRsYGre/o+6SOzjE46FiZlYh52Ws9xWjc/Ohp1a46PUfvD5fNx5553cdtttRCKRfZ+glOozurpzc5oxJr2dR5oxJpm1S13OZXfxrcnfYn7pfK59+1q8Di/njdr/lZV9zt19fJqf3XZ3u2kzPZkt2xr4KLV/pk6dyqRJk3jyyScBmD17NhdccAHvvvsuRUVFvPnmmz2cQ6VUTzikg5Fku2jMRSyvWM780vncNP0mcr25+32NxD4+zTMyp7raH+mf6c5sd1sp1T6/39/q9csvv9yyPW/evGRnRyl1ENLAZz/YxMYfZv/hgK6RGPj4w9Yv6RRnSrtpE2t5BqQOOKD7KqWUUqrrJzBU+9Dc1BWNRVs6Oac626/xcdh2x6WD0gclJX9KKaVUb6aBT5I1BzkNkYZ91vgATM6zRudrjY9SSil14LSpK8mam6/8IX9L4NNRjQ/AHcfdwTNrnmF8zvik5E8ppZTqzTTwSbI0lzVlfn2onoZQvKmrg87NALneXK6fcn1S8qaUUkr1dtrUlWTNQU59qL5TTV1KKaWU6joa+CRZqxqfeOdmn8PXk1lSqtew2+1MmTKFCRMmcOaZZ1JTUwPAkiVLmDlzJuPHj2fSpEk8/fTTPZtRpVSP0cAnydKdVh+f+rBV4+Nz+LDb7D2cK6V6h+YlK5YvX052djZ33303YM3k/Mgjj7BixQreeOMNbrrpppagSCnVt2gfnyRrW+Ozt47NSqkvb+bMmSxduhSAUaNGtewvLCykX79+lJeXk5mZ2UO5U0r1FA18kizFZfXnqQ/V4w/5W14r1Zv8ecGfWV21ukuvOSZ7DD+a8aNOpY1Go7z77rtcc801exxbsGABoVCI4cOHd2n+lFKHBm3qSjKnzYnX4aUuVKc1Pkp1sUAgwJQpUygoKKCsrIyTTjqp1fHS0lIuu+wyHnzwQWw2/fWnVF90yNT4iMivgGuB8viunxpjXmsn3anA3wE78G9jzJ+SlslOyvHkUBWsoipYRZ4vr6ezo1SX62zNTFdr7uPT2NjIKaecwt133813v/tdAOrq6jj99NP5/e9/z5FHHtkj+VNK9bxD7U+evxljpsQf7QU9duBu4CvAOOBiERmX7EzuS643l4pABRWBii+10KlSau98Ph933nknt912G5FIhFAoxLnnnsvll1/O+eef39PZU0r1oEOmxqeTZgDrjTEbAUTkKeBsYGWP5qqNXG8uG2s3UhWsIseT09PZUapXmjp1KpMmTeLJJ59ERPjggw+orKzkoYceAuChhx5iypQpPZpHpVTyHWqBzw0icjmwEPiBMaa6zfEBwLaE1yXAEe1dSESuA64DyMvLo7i4uOtz24GmqiY2+jcCUF1STXFd8u59MPD7/Ukt774uWeWdkZFBfX19t99nb0pLS1vl4YknnmjZrqqq2iN9V+c3Go12yTWDwaD+H+kE/V2SXL2lvA+qwEdE3gEK2jn0M+Ae4LeAiT/fBlz9Ze9ljLkPuA9g9OjRZs6cOV/2Uvtt9RermbdkHgBHTDqCOUOSd++DQXFxMcks774uWeW9atUq0tLSuv0+B7P6+vouKQOPx8PUqVO7IEe9m/4uSa7eUt4HVeBjjDmxM+lE5H7glXYObQcGJrwuiu87qPTz9WvZ1qYupZRSKnkOmc7NItI/4eW5wPJ2kn0GjBSRoSLiAi4CXkpG/vbHpNxJLdtjs8f2YE6U6lrGmJ7OwiFPy1Cp7nXIBD7AX0RkmYgsBY4Dvg8gIoUi8hqAMSYC3AC8CawCnjHGrOipDHdkeObuidP2tjK7UocSj8dDZWWlfnEfAGMMlZWVeDyens6KUr3WQdXUtTfGmMs62L8DOC3h9WvAHkPdDyYiwpOnP6mTF6pepaioiJKSEsrLy/eduJcKBoMHHLR4PB6Kioq6KEdKqbYOmcCnt5mQO6Gns6BUl3I6nQwdOrSns9GjiouLtVOyUge5Q6mpSymllFLqgGjgo5RSSqk+QwMfpZRSSvUZoiMwQETqgTU9nY8+JBeo6OlM9CFa3smjZZ1cWt7JdSiV92BjTLurgGvnZssaY8xhPZ2JvkJEFmp5J4+Wd/JoWSeXlndy9Zby1qYupZRSSvUZGvgopZRSqs/QwMdyX09noI/R8k4uLe/k0bJOLi3v5OoV5a2dm5VSSinVZ2iNj1JKKaX6DA18lFJKKdVn9PnAR0ROFZE1IrJeRH7c0/npzURks4gsE5ElIrKwp/PT24jIf0Rkl4gsT9iXLSJvi8i6+HNWT+axN+mgvH8lItvjn/ElInLa3q6hOkdEBorIXBFZKSIrROR78f36+e4GeynvXvH57tN9fETEDqwFTgJKgM+Ai40xK3s0Y72UiGwGDjPGHCoTYB1SROQYwA88YoyZEN/3F6DKGPOneGCfZYz5UU/ms7fooLx/BfiNMX/tybz1NiLSH+hvjFksImnAIuAc4Er0893l9lLeF9ILPt99vcZnBrDeGLPRGBMCngLO7uE8KfWlGGM+AKra7D4beDi+/TDWLy/VBToob9UNjDGlxpjF8e16YBUwAP18d4u9lHev0NcDnwHAtoTXJfSiH+5ByABvicgiEbmupzPTR+QbY0rj2zuB/J7MTB9xg4gsjTeFadNLFxORIcBU4FP0893t2pQ39ILPd18PfFRyHW2MmQZ8BfhOvKlAJYmx2rX7btt2ctwDDAemAKXAbT2am15GRFKB54CbjDF1icf089312invXvH57uuBz3ZgYMLrovg+1Q2MMdvjz7uAF7CaGlX3Kou31ze32+/q4fz0asaYMmNM1BgTA+5HP+NdRkScWF/Cjxtjno/v1s93N2mvvHvL57uvBz6fASNFZKiIuICLgJd6OE+9koikxDvJISIpwMnA8r2fpbrAS8AV8e0rgP/1YF56veYv4bhz0c94lxARAR4AVhljbk84pJ/vbtBRefeWz3efHtUFEB+OdwdgB/5jjPl9z+aodxKRYVi1PAAO4Akt664lIk8Cc4BcoAz4JfAi8AwwCNgCXGiM0Q65XaCD8p6D1QxggM3ANxP6oKgvSUSOBuYBy4BYfPdPsfqd6Oe7i+2lvC+mF3y++3zgo5RSSqm+o683dSmllFKqD9HARymllFJ9hgY+SimllOozNPBRSimlVJ+hgY9SSiml+gwNfJRSBy0RyUlYCXpnwsrQfhH5Zzfd8yYRuXwvx88Qkd90x72VUt1Ph7MrpQ4JyVj5XEQcwGJgmjEm0kEaiaeZZYxp7K68KKW6h9b4KKUOOSIyR0ReiW//SkQeFpF5IrJFRL4qIn8RkWUi8kZ86n1EZLqIvB9fJPfNNrPQNjseWNwc9IjId0VkZXxRxqegZU2oYuCMpLxZpVSX0sBHKdUbDMcKWs4CHgPmGmMmAgHg9Hjw8w/gfGPMdOA/QHszh88CFiW8/jEw1RgzCfhWwv6FwOwufxdKqW7n6OkMKKVUF3jdGBMWkWVYy8+8Ed+/DBgCjAYmAG9bLVXYsVaXbqs/sCrh9VLgcRF5EWv5j2a7gMKuy75SKlk08FFK9QZNAMaYmIiEze7OizGs33MCrDDGzNzHdQKAJ+H16cAxwJnAz0RkYrwZzBNPq5Q6xGhTl1KqL1gD5InITAARcYrI+HbSrQJGxNPYgIHGmLnAj4AMIDWebhSH6MrUSvV1GvgopXo9Y0wIOB/4s4h8ASwBjmon6etYNTxgNYc9Fm8++xy40xhTEz92HPBqd+ZZKdU9dDi7UkolEJEXgFuNMes6OJ4PPGGMOSG5OVNKdQUNfJRSKoGIjAbyjTEfdHD8cCBsjFmS1IwppbqEBj5KKaWU6jO0j49SSiml+gwNfJRSSinVZ2jgo5RSSqk+QwMfpZRSSvUZGvgopZRSqs/QwEcppZRSfYYGPkoppZTqMzTwUUoppVSfoYGPUkoppfoMDXyUUkop1Wdo4KOUUkqpPkMDH6XUAROROSJS0tP5aEtEVojInJ7Oh1Lq4KGBj1K9jIgUi0i1iLh7Oi89zRgz3hhTvD/niMgQETEi4o8/ykTkFRE5qZuy2VE+NotIICEffhEpTGYelOqNNPBRqhcRkSHAbMAAZx3AdRxdladDWKYxJhWYDLwNvCAiV7aXsBvL60xjTGrCY8f+nKw/R6X2pIGPUr3L5cB84CHgisQDIlIoIs+JSLmIbBKR7yYc+5WI/FdEHhOROuDKePqXRKRKRNaLyLUJ6b0i8lC8ZmklcHjCsVtE5Lk2975TRP4e3y4Wkd+KyEciUi8ib4lIbkLaZ0Vkp4jUisgHIjI+4dhDIvJPEXk9XgPykYgUiMgd8bysFpGpCek3i8iJ8W27iPxURDbE77tIRAbuq0CNMTuNMX8HfgX8WURsCdf+kYgsBRpExCEiP064/koROTchL3YRuU1EKuLlf0O8Zmm/ghMRccff7474447m2r3mJsd4vnYCD+7tfYvIGBF5O/4zXiMiF+5PXpQ6FGngo1TvcjnwePxxiojkA8S/rF8GvgAGACcAN4nIKQnnng38F8iMn/8UUAIUAucDfxCR4+NpfwkMjz9OoXWQ9Rhwqohkxu/tAC4CHklIcwlwFdAPcAE/TDj2OjAyfmxxPC+JLgR+DuQCTcAn8XS58fzf3kHZ3AxcDJwGpANXA40dpG3P8/E8jU7YdzFwOlbtUATYgFXjlgH8GnhMRPrH014LfAWYAkwDztmPeyf6GXBk/DqTgRlY5dGsAMgGBgPX0cH7FpEUrJqsJ+Lv6yLgnyIy7kvmS6lDgzFGH/rQRy94AEcDYSA3/no18P349hHA1jbpfwI8GN/+FfBBwrGBQBRIS9j3R+Ch+PZG4NSEY9cBJQmvXweujW+fAaxMOFYM/Dzh9fXAGx28p0ysZruM+OuHgPsTjt8IrEp4PRGoSXi9GTgxvr0GOLsT5Tgkfk9Hm/2e+P5ZCde+eh/XWtJ8T+A94JsJx05s7z5t8u4HauKPF+P7NwCnJaQ7Bdgc354DhABPwvF23zfwNWBem33/An7Z059lfeijOx9a46NU73EF8JYxpiL++gl218QMBgpFpKb5AfwUyE84f1vCdiFQZYypT9i3Bau2qPn4tjbHEj0MXBrfvhR4tM3xnQnbjUAqtDQH/SneLFOH9eUPVm1Os7KE7UA7r1Np30CsoOHLan7vVQn7EssAEblcRJYklPEEdue9bZm1OrcD5xhjMuOPcxKuk1jeW+L7mpUbY4IJrzt634OBI9p8Jr6OVWOkVK+lHd+U6gVExIvVBGSP9+0AcAOZIjIZ60t2kzFm5F4uYxK2dwDZIpKWEPwMArbHt0uxvlBXJBxL9CJwj4hMwKrxubWTb+USrCa3E7GCngygGpBOnr8327Ca5pZ/yfPPBXZh1aA0aykzERkM3I/VjPiJMSYqIkvYnfdSoCjh3H32L+rADqygJbHsEzs9mzbpO3rf24D3jTFJHa2mVE/TGh+leodzsJqmxmH1/ZgCjAXmYfX7WQDUxzu9euM1KxNE5PD2LmaM2QZ8DPxRRDwiMgm4Bqv/DsAzwE9EJEtEirCanBLPD2L1t3kCWGCM2drJ95GG1W+nEvABf+jkeZ3xb+C3IjJSLJNEJGdfJ4lIvojcgNWv6SfGmFgHSVOwgo7y+HlXYdX4NHsG+J6IDIj3f/rRl3wfTwI/F5G8eKfwX7D759Kejt73K8AoEblMRJzxx+EiMvZL5kupQ4IGPkr1Dldg9dfZaqxRSDuNMTuBu7CaLwSr5mUKsAmowPpCzNjLNS/G6u+yA3gBq+/HO/Fjv8ZqYtkEvMWeTVlgNXdN7OBYRx6JX3c7sBJrhFpXuR0r+HgLqAMeALx7SV8jIg3AMqyOwRcYY/7TUWJjzErgNqzO1mVY7/2jhCT3x++9FPgceA2IYAWs++N3wML4dZZhdez+3V7St/u+4zV5J2N1at6B1fz4Z6yaQqV6LTGmba2oUkodOBEZhNXBusAYU9fT+TnYiMhXgHuNMYN7Oi9K9SVa46OU6nLx4fM3A09p0GOJNzGeFp/vZwBW09kLPZ0vpfoarfFRSnWp+PwwZVhNVqfG+wv1eSLiA94HxmCNPnsV+J4GhkollwY+SimllOoztKlLKaWUUn2GzuMDZGZmmhEjRvR0NvqMhoYGUlJSejobfYaWd/JoWSeXlndyHUrlvWjRogpjTF57xzTwAfLz81m4cGFPZ6PPKC4uZs6cOT2djT5Dyzt5tKyTS8s7uQ6l8haRtrPJt9CmLqWUUkr1GRr4KKWUUqrP0MBHKaWUUn2G9vHpYzaW+/nlSytYsq2G3FQ3J47txyVHDGZo7qHRYU0ppZQ6EFrj04fsqAlw/r2fsHx7LWdPKWRobgoPfrSZE29/n1+/vIJAaH+XDFJKKaUOLVrj04f85uWVNIYivPrd2QzPSwVgV32QO95Zx0Mfb+aTDZXce+l0hmjtj1JKqV5Ka3z6iEVbqnhjxU5uPH5kS9AD0C/Nwx/OnciDVx7Ozrog59/7CevK6nswp0oppVT30cCnj3jkky2keRxcNWtIu8fnjO7Hf781ExG46L75bCj3JzeDSimlVBJo4NMHVPqbeH3ZTs6bVoTP1XHr5oh+aTx93ZEAXPPQZ9Q0hpKVRaWUUiopNPDpA95aWUYoGuPCwwbuM+2wvFT+ddl0dtQEuf7xxUSisSTkUCmllEoODXz6gHdWllGU5WVs/7ROpT9sSDa/P3cCH2+o5J/FG7o5d0oppVTyHPSBj4gMFJG5IrJSRFaIyPfi+7NF5G0RWRd/zorvFxG5U0TWi8hSEZnWs++gZwVCUT5cX8GJY/MRkU6fd8FhAzl7SiF/f3cdn2+t7sYcKqWUUslz0Ac+QAT4gTFmHHAk8B0RGQf8GHjXGDMSeDf+GuArwMj44zrgnuRn+eDx4foKmiIxThqXv9/n/ubsCRSke7jp6SU0NEW6IXdKKaVUch30gY8xptQYszi+XQ+sAgYAZwMPx5M9DJwT3z4beMRY5gOZItI/ubk+eHy4rhyfy87hQ7L3+9wMr5PbL5zM1qpGfvXSim7InVJKKZVch9QEhiIyBJgKfArkG2NK44d2As1VGgOAbQmnlcT3lSbsQ0Suw6oRIi8vj+Li4m7Ld0+auzzA0DT4+MMPvvQ1zhjm5NlFJeRGyjmi/4F/ZPx+f68t74ORlnfyaFknl5Z3cvWW8j5kAh8RSQWeA24yxtQl9lcxxhgRMftzPWPMfcB9AKNHjzZz5szpwtweHOqCYUrefIvvnjCSOXNGfenrzJodo+Rfn/DYGj+XnHIUA7N9B5Sv4uJiemN5H6y0vJNHyzq5tLyTq7eU90Hf1AUgIk6soOdxY8zz8d1lzU1Y8edd8f3bgcRx20XxfX3O51triBm+VDNXIqfdxt+/NhVj4Kanl+gQd6WUUoesgz7wEatq5wFglTHm9oRDLwFXxLevAP6XsP/y+OiuI4HahCaxPmXh5irsNmHKwMwDvtagHB+/P3cCi7ZU84/31h945pRSSqkecCg0dc0CLgOWiciS+L6fAn8CnhGRa4AtwIXxY68BpwHrgUbgqqTm9iDy2eYqxhemk+Lumh/z2VMG8P6acv7x3jqOGJbNUcNzu+S6SimlVLIc9IGPMeZDoKMJaE5oJ70BvtOtmToEhCIxlmyr4ZIZg7v0ur85ZwJflNTw3Sc/55UbZ1OQ4enS6yullFLd6aBv6lJfzvIdtQTDMQ4fktWl1011O/jXZdNpDEW5/vFFhCLa30cppdShQwOfXur9NeWIwIyhB9axuT0j+qXxl/MnsXhrDX94bVWXX18ppZTqLhr49ELGGF5fXsr0QVnkpLq75R5nTCrk6llDeejjzbz0xY5uuYdSSinV1TTw6YWWltSytszPudMGdOt9fnLaGA4bnMWPn1vKurL6br2XUkop1RWSEviIyEwRuTu+aGi5iGwVkddE5DsikpGMPPQlzyzchtth48zJhd16H6fdxt1fn4bP5eCbjy3Cr+t5KaWUOsh1e+AjIq8D3wDeBE4F+gPjgJ8DHuB/InJWd+ejrwiGo7z0xQ5Om9ifdI+z2++Xn+7hrkumsqWykesfX0wwHO32eyqllFJfVjJqfC4zxlxjjHnJGLPDGBMxxviNMYuNMbcZY+YAHychH33Cmyt2Uh+McMH0oqTd88hhOfzh3AnMW1fOxffPZ0dNIGn3VkoppfZHtwc+xpiKrkijOufZhSUUZXk5clhOUu/7tcMHcfcl01hX5uf0O+cxd/WufZ+klFJKJVkymro2icjGhEfi6w3dff++pKS6kY82VHD+9CJsto7mfOw+p03sz0s3zCI/3cNVD33GH19fRVjX9VJKKXUQSUZT12HA4QmPGcBtWLMxL0nC/fuM5xZZa7Gen8RmrraG5aXy4ndm8fUjBvGv9zdy0X3z2a5NX0oppQ4SyWjqqjTGVALVwBnAXGAmcLox5rzuvn9fEYsZnl20jaOG51CU5evRvHicdn5/7kT+cfFU1uys57S/z+PtlWU9miellFIKktPU5RSRbwIrgdnAOcaYS40xK7v73n3J/E2VlFQHuPCwgT2dlRZnTi7klRuPZmC2l2sfWcivXlpBU0RHfSmllOo5yVikdBMQAe4AtgKTRGRS80FjzPNJyEOv9+zCEtI8Dk4ZX9DTWWllSG4Kz337KP70+moe/GgzC7dUcekw7fejlFKqZyQj8HkHMMDk+CORATTwOUB1wTCvLy/lvGlFeJz2ns7OHtwOO788czxHDc/lh89+wa92hpF+W7nwsIGIJL8TtlJKqb6r2wMfY8yV3X2Pvu6VL0oJhmNccBA1c7XnpHH5vP692VxzXzE/em4Z76zaxZ++OrHb1hNTSiml2kpGH59LRaTD+4jIcBE5ei/H/yMiu0RkecK+X4nIdhFZEn+clnDsJyKyXkTWiMgpXfdODl7PLtrGqPxUJhcd/Kt/FGZ6ueVwDz8/fSzvrynnlDvm8d5q7fislFIqOZLR1JUDfC4ii4BFQDnWUhUjgGOBCuDHezn/IeAu4JE2+/9mjPlr4g4RGQdcBIwHCoF3RGSUMabX9qhdv6uez7fW8PPTxx4yzUY2Eb4xexhHj8zlpqeWcPVDC/n6EYP42elj8bmS8ZFUSinVVyVjOPvfgWnAk0AecEL89Xas5SzOM8as28v5HwBVnbzd2cBTxpgmY8wmYD3WvEG91rMLS3DYhHOmdu9K7N1hTEE6/7thFtcdM4wnFmzl9Ds/ZOHmzv6olVJKqf2XlD+v4zUub8cfXeUGEbkcWAj8wBhTDQwA5iekKYnv65Ui0RjPLd7O8WP6kXuI9pNxO+z89LSxHDe6Hz989gsu+NcnXDFzCLeeOlprf5RSSnU5Mcb0dB72SUSGAK8YYybEX+djNZEZ4LdAf2PM1SJyFzDfGPNYPN0DwOvGmP+2c83rgOsA8vLypj/zzDNJeS9daWVllL98FuQ7U9wcXnDoBAl+v5/U1NQ99gcjhmfXhnh3a4Q8r3DVBDfjcg6+UWqHmo7KW3U9Levk0vJOrkOpvI877rhFxpjD2jt26HxbJjDGtPSGFZH7gVfiL7cDiUObiuL72rvGfcB9AKNHjzZz5szplrx2p7deWIbPtZ0bvnocXtehEyAUFxfTUXmfeiIs2FTFj55byl8+a+DiGYP4yWljSPc4k5vJXmRv5a26lpZ1cml5J1dvKe9krNXV5USkf8LLc4HmEV8vAReJiFtEhgIjgQXJzl8yRKIx3li+kxPG5h9SQU9nzBiazevfm803jxnG059t5ZS/faCrvSullOoSSQt8RCRfRB4Qkdfjr8eJyDWdOO9J4BNgtIiUxM/5i4gsE5GlwHHA9wGMMSuAZ7CWx3gD+E5vHdE1f2MVVQ0hTp/Yf9+JD0Eep52fnDaW56+fRZrHwVUPfcZ3Hl/MztpgT2dNKaXUISyZTV0PAQ8CP4u/Xgs8DTywt5OMMRe3s7vDc4wxvwd+/+WyeOh4ddkOUlx25ozO6+msdKspAzN5+cajuf+DjfzjvfUUr9nFzSeP5oqZg3HYD8kKS6WUUj0omd8cucaYZ4AYgDEmAvTK2pjuFo43c504Lv+gXKKiq7kddm44fiRvf/9YZgzN5revrOTMuz5i0Zbqns6aUkqpQ0wyA58GEcnBGomFiBwJ1Cbx/r3GJxsqqW4Mc1ovbebqyKAcH/+58nDuvXQaNY0hzrvnY37y/FJqGkM9nTWllFKHiGQ2dd2M1fl4uIh8hDWZ4flJvH+v8erSUlJcdo4d1bubudojIpw6oT+zR+Zxxztr+c9Hm3lzRRk/OnU0F0wfiM12aMxerZRSqmckrcbHGLMYa4mKo4BvAuONMUuTdf/eIhyN8caKnZzUR5q5OpLidvCz08fx6nePZnheCj96bhlfvedjlpVoJaJSSqmOJXNU13eAVGPMCmPMciBVRK5P1v17i4/WV1AbCHP6pMKezspBYUxBOs98cya3XziZkuoAZ939IT99YZk2fymllGpXMvv4XGuMqWl+EV9i4tok3r9XePmLUtLcDmaPzO3prBw0RISvTivivR8ey5VHDeGpBVs58fYPeH1ZaU9nTSml1EEmmYGPXRKWDxcRO+BK4v0PecFwlLdW7OSUCQV9upmrI+keJ788czwv33g0+eluvv34Yr792CJ21evcP0oppSzJDHzeBJ4WkRNE5ASs1drfSOL9D3nFa3ZR3xThrMnazLU34wszePE7s7j11NG8u3oXJ93+Af9dVMKhsC6dUkqp7pXMwOcW4D3g2/HHu8CtSbz/Ie/lL0rJSXFx1PCcns7KQc9pt3H9nBG89t3ZjOyXyg+f/YIrHvyMkurGns6aUkqpHpSUwCferLXKGHOvMeb8+ONfvXU5ie7gb4rwzqoyTpvYX2cs3g8j+qXyzDdn8uuzxrNwcxUn3v4+d723jqaIfvSUUqovSso3aDzAWSMig5Jxv97o7ZU7aYrEOGuKNnPtL5tNuOKoIbx987EcN7off31rrbXw6Rpd+FQppfqaZFYdZAErRORdEXmp+ZHE+x/SXv6ilMIMD9MHZfV0Vg5ZAzK93HPpdB65egY2m3DVg5/xjYcXsrVSm7+UUqqvSObMzf8viffqVaobQnywtpyrjx6qMxN3gWNG5fHG947hPx9t4s5313Hi397nm8cM45vHDifVncz/EkoppZItmTM3vw+sBtLij1XxfWofXlteSiRmOFMnLewyLoeNbx07nPd+MIdTxxfwj/fWM+f/5vLY/C1EorGezp5SSqluksyZmy8EFgAXABcCn4qIrtXVCc8tKmFkv1QmDEjv6az0OgUZHu68eCovfmcWw3JT+fmLyzn17/N4d1WZDn9XSqleKJl9fH4GHG6MucIYczkwA23+2qcN5X4Wb63h/OlFJMz/qLrYlIGZPP3NI/nXZdOJxQzXPLyQi++f///Zu+/4uur68eOv990rezZJ9y7dLbtAGZUhUmUpgoqiiAsXCqJ+UUB/OFBBVGRvEARkjwINs4UOSlu6R9omTbPXzd33fn5/nJPkpk3atE3vbZPP8/G4j3PumZ/7yUnuO5/J8u1N6U6apmma1o9SGfhYlFLJ3Wga+nJ/EblPRGpFZHXStlwRWSAiG81ljrldROR2EdkkIitFZGb/f4zUenpZJVaL8IUZpelOyoAnIpx5VDGv/fhkbpx/FBtr/Jz/zw/4xgNLWF2lJz/VNE0bCFIZ+LwqIq+JyOUicjnwEvByH857ADhrt23XAW8qpcZiDIR4nbn9bGCs+boS+Fc/pDtt4gnFM8urOGVcAYWZrnQnZ9CwWy189fgRvPPzU/nZmeNZtq2Jc//+Hlc9vIz1u9rSnTxN0zTtIKSycfPPgH8DU83XXUqpa/tw3jtA426b5wMPmusPAp9P2v6QMiwGskVkSD8kPy3e31TPrtYQF84qS3dSBiWv08b3Th3Du9eeyg9PH8t7m+o567Z3uPrxj9lYowMgTdO0I5Ec6gacIvJ7pdT15vo8pdSCA7jGCOBFpdRk832zUirbXBegSSmVLSIvArcopd4z970JXKuUWtrDNa/EKBWioKBg1pNPPnlAn+9QuvOTEKvq4/ztVA/2AdSN3e/34/P50p2M/eaPKF7ZGmXB9iiROMwqsvLZUXZGZR3eE8Yeqfl9JNJ5nVo6v1PrSMrvU089dZlSanZP+1IxaMlZwPXm+h+A/Q589kYppURkv6M3pdRdwF0A48ePV3Pnzu3PZB20lmCUj994gy8ePZx5p01Od3L6VXl5OYdbfvfVuUBje4QHPqjggfe3cuOiECeNzee7c8dw3Kjcw7IB+pGc30candeppfM7tQZKfh+pkz7VdFRhmcuORtNVwNCk48rMbUecF1fuJBxL6Gquw1Cu18FP5o3j/etO4xdnT2BtdRuX3L2Y8//1AW+s0d3gNU3TDmepKPEpFJGfAJK03kkp9ZcDuObzwNeAW8zlc0nbvy8iTwDHAi1KqeoDTnmaKKV47MPtTCjOYEppVrqTo/Uiw2Xn26eM5msnjOCpZZX8++3NfPOhpYwp9PGNE0dy/sxSXPbDuxpM0zRtsElFic/dGCM1+5LWk197JSKPA4uA8SJSKSJXYAQ880RkI3CG+R6MXmJbgE3mvb7bvx8lNVZWtvDpzlYuPW74YVl1onXnslv5ynHDWXjNXP76xWk4bRauf3YVx/+/N/nTa+uoaQ2lO4mapmma6ZCX+CilfnuQ51/Sy67TezhWAd87mPsdDh5ZvA2Pw8rn9UzsRxS71cIXZpTx+emlfLS1kXvf28o/yzfz77e3cO7UIVwxZxRTynQJnqZpWjrpGRkPMy2BKC+s3MkXZpSR4bKnOznaARARjh2Vx7Gj8tjeEOD+D7by5JId/G/FTmYNz+HLxwzjs1OH6GowTdO0NDhSGzcPWM98XEkomuDSY4elOylaPxiW5+GGzx3FoutP51efnUhje4SfPvUJx/7+TW58YQ2bav3pTqKmadqgokt8DiNKKR79cDvTh2YzWTdqHlAyXXa+edIorpgzkkWbG3j0o+08vLiC+97fyrEjc/nyscM4a3IxTpsuBdI0TTuUUhb47N6by9QCLFNKrUhVOg5nH2xuYFOtnz9dODXdSdEOERHhhDH5nDAmn7q2ME8t28HjH23nh0+sINtjZ/60Ei6cNZTJpZm6YbumadohkMoSn9nm6wXz/bnASuAqEXlKKfXHFKblsHT3u1vI9zn43DTdqHkwKMhw8t25Y7jq5NG8t6meJ5fu4PElO3hw0TbGF2Vw4awy5s8ooTBDz9OmaZrWX1IZ+JQBM5VSfgARuQFjotKTgWXAoA58Nta0Ub6+jp/MG6cbvQ4yFotw8rgCTh5X0Nm4/enllfzu5bXc8uo65o4r4IJZZZw2oVA/G5qmaQcplYFPIRBOeh8FipRSQREJ93LOoHHPu1tx2S1cdtzwdCdFS6Msj53LjhvOZccNZ1Otn6eXV/LM8kreXFeLz2njM5OK+Nz0EuaMycdu1X0TNE3T9lcqA59HgQ9FpGOU5c8Bj4mIF1iTwnQcdurawjz7cRUXH11GrteR7uRoh4kxhT6uPWsC13xmPIs2N/D8J1W8snoXz3xcRY7HztlThnDetBKOGZGLZQBNYqtpmnYopSzwUUrdJCKvAieYm65KmjX90lSl43D08KIKookEV8wZle6kaIchq0WYMzafOWPzuenzk3lnQz3Pf7KTZ5dX8diH2ynKdPLZKSWcNbmYWcNzsOogSNM0rVcp7c6ulFoiItsAF4CIDFNKbU9lGg43/nCMhxZv44yJRYzM96Y7OdphzmmzMm9SEfMmFRGIxHhjbS3Pr9jJI4u3cd/7W8n3OZg3qYgzjyrmhNH5OGy6OkzTNC1ZKruznwfcCpRgzKY+DFgHHJWqNByOHlm8jeZAlO+dOibdSdGOMB6HjfOmlXDetBLaQlHK19fx2qe7eH7FTh7/aAcZThunTSykjBizQlE9ErimaRqpLfG5CTgOeEMpNUNETgUuS+H9DzuBSIy739nCyeMKmD40O93J0Y5gGS47n5tWwuemlRCKxvlgcz2vrt7FG2traWyP8O+VCzh6RC6nTijgtAmFjC7w6XGCNE0blFIZ+ESVUg0iYhERi1JqoYj8LYX3P+w89uF2Gtoj/PB0Xdqj9R+X3cppE4o4bUIRsXiCe59bSLOnlIXravn9y+v4/cvrKMtxc+r4Qk6bUMhxo/JwO3Q3eU3TBodUBj7NIuID3gEeFZFaoD2F9z+shKJx/v3OFk4Ynces4bnpTo42QNmsFsbnWpk7dwLXnjWBnc1BFq6vZeG6Ov67rJKHF2/DabNw7Kg8ThpjNKAeX5She4lpmjZgpTLwmQ8EgR9j9OLKAm5M4f0PK098tJ26tjB/v2RGupOiDSIl2W4uPXY4lx47nFA0zkdbG3lrXS3vbqzjdy+vBSDf5+CE0UYQNGdMPiXZ7jSnWtM0rf+kJPARESvwolLqVCABPNhP160A2oA4EFNKzRaRXOA/wAigArhYKdXUH/frL8FInH+Wb+aYEbkcNyov3cnRBimX3do5YjRAdUuQ9zbW8/6met7b1MDzn+wEYFSBlzlj8jlxTD7Hjswl26PHmtI07ciVksBHKRUXkYSIZCmlWvr58qcqpeqT3l8HvKmUukVErjPfX9vP9zwo972/ldq2MHd8eWa6k6JpnYZkublo9lAumj0UpRTra9o6A6H/LqvkoUXbEIHxRRkcOzKXY0flcfSIXAoynOlOuqZpWp+lsqrLD6wSkQUkte1RSl3dz/eZD8w11x8EyjmMAp+m9gh3lm/mjImFHDNSt+3RDk8iwoTiTCYUZ/LNk0YRiSVYsaOZD7c08FFFI08ureTBRdsAGF3g5ZiReRw3KpdjRuYyJEtXjWmadvgSpVRqbiTytZ62K6UOuNpLRLYCTYAC/q2UuktEmpVS2eZ+AZo63u927pXAlQAFBQWznnzyyQNNxn55fF2Y1yti3HSim7KMwTm4nN/vx+fzpTsZg8ahyO9YQrGtNcH6xjjrmhJsbIoTjBn7CtzC+FwrY7ItjMm2UuITLIOk67x+tlNL53dqHUn5feqppy5TSs3uaV/KAh8AESkAUErV9dP1SpVSVSJSCCwAfgA8nxzoiEiTUipnb9cZP368Wr9+fX8kaa8qmwKc9ue3mT+9hD9dNO2Q3+9wVV5ezty5c9OdjEEjFfkdTyjWVrfy4dZGPtzSwJKKRpoCUQAynDamD8tmxrAcZprLLPfAHExRP9uppfM7tY6k/BaRXgOfQ17VZZa63AB8H7CYm2LA35VSB9WrSylVZS5rReRZ4BigRkSGKKWqRWQIxijRh4U/vroeEfjxvHHpToqm9SurRZhcmsXk0iyumDMSpRQVDQGWb2ti+fYmlm9v5o63NpIw/88aU+hj5rBsZg7LYfqwbMYU+LDp2eY1TUuBVLTx+TFwInC0UmorgIiMAv4lIj9WSv31QC5qzupuUUq1meufwege/zzwNeAWc/lc71dJHWN27Z1cfdoY3T1YG/BEhJH5Xkbme7lgVhlgzEu3ckdzZyC0YE0NTy6tBMBlt3BUSRZTSo3X1LIsRhX49ISrmqb1u1QEPl8B5iX3vFJKbRGRy4DXgQMKfIAi4Flz2H0b8JhS6lURWQI8KSJXANuAiw8q9f0gGk/wf8+tpizHzXf1nFzaIOVz2jhhTD4njMkHQCnF1vp2VlW1sLKyhVWVLTy5dAcPfFABgMdhZXKJUYo0tSyLKWVZjMzz6sEVNU07KKkIfOy7dTcHjHY+InLAFf1KqS3AHg1llFINwOkHet1D4f73t7Kx1s89X52Ny66nBtA0MEqFRhX4GFXgY/70UsBoK7Slzm8EQlXG67GPtnHf+wkAvA4r44szmDgks/M1oTgDrzOVHVQ1TTuSpeKvReQA9w0I1S1B/vbGRk6fUMgZk4rSnRxNO6xZLcLYogzGFmV0VpHF4gk2mcHQmp2trKlu5flPdvLoh9s7zxue52FicUcwZARGZTluPRGrpml7SEXgM01EWnvYLoArBfdPG6UU1z+zioRS3PC5o9KdHE07Itmsls4xhToopahqDrK2uo111a2s3dXK2uo2Xluzi46OqhlOGxOGGEHUuEKfEVAV+ijIcOqASNMGsUMe+CilBm3dzlNLK1m4vo4bPjeJYXmedCdH0wYMEaEsx0NZjod5SSWp7eEY62vaWFfdxtrqVtbtauWlldU8Fox2HpPpsnUGQWOSAqIhWS4dEGnaIKArxg+RquYgN724hmNH5vK140ekOzmaNih4nTZmDsth5rCuobuUUtT7I2ysbWNTrZ8NNW1srPGzYE0NTyzZ0Xmcz2ljdKGPMQU+RhV4O3uljcjz4nYM2v/fNG3A0YHPIRCLJ/jxf1YQV4o/XThN90LRtDQSEQoynBRkODlhdH63fQ3+MJtq/Wys9ZvLNt7bVMfTyyu7HVeS5WJEflcwNKrACIiG5nqw6/GHNO2IogOfQ+Cvb2zgo62N/PWL03QVl6YdxvJ8TvJ8To4dlddte3s4RkVDO1vr29laZy4b2nlxZTUtSdVmVoswLNfD8DwPw3I9RBqjhPJ3MSzXw9BcNxmugTlCtaYdyXTg08/e3lDHPxZu5ouzh/KFGWXpTo6maQfA67RxVEkWR5Vk7bGvqT3Clvp2KuqNgGhLvZ/tjQGWbWuiLRTjifXLOo/N8djNIMh4DTNfQ3M8DMl26dIiTUsDHfj0o811fq5+/GMmFGfw2/m6F5emDUQ5XgezvA5mDd9zCsCXFixk2MSZ7GgKsL3ReO1oDLC6qoVXV+8iluiaG9FqEYZkuSjNdlOS7aYk28WQLDel2W6GZLsoyXaTqUuMNK3f6cCnnzS1R/jGA0uwWYS79UCFmjYoee3CFHOU6d3FE4pdrSG2NxjBUEdwtLM5yEdbG9nVGiKe6D5ptM9p6wyISrLdlGQZAdGQbBclWW6KMl264bWm7Scd+PSDYCTOlQ8vpbolxOPfOo6hubpdj6Zp3VktQmm2UaJz/Oi8PfbHE4q6tjBVzUGqW4LsbA6yszlkLFuCrK5qoaF9zzFfM102ijJdFGW6KMxwUpjpoijTaW5zUpjhojDTidOmAyRNAx34HLRgJM4VDy5h2bYmbr9kRo/F35qmaftitQjFWS6Ks1xAz39HQtE41S1mMNQcpLYtTG1riJrWMDVtIT7c2k5tW4hoXO1xbo7HbgRHZoBUkOEkz+swl07yMxzkeZ3keh16clhtQNOBz0FoD8e46pFlLNrSwK0XTePcqSXpTpKmaQOYy27t7FLfm0RC0RyMUtMaoqY1RG1r2FhvMwKk2tYQG3a10dAe7jFAEoFcj4M8n4N8s9dbV4DUsc1Y5nodeBxWPfCjdkTRgc8BqmkN8Y0HlrC2upU/XjCV82fqHlyapqWfxSLkeh3keh1MHJLZ63FKKVqDMerbw9S3hWloj1DvD1PvN5YN5vqqymbq/RH84ViP13FYLWR77OR4HJ3LHK+dbI+DnI733bY5yHLbdamSljY68DkASysa+cHjH9MSjHLv147m1AmF6U6SpmnafhERsjx2sjx2Rhf49nl8KBo3gqO2MA3tYerbIjQGIjQFIjS3R41lIMrmOj9N26I0ByLderF1vzdkuuzkeIxgKMttJ9NtJ9NlM5d2Mt02c7nndt1eSTsYOvDZD+FYnH+Vb+bvb22iNNvNU1cd3+M4H5qmaQONy27tbJzdF0op/OEYTWZQ1BEYGetGYNSxbA5E2N4YoDUYpTUU7bEKLpnTZiHTbceWiFC85n0yXF3Bkc9pw+uw4XVajXWnrXO5+zanzaKr6QahARn4iMhZwG2AFbhHKXXLwVwvkVC8vmYXf359A5tq/Xx+egk3fX6yHpVV0zStFyJChstOhsu+XyPYK6UIRRO0hqK0haK0BGO0hqJmUBTrDI5agzE2b6/C6bTREoxS2RigNRTFH44Riib6dC+rRfA6rEmBUUeQZMXrsOFyWHHbzZej+9KVvM1uxe2wGNvM7S6bVU9XdJgacIGPiFiBfwDzgEpgiYg8r5Ras7/Xag1FeXXVLu58ZzNb6toZme/l/st11ZamadqhIiJGQOGwUpTp2uux5eUNzJ177B7bY/EE7ZE47eEY7eEY/nCM9nDcXMZoj8S61s3t/lDX9tq2EO3hOOFYnGAkTiAaR+29EKpHTpulW3Dksltx2Cw4bBac5sths+CwWnDauu9zJO+zW3FaLXvst1ks2K2CzWrBZhFsVjGWFgtWi2C3diyl873NYqwP5pKuARf4AMcAm5RSWwBE5AlgPtBr4BNNwOqqFsKxOLWtYTbU+Hl/cz3LtjURTygmDcnkji/P4OzJQ3SDPE3TtMOczWohy20hy90/pfJKKSLxBKFIgmA0brwixjIUjRPoWDeXHftDPRwbjiWIxBK0hWI0xBJE4gnCsTgRc3skliAcS/TaPqq/dARAycGRRTpeRgBqsYBgvLeIEAwG8C1/G4sI0nGMua/jHNntPQoUCqVAmXlpLI33dHtvHpd0LLvvM7cnlDH2VTyhSKjdl/v47IcyY9OkFNiR9L4S2PNfgiRV/gTn/v29btsmDcnkqlNGcer4QmYNzxnU0bGmadpgJiI4bVacNitZpKaJQyKhzKBot8AoniAcNZbReIJY3Piyj8YTxjKhiCcSRM3tsXjXejSRIB7vOiYWV8TMY2JmEKEUJMzAwggwjMAkoaCmJkR+gY9Egs7tHUFI8jkd14gnFGIBwWIGSkYg1fF1KiIIHdu7v8c8rmu/dF3DDNCsYvRitIoRxCWvr9xL3g7EwKdPRORK4EqA7MISfjjTid0CPrtQ7LXgssWBXfgrdvF2RVqTOuD4/X7Ky8vTnYxBQ+d36ui8Ti2d3wYBHOb6PpueW83XAfBnxPD52g7s5BT77V72DcTApwoYmvS+zNzWjVLqLuAugPHjx6sfX3xGalKnUV5ezty5c9OdjEFD53fq6LxOLZ3fqTVQ8tuS7gQcAkuAsSIyUkQcwJeA59OcJk3TNE3TDgMDrsRHKRUTke8Dr2EU6N2nlPo0zcnSNE3TNO0wMOACHwCl1MvAy+lOh6ZpmqZphxdRBzI4wQAjIm3A+nSnYxDJB+rTnYhBROd36ui8Ti2d36l1JOX3cKVUQU87BmSJzwFYr5Sane5EDBYislTnd+ro/E4dndeppfM7tQZKfg/Exs2apmmapmk90oGPpmmapmmDhg58DHelOwGDjM7v1NL5nTo6r1NL53dqDYj81o2bNU3TNE0bNHSJj6ZpmqZpg4YOfDRN0zRNGzQGfeAjImeJyHoR2SQi16U7PQOZiFSIyCoRWSEiS9OdnoFGRO4TkVoRWZ20LVdEFojIRnOZk840DiS95PdvRKTKfMZXiMg56UzjQCEiQ0VkoYisEZFPReSH5nb9fB8Ce8nvAfF8D+o2PiJiBTYA84BKjHm+LlFKrUlrwgYoEakAZiuljpQBsI4oInIy4AceUkpNNrf9EWhUSt1iBvY5Sqlr05nOgaKX/P4N4FdK/TmdaRtoRGQIMEQptVxEMoBlwOeBy9HPd7/bS35fzAB4vgd7ic8xwCal1BalVAR4Apif5jRp2gFRSr0DNO62eT7woLn+IMYfL60f9JLf2iGglKpWSi0319uAtUAp+vk+JPaS3wPCYA98SoEdSe8rGUA/3MOQAl4XkWUicmW6EzNIFCmlqs31XUBROhMzSHxfRFaaVWG66qWficgIYAbwIfr5PuR2y28YAM/3YA98tNSao5SaCZwNfM+sKtBSRBn12oO3bjs1/gWMBqYD1cCtaU3NACMiPuBp4EdKqdbkffr57n895PeAeL4He+BTBQxNel9mbtMOAaVUlbmsBZ7FqGrUDq0as76+o96+Ns3pGdCUUjVKqbhSKgHcjX7G+42I2DG+hB9VSj1jbtbP9yHSU34PlOd7sAc+S4CxIjJSRBzAl4Dn05ymAUlEvGYjOUTEC3wGWL33s7R+8DzwNXP9a8BzaUzLgNfxJWz6AvoZ7xciIsC9wFql1F+Sdunn+xDoLb8HyvM9qHt1AZjd8f4GWIH7lFK/S2+KBiYRGYVRygNgAx7Ted2/RORxYC6QD9QANwD/A54EhgHbgIuVUrpBbj/oJb/nYlQDKKAC+HZSGxTtAInIHOBdYBWQMDdfj9HuRD/f/Wwv+X0JA+D5HvSBj6ZpmqZpg8dgr+rSNE3TNG0Q0YGPpmmapmmDhg58NE3TNE0bNHTgo2mapmnaoKEDH03TNE3TBg0d+GiadtgSkbykmaB3Jc0M7ReRfx6ie/5IRL66l/3nisiNh+LemqYdero7u6ZpR4RUzHwuIjZgOTBTKRXr5RgxjzlRKRU4VGnRNO3Q0CU+mqYdcURkroi8aK7/RkQeFJF3RWSbiJwvIn8UkVUi8qo59D4iMktE3jYnyX1tt1FoO5wGLO8IekTkahFZY07K+AR0zglVDpybkg+raVq/0oGPpmkDwWiMoOU84BFgoVJqChAEPmsGP38HLlRKzQLuA3oaOfxEYFnS++uAGUqpqcBVSduXAif1+6fQNO2Qs6U7AZqmaf3gFaVUVERWYUw/86q5fRUwAhgPTAYWGDVVWDFml97dEGBt0vuVwKMi8j+M6T861AIl/Zd8TdNSRQc+mqYNBGEApVRCRKKqq/FiAuPvnACfKqWO38d1goAr6f1ngZOBzwG/FJEpZjWYyzxW07QjjK7q0jRtMFgPFIjI8QAiYheRo3o4bi0wxjzGAgxVSi0ErgWyAJ953DiO0JmpNW2w04GPpmkDnlIqAlwI/EFEPgFWACf0cOgrGCU8YFSHPWJWn30M3K6Uajb3nQq8dCjTrGnaoaG7s2uapiURkWeBnyulNvayvwh4TCl1empTpmlaf9CBj6ZpWhIRGQ8UKaXe6WX/0UBUKbUipQnTNK1f6MBH0zRN07RBQ7fx0TRN0zRt0NCBj6ZpmqZpg4YOfDRN0zRNGzR04KNpmqZp2qChAx9N0zRN0wYNHfhomqZpmjZo6MBH0zRN07RBQwc+mqZpmqYNGjrw0TRN0zRt0NCBj6ZpmqZpg4YOfDRN0zRNGzR04KNpaSYic0WkMt3p2J2IfCoic9Odjr0RkQdE5GZz/SQRWZ/uNPWX5M+maVr/0YGPpiURkXIRaRIRZ7rTkm5KqaOUUuX7c46IjBARJSJ+81UjIv8UEfshSmYnpdS7Sqnxh+La5nMRMj9TvYg8IyJDDsW9erl/vwbHInK5iLy3j2PKzZ/ltN22P2tun9tf6ekPIvIbEXkk3enQDn868NE0k4iMAE4CFHDeQVzH1l9pOoJlK6V8wBTgeOB7aU5Pf/i++ZnGAD7gz2lOTypsAL7a8UZE8jB+nnVpS5GmHSQd+Ghal68Ci4EHgK8l7xCREhF5WkTqRGSriFydtO83IvJfEXlERFqBy83jnxeRRhHZJCLfSjrebVZjNInIGuDopH0/E5Gnd7v37SJym7leLiI3icj7ItImIq+LSH7SsU+JyC4RaRGRd0TkqKR9D5ilL6+YJRfvi0ixiPzNTMs6EZmRdHyFiJxhrltF5HoR2Wzed5mIDN1XhiqlaoEFwKT9yMsnReQh8z6fisjspP0zRGS5ue8/gCtpX7dSETP914jISjM//iMiycf/XESqRWSniHzTLMUY04fP1Az8D5iedK0JIrLA/HmvF5GLk/adIyJrzDRXicg15vY9Sl16SoOIeIFXgJKkkrQSETlGRBaJSLP5Oe4QEcdu17pKRDaax/xDDBOBO4HjzWs17+XjPgp8UUSs5vtLgGeBSNJ9nOYztNN8/U3MEtOOn4mZ17VmOj9v5skGM7+uT7qWRUSuM5+zBvNZyDX3dZQmfk1EtotR8vZLc99ZwPVmWv0i8slePpM2yOnAR9O6fBXjD/2jwJkiUgTGH2PgBeAToBQ4HfiRiJyZdO584L9Atnn+E0AlUAJcCPxeRE4zj70BGG2+zqR7kPUIcJaIZJv3tgFfAh5KOubLwNeBQsABXJO07xVgrLlvuZmWZBcDvwLygTCwyDwu30z/X3rJm59gfOmdA2QC3wACvRzbSURKzM+42Hzfl7w8DyP/soHngTvMcx0YAcfDQC7wFHDBPpJwMXAWMBKYClxuXuss8zOdgVGCM3dfnyXpM+UB5wObzPdejODuMYx8/xLwTxHpCPbuBb6tlMoAJgNv9fVeAEqpduBsYKdSyme+dgJx4McYP7vjMfLyu7udfi5GYD0VIy/OVEqtBa4CFpnXyt7L7XcCa4DPmO+/SvdnEeCXwHEYgeA04BiMZ6xDMUaAWgr8H3A3cBkwC6OE9dciMtI89gfA54FTMH53moB/7Ha/OcB48/P+n4hMVEq9Cvwe+I/5maahab3QgY+mASIyBxgOPKmUWgZsxggwwPjiKFBK3aiUiiiltmD88f5S0iUWKaX+p5RKYHwRnQhcq5QKKaVWAPfQVWVwMfA7pVSjUmoHcHvHRZRS1cA7wEXmprOAejNNHe5XSm1QSgWBJ0kqeVBK3aeUalNKhYHfANNEJCvp3GeVUsuUUiGM/9xDSqmHlFJx4D/ADHr2TeBXSqn1yvCJUqqh9xyl3ixJqALaMYIq6FtevqeUetlM08MYX6ZgfLnagb8ppaJKqf8CS/aSBoDblVI7lVKNGAHXdHP7xRj5+KlSKoCRV/tyu4i0APUYP+MfmNvPBSqUUvcrpWJKqY+Bp+n6GUaBSSKSqZRqUkot78O99sn8OS4271kB/BsjYEh2i1KqWSm1HVhI0rOyHx4CvioiEzCqMBfttv9S4EalVK1Sqg74LfCVpP1RjOc9ihHQ5gO3mc/ppxiBVcfP+Crgl0qpyqRn+ELpXn38W6VUUCn1CUYArYMcbb/owEfTDF8DXldK1ZvvH6OrJGY4RjVDc8cLo1i9KOn8HUnrJUCjUqotads2jP94O/bv2G1fsgcx/iPGXD682/5dSesBjPYmHdVRt5jVBK1AhXlMftLxNUnrwR7e++jZUIxgsK/yzZIED/A+8Jq5vS95ufvnc5lffCVAlVJKJe3fPe9212NesefPIHm9N1crpbIwSk9ygDJz+3Dg2N0+06UYJR1glEqdA2wTkbdF5Pg+3GufRGSciLwoRtVmK0aJR/5uh/X2+ffHM8BpwPfZ81kEIy+Tfw7bzG0dGswgFoxnDHp/7oYDzybl41qMkq29PR8H8pm0QUw3wtQGPRFxY5QAWEWk44+qE8gWo0fLDmCrUmrsXi6T/GW8E8gVkYyk4GcYRukHQDVGIPFp0r5k/wP+JSKTMUoTft7Hj/JljCq3MzCCniyMqgLp4/l7swOjam71/pyklAqKyAPANWK0RepLXvamGigVEUkKfoaxfwFZ8rXKkt7vs71SB6XUKjG6mf9DRGZifKa3lVLzejl+CTBfjJ5t38copRuKURLm6ThORIp7Or/jMj1s+xfwMXCJUqpNRH6EUa3ap4/Rx+NQSgVE5BXgOxjPwO52YgQsyc/zzr5efzc7gG8opd7ffYcYnQ/2mtQDvKc2yOgSH00z2hTEMRrgTjdfE4F3MaqnPgLaRORaMRomW0Vksogc3dPFzOqrD4D/JyIuEZkKXIHRfgeML75fiEiOiJTRVWXScX4Io2roMeAjs5qiLzIw2u00YHyh/r6P5/XFPcBNIjLWbCA71WzrsldmI9evYPyX3sB+5uVuFgEx4GoRsYvI+RjtSQ7Ek8DXRWSiiHiAX+/n+Q9ilEKcB7wIjBORr5jpsovI0ea1HSJyqYhkmVU9rUDCvMYnwFEiMl2MRte/2cv9aoC83aotM8zr+c1qqO/sR/prgDJJagy9D9cDp5hVart7HPiViBSYwe3/0fWs7687gd+JyHAA85rz+3huDTDCbEemab3SD4imGVVa9yultiuldnW8MBrVXopRYnIuRkC0FaONxz0YJSq9uQQYgfGf77PADUqpN8x9v8WoDtgKvE7P1QcPYnQF72lfbx4yr1uF0W5i8X6cuy9/wQgWXsf4sr0XcO/l+GYR8WN8GR0PnGe2DYqz/3kJgFIqgtGo+HKgEfgiRjXMflNKvYLRtmohRiPljrwK9/H8CHAb8GuzVO8zGO2UdmIEeX/AKDUEI/CrMKujrsJ4plBKbQBuBN4ANgK9jqujlFqHEWBsMauBSjAatX8ZaMNoJ/WfvqTd9BZGCc0uEanf18FmO6ne0nczsBRYCazCaCx/oAMv3obRoP11EWnD+Lkc28dznzKXDSLSL+2otIFJuleXa5p2OBCRYcA6oFgp1Zru9Ax0YnTxXg04lVKxdKdH07RDR5f4aNphxiyq/wnwhA56Dh0R+YIYY9DkYJTQvKCDHk0b+HTgo2mHEXNMmFZgHsZ4P9qh822gFqNxdJz9ayOjadoRSld1aZqmaZo2aOgSH03TNE3TBg09jg+QnZ2txozZ5xQ9Wj9pb2/H6/WmOxmDhs7v1NF5nVo6v1PrSMrvZcuW1SulCnrapwMfoKioiKVLl6Y7GYNGeXk5c+fOTXcyBg2d36mj8zq1dH6n1pGU3yLS66juuqpL0zRN07RBI20lPiJSiDGRYwnGXC2rgaXmJI+apmmapmn9LuWBj4icClwH5GLMM1MLuDCmDRgtIv8Fbh0I45fEEwqrpT+mSdI0TdM0rT+ko8TnHOBbPc0/ZM7AfC7GGCZPpzph/el/LzxD3ScL+OJPbyPT3dfpcDRN0zRNO5RS3sZHKfWz3iZdVErFlFL/U0od0UEPwPRVv+dbscdY8OQ/e9z/4ZYGNta09bhP0zRN07RDI51tfLIxZr4ekZwOpdTVaUpSv4pHQwCcsuVWAsFv43F3zee4tb6dL961mNJsN+9fd1q6kqhpmqZpg046u7O/jDHz7ipgQDVobmz1MzSxkxZLJvm0sq16O8NHje/c/9a6WgCqmoPpSqKmaZqmDUrpDHxcSqmfpPH+h8z2DZ8wXeJsyD2erIbXaKvbAUmBz86kgKctFCXDZU9HMjVN0zRt0EnnOD4Pi8i3RGSIiOR2vNKYnn7TvPVjABwTPgNAsKGy2/7kwGdLXXvqEqZpmqZpg1w6A58I8CdgEbDMfA2M4ZNrPiWKjeKp8wCINFd3272zOUiG0yhsa2gPpzx5mqZpmjZYpTPw+SkwRik1Qik10nyNSmN6+o2vvYJqawkZBWXElAXadgt8WkJMKskEoKk92rm9NRjhgUcfpqZJ9/bSNE3TtEMhnYHPJiCQxvsfMt5IA357PmKx0mjJwRao6dynlKKxPcLYIh8ATYFI577X7r2Byzd+n41v3J/yNGuapmnaYJDOxs3twAoRWQh01vcMhO7smfEmajNHANBizcMVquvc5w/HiCcUQ3M8WASaA10lPrMaXzIP2pXK5GqapmnaoJHOwOd/5mtAicbi5Kkmqt0FAAScBWQEuxo3dwQ6OV4H2R5HtxIfZ8Jo9GzZrWpM0zRN07T+kbbARyn1YLrufSg1NTVQKFEkowiAiLuQHP/Kzv0tQSPwyXLbyfbYOwOheDxBrmoGAVdQBz6apmmadiiks43PgNRcuwMAe1YxAAlfETnSRjBgNGfqCHyy3XZykkp8mluacIuxnhGu2f2ymqZpmqb1Ax349LP2+p0AuHJLAbBmGgFQY40REHWU8GR57GS57bSGjPfNdUZ1WBg7eYn6lKZZ0zRN0wYLHfj0s2CzEfhk5JUAYPPmGdvbGoHuVV0eh5VAOA6Av96o3tppG4pXBVBKpTTdmqZpmjYYpLyNj4jcD/T2ra6UUlekMj39Ld5i9MjKKRoKgN2bBUDI3wRAc9Cozsp2O/A5bbRHYgBE/Q0AtLlLcca2EAwGcXs8KU27pmmapg106Wjc/GIP24YCPwasB3txERkKPAQUYQRYdymlbjvY6/aZv5YoVlwZRkmPy5cDQKS9xdgdimG1CC67BY/DRrtZ4hMN+Y2lpwjawN/WiNvj4eYX17BsexMPX3EsPmc6O+FpmqZp2pEv5d+kSqmnO9ZFZBRwPXAycAtwbz/cIgb8VCm1XEQygGUiskAptaYfrr1P9mAtjZJDkQgALl+2kaiAEfgEInG8Disigs9ppT0SQylFNGQ0fpaMYqiBYFsziYJS7nlvKwCba/1MG5qdio+gaZqmaQNWWtr4iMgEEXkEeAF4D5iklPqXUiqyj1P3SSlVrZRabq63AWuB0oO9bl+5wvW02brmWnVnZAMQDxqBT3s4htcsufE4bSgFwWicRMSYrLSjN1jY39LZ8BmgpjWUiuRrmqZp2oCWjjY+TwGzgFsxqrfiQKaYJSRKqcZ+vNcIYAbwYQ/7rgSuBCgoKKC8vLxf7jkk0kiLLbfzeoloiNOAhuptlJeXU1EVgliC8vJydm43ApsFC98lXmM0it7REGAK8OknywhUdk1g+t6yVTjq1vVLGtPN7/f3W35r+6bzO3V0XqeWzu/UGij5nY5GI0djtL25BmOiUgAxlwrol4lKRcQHPA38SCnVuvt+pdRdwF0A48ePV3Pnzu2P21Jd7qc9YwKd11OK6HtWcj02Tpg7lwe2fkSBLcLcuXNoXF7JQ2s+YdqsY9i8+Tnww7jpx0MFDC/JJzx6Gry3GIDs4mHMnTu+X9KYbuXl5fRXfmv7pvM7dXRep5bO79QaKPmdjjY+Iw71PUTEjhH0PKqUeuZQ36+DUopM1UaVKyc5MbSLG4kYM64HwnHcdqMNt8dhZH97JAbRAEGcuDOMc2PBVhr8XTV/tW1dpT+apmmaph2YlLfxMauf9rZfRKTsIK4vGI2k1yql/nKg1zkQrX4/XgmjPHndtgfEizVq9NoKRLva+HT00moPx5FYkIg4cZuNoePBVhrajWAn22OnLWR0e48nFGt3tqTi42iapmnagJOOxs1/EpGnReSrInKUiBSKyDAROU1EbgLeByYexPVPBL4CnCYiK8zXOf2S8n1oazSmmrDsFviELB5s0a4SH4/DLPFxGsv2SAxLNEDE4sKbaZT4JEKt1PsjiMCwXE9nQ+eXHrudiXcNY1vFllR8JE3TNE0bUNJR1XWRiEwCLgW+AQwBAhi9r14GfqeUOuAuTEqp9+hqM5RSbU21ADgyuwc+EasXR8zotdUeieF17F7iEyMrHiJqceF0eYkpCxJuoz0cw2O3kuW24w8bJT4zNv0LgKZtnzB8RL80h9I0TdO0QSMtI+KZY+r8Mh33PhhKKR78oAKHzcqFs8pw2LoXmIVa6gBwZhZ02x6x+XCHjKAoEI53lvR0lPwEwnHyEiFiNheIEMKJxEIEInHcDhs+p41dLUYsmKcaQSBQo0t8NE3TNG1/6aGA98Mtr6zj3+8YAceGmjZ+c95R3fZH2ozJRT1Zhd22x+w+3IEKlFLdSnw6lv5wDHsiRMzqAiAsTiQWJBCJ4XVayXDZaAvFUIkEdoySH9Ww+dB9UE3TNE0boPQkpX20qdbP3e9u4Yuzh3LBzDKeWLKdpvbu4y3G2owSn8zcom7b444M3CpAOJYgobra9rjNEp9gNI5ThYhb3YAR+FjiQaPEx27F5zSqusKhduxiTHHhatt+SD+vpmmapg1EOvDpo4cXVWCzWvj5WeP59imjCEUTPPtxVbdjVMAYe9GX073ERzky8BHo7JnVUdLjtFkQgXA0jkOFiduMwCciDiyxEMGI0RDa57LhD8fwN9d1XtMVbT5UH1XTNE3TBqy0BT4i8mZfth0OQtE4z35cxVlHFZPnczKuKIPSbDfLtzd1O06CTbTjwmJ3dt/uzMQpMRpajHEUO9r2iAhuuxV/OI5LhVFm4BO1uLAlQgQiMTwOG5kuI1BqqqvtvKYz0X7IPq+maZqmDVTpGMfHJSK5QL6I5IhIrvkaQQrn1NofC9bU0BqK8cWjh3ZumzY0i5WV3cfTsYUbaZXMPc4Xl7GtvsFoA+RNmmXdZbfSHIjglgjKnhT4xDsaN1s7BzpsaTJKfGrIxW0GPn9/cyPff2w50Xiivz6upmmapg1Y6Sjx+TawDJhgLjtezwF3pCE9+/Tap7vI9zk5flRXN/WpZdlsbwzQmNTOxxFpIWDN2uN8q8cIfFqaGoCutj0AbruVxkAEN2GwewCIWZzYEyGCUaOqq7P3V4sRONVZi/EpP9F4glsXbODFldXsaAwc0GeLxBJ8tLXfpkfTNE3TtMNaygMfpdRtSqmRwDVKqVFKqZHma5pS6rALfCKxBG9vqOP0CYVYLF3DA00tMwKclZXNndvcsRaC9j0DH7snG4CWZqNqrKOND4DLbqHJH+4W+MStLmyJCO3mYIcuc4qLcJsROLW6SvCpAHVJM7Yf6JQWt76+nov/vYhVlXo0aE3TNO3It6/vs7S18VFK/V1EThCRL5ujOH9VRL6arvT0ZklFI22hGKdP7N5geUppFiJ0q+7yxVuIOrL3uIbDa5T4+FuNkhVPcomPw0prIIBNEoijI/Bx41AhgmYbn47jY+1G4BPyDcUqiu01XW1+aloPbMzHj3c0A7Bsmy710TRN045ssXiCa59euddj0jaOj4g8DIwGVgBxc7MCHkpXmnryxtoaHDYLc8bmd9ue4bIzMs/Lmp1Gg+WOCUp3JU9QanKZVV1BfyuQ362Nj1HV5QcBixn4JGxOnCpMwKzq6qgaiwdbSShBMkugBnbuqum8Tm3rAU5iqoxFjZ4EVdM0TTvC3f9+BWuqW/d6TDoHMJwNTFJKqTSmYa+UUry5tpYTR+d1NjBONiLfS0WD0cg4GAqRKQGUO3eP49xmiU+w3fhheJNKfFx2K/FwAFxgdRqBj7K5cagIShklQh2zuSfCfgI48WQZbY1qamvpKLSraQ0RjcV5495fMfyEC5g0ZXafPmPHRKh1OvDRNE3TjmA7GgP8ZcEGzphYyL17OS6d4/isBorTeP992lTrZ3tjgNMnFvW4f1iuh8qmIEopmhuMaieLN2+P47w+o91PJGhMVOrZrcTHLUbQYXX6ACPwcWFs89i7SnwSkQBBnHjMiUwbG4xeXsWZLmrawnzw3F2cXf1Pgq/+ts+fsaNx9oG2EdI0TdO0dFNK8av/rcYicOP8yXs9Np0lPvnAGhH5COj81lVKnZe+JHX3xlojmNm9fU+HYbke/OEYTYEo7c3GsTZf/h7Hub0ZAKiIUTrUUYIDZokORvBh6yjxsXtwSgwrcTwOW9fx0SBhixOHxwik/K1NeB0lFGY6aQtFcVcvBED6WIiWSCiag8as763BKFsb6vlwxwa+NP2EPp2vaZqmaYeDF1ZW8/aGOm743CSKMh17PTadgc9v0njvPnljbQ2TSzMZkuXucf+wXCNQ2d4YQMwJSl1ZewY+YpbkuFUYt92KNal3mNtuNXp0AXaXcZyY4/m4iJjj+BiBj1OFCIsLh9lmKBz043PZOufycoaNxs++cHWfPl97JEZHjNQWivL1F66nQRYxJOs/nDJyUp+uoWmapmnp1ByIcOMLnzKtLIuvHj+Cvy3/y16PT2evrreBCsBuri8BlqcrPburbQuxfHsTp0/ouZoLYFheV+ATNgMfd1YPpUNWBzEseCSE12nttsuVVNVld3kBEEdX4JPcnd1NhKjFhdMMfCzRdrxOY/b2tlAUb8zomVUUq0YpRWVTgOZA9/nEkrWH453r/nCMxvhGAJ5bt7DXczRN0zTtcPKHV9fRFIjy+/On8L9Nz/DApw/s9fh0TlnxLeC/wL/NTaXA/9KVnt29tnoXSsFnpw7p9ZiyHCNAqWwKEPObpS05PQQ+IoRw4yG8RyNpl72rqsvh7ijxMQIqt0TwOGydc3q5JUzM6sLlMarOPITIcNrIcNlpC8XIjDcDkCXtVO6qY84fFvKth5b2mn5/2Jg7rDDDiT8UQ5npqPLv2mveaJqmadrh4KOtjTz+0Q6umDOSNlnLzYtv5kTPsL2ek87Gzd8DTgRaAZRSG4GeG9OkwYsrqxlb6GNcUUavx3gcRjVTTUuIRLsxqnJmT4EPELG48BDqNoYPdK/qcnqMEh+rs6PEJ4zHYUVEjEbOhIlZ3bjNxtJewnidRhpaAmFyVTN1GA2fF368FoAlFd3nE0vWEfgUZ7mMai+r0QapIVTT6zmpcNc7m3l4UUVa06BpmqYd3sKxONc/u4rSbDefP8bGT8p/wghHNn9a8/5ez0tnG5+wUioiYrR3EREbnaPKpFdta4iPKhr54elj93lscaaLXa0hJNhECDsus53O7iIWN17pIfBxWPao6rI5jKXbrOoyjrPiiYRptblxudzEVEfVmY0Mpw1ntAWbK0GNcwQF4SZ2Vu8EzIETwzF8zj1/1O1m4FOU6QJLGBGj6qst1sCHWxq4+90t/PPSWThsqYuP28Mxfv/yOgDmzygl02VP2b01TdM0Q2soSm1rmJZghJZglJZglGXbolS8vxWLRRCMibYzXDaKM10UZbooznJ1Ns1Ihbve3sKmWj9/v2wc17zzQ+yJBHdUrCJj5FyMWbB6ls7A520RuR5wi8g84LvAC2lMT6dXOqq5pvRezdWhOMvFrtYw1nATrZKJS6TH46JWD26zhCaZO6mqS+xm4GP27upo3AxG4OOKRmi2eRCLhQAuvElVXblidJUPZIyE8MfU11bTEfhU1Pmpe/pnWBwuTvnO3zvv3VHiMyTLhVi7ZnuPJNr54l2LAVi+vYnjRu3ZRf9QqWoOdq5/WtXK8aNTd29N07TBQilFvT/Cxto2NtX62VjjZ1tjgOrmINUtoc7vhz2sXbPX6xZkOJk5LJvZw3OZOTyHaWVZ2Kz9/8/zljo/f1+4ibOn5PPfHTdT46/m3p27KC2eCV96FL7WcyEEpDfwuQ64AliFMXHpy8A9aUxPp5dWVjO+KIOxe6nm6lCU6WJTbT0OaaLdsuc8XR1iNjdes+oqWabb3lnVhTlys9VplvhIV5sgt92KhxDYXQCExKg666jqysAIGBI5I6AeIua8XgAfL1rAV5qeBECp2+koZUsu8ekMfOI+YnQFQR9tbUxp4FPZ1DXZ6rpdrRw3KpfWYIwsjy750TRN219KKWrbwmys8bOxto2NtX42metNgWjncRlOGyPyvYzM93LimHyGZBklOFlue+dr1fIlnDTnRJRSJJRx7ZZglF2tIWpaw9S0hthU62fZtiZe+9RoMlGY4eT8mWVcNLuM0QW9ByP7+5l++exqnDbBXfIs721fzh8bWpmeNRq+/CSYtSa9SVvgo5RKAHebr8PGrpYQS7Y18uMzxvXp+OJMF7VtYVzuFoL2zF6PS9g8uKWm2wSlAJkuO24xe17ZjKCmo8qrW1VXR8mQWSoUEhdes6rL57KRIUbA4MgfCRshW9oYle9lS307rds+6bxfXfUO4t4Ccr2OzsDHKPExAieXFBCUys7jdzQGiMbjbG9uYHTeoW+CVdnUVeJT1RTk4cXb+L/nPuWfl87knD6UwKVLcyDCNc+8x0ljyvjacX17djRN0/qLUorqlhAba/1srDFLccz11lBX6U2W2864Ih9nTR7C2EIfY4t8jC3MoCjT2flPcW+2O4Vcb/cxcgozXT0WEtS2hfhoayP/+7iKu9/dwp1vb2bW8By+ddIozjyqaJ/32ptnllexaEsDnz1pDQu2v8R3W0Ocbc+HrzwL7ux9np/OubrOBW4ChpvpEEAppXqPHlLg5VXV++zNlawo00k8oXDFWmj19P6Fp+weo8THuXuJjw03YQLKicd8EBxuI7hxEsFptq/x2AW3RDrn8wqJGzdhMlw2Ml12fGaJT2bxaACyaWd0oY8t9e3Ym7d0/qTXrnifb72fzbxJRUwuNUqoirNciMUodcq2FxGKbwWJgbJR3RLi/P/8nK3hN7nrtP9wwvDxfcqXA1XZFOSL9ndxebOoai5mVZUxCeyTS3cc1oHP395dwOLYL/hg+WjOn/4kGbptkqZph0AioahqDpqBTRsba/xsqPWzudbfrXoqz+tgTKGP86aXMLYwg7GFPsYU+Sjw7TvA6Q+FGS7OnVrCuVNLqG0L8ezyKp5YsoOrHlnGtLIsfn3uJGaP2HOKp31pbI9w80trGDdqC+/UP8RnQzGuijrgG/8DX0GfrpHOqq6/AecDqw6n+bpeWlXNxCGZfS6SK8o0SmmyaaWxhwlKOzm8uCXcc4kPYYI48HQc6u7qzt7xgGbajAe6oxosiMvo1eWwkut14BMz8Mktok25yZE2SrPdOG0W8qVrBvmNG9cTiR/NS6uqKct1YxEo8DnBDHyKvUPY1QpiCTIsu4iqlgD19tcRC9zz8TOcMPwXxBOq2yCM/SlQu4U/WP8FIbikYSor/JvwjHiV5TXzUepo/v7WJvzhGNefM/GQ3P9AvVn5EmJTWL2b+N+nS/nKrOP53UtraApEuXH+UT3O9aZpmtabQCTG1vp241XXzpb6djbV+tlU6ycY7RqDrSDDydhCHxfOKmNMoc8IcAp95PmcaUx9d4UZLr59ymiumDOSZz+u4q8LNnDhnYu49NhhXHf2hP36R/Hml9bgZysW9wNMDyt+2xJBvvEqZA/t8zXS+dd4B7D6cAp6alpDLNvWxE/n9b2qojjLhYUE2bRj8RWglOKRtY/w5vY3KfYWc/2x15PpyEScXryE9vgCzHQbVV1BnLRGWnFZXbjM8XzcXTN5kGUz6mJtZjVYQ9ROnrQyPN9Lvs9JJkZVlyczh2bJIFv8tHoc5Puc5LW3UmEdwYh4Bc21lcDRgNF42Gs2ju4o8RmeVcqKVhBrkGll2bywej0ds3BsaV3Pve9t5e9vbeSpbx/fpzZQ+yujYWXnekHN+1hKN2B1VxKNv86LK8/jLws2AEbD82lDs/v9/geiPRyliRXk28bSENvIG1vfY1zOOO5+dysAE4oz+OZJo9KcSk3TDidKKRrbI1Q1B6lsClLZFGB7Y4AtdUawU90S6nZ8ababUQVeLjlmmFk9ZQQ42Z69T89wOLFZLVw0eyjnTBnCra9v4IEPtvLepnr+8eWZnTUQe/PKqmqeXfkpBeMeIjcW4baGNpxffR7y990Du1s6DvQD9IOfAy+LyNt0n6tr72NNH0KvrzEaY501ue9zpxZnusihDYso7JmF3LT4Jp7a8BQTcyfyWsVrbGjawOOffRyL04eH8B4jN2e67LgI84HLyS3/mUuOK4e7595JFnT29gLItBolPjazu3zM5sEbr2XSmHwSSnVWdXl9WVRaMsmO+2n12MnzOcgNtNLmLKQ5UE+hNHde86OKRgp8TjJcts7AZ0RWKewAsQaYVJLJSxuM8YlUwkGz2sFfXl9PeyTOg4sq+MlnRvLkqnf5+swzcNr7p2qn2L+WOFYEmGzZxFveTQBYPVt4bMnGzuMWrq/FahGueeoTfjJvHJ85Kn3z3X64fStia+OUkq/zfEUTm9s+5Y21NTisFkYX+nhmeRXfPGkU72zawR/efZKfzbmQuWOHpy29mqYdWomEoqE9Qm1biNq2MLWtIWpbw+xqDXUGOlVNwW4lN2C0vxlV4OX40XmMyvcyqsDHyHwvI/K8nT18BwKv08b/fW4SZ08p5gePfcz5//yA331hMhfN7r3UpqY1xHXPLSZv1P1YE638o6aR3C8/DUOm7ff90xn4/A7wAy7gsAhZX1u9i1EFXsYU9r3leZ7PSZ60AvCxo4WnNjzH1yZ9jZ/O/ilvV77ND976AY+tfYwzXD6cEsVj617A5bJbcBHiLwVW3DY3jaFG7ll3P78HThvdlY5MqxGYNFqjtIRbOGHiMJzbtmI3uwlmSAC/cuGz2ghYM8mJtdDqsZPrdZAjfuqcE2gO5VIkTZw2oZCF62uZnVjJRdZNeCzHgyWCSlgZm2+2o7EGKMtxIzajm3ye5Sga1Ce0RyKAlY+3N3P+Uz+igQ9ZXfdN7jj3hwddBdYejjE2tpH67AlYLUKuvwKROEcXnMqSuoV8vO0T7vUtAIuVB7ZeyzubdrAl9gLXPX80p064hNc/raGqOcBXjx+R0rEkllWvB2DGkPG8VzWSulAFH2xuYObwbE4aW8CfXlvPzuYAP3jrByScm7l64UIWDXsWj8PGIx9up8Dn4MyjilNS765p2oGLxRNGQGP2YKptC3cPbtrC1LaGqfOHiSf2rMzI8dgpzXEzpsDHKeMKKMtxU5bjoTTbTWmOmyz34GobePSIXF7+4Un84PHl/Oy/K9nZHOLq08fs8bcwkVD8+KkPUQV3oiw13FbTwOgLH4Jhxx3QfdMZ+JQopfY+d3wKNQciLNrSwJUnj9qvLyCrRciTVmqsVu5sWsDkvMn8cNYPERHmDp3LnNI53L3qbk7O+hwAmdZot/NFhC2eIHV2uPX4G1has5SnNjzF9XYPR5d1TY6aYY2xxOXke9X34nr6cZ7ImMGweFfXbx9B/LjxAUFbJqXhKuodxjxeebRS48nDH8ynMNbM8DwPxZkufhe8l5HtNbBsJhcdnc/CSh8jc4zGYWINMiTLjdiMoG5awQwW1n2M2Js5bfRE3lxfiS9jGWKBD2pe4ckl53PD859y4/yj9hq1701Vc5BJlm00530Wmygs0TeADL448XMsqVvITM97nB54B4Dnt05k6ZAKnAWrCUc+5rlP5nDNk6sBCEUTfGfuaB77cDvD8zzMHX9oe6NtaNwMwHG1H/GWI5O3YvV8Wl3Pj04/ihPH5POn19Zz/csvknBuJss6lBbnNv6+6AUKbTO48UVjTIw/XjiVi2cPJRZPsL6mjUlDMg/rQKiqpZHflt+PRSzccOrXGZKR3bmvwR8mw2VP6cCXA1k8oVi3q5UGf4TRhT5Ks3ueNFk7MKFonKZAhMb2CE3tURoDEZraI9T7jSCmI7CpaQ3T2B6mh3iGPK+DggwnRZkuxhdlUJhprBdmOCnIcFGU6aQgw4nTNnBKbfpLrtfB/Zcfw3XPrOSvb2ygsT3Mb847qtvfv7veXcfq8B+xeHZya10jx5z3bxhzxgHfM52Bz8si8hml1Ov9fWEROQu4DbAC9yilbtnXOW+urSWeUJx5AFUmeTTzf/m5RFWM35/0e+yWrqj9O9O+w6UvX8pyWy2jgZOG7/lHa1NuHJ8STh16KvnufB5f9zjv+bycFe2q4/VaIvwlNxtB8Ef93Bbcwq2RdlAKRPBJkP/5vNQvvplpbi9HBfzElcIWDxiNpL0FJEKNFAS343FYKfbZKA7VEQesa18gMWYamU4fWU6jnnWe/T2GZvwAsbWhElaOHjKFhXVgsTdxwawyFlYsRSwxPGo47dbt/PzZxZDw8P9eWceW9iU8sulWJmScwsNfuIkXPtnJ6EIfM4ftpfE3sKummnHSjr9gLGKxUtP0Gig4eegcRLnId26iXo3CRYgz1du8mdFOrrOYRnbxy5f/w5/s7zHe2civ3vsmDaEG/rPpThLRbB5yXE80Jjz24XbmTy/hrMlDiMUTBKLxfhkZurKtAk8Cit66ifleHwsLc7E4dzG17AQmDcnEYbPwQfV7OPMsPPvZOzntfxfxasWrtGz3ceKYPAKROLe8so5Tx+fx+Sd/QotlMbnqRF697K9E48I/yzcRCMf5/mljOhvTp1NLKMD8/15O2Ga0YTr3qbd485IncNlc/PSpT3hpZTVeh5UbzjuKi80gOBaP81HlJop92YzK6z7xbygax2G1YDlEDeaPZG9vqOOmF9ewqdbfue3kcQXc8LlJBzQmSke7kuqWEBYRCjKML+QjQUeA0tQepTkQoSkQ5cPtUT5duIn2cIxoPEEkliASV+YyQbRjGU8QjiU6j4nGEwQicZraI7RH4j3ezyJGiX6hGdBMKc2iMMNJoRnQdCzzfU4d5B8kh83CrRdNI8/r4O53t2K1WPj1uUYHltve/JT71/8SvNv5XWMLcz//IIw98KAH0hv4fAe4RkQiQEcxyEF3ZxcRK/APYB5QCSwRkeeVUr0ON+mPKv725gaKM11M7UMDq921ZK9jhcfNr6Z9j5FZI7vtm5I/hZFZI3mxdT0XAVm7lfjEE3E+dMY4yZqF3WpnWsE0cl25vOWu56xo15g2IdnFaqeTn468kAa3i0c+fZB6EuTHI2BzEioK848MC6z/D2vz8zinMcBp4/JoqtrEkionD9hWcVyOhy/WN+Fz2CiSRo4ZVcZxoRh3b19MYOgIPHYPvurViFJMtq2jcMmfmTRUURvJ5fhhY2ElzHMt4LiSS7G6jIlMvzThEu5bfwtWTwXfmPFZ7n53Mw9t/CsWeyvrgi9w3j3j2LCtAJtFuPbcQu5bdyuWuI3Hp01m6dYQrcEoF8wqQxFjxfpyRtqsZAwZQ9zipGqzDVvMg9vmJsdWRrNzDbu8p1KQk0l0y6OI5PKnk//At1//HiOyXuaiho8hBn9I3Mr5m6djz14BwE9e9XLsTgtns4SX1x1N8IIrueW9h2iO7eALY77AT+aewm0L1hGNxbnq1PGMyPOyeEsDTrulM1jb0RjE7bD2+CURCa9lTDyMzL2ecUuNMTitrp1MNIOe4bkeatwbGRtVFNw2hTOKx/GGYxltwXP45knTsVssXHbvh8z99//DUvA+Q2U0leodrnz+VtprT2ZlZQtWi/D6ml288P053LXsRZ7f/DQ+eza/OemHHDdsHPe/v5UPNjcwMt/Lt08ZxZAsN9FYnI0NtUTjic60todjbKlr7/yP9EB8/6VbCdu28tXRv0YQHtx8I1e9+AcKY1/gpZXVfPuUUayqbOHn/12J224lK7OZH711DVHbDpSyMMp5Og/Ov4kGf4LfPL+GDzbX47BZmD+tlGvOHE9BhpNYPM5bW1bhjwQ5deQUcjzGl3wkluDj7U1UNQfJ8zmZMSy7z8FrRz+Kw7kkrUMiofhn+Sb+/PoGRuZ7+dOFUxmW6+GjrY3c/e4Wzr7tXa4+bQzfPmU0dquFxrpqtnz4IrGmHYjdjW/4DMbPPh2b2fZuQ00bT3y0gzfW1rC9MdDtXgUZTo4ZkcucsfnMGZPP0FxPT0nqpjUUNQbEq2ljgzkYXnVLiGAkTigaJxpP4DM7TmS6bWS57WSag+Blux1kuW14HDaiiQSxuCIaTxBLKPyhGE2BCM2BqBHkBDqCnAihaKLnxKxZj90q2K0WHDaLsTTXHVYLdpt0bvM5bTg8xjFus0dsrtdBjsdBrtduLh3keB1ku+2HZMRhrWciwvXnTCSWUNz3/lYsAtVtTSxuvhHlreL/mgN89vzHYMScg75XOgcw7P8uQYZjgE1KqS0AIvIEMB/oNfCpDyawNwb56bxx+/1f5+bmzawt2sKJgRAXH/W1PfaLCOeNPo/blt/GDpuNoRF/t/2f1H1CoyhOcxhVTFaLlblD5/Ja8Bmi0XY6/qS3+raCH84Zdgrt2aU88OkDPJfh5YpIO9icPOttowwbXz/uF9y0+CbKPS5Oj7Ry4oh2LqoqoD24kXeAUq+DK2Zlcfv2Kt4HFrtsoOK0t1XjdfqwrnyCDKVoyR8DS+6hYNZZeNUQRq55GptSTHCuJPeZi/ncrBN4e5eLbw+bzMNr4fLMu7hO6nnCkwf2Zr419uc8sO6vZMbv4l/jzub2mqP468pfY3VXgkX46uMXMa3yWLarYu57T2jMfwKx+Xm8dAjvFo9GOTLZabMx3GF84c0pKKU8sp6hk0/BlVPKqp1PYo3bmFU8jaML57Ay8QprwzMZPe+75D7/beyZwjnDL2Z9/Xa2JF7kF44dFCjhvMQiLi5fSiC3EgfwYv1H2G4fxq8i76MQ/rvmFC4vLqHBvhiwUJw4hgvbLIxsWkUbHmqLT2B1YS6L6hYTJ0yxaxRN1p3MDFtgzo8pdWaSsfYOxhduptgMLL4wI5+7t1VyQls7HPc9Llr5IG8U5TKubBMnjTkPiwij8i205r7I9GCYu3ct5IdFxbydeIK26hJu++I8RuZ7uejORXz5nl9Qk/cGOWKhOaH4UfmHOHZ9hV2t4xhflMGizQ08vXwbJ41cxJLYy4RsEewxB089cgIZlgt4bnWAmFlWP70si8+Ob2FpzQtsD2/HKnbG+cYxIXseb23x8ukuPygYXeDlxKFCpmslS2rfZ1VsFVNjufys9k2wu1kZG8bH7c/x0dah/HTeXH5w+lgisQRfvnsxP/3va7hH/AubxPmS/Vg2hZtZGlnAmY9sILjzCqwWL1edMprG9gjPfFzFa2uqOX7ydhY1PUTc1gzAbz6yMtI6g6OcZ/P2ejdVAcEY9sv4T/G08QWMLWlkTeN7VAW2EFNxshyFjMqcRIl7NmurFJ/ubO2cDiXf52RModGWb0hOlLithqZQHfF4BLfFS6a9lGAol5rWODuaAjT4I/jDMawWIcfjINtjpzDDRXGmkwxvhCh+FAkc4mRDRSNLXl9FIGyhZbcv72hcmcFAx8tOhsuG12nFaTNKKsJRCEUVi7c0UNEQ4AszSrnlgimdVSTHjsrji8cM5bfPr+HPr2+gfNkqfsATnOBfwHAbREWwKnBtSND4WhYfZp/L4+pMPqix4rBamDM2n68eP5yyHA+gqGoOsbqqhQ821/PSqmrAnHIgO8RIdpAVb0RQKISKeAErIyVUBu20JQ2I57JbGFPoY0yBD4/TittuxW614A/HaA1GaQvF2NkcYm11Gy3BaO9TIWCUsmSbeZzjcVCa7eKokkxyPHayPUaA0rnutbN2xVLOOeMUXYU0QIgI/3fuJKLxBPcuWkXhsDuIu5u4pS3OORf9F0pn9st90jq4iIicB5xsvi1XSr3YD5ctxegq36ESOHZvJ1hcVeQe9Wteby0ltuw05g2fx1F5R+3zP8OWcAtXv3U1XrFwUwDE2vMv37mjzuX25bfzos/Dd6Ld/9tauGMhNqWY4+4anO+UslN4ZuMzLIs00NF06+3mNUwLhSnMKIWskczylvF0NMrXw22sD9aw0hLlOlsp5489nweW38G/syOcFmjkD+vuIwE8d+zvuH7VP/h1fpz/t/013nY8BREocuaCrZZAoJ5Mbz588hyZpUW0FE2EzR9T37iR4QVTsL7zJ0qGllA5ag4se5lmV5AJvhI8D3+eKblu1mbnYl1yF5cUFPK0cvLNRb8jYg/yaGYGs3f8hR+5PFzjzuW3rTFikVZuylfMzH+E74RCfL2wiGFxxRR/iJd9Xlq8OeRllLLTbme60wj9Jit43molOHQ8WYVTWOZ0MyHhwmqxckl+GYvqhF3HnMnEKRfw+Ee/B2J8b8ZXCbdUc9Fbi/hjwQj+fMUHvPjQhay1beNU5wR+9Zn/x1efuYgFJRv5jOUkSp0+Xm1ZTJNrHcdaSiERZal6k6ey4nzZbiOWCPKqYwMVATs+twWfsrHLanS/d3smgc2BZfbXGbf6DuL29Z3Pz2zr//iXwOxJX4TTf88xw48nZ9G1TPH9F5v6ASQSfKPodv6QiHFl5mTkhJu5bsk9LKaKo0v/wufEA43CbcP+zbX2ak4IhPm7FLGzvYbvZlmpG3IPt+fkc17ZdLZnruf3ka28i4NpsTBntAT4yO3iXVs52ZE3+c4QK9MsXmpibbxui3H7TgcWpRgXjxKwCAuCW3gz8ApHE+breTasKsEmi+K/jXYCFgvORIKTgiGub94F/gaI+Lk93ML8siFMLP0rV+16A54vxBFs5t7EJr4+rIldYuWR6l2Miho99F72evhlgWJSyS+4I5JBQWU2JGJcnd/A7x1h3m5zcFQ8zJea/GQkEnzgdvGc7yO2BpcwLy/AZXY/o5WdGoeHN+yK10I23q80npPSaAyfSrBD2djQ8BaiFBMjUc71xCh1AVjYaRU2x4UPGqzUtfT8OytKURqLMyIeZ7w9gccuRLHQbBGaI8KGFuGddguh3f9REqAaMuMJCuIJCmMJJqBwu0EQ2kRoQ/BHhK0xoTUgtFohZj4rFqXISEB2to15ZaOZOOEzvLezgTHZY8hz5eGP+mkIN3DOcTvJczxNW937/N1m4acFwwhL9xIRV0IYGnuDIdHXuWjcUEaMPZ1hJVPJdUWwW+xYLVby8hOMGNbKydMaqKpYRn31KlSgEpSfBhF22QSHUjiUwieKuVaFeDxY7Xm4MkrJzR9NcclRZOTn4XN68dq93ar6AVQ8igo2otrrSLQ3EfPXE26tIR5qRVQMi0rgdGbgcWXj9ebidudideeCNxu8BcbL1nP/l10uiw56BhgR4asnOVjc8leaE23cHsvi5K/9FzJL+u0e6Ry5+RaMAWUeNTf9UEROVEr9IkX3vxK4EmBYmZ1Lm1tZrrJ5YPUD3Lf6PnKsOUzzTGOaZxqjnKOwSPciz/Z4O3fV3UVVuIq/tmfjTsQoLy/v9X4TbaU874twwpIPaNra1U395aqXOToUpam2haXm+dFEFLuC1/3VhMrLqY/Wsy5UwzXtAd5f+glRxzaOj5Ryh72Sh8sfYlGiCmdCcXSbg/feeY+zZRJ3OZu48LXvsSFezTVNLdRubedyy1x+x8N8b9kfcCsLgiKDHJp842gLNeOpqYJwC3YZTUVjPTUFc6gNb2HK1g+Jx2P47GWs9bewcdTlbIi+zhmVuwgqB4VZc1gQ/Ij3Z9zCm/X/4IRAO2FrCVNKTifW/jR/GDefT4OfMiIW5njLcGpzJzDdsZ0/5xnd0/Nw8vvocNY7Q7zMdl7+8G1K7CXsslrJaW6ivLycvG0bwAVPf7yIUa4aNjtsfKutkfKFCxmz5hVcHsVTdRVEy9/gPw4Lp7UHCD//N/LrP+Iie5AnMizc+OofedXRyPCohT+sX4Bz/Vvcb4FLh43me2xEwoLT5ePmVpjfsAiAdwpn8qdMC7fZagE3Iyz5/LLdwrlN27GrKAszi7jJF2VE0Wc6f/5FzhEsjFew/JnbCHtKWL7+PiTLQzsnmsdkcLR9DO/ENlP7t2PwxUL8Nw9GOfJoL/4+5Y0WGPUL5lfdxROW1bz26g8YGY1xQ0kxJXi5cMSv+MBdDErx45ZV3NH0CL/0NPLYrtfZarMRczv5inUyJw47j4Q9i+HNOzg1toEXgot5ILMFaAcslKgMzo8P4zjvDApzi7EkIuwI7GRReDWfuHbyodtoY1akHJwg+YxUo5iceRTO0jLW2zNZb/5OOEN1fLX+Jf5mXcYDTWv46rYPidi8XJvrYrPNzrWOk6mffhw1VjeWRIjSUD3XtH/CrY5lfNke5eJQCy0WeCZbCOHk0thQ5rvHobKyidm8fCER49RoE6/F1vG6bxuv+7rPwzNR+fhGvIgTbEPJ8mYiKo6Khdgcb+QTVccnjmaedrQTFqOky66EocrJFOVmeMxLcdxLrrixiJU2iVNHO/WWADutQSptQVYTpZ04FiAbK5nKRomyMz3hIDfuIEPZsGIlJIpIIkrEpmggSoMtQr0tykaJEiJBAvBhwacseJWFEqxMVFYyY1a8yoISCJOglRiNiRa2BtaweMWGXv+mWJSi2OUi1zWS413DKLAX4BAHcRUnpEI0xZpoCVexI7SDOmp4dcsTsOWJXq9nXBQ8XsEleTgtLiziIEqcmIoRUxHiKkpIxYlLC8RaYNca2NX/c0vblcKVULhVApdSOJTgxIpTbDjEhgMrTmzYlLBwixO7WLFjwYEFe+fLigMLNunYbsMmggMrdqzYxYHTmoHdlkHC7iNu9RCzeYjZvMStHuJWFxwB1aKp5Pf79/o91x9WNS/k4eZn8MTj/CFaAmN/RvnyDUDvvwv7K50lPucA0805uxCRB4GPgYMNfKqA5G5FZea2bpRSdwF3AUwdUaB+2h4B1UzLlW/zdtU7LNi2gA+qPqC8rZxcVy6nDj2VibkTcVgdbG3ZyktbX6I52swfTvkDp77xZ/COYO7cub0mqnX5Wn656p/EymzMPc44bmvLVmq31fLNQICh08YzNOn8Zx78FUucUX59yik88OkDsBPOCAQoPeV0cGZw/Do/D33wAS8kFrE1UMO5oSjjRkxk3Ny5nLzDy7oX3+AdTzWneodz2dbtWE/9LATqmfmPP7H4xCuZ2VzL7xs+pCHfSc7M8whuvI8h0TrwFTOkaCz+aDvZJ99M6+uXUdbSgHXeb5hMI69te42sC35By3/fZOyI03Cf9gc+37yeV99YxIphMWqbFFef8Sdyxp3PmcCb7wR4ZesrIPCPM//BkLKTWV9ezt1zjuP+1ffTHG7m65O/TrG3GEvdSnj5UoZNHMbYnLHEt8PoRJC5c+fSsvKH4ALXUBeZuZmoHTC7vYnji/3w7hLm5M1iZXwjdUPq8O+I8FXvGMZsvg+A75x7K+9s+y9PNT5FtjOb2896DPe6V6GliiEzv8KzeaN4Yt0ThONhvjD2CwzNGAqt1WBzcrInl5OUotJfidvmJt+d3+3nehZwplLdSgcb1+3i5Q9/R37FPxlmz+Bel50JWaM45/RzO4/JqMng9VcvZ2mmkxxbDputDfxuznWcOvq0zmNOiJ/Imlcv5+esxiIWspzZ3P3ZxyjxJf/ncypzYt/igU8fYMmuJZyVMZSvH/V1RmSN6DyivLyci+ZeyUVAXaCOzS2byXPlMSZ7z26jM4DzzPVoPEqCBE7rvhu/Hqcu5OO3fsA/q97HcepvWV2/mvcrXuW6Y67jyxMv3eP4acBRtSv47aLfcnuzURJ0YumJ/Hz2zxmV3fNgj3OAn0faeL/qfar8VeS6cpldPNv4efVgAvBZcz2hEjSGGkmoBDmunD1KJfpLeXn5Xv8O9JlS8MHttL/xG7bklLB53Ok0OZxktFSTs+VdRsQSDD3pWhzHfQcsfSjxaK8nsPQeaja+SnP9OmIkiAEWi53M7BFklh5DxujT8I48Fatz742mlVKE42H8wQb8Natpr11NW+NG2oONtIWaSYCRJovdmFTZmYE4MxFXlrnMRJxZiMONmFWWkViYYKSVcKiFUKSNULjFfLURivoJRQOEYkFC8QitiSghwoRQBEUREiEskNjfIEUBMePlCSTwJRL4EspcJvAphc9ix2dx4rO6ybR7yXJkkO3MIsuVR5YnnyxvET5vEVZPnjFHlCsb3Dmdk0kPNP32fPcgHAvxt9e+yyMtS5geiXLr9B9SePRVhyT4TPc4+tlAo7m+/62Ke7YEGCsiIzECni8BX97bCWFnLpz+M3jpp2S1VnPe6PM4b/R5BKIB3q16lze2vcErW1/h6Y1PA2Cz2JhdNJsfzP0BUwumQvu1UDprr4k6Y+hcfv/JHTxds5iOI8t3lANwans72Lv39jrNks3NiV2sbVzLaxWvMcmRS2lsO9iNhodOVzYXtLVzv3UHLquLbzc0wHij2ZTFm8ffa+rYdc4tDGneiVgWgzMDLDYK43HOsxdA62o8Ng+VsSBMnE9g0wN4/XUw/XIy7e3sbK+mPsP4ki84+ko47ruUfno/LeEWltd9DMC4o68Cbz5HuzLx2r3c+cmduG1uTh3R1eL+18f9mmEZwxiTPYaTy07u3O6yufjO9O90+8yFHqPbeU2gBo/5OUtaa6GpgqzGCoryJrKxeSOheAiLWJiKE/5zGYiF+dO+yRsf3cQtH93CzMKZzDj177DyP5A7ipwxp/P45Av4sPpDphdOp9hbDAVHdd43C/j2tG93/4FldlU9ikivX64d+5ONz58CwHqngyHBVj7J9nFh6QndjplROINCTyH/yvRgFSt5YThrxFndjnFYHdw579888OkDBKIBvj756515lMxtc/Odad/hO9O+s8e+3RV4Cijw9G0+G7u178GBiHDLSbdw9cKr+fPSP2MRC1fPuJovT+j9V2964XSeOe8ZagI1uKwusl3Z+7xPhiODs0aetc/jdmcRyx5B62FNBE78Id7S2Ux5/VdMWfygsd1ig4nnwbwb92uIfrz5eE65jpGnXAfxGLTXgdUOrixjuV9JE1w2F66MUvIzSmHMmft1fn9K/iKOJWJE4hHC8TCReMRcDxGOhYnGw4TjYcKxEBFzfzDShj/USHuoibZQM+2RVvwRP/6oH38sSHU8RHs8gl9FCdAOqh3CtcZwu61daRClyEgkyOp4xRNkKSHLYifH6ibP5iXPmUWeK488TwF5viF4vEXgyQV3btfSnd23IHYA+mTNf/n1R79jq8T4csLLNRc8jD1v/0Zj3h/pDHz+H/CxiCzEqBk/GbjuYC+qlIqJyPeB1zC6s9+nlPp0nydOOBdeugbWPA+FRjc6j93DmSPO5MwRZxJPxGkINRCJRyj0FOKwJtU5BxqMeui98HgKONffzrPWdfw81Ey2K5tXK15lYvZYird2BTQdznIU8OfgLr7+6tcJxAJclzkVrGu7fjEcXn7Q1Mzomd9k8oQvUPKPE8FsCIw7BwtQEk9AoBG8+cYfUocHnFnQVgPN23EX5BOMBVH5YwlYrXjyxsKcH5O14u+0hFuoC9QBkD9iLiR9+b+x7Q0AxuUYU3s4rA6+OeWb3Lb8Nq6YfAWZjq6OeRmODL4/4/v7zH6AfHc+FrFQG6jFZc5UXxqNwkd3AzAxazQr61ZS2VbJxNyJeKecC6//Gk75OadMuIhvBqtZ27CW64+9HnFlwjHf6rx2jivngL4wD8To7NHYLDZWHfcV8kpPIfTa5cwumt3tGItY+PGsH/OLd40CzltPubX7M2XKcGTwgxk/SEm6D5bP4ePez9zL1pat5LhyyNnb3HUmETECUa1nI06Eb70FLZUQqIeckX2afXqvrLZugf1AYbPYsFlsnf809adYIkZbpI2WcAstkRZagk20tO+ipb2GlkAdLaFGWsLNtIRbaYm1sz0WpDkRpk1FgAhEmyBaAW1ADbgTCfLicfLiHUtjvcDqotiRQ5G3kGJfGZmZQ5GsEsgoMX5mGSVGoDRAquBqtpZz+3v/x/OJJooTCe4cdREnnvzrQx4AprNX1+MiUk7HxFFwrVJqVz9d+2Xg5f06KaMYhh4D616Audfusdtqsfb43zbREIRbjeBib+weLm7185/MDJ5Y/wTHDTmONQ1r+MXU78LHb+5R4pPlyOR7jXCrBJiQO4HzLUVG4NLB4cMOzM+aAC7z3k6zo5wzC8RiBD2BevAkpS2jyPgj2lqFZ+hoApFaQvEQcRTeqV8CVxaZjkxaI63UBmqBrpKYiblGQPhaxWuU+ko7x/wBuGLyFZw3+rye86iPbBYb+e58qtursZoP/pBYDBbdAXYvJ448i/Klf2RH2w6+O/27MO0ymHEZYETOP5z5wwO+d39y2VxML5jO4p2LsYoVm9g4esjRexx37qhzyXXlku3MZlLepDSktP+JSK9VVdoBEjFKd/anhEfrVzaLrc/BfLJoPEpDqMF4Bc2Xv4qGtmoaArU0hhrYHm7m42gbzfEQRiu0AMQroKUCd1OC4lic4niMIbE4xbEYxQmhyJFFsbuAIRlluLOHQWYZZJVBVqmx3vHP7uEoEqB61eM8sOoenlatJET4euYkrjzjr/gyS1OShJQHPiKye3+0SnNZIiIlSqnlqU5Tp4nnweu/hMatkDty38eDEVjAPkt8sLsZF40xz13GXSvv4rG1j1HgLmB+yUnGfkf3BpvYXFzuD3LqpW9S4C7A/dLPupcKdRwf8UPY7CLvNEtaLBajnjnYCO313YOyzFLY/BYkYri9hQQD22iPthsfwW5cM8uZRVzF2da6DaCziqDUV4rP7sMf9TOrqHvVnogcVNDTYUTmCCpaK1BKGSVrw8pg+wcw/mxOH3kWv1v6RwDmj55/0Pc6lE4oOYHbP76dtY1rOab4mG6lYLsfN1BEo1EqKysJhUL7PniAysrKYu3atQd1DZfLRVlZGfZ+mv9OSx+71U6xt7hPpZqxRIz6YD272nexK7CLmvYadvmr2NWyjV3+ajaG6qiPJg+HUgfBOnL8yxgSizIkFmdIzAiQShLCEFcuQ3wl5GQMRbLLjL/9WR3LUqM9UiqCI6WgcQuhLQtZvPllnmn+lHdcdgThc1kT+NZJNzI0qelBKqSjxGcpsBowIwaSc14Bp+1xRqpMPNcIfNa+ACde3bdz2o3qoH0GPiLg8PJr3yRas0up9lfzmxN+gzdhdkHdrcQHuweiQYZnmpNZRgPdj+kMfNqNEieA5EaJ7lwINhnpyxvdtb14MmxZaBySUUK0JkqreX5H4NPxJb2peRM2sXX+lyMiXDTuIu7/9H4uHHfhPjLmwAzPHM7r214nkUgwKmsUnHQ1LHsATv4ZBZ4CXrvgNYKx4G4NfA8/54w6h79//HcUissmXpbu5KREZWUlGRkZjBgx4ogYJPBQaGtrIyPjwIcoU0rR0NBAZWUlI0f28Z8vbUCwWWz7DJKi8Sg1gRp2te+iur2amkANO/07qW7ZRoW/ig+CdQQTHb2GE0AlrrYdFDfFGBKLUWKWGpXE4gzBxhB3AUW+MuzZZUZJUUYxePKMlzff+Afa4TO+e/b2O60UhNsg1AL+GmjYRKJ+E9vrVrGoYRXvWiJ85HIStljI9Xi5vHQuXzzmJwzJKOvXPOyrdAQ+PwEuBILAE8CzSin/3k9JkZwRMGQ6rPnffgQ+fSzxAXB4yYlFueece7q2bf/QWO4R+LggGuycksIIfJJKfMwghWjAeOCgq6oLjAc20GgEPslpGzK9c9WTaRSd1wWN4K0j8OkIdNY0rKHQU9itK/+PZ/2YyydfTq4rd9+f9wCMyBxh1KOHW7hkwiVQPAU+e2vn/sM94OlQ6ivl3jPvJRgLdmvUPZCFQqFBHfT0BxEhLy+Purq6dCdFOwzZrXbKMsoo6yVgUErRGmmlur3aCIjaq6n2V7PTX8Wuth2Ut1fTEElqmU0EUVsoaNjMkF0RCuNxcuJxcuIJchJxsuMJPErhUeC2uihIWNj0iYsEoBASgD8eoikepNEiNFktVNtsbHTY2Wy3E7RYwGdluGMIF5acyJzRn+XYIcftV8eJQyHlgY9S6m/A30RkFEaPqzdFZBvwe6XUilSnZw9HfQHeuAGaKoxAaF/8NcZyX218wCzF6T6AYef73Rvk2d2g4hCPGoN37R74WG1gdRpVXR2jQScHPp5cqN9onJectjKzrcnIU3CbVWO7Bz5FHmMupYrWCmYWdq+ZFJFDFvQA3bphj8o6stuKHF28Z7uegU4HPQdP56F2oESELGcWWc4sJuRO6PGYcDzcWWJU7a/uCpL8VWwO1NIUaqI56kfRw2ysPfKYL0Ou3cfYzJFcUDCFcbkTmFk0s6vm4jCRzsbNW0TkOcANfAUYB6xIV3o6dQQ+n/4P5vxo38e3GsO8k9GHXhIOn1E1laxjPq7dAx+bWQIUCxqBTyQArt3aiTi8ZlVXW9f1O7hzwZw1HG9S25uc4XDV+5BVhqf6AwDqzXZKPrtx/hBv12cZ4ktt74/kuc527wmlaZqmHRyn1cnwzOF7DUbiiTgtkRaaw80EY0GC0SCBWIBlnyxj0lGTsIgFCxYQ4x/mHGcOee48spxZh2yMrP6UjsbNHSU98zGmlngCo7QnuNcTUyVnuDEmz6fP9DHwqTJ6TfVlwCqHp4fAZy8lPmAERq4sY5mxW91vRyDVWdWVFBi5k3of7F4NVzzZOMQMruqDRuDT0Q00ubdWiTe1VUtDM4Yyf/R8wvEwo7NH7/sETUtitVqZMmUKsViMkSNH8vDDD5Odnd1v1x8xYgRLly7FZrPx2GOP8d3vfveAr/XAAw/wmc98hpKSI6P6Vhs8rBYrua7cPUr3E5sSzB0xNz2J6kfpmHp2E3Ax8CqwCBgGfEdEfiIiP0lDevZ01PlQ/Qk0bN73sa07+z4mRkcJTbLOwGf3Nj5JgQ9AtH3P4MjhNXt19dDGx5MU+Ph67m3VEejsXtWVXNQ+s6h/JoXbHzfPuZk/nfInXeSv7Te3282KFStYvXo1ubm5/OMf/zgk92lubuaf//znQV3jgQceYOfOnf2UIk3T+iodVV03Qmfl4d7HRk+Xoz5v9O769Fk4+Zq9H9u20+ge2Bd2D7TtNlRRb1VdewQ+wT2Do+SqLosNbElTC7iTIvVe2irtXuLTUdUFcNupt/HPFf/co9u6pvXFb1/4lDU7W/d94H6YVJLJDZ/re7fX448/npUrjUlkN2/ezPe+9z3q6urweDzcfffdTJgwgaeeeorf/va3WK1WsrKyeOedd3jggQdYunQpd9xxBwDnnnsu11xzTbeh+q+77jo2b97M9OnTmTdvHjfccAPz58+noaGBeDzOzTffzPz586moqODss89mzpw5fPDBB5SWlvLcc8/x0ksvsXTpUi699FLcbjeLFi3C7Xb39DE0Tetn6Wjc/JtU33O/ZZXB0GP7Fvi07oTSPrZFcfi6GiJ36CjxceyljQ8YbXx2H+uno+os3GaU9iSXkHiSAp9eRnpNDnwE6XwPcNqw0zhtWPpGFtC0gxGPx3nzzTe54oorALjyyiu58847GTt2LB9++CHf/e53eeutt7jxxht57bXXKC0tpbm5uc/Xv+WWW1i9ejUrVqwAIBaL8eyzzyIihMNhjjvuOM47z5j1bOPGjTz++OPcfffdXHzxxTz99NNcdtll3HHHHfz5z39m9mzdlk3TUindc3Udvo46H169Fuo2QMG4no+JhozpKjL7WEfv8BgBTLKO97bd2gh1tBnq6NK++zg+YARSgcauwCfZCHNgxOIpvSYnuarLY/foqiWt3+xPyUx/CgaDTJ8+naqqKiZOnMi8efPw+/188MEHXHTRRZ3HhcNhAE488UQuv/xyLr74Ys4///wDvq9Siuuvv57y8nJsNhtVVVXU1Bg9PkeOHMn06dMBmDVrFhUVFQd8H03TDl462vgcGSbNB8QY06c3LTuMZfawvl2ztzY+ds+eg0N1VH1FQxCPGF3be6vqivjBsVvg482H7y+Fy57pNTkdJTxtkbbO9j2adiTraOOzbds2lFL84x//IJFIkJ2dzYoVKzpfHaMr33nnndx8883s2LGDWbNm0dDQgM1mI9ExsCj0aSTqRx99lLq6Ot555x1WrFhBUVFR53lOZ1cVtNVqJRaL9fOn1jRtf+jApzeZQ6BsNqzfy5RfTRXGsi/j/YAx6GAsCIl417ae2u5AVwlQNJDUAHr3qi5v18jNu5f4AOSP7bVhM4DH1lW9pgMfbSDxeDzcfvvt3HrrrXg8HkaOHMlTTz0FGKUzn3zyCWC0/Tn22GO58cYbKSgoYMeOHYwYMYIVK1aQSCTYsWMHH3300R7Xz8jIoK2trfN9S0sLhYWF2O12Fi5cyLZt2/aZxt2voWlaaqStqquXHlwtwLLDYiBDgHFnwVs3GWP19NRza38DH0fSaMsdgUo0uGdAA10lPrFQUgPoHqq6wm3Gy9OHARR347Q6sYmNmIp1a9isaQPBjBkzmDp1Ko8//jiPPvoo3/nOd7j55puJRqN86UtfYtq0afzsZz9j48aNKKU4/fTTmTZtGmBUT02aNImJEycyc+aePRvz8vI48cQTmTx5MmeffTbXXnstn/vc5zjuuOM45phjmDCh58Hjkl1++eVcddVVunGzpqVYOtv4zDZfL5jvzwVWAleJyFNKqT+mLWUdxp9jBD4bX4NZl++5v3GrUTLjK+rb9ToaMEeSA5/2nkt8ktv4dLQD2r1xsyfPKEFqq4Gc/Z/Xp2OUz4ZQgw58tAHB7+/eeeCFF17oXH/11Vf3OP6ZZ3quCn700Ud73J7cPuexxx7rtm/RokU9ztW1evXqzvVrrunqLHHBBRdwwQUX9HgfTdMOnXRWdZUBM5VSP1VK/RSYBRQCJwOXpzFdXQonGu131r/S8/6OaS362ii4Y2Tl5J5dvVV1dbbxCfY+1k9HwNW2c8/BDfuoY16uPHfeAZ2vaZqmaUeSdAY+hUA46X0UKDJHcA73fEqKiRilPlvK9+yNBcaUEPtT0tIZzCRdKxrccwwf6GrjEwv2PrpzcvudAwx8OkZpznfvf1WZpmmaph1p0hn4PAp8KCI3iMgNwPvAYyLiBdakMV3djTvLaGezpbz79ki7MQlo0X502+2oqkru2RUN7DmGD5ilO2Ic26fA58CGvXdajR4nOvDRNE3TBoO0BT5KqZuAbwPN5usqpdSNSql2pdSl6UrXHoafaMyBtWG36q7qlUYX87L9GHysM/BJquqK9DA+DxilTZ3d1XsZ5DC5bdEBlviMyBwBwOT8yQd0vqZpmqYdSdI9gOFyoKojHSIyTCm1Pb1J2o3NAWNOhw2vQSIBFjNWrFpmLEv2Yy6rzsAnuaor0HNVF3SN9NzbtBbJPbn6Mjt8D34484ccXXw0MwtTPyeXpmmapqVa2kp8ROQHQA2wAHgReMlcHn4mnAv+Gqh4t2vbzuWQNRQy+tijC7oCl25VXb00bgZw+iDsN3p+wZ7HWW3wmd/BlIuNWeUPgMfu4YzhZ+hRmzVN07RBIZ1tfH4IjFdKHaWUmqqUmqKUmprG9PRuwmfBlQUfP9y1rWoZlO5nKUlHr67obm18ehs8sKPEJ+zvfn6yE74PF9wNVvv+pUXTBiAR4bLLLut8H4vFKCgo4NxzzwVg3bp1HH/88TidTv785z+nK5mapqVROgOfHRgDFh7+7G6Y+kVY8zy0NxiNmpsqoOyY/buOY7cSn97m4Oo83tc1CSn0PDqzpmmdvF4vq1evJhg0qocXLFhAaWlp5/7c3Fxuv/32buPpaJo2uKSzjc8WoFxEXiKp+7pS6i/pS9JeHP1NWHIPvPlbQIHVaQRD+8OeNIAhmHNwJfZe1dW605iSwuEDi/WAk69pKfXKdbBrVf9es3gKnH3LPg8755xzeOmll7jwwgt5/PHHueSSS3j3XaOaurCwkMLCQl566aX+TZumaUeMdJb4bMdo3+MAMpJeh6eC8XD892D5g7D8IZhxGfgK9u8aFivY3F29ujpKfvbVuDncavQs0zRtn770pS/xxBNPEAqFWLlyJccee2y6k6Rp2mEkbSU+SqnfpuveB2zeTUbvKYsdZn3twK7h8HaNy9MR+Dh7mS6iozt7qJdJSDXtcNWHkplDZerUqVRUVPD4449zzjnnpC0dmqYdnlIe+IjI35RSPxKRFwC1+36l1HmpTlOfiRilPgfD4ekKeDqWu8/B1cGZYTRsDreBS5f4aFpfnXfeeVxzzTWUl5fT0NCQ7uRomnYYSUeJT0fXqMHZpaKjwTJ0VXk5einNcWUZPcACDeDVIytrWl994xvfIDs7mylTplBeXp7u5GiadhhJeeCjlFpmLt9O9b0PC/akEp+O3lq9lfh0BDuNWyF31KFPm6YNEGVlZVx99dV7bN+1axezZ8+mtbUVi8XC3/72N9asWUNmpi5R1bTBIh1VXavooYqrw8GM5SMifwI+B0SAzcDXlVLNB3q9Q2J/2vh4zcbTEV3VpWl94ff799g2d+5c5s6dC0BxcTGVlZUpTpWmaYeTdFR1nWsuOxrLdFR9XcZeAqI+WgD8QikVE5E/AL8Arj3Ia/Yvh9eouoKkqq59BD5wwFNSaJqmaZrWJR1VXdsARGSeUmpG0q5rRWQ5cN1BXPv1pLeLgQsP9FqHTEdPLdjPwOfAJiHVNE3TNK1LOgcwFBE5USn1vvnmBPp3XKFvAP/Zy82vBK4EKCgoSFkDyHH1LeT7m/igvJyh21cyGnjno49JWF17HGuNBTjJXF9VUU+DPzVpPNT8fr9ucJpCqcrvrKws2traDvl9DmfxeLxf8iAUCunfkT7Qf0tSa6DkdzoDnyuA+0QkCxCgCSNY2SsReQPoqfjjl0qp58xjfgnEgEd7u45S6i7gLoDx48erjjYAh1zodWj4wGhz8Nb7sEU4+bQzja7yeyYS3jNWp5wwD0pm7HnMEai8vJyU5beWsvxeu3YtGRmDe7yptra2fskDl8vFjBkD4/f9UNJ/S1JroOR3OgcwXAZMMwMflFJ9mrdLKXXG3vaLyOUY7YhOV0odbJuh/ufwGlVciYSxdPh6DnrA2D7/n7DxNSiYkNp0apqmadoAlLbAR0ScwAXACMAm5pe/UurGg7jmWcDPgVOUUoF+SGb/c2UZy3CrEfj01qOrw4xLjZemaZqmaQctnXN1PQfMx6iSak96HYw7MOb7WiAiK0TkzoO8Xv9zZxvLULMxKnNvY/homrbfRITLLrus830sFqOgoIBzzzU6kz766KNMnTqVKVOmcMIJJ/DJJ5+kK6mapqVJOtv4lCmlzurPCyqlxvTn9Q4Jd46xDDabVV068NG0/uL1elm9ejXBYBC3282CBQsoLS3t3D9y5EjefvttcnJyeOWVV7jyyiv58MMP05hiTdNSLZ2BzwciMkUptSqNaUg9V7axDDYZwU/He00bQP7w0R9Y17iuX685IXcC1x6z72G5zjnnHF566SUuvPBCHn/8cS655BLeffddAE444YTO44477jg9mKGmDULprOqaAywTkfUislJEVonIyjSmJzU6SnxCzRBsBE9uWpOjaQPNl770JZ544glCoRArV67k2GOP7fG4e++9l7PPPjvFqdM0Ld3SWeIzOP/idLTxCTYZIzh78tKaHE07FPpSMnOoTJ06lYqKCh5//HHOOeecHo9ZuHAh9957L++9916KU6dpWrqlrcTHHMF5KHCauR5IZ3pSpqPEJ9BoVHW5dYmPpvW38847j2uuuYZLLrlkj30rV67km9/8Js899xx5efofD00bbNLZnf0GYDYwHrgfsAOPACemK00pYXeDzQVNWwGlq7o07RD4xje+QXZ2NlOmTOk20uz27ds5//zzefjhhxk3blz6EqhpWtqks6rrC8AMYDmAUmqniAyOYV99hVDzqbGuq7o0rd+VlZVx9dVX77H9xhtvpKGhge9+97sA2Gw2li5dmurkaZqWRukMfCJKKSUiCkBEBk+/7qyhsH2xsa6rujSt3/j9/j22zZ07t3OY/XvuuYd77rknxanSNO1wks42NU+KyL+BbBH5FvAGcHca05M6WWWg4sa6rzC9adE0TdO0QSSdc3X9WUTmAa0Y7Xz+Tym1IF3pSanMrgHVyB+bvnRomqZp2iCTzqouzEBngYjkAw3pTEtK5QzvWre705cOTetnSimkt0l3tT45HOdW1rSBJOVVXSJynIiUi8gzIjJDRFYDq4Eac5LRgW/S543lyFPSmgxN608ul4uGhgb9xX0QlFI0NDTgcrnSnRRNG7DSUeJzB3A9kAW8BZytlFosIhOAx4FX05Cm1HJnw083gM2Z7pRoWr8pKyujsrKSurq6dCclbUKh0EEHLS6Xi7Kysn5KkaZpu0tH4GNTSr0OICI3KqUWAyil1g2qIvKMonSnQNP6ld1uZ+TIkelORlqVl5czY8aMdCdD07S9SEevrkTSenC3fbqMXNM0TdO0QyYdJT7TRKQVEMBtrmO+1xXbmqZpmqYdMikPfJRS1lTfU9M0TdM0DUB0DwwQkTZgfbrTMYjkA/XpTsQgovM7dXRep5bO79Q6kvJ7uFKqoKcdaR3H5zCyXik1O92JGCxEZKnO79TR+Z06Oq9TS+d3ag2U/E7nlBWapmmapmkppQMfTdM0TdMGDR34GO5KdwIGGZ3fqaXzO3V0XqeWzu/UGhD5rRs3a5qmaZo2aOgSH03TNE3TBg0d+GiapmmaNmgM+sBHRM4SkfUisklErkt3egYyEakQkVUiskJElqY7PQONiNwnIrUisjppW66ILBCRjeYyJ51pHEh6ye/fiEiV+YyvEJFz0pnGgUJEhorIQhFZIyKfisgPze36+T4E9pLfA+L5HtRtfETECmwA5gGVwBLgEqXUmrQmbIASkQpgtlLqSBkA64giIicDfuAhpdRkc9sfgUal1C1mYJ+jlLo2nekcKHrJ798AfqXUn9OZtoFGRIYAQ5RSy0UkA1gGfB64HP1897u95PfFDIDne7CX+BwDbFJKbVFKRYAngPlpTpOmHRCl1DtA426b5wMPmusPYvzx0vpBL/mtHQJKqWql1HJzvQ1YC5Sin+9DYi/5PSAM9sCnFNiR9L6SAfTDPQwp4HURWSYiV6Y7MYNEkVKq2lzfBRSlMzGDxPdFZKVZFaarXvqZiIwAZgAfop/vQ263/IYB8HwP9sBHS605SqmZwNnA98yqAi1FlFGvPXjrtlPjX8BoYDpQDdya1tQMMCLiA54GfqSUak3ep5/v/tdDfg+I53uwBz5VwNCk92XmNu0QUEpVmcta4FmMqkbt0Kox6+s76u1r05yeAU0pVaOUiiulEsDd6Ge834iIHeNL+FGl1DPmZv18HyI95fdAeb4He+CzhP/f3t2HW1XW+R9/fwKfJfHhRCAYKsQ1aqb5UGY5Jy0fCqVp1DBLnNEhfzNO4zQzSemkWZbajJk9U6KiIpqkYoJK6lF//cwEpBAVIZUAQRJERVEEvr8/1n10edpnnw3svTZ778/ruvZ19l7rXmt995d1sb/Xuu+1bhgqaXdJWwIjgcl1jqkpSdouDZJD0nbAkcCj5beyKpgMjErvRwG31jGWptf5I5z8HT7Hq0KSgCuAxyPi0twqn9810F2+m+X8bum7ugDS7XiXAb2AcRFxYX0jak6S9iC7ygPQG5jgXFeXpOuBdmAX4DngPOAW4EZgN2ABcGJEeEBuFXST73ayboAAngG+mBuDYhtJ0keAB4DZwPq0+Gtk4058fldZmXyfRBOc3y1f+JiZmVnraPWuLjMzM2shLnzMzMysZbjwMTMzs5bhwsfMzMxahgsfMzMzaxkufMxssyVp59xM0EtzM0OvkvTjGh3zLEmnlFk/XNIFtTi2mdWeb2c3s4ZQxMznknoDM4EPRMTabtootTk0Il6tVSxmVhu+4mNmDUdSu6Rfp/fnS7pa0gOSFkj6jKRLJM2WdEd69D6SDpB0X5ok984uT6HtdDgws7PokfQlSY+lSRknwptzQnUAwwv5smZWVS58zKwZ7ElWtBwHXAvcGxHvA1YDn0rFzw+A4yPiAGAcUOrJ4YcCM3KfxwD7R8S+wBm55dOBj1b9W5hZzfWudwBmZlUwNSLekDSbbPqZO9Ly2cBgYBiwDzAt66miF9ns0l31Bx7Pff4jcJ2kW8im/+i0DBhQvfDNrCgufMysGbwOEBHrJb0Rbw1eXE/2/5yAORFxSA/7WQ1snfv8KeAw4FjgHEnvS91gW6e2ZtZg3NVlZq1gLtAm6RAASVtI2rtEu8eBIanNO4BBEXEvcDawA7B9avdeGnRmarNW58LHzJpeRKwBjgculvQHYBbw4RJNp5Jd4YGsO+za1H32CHB5RKxM6z4G3F7LmM2sNnw7u5lZjqSbga9ExLxu1vcDJkTEEcVGZmbV4MLHzCxH0jCgX0Tc3836g4A3ImJWoYGZWVW48DEzM7OW4TE+ZmZm1jJc+JiZmVnLcOFjZmZmLcOFj5mZmbUMFz5mZmbWMlz4mJmZWctw4WNmZmYtw4WPmZmZtQwXPmZmZtYyXPiYmZlZy3DhY2ZmZi3DhY+ZVURSu6RF9Y6jK0lzJLUXfMxVkvYo8phmVh0ufMwakKQOSS9I2qresdRbROwdER0bup2k0yQ9IellSc9JmiKpT4XH3D4intqIYw6WFJIe6bJ8F0lrJD2zofusNUnPSPp4veMwqxYXPmYNRtJg4KNAAMdtwn56VyumRiPpb4FvAydFRB/gb4AbCgxhW0n75D5/Dni6wOObtSwXPmaN5xTgd8BVwKj8CkkDJE2S9BdJT0v6Um7d+ZJuknStpJeAU1P7yZJWSJov6Z9y7beRdFW6svQYcFBu3X9JmtTl2JdL+n563yHpm5J+m66o3CVpl1zbX0paKulFSfdL2ju37ipJP5Y0NXUp/VbSuyVdlmJ5QtL+ufZvXpGQ1EvS1yT9KR13hqRBJXJ4EPBgRDwCEBErIuLqiHg5F8NPJU1L+7lP0ntyxwxJQ3JtfyTp9tT2IUl79vBveE2Xf7tTgPFd8vk3KY8rU3fecbl1G5qjns6LGyWNT/HPkXRgWncNsBtwWzrOV3r4XmabPRc+Zo3nFOC69DpKUj8ASe8AbgP+AOwKHAGcJemo3LYjgJuAvmn7icAiYABwPPBtSYentucBe6bXUbz9h/pa4GhJfdOxewMjefuP9+eAfwDeBWwJ/Gdu3VRgaFo3M8WSdyJwLrAL8DrwYGq3S4r/0m5y82XgJOCTwDuBfwReLdHuIbLcfUPSod10GZ4MfDMdc1aJGPNGAt8AdgTmAxeWaQtZ/kamQm0vYPsUEwCStiD7t7yLLEf/ClwnaVhuHxXlqMLz4jiyc6EvMBn4IUBEfAH4M3Bs6t67pIfvZbbZc+Fj1kAkfQR4D3BjRMwA/kRWYEB2FaMtIi6IiDVpDMrPyX6UOz0YEbdExHqyH8hDgbMj4rWImAX8gqywguyH9cJ0NWQhcHnnTiJiCXA/cEJadDTwfIqp05UR8WRErAZuBPbLbT8uIl6OiNeB84H3S9oht+3NETEjIl4DbgZei4jxEbGOrEtqf0o7HTg3IuZG5g8Rsbxro4h4APgM8AHgdmC5pEsl9co1uz0i7k8xngMc0s3Vo854fx8Ra8kKpP26addpETAX+DhZvq/psv5DZMXQRenf8h7g12RFXf6YleSokvPi/0bElLTtNcD7e4jfrGG58DFrLKOAuyLi+fR5Am9diXkPMCB1jayUtBL4GtAvt/3C3PsBwIrO7p1kAdlVgc71C7usy7sa+Hx6/3n++sd7ae79q2Q/5J3dURel7qiXgGdSm11y7Z/LvV9d4vP2lDaIrBjsUURMjYhj4OhbIgAAGFZJREFUgZ3IroSdSlY4dVqYa7sKWEGWk1JKftcejE/HPIm/zt0AYGEqUDvl/22g8hxVcl50jX9rtfAYMGtuPrHNGoSkbciuwvSS1PlDtRXQV9L7yX6on46IoWV2E7n3zwI7SeqTK352Axan90vICok5uXV5twA/UTZIdzhQ6fiPz5EVGh8nK3p2AF4AVOH25Swk65p7tNINUnFxt6R7gPyA4zev7kjanqxAerYKMXaaRNalNCMi/izpvbl1zwKDJL0jV/zsBjy5Ecep5LwoJ3puYtY4fMXHrHF8GlgH7EXWlbIf2d1ID5B1l/weeFnS2Wlgci9J+0g6qNTOUvfV/wO+I2lrSfsCp5GNP4Gse+qrknaUNJBsnEl++9fIxpJMAH4fEX+u8Hv0IRuTshzYluzuqmr5BfBNSUOV2VfSzl0bSRohaWT6bpJ0MPC3ZIPGO31S0kckbUk21ud3KWdVERGvAIfz9qtMnR4iu/LyFUlbKHtO0bFk43A21AadFyU8B/iZRdY0XPiYNY5RZONm/hwRSztfZFcNTia7YjKcrCB6GnierBDYoZv9QdbNMpjsCsPNwHkR8Zu07htk3StPkw2y7dodA1l31/u6Wded8Wm/i4HHeHuxsakuJSvY7gJeAq4AtinR7gXgn4B5qd21wHcjIj+AeQLZAO8VwAG81a1XNRExPSL+qmsuItaQFTrHkP07/hg4JSKe2IhjrGPDz4u87wDnpm6y/+yxtdlmThG+imlmG0fSbsATwLsj4qV6x1Mtkq4CFkXEufWOxcyqy1d8zGyjpNukvwxMbKaix8yamwc3m9kGk7Qd2diPBWS3spuZNQR3dZmZmVnLcFeXmZmZtQx3dQF9+/aNIUOG1DuMlvHKK6+w3Xbb1TuMluF8F8e5LpbzXaxGyveMGTOej4i2Uutc+AD9+vVj+vTp9Q6jZXR0dNDe3l7vMFqG810c57pYznexGinfkro+af5Nde3qknS0pLnKZoUeU2L9VpJuSOsfkjQ4LR8sabWkWen109w2B0ianba5XFI1ngZrZmZmTaBuhU+aDPBHZA/o2gs4Kc1SnHca8EJEDAG+B1ycW/eniNgvvc7ILf8J2YPJhqaX7zgxMzMzoL5XfA4G5kfEU+kppRPJ5u/JG0H2ZFjIHo1/RLkrOJL6A++MiN9FdrvaeLLH/JuZmZnVtfDZlbfP/LyIt888/LY2EbEWeBHonHdnd0mPSLpP0kdz7Rf1sE8zMzNrUY06uHkJsFtELJd0AHCLpL03ZAeSRgOjAdra2ujo6Kh+lFbSqlWrnO8COd/Fca6L5XwXq1nyXc/CZzEwKPd5YFpWqs0iSb3JJtVbnrqxXgeIiBmS/gS8N7Uf2MM+SduNBcYCDBs2LBplpHozaKQ7A5qB810c57pYznexmiXf9ezqehgYKml3SVsCI4HJXdpMJpuRGuB44J6ICEltaXA0kvYgG8T8VEQsAV6S9KE0FugU4NYivoyZmZlt/up2xSci1ko6E7gT6AWMi4g5ki4ApkfEZOAK4BpJ84EVZMURwGHABZLeANYDZ0TEirTun4GrgG2AqellZmZmVt8xPhExBZjSZdnXc+9fA04osd0kYFI3+5wO7FPdSM3MzKwZeK4uMzMzaxkufMzMzKxluPAxMzOzllF2jI+kgWQDij8KDABWA48CtwNTI2J9zSM0MzMzq5JuCx9JV5I99fjXZHNkLQO2JnteztHAOZLGRMT9RQRqZmZmtqnKXfH534h4tMTyR4FfpWfv7FabsMzMzMyqr9vCp5uiJ79+DTC/6hGZmZmZ1UiPg5slDU+Tga6Q9JKklyW9VERwZmZmZtVUyQMMLwM+A8xOc2SZmZmZNaRKbmdfCDzqosfMzMwaXSVXfL4CTJF0H2lGdICIuLRmUZmZmZnVQCWFz4XAKrJb2besbThmZmZmtVNJ4TMgIjzpp5mZmTW8Ssb4TJF0ZM0jMTMzM6uxSgqf/wPcIWm1b2c3MzOzRtZjV1dE9CkiEDMzM7Na8+zsZmZm1jJc+JiZmVnLqGvhI+loSXMlzZc0psT6rSTdkNY/JGlwWv4JSTMkzU5/D89t05H2OSu93lXgVzIzM7PNWCW3s9eEpF7Aj4BPAIuAhyVNjojHcs1OA16IiCGSRgIXA58FngeOjYhnJe0D3Ansmtvu5IiYXsgXMTMzs4bR7RWfzru3cndydX5+VdLaKhz7YGB+RDyVZnqfCIzo0mYEcHV6fxNwhCRFxCMR8WxaPgfYRtJWVYjJzMzMmli3hU9E9ImId6ZXH6A/2VOclwLfr8KxdyWbB6zTIt5+1eZtbSJiLfAisHOXNn8PzIyI13PLrkzdXP8tSVWI1czMzJpAj11dkvoCZwGnABOAgyJieW3Dqoykvcm6v/IPWDw5IhZL6gNMAr4AjC+x7WhgNEBbWxsdHR21D9gAWLVqlfNdIOe7OM51sZzvYjVLvrstfCTtAvwH2ZiaccD+EfFiFY+9GBiU+zwwLSvVZpGk3sAOwPIU30DgZuCUiPhT5wYRsTj9fVnSBLIutb8qfCJiLDAWYNiwYdHe3l6db2U96ujowPkujvNdHOe6WM53sZol3+Wu+CwA/gJcCbwKnJbvNarC7OwPA0Ml7U5W4IwEPtelzWRgFPAgcDxwT0REugp1OzAmIn7b2TgVR30j4nlJWwDDgd9sYpxmZmbWJMoVPt8FIr2v+tObI2KtpDPJ7sjqBYyLiDmSLgCmR8Rk4ArgGknzgRVkxRHAmcAQ4OuSvp6WHQm8AtyZip5eZEXPz6sdu5mZmTWmbgufiDi/1gePiCnAlC7Lvp57/xpwQontvgV8q5vdHlDNGM3MzKx5lLud/VxJO5ZZf7ik4bUJy8zMzKz6ynV1zQZ+Lek1YCbZeJ+tgaHAfmTdSN+udYBmZmZm1VKuq+tW4FZJQ4FDyZ7j8xJwLTA6IlYXE6KZmZlZdfT4HJ+ImAfMKyAWMzMzs5ry7OxmZmbWMlz4mJmZWcvosfCRdGgly8zMzMw2d5Vc8flBhcvMzMzMNmvl5uo6BPgw0Cbpy7lV7yR7KrKZmZlZQyl3V9eWwPapTX7KipfI5s0yMzMzayjlnuNzH3CfpKsiYkGBMZmZmZnVRI/P8QG2kjQWGJxvHxGH1yooMzMzs1qopPD5JfBT4BfAutqGY2ZmZlY7lRQ+ayPiJzWPxMzMzKzGKrmd/TZJ/yypv6SdOl81j8zMzMysyiq54jMq/f2v3LIA9qh+OGZmZma1U8kkpbsXEYiZmZlZrVUyZcW2ks5Nd3Yhaaik4bUPzczMzKy6KhnjcyWwhuwpzgCLgW9V4+CSjpY0V9J8SWNKrN9K0g1p/UOSBufWfTUtnyvpqEr3aWZmZq2rksJnz4i4BHgDICJeBbSpB5bUC/gRcAywF3CSpL26NDsNeCEihgDfAy5O2+4FjAT2Bo4GfiypV4X7NDMzsxZVyeDmNZK2IRvQjKQ9gdercOyDgfkR8VTa70RgBPBYrs0I4Pz0/ibgh5KUlk+MiNeBpyXNT/ujgn3+laWvrOezP3uwCl/JKrFy5Wp+Mtf5LorzXRznuljOd7GaJd+VFD7nAXcAgyRdBxwKnFqFY+8KLMx9XgR8sLs2EbFW0ovAzmn577psu2t639M+AZA0GhgNsG2/waxcuXKjvoRtuHXr1jnfBXK+i+NcF8v5Llaz5LuSu7qmSZoJfIisi+vfIuL5mkdWYxExFhgLMGzYsLjz7GPqHFHr6OjooL29vd5htAznuzjOdbGc72I1Ur7LjfCtZIwPZFdTepHN2H6YpM9selgsBgblPg9My0q2kdQb2AFYXmbbSvZpZmZmLarHKz6SxgH7AnOA9WlxAL/axGM/DAyVtDtZcTIS+FyXNpPJHqD4IHA8cE9EhKTJwARJlwIDgKHA78muSPW0TzMzM2tRlYzx+VBEVP3OqDRm50zgTrKrSeMiYo6kC4DpETEZuAK4Jg1eXkFWyJDa3Ug2aHkt8C8RsQ6g1D6rHbuZmZk1pkoKnwcl7RURZe+M2hgRMQWY0mXZ13PvXwNO6GbbC4ELK9mnmZmZGVRW+IwnK36Wkt3GLiAiYt+aRmZmZmZWZZUUPlcAXwBm89YYHzMzM7OGU0nh85c03sbMzMysoVVS+DwiaQJwG7knNkfEpt7VZWZmZlaoSgqfbcgKniNzy6pxO7uZmZlZoSp5cvM/FBGImZmZWa31+ORmSQMl3SxpWXpNkjSwiODMzMzMqqmSKSuuJHuC8oD0ui0tMzMzM2solRQ+bRFxZUSsTa+rgLYax2VmZmZWdZUUPsslfV5Sr/T6PNlEoWZmZmYNpZLC5x+BE4GlwBKyyUI94NnMzMwaTiV3dS0AjisgFjMzM7Oa6rbwkXR5uQ0j4kvVD8fMzMysdspd8TkDeBS4EXiWbHJSMzMzs4ZVrvDpD5wAfBZYC9wA3BQRKwuIy8zMzKzquh3cHBHLI+KnEfExssHMfYHHJH2hqODMzMzMqqnHwc2SPgCcBHwCmArMqHVQZmZmZrVQbnDzBcCngMeBicBXI2JtUYGZmZmZVVu55/icS9a99X7gO8BMSX+UNFvSHzfloJJ2kjRN0rz0d8du2o1KbeZJGpWWbSvpdklPSJoj6aJc+1Ml/UXSrPQ6fVPiNDMzs+ZSrqtr9xoedwxwd0RcJGlM+nx2voGknYDzgAOBAGZImgy8DvxPRNwraUvgbknHRMTUtOkNEXFmDWM3MzOzBtVt4ZMeXFgrI4D29P5qoIMuhQ9wFDAtIlYASJoGHB0R1wP3phjXSJoJeLZ4MzMz61GPg5trpF9ELEnvlwL9SrTZFViY+7woLXuTpL7AscD3c4v/XtJhwJPAv0dEfh/5bUcDowHa2tro6OjY8G9hG2XVqlXOd4Gc7+I418VyvovVLPmuWeEj6TfAu0usOif/ISJCUmzE/nsD1wOXR8RTafFtwPUR8bqkL5JdTTq81PYRMRYYCzBs2LBob2/f0BBsI3V0dOB8F8f5Lo5zXSznu1jNku+aFT4R8fHu1kl6TlL/iFgiqT+wrESzxbzVHQZZd1ZH7vNYYF5EXJY7Zn7W+F8Al2x45GZmZtasepydXdKh6c6rJyU9JelpSU/1tF0PJgOj0vtRwK0l2twJHClpx3TX15FpGZK+BewAnNUl1v65j8eR3YpvZmZmBlR2xecK4N/JHly4rkrHvQi4UdJpwALgRABJBwJnRMTpEbFC0jeBh9M2F6RlA8m6y54gu8Ue4IcR8QvgS5KOI5tiYwVwapXiNTMzsyZQSeHzYu5W8apIXVJHlFg+HTg993kcMK5Lm0V0M2FqRHwV+Go1YzUzM7PmUUnhc6+k7wK/InuGDgARMbNmUZmZmZnVQCWFzwfT3wNzy4Ju7pYyMzMz21z1WPik2dnNzMzMGl65SUo/HxHXSvpyqfURcWntwjIzMzOrvnJXfLZLf/sUEYiZmZlZrZWbq+tn6e83igvHzMzMrHYqeYDhHpJuk/QXScsk3SppjyKCMzMzM6umHgsfYAJwI9AfGAD8kmyOLDMzM7OGUknhs21EXBMRa9PrWmDrWgdmZmZmVm2VPMdnqqQxwESy5/d8FpgiaSeAiFhRw/jMzMzMqqaSwufE9PeLXZaPJCuEPN7HzMzMGkIlDzDcvYhAzMzMzGqt2zE+kg6S9O7c51PSHV2Xd3ZzmZmZmTWScoObfwasAZB0GHARMB54ERhb+9DMzMzMqqtcV1ev3MDlzwJjI2ISMEnSrJpHZmZmZlZl5a749JLUWRgdAdyTW1fJoGgzMzOzzUq5AuZ64D5JzwOrgQcAJA0h6+4yMzMzayjl5uq6UNLdZE9svisiIq16B/CvRQRnZmZmVk1ln9wcEb+LiJsj4pXcsicjYuamHFTSTpKmSZqX/u7YTbtRqc08SaNyyzskzZU0K73elZZvJekGSfMlPSRp8KbEaWZmZs2lkikramEMcHdEDAXuTp/fJt0yfx7wQeBg4LwuBdLJEbFfei1Ly04DXoiIIcD3gItr+SXMzMyssdSr8BkBXJ3eXw18ukSbo4BpEbEiIl4ApgFHb8B+bwKOkKRND9fMzMyaQb3uzuoXEUvS+6VAvxJtdgUW5j4vSss6XSlpHTAJ+FYag/TmNhGxVtKLwM7A8113Lmk0MBqgra2Njo6OTfpCVrlVq1Y53wVyvovjXBfL+S5Ws+S7ZoWPpN8A7y6x6pz8h4gISVGiXTknR8RiSX3ICp8vkD1csWIRMZb0IMZhw4ZFe3v7BoZgG6ujowPnuzjOd3Gc62I538VqlnzXrPCJiI93t07Sc5L6R8QSSf2BZSWaLQbac58HAh1p34vT35clTSAbAzQ+bTMIWJSeQbQDsHzTv42ZmZk1g3qN8ZkMdN6lNQq4tUSbO4EjJe2YBjUfCdwpqbekXQAkbQEMBx4tsd/jgXtyt+GbmZlZi6vXGJ+LgBslnQYsAE4EkHQgcEZEnB4RKyR9E3g4bXNBWrYdWQG0BdAL+A3w89TmCuAaSfOBFcDI4r6SmZmZbe7qUvhExHKyaTC6Lp8OnJ77PA4Y16XNK8AB3ez3NeCEqgZrZmZmTUPuCQJJLwNz6x1HC9mFEnfaWc0438VxrovlfBerkfL9nohoK7XCk41m5kbEgfUOolVImu58F8f5Lo5zXSznu1jNku96DW42MzMzK5wLHzMzM2sZLnwyY+sdQItxvovlfBfHuS6W812spsi3BzebmZlZy/AVHzMzM2sZLnzMzMysZbR84SPpaElzJc2XNKbe8TQzSc9Imi1plqTp9Y6n2UgaJ2mZpEdzy3aSNE3SvPR3x3rG2Ey6yff5khanc3yWpE/WM8ZmIWmQpHslPSZpjqR/S8t9ftdAmXw3xfnd0mN8JPUCngQ+ASwimx7jpIh4rK6BNSlJzwAHRkSjPACroUg6DFgFjI+IfdKyS4AVEXFRKux3jIiz6xlns+gm3+cDqyLif+oZW7NJk1n3j4iZkvoAM4BPA6fi87vqyuT7RJrg/G71Kz4HA/Mj4qmIWANMBEbUOSazjRIR95PNUZc3Arg6vb+a7D8vq4Ju8m01EBFLImJmev8y8DiwKz6/a6JMvptCqxc+uwILc58X0UT/uJuhAO6SNEPS6HoH0yL6RcSS9H4p0K+ewbSIMyX9MXWFueulyiQNBvYHHsLnd811yTc0wfnd6oWPFesjEfEB4BjgX1JXgRUksn7t1u3bLsZPgD2B/YAlwP/WNZomI2l7YBJwVkS8lF/n87v6SuS7Kc7vVi98FgODcp8HpmVWAxGxOP1dBtxM1tVotfVc6q/v7LdfVud4mlpEPBcR6yJiPfBzfI5XjaQtyH6Er4uIX6XFPr9rpFS+m+X8bvXC52FgqKTdJW0JjAQm1zmmpiRpuzRIDknbAUcCj5bfyqpgMjAqvR8F3FrHWJpe549w8nf4HK8KSQKuAB6PiEtzq3x+10B3+W6W87ul7+oCSLfjXQb0AsZFxIX1jag5SdqD7CoPQG9ggnNdXZKuB9qBXYDngPOAW4Abgd2ABcCJEeEBuVXQTb7byboBAngG+GJuDIptJEkfAR4AZgPr0+KvkY078fldZWXyfRJNcH63fOFjZmZmraPVu7rMzMyshbjwMTMzs5bhwsfMzMxahgsfMzMzaxkufMzMzKxluPAxs82WpJ1zM0Evzc0MvUrSj2t0zLMknVJm/XBJF9Ti2GZWe76d3cwaQhEzn0vqDcwEPhARa7tpo9Tm0Ih4tVaxmFlt+IqPmTUcSe2Sfp3eny/pakkPSFog6TOSLpE0W9Id6dH7SDpA0n1pktw7uzyFttPhwMzOokfSlyQ9liZlnAhvzgnVAQwv5MuaWVW58DGzZrAnWdFyHHAtcG9EvA9YDXwqFT8/AI6PiAOAcUCpJ4cfCszIfR4D7B8R+wJn5JZPBz5a9W9hZjXXu94BmJlVwdSIeEPSbLLpZ+5Iy2cDg4FhwD7AtKynil5ks0t31R94PPf5j8B1km4hm/6j0zJgQPXCN7OiuPAxs2bwOkBErJf0Rrw1eHE92f9zAuZExCE97Gc1sHXu86eAw4BjgXMkvS91g22d2ppZg3FXl5m1grlAm6RDACRtIWnvEu0eB4akNu8ABkXEvcDZwA7A9qnde2nQmanNWp0LHzNrehGxBjgeuFjSH4BZwIdLNJ1KdoUHsu6wa1P32SPA5RGxMq37GHB7LWM2s9rw7exmZjmSbga+EhHzulnfD5gQEUcUG5mZVYMLHzOzHEnDgH4RcX836w8C3oiIWYUGZmZV4cLHzMzMWobH+JiZmVnLcOFjZmZmLcOFj5mZmbUMFz5mZmbWMlz4mJmZWcv4/88YQN8QyN8OAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n", + "Trajectory Energy Plots\n", + "\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAImCAYAAABeqfAdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAADVXklEQVR4nOzdd3wUZf7A8c93S7LpCUkIvVelgwJiwQLoCSgKZzsFe+c8f3a9E/W8s5/t1LOCXcSuqNgQO016B0MNJYH0urvP74+ZbDaVAEk2JN83r3ntzDPPzDy7k02+PM8zzyPGGJRSSimlmhJHqAuglFJKKVXXNMBRSimlVJOjAY5SSimlmhwNcJRSSinV5GiAo5RSSqkmRwMcpZRSSjU5GuAodZgQkQ4ikisizno6f66IdKmPcyulVEPTAEepRkREUkXklKDtc0Vkn4icYIzZYoyJNsb46uA6c0XksuA0+9ybDvA8I0XEbwdHwcvwQy1jfROR1iLykoikiUiOiKwRkXtEJCrUZWsIIjJNRF4PdTmUqi8a4CjVSInIZOC/wOnGmO9DXZ4a7LCDo+Dll7q8gFjq7PeViLQAfgEigOHGmBhgFBAPdK2r6yilQkcDHKUaIRG5EngUGGOM+dlO6yQiRkRc9vZcEblPRH6yayDmiEhS0DmGicjPIpIpIktFZKSdfj9wHPC0XdvytJ1uRKSbvR4hIo+KyGYRyRKRH0Uk4iDex0GVMejY+0XkJyAf6CIio0VkrV2mZ0TkexG5TETCRGSviPQNOr6liOSLSHIVRbsRyAH+YoxJBTDGbDXG/NUYs8w+/hgRWWBfa4GIHFOhbP+0y54rIp+ISKKIvCEi2Xb+TkH5jYhMFZFNIpIuIg+XBmwi4hCRu+zPereIvCoicRXu+WQR2WIfe2fQeR0icpuIbBSRDBGZaQdvNR4rIqcCdwDn2OVfaqdPscuYIyJ/iMgFB3rPlWo0jDG66KJLI1mAVOA9YBfQv8K+ToABXPb2XGAj0AOrJmIu8IC9ry2QAfwJ6z8yo+zt5KBjL6twfgN0s9f/a+dpCziBY4DwKso7EthWw/s51DJuAY4EXEAykA2cZW//FSgpfR/AM8CDQdf+K/BJNeX6FbinhnK3APYBF9rXOs/eTgwq2was2p44YBWwDjjFzv8q8EqFz/Y7+7wd7Lyl5b7EPlcXIBp4H3itwj1/wf78+gNFQO+g9/gr0A4IB/4HvFXLY6cBrweVMcr+fHva262BI0P9ndBFl4NdmmUNjoi8bP9PaUUt8k4RkT0issReLtvfMUodolFYf7SW1yLvK8aYdcaYAmAmMMBO/wsw2xgz2xjjN8Z8BSzECiZqZNcsXAL81Riz3RjjM8b8bIwpquaQNnYNTPAS3I/lUMo43Riz0hjjBU4DVhpj3re3nwR2BuWdAZwnImJvXwi8Vk2ZE4G0Gj6G04H1xpjXjDFeY8xbwBpgXIX3tdEYkwV8Dmw0xnxtl+1dYGCFcz5ojNlrjNkCPI4VNAFcADxmjNlkjMkFbgfOLa2ps91jjCkwxiwFlmIFKwBXAXcaY7bZ92caMLGWx1bFD/QRkQhjTJoxZmUNeZVq1JplgANMB049gPzvGGMG2MuL9VQmpUpdjVXj8WLQH+vqBP+Bz8eqAQDoCEwKDjqAY7H+V74/SYAHq+alNnYYY+IrLHl1VMatQettgreNMQbYFrT9m33+kSLSC+gGfFxNmTOo+bNoA2yukLYZq9ap1K6g9YIqtqMpL/i9bLavUdW1NmPVAqUEpdX0GX4Q9PmtBny1PLYc+56dgxU0pYnIZ/bnqNRhqVkGOMaYecDe4DQR6SoiX4jIIhH5Qb/YKoR2ASdj9ZN55iDPsRWrmSM46Igyxjxg7zc1HJsOFFL/nW33V0YoX840rKYYwOp4HLxtm4FVM3QhMMsYU1jNtb8GJkj1HZd3YAUPwToA22t8RzVrX+FcO6q5VgfAS/mAqTpbgdMqfIYeY0xtylnpZ8AY86UxZhRW8LcGq3lLqcNSswxwqvE8cL0xZjBwE+X/sJwtIstEZJaItK/6cKXqjjFmB1aQc6qI/OcgTvE6ME5ExoiIU0Q8Yj3SXRoQ7MLq81HVtf3Ay8BjItLGPn64iIQfzHs5hDJW9BnQV0TOtJtgrgVaVXHOCVhBzqs1XPsxIBaYISIdAUSkrYg8JiL9gNlADxE5X0RcInIOcATw6cG+WeBmEUmwf4f8FXjHTn8L+JuIdBaRaOBfWLXG3lqc8zng/qD3kCwiZ9SyPLuATkGdnVNE5Ay7ebEIyMVqslLqsKQBDmD/UjkGeFdElmB11Cutvv4E6GSM6Qd8hfU/RKXqnd1X4ySsPhX/PsBjtwJnYD0pswfrf/o3U/adf8I+7z4RebKKU9yE1QdoAVZt54NU//uijVQeB+fsOihjxfzpwCTgIawmpiOw+uwUBeXZCizGqp34oYZr78X6zpcAv4lIDvANkAVsMMZkAGOB/7OvdQsw1i7DwfoIWAQswQrWXrLTX8bqKzQP+AOr9uz6Wp7zCaxmuDn2e/gVGFrLY9+1XzNEZDHW534jVo3SXuAErOZSpQ5LYjVjNz9iPcL5qTGmj4jEAmuNMTX2TxBrBNm9xpi4hiijUqp6ds3DNuACY8x3QekvY/ULuitkhatARAzQ3RizIdRlUaq50BocwBiTDfwhIpMgMKhYf3s9OOgZj9WJTykVAnZzVrzdXHYHIFi1FqX7O2E9Rv5S1WdQSjUXzTLAEZG3sEYx7Ski20TkUqxHNS+1B7xaiVV1DjBVRFba6VOBKaEos1IKgOFYT3elYz2yfab9+Dkich+wAnjYGPNH6IqolGoMmm0TlVJKKaWarmZZg6OUUkqppk0DHKWUUko1Oa79Z2la4uPjTbdu3UJdjGYtLy+PqKio/WdU9UbvQejpPQg9vQehVxf3YNGiRenGmEqT6ja7ACclJYWFCxeGuhgh4/db43Y5HKGrvJs7dy4jR44M2fWV3oPGQO9B6Ok9CL26uAciUnFaFaAZBjjN0RfrFvPob8+zq3gVfmcWGEFMJB5akhzenkEpgzi3z8n0adUh1EVVSiml6oQGOE2Y3+/n8o8f4rfMNxG/h2R3P1pFtsFn/GQXZ7G3eAdbi+azdftcPtr+GG5fe0aknMrfhp9DlxYp+7+AUkop1UhpgNOEnTvr76wu+JgU5zCmn/kA7eMTK+Xx+nzM2bCEj9fNZcGeb5mb/gLfffQyncJHcvfx13FUO+2vpJRS6vCjAU4TddfXr7C64GM6h43iw3MeqbbPjcvp5E89B/OnnoOB/+PL9b/z1IIZpBbN5eKvv6ON6xhuP+YaTuzSt2HfgFKqWSkpKWHbtm0UFlY3AXzdi4uLY/VqHZw+lA7kHng8Htq1a4fb7a5Vfg1wmqC1e3bw0ZZniaAbsyY9dEAdisd0H8iY7gNZsXML/5j7X9YVfMX1834i8YeB/HXIVZx15PB6LLlSqrnatm0bMTExdOrUCRFpkGvm5OQQExPTINdSVavtPTDGkJGRwbZt2+jcuXOtzq3j4DRBV3/+D4wU89DI+whzHVwM26dVB94/90E+Gj+b/jFnsde3mrsXXsHwV/7MCwu+DDyNpZRSdaGwsJDExMQGC27U4UVESExMPKAaPg1wmpinfvmIPeY3hsRPYmSXPod8vq6JrXjj7Gl8NelLRrSYQq7ZzpOrbuLo6eN5aN5Mir3eOii1UkqhwY2q0YH+fGiA04Tsys3ihVWP4PK25r9/uqlOz90qJoHnxv0fP57/Fae2uo4Sk8drf9zHkBknc80n/2FH9t46vZ5SSjW06OjowPrs2bPp0aMHmzdv5rnnnuPVV189qHOmpqby5ptvBrYXLlzI1KlTa338yJEj6dmzJwMGDGDAgAFMnDjxoMrRHGkfnCbkyk//id+ZxZ2D/kVUeHi9XCPOE8nDY67kfu+lPPHLB7y7/i1+2Psyo997g24RJ3LL8Es5pmOverm2Uko1hG+++YapU6fy5Zdf0rFjR6666qqDPldpgHP++ecDMGTIEIYMGXJA53jjjTcO+JiaGGMwxoR0wNeG0LTfXTMyc/mPbCj8kq7hozin33H1fr0wl4ubj5vE/Eve559HvUgb1xA2FH7FFd/9meNmXMgri77SfjpKqcPOvHnzuPzyy/n000/p2rUrANOmTeORRx4BrBqVW2+9laOPPpoePXrwww8/AODz+bj55ps56qij6NevH//73/8AuO222/jhhx8YMGAA//nPf5g7dy5jx44FIDc3l4svvpi+ffvSr18/3nvvvVqXc8qUKUydOpVjjjmGLl26MGvWrMC+hx9+OFCOu+++G7ACrZ49e3LRRRfRp08ftm7dyn333UfPnj059thjOe+883jkkUfYuHEjgwYNCpxr/fr15bYPJ1qD0wTkFRXx7/n34ZA4/jf2rga//hlHDOWMI4ayevc27v/hJZZmfc5jK27kiSWtOK7VOG499i+0i2vR4OVSSh2e7vlkJat2ZNfpOY9oE8vd446sMU9RURFnnnkmc+fOpVev6muivV4v8+fPZ/bs2dxzzz18/fXXvPTSS8TFxbFgwQKKiooYMWIEo0eP5oEHHuCRRx7h008/BaypCUrdd999xMXFsXz5cgD27dtX5fUuuOACIiIiABg1ahQPP/wwAGlpafz444+sWbOG8ePHM3HiRObMmcP69euZP38+xhjGjx/PvHnz6NChA+vXr2fGjBkMGzaMBQsW8N5777F06VJKSkoYNGgQgwcPpmvXrsTFxbFkyRIGDBjAK6+8wsUXX1zrz7kxqdcAR0SGA38BjgNaAwXACuAz4HVjTFZ9Xr+5uP7zx/C6dnBp9/toFZMQsnL0btmO18++m8yCm3j4x3f4cusH1sCB70+nfdgIrhr4F844YmjIyqeUUjVxu90cc8wxvPTSSzzxxBPV5jvrrLMAGDx4MKmpqQDMmTOHZcuWBWpSsrKyWL9+PWFhYdWe5+uvv+btt98ObCckVP37u7omqjPPPBOHw8ERRxzBrl27AuWYM2cOAwcOBKxaovXr19OhQwc6duzIsGHDAPjpp58444wz8Hg8eDwexo0bFzjvZZddxiuvvMJjjz3GO++8w/z586t9D41ZvQU4IvI5sAP4CLgf2A14gB7AicBHIvKYMebj+ipDc/DDH6uYv28myc6juOGYM0NdHADiI6K4f9Ql3M8lfLJ6Ps8ufo0txT9x14K53PdrR/q6htE/fwgJkdH7P5lSqtnZX01LfXE4HMycOZOTTz6Zf/3rX9xxxx1V5gu3+zg6nU689pOkxhieeuopxowZUy5vcI1NXQsP6mtpjAm83n777Vx55ZXl8qamptZ61u6zzz6be+65h5NOOonBgweTmFh5FPzDQX32wbnQGHOpMeZjY8wOY4zXGJNrjFlsjHnUGDMS+LmmE4hIqogsF5ElIlJpCnCxPCkiG0RkmYgcng2FB8nr83HT3L8jxs2zp90b6uJUaVzvo5l9wVN8cdbXnJh0BV5TxELzDse/fRLj37qRj1b9pn11lFKNRmRkJJ999hlvvPEGL730Uq2PGzNmDM8++ywlJSUArFu3jry8PGJiYsjJyanymFGjRvHf//43sF1dE9WBGDNmDC+//DK5ubkAbN++nd27d1fKN2LECD755BMKCwvJzc0NNKGBNWLwmDFjuPrqqw/b5imoxxocY0x6XeQBTqwh32lAd3sZCjxrvzYLd3z9EvmOdfyp1VR6JbcLdXFq1C6uBU+efj1+/7VMm/UiPxctZFPhd9y14Cum/dKWESmnceMx5+okn0qpkGvRogVffPEFxx9/PMnJybU65rLLLiM1NZVBgwZhjCE5OZkPP/yQfv364XQ66d+/P1OmTAk0HQHcddddXHvttfTp0wen08ndd98daP4KFtwHJykpia+//rracowePZrVq1czfLg16nx0dDSvv/46TqezXL6jjjqK8ePH069fP1JSUujbty9xcXHlrvnBBx8wevToWr3/xkhKq7Xq/MQiOUB1Jy8CNgJ3GmO+qeEcqcCQ6gIcEfkfMNcY85a9vRYYaYxJq+6cPXv2NGvXrq3dm2jEVu7ayrmfnUWkdOCXye8eVo/7zZ07l5EjR7Itay//+eUdvt/xGUXOzRjjJEkGMrHnWVw2eAwed/Vt1+rQlN4DFTp6D8pbvXo1vXv3btBrNvepGnJzc4mOjiY/P5/jjz+e559/PvDE1COPPEJWVhb33XdfvZbhQO9BVT8nIrLIGFOpk1J91uBUW2IRcQJ9gDfs12pPA8wREQP8zxjzfIX9bYGtQdvb7LRqA5ymwO/3c/UXd2HEy39Ouv+wCm6CtYtrwaOnXg1czZfrf+f5xe+wLm8u/1t7B8+vepDeMSO5ZMDZjOk+cL/nUkopdWCuuOIKVq1aRWFhIZMnTw4ENxMmTGDjxo18++23IS7hoanPGpxoY0zufvJcb4x5qob9bY0x20WkJfAVcL0xZl7Q/k+BB4wxP9rb3wC3GmMWVjjPFcAVAMnJyYNnzpx50O+rMZi1fSHfe2fQ038613U+NdTFOWCl/2uoSqGvhM92Lmd+/q/kudci4sdR3IpursGcnnwUXaIPz85ujU1N90A1DL0H5cXFxdGtW7cGvabP56vUdKMa1oHegw0bNpCVVf4B7BNPPLHKGpz6DHC+AZZgPUW1yBiTZ6d3wXqK6s/AC8aYWdWepPz5pgG5xphHgtKaXRPVlsw9nP7+GYQRz08XfnhYNuPUtmp+fXoaT89/j592zqHI+QcAkf7uHN9mDFOHTqR9vAY7B0ubR0JP70F52kTVPNVnE1W9tW0YY04GvgGuBFaKSJaIZACvA62AyTUFNyISJSIxpevAaKwxdIJ9DFxkP001DMiqKbhpCq74dBrGkce9I+49LIObA9E9qTVP/Ok6Fl7yMS+cOIvBsedS5M/ii51Pc9qHJ3P8jIv49/fvsC+/xopCpZRSzVC9DvRnjJkNzD7Iw1OAD+zZQ13Am8aYL0TkKvvcz9nn/hOwAcgHDt/n2WrhhQVfst03jz5RZ3J6z7qbl+RwMKxDT4Z1uBO//3Y+WbOAV5d/wLq8H3gz9Z+8selBkp39GdVxNJcPPp3k6NhQF1cppVSINdqpGowxm4D+VaQ/F7RugGsbslyhkpGfw9PL/o2DZJ4be1uoixMyDocjMDVEsdfLG0u/44N1n/NHwa+8lbqQNzc9TJKjHyd1OIUrjxpHSnTc/k+qlFKqyTk8H79phq745H78rgxuGnQX8RG1G42yqQtzubh48Cg+Pu8xFl00j1v6PUFXz4lk+Nbz7pYHOfndkRw/4yKmffsqO7L3hrq4SqlGzul0MmDAAPr06cO4cePIzMysMf/06dPZsWPHfs9bMd9ll13GqlWrDrW4la5x3XXXVZmenJzMgAEDAktdX7ux0gDnMPD+yl9YWzCbju6TuXDgSaEuTqMU5nJx4cCT+Oi8R/l98jzuGPA03SNGkenbxHtbH2b0+ycy/JU/c/1nT7Jg24ZQF1cp1QhFRESwZMkSVqxYQYsWLcqNMlyVgw1wXnzxRY444ohDLm9tnXPOOSxZsiSw1MW1S6eoaMzqPcARkUdFJDQTizQBeUVF3PfrNBz+WJ4f+49QF+ew4HI6Oa//CXxw7kMsnvw9dw18hiOjxlHg38fc9Be45JsJDHxpDOfP+gezlv+E1+cLdZGVUo3M8OHD2b59OwBLlixh2LBh9OvXjwkTJrBv3z5mzZrFwoULueCCCxgwYAAFBQXce++9HHXUUfTp04crrrgCY0yV+UaOHMnChdZoJm+99RZ9+/alT58+3HrrrYHrR0dHc+edd9K/f3+GDRsWmEzzk08+YejQoQwcOJBTTjklkH6gSp/imzhxIr169eKCCy4IzGe1aNEiTjjhBAYPHsyYMWNIS7Oe3Rk5ciQ33HADQ4YM4YknnmDBggX069ePAQMGcPPNN9OnjzWs3fHHH8+SJUsC1zr22GNZunTpQZXzUDREH5zVwPMi4gJeAd7SWcRr74pP/x2YKbxNbItQF+ew43I6OaffcZzT7zgAftq8mjeWfcGi9B9ZlvsRyxd/wD0LYmgXPpjRnU7iooGnkBipj40qFVKf3wY7l9ftOVv1hdMeqFVWn8/HN998w6WXXgrARRddxFNPPcUJJ5zAP/7xD+655x4ef/xxnn76aR555JHATN/XXXcd//iH9R/RCy+8kE8//ZSJEydWyldqx44d3HrrrSxatIiEhARGjx7Nhx9+yJlnnkleXh7Dhg3j/vvv55ZbbuGFF17grrvu4thjj+XXX39FRHjxxRd56KGHePTRR2t8P++88w4//vhjYPuXX34B4Pfff2flypW0adOGESNG8NNPPzF06FCuv/56PvroI5KTk3nnnXe48847efnllwEoLi4OBGd9+vThhRdeYPjw4dx2W1nf0EsvvZTp06fz+OOPs27dOgoLC+nfv1KX2npX7wGOMeZF4EUR6Yn1lNMyEfkJawyc7+r7+oezj1b9xtKcD2jjOrbRzBR+uBvRsTcjOvYG/saWzD28svgLvt82l23Fv/Lyhrm8tO5eYunBgKRhTDziZEZ27nPYjhStlDowBQUFDBgwgO3bt9O7d29GjRpFVlYWmZmZnHDCCQBMnjyZSZMmVXn8d999x0MPPUR+fj579+7lyCOPZNy4cdVeb8GCBYwcOTIw39UFF1zAvHnzOPPMMwkLC2Ps2LEADB48mK+++gqAbdu2cc4555CWlkZxcTGdO3fe7/s655xzePrppyulH3300bRrZ81jOGDAAFJTU4mPj2fFihWMGjUKsIK91q1blzsXQGZmJjk5OYE5r84///zAhJ2TJk3ivvvu4+GHH+bll19mypQp+y1jfWiQp6jsqRl62Us6sBS4UUSuNMac2xBlONzkFBUw7Ze/45AYXhr7z1AXp0nqEJ/M3SddCFxIXlERby6byxebvmNT7iJ+2PsyP/z4MjI3nnaeAYxsfxzn9z+FdnFai6ZUvatlTUtdK+2Dk5+fz5gxY/jvf//L5MmTa3VsYWEh11xzDQsXLqR9+/ZMmzaNwsLCgy6L2+3GHiYFp9MZ6PNy/fXXc+ONNzJ+/Hjmzp3LtGnTDvoa4eHhgfXSaxhjOPLIIwO1PBVFRe3/IZfIyEhGjRrFRx99xMyZM1m0aNFBl/FQNEQfnP8Aa7HGq/mXMWawMeZBY8w4QCcZqsYVH/8bryuNK464VUfsbQBR4eFcftQY3jvnAX6/9CteHfUxp7W6nhaurmwt/pXX/riPUz84kaNfnsAlH/6bWct/orCkONTFVkrVg8jISJ588kkeffRRoqKiSEhI4IcffgDgtddeC9TmxMTEkJOTAxAIZpKSksjNzWXWrLJxbIPzBTv66KP5/vvvSU9Px+fz8dZbbwXOXZ2srCzatm0LwIwZMw79zVbQs2dP9uzZEwhwSkpKWLlyZaV88fHxxMTE8NtvvwHw9ttvl9t/2WWXMXXqVI466igSEhLqvJy10RA1OMuAu0qnaqjg6Aa4/mHn/ZW/sDzvQ9q5jue6YdVXb6r6M7BNZwa2saYwyy8p4v2VPzN7w3eszV7Igqw3WbD4TaYtDCdBetEvaQjjehzPKV3749J5bZRqEgYOHEi/fv146623mDFjBldddRX5+fl06dKFV155BYApU6Zw1VVXERERwS+//MLll19Onz59aNWqFUcddVTgXBXzlWrdujUPPPAAJ554IsYYTj/9dM4444wayzVt2jQmTZpEQkICJ510En/88cd+30vFPjjPPPNMtXnDwsKYNWsWU6dOJSsrC6/Xyw033MCRR1Z+Vuill17i8ssvx+FwcMIJJxAXVzbu2ODBg4mNjeXii0M3/m69zUUVuIDIoCqSs4DNxpgGf86ssc9FlVWYzwlvnIFfCpl99kdNsknkcJ+DZ316Gu+unMtP239lW8Fy/K491g5fNMmuIxiccjQTep3AsPY9Gm3/ncP9HjQFeg/K07moDj/BE8Y+8MADpKWl8cQTTwBWB+qRI0eyZs2aGn8P1udcVA1Rg/MMMAirJkeAPsBKIE5ErjbGzGmAMhw2Lv/kfnyunVzT+8EmGdw0Bd2TWnPHCecB5wHw+44/mLXyOxbsnM/OkhV8sXM+X+x8GvEm0Dq8D4NbDmZszxGNOuBRSqkD9dlnn/Hvf/8br9dLx44dmT59OgCvvvoqd955J4899lhIf+c1RICzA7jUGLMSQESOAO4FbgHeBzTAsb2z7AdW5X1CB/dIrj76T6EujqolqzmrM3AJfr+fHzev5sM1c1m8eyE7ihexI+0HPkl7HHwxJLl60TdxIKd2O4ZTuvYnzNVoZ0tRSqkanXPOOYGnqoJddNFFXHTRRSEoUXkN8du1R2lwA2CMWSUivYwxm0p7iCvYlZvFvxb8HQcJvHz2vaEujjpIDoeD4zsfyfGdrfZqr8/HvNSVfLb+J5bu+Z3dxav5Ln0B36U/Dz95iHN0p1dCf07uNIyxvY4mJjwixO9AKaWahoYIcFaJyLNAaRfrc+y0cKCkAa5/WJj84R34nHu5bcATtIoJTY9zVfdcTicnde3HSV37BdIWbd/IJ2t/YsHORWwvWMlvma/z25LXuX+xi0jTiY7RvTmq1QBO7zmcI1Pah7D0Sil1+GqIAGcycA1wg739E3ATVnBzYgNcv9F7aN5Mtvvm0S96An8ZoB9JUze4bVcGt+0KWFW4GzN28v6qH/l1x0K25K1mdd5s1vzxCa/9AeKNJ9Hdnd4JfTmh4xBO7TGYOE9kaN+AUkodBuo1wLEH+JttjDkRqGos6dz6vP7hYMXOLby24VHC6MiLZ9wZ6uKoEOia2Iqbj5sITASsQR7nbPid7/5YwOp9K9hTvI4f9i7gh70vc99iJx5/e9pF9mJQSn9O6TJEOy8rpVQV6jXAMcb4RMQvInEHMv+UiLQHXgVSAAM8b4x5okKekcBHQOkgAO8bYw6rziten48rPr8ZIyX8Z+SDRLrD93+QavJiwiM4+8hjOPvIYwJpa/Zs47O1vzE/7XdSc1ezoeAbNm75gne3AL4IoqUT7aO7M7BlP07pOpjBbbpo0KPUAcjIyODkk08GYOfOnTidzsAUCvPnzycsLKzOrjVlyhTGjh3LxIkTq80zffp0Ro8eTZs2bQBr4Lwbb7yxTmchnz59OgsXLqw0jcP06dO5+eabAwMKArz55psNOgN6XWiIJqpcYLmIfAUEBvszxkyt4Rgv8H/GmMUiEgMsEpGvjDGrKuT7wRgztu6L3DCu+ewxchyrGJNyTaBTqlJV6ZXcjl7J7YCzASgsKeabTcv4YfPvrEhfSVrhBlblfcbq1I95MxXwRRIjnegY3ZNBrfpyUpdBDGzdWYMepaqRmJgYmAF72rRpREdHc9NNNwX2e71eXA341OP06dPp06dPIMB58cUXG+zaUP38VYeioT/Dhvht9z7wd2AesChoqZYxJs0Ys9hez8GakbxtTcccbt5a+j0/732dJBnCw6OvDHVx1GHG4w7j9J5DeGD05Xx6/uMsuuRTfjnvF/551Iuc2uo6OniGUmhyWJ73Ea9uupcpX59J/+nHMPyVPzNp5h28se1Xvlq/hPySolC/FaUardIRiIcOHcott9zC/PnzGT58OAMHDuSYY46hdNDY6dOnc9ZZZ3HqqafSvXt3brnlFsCaqHLKlCn06dOHvn378p///KfSNe69916OOuoo+vTpwxVXXIExhlmzZrFw4UIuuOACBgwYQEFBASNHjgzM4v3WW2/Rt29f+vTpw6233ho4V3R0NHfeeSf9+/dn2LBh7Nq1C4BPPvmEoUOHMnDgQE455ZRA+oEqHZxy4sSJ9OrViwsuuIDSwYIXLVrECSecwODBgxkzZgxpaWkAjBw5khtuuIEhQ4bwxBNPsGDBAvr168eAAQO4+eabGTp0KADHH398IMAEOPbYY1m6dOlBlbNUQ8wmPkNEIoAOxpgDHkJYRDphzVn1WxW7h4vIUqyxdm4Kfhy9wjmsMfeB5ORk5s6de6DFqFM7C3P41/YHcJh4rms/iXnz5oW0PA0tNzc35PegqYoDTg/vyeltegKQ5y1madZ2VuVuZqtvK1lsZ3Xe54jDy68/v4H50YnL24o42tDG3ZZuke3oH9eOpPD9T6inDo1+D8qLi4sLzNf0+NLHWZ+1vk7P3z2uOzf0v6Fcms/nq3KOqKKiItxuNyUlJezcuZMvv/wSp9NJdnY2s2fPxuVy8d1333HLLbfw+uuvU1hYyO+//84PP/xAeHg4gwcP5uKLL2bPnj1s2bIlMD1D6QzcJSUlFBQUkJOTw+TJk/nb3/4GwOWXX867777LaaedxsCBA/nnP//JoEGD8Hq9+Hw+8vLyWLduHbfccgvz5s0jPj6eM888k7feeouxY8eSl5dH//79ue222/j73//O008/zS233EL//v356quvEBFmzJjBP//5T/71r39RWFhIcXFxpc+gsLCQt99+u9zfpq+//pr8/Hx+//13fvvtN1q3bs2oUaP46quvGDJkCNdccw1vv/02SUlJvPfee9xyyy0888wz+Hw+cnNz+e677wAYOnQoTz75JEOHDuXuu+/GGENOTg7nn38+zz//PA8++CDr168PTItRVdlq+72p9wBHRMYBjwBhQGcRGQDca4wZX4tjo4H3gBuMMdkVdi8GOhpjckXkT8CHQPeqzmOMeR54HqypGkI5PLrX5+OE1y7EOPL417DnGde7+U3HpUPUN6zTK2znlxTxv0/fJTvOsCJ9NdvzNrLXrGavLGBFAXxYAOJtQZyrA52iu3Nkck+GtTuSYe174HHXXT+E5k6/B+WtXr06MGR/WFgYzjqe1y0sLKzSlADVTRMQHh5OeHg4breb8847j/j4eMAKUC655BLWr1+PiFBSUkJMTAwej4dTTjmFdu3aAXDkkUeSkZFB37592bx5M3fccQenn346o0ePxuFw4Ha7iYiIICYmhjlz5vDQQw+Rn5/P3r17GTBgADExMTidTqKiogLlK91evXo1J554Ip07dwasQfUWLFjAeeedR1hYGJMmTUJEGD58OF999RUxMTGkpqZy2WWXkZaWRnFxMZ07dw6Uu6rPxePxcO6551ZqooqMjOToo4+mV69egDXf1O7du9mxYwerV69mwoQJgBU4tm7dOvA+LrzwQmJiYsjMzCQvL49TTjkFsGrIvvjiC2JiYrjooovo168fTzzxBDNnzuSSSy6p8t54PB4GDqzdPN0N0Rg2DWtSzbkAxpglItJlfweJiBsruHnDGPN+xf3BAY8xZraIPCMiScaY9LoqeH248pNHyJbljE65qlkGNyr0It3hDExoV+6Pq9/vZ236Dr7d9Du/71rFpqz17C1J5fecpSzJNbzxBxi/E7c/hRZhHegY04Ujk3owvP2RDGnbTUdkVnXq1qNv3X+mBhIVVVab+fe//50TTzyRDz74gNTU1HLfofDwsodEnE4nXq+XhIQEli5dypdffslzzz3HzJkzefnllwP5CgsLueaaa1i4cCHt27dn2rRpgVnJD4bb7aZ0AN3SMgBcf/313HjjjYwfP565c+cybdq0g75GVe/TGMORRx5ZbiLRYMGfYXUiIyMZNWoUH330ETNnzmTRohp7stRKQ/xWKjHGZFUYtdhf0wFiZX4JWG2MeayaPK2AXcYYIyJHY/UnyqijMteLZ377lN8y36Cl42geGXN1qIujVIDD4aB3y3b0btkOKJvBfl9+LvNSV7JgxyrW7d3Ajvw/2FO8lt1Zv7IgC6ZvBON3EWZak+TuQMfYrvRN7sExHY5kQOvOOru6alKysrICTxaVzrtUk/T0dMLCwjj77LPp2bMnf/nLX8rtLw1mkpKSyM3NZdasWYEnq2JiYqpsPjv66KOZOnUq6enpJCQk8NZbb3H99dfXutwzZszYb7kPVM+ePdmzZw+//PILw4cPp6SkhHXr1lWagTw+Pp6YmBh+++03hg4dyttvv11u/2WXXca4ceM47rjjSEg49AFvGyLAWSki5wNOEekOTAV+3s8xI4ALsZ6+WmKn3QF0ADDGPIc1aMjVIuIFCoBzTX1PjX4Iftq8mmdX3oPbtOHdPz+uT7Oow0JCZDRnHDGUM44YWi59V24WP/yxgoVpq1i/byNp+ansLFlBWuZP/JoJL6wH43cTZlqR4G5L26iO9GjRhf4p3TmmYy8SI3UGZ3X4ueWWW5g8eTL//Oc/Of30io2/lW3fvp2LL74Yv9/6P/2///3vcvvj4+O5/PLL6dOnD61ateKoo44K7Cvt4BwREVGuZqR169Y88MADnHjiiRhjOP300znjjDNqLMe0adOYNGkSCQkJnHTSSfzxxx815gd45513+PHHHwPbzzzzTLV5w8LCmDVrFlOnTiUrKwuv18sNN9xQKcABeOmll7j88stxOByccMIJxMbGBvYNHjyY2NhYLr744v2WrzakvmMCEYkE7gRGY80m/iVwnzHm4OvhDkHPnj1Nac/3hrIrN4sx70zEJ9m8PPoNjmrXrUGv39ho34PQq697sDUzgx83r2DxzjWs37eB3YXbyPXtwO/ch0jZ7xrxxhPtaEOypx2d4jrTJ7k7R7XrSb+UDs0m+NfvQXmrV6+md+/eDXrN6vrgqPqTm5tLdHQ0AA888ACbN2/m2WefBWDHjh2MHDmSNWvWVPt7oKqfExFZZIwZUjFvQzxFlY8V4DTLYXqLvV4mvncdXudubuzzcLMPblTT1j4+kfPiT+C8/ieUS88syOPXrWv5PW096/ZuZFvuZvaWbGdj4fdsKp7Dt3uAVeVrfVpFtqVzXEd6J3dmcJtu9Ehs02yCH6Waqs8++4x///vfeL1eOnbsGOjI/Oqrr3LnnXfy2GOP1dn3vCGeouqBNfdUp+DrGWNOqu9rh5rf7+fsd28mkyWcknIVlwwZHeoiKRUS8RFRnNpjEKf2GFQu3e/3s3rPduZvW8OKPRvYlPkHuwu3kl68nl2+31iWa/hoO7AEjD8Mtz+ZOFcrWka2pWNsB3ondmZgm+70Temg/X2UOgycc845nHPOOYHt0n5GF110ERdddFGdXqsh+uC8CzwHvAj4GuB6jcaVnzxKavHX9I4Yz+OnXRvq4ijV6DgcDo5MaW/Pmj6q3L68oiKW7NzE0p0bWZuRytbsrewp3E6mdxvpuUtYne/ji53ASusJL5c/iRhnK5I8bWgb3ZYu8e05omUnBrTuTKuYQ++wqJQ6vDREgOM1xjzbANdpVO759jV+zXyVlo5hvHn2YTVFllKNQlR4OCM69mZEx8r9Moq9Xlbu3srvO9azJiOV1OzN7M7fTrZvF/sKVrOhqJjvM4CN9gG+CNwkEeNMJsnT2gqAEtrTO7kjA1p3ISU6rkHfm6qaMYYKT9wqFXCgfYYbIsD5RESuAT4AAuPCG2P2NsC1Q+KZ3z7l3S2PEmV68OG5T2rVuVJ1LMzlYmCbzgxs07nSPr/fT2rmHpbt/IM16ZtJzdrGjtzt7C3aSbZ3Bxn5y1lXWMJ36UDpYLm+SMJIIsbZkqSIVrSJakP72NZ0T2xH7+QOdG2Rot/jeubxeMjIyCAxMVGDHFWJMYaMjAw8Hk+tj2mIAGey/XpzUJoB9jvY3+HohQVf8syqvxPmb817E18gJjwi1EVSqllxOBx0aZFClxYpwLBK+/1+Pxv37mLZrj9YGxQA7SveRaZ3K+l5S1hb4IV0YJN1jPE7cfrj8ThaEOtKJtHTkjbRregQ15auCW05MqUDneKTtRP0IWjXrh3btm1jz549DXbNwsLCA/qDqeregdwDj8cTGC26NhriKarK/8Vqol5Z9BVPrLgdt78l70+YQbu4FqEuklKqAofDQfek1nRPag0cU2m/3+/nj327WbV7C+sztrE5ewdpeWlkFO4mpySdXcVrSPP9ysp8P+wuO8743Tj98UQ4Eol1J5HkSaFVVArtYlLomNCK7olt6JbYmkh3eKVrKmsU3tLpBxrK3Llzaz3sv6of9XkP6i3AEZFbjDEP2euTjDHvBu37lzHmjvq6dij856cPeGndvbj9ycw8YzqdWrQMdZGUUgfB4XDQNbEVXRNbYc0yU5nX52N9Rhqr9mxhox0E7crfxd7C3eR409lZvIId3p9YnmfKB0FGEH8UbhOPyxdN4vb3aOFJJCUyhbYxLemU0FoDIaXqSH3W4JwLPGSv3471NFWpU7FGJm4S7vr6FT7c9jge04FZE17S4EapJs7ldAZNbVG1wpJiNu7dxYaMHfyRmca27J3sytvD3qI9ZBfvJcefzrai7WwtyUVyqwmEiCfCkUCMK4G48AQSPYmkRCXRJqYl7eOS6ZzQis4JLXUuMKWqUJ/fCqlmvartw5LX52Pyh/exLPc9YkxvPv7ziyRHx+7/QKVUk+dxhwU9Al9Z6UjGFQOh7Tm72Jm7OxAI5fv3klO8hW3eXCTfBxUezygNhlwmhnBHHFGueGLdCbTwJJIc2YI20S1pG5dMp/gUurZoRXzE/ic+VKopqM8Ax1SzXtX2YWdPbjaT3vsrGSyknWsksyY+QlS4VikrpQ7M/gKhUn6/n+3Z+9i4N42tWbvZlr2HXfnppOenk1m0j5ySfeT7skgv3sgubzZSVARZlc9j/OE4/dG4JBqPI4ZIZxzR7ljiw+NJ8CSQHNmClKgE2sQm0T4umQ7xSfqwhDos1WeA019EsrFqayLsdeztw7rb+uy1i7jjx1vwOvdwfOIlPH36X/XpCaVUvXI4HLSPT6R9fGKt8mcW5LFx7042Z+5mW9Zuduamsys/nX2Fe8kpySLfl02RP5tcXxo7vXlQVAjZVZ/L+MNx+KNwSzThEkOkK5ZodxxxYfHEhcfSIiKOxIg4kqMSSIlOoFV0Am1iWxDniazDT0CpA1NvAY4xpskNGpFfUsT1nz3Ob/veRiSSm/o+xpTBp4S6WEopVUl8RBSD23ZlcNuutcqfV1TElqw9bMtKZ3t2OjvzMkjP38fewn1kFmaSW5JFnh0U5RXvZFdpUJRT/TmN34WYSFwmErdEEe6IJsIZTaQ7hhh3LLHhMSR44kiMiCc5Kp6UqASSo+NpFR1HUmSsjj2kDon2TKult5Z+z8MLH6DEtY0kxxBeOP1f9mOmSil1+IsKD99vx+mK8oqK2JGzl7ScvezOzWR3/j7S8zPJLMwisyib7OJs8kpyyPfmUOjPJc+XQZZvK8abbwVHuTWf3/jDcRgPDhOBSyIIk0jCnRF4nFFEuqKJdEURExZNTFg0cZ5oEiLiaOGJITEylqSoOA2UmjkNcPbj6w1Lufenx9jHYpBYLuryD24+blKoi6WUUiEXFR5O9/DWB/WfvcKSYnbmZLIjZy87c/exJ88KjrKKcskpziW3OJe8kjwKfHkUePMo9udTbPLJL8nA7y3AX1yIOIr2fyGsQElMGA7jwUk4LgnH5YjAlEDMtnfwOCPwOCOIcEUS6Y4gyh1JTFgU0WGRxIZHExseSXxENC0iYoj3RJEUGUOcJ1K7JjRyjTbAEZFTgScAJ/CiMeaBCvvDgVeBwUAGcI4xJrUurp1XVMTLi7/grbVvkyMrMP5wjk44n4dHX0diZExdXEIppZo1jzuMTi1aHtKwGsVeL+n52ezOyyY9L4uM/GwyCrLILMwhq9AKlHKKc8kryaXIX0CRr5AifwFefxHF/jxKJJ+8oh0YKcJIMeIoqfW1jREwLsS4EcIQ48ZBGE4Jwylu3GIFUm5HOGHOMNyOcMKd4YQ7PXhc4XicHiJcHiLdZUuUO4LosAiiwyOIdIcT4Q4n0h1OlDuciLBwot0eItxuDaxqqVEGOCLiBP6LNb3wNmCBiHxsjFkVlO1SYJ8xppuInAs8CJxT+Wz75/f7Wb1nO5+s/ZmvN3/DLu/v4CgEfwxHtTifu46/xB72XSmlVGMR5nLRJrYFbWIPbtT40kf1SxV7vewtyGFfQR57C3LILMwjszCX7KJ8cgpzyS7OI78kn9ySfPJL8in0FVLsK6LYV0SJKabEX4TXX4zXFFNgsvGbYvwU45dioAQjJYjDd8jv2/hdgBMxLgRX4NUhbhy4cODCKW6cYqW5xI1LXDjEidPhwilOHOLEZa87xYXL4cLlKF239rkdVn63vTgdTsKc7sC22+UmzM4b5rTSHA4HTnHgEAcOh+AUa9vpsNLK1gWnw8mG3HTi01Jx2ekiWGVyOHA5HHY5BZEDD+rkQGfnbAgiMhyYZowZY2/fDmCM+XdQni/tPL+IiAvYCSSb/byhth2izNW3H0kJhizxs1v8pLp95Ditw6J9MLQ4jNFEcnJYNOEH8aGqmmVmZhIfHx/qYjRreg9CT+9B6IXiHnjxU2gM+cZPgd9PAYZCYygwfgopey02hmIMJQJFxk8JUIKVVowp2xaDFwJ5SzB47dcSAW/pqxj8gA/wicEH+KV0G8xhPDrdiikrFhljhlRMb5Q1OEBbYGvQ9jZgaHV5jDFeEckCErGmyCtHRK4ArgDwdPLwbkQBTgPRfiHBJwwpcNLN56C338kA48SNA/BTUJBNQT28uebO5/ORmZkZ6mI0a3oPQk/vQeiF8h6E2UtcjblKo4767yTtw48fKAG8WIGP1w6kfPZSgrHTwSvgM1bgVJbf4gf8YjCAMda2ETsdayA8vz0cntcYELHS7DzY+0vz7q/O66Zq0htrgFOnjDHPA88D9OjZ0yydsjzEJWreKlYLq4an9yD09B6Ent6D0KuLe3DTX6uufmqs7S/bgeBhPdvZaVXmsZuo4rA6G9foMK6FU0oppVQtNdYanAVAdxHpjBXInAucXyHPx8Bk4BdgIvDt/vrfAKxbty5XRNbWcXnVgUmiiqZE1aD0HoSe3oPQ03sQenVxDzpWldgoAxy7T811wJdYjY8vG2NWisi9wEJjzMfAS8BrIrIBa/q5c2t5+rVVdUZSDUdEFuo9CC29B6Gn9yD09B6EXn3eg0YZ4AAYY2YDsyuk/SNovRDQEfeUUkopVUlj7YOjlFJKKXXQmmOA83yoC6D0HjQCeg9CT+9B6Ok9CL16uweNcqA/pZRSSqlD0RxrcJRSSinVxGmAo5RSSqkmp9kEOCJyqoisFZENInJbqMvTHIlIqogsF5ElIrIw1OVpDkTkZRHZLSIrgtJaiMhXIrLefk0IZRmbumruwTQR2W5/F5aIyJ9CWcamTkTai8h3IrJKRFaKyF/tdP0uNJAa7kG9fReaRR8ce3bydQTNTg6cV2F2clXPRCQVGGKM0YG1GoiIHA/kAq8aY/rYaQ8Be40xD9jBfoIx5tZQlrMpq+YeTANyjTGPhLJszYWItAZaG2MWi0gMsAg4E5iCfhcaRA334M/U03ehudTgHA1sMMZsMsYUA28DZ4S4TErVO2PMPKyBMIOdAcyw12dg/ZJR9aSae6AakDEmzRiz2F7PAVZjTdis34UGUsM9qDfNJcCpanbyev1gVZUMMEdEFtkzvKvQSDHGpNnrO4GUUBamGbtORJbZTVjaNNJARKQTMBD4Df0uhESFewD19F1oLgGOahyONcYMAk4DrrWr7lUI2fO3Nf126sbnWaArMABIAx4NaWmaCRGJBt4DbjDGZAfv0+9Cw6jiHtTbd6G5BDi1mZ1c1TNjzHb7dTfwAVbToWp4u+z28NJ28d0hLk+zY4zZZYzxGWP8wAvod6HeiYgb6w/rG8aY9+1k/S40oKruQX1+F5pLgBOYnVxEwrAm5vw4xGVqVkQkyu5YhohEAaOBFTUfperJx8Bke30y8FEIy9Islf5RtU1Avwv1SkQEa4Lm1caYx4J26XehgVR3D+rzu9AsnqICsB89e5yy2cnvD22JmhcR6YJVawPWJK9v6j2ofyLyFjASSAJ2AXcDHwIzgQ7AZuDPxhjtBFtPqrkHI7Gq5A2QClwZ1BdE1TERORb4AVgO+O3kO7D6gOh3oQHUcA/Oo56+C80mwFFKKaVU89FcmqiUUkop1YxogKOUUkqpJkcDHKWUUko1ORrgKKWUUqrJ0QBHKaWUUk2OBjhKKaWUanI0wFFKhZyIJIrIEnvZKSLb7fVcEXmmnq55g4hcVMP+sSJyb31cWylV/3QcHKVUoyIi04BcY8wj9XgNF7AYGGSM8VaTR+w8I4wx+fVVFqVU/dAaHKVUoyUiI0XkU3t9mojMEJEfRGSziJwlIg+JyHIR+cKe5wYRGSwi39uz1n9ZYSj4UicBi0uDGxGZKiKr7BmN34bA5ItzgbEN8maVUnVKAxyl1OGkK1ZwMh54HfjOGNMXKABOt4Ocp4CJxpjBwMtAVVOCjAAWBW3fBgw0xvQDrgpKXwgcV+fvQilV71yhLoBSSh2Az40xJSKyHGteuS/s9OVAJ6An0Af4ymphwglUNa9Na2B10PYy4A0R+RBrrq5Su4E2dVd8pVRD0QBHKXU4KQIwxvhFpMSUdSL0Y/0+E2ClMWb4fs5TAHiCtk8HjgfGAXeKSF+7+cpj51VKHWa0iUop1ZSsBZJFZDiAiLhF5Mgq8q0Gutl5HEB7Y8x3wK1AHBBt5+sBrKj3Uiul6pwGOEqpJsMYUwxMBB4UkaXAEuCYKrJ+jlVjA1Yz1ut2s9fvwJPGmEx734nAZ/VZZqVU/dDHxJVSzZKIfADcYoxZX83+FOBNY8zJDVsypVRd0ABHKdUsiUhPIMUYM6+a/UcBJcaYJQ1aMKVUndAARymllFJNjvbBUUoppVSTowGOUkoppZocDXCUUkop1eRogKOUUkqpJkcDHKWUUko1ORrgKKWUUqrJ0QBHKaWUUk2OBjhKKaWUanI0wFFKKaVUk6MBjlJKKaWaHA1wlFJKKdXkaICjlFJKqSZHAxyllFJKNTka4CillFKqydEARymllFJNjgY4SimllGpyNMBRSimlVJOjAY5SSimlmhwNcJRSSinV5GiAo5RSSqkmRwMcpZRSSjU5GuAoFUIiYkSkW4iuPV1E/llP514pIiMP8RzTROT1uimRUqq50QBHqSqISG7Q4heRgqDtC6o5ZqSIbKvDMsy1A6D+FdI/sNNH1tW16pox5khjzNz6Or/9Wfsr3KdcERleX9esKyLSWkReEpE0EckRkTUico+IRIW6bA1BA1fVUDTAUaoKxpjo0gXYAowLSnujAYuyDriodENEEoHhwJ4GLENjtSP4PtnLL3V5AbHU2e9JEWkB/AJEAMONMTHAKCAe6FpX11FKaYCj1AERkXAReVxEdtjL43ZaFPA50CaoNqGNiBwtIr+ISKb9P/anRSTsAC75BnCOiDjt7fOAD4DioDI5ROQ2EdkoIhkiMtP+Q1q6/1gR+dkuw1YRmRJ0/gQR+cyuSfhNRLoGHfeEnT9bRBaJyHFB+6bZ13nVPnaliAwJ2p8qIqfY604RucMuX459rvb7u8ahsGu/7hORn+xrzhGRpKD9w4I+k6XBtWH2sfeLyE9APtBFREaLyFoRyRKRZ0TkexG5TETCRGSviPQNOr6liOSLSHIVRbsRyAH+YoxJBTDGbDXG/NUYs8w+/hgRWWBfa4GIHFOhbP+0y54rIp+ISKKIvGF/hgtEpFNQfiMiU0Vkk4iki8jDpQGb/XNzl4hsFpHd9r2Ms/d1so+dLCJb7GPvDDpvtT9zNR0rIqcCd2D9TOeKyFI7fYpdxhwR+UOqqSVV6kBogKPUgbkTGAYMAPoDRwN3GWPygNMoX6uwA/ABfwOSsGpeTgauOYDr7QBWAaPt7YuAVyvkuR44EzgBaAPsA/4LICIdsQKvp4Bku9xLgo49F7gHSAA2APcH7Vtg528BvAm8KyKeoP3jgbexah8+Bp6u5j3ciBWY/QmIBS7BChxqc41DcT5wMdASCANuAhCRtsBnwD/t694EvFchILkQuAKIAbKAWcDtQCKwFjgGwBhTjPUZ/CXo2POAb4wxVdWynQK8b4zxV1VgO0j4DHjSvtZjwGdi1dyVOtcuX1usWp9fgFfs97IauLvCaScAQ4BBwBlYnz/AFHs5EegCRFP5Hh4L9MT6uf2HiPS206v9mavpWGPMF8C/gHfs70h/sf5z8CRwml2jdQzlf0aVOjjGmGa3AC8Du4EVtcz/Z6w/MiuBN0Ndfl0adgFSgVPs9Y3An4L2jQFS7fWRwLb9nOsG4IOgbQN0qybvXOAyrD+ebwG9gHX2vm3ASHt9NXBy0HGtgRLAhfVH+YNqzj8deDFo+0/AmhrKvg/ob69PA74O2ncEUFDNZ7YWOKOWn3XFa7xeTb6RgB/IrLBEBX12dwXlvwb4wl6/FXitwvm+BCYHHXtv0L6LgF+CtgXYClxmbw/FasYUe3sh8Odqyr0euKqG938hML9C2i/AlKCy3Rm071Hg86DtccCSCj9fp1b4HL6x178Brgna1zPo56aTfWy7oP3zgXNr8TO3v2PL3Vcgyr53ZwMRh/p91UWX0qW51uBMB06tTUYR6Y71R2KEMeZIrD9QqvlqA2wO2t5sp1VJRHqIyKcislNEsrH+95pUXf5qvA+cBFwHvFbF/o7AB3ZzSybWHx8fkAK0xwrKqrMzaD0f63/xpWW/SURW200lmUBchbJXPNYjIq4qrlFtGWpxjZrsMMbEV1jyavHeOgKTSj8v+7rHYv2RLrU1aL1N8LYxxmAFmKXbv9nnHykivYBuWDVaVcmocJ2KKv58YW+3DdreFbReUMV2NOUFv5fgn9eqfpZdWD83pWr6DKv7mdvfseXY9+wc4CogTawm015V5VXqQDTLAMcYMw/YG5wmIl1F5Au7H8APQV+wy4H/GmP22cfubuDiqsZlB9Yv91Id7DSw/tda0bPAGqC7MSYWq/+BHMgFjTH5WM1MV1N1gLMVq3o/+A+9xxiz3d53wJ1X7b4wt2DVXiYYY+KxmmoOqOxB5atUhjq+xoGW57UKn1eUMeaBoDzB9zINaBdUbgnets3Aqmm7EJhljCms5tpfAxOk+o7LFX++wPoZ217jO6pZ+wrnKv15repn2Uv5gKk6Nf3M7U+l74kx5ktjzCis4G8N8EItzqNUjZplgFON54HrjTGDsdrkn7HTewA9xOqs+KvdSU41X28Bd4lIslidVv8BlD7yugtILO2oaYsBsoFcO2i++iCvewdwgrE7plbwHHC/3d8Gu2xn2PveAE4RkT+LiMvukDqgFteLwfpjtwdwicg/sPrPHIwXgftEpLtY+tl9SuryGgfidWCciIwRqwO0R6zHzisGLaU+A/qKyJl2DdW1QKsqzjkBK8ip2Ecq2GNY73FG0P1qKyKPiUg/YDbW75vz7ft1Dlbz36cH+2aBm0UkQayO3X8F3rHT3wL+JiKdRSSasr4x3lqcs6afuf3ZBXSSss7OKSJyht0XpwjIxWp+VOqQaIAD2F/uY7A6OC4B/kdZNbIL6I7V5n8e8IKIxDd8KVUj8U+sPhbLgOXAYjsNY8warD8am+yq+zZYwfL5WE/OvEDZH5cDYozZYYz5sZrdT2A1icwRkRzgV6x+IRhjtmD1rfk/rFrLJVido/fnS+ALrMfUNwOFlG/qOBCPATOBOVjB3ktYj0kf6jWCn1grXc7e30HGmK1YnW3vwAqutgI3U83vQ2NMOjAJeAiriekIrJ+BogrnXIxVO/FDDdfei/W7pgT4zb5f32DVXG0wxmQAY7HuVwZWDddYuwwH6yNgEda9/wzr8werL+JrwDzgD6zP//panrPan7laeNd+zRCRxVif+41YNUp7sTouH+x/BJQKKO0U1+yI9Sjlp8aYPiISC6w1xlRqGxeR54DfjDGv2NvfALcZYxY0aIGVUo2CXfOwDbjAGPNdUPrLWP2C7gpZ4SoQEYPVPLoh1GVRqqFpDQ5gjMkG/hCRSRAY3Kv0f7kfYtXeYDdJ9AA2haCYSqkQsZuz4kUknLJ+VL8G7e8EnEVZ7YhSKsSaZYAjIm9hPXrZU0S2icilwAXApWINPLUSqwobrGr0DBFZBXwH3GxXIyulmo/hWE+CpWM9in2mMaYAQETuA1YADxtj/ghdEZVSwZptE5VSSimlmq5GW4MjIi+LNXz4imr2i4g8KSIbRGSZiAxq6DIqpZRSqnGqalCuxmI61rDh1T1yeRrW003dsXrvP0stevHHx8ebbt261VER1cHIy8sjKqpZTJzcaOk9CD29B6Gn9yD06uIeLFq0KN0YU2nut0Yb4Bhj5knQpHFVOAN41R5V9Fe7A2BrY0xaTedNSUlh4cKFdVlUdYDmzp3LyJEjQ12MZk3vQejpPQg9vQehVxf3QEQqjv4NNOIApxbaUn7MjG12Wo0BjoKcwhIy80vILiyhyOsnzOnA43YQ63GTFB2Ow1HfA8kqpZRS9etwDnBqTUSuwJoZmOTkZObOnRvaAjWw3GLDj9u9LE/3siXbT05J9XmdAi08QrsYB+3tpUOMg+RIwSF1E/jk5uY2u3vQ2Og9CD29B6Gn9yD06vMeHM4BznbKz7HSjmrmazHGPI81FQM9e/Y0zaVK0u83vP7bZh78dg15xT56pEQzdmACHROjSIoOJzrcRbjbQYnXT6HXT1Z+MTuyCtmyN581adl8uikPv/2QXYTbSbeW0XRPiaZnSgw9UmLo0SqGNnEe5AADH60WDj29B6Gn9yD09B6EXn3eg8M5wPkYuE5E3sbqXJy1v/43zUlhiY//e3cpny1L4/geydzxp170anVg0/wUFPtYtyuHNTuzWbszl/W7c/hpQzrvLy6LI6PDXVbg0zKazslRdE6MonNyFJ0So/C4nXX9tpRSqlZKSkrYtm0bhYXVzXsKcXFxrF69ugFLpSo6kHvg8Xho164dbre7VvkbbYBjD8Y3EkgSkW3A3YAbwBjzHNakdH8CNgD5wMWhKWnj4/cb/vbOEj5fsZPbTuvFlcd3OeBaFoCIMCf928fTv318ufSs/BLW7c5h3a4c1u3MYd2uXOau28O7i7aVy9c6zkPnpCg6JUXRJckKejolReH169hLSqn6tW3bNmJiYujUqVO1v/9ycnKIiYlp4JKpYLW9B8YYMjIy2LZtG507d67VuRttgGOMOW8/+w3WrL6qgge+WMPnK3Zy1+m9uey4LnV+/rhIN0d1asFRnVqUS88t8pKanscf9pKansem9Dw+W5ZGVkFZxx8BWv32De0SImifEEm7hAjatYgMbLeO8+ByNtohmpRSh4HCwsIagxt1eBEREhMT2bNnT62PabQBjjo4r/2SyvPzNnHR8I5cemztoty6Eh3uok/bOPq0jau0b19eMX9k5PHHnjzmLV6FMy6RbfsK+HVTBmnZhQQPqO10CK3jPGUBT3wEreM8tIrz0DrOQ+vYCGIjXPqLSylVI/0d0bQc6P3UAKcJ+Wb1Lu7+eCUn92rJP8Ye0ai+3AlRYSREhTGoQwKJORsYOXJAYF+x109aVgHb9hWwdW++9brPev1+3R725BZRcUaRCLczEPSUBj6t4iJoHeshJdZDUkwYiVHhhLm0JkgppZojDXCaiOXbsrjuzd85sk0cT50/8LBq4glzOeiYGEXHxKpHsyzx+dmdU8TOrALSsgrZmVUYeN2ZXchvm/ayM7sQXxV9exIirbF9kmOspXQ9kBYdHgiGnDr+j1KqjmRkZHDyyScDsHPnTpxOJ8nJ1mC78+fPJywsLJD38ccf54orriAyMrLGc44cOZJHHnmEIUOGVEpPS0sjIiICgG7dujFr1qy6fDuHJQ1wmoDtmQVcMmMBLaLCeGnyECLDmtZtdTsdtI2PoG18RLV5fH5DRm4RO7IK2Z1dSHpuMXtyikjPLWJPThF7cotYsjWTPTlF5Bf7Kh0vAnERbhIiw0iItF+j7PWoMDvd2m4RFUZ8ZBjxkW7ch1EgqZRqOImJiSxZsgSAadOmER0dzU033VRl3scff5y//OUv+w1wavLGG29UCnwOhTEGYwwOx+H7O65p/SVshrIKSrj4lfkUFvt445qhtIz1hLpIIeF0CC1jPbV6/3lF3kDgUxYAFZOZX8y+/BL25RWTllXI6rRs9uYXU1jir/ZcMeEuYiPcxHis11iPm9gIl/3qJjY4vUKeGI9ba42Uaka++eYbbrrpJrxeL0cddRTPPvss//vf/9ixYwcnnngiSUlJfPfdd1x99dUsWLCAgoICJk6cyD333HNQ15syZQqxsbEsXLiQnTt38tBDDzFx4kQAHn74YWbOnElRURETJkzgnnvuITU1lTFjxjB06FAWLVrE7NmzefXVV3n99ddJTk6mffv2DB48mAkTJjBp0iQWL14MwPr16znnnHMC241FvQY4IjIc+AtwHNAaKABWAJ8Brxtjsurz+k1dsdfP1a8vYtOePF695Gh6pOjjjrURFe4iKtxVbZNYRQXFPvblF1tLXkml9ZxCL9mFJWQXlLA9s4DVadY0GDmF3v2eOzrcRVS4k6gwl12u4HUXUWFOosJdRIe7iAx3Wq9hVr7S9dJ9EW6n1igpVYV7PlnJqh3ZldJ9Ph9O58GN13VEm1juHndkrfMXFhYyZcoUvvnmG3r06MFFF13Es88+yw033MBjjz3Gd999R1JSEgD3338/LVq0wOfzcfLJJ7Ns2TL69etX4/kvuOCCQBPVqFGjePjhhwFIS0vjxx9/ZM2aNYwfP56JEycyZ84c1q9fz/z58zHGMH78eObNm0eHDh1Yv349M2bMYNiwYSxYsID33nuPpUuXUlJSwqBBgxg8eDBdu3YlLi6OJUuWMGDAAF555RUuvrjxjdRSbwGOiHwO7AA+Au4HdgMeoAdwIvCRiDxmjPm4vsrQlBljuO39Zfy8MYNHJvXnmG5JoS5SkxUR5iQiLII2NTSRVcXnN+QWeckuKLEDoLJAKLuwLD2/yEdusZe8Ii/5RT7SsgrJK/aSV+Qjr8hLQUnlJrXquBxChNtJuNtJRJiDCLcV+HjcTut92Nt79xQxL2dVIE/F/R63kzCXg3CXgzB7CXdZaWFOB+Fu+9XlaFSd2ZVqrHw+H507d6ZHjx4ATJ48mf/+97/ccMMNlfLOnDmT559/Hq/XS1paGqtWrdpvgFNdE9WZZ56Jw+HgiCOOYNeuXQDMmTOHOXPmMHDgQMCaLmH9+vV06NCBjh07MmzYMAB++uknzjjjDDweDx6Ph3HjxgXOe9lll/HKK6/w2GOP8c477zB//vyD+lzqU33W4FxojEmvkJYLLLaXR0VE/yofpMe/Xs/7i7dzwyndmTi4XaiLo6rgdAhxEW7iImo36mZ1fH5DfmnAYwdCuXYwlFdctl5Y4qPQ66Og2E9BibVdUOyjoMRa9uYVW2klPrJyfSzcs5X8Yi+HOu5imDM4CHJUCoLKBUeleZwOXE7B7XTgdjpwOQSX04G79NXe53IKbof1WrrfHXSsq0J+t1NwOSrvdzkEZ+kiohPKNjPV1bQ0xoH+/vjjDx555BEWLFhAQkICU6ZMqXE05v0JDw8PrBv7cVRjDLfffjtXXnllubypqalERdWuZvvss8/mnnvu4aSTTmLw4MEkJiYedBnrS70FOFUENweVR1X27sKtPPHNeiYObsdfT+4e6uKoeuZ0CDEeNzGeQwuUgpXO/2KMocRnKCjxUVRSFgwVFPso9vop8vop9vop9vkp8lpppelFQetWHh9FJVbeculeP5n5xda2z09RiZ8Snx+v31Di9VPi9+P1mQYf4drlsAIdp0jZelAQ5HRUWOzAqOw4cDkcOBylr1aa0+HA6cA+zoFTCFzHIYLDYY3nkbajiG8yV+AQa9shgsPOKwIOEQQC6VXlEextKTumbL99XFV5HKXbFa8BUHrusnFHrHUC1yxNrDKPfXxpGlWkiZRdAypfl9I8lL9m4ByBc0mlcpWeo8TnpzCo9rOqkLbEZyiqWEN6CLFvdYf6/H5cLhepqamsWrOWbt26MWPGq4w49jiKvT6io2PI2JdJbHwCGXv3ERkZRURUNFu37+Dzzz/n2OOOp9jrxxgosb9TwapL9/sNXl/59GKvn5NOGcU9d9/NpHPOIyY6mu3bt+N2uynx+jFY5wIYOnQ411x7NTfdciter5dPPv2Uyy67nBKfH6c7jFGjR3P11Vfzv+dfoMRXfV/Fmvj85oCO9fkN6blFtcpbn01UOUB1v7GKgI3AncaYb+qrDE3Rj+vTuf395Yzolsi/JvTV5gF1SESEMJdY4wUdYk3ToTLGCnK8PkOxz4+3NAjylQZAfkp81naJz1TaX+LzU2L/Qvf6TCBwKvH58dvn9vvLXn1BaT6/9UfIZww+f+lSmmb/ofD78fmpcC4/fj8U+HxB57IXU3Y9n996IsVvrOP9BoqKvSzdm2Zt+w0maJ/flG0byrZV7b0wvjXsytl/xtxa5DlE6bnFREa6+ftDT3HWxEn4vF6O7D+IE844nzU7cxh7zoWMOfU0klNa8dLMT+jc80h69upNqzZt6TPoaNKyClmzM4v8Yi+pGTlE7cqk7M+rIb+4hPMuOB+Px3rIIr5FC154ZxZZhUVsz8pm7e49gMFvDGv37KLDgP6cOG4sQ4cPBSAyKpJ/P/UkDqeTIm8Ja9J3AIbozm0YdtIJ9O3XhxZJSXTs3pV8h581e6xpeYafdgqz3n+PDgN7s3bP1qAIr6of1oppQduF6WVp+/mTtisvnUnTp+3/QwfEhOBbIyJOoA/whjGmT0Neu2fPnmbt2rUNeck6s2ZnNpOe/YU28RG8e/VwYuvwf/QNSWfwDT29B6F3oPfAmKqDIEPQtr90v5VWGlQF8pQLpMrylAZRfr+VN/jPQuk1rNegstj77JTA/tK04Dym9MigPKVpZccZgk5Xds2yQ8vlsdIrlqvsuDbspWv3HgSdspLCgkI8Ho91jP0P4y/bMnYaBhOUTmCfXYbAsaX7qSKt7Jyl+8unlT8y+FyhlJ+bT2R0JAX5BUweP5lpj07jiP5HAML0/75CTnYOU2+fWlatRlAtXzkVU60tY4xdWxdc7VdupZy0Tdu5b8Nj5dK+Pe/jRcaYSh2Q6rMGJ9oYk1vVPmOMD1gqIv+rr+s3NVv35jP55flEhDl5+eKjDtvgRil1cEqbdRyH0obSyBljKPIVUegtpNBXSIG3oPJ6he1iXzFFviKKfEWB9WJfMWfEnkGWN80K8vAHxnUpt278mIK6CyJK/1BbTWeVXx0I4qhmv71e7jxV7bP/BZr+KuwLPr7G9YrHBZ2vNC/AX6b+hVWrVlFYWMjkyZOZdPIkACZMmMDGjRv59ttvA09/HYwD7Qfl31XCN+d+VC5Nzqv6O1GfnYw/EpElWE9RLTLG5AGISBesp6j+DLxQj9dvMtJzi7jo5fkUFPuYedXwGge8U0qp+uI3fgq9heR788kvya/0WmVA4rOCkiq37fXgYw6G2+Em3BlOmDOMcGc44c5wxkaPxef3ISI4xWkHiGL3SXIgCCUlJXjCPUEBiCOQL7Bemr9coOKoFGAEBwxNyZtvvlll+gcffNDAJTlw9dnJ+GQR+RNwJTBCRBIAL7AWaxycycaYnfV1/aYit8jLxa8sIC2rgNcvHUqvVrGhLpJS6jDgN37yS/LJK8mzApCgIKSq4CTfa+Wtaf+BBiBuhxuPy0OEMwKPyxNYIpwRxETGWNtOO80VUXnbGXRM0HbperjLCmYcUnn8p9WrV9MlvkuN5cvJySEmsnE9RaXqTr0O9GeMmQ3Mrs9rNGVFXh9XvLqQVWnZvHDRYIZ0ahHqIiml6pnP7wsEG7nFueSWlC15xXnWa4n1Wrq/dDt4f15JXq37cLgcLqLcUUS6Iq3Fbb3GRceV2w68Bq1HuCPKbZcGIOHOcFwOHSxfhY7+9DVSPr/hb+8s4eeNGTw6qT8n9Uo5+JPl7oa1s2H3GijYCwhEJFhLXDtI7gXJPSBc/yej1KEwxpDvzSe7KJvs4mxyinOspcR6LU3PLckldU8qb855s1Lwku/Nr9W1otxRRLmjiHZHE+2OJsodRUpkSiCt9DXSHVkWvFQMVOxXt1P79KmmRwOcRsgYw98/WsHs5Tu56/TenH2wA/kVZMK3/4RFr4DfC+4oiE4G47f2FVUYurzlEdDpWOh0HHQ9CcKjD/WtKHVYMcZQ6CsMBCOBwMQOVrKLsssHLMXZldL8puYxPUoDD0eJg5belsSGxdI6qjXRYdHlApbg7UC6nRbpisTpOLgpBpRqLjTAaYQembOWN3/bwtUju3LZcTW3IVdr9xp488+QtQ0GT4ajr7BqaoI7wXmLIXML7FkDu1fB5p/h99dh/vPg8kC3U+CIM6HHGPBo3x91+DDGUOAtILMok6yiLLKKs8gsyiS7KNvaLrK2s4qzyC7KLpfP6695DrEIVwQx7hhiwmKIDY8lOTKZLvFdAmlx4XHEhMWUW2LDYokNiyXKHRVottFH9Zu+6OhocnOth4lnz57NDTfcwFdffcXnn39OZGQkF1100QGfMzU1lZ9//pnzzz8fgIULF/Lqq6/y5JNP1ur4kSNHkpaWFpi3qlu3bsyaNeuAy3E4qPcAR0QeBV42xqys72s1BU99s57/freR845uzy1jeh7cSfZuglfPAAxc8gW0P7rqfK4wSOpmLb3HWmneYtj6G6z+GFZ9DGs+BWcYdBkJvcZCz9MguuXBlUupg1DgLSCzMDMQpJQGKIGlQvBSGrjUFKhEuCKIC48jLiyOuPA4usZ3JS48LhCIxIbHWoGJO7YsSAmPJcYdo8056oB98803TJ06lS+//JKOHTty1VVXHfS5UlNTefPNNwMBzpAhQ6qcg6om1c1bdbBKH7t3OBrXZL8NUYOzGnheRFzAK8BbOot41V6Yt4lHv1rHWQPbcv+ZBzlKcdZ2mHEG+Irh4tnQsveBHe8Kg87HWcupD8K2+Xag8wmsnwOfCLQfCr1Ot5bErgdeRtVs+Y2frKIs9hXuY1/RvvKv9npmYSZ7C/eSWZTJvsJ9FPqqn4cnwhVBbFgsceFxxIfH0yW+C7FhscSHx1sBTOliBzLx4fHEhscS7gyv9pxK1aV58+Zx+eWXM3v2bLp2tX5fTps2jejoaG666SZGjhzJ0KFD+e6778jMzOSll17iuOOOw+fzcdtttzF37lyKioq49tprufLKK7nttttYvXo1AwYMYPLkyQwcOJBHHnmETz/9lNzcXK6//noWLlyIiHD33Xdz9tln16qcU6ZMITY2loULF7Jz504eeughJk6cCMDDDz/MzJkzKSoqYsKECdxzzz2kpqYyZswYhg4dyqJFi5g9ezavvvoqr7/+OsnJybRv357BgwczYcIEJk2axOLFiwFYv34955xzTmC7PtV7gGOMeRF4UUR6AhcDy0TkJ+AFY8x39X39w8Vrv6Ry/+zVnN63NQ9N7HdwkwHm7rFqbgr2wZRPDjy4qcjhgA7DrGXM/bBrJaz5zKrV+erv1tLyCCvQ6T4G2g4C7RfQrBR6Cw8oWMkqzqq2j0qkK5IETwIJ4QkkRSTRPaE7CeEJJHgSiA+PDwQnwcGLBiqqVj6/DXYur5Qc4fOC8yD/DLbqC6c9UGOWoqIizjzzTObOnUuvXr2qzef1epk/fz6zZ8/mnnvu4euvv+all14iLi6OBQsWUFRUxIgRIxg9ejQPPPBAIKABq6mz1H333UdcXBzLl1vvdd++fVVe74ILLgg0UY0aNYqHH34YgLS0NH788UfWrFnD+PHjmThxInPmzGH9+vXMnz8fYwzjx49n3rx5dOjQgfXr1zNjxgyGDRvGggULeO+991i6dCklJSUMGjSIwYMH07VrV+Li4liyZAkDBgzglVde4eKLL671x3woGqQPjj01Qy97SQeWAjeKyJXGmHMbogyN2cyFW/n7Rys5pXdLHj93AC7nQVTzFeyD1yZYfW4ufB/aDKzbQopAqz7WMvJW2LcZ1n5uBTs/PAbzHoaIFtDtZOg2ynqN0sniDzelTwFlFGSQUZhhvQavF2awt3BvYD2vJK/K8zjEQXx4fCBA6RrflYTwBOI98bTwtCi3Hh8eT4InQYMV1eS43W6OOeYYXnrpJZ544olq85111lkADB48mNTUVADmzJnDsmXLAv1jsrKyWL9+PWFhYdWe5+uvv+btt98ObCckJFSZr7omqjPPPBOHw8ERRxzBrl27AuWYM2cOAwdaf1Nyc3NZv349HTp0oGPHjgwbNgyAn376iTPOOAOPx4PH42HcuHGB81522WW88sorPPbYY7zzzjvMnz+/2vdQlxqiD85/gHHAN8C/jDGl7+xBETk8J4WqQ2/P38LtHyznuO5JPH3+INwHE9wU5cIbkyB9LZz3NnQ8pu4LWlFCRxh2lbXk74VN38H6r2DD17D8XUCsGp1uo6D7aCvgamTts82FMYbs4uxygcpv2b+xbPGycsFKRoEVvFTXJBQfHk+iJ5HEiESOTDySFhEtSPQkWrUunoRAsNLC04KYsJgqB19TKiSqqWkpOMBpAg6Uw+Fg5syZnHzyyfzrX//ijjvuqDJfeLgV3DudTrxeq++YMYannnqKMWPGlMsbXGNT10rLUXr90tfbb7+dK6+8slze1NRUoqKianXes88+m3vuuYeTTjqJwYMHk5iYWHeFrkFD1OAsA+4qnaqhgmp6vzYP03/6g2mfrOKEHsn878LBeNwH0bxTUghvnw/bF8OfZ1g1Jw0tsgX0Odta/H5IW2IFOuvnwPcPwvcPQGSi9eh5l5GEF+r/1OtCib+EjIIM0gvS2ZO/hz0F9pK/x0orsF73Fu6tssOtM9NJgieBRE8iLTwt6BjbMRDAJEYkBtZbeFqQ4EnA7dDOtUodqMjISD777DOOO+44UlJSuPTSS2t13JgxY3j22Wc56aSTcLvdrFu3jrZt2xITE0NOTtUzoI8aNYr//ve/PP7444DVRFVdLU5tjRkzhr///e9ccMEFREdHs337dtzuyr8LRowYwZVXXsntt9+O1+vl008/5YorrgDA4/EwZswYrr76al566aVDKs+BaIgAZynQs0KH2Sxgc02djUXkVOAJwAm8aIx5oML+KcDDwHY76Wm7v89h4bnvN/LA52sYfUQKT50/kHDXQQQ3vhKYdTH88T1M+B/0Hrf/Y+qbw2HV3LQdBCfcAnkZsPFb2PCV9br8XYYDrPu39WRWl5FWh+aIQ/sSNiXFvmLSC9LZnb87EKgEBzDp+VbavsJ9lUaqFYQWnhYkRyaTFJFEj4QeZUGLJzFQ67Jm8RpOP+l0rWVRqgG0aNGCL774guOPP57k5ORaHXPZZZeRmprKoEGDMMaQnJzMhx9+SL9+/XA6nfTv358pU6YEmo4A7rrrLq699lr69OmD0+nk7rvvDjR/BQvug5OUlMTXX39dbTlGjx7N6tWrGT58OGA9+v7666/jdJb/m3XUUUcxfvx4+vXrR0pKCn379iUuLq7cNT/44ANGjx5dq/dfF6S0GqreLiDyKzAIqyZHgD7ASiAOuNoYM6eKY5zAOmAUsA1YAJxnjFkVlGcKMMQYc92BlKdnz55m7drQtYwZY3j86/U88c16xvVvw2N/7n9wzVJ+P3xwhdUc9KdH4OjL676wdc0Y2L2aDXNepJtjG2z+CYpzAYE2A8oCnvZDwd30JhT1+X1kFGawK28Xu/KtJRDEBAUwWUWV436nOEn0JJIUmUTLiJYkRSaRHGEFMS0jWwbWEyMSazU8vo7BEnp6D+rX6tWr6d275gctDnQma1Wz3NxcoqOjyc/P5/jjj+f5559n0KBBADzyyCNkZWVx3333lTvmQO9BVfdVRBYZYyp1KmqIGpwdwKWl4+CIyBHAvcAtwPtApQAHq+lqgzFmk33M28AZwKoq8h42vD4/d3+8kjd+28Kkwe144Ox+OA/maSljYPb/WcHNyXcfHsENWB2VU45gW/vxdBs50qqB2r4INs21lp+fgh//Y42703aI1Zeo4zHWOD6NfBqJYl8xu/N3W4FL3q6y9dIlbxfpBen4jK/ccS6Hi+SIZJIjkukQ04HBKYOtbbsGpnQ9ITxBR65VSjVqV1xxBatWraKwsJDJkycHgpsJEyawceNGvv322wYtT0PU4KwwxvSpKk1ElhhjBlRxzETgVGPMZfb2hcDQ4Noauwbn38AerNqevxljtlZThiuAKwCSk5MHz5w5s07e24Eo8hqeWVrE0j0+xnZxc1Z3N46DGefGGLpsepUOW99nc4ez+aPLgY+EGWqlUX5FTm8BcVkric9cQXzmCmJyNiL4MTjIielKVtyRZMYfQVbckXjdDTeNRKG/kExfJpneTDJ9mWT5sgLrpem5/txKx4VLOPHOeOJd8dZr0HqcK454ZzxRjqiQNBNVdw9Uw9F7UL/i4uLo1q1bjXl8Pl+lphbVsA70HmzYsIGsrPK13CeeeGLIanBWicizQOmza+fYaeFAySGc9xOsQQOLRORKYAZwUlUZjTHPA8+D1UTV0NXC6blFXDp9AcvT87nvzD5cOKzjwZ9s3iOw9X046jI6/ukROh5MkBRiNVfNn1a2WpQL2+Yjm38mdvPPxG77nPbbPgQEUo60a3eGWjU8ce3LT0NRSz6/jz0Fe0jLSyMtN816DVp25u4kp6Ryh76E8ARSolLoEtmFlMgUUiJTaBnZkpSolMB2dFjj/eOlzSOhp/egfq1evXq/TR/aRBV6B3oPPB5PuX5HNWmIAGcycA1wg739E3ATVnBzYjXHbAfaB223o6wzMQDGmIygzReBh+qgrHVuxfYsrnxtERl5RfzvwiGMOuIQZgX/7Xn49j7ody6c9vBB/UE/rIRHW09edbXj1pJCq0lr889W/53f37DmzQKIbgXthljBTrujrT497gjySvKqDFzSctPYmbeTXfm7KjUbxYXH0TqqNe2i2zEkZQito1pbwUtkCilRViCjY7YopVTjVq8Bjt1ZeLYx5kTg0SqyVK7XtywAuotIZ6zA5lzg/Arnbm2MSbM3x2NNCdGovL94G7e/v5wWUWG8c8Vw+rePP/iTLX4VPr/Zmg/qjP82zzFl3B7oNMJauBnjLWHftl/Yvvl7tqctZkfmctL2/MTOpU7S3G52uMPIkfJNsC5xkRKVQuuo1gxOGUyrqFa0jm5Nm6g2tI5qTauoVkS6I0Pz/pRSStWZeg1wjDE+EfGLSNyBzD9ljPGKyHXAl1iPib9sjFkpIvcCC40xHwNTRWQ84AX2AlPq4S0clGKvn3/NXs30n1MZ1qUFT58/iKToQ/gf/+9vwMdTrUHzJr588EOLH4Zyi3PZnrudbbnb2J6zne255ZcCb0FZ5giIiW1Na3c0bXwwsDCX1pk7aV1cSGuvl9ZhcSSlDMDZYhC0GWTV8sS0Ctl7U0opVX8a4i9lLrBcRL4CAoP9GWOm1nSQMWY2MLtC2j+C1m8Hbq/boh66dbty+Ns7S1i5I5tLj+3M7af1OripF0otfQc+uha6ngjnvA6uptU0UuQrsoKVCsHLtpxt7MjbUemR6Sh3FG2j29Iuph3DWg+jbXRba4lpS5uoNpX7vfhKYNcK2LoAdvxuLRu/gdL5kGLaWKMsB5YBOsWEUqpOOJ1O+vbti9frpXfv3syYMYPIyKpriOfOnUtYWBjHHHNwI9FnZmby5ptvcs011wCwY8cOpk6dGpjqoSqpqamMHTuWFStWVErv3bs3PXv2DKTdeOONXHTR4fVQS0MEOO/bS5Pm9xte/ukPHvpyLTHhLp6/cDCjjzzE2oHls+DDq6yB8M5902qiOQxlFWWxJXsLW3KsZUH6Al6a/RLbc7ezp2BPubxuhzsQtPRN6kvbGGu9XXQ72ka3JS487sBmWXe6y4KXUkW51sR7pQHPjt9h7WwoHTQvrgO07mdNpteqL6T0gfgOTb/Pk1KqTkVERLBkyRLAGujuueee48Ybb6wy79y5c4mOjj6kAOeZZ54JBDht2rSpMbjZn65duwbKXle8Xi8uV8O1QDTEbOIzRCQC6GCMaZJzT63akc3dH69gQeo+TumdwgNn9z20JimAFe/D+5dDxxFw3juNeuA7Ywz7ivaxJXsLW3O2WoGMvb45ezPZxdnl8sc74+kW3Y0RbUcEgpl2Me1oE9WG5Mjk+n9sOjwaOg63llKF2bBzmRXsbF9sra/5jEDQEx5nPbnVqq814WhKH2u29kZ8X5RSjcdxxx3HsmXL2Lt3L5dccgmbNm0iMjKS559/ntjYWJ577jmcTievv/46Tz31FL169eKqq65iy5YtADz++OOMGDGCadOmsWXLFjZt2sSWLVu44YYbmDp1KrfddhsbN25kwIABjBo1imuvvTZQO5OamsqFF15IXp7ViPL0008fdCAVHR3NX//6Vz799FMiIiL46KOPSElJYc+ePdWWd+PGjWzatIkOHTrw5JNPcv7557Njxw6GDx/OnDlzWLx4MU8++SQtWrTghhtuAODOO++kZcuW/PWvfz3oz7whJtscBzwChAGdRWQAcK8xZnx9X7u+ZeYX8+icdbzx22biItw8NLEfkwa3O7Aahqqs+gjeuwzaD7MmzwwLfadXYwzpBenlgpfg9dySsv7iDnHQOqo17WPac2qnU+kQ24H2Me3pENOBdjHt+PXHXxvf47GeWOh0rLWUKs6DXatg13LYucKq9fn9dSidQVuckNTdCnZa9YGWR0ByL+uR9ebYCVypRurB+Q+yZu+aSumHMg5Orxa9uPXoW2uV1+v18vnnn3Pqqady9913M3DgQD788EO+/fZbLrroIpYsWcJVV11FdHQ0N910EwDnn38+f/vb3zj22GPZsmULY8aMYfVq61maNWvW8N1335GTk0PPnj25+uqreeCBB1ixYkWg1qV0VnKAli1b8tVXX+HxeFi/fj3nnXceCxcurLHMpcFSqaeeeorjjjuOvLw8hg0bxv33388tt9zCCy+8wF133cVf//rXasu7atUqfvzxRyIiIrjuuus46aSTuP322/niiy8Cc1NdcsklnHXWWdxwww34/X7efvvtQ551vCHqiqZhjUw8F8AYs0REujTAdetNbpGX137ZzPPzNpJVUMKFwzpy46iexEXWwWSEqz+FWZdYjzxfMNOqbWggfuNnd/7ucs1JW7OtQGZrztZyHXqd4qRtdFvax7ZnQMsBdIjpEAhk2ka3JcwZ1mDlrjdhUdD+KGsp5ffDvj+sfj077cBn62+wIqgq2B0FyT2tGp7kXtbSstdBj9WjlDo8FRQUBIKE4447jksvvZShQ4fy3nvvAXDSSSeRkZFBdnZ2pWO//vprVq0qG7w/Ozub3FzrP5Knn3464eHhhIeH07JlS3bt2lVjOUpKSrjuuutYsmQJTqeTdevW7bfs1TVRhYWFMXbsWAAGDx7MV199td/yjh8/PjD31Y8//sgHH3wAwKmnnkp8fDwAnTp1IjExkd9//51du3YxcODAQ551vCECnBJjTFaFWg1/A1y3zu3MKuTtBVuY/nMqmfklHN8jmdtP60Xv1rF1c4HSZqnWA+CCWfUyPUGRr4gduTsCHXu35mxlc85mtmZvZWvOVor9xYG8LoeLdtHt6BjbkaNbHU2H2A5WIBPTgVbRrZrn7NIOByR2tZYjzihLL9gHe9bC7tWwZ431uuFrWPJGWZ6waCvwSe5tBTzJvazt2HZa46NUPaqupqW+B/oL7oNzoPx+P7/++iseT+W+l+HhZV0gnE4nXq+3xnP95z//ISUlhaVLl+L3+6s8Z2253e5AK0XwtWsqb1RUVK3OfdlllzF9+nR27tzJJZdcctBlLNUQAc5KETkfcIpId2Aq8HMDXLdO5Bd7mbcunfcWb+PbNbvx+Q0n92rJ9Sd3Z8ChjGtT0ZK34KNrrJF5z59pNZkcoBJ/CRkFGWQUZJBekE56QTppeWllTyflbGd3we5yx4Q7w63mo9gOHNv22LLmpNgOtIpspfMf1VZEAnQYZi3B8vdagc+e1bB7jfW6fg4seb0sj8sDLbpCUjdI7G41eyV2t7Y9cSilmo7jjjuON954g7///e/MnTuXpKQkYmNjiYmJKVeTM3r0aJ566iluvvlmAJYsWVKuyaiimJgYcnIqj7oOkJWVRbt27XA4HMyYMQOfz1dlvkNR2/KOGDGCmTNncuuttzJnzhwyMzMD+yZMmMA//vEPSkpKePPNNw+5TA0R4FwP3AkUAW9hjW1zX41HhFB2YQkrtmexYnsWv2zM4KeNGRR7/SRFh3HF8V0496j2dEysXTRaawtfgU9vgM4nwHlvQVgUxhjyvflkFWVZS3FWYD27OJvMwkwyCssCmYyCDPYV7at0akFIiUqhbXRbhrUZZj2NZD+Z1Da6LS0jW4ZkLqRmI7JF5Q7NYAU+u1dD+jrI2GAtO1dYTZTBIytHtYTEbpWDn4SO1hNiSqnDyrRp07jkkkvo168fkZGRzJgxA4Bx48YxceJEPvroI5566imefPJJrr32Wvr164fX6+X444/nueeeq/a8iYmJjBgxgj59+nDaaadx7bXXBvZdc801nH322bz66quceuqptapRqdgH55JLLmHq1OpHd6ltee+++27OO+88XnvtNYYPH05KSkqgFi0sLIwTTzyR+Pj4OpkjrN4n22xs4jq1MuMeuR4HbhziBr+L/GJDTgFk5vvZne0F4wLjJCUmiqGdWjKsSxJ92sbjCpr5u2JHYp/fR4m/BK/fS4m/xFp8JWXr/hKKfcXkl+ST580jvySffG8++WlLyd+5lPzoJPITOpHnK7CCmKJsvKb6akeP00NiRCJJEUmBJbDtSSqX7m5kfwh1Dp4aeIthXypkrIf09farHQDlp5flEwfEtYOEztCis/3apWx9P3239B6Ent6D+rV69Wp69+5dYx6di6rhFRUV4XQ6cblc/PLLL1x55ZUsW7YMsJq5Bg0axLvvvkv37t2rPL6q+yoioZlsU0R6YM091Sn4esaYKifGrG/FksXSvLcr73ADcRAZ1CKQA3ydDV8vAZbUbTkiXBFE+g2RRTlERrcgKqkHcWFRtHZZY73EhcURFx5HfHg8seGxge3SRedCaqJcYZDcw1oqyt8LGRutoGfvJtj7h9XhedXHULC3fN6o5ArBT9BrVHLDvBellKpgy5Yt/PnPf8bv9xMWFsaTTz4JWE9ajR07lgkTJlQb3Byohmiiehd4DmtCzLpv+DtAHcI6sPAvCyn2FVPsKy5XwxJc4xLY5yupNBmjoXytlzEGp8OJ2+EuW5zuctsuh4twZzhR7ig84sLx2Y3w+2sw4C8w7nFtblD7F9nCWoKf6ipVmFUW8AS/bv4Zls2E4J9ZVwRHhSXCNvvJrvgOZUtce4hO0U7PSql60b17d37//ffAdmm/oSOOOIJNmzbV6bUaIsDxGmOebYDr1Fq4Mzx0NSDFeTDzAquj6fG3wIl36KPD6tB54qxpJtoMqLzPWwT7NpcFPVlbyV+/iKi8dGtQw4q1P84wq/mrNOCJ7wjx7cu2Y9uAdj5XhwFjzKGPS6YajQPtUtMQAc4nInIN8AFWR2MAjDF7qz+kicrdA2+dY42WO/Y/MOTQH4NTar9c4ZWavVaGB/X/KMqFrK2QuRUyN9vrW6ztdV9CXvkn7xAnxLS2Ap3YNhDbFuLalq3HtoHoVs1qUljV+Hg8HjIyMkhMTNQgpwkwxpCRkXFAj7g3xG+gyfbrzUFpBjisB/s7YGnL4O3zIW+PNWlmr9NDXSKlLOHR1qCELavpkFlSAFnb7KBnixUAZe+A7O3WgIfrvoTgWd3B6gQdnVIW8ARe21i1Q6VBkKsJDAipGqV27dqxbds29uzZU22ewsLCQxoTRh26A7kHHo+Hdu3a1frcDTEXVef6vkajt/JD+PBqa6yUS74oP/GjUo2dO8J6PD2pmo5/xkBhJmRtLwt8sneUre9ZCxu/heLcysdGtICYVlYwVNNrWB0PzaCaPLfbTefONf/5mTt3LgMH6u/jUKrPe1BvAY6I3GKMechen2SMeTdo37+MMXfU17UbDb8P5j4A8x6CdkdbNTcxKaEulVJ1S8QK3iMSrDm5qmIMFGVXCIDSIHcn5OyyXtPXQ+4u8JdUPj4sxvruRLeq+jWqpfV0WGQL7R+klALqtwbnXOAhe/12rKepSp0KNO0AJzvNmnYh9QfrSamxj1l9IZRqjkSsjtCeuOqbwsCa66tgnx347LQCnuDXnJ2wfZEVFFVsFgOraSwy0Qp2opLs14rrpdstrZoh7Z+hVJNUnwGOVLNe1XbTsm4OfHiV1XfhzGdhwPmhLpFShweHA6ISrSXlyOrzldYIldb+5KVb/dsCi72943drvajyZIYAuCKqDoYiE+2lhdWMVrruidMaIqUOE/UZ4Jhq1qvabhoKs+HrabDwJUjpC5Neqb7fglLq4AXXCFU1KGJFJYXWSNDBwU/pkmu/5qRZM8Tn7am6mcy6METEWwFPhD0uUWSi1TxXMRiKCNqnnamVanD1GeD0F5FsrNqaCHsde7vpdVtf+wV8dqPVt2DYtXDyP8Dd9N6mUoclt8d6eiuuFk9gGANFOZCfYY0RlL/Pfs2wRpMOXs/ebs0hlp9RdZNZqbAYKzDyxNuvcfTMLICir6w0T1yl/YF1bdpW6qDUW4BjjGke9bj7Uq1am5UfQMsj4M+vQrtKU2IopQ4XIuCJtRYO4CHQkgIr6AkERnvLXvP3Wk+aFWTao05vokXmLsj4FUryaj6vy1N14BMcGIXHQniMtXjiytbDYyAsWvsZqWZJR+I6WPl7Yd4jsOAFa+CzE++EETdoVbRSzZU7whrwMK5trbL/UjrZprfYCnoKM63Xgkx7PTNoPSg9dyfsWWOnZ7P/Fn8pC4A8seWDn0BgVNX+WGsJi7KXaB28UR1W9Kf1QOXuhvkvwPz/WdXYAy6wpluIbRPqkimlDkeuMIhOtpYD5fdbHaiLcoJe7fXC4O3S/XZa/l5r+o7SffurRSrlDC8LdgKBT3XbkVXsq2Ld5dEaJlUvNMCpDWNg20JYPN2auNBXAj3/BCfdBSlHhLp0SqnmyuGwmqgi4g/tPD4vFAcFQ4VBQVNxXtCSW/V6/l5ruyS/bF+tCbgjrRowd6TVXyqwHmE96eaOqLA/KL+rQv7gvK6gvK5wfQKumWm0AY6InAo8ATiBF40xD1TYHw68CgwGMoBzjDGpdVYAvx92LYfVn8Dyd62+Nq4IGHghDLsGkrrV2aWUUiqknK6ywRrrgt9vdbquKSgK3i4pKFu8pev5VpCVuztof7716ivafxmq4nBZQY8zDFwehpb4YWW8Ffw4w61XV7iVp1JaeLljq04LK9t2uKxXZ5j1+TrDwOEGp9tOc1t5tPaq3jTKAEdEnMB/gVHANmCBiHxsjFkVlO1SYJ8xppuInAs8CJxzUBf0+6wv0e5V1mOiO363BujLz7AGDut8gjXzd++xVgc+pZRS1XM4ypqiaFn35/f7wFtYPuipGAR5C4P25Vt9nbyF4LNfvYVkb99KRGJcUFoR5OdZr74i6zWwFB58YFWTcoFPcPATtF5VusNpBUjBr1K6Xppub4uzdmmB9Irndll/CwOLlK0jFdKlmnRHhWOsNE/BLmuOu3LHCNUOl3cAAWGjDHCAo4ENxphNACLyNnAGEBzgnAFMs9dnAU+LiJj9zKceUbADpo+1f6CLrCAmJw383rJMce2h+2joMhK6nKjTKyilVGPicAYFUAdv9dy5pIwcWfsDjCn72xEIeoKCo9I0v9dK9xVbzX++YmtsJV+JnRa0HkgP2uevKp/Xrr3KsvP4rDS/F4wvaDvo1QTn8R/SZ1VfhgH8Vj/nbqwBTltga9D2NmBodXmMMV4RyQISgfSKJxORK4ArAPq2CiNzXwZGXPgdbko83SiKG0pReCL5ke3Ije6M1x1jHbgPWLQaWF23766Zy83NZe7cuaEuRrOm9yD09B6EXv3cAwHc9rKfAMxhLw3xl9gYxPgR4wOsV2vxB736K6QF5/UjxgDWeayn90xQmgGsIKp0f/n82Ocy9qu1XVRYgCc8vJr8tXpjwMNV7mmsAU6dMsY8DzwP0LNnTxP/t19CXKLmbW7p47EqZPQehJ7eg9DTexB6dXIP/lJ1gOM4tLPWm+1A+6DtdnZalXlExAXEYXU2VkoppVQz11hrcBYA3UWkM1Ygcy5QccbKj4HJwC/ARODb/fW/AVi3bl2uiKyt4/KqA5NEFU2JqkHpPQg9vQehp/cg9OriHnSsKrFRBjh2n5rrgC+xHhN/2RizUkTuBRYaYz4GXgJeE5ENwF6sIKg21hpjdC6FEBKRhXoPQkvvQejpPQg9vQehV5/3oFEGOADGmNnA7App/whaLwQmNXS5lFJKKdX4NdY+OEoppZRSB605BjjPh7oASu9BI6D3IPT0HoSe3oPQq7d7ILXol6uUUkopdVhpjjU4SimllGriNMBRSimlVJPTbAIcETlVRNaKyAYRuS3U5WmORCRVRJaLyBIRWRjq8jQHIvKyiOwWkRVBaS1E5CsRWW+/1tEU0qoq1dyDaSKy3f4uLBGRP4WyjE2diLQXke9EZJWIrBSRv9rp+l1oIDXcg3r7LjSLPjj27OTrCJqdHDivwuzkqp6JSCowxBijA2s1EBE5HsgFXjXG9LHTHgL2GmMesIP9BGPMraEsZ1NWzT2YBuQaYx4JZdmaCxFpDbQ2xiwWkRhgEXAmMAX9LjSIGu7Bn6mn70JzqcEJzE5ujCkGSmcnV6pJM8bMwxoIM9gZwAx7fQbWLxlVT6q5B6oBGWPSjDGL7fUcrBmU26LfhQZTwz2oN80lwKlqdvJ6/WBVlQwwR0QW2TO8q9BIMcak2es7gZRQFqYZu05EltlNWNo00kBEpBMwEPgN/S6ERIV7APX0XWguAY5qHI41xgwCTgOutavuVQjZ87c1/XbqxudZoCswAEgDHg1paZoJEYkG3gNuMMZkB+/T70LDqOIe1Nt3obkEOLWZnVzVM2PMdvt1N/ABVtOhani77Pbw0nbx3SEuT7NjjNlljPEZY/zAC+h3od6JiBvrD+sbxpj37WT9LjSgqu5BfX4XmkuAE5idXETCsCbm/DjEZWpWRCTK7liGiEQBo4EVNR+l6snHwGR7fTLwUQjL0iyV/lG1TUC/C/VKRARrgubVxpjHgnbpd6GBVHcP6vO70CyeogKwHz17nLLZye8PbYmaFxHpglVrA9Ykr2/qPah/IvIWMBJIAnYBdwMfAjOBDsBm4M/GGO0EW0+quQcjsarkDZAKXBnUF0TVMRE5FvgBWA747eQ7sPqA6HehAdRwD86jnr4LzSbAUUoppVTz0VyaqJRSSinVjGiAo5RSSqkmRwMcpZRSSjU5GuAopZRSqsnRAEcppZRSTY4GOEqpkBORxKDZhHcGzS6cKyLP1NM1bxCRi2rYP1ZE7q2Payul6p8+Jq6UalQaYqZtEXEBi4FBxhhvNXnEzjPCGJNfX2VRStUPrcFRSjVaIjJSRD6116eJyAwR+UFENovIWSLykIgsF5Ev7GHgEZHBIvK9PanrlxVGSi11ErC4NLgRkakissqe8O9tCMxNNBcY2yBvVilVpzTAUUodTrpiBSfjgdeB74wxfYEC4HQ7yHkKmGiMGQy8DFQ1YvYIYFHQ9m3AQGNMP+CqoPSFwHF1/i6UUvXOFeoCKKXUAfjcGFMiIsuxpl35wk5fDnQCegJ9gK+sFiacWDMUV9QaWB20vQx4Q0Q+xJrKotRuoE3dFV8p1VA0wFFKHU6KAIwxfhEpMWWdCP1Yv88EWGmMGb6f8xQAnqDt04HjgXHAnSLS126+8th5lVKHGW2iUko1JWuBZBEZDiAibhE5sop8q4Fudh4H0N4Y8x1wKxAHRNv5eqAzfSt1WNIARynVZBhjioGJwIMishRYAhxTRdbPsWpswGrGet1u9vodeNIYk2nvOxH4rD7LrJSqH/qYuFKqWRKRD4BbjDHrq9mfArxpjDm5YUumlKoLGuAopZolEekJpBhj5lWz/yigxBizpEELppSqExrgKKWUUqrJ0T44SimllGpyNMBRSimlVJOjAY5SSimlmhwNcJRSSinV5GiAo5RSSqkmRwMcpZRSSjU5GuAopZRSqsnRAEcppZRSTY4GOEoppZRqcjTAUUoppVSTowGOUkoppZocDXCUUkop1eRogKOUUkqpJkcDHKWUUko1ORrgKKWUUqrJ0QBHKaWUUk2OBjhKKaWUanI0wFFKKaVUk6MBjlJKKaWaHA1wlFJKKdXkaICjlFJKqSZHAxyllFJKNTka4CjVTIjINBF5PdTlqC0RMSLSrY7POVdELqvLcyqlGicNcJRqIkQkN2jxi0hB0PYFDVyWVBE5pRb5OttlfbYhynUgDjUYso8vtD//dBF5X0Ra12UZlVLV0wBHqSbCGBNdugBbgHFBaW8cyLlExFU/pazkImAfcI6IhDfQNRvSdfb96AHEA/8JRSEa8H4q1WhogKNU8xImIq+KSI6IrBSRIaU77FqXW0VkGZAnIq6KzUQiMl1E/mmvJ4nIpyKSKSJ7ReQHEXGIyGtAB+ATu/bilqoKIiKCFeDcBZQA46rI9icR2WTXgDwsIg772G4i8r3I/7d33+FxVNfDx79Hq7Lq1ZbVbMkFV3Dv2NgQEgIOJoSEajCdJEBIQkIS3gD5JaQQIJCQ0E0JhGZ6C9VyAcddLrhh3CT3ot7Lef+YkSzLsiUbSSvtns/jfXZ26pmdXe3xvXfulUJ32UuN9jtBRJa4y5aIyISjHP+wKjsRyXTPN1hE7gYmAQ+55/CQu84AEfnIPd8NIvKD1rzpqnoQeBUYcqwYRWSqiKxuFNNHIrKk0ev5InKeO50qIq+KyD4R2SIiNzc5t9ki8pyIFAEzWxOnMf7EEhxjAsu5wIs4pQlvAQ81WX4xcA4Qp6o1Lezr50Ae0A1IBn4DqKrO4PASpHuOsv2pQLobz8vAFc2s811gFDACmA5c5c7/PfAhEO/u4x8AIpIAvAv8HUgE7gfeFZHEFs7lMKp6OzAftwRGVW8UkUjgI+A/QHfgIuBfIjKopf2JSBLwPWBFCzH+D+jnJo8hwClAqohEi0i4+17MdxO9t4GVQBpwBnCLiHyr0WGnA7NxrvVxleAZ4w8CMsERkVkisldE1rRi3Znu/5By3Ic1UDRd2QJVfU9Va4F/A0ObLP+7quaqankr9lUNpAC9VLVaVeerqh5HLFcA76tqPk7ScJaIdG+yzl9U9aCqbgcewEnA6o/dC0hV1QpVXeDOPwf4UlX/rao1qvoCsJ7mS4eO1zRgq6o+5e57BU6pzPePsc3fRaQAJxHZBfzsWDG67/sSYDIw0t3uM2AiMM7d7gAwGuimqv+nqlWquhl4HCfpqrdQVd9Q1bpWXk9j/EpAJjjA08BZx7H+S6o6zH080U4xGdMRdjeaLgO8Tdpn5B7Hvv4KbAI+dKuRftXaDd3SiO/jliyo6kKcUp9LmqzaOJ5tQKo7/UtAgMVuVVt9yU6qux5NtktrbWzH0AsY61bJFbiJy6VAj2Nsc7Oqxqlqmqpeqqr7WhHjXGAKTpIzF8gGTnMfcxvFktoklt/glKTVO55raYzfCcgER1XnAQcbzxORPiLyXxFZ5tZzD/BReMb4UtMSmDIgotHrhh9zVS1W1Z+ram+cqq+ficgZR9lPU98FYnCqeHaLyG6cH/im1VQZjaZ7AjvdY+9W1WtVNRW43t1PX3d5ryb76AnsaCaG0qOd21HOIReY6yYs9Y8oVf3hMc/0SC3F2DTBmcuRCU4usKVJLNGqevYx4jcmoARkgnMUjwE3qepI4FbgX42WfU9EVrmN9jKa39wYv5QDXCIiHhE5C+dHFgARmeY29hWgEKgF6tzFe4Dex9jvFcAs4GRgmPuYCAwVkZMbrfcLEYl3v3c/AV5yj/19EUl318nH+TGvA94DThKRS9zGwhcCg4B3jnJuk0Wkp4jEAr9usrzpObzj7nuGiIS4j9EiMvAY59mclmL8HOgPjAEWq+oXuKVHwDx3ncVAsTiNwsPd6zNEREYfZyzG+C1LcAARiQImAK+ISA7wKE7bAnAa8mWq6ik4DQyf8UmQxvjGT3DarxTgVMe80WhZP+BjoARYCPxLVee4y/4E/D+3+uTWxjsUkfpGsQ+4JTH1j2XAfzm8FOdNYBlOMvIu8KQ7fzSwSERKcBpL/0RVN7vtU6bhNIA+gFOVNU1V9zc9MVX9CCdhWuUeo2kS9CBwgYjki8jfVbUY+CZOO5edONV9fwGO6/b2lmJU1VJgOfCFqla5my0EtqnqXnedWncfw4AtwH7gCSD2eGIxxp/J8bUJ9B8ikgm8o6pDRCQG2KCqx+yES0Q8wEFVtT8ixhhjTCdmJTiAqhYBW0Tk++D0zyEiQ93pxknPucA6H4RojDHGmOMQkAmOiLyAU+TbX0TyRORqnOL3q0VkJfAFTh8SADe7d2msBG7GOswyxhhjOr2AraIyxhhjjP8KyBIcY4wxxvi3gBuALS4uTvv27dvyin6qtLSUyMhIX4fhM4F+/mDvgZ1/YJ8/2Hvgb+e/bNmy/araren8gEtwkpOTWbp0qa/D8Jns7GymTJni6zB8JtDPH+w9sPMP7PMHew/87fxFpGnP4EAAJjjGGGO6rrKqGvYWVXKgtIqDpVUcLK2krKq21dsHe4IIK6treUXT5VmCY4wxplOorq1jT1EFuwor2FlQzs4C53lXoTtdWE5BWfXXPk5kCAwaWsiQNOvSzJ9ZgmOMMabdqSoHSqsaEhcnaSlnp5vM7CqoYG9xBXVNbuyN8QaTGhdOalw4I3rFkRIbTo8YLwlRoSRGhpIQGUpkaDAirYtjZ0EFMx5bwKVPLOL5a8ZakuPHLMEBqqurycvLo6KiwtehtLvY2FjWreuafRV6vV7S09MJCQnxdSjGmCYqqmvZUVDOjvxydhSUH1kCU1hBVc3hVUOhwUGkxYWTEuvl1H5JpMZ6SY0LJyUunNRYLylx4USFte3PVFxEKL8a4+WBVViS4+cswQHy8vKIjo4mMzMTae1/A7qo4uJioqOjfR3GcVNVDhw4QF5eHllZWb4Ox5iAU15Vy46CMnLzy8nLdxKZvPwyZ7qgnH3FlYetHySQHOMlJdbLkLRYvjm4R0PSkhobTmqcl4TIUJ/8ze0WEcSL143hosf+Z0mOH/OLBMcdI2opsENVpx3v9hUVFQGR3HRlIkJiYiL79u3zdSjG+KWSypojkpaG6fxyDpRWHbZ+iEdIjQsnPT6c0/t3Jy3emU6LCyct3qlGCvZ03q7WMhIiePG6cZbk+DG/SHBwRjxeB8Sc6A4suen87BoZc2Iqa2rZV1zJnqJKluyuYfOCLQ3VSXkFThLTtPFuaHBQQ8IyODWWdDeBceZF0D06jKCgrv2dtCTHv3X5BEdE0oFzgLuBn/k4HGOM6TCqysHSKnYXVTTcfbSnsMJ9Xcmeogr2FldysEnpCzlrCQ/xOMlKfDjDMuJIj48gzS2RSYsPJymy6ycwrdE0yfnPtWMZnGpJjj/o8mNRichs4E9ANHBrc1VUInIdcB1At27dRr788suHLY+NjcXXvRufffbZPPzwwzz44IMsWrSIqqoqtm3bRr9+/QD4xS9+wWOPPcYf/vAHRowYccLHqa2txePxHDbvnXfeoW/fvgwYMOCI9f/4xz/yzDPPkJSURE1NDXfeeSdnn332CR+/tebPn8/zzz/PI488ctj8TZs2UVhYeML7LSkpISoq6uuG16UF+nvQVc6/pk4pqFTyK9xHpZJfUcfBikbzK5Um7XYRIDZMiPcKcWFCfJgQ507HhQlhdRWkxkcSFRK4paLNfQb2ldXxp8UVVNcqvx4bTmpU561e+7q6ynegtaZOnbpMVUc1nd+lS3BEZBqwV1WXiciUo62nqo8BjwH0799fm/bguG7dOp83vPV4PERFRfH4448DsHXrVqZNm8aqVasa1nnyySeJjIw8Zqw1NTUEBx/9sjbXyPiDDz4gJCSE0aNHH7F+WFgYP/vZz7j11ltZt24dkyZNYu/evQQFtd+Xv6amhoiICEJCQo6I1ev1Mnz48BPet7/14HkiAv096AznX1un7CuuZEdBGTsKKtiRX95wt9Huogp2F1awv6TqiO28IUH0iPGSHOdlUKyX5FgvKTFeesR63Qa94SRFhR6z7UtnOH9fO9p7MHJ0CT949H88sLKOV24YS69E/xnOoLFA+Qx0igRHRMYDlwGTgBSgHFgDvAs8p6pH+y/7ROBcETkb8AIxIvKcql7WAWH7xCuvvMKPfvQjCgoKePLJJ5k0aRJPP/00r732GiUlJdTW1vK73/2Oe++9l3feeQeAG2+8kVGjRjFz5kzuvPNO/vvf/xIcHMw3v/lNzj//fN566y3mzp3LH/7wB1599VX69OnT7LEHDhxIcHAw+/fv55NPPuGPf/wjqso555zDX/7yF1555RUWLlzI/fffz4MPPsiDDz7I5s2b2bx5MzNmzOCzzz5j2bJl/OxnP6OkpISkpCSefvppUlJSmDJlCsOGDWPBggVcfPHFjBw5siPfVmPaVP0t0zvddi47C8rJq39dUM7uQqekoLHY8BBSYp1kZUhqLD1ivfRwk5f66djwkIAtdekIvbtF8fw1Y7nosYVc8vgiXr5hPGlx4b4Oy5wgnyc4IvI+sBN4E6cdzV6cZOUkYCrwpojcr6pvNd1WVX8N/NrdzxScKqqvldz87u0vWLuz6Ovs4giDUmO48zuD22RfNTU1LF68mPfee4/f/e53fPzxxwAsX76cVatWkZCQQHZ2drPbHjhwgLfffpuNGzciIhQUFBAXF8e5557LtGnTuOCCC4557EWLFhEUFER1dTW33XYby5YtIz4+nm9+85u88cYbTJo0iXvuuQdwqpgSExPZsWMH8+fPZ/LkyVRXV3PTTTfx5ptv0q1bN1566SVuv/12Zs2aBUBVVVXDOGFHOwdjOoOK6lry8svIPVjO9oNlbD9Y1pC87CwoP6L0pf6W6bS4cIZnxJN2inu3kXvHUWo79PdiTkz/HtH8++qxXPz4/7jsiUW8dP04ukd7fR2WOQGd4Rs1Q1X3N5lXAix3H/eJSFLHh9U5nX/++QCMHDmSrVu3Nsw/88wzSUhIOOa2sbGxeL1err76aqZNm8a0aa27o/5vf/sbzz33HNHR0bz00kssXbqUKVOm0K2bM3jrpZdeyrx58zjvvPMoKSmhuLiY3NxcLrnkEubNm8f8+fM5//zz2bBhA2vWrOHMM88EnPZAKSkpDce58MILj+etMKbd1NUpe4sryc0vY/sBJ4HJPVjmvD5Yxp6iw/t88YYEuclKBINTY0hze96tf+4R6yWkE98ybQ43JC2Wp68cw4wnF3HZE4t48brxJESG+josc5w6Q4JzmYh8BqxQ1ZrmVmgmAWpunWwg++sG01YlLe0lLCwMcNrs1NQcersiIw/VFQcHB1NXd6jlYX0PzcHBwcyZM4fFixcze/ZsHnroIT799NMWj/nTn/6UW2+9teH1m2++edR1J0yYwFNPPUX//v2ZNGkSs2bNYuHChdx3331s376dwYMHs3Dhwma3bXwOxrS38qpath4obUheDnvOLz+s110RSInxkpEQweR+3chIiKBnQkTDc1KUbzqsM+1nZK94nrhiFFc+tYQZTy7ihevGEeO1XtS7ks6Q4KQDDwIDRGQ18BnwOfC5qh70aWRdVK9evVi7di2VlZWUl5fzySefcOqpp1JSUkJRURFnn302EydOpHfv3gBER0dTXFzc6v2PGTOGm2++mf379xMfH88LL7zATTfdBMCkSZO44447uOOOOxg+fDhz5swhPDyc2NhY+vfvz759+1i4cCHjx4+nurqajRs3Mnhw504qTddVW6fk5ZexeX8pW/aVsmV/Kcu+LOc3Cz9hZ+HhQ7NEe4PpmRDBScnRfGNgMulu8tIzIYLUOC9hwZ6jHMX4qwl9knhkxkiufWYp1zyzlGevGoM3xD4HXYXPExxVvRVAREKBUcAE4ErgMREpUNVBvoyvK8rIyOAHP/gBQ4YMISsrq+Guo+LiYr7//e9TXV2NqnL//fcDcNFFF3Httdfy97//ndmzZx+1kXG9lJQU/vznPzN16tSGRsbTp08HnAQnNzeXyZMn4/F4yMjIaLj9PDQ0lNmzZ3PzzTdTWFhITU0Nt9xyiyU45murrq1j24FSvtxTwpd73ceeYjbvLz2sJCbGG0xSGIzrnUhWUiSZSZFkJkbSMyGC2Aj737k50tT+3bnvB0O55aUcbvzPCh65bESn7qHZHOLzBKeRcJyeiGPdx05gtU8j8qHMzEzWrFlz2LzGDW+TkpIa2uDMnDmTmTNnHrbuPffc09Dgt+k+mt56PXHiRNauXdtsHHfddVez8y+++GIuvvjiI+b36dOHxn0rffjhh4ctHzZsGPPmzWs2LmNaUllTy5b9hxKZTXuL+XJPCVv2l1LTaBjqjIRw+nWP5rSTutGnWxS9u0WSlRRJQmQoc+fOZcqUYb47CdPlTB+WRlF5Nb998wtue3U1f73glIDoBLGr83mCIyKPAYOBYmARTvXU/aqa79PAjDE+U15Vy1f7SvjSTWCcZKaEbQdKqc9jggR6JUbSt3sUZw5Kpl9yFP26R9O7WyQRoT7/02b8zIzxmRworeKBj78kPiKE288ZaO2uOrnO8FegJxAGfAnsAPKAAl8G5AszZ84kLi7O12F0GpmZmZx33nm+DsO0s6qaOrbsL2X97iI27ilmw+5iNuwpJi+/nPqCwOAgITMpkgE9ovnOKSn0TY6mX/cospIirT2E6VA/OaMf+aVVPLFgCwlRofxoim97wDfH5vMER1XPEicNHozT/ubnwBAROQgsVNU7fRpgB2laxRToMjMzyczM9HUYpo3U1Sl5+eVs2FPMht1FbNhTwobdRWzed6hqyRMk9E6K5JT0OC4YkeGWyETRKzGS0GBr82B8T0S48zuDyS+r5p7/biA+IpSLx/T0dVjmKHye4ACo02hjjYgUAIXuYxowBuiQBEdVrbixk+vq46YFin3FlWzcU8z63cVs3F3M+j3FfLmnmLKq2oZ10uPD6Z8czRkDkxnQI5qTkp2qJbtTyXR2QUHCvd8fSmF5Nbe/vpq48BC+fXJKyxuaDufzBEdEbsYpuZkAVOPeIg7MooMaGXu9Xg4cOEBiYqIlOZ2UqnLgwAG8XutRtLMoq6phw24nkdngPjbuKeZAo5GrEyJD6Z8czQ9GZdC/RzT9ezjVS9HWn4jpwkKDg3j4shFc9sQifvJiDjHhIUzsa/3RdjY+T3CATOAV4KequssXAaSnp5OXl8e+fft8cfgOVVFR0WWTBK/XS3p6uq/DCDiqyq7CCtbtKnIfxazbVcSWA6UN7WQiQj30c/uPOalHdEOpTLfoMN8Gb0w7iQgNZtbM0Vz46P+47tmlvHT9eIakxfo6LNNIZ0hw7lDVkmOtICJRLa3zdYSEhJCVldVeu+9UsrOzv9Zo3Ma/VdbU8uWeEtY2JDNOQlNYXt2wTs+ECAamRHPusFQGpsQwsEcM6fHhdtusCThxEaE8e/UYzv/X51z59BJe++EEMhIifB2WcXWGBOdNEcnBGWxzmaqWAohIb5zBNn8APA7M9lmExvihfcWVjZIYJ5H5al9JQ6Pf8BAP/XtEc/bJKQxKiWZgSgz9e0Rb9ZIxjSTHeHn6ytF87+HPueKpxbx6wwTibdyqTsHnCY6qniEiZwPXAxNFJB6oATYA7wJXqOpuX8ZoTFe3t6iClXmFrMwtIHt1Bbcu+Jj9JYcGjEyN9TIwJYYzByU7pTIp0fRKjMRjpTLGtKhfcjSPXz6KGU8u5ppnl/L8NWOtC4NOwOcJDoCqvge85+s4jPEHRRXVrMkrJCevgJW5BazKK2SXO+6SJ0hIixSm9O/WkMgMSokhLsL+x2nM1zG2dyJ/u3AYN76wnFtezOGfl46w/yD4WKdIcIwxJ6ayppZ1u4pZmVvASjeh+WpfacPyzMQIxmQlMDQ9jqEZsQxOjeV/n81nypShPozaGP90zikp7C4axO/fWcvv31nLnd8ZZHfm+pAlOMZ0EbV1yuZ9JeS4pTIr8wpYt6uI6lqnzUxSVBjDMuI4b1gaQzPiOCU91kpmjOlgV5+axc6Ccp5csIXUOC/XTT724MWm/ViCY0wnpKrsLKxgVW5BQ1XTmh1FlFTWABAVFszJabFcfWpvhmXEckp6HCmxXvvfojGdwO1nD2R3UQV/fG89yTFepg9L83VIAalTJDgi4gG+UNUBvo7FGF8oqqhmVW4hObn55OQWkJNb2NAIOMQjDEqJ4bvDnZKZYRmx9E6KstuyjemkgoKE+74/lH3Fldz6ykq6RYcxoY91BNjROkWCo6q1IrJBRHqq6nZfx2NMe6qurWPD7mJW5BaQs91pO/PVvpKGTvN6d4tkcr8khvWM45T0OAamRNsQBsZ0Md4QD4/PGMUFj3zO9c8u45UfjmdAjxhfhxVQOkWC44oHvhCRxUBDK0lVPdd3IRnz9ag6g0yuzHOSmZzcAtbsLKSiug6AxMhQhmXEce7QVIZlxDE0PY7YCOtnxhh/EBsRwtNXjeH8f33GzFlLeP3HE0iJDfd1WAGjMyU4vz3eDUQkA3gWSAYUeExVH2zrwIxprWNVNYUGBzEkNYZLxvRiWM84hmfEkR4fbu1mjPFjaXHhPDVzDD94dCEzZy3hlR+OJ8Y6y+wQnSbBUdW5ItIL6KeqH4tIBNBSuXwN8HNVXS4i0cAyEflIVde2e8Am4DWualqZ65TOHFHVdFISwzPiGJoRx4AeMYQGB/k2aGNMhxuUGsMjl41k5lOLuf7ZZTxz1Rj7W9ABOk2CIyLXAtcBCUAfIA14BDjjaNu4g3PucqeLRWSdu50lOKZNqSo7CsqdUplmqpoSrKrJGHMMp/ZL4q/fP4WfvrSSX726ivt+MNRKb9tZp0lwgB8DY4BFAKr6pYh0b+3GIpIJDK/f3pivw6qajDFt7bvD09l+oJy/fbyRnokR3PKNk3wdkl8TrS9P9zERWaSqY0VkhaoOF5FgYLmqntKKbaOAucDdqvpaM8uvwykdolu3biNffvnltg6/yygpKSEqKsrXYfhMc+dfU6fkFdexudB9FNSyq1Sp/2b0iBT6xHroHRdE79ggMqKDCO7Ct2jbZ8DOP5DPH3z7HqgqT6yu4rOdNVx7cigT0zq+pNffPgNTp05dpqqjms7vTAnOPUABcDlwE/AjYK2q3t7CdiHAO8AHqnp/S8fp37+/btiw4esH3EVlZ2czZcoUX4fhM9nZ2QwZNZ6lW/NZtu0gK7Y3X9VU//DHqib7DNj5B/L5g+/fg6qaOmY+tZglWw/y7FVjGd8nsUOP7+vzb2si0myC05mqqH4FXA2sxhlZ/D3giWNtIE6dwJPAutYkNybwqCpf7Sth6dZ8lm7LZ/66Mvb892PAqpqMMb4RGhzEw5eN5HsPf871/17Kaz+aSN/u/lOi0ll0pgRnKvCcqj5+HNtMBGYAq0Ukx533G3d0chOAKqprWbOjkCVuCc2ybfnkl1UDEB8RQmZUEFed1o9RmfEMSYu1DvSMMT4RGx7CUzNH891/fcaVTy/m9R9NJCkqzNdh+ZXOlOBcDjwsIgeB+cA8YIGq5h9tA1VdANh/twPYgZJKlm3LZ9k2p4RmdV4hVbVOdVPvpEi+MTCZ0ZkJjMyMp3dSJHPnzmXKaTb4nTHG9zISInjyitFc+NhCrnlmKS9eNw5viP2nq610mgRHVa8AEJFU4ALgn0AqnShG41t1dW51k5vQLNuWz5b9TqfXoZ4ghqTFMHNiJqN6xTOyVzyJ9r8hY0wnNzQjjgcvGs4Nzy3jJy+u4MGLhluS00Y6TfIgIpcBk4CTgf3AQzglOSZAlVfVkpNbwPLt+SzdepDl2wsoLHeqmxIiQxnZK54LR2cwqpdT3WR/FIwxXdG3Bvfgt+cM4v/eWcu3HpjHb88ZxBkDu1t7wK+p0yQ4wAPAVzid+81R1a0+jcZ0uD1FFW5j4IMs35bPFzuLqKlz7vLr2z2Kbw/pwUi3dCYrKdK+/MYYv3HVqVn07xHNb99cwzXPLmVc7wRuP3sQJ6fH+jq0LqvTJDiqmiQig4HJwN0i0g/YoKozfByaaQe1dcr63UWH2s9szWdHQTkA3pAghqbHcd3k3ozKjGdEz3jiIkJ9HLExxrSviX2T+OCWybyweDsPfPwl33loAd8dnsat3+pPWpwN0nm8Ok2CIyIxQE+gF5AJxAJ1vozJtJ2iimpW5ha4/c/ks2J7PqVVtQB0jw5jVGY8V52axahe8QxKjSHEY+O0GGMCT4gniMvHZ3Le8DQezv6KJxds4d3Vu7j61Cx+OKWPDdR5HDpNggMsaPR4SFXzfByPOUGNB6HM2V7AyrxDg1AGCfTvEcP5I9IbSmes7xljjDlcjDeE284awGXjenHfBxt4OPsrXlqSyy3f6MfFY3rafwJbodMkOPVDMrjDLpguoqVBKBPdnoGnD01lWE+nd+Bo+x+IMca0SlpcOPdfOIwrJ2Zx93truePNL3j6s6386tsDOHNQsv3n8Bg6TYIjIkOAf+OMJi4isg+4QlXX+DYy01hxRTWr8grJyS1ghZvQ2CCUxhjTvk5Oj+WFa8fx6fq9/PG9dVz372WMyUrg9rMHMjQjztfhdUqdJsEBHgN+pqpzAERkijtvgg9jCmg1tXVs2FN8WOnMJreqCZyO9Cb3S2oomRnQI4bQYCs2NcaY9iAinDEwmdNO6saLS3L520cbmf7PzzgpOYrhGfEM7xnH8J7x9O0ehacLDwjcVjpTghNZn9wAqGq2iET6MqBAoqrsLKxwE5l8VuYWsnpHIeXVTkPg+IgQhmXEMe0Ut6rJDwehNMaYriDYE8Rl43oxfVgqzy/azqLNB/hg7W5eWpoLQFRYMEMzYhuSnmEZcQHZ8WlnSnA2i8hvcaqpAC4DNvswHr9WUlnDqtwCpyGw+9hX7FY1eYIYlBrDhaMzGr4cPRMirKrJGGM6kWhvCDec1ocbTuuDqrL1QBkrtuezYnsBK3LzeXjuV9S6fYn1SoxgeIZTwlNXWMuEmjq/L3HvTAnOVcDvgNcAxenF+CqfRuQnamrr2LinhJzcAt5fXckfV8zly72HqpqykiI5tW8SQ9NjGdYznoEp0TYIpTHGdCEiQlZSJFlJkZw/Ih1weoNfvaOwIen5/KsDvJGzE4A/L/mAk9NiG6q1hveMIyXWv/ra8XmCIyJe4AagL7Aa+LmqVvs2qq5tV2F5Q5uZFbkFrM47VNUUGQKje4dz9skpDMtwSmesEz1jjPE/4aEexmQlMCYrAXCaIuwqrOC5/35GVVQqK3ILeGbhNh6fvwWAHjFeN+Fxkp6Tu/gQOD5PcIBngGqcEptvAwOBW3wZUFdSUlnDaveuppzcfHJyC9hT5FQ1hXiEQamxXDg6oyGZ2bJ6MVOnjvFx1MYYYzqaiJAaF86YHsFMmTIIgKqaOtbtKnJKedy7Y99fsxuA4CBhYErMoaQnI55eiV2nuUJnSHAGqerJACLyJLDYx/F0WsUV1azdWcQXO4tYs7OQL3YU8eXeYtwqVnolRjCud2JDMjMoNeaIqqatXeSDaYwxpv2FBgcxNCOOoRlxzHTn7S+pJMdtx7NiewGvLsvj2YXbAOeGk+E94xva8wzNiO20fZt1hgSnoTpKVWu6SmbY3g6UVPLFYclMIVsPlDUsT4oKY3BqDN8a0oPh7oczIdKqmowxxnw9SVFhfGNQMt8YlAw4Ywd+ubfYabzstuf5dP1eAESgX/fOeZt6Z0hwhopIkTstQLj7WgBV1Rjfhdb+VJXdRRWs2VHEFzsLG553FVY0rJMeH87g1Bi+NyKdwWkxDEmNpXuM14dRG2OMCRSeIGFAjxgG9Ijh4jE9ASgsr2ZVXkFD0tMZb1P3eYKjql23BdNxqqtTth0s44udhU7JzA7n+WBpFeBkwr2TIhmTlcDgVCeRGZQaY42AjTHGdCqx4SFM6teNSf26ARzXbeojesYzICW63cfT8nmC46/yS6tYv7uY9buL2LC7mHW7i9m4u7jhbqYQj9CvezTfGNidwamxDElzsuPIMLskxhhjupbjvU09LDio3W9T7/K/piJyFvAg4AGeUNU/d8RxVZUt+0vZuKeY3IPl7ChwHjvd54KyQ3e6x0eEMKBHDBeNyWBAj2gGp8bSLznK+poxxhjjt452m/qK7QUs357Piu357XqbepdOcETEA/wTOBPIA5aIyFuquratj1Vbp6zbVcSiLQdZtPkAS7YeJL9REhMVFkxaXDipcc4F6pkQ4dZZRtMtOqzL3FZnjDHGtIf629RT48I555QUACpralm3q/iwqq22uk29Syc4wBhgk6puBhCRF4HpwNdKcCqqa8kvq2J3YQVLt+azaMsBFm85SFFFDQA9EyI4Y2AyozPjGZQSS8/ECGK8wZbEGGOMMcchLNjT0LXJlROdefuKK52Oat2kZ3aj29QTIkPdtjxOKc8p6bFH3XdXT3DSgNxGr/OAscfaYHtxHSN//1GzyxSnzrC+nUy9rKRIzjklhbFZiYztneB33VkbY4wxnUW36DDOHJTMmY1uU9+4p9Ft6rkFfNLoNvWjEa0fkKgLEpELgLNU9Rr39QxgrKre2GS964DrAKKSe478/m8fO+o+QzwQHSJEhQoxoUJWbBDxXv8ZkKykpISoqChfh+EzgX7+YO+BnX9gnz/Ye+AP519arWwprOWrgjoeuPZby1R1VNN1unqCMx64S1W/5b7+NYCq/ulo2/Tv3183bNjQQRF2PtnZ2UyZMsXXYfhMoJ8/2Htg5x/Y5w/2Hvjb+YtIswlOVy+aWAL0E5EsEQkFLgLe8nFMxhhjjPGxLl2CAyAiZwMP4NwmPktV725h/WIgcItwIAnY7+sgfCjQzx/sPbDzD+zzB3sP/O38e6lqt6Yzu3yCc7xEZGlzRVmBws4/sM8f7D2w8w/s8wd7DwLl/Lt6FZUxxhhjzBEswTHGGGOM3wnEBOfo94gHBjt/E+jvgZ2/CfT3ICDOP+Da4BhjjDHG/wViCY4xxhhj/JwlOMYYY4zxO36Z4IjIWSKyQUQ2icivmlkeJiIvucsXiUimD8JsV614D2aKyD4RyXEf1/gizvYiIrNEZK+IrDnKchGRv7vvzyoRGdHRMbanVpz/FBEpbHT97+joGNuTiGSIyBwRWSsiX4jIT5pZx28/A608f3//DHhFZLGIrHTfg981s47f/ha08vz9+ncAVfWrB06Hf18BvYFQYCUwqMk6PwIecacvAl7yddw+eA9mAg/5OtZ2fA8mAyOANUdZfjbwPiDAOGCRr2Pu4POfArzj6zjb8fxTgBHudDSwsZnvgN9+Blp5/v7+GRAgyp0OARYB45qs47e/Ba08f7/+HfDHEpwxwCZV3ayqVcCLwPQm60wHnnGnZwNniBxrTNIupzXvgV9T1XnAwWOsMh14Vh3/A+JEJKVjomt/rTh/v6aqu1R1uTtdDKwD0pqs5refgVaev19zr2uJ+zLEfTS9q8Zvfwtaef5+zR8TnDQgt9HrPI78Yjeso6o1QCGQ2CHRdYzWvAcA33OL5meLSEbHhNZptPY98mfj3eLr90VksK+DaS9utcNwnP/BNhYQn4FjnD/4+WdARDwikgPsBT5S1aN+Bvzxt6AV5w9+/DvgjwmOaZ23gUxVPQX4iEP/izGBYTnO+C1DgX8Ab/g2nPYhIlHAq8Atqlrk63g6Wgvn7/efAVWtVdVhQDowRkSG+DikDtWK8/fr3wF/THB2AI2z0HR3XrPriEgwEAsc6JDoOkaL74GqHlDVSvflE8DIDoqts2jN58RvqWpRffG1qr4HhIhIko/DalMiEoLz4/68qr7WzCp+/Rlo6fwD4TNQT1ULgDnAWU0W+ftvAXD08/f33wF/THCWAP1EJEtEQnEajr3VZJ23gCvc6QuAT9VtceUnWnwPmrQ1OBenjj6QvAVc7t5JMw4oVNVdvg6qo4hIj/q2BiIyBudvgd/8YXfP7Ulgnaref5TV/PYz0JrzD4DPQDcRiXOnw4EzgfVNVvPb34LWnL+//w4E+zqAtqaqNSJyI/ABzt1Es1T1CxH5P2Cpqr6F88X/t4hswmmIeZHvIm57rXwPbhaRc4EanPdgps8Cbgci8gLOXSJJIpIH3InTyA5VfQR4D+cumk1AGXClbyJtH604/wuAH4pIDVAOXOQvf9hdE4EZwGq3DQLAb4CeEBCfgdacv79/BlKAZ0TEg5O8vayq7wTQb0Frzt+/fwf86/NsjDHGGOOfVVTGGGOMCXCW4BhjjDHG71iCY4wxxhi/YwmOMcYYY/yOJTjGGGOM8TuW4BhjfE5EEhuNaLxbRHa40yUi8q92OuYtInL5MZZPc2+pNcZ0QXabuDGmUxGRu4ASVb23HY8RjDNUwQh3DKLm1hF3nYmqWtZesRhj2oeV4BhjOi0RmSIi77jTd4nIMyIyX0S2icj5InKPiKwWkf+6QxMgIiNFZK6ILBORD44yQvjpwPL65EZEbhaRte6ggy+CMxozkA1M65CTNca0KUtwjDFdSR+c5ORc4DlgjqqejNMT7zlukvMP4AJVHQnMAu5uZj8TgWWNXv8KGO4OOnhDo/lLgUltfhbGmHbnd0M1GGP82vuqWi0iq3GGIfmvO381kAn0B4YAH7nDLHmA5saXSuHwcXdWAc+LyBscPqr2XiC17cI3xnQUS3CMMV1JJYCq1olIdaOxk+pw/p4J8IWqjm9hP+WAt9Hrc4DJwHeA20XkZLf6yuuua4zpYqyKyhjjTzYA3URkPICIhIjI4GbWWwf0ddcJAjJUdQ5wGxALRLnrnQSsafeojTFtzhIcY4zfUNUqnFGy/yIiK4EcYEIzq76PU2IDTjXWc2611wrg76pa4C6bCrzbnjEbY9qH3SZujAlIIvI68EtV/fIoy5OB/6jqGR0bmTGmLViCY4wJSCLSH0hW1XlHWT4aqFbVnA4NzBjTJizBMcYYY4zfsTY4xhhjjPE7luAYY4wxxu9YgmOMMcYYv2MJjjHGGGP8jiU4xhhjjPE7luAYY4wxxu9YgmOMMcYYv2MJjjHGGGP8jiU4xhhjjPE7luAYY4wxxu9YgmOMMcYYv2MJjjHGGGP8jiU4xhhjjPE7luAYY4wxxu9YgmOMMcYYv2MJjjHGGGP8jiU4xhhjjPE7luAYY4wxxu9YgmOMMcYYv2MJjjHGGGP8jiU4xhhjjPE7luAYY4wxxu9YgmOM8TkRmSkiC9p4n5kioiIS3Jb7NcZ0DZbgGOPnRGSriJSLSLGIFIjI5yJyg4h0+PdfRO5yk46xHX3sY/m6yVCj7Uvcx1YR+VVbx2mMaT1LcIwJDN9R1WigF/Bn4DbgyaOtLCKetg5ARAS4HDjoPvujOFWNAi4G7hCRszo6ACuxMsZhCY4xAURVC1X1LeBC4AoRGQIgIk+LyMMi8p6IlAJTReQcEVkhIkUikisidzXel4hcLiLbROSAiPzWLbX4xjEOPwlIAW4GLhKR0CbLRUQeEpFCEVkvImc0WjBTRDa7pVBbRORSd36QiPw/N469IvKsiMQ2d/Cm8bmlSc+5L+e5zwVuCcx4d52rRGSdiOSLyAci0uuYb7BLVRcCXwBDjhWjiDwjIj93p9PcUqAfu6/7iMjB+pI2EZkmIjmNSuFOaXJut4nIKqDUkhxjLMExJiCp6mIgDyfpqHcJcDcQDSwASnFKWuKAc4Afish5ACIyCPgXcClO0hILpLVw2CuAt4GX3dffabJ8LPAVkATcCbwmIgkiEgn8Hfi2Wwo1Achxt5npPqYCvYEo4KGWzr8Zk93nOFWNUtWFIjId+A1wPtANmA+80NKOxDERGAysaCHGucAUd/o0YHOjWE4D5qtqnYgMB2YB1wOJwKPAWyIS1ujQF+NcpzhVrTmekzfGH1mCY0zg2gkkNHr9pqp+pqp1qlqhqtmqutp9vQrnx/00d90LgLdVdYGqVgF3AHq0A4lIBPB94D+qWg3M5shqqr3AA6paraovARtwfrAB6nBKQ8JVdZeqfuHOvxS4X1U3q2oJ8Guc0qG2KMG4AfiTqq5zE4Y/AsNaKMXZj1MF9wTwK1X9pIUY5wKnuqU0k4F7gInuvk5zlwNcBzyqqotUtVZVnwEqgXGNjv13Vc1V1fI2OHdjujxLcIwJXGk4P8b1chsvFJGxIjJHRPaJSCHOD36Suzi18fqqWgYcOMaxvgvUAO+5r58Hvi0i3Rqts0NVGydJ24BUVS3FqVK7AdglIu+KyIBGcWxrsk0wkHyMWFqrF/CgWyVUgPNeCccuqUpS1XhVHaiqf28pRlX9CqekbBhOado7wE4R6c/hCU4v4Of1sbjxZLj7rnfY9TMm0FmCY0wAEpHROD/UjW/NbloC8x/gLSBDVWOBR3B+4AF2AemN9heOU3VyNFfgVM1sF5HdwCtACE61WL00tyFyvZ44pUyo6geqeiZOddh64HF3nZ04P/6Nt6kB9jQTQykQ0eh1j0bTzZU+5QLXq2pco0e4qn5+jPNsTksxzsUpEQtV1R3u6yuAeA5VxeUCdzeJJUJVG1eZHbUEzZhAZAmOMQFERGJEZBrwIvCcqq4+xurRwEFVrRCRMRyejMwGviMiE9zGwndxKPlpesw04AxgGk5JxTBgKPAXDq+m6g7cLCIhIvJ9YCDwnogki8h0ty1OJVCCU2UFTrXZT0UkS0SicKqRXjpKG5QcnKqhEBEZhZNU1Nvn7rN3o3mPAL8WkcHuecS6cR2vlmKcC9zIoYbO2e7rBapa6857HLjBLVUTEYkUpxF49AnEY0xAsJb2xgSGt0WkBudHfC1wP84P+LH8CLhPRB7C+RF+GafBMar6hYjchJMoRQIP4LShqWxmPzOAHFX9sPFMEfk7TrXLEHfWIqAfTjuWPcAFqnpARFKAnwHP4pRS5AA/dLeZhVNNMw/wAh8ANx3lfH6Lk2zku+fzH9w2SKpaJiJ3A5+JSAhwlqq+7iYkL7rtbgqBj3BKn45HSzHOxUkm6xOcBTglTfWvUdWlInItTuPkfkC5u948jDHNksOrvI0x5vi5iUAB0E9Vt/g4HGOMsSoqY8yJEZHviEiEW3V0L7Aa2OrbqIwxxmEJjjHmRE3HaUC7E6fa5CK1ImFjTCdhVVTGGGOM8TtWgmOMMcYYvxNwd1HFxcVp3759fR1GQCstLSUyMtLXYQQ0uwa+Z9fA9+wa+F5bXINly5btV9VuTecHXIKTnJzM0qVLfR1GQMvOzmbKlCm+DiOg2TXwPbsGvmfXwPfa4hqIyLbm5gdcghOoSitreGlJLl/sLCLEI/TvEc2pfZPol2z9hBljjPE/luAEgE17S7hi1mJ2FJTTI8ZLVW0dLy5xhq3pnxzN1ZOyOG9YGqHB1iTLGGOMf7AEx88dKKlk5lOLqaypZfYN4xmVmYCqsquwgo/X7eGFxbn8cvYqHsn+irvOHczkk46oxjTGGGO6HEtw/Nwf31vPnqIKXrlhAsMy4gAQEVLjwrl8fCYzxvXi0/V7+f07a7l81mKuGN+L35wzkLBgj28DN8aYTqC6upq8vDwqKip8HYpfio2NZd26da1a1+v1kp6eTkhISKvWtwTHjy3fns+ry/P44ZQ+DclNUyLCGQOTmdg3ib9+sIEnF2xh2fZ8Hr98FCmx4R0bsDHGdDJ5eXlER0eTmZnJ4YPdm7ZQXFxMdHTLbUFVlQMHDpCXl0dWVlar9m2NLvzYQ59uIjEylBuntnxbvDfEw2+nDeLxy0exdX8Z3/vX52zaW9wBURpjTOdVUVFBYmKiJTc+JiIkJiYeV0maJTh+6ss9xXy6fi+Xj88kMqz1BXVnDkrmpevHUV2nfO/hhSzblt+OURpjTOdnyU3ncLzXwRIcPzXrsy2EBQdx2biex73t4NRYXvvhBOIjQrj0if8xZ8PedojQGGOMaT+W4Pihiupa3l65i+8MTSUxKuyE9pGREMHsH06gb/corn1mKa+vyGvjKI0xxrTGlClT2Lp1KwAzZ84kKyuLoUOHctJJJ3H55ZeTl9c+f5+3bt1KeHg4w4YNY9CgQdxwww3U1dW1y7GayszM/Nr7sATHD328bg8llTWcPzzta+0nKSqMF64dx+jMBH760kqemL+5jSI0xhhzov7617+ycuVKNmzYwPDhwzn99NOpqqo6Yr3a2tqvfaw+ffqQk5PDqlWrWLt2LW+88cbX3uex1NTUtNm+WmycISLjgcuASUAKUA6sAd4FnlPVwmNsuxUoBmqBGlUdJSIJwEtAJrAV+IGq5otTufYgcDZQBsxU1eXufq4A/p+72z+o6jPu/JHA00A48B7wE7Xh0XljxQ6SY8IY2zvxa+8r2hvCU1eO5qcv5fCHd9ex/WAZd0wbRLDHcmNjTGD53dtfsHZnUZvuc1BqDHd+Z/AJbSsi/PSnP+X111/n/fffZ/r06URFRXH99dfz8ccf889//pNPP/2Ut99+m/LyciZMmMCjjz6KiLBkyRKuvvpqgoKCOPPMM3n//fdZs2bNUY8VHBzMhAkT2LRpE1u3buWqq65i//79dOvWjaeeeoq0tDT69u3L5s2bKSwsJDExkTlz5jB58mQmT57Mk08+SWpqKjfddBNr1qyhurqau+66i9NPP52nn36a1157jZKSEmpra5k7d+6Jvp2HOeavlIi8D1wDfACchZPgDMJJNrzAmyJybgvHmKqqw1R1lPv6V8AnqtoP+MR9DfBtoJ/7uA542I0hAbgTGAuMAe4UkXh3m4eBaxttd1YrztmvHSytInvDPqYPS8MT1DYN47whHh66ZATXTsri2YXbuPLpJRSWV7fJvo0xxnw9I0aMYP369YAzeOXYsWNZuXIlp556KjfeeCNLlixhzZo1lJeX88477wBw5ZVX8uijj5KTk4PH03K/Z2VlZXzyySecfPLJ3HTTTVxxxRWsWrWKSy+9lJtvvhmPx0P//v1Zu3YtCxYsYMSIEcyfP5/Kykpyc3Pp168fd999N6effjqLFy9mzpw5/OIXv6C0tBSA5cuXM3v27DZLbqDlEpwZqrq/ybwSYLn7uE9Eko7zmNOBKe70M0A2cJs7/1m3BOZ/IhInIinuuh+p6kEAEfkIOEtEsoEYVf2fO/9Z4Dzg/eOMx6+8u3oXNXXKecO+XvVUU54g4fZzBtG3exS3v76G8//1GbNmjqZXoo3Ea4wJDCda0tLeGldceDwevve97zW8njNnDvfccw9lZWUcPHiQwYMHM2nSJIqLixk/fjwAl1xySUPi09RXX33FsGHDEBGmT5/Ot7/9bWbMmMFrr70GwIwZM/jlL38JwKRJk5g3bx5btmzh17/+NY8//jinnXYao0ePBuDDDz/krbfe4t577wWcW/Dr2w+deeaZJCQktOn70lI9w2UiMlpEjpoINZMAHbYY+FBElonIde68ZFXd5U7vBpLd6TQgt9G2ee68Y83Pa2Z+wFJVXlqynQE9ohmY0j6DaF44uif/vnosB0qrOO+fn7Fo84F2OY4xxpjWWbFiBQMHDgSc3n7rS2QqKir40Y9+xOzZs1m9ejXXXnvtcffIXN8GZ8WKFdx1113HXHfy5MnMnz+fxYsXc/bZZ1NQUEB2djaTJk0CnN+oV199lZycHHJycti+fTv9+/cHIDKy7f+z3FIJTjpOu5gBIrIa+Az4HPi8vkSlBaeq6g4R6Q58JCLrGy9UVRWRdm8z4yZX1wF069aN7Ozs9j6kT6zeV8OaHZXMHBzapsV8zfn1yGD+tryCSx7/HxcNCOUbPYNb3UdBSUmJ316DrsKuge/ZNfC91lyD2NhYiot92+lpbW0tJSUlFBcXU11dTXl5OcXFxagqjzzyCDt27GDixIkNcdY/FxQUoKqEhYWxa9cuXn75ZaZPn47H4yEyMpJPP/2U0aNH8+yzz1JXV3fEeZaUlDQ7f8yYMTz11FNcfPHFPP/884wfP57i4mIGDhzIZ599RmZmJtXV1QwePJhHHnmEl19+meLiYqZOncp9993Hvffei4iwcuVKhgwZQkVFBVVVVYcdR1Wbfd8rKipa/b05ZoKjqrcCiEgoMAqYAFwJPCYiBao6qIXtd7jPe0XkdZw2NHtEJEVVd7lVUPWdrOwAMhptnu7O28GhKq36+dnu/PRm1m8ujseAxwD69++vU6ZMaW61Lq2uTvnLPxaQkRDEby6e0iEjg591ejU/fSmH59ftZa/E86fzTyapFbelZ2dn44/XoCuxa+B7dg18rzXXYN26da0aSqA9eTweoqKiiI6OJiQkhDvuuIN7772XsrIyxo0bx9y5c0lMPHRTSX280dHRXHfddYwfP54ePXowduxYwsLCiI6O5qmnnuLaa68lKCiI0047jfj4+CPOMyoqiqCgoCPmP/zww1x55ZU89NBDDY2Mo6OjiY6OpmfPnkycOJHo6GhOP/10Zs+ezbhx4wgKCuL3v/89t9xyCxMnTqSuro6srCxeeOEFvF4voaGhhx1HRJp9371eL8OHD2/dG6eqLT6AWJwGvL8HPgaWAk+1sE0kEN1o+nN3H38FfuXO/xVwjzt9Dk77GQHGAYvd+QnAFiDefWwBEtxli911xd327JbO5aSTTlJ/9NryXO112zv6xoq8Dj1uXV2dPjF/s/b9zbs65I7/6sPZm7S8quaY28yZM6djgjNHZdfA9+wa+F5rrsHatWvbP5AWnHbaabply5Y23WdxcXHD9J/+9Ce9+eab23T/rVVUVNTs/F69ejU7v7nrASzVZn7vj1mCIyKPAYNxbvVe5CYp96tqa/rvTwZed6stgoH/qOp/RWQJ8LKIXA1sA37grv8ezi3im3BuE7/STcAOisjvgSXuev+nh6rHfsSh28TfJ0AbGFfW1HLvBxsZnBrDd05J7dBjiwhXn5rFaScl8af31vPn99fz5IItXD+5N5eO7UV4qI1Kbowxnc27777Ln/70J2pqaujVqxdPP/20r0Nqcy21wekJhAFf4lT/5AEFrdmxqm4GhjYz/wBwRjPzFfjxUfY1C5jVzPylwJDWxOPPnvvfdnYUlPPn751MUBvdGn68+naP5smZo1m85SAPfrKRP7y7jkfmbnYSnXE9iQi1geuNMeZEzJw5k7i4uDbd54UXXsiFF17YpvtsS7fccsvX3scxG2qo6lnAaOBed9bPgSUi8qGI/O5rH918bUUV1Tz06Zec2jeJSf26+TocxmQl8Pw143jlhvEM6BHN3e+tY9Jf5vDo3K8oq2q7HiqNMaajqI/7j22PBKezay7BOd7r0OJ/q92SlTUiUgAUuo9puJ3uHdfRTJt7bO5m8suque2sAb4O5TCjMxN47pqxLNt2kAc+/pI/vb+eR+dt5tpJvcmqCfjOpo0xXYTX6+XAgQMkJibaqOI+pKocOHAAr9fb6m1aaoNzM86dUxOAatxbxHGqi1afeKimLewtquCJBZv5ztBUTk6P9XU4zRrZK4F/Xz2WZdvyefCTL/nLf9cTFQJfeTZxxYRMosKs6soY03mlp6eTl5fHvn37fB2KX6qoqGh10uL1eklPT295RVdLvy6ZwCvAT/VQ53ymk3jgky+prVN+8c3+vg6lRSN7xfPsVWNYvj2fu15exF8/2MDj8zdzzalZzBifSWx4iK9DNMaYI4SEhJCVleXrMPxWdnZ262/7Pk4tJTh3qGrJsVYQkaiW1jFt76t9Jby0JJcZ43rRMzHC1+G02oie8fxslJe4PsP4+ydfcu+HG3k4+yu+PyqDKydm2tAPxhhj2kRLCc6bIpIDvAksU9VSABHpDUzFucX7cWB2ewZpjnTvBxvwBgdx4+l9fR3KCRmWEcesmaNZs6OQWQu28PyibTyzcCtnDkzm6lOzGJOVYPXdxhhjTlhLPRmfISJnA9cDE91RvGuADcC7wBWqurv9wzSNLd+ez/trdvPTb5zUqp6DO7MhabHcf+Ewbvv2AP69cBvPL9rGh2v3MCQthisnZHHOKSl4Q6wvHWOMMcenNXdRvYfTCZ/pBFSVP7+/nqSoUK6Z5D/1wskxXm79Vn9+PLUvr6/YwazPtvDzV1by+3fXcsGIdC4e25M+3aJ8HaYxxpguwm5h6WKyN+xj8ZaD/H76YCL98A6k8FAPl4ztycVjMli4+QDPL9rO059v5YkFWxjfO5FLx/Xkm4N6dMhYW8YYY7ou//uF9GO1dU7pTWZiBBeN6enrcNqViDChTxIT+iSxt7iCV5bm8cLi7dz4nxUkRYXyvRHpfG9kOicl+3YQPGOMMZ2TJThdyOsrdrBhTzEPXTKcEE/glGB0j/by46l9ueG0Psz7ch//WbSdJxds4dF5mzk5LZbvjUjj3GFpJESG+jpUY4wxnUSLCY6IeIAvVLVzdZUbYCqqa7n/ww2ckh7L2UNSfB2OT3iChKn9uzO1f3f2l1TyZs5OXl2Wx11vr+Xu99YxtX93zh+RztQB3QgLtobJxhgTyFrTyLhWRDaISE9V3d4RQZkjPblgCzsLK7j3+0N9NqBmZ5IUFcbVp2Zx9alZrNtVxGvL83h9xU4+XLuHGG8wZ5+cwvRhaYzNSrD3yxhjAlBrq6jigS9EZDFQWj9TVc9tl6jMYfYWVfDPOZv45qBkJvRN8nU4nc7AlBhuP2cQt501gPmb9vNWzk7eWrmTF5fk0iPGy7nDUjl3aCqDU2Osbx1jjAkQrU1wftuuUZhj+usHG6iureM3Zw/0dSidWrAnqKEKq7yqlo/W7eGtnB3MWrCFx+Ztpm/3KKYPTeXcYanWY7Ixxvi5ViU4qjpXRHoB/VT1YxGJAKyRQwdYnVfI7OV5XDepN5lJ9qPcWuGhHs4d6pTc5JdW8d6aXby5Yif3fbSR+z7ayPCecUwfmsq0oaldvrNEY4wxR2pVgiMi1wLXAQlAHyANeAQ4o/1CM7V1yu1vrCYxMpQfd9EhGTqD+MhQLh3bi0vH9mJHQTlvr9zJGyt2cNfba/n9u+uY2DeJ84al8s3BPWx0c2OM8ROt/Wv+Y2AMsAhAVb8Uke7tFpUB4OnPt7Iqr5B/XDycGK+Ntt0W0uLCueG0PtxwWh827C7mzZwdvJmzk5+9vBJvyGrOGJjMtwb34LR+3YiNsPfcGGO6qtYmOJWqWlXfQFNEggFtt6gMefll3PfhBqb278a0UwLztvD21r9HNL88awC/+FZ/lm3L582cnby7ehfvrtqFJ0gYnRnPGQOSOX1gd3onRVoDZWOM6UJam+DMFZHfAOEicibwI+Dt9gsrsKkqv31jDarw+/OG2A9rOxMRRmUmMCozgbvOHUxObgGfrt/DJ+v2cvd767j7vXVkJkYwdUB3Jp/UjbFZCUSEWlWWMcZ0Zq39K/0r4GpgNc7I4u8BT7RXUIHupSW5zNmwj99OG0R6fISvwwkoniBhZK94RvaK5xffGkBefhlz1u/lk/V7eX7Rdp76bCshHmF4z3hO7ZvExL5JDE2PJTiAepY2xpiuoLUJzlTgOVV9vD2DMbBlfym/e3stE/smcuWETF+HE/DS4yOYMT6TGeMzKa+qZem2gyzYtJ/PNu3nbx9v5P6PNhIdFszY3omc2jeRMVmJ9O8Rjcc6FzTGGJ9qbYJzOfCwiBwE5gPzgAWqmt9ukQWg6to6bnkph9DgIOuxuBMKD/UwqV83JvXrBsDB0ioWfnWABZv2s2DTPj5etweAaG8wo3rFMyozgTFZCZycFos3xHpVMMaYjtTafnCuABCRVOAC4J9Aamu3N63z5/fXszK3gH9eMoKU2HBfh2NakBAZyjmnpHCO2wg892AZS7YeZMnWfJZsPcicDRsACPUEMTQjllGZCYzOjGdoehyJ1veOMca0q9b2g3MZMAk4GdgPPIRTkmPayJs5O3hywRZmTshs+ME0XUtGQgQZCRGcPyIdcEp4lm49yNJtTsLz+LzNPJzt3HyYHh/O0PQ4hmbEckp6HCenxRJpffAYY0ybae1f1AeAr3A695ujqlvbK6BA9MXOQm57dRVjshK4/RwbjsFfJESG8s3BPfjm4B4AlFfVsiqvgFV5heTkFbAqr4B3V+8CQAT6dY/ilPQ4BqfGMDDFecSGW188xhhzIlpbRZUkIoOBycDdItIP2KCqM9o1ugCwt6iC6/+9jLjwUP55yQhC7G4cvxUe6mFs70TG9k5smHegpJJVeYWszCtgZW4Bc9bvZfayvIblaXHhDHITnkHuIyMh3LoOMMaYFrS2iioG6An0AjKBWKCu/cIKDIVl1Vw+azEHS6t48bpxdIu2dhmBJjEqjKkDujN1gNMxuKqyr7iStbuKWLuriHW7ilm7s5BP1u2hzu1aMzosmH7JUfTtHkW/7tH0TY6iX/coUmPDrWG6Mca4WltFtaDR4yFVzWthfdOC8qparnpmCZv3lTJr5mhOSY/zdUimExARusd46R7jZUr/Q6OhlFfVsnFPsZv0FLFxTzGfrt/Hy0sPfRXDQzxu0hNF3+Qo+naLone3KDISwgkLtru4jDGBpbVVVKcAiEhU+4YTGIoqqrnm6aWs2J7PPy8Zwan9knwdkunkwkM9DM2IY2hG3GHz80ur2LSvhC/3lLBpbwlf7i1m4eYDvLZiR8M6QQKpceFkJkbSKzGCzMRISvbWkLanmIyECLuF3Rjjl1pbRTUE+DfOaOIiIvuAK1R1TXsG54/yS6u4fNZi1u0q4h8Xj+DbJ9sdU+bExUeGMjoygdGZCYfNL66o5qt9pWzdX8qW/aVsO1DK1gNlvLt6FwVl1QA8uHweIpAS4yU9IYL0uHDS48NJiw8nPT6CtLhwUuK8VvpjjOmSWltF9RjwM1WdAyAiU9x5E9onLP/01b4Srn1mKTsKynn88lEN7S6MaWvR3hCGZcQxrEmJD0BBWRWvfTSfxF4D2HagjK37S8nLL2fRloO8kVPe0NYHnLu7ukeHkRbnJj3x4aTFhdMjxkuPWC/JMV4SI0Ot7Y8xptNpbYITWZ/cAKhqtohEtlNMfil7w15uemEFoZ4gnrtm7BH/4zamo8RFhNI71sOUYWlHLKuurWN3YQU7CsrJyy9nR345efll7CgoJye3gPfX7KK6Vg/bJsQjdI/2khwT1pD09IhxnpPdRKhHjJfwUCsJMsZ0nNYmOJtF5Lc41VQAlwGb2yck/1JVU8cDH2/kkblf0b9HDI9fPtIG0DSdVognqKHDwubU1jl3ee0uqmB3YQV7iirYXVTBnkLnecPuYuZt3E9JZc0R20aHBZMUHUZiZChJUWEkRTvPiVFhdIty50WFkRgVSlRYsN0Kb4z5Wlqb4FwF/A54DVCcXoyvaq+g/MW6XUXc+spKvthZxIWjMrjz3EFEhFpvtabr8gSJUyIT64WMo69XUllzKAFyk599xZXsL3EeX+0rYdGWSvLd9kBNhQUHuQmPk/jERYQSFxFCfEQIcRGhxEeEHpqODCE+ItQaSxtjDnPMX1sR8QI3AH2B1cDPVbX5v0imwYGSSu7/aCMvLN5OXEQoj84Yybfc3myNCQRRYcH07e701XMs1bV1HCytchOfKva7SdCBUmd6X0kluworWLeriPyyasqra4+6L29IEPERoW4C5CQ9sREhxHhDiAkPJtobQow3mJhw99kbQkx4CNHeYMJDPFZiZIyfaak44RmgGqfE5tvAQOCWdo6pyzpQUsmzC7cx67MtlFXVcvn4TG75Rj/iIkJ9HZoxnVKIJ6ihrU5rVFTXUlBWTX5ZFfllVRSUVTe8LiirIr+suuF53e4iCsuqKaqoPqLdUFPBQdKQ7DQkRGHOc1RYCJFhHiLDgokMdZ4jQoOJCgsmIszjPIfWPwcTGmy9kRvTGbSU4AxS1ZMBRORJYHH7h9S1qCpLt+Xz2vI8Xl+xg4rqOs4clMxtZ/Wnb/doX4dnjF/xhnjoEetxqshaSVWprKmjqKKaovIaiiqqKa6ooajcfa6obnZ6X3EJReU1lFbWUFJVgx47R2oQ6gkiIsxDZGhwo8TInQ4NxhvqwRvsYe+uKtbUfYk3xNPwCA/xEB4ahDfYgzfUeV0/3xsShDfEQ1hwkJU2GdMKLSU4DdVRqlrTGb9UInIW8CDgAZ5Q1T+39zGLKqpZti2f7PV7+WT9XvLyywkP8TB9aBrXTs6yxMaYTkREGhKIE/1qqioV1XWUVNZQVlXjPtc6z5W1lFbWUFpV4z67rxvNL6uqZX9JJSWVNVRU11FZXUtpVQ3vbN54AucD3mAP4W4CFBYSRFiwh9DgIMI8QYQGO48w9znUU//ac/gyTxBhIYeWH7aO59B6IZ4ggj1CSJDz3Hg6xBNEcJDgCRJLukyn01KCM1REitxpAcLd1wKoqsa0a3QtEBEP8E/gTCAPWCIib6nq2q+z36qaOord/+XtK6kk92AZuQfL2bK/hFU7Ctm8rxRw6vzH907klm+cxLeH9CAyzBoQG+OPRMRJKEI9QNuMGZednc3ESZOpqK6lvLqWiqo6KmpqKa9yX7sPZ7quYX6lO69hfnUtldV1VNXWUVVTS1lVDQXldY3mHXpUuq/bQ4hHCA4KIqQ+8Wn0OthNhI5MloIIddfzeASPOMmSJ8iZDgqShgQqSJzkKkgETxB4goLc9WlYL8jdPjjI2faw/dXvo9GytftqCNq4z0nQcK5zkDj7O+y1ONuKOAlm49dBUr+es67gzg86tG3TfYm0Yt/QsJ45Mcf8RVbVzn5bwhhgk6puBhCRF4HpwFETnB0ldZx+bzZ1qtQp1Kmi6tz+WlNXR3FFDZVH+QOQEutlSFos3x2WxrCecYzOTLA7N4wxJyzE45SQRHtDOuyYqnp44uNOV9Yc/lxV65Q01dQp1bV11NQ6fyOra5Wa2jpq6pz91Livq+vcZ3e9mlqlutbdtsl21e4xS6tq3W2c+XV1Sq0qtbXuc53zN7qmto469+90bf06da2sM2zJss7d8kLEKVFwpp0pOWyZ++rwJ6ThtTSabn4/jbdtWHaMbaTJhkeueyiuo+2nfllFRQXhiz892ul/LV29yCENyG30Og8Y23QlEbkOuA4gMrkX3YIrDmXL7sUXwOMW/UaEeIgIFsKDITpU6BYeRGK4EOoRoAQooXbHDv63o+mRTGuUlJSQnZ3t6zACml0D3+sK1yDUfRyTx320CaHRz+4xqSoK7n9UnUetgjZM62HL6hTqGtZ3lpWWlRPmDadOnf5P9LBnbXjd/HL3WADuc31MTderz8WOvh9tsp8m+3eXNXpy34Mj5zV+7SzXw9dpss2R+9Oj7E/r/x3n/o4Wl6M6uI7gkBO/OfvIaA/p6glOq6jqYzhDS9C/f3996ZazfBxRYMvOzmbKlCm+DiOg2TXwPbsGvmfXwPfa4hq8+JPm53f1+xl3cHh3Y+nuPGOMMcYEsK6e4CwB+olIloiEAhcBb/k4JmOMMcb4WJeuonJvXb8R+ACnFniWqn7h47CMMcYY42NdOsEBUNX3gPd8HYcxxhhjOo+uXkVljDHGGHMES3CMMcYY43dEWzvAip8QkWJgg6/jCHBJwH5fBxHg7Br4nl0D37Nr4HttcQ16qWq3pjO7fBucE7BBVUf5OohAJiJL7Rr4ll0D37Nr4Ht2DXyvPa+BVVEZY4wxxu9YgmOMMcYYvxOICc5jvg7A2DXoBOwa+J5dA9+za+B77XYNAq6RsTHGGGP8XyCW4BhjjDHGzwVMgiMiZ4nIBhHZJCK/8nU8gUhEtorIahHJEZGlvo4nEIjILBHZKyJrGs1LEJGPRORL9znelzH6u6Ncg7tEZIf7XcgRkbN9GaO/E5EMEZkjImtF5AsR+Yk7374LHeQY16DdvgsBUUUlIh5gI3AmkIczSOfFqrrWp4EFGBHZCoxSVet3ooOIyGSgBHhWVYe48+4BDqrqn91kP15Vb/NlnP7sKNfgLqBEVe/1ZWyBQkRSgBRVXS4i0cAy4DxgJvZd6BDHuAY/oJ2+C4FSgjMG2KSqm1W1CngRmO7jmIxpd6o6DzjYZPZ04Bl3+hmcPzKmnRzlGpgOpKq7VHW5O10MrAPSsO9ChznGNWg3gZLgpAG5jV7n0c5vrGmWAh+KyDIRuc7XwQSwZFXd5U7vBpJ9GUwAu1FEVrlVWFY10kFEJBMYDizCvgs+0eQaQDt9FwIlwTGdw6mqOgL4NvBjt+je+JA6ddT+X0/d+TwM9AGGAbuA+3waTYAQkSjgVeAWVS1qvMy+Cx2jmWvQbt+FQElwdgAZjV6nu/NMB1LVHe7zXuB1nKpD0/H2uPXh9fXie30cT8BR1T2qWquqdcDj2Heh3YlICM4P6/Oq+po7274LHai5a9Ce34VASXCWAP1EJEtEQoGLgLd8HFNAEZFIt2EZIhIJfBNYc+ytTDt5C7jCnb4CeNOHsQSk+h9V13ex70K7EhEBngTWqer9jRbZd6GDHO0atOd3ISDuogJwbz17APAAs1T1bt9GFFhEpDdOqQ04g7z+x65B+xORF4ApOCP27gHuBN4AXgZ6AtuAH6iqNYJtJ0e5BlNwiuQV2Apc36gtiGljInIqMB9YDdS5s3+D0wbEvgsd4BjX4GLa6bsQMAmOMcYYYwJHoFRRGWOMMSaAWIJjjDHGGL9jCY4xxhhj/I4lOMYYY4zxO5bgGGOMMcbvWIJjjDHGGL9jCY4xxudEJFFEctzHbhHZ4U6XiMi/2umYt4jI5cdYPk1E/q89jm2MaX/WD44xplMRkbuAElW9tx2PEQwsB0aoas1R1hF3nYmqWtZesRhj2oeV4BhjOi0RmSIi77jTd4nIMyIyX0S2icj5InKPiKwWkf+649wgIiNFZK47av0HTbqCr3c6sLw+uRGRm0VkrTui8YvQMPhiNjCtQ07WGNOmLMExxnQlfXCSk3OB54A5qnoyUA6c4yY5/wAuUNWRwCyguSFBJgLLGr3+FTBcVU8Bbmg0fykwqc3PwhjT7oJ9HYAxxhyH91W1WkRW44wr9193/mogE+gPDAE+cmqY8ADNjWuTAqxr9HoV8LyIvIEzVle9vUBq24VvjOkoluAYY7qSSgBVrRORaj3UiLAO5++ZAF+o6vgW9lMOeBu9PgeYDHwHuF1ETnarr7zuusaYLsaqqIwx/mQD0E1ExgOISIiIDG5mvXVAX3edICBDVecAtwGxQJS73knAmnaP2hjT5izBMcb4DVWtAi4A/iIiK4EcYEIzq76PU2IDTjXWc2611wrg76pa4C6bCrzbnjEbY9qH3SZujAlIIvI68EtV/fIoy5OB/6jqGR0bmTGmLViCY4wJSCLSH0hW1XlHWT4aqFbVnA4NzBjTJizBMcYYY4zfsTY4xhhjjPE7luAYY4wxxu9YgmOMMcYYv2MJjjHGGGP8jiU4xhhjjPE7/x/NT2yyu7HWHgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n", + "Trajectory Fluid Mechanics Plots\n", + "\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAALJCAYAAACX/njYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAC770lEQVR4nOzdeXxU1fn48c8zkz0TCJCwIztBdmRVXIIr7q2K+4La4m5bW1ut1t1fa6u2WrUW/VI3XFBri/uC4IK4gGVHBBFk3wmZ7Mk8vz/uTZyESTIJM5kk87xfr3ll5t5z733OTJYn55x7jqgqxhhjjDHNmSfWARhjjDHG1McSFmOMMcY0e5awGGOMMabZs4TFGGOMMc2eJSzGGGOMafYsYTHGGGNMs2cJizEm4kTkKRG5J9Zx1EZE1onIsbGOwxgTPktYjIlD7h/sUhHJqrH9fyKiItKrCWPp5V7zrRrbnxORO5oqDmNM82YJizHx63vgvMoXIjIUSItdOIwTkcNieP0GE5GEWMdgTLywhMWY+PUscHHQ60uAZ4ILiMjJbqvLPhHZULPFQ0QOF5HPRGSvu39K0O52IvKmiOSLyBci0reeeP4M3Btqh4hMEZFPa2xTEennPn9KRB4TkbdFxC8i80Sks4j8TUT2iMg3IjKyxmnHiMgKd/+/RCQl6NyniMgit16ficiwoH3rROR3IrIEKLCkxZimYQmLMfHrc6CNiBwsIl7gXOC5GmUKcJKaTOBk4CoR+QmAiPQE3gb+DmQDI4BFQceeC9wJtAPWUEsyEuQxYMABjC05G7gVyAJKgPnA1+7rV4AHa5S/ADgB6AsMcI/FTWymA1cAHYB/ArNEJDno2PNw3o9MVS1vZLzGmAawhMWY+FbZynIcsBLYFLxTVeeq6lJVDajqEuAF4Ch39/nAB6r6gqqWqeouVV0UdPhrqvql+wd9Bk5CU5cinKSmsYN1X1PVhapaDLwGFKvqM6paAbwE1GxheURVN6jqbve6ld1jU4F/quoXqlqhqk/jJEDjg4592D22qJGxGmMayBIWY+LbsziJxxRqdAcBiMg4EZkjIjtEJA+4EqfFAqAH8F0d594a9LwQ8IURz5NAJxE5NYyyNW0Lel4U4nXN628Ier4e6Oo+7wn82u0O2isie3Hq2rWWY40xTcASFmPimKquxxl8exLw7xBFngdmAT1UtS3wOCDuvg043SmRjKcUpxvp7qDrgNM1VTUgWEQ6R+ByPYKeHwRsdp9vAO5V1cygR5qqvhAcagSub4xpAEtYjDGXA0erakGIfRnAblUtFpGxOK0xlWYAx4rI2SKSICIdRGREBOJ5FkgBJgVtWwwMFpER7uDYOyJwnWtEpLuItAduwek2AngCuNJtXRIRSXcHH2dE4JrGmEayhMWYOKeq36nqglp2Xw3cJSL5wG3AzKDjfsBpmfk1sBtnwO3wCMRT4V6rfdC2b4G7gA+A1cCnoY9ukOeB94C1OF1b97jXWgD8HHgE2IMzYHhKBK5njDkAomotm8YYY4xp3qyFxRhjjDHNniUsxhhjjGn2LGExxhhjTLNnCYsxxhhjmr0WtwZGZmam9uvXL9ZhNLmCggLS09NjHUaTs3rHF6t3fLF6x5fa6r1w4cKdqppd3/EtLmHp1KkTCxbUdgdm6zV37lxyc3NjHUaTs3rHF6t3fLF6x5fa6i0i68M53rqEjDHGGNPsWcJijDHGmGbPEhZjjDHGNHutKmFZv6uAs/7xGTO+CKs7zBhjjDEtRIsbdFuX57/8gQXr97Bg/R6OGpBN93Zp9R9kjDHGmGavVbWwrNqaT9vURETg5QUbYx2OMcYYYyKkVSUs63cVcnj/LMb1bs+bS7fEOhxjjDHGREhUExYRmSQiq0RkjYjcFGL/QSIyR0T+JyJLROSkA7neTn8JWelJnDS0C2u2+1m9Lf9ATmeMMcaYZiJqCYuIeIFHgROBQcB5IjKoRrFbgZmqOhI4F3issdcrqwiQX1xO+/RkJg3ujAi8tXRrY09njDHGmGYkmi0sY4E1qrpWVUuBF4HTa5RRoI37vC2wubEX21NQCkB7XxId26Qwpmd73l5m3ULGGGNMayCqGp0Ti5wFTFLVn7mvLwLGqeq1QWW6AO8B7YB04FhVXRjiXFOBqQDZ2dmjZs6cud/1NuQH+MO8Iq4ZkcyYzgm8v66MGd+U8sfDU+nia/lDdfx+Pz6fL9ZhNDmrd3yxescXq3d8qa3eEydOXKiqo+s7Pta3NZ8HPKWqD4jIocCzIjJEVQPBhVR1GjANICcnR0OtRTBvzU6Y9wVHjB3J+D4dyMkrYsYfP2RXWg/Oy+3fBFWJLlt7Ir5YveOL1Tu+WL0bJ5pND5uAHkGvu7vbgl0OzARQ1flACpDVmIvtcruEOqQnAdClbSqHHJRp41iMMcaYViCaCctXQH8R6S0iSTiDamfVKPMDcAyAiByMk7DsaMzFdvtLAGjvJiwAJw3twoot+/h+Z0FjTmmMMcaYZiJqCYuqlgPXAu8CK3HuBlouIneJyGlusV8DPxeRxcALwBRt5KCa3QWliEBm2o8JyynDuiIC//lfzYYdY4wxxrQkUR3DoqpvAW/V2HZb0PMVwIRIXGtXQSnt0pLweqRqW+e2KRzWtwP/WbSJXx7bHxGp4wzGGGOMaa5a/u0zrt0FpdW6gyr9dGR31u8q5Osf9sQgKmOMMcZEQqtJWHbVkrBMGtKZlEQPr1m3kDHGGNNitZqEZXdBadUdQsF8yQkcP6gzbyzZQml5IMSRxhhjjGnuWlXCEqqFBeCnh3Rjb2EZc1Ztb+KojDHGGBMJrSJhqQgoewtDt7AAHNEviyxfkt0tZIwxxrRQrSJhySsqI6DU2sKS4PVw6vCuzF65vWrNIWOMMca0HK0iYdld4E4a50uutczkUT0orQjY4FtjjDGmBWoVCcsuf/Vp+UMZ1LUNw7u35cWvfiBaCz4aY4wxJjrqTFhExCsiM5oqmMbaW1QGQGZaYp3lzh17EN9u8/O/DXubICpjjDHGREqdCYuqVgA93bWAmq28wsqEpe4wTx3elbQkLy9++UNThGWMMcaYCAlnav61wDwRmQVUrSKoqg9GLaoG2lPodAllptbdwuJLTuC04V3576LN/OGUQWSk1F3eGGOMMc1DOGNYvgPecMtmBD2ajb1FZSR6hbQkb71lzxnTg6KyCmYt3twEkRljjDEmEuptYVHVOwFEJE1VC6MfUsPtLSwjMy0prMUNR/TIZGDnDJ7/4gfOH3uQLYhojDHGtAD1trCIyKEisgL4xn09XEQei3pkDZBXVFpvd1AlEeGiQ3uyfPM+Fq63BRGNMcaYliCcLqG/AScAuwBUdTFwZBRjajCnhSX88Sg/HdmNNikJ/OuzddELyhhjjDERE9Y8LKq6ocamiijE0mh7C8tomxr+jUxpSQmcM6YH7yzbypa8oihGZowxxphICCdh2SAihwEqIoki8htgZZTjapC9haUNamEBuPjQXgRUmfG53eJsjDHGNHfhJCxXAtcA3YDNwAj3db1EZJKIrBKRNSJyUy1lzhaRFSKyXESeDzPuavYWlYU9hqVSj/ZpHHtwJ57/8geKy5pVg5Exxhhjaqg3YVHVnap6gap2UtVsVb1QVXfVd5yIeIFHgROBQcB5IjKoRpn+wM3ABFUdDPyyoRUoKa+gsLSiwS0sAFMO68XuglLeWLKlwccaY4wxpumEc5dQHxF5XUR2iMh2EfmviPQJ49xjgTWqulZVS4EXgdNrlPk58Kiq7gFQ1e0NrUBeUXiz3IZyWN8O9O/o41/zvrf1hYwxxphmTOr7Qy0in+O0lLzgbjoXuE5Vx9Vz3FnAJFX9mfv6ImCcql4bVOY/wLfABMAL3KGq74Q411RgKkB2dvaomTNnVu3b5A9wy6dFXD08mbFdwpm4t7q5G8p4ankpvx2TwqAO9U88Fyt+vx+fzxfrMJqc1Tu+WL3ji9U7vtRW74kTJy5U1dH1HR/OX/g0VX026PVzInJjA2Ks7/r9gVygO/CxiAxV1b3BhVR1GjANICcnR3Nzc6v2fbVuN3w6n8NGj+Dw/lkNDmB8WQVv3DeH+Xt9XH1mnTlYTM2dO5fgescLq3d8sXrHF6t3fDnQetfaJSQi7UWkPfC2iNwkIr1EpKeI/BZ4K4xzbwJ6BL3u7m4LthGYpaplqvo9TmtL/4ZUYE+Bu45QI8awAKQkerl0Qi8+Wb2T5ZvzGnUOY4wxxkRXXWNYFgILgLOBK4A5wFzgKuCcMM79FdBfRHq7qz2fC8yqUeY/OK0riEgWMABnscWw7XXHsLRt4F1CwS4c15P0JC/TPm7QpY0xxhjTRGpNWFS1t6r2cb/WfNQ76FZVy4FrgXdx5m2ZqarLReQuETnNLfYusMud+n8OcGM4dyAFyyusHHTb+ISlbVoi5409iDeWbGHD7ma5XJIxxhgT1+odw+Lennwy0Cu4vKo+WN+xqvoWNbqPVPW2oOcK3OA+GmVvUSlej+BLbviA22CXHd6bpz5bx/99+j13nDb4gM5ljDHGmMgKZ+K414EpQAcgI+jRLOwtdCaNO9BVl7tmpnLaiK689NUGdrvjYowxxhjTPITTLNFdVYdFPZJG2lvUsIUP63LVUX157X+bePKTtfx20sCInNMYY4wxBy6cFpa3ReT4qEfSSM46Qg2fNC6U/p0yOGloF57+bB17C62VxRhjjGkuwklYPgdeE5EiEdknIvkisi/agYWrsksoUq47uh8FpRX836ffR+ycxhhjjDkw4SQsDwKH4kwg10ZVM1S1TZTjCtvewjLaRqhLCGBg5zacOKQzT81bV3UHkjHGGGNiK5yEZQOwTJvpYjt5RWVkpkamS6jS9cf0J7+knOnzrJXFGGOMaQ7CGXS7FpgrIm8DJZUbw7mtOdrKKgL4S8ojNui20sFd2nDC4E5Mn/c9lx3e+4AmpTPGGGPMgQunheV7YDaQRDO7rfnHlZojn1Bcf0x/8ovLeWreuoif2xhjjDENU28Li6re2RSBNEblnTzRaAEZ3LUtxw3qxJOfrmXKYb0iOk7GGGOMMQ1TbwuLiMwRkQ9rPpoiuPrsdQfFtovQbc013XDcAPKLy5n2yXdROb8xxhhjwhPOGJbfBD1PAc4EyqMTTsNUJizRGmNycJc2nDa8K9M/XceUw3qTnZEclesYY4wxpm71trCo6sKgxzxVvQF3heVYy4vASs31+dVxAyitCPDonDVRu4Yxxhhj6hZOl1D7oEeWiJwAtG2C2OrVFAlL76x0zh7dnee/+IGNe2wlZ2OMMSYWwrlLaCGwwP06H/g1cHk0gwpXZcLSJsq3HV93dH8AHp69OqrXMcYYY0xo4dwl1LspAmmMvKIyMpIT8HoObKXm+nTNTOXC8T156rPvueKovvTN9kX1esYYY4yprtYWFhE5sq5HUwZZm31FZVFvXal09cS+pCR6efC9b5vkesYYY4z5UV0tLDeG2KbAMKAH4K3v5CIyCXjILfukqv6plnJnAq8AY1R1QX3nrZRXVNZks9Bm+ZL5+RF9eGj2ai5bv4dRPds1yXWNMcYYU0cLi6qeGvwA/gQkAluBn9R3YhHxAo8CJwKDgPNEZFCIchnAL4AvGhp8UyYsAFOP7EN2RjL/762VNNOllYwxxphWKZy7hI4RkbnAPcCDqjpeVV8P49xjgTWqulZVS4EXgdNDlLsbuA8oDj9sR1MnLOnJCfz6uAEsXL+Hd5ZtbbLrGmOMMfFOamspEJGTgVuAPOBeVf20QScWOQuYpKo/c19fBIxT1WuDyhwC3KKqZ7pJ0W9CdQmJyFRgKkB2dvaomTNnAvDLOYUMy/Zy2ZCmm9AtoMpt84ooDcD/OzyVhCgP+K3k9/vx+eJvsK/VO75YveOL1Tu+1FbviRMnLlTV0fUdX9cYlteBjcAu4Lci8tvgnap6WgNjrUZEPMCDwJT6yqrqNGAaQE5Ojubm5gJQ9MHbDOxzELm5Bx9IKA3m7baDS6Z/yfqkXlx+eNPcRDV37lwq6x1PrN7xxeodX6ze8eVA611XwjKx0Wd1bMIZnFupu7utUgYwBJgrIgCdgVkiclo4A2+LyyooKQ80aZdQpaMGZHNE/ywenr2asw7pbgsjGmOMMVFW16Dbj+p6hHHur4D+ItJbRJKAc4FZQefPU9UsVe2lqr2Az4GwkhVwbmmG6E8aV5vfn3Qw+4rLeGSOTSZnjDHGRFs4M902iqqWA9cC7wIrgZmqulxE7hKRA+pOgqaZlr8uB3dpw+RR3Xn6s/Ws21kQkxiMMcaYeBG1hAVAVd9S1QGq2ldV73W33aaqs0KUzW3oHCwQu4QF4DfH55CU4OHuN1bELAZjjDEmHkQ1YYmm5pCwdGyTwvXH9GP2N9uZ8832mMVhjDHGtHbhzMMyQESeEJH3ROTDykdTBFeX5pCwAEw5rDd9stO5640VlJRXxDQWY4wxprUKp4XlZeBr4Fac6forHzHVXBKWpAQPt586mO93FjD903UxjcUYY4xprepdrRkoV9V/RD2SBqpMWNqkhFOF6DpqQDbHDerE3z9czU9HdqNz25RYh2SMMca0KnWt1txeRNoDr4vI1SLSpXKbuz2m8orK8CUnkOBtHsNw/nDyIMoDyp/eXhnrUIwxxphWp67miYU4qzNXzj0f3A2kQJ9oBRWOpl5HqD4HdUjjiiP78PcP13D+uJ6M7R3znM4YY4xpNeqaOK63qvZxv9Z8xDRZAWfiuFhNGlebq3L70rVtCn/4zzLKKgKxDscYY4xpNcK5S+gaEckMet1ORK6OalRhcFpYYj9+JVhaUgJ3nT6EVdvyeeKTtbEOxxhjjGk1whkA8nNV3Vv5QlX3AD+PWkRham5dQpWOHdSJSYM789AHq/lhV2GswzHGGGNahXASFq+4qxMCiIgXSIpeSOFprgkLwO2nDSLBI9z632WoaqzDMcYYY1q8cBKWd4CXROQYETkGeMHdFlPNOWHp0jaV35yQw8ff7uCNJVtiHY4xxhjT4oWTsPwOmANc5T5mA7+NZlD1KSmvoLgs0GwTFoCLD+3F0G5tufP1FVVzxhhjjDGmcepNWFQ1oKr/UNWz3Mc/VTWmc9A3l1lu6+L1CH88Yyi7C0r48zvfxDocY4wxpkUL5y6h/iLyioisEJG1lY+mCK42+ypnuW3GCQvAkG5tuXRCb2Z88QML1u2OdTjGGGNMixVOl9C/gH8A5cBE4BnguWgGVZ+W0MJS6YbjBtAtM5XfvrqE4jJbHNEYY4xpjHASllRVnQ2Iqq5X1TuAk6MbVt1aUsKSnpzAn84cytodBfz1/W9jHY4xxhjTIoWTsJSIiAdYLSLXishPAV84JxeRSSKySkTWiMhNIfbf4HY1LRGR2SLSM5zztqSEBeCI/tmcN7YHT3yylv/9sCfW4RhjjDEtTjgJyy+ANOB6YBRwEXBJfQe587U8CpwIDALOE5FBNYr9DxitqsOAV4A/hxN0XmHLSlgAbj7pYDq1SeG3r1jXkDHGGNNQ4dwl9JWq+lV1o6peqqpnqOrnYZx7LLBGVdeqainwInB6jXPPUdXK6WA/B7qHE3ReUTnQ/AfdBmuTksgfzxjK6u1+Hp69OtbhGGOMMS1KrYvxiMisug5U1dPqOXc3YEPQ643AuDrKXw68Xc85AadLKD3JS6I3nAai5iM3pyOTR3Xnnx+v5cQhXRjavW2sQzLGGGNaBKlt6ngR2YGTcLwAfAFI8H5V/ajOE4ucBUxS1Z+5ry8CxqnqtSHKXghcCxylqiUh9k8FpgJkZ2ePOu7WZ/lmdwUP5KbVX8NmpqBMueXTItIT4fZDU0nySv0HAX6/H58vrKFDrYrVO75YveOL1Tu+1FbviRMnLlTV0fUdX9dyx52B44DzgPOBN4EXVHV5mLFtAnoEve7ubqtGRI4FbqGWZAVAVacB0wBycnI0tW0HOmoRublHhBlK8+LruYNLpn/J/MKO3H7q4LCOmTt3Lrm5udENrBmyescXq3d8sXrHlwOtd619KqpaoarvqOolwHhgDTBXRPZrIanFV0B/EektIknAuUC1biYRGQn8EzhNVbeHG/S+ojLaptaVazVvRw3IZsphvfjXvHV89O2OWIdjjDHGNHt1DgIRkWQROQNnorhrgIeB18I5saqW43TzvAusBGaq6nIRuUtEKse//AXnFumXRWRRfeNmKjXnhQ/DddOJAxnQycdvXl7MLn/IhiVjjDHGuOoadPsMMAR4C7hTVZc19OSq+pZ7fPC224KeH9vQc0LrSFhSEr08dO5ITn9kHjf9eynTLhqFSHjjWYwxxph4U1cLy4VAf5x5WD4TkX3uI19E9jVNeKG1hoQF4OAubfjtpBzeX7GN57/8IdbhGGOMMc1WrS0sqtos7xlWoKisolUkLACXTejNx6t3cufrKxjWLdNudTbGGGNCaJZJSV0C7l3YrSVh8XiEv50zgqz0JK6asZC9haWxDskYY4xpdlpswpKZlhTbQCKofXoSj104im37ivnVS4uoCISeG8cYY4yJVy0uYamoSlhaRwtLpRE9Mrn91MHMWbWDe99cGetwjDHGmGalxU1mElDFC7RrRS0slS4c35O1OwqYPu97urdL5bLDe8c6JGOMMaZZaIEJC3hpPWNYarrl5IPZtLeQu99cQUZKApNH96j/IGOMMaaVa3ldQgHna7v01tfCAuD1CH87ZyQT+mZx4ytLeHb+uliHZIwxxsRci0tYAgoJHiE9yRvrUKImNcnLk5eM5piBHfnDf5dz48uL8ZdWH4i7bV8xv39tKVc9t5DisooYRWqMMcY0jRbZJZSZltTqZ4VNSfQy7eLR/PX9b3ls7hre8MLcvMV0y0xl9fZ8PlixnVK3uam4bCGPnH8I6ckt7uM0xhhjwtLiWlgqtPXdIVQbr0f4zQk5vHn9EYzo6OX9Fdt4aPZqFq7fw/njDuKjG3P54xlD+ejbHZz6yKd8sGKb3RJtjDGmVWpx/5IHVGkXJwlLpYO7tOGKYSnk5uZSVhEg0ftjntmzQzrd26Xyh/8s42fPLCA7I5kxvdoxoFMGWb5kMlIS8Ijg9TgtUhUBJaBKRUCDnkOFKoGgbeWVzwP64z5V1M2HREAQ96uzQYK2/1jG/SoS+rga25zXP55rzfoy1n+2rtr5al6r2nUqz1q1LahsLdcJFZdTJvi1BG0Pulao61R7XyrDqXGuOq4DsDavgvYb99aIN+g8NetST8zBZavOVUfM+39GNT7fqhhC7AvxPoUs28pbSY0xkdUCExZom9o6B9yGIzhZqXRE/2ze+9VRfLByG28t3cLijXt5a+nWiF/b6xE8AqrOEgmq6n6N+KWqW7k8yhdopubPi3UETSY4OfK891aIhLD2JKpa0hgywQyRQIdIEoMTwerlQ1ynxnmoEVPNpLJmol0ZVWX5ffuKeOyb+aHrWyPp3e86DalvLYl27fXd/x+C4GSUWvbXfF+D4w9OWDdsKGV+0coQ/yzs/3nv//6F+Mcn6MMI55+jat9HNd6D4NeVB4RKzGvGRM1zBH0/VJZZubmcvEWb9vssa6sXQTHv/3lX/1xrlglV7+DPt656h/5+qv29qPY1xPfvpvwAq7flh6xXOFpcwlKhxF0LSziSEjycNLQLJw3tAkBZRYDdBaXkF5ejqgQUFMUrgscjeMVpdal87vFQta3yUdkyU3lMfTSoBaZmQqME7XNf//i8RvITVP7TefOYMGHCfuei6rgfy2qoOGrsr55k1YwhqGxDY652jR/3VTu2lpiryla9d8qSJUsZMmRovdepLB98rv3qXXMf1d/jkO9jzfirvf+1XKdGfX987+q+zo/fL7Bu/XoOOuigWj7rmt9fIa5TR0xV710tdada+f3ru9/7FvJ7ouZnFPp9q/k+eQU8nqByAVACdfw8/fgZ1fysg8uH+oyq16WO966W9zXs+gZ9DxFqP0pFRQDZsK7a+1qzvkHfJq3LkkWxjiA25n3c6ENbXMLiDLq1hKU+iV4Pndqk0KlN012z8j/coC0HfM6MJKF9K72FvS6erSvJHdQp1mE0ublzt5CbOzDWYTS5uXPnkpt7aKzDaHJOvXPDLl89CauehNdMqAixLdQxwf8o7PePT/C59ktqa0mygpKr2sp88cWXjB03tlrCV1s9Gl2vkMllw+pV873Y772qM8Hcv17Lly9n0OBB+8X8k/sIS4tLWJTWtY6QMcaY8NTsZorEP0Wx8IPPQ99sX6zDaHLpu1eRO6xro49vcXcJgbWwGGOMMfEmqgmLiEwSkVUiskZEbgqxP1lEXnL3fyEivcI5b2tcR8gYY4wxtYtawiIiXuBR4ERgEHCeiAyqUexyYI+q9gP+CoTVk5XZStcRMsYYY0xo0WxhGQusUdW1qloKvAicXqPM6cDT7vNXgGMkjMkZOrVNiWigxhhjjGneJPg2u4ieWOQsYJKq/sx9fREwTlWvDSqzzC2z0X39nVtmZ41zTQWmAmR27DrqtZdmRCXm5szv9+Pzxd8gLat3fLF6xxerd3yprd4TJ05cqKqj6zu+RdwlpKrTgGkAOTk52pDb4FqLht7+11pYveOL1Tu+WL3jy4HWO5pdQpuAHkGvu7vbQpYRkQSgLbArijEZY4wxpgWKZsLyFdBfRHqLSBJwLjCrRplZwCXu87OADzVafVTGGGOMabGi1iWkquUici3wLuAFpqvqchG5C1igqrOA/wOeFZE1wG6cpMYYY4wxppqoDbqNFhHJB1bFOo4YyAJ21luq9bF6xxerd3yxeseX2urdU1Wz6zu4RQy6rWFVOKOJWxsRWWD1jh9W7/hi9Y4vVu/GaZFT8xtjjDEmvljCYowxxphmryUmLNNiHUCMWL3ji9U7vli944vVuxFa3KBbY4wxxsSfltjCYowxxpg4YwmLMcYYY5q9FpWwiMgkEVklImtE5KZYxxMtItJDROaIyAoRWS4iv3C33yEim0Rkkfs4KdaxRpqIrBORpW79Frjb2ovI+yKy2v3aLtZxRpKI5AR9potEZJ+I/LI1ft4iMl1EtrsLn1ZuC/n5iuNh9+d9iYgcErvID0wt9f6LiHzj1u01Ecl0t/cSkaKgz/3xmAV+gGqpd63f1yJys/t5rxKRE2IT9YGrpd4vBdV5nYgscre3ps+7tr9dkfkZV9UW8cCZLfc7oA+QBCwGBsU6rijVtQtwiPs8A/gWGATcAfwm1vFFue7rgKwa2/4M3OQ+vwm4L9ZxRrH+XmAr0LM1ft7AkcAhwLL6Pl/gJOBtQIDxwBexjj/C9T4eSHCf3xdU717B5Vryo5Z6h/y+dn/HLQaSgd7u73tvrOsQqXrX2P8AcFsr/Lxr+9sVkZ/xltTCMhZYo6prVbUUeBE4PcYxRYWqblHVr93n+cBKoFtso4qp04Gn3edPAz+JXShRdwzwnaquj3Ug0aCqH+MswxGsts/3dOAZdXwOZIpIlyYJNMJC1VtV31PVcvfl5zgLxLYqtXzetTkdeFFVS1T1e2ANzu/9FqeueouIAGcDLzRpUE2gjr9dEfkZb0kJSzdgQ9DrjcTBH3ER6QWMBL5wN13rNp1Nb21dIy4F3hORhSIy1d3WSVW3uM+3Ap1iE1qTOJfqv8ha++cNtX++8fQzfxnOf5qVeovI/0TkIxE5IlZBRVGo7+t4+byPALap6uqgba3u867xtysiP+MtKWGJOyLiA14Ffqmq+4B/AH2BEcAWnGbF1uZwVT0EOBG4RkSODN6pTjtiq7wXX5xVzU8DXnY3xcPnXU1r/nxrIyK3AOXADHfTFuAgVR0J3AA8LyJtYhVfFMTd93UN51H9n5JW93mH+NtV5UB+xltSwrIJ6BH0uru7rVUSkUScD3yGqv4bQFW3qWqFqgaAJ2ihzaV1UdVN7tftwGs4ddxW2Uzoft0euwij6kTga1XdBvHxebtq+3xb/c+8iEwBTgEucH+R43aJ7HKfL8QZyzEgZkFGWB3f1/HweScAZwAvVW5rbZ93qL9dROhnvCUlLF8B/UWkt/uf6LnArBjHFBVuH+f/AStV9cGg7cF9ez8FltU8tiUTkXQRyah8jjMocRnO53yJW+wS4L+xiTDqqv3n1do/7yC1fb6zgIvdOwnGA3lBzcotnohMAn4LnKaqhUHbs0XE6z7vA/QH1sYmysir4/t6FnCuiCSLSG+cen/Z1PFF2bHAN6q6sXJDa/q8a/vbRaR+xmM9qriBI5BPwhl1/B1wS6zjiWI9D8dpMlsCLHIfJwHPAkvd7bOALrGONcL17oNzl8BiYHnlZwx0AGYDq4EPgPaxjjUKdU8HdgFtg7a1us8bJyHbApTh9FdfXtvni3PnwKPuz/tSYHSs449wvdfg9N9X/ow/7pY90/3+XwR8DZwa6/gjXO9av6+BW9zPexVwYqzjj2S93e1PAVfWKNuaPu/a/nZF5GfcpuY3xhhjTLPXkrqEjDHGGBOnLGExxhhjTLNnCYsxxhhjmj1LWIwxxhjT7FnCYowxxphmzxIWY0xEiEiHoBVntwatyOsXkceidM1fisjFdew/RUTuisa1jTFNy25rNsZEnIjcAfhV9f4oXiMBZ96KQ/THRQRrlhG3zAQNmpzNGNPyWAuLMSaqRCRXRN5wn98hIk+LyCcisl5EzhCRP4vIUhF5x53WGxEZ5S4Et1BE3q1lBdejcZYyKHePuV5EVriL6r0IVeuWzMWZ/t4Y04JZwmKMaWp9cZKN04DngDmqOhQoAk52k5a/A2ep6ihgOnBviPNMABYGvb4JGKmqw4Arg7YvwFkh1xjTgiXEOgBjTNx5W1XLRGQp4AXecbcvBXoBOcAQ4H2nRwcvzjTnNXUBVga9XgLMEJH/AP8J2r4d6Bq58I0xsWAJizGmqZUAqGpARMr0x4F0AZzfSQIsV9VD6zlPEZAS9Ppk4EjgVOAWERnqdheluGWNMS2YdQkZY5qbVUC2iBwKznL1IjI4RLmVQD+3jAfooapzgN8BbQGfW24ArXela2PihiUsxphmRVVLgbOA+0RkMc6Kr4eFKPo2TosKON1Gz7ndTP8DHlbVve6+icCb0YzZGBN9dluzMabFEpHXgN+q6upa9ncCnlfVY5o2MmNMpFnCYoxpsUQkB+ikqh/Xsn8MUKaqi5o0MGNMxFnCYowxxphmz8awGGOMMabZs4TFGGOMMc2eJSzGGGOMafYsYTHGGGNMs2cJizHGGGOaPUtYjDHGGNPsWcJijDHGmGbPEhZjjDHGNHuWsBhjjDGm2bOExRhjjDHNniUsxhhjjGn2LGExxkSNiMwVkZ/Vsq+XiKiIJDR1XA0hIrkisjHWcRgT7yxhMaaVEJF1IlIkIn4R2SoiT4mIL9ZxRZqI3OEmOmcHbUtwt/WKYWjGmCiyhMWY1uVUVfUBI4CRwM2xDSdqdgN3iog31oE0RHNvTTKmObOExZhWSFW3Au/iJC4AiMh4EflMRPaKyGIRyXW3TxaRhcHHi8gNIvJf9/lTIvKoiLwpIvki8oWI9A0qe5iIfCUiee7Xw0LFJCJeEblfRHaKyFrg5Br7p4jIWvca34vIBXVU8R2gFLiwlmtV64pyz/1p0GsVkatFZLV7vbtFpK/7/uwTkZkiklTjnL93Y18XHJuIJLv1+kFEtonI4yKS6u7LFZGNIvI7EdkK/KuOOhlj6mAJizGtkIh0B04E1rivuwFvAvcA7YHfAK+KSDYwC+gtIgcHneIi4Jmg1+cCdwLt3HPe6563vXveh4EOwIPAmyLSIURYPwdOwWn5GQ2cFRRvunuOE1U1AzgMWFRHFRX4A3C7iCTW/W7U6gRgFDAe+C0wDScB6gEMAc4LKtsZyAK6AZcA00Qkx933J2AATnLYzy1zW41j2wM9gamNjNWYuNciExYRmS4i20VkWZjlzxaRFSKyXESej3Z8xsTQf0QkH9gAbAdud7dfCLylqm+pakBV3wcWACepagnwklsGERkM9ALeCDrva6r6paqWAzP4seXmZGC1qj6rquWq+gLwDXBqiNjOBv6mqhtUdTfwxxr7A8AQEUlV1S2quryuiqrqLGAHEHJQbxj+rKr73OssA95T1bWqmge8jZNYBfuDqpao6kc4SdrZIiI4ScivVHW3quYD/w8nwQuu1+3usUWNjNWYuNciExbgKWBSOAVFpD9OP/4EVR0M/DJ6YRkTcz9xWyhygYE4rQLg/Hc/2e0O2isie4HDgS7u/qeB890/wBcBM91EptLWoOeFQOVg3q7A+hoxrMdpZaipK04iFVwOAFUtAM4BrgS2uN1PA+uvLrcCtwApYZStaVvQ86IQr4MHLO9xY6y0Hqc+2UAasDDofX3H3V5ph6oWNyI+Y0yQFpmwqOrHOIPuqrj9z++IyEIR+STol93PgUdVdY977PYmDteYJue2AjwF3O9u2gA8q6qZQY90Vf2TW/5znDEhRwDnA8+GeanNOMlQsIOATSHKbsHpbgkuFxzzu6p6HE4S9Q3wRH0Xd1uK1gBX19hVgJNIVOpc37nq0c7ttqp0EE7dd+IkN4OD3te27sDnqjAP8NrGGFpowlKLacB1qjoKp3/+MXf7AGCAiMwTkc9FJKyWGWNagb8Bx4nIcOA54FQROcEd/JriDgjtHlT+GeARoExVPw1xvlDewvn5Ot+9tfgcYBDVu5MqzQSuF5HuItIOuKlyh4h0EpHT3aSgBPDjdKWE4xacMSjBFgFniEiaiPQDLg/zXHW5U0SSROQInLE4L6tqACex+quIdHTr0k1ETojA9YwxQVpFwiLOXBOHAS+LyCLgn/zY1J0A9MdpIj8PeEJEMps+SmOalqruwElCblPVDcDpwO9xxn1sAG6k+u+AZ3EGmz7XgGvswvnj/WtgF07icIqq7gxR/AmcO5cWA18D/w7a5wFuwGm12A0cBVwVZgzzgC9rbP4rTovRNpzurhnh1ahWW4E9bnwzgCtV9Rt33+9wWnk+F5F9wAdATsizGGMaTVRbZmulOBNEvaGqQ0SkDbBKVbuEKPc48IWq/st9PRu4SVW/atKAjWnm3FtxtwOHqOrqWMdjjDHBWkULi6ruA74XkckA4hju7v4PTusKIpKF00W0NgZhGtPcXQV8ZcmKMaY5apGzLorICzhJSJY4a3zcDlwA/ENEbgUSgRdxmp7fBY4XkRVABXCj24xtjHGJyDpAgJ/ENhJjjAmtxXYJGWOMMSZ+tIouIWOMMca0bi2uSygzM1P79esX6zCaXEFBAenp6fUXbGWs3vHF6h1frN7xpbZ6L1y4cKeqZoc4pJoWl7B06tSJBQsWxDqMJjd37lxyc3NjHUaTs3rHF6t3fLF6x5fa6i0iNWfLDsm6hIwxxhjT7FnCYowxxphmzxIWY4wxxjR7UUtYRKSHiMwRkRUislxEfhGijIjIwyKyRkSWiMghB3LNT1bv4LA/zmbh+t31FzbGGGNMixHNFpZy4NeqOggYD1wjIoNqlDkRZ52f/sBU4B8HcsGXvtrA5rxi7n5j5YGcxhhjjDHNTNQSFlXdoqpfu8/zgZVAtxrFTgeeUcfnQKaI7LceULhWbc0HYNGGvazd4W/saYwxxhjTzDTJGBZ3ocKRwBc1dnXDWTW20kb2T2rCtjWvmGMP7gTAJ6tDLRZrjDHGmJYo6vOwiIgPeBX4pbtIYWPOMRWny4js7Gzmzp27X5nSCiW/pJw25bvJShVmffENPUvXNT7wZsbv94esd2tn9Y4vVu/4YvWOLwda76gmLCKSiJOszFDVf4cosgnoEfS6u7utGlWdBkwDyMnJ0VATz2zaWwTvf8jYoQPxtNnD7JXbOPLIo/B4JAI1iT2baCi+WL3ji9U7vli9GyeadwkJ8H/ASlV9sJZis4CL3buFxgN5qrqlMdfb5S8BoIMvmUP7dGBPYRnfuGNajDHGGNOyRbOFZQJwEbBURBa5234PHASgqo8DbwEnAWuAQuDSxl5sl78UgA6+JAZ3bQPAZ9/tZJD73BhjjDEtV9QSFlX9FKizP0ZVFbgmEtfb4bawZPuS6ZqZSu+sdOZ/t4ufHdEnEqc3xhhjTAy1mplug1tYAA7t24Evvt9NeUUglmEZY4wxJgJaUcJSQmqil7Qkp9HosL4d8JeUs3RTXowjM8YYY8yBajUJy05/CVkZSVWvx/fpAMD8tbtiFZIxxhhjIqTOhEVEPCJydlMFcyB2FZTSIT256nWWL5mcThnM/84SFmOMMaalqzNhUdUA8NsmiuWA7PSXkuVLqrbtsH4d+PL73RSXVcQoKmOMMcZEQjhdQh+IyG/c1ZfbVz6iHlkD7fSXkOVLrrbtqAHZlJQHrFvIGGOMaeHCua35HPdr8O3HCjSb+4UDAWV3QWnVHUKVxvfpQHKCh49W7WBiTscYRWeMMcaYA1VvwqKqvZsikAORV1RGRUCrjWEBSEn0cmjfDsxdtR0YHJvgjDHGGHPA6u0SEpE0EblVRKa5r/uLyCnRDy18uwoqp+VP2m9f7oBs1u0qZN3OgqYOyxhjjDEREs4Yln8BpcBh7utNwD1Ri6gR9hSWAdAuLUTC4nYFOa0sxhhjjGmJwklY+qrqn4EyAFUtpJ4p95tanpuwZKYl7revV1Y6vTqkMffbHU0dljHGGGMiJJyEpVREUnEG2iIifYGSqEbVQHuLnISlber+CQs4rSzzv9tltzcbY4wxLVQ4CcvtwDtADxGZAcymmc3NkldPwjJxYEdKygPMW7OzKcMyxhhjTISEc5fQ+yLyNTAepyvoF6rarP7yVyYsGSmhE5ZD+3QgIzmB95Zv45iDOzVlaMYYY4yJgHDmYQE4Cjgcp1soEXgtahE1wr6iMtqkJOD1hB5ak5TgIXdgRz5YuY2KgNZazhhjjDHNUzi3NT8GXAksBZYBV4jIo9EOrCH2FpbSNsSA22AnDO7EroJSFqzb3URRGWOMMSZSwmlhORo4WFUrB90+DSyPalQNlFdUVuv4lUq5OR1JSvDw7vJtjHNXcjbGGGNMyxDOoNs1wEFBr3u425qNcBIWX3ICh/fL4t3lW3FzL2OMMca0ELUmLCLyuojMAjKAlSIyV0TmACvdbXUSkekisl1EltWyP1dE8kRkkfu4rbGVyCsqIzN1/0njajphcCc27S1i+eZ9jb2UMcYYY2Kgri6h+w/w3E8BjwDP1FHmE1U94Gn+84rKaFNPCwvAsQd3wiNLeWfZVoZ0a3uglzXGGGNME6k1YVHVj4Jfi0ibusqHOP5jEenV+NDCvk5YXUIAHXzJTOiXxazFm/n18QMQsbuFjDHGmJZA6hvPISJTgbuAYiCAMxeLqmqfek/uJCxvqOqQEPtygVeBjcBm4DeqGnIwrxvDVIDs7OxRM2fOrNpXUq5c8UEhkwckcnKf+ruFPtlYxv8tK+UP41Pom+mtt3xz4ff78fl8sQ6jyVm944vVO75YveNLbfWeOHHiQlUdXd/x4bSY3AgMicJkcV8DPVXVLyInAf8B+ocqqKrTgGkAOTk5mpubW7VvS14RfPAhhwwZSO7Yg0IdXs0hxWU8+80HbPB05vLcwQdeiyYyd+5cgusdL6ze8cXqHV+s3vHlQOsdzl1C3wGFjb5CLVR1n6r63edvAYkiktXQ8+wtrHta/prapCRydE5H3liyhYqA3S1kjDHGtAThtLDcDHwmIl8QtOihql5/IBcWkc7ANlVVERmLkzztauh56ltHKJTTR3TlneVbmf/dLg7v3+AcyRhjjDFNLJyE5Z/Ahzgz3QbCPbGIvADkAlkishFnEcVEAFV9HDgLuEpEyoEi4FxtxAQpjUlYJg7sSEZyAv9dtMkSFmOMMaYFCCdhSVTVGxp6YlU9r579j+Dc9nxAGpOwpCR6mTSkM28v28qdpw8mLSnsm5+MMcYYEwPhjGF5W0SmikgXEWlf+Yh6ZGHKqxzDUs9aQjVNHt0Df0k5by7ZEo2wjDHGGBNB4TQtVLaU3By0TYF6b2tuCnlFZXgEfA1sJRnTqx19stKZuWADk0f3iFJ0xhhjjImEeltYVLV3iEezSFbgx1luPZ6GTQInIkwe3YOv1u3hux3+KEVnjDHGmEioN2ERkYtDPZoiuHA46wg1rDuo0pmjuuH1CDMXbIhwVMYYY4yJpHDGsIwJehwB3AGcFsWYGmRvmNPyh9IxI4WJOR15deEmyirCvgHKGGOMMU2s3oEfqnpd8GsRyQRejFZADRXuwoe1OWdMDz5YuY3ZK7czaUjnCEZmjDHGmEgJp4WlpgKgd6QDaax9B9DCAjAxJ5uubVN49vN1kQvKGGOMMRFVbwuLiLyOc1cQOAnOIGBm7Uc0rbyiMjIbeEtzsASvhwvG9+Qv765i9bZ8+nfKiGB0xhhjjImEcO4Fvj/oeTmwXlU3RimeBlFV8g6whQXg3DE9eGj2ap6Zv567f7LfwtLGGGOMibFwbmv+KOgxr7kkKwD+knIqAnrACUsHXzKnDuvKq19vZF9xWYSiM8YYY0yk1JqwiMj3IrK2lsd3TRlkbSqn5c9MTTrgc005rBeFpRW8urDZ5GPGGGOMcdXVwjKa6rc0jwMeAARYFPXIwlCZsBzIXUKVhnZvy8iDMnlm/noCgQavwWiMMcaYKKo1YVHVXaq6C9gDnALMAQ4FTlbVM5sovjpVrSMUgYQF4LIJvfl+ZwHvr9wWkfMZY4wxJjLq6hJKFJErgBU4E8b9RFUvVNUVTRZdPRqzUnNdThzSmR7tU/nH3O9QtVYWY4wxprmo6y6h73HuCvob8AMwTESGVe5U1X9HN7T6VY1hOYDbmoMleD1MPaIPf/jvcr74fjfj+3SIyHmNMcYYc2DqSlg+wJl/Zbj7CKZAs0lYItXCAjB5dA/+9sFqHv/oO0tYjDHGmGai1oRFVac0YRyNsreojASPkJbkjdg5UxK9XDqhF/e/9y0rt+zj4C5tInZuY4wxxjROY6bmD4uITBeR7SKyrJb9IiIPi8gaEVkiIoc09BqVk8aJyIEHHOSi8b1IT/Ly+EfN4u5tY4wxJu5FLWEBngIm1bH/RKC/+5gK/KOhF8grKqNthMavBGublsiF43vy+uLNrNnuj/j5jTHGGNMwUUtYVPVjYHcdRU4HnlHH50CmiHRpyDUOdOHDukw9sg8piV4enr06Kuc3xhhjTPikvtt3RWQy8I6q5ovIrcAhwD2q+nW9JxfpBbyhqvst0CMibwB/UtVP3dezgd+p6oIQZafitMKQnZ09auZMZ+3FOz4rok2ScMPolPpCaZSZq0p5+/sy7jk8lW6+aDZG1c/v9+Pz+WIaQyxYveOL1Tu+WL3jS231njhx4kJVHV3f8eEsfvgHVX1ZRA4HjgX+gtN9M66hwTaWqk4DpgHk5ORobm4uAIEv59C7eya5uSOjct1hY0r56L4Pmb8vk0dOafAQm4iaO3culfWOJ1bv+GL1ji9W7/hyoPUOp9mgwv16MjBNVd8EDnzxHtgE9Ah63d3dFra8ojIyo9QlBNA+PYkpE3rx5tItfLstP2rXMcYYY0zdwklYNonIP4FzgLdEJDnM4+ozC7jYvVtoPJCnqlvCPTgQUPYVR28MS6WfH9GH9KQEHvrAxrIYY4wxsRJO4nE28C5wgqruBdoDN9Z3kIi8AMwHckRko4hcLiJXisiVbpG3gLXAGuAJ4OqGBJ5fXI5qZBY+rEtmWhKXuq0syzblRfVaxhhjjAmt1jEsItI+6OXcoG0lwH4DY2tS1fPq2a/ANWFFGUI0Zrmtzc+P7MOML37gj2+v5LnLx0V83hdjjDHG1K2uFpaFOInJQmAH8C2w2n2+MPqh1e3HdYQiMZymbm1SErn+6H7MW7OLud/uiPr1jDHGGFNdrQmLqvZW1T44awqdqqpZqtoBOAV4r6kCrE1TtrAAnD+uJ706pPHHt1ZSXhFokmsaY4wxxhHOGJbxqvpW5QtVfRs4LHohhWdvUSnQdAlLUoKH300ayLfb/LyycGOTXNMYY4wxjnASls0icquI9HIftwCbox1YfZq6hQVg0pDOjOrZjgff/5aCkvImu64xxhgT78JJWM4DsoHX3EdHd1tM/TiGpekSFhHh9ycdzPb8Eh6ds6bJrmuMMcbEu3pnulXV3cAvmiCWBskrLCMpwUNKordJrzuqZzvOPKQ7T3yyljNHdadvdvxNr2yMMcY0tbpua34dqHWhIVU9LSoRhSkvigsf1uemEwfy3oqt3DFrOc9cNtZuczbGGGOirK4WlvubLIpGiGXCkp2RzK+PG8Adr6/gnWVbOXFogxaZNsYYY0wD1ZqwqOpHlc9FJAkY4L5cpapl0Q6sPtFeR6g+F47vyYtfbeDuN1ZwVE42aUnhrCNpjDHGmMaod9CtiOTiTBj3KPAY8K2IHBndsOq3tzB2LSwACV4Pd/9kCJvzim2dIWOMMSbKwrlL6AHgeFU9SlWPBE4A/hrdsOoXyy6hSmN6tefcMT144pO1LNm4N6axGGOMMa1ZOAlLoqquqnyhqt8Csc0UgH1FZVFf+DAcN590MFm+ZH77yhLKbAZcY4wxJirCSVgWiMiTIpLrPp4gjMUPo6m8IkB+SXmTzsFSm7apidzzkyF8szWfaR+vjXU4xhhjTKsUTsJyFbACuN59rHC3xcy+YmeW2Vh3CVU6fnBnTh7WhYc+WM2a7f5Yh2OMMca0OvUmLKpaoqoPquoZ7uOvqlrSFMHVJhbT8tfnjlMHk5bs5TcvL7bFEY0xxpgIC+cuoQki8r6IfCsiaysfTRFcbWIxLX99sjOSufv0ISzasJe/f2jT9htjjDGRFM7kIf8H/ApYCFREN5zwNMcWFoBTh3dlzqrt/P3D1Rw5IItRPdvHOiRjjDGmVQhnDEueqr6tqttVdVflI5yTi8gkEVklImtE5KYQ+6eIyA4RWeQ+fhbOefcWlgLNL2EBuPO0wXRrl8ovXlxEfnHM59czxhhjWoVwEpY5IvIXETlURA6pfNR3kIh4cSabOxEYBJwnIoNCFH1JVUe4jyfDCXqf28LSHG5rrikjJZG/nTOCzXuLuH3W8liHY4wxxrQK4XQJjXO/jg7apsDR9Rw3FlijqmsBRORF4HScu4wOSHPtEqo0qmd7rju6Pw/NXs0R/bP46cjusQ7JGGOMadHCSViOVdXGjF3pBmwIer2RH5OfYGe6U/1/C/xKVTeEKFNNXlEZqYlekhO8jQiraVx3dD/mr93F7/+9jCFd29K/U0asQzLGGGNaLFHVugs4dwS9CkxX1ZVhn1jkLGCSqv7MfX0RME5Vrw0q0wHwq2qJiFwBnKOq+7XciMhUYCpAdnb2qBP+8CzLdlbw14lp4YYTE3uLA9z2WRG+ROG2Q1NJSZBGn8vv9+Pz+SIYXctg9Y4vVu/4YvWOL7XVe+LEiQtVdXSIQ6oJp4VlOHAu8H8i4gGmAy+q6r56jtsE9Ah63d3dVqXG4N0ngT+HOpGqTgOmAeTk5Ghq2w50LC8kNzfmazDWq2P/nVz45Be8tSOTh84dgUjjkpa5c+eSm5sb2eBaAKt3fLF6xxerd3w50HqHM3Fcvqo+oaqHAb8Dbge2iMjTItKvjkO/AvqLSG8RScJJemYFFxCRLkEvTwPCasHJKyqjbTOag6Uuh/XN4objBjBr8Wae++KHWIdjjDHGtEjhTBznFZHTROQ14G84qzf3AV4H3qrtOFUtB64F3sVJRGaq6nIRuUtETnOLXS8iy0VkMc60/1PCCbo5rNTcEFfn9iM3J5u7Xl/OgnW7Yx2OMcYY0+KEc1vzapy7e/6iqiPdafq3qeorwDt1Haiqb6nqAFXtq6r3uttuU9VZ7vObVXWwqg5X1Ymq+k04Qbe0hMXjEf52zgi6ZaZy5XML2bS3KNYhGWOMMS1KOAnLMFW9XFU/q7lDVa+PQkz1amkJC0BmWhJPXjKakrIAP396AYWl5bEOyRhjjGkxwklYuorIbBFZBiAiw0Tk1ijHVSsFCksryGxhCQtAv44ZPHzeSFZu3cdvXl5MIFD3HVrGGGOMcYSTsDwB3AyUAajqEpwBtDFR+Te+pQy6rWniwI7cfOJA3lq6lb9+8G2swzHGGGNahHBua05T1S9r3I4bs/6MqoSlBbawVPr5EX1Ys93P3z9cQ+e2KVwwrmesQzLGGGOatXASlp0i0henN6ZyQrgtUY2qDq0hYRER/t9Ph7LTX8of/rOMLF8yJwzuHOuwjDHGmGYrnC6ha4B/AgNFZBPwS+DKaAZVlwp3Zt7MtKRYhRARCV4Pj5w/kmHdM7n+hf/xld3ubIwxxtQqnInj1qrqsUA2MBA4Cjg82oHVprKFpSUOuq0pLSmB6VPG0C0zlcuf+oplm/JiHZIxxhjTLNWasIhIGxG5WUQeEZHjgELgEmANcHZTBVhTa+gSCtY+PYlnLh9LRkoi5z/xOUs3WtJijDHG1FRXC8uzQA6wFPg5MAeYDPxUVU9vgthCqkxY2rSShAWge7s0Xpw6noyURC548nMWb9gb65CMMcaYZqWuhKWPqk5R1X8C5wGDgBNUdVGTRFaLgEKblAS8nsavfNwc9WjvJC1tUhM5d9rnfLBiW6xDMsYYY5qNuhKWssonqloBbFTV4uiHVLcKbblzsNSnR/s0/n3VYfTr6GPqswt44uO1NrmcMcYYQ90Jy3AR2ec+8oFhlc9FZF9TBVhTQCEztWXfIVSXjm1SeOmK8Rw/qDP3vrWSS/71Jet3FYQsu3FPISu3xOyjMMYYY5pMrfOwqKq3KQMJV0CVzFbawlIpLSmBf1x4CC98uYG731jBMQ98xKiOHva03UiWL5nNe4t4a+lWPl69A48Ifzj5YC4+tBeeVtZNZowxxlQKZ+K4ZiWgrWvAbW1EhPPHHcSxB3fksbnf8fJX6/jVS4ur9ndpm8JlE3qzeMNe7nh9Ba8t2swlh/bk8P5ZdMxIiWHkLZ+6c/1oUG+c1thXfVtwuf2PJcxywdcoKlf2FZftf2wDzhFOnIQ8thHXqFHfRp0D2OIPsGa7n5olQx9bzzW0+r5Ixrn/ucKMs/J7q0YMK3dVkPTdzv0OrlmuMXHW+z0T8lqh46xZMvSx1a8Vqlzl+VduLidv0aYQ9Wl8nIRx/XDjpJ7Pva73KVScldZ8X8Zqz9oDjpNq5bRG+fDOUf29q6s+DY+z5vfxDz+UMq9gRa11qI/UfCObu9Su/fWGR//NvT8dGutQmtQHH87hoMGj2VdURvv0JHp1SMfjEVSVlxds5NG5a1i/qxBwkpkubVNon55EotdDoteD1yMEVAmo00oVCGjVaw3eXvVaCQScbVq1T6moZ78GnSf4dUWgxrmD9kPtfxAqAhV4Pd46f0k39I946F/CxhhjKlfhkWrbJMS2ynJBW0Me+2O5yt/nNa+x4u4TF6rq6Ppia5EtLK29SyiUBI8woFPGfttFhLPH9ODMUd1ZuimPz9fu4ttt+WzNK2bT3mLKKwKUB5TyQACvCB4RRMAjgtcjiAge97VHqPHaKev1CImeyteC191frayn8tgft0nQeZ0y+59bkFp+QJyvGzZs5KCDelTfX+3nQ6qVD94tdZSr1nkW5g9jXXHWWGur3uvXF+d3331Hv359a5yvrjhDlAtxreCN4bxP9ZUL8buq7jjrudbKFSs5eNDB1d7PA4mTOsvVfo2G1rUxcQafb/GixYwYMaL+OKXmPqh5REPrWlucNa9Za30a+LMSHOeXX3zJ2HFjIx/nAfxMU6PcgbyfhHyf4NNPP+Xwww9vcJyEWS7sOEOdOIrmzp1Lbm7uftvl7vCOb3EJC7SeSeMiyesRRvTIZESPzFiHElFz524nN/fgWIfR5OYGfiD3iD6xDqPJtd27mtwR3WIdRpMr3eDl0L4dYh1Gk9vg89A32xfrMJpcaoKQkWJ/xxoqnLWEmp3WfJeQMcYYY/YX1YRFRCaJyCoRWSMiN4XYnywiL7n7vxCRXuGct7XOw2KMMcaY0KKWsIiIF3gUOBFnltzzRGRQjWKXA3tUtR/wV+C+cM5tXULGGGNMfIlmC8tYYI272nMp8CJweo0ypwNPu89fAY6RMEYBdctMjWigxhhjjGneonZbs4icBUxS1Z+5ry8CxqnqtUFllrllNrqvv3PL7KxxrqnAVIB2HbuM+vdLz0cl5ubM7/fj88Xf4DSrd3yxescXq3d8qa3eEydObD23NavqNGAaQE5Ojoa6Laq1q+12sNbO6h1frN7xxeodXw603tHsEtoE9Ah63d3dFrKMiCQAbYFdUYzJGGOMMS1QNBOWr4D+ItJbRJKAc4FZNcrMAi5xn58FfKgtbepdY4wxxkRd1LqEVLVcRK4F3gW8wHRVXS4idwELVHUW8H/AsyKyBtiNk9QYY4wxxlTT4tYSEpF8YFWs44iBLGBnvaVaH6t3fLF6xxerd3yprd49VTW7voNbxKDbGlaFM5q4tRGRBVbv+GH1ji9W7/hi9W6cFjk1vzHGGGPiiyUsxhhjjGn2WmLCMi3WAcSI1Tu+WL3ji9U7vli9G6HFDbo1xhhjTPxpiS0sxhhjjIkzlrAYY4wxptlrUQmLiEwSkVUiskZEbop1PNEiIj1EZI6IrBCR5SLyC3f7HSKySUQWuY+TYh1rpInIOhFZ6tZvgbutvYi8LyKr3a/tYh1nJIlITtBnukhE9onIL1vj5y0i00Vku7vwaeW2kJ+vOB52f96XiMghsYv8wNRS77+IyDdu3V4TkUx3ey8RKQr63B+PWeAHqJZ61/p9LSI3u5/3KhE5ITZRH7ha6v1SUJ3Xicgid3tr+rxr+9sVmZ9xVW0RD5zZcr8D+gBJwGJgUKzjilJduwCHuM8zgG+BQcAdwG9iHV+U674OyKqx7c/ATe7zm4D7Yh1nFOvvBbYCPVvj5w0cCRwCLKvv8wVOAt4GBBgPfBHr+CNc7+OBBPf5fUH17hVcriU/aql3yO9r93fcYiAZ6O3+vvfGug6RqneN/Q8At7XCz7u2v10R+RlvSS0sY4E1qrpWVUuBF4HTYxxTVKjqFlX92n2eD6wEusU2qpg6HXjaff408JPYhRJ1xwDfqer6WAcSDar6Mc4yHMFq+3xPB55Rx+dApoh0aZJAIyxUvVX1PVUtd19+jrNAbKtSy+ddm9OBF1W1RFW/B9bg/N5vceqqt4gIcDbwQpMG1QTq+NsVkZ/xlpSwdAM2BL3eSBz8EReRXsBI4At307Vu09n01tY14lLgPRFZKCJT3W2dVHWL+3wr0Ck2oTWJc6n+i6y1f95Q++cbTz/zl+H8p1mpt4j8T0Q+EpEjYhVUFIX6vo6Xz/sIYJuqrg7a1uo+7xp/uyLyM96SEpa4IyI+4FXgl6q6D/gH0BcYAWzBaVZsbQ5X1UOAE4FrROTI4J3qtCO2ynvxxVnV/DTgZXdTPHze1bTmz7c2InILUA7McDdtAQ5S1ZHADcDzItImVvFFQdx9X9dwHtX/KWl1n3eIv11VDuRnvCUlLJuAHkGvu7vbWiURScT5wGeo6r8BVHWbqlaoagB4ghbaXFoXVd3kft0OvIZTx22VzYTu1+2xizCqTgS+VtVtEB+ft6u2z7fV/8yLyBTgFOAC9xc5bpfILvf5QpyxHANiFmSE1fF9HQ+fdwJwBvBS5bbW9nmH+ttFhH7GW1LC8hXQX0R6u/+JngvMinFMUeH2cf4fsFJVHwzaHty391NgWc1jWzIRSReRjMrnOIMSl+F8zpe4xS4B/hubCKOu2n9erf3zDlLb5zsLuNi9k2A8kBfUrNziicgk4LfAaapaGLQ9W0S87vM+QH9gbWyijLw6vq9nAeeKSLKI9Map95dNHV+UHQt8o6obKze0ps+7tr9dROpnPNajihs4AvkknFHH3wG3xDqeKNbzcJwmsyXAIvdxEvAssNTdPgvoEutYI1zvPjh3CSwGlld+xkAHYDawGvgAaB/rWKNQ93RgF9A2aFur+7xxErItQBlOf/XltX2+OHcOPOr+vC8FRsc6/gjXew1O/33lz/jjbtkz3e//RcDXwKmxjj/C9a71+xq4xf28VwEnxjr+SNbb3f4UcGWNsq3p867tb1dEfsZtan5jjDHGNHstqUvIGGOMMXHKEhZjjDHGNHuWsBhjjDGm2bOExRhjjDHNniUsxhhjjGn2LGExxkSEiHQIWnF2a9CKvH4ReSxK1/yliFxcx/5TROSuaFzbGNO07LZmY0zEicgdgF9V74/iNRJw5q04RH9cRLBmGXHLTNCgydmMMS2PtbAYY6JKRHJF5A33+R0i8rSIfCIi60XkDBH5s4gsFZF33Gm9EZFR7kJwC0Xk3VpWcD0aZymDcveY60Vkhbuo3otQtW7JXJzp740xLZglLMaYptYXJ9k4DXgOmKOqQ4Ei4GQ3afk7cJaqjgKmA/eGOM8EYGHQ65uAkao6DLgyaPsCnBVyjTEtWEKsAzDGxJ23VbVMRJYCXuAdd/tSoBeQAwwB3nd6dPDiTHNeUxdgZdDrJcAMEfkP8J+g7duBrpEL3xgTC5awGGOaWgmAqgZEpEx/HEgXwPmdJMByVT20nvMUASlBr08GjgROBW4RkaFud1GKW9YY04JZl5AxprlZBWSLyKHgLFcvIoNDlFsJ9HPLeIAeqjoH+B3QFvC55QbQele6NiZuWMJijGlWVLUUOAu4T0QW46z4eliIom/jtKiA0230nNvN9D/gYVXd6+6bCLwZzZiNMdFntzUbY1osEXkN+K2qrq5lfyfgeVU9pmkjM8ZEmiUsxpgWS0RygE6q+nEt+8cAZaq6qEkDM8ZEnCUsxhhjjGn2bAyLMcYYY5o9S1iMMcYY0+xZwmKMMcaYZs8SFmOMMcY0e5awGGOMMabZs4TFGGOMMc2eJSzGGGOMafYsYTHGGGNMs2cJizHGGGOaPUtYjDHGGNPsWcJijDHGmGbPEhZjWiARURHp1wTXmSIin0b7Ok1BRJaLSG6s4zDGNI4lLMZEkIj4gx4BESkKen1BLcfkisjGpo71QIlILzdxqqzfNhF5Q0SOi3VsoajqYFWd25BjQtRxnYjcFKUQjTF1sITFmAhSVV/lA/gBODVo24xYxxclmW59hwPvA6+JyJTYhhRxlXU8D7hNRCbVLCAiCU0fVrXri4jY73TTatk3tzFNQESSReRvIrLZffzN3ZYOvA10DfovvquIjBWR+SKyV0S2iMgjIpIU5rUuFZGVIpIvImtF5IqgfbkislFEfi0i291zXxq0v4OIzBKRfSLyJdA33Dqq6lZVfQi4A7hPRDwicqOIvFojvodF5CH3+VwRuVtE5rnxviciWUFlXxaRrSKSJyIfi8jgoH1PichjIvK2+77NE5HO7nu7R0S+EZGRQeXXicix7nOviPxeRL5zr7tQRHqEUcf5wHJgSNB7+TsR2Qr8y63zTe55d4nITBFp714zRUSec7fvFZGvRKSTu2+K+1nli8j3la1xInKHiDwXVIfKFp+EoPfvXhGZBxQCfURkoIi8LyK7RWSViJwd7mdoTHNmCYsxTeMWYDwwAqclYixwq6oWACcCm4NaYjYDFcCvgCzgUOAY4Oowr7UdOAVoA1wK/FVEDgna3xloC3QDLgceFZF27r5HgWKgC3CZ+2iofwMdgRzgOWCSiGRCVSvEucAzQeXPd+PsCCQBvwna9zbQ3933NVCzleps4Fac96kEmO+WywJeAR6sJcYbcFpLTsJ5ny7D+YNfK7cFYwIwGPifu7kz0B7oCUwFrgN+AhwFdAX24LynAJfgvO89gA7AlUCRm7Q+DJyoqhnAYcCiumKp4SL32hnADpxWrudx3rNzgcdEZFADzmdMs9QiExYRme7+d7gsjLJTRGSHiCxyHz9rihiNqeEC4C5V3a6qO4A7cf7QhKSqC1X1c1UtV9V1wD9x/gjWS1XfVNXv1PER8B5wRFCRMjeWMlV9C/ADOSLiBc4EblPVAlVdBjzdiLpudr+2V9UtwMfAZHfbJGCnqi4MKv8vVf1WVYuAmThJXWVdpqtqvqqW4LTcDBeRtkHHvua+V8XAa0Cxqj6jqhXAS8BIQvsZTsK4yn2fFqvqrjrqtBPYDTwJ3KSqs93tAeB2VS1x478SuEVVNwbFfJabqJXhJCr9VLXCjXtf0HmGiEiqqm5R1eV1xFLTU6q6XFXLcd7fdar6L/d753/Aq/z4/hvTYrXIhAV4CucHM1wvqeoI9/FklGIypi5dgfVBr9e720ISkQHiDGDdKiL7gP+H02pQLxE5UUQ+d7sE9uK0IgQfu8v941apEPAB2UACsKFGnA3Vzf262/36NHCh+/xC4Nka5beGiKWy2+ZPbvfKPmCdWya4LtuCnheFeO2rJcYewHd1V6OaLFVtp6oHq+rDQdt3uMlSpZ44Y3j2uu/9SpzWsk449X4XeFGcbsE/i0ii28p2Dk6ys0VE3hSRgQ2ILfjz6gmMq7y+G8MFOC1BxrRoLTJhUdWP+fGXIQAi0ldE3nH7oj9p4A+8MdG2GeePSaWD+LElQkOU/wfwDdBfVdsAvwekvouISDLOf9T3A51UNRN4K5xjcboTynH+mAfH2VA/xemWWuW+/g8wTESG4HRVhTv4+HzgdOBYnK6UXu72cOpSnw00YHxOHWp+dhtwunYygx4pqrrJbdG6U1UH4XT7nAJcDKCq76rqcThdcd8AT7jnKwDSgs4fKvEIjmED8FGN6/tU9aoDr6oxsdUiE5ZaTAOuU9VROH3gjwXtO1NElojIK+EMrDMmCl4AbhWRbHdQ6W044zvAaRXoUKOrIwPYB/jd5DvcPzhJQDJu8iEiJwLHh3Og243yb+AOEUlzxz1cEuZ1EZFOInItcDtws6oG3PMW44wneR74UlV/CPOUGTjjUnbh/NH+f+HGEoYngbtFpL87NmWYiHSIwHkfB+4VkZ4A7ud9uvt8oogMdbve9uF0EQXc9+10dyxLCU4XXcA93yLgSBE5yP3+uLme678BDBCRi0Qk0X2MEZGDI1A3Y2KqVSQsIuLD+Y/lZRFZhNPf38Xd/TrQS1WH4QxGa0yfvDEH6h5gAbAEWIozMPQeAFX9BiehWes243fFSbrPB/Jx/tt+KZyLqGo+cD3OWJA97jlmNSDOa3G6UbbidL3+K4xj9opIAU69TgImq+r0GmWeBoayf3dQXZ7B6ZLaBKwAPm/AsfV5EOc9eg8nefg/IDUC530I5/1+T0TycWIe5+7rjJO47cPpKvoI5/3w4AwC3ozTcnwUboKqqu/jfPZLgIU4CUmt3M//eJzBtptxPsf7cJJYY1o0UQ3VGt38iUgv4A1VHSIibYBVqtqlnmO8wG5VbVtXOWNMZInIQThdHZ2DBpoaY0zYWkULi/sL8HsRmQxVtx8Od58HJzGn4fxnY4xpIuJMZnYD8KIlK8aYxorpzIyNJSIvALlAljhTmt+OMxL+HyJyK5AIvAgsBq4XkdNwBhPuBqbEImZj4pE7LmMbTtdOQ+7sM8aYalpsl5Axxhhj4ker6BIyxhhjTOvW4rqEMjMztV+/frEOo8kVFBSQnp4e6zCanNU7vli944vVO77UVu+FCxfuVNXs+o5vcQlLp06dWLBgQazDaHJz584lNzc31mE0Oat3fLF6xxerd3yprd4iEtaM2tYlZIwxxphmzxIWY4wxxjR7rS9hCVTEOgJjjDHGRFiLG8NSp6+fhXduhgtfgYPGxzoaYw5YWVkZGzdupLi4uP7CrUDbtm1ZuTL+5nYMrndKSgrdu3cnMTExxlEZ07y0roRlyUtQmg9z/wgX/zfW0RhzwDZu3EhGRga9evVCJBKLFDdv+fn5ZGRkxDqMJldZb1Vl165dbNy4kd69e8c6LGOaldbVJbRnnfN17Ufg3x7TUIyJhOLiYjp06BAXyYoBEaFDhw5x06JmTEO0noSlvATyNkLOyYDCt+/EOiJjIsKSlfhin7cxobWehGXvBkDh4FMhowt892GsIzLGGGNMhLSehGXP987X9r2hz0RYO9fuGDImArxeLyNGjGDw4MEMHz6cBx54gEAgEJNYFixYwPXXXx92+dzcXHJychg+fDgTJkxg1apVUYzOGBNNrSdh2e0mLO16Qd+JULQHtiyOaUjGtAapqaksWrSI5cuX8/777/P2229z5513xiSW0aNH8/DDDzfomBkzZrB48WIuueQSbrzxxv32V1Q0zT82qhqzRM+Y1qD1JCx710NCCvg6QZ9cZ9vaOTENyZjWpmPHjkybNo1HHnkEVeXII49k0aJFVfsPP/xwFi9ezB133MFll11Gbm4uffr0qZZk/OQnP2HUqFEMHjyYadOmVW33+XzceuutDB48mGOPPZYvv/yy6vhZs2YBztTep5xyCgB+v59LL72UoUOHMmzYMF599dU6Yz/yyCNZs2ZN1bV+/etfM3z4cObPn89zzz3H2LFjGTFiBFdccQUVFRVUVFQwZcoUhgwZwtChQ/nrX/8KwMMPP8ygQYMYNmwY5557LgB33HEH999/f9W1hgwZwrp161i3bh05OTlcfPHFDBkyhA0bNvCXv/yFMWPGMGzYMG6//fYD+DSMiS+t57bmvesh8yAQAV9H6DQEvpsDR/w61pEZExF3vr6cFZv3RfScg7q24fZTBzfomD59+lBRUcH27du5/PLLeeqpp/jb3/7Gt99+S3FxMcOHD+e1117jm2++Yc6cOeTn55OTk8NVV11FYmIi06dPp3379hQVFTFmzBjOPPNMOnToQEFBAUceeSQPPfQQP/3pT7n11lt5//33WbFiBZdccgmnnXZatTjuvvtu2rZty9KlSwHYs2dPnXG//vrrDB06FHAWYRs3bhwPPPAAK1eu5L777mPevHkkJiZy9dVXM2PGDAYPHsymTZtYtmwZAHv37gXgT3/6E99//z3JyclV2+qyevVqnn76acaPH897773H6tWr+fLLL1FVTjvtND7++GNGjhzZoM/AmHjUilpYfnASlkp9cmHDF1BaGLOQjGntJk+ezBtvvEFZWRnTp09nypQpVftOPvlkkpOTycrKomPHjmzbtg1wWiiGDx/O+PHj2bBhA6tXrwYgKSmJ4447DoChQ4dy1FFHkZiYyNChQ1m3bt1+1/7ggw+45pprql63a9cuZIwXXHABI0aMYN68eVWtIF6vlzPPPBOA2bNns3DhQsaMGcOIESOYPXs2a9eupU+fPqxdu5brrruOd955hzZt2gAwbNgwLrjgAp577jkSEur/n69nz56MH+9MZPnee+/x3nvvMXLkSA455BC++eabqvobY+rWelpY9qyHbqN/fN13Isx/BNZ/Bv2PjV1cxkRIQ1tComXt2rV4vV46duyIiHDcccfx3//+l5kzZ7Jw4cKqcsnJyVXPvV4v5eXlzJ07lw8++ID58+eTlpZGbm5u1ZwjiYmJVbf0ejyequM9Hg/l5eWNjnfGjBmMHj262raUlBS8Xi/gjC255JJL+OMf/7jfsYsXL+bdd9/l8ccfZ+bMmUyfPp0333yTjz/+mNdff517772XpUuXkpCQUG18SvA8Kunp6VXPVZWbb76ZK664otp18vPzG10/Y+JF62hhKc6D4r3VW1gOOgy8STaOxZgI2rFjB1deeSXXXnttVXLxs5/9jOuvv54xY8bU2spRKS8vj3bt2pGWlsY333zD559/3uhYjjvuOB599NGq1/V1CdXmmGOO4ZVXXmH7dmeyyd27d7N+/Xp27txJIBDgzDPP5J577uHrr78mEAiwYcMGJk6cyH333UdeXh5+v59evXrx9ddfA/D111/z/fffh7zWCSecwPTp0/H7/QBs2rSp6rrGmLq1jhaWvT84X9v1/HFbUpqzntB3lrAYcyCKiooYMWIEZWVlJCQkcNFFF3HDDTdU7R81ahRt2rTh0ksvrfdckyZN4vHHH+fggw8mJyenqqukMW699VauueYahgwZgtfr5fbbb+eMM85o8HkGDRrEPffcw/HHH08gECAxMZFHH32U1NRULr300qqWkz/+8Y9UVFRw4YUXkpeXh6py/fXXk5mZyZlnnskzzzzD4MGDGTduHAMGDAh5reOPP56VK1dy6KGHAs7g3+eee47U1NRGvw/GxA1VbVGPAQMG6H5WvK56exvVjQuqb//kQWf73o37H9PCzJkzJ9YhxES813vFihWxDSQMmzZt0v79+2tFRcUBn2vfvn0RiKjlqVnvlvC5R0K8/3zHm9rqDSzQMP7+t44uocoWlsxe1bfnnOx8/eaNJg3HmHjxzDPPMG7cOO699148ntbx68QY0zy1jt8we9dDYjqkta++PXsAZA+Ela/HJi5jWrmLL76YDRs2MHny5FiHYoxp5VpHwrJnvTN+JdSiYQefCuvnQcHOpo/LGGOMMRHROhKW3d9B+z6h9x18GmjAuoWMMcaYFqzlJywV5c46Qh36hd7feaizvtCKWU0aljHGGGMip+UnLHk/QKCs9oRFBAaf4azenL+1SUMzxhhjTGS0/IRlp7OYGVn9ay8z4nzQClgys2liMqaV2LVrFyNGjGDEiBF07tyZbt26Vb0uLS2tVvZvf/sbhYX1L4WRm5vLggULQm4/5JBDGD58OBMmTGDVqlURq4cxpuVr+QnLLjdhqa2FBZxkpvsYWPwCqDZNXMa0Ah06dGDRokUsWrSIK6+8kl/96ldVr5OSkqqVDTdhqcuTTz7J4sWLueSSS7jxxhv3219RUXFA5w+Xqlabat8YE3tRS1hEZLqIbBeRZbXsFxF5WETWiMgSETmkURfatQZS2kJah7rLDT8Ptq+ALYsbdRljjGP27NmMHDmSoUOHctlll1FSUsLDDz/M5s2bmThxIhMnTgTgqquuYvTo0QwePJjbb7+9Qdc48sgjWbPG+WfE5/Px61//muHDhzN//nyee+45xo4dy4gRI7jiiiuoqKigoqKCKVOmMGTIEIYOHcpf//pXwFlocdCgQQwbNoxzzz0XgDvuuKNqEUSAIUOGsG7dOtatW0dOTg4XX3wxQ4YMYcOGDfzlL39hzJgxDBs2rMF1MMZEVjSn5n8KeAR4ppb9JwL93cc44B/u14bZtRo69A99S3OwIWfAOzfD/56DriMafBljYu7tm2Dr0sies/NQOPFPYRcvLi5mypQpzJ49mwEDBnDxxRfzj3/8g1/+8pc8+OCDzJkzh6ysLADuvfde2rdvT0VFBccccwxLlixh2LBhYV3n9ddfZ+jQoQAUFBQwbtw4HnjgAVauXMl9993HvHnzSExM5Oqrr2bGjBkMHjyYTZs2sWyZ8//R3r17AfjTn/7E999/T3JyctW2uqxevZqnn36a8ePH895777F69Wq+/PJLVJXTTjuNjz/+mCOPPDLs98sYEzlhtbCISEcR+amIXCMil4nIWBGp81hV/RjYXUeR04Fn3Jl5PwcyRaRL+KG7dqyCrNDrdlST2g4GnQ6LX4QSWxnVmMaoqKigd+/eVWvlXHLJJXz88cchy86cOZNDDjmEkSNHsnz5clasWFHv+X/2s58xYsQI5s2bV9UK4vV6OfPMMwGndWfhwoWMGTOGESNGMHv2bNauXUufPn1Yu3Yt1113He+88w5t2rQBYNiwYVxwwQU899xzJCTU//9Zz549q9Y3eu+993jvvfcYOXIkhxxyCN988w2rV6+u/00yxkRFnT/BIjIRuAloD/wP2A6kAD8B+orIK8ADqrqvEdfuBmwIer3R3bYlRBxTgakA2dnZzJ07F4DE0r1M8G9jjT+Fje62umQkjmZU6Uy+feVuNnc7qREhx47f76+qdzyJ93q3bduW/Hw3wT78luhcLD+8BL6kpAQRoaKioiqmwsJCysvLyc/PR1Xx+/0kJyezbt06/vznPzN37lzatWvHlVdeyd69e8nPz6eiooKCgoIf6+WqqKhg2rRpjB49Oii0fFJSUqrGxhQVFXHeeedxxx137Bffp59+yuzZs3nkkUeYMWMGjz32GC+++CLz5s3j7bff5u677+bzzz+noqKCoqKianWoXD05NTW1antJSQm/+tWvuOyyy2q8XZH/hyf4PQWnJSsevu/j/ec73hxovev7l+Mk4Oeq+kPNHSKSAJwCHAe82ugIwqCq04BpADk5OZqbm+vs+O5D+Az6TfgJ/focFcaJjoKtLzBgz1wGnH9f/d1IzcjcuXOpqnccifd6r1y5koyMjFiHA0BycjIJCQls2LCBbdu20a9fP1599VWOOeYYMjIyaNOmDapKRkYGgUCAjIwMunfvzo4dO/jggw847rjjyMjIwOv1kp6evl+9vF4vHo8nZH0rt5188smcfvrp/O53v6Njx47s3r2b/Px80tPTSU9P58ILL2TEiBFceOGFpKen88MPP3DyySdz/PHH07NnT0SEnJwc3njjDTIyMvj6669Zv349Pp8PoNr1Tz31VP7whz9w+eWX4/P52LRpE4mJiXTs2DHi721+fn61eqekpDBy5MiIX6e5ifef73hzoPWuM2FR1f2H6f+4rxz4T6OvDJuAHkGvu7vbwrfVHc/beWh45UVg7BXwnyudeVn6TmzQ5YyJdykpKfzrX/9i8uTJlJeXM2bMGK688koApk6dyqRJk+jatStz5sxh5MiRDBw4kB49ejBhwoSIXH/QoEHcc889HH/88QQCARITE3n00UdJTU3l0ksvrbqz549//CMVFRVceOGF5OXloapcf/31ZGZmcuaZZ/LMM88wePBgxo0bV9W9VdPxxx/PypUrOfTQQwFn8O9zzz0XlYTFGFM/0TBv8xWRk4HBOF1CAKjqXfUc0wt4Q1WH1HK+a3FaccYBD6vq2PriyMnJ0ar5GV79ubNO0A31941XKSuGvw2FToPh4v+Ef1yMWUYeX4JbWA4++OBYh9NkarY0xIua9Y6Xzz3ef77jTW31FpGFqjp6/yOqC3fQ7ePAOcB1gACTgZ71HPMCMB/IEZGNInK5iFwpIle6Rd4C1gJrgCeAq8OJpZpNC6HL8IYdk5gCh10La+fAxoUNvqQxxhhjml64tzUfpqrDRGSJqt4pIg8Ab9d1gKqeV89+Ba4J8/r7y9/mLHo4akrDjx19GXz6V/jkfjjvhUaHYIwxxpimEe7EccXu10IR6QqUAQ2/BTmSfpjvfO15WMOPTc6AcVfBqrciP6+FMcYYYyIu3ITldRHJBP4CfA2sA56PUkzhWfcJJKZB5/AmotrPuKnODLkf3BnZuIwxxhgTcfUmLCIyAlgJdFHVV3HGrgxU1duiHFvtAgFY+Qb0PRoSkuovH0pqOzjyRljzvnN7tDHGGGOarToTFhG5DZgJnAm8KSI/V9USVc1rkuhq88Nn4N/qzFx7IMZOhcyD4L0/QKBpFlUzxhhjTMPV18JyDjDCHUA7Bne22Zj79K+Q2h4Gnnxg50lIhmPvgG3LYOG/IhKaMa3Nvffey+DBgxk2bBgjRozgiy++AMJfnblmuZNOOimsdX0AnnrqKbKzsxkxYgSDBg3iiSeeaFQdjDEtX313CZWoaiGAqu6qb/2gplBYvInnt/k5ePQUhniTSDzQEw4+AxY+BR/cBQNPgYzOEYjSmNZh/vz5vPHGG3z99dckJyezc+dOSktLAScRufDCC0lLS6vzHDXLvfXWWw2K4ZxzzuGRRx5h+/btDB48mNNOO41OnTpV7S8vLw9rnaBIaMprGdOiBSqgZB9atJfCgu3kF26naPtnLPpsAfuKduEvzsNfmkd+mT/sU9b3k9dHRGa5zwVn/aDK16jqaQ2vxYHZ6angj1ntYeMs2r/yKWfnnM2UwVNIT0xv3AlF4OS/wj8Oc1ZznmwtLcZU2rJlC1lZWSQnJwNUrcT88MMPs3nzZiZOnEhWVhZz5szhqquu4quvvqKoqIizzjqLO++8M2S5Xr16sWDBArKysnjmmWe4//77ERGGDRvGY489VmssHTt2pG/fvqxfv57f/e53pKSk8L///Y8JEyZwzTXXcM0117Bjxw7S0tJ44oknGDhwIC+//DJ33nknXq+Xtm3b8vHHH7N8+XIuvfRSSktLCQQCvPrqqyQmJnLKKadUrfZ8//334/f7ueOOO8jNzWXEiBF8+umnnHfeeeTm5nLDDTfg9/vJysriqaeeokuX2N40aUxEBQJQmo8W5VFctBO/fxv5hdvJL9qFv2g3+SV78ZfkkV/qJ7+8AH95Ef6KEvIDpeRrOX6twC+Q7xH8Hg+B4GVwDmD90PoSlpqDRO5v/KUi46CkHsyePJvFOxYz67tZPL74cf797b+547A7OKL7EY07aVY/OPI3MOdeGDoZBrashRFNfLjvy/v4Zvc3ET3nwPYD+d3Y39W6//jjj+euu+5iwIABHHvssZxzzjkcddRRXH/99Tz44IPMmTOnKom59957ad++PRUVFRxzzDEsWbIkZLlKy5cv55577uGzzz4jKyuL3bvrWtwd1q5dy9q1a+nXrx8AGzdu5LPPPsPr9XLMMcfw+OOP079/f7744guuvvpqPvzwQ+666y7effddunXrVtUN9fjjj/OLX/yCCy64gNLSUioqKti2bVud1y4tLWXBggWUlZVx1FFH8d///pfs7GxeeuklbrnlFqZPn17fW21M01CF0gIo2UdJwQ7yC7bhL9yBv3An+UW7yS/Zg79kH/ll+fhLC/CXF7KvogR/oBS/lpGvFeQL+N1ko7yeNfc8Cj6EDI8XnzeRDI+PLgkpZCSk4UtMJyMpg4yktvhSMtm+JY8RQ8biS+uIL70TGant8SX5SJtSdyttpfrWEvoo/HepqQgd0zpyXM/jOK7ncSzZsYQ759/JNbOv4arhV3HF8CvwNKbnasIvYeUsmHUtdJsPGZ3qPcSY1s7n87Fw4UI++eQT5syZwznnnMOf/vQnpkyZsl/ZmTNnMm3aNMrLy9myZQsrVqxg2LDapx348MMPmTx5clUi0759+5ArIb/00kt8+umnJCcn889//pP27dsDMHnyZLxeL36/n88++4zJkydXHVNSUgLAhAkTmDJlCmeffTZnnHEGAIceeij33nsvGzdu5IwzzqB///71vg/nnHMOAKtWrWLZsmUcd9xxgLPKsrWumIhRhfJiKM6jrHA3/oJt+Au2s69wB/7i3fiL95Bfug9/ST75ZX7yywvxVxTjD5SQHygnXyvwizotG+Kh1FP/Ar8+BZ948SUm0saTRrY3md4JaWS4yYYvqQ0ZKZn4UjuQkZpFRnpHJ+FI60CbpDakJqQiYS4kPHfuXA4bmNvot6fOhEVEXsdZJfkdVS2rsa8PMAVYp6ox+/diWPYwZpw0g7s/v5vHFj/G2ry13D3hblISUuo/OFhCEpzxJEw7yklazp/ZolZzNq1fXS0h0eT1esnNzSU3N5ehQ4fy9NNP75ewfP/999x///189dVXtGvXjilTplBcXBz6hA1UOYalpvR0pxs4EAiQmZnJokWL9ivz+OOP88UXX/Dmm28yatQoFi5cyPnnn8+4ceN48803Oemkk/jnP//JgAEDqhZOBPaLvfJaqsrgwYOZP39+ROpmWpnykqBulK3kF2zHX7QTf9Ee/JUtG6X72LpnK19s9OKvKKagooT8QBl+KvCj+EXwe4RiT/3/eKcqZODF500gIzGFTG8KPRJSnZaNRB8ZyW3wpbTDl9KeNqkd8KVl40vvSEZaNhnJbUhPTG/cP/gxUl+X0M+BG4C/ichuYAfO4oe9gO+AR1T1v1GNMAwpCSncM+Ee+mX2468L/8rmgs08PPFhOqR2aNiJOg6E4+6Ct38Lnz8GhzZ+5QBjWoNVq1bh8XiqWiEWLVpEz57OMmIZGRnk5+eTlZXFvn37SE9Pp23btmzbto233367apGz4HLBjj76aH76059yww030KFDB3bv3k1iYsOH0bdp04bevXvz8ssvM3nyZFSVJUuWMHz4cL777jvGjRvHuHHjePvtt9mwYQN5eXn06dOH66+/nh9++IElS5ZwxBFHsH37dnbt2oXP5+ONN95g0qRJ+10rJyeHHTt2MH/+fA499FDKysr49ttvGTx4cIPjNs2I241SUbyHgoId+P3b8BftwF+0y2nVKM6joHQf+aV+/OUF5JcVUhAoxl/hjNko0AryJYBfhIIwulFIhLRy8OHB503Al5hOW28K3bwp+BLT8SX68CW3ISO5Lb6U9mSkdiDDTTZ8aR2dRCTJR4InvgaA19cltBX4LfBbd+XlLkAR8G3l3UPNhYhw6ZBL6ZHRg5s/uZkL3rqAR45+hH7t+jXsRGOnwvcfO3OzdB4KvY+MTsDGtAB+v5/rrruOvXv3kpCQQL9+/Zg2bRoAU6dOZdKkSXTt2pU5c+YwcuRIBg4cSI8ePZgwYULVOWqWqzR48GBuueUWjjrqKLxeLyNHjuTvf/97o+KcMWMGV111Fffccw9lZWWce+65DB8+nBtvvJHVq1ejqhxzzDEMHz6c++67j2effZbExEQ6d+7M73//exITE7ntttsYO3Ys3bp1Y+DAgSGvk5SUxCuvvML1119PXl4e5eXl/PKXv7SEJZYqyqFkH6WFu/AXbsdfsJ38wp1OsuEODnXGbBRQUF5IvjtA1K+l+AMV+KkgX5QCj4eCMFo1vKr4EHxuy4bPk05nbwp93WQjI8mHL6kNvspkI60D6akdnDEb6Z3wpbRlwbwFHD3x6CZ4c1oXcdYgbDlycnJ01apVdZZZvnM51354LcXlxTyQ+wCHdW3gekMl+fDEMVC4E6bOdSaXizFbjjy+VNZ75cqVHHzwwbEOp8nk5+eTkZER6zCaXM16x8XnrsrHH77HEWOGU1S4nXz/dvxFzp0oBUV73DtR9lFQ6ozX8JcXkV9RTEGgBH+g3LkbBcXvIezxGikK6YjTjeJJxOdJwudNwed2o/iSfPiS2pKRnIkvtb37yMLn60RGWifSkzMaNGajNvH+e60mEVmoqqPrO75VticNzhrMCye/wDWzr+HqD67m9+N+z9k5Z4d/guQMOPd5eOJoeP4cmPImpLWPXsDGGNOSuLe9lhfuoaBgG/kF2yko2uXc9lq8m/wSpwvFX+oMDC1wkw3nTpTK216VfPFQsEGq3/YagqiSjjhdKJ4EfAmptPck0zMh1U02fPiSMvAltyUjJZP0lPZOF0paFr70TvhSO+BLyiDRe8Azd5kYapUJC0Dn9M48c+Iz3PjRjdz9+d2s37eeX436Vfh9fln94JxnYcZZ8PzZcNF/INkX1ZiNMSbqykvQ4n2UFO7AX+B0ofiLdpFfvJuC4r3kl+zDX+YkG373LpT8ihIKAmX4tYJ8AvhF8Xs8FIXRhZKgkFGZbHgT8XlT6eZJISMhlYqicrp26OaMyUjOxFd5N0paNulpWWSkd8aXkklaYlqLGhxqoiPshEVEUoGDVLXu/phmJD0xnYePfpi/fPUXnlnxDIt3LOb/Hf7/OKhNmF08fY6Cs/4FMy+Cly6A816ExNToBm1MDap6wE3QpuWotZs+UAEl+QSK8yh0k438wp0UFO8iv2iPO5FXHgWlBeSXOfNr+N2BoVWtGgTwe4T8cAaGUnkXipDuSSDDm4LPm0Rnb3CrhjM41JfcjoyU9vjS3DtR0jo6d6MkZ5DkSar1+zdeu0ZM44SVsIjIqTiTxiUBvd0VnO+KxUy3DZXgSeDmcTczPHs493xxD2e9fha/Gf0bJg+YHN4fgYNPgdMfhf9cDTMmw3kvOF1GxjSBlJQUdu3aRYcOHSxpaalUQQOgFQQCFQQqyghoORWBcgKBciq0gtLSEkrLd1ARKGffviJ+2LGEf82/iHwtcxMNZ+ZQv8dDgQha72Re+w8MzfYm09ubSkZiGr7EDKcLJaWtk2yktndaNNwJvXyp7UhPTI+7u1BM8xbud+MdwFhgLoCqLhKR3lGKKSpO6nMSozqN4rbPbuPuz+/mg/UfcMv4W+jZpmf9B484HzyJ8NoV8MzpcMErNqbFNInu3buzceNGduzYEetQmkRxcTEpKQ2cQymaNACqqAZQrSCgFWggQEADKAFUAwTc/QEUVUVRAjgtJQFAgYA4X+u7xUFRNhVtYOb6JxFvAJ84rRodvCn4EtLISEwjPdHn3O6anEl6SjsyUjvgS8siI72Tk3Qkt43IwFBjmptwE5YyVc2r8QPQsm4vAjqld+LxYx/npVUv8dDXD/HT//6Uy4dezuVDLq9/orlhkyEpHV6eAk8e63QPZQ9okrhN/EpMTKR37xb1v8EBmTt3LiNHjjzwE7njNIoKt+P3O5N3FbhzahQUO7e6FpTm4y/zU1Be5MwWWl5MgZbhD5RTQAUFKAXu9ORlYfzx97p3oPjES7ok4PMkke5Ndu5CSUx370Jp44zTcO9CyUjNwpeezfJl33PMkcfjS/SR5E3iEi498PfAmFYm3IRluYicD3hFpD9wPfBZ9MKKHhHh3IHncsxBx3D/gvt5fPHjzFozi6tHXM0pfU7B6/HWfvDAk+Di/8JLFzpJy1nTof+xTRe8Ma1ZIIC3vJCyPeudMRqFO/EX7aCwaI+TaJTk4S/NdxONQvzlhRS4d544A0KdCbz8AgUeCavrBCA5ONHwJuDzpNHFm4zPm0p6Ypo7VqMN6clOspGe2h5fagfS3bEa6SltSU9MJ8Wb0uhWje3fFtE+xVptjalLuAnLdcAtQAnwPPAucE+0gmoK2WnZ3HfkfZzZ/0weWPgAt867laeWP8V1I69jYo+Jtf/i6XkoTJ0DL5zv3EF0xA2QezPY7XImXpWXOnedFO3EX7iTgsId+It2U1C8G3/xXgqqWjOcibv85UVBiYYzGLRAAvhxEo3iTfXfDVJ5m2s6HtLx4ktIJN2TTidvMukJqfgS0khPysCX6CPdHaeRntIOX1oH0t0Bob7U9qQlppHosZ9dY1qCehMWEfECb6rqRJykpVUZ22UsL578Iu+vf5+//+/v/GLOLxjUYRCXDbmMYw86NnSLS+ZBcPm7zhT+nzwA382BM5+EDn2bvgLGNIY7FXmgOI/Cgh34C3dQULQTf/FuCor34C/Oo6A0z7m11U00CiqKKagodRINLcevAQpE3RaN8O46SXAHg6bjxefxkp6QRgdPEj29KaQnplLmL6N7x+5ui0ZmtRYNX3o26WnOTKGpCal2m6sxcabehEVVK0QkICJtVTWvKYJqaiLC8b2O5+iDjmbWd7OYvmw6v/noNxyUcRCXDL6EU/qcQlpijeWvk9Kdu4f6HQuv/wL+MQGO/A0cdh0kJMemIqb1qyiDknzKinY7a54UVo7N2E1B1TTk+RSUVSYazviMgkAp/kAZhZW3tjZgKnJwbm9Nd+86SU9wuk26e5zWjPSEVHxJPtITM/AltyE9JdNZcC21A+nuGI301Cx89dziCnabqzGmduF2CfmBpSLyPlBQuVFVr49KVDGS4EngjP5ncHrf0/lww4dMXzqduz+/mwcXPsikXpM4o/8ZDM0aWv0X7uCfQvex8M5N8OHdsPhFOO5OyDnJVns2DlUoK3IHge6koHA7BYU7KShylov3l+b9OD7DnT9jp38P76zzOIlG5dgMlAIPFIhQEkaiIVWtGR6nNcObQoY3mc7uVOTpCWmkJzkzhKYnt3VaM1Lc8Rnp2fhSO5Kemmm3txpjmoVwfwv9233EBa/Hy3E9j+PYg45l0Y5FvPrtq7z1/Vu8uvpV+mX24+Q+J3NCzxPo0aaHc0Dbbs6suKvfd7qJXjwfuoyAibdA/+MscWmJVKG8BEr97gquOyko3Im/2FnnxF+8h4JSZ50Tf6mfgvKCH8dmVDitGQVajp/KbhMPBZ76pyAHZ2ZQXwJVc2ike3x09CbT25uCLzGN9MR0fIkZpCdXJhrtnMXVqhKNbHzJbezWVmNMqxJWwqKqT0c7kOZIRBjZcSQjO47kprE38fa6t/nP6v/w0NcP8dDXD3Fw+4OrupJ6t+mN9D8O+nzptLJ8/Gd4fjJkHwxjfw7Dz3W6kUz0BCUZWpxHcdFuCgp3Uli0u2psRvU7TZwuEyfJKKlxp4lS4E7UFc704+B0m/jwkO7x4vMmke7x0cGb4nSZuPNnVK53kp6cSXpKppNouMvGp6e2q7qt1bpGjDGmunBnuv2eEPOuqGqfiEfUTPmSfEweMJnJAyaz2b+Z99e/z3vr3qtKXrqkd+GwrocxodsExgw6lcxh58DSmfDFP+HNG+CDO2Hw6TDkTOh1BNR1+3Q8qdGSUViwi4KiXRS64zJ2bFzG7PdmUeCOyygISjIKKkoodJOMQq2ggIB7O6uHQo9QEUbrgqdybIbHQ7o3EZ8nlbaeZLoluN0miT7nTpNkZ7l4Z3xGe9JTs0h3pyFPT84gPSG97lvijTHGHJBwu4SCl31OASYDcTtpQFdfVy4ZfAmXDL6ELf4tfLLpEz7b/BnvrHuHV1e/CsBBGQcxNHsoQ4+8kmEBD31XzSZt2b/h62fA1wn6Hw99J0LvXEjvENP6NJh7hwmlfkoL91BQtIOCwl1OC4bbilFQuo/C0nwKSgvwl/spLC+uusukIFBKgVZQQAWFKAUiFHik9paMLdVfehXSqpKMBNI8qaR7kujotmakJ6aTnphOWlJG1dwZacnt3HVOspxkIymD9MR06zYxxpgWItwuoV01Nv1NRBYCt0U+pJali68LZ+eczdk5Z1MWKGPJjiX8b/v/WLpjKV9u+ZI3174JgCB0HTCEfgkZ9CnYQ+91b9Nl5Uy6lAfo3K4vyV1GQNcR0HkotOsNGV0gzK6IeqlCeTGU+Ckr3kNh4S6KinZTVLyHQnfmz8rxGIWV4zHKiiiscJOMQBkFWuYmGQEKoWoG0HBuZQVIcZOMdI+XdG8iaZ50sj3JpCekkBY0ADTdnaArPdm5nXXt2s2MH5NLemoWaUk+0hPTSfYmW5JhjDFxJtwuoUOCXnpwWlzstoEaEj2JjOo0ilGdRgHOWiLbCrexdOdS1uxdw9q9a1mzdw3zArspz0yDzMpbpQvpkDeP9rvmkrkoQGYgQBuFNgnpJCemkpiQQmlxBZu2tsMLlKtSphWUaTllgQpKAuUUUU5RoJxCLadIKyhSp/WiCKVIlELxUOSRsBMMUUgH0vC4s3+mkuZJor03mXRvKmmJqfgS0klPyqhqyahMMtJTOzhf07KrkozG3mUS2DGXgZ1HNepYY4wxrUe4f0UeCHpeDqwDzo54NK2MiNA5vTOd0ztzXM/jqraXBcrYVrCNLQVb2OzfzOaCzWwt2Moe/1byCrawtiSPvLIC9gVKKaUQtBCSgZLQ0+Akuq0XqeIhzeMlVVJI9SSQ7Uki1ZtEqjeZNG8KqYlppCX6SE3ykZqUQVpyW9LcJCMttQPpaVlO4mFdJcYYY5qZcLuEJkY7kHiS6Emke0Z3umd0r7esqlKu5Xw490PGTxhPWaCMRE9i1SPBk2CJhTHGmFYvrEESIvILEWkjjidF5GsROT6M4yaJyCoRWSMiN4XYP0VEdojIIvfxs8ZUojUTERI9iSR7kmmb3Jas1CzaJrd11kDxJlqyYowxJi6EO6rzMlXdBxwPdAAuAv5U1wHuGkSPAicCg4DzRGRQiKIvqeoI9/Fk+KEbY4wxJl6Em7BU/ht/EvCMqi4P2labscAaVV2rqqXAi8DpjQvTGGOMMfEs3IRloYi8h5OwvCsiGUCgnmO6ARuCXm90t9V0pogsEZFXRKRHmPEYY4wxJo6I6n4T2O5fSMQDjADWqupeEWkPdFfVJXUccxYwSVV/5r6+CBinqtcGlekA+FW1RESuAM5R1aNDnGsqMBUgOzt71MyZMxtSx1bB7/fj8/liHUaTs3rHF6t3fLF6x5fa6j1x4sSFqjo6xCHVhHtb86HAIlUtEJELgUOAh+o5ZhMQ3GLS3d1WpcaEdE8Cfw51IlWdBkwDyMnJ0XhcYyVe15axescXq3d8sXrHlwOtd7hdQv8ACkVkOPBr4DvgmXqO+QroLyK9RSQJOBeYFVxARLoEvTwNWBlmPOb/t3ffcVJV9//HX5+d7YWlLL13RRAEFBULtgR7YovGmlgTE/X7jT+jMcWY5KvGxBITk6gx9hI7thgs2JUmvYP0ssACy7Kw9fP7Yy5kxV12Ye/s7My+n4/HfeydO7d8Dnd35sM5554jIiLSgjQ0Yan0aNvR6cCf3f0vQN6eDnD3SuBHwFtEE5F/uftsM7vVzE4LdrvGzGab2XTgGuCSfSmEiIiIJLeGNgltNbObiD7OfGTQpyWtvoPc/Q3gjd22/bLG+k3ATQ0PV0RERFqihtawfAcoIzoey1qi/VHujFlUIiIiIjU0KGEJkpQXiM5oA7ABeClWQe2rqmpn6vJNVFbV98S1iIiIJJKGDs1/OfA88PdgU1fg5RjFtM8e/HAJZ9z/Cdc88wUNeVxbREREEkNDm4SuBkYDxQDuvhDoEKug9tXEL4sAeGPmWt6bXxjnaERERCQsDU1YyoLh9QEws1Sg2VVhLCosYewBneiSn8lDH34Z73BEREQkJA1NWN43s58BWWZ2AvAc8Grswtp7OyqqWLGplIGd8rjo8F58sngjs1dviXdYIiIiEoKGJiw/BdYDM4EriT6q/PNYBbUvlqzfhjv065DLeQf3ICc9wl8nLI53WCIiIhKCesdhMbMIMNvd9wMejH1I+2bR+hIgmrDkZ6dx4WG9+PsHi/nf9SX0ad/y5mwQERFJJvXWsLh7FTDfzHo0QTz7bFFhCSkGvQtyALj0iN6kR1JUyyIiIpIEGtok1AaYbWbvmNm4nUssA9tbiwtL6N42m8y0CADt8zI475AevPjFKhYHtS8iIiKSmBo6NP8vYhpFCBYVltBvt6afHx3bj+enrOT2N+fx4EX1zlwtIiIizdQea1jMLNPMrgPOBvYDPnb393cuTRFgQ1RWVfPlhm306/DVhKUgN4MfjOnL+Dnr+GzJxjhFJyIiIo1VX5PQo8BIok8HnQj8MeYR7YMVm7ZTXlVN3w5f71z7/dG96ZyfyW9em6Mh+0VERBJUfQnLIHe/wN3/DpwFHNkEMe21RYX/fUJod1npEX5+8iBmry7mnx8vbeLIREREJAz1JSwVO1fcvTLGseyzPSUsACcN6cTx+3fkj+Pns3xjaVOGJiIiIiGoL2EZambFwbIVOHDnupkVN0WADbGosIQOeRm0ykyr9X0z4zffOoDUlBR++sIMqqqb3awCIiIisgd7TFjcPeLurYIlz91Ta6y3aqog67NofQn9O+55cLjO+Vn88tRBfLpkI/e/t6iJIhMREZEwNHQclmbL3VlcyyPNtTl7RDe+fVBX7n57gZ4aEhERSSAJn7CsLd5BSVllnf1Xaoo2DQ2mV7scrn5yqvqziIiIJIiET1h2drit7ZHm2uRmpPLQxSOprHa+98hEtpRW1H+QiIiIxFXSJCz9O+Q1+Jg+7XP5+4UjWF5UymWPTWJbWbN9AEpERERIgoRlYWEJ+VlpFOSm79Vxh/Zpx93fGcaUZZu49NFJbC+vilGEIiIi0lgJn7AsKiyhX4dczGyvjz3lwC7c/Z1hTPyyiIv/qeYhERGR5iqhExZ3Z1FhCf0b2H+lNqcP68o95x7EF8s3cdbfPmHlJnXEFRERaW4SOmFZW7yDom3lDOrSuCFhThvahce+P4q1xTv41l8+4dPFeuRZRESkOUnohGXWquhguwc0MmEBOKxvO178weG0ykrl/Ic+48/vLqRaI+KKiIg0CwmdsMxevQUz2K9TOIPu9u+Yx7gfHcEpB3bhD/9ZwDl//3TXU0giIiISPwmesBTTuyCHnIzU0M6Zm5HKvecO465zhrJofQkn3fsh972zkB0VeopIREQkXhI6YZm1agsHdMkP/bxmxhnDuzH+f47m+EEd+OP4BRz7hwm89MVKNROJiIjEQcImLCs3lbJmyw5G9Ggds2u0z8vg/vNH8NRlo2ibm87/PDudE+/9kJe/WEVlVXXMrisiIiJflbAJy8QviwA4pHe7mF/r8H4FjLv6CO49dxiOc92z0zj6zgk88MFiNpSUxfz6IiIiLV14nT+a2OdLimiVmcp+nRo+JH9jpKQYpw/ryqkHduHdeYU88MES/u+Nefz+3/M5YVBHTh/WlaMHtCcrPdIk8YiIiLQkCZmwVFc7780vZHS/AlJS9n6E28ZISTGOH9SR4wd1ZFHhVp6dtIIXpq7izVlryUqLMGZge04Y1JHD+xbQKT+zSWMTERFJVjFNWMxsLHAvEAEecvfbd3s/A3gMGAFsBL7j7kvrO++U5Zso3FrG2MGdwg96L/TrkMfNJw/ihrH7MfHLIt6ctYa3Zq/jzVlrAehTkMNhfdtxUI82DOmaT9/2OaRGErYVTkREJG5ilrCYWQT4C3ACsBKYZGbj3H1Ojd0uBTa5ez8zOxe4A/hOfed+9JOl5GWkctz+HWMR+l5Li6Qwul8Bo/sVcOtpg5mzpphPF2/k0yUbeWXaap78fDkAmWkp7N+5Ff075NKrIIfe7XLoVZBD1zZZ5GWk7tN8SCIiIi1BLGtYDgEWufsSADN7BjgdqJmwnA7cEqw/D/zZzMzd63x2uLjceW3GGn4wpi+5IY6/EpaUFGNw13wGd83n8qP6UFXtfLmhhJmrtjBrVTGzVm3h3Xnr2VCy8ivHZaSm0D4vg/Z5GbTLySA3I0JWeio56RGyM1JZvbyc2b4IiM6htPNfKBIxUlOMSEoKqSlGavA6WZKf+SsrKJy8It5hNDmVu2VRuVsWlXvfxPIbvytQM7KVwKi69nH3SjPbArQDNtR10qIdzondW3Ptcf1DDjc2IilGvw559OuQx7cP+u/2rTsqWLaxlKUbt7F2yw7Wby1j/dYyCreWsXJTKdsrqthWVkVpeSWl5cGgdQvnx6cQ8TZrRrwjiA+Vu2VRuVsWlXuvNb8qilqY2RXAFQBtO3Tix/uX89nHH8Y5qnDkAv2AftlANrCrlcuI3p5Uqt3ZXLyN3NwczKLv7FTtUOU1flb7rtfJUMlSuq2U7JzseIfR5FTulkXlbllU7q86+46GHR/LhGUV0L3G627Bttr2WWlmqUA+0c63X+HuDwAPAAwcONCPO/aYmATcnE2YMIExY8bEO4wmp3K3LCp3y6JytyyNLXcsH1mZBPQ3s95mlg6cC4zbbZ9xwMXB+lnAu3vqvyIiIiItU8xqWII+KT8C3iL6WPPD7j7bzG4FJrv7OOAfwONmtggoIprUiIiIiHxFTPuwuPsbwBu7bftljfUdwNmxjEFEREQSnyVaC4yZbQVa4uMyBezh6akkpnK3LCp3y6Jytyx1lbunu7ev7+CEeEpoN/PdfWS8g2hqZjZZ5W45VO6WReVuWVTufaNx4kVERKTZU8IiIiIizV4iJiwPxDuAOFG5WxaVu2VRuVsWlXsfJFynWxEREWl5ErGGRURERFoYJSwiIiLS7CVUwmJmY81svpktMrMb4x1PrJhZdzN7z8zmmNlsM7s22H6Lma0ys2nBclK8Yw2bmS01s5lB+SYH29qa2XgzWxj8bBPvOMNkZgNr3NNpZlZsZtcl4/02s4fNrNDMZtXYVuv9tag/BX/vM8xsePwib5w6yn2nmc0LyvaSmbUOtvcys+017vvf4hZ4I9VR7jp/r83spuB+zzezb8Yn6saro9zP1ijzUjObFmxPpvtd13dXOH/j7p4QC9Hh/RcDfYB0YDowKN5xxaisnYHhwXoesAAYBNwCXB/v+GJc9qVAwW7bfg/cGKzfCNwR7zhjWP4IsBbomYz3GzgKGA7Mqu/+AicBbxKdoPxQ4PN4xx9yub8BpAbrd9Qod6+a+yXyUke5a/29Dj7jpgMZQO/g8z4S7zKEVe7d3v8j8MskvN91fXeF8jeeSDUshwCL3H2Ju5cDzwCnxzmmmHD3Ne4+NVjfCswFusY3qrg6HXg0WH8U+Fb8Qom544DF7r4s3oHEgrt/QHTesJrqur+nA4951GdAazPr3CSBhqy2crv7f9y9Mnj5GdEZ7ZNKHfe7LqcDz7h7mbt/CSwi+rmfcPZUbjMz4Bzg6SYNqgns4bsrlL/xREpYugIrarxeSQv4EjezXsBBwOfBph8FVWcPJ1vTSMCB/5jZFDO7ItjW0d3XBOtrgY7xCa1JnMtXP8iS/X5D3fe3Jf3Nf5/o/zR36m1mX5jZ+2Z2ZLyCiqHafq9byv0+Eljn7gtrbEu6+73bd1cof+OJlLC0OGaWC7wAXOfuxcBfgb7AMGAN0WrFZHOEuw8HTgSuNrOjar7p0XrEpHwW38zSgdOA54JNLeF+f0Uy39+6mNnNQCXwZLBpDdDD3Q8C/hd4ysxaxSu+GGhxv9e7OY+v/qck6e53Ld9duzTmbzyREpZVQPcar7sF25KSmaURveFPuvuLAO6+zt2r3L0aeJAErS7dE3dfFfwsBF4iWsZ1O6sJg5+F8Yswpk4Eprr7OmgZ9ztQ1/1N+r95M7sEOAU4P/ggJ2gS2RisTyHal2NA3IIM2R5+r1vC/U4FzgCe3bkt2e53bd9dhPQ3nkgJyySgv5n1Dv4nei4wLs4xxUTQxvkPYK6731Vje822vW8Ds3Y/NpGZWY6Z5e1cJ9opcRbR+3xxsNvFwCvxiTDmvvI/r2S/3zXUdX/HARcFTxIcCmypUa2c8MxsLHADcJq7l9bY3t7MIsF6H6A/sCQ+UYZvD7/X44BzzSzDzHoTLffEpo4vxo4H5rn7yp0bkul+1/XdRVh/4/HuVbyXPZBPItrreDFwc7zjiWE5jyBaZTYDmBYsJwGPAzOD7eOAzvGONeRy9yH6lMB0YPbOewy0A94BFgJvA23jHWsMyp4DbATya2xLuvtNNCFbA1QQba++tK77S/TJgb8Ef+8zgZHxjj/kci8i2n6/82/8b8G+Zwa//9OAqcCp8Y4/5HLX+XsN3Bzc7/nAifGOP8xyB9sfAa7abd9kut91fXeF8jeuoflFRESk2UukJiERERFpoZSwiIiISLOnhEVERESaPSUsIiIi0uwpYREREZFmTwmLiITCzNrVmHF2bY0ZeUvM7P4YXfM6M7toD++fYma3xuLaItK09FiziITOzG4BStz9DzG8RirRcSuG+38nEdx9Hwv2Ge01BmcTkcSjGhYRiSkzG2NmrwXrt5jZo2b2oZktM7MzzOz3ZjbTzP4dDOuNmY0IJoKbYmZv1TGD67FEpzKoDI65xszmBJPqPQO75i2ZQHT4exFJYEpYRKSp9SWabJwGPAG85+5DgO3AyUHSch9wlruPAB4GflfLeUYDU2q8vhE4yN0PBK6qsX0y0RlyRSSBpcY7ABFpcd509wozmwlEgH8H22cCvYCBwGBgfLRFhwjRYc531xmYW+P1DOBJM3sZeLnG9kKgS3jhi0g8KGERkaZWBuDu1WZW4f/tSFdN9DPJgNnuflg959kOZNZ4fTJwFHAqcLOZDQmaizKDfUUkgalJSESam/lAezM7DKLT1ZvZAbXsNxfoF+yTAnR39/eAnwL5QG6w3wCSd6ZrkRZDCYuINCvuXg6cBdxhZtOJzvh6eC27vkm0RgWizUZPBM1MXwB/cvfNwXvHAK/HMmYRiT091iwiCcvMXgJucPeFdbzfEXjK3Y9r2shEJGxKWEQkYZnZQKCju39Qx/sHAxXuPq1JAxOR0ClhERERkWZPfVhERESk2VPCIiIiIs2eEhYRERFp9pSwiIiISLOnhEVERESaPSUsIiIi0uwpYREREZFmTwmLiIiINHtKWERERKTZU8IiIiIizZ4SFhEREWn2lLCISKOY2SVm9lEMzmtm9k8z22RmE8M+f2OZ2VIzOz7ecYi0FEpYRFoQM5sQJAAZ8Y6lAY4ATgC6ufshde1kZmPMzM3sp7tt/1oiZWaPmNlvYxOuiMSSEhaRFsLMegFHAg6cFt9oGqQnsNTdt9Wz38VAEXBR7EMSkXhRwiLSclwEfAY8QvRLfpeg5uEvZva6mW01s8/NrG+N979hZvPNbIuZ3W9m75vZZbVdxMz2M7PxZlYUHHNOXQGZWRczGxfsu8jMLg+2Xwo8BBxmZiVm9us6js8BzgKuBvqb2chg+/7A32ocv9nMrgDOB24Itr0a7HujmS0Oyj3HzL692zUuN7O5Nd4fXksc+5vZl2Z2Xl1lFZHGUcIi0nJcBDwZLN80s467vX8u8GugDbAI+B2AmRUAzwM3Ae2A+cDhtV0gSCDGA08BHYJz3m9mg+qI6RlgJdCFaOLxf2Z2rLv/A7gK+NTdc939V3UcfwZQAjwHvEWQiLn73N2Ob+3uDwRl/32w7dTgHIuJ1jzlB+V/wsw6B+U5G7gl+LdrRbRmauNuZR4eXPvH7v50HXGKSCMpYRFpAczsCKJNLP9y9ylEv6S/u9tuL7n7RHevJPrFPizYfhIw291fDN77E7C2jkudQrQZ55/uXunuXwAvAGfXElN3YDTwU3ff4e7TiNaq7E3TzsXAs+5eRTRJOtfM0vbieNz9OXdf7e7V7v4ssBDY2WfmMqIJziSPWuTuy2ocfiQwDrjI3V/bm+uKyN5RwiLSMlwM/MfdNwSvn2K3ZiG+moSUArnBehdgxc433N2J1orUpicwKmiC2Wxmm4k2w3SqZd8uQJG7b62xbRnQtf7i7Ep4jiGaXAG8AmQCJzfk+BrnucjMptWIdzBQELzdnWhyV5ergE/cfcLeXFNE9l5qvAMQkdgysyzgHCBiZjuTkgygtZkNdffp9ZxiDdCtxvms5uvdrADed/cTGhDaaqCtmeXVSFp6AKsacCzAhUT/0/VqNCQgmrBcDLxMtHPx7r6yzcx6Ag8CxxFtPqoys2nAzhOuAPpSt6uAn5rZ3e7+Pw2MW0T2gWpYRJLft4AqYBDRZp5hwP7AhzSs+eV1YIiZfcvMUol2cK2txgTgNWCAmV1oZmnBcnDQCfYr3H0F8Alwm5llmtmBwKXAEw0s18VE+5wMq7GcCZxkZu2AdUA3M0uvccw6oE+N1zlEk5j1AGb2PaI1LDs9BFxvZiOCcWH6BUnOTluBscBRZnZ7A+MWkX2ghEUk+V0M/NPdl7v72p0L8Gfg/CAJqVPQjHQ28HuiHU4HAZOBslr23Qp8g2hn29VEm5nuIFqjU5vzgF7Bvi8Bv3L3t+srkJkdSrT56S81y+Tu44h2GD4PeBeYDaw1s51NYf8ABgXNPy+7+xzgj8CnRJOZIcDHNcrzHNHOx08RTU5eBtruVubNRMeLOdHMflNf7CKybyzaHC0i0jBmlkK0D8v57v5evOMRkZZBNSwiUi8z+6aZtQ5GyP0Z0T4en8U5LBFpQZSwiEhDHEb0aZkNwKnAt9x9e3xDEpGWRE1CIiIi0uyphkVERESavYQbhyWSne+DB/YlLbJvuda2bdvIyckJOarmSWVNTipr8mkp5QSVNVk1pqxTpkzZ4O7t69sv4RKW1PwOXHHXv7j6mH77dPyECRMYM2ZMuEE1UyprclJZk09LKSeorMmqMWU1s2X175WATUI56RFe+mIV6nsjIiLSciRcwtI6O51FhSXMXLUl3qGIiIhIE0m4hCU/K4301BRenNrQ6UZEREQk0SVcwhJJMY7fvwOvTl9NRVV1vMMRERGRJpBwCQvAGQd1Y+O2ct6fvz7eoYiIiEgTSMiE5eiB7Wmfl8Ezk5bHOxQRERFpAgmZsKRFUvjOyO68O6+QVZs1OriIiEiyS8iEBeDcQ7rjwLMTVcsiIiKS7BI2YenWJpsxA9rzzKQV6nwrIiKS5BI2YQH47qieFG4t4525hfEORURERGIooROWYwa2p3N+Jo9/tjTeoYiIiEgMJXTCkhpJ4ZLDe/Hxoo1MXloU73BEREQkRhI6YQG48LCeFOSmc/fbC+IdioiIiMRIaLM1m9lI4EigC7AdmAWMd/dNYV2jNtnpqVx1dF9++/pcPl+ykVF92sXyciIiIhIHja5hMbPvmdlU4CYgC5gPFAJHAG+b2aNm1qOx19mTCw7tSfu8DNWyiIiIJKkwaliygdHuXusIbmY2DOgPxGzAlMy0CD8c05dfvzqHTxZv4PC+BbG6lIiIiMRBo2tY3P0vdSUrwfvT3P2dxl6nPucd0oOOrTK4e/wC3D3WlxMREZEmFEaTULaZXRksOWEEtS8y0yL86Jh+TFq6iY8WbYhXGCIiIhIDYTwl9CSwElgBPBXC+fbZOQd3p0t+JneplkVERCSphJGwtAKWBEvrEM63zzJSI/zo2P58sXwzExasj2coIiIiEqIwEpYLgIuA7wEXhnC+RjlrRDe6tcniHtWyiIiIJI0wOt2ucfeb3P2n7h73qZPTU1O45tj+TF+5hXfnaY4hERGRZBBGp9sLzKzO85hZXzM7orHX2RvfHt6VHm2z1ZdFREQkSYQxDks74AszmwJMAdYDmUA/4GhgA3BjCNdpsLRICtcc15/rn5vOf+as45sHdGrKy4uIiEjIwmgSuhcYDjwNtAeOC16vAi509zPdfWFjr7O3vjWsC70Lcrh7/AKqq1XLIiIikshCmUvI3auA8cHSLKRGUrj2uP5c9+w03pq9lhOHdI53SCIiIrKPEn625j05dWgX+rbP4e63VcsiIiKSyJI6YYmkGNcdP4AF60p4feaaeIcjIiIi+yi0hMXMMmrZ1jas8++rk4d0ZkDHXO55ewFVqmURERFJSGHWsLxoZmk7X5hZZ5pBn5aUoJZl8fptvDp9dbzDERERkX0QZsLyMvAvM4uYWS/gLeCmEM+/z8Ye0In9OuVx7zsLVcsiIiKSgEJLWNz9QeBtoonLq8BV7v6f+o4zs+5m9p6ZzTGz2WZ2bVgx7ZSSYvzPCQP4csM2PltTGfbpRUREJMYa/Vizmf1vzZdAD2AacKiZHerud9VzikrgJ+4+1czygClmNt7d5zQ2tpq+MagjB3RpxSuLt3JDVTVpkaTubywiIpJUwvjWzqux5AIvAotqbNujYC6iqcH6VmAu0DWEuL7CzPjfEwZQWOq8OHVl2KcXERGRGLLmNNdO0PflA2CwuxfX2H4FcAVAx44dRzzzzDP7dH5359efbKOoLIXbjswiJ81CiLr5KikpITc3N95hNAmVNTm1lLK2lHKCypqsGlPWY445Zoq7j6xvv1BGugUws/HA2e6+OXjdBnjG3b/ZwONzgReA62omKwDu/gDwAMDIkSN9zJgx+xznsuJ3+PVnO5i0vQO3nHDAPp8nEUyYMIHG/FslEpU1ObWUsraUcoLKmqyaoqxhduRovzNZAXD3TUCHhhwYPA79AvCku78YYkxf0ys/wgWjevLYp0uZvXpLLC8lIiIiIQkzYakysx47X5hZT6De9iYzM+AfwNwGdNANxfXfGEib7HR++cpsDdkvIiKSAMJMWG4GPjKzx83sCaJ9URoyDsto4ELgWDObFiwnhRjX1+Rnp3HjifsxZdkmnlcHXBERkWYvtD4s7v5vMxsOHBpsus7dNzTguI+IPg7dpM4c3o1nJ63g9jfn8Y1BHWmdnd7UIYiIiEgDhT0YSRVQCBQDg8zsqJDPH5qUFOPW0wezZXsFt785L97hiIiIyB6EOfnhZUSbgd4Cfh38vCWs88fCoC6tuOzI3jwzaQWfLt4Y73BERESkDmHWsFwLHAwsc/djgIOAzSGePyauO24APdpm87OXZrKjoire4YiIiEgtwkxYdrj7DgAzy3D3ecDAEM8fE1npEf7v20P4csM27nt3YbzDERERkVqEmbCsNLPWRCc/HG9mrwDLQjx/zBzRv4Azh3fj7+8vYe6a4voPEBERkSYV5mzN33b3ze5+C/ALomOrnB7W+WPt5yfvT35WGje+OJMqjc0iIiLSrITZ6fbxnevu/r67jwMeDuv8sdYmJ51fnjqI6Ss28+gnS+MdjoiIiNQQZpPQVybmMbMIMCLE88fcaUO7MGZge/7wn/ms3FQa73BEREQk0OiExcxuMrOtwIFmVhwsW4mOxzKu0RE2ITPjt98aDMBNL86kOc1kLSIi0pI1OmFx99vcPQ+4091bBUueu7dz9xtDiLFJdWuTzU0n7seHCzfwr8kr4h2OiIiIEG6T0CG7bzCzd0I8f5M5f1RPDu3Tlt++Npc1W7bHOxwREZEWL4wmoUwzawcUmFkbM2sbLL2Aro2OMA5SUow7zjyQymrnZ2oaEhERibswaliuBCYD+wFTaiyvAH8O4fxx0bNdDjeMHch789fzwtRV8Q5HRESkRQujD8u97t4buN7d+7h772AZCjzX+BDj5+LDenFwrzbc+ups1hXviHc4IiIiLVaYA8fdB2Bmrc3s0qD/yhdhnT8eUlKM3581lLLKam5+SU1DIiIi8RJKwmJmWWZ2rpmNA2YCfwR+A3QL4/zx1Lsgh//3zYG8PbeQV6atjnc4IiIiLVIYnW6fAhYAJwD3Ab2ATe4+wd2rG3v+5uB7o3szvEdrbnl1NoVb1TQkIiLS1MKoYRkEbALmAnPdvQpIqraTSNA0VFpexS9enqWmIRERkSYWRqfbYcA5QB7wtpl9BOSZWcfGnrs56dchl/89YQBvzV7HazPWxDscERGRFiWUPizuPs/df+Xu+wHXAo8Ck8zskzDO31xcdkRvhnbL51fjZrOhpCze4YiIiLQYYY50C4C7T3H364GeQMINzb8nqZEU7jx7KCU7KvnVuNnxDkdERKTFCD1h2cmjPojV+eNlQMc8rj2+P6/PWMObM9U0JCIi0hRilrAksyuO6sPgrq34xSuzKNpWHu9wREREkl4YjzVfG/wc3fhwEkNaJIU7zxrKlu0V/PpVNQ2JiIjEWhg1LN8Lft4XwrkSxv6dW3H1Mf14Zdpqxs9ZF+9wREREkloYCctcM1sIDDSzGTWWmWY2I4TzN1s/HNOP/Trl8bOXZrK5VE1DIiIisRLGOCznAUcCi4BTayynBD+TVnpqCn84eyhF28q59bU58Q5HREQkaYU1DsvaYHbmNUQHkMsDVrv7sjDO35wN7prPD47uy4tTV/HuPDUNiYiIxEJoTwmZ2dHAQuAvwP3AAjM7KqzzN2c/Pq4fAzrm8rMXZ1G8oyLe4YiIiCSdMB9rvgv4hrsf7e5HAd8E7g7x/M1WRmqEO88aSuHWHfzutbnxDkdERCTphJmwpLn7/J0v3H0BkBbi+Zu1od1bc8VRfXl28go+WLA+3uGIiIgklTATlslm9pCZjQmWB4HJIZ6/2bvu+P70bZ/DjS/MYKuahkREREITZsLyA2AOcE2wzAm27ZGZPWxmhWY2K8RY4iIzLcLvzxrKmuId3PbmvHiHIyIikjRCS1jcvczd73L3M4LlbndvyJTGjwBjw4oj3kb0bMOlo3vz1OfL+WTRhniHIyIikhTiPpdQMEFiUbzjCNNPvjGQ3gU53PDCDLaVVcY7HBERkYRn7h7vGDCzXsBr7j64jvevAK4A6Nix44hnnnlmn69VUlJCbm7uPh/fUAs2VXHb5zs4tkcqFw7KiPn1atNUZW0OVNbk1FLK2lLKCSprsmpMWY855pgp7j6yvv1S9+nse2Bm2e5eGuY53f0B4AGAkSNH+pgxY/b5XBMmTKAxxzfUGGB1ZDaPfLKUy8eO5NA+7WJ+zd01VVmbA5U1ObWUsraUcoLKmqyaoqxhDhx3uJnNAeYFr4ea2f1hnT8R3TB2ID3aZnPjCzPYUVEV73BEREQSVph9WO4mOljcRgB3nw60iJFu65KdnsptZwxh6cZS7nl7YbzDERERSVihdrp19xW7baq3WsHMngY+JTrb80ozuzTMmOJtdL8CzhnZjQc/XMKsVVviHY6IiEhCCjNhWWFmhwNuZmlmdj1Q7zj17n6eu3d29zR37+bu/wgxpmbh5pMG0TYnnZ++MIPKqup4hyMiIpJwwkxYrgKuBroCq4BhwesWLz87jVtPO4DZq4t58MMv4x2OiIhIwgntKSF33wCcH9b5ks2JQzrzzQM6cs/bCxg7uBO9C3LiHZKIiEjCaHTCYmb3AXUO5uLu1zT2Gsni1tMHc/xd73PjCzN4+vJDSUmxeIckIiKSEMKoYWlRExw2RsdWmdx80v7c+OJMnpm0gu+O6hHvkERERBJCoxMWd380jEBaiu8c3J2Xp63itjfmctz+HejYKjPeIYmIiDR7YQ4c96qZjdttedzMrjUzfSsHzIzbzziQ8qpqfvHyLJrD1AgiIiLNXZhPCS0BSoAHg6UY2AoMCF5LoFdBDv9zwgD+M2cdb85aG+9wREREmr0w5xI63N0PrvH6VTOb5O4Hm9nsEK+TFC47ojevzVjNL1+ZzeF929E6Oz3eIYmIiDRbYdaw5JrZrl6kwfrOqRvLQ7xOUkiNpHDHmQeyqbSc371e7/h6IiIiLVqYCctPgI/M7D0zmwB8CFxvZjmAOubW4oAu+VxxVB+em7KSjxZuiHc4IiIizVZoCYu7vwH0B64DrgUGuvvr7r7N3e8J6zrJ5trj+tO7IIebXppBaXllvMMRERFplkKd/BAYARwADAXOMbOLQj5/0slMi3D7GUNYUbSdu/6zIN7hiIiINEuhdbo1s8eBvsA0/jtLswOPhXWNZDWqTzu+O6oHD3/8JacO7cLQ7q3jHZKIiEizEuZTQiOBQa6BRfbJjSfuxztz1/HTF2Yw7kdHkJ4aduVXuLaVVbJlewWd8zMx0xQDIiISW2EmLLOATsCaEM/ZYrTKTOO33xrC5Y9N5u/vL+bHx/WPd0gAlJRVsqiwhAXrtrJw3VYWFpawcF0JqzZvB6Br6yyO7F/Akf3bM7qfHs8WEZHYCDNhKQDmmNlEoGznRnc/LcRrJLUTBnXk5AM7c9+7izhxSGf6dcit/6AYWbV5O//3xlxen/Hf/DM9NYW+7XMZ2asN53XoTk5GKp8u3sjrM9bwzKQVmMGQrvkc2b+AY/frwIiebeMWv4iIJJcwE5ZbQjxXi3XLqQfw0cIN3PTiDJ694rAmn9F5R0UVD36whL9MWIQ7XHlUH4b3bMOAjnn0aJtNZLd4vje6N5VV1UxfuZkPF27go4Ub+Nv7S/jLe4s55cDO/Pq0A2iXm9GkZRARkeQTWsLi7u/XfG1mRwDnAe/XfoTUpn1eBr84ZRDXPzedJz9fxoWH9WqS67o74+es4zevz2FF0XZOHNyJm0/en25tsus9NjWSwoiebRnRsy3XHT+A4h0VPPLxUu57dyGfLt7IracP5uQDOzdBKUREJFmF2rPTzA4yszvNbCnwG0BDuO6DM4d35cj+Bdz+5jxWB31FYmnx+hIu/uckrnh8ChmpEZ68bBR/vWBEg5KV2rTKTOOa4/rz6o+PoEvrLK5+aio/eGIK67eW1X+wiIhILRqdsJjZADP7lZnNA+4DlgPm7se4+58bHWELZGb837eHUO3w8xjP6PzIx18y9p4P+GLZJn5xyiDevPZIRvcrCOXc+3VqxUs/PJwbxg7knbmFnHD3+7z8xSrNUC0iInstjBqWecCxwCnufoS738d/x2GRfdS9bTY/+cYA3p1XyLjpq0M/v7tz3zsLueXVORw9oAPvXj+GS4/oTVok3MepUyMp/HBMP9649gh6F+Rw3bPTuOLxKWzdURHqdUREJLmF8e10BtFHmd8zswfN7DhAA3OE4HujezO0e2t+/eociraFN3+ku3P7v+fxx/ELOOOgrvztguG0z4ttx9h+HfJ4/qrDufmk/XlvXiHnPfgZG0vURCQiIg3T6ITF3V9293OB/YD3iM4l1MHM/mpm32js+VuySIpxx5lDKN5ewa2vzg7lnNXVzi9emcXf31/CBYf24A9nDyU15FqVukRSjMuP6sODF41k4boSzv77p03SR0dERBJfmJMfbnP3p9z9VKAb8AXw07DO31Lt16kVVx/Tj5enreat2Wsbda7Kqmquf346T3y2nCuP7sNvTh/c5I9NAxyzXwcev3QU64vLOOuvn7B4fUmTxyAiIoklzHFYdnH3TcADwSKNdPUx/Xh77jp+9uJMRvRsQ8E+jGtSVlnFtU9P49+z1/KTEwbwo2P7xXVI/UN6t+XpKw7l4ocncs7fPuXR7x/C4K75MbteSVklny/ZyIcLNzBvbTE7KqrZUVFFeWU1nfIzGdI1n8Fd8xnWvTXd2+7b01EiIhI7MUlYJFzpqSncdc4wTr3vI37+0iz+esHwvUo2tpdXcdUTU3h/wXp+ccogLj2idwyjbbjBXfN57qrDuPAfEznvgc946OKRjOrTLrTzuzsfLNzA399fzMQvi6isdjJSUxjcNZ9WWWm0z8sgPZLC8qJS/vnxUsqrqgEY1bst5x/ak7EHdGr2czqJiLQUSlgSxMBOefzkGwO47c15vDxtFd8+qFuDjiuvrObKJ6bw4cL13H7GEM49pEeMI907fdrnBknL51z08ET+esFwjt2vY6PO6e68N7+Qe99ZxPQVm+mSn8nlR/XhyH4FDO/Zhsy0yNeOKa+sZsG6rXywcD1PT1zONU9/QUFuOpcc3ovLjuxT6zEiItJ0lLAkkMuO7MP4Oev45SuzObRPOzrnZ+1x/2p3rn9uOh8sWM8dZw7hOwc3r2Rlpy6ts/jXlYdxyT8nccVjU/jzd4czdnCnfTrXqs3b+X/PTeeTxRvp1iaL284YwpnDu9VbU5Ie1LwM7prPVUf15cNFG3j0k6X84T8LeHbyCn5x8iBOGNRRM1OLiMSJ6rsTSCTF+MPZQ6mscm54fsYeB2Bzd56eV8646au5YezAZpus7NQuN4OnLh/FkG75/Pjpqbw9Z91eHe/uvPTFSsbe8wHTV2zmN6cfwHvXj+G8Q3rsdbNOSopx9ID2PHzJwTx52SgyUyNc8fgULnp4IosKw+0gXFEVrdmZsqyICfMLeW1GtHP1kvUlVFVrgD0RkZ1Uw5JgehXk8LOT9+cXL8/i3ncWct3xA2rd7/4Jixm/rJLvj+7ND47u28RR7pu8zDQe/f4hXPjQ5/zwyan8/cIRHLNfh3qP27qjgvunlzFp7XRG9mzDXecMo0e7cDrOju5XwBvXHsnjny7j7rcXcNKfPuRnJ+7HxYf32ufalpWbSnlnbiEfLtzAZ0s2UlJWWet+O2fHHtW7LacP68Kw7q1VwyMiLZYSlgR0wageTFu+mXveXkhaJIWrj+n3lfefnbScO9+az2GdI/z85P0T6kuuVWYaj106ivMf+owrn5jCgxeN5OgB7evcf+WmUi59ZDILC6u4YexArjyq79dmlG6stEgK3z+iN6cO7cJPX5jBLa/OYcKC9dx51tC9GnBv+orNPPDhEt6cuYZqh+5tszhtWBcO6dWWNjnp5GakkpeZyvbyKhas28qiwhLmrd3KUxOX88gnS+nVLpvThnWlV9A5OAzuTlll9ImpsspqcjNSycnQx4KIND/6ZEpAZsbvzzqQqupq7nxrPqkpxpVBLcp/Zq/lphdnctSA9lzUa1tcxllprPysNJ64dBTfffBzrnhsMg9fcnCt8xt9sXwTlz82mbLKan4yIpMfjulXy9nC0z4vg39cPJLHP1vG716fy9h7PuDOsw+st5PwtBWbue2NuXz+ZRF5GalcflQfzju4B70Kcuo8Zmj31rvWi3dU8O9Za3n5i1Xc9+5CUoBJpTO48qi+ezzH7tydhYUlTF66ianLo8uS9du+tl+7nHR6tMtmv06tOLxvOw7v2452+/AovYhImJSwJKid/VmqHG57cx6RFGNI13x+/PQXHNitNX+7YDgTP/ko3mHus9bZ6Txx2Si+++BnXProJP55ySEc1jf6yHN5ZTXPTVnBra/OoUOrDJ654lBWzpnSJHGZGRcd1otD+7Tjmqe/4PuPTObiw3py00n7f+1JoqJt5fz+3/N4dvIKCnIz+PnJ+/Odg7uTl5m2V9dslZnGOSO7c87I7qwoKuVXT3/IC1NX8eykFXzroK787wkD9jiz9vqtZbz8xSqem7KCBeuifXDa5qQzvEdrThrcmeyMCBmpETJSUyjeUcGKolKWbSzltemreXricgCGdsvn2wd15bRhXWmbk97g2EvKKpm+YjMrikrZuK2cTdvK2bK9gpyMVPKz0midnUbHVpkM7pJP97ZZCVUbKCJNq1kkLGY2FrgXiAAPufvtcQ4pIaRGUrj7nKFUVVfz29fnkpmWQrc2WfzzkoPJTm8Wt7ZR2uZEk5bzHviM7z8yifvPH86CdVv558dLWVu8g0N6t+Wv5w+nXW4GK+c0bWwDOubx8tWjufOt+fzjoy/5dMlG7j33IHq0zWbKsk18umQjT32+nJKySi4d3Ztrj++/14lKbbq3zeaiAzK4/cJDeeCDJTz22TJem76GCw7tyVVH96FDq8xd+y4q3Mr97y1m3PTVVFY7w7q35jffGsyR/Qro2S673uSgsqqamau28PGiDbwxcy23vDqH370xl2MGduDMEd04ZmCHr3VoLqus4qOFG5gwfz1Tlm1i3tpiavYdzkqLkJ+VxrbySrbu+GrfnVaZqQzums/Bvdpy1IAChnZrXWds7s6XG7axqLCEpRu38eWGbazevIOyyuhggOVV1WSlRSjIzaB9XgYd8jLo3zGPQZ1b0a1NwxOj6mqnpLwy2mRWUU1ZZTVZ6RHyMlPJTU9NyBrMpuburC3ewaLCEoq2lTN5eQVLP/4SgOz0VFplpdIpP4vubbJom5OupFXqZHt60qRJAjCLAAuAE4CVwCTgPHev9Sto5MiRPnny5H2+3oQJExgzZsw+H98cVVRVc92z05ixcjPPXHEYXVtHH3dOlrIWbt3BuQ98tqv54vC+7bjy6L4c1b9g14dbPMv6/oL1XP/cdDaXluMOldVOaooxul8BN5+8PwM65oV6vZplXb15O/e8vYDnp6yk2qF3QQ4jerZhW1kl/569lszUCOce0p3vHtKD/o2MY+6aYl6YspKXp61mQ0kZbbLTOLJ/e/IyU8lMi1C4tYz35hVSUlZJbkYqB/VozUE92jCiZxv6ts+hXU4GWen/rYWqrKqmeEclK4pKmb26mFmrtzBj5WZmry7GHfIyU+nXyjmofw86tsqgY6tMNpeWM3FpERO/LGJDyX8nBG2Xk07XNllkpkVIj6SQFjFKy6vYUFLGhpJorc5OrTJTGdSlFYM653NAl1bs37kVldXVrCjazopNpawoKmXFpu2sLCpl5abtuwYU3J1ZtPmyW5ssurfJpnvbbLq3yYr+bJtNp1aZFG4tY9nGbSwvKmXV5u1sLClnQ0kZpWVVVLlT7U61Q/GWYtq3a03roNapdXY67XLS6dAqgw55mXTIiyZe5ZXVbN5ewaZt5WwqrWBzaTmbt1dQVlFNRVU1FdXVGEZGagoZaSlkpUVolZlGq6w08rPSaJUVrdnKz0rDPdrcuHVHJcXbg587Kigpq2T3B9Sy0iJkp0eXnIxUstMjZKVFyEiL1sxlpKaQYkbRtnIWFm5l4boSFhaWsChY6upYvruc9Miuf79e7bLpVZBDQW4G2ekRIinG1h2VwRKNt6yyCoCIGTlB/6t2Oel0zM+kU6tM2mSns2V7BUXbyinaVs7GbWU11sspKimnqDT6etO28l1/u5EUIzcjdde/287awPystODfM3XXv2urzDSy0lMAwyw686+ZYcDEiZ9z6KhDqZmDmUXfd3dKyr5anuIa61t3VLC9vBqv8XtS7Y4DmanRe5EV3Iev/UyLkJGWsqvmdOd6WuSryWBtX/9lldWUVUb7tEWT9GC9spqyihrrldEkvryqmhSD5cuX07tXLwxIMSPFok9cpkWM1JQU0lJTSEsxUoO/z9SUFFIjRnokhWP37zjF3UfW9/vRHBKWw4Bb3P2bweubANz9ttr2V8JSt6pq/0qH02Qqa2HxDh75ZCknDu7MkG5fH8I/3mXdWFLGfe8uIjs9wqF92jGiZ5uYdV6trayLCkt4e+46Ji/dxJRlRVRWORcf3ovvje4Vev+TyqpqPly4geenrmTa8s2UVVaxvbyKrPRUjt+/AycO6cxhfdrt8yjBm0vL+XjRRj5YsJ73566kuCKF0vKqXe93bZ3FqN5tOaR3W/bv3IpeBTnkZ+259qq0vJL5a7cyZ00xs1cXM2d18a4pGnbXOjstSECiiUj7vAwy0iJkpqaQnppCWUU1xTsqKN5ewcZt5azcFE10Vm7aTnll3R2i0yMpFOSm0y43g5yM6Bdw9IPd2FRURFZePlu2V7C5tIJNpeWU7eFctUmxaK0rTp1JVlNqn5dB/w659O+QS78OufTtkEvHVpnMnDqRo484Aid6X7Zsr2DN5h0sLyrdlTAuLypl6cbSPf57Ars+7/Z2CAAzaJOdTtuc6NIuJ502OemkR1KorK6mssrZWhZN5LbUWIq3V3wtmYuFtIiRl5lGVlqElBQwggTADAfKKqrYHiy1/Q43pbSI4R7cA6s9CarPsjtOSZiE5SxgrLtfFry+EBjl7j+qsc8VwBXBy4HA/EZcsgDY0IjjE4nKmpxU1uTTUsoJKmuyakxZe7p73Y+DBhKio4O7hzaRoplNbkgmlwxU1uSksiafllJOUFmTVVOUtTmMdLsK6F7jdbdgm4iIiAjQPBKWSUB/M+ttZunAucC4OMckIiIizUjcm4TcvdLMfgS8RfSx5ofdfXYMLxlK01KCUFmTk8qafFpKOUFlTVYxL2vcO92KiIiI1Kc5NAmJiIiI7JESFhEREWn2kjZhMbOxZjbfzBaZ2Y21vH+Jma03s2nBclk84mwsM3vYzArNbFYd75uZ/Sn4d5hhZsObOsawNKCsY8xsS417+sumjjEsZtbdzN4zszlmNtvMrq1ln4S/tw0sZ1LcVzPLNLOJZjY9KOuva9knw8yeDe7p52bWKw6hNloDy5oUn8E7mVnEzL4ws9dqeS8p7ivUW86Y3tO4d7qNhWC4/79QY7h/MxtXy3D/z9YcoC5BPQL8GXisjvdPBPoHyyjgr8HPRPQIey4rwIfufkrThBNTlcBP3H2qmeUBU8xs/G6/w8lwbxtSTkiO+1oGHOvuJWaWBnxkZm+6+2c19rkU2OTu/czsXOAO4DvxCLaRGlJWSI7P4J2uBeYCrWp5L1nuK+y5nBDDe5qsNSyHAIvcfYm7lwPPAKfHOaaYcPcPgKI97HI68JhHfQa0NrPOTRNduBpQ1qTh7mvcfWqwvpXoB0TX3XZL+HvbwHImheA+lQQv04Jl96ceTgceDdafB44zS7zZABtY1qRhZt2Ak4GH6tglKe5rA8oZU8masHQFVtR4vZLaPwTPDKrSnzez7rW8nwwa+m+RLA4LqqHfNLMD4h1MGILq44OAz3d7K6nu7R7KCUlyX4Pq9GlAITDe3eu8p+5eCWwB2jVpkCFpQFkheT6D7wFuAOqa2CdZ7us97LmcEMN7mqwJS0O8CvRy9wOB8fw3+5XENZXonBRDgfuAl+MbTuOZWS7wAnCduxfHO55YqaecSXNf3b3K3YcRHdH7EDMbHOeQYqYBZU2Kz2AzOwUodPcp8Y4llhpYzpje02RNWOod7t/dN7p7WfDyIWBEE8XW1FrM1AfuXryzGtrd3wDSzKwgzmHts6Dt/wXgSXd/sZZdkuLe1lfOZLuvAO6+GXgPGLvbW7vuqZmlAvnAxiYNLmR1lTWJPoNHA6eZ2VKi3Q+ONbMndtsnGe5rveWM9T1N1oSl3uH+d2vrP41o23kyGgdcFDxRciiwxd3XxDuoWDCzTjvbhc3sEKK/34n2oQBEnwAC/gHMdfe76tgt4e9tQ8qZLPfVzNqbWetgPYvoQwHzdtttHHBxsH4W8K4n4OieDSlrsnwGu/tN7t7N3XsR/a55190v2G23hL+vDSlnrO9pUj4lVNdw/2Z2KzDZ3ccB15jZaUSfUigCLolbwI1gZk8DY4ACM1sJ/IpoBzfc/W/AG8BJwCKgFPhefCJtvAaU9SzgB2ZWCWwHzk20D4UaRgMXAjODfgAAPwN6QFLd24aUM1nua2fg0eApxhTgX+7+2m6fS/8AHjezRUQ/l86NX7iN0pCyJsVncF2S9L5+TVPeUw3NLyIiIs1esjYJiYiISBJRwiIiIiLNnhIWERERafaUsIiIiEizp4RFREREmj0lLCISCjNrV2OW1rVmtipYLzGz+2N0zevM7KI9vH9K8NiliCQ4PdYsIqEzs1uAEnf/QwyvkUp02P7hwfwste1jwT6j3b00VrGISOyphkVEYsrMxpjZa8H6LWb2qJl9aGbLzOwMM/u9mc00s38Hw/RjZiPM7H0zm2Jmb1nts1AfC0zdmayY2TVmNieYeO0ZiM4aDEwATmmSwopIzChhEZGm1pdosnEa8ATwnrsPITqK7clB0nIfcJa7jwAeBn5Xy3lGAzUnYrsROCiYeO2qGtsnA0eGXgoRaVJJOTS/iDRrb7p7hZnNJDp1xr+D7TOBXsBAYDAwPphCKALUNkdSZ746V8kM4Ekze5mvzuhcCHQJL3wRiQclLCLS1MoA3L3azCpqzAtUTfQzyYDZ7n5YPefZDmTWeH0ycBRwKnCzmQ0Jmosyg31FJIGpSUhEmpv5QHszOwzAzNLM7IBa9psL9Av2SQG6u/t7wE+BfCA32G8AMCvmUYtITClhEZFmxd3Lic7QfIeZTQemAYfXsuubRGtUINps9ETQzPQF8Cd33xy8dwzweixjFpHY02PNIpKwzOwl4AZ3X1jH+x2Bp9z9uKaNTETCpoRFRBKWmQ0EOrr7B3W8fzBQ4e7TmjQwEQmdEhYRERFp9tSHRURERJo9JSwiIiLS7ClhERERkWZPCYuIiIg0e0pYREREpNn7//rSyQ7bREXJAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n", + "Trajectory Stability and Control Plots\n", + "\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGDCAYAAAAI1UtPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABhXUlEQVR4nO3deWBcZb3/8fd3JkmTNm26JaEb3TdaoJRCi2DpgogI6BVUXEC8eCt6Rbzuij8Fr171ulxxuSCKF0EsICJWARELAcraFlpKm26Ulm40Tbqm2We+vz/OSToNSWZaOplJ8nnhOHPOec4533NOmvnmPM95HnN3RERERLJZJNMBiIiIiCSjhEVERESynhIWERERyXpKWERERCTrKWERERGRrKeERURERLKeEhYRSSsz+4iZ/SPTcaTKzL5uZr/JdBwiciQlLCI9nJmdY2bPmNl+M9tjZk+b2RnhsqvMbMlRbGuUmbmZ5TTPc/e73P38Y4jr9nBb72k1/3/C+Vcd7TZT4e7/5e6fSMe2ReTYKWER6cHMrB/wN+DnwEBgGHAjUJ/JuBKsB65snggToQ8Arx7LxhITKRHpWpSwiPRsEwDcfaG7x9y91t3/4e4vm9lk4BbgLDOrNrN9AGb2bjN7ycwOmNlWM7shYXtPhu/7wnXOan2XxsymmNmj4d2cXWb29Q7i+ytwjpkNCKcvAF4G3kjY3lgze8zMqsys0szuMrP+Ccs3m9lXzOxl4JCZ5ZjZlWa2JVzn/4VlzgvL32Bmvw8/N98x+piZvR5u//pjOM8i8hYpYRHp2dYDMTP7nZm9KyExwN3LgWuAZ9290N37h4sOEdz16A+8G/iUmb03XDY7fO8frvNs4s7MrC/wT+DvwFBgHLC4g/jqgL8Al4fTVwJ3tCpjwPfC7U0GRgA3tCrzoTDW/gRJ2v8CHwGGAEUEd5Y6cg4wEZgPfDNM5kSkEylhEenB3P0AwZexA78GdpvZIjMr7WCdMndf5e5xd38ZWAicm+IuLwLecPcfu3udux909+eTrHMHcGV41+Rc4IFW8Wx090fdvd7ddwM/aSOen7n7VnevBS4D/uruS9y9AfhmePwduTG8+7QSWAmcmsKxishxpIRFpIdz93J3v8rdhwNTCe5U/LS98mY208weN7PdZraf4C7M4BR3N4KjbH/i7kuAYuB64G9h0pEYT6mZ3W1m283sAPD7NuLZmvB5aOK0u9cAVUnCeCPhcw1QeDTHICJvnRIWEWnh7muB2wkSF2j7zsMfgEXACHcvImjnYh2UT7QVGHMMof0e+AJvrg4C+K9wvye7ez/gownxNEuMaycwvHnCzAqAQccQk4h0IiUsIj2YmU0ysy+Y2fBwegRBe4/nwiK7gOFmlpewWl9gj7vXmdmZwIcTlu0G4rSflPwNGGJmnzOzXmbW18xmphDqz4B3cLhRb6K+QDWw38yGAV9Ksq37gIvN7G3hcd3AmxMcEckySlhEeraDwEzgeTM7RJCovEJwNwPgMWA18IaZVYbzPg1828wOErT/uLd5Y2H1yneBp81sn5nNStyZux8kSDwuJqhm2QDMTRaku+9x98Xu3tYdnBuB6cB+4EHg/iTbWg1cC9xNcLelGqggex7lFpE2WNv//kVEegYzKwT2AePd/bUMhyMi7dAdFhHpcczsYjPrbWZ9gB8Bq4DNmY1KRDqihEVEeqL3ADvC13jg8naqm0QkS6hKSERERLKe7rCIiIhI1lPCIiIiIlmvy41c2r9/fx83blymw8ioQ4cO0adPn0yHkTE6/p59/KBz0NOPH3QOutPxL1++vNLdi5OV63IJS2lpKcuWLct0GBlVVlbGnDlzMh1Gxuj4e/bxg85BTz9+0DnoTsdvZltSKacqIREREcl6SlhEREQk63W5KiERERHpetydhlic+qY49Y1x6pti1DfFU15fCYuIiEgP4O40xT1MGIJkIXjFqGt887wgqTicWCQmGYnL6xpjHZQ7crtvhRIWERGRDIjHnYN1TeyrbeBAbdPhxKGNpKD1501b6nm48uUjEoMjEod2ko34W+wrNjdq9MqJ0isnErxyEz7nRCnslcOgPlF65R6eF5SLtLvee3+Q2r6VsIiIiBwH8bizp6aBXQfqqDhQz64DdVRW17O3ppG9NQ3sD9/31TSyr7aRfTUNR51ARAzyc6NEPEbhvt1vSgzycyMUFeQekUT0yo2Q3yqx6DihCNdpVS4vJ0I0Yuk5eSlQwiIiInKU9tc2snrHftbsOMDqHQd4Zft+Xqs8RFMbGUjvvCgDeudRVJDLgD65DOlfQP+CXAb0zqN/71z6986jX34OBXnRpHckciKGmXWrx5pTpYRFRESkAxUH61i94wCrt+8PkpMd+9m6p7Zl+Qn98pk6rB/nnVTKCf3yKe3Xi+K+wfvgwl7k50YzGH33oYRFRESEoFHqtr21rN6xv+WuyeodB6g4WN9SZtSg3pwyrD8fOvNEpgwtYsrQfgwu7JXBqHsOJSwiItLjxOLOa5XVRyQmq3ccYH9tIwDRiDGuuJBzxg9mytAipg7tx+Sh/eiXn5vhyHuutCUsZpYPPAn0Cvdzn7t/q1WZXsAdwOlAFfBBd9+crphERKTnaWiKs6HiIKu3B9U5r2zfT/nOg9Q2xgDIy4kw+YS+XHjyEKYO68eUoUVMOqGvqnKyTDrvsNQD89y92sxygSVm9rC7P5dQ5mpgr7uPM7PLgR8AH0xjTCIi0o3VNcYo33mAV8I2J6/s2M/6N6ppiAV9gPTJizJlaBGXnzkiuHMyrB9jiwvJjarj92yXtoTF3R2oDidzw1fr5tPvAW4IP98H/MLMLFxXRESkXQfrGg8/pbNjP6u3H2Dj7mpi4ZM6/XvnMnVoER8/ZxRThxYxdVgRIwf2JpLBR3Pl2KW1DYuZRYHlwDjgl+7+fKsiw4CtAO7eZGb7gUFAZTrjEhGRrueN/XU8traCZ16tZOnGGnb9/R8ty0r69mLqsCLeOaWUKcOCxrDD+hdgpuSku7DOuJlhZv2BPwPXuvsrCfNfAS5w923h9KvATHevbLX+AmABQHFx8en33ntv2mPOZtXV1RQWFmY6jIzR8ffs4wedg55y/HF3Nu2Ls3J3jJW7Y7x+MKjWGZhvjOgTZ+zAPEb2izCyb4T++T2rSqc7/QzMnTt3ubvPSFauU54Scvd9ZvY4cAHwSsKi7cAIYJuZ5QBFBI1vW69/K3ArwMSJE72ndZbTWk/sMCiRjr9nHz/oHHTn499f28iT63fz+NoKytbvZs+hBqIR4/SRA/jwOSXMn1TCuJJCnnjiiW57DlLRnX8G2pPOp4SKgcYwWSkA3kHQqDbRIuBjwLPAZcBjar8iItJzuDsbK6p5bG0Fi9dWsHzLXmJxZ0DvXOZMLGHepBJmjy+mqLceJ+7p0nmHZQjwu7AdSwS4193/ZmbfBpa5+yLgNuBOM9sI7AEuT2M8IiKSBeoaYzy3qYrH1lbw2NoKtu0Neo2dPKQf15w7hnmTSpk2on9Gx62R7JPOp4ReBk5rY/43Ez7XAe9PVwwiIpIddu6v5bG1FTy+toKnN1ZR2xijIDfK2eMG8ek545g7qZghRQWZDlOymHq6FRGR4y4Wd1Zs3RveRdlN+c4DAAwfUMAHZgxn7qQSZo0ZpM7ZJGVKWERE5LjYX9PIExvCBrPrKthb00g0YswYOYCvvWsS88IGs3rUWI6FEhYRETkm7s6ru6tZXB60RVmW0GB27sQS5qrBrBxHSlhERCRl9U0xXnhtT0uS8vqeGiBoMPupc8cyd1KJGsxKWihhERGRDlUcrKNs7W4Wr93Fkg2VHGqI0SsnwtnjBrNg9hjmTSphaH81mJX0SpqwmNkM4O3AUKCWoOO3R919b5pjExGRDIjHndU7DoQNZnexctt+AIYU5fPe04Yxf3IJZ40ZTEGeGsxK52k3YTGzjwPXAq8RjAe0DsgHzgG+Enar///c/fXOCFRERNLnUH0TT2+sbOkbpeJgPWZw2oj+fOmdE5k7sYTJQ/qqwaxkTEd3WHoDZ7t7bVsLzWwaMB5QwiIi0gVt3VPT0sPsc69W0RCL07dXDrMnFDNvUglzJhYzqLBXpsMUATpIWNz9lx2t6O4rjns0IiKSNk2xOC++vq+lqmf9rmoAxgzuw5VnjWTe5BLOGDWQ3GjPGkhQuoZU2rD8DrjO3feF0wOAH7v7v6Y5NhEReYv21TTwxPrdPLa2grJ1u9lf20hOxJg5ZiAfPONE5k0qYfTgPpkOUySpVJ4SOqU5WQFw971m9qYu90VEJPOaBxNcvLaCx8orWP560DfKoD55nDe5lPmTSzhn/GD65atvFOlaUklYImY2oPmpIDMbmOJ6IiLSCeqbYjy/aU/YHmUXW/cETQ9PGtKPT88Zy7xJJZw6vD8R9Y0iXVgqicePgWfN7I/h9PuB76YvJBERSabiQB2Pr6tgcXkFSzZWUtMQIz83wjnjBnPNuUGSosEEpTtJmrC4+x1mtgyYF856n7uvSW9YIiKSKB53Xtmxn8XlFfxlaS2b/74YgKFF+bxv+jDmTyrlrLEaTFC6r476YSl092qAMEF5U5KSWKaNZSOAO4BSwIFb3f2mVmWKgN8DJ4ax/Mjd/+8Yj0VEpFs5VN/EUxsqeXxtBY+tq2B32DfK2KIIX3rnROZPLmFiqfpGkZ6hozssfzGzFcBfgOXufgjAzMYAc4EPAL8G7mtn/SbgC+7+opn1BZab2aOt7s78O7DG3S82s2JgnZnd5e4Nb+2wRES6pteranhs7S4Wr63g+U17gr5R8nM4t6VvlBJeXvoMc+aMy3SoIp2qo35Y5pvZhcAngbPDxraNBD3ePgh8zN3f6GD9ncDO8PNBMysHhnHknRoH+lrw50EhsIcg0RER6RGaYnGWb9nb0sPshoqwb5TiPnzsbSOZN6mUGaMGqG8U6fE6bMPi7g8BD73VnZjZKOA04PlWi34BLAJ2AH2BD7p7/K3uT0QkmzX3jbK4vIKydRUcqGsiN2rMHD2ID50Z9I0ySn2jiBzB3D29OzArBJ4Avuvu97dadhlwNvB5YCzwKHCqux9oVW4BsACguLj49HvvvTetMWe76upqCgsLMx1Gxuj4e/bxQ9c7B+7Ojmpnxe4mVu6OsWFvHAf65cGpxTmcUhxl6uAoBTmptUXpasefDj39HHSn4587d+5yd5+RrFxaExYzywX+Bjzi7j9pY/mDwPfd/alw+jHgq+7+QnvbnDhxoq9bty5dIXcJZWVlzJkzJ9NhZIyOv2cfP3SNc1DXGOO5TVUtVT3b9gZ9o0wZ2o/5k0qYN7mUU4YVHVPfKF3h+NOtp5+D7nT8ZpZSwpK2DuDCdim3AeVtJSuh14H5wFNmVgpMBDalKyYRkXTadaCOx8PBBJdsqKS2sblvlGL+fe445k4s4YSi/EyHKdIlpZSwmFmU4PHklvLunmyU5rOBK4BV4dNGAF8neIQZd78F+E/gdjNbBRjwFXevPJoDEBHJlMS+URav3cUr24Pa7GH9C3j/jOHMnVTCWWPUN4rI8ZDK4IfXAt8CdgHNDWIdOKWj9dx9CUES0lGZHcD5KUUqIpIFahtiLNlYGTx6XF5BxcF6IgannTiAL18wkfmTSplQWqi+UUSOs1TusFwHTHT3qnQHIyKSjXbur2VxedAW5emNldQ3xSnsdbhvlLmTShjYJy/TYYp0a6kkLFuB/ekOREQkW8Tjzqrt+1lcHnTgtnpHUNVz4sDefHjmicyfVMqZoweSl6O+UUQ6SyoJyyagLHyip755ZgcNaUVEupyahiaWbKgM7qSE3eBHDE4fOYCvvmsS8yeVMK5EVT0imZJKwvJ6+MoLXyIi3cKOfbUsXlvB4vJdPPNqFQ1Ncfr2ymH2xGLOm1zCuRNU1SOSLVIZrfnGzghERCTd4nHn5eaqnvIK1uwMqnpGDurNR2eOZP7kEs4YpaoekWzU0WjNP3X3z5nZXwmeCjqCu1+S1shERI6DmoZgxOPF5bt4bO1uKquDqp4ZIwfytXdNYv7kEsYWq6pHJNt1dIflzvD9R50RiIjI8bJ9Xy2Ple/in+UVPLsprOoJRzw+b3Ip504oZoCqekS6lI5Ga14evj/ReeGIiBy9eNxZuW0fi8sr+Gf5Lta+cRCAUYN6c8Wsw1U9GvFYpOtKpeO4Vby5Smg/sAz4jvpnEZFMOFR/uKrn8XUVVFY3EI0Yp48cwNcvnMT8yaWMGdxHVT0i3UQqTwk9DMSAP4TTlwO9gTeA24GL0xKZiEgr2/bW8NjaCu5dVsf6Rx+lIRZU9cyZWBI+1VNM/96q6hHpjlJJWM5z9+kJ06vM7EV3n25mH01XYCIisZaqnuCpnuaqntLexpVnjWL+5FJmjBqgqh6RHiCVhCVqZme6+wsAZnYG0DySV1PaIhORHqm6voklG3bzz/IKHl9bQdWhoKpnxsgBXH/hZOZPLuH11cuYM+ekTIcqIp0olYTlauD/zKwwnD4IXG1mfYDvpS0yEekxtu4Jqnr+Wb6L5zftoSEWp19Y1TN/cglzJpRQ1Du3pXyyoeJFpPvpMGExsyjwdnc/2cyKANw9cVyhe9MZnIh0T7G4s2LrXhaXV7C4vIJ1u4KqnjGD+/Cxt40MqnpGDiBHVT0iEuowYXH3mJl9CPifVolKUmY2ArgDKCV4yuhWd7+pjXJzgJ8CuUClu597NPsRka7hYF0jSzZU8s/yCsrWHa7qOWPUAL7x7snMm1TCmOLC5BsSkR4plSqhp83sF8A9wKHmme7+YpL1moAvuPuLZtYXWG5mj7r7muYCZtYf+F/gAnd/3cxKjvoIRCRrbd1T0zLi8XObqmiMOUUFucyZWMz8sAO3ooLc5BsSkR4vlYRlWvj+7YR5DszraCV33wnsDD8fNLNyYBiwJqHYh4H73f31sFxFamGLSDaKxZ2XXt/bMqDg+l3VAIwt7sPHzx7N/EklnK6qHhE5Bub+pmGCjv9OzEYBTwJT3f1AwvyfElQFTQH6Aje5+x1trL8AWABQXFx8+r339uymM9XV1RQW9txb5zr+7Dr+2iZnVWWMlRUxXt7dxMFGiBpMGBBhWkkO04qjlPY5vglKtp2DztbTjx90DrrT8c+dO3e5u89IVi6VOyyY2bsJkor85nnu/u321zhi3ULgT8DnEpOVhP2fDswHCoBnzew5d1+fWMjdbwVuBZg4caLPmTMnlV13W2VlZfTkc6Djz/zxv15Vwz/Ld/HY2gqef+1wVc/8KUOZP7mU2Wmu6smGc5BJPf34QeegJx5/Kl3z30LQs+1c4DfAZcALqWzczHIJkpW73P3+NopsA6rc/RBwyMyeBE4F1rdRVkQyJBZ3Xny9+ameXWyoOFzV869nj2b+5FKmn9hfVT0ikjap3GF5m7ufYmYvu/uNZvZjgu76O2TBAB63AeXu/pN2iv0F+IWZ5QB5wEzgf1KMXUTS6EBdI0+u381j5RU8vq6CvTWN5ESMmWMGcvmZJzJ/UgmjBvfJdJgi0kOkkrDUhu81ZjYUqAKGpLDe2cAVBF35rwjnfR04EcDdb3H3cjP7O/AyEAd+4+6vHEX8InIcbak6xD/LK3hsbdCBW1PcGdA7l7kTS5g3uYTZE4rpl6+nekSk86WSsPwtfPz4h8CLBE8I/SbZSu6+BEg6TKq7/zDctoh0sqZYnBdf39fy6PHGsKpnfEkhV799NOdNLmX6iQOIRjTisYhkVtKExd3/M/z4JzP7G5B/tJ3IiUj2OFDXyBPrdrO4fBdl63ezr6aR3Kgxc/QgPnzmicyfXMLIQarqEZHs0m7CYmbv62AZ7TSiFZEstGl3NY+tDbrBX7r5cFXPvEklzJ9UyuwJg+mrqh4RyWId3WG5D1gRvuDI6h0HlLCIZKmGpjhLN+9hcdgeZXNVDQATS/vyibeP4bzJJZymqh4R6UI6SljeB1wOnELwNM9Cd9/YKVGJyFGrrK7n8bUVPLa2gqc2VFJd30ReToS3jR3E1eeMZu6kEoYP6J3pMEVEjkm7CYu7PwA8YGZ9gPcAPzazQcD17v5EJ8UnIu1wd1bvOMDjaytYvLaCldv24Q6l/Xpx8alDmTephLPHDaJ3Xkr9Q4qIZLVUfpPVAfuBA8BIEnq7FZHOVdsQ46WKJh65fxWPr63gjQN1mMEpw/vzH+dNYN6kEqYM7UfQDZKISPfRUaPbeQRVQmcC/yQY52dZZwUmIoFte2ta7qI882oVDU1x+uRtZ/aEYuZNKmHOxBKK+/bKdJgiImnV0R2WfxJ06LYE6AVcaWZXNi9098+mOTaRHilxxOPH11aw9o2DAIwc1JuPzhzJ4IadfOI9c8nLUTf4ItJzdJSwfLzTohDp4fbXht3gr62gLKEb/DNGDeT6Cyczb3IJYwb3wcwoK6tQsiIiPU5HjW5/15mBiPQk7s6ruw/x2NpdLC6vYNmWvcRadYP/9vHpHfFYRKQr0eMDIp2kvinGC681941Swet7gr5RJp3Ql2vOHcO8SaVMG9FffaOIiLRBCYtIGlUcrKNs7e6wb5TdHGqI0SsnwtnjBrNg9hjmTiphWP+CTIcpIpL1lLCIHEfNfaM09zC7clsw7NaQonzee9ow5k0q4W1jB1OQF81wpCIiXUvShMXMfgdc5+77wukBwI/d/V/THJtIl1DT0MSSDZU8FvYyW3GwHjOYNqI/Xzx/AvMmlTJ5SF/1jSIi8hakcofllOZkBcDd95rZaclWMrMRwB1AKcHYQ7e6+03tlD0DeBa43N3vSyVwkUzauqcmGExwbQXPbQr6RunbKyehb5RiBhWqbxQRkeMllYQlYmYD3H0vgJkNTHG9JuAL7v6imfUFlpvZo+6+JrGQmUWBHwD/OMrYRTpNUyzOi6/vC++i7GL9rmoAxgzuw5WzRjJvUgkzRg3U48YiImmSSuLxY+BZM/sjwYjNlwHfTbaSu+8EdoafD5pZOTAMWNOq6LXAn4AzjiJukbTbV9PAEy19o+xmf23QN8rMMQP5wIwRzJtUwpjiwkyHKSLSI5i7Jy9kdhIwL5x8rPVdkhTWHwU8CUx19wMJ84cBfwDmAr8F/tZWlZCZLQAWABQXF59+7733Hs3uu53q6moKC3vuF2W6jt/d2XHIWVnRxIrdMTbuixN36JsHpwzOYVpJlCmDovTOzWxblJ5+/UHnoKcfP+gcdKfjnzt37nJ3n5GsXLsJi5n1c/cDYRXQm7j7nlQCMbNC4Angu+5+f6tlfyRowPucmd1OOwlLookTJ/q6detS2XW3VVZWxpw5czIdRsYcz+Ova4zx/Gt7eKx8F4+tq2DrnloAThrSj/mTS5g7qYRTh2dX3yg9/fqDzkFPP37QOehOx29mKSUsHVUJ/QG4CFhO0Gi2Zdvh9JgUgsglqO65q3WyEpoB3B0+PTEYuNDMmtz9gWTbFjlWFQfqeHxdBYvLK1iysZKahhj5uRHOGTeYa84dy7xJJQwpUt8oIiLZpKOu+S8K30cfy4YtyEJuA8rd/Sft7GN0QvnbCe6wPHAs+xNpTzzuvLJjf0sPs6u2B32jDC3K533ThzF/UilnjR1Efq76RhERyVap9MOy2N3nJ5vXhrOBK4BVZrYinPd14EQAd7/l6MMVSU11fXPfKLt4fN1udod9o0w/cQBfeudE5k8uYWKp+kYREekq2k1YzCwf6A0MDjuLa/7N3o/gaZ8OufuShHWScverUi0r0pbXq2pYvHYXj62t4PlNe2iIxembn8O5LX2jlDCwT16mwxQRkWPQ0R2WTwKfA4YStGNpTj4OAL9Ib1giydU1xli6eQ9Prt/N4+t2s7Ei6BtlbHEfPva2kcybVMqMUQPIjapvFBGRrq6jNiw3ATeZ2bXu/vNOjEmkTe7Oq7ureWRzI//32xd4/rUq6hrj5EUjnDF6AB8+80TmTSph1OA+mQ5VRESOs6RtWNz952Y2FTgJyE+Yf0c6AxMB2F/TyNOvVvLk+t08uX43O/bXATBmcA2Xn3EisycMZtaYQfTO0zieIiLdWSqNbr8FzCFIWB4C3gUsIRgnSOS4isWdldv2tSQoK7buCzpv65XD2eMG85l5xeRWbeT9F87JdKgiItKJUvmz9DLgVOAld/+4mZUCv09vWNKT7NxfGyYolSzZWMn+2kbM4JTh/fnM3HHMnlDMtBH9yQnbopSVbcpwxCIi0tlSSVhq3T1uZk1m1g+oAEakOS7pxpp7l22+i7IhbCxb2q8X559UyuwJxZwzbjAD9ESPiIiEUklYlplZf+DXBE8LVQPPpjMo6V7cnfW7qoMEZcNuXnhtD/VNcfJyIswcHQwkOHtCMRNKC9UvioiItCmVRrefDj/eYmZ/B/q5+8vpDUu6ur2HGliyMWgs+9SGSt44EDSWHVdSyEdmjmT2hMHMHD2Igjz1LisiIskdVU+37r659TwRgKZYnBVbg8ayT2yo5OVt+3CHfvk5nDN+MLPHFzN7QjFD+2uMHhEROXpp6+lWur9te2t4cn1wF+XpVys5WNdExODUEf357LzxzJ5QzKnDi1oay4qIiBwr9XQrKatpaOL5TXt4ImyLsmn3ISAYRPDdJw9h9oRizh47mKLeuRmOVEREuhv1dCvtcnfWvnGwpbHs0tf20hCL0ysnwqwxg/jIzJGcO2EwY4vVWFZERNKroyqhM4CtzcmKmV0JXApsAW5w9z2dE6J0pj2HGnhqQ9AnylMbdlNxsB6AiaV9+djbRjJ7QjFnjBpIfq4ay4qISOfpqEroV8B5AGY2G/g+cC0wDbiVoEM56eIaY3Fe3LKXJzcET/Os2r4fd+jfO5dzxg1m9oRiZo8v5oSi/OQbExERSZOOEpZowl2UDwK3uvufgD+Z2YpkGzazEQTd95cCHq5/U6syHwG+QtA+5iDwKXdfedRHIUfl9aoantgQdNr27KtVVNc3EY0Yp43oz3+cN4HZE4o5eVgR0YiqeUREJDt0mLCYWY67NwHzgQUprtesCfiCu79oZn2B5Wb2qLuvSSjzGnCuu+81s3cR3LmZeZTHIEkcqm/i2VereDJMUjZX1QAwrH8BF586lHMnDOassYMpKlBjWRERyU4dJR4LgSfMrBKoBZ4CMLNxwP5kG3b3ncDO8PNBMysneBx6TUKZZxJWeQ4YfrQHIG8Wjztrdh5oSVCWb9lLY8wpyI0ya8xAPva2UcyeUMyYwX3UWFZERLoEc/f2F5rNAoYA/3D3Q+G8CUChu7+Y8k7MRgFPAlPd/UA7Zb4ITHL3T7SxbAHhHZ7i4uLT77333lR33S1VV1dTWFh4xLwD9c4rVTFWVTaxujLGgYZg/oi+EU4eHGXq4CjjB0TI7QbVPG0df0/S048fdA56+vGDzkF3Ov65c+cud/cZycp1mLAcD2ZWCDwBfNfd72+nzFzgf4Fz3L2qo+1NnDjR161bd/wD7ULKysqY+ba3s3zLXp5+Nei4bfWOIA8c2CePt4c9y759/GBK+nW/xrJlZWXMmTMn02FkTE8/ftA56OnHDzoH3en4zSylhCWVtihvJYhc4E/AXR0kK6cAvwHelSxZ6cnqGmO8uGUvz26q4pGXannt0UdojDk5EWP6yAF86Z0TmT2+mClD+xHpBndRREREEqUtYbGgccRtQLm7/6SdMicC9wNXuPv6dMXSFdU1xnjp9X08u6mK516tYsXWfTTE4kQMRvWL8K/njOasMYOYMWoghb3SmneKiIhkXDq/6c4GrgBWJTwG/XXgRAB3vwX4JjAI+N+w8WdTKreFuqP6piBBeW5TFc++WsVLW/fR0BQkKFOHFfHxs0cxa8wgZowawPLnnmbOnMmZDllERKTTpC1hcfclHB5/qL0ynwDe1Mi2J6hvirFy6/6WBOXF1/dS3xTHDKYM7cfHzhrJrDGDOGP0QPrl63FjERHp2VSX0EkamuK8vC28g7KpiuVb9lLXGCQok0/ox0dnBQnKmaMHqj8UERGRVpSwpEljLM7L24I7KM9tqmLZ5r3UNsYAmHRCXz505onMGjOImaMH0r93XoajFRERyW5KWI6TplicVdv3B41kN+1h2eY91DQECcrE0r588IwRzBozkJmjBzGgjxIUERGRo6GE5Rg1xeKs3nEgTFCqWPraHg6FCcqE0kIuO314yx2UQYW9MhytiIhI16aEJUWxuLNmxwGe3VTJc5v2sPS1PRysbwJgXEkh/zJ9GGeNGczMMQMZrARFRETkuFLC0g53Z2NFNU9vrGTJxiqef62Kg3VBgjKmuA8XTxvKWWMGMXPMQEr6dr/eZEVERLKJEpYE2/fV8vTGSp7ZWMkzr1ZRcbAegBMH9ubdJw/hrLGDmDVmEKXdsLt7ERGRbNajE5Y9hxp49tUqnn41SFI2V9UAMLgwj7eNHczZ4wbxtrGDGTGwd4YjFRER6dl6VMJS09DEC6/t4emNlTy9sYryNw7gDoW9cpg5eiBXnDWKc8YNZkJpIWHPuyIiIpIFum3C0tAUZ+f+WrbuqWXZlj08s7GKl7bupTHm5EUjTB/Zn8+fN4G3jRvMqcOLyIlGMh2yiIiItKPLJSxVdc7X7l9FPO7E3InHnabwcyzm7K6uZ9veGioO1uMerGMGJw8r4upzxnD2uEHMGDmQgrxoZg9EREREUtblEpZDjc6ja3YRjUDUjGjUiJoRiQTvgwt78fbxxQwfUMCw/gUMG1DAlCFFFPVWd/ciIiJdVZdLWE7sG2HZN87LdBgiIiLSidRwQ0RERLJe2hIWMxthZo+b2RozW21m17VRxszsZ2a20cxeNrPp6YpHREREuq50Vgk1AV9w9xfNrC+w3Mwedfc1CWXeBYwPXzOBm8N3ERERkRZpu8Pi7jvd/cXw80GgHBjWqth7gDs88BzQ38yGpCsmERER6Zo6pdGtmY0CTgOeb7VoGLA1YXpbOG9nq/UXAAvCyXozeyU9kXYZg4HKTAeRQTr+nn38oHPQ048fdA660/GPTKVQ2hMWMysE/gR8zt0PHMs23P1W4NZwe8vcfcZxDLHL6ennQMffs48fdA56+vGDzkFPPP60PiVkZrkEycpd7n5/G0W2AyMSpoeH80RERERapPMpIQNuA8rd/SftFFsEXBk+LTQL2O/uO9spKyIiIj1UOquEzgauAFaZ2Ypw3teBEwHc/RbgIeBCYCNQA3w8he3eetwj7Xp6+jnQ8UtPPwc9/fhB56DHHb9584A7IiIiIllKPd2KiIhI1lPCIiIiIlkvaxMWM7vAzNaF3fZ/tY3lvczsnnD582FfL91GCsd/lZntNrMV4esTmYgzXczst2ZW0V6fO919WIcUjn+Ome1PuP7f7OwY062nD++R4vF3258DM8s3sxfMbGV4/De2Uaa7fw+kcg669XfBEdw9615AFHgVGAPkASuBk1qV+TRwS/j5cuCeTMfdycd/FfCLTMeaxnMwG5gOvNLO8guBhwEDZgHPZzrmTj7+OcDfMh1nms/BEGB6+LkvsL6Nfwfd9ucgxePvtj8H4TUtDD/nEnQ8OqtVmW77PXAU56BbfxckvrL1DsuZwEZ33+TuDcDdBN34J3oP8Lvw833A/PBR6u4glePv1tz9SWBPB0W69bAOKRx/t+c9fHiPFI+/2wqvaXU4mRu+Wj8l0p2/B1I9Bz1GtiYs7XXZ32YZd28C9gODOiW69Evl+AEuDW+D32dmI9pY3p2leo66s7PCW8UPm9mUTAeTTscwvEe30sHxQzf+OTCzaNgtRgXwqLu3e/274fcAkNI5gB7yXZCtCYsk91dglLufAjzK4b8ypGd4ERjp7qcCPwceyGw46XM8hvfoypIcf7f+OXD3mLtPI+gF/Uwzm5rhkDpdCuegx3wXZGvCkkqX/S1lzCwHKAKqOiW69Et6/O5e5e714eRvgNM7KbZs0aOHdXD3A823it39ISDXzAZnOKzjrqcP75Hs+HvKz4G77wMeBy5otag7fw8cob1z0JO+C7I1YVkKjDez0WaWR9CYalGrMouAj4WfLwMe87AFUjeQ9Phb1dNfQlC/3ZP06GEdzOyE5rp6MzuT4N9yt/pFHR5fjx3eI5Xj784/B2ZWbGb9w88FwDuAta2KdefvgZTOQU/6Lkj7aM3Hwt2bzOwzwCMET8z81t1Xm9m3gWXuvojgH/KdZraRoHHi5ZmL+PhK8fg/a2aXAE0Ex39VxgJOAzNbSPAExGAz2wZ8i6DBGX7swzp0GSkc/2XAp8ysCagFLu9Ov6hD6Rreo6tI5fi788/BEOB3ZhYlSMTudfe/9ZTvgVAq56BbfxckUtf8IiIikvWytUpIREREpIUSFhEREcl6SlhEREQk6ylhERERkaynhEVERESynhIWETkuzGxQwoixb5jZ9vBztZn9b5r2+Tkzu7KD5ReFj4CKSBenx5pF5LgzsxuAanf/URr3kUPQNf30cByZtspYWOZsd69JVywikn66wyIiaWVmc8zsb+HnG8zsd2b2lJltMbP3mdl/m9kqM/t72BU9Zna6mT1hZsvN7JF2RmCeB7zYnKyY2WfNbE04CNzdEIx2C5QBF3XKwYpI2ihhEZHONpYg2bgE+D3wuLufTNBT67vDpOXnwGXufjrwW+C7bWznbGB5wvRXgdPCQeCuSZi/DHj7cT8KEelUWdk1v4h0aw+7e6OZrSIYeuLv4fxVwChgIjAVeDQcJicKtDU+0BCOHDflZeAuM3uAI0ctrgCGHr/wRSQTlLCISGerB3D3uJk1Jox9Eyf4nWTAanc/K8l2aoH8hOl3A7OBi4HrzezksLooPywrIl2YqoREJNusA4rN7CwAM8s1syltlCsHxoVlIsAId38c+ApQBBSG5SYAr6Q9ahFJKyUsIpJV3L2BYBTiH5jZSmAF8LY2ij5McEcFgmqj34fVTC8BP3P3feGyucCD6YxZRNJPjzWLSJdlZn8GvuzuG9pZXgr8wd3nd25kInK8KWERkS7LzCYCpe7+ZDvLzwAa3X1FpwYmIsedEhYRERHJemrDIiIiIllPCYuIiIhkPSUsIiIikvWUsIiIiEjWU8IiIiIiWU8Ji4iIiGQ9JSwiIiKS9ZSwiIiISNZTwiIiIiJZTwmLiIiIZD0lLCIiIpL1lLCIiIhI1lPCIiIiIllPCYuIiIhkPSUsIiIikvWUsIiIiEjWy2lvgZm9r6MV3f3+4x+OiIiIyJu1m7AAF4fvJcDbgMfC6bnAM4ASFhEREekU7VYJufvH3f3jQC5wkrtf6u6XAlPCeSLSicxss5nVmll1wmtopuPqTGY2ysw84fg3m9lXMx2XiKRfR3dYmo1w950J07uAE9MUj4h07GJ3/2d7C80sx92bOjOgDOnv7k1mNgN4wsyWu/ujmQ5KRNInlUa3i83sETO7ysyuAh4E2v2FKSKdK7zj8O9mtgHYEM67yMxWmNk+M3vGzE5JKH+amb1oZgfN7B4zu9vMvhMuu8rMlrSx/XHh515m9iMze93MdpnZLWZWEC6bY2bbzOwLZlZhZjvN7OMJ2ykwsx+b2RYz229mS8J5D5rZta32+bKZ/UuyY3f3ZcBqYFrCuv9qZuVmtjf83TUynG9m9j9hbAfMbJWZTQ2X3R4ey6PheXmieb1w+dvMbGkY91Ize1vCsjIz+08zezpc9x9mNjhclm9mvzezqvBaLDWz0nBZkZndFp6n7Wb2HTOLJjtmkZ4qacLi7p8BbgFODV+3uvu1Ha8lIp3svcBM4CQzOw34LfBJYBDwK2BRmGzkAQ8AdwIDgT8Clx7Ffr4PTCBIEMYBw4BvJiw/ASgK518N/NLMBoTLfgScTtAmbiDwZSAO/A74aPMGzOzUcP0HkwVjZrOAqcDGcPo9wNeB9wHFwFPAwrD4+cDsMP4i4ANAVcLmPgL8JzAYWAHcFW5zYBjLzwjO50+AB81sUMK6HwY+TtDmLw/4Yjj/Y+G+RoTrXgPUhstuB5oIzuNpYXyfSHbMIj2Wuyd9ASOB88LPvYG+qaynl156Hb8XsBmoBvaFrwfC+Q7MSyh3M/CfrdZdB5xL8IW9A7CEZc8A3wk/XwUsabWuE3ypGnAIGJuw7CzgtfDzHIIv45yE5RXALII/jmqBU9s4rnxgLzA+nP4R8L/tnINRYTz7wu15WN7C5Q8DVyeUjwA14e+wecD65nhabfd24O6E6UIgRpBoXAG80Kr8s8BV4ecy4BsJyz4N/D38/K/h+T2l1fqlQD1QkDDvQ8Djmf4500uvbH0lvcNiZv8G3EfwVxoEf/k8kGw9EUmL97p7//D13oT5WxM+jwS+EFZB7DOzfQRfvEPD13Z394TyW1LcdzHBHyzLE7b793B+syo/sg1NDcGX/2CCxOTV1ht19zrgHuCjZhYh+OK+M0ksg8PtfoEgUWp+EGAkcFNCfHsIEq1h7v4Y8Avgl0CFmd1qZv0SttlyDt29Oly3+Zy1PkdbCH4XNnujjWMmPI5HgLvNbIeZ/beZ5YZx5gI7E2L9FcEdGhFpQyptWP4dOBs4AODuG9A/KpFsk5iAbAW+m5DY9Hf33u6+ENgJDDMzSyif2Ij+EEFSAoCZnZCwrJLgrsaUhO0WuXshyVUCdcDYdpb/jqBKZj5Q4+7PJtugu8fc/Sfhdj8dzt4KfLLVsRe4+zPhOj9z99OBkwiqhr6UsMkRCcddSFBttSN8jeRIJwLbU4ix0d1vdPeTCKrCLgKuDOOsBwYnxNnP3ack26ZIT5VKwlLv7g3NE2aWw5G/HEUku/wauMbMZoYNTfuY2bvNrC9BVUYT8Fkzy7Wgg8gzE9ZdCUwxs2lmlg/c0LzA3ePhtv/HzEoAzGyYmb0zWUDhur8FfmJmQ80samZnmVmvcPmzBO1ZfkzyuyutfR/4chjvLcDXzGxKGF+Rmb0//HxGeE5yCRKzunCfzS40s3PCdj7/CTzn7luBh4AJZvZhM8sxsw8SJDx/SxaYmc01s5PDxrQHgEYg7sGTl/8Afmxm/cwsYmZjzezcozx2kR4jlYTlCTP7OlBgZu8gaKT31/SGJSLHyoMnZ/6NoPpjL0GD1KvCZQ0EDVKvIqjy+CAJnUC6+3rg2wRPAm4AjnhiCPhKuL3nzOxAWG5iiqF9EVgFLA33/QOO/B10B3Ay8PsUt9fsQYLj/Dd3/3O43bvD+F4B3hWW60eQcO0lqNKpAn6YsJ0/AN8KYzudsCGwu1cR3Bn5QrjOl4GL3L0yhdhOIKhSPwCUA09wOCG7kqCB7powpvuAIUd36CI9R3NDtfYLBHXKVxO0YDfgEXf/dSfEJiKdwMxuB7a5+zcyHMeVwAJ3PycD+76dLDgHItK+VDqO+whB6/mWJMXMLnL3pLdDRURSYWa9Cdqh/G+mYxGR7JRKldDPgafMbHLCvG+nKR4R6WHCNjC7CXrR/kOGwxGRLJVKldBLBFVCdwI3uPsfzewldz+tMwIUERERSaVKyN39xbD1+kIzmwmo+2gRERHpNKkkLDsB3L0yvHX7A4KusDOif//+Pm7cuEztXtpw6NAh+vTpk+kwJKTrkX10TbKLrkd2Wb58eaW7Fycrl7RKKNtMnDjR161bl+kwJEFZWRlz5szJdBgS0vXIProm2UXXI7tYMNr6jGTl2r3DYmY/dffPmdlfaaOjOHe/5C3GKCIiIpKSjqqEmjs3+tGxbNjMfkvQ2VKFu7+pCinsGvwm4EKCsTeucvcXj2VfIiIi0r21m7C4+/Lw/Ylj3PbtBD1t3tHO8ncB48PXTIIRZmce475ERESkG+uoSmgVHYwZ5O6ndLRhd3/SzEZ1UOQ9wB3hqLHPmVl/MxsSjrHRrkP1e9m6cwMjhozvqJiIiPQQjY2NbNu2jbq6upTKFxUVUV5enuaopLX8/HyGDx9Obm5u8sJt6KhK6KJjCyllw0gYzh3YFs57U8JiZguABQD5o/K5btGlfHbiz9IcnqSqurqasrKyTIchIV2P7KNrkl6FhYWUlpYybNgwjhyIvG2xWIxoVL1zdCZ3Z//+/axcuZLq6upj2kZHVUJbjjmy48zdbwVuBSgYXeCv9YqrhXcWUYv77KLrkX10TdKrvLyc4cOHp5SsABw8eJC+ffumOSpprW/fvlRXVzNjRtIHgtqUtGt+M5tlZkvNrNrMGswsFo6C+lZtB0YkTA8P5yXVlOIPpYiI9AypJiuSOW/1GqUyltAvgA8RDDVfAHwC+OVb2mtgEXClBWYB+5O1XxEREZGeKZWEBXffCETdPebu/wdckGwdM1sIPAtMNLNtZna1mV1jZteERR4CNgEbgV8TjNQqIiLSJT3wwAOYGWvXrm2Zt2LFCh566KGW6bKyMp555pmW6VtuuYU77ggepr399tvZsWPHUe931KhRVFZWHtU6lZWV5Obmcssttxz1/hJt3ryZqVM7p/P7VBKWGjPLA1aY2X+b2X+ksp67f8jdh7h7rrsPd/fb3P0Wd78lXO7u/u/uPtbdT3b3ZW/xWERERDJm4cKFnHPOOSxcuLBlXrKE5ZprruHKK68Ejj1hORZ//OMfmTVr1hGxZrtUEpYrCAY7/AxwiKDdyaXpDEpERKQrqa6uZsmSJdx2223cfffdADQ0NPDNb36Te+65h2nTpvGDH/yAW265hf/5n/9h2rRpPPXUU9xwww386Ec/4r777mPZsmV85CMfYdq0adTW1h5x52TZsmUtDberqqo4//zzmTJlCp/4xCdIHGLn97//PWeeeSbTpk3jk5/8JLFYrM14Fy5cyI9//GO2b9/Otm3bWuYXFhZy/fXXc+qppzJr1ix27doFwKuvvsqsWbM4+eST+cY3vkFhYeGbthmLxfjSl77EGWecwSmnnMKvfvWr43JumyUd/DDhaaFa4MbjuncREZHj6Ma/rmbNjo6fCznax5pPGtqPb108pcMyf/nLX7jggguYMGECgwYNYvny5Zx++ul8+9vfZtmyZfziF78AoLa2lsLCQr74xS8CsHjxYgAuu+wyfvGLX/CjH/0o6VM0N954I+eccw7f/OY3efDBB7ntttuA4Gmpe+65h6effprc3Fw+/elPc9ddd7XcwWm2detWdu7cyZlnnskHPvAB7rnnHr7whS8AwcCQs2bN4rvf/S5f/vKX+fWvf803vvENrrvuOq677jo+9KEPtVuNdNttt1FUVMTSpUupr6/n7LPP5vzzz2f06NFJznBqUnlK6CIze8nM9pjZATM7eJyeEnpLYk0NmQ5BREQECO5YXH755QBcfvnlaa1qefLJJ/noRz8KwLvf/W4GDBgABMnP8uXLOeOMM5g2bRqLFy9m06ZNb1r/nnvu4QMf+ECbsebl5XHRRUE3bKeffjqbN28G4Nlnn+X9738/AB/+8IfbjOsf//gHd9xxB9OmTWPmzJlUVVWxYcOG43PQpHCHBfgp8D5glWfR0M41tVX07Tsk02GIiEgWSXYnBI5/Pyx79uzhscceY9WqVZgZsVgMM+OHP/zhW9puTk4O8XgcIKVefN2dj33sY3zve9/rsNzChQt54403uOuuuwDYsWMHGzZsYPz48eTm5rY8fhyNRmlqako5Xnfn5z//Oe985ztTXudopNKGZSvwSjYlKwAHqo+uRbSIiEg63HfffVxxxRVs2bKFzZs3s3XrVkaPHs1TTz1F3759OXjwYEvZ1tOJWi8bNWoUy5cvB+BPf/pTy/zZs2fzhz/8AYCHH36YvXv3AjB//nzuu+8+KioqgCCR2rLlyD5g169fT3V1Ndu3b2fz5s1s3ryZr33ta0nvCM2aNaslhuY2Oq29853v5Oabb6axsbFlX4cOHepwu0cjlYTly8BDZvY1M/t88+u4RXCMlLCIiEg2WLhwIf/yL/9yxLxLL72UhQsXMnfuXNasWcO0adO45557uPjii/nzn//c0ug20VVXXcU111zT0uj2W9/6Ftdddx0zZsw4os3Nt771LZ588kmmTJnC/fffz4knngjASSedxHe+8x3OP/98TjnlFN7xjnewc+eR3Zt1FGtHfvrTn/KTn/yEU045hY0bN1JUVPSmMp/4xCc46aSTmD59OlOnTuWTn/zkUd2hScaS3Tgxs38A1cAqIN48390z0gC3YHSBj7thHL8+9QZmTdPDStlA3Y5nF12P7KNrkl7l5eVMnjw55fLqmv/o1dTUUFBQgJlx9913s3DhQv7yl78c9XbaulZmttzdk/bXn0oblqHu3jm9whyF6to9mQ5BRESkR1i+fDmf+cxncHf69+/Pb3/7206PIZWE5SEzO9/d/5H2aI7Cwdp9mQ5BRESkR3j729/OypUrMxpDKm1YPgX83cxqs+mx5ur6thstiYiISPfT4R0WM4sAF7j7050UT8pq6zOeM4mIiEgn6fAOi7vHCUZrzjo1jdWZDkFEREQ6SSpVQovN7FJr7kkmS9Q11mY6BBEREekkqSQsnwT+CDRkUxuWhnh9pkMQERGRTpLK4IdZ+bB6Q0wJi4iISE+Ryh0WzOwSM/tR+Loo1Y2b2QVmts7MNprZV9tYfqKZPR4OrviymV2Y6rYb4o2pFhUREUm7RYsWcemlR3ZoevPNN3PttddmKKLuJekdFjP7PnAGcFc46zozO9vdv5ZkvSjwS+AdwDZgqZktcvc1CcW+Adzr7jeb2UnAQ8CoVAJvdCUsIiLSysNfhTdWdVikINYE0VS6IQudcDK86/tJi11//fVv6uJ+7NixR4wDJMculTssFwLvcPffuvtvgQuAd6ew3pnARnff5O4NwN3Ae1qVcaBf+LkI2JFa2NCoOywiIpIlVq5cSTweZ+rUqWzZsoWbb74ZgMbGRsyMTZs2cfXVV3PZZZdlONKuK9UUsz/Q3Bf+m0c8atswgpGem20DZrYqcwPwDzO7FugDnNfWhsxsAbAAIH9UPgC1TfWUlZWlGIqkU3V1ta5FFtH1yD66JulVVFR0eJTjc65PWj4Wix0xmGBK2hlhudmzzz7LKaecwsGDB/nrX//K2rVrOXjwIC+99BKTJ0+muLiYn/70p1xxxRXtjtbcE9TV1R3zv4VUEpbvAS+Z2eOAAbOBN7VHOUYfAm539x+b2VnAnWY2Nez/pYW73wrcCsHghwAeRYOJZQkN7JZddD2yj65JepWXlx/VYIbpGPywV69e1NfX07t3bx566CGGDRtGTk4OCxcu5M4772zZX05OTo8eeDE/P5/TTjvtmNZNWiXk7guBWcD9wJ+As9z9nhS2vR0YkTA9PJyX6Grg3nA/zwL5wOAUtk0TsVSKiYiIpN2FF17Ipk2bmDZtGtdccw2rV69mxowZLFiwgOnTp2c6vG6h3TssZnZiq1krwvc8MzvR3V9Psu2lwHgzG02QqFwOfLhVmdeB+cDtZjaZIGHZnUrgDUpYREQkS5SWlrJixYqW6UsuueSI5VVVVVx//fW89NJLfO973+NrX+vwuRVpQ0dVQg8SNIpN7OHWgWKgBOiwAtDdm8zsM8AjYdnfuvtqM/s2sMzdFwFfAH5tZv8Rbvsqd/dUAm8inryQiIhIFhg0aBC33HJLpsPo0tpNWNz95MRpMxsFfIWgYex/pbJxd3+I4FHlxHnfTPi8Bjg79XAPa1TCIiIi0mMkbcNiZuPN7HbgYWA5cJK7/zzdgXUkx50GS+lGjIiIiHQDHbVhmQpcD0wB/hu42t2zouFIL3cas2ssRhEREUmjjtqwrCToR+VBgk7gzkwcsNndP5ve0NqXF0d3WERERHqQjhKWf+20KI5SnkN1SqMgiYiISHfQUaPb33VmIEcj140G1QiJiIj0GF3yPkWuG41mxJoaMh2KiIiIdIIumrAEYTc0VGc4EhEREekMXTJhyWlJWA5kOBIREZHAokWLuPTSS4+Yd/PNN3PttddmKKLuJZV+WCaY2WIzeyWcPsXMvpH+0NqX40Enu/X1usMiIiLZ4frrr+fGG288Yt7YsWMpLy/PUETdSyqjNf8a+BLwKwB3f9nM/gB8J52BdSQnHBWgvmF/pkIQEZEs9IMXfsDaPWs7LBOLxYhGOxxd5giTBk7iK2d+pcMyK1euJB6PM3XqVLZs2cJDDz3Epz71KRobGzEzHnjgAR588EEOHDjA1Vdfzfnnn5/y/iWQSsLS291fsCM7amtKUzwpyfFcAOobDmUyDBEREQBWrFjB6aefDsCjjz7Khg0bAFizZg2nnnoq733ve3nve9/L3r17+eIXv6iE5RikkrBUmtlYgsEJMbPLgJ1pjSqJHAvCrqk/mMkwREQkyyS7EwJw8OBB+vbte1z3G4/Hqa6uJhaLcf/99zNs2DBqa2u5/fbbufPOO1vKfec73+Hf//3fj+u+e4pUGt3+O0F10CQz2w58DvhUOoNKJoc8AGrVhkVERLLAhRdeyKZNm5g2bRrXXHMNq1evZsaMGSxYsIDp06fj7nzlK1/hXe96F9OnT890uF1S0jss7r4JOM/M+gARd8/4bY2oBQnLoTolLCIiknmlpaWsWLGiZfqSSy45YvnPf/5z/vnPf7J//342btzINddc08kRdn0dDX74+XbmA+DuP0m2cTO7ALgJiAK/cffvt1HmA8ANBFVOK939w0mDtl4A1DaqDYuIiGS/z372s3z2sxkbgq9b6OgOS3MF30TgDGBROH0x8EKyDZtZFPgl8A5gG7DUzBa5+5qEMuOBrwFnu/teMytJJejcSHCHpa6+JpXiIiIi0sV1NJbQjQBm9iQwvbkqyMxuIBjBOZkzgY1hlRJmdjfwHmBNQpl/A37p7nvDfVakEnQ0kg9AbaMSFhERkZ4glUa3pUDioD0N4bxkhgFbE6a3hfMSTQAmmNnTZvZcWIWUVG6kAIC6xtpUiouIiEgXl8pjzXcAL5jZn8Pp9wLHayTnHGA8MAcYDjxpZie7+77EQma2AFgAkD8qn9qaGBTCrsqdlJWVHadQ5FhVV1frOmQRXY/so2uSXkVFRRw8mPrzILFY7KjKy/FTV1d3zP8WUnlK6Ltm9jDw9nDWx939pRS2vR0YkTA9PJyXaBvwvLs3Aq+Z2XqCBGZpqxhuBW4FKBhd4IMGlkID9O5bwJw5c1IIRdKprKxM1yGL6HpkH12T9CovLz+qflXS0Q+LpCY/P5/TTjvtmNZNZSyhE4FK4M/hqyqcl8xSYLyZjTazPOByDjfcbfYAwd0VzGwwQRXRpmQbzo0GVUINsYYkJUVERKQ7SKVK6EHCXm6BAmA0sA6Y0tFK7t5kZp8BHiF4rPm37r7azL4NLHP3ReGy881sDRADvuTuVckCysvNx2qchrgSFhERkZ4glSqhkxOnzWw68OlUNu7uDwEPtZr3zYTPDnw+fKUsJxIhz6Eh1ng0q4mIiEgXlcpTQkdw9xeBmWmIJWU5OTnkutPoSlhERER6glTasHw+4fVFM/sDsKMTYmtXXjRCrkNjXAmLiIhkh0WLFnHppZceMe/mm2/m2muvzVBE3UsqbVgSm1I3EbRp+VN6wklNbjQnSFi8KZNhiIhIlnnjv/6L+vK1HZZpisXYE42mvM1ekydxwte/nrTc9ddfz8KFC4+YN3bsWP70p4x+ZXYbqSQsa9z9j4kzzOz9wB/bKZ92udEIOW40eixTIYiIiLRYuXIl8XicqVOnsmXLFh566CE+9alP0djYiJlRXl7OTTfdRGVlJfPnz+dTn/pUpkPuclJJWL7Gm5OTtuZ1muaEpUl3WEREJEEqd0LS0Q/LihUrOP300wF49NFH2bBhAwBr1qzh1FNPZfLkydxyyy3E43GuvPJKJSzHoKPRmt8FXAgMM7OfJSzqR1A1lDE50Sg5Dg3oDouIiGRePB6nurqaWCzG/fffz7Bhw6itreX222/nzjvvBII2LjfffDNXXHFFhqPtmjpqdLsDWAbUAcsTXouAd6Y/tPZFI1GiHqGJeCbDEBERAeDCCy9k06ZNTJs2jWuuuYbVq1czY8YMFixYwPTp0wG45JJLePjhh7nrrrsyHG3X1NFozSuBlWZ2l3t21b2YGVE3JSwiIpIVSktLWbFiRcv0JZdccsTysrIy7r//furr67nwwgs7ObruoaMqoXvd/QPAS2bmrZe7+ylpjawDhhElQkNma6ZERERSMmfOHI0n9RZ11Oj2uvD9os4I5GiYRYh6lEbUD4uIiEhP0FGV0M7wfUvnhZMaswhRojTyphs/IiIi0g2l0tPt+8xsg5ntN7MDZnbQzA50RnDtiVhQJdT45poqERER6YZS6Yflv4GL3b083cGkKhKJEvEcGizTkYiIiEhnSGXww13ZlKxAWCVkOTQqYREREcBdd9yz3Vu9RqncYVlmZvcADwD1CTu+/y3t+S2ImBEhh0aUsYiI9HT5+flUVVUxaNAgzPS9kI3cnaqqKvLz8495G6kkLP2AGuD8xH0DSRMWM7sAuAmIAr9x9++3U+5S4D7gDHdflny7EaLk0BAxPBbDjmIQKxER6V6GDx/Otm3b2L17d0rl6+rq3tIXpxyb/Px8hg8ffszrJ01Y3P3jx7JhM4sCvwTeAWwDlprZIndf06pcX4JHqJ9PfeMRopYHQGPjIfKi/Y4lRBER6QZyc3MZPXp0yuXLyso47bTT0hiRpEPShKXVOELN9gPL3P0vHax6JrDR3TeF27kbeA+wplW5/wR+AHwppYgJnxKyXAAaGqvJy1fCIiIi0p2lUiWUD0zi8OjMlwKvAaea2Vx3/1w76w0DtiZMbwNmJhYws+nACHd/0MzaTVjMbAGwACB/VD7r16+nscGhAJYseZz8gmEpHIakS3V1NWVlZZkOQ0K6HtlH1yS76Hp0TakkLKcAZ7t7DMDMbgaeAs4BVh3rjs0sAvwEuCpZWXe/FbgVoGB0gU+aNJnyfSsAmDZtMicMmX6sYchxUFZWpi6ns4iuR/bRNckuuh5dUyqPNQ8AChOm+wADwwSmvu1VANgOjEiYHh7Oa9YXmAqUmdlmYBawyMxmJA86QjTSC4CGxpoUDkFERES6slQ7jlthZmWAAbOB/zKzPsA/O1hvKTDezEYTJCqXAx9uXuju+4HBzdPh9r+Y0lNCESMaDROWhuoUDkFERES6slSeErrNzB4iaEQL8HV33xF+brfdibs3mdlngEcIHmv+rbuvNrNvEzTYXXSsQRtRciL54FDfeOhYNyMiIiJdRCp3WADqgJ0EDXDHmdk4d38y2Uru/hDwUKt532yn7JwUYyFiRk60AJqgsak21dVERESki0rlseZPEPSTMhxYQdDW5FlgXloj60AkGiUnmg9NUN+gNiwiIiLdXSqNbq8DzgC2uPtc4DRgXzqDSiZiEXJzCgCoU6NbERGRbi+VhKXO3esAzKyXu68FJqY3rCQsQl5ubwBqdYdFRESk20ulDcs2M+tPMPjho2a2F9iSzqCSiZiRm9MHgLrGukyGIiIiIp0glaeE/iX8eIOZPQ4UAX9Pa1RJmEXJDe+w1KnRrYiISLfXbsJiZgPbmN3cs20hsCctEaUgYkZeXtCXne6wiIiIdH8d3WGpJBj/pymctoRlDoxJV1DJRCxCr7ygSqihSQmLiIhId9dRwvIzYC7wNLAQWOLu3ilRJWERI79XXwDqYw0ZjkZERETSrd2nhMJRmKcRjNJ8BfCSmf132NV+hkXI7xVUCTU0dTSckYiIiHQHHT7W7IHHgS8DtwAfB87rjMA6ElQJ9cbcaYjrDouIiEh311Gj2z7Ae4APAsXA/cDp7v56J8XWrogZvXKi5Dk0qEpIRESk2+uoDUsFsAG4O3x3YIaZzQBw9/vTH17bLBIlLydCrjuN8cZMhSEiIiKdpKOE5Y8EScpE3tyzrRPcccmIiEXChAUavCn5CiIiItKltZuwuPtVnRjHUYlEcugViZDj6A6LiIhID5DKWEJZxyIR8qJRctxo9FimwxEREZE0S2vCYmYXmNk6M9toZl9tY/nnzWyNmb1sZovNbGQq2w3GErIwYVGVkIiISHeXtoTFzKLAL4F3AScBHzKzk1oVewmY4e6nAPcB/53KtiMWIS8aCROWOADr967XE0MiIiLdVNKExcx6m9n/M7Nfh9PjzeyiFLZ9JrDR3Te5ewPB00bvSSzg7o+7e004+RwwPJWgzSL0yo0SdaORGJv2beLSRZfys+d/kMrqIiIi0sUkHa0Z+D9gOXBWOL2d4AmivyVZbxiwNWF6GzCzg/JXAw+3tcDMFgALAPJH5bP0hRfI79WfiBv18SZuWnQjAE+u/TMzGt6eJCw53qqrqykrK8t0GBLS9cg+uibZRdeja0olYRnr7h80sw8BuHuNmVmylY6GmX0UmAGc29Zyd78VuBWgYHSBn3XWWQwsKuXXayM0ReJsO7AR+sKuSCPnnnsuxzk8SaKsrIw5c+ZkOgwJ6XpkH12T7KLr0TWl0oalwcwKCPpewczGAqkM4LMdGJEwPTycdwQzOw+4HrjE3VMaGChiUcyMCBEacBpzagGoMThQty+VTYiIiEgXkkrC8i3g78AIM7sLWEwwtlAyS4HxZjbazPKAy4FFiQXM7DTgVwTJSkWqQVskuIMS9SiNONU5jeTFg4Gk36hcnepmREREpItImrC4+6PA+4CrgIUET/WUpbBeE/AZ4BGgHLjX3Veb2bfN7JKw2A+BQuCPZrbCzBa1s7kjmEXC4KM0mLMv6kyuD/pjeWP3mlQ2ISIiIl1IR4MfTm81a2f4fqKZnejuLybbuLs/BDzUat43Ez4f08jPkTBhiZLD3qjRZMag+iIoOMQb+149lk2KiIhIFuuo0e2Pw/d8ggaxKwEDTgGWcfipoU4XsSgQJCxNYQPbPnknAuXsOfRGpsISERGRNGm3Ssjd57r7XII7K9PdfYa7nw6cRhuNZztTNNqcsOS1zOvXZyj9YnH2qNGtiIhIt5NKo9uJ7r6qecLdXwEmpy+k5FrusNjhhKVv78H0i0FV/X4AKmsr2VG9IyPxiYiIyPGVSj8sL5vZb4Dfh9MfAV5OX0jJRSJhGxbr1TJvYGEJvSsjVDXVsL9+P3PvnUu/3ELKLn+S3EhupkIVERGR4yCVOywfB1YD14WvNeG8jGlpdJuQsBT3P4H8WC574/Usf/0JAA40VvPizhcyEqOIiIgcP0nvsLh7HfA/4SsrRMI2LDnRgpZ5QwaNICeWxz6q+eNz97XMX7F+ETOHnd3pMYqIiMjxkzRhMbPXCHu5TeTuY9IS0VHIiRxOWIaVnEgk1psDkWp2HNjImLxGaiPGpkr1yyIiItLVpdKGZUbC53zg/cDA9ISTXOIoQTk5vVs+9+83EIsXErPd7O9VzYjGXAZZnE21uwD42fKbWLV7Jb98xy3kRfMQERGRriOVnm6rEl7b3f2nwLvTH1pyBbmFhyfMyI0EeVRVrjPICuld35vN8Vo27d3Ar1/5Dc/tWsoDq+/MULQiIiJyrJImLGY2PeE1w8yuIbU7M2k3YWjpEdO9cotbPg/rXQz1xdQZ/Offvtcy/6m1QfuWqtoq1u1Z1zmBioiIyFuSSuLx44TPTcBrwAfSE87ROWlIKWw5PF1QMLTl8+iBo1izpQ7YyqqmZZwQa+L0hhzKfDs1jTV8+P53s6PpEL+Z8zNmjpzb+cGLiIhIylJ5rPnq5l5v3f0d7r4AaEh3YKkoyC8CIOpBm+DigaNalo0tnURtdAoA9RFnVFMeddWjOGTO5+7+PDuaDgHwu+eCuy9/X/6//O8/rqWhqb4Tj0BERERSkUrCcl+K8zpdr7y+ABSEzzB99Nx5LcuGlZzMgBOmUxCPAzCx9xAqDgUJzLPxp+kbi3NxdR7P1O7gh3/9FV965WZu3lnGr//+KeIe5+anv833F3+Ogw0HAXB33N/0sJSIiIh0go5Ga54ETAGKzOx9CYv6ETwtlBGWkDNEe/UDoCAneLz5hIFFLcsGl57CFec2smRJkJOdM/wMnt09k36xRRyIRpnh/XijchqxwiXcWfUL8j3O5Abj97tfYMX/fZ7noosB2PO317nstG/yjSX/Ro5F+MX5tzGmZCqbKtfQp1cRpX2HddKRi4iI9FwdtWGZCFwE9AcuTph/EPi3VDZuZhcANwFR4Dfu/v1Wy3sBdwCnA1XAB919c4qxU9x/NO8e+U6umHJVy7w7bDirK1cRyS/ibWPhkoerWdS3kDOmXcU3xg3klw87z0fh8nEX8js/i4GxJ9gTjXJO02A2V5xG9YmLeY7FTK5rYmptL/7IBh5+8goK4nEMuO5vVzGgaTQv9VpLnjufHXYV9Y0FPF5xO2N6l3D1uTeze+dylm26m+lDZ3HWzM9x8MBWXt3yBJPGvov8PoNpijdRU1NJv8ITUj1UERGRHs2SVXOY2Vnu/uxRb9gsCqwH3gFsA5YCH3L3NQllPg2c4u7XmNnlwL+4+wc72m6fUQV+aHNt+wWaGqCxBgr6B5Ov/ImGzU/S+6KbANi95n52bH6SUy/4MXUxuOeBD1O2fzX/dcFvWLJzKH9b+V5W5TTw3eFXc+fqscTzv8K6XlE+cOgMdu4/wOPD1gNw5sEIe3Ob2JAf3MEZEItzMGIUxJ3aiNFkQY8xJ9U523KdA9EIg5riTK4fzJr8PeyJwtimKEP9RF63reyNNDHVB5Mb6Uu5v04vIkzpNYbeVkBVwzbyozlMKpxCrhu7azdxQp9hDBk0k6qDr7L30KsM7zOMIcXTieXkEYs0MaB3f/rmFLFr14tELc7okbPpPXACVbtXUV9/gN59SinI70881kButBe9+g4hXruHA7teoW/BIKIDRkKvoMoNdzAL3htrICcfIkFvw3GP8+QTTzJnzpyj+OmQdCorK9P1yDK6JtlF1yO7mNlyd5+RtFx7CYuZfdnd/9vMfk7bPd1+NkkAZwE3uPs7w+mvhet9L6HMI2GZZ80sB3gDKPYOsqikCcvRCtu4EA6oWFddQc2hXQwsPRmAmp0rOLT3VYpPupStlQcpf/ar7G2o5IyzbuL5jet5ftM3KMrrw7Qx/8WGjQ+ytO6PDIn0Jy/v81QfWsjKvNWMburDoKbpvB59hk29YpxcG6V3zWD299nB2vwoE+viFDX2Yl3vemoixrQaiFmc1flGfSTCkMYYNRFjfzSVJkdtM3ciQMyszeV9Y3HqzWiIGDnuFMdiHLIIMYO+8Th94s7+SISDEaOPO7ke4UAEaiNG73icPnGos+BWWoFHyHOoMyfHnUI38t2IATkOvYjQRJw6ixPFiLT8B70c8j1KzCLEMfLIxS2PeovRQCzsONCIW5xcj5BHLrnkYsQwnLhFaCJCk0GUHPKIghlxIGYRGs2otxhNxMkhSg655FguUcsjGulFDr3CZCxYz8yACERygBwMwyIR3HIhkgcWBSJYxDByMIuE0xHiHqfJmoh5E2BB0meGYYT/C17uGHEiOObBOx7HaQKPkWMRct3ICfZAnhlRd5w4hC9zx4mBx6ncXcHgwYOI4ORahFyiwXoY4DR5E43eQFO8kUZvIkYsTEoJroZFiViEiEUwIkTNiDhEgjOMexzHcTPcorhFIBLFLAoWwSwHi0SJWG7wHskjYjlEojmY5RKJhO/RXCKWSyRct/lcxw2azGkieCwxRvyIX0CJvx7MwDAi4bkMfp4M83hLrHgc9xiE5xUPfo6CcsFt5kh4PaJ+eDtRwMyJepCYQ5w4BhYJftrMgulIhDjg1vxuxM0IrqrhBus3bGD8uHEt5zU4txZ+jhK1aMJ0sKz5n6rR6t+sBe3p3Cy4DuH5OPzZSfz/lk9hOQPMLPz5i4TnHSJmLdPNSxM/RyychxEJNoIRxEBiDOF0857b/o3TfP2OXGot8w9/OHz8xhFTEWs1h5Z4m/+NhUGBNZ+F4H3FSyuYdtq0lvValrmH/0qO/ApKDPOI/WEJx2Btln9z5K2OtuVcvnkfZkbidiNv+v3dxlabNxuOuZd4jtv61PZ2D4/Z9yYdX9CUiyYaMaD0LScsF7v7X83sY20td/ffdbhhs8uAC9z9E+H0FcBMd/9MQplXwjLbwulXwzKV7W13XL8CX/ye9yc5rOwU/NKIE7FI+G/IiTfVE8nJx4F4rBE8hkd60RiL4021GBCL5NMUi9PUtB+ASE4/GhuraWo6EIynFC2ksamGeKwaczA3gq/kOBHLxzFisUNAjIjlAhHcY+EXngW//GjCiYDl4cSIe2PLl0D4q59Iy1dD8CUQ/lol5o4f8fshHv6isuC4AE9ofBQPl1n4iyRYx8NlELfmtkrBdp2gdXgk4UfVEsrGE+Y1v7csb2NZFIi4Ew8TmZZyqf7rEhGR4+b9j65NKWFptw2Lu/81fO8wMekMZrYAWAAwvjCfffv2ZTag464uyXQ1ADnkBpMNtfQiSq/ogGA61kQvy4OcDkZMyO13XCJtSywWIxoOSJm9HPPDf3Eenhe8E/4F7R4/XMabSzZPH/4bzVr+qvSEMs1/aCb8JUvio3h+eNctKWtY0kj4WzRxvpEYdfBXO0es17xO83s87kTCO4bxN/2dbUf8B5Ggtq8lczzy/PgR74n7SZxqPq7wvCSu1cY5b4nIW0odcc6aownuPgVnw8KzcuTf65awZvhutBNr2+sdsW7iux053fpvU4OWuwpH/n3dKkJP3PLhv6hbn+G2Ymhb83aa9/PmLNs63kCbW3zzplrfY0go663LHrmhzsj72z5E72BZoNVNFzon2uY9tj3X2l3amZEcXYlM6egpob/SQeTufkmSbW8HRiRMDw/ntVVmW1glVETQ+Lb1vm4FbgWYOHGin/rXRUl2LZ1J9cHZRdcj++iaZJeysjLO1fXIHu00VWito6eEfvQWQ1gKjDez0QSJyeXAh1uVWQR8DHgWuAx4rKP2KyIiItIzdVQl9ETzZzPLAyYR3HFZ5+5Je7p19yYz+wzwCEGzgd+6+2oz+zawzN0XAbcBd5rZRmAPQVIjIiIicoSkYwmZ2buBW4BXCarbRpvZJ9394WTruvtDwEOt5n0z4XMd0DVb0IqIiEinSXXww7nuvhHAzMYCDwJJExYRERGR4yGVhOVgc7IS2kTQ221GrF+/vtrM1mVq/9KmwUC7j6JLp9P1yD66JtlF1yO7TEylUCoJyzIzewi4l6ANy/uBpc3jC7n7/ccc4rFZl8rz2tJ5zGyZrkn20PXIProm2UXXI7uY2bJUyqWSsOQDu4Bzw+ndQAHB+EIOdHbCIiIiIj1M0oTF3T/eGYGIiIiItCeVp4RGA9cCoxLLp9BxXLrcmqH9Svt0TbKLrkf20TXJLroe2SWl65HKaM0rCfpLWcXhoVmO6KdFREREJJ1SSVied/eZnRSPiIiIyJu0M370EW4ys2+Z2VlmNr35lfbI2mBmF5jZOjPbaGZfzUQMcpiZ/dbMKsJRtyXDzGyEmT1uZmvMbLWZXZfpmHoyM8s3sxfMbGV4PW7MdEwCZhY1s5fM7G+ZjkXAzDab2SozW5HsaaFU7rB8D7iCoKfb5iohd/d5xyXaFJlZFFgPvAPYRjBW0YfcfU1nxiGHmdlsgqGk73D3qZmOp6czsyHAEHd/0cz6AsuB9+rfSGaYmQF93L3azHKBJcB17v5chkPr0czs88AMoJ+7X5TpeHo6M9sMzHD3pP3ipPJY8/uBMamMH5RmZwIb3X0TgJndDbwH0C/jDHH3J81sVKbjkIC77wR2hp8Pmlk5MAz9G8mIcCDX6nAyN3xpcNcMMrPhwLuB7wKfz3A4cpRSqRJ6Beif5jhSMQzYmjC9LZwnIq2EieRpwPMZDqVHC6sfVgAVwKPuruuRWT8FvkzCAySScQ78w8yWm9mCjgqmcoelP7DWzJYC9S17yNxjzSLSATMrBP4EfM7dD2Q6np7M3WPANDPrD/zZzKa6u9p8ZYCZXQRUuPtyM5uT4XDksHPcfbuZlQCPmtlad3+yrYKpJCzfOr6xHbPtwIiE6eHhPBEJhW0l/gTclYFhM6Qd7r7PzB4HLiC4ay2d72zgEjO7kKAH935m9nt3/2iG4+rR3H17+F5hZn8maP7RZsKStErI3Z9IfAEx4APHM+AULQXGm9loM8sDLgcWZSAOkawUNvK8DSh3959kOp6ezsyKwzsrmFkBwQMDazMaVA/m7l9z9+HuPorg++MxJSuZZWZ9wgcEMLM+wPl0kNCn0oYFMzvNzH4Ytub9T6D8OMR6VNy9CfgM8Ei4/3vdfXVnxyGHmdlC4FlgopltM7OrMx1TD3c2wRN988JHBFeEf01KZgwBHjezlwn+4HrU3fUorchhpcCSsIPaF4AH3f3v7RVu97FmM5sAfCh8VQL3AF9095HHPWQRERGRDnSUsMSBp4Cr3X1jOG+Tu4/pxPhEREREOqwSeh9Bnw6Pm9mvzWw+YJ0TloiIiMhhqfR024egg7YPAfOAO4A/u/s/0h+eiIiISAoJyxGFzQYQ9Hz7QXefn7aoRERERBIcVcIiIiIikgkpPdYsIt2fmcUSHode0Z3GiQq7Zrgt/HyVmf2i1fIyM5vRwfp3m9n4dMcpIu1LpadbEekZat19WlsLwk7pzN276hgsXwe+8xbWv5lgDJp/Oz7hiMjR0h0WEWmTmY0ys3VmdgdB75MjzOxLZrbUzF42sxsTyl5vZuvNbImZLTSzL4bzW+5cmNngsPPJ5kEBf5iwrU+G8+eE69xnZmvN7K4wWcLMzjCzZ8xspZm9YGZ9zexJM5uWEMcSMzu11XH0BU5x95UpHPMlCXeY1pnZa+Gip4DzzEx/5IlkiP7xiUizgnBkYYDXgP8AxgMfc/fnzOz8cPpMgi4OFpnZbOAQQVfn0wh+p7wILE+yr6uB/e5+hpn1Ap42s+YnD08DpgA7gKeBs83sBYLOKz/o7kvNrB9QSzAUwVXA58LOLvPbSExm8Obuvj9oZuckTI8DcPdFhEN+mNm9wBPh/LiZbQROTeHYRCQNlLCISLMjqoTCNixb3P25cNb54eulcLqQIIHpS9DVQU24XipjfJ0PnGJml4XTReG2GoAX3H1buK0VwChgP7DT3ZcCNI9CbWZ/BP6fmX0J+Ffg9jb2NQTY3WrePe7+mYRjLUtcaGZfJjgfv0yYXQEMRQmLSEYoYRGRjhxK+GzA99z9V4kFzOxzHazfxOGq5/xW27rW3R9pta05QH3CrBgd/J5y9xoze5Sgr6gPAKe3Uay21b47ZGbnEXTfMLvVovxwWyKSAWrDIiKpegT4VzMrBDCzYWZWQjAU/HvNrCBsL3JxwjqbOZxEXNZqW58ys9xwWxPCTirbsw4YYmZnhOX7JrQn+Q3wM2Cpu+9tY91ywiqfZMxsJPBL4P3u3jo5mUAHI8mKSHrpDouIpMTd/2Fmk4Fnw3aw1cBH3f1FM7sHWElQbbI0YbUfAfea2QLgwYT5vyGo6nkxbFS7G3hvB/tuMLMPAj83swKCOx3nAdXuvtzMDgD/1866a82syMz6uvvBJId5FTAIeCA8xh3ufqGZlRJUEb2RZH0RSRN1HCcix5WZ3UCQSPyok/Y3FCgDJrX32LWZ/Qdw0N1/c4z7+A/ggLvfdsyBishboiohEemyzOxK4Hng+iR9xNzMkW1jjtY+4HdvYX0ReYt0h0VERESynu6wiIiISNZTwiIiIiJZTwmLiIiIZD0lLCIiIpL1lLCIiIhI1lPCIiIiIlnv/wPVq3FxaYSTFgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "TestFlight.allInfo()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Using Simulation for Design\n", + "\n", + "Here, we go through a couple of examples which make use of RocketPy in cool ways to help us design our rocket." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Dynamic Stability Analysis" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Ever wondered how static stability translates into dynamic stability? Different static margins result in different dynamic behavior, which also depends on the rocket's rotational inertial.\n", + "\n", + "Let's make use of RocketPy's helper class called Function to explore how the dynamic stability of Calisto varies if we change the fins span by a certain factor." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulating Rocket with Static Margin of -1.444->-0.405 c\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Current Simulation Time: 0.0050 s\r\n", + "Current Simulation Time: 0.0100 s\r\n", + "Current Simulation Time: 0.0200 s\r\n", + "Current Simulation Time: 0.0300 s\r\n", + "Current Simulation Time: 0.0400 s\r\n", + "Current Simulation Time: 0.0500 s\r\n", + "Current Simulation Time: 0.0516 s\r\n", + "Current Simulation Time: 0.0532 s\r\n", + "Current Simulation Time: 0.0565 s\r\n", + "Current Simulation Time: 0.0571 s\r\n", + "Current Simulation Time: 0.0578 s\r\n", + "Current Simulation Time: 0.0591 s\r\n", + "Current Simulation Time: 0.0603 s\r\n", + "Current Simulation Time: 0.0616 s\r\n", + "Current Simulation Time: 0.0716 s\r\n", + "Current Simulation Time: 0.0816 s\r\n", + "Current Simulation Time: 0.0916 s\r\n", + "Current Simulation Time: 0.0936 s\r\n", + "Current Simulation Time: 0.0956 s\r\n", + "Current Simulation Time: 0.0976 s\r\n", + "Current Simulation Time: 0.1004 s\r\n", + "Current Simulation Time: 0.1024 s\r\n", + "Current Simulation Time: 0.1044 s\r\n", + "Current Simulation Time: 0.1063 s\r\n", + "Current Simulation Time: 0.1103 s\r\n", + "Current Simulation Time: 0.1142 s\r\n", + "Current Simulation Time: 0.1182 s\r\n", + "Current Simulation Time: 0.1221 s\r\n", + "Current Simulation Time: 0.1321 s\r\n", + "Current Simulation Time: 0.1421 s\r\n", + "Current Simulation Time: 0.1521 s\r\n", + "Current Simulation Time: 0.1596 s\r\n", + "Current Simulation Time: 0.1657 s\r\n", + "Current Simulation Time: 0.1718 s\r\n", + "Current Simulation Time: 0.1779 s\r\n", + "Current Simulation Time: 0.1840 s\r\n", + "Current Simulation Time: 0.1940 s\r\n", + "Current Simulation Time: 0.2040 s\r\n", + "Current Simulation Time: 0.2140 s\r\n", + "Current Simulation Time: 0.2221 s\r\n", + "Current Simulation Time: 0.2303 s\r\n", + "Current Simulation Time: 0.2384 s\r\n", + "Current Simulation Time: 0.2465 s\r\n", + "Current Simulation Time: 0.2565 s\r\n", + "Current Simulation Time: 0.2665 s\r\n", + "Current Simulation Time: 0.2765 s\r\n", + "Current Simulation Time: 0.2865 s\r\n", + "Current Simulation Time: 0.2965 s\r\n", + "Current Simulation Time: 0.3065 s\r\n", + "Current Simulation Time: 0.3165 s\r\n", + "Current Simulation Time: 0.3265 s\r\n", + "Current Simulation Time: 0.3365 s\r\n", + "Current Simulation Time: 0.3465 s\r\n", + "Current Simulation Time: 0.3565 s\r\n", + "Current Simulation Time: 0.3665 s\r\n", + "Current Simulation Time: 0.3679 s\r\n", + "Current Simulation Time: 0.3725 s\r\n", + "Current Simulation Time: 0.3825 s\r\n", + "Current Simulation Time: 0.3925 s\r\n", + "Current Simulation Time: 0.4025 s\r\n", + "Current Simulation Time: 0.4125 s\r\n", + "Current Simulation Time: 0.4225 s\r\n", + "Current Simulation Time: 0.4325 s\r\n", + "Current Simulation Time: 0.4425 s\r\n", + "Current Simulation Time: 0.4525 s\r\n", + "Current Simulation Time: 0.4625 s\r\n", + "Current Simulation Time: 0.4725 s\r\n", + "Current Simulation Time: 0.4825 s\r\n", + "Current Simulation Time: 0.4925 s\r\n", + "Current Simulation Time: 0.5025 s\r\n", + "Current Simulation Time: 0.5125 s\r\n", + "Current Simulation Time: 0.5225 s\r\n", + "Current Simulation Time: 0.5325 s\r\n", + "Current Simulation Time: 0.5425 s\r\n", + "Current Simulation Time: 0.5525 s\r\n", + "Current Simulation Time: 0.5625 s\r\n", + "Current Simulation Time: 0.5725 s\r\n", + "Current Simulation Time: 0.5825 s\r\n", + "Current Simulation Time: 0.5925 s\r\n", + "Current Simulation Time: 0.6025 s\r\n", + "Current Simulation Time: 0.6125 s\r\n", + "Current Simulation Time: 0.6225 s\r\n", + "Current Simulation Time: 0.6325 s\r\n", + "Current Simulation Time: 0.6425 s\r\n", + "Current Simulation Time: 0.6525 s\r\n", + "Current Simulation Time: 0.6625 s\r\n", + "Current Simulation Time: 0.6725 s\r\n", + "Current Simulation Time: 0.6825 s\r\n", + "Current Simulation Time: 0.6925 s\r\n", + "Current Simulation Time: 0.7025 s\r\n", + "Current Simulation Time: 0.7125 s\r\n", + "Current Simulation Time: 0.7225 s\r\n", + "Current Simulation Time: 0.7325 s\r\n", + "Current Simulation Time: 0.7425 s\r\n", + "Current Simulation Time: 0.7525 s\r\n", + "Current Simulation Time: 0.7625 s\r\n", + "Current Simulation Time: 0.7725 s\r\n", + "Current Simulation Time: 0.7825 s\r\n", + "Current Simulation Time: 0.7925 s\r\n", + "Current Simulation Time: 0.8025 s\r\n", + "Current Simulation Time: 0.8125 s\r\n", + "Current Simulation Time: 0.8225 s\r\n", + "Current Simulation Time: 0.8325 s\r\n", + "Current Simulation Time: 0.8425 s\r\n", + "Current Simulation Time: 0.8525 s\r\n", + "Current Simulation Time: 0.8625 s\r\n", + "Current Simulation Time: 0.8725 s\r\n", + "Current Simulation Time: 0.8825 s\r\n", + "Current Simulation Time: 0.8925 s\r\n", + "Current Simulation Time: 0.9025 s\r\n", + "Current Simulation Time: 0.9125 s\r\n", + "Current Simulation Time: 0.9225 s\r\n", + "Current Simulation Time: 0.9325 s\r\n", + "Current Simulation Time: 0.9425 s\r\n", + "Current Simulation Time: 0.9525 s\r\n", + "Current Simulation Time: 0.9625 s\r\n", + "Current Simulation Time: 0.9725 s\r\n", + "Current Simulation Time: 0.9825 s\r\n", + "Current Simulation Time: 0.9925 s\r\n", + "Current Simulation Time: 1.0025 s\r\n", + "Current Simulation Time: 1.0125 s\r\n", + "Current Simulation Time: 1.0225 s\r\n", + "Current Simulation Time: 1.0325 s\r\n", + "Current Simulation Time: 1.0425 s\r\n", + "Current Simulation Time: 1.0525 s\r\n", + "Current Simulation Time: 1.0625 s\r\n", + "Current Simulation Time: 1.0725 s\r\n", + "Current Simulation Time: 1.0825 s\r\n", + "Current Simulation Time: 1.0925 s\r\n", + "Current Simulation Time: 1.1025 s\r\n", + "Current Simulation Time: 1.1125 s\r\n", + "Current Simulation Time: 1.1225 s\r\n", + "Current Simulation Time: 1.1325 s\r\n", + "Current Simulation Time: 1.1425 s\r\n", + "Current Simulation Time: 1.1525 s\r\n", + "Current Simulation Time: 1.1625 s\r\n", + "Current Simulation Time: 1.1725 s\r\n", + "Current Simulation Time: 1.1825 s\r\n", + "Current Simulation Time: 1.1925 s\r\n", + "Current Simulation Time: 1.2025 s\r\n", + "Current Simulation Time: 1.2125 s\r\n", + "Current Simulation Time: 1.2225 s\r\n", + "Current Simulation Time: 1.2325 s\r\n", + "Current Simulation Time: 1.2425 s\r\n", + "Current Simulation Time: 1.2525 s\r\n", + "Current Simulation Time: 1.2625 s\r\n", + "Current Simulation Time: 1.2725 s\r\n", + "Current Simulation Time: 1.2825 s\r\n", + "Current Simulation Time: 1.2925 s\r\n", + "Current Simulation Time: 1.3025 s\r\n", + "Current Simulation Time: 1.3125 s\r\n", + "Current Simulation Time: 1.3225 s\r\n", + "Current Simulation Time: 1.3325 s\r\n", + "Current Simulation Time: 1.3425 s\r\n", + "Current Simulation Time: 1.3525 s\r\n", + "Current Simulation Time: 1.3625 s\r\n", + "Current Simulation Time: 1.3725 s\r\n", + "Current Simulation Time: 1.3825 s\r\n", + "Current Simulation Time: 1.3925 s\r\n", + "Current Simulation Time: 1.4025 s\r\n", + "Current Simulation Time: 1.4125 s\r\n", + "Current Simulation Time: 1.4225 s\r\n", + "Current Simulation Time: 1.4325 s\r\n", + "Current Simulation Time: 1.4425 s\r\n", + "Current Simulation Time: 1.4525 s\r\n", + "Current Simulation Time: 1.4625 s\r\n", + "Current Simulation Time: 1.4725 s\r\n", + "Current Simulation Time: 1.4825 s\r\n", + "Current Simulation Time: 1.4925 s\r\n", + "Current Simulation Time: 1.5025 s\r\n", + "Current Simulation Time: 1.5125 s\r\n", + "Current Simulation Time: 1.5225 s\r\n", + "Current Simulation Time: 1.5325 s\r\n", + "Current Simulation Time: 1.5425 s\r\n", + "Current Simulation Time: 1.5525 s\r\n", + "Current Simulation Time: 1.5625 s\r\n", + "Current Simulation Time: 1.5725 s\r\n", + "Current Simulation Time: 1.5825 s\r\n", + "Current Simulation Time: 1.5925 s\r\n", + "Current Simulation Time: 1.6025 s\r\n", + "Current Simulation Time: 1.6125 s\r\n", + "Current Simulation Time: 1.6225 s\r\n", + "Current Simulation Time: 1.6325 s\r\n", + "Current Simulation Time: 1.6425 s\r\n", + "Current Simulation Time: 1.6525 s\r\n", + "Current Simulation Time: 1.6625 s\r\n", + "Current Simulation Time: 1.6725 s\r\n", + "Current Simulation Time: 1.6825 s\r\n", + "Current Simulation Time: 1.6925 s\r\n", + "Current Simulation Time: 1.7025 s\r\n", + "Current Simulation Time: 1.7125 s\r\n", + "Current Simulation Time: 1.7225 s\r\n", + "Current Simulation Time: 1.7325 s\r\n", + "Current Simulation Time: 1.7425 s\r\n", + "Current Simulation Time: 1.7525 s\r\n", + "Current Simulation Time: 1.7625 s\r\n", + "Current Simulation Time: 1.7725 s\r\n", + "Current Simulation Time: 1.7825 s\r\n", + "Current Simulation Time: 1.7925 s\r\n", + "Current Simulation Time: 1.8025 s\r\n", + "Current Simulation Time: 1.8125 s\r\n", + "Current Simulation Time: 1.8225 s\r\n", + "Current Simulation Time: 1.8325 s\r\n", + "Current Simulation Time: 1.8425 s\r\n", + "Current Simulation Time: 1.8525 s\r\n", + "Current Simulation Time: 1.8625 s\r\n", + "Current Simulation Time: 1.8725 s\r\n", + "Current Simulation Time: 1.8825 s\r\n", + "Current Simulation Time: 1.8925 s\r\n", + "Current Simulation Time: 1.9025 s\r\n", + "Current Simulation Time: 1.9125 s\r\n", + "Current Simulation Time: 1.9225 s\r\n", + "Current Simulation Time: 1.9325 s\r\n", + "Current Simulation Time: 1.9425 s\r\n", + "Current Simulation Time: 1.9525 s\r\n", + "Current Simulation Time: 1.9625 s\r\n", + "Current Simulation Time: 1.9725 s\r\n", + "Current Simulation Time: 1.9825 s\r\n", + "Current Simulation Time: 1.9925 s\r\n", + "Current Simulation Time: 2.0025 s\r\n", + "Current Simulation Time: 2.0125 s\r\n", + "Current Simulation Time: 2.0225 s\r\n", + "Current Simulation Time: 2.0325 s\r\n", + "Current Simulation Time: 2.0425 s\r\n", + "Current Simulation Time: 2.0525 s\r\n", + "Current Simulation Time: 2.0625 s\r\n", + "Current Simulation Time: 2.0725 s\r\n", + "Current Simulation Time: 2.0825 s\r\n", + "Current Simulation Time: 2.0925 s\r\n", + "Current Simulation Time: 2.1025 s\r\n", + "Current Simulation Time: 2.1125 s\r\n", + "Current Simulation Time: 2.1225 s\r\n", + "Current Simulation Time: 2.1325 s\r\n", + "Current Simulation Time: 2.1425 s\r\n", + "Current Simulation Time: 2.1525 s\r\n", + "Current Simulation Time: 2.1625 s\r\n", + "Current Simulation Time: 2.1725 s\r\n", + "Current Simulation Time: 2.1825 s\r\n", + "Current Simulation Time: 2.1925 s\r\n", + "Current Simulation Time: 2.2025 s\r\n", + "Current Simulation Time: 2.2125 s\r\n", + "Current Simulation Time: 2.2225 s\r\n", + "Current Simulation Time: 2.2325 s\r\n", + "Current Simulation Time: 2.2425 s\r\n", + "Current Simulation Time: 2.2525 s\r\n", + "Current Simulation Time: 2.2625 s\r\n", + "Current Simulation Time: 2.2725 s\r\n", + "Current Simulation Time: 2.2825 s\r\n", + "Current Simulation Time: 2.2925 s\r\n", + "Current Simulation Time: 2.3025 s\r\n", + "Current Simulation Time: 2.3125 s\r\n", + "Current Simulation Time: 2.3225 s\r\n", + "Current Simulation Time: 2.3325 s\r\n", + "Current Simulation Time: 2.3425 s\r\n", + "Current Simulation Time: 2.3525 s\r\n", + "Current Simulation Time: 2.3625 s\r\n", + "Current Simulation Time: 2.3725 s\r\n", + "Current Simulation Time: 2.3825 s\r\n", + "Current Simulation Time: 2.3925 s\r\n", + "Current Simulation Time: 2.4025 s\r\n", + "Current Simulation Time: 2.4125 s\r\n", + "Current Simulation Time: 2.4225 s\r\n", + "Current Simulation Time: 2.4325 s\r\n", + "Current Simulation Time: 2.4425 s\r\n", + "Current Simulation Time: 2.4525 s\r\n", + "Current Simulation Time: 2.4625 s\r\n", + "Current Simulation Time: 2.4725 s\r\n", + "Current Simulation Time: 2.4825 s\r\n", + "Current Simulation Time: 2.4925 s\r\n", + "Current Simulation Time: 2.5025 s\r\n", + "Current Simulation Time: 2.5125 s\r\n", + "Current Simulation Time: 2.5225 s\r\n", + "Current Simulation Time: 2.5325 s\r\n", + "Current Simulation Time: 2.5425 s\r\n", + "Current Simulation Time: 2.5525 s\r\n", + "Current Simulation Time: 2.5625 s\r\n", + "Current Simulation Time: 2.5725 s\r\n", + "Current Simulation Time: 2.5825 s\r\n", + "Current Simulation Time: 2.5925 s\r\n", + "Current Simulation Time: 2.6025 s\r\n", + "Current Simulation Time: 2.6125 s\r\n", + "Current Simulation Time: 2.6225 s\r\n", + "Current Simulation Time: 2.6325 s\r\n", + "Current Simulation Time: 2.6425 s\r\n", + "Current Simulation Time: 2.6525 s\r\n", + "Current Simulation Time: 2.6625 s\r\n", + "Current Simulation Time: 2.6725 s\r\n", + "Current Simulation Time: 2.6825 s\r\n", + "Current Simulation Time: 2.6925 s\r\n", + "Current Simulation Time: 2.7025 s\r\n", + "Current Simulation Time: 2.7125 s\r\n", + "Current Simulation Time: 2.7225 s\r\n", + "Current Simulation Time: 2.7325 s\r\n", + "Current Simulation Time: 2.7425 s\r\n", + "Current Simulation Time: 2.7525 s\r\n", + "Current Simulation Time: 2.7625 s\r\n", + "Current Simulation Time: 2.7725 s\r\n", + "Current Simulation Time: 2.7825 s\r\n", + "Current Simulation Time: 2.7925 s\r\n", + "Current Simulation Time: 2.8025 s\r\n", + "Current Simulation Time: 2.8125 s\r\n", + "Current Simulation Time: 2.8225 s\r\n", + "Current Simulation Time: 2.8325 s\r\n", + "Current Simulation Time: 2.8425 s\r\n", + "Current Simulation Time: 2.8525 s\r\n", + "Current Simulation Time: 2.8625 s\r\n", + "Current Simulation Time: 2.8725 s\r\n", + "Current Simulation Time: 2.8825 s\r\n", + "Current Simulation Time: 2.8925 s\r\n", + "Current Simulation Time: 2.9025 s\r\n", + "Current Simulation Time: 2.9125 s\r\n", + "Current Simulation Time: 2.9225 s\r\n", + "Current Simulation Time: 2.9325 s\r\n", + "Current Simulation Time: 2.9425 s\r\n", + "Current Simulation Time: 2.9525 s\r\n", + "Current Simulation Time: 2.9625 s\r\n", + "Current Simulation Time: 2.9725 s\r\n", + "Current Simulation Time: 2.9825 s\r\n", + "Current Simulation Time: 2.9925 s\r\n", + "Current Simulation Time: 3.0025 s\r\n", + "Current Simulation Time: 3.0125 s\r\n", + "Current Simulation Time: 3.0203 s\r\n", + "Current Simulation Time: 3.0281 s\r\n", + "Current Simulation Time: 3.0359 s\r\n", + "Current Simulation Time: 3.0436 s\r\n", + "Current Simulation Time: 3.0514 s\r\n", + "Current Simulation Time: 3.0614 s\r\n", + "Current Simulation Time: 3.0714 s\r\n", + "Current Simulation Time: 3.0814 s\r\n", + "Current Simulation Time: 3.0914 s\r\n", + "Current Simulation Time: 3.1014 s\r\n", + "Current Simulation Time: 3.1114 s\r\n", + "Current Simulation Time: 3.1214 s\r\n", + "Current Simulation Time: 3.1314 s\r\n", + "Current Simulation Time: 3.1414 s\r\n", + "Current Simulation Time: 3.1514 s\r\n", + "Current Simulation Time: 3.1614 s\r\n", + "Current Simulation Time: 3.1714 s\r\n", + "Current Simulation Time: 3.1814 s\r\n", + "Current Simulation Time: 3.1914 s\r\n", + "Current Simulation Time: 3.2014 s\r\n", + "Current Simulation Time: 3.2114 s\r\n", + "Current Simulation Time: 3.2214 s\r\n", + "Current Simulation Time: 3.2314 s\r\n", + "Current Simulation Time: 3.2414 s\r\n", + "Current Simulation Time: 3.2514 s\r\n", + "Current Simulation Time: 3.2614 s\r\n", + "Current Simulation Time: 3.2714 s\r\n", + "Current Simulation Time: 3.2814 s\r\n", + "Current Simulation Time: 3.2914 s\r\n", + "Current Simulation Time: 3.3014 s\r\n", + "Current Simulation Time: 3.3114 s\r\n", + "Current Simulation Time: 3.3200 s\r\n", + "Current Simulation Time: 3.3285 s\r\n", + "Current Simulation Time: 3.3370 s\r\n", + "Current Simulation Time: 3.3456 s\r\n", + "Current Simulation Time: 3.3541 s\r\n", + "Current Simulation Time: 3.3641 s\r\n", + "Current Simulation Time: 3.3741 s\r\n", + "Current Simulation Time: 3.3841 s\r\n", + "Current Simulation Time: 3.3941 s\r\n", + "Current Simulation Time: 3.4041 s\r\n", + "Current Simulation Time: 3.4141 s\r\n", + "Current Simulation Time: 3.4241 s\r\n", + "Current Simulation Time: 3.4341 s\r\n", + "Current Simulation Time: 3.4441 s\r\n", + "Current Simulation Time: 3.4541 s\r\n", + "Current Simulation Time: 3.4641 s\r\n", + "Current Simulation Time: 3.4741 s\r\n", + "Current Simulation Time: 3.4841 s\r\n", + "Current Simulation Time: 3.4941 s\r\n", + "Current Simulation Time: 3.5041 s\r\n", + "Current Simulation Time: 3.5141 s\r\n", + "Current Simulation Time: 3.5241 s\r\n", + "Current Simulation Time: 3.5341 s\r\n", + "Current Simulation Time: 3.5441 s\r\n", + "Current Simulation Time: 3.5541 s\r\n", + "Current Simulation Time: 3.5641 s\r\n", + "Current Simulation Time: 3.5741 s\r\n", + "Current Simulation Time: 3.5841 s\r\n", + "Current Simulation Time: 3.5941 s\r\n", + "Current Simulation Time: 3.6041 s\r\n", + "Current Simulation Time: 3.6141 s\r\n", + "Current Simulation Time: 3.6241 s\r\n", + "Current Simulation Time: 3.6341 s\r\n", + "Current Simulation Time: 3.6441 s\r\n", + "Current Simulation Time: 3.6541 s\r\n", + "Current Simulation Time: 3.6641 s\r\n", + "Current Simulation Time: 3.6741 s\r\n", + "Current Simulation Time: 3.6841 s\r\n", + "Current Simulation Time: 3.6941 s\r\n", + "Current Simulation Time: 3.7041 s\r\n", + "Current Simulation Time: 3.7141 s\r\n", + "Current Simulation Time: 3.7241 s\r\n", + "Current Simulation Time: 3.7341 s\r\n", + "Current Simulation Time: 3.7441 s\r\n", + "Current Simulation Time: 3.7541 s\r\n", + "Current Simulation Time: 3.7641 s\r\n", + "Current Simulation Time: 3.7741 s\r\n", + "Current Simulation Time: 3.7841 s\r\n", + "Current Simulation Time: 3.7941 s\r\n", + "Current Simulation Time: 3.8041 s\r\n", + "Current Simulation Time: 3.8141 s\r\n", + "Current Simulation Time: 3.8241 s\r\n", + "Current Simulation Time: 3.8341 s\r\n", + "Current Simulation Time: 3.8441 s\r\n", + "Current Simulation Time: 3.8541 s\r\n", + "Current Simulation Time: 3.8641 s\r\n", + "Current Simulation Time: 3.8741 s\r\n", + "Current Simulation Time: 3.8841 s\r\n", + "Current Simulation Time: 3.8941 s\r\n", + "Current Simulation Time: 3.9041 s\r\n", + "Current Simulation Time: 3.9141 s\r\n", + "Current Simulation Time: 3.9241 s\r\n", + "Current Simulation Time: 3.9341 s\r\n", + "Current Simulation Time: 3.9441 s\r\n", + "Current Simulation Time: 3.9541 s\r\n", + "Current Simulation Time: 3.9641 s\r\n", + "Current Simulation Time: 3.9741 s\r\n", + "Current Simulation Time: 3.9841 s\r\n", + "Current Simulation Time: 3.9941 s\r\n", + "Current Simulation Time: 4.0041 s\r\n", + "Current Simulation Time: 4.0141 s\r\n", + "Current Simulation Time: 4.0241 s\r\n", + "Current Simulation Time: 4.0341 s\r\n", + "Current Simulation Time: 4.0441 s\r\n", + "Current Simulation Time: 4.0541 s\r\n", + "Current Simulation Time: 4.0641 s\r\n", + "Current Simulation Time: 4.0741 s\r\n", + "Current Simulation Time: 4.0841 s\r\n", + "Current Simulation Time: 4.0941 s\r\n", + "Current Simulation Time: 4.1041 s\r\n", + "Current Simulation Time: 4.1141 s\r\n", + "Current Simulation Time: 4.1241 s\r\n", + "Current Simulation Time: 4.1341 s\r\n", + "Current Simulation Time: 4.1441 s\r\n", + "Current Simulation Time: 4.1541 s\r\n", + "Current Simulation Time: 4.1641 s\r\n", + "Current Simulation Time: 4.1741 s\r\n", + "Current Simulation Time: 4.1841 s\r\n", + "Current Simulation Time: 4.1941 s\r\n", + "Current Simulation Time: 4.2041 s\r\n", + "Current Simulation Time: 4.2141 s\r\n", + "Current Simulation Time: 4.2241 s\r\n", + "Current Simulation Time: 4.2341 s\r\n", + "Current Simulation Time: 4.2441 s\r\n", + "Current Simulation Time: 4.2541 s\r\n", + "Current Simulation Time: 4.2641 s\r\n", + "Current Simulation Time: 4.2741 s\r\n", + "Current Simulation Time: 4.2841 s\r\n", + "Current Simulation Time: 4.2941 s\r\n", + "Current Simulation Time: 4.3041 s\r\n", + "Current Simulation Time: 4.3141 s\r\n", + "Current Simulation Time: 4.3241 s\r\n", + "Current Simulation Time: 4.3341 s\r\n", + "Current Simulation Time: 4.3441 s\r\n", + "Current Simulation Time: 4.3541 s\r\n", + "Current Simulation Time: 4.3641 s\r\n", + "Current Simulation Time: 4.3741 s\r\n", + "Current Simulation Time: 4.3841 s\r\n", + "Current Simulation Time: 4.3941 s\r\n", + "Current Simulation Time: 4.4041 s\r\n", + "Current Simulation Time: 4.4141 s\r\n", + "Current Simulation Time: 4.4241 s\r\n", + "Current Simulation Time: 4.4341 s\r\n", + "Current Simulation Time: 4.4441 s\r\n", + "Current Simulation Time: 4.4541 s\r\n", + "Current Simulation Time: 4.4641 s\r\n", + "Current Simulation Time: 4.4741 s\r\n", + "Current Simulation Time: 4.4841 s\r\n", + "Current Simulation Time: 4.4941 s\r\n", + "Current Simulation Time: 4.5041 s\r\n", + "Current Simulation Time: 4.5141 s\r\n", + "Current Simulation Time: 4.5241 s\r\n", + "Current Simulation Time: 4.5341 s\r\n", + "Current Simulation Time: 4.5441 s\r\n", + "Current Simulation Time: 4.5541 s\r\n", + "Current Simulation Time: 4.5641 s\r\n", + "Current Simulation Time: 4.5741 s\r\n", + "Current Simulation Time: 4.5841 s\r\n", + "Current Simulation Time: 4.5941 s\r\n", + "Current Simulation Time: 4.6041 s\r\n", + "Current Simulation Time: 4.6141 s\r\n", + "Current Simulation Time: 4.6241 s\r\n", + "Current Simulation Time: 4.6341 s\r\n", + "Current Simulation Time: 4.6441 s\r\n", + "Current Simulation Time: 4.6541 s\r\n", + "Current Simulation Time: 4.6641 s\r\n", + "Current Simulation Time: 4.6741 s\r\n", + "Current Simulation Time: 4.6841 s\r\n", + "Current Simulation Time: 4.6941 s\r\n", + "Current Simulation Time: 4.7041 s\r\n", + "Current Simulation Time: 4.7141 s\r\n", + "Current Simulation Time: 4.7241 s\r\n", + "Current Simulation Time: 4.7341 s\r\n", + "Current Simulation Time: 4.7441 s\r\n", + "Current Simulation Time: 4.7541 s\r\n", + "Current Simulation Time: 4.7641 s\r\n", + "Current Simulation Time: 4.7741 s\r\n", + "Current Simulation Time: 4.7841 s\r\n", + "Current Simulation Time: 4.7941 s\r\n", + "Current Simulation Time: 4.8041 s\r\n", + "Current Simulation Time: 4.8141 s\r\n", + "Current Simulation Time: 4.8241 s\r\n", + "Current Simulation Time: 4.8341 s\r\n", + "Current Simulation Time: 4.8441 s\r\n", + "Current Simulation Time: 4.8541 s\r\n", + "Current Simulation Time: 4.8641 s\r\n", + "Current Simulation Time: 4.8741 s\r\n", + "Current Simulation Time: 4.8841 s\r\n", + "Current Simulation Time: 4.8941 s\r\n", + "Current Simulation Time: 4.9041 s\r\n", + "Current Simulation Time: 4.9141 s\r\n", + "Current Simulation Time: 4.9241 s\r\n", + "Current Simulation Time: 4.9341 s\r\n", + "Current Simulation Time: 4.9441 s\r\n", + "Current Simulation Time: 4.9541 s\r\n", + "Current Simulation Time: 4.9641 s\r\n", + "Current Simulation Time: 4.9741 s\r\n", + "Current Simulation Time: 4.9841 s\r\n", + "Current Simulation Time: 4.9941 s\r\n", + "Current Simulation Time: 5.0000 s\r\n", + "Simulation Completed at Time: 5.0000 s\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulating Rocket with Static Margin of -0.046->0.993 c\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Current Simulation Time: 0.0050 s\r\n", + "Current Simulation Time: 0.0100 s\r\n", + "Current Simulation Time: 0.0200 s\r\n", + "Current Simulation Time: 0.0300 s\r\n", + "Current Simulation Time: 0.0400 s\r\n", + "Current Simulation Time: 0.0500 s\r\n", + "Current Simulation Time: 0.0516 s\r\n", + "Current Simulation Time: 0.0532 s\r\n", + "Current Simulation Time: 0.0565 s\r\n", + "Current Simulation Time: 0.0571 s\r\n", + "Current Simulation Time: 0.0578 s\r\n", + "Current Simulation Time: 0.0591 s\r\n", + "Current Simulation Time: 0.0603 s\r\n", + "Current Simulation Time: 0.0616 s\r\n", + "Current Simulation Time: 0.0716 s\r\n", + "Current Simulation Time: 0.0816 s\r\n", + "Current Simulation Time: 0.0916 s\r\n", + "Current Simulation Time: 0.0936 s\r\n", + "Current Simulation Time: 0.0956 s\r\n", + "Current Simulation Time: 0.0976 s\r\n", + "Current Simulation Time: 0.1004 s\r\n", + "Current Simulation Time: 0.1024 s\r\n", + "Current Simulation Time: 0.1044 s\r\n", + "Current Simulation Time: 0.1063 s\r\n", + "Current Simulation Time: 0.1103 s\r\n", + "Current Simulation Time: 0.1142 s\r\n", + "Current Simulation Time: 0.1182 s\r\n", + "Current Simulation Time: 0.1221 s\r\n", + "Current Simulation Time: 0.1321 s\r\n", + "Current Simulation Time: 0.1421 s\r\n", + "Current Simulation Time: 0.1521 s\r\n", + "Current Simulation Time: 0.1596 s\r\n", + "Current Simulation Time: 0.1657 s\r\n", + "Current Simulation Time: 0.1718 s\r\n", + "Current Simulation Time: 0.1779 s\r\n", + "Current Simulation Time: 0.1840 s\r\n", + "Current Simulation Time: 0.1940 s\r\n", + "Current Simulation Time: 0.2040 s\r\n", + "Current Simulation Time: 0.2140 s\r\n", + "Current Simulation Time: 0.2221 s\r\n", + "Current Simulation Time: 0.2303 s\r\n", + "Current Simulation Time: 0.2384 s\r\n", + "Current Simulation Time: 0.2465 s\r\n", + "Current Simulation Time: 0.2565 s\r\n", + "Current Simulation Time: 0.2665 s\r\n", + "Current Simulation Time: 0.2765 s\r\n", + "Current Simulation Time: 0.2865 s\r\n", + "Current Simulation Time: 0.2965 s\r\n", + "Current Simulation Time: 0.3065 s\r\n", + "Current Simulation Time: 0.3165 s\r\n", + "Current Simulation Time: 0.3265 s\r\n", + "Current Simulation Time: 0.3365 s\r\n", + "Current Simulation Time: 0.3465 s\r\n", + "Current Simulation Time: 0.3565 s\r\n", + "Current Simulation Time: 0.3665 s\r\n", + "Current Simulation Time: 0.3664 s\r\n", + "Current Simulation Time: 0.3695 s\r\n", + "Current Simulation Time: 0.3756 s\r\n", + "Current Simulation Time: 0.3818 s\r\n", + "Current Simulation Time: 0.3880 s\r\n", + "Current Simulation Time: 0.3980 s\r\n", + "Current Simulation Time: 0.4080 s\r\n", + "Current Simulation Time: 0.4180 s\r\n", + "Current Simulation Time: 0.4280 s\r\n", + "Current Simulation Time: 0.4380 s\r\n", + "Current Simulation Time: 0.4480 s\r\n", + "Current Simulation Time: 0.4580 s\r\n", + "Current Simulation Time: 0.4680 s\r\n", + "Current Simulation Time: 0.4780 s\r\n", + "Current Simulation Time: 0.4880 s\r\n", + "Current Simulation Time: 0.4980 s\r\n", + "Current Simulation Time: 0.5080 s\r\n", + "Current Simulation Time: 0.5180 s\r\n", + "Current Simulation Time: 0.5280 s\r\n", + "Current Simulation Time: 0.5380 s\r\n", + "Current Simulation Time: 0.5480 s\r\n", + "Current Simulation Time: 0.5580 s\r\n", + "Current Simulation Time: 0.5680 s\r\n", + "Current Simulation Time: 0.5780 s\r\n", + "Current Simulation Time: 0.5880 s\r\n", + "Current Simulation Time: 0.5980 s\r\n", + "Current Simulation Time: 0.6080 s\r\n", + "Current Simulation Time: 0.6180 s\r\n", + "Current Simulation Time: 0.6280 s\r\n", + "Current Simulation Time: 0.6380 s\r\n", + "Current Simulation Time: 0.6480 s\r\n", + "Current Simulation Time: 0.6580 s\r\n", + "Current Simulation Time: 0.6680 s\r\n", + "Current Simulation Time: 0.6780 s\r\n", + "Current Simulation Time: 0.6880 s\r\n", + "Current Simulation Time: 0.6980 s\r\n", + "Current Simulation Time: 0.7080 s\r\n", + "Current Simulation Time: 0.7180 s\r\n", + "Current Simulation Time: 0.7280 s\r\n", + "Current Simulation Time: 0.7380 s\r\n", + "Current Simulation Time: 0.7480 s\r\n", + "Current Simulation Time: 0.7580 s\r\n", + "Current Simulation Time: 0.7680 s\r\n", + "Current Simulation Time: 0.7780 s\r\n", + "Current Simulation Time: 0.7880 s\r\n", + "Current Simulation Time: 0.7980 s\r\n", + "Current Simulation Time: 0.8080 s\r\n", + "Current Simulation Time: 0.8180 s\r\n", + "Current Simulation Time: 0.8280 s\r\n", + "Current Simulation Time: 0.8380 s\r\n", + "Current Simulation Time: 0.8480 s\r\n", + "Current Simulation Time: 0.8580 s\r\n", + "Current Simulation Time: 0.8680 s\r\n", + "Current Simulation Time: 0.8780 s\r\n", + "Current Simulation Time: 0.8880 s\r\n", + "Current Simulation Time: 0.8980 s\r\n", + "Current Simulation Time: 0.9080 s\r\n", + "Current Simulation Time: 0.9180 s\r\n", + "Current Simulation Time: 0.9280 s\r\n", + "Current Simulation Time: 0.9380 s\r\n", + "Current Simulation Time: 0.9480 s\r\n", + "Current Simulation Time: 0.9580 s\r\n", + "Current Simulation Time: 0.9680 s\r\n", + "Current Simulation Time: 0.9780 s\r\n", + "Current Simulation Time: 0.9880 s\r\n", + "Current Simulation Time: 0.9980 s\r\n", + "Current Simulation Time: 1.0080 s\r\n", + "Current Simulation Time: 1.0180 s\r\n", + "Current Simulation Time: 1.0280 s\r\n", + "Current Simulation Time: 1.0380 s\r\n", + "Current Simulation Time: 1.0480 s\r\n", + "Current Simulation Time: 1.0580 s\r\n", + "Current Simulation Time: 1.0680 s\r\n", + "Current Simulation Time: 1.0780 s\r\n", + "Current Simulation Time: 1.0880 s\r\n", + "Current Simulation Time: 1.0980 s\r\n", + "Current Simulation Time: 1.1080 s\r\n", + "Current Simulation Time: 1.1180 s\r\n", + "Current Simulation Time: 1.1280 s\r\n", + "Current Simulation Time: 1.1380 s\r\n", + "Current Simulation Time: 1.1480 s\r\n", + "Current Simulation Time: 1.1580 s\r\n", + "Current Simulation Time: 1.1680 s\r\n", + "Current Simulation Time: 1.1780 s\r\n", + "Current Simulation Time: 1.1880 s\r\n", + "Current Simulation Time: 1.1980 s\r\n", + "Current Simulation Time: 1.2080 s\r\n", + "Current Simulation Time: 1.2180 s\r\n", + "Current Simulation Time: 1.2280 s\r\n", + "Current Simulation Time: 1.2380 s\r\n", + "Current Simulation Time: 1.2480 s\r\n", + "Current Simulation Time: 1.2580 s\r\n", + "Current Simulation Time: 1.2680 s\r\n", + "Current Simulation Time: 1.2780 s\r\n", + "Current Simulation Time: 1.2880 s\r\n", + "Current Simulation Time: 1.2980 s\r\n", + "Current Simulation Time: 1.3080 s\r\n", + "Current Simulation Time: 1.3180 s\r\n", + "Current Simulation Time: 1.3280 s\r\n", + "Current Simulation Time: 1.3380 s\r\n", + "Current Simulation Time: 1.3480 s\r\n", + "Current Simulation Time: 1.3580 s\r\n", + "Current Simulation Time: 1.3680 s\r\n", + "Current Simulation Time: 1.3780 s\r\n", + "Current Simulation Time: 1.3880 s\r\n", + "Current Simulation Time: 1.3980 s\r\n", + "Current Simulation Time: 1.4080 s\r\n", + "Current Simulation Time: 1.4180 s\r\n", + "Current Simulation Time: 1.4280 s\r\n", + "Current Simulation Time: 1.4380 s\r\n", + "Current Simulation Time: 1.4480 s\r\n", + "Current Simulation Time: 1.4580 s\r\n", + "Current Simulation Time: 1.4680 s\r\n", + "Current Simulation Time: 1.4780 s\r\n", + "Current Simulation Time: 1.4880 s\r\n", + "Current Simulation Time: 1.4980 s\r\n", + "Current Simulation Time: 1.5080 s\r\n", + "Current Simulation Time: 1.5180 s\r\n", + "Current Simulation Time: 1.5280 s\r\n", + "Current Simulation Time: 1.5380 s\r\n", + "Current Simulation Time: 1.5480 s\r\n", + "Current Simulation Time: 1.5580 s\r\n", + "Current Simulation Time: 1.5680 s\r\n", + "Current Simulation Time: 1.5780 s\r\n", + "Current Simulation Time: 1.5880 s\r\n", + "Current Simulation Time: 1.5980 s\r\n", + "Current Simulation Time: 1.6080 s\r\n", + "Current Simulation Time: 1.6180 s\r\n", + "Current Simulation Time: 1.6280 s\r\n", + "Current Simulation Time: 1.6380 s\r\n", + "Current Simulation Time: 1.6480 s\r\n", + "Current Simulation Time: 1.6580 s\r\n", + "Current Simulation Time: 1.6680 s\r\n", + "Current Simulation Time: 1.6780 s\r\n", + "Current Simulation Time: 1.6880 s\r\n", + "Current Simulation Time: 1.6980 s\r\n", + "Current Simulation Time: 1.7080 s\r\n", + "Current Simulation Time: 1.7180 s\r\n", + "Current Simulation Time: 1.7280 s\r\n", + "Current Simulation Time: 1.7380 s\r\n", + "Current Simulation Time: 1.7480 s\r\n", + "Current Simulation Time: 1.7580 s\r\n", + "Current Simulation Time: 1.7680 s\r\n", + "Current Simulation Time: 1.7780 s\r\n", + "Current Simulation Time: 1.7880 s\r\n", + "Current Simulation Time: 1.7980 s\r\n", + "Current Simulation Time: 1.8080 s\r\n", + "Current Simulation Time: 1.8180 s\r\n", + "Current Simulation Time: 1.8280 s\r\n", + "Current Simulation Time: 1.8380 s\r\n", + "Current Simulation Time: 1.8480 s\r\n", + "Current Simulation Time: 1.8580 s\r\n", + "Current Simulation Time: 1.8680 s\r\n", + "Current Simulation Time: 1.8780 s\r\n", + "Current Simulation Time: 1.8880 s\r\n", + "Current Simulation Time: 1.8980 s\r\n", + "Current Simulation Time: 1.9080 s\r\n", + "Current Simulation Time: 1.9180 s\r\n", + "Current Simulation Time: 1.9280 s\r\n", + "Current Simulation Time: 1.9380 s\r\n", + "Current Simulation Time: 1.9480 s\r\n", + "Current Simulation Time: 1.9580 s\r\n", + "Current Simulation Time: 1.9680 s\r\n", + "Current Simulation Time: 1.9780 s\r\n", + "Current Simulation Time: 1.9880 s\r\n", + "Current Simulation Time: 1.9980 s\r\n", + "Current Simulation Time: 2.0080 s\r\n", + "Current Simulation Time: 2.0180 s\r\n", + "Current Simulation Time: 2.0280 s\r\n", + "Current Simulation Time: 2.0380 s\r\n", + "Current Simulation Time: 2.0480 s\r\n", + "Current Simulation Time: 2.0580 s\r\n", + "Current Simulation Time: 2.0680 s\r\n", + "Current Simulation Time: 2.0780 s\r\n", + "Current Simulation Time: 2.0880 s\r\n", + "Current Simulation Time: 2.0980 s\r\n", + "Current Simulation Time: 2.1080 s\r\n", + "Current Simulation Time: 2.1180 s\r\n", + "Current Simulation Time: 2.1280 s\r\n", + "Current Simulation Time: 2.1380 s\r\n", + "Current Simulation Time: 2.1480 s\r\n", + "Current Simulation Time: 2.1580 s\r\n", + "Current Simulation Time: 2.1680 s\r\n", + "Current Simulation Time: 2.1780 s\r\n", + "Current Simulation Time: 2.1880 s\r\n", + "Current Simulation Time: 2.1980 s\r\n", + "Current Simulation Time: 2.2080 s\r\n", + "Current Simulation Time: 2.2180 s\r\n", + "Current Simulation Time: 2.2280 s\r\n", + "Current Simulation Time: 2.2380 s\r\n", + "Current Simulation Time: 2.2480 s\r\n", + "Current Simulation Time: 2.2580 s\r\n", + "Current Simulation Time: 2.2680 s\r\n", + "Current Simulation Time: 2.2780 s\r\n", + "Current Simulation Time: 2.2880 s\r\n", + "Current Simulation Time: 2.2980 s\r\n", + "Current Simulation Time: 2.3080 s\r\n", + "Current Simulation Time: 2.3180 s\r\n", + "Current Simulation Time: 2.3280 s\r\n", + "Current Simulation Time: 2.3380 s\r\n", + "Current Simulation Time: 2.3480 s\r\n", + "Current Simulation Time: 2.3580 s\r\n", + "Current Simulation Time: 2.3680 s\r\n", + "Current Simulation Time: 2.3780 s\r\n", + "Current Simulation Time: 2.3880 s\r\n", + "Current Simulation Time: 2.3980 s\r\n", + "Current Simulation Time: 2.4080 s\r\n", + "Current Simulation Time: 2.4180 s\r\n", + "Current Simulation Time: 2.4280 s\r\n", + "Current Simulation Time: 2.4380 s\r\n", + "Current Simulation Time: 2.4480 s\r\n", + "Current Simulation Time: 2.4580 s\r\n", + "Current Simulation Time: 2.4680 s\r\n", + "Current Simulation Time: 2.4780 s\r\n", + "Current Simulation Time: 2.4880 s\r\n", + "Current Simulation Time: 2.4980 s\r\n", + "Current Simulation Time: 2.5080 s\r\n", + "Current Simulation Time: 2.5180 s\r\n", + "Current Simulation Time: 2.5280 s\r\n", + "Current Simulation Time: 2.5380 s\r\n", + "Current Simulation Time: 2.5480 s\r\n", + "Current Simulation Time: 2.5580 s\r\n", + "Current Simulation Time: 2.5680 s\r\n", + "Current Simulation Time: 2.5780 s\r\n", + "Current Simulation Time: 2.5880 s\r\n", + "Current Simulation Time: 2.5980 s\r\n", + "Current Simulation Time: 2.6080 s\r\n", + "Current Simulation Time: 2.6180 s\r\n", + "Current Simulation Time: 2.6280 s\r\n", + "Current Simulation Time: 2.6380 s\r\n", + "Current Simulation Time: 2.6480 s\r\n", + "Current Simulation Time: 2.6580 s\r\n", + "Current Simulation Time: 2.6680 s\r\n", + "Current Simulation Time: 2.6780 s\r\n", + "Current Simulation Time: 2.6880 s\r\n", + "Current Simulation Time: 2.6980 s\r\n", + "Current Simulation Time: 2.7080 s\r\n", + "Current Simulation Time: 2.7180 s\r\n", + "Current Simulation Time: 2.7280 s\r\n", + "Current Simulation Time: 2.7380 s\r\n", + "Current Simulation Time: 2.7480 s\r\n", + "Current Simulation Time: 2.7580 s\r\n", + "Current Simulation Time: 2.7680 s\r\n", + "Current Simulation Time: 2.7780 s\r\n", + "Current Simulation Time: 2.7880 s\r\n", + "Current Simulation Time: 2.7980 s\r\n", + "Current Simulation Time: 2.8080 s\r\n", + "Current Simulation Time: 2.8180 s\r\n", + "Current Simulation Time: 2.8280 s\r\n", + "Current Simulation Time: 2.8380 s\r\n", + "Current Simulation Time: 2.8480 s\r\n", + "Current Simulation Time: 2.8580 s\r\n", + "Current Simulation Time: 2.8680 s\r\n", + "Current Simulation Time: 2.8780 s\r\n", + "Current Simulation Time: 2.8880 s\r\n", + "Current Simulation Time: 2.8980 s\r\n", + "Current Simulation Time: 2.9080 s\r\n", + "Current Simulation Time: 2.9180 s\r\n", + "Current Simulation Time: 2.9280 s\r\n", + "Current Simulation Time: 2.9380 s\r\n", + "Current Simulation Time: 2.9480 s\r\n", + "Current Simulation Time: 2.9580 s\r\n", + "Current Simulation Time: 2.9680 s\r\n", + "Current Simulation Time: 2.9780 s\r\n", + "Current Simulation Time: 2.9880 s\r\n", + "Current Simulation Time: 2.9980 s\r\n", + "Current Simulation Time: 3.0080 s\r\n", + "Current Simulation Time: 3.0158 s\r\n", + "Current Simulation Time: 3.0237 s\r\n", + "Current Simulation Time: 3.0316 s\r\n", + "Current Simulation Time: 3.0394 s\r\n", + "Current Simulation Time: 3.0473 s\r\n", + "Current Simulation Time: 3.0552 s\r\n", + "Current Simulation Time: 3.0647 s\r\n", + "Current Simulation Time: 3.0743 s\r\n", + "Current Simulation Time: 3.0839 s\r\n", + "Current Simulation Time: 3.0935 s\r\n", + "Current Simulation Time: 3.1030 s\r\n", + "Current Simulation Time: 3.1130 s\r\n", + "Current Simulation Time: 3.1230 s\r\n", + "Current Simulation Time: 3.1330 s\r\n", + "Current Simulation Time: 3.1430 s\r\n", + "Current Simulation Time: 3.1530 s\r\n", + "Current Simulation Time: 3.1630 s\r\n", + "Current Simulation Time: 3.1730 s\r\n", + "Current Simulation Time: 3.1830 s\r\n", + "Current Simulation Time: 3.1930 s\r\n", + "Current Simulation Time: 3.2030 s\r\n", + "Current Simulation Time: 3.2130 s\r\n", + "Current Simulation Time: 3.2230 s\r\n", + "Current Simulation Time: 3.2330 s\r\n", + "Current Simulation Time: 3.2430 s\r\n", + "Current Simulation Time: 3.2530 s\r\n", + "Current Simulation Time: 3.2630 s\r\n", + "Current Simulation Time: 3.2730 s\r\n", + "Current Simulation Time: 3.2830 s\r\n", + "Current Simulation Time: 3.2930 s\r\n", + "Current Simulation Time: 3.3030 s\r\n", + "Current Simulation Time: 3.3130 s\r\n", + "Current Simulation Time: 3.3230 s\r\n", + "Current Simulation Time: 3.3330 s\r\n", + "Current Simulation Time: 3.3430 s\r\n", + "Current Simulation Time: 3.3530 s\r\n", + "Current Simulation Time: 3.3630 s\r\n", + "Current Simulation Time: 3.3730 s\r\n", + "Current Simulation Time: 3.3830 s\r\n", + "Current Simulation Time: 3.3930 s\r\n", + "Current Simulation Time: 3.4030 s\r\n", + "Current Simulation Time: 3.4130 s\r\n", + "Current Simulation Time: 3.4230 s\r\n", + "Current Simulation Time: 3.4330 s\r\n", + "Current Simulation Time: 3.4430 s\r\n", + "Current Simulation Time: 3.4530 s\r\n", + "Current Simulation Time: 3.4630 s\r\n", + "Current Simulation Time: 3.4730 s\r\n", + "Current Simulation Time: 3.4830 s\r\n", + "Current Simulation Time: 3.4930 s\r\n", + "Current Simulation Time: 3.5030 s\r\n", + "Current Simulation Time: 3.5130 s\r\n", + "Current Simulation Time: 3.5230 s\r\n", + "Current Simulation Time: 3.5330 s\r\n", + "Current Simulation Time: 3.5430 s\r\n", + "Current Simulation Time: 3.5530 s\r\n", + "Current Simulation Time: 3.5630 s\r\n", + "Current Simulation Time: 3.5730 s\r\n", + "Current Simulation Time: 3.5830 s\r\n", + "Current Simulation Time: 3.5930 s\r\n", + "Current Simulation Time: 3.6030 s\r\n", + "Current Simulation Time: 3.6130 s\r\n", + "Current Simulation Time: 3.6230 s\r\n", + "Current Simulation Time: 3.6330 s\r\n", + "Current Simulation Time: 3.6430 s\r\n", + "Current Simulation Time: 3.6530 s\r\n", + "Current Simulation Time: 3.6630 s\r\n", + "Current Simulation Time: 3.6730 s\r\n", + "Current Simulation Time: 3.6830 s\r\n", + "Current Simulation Time: 3.6930 s\r\n", + "Current Simulation Time: 3.7030 s\r\n", + "Current Simulation Time: 3.7130 s\r\n", + "Current Simulation Time: 3.7230 s\r\n", + "Current Simulation Time: 3.7330 s\r\n", + "Current Simulation Time: 3.7430 s\r\n", + "Current Simulation Time: 3.7530 s\r\n", + "Current Simulation Time: 3.7630 s\r\n", + "Current Simulation Time: 3.7730 s\r\n", + "Current Simulation Time: 3.7830 s\r\n", + "Current Simulation Time: 3.7930 s\r\n", + "Current Simulation Time: 3.8030 s\r\n", + "Current Simulation Time: 3.8130 s\r\n", + "Current Simulation Time: 3.8230 s\r\n", + "Current Simulation Time: 3.8330 s\r\n", + "Current Simulation Time: 3.8430 s\r\n", + "Current Simulation Time: 3.8530 s\r\n", + "Current Simulation Time: 3.8630 s\r\n", + "Current Simulation Time: 3.8730 s\r\n", + "Current Simulation Time: 3.8830 s\r\n", + "Current Simulation Time: 3.8930 s\r\n", + "Current Simulation Time: 3.9030 s\r\n", + "Current Simulation Time: 3.9130 s\r\n", + "Current Simulation Time: 3.9230 s\r\n", + "Current Simulation Time: 3.9330 s\r\n", + "Current Simulation Time: 3.9430 s\r\n", + "Current Simulation Time: 3.9530 s\r\n", + "Current Simulation Time: 3.9630 s\r\n", + "Current Simulation Time: 3.9730 s\r\n", + "Current Simulation Time: 3.9830 s\r\n", + "Current Simulation Time: 3.9930 s\r\n", + "Current Simulation Time: 4.0030 s\r\n", + "Current Simulation Time: 4.0130 s\r\n", + "Current Simulation Time: 4.0230 s\r\n", + "Current Simulation Time: 4.0330 s\r\n", + "Current Simulation Time: 4.0430 s\r\n", + "Current Simulation Time: 4.0530 s\r\n", + "Current Simulation Time: 4.0630 s\r\n", + "Current Simulation Time: 4.0730 s\r\n", + "Current Simulation Time: 4.0830 s\r\n", + "Current Simulation Time: 4.0930 s\r\n", + "Current Simulation Time: 4.1030 s\r\n", + "Current Simulation Time: 4.1130 s\r\n", + "Current Simulation Time: 4.1230 s\r\n", + "Current Simulation Time: 4.1330 s\r\n", + "Current Simulation Time: 4.1430 s\r\n", + "Current Simulation Time: 4.1530 s\r\n", + "Current Simulation Time: 4.1630 s\r\n", + "Current Simulation Time: 4.1730 s\r\n", + "Current Simulation Time: 4.1830 s\r\n", + "Current Simulation Time: 4.1930 s\r\n", + "Current Simulation Time: 4.2030 s\r\n", + "Current Simulation Time: 4.2130 s\r\n", + "Current Simulation Time: 4.2230 s\r\n", + "Current Simulation Time: 4.2330 s\r\n", + "Current Simulation Time: 4.2430 s\r\n", + "Current Simulation Time: 4.2530 s\r\n", + "Current Simulation Time: 4.2630 s\r\n", + "Current Simulation Time: 4.2730 s\r\n", + "Current Simulation Time: 4.2830 s\r\n", + "Current Simulation Time: 4.2930 s\r\n", + "Current Simulation Time: 4.3030 s\r\n", + "Current Simulation Time: 4.3130 s\r\n", + "Current Simulation Time: 4.3230 s\r\n", + "Current Simulation Time: 4.3330 s\r\n", + "Current Simulation Time: 4.3430 s\r\n", + "Current Simulation Time: 4.3530 s\r\n", + "Current Simulation Time: 4.3630 s\r\n", + "Current Simulation Time: 4.3730 s\r\n", + "Current Simulation Time: 4.3830 s\r\n", + "Current Simulation Time: 4.3930 s\r\n", + "Current Simulation Time: 4.4030 s\r\n", + "Current Simulation Time: 4.4130 s\r\n", + "Current Simulation Time: 4.4230 s\r\n", + "Current Simulation Time: 4.4330 s\r\n", + "Current Simulation Time: 4.4430 s\r\n", + "Current Simulation Time: 4.4530 s\r\n", + "Current Simulation Time: 4.4630 s\r\n", + "Current Simulation Time: 4.4730 s\r\n", + "Current Simulation Time: 4.4830 s\r\n", + "Current Simulation Time: 4.4930 s\r\n", + "Current Simulation Time: 4.5030 s\r\n", + "Current Simulation Time: 4.5130 s\r\n", + "Current Simulation Time: 4.5230 s\r\n", + "Current Simulation Time: 4.5330 s\r\n", + "Current Simulation Time: 4.5430 s\r\n", + "Current Simulation Time: 4.5530 s\r\n", + "Current Simulation Time: 4.5630 s\r\n", + "Current Simulation Time: 4.5730 s\r\n", + "Current Simulation Time: 4.5830 s\r\n", + "Current Simulation Time: 4.5930 s\r\n", + "Current Simulation Time: 4.6030 s\r\n", + "Current Simulation Time: 4.6130 s\r\n", + "Current Simulation Time: 4.6230 s\r\n", + "Current Simulation Time: 4.6330 s\r\n", + "Current Simulation Time: 4.6430 s\r\n", + "Current Simulation Time: 4.6530 s\r\n", + "Current Simulation Time: 4.6630 s\r\n", + "Current Simulation Time: 4.6730 s\r\n", + "Current Simulation Time: 4.6830 s\r\n", + "Current Simulation Time: 4.6930 s\r\n", + "Current Simulation Time: 4.7030 s\r\n", + "Current Simulation Time: 4.7130 s\r\n", + "Current Simulation Time: 4.7230 s\r\n", + "Current Simulation Time: 4.7330 s\r\n", + "Current Simulation Time: 4.7430 s\r\n", + "Current Simulation Time: 4.7530 s\r\n", + "Current Simulation Time: 4.7630 s\r\n", + "Current Simulation Time: 4.7730 s\r\n", + "Current Simulation Time: 4.7830 s\r\n", + "Current Simulation Time: 4.7930 s\r\n", + "Current Simulation Time: 4.8030 s\r\n", + "Current Simulation Time: 4.8130 s\r\n", + "Current Simulation Time: 4.8230 s\r\n", + "Current Simulation Time: 4.8330 s\r\n", + "Current Simulation Time: 4.8430 s\r\n", + "Current Simulation Time: 4.8530 s\r\n", + "Current Simulation Time: 4.8630 s\r\n", + "Current Simulation Time: 4.8730 s\r\n", + "Current Simulation Time: 4.8830 s\r\n", + "Current Simulation Time: 4.8930 s\r\n", + "Current Simulation Time: 4.9030 s\r\n", + "Current Simulation Time: 4.9130 s\r\n", + "Current Simulation Time: 4.9230 s\r\n", + "Current Simulation Time: 4.9330 s\r\n", + "Current Simulation Time: 4.9430 s\r\n", + "Current Simulation Time: 4.9530 s\r\n", + "Current Simulation Time: 4.9630 s\r\n", + "Current Simulation Time: 4.9730 s\r\n", + "Current Simulation Time: 4.9830 s\r\n", + "Current Simulation Time: 4.9930 s\r\n", + "Current Simulation Time: 5.0000 s\r\n", + "Simulation Completed at Time: 5.0000 s\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulating Rocket with Static Margin of 1.352->2.391 c\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Current Simulation Time: 0.0050 s\r\n", + "Current Simulation Time: 0.0100 s\r\n", + "Current Simulation Time: 0.0200 s\r\n", + "Current Simulation Time: 0.0300 s\r\n", + "Current Simulation Time: 0.0400 s\r\n", + "Current Simulation Time: 0.0500 s\r\n", + "Current Simulation Time: 0.0516 s\r\n", + "Current Simulation Time: 0.0532 s\r\n", + "Current Simulation Time: 0.0565 s\r\n", + "Current Simulation Time: 0.0571 s\r\n", + "Current Simulation Time: 0.0578 s\r\n", + "Current Simulation Time: 0.0591 s\r\n", + "Current Simulation Time: 0.0603 s\r\n", + "Current Simulation Time: 0.0616 s\r\n", + "Current Simulation Time: 0.0716 s\r\n", + "Current Simulation Time: 0.0816 s\r\n", + "Current Simulation Time: 0.0916 s\r\n", + "Current Simulation Time: 0.0936 s\r\n", + "Current Simulation Time: 0.0956 s\r\n", + "Current Simulation Time: 0.0976 s\r\n", + "Current Simulation Time: 0.1004 s\r\n", + "Current Simulation Time: 0.1024 s\r\n", + "Current Simulation Time: 0.1044 s\r\n", + "Current Simulation Time: 0.1063 s\r\n", + "Current Simulation Time: 0.1103 s\r\n", + "Current Simulation Time: 0.1142 s\r\n", + "Current Simulation Time: 0.1182 s\r\n", + "Current Simulation Time: 0.1221 s\r\n", + "Current Simulation Time: 0.1321 s\r\n", + "Current Simulation Time: 0.1421 s\r\n", + "Current Simulation Time: 0.1521 s\r\n", + "Current Simulation Time: 0.1596 s\r\n", + "Current Simulation Time: 0.1657 s\r\n", + "Current Simulation Time: 0.1718 s\r\n", + "Current Simulation Time: 0.1779 s\r\n", + "Current Simulation Time: 0.1840 s\r\n", + "Current Simulation Time: 0.1940 s\r\n", + "Current Simulation Time: 0.2040 s\r\n", + "Current Simulation Time: 0.2140 s\r\n", + "Current Simulation Time: 0.2221 s\r\n", + "Current Simulation Time: 0.2303 s\r\n", + "Current Simulation Time: 0.2384 s\r\n", + "Current Simulation Time: 0.2465 s\r\n", + "Current Simulation Time: 0.2565 s\r\n", + "Current Simulation Time: 0.2665 s\r\n", + "Current Simulation Time: 0.2765 s\r\n", + "Current Simulation Time: 0.2865 s\r\n", + "Current Simulation Time: 0.2965 s\r\n", + "Current Simulation Time: 0.3065 s\r\n", + "Current Simulation Time: 0.3165 s\r\n", + "Current Simulation Time: 0.3265 s\r\n", + "Current Simulation Time: 0.3365 s\r\n", + "Current Simulation Time: 0.3465 s\r\n", + "Current Simulation Time: 0.3565 s\r\n", + "Current Simulation Time: 0.3665 s\r\n", + "Current Simulation Time: 0.3659 s\r\n", + "Current Simulation Time: 0.3684 s\r\n", + "Current Simulation Time: 0.3735 s\r\n", + "Current Simulation Time: 0.3786 s\r\n", + "Current Simulation Time: 0.3837 s\r\n", + "Current Simulation Time: 0.3937 s\r\n", + "Current Simulation Time: 0.4037 s\r\n", + "Current Simulation Time: 0.4137 s\r\n", + "Current Simulation Time: 0.4237 s\r\n", + "Current Simulation Time: 0.4337 s\r\n", + "Current Simulation Time: 0.4437 s\r\n", + "Current Simulation Time: 0.4537 s\r\n", + "Current Simulation Time: 0.4637 s\r\n", + "Current Simulation Time: 0.4737 s\r\n", + "Current Simulation Time: 0.4837 s\r\n", + "Current Simulation Time: 0.4937 s\r\n", + "Current Simulation Time: 0.5037 s\r\n", + "Current Simulation Time: 0.5137 s\r\n", + "Current Simulation Time: 0.5237 s\r\n", + "Current Simulation Time: 0.5337 s\r\n", + "Current Simulation Time: 0.5437 s\r\n", + "Current Simulation Time: 0.5537 s\r\n", + "Current Simulation Time: 0.5637 s\r\n", + "Current Simulation Time: 0.5737 s\r\n", + "Current Simulation Time: 0.5837 s\r\n", + "Current Simulation Time: 0.5937 s\r\n", + "Current Simulation Time: 0.6037 s\r\n", + "Current Simulation Time: 0.6137 s\r\n", + "Current Simulation Time: 0.6237 s\r\n", + "Current Simulation Time: 0.6337 s\r\n", + "Current Simulation Time: 0.6437 s\r\n", + "Current Simulation Time: 0.6537 s\r\n", + "Current Simulation Time: 0.6637 s\r\n", + "Current Simulation Time: 0.6737 s\r\n", + "Current Simulation Time: 0.6837 s\r\n", + "Current Simulation Time: 0.6937 s\r\n", + "Current Simulation Time: 0.7037 s\r\n", + "Current Simulation Time: 0.7137 s\r\n", + "Current Simulation Time: 0.7237 s\r\n", + "Current Simulation Time: 0.7337 s\r\n", + "Current Simulation Time: 0.7437 s\r\n", + "Current Simulation Time: 0.7537 s\r\n", + "Current Simulation Time: 0.7637 s\r\n", + "Current Simulation Time: 0.7737 s\r\n", + "Current Simulation Time: 0.7837 s\r\n", + "Current Simulation Time: 0.7937 s\r\n", + "Current Simulation Time: 0.8037 s\r\n", + "Current Simulation Time: 0.8137 s\r\n", + "Current Simulation Time: 0.8237 s\r\n", + "Current Simulation Time: 0.8337 s\r\n", + "Current Simulation Time: 0.8437 s\r\n", + "Current Simulation Time: 0.8537 s\r\n", + "Current Simulation Time: 0.8637 s\r\n", + "Current Simulation Time: 0.8737 s\r\n", + "Current Simulation Time: 0.8837 s\r\n", + "Current Simulation Time: 0.8937 s\r\n", + "Current Simulation Time: 0.9037 s\r\n", + "Current Simulation Time: 0.9137 s\r\n", + "Current Simulation Time: 0.9237 s\r\n", + "Current Simulation Time: 0.9337 s\r\n", + "Current Simulation Time: 0.9437 s\r\n", + "Current Simulation Time: 0.9537 s\r\n", + "Current Simulation Time: 0.9637 s\r\n", + "Current Simulation Time: 0.9737 s\r\n", + "Current Simulation Time: 0.9837 s\r\n", + "Current Simulation Time: 0.9937 s\r\n", + "Current Simulation Time: 1.0037 s\r\n", + "Current Simulation Time: 1.0137 s\r\n", + "Current Simulation Time: 1.0237 s\r\n", + "Current Simulation Time: 1.0337 s\r\n", + "Current Simulation Time: 1.0437 s\r\n", + "Current Simulation Time: 1.0537 s\r\n", + "Current Simulation Time: 1.0637 s\r\n", + "Current Simulation Time: 1.0737 s\r\n", + "Current Simulation Time: 1.0837 s\r\n", + "Current Simulation Time: 1.0937 s\r\n", + "Current Simulation Time: 1.1037 s\r\n", + "Current Simulation Time: 1.1137 s\r\n", + "Current Simulation Time: 1.1237 s\r\n", + "Current Simulation Time: 1.1337 s\r\n", + "Current Simulation Time: 1.1437 s\r\n", + "Current Simulation Time: 1.1537 s\r\n", + "Current Simulation Time: 1.1637 s\r\n", + "Current Simulation Time: 1.1737 s\r\n", + "Current Simulation Time: 1.1837 s\r\n", + "Current Simulation Time: 1.1937 s\r\n", + "Current Simulation Time: 1.2037 s\r\n", + "Current Simulation Time: 1.2137 s\r\n", + "Current Simulation Time: 1.2237 s\r\n", + "Current Simulation Time: 1.2337 s\r\n", + "Current Simulation Time: 1.2437 s\r\n", + "Current Simulation Time: 1.2537 s\r\n", + "Current Simulation Time: 1.2637 s\r\n", + "Current Simulation Time: 1.2737 s\r\n", + "Current Simulation Time: 1.2837 s\r\n", + "Current Simulation Time: 1.2937 s\r\n", + "Current Simulation Time: 1.3037 s\r\n", + "Current Simulation Time: 1.3137 s\r\n", + "Current Simulation Time: 1.3237 s\r\n", + "Current Simulation Time: 1.3337 s\r\n", + "Current Simulation Time: 1.3437 s\r\n", + "Current Simulation Time: 1.3537 s\r\n", + "Current Simulation Time: 1.3637 s\r\n", + "Current Simulation Time: 1.3737 s\r\n", + "Current Simulation Time: 1.3837 s\r\n", + "Current Simulation Time: 1.3937 s\r\n", + "Current Simulation Time: 1.4037 s\r\n", + "Current Simulation Time: 1.4137 s\r\n", + "Current Simulation Time: 1.4237 s\r\n", + "Current Simulation Time: 1.4337 s\r\n", + "Current Simulation Time: 1.4437 s\r\n", + "Current Simulation Time: 1.4537 s\r\n", + "Current Simulation Time: 1.4637 s\r\n", + "Current Simulation Time: 1.4737 s\r\n", + "Current Simulation Time: 1.4837 s\r\n", + "Current Simulation Time: 1.4937 s\r\n", + "Current Simulation Time: 1.5037 s\r\n", + "Current Simulation Time: 1.5137 s\r\n", + "Current Simulation Time: 1.5237 s\r\n", + "Current Simulation Time: 1.5337 s\r\n", + "Current Simulation Time: 1.5437 s\r\n", + "Current Simulation Time: 1.5537 s\r\n", + "Current Simulation Time: 1.5637 s\r\n", + "Current Simulation Time: 1.5737 s\r\n", + "Current Simulation Time: 1.5837 s\r\n", + "Current Simulation Time: 1.5937 s\r\n", + "Current Simulation Time: 1.6037 s\r\n", + "Current Simulation Time: 1.6137 s\r\n", + "Current Simulation Time: 1.6237 s\r\n", + "Current Simulation Time: 1.6337 s\r\n", + "Current Simulation Time: 1.6437 s\r\n", + "Current Simulation Time: 1.6537 s\r\n", + "Current Simulation Time: 1.6637 s\r\n", + "Current Simulation Time: 1.6737 s\r\n", + "Current Simulation Time: 1.6837 s\r\n", + "Current Simulation Time: 1.6937 s\r\n", + "Current Simulation Time: 1.7037 s\r\n", + "Current Simulation Time: 1.7137 s\r\n", + "Current Simulation Time: 1.7237 s\r\n", + "Current Simulation Time: 1.7337 s\r\n", + "Current Simulation Time: 1.7437 s\r\n", + "Current Simulation Time: 1.7537 s\r\n", + "Current Simulation Time: 1.7637 s\r\n", + "Current Simulation Time: 1.7737 s\r\n", + "Current Simulation Time: 1.7837 s\r\n", + "Current Simulation Time: 1.7937 s\r\n", + "Current Simulation Time: 1.8037 s\r\n", + "Current Simulation Time: 1.8137 s\r\n", + "Current Simulation Time: 1.8237 s\r\n", + "Current Simulation Time: 1.8337 s\r\n", + "Current Simulation Time: 1.8437 s\r\n", + "Current Simulation Time: 1.8537 s\r\n", + "Current Simulation Time: 1.8637 s\r\n", + "Current Simulation Time: 1.8737 s\r\n", + "Current Simulation Time: 1.8837 s\r\n", + "Current Simulation Time: 1.8937 s\r\n", + "Current Simulation Time: 1.9037 s\r\n", + "Current Simulation Time: 1.9137 s\r\n", + "Current Simulation Time: 1.9237 s\r\n", + "Current Simulation Time: 1.9337 s\r\n", + "Current Simulation Time: 1.9437 s\r\n", + "Current Simulation Time: 1.9537 s\r\n", + "Current Simulation Time: 1.9637 s\r\n", + "Current Simulation Time: 1.9737 s\r\n", + "Current Simulation Time: 1.9837 s\r\n", + "Current Simulation Time: 1.9937 s\r\n", + "Current Simulation Time: 2.0037 s\r\n", + "Current Simulation Time: 2.0137 s\r\n", + "Current Simulation Time: 2.0237 s\r\n", + "Current Simulation Time: 2.0337 s\r\n", + "Current Simulation Time: 2.0437 s\r\n", + "Current Simulation Time: 2.0537 s\r\n", + "Current Simulation Time: 2.0637 s\r\n", + "Current Simulation Time: 2.0737 s\r\n", + "Current Simulation Time: 2.0837 s\r\n", + "Current Simulation Time: 2.0937 s\r\n", + "Current Simulation Time: 2.1037 s\r\n", + "Current Simulation Time: 2.1137 s\r\n", + "Current Simulation Time: 2.1237 s\r\n", + "Current Simulation Time: 2.1337 s\r\n", + "Current Simulation Time: 2.1437 s\r\n", + "Current Simulation Time: 2.1537 s\r\n", + "Current Simulation Time: 2.1637 s\r\n", + "Current Simulation Time: 2.1737 s\r\n", + "Current Simulation Time: 2.1837 s\r\n", + "Current Simulation Time: 2.1937 s\r\n", + "Current Simulation Time: 2.2037 s\r\n", + "Current Simulation Time: 2.2137 s\r\n", + "Current Simulation Time: 2.2237 s\r\n", + "Current Simulation Time: 2.2337 s\r\n", + "Current Simulation Time: 2.2437 s\r\n", + "Current Simulation Time: 2.2537 s\r\n", + "Current Simulation Time: 2.2637 s\r\n", + "Current Simulation Time: 2.2737 s\r\n", + "Current Simulation Time: 2.2837 s\r\n", + "Current Simulation Time: 2.2937 s\r\n", + "Current Simulation Time: 2.3037 s\r\n", + "Current Simulation Time: 2.3137 s\r\n", + "Current Simulation Time: 2.3237 s\r\n", + "Current Simulation Time: 2.3337 s\r\n", + "Current Simulation Time: 2.3437 s\r\n", + "Current Simulation Time: 2.3537 s\r\n", + "Current Simulation Time: 2.3637 s\r\n", + "Current Simulation Time: 2.3737 s\r\n", + "Current Simulation Time: 2.3837 s\r\n", + "Current Simulation Time: 2.3937 s\r\n", + "Current Simulation Time: 2.4037 s\r\n", + "Current Simulation Time: 2.4137 s\r\n", + "Current Simulation Time: 2.4237 s\r\n", + "Current Simulation Time: 2.4337 s\r\n", + "Current Simulation Time: 2.4437 s\r\n", + "Current Simulation Time: 2.4537 s\r\n", + "Current Simulation Time: 2.4637 s\r\n", + "Current Simulation Time: 2.4737 s\r\n", + "Current Simulation Time: 2.4837 s\r\n", + "Current Simulation Time: 2.4937 s\r\n", + "Current Simulation Time: 2.5037 s\r\n", + "Current Simulation Time: 2.5137 s\r\n", + "Current Simulation Time: 2.5237 s\r\n", + "Current Simulation Time: 2.5337 s\r\n", + "Current Simulation Time: 2.5437 s\r\n", + "Current Simulation Time: 2.5537 s\r\n", + "Current Simulation Time: 2.5637 s\r\n", + "Current Simulation Time: 2.5737 s\r\n", + "Current Simulation Time: 2.5837 s\r\n", + "Current Simulation Time: 2.5937 s\r\n", + "Current Simulation Time: 2.6037 s\r\n", + "Current Simulation Time: 2.6137 s\r\n", + "Current Simulation Time: 2.6237 s\r\n", + "Current Simulation Time: 2.6337 s\r\n", + "Current Simulation Time: 2.6437 s\r\n", + "Current Simulation Time: 2.6537 s\r\n", + "Current Simulation Time: 2.6637 s\r\n", + "Current Simulation Time: 2.6737 s\r\n", + "Current Simulation Time: 2.6837 s\r\n", + "Current Simulation Time: 2.6937 s\r\n", + "Current Simulation Time: 2.7037 s\r\n", + "Current Simulation Time: 2.7137 s\r\n", + "Current Simulation Time: 2.7237 s\r\n", + "Current Simulation Time: 2.7337 s\r\n", + "Current Simulation Time: 2.7437 s\r\n", + "Current Simulation Time: 2.7537 s\r\n", + "Current Simulation Time: 2.7637 s\r\n", + "Current Simulation Time: 2.7737 s\r\n", + "Current Simulation Time: 2.7837 s\r\n", + "Current Simulation Time: 2.7937 s\r\n", + "Current Simulation Time: 2.8037 s\r\n", + "Current Simulation Time: 2.8137 s\r\n", + "Current Simulation Time: 2.8237 s\r\n", + "Current Simulation Time: 2.8337 s\r\n", + "Current Simulation Time: 2.8437 s\r\n", + "Current Simulation Time: 2.8537 s\r\n", + "Current Simulation Time: 2.8637 s\r\n", + "Current Simulation Time: 2.8737 s\r\n", + "Current Simulation Time: 2.8837 s\r\n", + "Current Simulation Time: 2.8937 s\r\n", + "Current Simulation Time: 2.9037 s\r\n", + "Current Simulation Time: 2.9137 s\r\n", + "Current Simulation Time: 2.9237 s\r\n", + "Current Simulation Time: 2.9337 s\r\n", + "Current Simulation Time: 2.9437 s\r\n", + "Current Simulation Time: 2.9537 s\r\n", + "Current Simulation Time: 2.9637 s\r\n", + "Current Simulation Time: 2.9737 s\r\n", + "Current Simulation Time: 2.9837 s\r\n", + "Current Simulation Time: 2.9937 s\r\n", + "Current Simulation Time: 3.0037 s\r\n", + "Current Simulation Time: 3.0137 s\r\n", + "Current Simulation Time: 3.0216 s\r\n", + "Current Simulation Time: 3.0295 s\r\n", + "Current Simulation Time: 3.0374 s\r\n", + "Current Simulation Time: 3.0453 s\r\n", + "Current Simulation Time: 3.0532 s\r\n", + "Current Simulation Time: 3.0632 s\r\n", + "Current Simulation Time: 3.0732 s\r\n", + "Current Simulation Time: 3.0832 s\r\n", + "Current Simulation Time: 3.0932 s\r\n", + "Current Simulation Time: 3.1032 s\r\n", + "Current Simulation Time: 3.1132 s\r\n", + "Current Simulation Time: 3.1232 s\r\n", + "Current Simulation Time: 3.1332 s\r\n", + "Current Simulation Time: 3.1432 s\r\n", + "Current Simulation Time: 3.1532 s\r\n", + "Current Simulation Time: 3.1632 s\r\n", + "Current Simulation Time: 3.1732 s\r\n", + "Current Simulation Time: 3.1832 s\r\n", + "Current Simulation Time: 3.1932 s\r\n", + "Current Simulation Time: 3.2032 s\r\n", + "Current Simulation Time: 3.2132 s\r\n", + "Current Simulation Time: 3.2232 s\r\n", + "Current Simulation Time: 3.2332 s\r\n", + "Current Simulation Time: 3.2432 s\r\n", + "Current Simulation Time: 3.2532 s\r\n", + "Current Simulation Time: 3.2632 s\r\n", + "Current Simulation Time: 3.2732 s\r\n", + "Current Simulation Time: 3.2832 s\r\n", + "Current Simulation Time: 3.2932 s\r\n", + "Current Simulation Time: 3.3032 s\r\n", + "Current Simulation Time: 3.3132 s\r\n", + "Current Simulation Time: 3.3232 s\r\n", + "Current Simulation Time: 3.3332 s\r\n", + "Current Simulation Time: 3.3432 s\r\n", + "Current Simulation Time: 3.3532 s\r\n", + "Current Simulation Time: 3.3632 s\r\n", + "Current Simulation Time: 3.3732 s\r\n", + "Current Simulation Time: 3.3832 s\r\n", + "Current Simulation Time: 3.3932 s\r\n", + "Current Simulation Time: 3.4032 s\r\n", + "Current Simulation Time: 3.4132 s\r\n", + "Current Simulation Time: 3.4232 s\r\n", + "Current Simulation Time: 3.4332 s\r\n", + "Current Simulation Time: 3.4432 s\r\n", + "Current Simulation Time: 3.4532 s\r\n", + "Current Simulation Time: 3.4632 s\r\n", + "Current Simulation Time: 3.4732 s\r\n", + "Current Simulation Time: 3.4832 s\r\n", + "Current Simulation Time: 3.4932 s\r\n", + "Current Simulation Time: 3.5032 s\r\n", + "Current Simulation Time: 3.5132 s\r\n", + "Current Simulation Time: 3.5232 s\r\n", + "Current Simulation Time: 3.5332 s\r\n", + "Current Simulation Time: 3.5432 s\r\n", + "Current Simulation Time: 3.5532 s\r\n", + "Current Simulation Time: 3.5632 s\r\n", + "Current Simulation Time: 3.5732 s\r\n", + "Current Simulation Time: 3.5832 s\r\n", + "Current Simulation Time: 3.5932 s\r\n", + "Current Simulation Time: 3.6032 s\r\n", + "Current Simulation Time: 3.6132 s\r\n", + "Current Simulation Time: 3.6232 s\r\n", + "Current Simulation Time: 3.6332 s\r\n", + "Current Simulation Time: 3.6432 s\r\n", + "Current Simulation Time: 3.6532 s\r\n", + "Current Simulation Time: 3.6632 s\r\n", + "Current Simulation Time: 3.6732 s\r\n", + "Current Simulation Time: 3.6832 s\r\n", + "Current Simulation Time: 3.6932 s\r\n", + "Current Simulation Time: 3.7032 s\r\n", + "Current Simulation Time: 3.7132 s\r\n", + "Current Simulation Time: 3.7232 s\r\n", + "Current Simulation Time: 3.7332 s\r\n", + "Current Simulation Time: 3.7432 s\r\n", + "Current Simulation Time: 3.7532 s\r\n", + "Current Simulation Time: 3.7632 s\r\n", + "Current Simulation Time: 3.7732 s\r\n", + "Current Simulation Time: 3.7832 s\r\n", + "Current Simulation Time: 3.7932 s\r\n", + "Current Simulation Time: 3.8032 s\r\n", + "Current Simulation Time: 3.8132 s\r\n", + "Current Simulation Time: 3.8232 s\r\n", + "Current Simulation Time: 3.8332 s\r\n", + "Current Simulation Time: 3.8432 s\r\n", + "Current Simulation Time: 3.8532 s\r\n", + "Current Simulation Time: 3.8632 s\r\n", + "Current Simulation Time: 3.8732 s\r\n", + "Current Simulation Time: 3.8832 s\r\n", + "Current Simulation Time: 3.8932 s\r\n", + "Current Simulation Time: 3.9032 s\r\n", + "Current Simulation Time: 3.9132 s\r\n", + "Current Simulation Time: 3.9232 s\r\n", + "Current Simulation Time: 3.9332 s\r\n", + "Current Simulation Time: 3.9432 s\r\n", + "Current Simulation Time: 3.9532 s\r\n", + "Current Simulation Time: 3.9632 s\r\n", + "Current Simulation Time: 3.9732 s\r\n", + "Current Simulation Time: 3.9832 s\r\n", + "Current Simulation Time: 3.9932 s\r\n", + "Current Simulation Time: 4.0032 s\r\n", + "Current Simulation Time: 4.0132 s\r\n", + "Current Simulation Time: 4.0232 s\r\n", + "Current Simulation Time: 4.0332 s\r\n", + "Current Simulation Time: 4.0432 s\r\n", + "Current Simulation Time: 4.0532 s\r\n", + "Current Simulation Time: 4.0632 s\r\n", + "Current Simulation Time: 4.0732 s\r\n", + "Current Simulation Time: 4.0832 s\r\n", + "Current Simulation Time: 4.0932 s\r\n", + "Current Simulation Time: 4.1032 s\r\n", + "Current Simulation Time: 4.1132 s\r\n", + "Current Simulation Time: 4.1232 s\r\n", + "Current Simulation Time: 4.1332 s\r\n", + "Current Simulation Time: 4.1432 s\r\n", + "Current Simulation Time: 4.1532 s\r\n", + "Current Simulation Time: 4.1632 s\r\n", + "Current Simulation Time: 4.1732 s\r\n", + "Current Simulation Time: 4.1832 s\r\n", + "Current Simulation Time: 4.1932 s\r\n", + "Current Simulation Time: 4.2032 s\r\n", + "Current Simulation Time: 4.2132 s\r\n", + "Current Simulation Time: 4.2232 s\r\n", + "Current Simulation Time: 4.2332 s\r\n", + "Current Simulation Time: 4.2432 s\r\n", + "Current Simulation Time: 4.2532 s\r\n", + "Current Simulation Time: 4.2632 s\r\n", + "Current Simulation Time: 4.2732 s\r\n", + "Current Simulation Time: 4.2832 s\r\n", + "Current Simulation Time: 4.2932 s\r\n", + "Current Simulation Time: 4.3032 s\r\n", + "Current Simulation Time: 4.3132 s\r\n", + "Current Simulation Time: 4.3232 s\r\n", + "Current Simulation Time: 4.3332 s\r\n", + "Current Simulation Time: 4.3432 s\r\n", + "Current Simulation Time: 4.3532 s\r\n", + "Current Simulation Time: 4.3632 s\r\n", + "Current Simulation Time: 4.3732 s\r\n", + "Current Simulation Time: 4.3832 s\r\n", + "Current Simulation Time: 4.3932 s\r\n", + "Current Simulation Time: 4.4032 s\r\n", + "Current Simulation Time: 4.4132 s\r\n", + "Current Simulation Time: 4.4232 s\r\n", + "Current Simulation Time: 4.4332 s\r\n", + "Current Simulation Time: 4.4432 s\r\n", + "Current Simulation Time: 4.4532 s\r\n", + "Current Simulation Time: 4.4632 s\r\n", + "Current Simulation Time: 4.4732 s\r\n", + "Current Simulation Time: 4.4832 s\r\n", + "Current Simulation Time: 4.4932 s\r\n", + "Current Simulation Time: 4.5032 s\r\n", + "Current Simulation Time: 4.5132 s\r\n", + "Current Simulation Time: 4.5232 s\r\n", + "Current Simulation Time: 4.5332 s\r\n", + "Current Simulation Time: 4.5432 s\r\n", + "Current Simulation Time: 4.5532 s\r\n", + "Current Simulation Time: 4.5632 s\r\n", + "Current Simulation Time: 4.5732 s\r\n", + "Current Simulation Time: 4.5832 s\r\n", + "Current Simulation Time: 4.5932 s\r\n", + "Current Simulation Time: 4.6032 s\r\n", + "Current Simulation Time: 4.6132 s\r\n", + "Current Simulation Time: 4.6232 s\r\n", + "Current Simulation Time: 4.6332 s\r\n", + "Current Simulation Time: 4.6432 s\r\n", + "Current Simulation Time: 4.6532 s\r\n", + "Current Simulation Time: 4.6632 s\r\n", + "Current Simulation Time: 4.6732 s\r\n", + "Current Simulation Time: 4.6832 s\r\n", + "Current Simulation Time: 4.6932 s\r\n", + "Current Simulation Time: 4.7032 s\r\n", + "Current Simulation Time: 4.7132 s\r\n", + "Current Simulation Time: 4.7232 s\r\n", + "Current Simulation Time: 4.7332 s\r\n", + "Current Simulation Time: 4.7432 s\r\n", + "Current Simulation Time: 4.7532 s\r\n", + "Current Simulation Time: 4.7632 s\r\n", + "Current Simulation Time: 4.7732 s\r\n", + "Current Simulation Time: 4.7832 s\r\n", + "Current Simulation Time: 4.7932 s\r\n", + "Current Simulation Time: 4.8032 s\r\n", + "Current Simulation Time: 4.8132 s\r\n", + "Current Simulation Time: 4.8232 s\r\n", + "Current Simulation Time: 4.8332 s\r\n", + "Current Simulation Time: 4.8432 s\r\n", + "Current Simulation Time: 4.8532 s\r\n", + "Current Simulation Time: 4.8632 s\r\n", + "Current Simulation Time: 4.8732 s\r\n", + "Current Simulation Time: 4.8832 s\r\n", + "Current Simulation Time: 4.8932 s\r\n", + "Current Simulation Time: 4.9032 s\r\n", + "Current Simulation Time: 4.9132 s\r\n", + "Current Simulation Time: 4.9232 s\r\n", + "Current Simulation Time: 4.9332 s\r\n", + "Current Simulation Time: 4.9432 s\r\n", + "Current Simulation Time: 4.9532 s\r\n", + "Current Simulation Time: 4.9632 s\r\n", + "Current Simulation Time: 4.9732 s\r\n", + "Current Simulation Time: 4.9832 s\r\n", + "Current Simulation Time: 4.9932 s\r\n", + "Current Simulation Time: 5.0000 s\r\n", + "Simulation Completed at Time: 5.0000 s\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulating Rocket with Static Margin of 2.750->3.789 c\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Current Simulation Time: 0.0050 s\r\n", + "Current Simulation Time: 0.0100 s\r\n", + "Current Simulation Time: 0.0200 s\r\n", + "Current Simulation Time: 0.0300 s\r\n", + "Current Simulation Time: 0.0400 s\r\n", + "Current Simulation Time: 0.0500 s\r\n", + "Current Simulation Time: 0.0516 s\r\n", + "Current Simulation Time: 0.0532 s\r\n", + "Current Simulation Time: 0.0565 s\r\n", + "Current Simulation Time: 0.0571 s\r\n", + "Current Simulation Time: 0.0578 s\r\n", + "Current Simulation Time: 0.0591 s\r\n", + "Current Simulation Time: 0.0603 s\r\n", + "Current Simulation Time: 0.0616 s\r\n", + "Current Simulation Time: 0.0716 s\r\n", + "Current Simulation Time: 0.0816 s\r\n", + "Current Simulation Time: 0.0916 s\r\n", + "Current Simulation Time: 0.0936 s\r\n", + "Current Simulation Time: 0.0956 s\r\n", + "Current Simulation Time: 0.0976 s\r\n", + "Current Simulation Time: 0.1004 s\r\n", + "Current Simulation Time: 0.1024 s\r\n", + "Current Simulation Time: 0.1044 s\r\n", + "Current Simulation Time: 0.1063 s\r\n", + "Current Simulation Time: 0.1103 s\r\n", + "Current Simulation Time: 0.1142 s\r\n", + "Current Simulation Time: 0.1182 s\r\n", + "Current Simulation Time: 0.1221 s\r\n", + "Current Simulation Time: 0.1321 s\r\n", + "Current Simulation Time: 0.1421 s\r\n", + "Current Simulation Time: 0.1521 s\r\n", + "Current Simulation Time: 0.1596 s\r\n", + "Current Simulation Time: 0.1657 s\r\n", + "Current Simulation Time: 0.1718 s\r\n", + "Current Simulation Time: 0.1779 s\r\n", + "Current Simulation Time: 0.1840 s\r\n", + "Current Simulation Time: 0.1940 s\r\n", + "Current Simulation Time: 0.2040 s\r\n", + "Current Simulation Time: 0.2140 s\r\n", + "Current Simulation Time: 0.2221 s\r\n", + "Current Simulation Time: 0.2303 s\r\n", + "Current Simulation Time: 0.2384 s\r\n", + "Current Simulation Time: 0.2465 s\r\n", + "Current Simulation Time: 0.2565 s\r\n", + "Current Simulation Time: 0.2665 s\r\n", + "Current Simulation Time: 0.2765 s\r\n", + "Current Simulation Time: 0.2865 s\r\n", + "Current Simulation Time: 0.2965 s\r\n", + "Current Simulation Time: 0.3065 s\r\n", + "Current Simulation Time: 0.3165 s\r\n", + "Current Simulation Time: 0.3265 s\r\n", + "Current Simulation Time: 0.3365 s\r\n", + "Current Simulation Time: 0.3465 s\r\n", + "Current Simulation Time: 0.3565 s\r\n", + "Current Simulation Time: 0.3665 s\r\n", + "Current Simulation Time: 0.3656 s\r\n", + "Current Simulation Time: 0.3678 s\r\n", + "Current Simulation Time: 0.3722 s\r\n", + "Current Simulation Time: 0.3767 s\r\n", + "Current Simulation Time: 0.3811 s\r\n", + "Current Simulation Time: 0.3911 s\r\n", + "Current Simulation Time: 0.4011 s\r\n", + "Current Simulation Time: 0.4111 s\r\n", + "Current Simulation Time: 0.4211 s\r\n", + "Current Simulation Time: 0.4311 s\r\n", + "Current Simulation Time: 0.4411 s\r\n", + "Current Simulation Time: 0.4511 s\r\n", + "Current Simulation Time: 0.4611 s\r\n", + "Current Simulation Time: 0.4711 s\r\n", + "Current Simulation Time: 0.4811 s\r\n", + "Current Simulation Time: 0.4911 s\r\n", + "Current Simulation Time: 0.5011 s\r\n", + "Current Simulation Time: 0.5111 s\r\n", + "Current Simulation Time: 0.5211 s\r\n", + "Current Simulation Time: 0.5311 s\r\n", + "Current Simulation Time: 0.5411 s\r\n", + "Current Simulation Time: 0.5511 s\r\n", + "Current Simulation Time: 0.5611 s\r\n", + "Current Simulation Time: 0.5711 s\r\n", + "Current Simulation Time: 0.5811 s\r\n", + "Current Simulation Time: 0.5911 s\r\n", + "Current Simulation Time: 0.6011 s\r\n", + "Current Simulation Time: 0.6111 s\r\n", + "Current Simulation Time: 0.6211 s\r\n", + "Current Simulation Time: 0.6311 s\r\n", + "Current Simulation Time: 0.6411 s\r\n", + "Current Simulation Time: 0.6511 s\r\n", + "Current Simulation Time: 0.6611 s\r\n", + "Current Simulation Time: 0.6711 s\r\n", + "Current Simulation Time: 0.6811 s\r\n", + "Current Simulation Time: 0.6911 s\r\n", + "Current Simulation Time: 0.7011 s\r\n", + "Current Simulation Time: 0.7111 s\r\n", + "Current Simulation Time: 0.7211 s\r\n", + "Current Simulation Time: 0.7311 s\r\n", + "Current Simulation Time: 0.7411 s\r\n", + "Current Simulation Time: 0.7511 s\r\n", + "Current Simulation Time: 0.7611 s\r\n", + "Current Simulation Time: 0.7711 s\r\n", + "Current Simulation Time: 0.7811 s\r\n", + "Current Simulation Time: 0.7911 s\r\n", + "Current Simulation Time: 0.8011 s\r\n", + "Current Simulation Time: 0.8111 s\r\n", + "Current Simulation Time: 0.8211 s\r\n", + "Current Simulation Time: 0.8311 s\r\n", + "Current Simulation Time: 0.8411 s\r\n", + "Current Simulation Time: 0.8511 s\r\n", + "Current Simulation Time: 0.8611 s\r\n", + "Current Simulation Time: 0.8711 s\r\n", + "Current Simulation Time: 0.8811 s\r\n", + "Current Simulation Time: 0.8911 s\r\n", + "Current Simulation Time: 0.9011 s\r\n", + "Current Simulation Time: 0.9111 s\r\n", + "Current Simulation Time: 0.9211 s\r\n", + "Current Simulation Time: 0.9311 s\r\n", + "Current Simulation Time: 0.9411 s\r\n", + "Current Simulation Time: 0.9511 s\r\n", + "Current Simulation Time: 0.9611 s\r\n", + "Current Simulation Time: 0.9711 s\r\n", + "Current Simulation Time: 0.9811 s\r\n", + "Current Simulation Time: 0.9911 s\r\n", + "Current Simulation Time: 1.0011 s\r\n", + "Current Simulation Time: 1.0111 s\r\n", + "Current Simulation Time: 1.0211 s\r\n", + "Current Simulation Time: 1.0311 s\r\n", + "Current Simulation Time: 1.0411 s\r\n", + "Current Simulation Time: 1.0511 s\r\n", + "Current Simulation Time: 1.0611 s\r\n", + "Current Simulation Time: 1.0711 s\r\n", + "Current Simulation Time: 1.0811 s\r\n", + "Current Simulation Time: 1.0911 s\r\n", + "Current Simulation Time: 1.1011 s\r\n", + "Current Simulation Time: 1.1111 s\r\n", + "Current Simulation Time: 1.1211 s\r\n", + "Current Simulation Time: 1.1311 s\r\n", + "Current Simulation Time: 1.1411 s\r\n", + "Current Simulation Time: 1.1511 s\r\n", + "Current Simulation Time: 1.1611 s\r\n", + "Current Simulation Time: 1.1711 s\r\n", + "Current Simulation Time: 1.1811 s\r\n", + "Current Simulation Time: 1.1911 s\r\n", + "Current Simulation Time: 1.2011 s\r\n", + "Current Simulation Time: 1.2111 s\r\n", + "Current Simulation Time: 1.2211 s\r\n", + "Current Simulation Time: 1.2311 s\r\n", + "Current Simulation Time: 1.2411 s\r\n", + "Current Simulation Time: 1.2511 s\r\n", + "Current Simulation Time: 1.2611 s\r\n", + "Current Simulation Time: 1.2711 s\r\n", + "Current Simulation Time: 1.2811 s\r\n", + "Current Simulation Time: 1.2911 s\r\n", + "Current Simulation Time: 1.3011 s\r\n", + "Current Simulation Time: 1.3111 s\r\n", + "Current Simulation Time: 1.3211 s\r\n", + "Current Simulation Time: 1.3311 s\r\n", + "Current Simulation Time: 1.3411 s\r\n", + "Current Simulation Time: 1.3511 s\r\n", + "Current Simulation Time: 1.3611 s\r\n", + "Current Simulation Time: 1.3711 s\r\n", + "Current Simulation Time: 1.3811 s\r\n", + "Current Simulation Time: 1.3911 s\r\n", + "Current Simulation Time: 1.4011 s\r\n", + "Current Simulation Time: 1.4111 s\r\n", + "Current Simulation Time: 1.4211 s\r\n", + "Current Simulation Time: 1.4311 s\r\n", + "Current Simulation Time: 1.4411 s\r\n", + "Current Simulation Time: 1.4511 s\r\n", + "Current Simulation Time: 1.4611 s\r\n", + "Current Simulation Time: 1.4711 s\r\n", + "Current Simulation Time: 1.4811 s\r\n", + "Current Simulation Time: 1.4911 s\r\n", + "Current Simulation Time: 1.5011 s\r\n", + "Current Simulation Time: 1.5111 s\r\n", + "Current Simulation Time: 1.5211 s\r\n", + "Current Simulation Time: 1.5311 s\r\n", + "Current Simulation Time: 1.5411 s\r\n", + "Current Simulation Time: 1.5511 s\r\n", + "Current Simulation Time: 1.5611 s\r\n", + "Current Simulation Time: 1.5711 s\r\n", + "Current Simulation Time: 1.5811 s\r\n", + "Current Simulation Time: 1.5911 s\r\n", + "Current Simulation Time: 1.6011 s\r\n", + "Current Simulation Time: 1.6111 s\r\n", + "Current Simulation Time: 1.6211 s\r\n", + "Current Simulation Time: 1.6311 s\r\n", + "Current Simulation Time: 1.6411 s\r\n", + "Current Simulation Time: 1.6511 s\r\n", + "Current Simulation Time: 1.6611 s\r\n", + "Current Simulation Time: 1.6711 s\r\n", + "Current Simulation Time: 1.6811 s\r\n", + "Current Simulation Time: 1.6911 s\r\n", + "Current Simulation Time: 1.7011 s\r\n", + "Current Simulation Time: 1.7111 s\r\n", + "Current Simulation Time: 1.7211 s\r\n", + "Current Simulation Time: 1.7311 s\r\n", + "Current Simulation Time: 1.7411 s\r\n", + "Current Simulation Time: 1.7511 s\r\n", + "Current Simulation Time: 1.7611 s\r\n", + "Current Simulation Time: 1.7711 s\r\n", + "Current Simulation Time: 1.7811 s\r\n", + "Current Simulation Time: 1.7911 s\r\n", + "Current Simulation Time: 1.8011 s\r\n", + "Current Simulation Time: 1.8111 s\r\n", + "Current Simulation Time: 1.8211 s\r\n", + "Current Simulation Time: 1.8311 s\r\n", + "Current Simulation Time: 1.8411 s\r\n", + "Current Simulation Time: 1.8511 s\r\n", + "Current Simulation Time: 1.8611 s\r\n", + "Current Simulation Time: 1.8711 s\r\n", + "Current Simulation Time: 1.8811 s\r\n", + "Current Simulation Time: 1.8911 s\r\n", + "Current Simulation Time: 1.9011 s\r\n", + "Current Simulation Time: 1.9111 s\r\n", + "Current Simulation Time: 1.9211 s\r\n", + "Current Simulation Time: 1.9311 s\r\n", + "Current Simulation Time: 1.9411 s\r\n", + "Current Simulation Time: 1.9511 s\r\n", + "Current Simulation Time: 1.9611 s\r\n", + "Current Simulation Time: 1.9711 s\r\n", + "Current Simulation Time: 1.9811 s\r\n", + "Current Simulation Time: 1.9911 s\r\n", + "Current Simulation Time: 2.0011 s\r\n", + "Current Simulation Time: 2.0111 s\r\n", + "Current Simulation Time: 2.0211 s\r\n", + "Current Simulation Time: 2.0311 s\r\n", + "Current Simulation Time: 2.0411 s\r\n", + "Current Simulation Time: 2.0511 s\r\n", + "Current Simulation Time: 2.0611 s\r\n", + "Current Simulation Time: 2.0711 s\r\n", + "Current Simulation Time: 2.0811 s\r\n", + "Current Simulation Time: 2.0911 s\r\n", + "Current Simulation Time: 2.1011 s\r\n", + "Current Simulation Time: 2.1111 s\r\n", + "Current Simulation Time: 2.1211 s\r\n", + "Current Simulation Time: 2.1311 s\r\n", + "Current Simulation Time: 2.1411 s\r\n", + "Current Simulation Time: 2.1511 s\r\n", + "Current Simulation Time: 2.1611 s\r\n", + "Current Simulation Time: 2.1711 s\r\n", + "Current Simulation Time: 2.1811 s\r\n", + "Current Simulation Time: 2.1911 s\r\n", + "Current Simulation Time: 2.2011 s\r\n", + "Current Simulation Time: 2.2111 s\r\n", + "Current Simulation Time: 2.2211 s\r\n", + "Current Simulation Time: 2.2311 s\r\n", + "Current Simulation Time: 2.2411 s\r\n", + "Current Simulation Time: 2.2511 s\r\n", + "Current Simulation Time: 2.2611 s\r\n", + "Current Simulation Time: 2.2711 s\r\n", + "Current Simulation Time: 2.2811 s\r\n", + "Current Simulation Time: 2.2911 s\r\n", + "Current Simulation Time: 2.3011 s\r\n", + "Current Simulation Time: 2.3111 s\r\n", + "Current Simulation Time: 2.3211 s\r\n", + "Current Simulation Time: 2.3311 s\r\n", + "Current Simulation Time: 2.3411 s\r\n", + "Current Simulation Time: 2.3511 s\r\n", + "Current Simulation Time: 2.3611 s\r\n", + "Current Simulation Time: 2.3711 s\r\n", + "Current Simulation Time: 2.3811 s\r\n", + "Current Simulation Time: 2.3911 s\r\n", + "Current Simulation Time: 2.4011 s\r\n", + "Current Simulation Time: 2.4111 s\r\n", + "Current Simulation Time: 2.4211 s\r\n", + "Current Simulation Time: 2.4311 s\r\n", + "Current Simulation Time: 2.4411 s\r\n", + "Current Simulation Time: 2.4511 s\r\n", + "Current Simulation Time: 2.4611 s\r\n", + "Current Simulation Time: 2.4711 s\r\n", + "Current Simulation Time: 2.4811 s\r\n", + "Current Simulation Time: 2.4911 s\r\n", + "Current Simulation Time: 2.5011 s\r\n", + "Current Simulation Time: 2.5111 s\r\n", + "Current Simulation Time: 2.5211 s\r\n", + "Current Simulation Time: 2.5311 s\r\n", + "Current Simulation Time: 2.5411 s\r\n", + "Current Simulation Time: 2.5511 s\r\n", + "Current Simulation Time: 2.5611 s\r\n", + "Current Simulation Time: 2.5711 s\r\n", + "Current Simulation Time: 2.5811 s\r\n", + "Current Simulation Time: 2.5911 s\r\n", + "Current Simulation Time: 2.6011 s\r\n", + "Current Simulation Time: 2.6111 s\r\n", + "Current Simulation Time: 2.6211 s\r\n", + "Current Simulation Time: 2.6311 s\r\n", + "Current Simulation Time: 2.6411 s\r\n", + "Current Simulation Time: 2.6511 s\r\n", + "Current Simulation Time: 2.6611 s\r\n", + "Current Simulation Time: 2.6711 s\r\n", + "Current Simulation Time: 2.6811 s\r\n", + "Current Simulation Time: 2.6911 s\r\n", + "Current Simulation Time: 2.7011 s\r\n", + "Current Simulation Time: 2.7111 s\r\n", + "Current Simulation Time: 2.7211 s\r\n", + "Current Simulation Time: 2.7311 s\r\n", + "Current Simulation Time: 2.7411 s\r\n", + "Current Simulation Time: 2.7511 s\r\n", + "Current Simulation Time: 2.7611 s\r\n", + "Current Simulation Time: 2.7711 s\r\n", + "Current Simulation Time: 2.7811 s\r\n", + "Current Simulation Time: 2.7911 s\r\n", + "Current Simulation Time: 2.8011 s\r\n", + "Current Simulation Time: 2.8111 s\r\n", + "Current Simulation Time: 2.8211 s\r\n", + "Current Simulation Time: 2.8311 s\r\n", + "Current Simulation Time: 2.8411 s\r\n", + "Current Simulation Time: 2.8511 s\r\n", + "Current Simulation Time: 2.8611 s\r\n", + "Current Simulation Time: 2.8711 s\r\n", + "Current Simulation Time: 2.8811 s\r\n", + "Current Simulation Time: 2.8911 s\r\n", + "Current Simulation Time: 2.9011 s\r\n", + "Current Simulation Time: 2.9111 s\r\n", + "Current Simulation Time: 2.9211 s\r\n", + "Current Simulation Time: 2.9311 s\r\n", + "Current Simulation Time: 2.9411 s\r\n", + "Current Simulation Time: 2.9511 s\r\n", + "Current Simulation Time: 2.9611 s\r\n", + "Current Simulation Time: 2.9711 s\r\n", + "Current Simulation Time: 2.9811 s\r\n", + "Current Simulation Time: 2.9911 s\r\n", + "Current Simulation Time: 3.0011 s\r\n", + "Current Simulation Time: 3.0031 s\r\n", + "Current Simulation Time: 3.0051 s\r\n", + "Current Simulation Time: 3.0071 s\r\n", + "Current Simulation Time: 3.0111 s\r\n", + "Current Simulation Time: 3.0151 s\r\n", + "Current Simulation Time: 3.0191 s\r\n", + "Current Simulation Time: 3.0291 s\r\n", + "Current Simulation Time: 3.0391 s\r\n", + "Current Simulation Time: 3.0491 s\r\n", + "Current Simulation Time: 3.0591 s\r\n", + "Current Simulation Time: 3.0691 s\r\n", + "Current Simulation Time: 3.0791 s\r\n", + "Current Simulation Time: 3.0891 s\r\n", + "Current Simulation Time: 3.0991 s\r\n", + "Current Simulation Time: 3.1091 s\r\n", + "Current Simulation Time: 3.1191 s\r\n", + "Current Simulation Time: 3.1291 s\r\n", + "Current Simulation Time: 3.1391 s\r\n", + "Current Simulation Time: 3.1491 s\r\n", + "Current Simulation Time: 3.1591 s\r\n", + "Current Simulation Time: 3.1691 s\r\n", + "Current Simulation Time: 3.1791 s\r\n", + "Current Simulation Time: 3.1891 s\r\n", + "Current Simulation Time: 3.1991 s\r\n", + "Current Simulation Time: 3.2091 s\r\n", + "Current Simulation Time: 3.2191 s\r\n", + "Current Simulation Time: 3.2291 s\r\n", + "Current Simulation Time: 3.2391 s\r\n", + "Current Simulation Time: 3.2491 s\r\n", + "Current Simulation Time: 3.2591 s\r\n", + "Current Simulation Time: 3.2691 s\r\n", + "Current Simulation Time: 3.2791 s\r\n", + "Current Simulation Time: 3.2891 s\r\n", + "Current Simulation Time: 3.2991 s\r\n", + "Current Simulation Time: 3.3091 s\r\n", + "Current Simulation Time: 3.3191 s\r\n", + "Current Simulation Time: 3.3291 s\r\n", + "Current Simulation Time: 3.3391 s\r\n", + "Current Simulation Time: 3.3491 s\r\n", + "Current Simulation Time: 3.3591 s\r\n", + "Current Simulation Time: 3.3691 s\r\n", + "Current Simulation Time: 3.3791 s\r\n", + "Current Simulation Time: 3.3891 s\r\n", + "Current Simulation Time: 3.3991 s\r\n", + "Current Simulation Time: 3.4091 s\r\n", + "Current Simulation Time: 3.4191 s\r\n", + "Current Simulation Time: 3.4291 s\r\n", + "Current Simulation Time: 3.4391 s\r\n", + "Current Simulation Time: 3.4491 s\r\n", + "Current Simulation Time: 3.4591 s\r\n", + "Current Simulation Time: 3.4691 s\r\n", + "Current Simulation Time: 3.4791 s\r\n", + "Current Simulation Time: 3.4891 s\r\n", + "Current Simulation Time: 3.4991 s\r\n", + "Current Simulation Time: 3.5091 s\r\n", + "Current Simulation Time: 3.5191 s\r\n", + "Current Simulation Time: 3.5291 s\r\n", + "Current Simulation Time: 3.5391 s\r\n", + "Current Simulation Time: 3.5491 s\r\n", + "Current Simulation Time: 3.5591 s\r\n", + "Current Simulation Time: 3.5691 s\r\n", + "Current Simulation Time: 3.5791 s\r\n", + "Current Simulation Time: 3.5891 s\r\n", + "Current Simulation Time: 3.5991 s\r\n", + "Current Simulation Time: 3.6091 s\r\n", + "Current Simulation Time: 3.6191 s\r\n", + "Current Simulation Time: 3.6291 s\r\n", + "Current Simulation Time: 3.6391 s\r\n", + "Current Simulation Time: 3.6491 s\r\n", + "Current Simulation Time: 3.6591 s\r\n", + "Current Simulation Time: 3.6691 s\r\n", + "Current Simulation Time: 3.6791 s\r\n", + "Current Simulation Time: 3.6891 s\r\n", + "Current Simulation Time: 3.6991 s\r\n", + "Current Simulation Time: 3.7091 s\r\n", + "Current Simulation Time: 3.7191 s\r\n", + "Current Simulation Time: 3.7291 s\r\n", + "Current Simulation Time: 3.7391 s\r\n", + "Current Simulation Time: 3.7491 s\r\n", + "Current Simulation Time: 3.7591 s\r\n", + "Current Simulation Time: 3.7691 s\r\n", + "Current Simulation Time: 3.7791 s\r\n", + "Current Simulation Time: 3.7891 s\r\n", + "Current Simulation Time: 3.7991 s\r\n", + "Current Simulation Time: 3.8091 s\r\n", + "Current Simulation Time: 3.8191 s\r\n", + "Current Simulation Time: 3.8291 s\r\n", + "Current Simulation Time: 3.8391 s\r\n", + "Current Simulation Time: 3.8491 s\r\n", + "Current Simulation Time: 3.8591 s\r\n", + "Current Simulation Time: 3.8691 s\r\n", + "Current Simulation Time: 3.8791 s\r\n", + "Current Simulation Time: 3.8891 s\r\n", + "Current Simulation Time: 3.8991 s\r\n", + "Current Simulation Time: 3.9091 s\r\n", + "Current Simulation Time: 3.9191 s\r\n", + "Current Simulation Time: 3.9291 s\r\n", + "Current Simulation Time: 3.9391 s\r\n", + "Current Simulation Time: 3.9491 s\r\n", + "Current Simulation Time: 3.9591 s\r\n", + "Current Simulation Time: 3.9691 s\r\n", + "Current Simulation Time: 3.9791 s\r\n", + "Current Simulation Time: 3.9891 s\r\n", + "Current Simulation Time: 3.9991 s\r\n", + "Current Simulation Time: 4.0091 s\r\n", + "Current Simulation Time: 4.0191 s\r\n", + "Current Simulation Time: 4.0291 s\r\n", + "Current Simulation Time: 4.0391 s\r\n", + "Current Simulation Time: 4.0491 s\r\n", + "Current Simulation Time: 4.0591 s\r\n", + "Current Simulation Time: 4.0691 s\r\n", + "Current Simulation Time: 4.0791 s\r\n", + "Current Simulation Time: 4.0891 s\r\n", + "Current Simulation Time: 4.0991 s\r\n", + "Current Simulation Time: 4.1091 s\r\n", + "Current Simulation Time: 4.1191 s\r\n", + "Current Simulation Time: 4.1291 s\r\n", + "Current Simulation Time: 4.1391 s\r\n", + "Current Simulation Time: 4.1491 s\r\n", + "Current Simulation Time: 4.1591 s\r\n", + "Current Simulation Time: 4.1691 s\r\n", + "Current Simulation Time: 4.1791 s\r\n", + "Current Simulation Time: 4.1891 s\r\n", + "Current Simulation Time: 4.1991 s\r\n", + "Current Simulation Time: 4.2091 s\r\n", + "Current Simulation Time: 4.2191 s\r\n", + "Current Simulation Time: 4.2291 s\r\n", + "Current Simulation Time: 4.2391 s\r\n", + "Current Simulation Time: 4.2491 s\r\n", + "Current Simulation Time: 4.2591 s\r\n", + "Current Simulation Time: 4.2691 s\r\n", + "Current Simulation Time: 4.2791 s\r\n", + "Current Simulation Time: 4.2891 s\r\n", + "Current Simulation Time: 4.2991 s\r\n", + "Current Simulation Time: 4.3091 s\r\n", + "Current Simulation Time: 4.3191 s\r\n", + "Current Simulation Time: 4.3291 s\r\n", + "Current Simulation Time: 4.3391 s\r\n", + "Current Simulation Time: 4.3491 s\r\n", + "Current Simulation Time: 4.3591 s\r\n", + "Current Simulation Time: 4.3691 s\r\n", + "Current Simulation Time: 4.3791 s\r\n", + "Current Simulation Time: 4.3891 s\r\n", + "Current Simulation Time: 4.3991 s\r\n", + "Current Simulation Time: 4.4091 s\r\n", + "Current Simulation Time: 4.4191 s\r\n", + "Current Simulation Time: 4.4291 s\r\n", + "Current Simulation Time: 4.4391 s\r\n", + "Current Simulation Time: 4.4491 s\r\n", + "Current Simulation Time: 4.4591 s\r\n", + "Current Simulation Time: 4.4691 s\r\n", + "Current Simulation Time: 4.4791 s\r\n", + "Current Simulation Time: 4.4891 s\r\n", + "Current Simulation Time: 4.4991 s\r\n", + "Current Simulation Time: 4.5091 s\r\n", + "Current Simulation Time: 4.5191 s\r\n", + "Current Simulation Time: 4.5291 s\r\n", + "Current Simulation Time: 4.5391 s\r\n", + "Current Simulation Time: 4.5491 s\r\n", + "Current Simulation Time: 4.5591 s\r\n", + "Current Simulation Time: 4.5691 s\r\n", + "Current Simulation Time: 4.5791 s\r\n", + "Current Simulation Time: 4.5891 s\r\n", + "Current Simulation Time: 4.5991 s\r\n", + "Current Simulation Time: 4.6091 s\r\n", + "Current Simulation Time: 4.6191 s\r\n", + "Current Simulation Time: 4.6291 s\r\n", + "Current Simulation Time: 4.6391 s\r\n", + "Current Simulation Time: 4.6491 s\r\n", + "Current Simulation Time: 4.6591 s\r\n", + "Current Simulation Time: 4.6691 s\r\n", + "Current Simulation Time: 4.6791 s\r\n", + "Current Simulation Time: 4.6891 s\r\n", + "Current Simulation Time: 4.6991 s\r\n", + "Current Simulation Time: 4.7091 s\r\n", + "Current Simulation Time: 4.7191 s\r\n", + "Current Simulation Time: 4.7291 s\r\n", + "Current Simulation Time: 4.7391 s\r\n", + "Current Simulation Time: 4.7491 s\r\n", + "Current Simulation Time: 4.7591 s\r\n", + "Current Simulation Time: 4.7691 s\r\n", + "Current Simulation Time: 4.7791 s\r\n", + "Current Simulation Time: 4.7891 s\r\n", + "Current Simulation Time: 4.7991 s\r\n", + "Current Simulation Time: 4.8091 s\r\n", + "Current Simulation Time: 4.8191 s\r\n", + "Current Simulation Time: 4.8291 s\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulation Completed at Time: 5.0000 s\n", + "Simulating Rocket with Static Margin of 4.147->5.186 c\n", + "Simulation Completed at Time: 5.0000 s\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAACCVUlEQVR4nO2dd3hURReH39lseicNSIDQW0gCCV16LyJVUJQiTaSDFEXAgiIfiKIgSFGKCIhIkSa91wRC7yRAQktCQkgvO98fGyIhbVM2WeC+z3Nh9065v3uTnJ2dOXOOkFKioKCgoPD6oCpqAQoKCgoKhYti+BUUFBReMxTDr6CgoPCaoRh+BQUFhdcMxfArKCgovGaoi1qALjg6Okp3d/c8tY2JicHS0rJgBRUwhq7R0PWB4Ws0dH2gaCwIDE2fv79/mJTSKUOBlNLgDx8fH5lX9u3bl+e2hYWhazR0fVIavkZD1yelorEgMDR9gJ/MxKYqUz0KCgoKrxmK4VdQUFB4zVAMv4KCgsJrhmL4FRQUFF4zFMOvoKCg8JqhV8MvhBglhLgghLgohBideq6YEGKXEOJ66v/2+tSgoKCgoJAevRl+IYQHMAioA3gBHYUQFYBJwB4pZUVgT+p7BQUFBYVCQp8buKoCJ6SUsQBCiANAV+AtoGlqneXAfmCiPgSs+HgyiRFw6/c92hNCl1ZZhKkWL9YRz73Wvn2+ihQZarxweQlCeyYlOZnAtTt1uG4OiIyvBenvKF13mfQthESaJKCykhg5WmHmVoqIKIHlhRKY2zljZWaClZkaO3Nj1EbKTKGCwsuIkHqKxy+EqApsAuoDcWhH937A+1JKu9Q6Aoh49v6F9oOBwQAuLi4+a9asybWGm7+eI968WmqHipHKC8aJTzGJD0ZylxTj68QWu0mCgxpj6URyUinuG5cl1KQMKWbFsDVT4WQucLJQ4WwhKGYmUKty88mVd6Kjo7GysiqUa+UFQ9cHisaCwND0NWvWzF9K6fvieb0ZfgAhxADgIyAGuAgkAP2eN/RCiAgpZbbz/L6+vtLPzy9PGvbv30/Tpk0zLZNSkpKcrH2NBpmifRZSo0GT+ly05zVIJEiQkmf/oNE8Oy+R8r/XmhRNalsJmtRraSQy9Y2UGqTUpGnw8zuNT61aaFJSnilDI581lGlaADTJmrQ6aT+75/uD5+5D8my8L5FIzX/X1OqRaf2k1UqWxIXFEBUSSvSjGGIjVMTH2ZBk5IJUqRGaFGyibqKOO80d+zM8LhtJGZt4POMFMs4Vf01l/DWVOK2pSJzKkpJ2ZpRztKJKcWsqpx4VnK0wVRvl4qeYM9n9nA0BQ9cHisaCwND0CSEyNfx6jdUjpVwKLE0V8A0QDDwUQpSQUt4XQpQAHulTQ3YIIVAbG/93wjjruvrEJigE13IVi+biOrB//37eaNCIe1fCCDx0naCrbjxJrISlfJvSFy5j+/gAh90uc9IzmvJmh+gfs4PFsfFEWlTknJkPOx97sfKmG7Ep2m9dRipBOUdLvErZUau0PTVL21HJxRqjQvp2oKDwuqNXwy+EcJZSPhJClEY7v18PKAv0Bb5N/X+TPjUoFAxqEyNKe7pQ2tOFJkB4SDRXD93m8jEId6iOU9wjPty6lzijk6ypZcaUaqY0l0Z0e7CR/8Wv5n9WNkS7NeGqQwsOU4tzjxLZe+URf/kHA2BpYoRXKTvqlXOgYQUHPN3sMFbWEBQU9IK+o3OuF0I4AEnAMCllpBDiW+DP1Gmg28DbetagoAccXK1o0Ks6dbtX5daZUAL+teCaeS/MktvR4+QWBhw5xyafBPrXcKSCbUl6SCs63j6B781/8DWxgsrtkW93406xNzgTHM2ZOxH43Y7g+93XmLMLrEzV1C1bjAYVHGlW2YlyToYzb6qg8LKj76meRpmcCwda6PO6CoWHkVpFxdouVPB15u7lx5zcfIur6t5Yp7Sjw4kVvO33gK1Nk5he4Ro/lSrBe8W70ysyEpsr2xDn/6SMjStlar5P56bvg60HETGJHLsVzpEbYRy9Gc6eK4/4aguUd7KkVbXitKrmQs1SdqiUaSEFhTzzUsTjVzB8hBCUruZAqarFCAwI4/Bf1znjPZoSiTfpsHkRb5VwYUtHJ35K2MKvxpa823I0/U3dsA5YDQdmwsH/QcU22DcYQXuPBrSvUQKA4IhY9lx+xM5LD1hy6BYLD9zEydqUNtVd6Oztik8Ze4RQPgQUFHKDYvgVChQhBOVqOlG6ejHO7LqD33ZBRPNvqXJ3E51+3kWnZvVZ3caCxRd/ZZ2pHUN8htCz/UyMA1aD/zJY1h5cfaHhKKjSATd7C/o2cKdvA3eexCax76r2Q+Av/2B+P34HN3tz3vIuSckkTY7aFBQUtCiGX0EvqE2MqN2hLOVqOrFn2WUCEjpTpnJz3HfMoPeJZHp91J85xS8y89RMVlm5ManOJJo0+hjO/gFHf4I/3weHitDsE6jWBVQqbC2M6VzTlc41XYlOSObfCw/YGBDCgv030Uj48/YRetcpTUevEliYKL/aCgpZobhNKOgVh5JWdJvoQ+2OZbnzxJaz7WeT7N0YMXsxU/8y4pea32JqZMrwvcMZfeRTHlTrCCNOQ49lYGQCf30AvzSGqztS909osTJV083HjZUD6nL80xa8U8WE2IRkJqw/R92v9zB10wWuPIgquhtXUDBgFMOvoHeMjFTU6ViWt0Z5k5AIh607Ez9kOrGnTuE4eDrLLD9iVK1RHAk5QqeNnfjj6lo01d6CDw9Dt6WQFAOre8KvbSDEP0P/ztZmtHE3ZueYxqz7sD4tqjqz5tRd2v5wiF6LjrHn8kM0Gv1tVFRQeNlQDL9CoeFa2Z6ek+vg5GbF0av2PB67BHXJktwfMYpOu56y4c311HKpxYyTMxiyawgP4h5Bje4w7CR0/AEeB8LiFrBpGERn3PcnhKC2ezF+6FWTE5+04NP2VbgTHsuA5X60+v4Aq0/eIT4pJaMwBYXXDMXwKxQqlnamvDW2JlUalODM0Sfc7PA5Nt3fJnzRIjRjPuenWt8wtf5Uzoaepeumrmy5tQWMjMG3P4zwhwbD4exa+MkHjv0MmswNub2lCYMbl+fAhGbM7eWNuYkRn/x9nobf7mXB/pvEJCQX8p0rKBgOiuFXKHSMjFQ0f78Kdd4sy7VToZxy6Izj518R6+fP7e496CS8Wf/mesrbleeTQ58w5cgU4pPjwcwGWk+Hj45BqTrw7yewpCU8vJjltYyNVLzl7co/w99g9aB6eLjaMnPHFd6YqXwAKLy+KIZfoUgQQlC7Q1la9KvK/euRHLjtTvFfV6JJSiTo3d4Uu3SPZW2XMcRzCBtvbOS9be9xJ+qOtrFjRej9l3b+P/IO/NIY98A/IDkh2+vVL+/A8g/qsOGjBniVskv3ARCXqEwBKbw+KIZfoUipUq8EbQZ7EHrnKTt3JlDi11WoXZy5M2gQ0Vu2MrzmcOa3mM/9mPv03NKTvXf2ahsK8d/8v0c33G+vhUVNsx39P6NmaXuW9U//AdB09j7+PHWXFGURWOE1QDH8CkVOOW8n2n1Yg8f3Yti65j4ui5djUasW9yZMJPy3ZTR2a8yfb/5JGZsyjNo3iqXnl/4XktrSAbou4lyNKRATBouawfEFoMl5Q9ezD4B1H9anpJ05E9afo/3cQ+y7+gh9hitXUChqFMOvYBC413CkwzBPIh/Fse23WxT/8Wes27Th0cyZhC1ciKuVK8vaLqOte1t+OP0D045OIyklKa39Ywdf7dx/+eawYxKs6g5PH+p07druxfh7aAN+7l2L+OQU+v92iveWnuDaw6f6ul0FhSJFMfwKBkOpqsVoO9iD8OBoti25gsuMmdh0epPQH+by6PsfMDUyZWbjmQzxHMKGGxv4cPeHPEl48l8Hlo7wzmro8B3cPgILG0LgIZ2uLYSgfY0S7BrThM/frMbFe1G0n3uI6Vsu8TQ+KecOFBReIhTDr2BQuNdwpGX/aty7Ecm/v13B5etvsOvRnfBffuHR7NkIBMNrDuebN77hzKMz9NvRj9DY0P86EAJqD4TB+8HMDla8BUd+TLfrNztM1Cr6NSzL3nFN6eHrxtIjgbT47gCbAkKU6R+FVwbF8CsYHBVru9DkncrcPh/OwTXXcfn8c+ze6cXjpb8StmABAG+Wf5MFLRcQEh1Cn+19CEsKS9+Jc1UYtBeqdIBdU+DPPpCg+9RNMUsTZnT1ZMNHDSlua8aoNQG8s/g4gWExBXmrCgpFgmL4FQwSj8au+LQrw+Uj9wnYHUzxKVOwfestwn78icfLlwNQt0RdlrZeytOkp3z/8HuuR1xP34mZDby9Quv7f2WrduE3/GaudHiXsmPDRw35uosHF+9F0faHg/xy4CbJKUo0UIWXF8XwKxgsdd8sRwVfZ45tuMmts2GU+Ho61q1b83DGt0SsWwdADacaLG+7HIGg345+XAx/wZ1TCGgwAvpsgrjHsKQFBB3OlQ4jlaB33TLsHtuExpWcmLH9Cl0XHOXyfSUInMLLiV4NvxBijBDiohDighBitRDCTAjRXAhxOvXcciGEEj9XIVOEStCiT1Vcytqw+9dLPAqOpeTsWVg2asSDaZ/zdO8+AMrblWe0y2isTawZvHMwl8MvZ+ysbCMYuBssnWBFZwj4I9d6XGzMWPS+D/PerUlIRBxv/nSYObuukZisjP4VXi70ZviFEK7ASMBXSukBGAHvAsuBXqnnbqNNuK6gkClqEyPaD/XE3MaEHb+cJz4e3Ob+gFm1aoSMG0fc+QsAOBo7srTNUiyNLRm0axBXH1/N2FmxcjBgF5RpABuHwp4vdfL3fx4hBB09S7J7bBPe9CrJj3uu023BUW48ii6I21VQKBT0PdWjBsxTR/UWQAyQKKW8llq+C+imZw0KLzkWNia0G1KDuOgkdi69AKZmlFq4AHWxYtwdOpTE4BAAXK1cWdpmKeZqcwbuHJi58Te3g/fWg08/OPQdbBgCKbl317S3NOH7nt4sfK8WdyNi6fjTIVYev614/ii8FAh9/qIKIUYBXwNxwE7gPSAI6Cal9BNCzAWaSylrZNJ2MDAYwMXFxWfNmjV50hAdHY2VlVXebqCQMHSNhqIvMlASckLiWBVcvFQY3b9PsVmz0NjYcvejoVg4OwMQmhTKjw9/JFkmM6b4GJyNnTN2JiWl7/xFucDfCS/mw8XqE9EYmeZJV0S8hqXnE7kQnoKnkxEDPEyxNU2fB9hQnmF2KBrzj6Hpa9asmb+U0jdDgZRSLwdgD+wFnABjYCNaw18fOAScBKYDATn15ePjI/PKvn378ty2sDB0jYakb9+qK3LekD3y5ulHUkopY06elJc8asgzXbpITXJyWr1bkbdko9WNZJu/2siHMQ+z7vDUr1J+biflklZSxj7Os66UFI387fAtWXHyNlnry51y35X01zSkZ5gVisb8Y2j6AD+ZiU3V51RPSyBQShkqpUwC/gYaSCmPSSkbSSnrAAeBa9n2oqDwHI16VMTZ3Ybdyy/xJDQOi9q1KT51CqaXLhP6/fdp9cralmVBywVExEfw4e4PiUrMwgPHt782zeO9M/Bbe4i6nyddKpWgX8OybBnxBk7WpvT77RSz/r2iuH0qGCT6NPx3gHpCCAshhABaAJeFEM4AQghTYCKwUI8aFF4xjIxVtBlUHSEEu369SEqKBvsePYht3JjwJUt5snVrWt3qjtX5odkPBD4JZMSeEdqY/plR7S3ovU4b4vm3dvAkOM/6KrlYs+GjhvT0LcX8fTfpveQED6OyuK6CQhGhN8MvpTwB/AWcBs6nXmsRMF4IcRk4B/wjpdyrLw0KryY2DuY07V2Zh4FRnNoSCMDTt3tg7uPD/cmfEX/5P3fO+iXrM6PRDM48OsOEgxNIySJjF+WawvsbITZcO/KPvJNnfeYmRszs7sl3Pbw4F/yEDj8e4lK4Eu9fwXDQq1ePlHKalLKKlNJDSvm+lDJBSjleSllVSllZSvmDPq+v8OpS0deFqg1K4L/jNiHXIkCtxm3uDxjZ2hI8bDgpkZFpddu6t2VSnUnsu7uPOf5zsu60VG3osxHiI2FZB4i4nS+N3Xzc2DS8IXYWJsw6Fc+8vdcVrx8Fg0DZuavw0vLG2xWxdTJn92+XSE6QqB0dcfvpR5JCQ7n36eR0Rvbdqu/ybpV3WXFpBeuurcu6U1cf7S7f+Cit8X8cmC+NlVys2TSsIXVLGDF75zWG/XFaSfeoUOQohl/hpcXETE3rAdWJfZLIg9NaI2/u6YnzuLFE791LxIoV6eqPrz2eN1zf4OvjX3Ps3rGsOy5ZE/puhsRoWNYxX9M+AJamaoZ4mvJp+yrsuPCAbguOcic8Nl99KijkB8XwK7zUOJexwae9O09uw60AbXjmYn37YtW8OQ9nf0fcuXNpddUqNbMaz6KsbVnG7R/HrchbWXdcwgv6bIbEp9rQzjomdckKIQSDG5fnt/51uBcZR6f5hzl8PSznhgoKekAx/AovPT7tymBmB/v/uEp8dBJCCEp+8zVqJ0dCxowlJeo/V04rEyvmt5iPsZExI/aOyNrNE6CEpzap+9OHsLIzxD7Ot9YmlZzYPPwNnK1N6fPrCZYeDlTm/RUKHcXwK7z0GBmpcK0rSIhJ4uBa7bYQIzs73ObMIenhQ+5PmZrOuJa0KskPzX7gXvQ9Pj30KRqZja99qTrwzh/acM6/d9PO/ecTd0dL/v6oIa2qufDVlkt8tvGC4u+vUKgohl/hlcDMXuDb3p3rpx5y64x2ysfc2xunkSN5+u+/RG3enK5+TeeaTKgzgQPBB/jl7C/Zd16uKby9HB6cg9W9IDH/8/NWpmoW9PZhaNPyrDpxhwHL/ZQUjwqFhmL4FV4ZarUtg1Npa/b/cYX4GK0RdRjwAeY+Pjz4ajpJISHp6veq3ItO5Tvx89mfOXD3QPadV24HXX6B20dh/QBIyb9njkolmNi2Ct92rcHhG2H0WHiMe5Fx+e5XQSEnFMOv8MpgZKSieZ8qxMckc2yDNtOWMDKi5MxvQaPh3qRPkM+FYRZCMKXeFKoWq8onhz7hdlQOfvs1ukP7WXB1G2z7WOc8vjnRq05plvWvTUhEHJ3nH+F88JOcGyko5APF8Cu8Uji6WePV3I1Lh+9x/0YkACZubrhMnkzsqVM8XrY8XX0ztRnfN/selUrF6H2jiUvOYcRdZxC8MQb8f4NDswtMd6OKTqz/qAHGRire/uUYey7nz4tIQSE7FMOv8MpRu2NZrIqZsv+Pq6SkLpradu2CVcsWhH7/PfFX08cFdLVy5X+N/sfNyJvMPDkz5wu0mAaePWHvdDizqsB0V3KxZsOwBlRwtmLwSn/W+d0tsL4VFJ5HMfwKrxwmZmoa96rM43sxnN2tNZ5CCEp8+SUqW1vufTIJmZR+IbWBawMG1BjA+uvr2XZrW/YXEAI6zdMu+m4eAdd3F5h2Z2szVg+uR/1yDoz/6xwLD9xU3D0VChzF8Cu8kpT1dKSctxOntgQSFaadvlEXK0bxqVNIuHSZ8F9/y9BmmPcwajrX5ItjX+Q83682gbdXgks1+LMPPLhQYNqtTNX82q82HT1L8O32K3y99TIajWL8FQoOxfArvLI06lkRoRJpvv0ANq1bY92mDWHz55NwK/3OXbVKzcxGM1Gr1Iw/MJ7ElMTsL2BmA++uAzNbrZtn9KMC026iVvFjr5r0a+DOksOBjFt3liTF11+hgFAMv8Iri5W9GbU7lOX2+XBuXwhPO1/8s8kIc3PufzYlnZcPQAmrEkxvOJ3Ljy9nH8nzGTYl4J3VEBMGa96FpIKLva9SCaa9WY2PW1diw5kQBi73IzZRCfCmkH8Uw6/wSuPZ3A07FwsOr7tOSrLWyKudnHD5ZBJxp08TseqPDG2alW7Ge1XfY9XlVey/uz/ni5T0hq6LIPgUbB5eYG6eoF2bGN68IjO61uDQ9VD6/npS2eilkG8Uw6/wSmOkVtGwewUiH8Zybt9/mbVs33oLy0aNePT99yQGh2RoN8ZnDJXtKzPt6DTC48IzlGegWidoPgXOrytQN89nvFOnNHN71eTMnUjeW3KCyNgcpqEUFLJBMfwKrzzuNRwp4+HAqa2BxDxJAFK9fL74HAE8+PKLDJ4zJkYmzGg0g+jEaD4/9rlunjWNxv3n5nlxY4Hfx5teJVn4ng+X7z+l16LjhEUnFPg1FF4P9Gr4hRBjhBAXhRAXhBCrhRBmQogWQojTQogAIcRhIUQFfWpQUAB4o0dFUpI0HN/034KuccmSOI0eRczBQzzduStDm4r2FRlVaxT77+5nw40NOV9ECHjzRyhVFzZ8WKCePs9oWc2Fpf18CQqPoecvx3jwRMnnq5B79Gb4hRCuwEjAV0rpARgBvYAFQG8ppTfwB/CZvjQoKDzDzsUCr+aluHL0Pg+D/ouwaf/uu5hWrcrDb74hJTomQ7v3qr1HneJ1+Pbkt9yN0mFDlbGZ1s3T3A7W9i6QUM4v0qiiEys+qMvDqATe/uUYdx8rSV0Ucke2hl8I4SaE+FgIsUkIcUoIcVAI8bMQooMQQpcPDTVgLoRQAxbAPUACNqnltqnnFBT0jm97d8xtTDiy7r/ct0KtpsS0qSQ/ekTYvHkZ2qiEiq/f+Bq1UPPp4U+zTtb+PNYu8PYKeBICfw8CXdrkkjpli/H7wLpExiby9i/HCAzL+KGloJAVIqu5SyHEb4ArsAXwAx4BZkAloBngA0ySUh7MsnMhRgFfA3HATillbyFEI2Bj6rkooJ6UMkOQcyHEYGAwgIuLi8+aNWvydIPR0dFYWVnlqW1hYegaDV0f6K7x8Q3JfT9JqTcENm4i7bz1qlWYHznK408/IdnNLUM7vxg/loctp6NdR9rYttFJU4l7O6h8bQG3S/fgvHNnvTzDO1EpzDoVj1olmFTHDBfLvH+Jf5V+zkWFoelr1qyZv5TSN0OBlDLTA/DIqiy13ASokE25PbAXcAKM0Rr794C/gbqpdcYDS7K7jpQSHx8fmVf27duX57aFhaFrNHR9UuquMSU5Ra6adkz+PvWYTE5OSTufHBEhr9arLwN79pKalJQM7TQajRy3f5z0XuEtrz6+qpsojUbKjcOknGYjz/85Q7c2eeDy/Sey5pc7Zd2vd8vA0Og89/Mq/ZyLCkPTB/jJTGxqlsMDKWW2K1NSykQp5Y1sqrQEAqWUoVLKpFSD3xDwklKeSK2zFmiQ3XUUFAoSlZGK+l3KE/kwlstH7qedN7Kzw3n8eOICAnjy998Z2gkhmFx3MjYmNkw9MpVkjQ4bqYSA9rOhZC2qXPkBQq/l2CQvVCluw6qBdUlITuGdxce5Ha5M+yhkT47fC4UQ54UQ5144DgkhvhdCOGTT9A5QTwhhIYQQQAvgEmArhKiUWqcVcDnfd6GgkAvcPR0pUcGWk//cIjH+PwNu26Uz5r4+PJr9HSlPMsbEtzez59O6n3Ix/CIrLq3Q7WLGZtBzJRqViXZnb8LTgrqNdFQtYcMfg+oRn5TCO4uOcydcWfBVyBpdJgS3A1uB3qnHP2jn/B8Ay7JqlDqq/ws4DZxPvdYiYBCwXghxFngf7XSPgkKhIYSgQbcKxD1NImDXnXTni0+eTEpUFKHz52fatnWZ1rQs3ZL5Z+Zz68mtTOtkwNaNi9UnwOOb8M+oAt3Z+zxVS9iwamA94pJS6LXomGL8FbJEF8PfUkr5iZTyfOoxGWgipZwJuGfXUEo5TUpZRUrpIaV8X0qZIKXcIKWsIaX0klI2lVLq+NejoFBwFC9rS/lazpzZfTdtUxeAWdWq2PXoQcSqP0i4kXEmUwjB5HqTMTc2Z+qRqbp5+QBP7Dyg2WS4sB78fi2w+3iRaiW1xj82STvto7h6KmSGLobfSAhR59kbIURttD75AErEKIWXlnqdy6FJ0nByS2C6806jRqKysODhjG8z3bHraO7IxNoTORt6lj+uZIz1kyVvjIUKLWHHJ3D/bH7lZ4nW+NclJjGZXouOExyhGH+F9Ohi+AcCS4UQgUKIQGApMEgIYQnM0Ks6BQU9YudsQfXGrlw+cp/IR/8ZR3WxYjgNH0bMkSNE79ufaduO5TrS2K0xP57+UbeNXQAqFXRZBJaO8GdfiNdfbt3qJW35fUBdnsYn8d6SEzyKUnb4KvxHjoZfSnlKSlkD8Aa8pZSeUsqTUsoYKeWfeleooKBHfNqVwchIcGpr+lG//bvvYlKuHA9nfosmMWNAtGeJ2tUqNdOOTdM9S5alA3T/FSLvaLN36TG7loerLcs+qEPo0wR6LznB4xglsJuCFl28elyEEEuBNVLKJ0KIakKIAYWgTUFB71jamlKjmRvXTj4k/F502nlhbIzLJ5+QdPsOEStXZtq2uGVxxvqO5dSDU2y+uVn3i5auBy2nwaVNcHJRfm8hW2qVtmdJ39rceRzL+0tP8CROCemsoNtUzzLgX6Bk6vtrwGg96VFQKHRqtS6DsakRp/5JP+q3avQGVk2bEvbzApJDQzNt261iN7ydvJntN5uI+AjdL1p/BFRqC/9OhhD//MjP+VLlHfjlfR+uPXxK/99OEpOgLM297uhi+B1Tp3Q0AFLKZKDgg48oKBQRZlbGeLUoxc0zoYTeSe9n7zxxAprEREJ//CnTtiqhYmr9qUQnRvOd33e6X1Slgs4LwLo4/PUBxGeIWlKgNK3szE/v1OJs8BMGLvcjPkn5E36d0cXwx6Ru1JIAQoh6gP5WpRQUigDvlqUxtVBz4p/03sWmZcti36sXkevXZ+reCdrwzf08+rHp5iZOPTil+0UtikG3Jdr5/m36387S1qM4s3t4cjwwnKG/+5OYrOTwfV3RxfCPBTYD5YUQR4AVwAi9qlJQKGRMzdXUbF2a2+fDeXAr/bjG8aOhqCwseDQ76xH9YM/BuFm58eWxL3NO0v48petBk4lwbg2c07+vRJeabnzduQb7roYyas0ZkpUE7q8lunj1nAaaoI2pMwSoLqU8p29hCgqFjWezUphbG3Nic/pRv9reHofBg4nev5+YEyczbWuuNuezep8RFBXE0vNLc3fhRh9DqXqwZSw8Dsy5fj55t25ppnSsxvYLD5iw/hwajf48ixQMkywNvxCi67MD6ARURhuS+c3UcwoKrxTGpkb4tHUn+EoEwVfTL9QW6/M+6hIleDRrFlKT+Si5oWtD2pVtx+Lziwl8kgsDbqSGbotBqGD9QEjRv+fNgDfKMqZlJf4+HcL0rZd1d0dVeCXIbsT/ZuoxAO2mrWexepYAH+hfmoJC4VO9cUksbU049cJuXpWZGU6jRhJ/4QJR27Zn2X5C7QmYqc346vhXuTOmdqWh01wI8YP9hbMvcmSLCvRr4M6vRwKZvy+7QLsKrxrZhWXuL6XsjzaWfjUpZTcpZTegeuo5BYVXDrWxETXblOHe9UjuXU8/6rd9801Mq1Qh9PvvM93UBdpwDqNrjebUg1NsD8z6AyJTqneBmu/DoTkQmGV+owJDCMHUjtXoUtOV2TuvsfeO4uP/uqDL4m4pKeX9594/BErrSY+CQpFT/Y2SmNuYcGprULrzwsgI5/EfkxQSQsSqrGP0dKvYjWoO1fjO7ztiknIZG7/dTHAoD38P0Uu+3hdRqQT/6+5JiyrOrLyUyD9nlUyorwO6GP49Qoh/hRD9hBD90IZo3q1fWQoKRYfaxIiarUoTfCWC+zfTe/hYNWyI5RtvELZwISmRkZm2N1IZMbnuZB7FPWLh2YW5u7iJJXRbCjGheg/p8AxjIxXze9eior2KsX8GcOBa5pvVFF4ddPHqGQ4sBLxSj0VSSsWdU+GVxqOxK2ZWxvhty7hI6zz+YzRRUYQvzdp7x9PJk64Vu/L7pd+5GXkzdxcv6Q0tpsKVLXB2dS6V5w0zYyNG1TKjgrM1H670x/92LnYhK7x0ZOfVk5aJOjWG/pjUY0NmdRQUXiWMTbWj/jsXH/MwKP2uWrPKlbHp2JHHK38n6dGjLPsYVWsU5sbmzDgxI/deM/WHQZk3YNsEiLidl1vINZbGghUf1MHFxpQPlp3i6gP9ZAtTKHqyG/HvE0KMEEKkm88XQpgIIZoLIZYDfbPrXAgxRghxUQhxQQixWghhlpq2MSD1uCeE2FgA96GgUOB4NHHF1FKN37agDGVOI4Yjk5MJX/hLlu2LmRVjZM2RnHhwgjOxZ3J3cZURdFmgfb3hQ9Ax4Ut+cbI2ZeWAupgZq3h/6QklkcsrSnaGvy3amDyrUw30pdR4/NeBd4AfpJTLsmoshHAFRgK+UkoPtMlbekkpG0kpvaWU3sAxtEnYFRQMDhMzNd4tShF0LixDDB+T0qWx696NiHXrSAwOzrKPHpV6ULVYVTZEbCA2KZdG1K40tP8f3DkKx+bl5RbyRKliFqz4oC4JyRreW3qC0KcJOTdSeKnIzp0zXkr5s5SyIVAGbbL0mlLKMlLKQVJKXYYwasBcCKEGLIA0lwEhhA3QHNiYnxtQUNAnNZqVwsRcjd/2oAxljkOHIlQqwn7K2igbqYz4tO6nRKZE8su5rL8dZInXO1D1TdjzFTw4n/v2eaRycWt+7VebR1EJ9Pn1pBLO+RVD6HPHnhBiFPA1EAfslFL2fq6sD9BJStk9i7aDgcEALi4uPmvWrMmThujoaKysrPLUtrAwdI2Grg/0q/HReQ2hF6F8W4GZXfplLav167HYvYfwKZ+RUrJkFj3AsgfLCEgI4JOSn+Bi7JKr6xsnRlH71AgSTWw5XWs2GiOTPN1HTmT2DC+EJfO9fwLl7VR87GuGiVHRLusZ+u+ioelr1qyZv5TSN0OBlFIvB2AP7AWc0G742gi891z5dqCbLn35+PjIvLJv3748ty0sDF2joeuTUr8a46IT5S8j98udSy9kKEt6/FheqeUj7w4fnm0fm3dvlvVX1ZeDdw6WGo0m9yKu/ivlNBsp/52c+7Y6ktUz3BwQIt0nbZEDlp2USckperu+Lhj676Kh6QP8ZCY2VRc//rzSEgiUUoZKKZPQzuU3ABBCOAJ10O4JUFAwaMwsjaneqCTX/R4RFRaXrkxtb0+xD/rzdNdu4s5nPRVjbWTNUO+hHL13lIPBediVW6k1+H4AR+dB0OHct88Hb3qV5Mu3PNh9+RET159Xgrq9Auhk+IUQZYQQLVNfmwshrHVodgeoJ4SwSHX7bAFcTi3rDmyRUioZoBVeCrxalEYIOLPrToayYn37YWRvT+j332fbR68qvShrW5ZZfrNIyksgttbToVhZrZePHhO1Z8b79cowpmUl1p8O5pttSlC3lx1dcu4OAv4Cnq1MuaHDgqyU8kRqu9PA+dRrPUsw2gsonJ0pCgoFgJW9KVXqFefy0fvERqWP02NkZYnDkMHEHD1GzPHjWfZhrDJmvO94bkfd5o8rWYd8yBITS+iyCKJCYPvE3LfPJyNbVKBv/TIsORzIggO53JSmYFDoMuIfBjQEogCklNcBZ106l1JOk1JWkVJ6SCnfl1ImpJ5vKqXckVfRCgpFQc3WZUhJ1nBu790MZfbvvIO6eHFCv/8h29FwI7dGvOH6BgvPLiQ8Ljz3IkrV1sbvP7sarhTuTKkQgmlvVqeTV0n+t+Mqa05m/Paj8HKgi+FPkFKmDXFSXTOV73kKrx12LhaUr+nE+QMhJMalT1iuMjXFcehQ4s6eJeZw9nPw42uPJz45nnkBefTNbzweiteAf0ZBTB4+PPKBSiWY3cOLJpWc+HTDeXZcuJ9zIwWDQxfDf0AI8Slaf/xWwDrgH/3KUlAwTGq1KUNiXDIXDoVkKLPr0hnjkiUJ/fGnbEf95WzL0atKL9ZfW8+Vx1dyL0JtAl1+gbhI2DYu9+3ziYlaxYL3auFdyo6RqwM4eiOs0DUo5A9dDP8kIBTtPP0QYBvwmT5FKSgYKs5lbHCrYs/Z3XdJTkofRkGYmOD40VDiz58n+sCBbPv50OtDbE1tmXlyZt4WSl2qQ9NJcHEDXCj8ze8WJmp+7Vcbd0cLBq3w43xw4S42K+QPXaJzaqSUi6WUPaSU3VNfK1M9Cq8ttdqWITYqkavHH2Qos33rLYxLlSLsp3nZGnRbU1tG1ByB30M/dt/JY5TzhqOhZC3YOg6isw4Wpy/sLExY8UFd7CxM6PvbSW6GRhe6BoW8kV10zvNCiHNZHYUpUkHBkHCrbI9zGWtO77yTwaddGBvjOHQo8RcvEr1vX7b9dK3YlYr2FfnO7zsSUvIQD8dIDV0WQmIM/DO6UGL3v0hxWzN+H1gXAfRZepL7T+JybKNQ9GQ34u/If3l3MzsUFF5LhBDUalOGqNA4bp7OONK27fQmxmVKE5rDqF+tUjOx9kRCokNYcXFF3sQ4VYbmn8HVrXBubd76yCdlHS1Z/kEdnsQl0WfpSSJiMk9LqWA4ZBek7XZ2R2GKVFAwNMp5O2HnYsHpf29nMO5CrcZx6FASLl/m6e7sp3HqlqhLi9ItWHx+MY9i8zhdU38YlKqnjd0fVTSpEz1cbVncx5fbj2Ppv+wUMQnJOTdSKDJ02cD1VAgR9cJxVwixQQhRrjBEKigYGkIlqNm6NGF3owm+nDFblW3Hjpi4uxM2bz5So8m2r3G+40jWJDP39Ny8iVEZQeefISWx0NI1Zkb98g789E5NzgVH8uHv/iQmZ3/fCkWHLl49PwDjAVe0u3Y/Bv4A1gC/6k2ZgoKBU7lOcSxsTAjYnXEjk1CrcRz2EQlXr/J0565s+yllXYr3q73P5pubuRh2MW9iHMpDqy/gxm44ncdpowKgTfXizOhag0PXwxi37qwS18dA0cXwd5JS/iKlfCqljJJSLgLaSCnXoo3AqaDwWmJkrMKzuRt3Lj0mLDijR4tN+/aYlCtH2Px5kMOof1CNQRQzK8b/Tv0v73Fwag8C90bw72SILLpdtT1rl2ZSuyr8c/Yen/9zUYnrY4DoYvhjhRBvCyFUqcfbwLPgaspPVOG1pnojV9SmRpmP+o2MtKP+6zcwPX06236sTKwYWXMkpx+dZuftnXkTo1LBW/MBCZuG5fhho08+bFKewY3LseLYbebuuV5kOhQyRxfD3xt4H3gEPEx9/Z4QwhwYrkdtCgoGj5mlMdUalOD6yYdER2QMNmvTti2mFStgtWUrMiX7vLmdK3Smsn1l5vjNyZt7J4B9GW0Uz8CD4Lc0b30UEJ+0q0J3Hzd+2H2d5UeDilSLQnp02cB1S0r5ppTSUUrplPr6hpQyTkpZuIHBFRQMEK8WpZBScm5fxty72lH/MNQPHhC1bXu2/RipjJhQewL3Yu6x8tLKvAvy6QflW8CuqfD4Vt77ySdCCL7tWoOWVV34/J+LbArIGOZCoWjQxavHSQjxqRBikRDi12dHYYhTUHgZsHE0p3wtZy4ezBi8DcC6dWuSXF0J+/nnHEf9dUrUoXmp5iw+t5iwuDzGwBECOv0EKmPYWLRTPmojFfPerUlt92KM+/Ms+68W/g5jhYzoMtWzCbAFdqPNmPXsUFBQSMW7VWkS41O4dCSjH71QqYjp0J7EwMAcR/2gde9M1CTy05mf8i7I1hXafQt3jsKJBXnvpwAwMzZiSV9fKrlYM/T30/jfzuj+qlC46GL4LaSUE6WUf0op1z879K5MQeElwsXdhpIV7Ti79y4pKRlH2Ane3phWqqTTqL+0TWl6V+nNhusbuBx+Odu62eL1DlRqB3u+hNBree+nALAxM2b5B3VwtjHlg2WnuPbwaZHqed3RxfBvEUK017sSBYWXHO9WpYl+nJBpGAdUKhyHDdN51D/YazB2pnb5c+8UAt6cC8bmsPFDSCna3bRO1qb8PqAupmoVfZaeJDgitkj1vM7oYvhHoTX+cam7dp8KIaJ06VwIMUYIcVEIcUEIsVoIYSa0fC2EuCaEuCyEGJm/W1BQMAzcPRywL25BwK67mRpr61YtdR7125jYMLzmcPwe+rH3zt68i7J2gQ5zIMQfjvyQ934KiFLFLFgxoA6xicn0WXqSsOg8ei8p5AtdvHqspZQqKaW5lNIm9b1NTu2EEK7ASMBXSukBGKHNtdsPKAVUkVJWRbsDWEHhpUeoBN4tSxN65ykh1yIzKc/dqL9rxa5UsKvAbL/ZJKbkI/CZR1eo3hX2fwsPzue9nwKiSnEbfu1Xm3tP4nhvyQklqFsRoMuIPw0hRHkhxGdCCF33lavRZu5SAxbAPWAo8KWUUgMgpVSW+RVeGSrVdcHc2piAXZnvnM3NqF+tUjO+9niCo4NZdXlV/oR1+A7M7WHDh5Bc9KNsX/diLOlTm1thMbz/6wmexCUVtaTXCpHT/KEQoiTakfo7QA1gBvC3lDLHoYMQYhTwNRAH7JRS9hZChANzgC5oM3uNTE3g/mLbwcBgABcXF581a/L2xSA6OhorK6s8tS0sDF2joesDw9IYelHy6LykfDuBma0A0uszPX0au0WLefJBf+Lr1Mmxv18e/cKN+BtMdZ2KtZF1nnU5hJ2ixoXp3C7dncBy72coL4pneDY0mR9PJ1DGRsX42maYq0W29Q3p55wZhqavWbNm/lJK3wwFUspMD7RGdx9wDZgOeAKBWdXPpL09sBdwAoyBjcB7QDQwLrVOV+BQTn35+PjIvLJv3748ty0sDF2joeuT0rA0xj1NlAuH75N7ll9KO/e8Pk1Kirz5Zid5o207qUlOzrG/W5G3pPdyb/nF0S/yL27jR1J+bifl3VMZiorqGf574b4s/8lW2X3BERmTkJRtXUP6OWeGoekD/GQmNjW7qZ55aKeC3pVSfialPEfuYvO0TP2gCJVSJgF/Aw2A4NTXABtSP1AUFF4ZzKyMqdqgBFdPPiDmScZplfRz/dty7K+sbVltcvbr67n6+Gr+xLWZATausGEIJBqGV03r6sWZ26sm/rcjGLjcj/ik7KfAFPJPdoa/BLAa+E4IcVUI8RXakbuu3AHqCSEshBACaAFcRjvyb5ZapwnabxQKCq8UXi1LoUnJPIwDpM71V65M2Pyc5/pBm5zd2sSaWX6z8hft0swG3poH4Tdg71d576eA6eBZgu/e9uLYrXAGr/QnIVkx/vokuwxc4VLKhVLKJmiNdiTwMNUF85ucOpZSngD+Ak4D51OvtQj4FugmhDiPdr1gYL7vQkHBwLB1sqC8t5M2jEN8Rv957aj/IxKDgnQa9dua2vKR10ecuH+CA8EH8ieuXFOoMxiO/wyBh/LXVwHSpaYbM7t6cvBaKMNWnVYSuegRnbx6pJTBUsrvpHaR4C3+C8ucU7tpUsoqUkoPKeX7UsoEKWWklLKDlLKGlLK+lPJsfm5AQcFQ8W5VmoTYZK4cu59puXXL3I36e1TuQVnbssz2m01SSj69YFp+DsXKwaaPIMFwdtG+XbsUX3X2YPflR3y06rQy8tcTuXLnBJBSXpNSfqkPMQoKrxLFy9lSorwtZ/fcRWaSiSq3o35jlTHjfcdzO+o2q6+szp84E0vovBCeBGsTtxgQ79crw1dvVWf35YcMWemvzPnrgVwbfgUFBd3xblmaqLB4orKISJzbUX8jt0Y0dG3IwnMLiYjPZ7Cz0nWhwUg4vRyuZ58esrB5v74733atwYFroQxa4UdcomL8CxLF8Cso6BF3L0dsncwJvywzXZTN7agfYLzveGKTYvk54Of8C2z2KThVhU3DUScZzpQPQK86pZnV3YvDN8Lov+wkMQlFG2voVUKXePxCCPGeEGJq6vvSQoicd50oKCigUgm8W5Yi7jHcv/kk0zq5HfWXtytPj0o9WHdtHTcibuRPoNoUuiyE2DAqXl+cv770QHcfN37o6c3JwMf0++0kcclKtteCQJcR/89AfbQ7dwGeAvP1pkhB4RWjcv0SGJmQZRiHvIz6P/L+CAtjC2b7zc6/wJLe0HgCLo8OwKVN+e+vgHnL25Wf3qnF6TuRzD4Vz5NYJbxDftHF8NeVUg4j1ZNHShkBmOhVlYLCK4SxiRHFKkLguTAiH2a+aSq3o357M3uGeg3lyL0jHAouAJfMRmN5alUetoyBaMMLn9XBswTz363F7SgNPRcd42GUTo6FClmgi+FPEkIYkbprVwjhBCgOtgoKuaBYRYGRkYqAPXczLRcqFY7Dh2lH/Vt1S3DXq3IvytiUYZbfLJI0+RwFGxlzuepoSIiGzSMgP5vE9ERbj+KM8THjzuNYui04SlBYTFFLemnRxfD/iDa0grMQ4mvgMJDjBi4FBYX/UJsJKtcrzpVj94l7mnkYYusWLTCtUoWwnxcgk3NeyDQ2MuZj348JfBLIn1f/zLfGWMvS0OoLuLYD/AwzrXZ1RyNWD6pHbGIK3Rce5UJI5usmCtmjSzz+VcAEtLts7wOdpZTr9C1MQeFVw7tlKVKSNFw4mLlvZ17m+pu4NaFeiXosOLuAJwkFYATrDIHyzbW+/UWcrjErvErZ8eeQ+pgYqXhn0XGO3wovakkvHVkafiFEsWcH8Aht3J4/0IZtKFZYAhUUXhXsi1viXsOB8/uDSc7CLz23o34hBONrj+dp4lMWnl2Yf5EqFXReoE3XuH4AJBtmkpQKzlas/6gBLrZm9Pn1JNvOZ747WiFzshvx+wN+qf+Hog2mdj31tb/+pSkovHp4typN3NMkrp54kGl5Xkb9lewr0a1iN9ZcWcOtJ7fyL9K6uDaQ24NzsG96/vvTEyVszVk3pD41XG35aNVpFuy/mb8Adq8R2QVpKyulLAfsBt6UUjpKKR2AjsDOwhKooPAqUbKiHU6lrQnYnXkYB8j9qB9gmPcwzNRmfOf3XcEIrdIBfPrBkR8h8GDB9KkH7C1NWDWwLm96lWTmjitMWn+epBTF9yQndFncrSelTBt6SCm3o42rr6CgkEuEENRsVZrIh7EEXch8bjovo34HcweGeA7hYPBBjoYcLRixbb4Bh/LadI1x+QwPoUfMjI2Y29ObEc0rsNbvLv1+O6mkcswBtQ517gkhPgN+T33fG23u3CIlMTGRmzdvEhubfTIJa2tr/P0Ne2bK0DUauj4oHI0WFhaUL18eE5P8bWMpX8sJqw2mBOy6Q1lPx0zrPD/qt2nfHqHO+U/13arv8ue1P5nlN4t1JdahVuny550NJpbQdTEsbQX/jIYey0BknxqxqFCpBONaV6aMgyWf/H2Orj8fYVEfX8o7GU4aRENCl9+Md4BpaF06AQ7y3y7eIuPmzZvY2dlRuXJlVCol5JCCftFoNDx8+JDr169TpUoVjIyM8tyXykiFd4vSHF53nYdBUbi422SoI1QqnIYPI3j4CKK2bcO2U6cc+zUxMmGczzhG7x/N+mvr6VmlZ541puFaSxvPZ8+XcHY1eL+b/z71SHcfN9zszRm26jRvzTvCnLe9aF29eFHLMjh0ced8LKUcJaWsmXqMklI+Lgxx2REbG4uLi4ti9BUKBZVKhYuLC3FxcWzcuJGEhIwpFXND1YYlMDFXE7A78zAOAFYtWmBatWqu5vqbl25O7eK1mR8wn6jEqHxpTKPhaCjTELZ+DGH5jA1UCNQr58A/I96gnJMlg1f6893Oq6RksZ7yuqJLkLZ9Qoi9Lx6FIS4nFKOvUJioVCqEENy5c4czZ87kqy8TMzXVG5Xkpv8josLiMq0jhMDp2Vy/jrt5hRBMqD2ByIRIFp1dlC+NaaiMoOsiUJvAun6QZPjhEkramfPnkPq87evGT3tvMGD5KSJiDNM1tSjQxXJ+DIxPPaYAAWjdPHNECDFGCHFRCHFBCLFaCGEmhFgmhAgUQgSkHt55Fa+gUBSYm5vz+HH+v/R6NiuFEIKzezMP4wB5G/VXKVaFLhW7sOrKKm5H3c63TgBs3aDLL/DwPPz7acH0qWfMjI2Y2c2T6Z09OHojnHZzD3HsprLZC3Sb6vF/7jgipRwLNM2pnRDCFRgJ+EopPQAjoFdq8XgppXfqEZB3+QoKRYNGk3+XQSt7UyrWduHSkfvEx2TuhZI26r99W+dRP8CImiMwUZkUnHsnQKU20GAE+C2FC38XXL96RAjBe/XK8PdHDbAwMeLdJcf5budVkl9zl09dpnqKPXc4CiHaALY69q8GzIUQasACA/AG0hdXrlyhfv36mJqaMnt2zqFyR44ciZVVRo+D9evXI4TAz0+nL1UZ2L9/P/369cuxnq56BwwYgJeXF56ennTv3p3o6Oi0sj///JNq1apRvXp13n03b4t+QUFBNG3aVKe6M2bMoEKFClSuXJl///0327ovPt+EhAR69uxJhQoVqFu3LkFBQXnSW9B4typFckIKlw5n/aeRl1G/o7kjgzwHse/uPk7cP1FQcqHFNHCrDZtHwuMC2CxWSHi42vLPiDfoXks79fP2L8cINMAgb5qYGKIPHCB0/nyCR4zgVpeuJD0s+Gipunj1+KONzCmAZCAQGJBTIylliBBiNnAHiAN2Sil3CiHeBb5OTeyyB5gkpcywUiaEGAwMBnBxcWH//v3pyq2trXWQXngUK1aMH3/8kY0bN+ZY18/Pj4iIjH7RT58+Ze7cudStW1cPCtOjq97vv/8eGxut18nYsWOZN28ekyZN4vr168yYMYMjR45gb2/Po0f6DeV76dIl1qxZw8WLF7l37x4tW7bk2rVrmXrXZPZ8ly5dir29PTdu3GDNmjVMnDiRtWvX5klLSEgI8fHxGX4nsyM6OjrL+pYucGr7TSLVt1AZZe4uadqkMXYLf+HE7O+Ir6fb70cZWYZiRsWYum8qE0tMRCWyH+dlp/F5zFwH4fNgDPG/dud0rZlIlbFOegoCXTVmRQcncPA0ZcWlSFrP2U/Xiia0cVejKiA31TzpS0nB9OxZzI6fwPTSJURyMlIIEpwduGubyK0Du1A7uxaIvmfoYvirSinTreYIIUxzaiSEsAfeAsoCkcA6IcR7wCfAA7Qx/RcBE4EMydullItSy/H19ZUvjgqf99n+4p+LXLpXQB4MqVQracO0N6vrXN/Z2RlnZ2e25vB1PCUlhfHjx/PHH3+wYcOGdGVTpkxh4sSJzJo1K8v2M2fO5Pfff0elUtGuXTu+/fZbnTXmRe8zoy+lJC4uDpH6B7J48WKGDRuGvb19Wn+ZsWLFCmbPno0QAk9PT1auXJknvZs2baJXr16YmppStmxZKlSowMmTJ6lfv366elk9302bNvH5558D0L17d4YPH46UMu1+nqHL83V1dcXNzU3nbyqg/SaWVf07zuH88+NZSlpUoUr9EpnWkU2aEHjgIE779lHu43E6+fUDaII0fHzgYx67PqZ7pe551pgBd0uM1/amSfwuaP8/3doUALnSmAVNgf5R8UzecJ61lx9xLc6CWd09qeCc/8FkbvRpEhOJXLOG8N+WkXz/PurixbF+9x2smzfnvFMcY058iqmROYtb1aGifcV8a3seXRZ3M9sGeEyHdi2BQCllqJQyCfgbaCClvC+1JAC/Aa9VGsd58+bRqVMnSpRI/wd++vRp7t69S4cOHbJsu337djZt2sSJEyc4e/YsEyZM0LdcAPr370/x4sW5cuUKI0aMAODatWtcu3aNhg0bUq9ePXbs2JGh3cWLF5k+fTp79+7l7NmzzJ07N88aQkJCKFWqVNp7Nzc3QkIyRrnM6vk+316tVmNra0t4ePqFvqJ6vqWqFsPB1ZKA3XeyjDWT17n+1mVaU8u5Fj+d+YnoxOicG+hK1Y5Qdyic/AUurC+4fgsJFxszFvfxZW4vbwLDYmg/9zAzd1wplLy+UkqebN3KrbbtePjNDEzc3HCbP48Ke3ZT/NNP2eP0iKFHxlLcsjirO6wucKMP2Yz4hRDFAVe0c/Q10U71ANigna/PiTtAPSGEBdqpnhaAnxCihJTyvtAOtToDF/KhHyBXI/Oi5N69e6xbty7DV0GNRsPYsWNZtmxZtu13795N//79sbDQPv5ixQonSOpvv/1GSkoKI0aMYO3atfTv35/k5GSuX7/O/v37CQ4OpnHjxpw/fx47O7u0dnv37qVHjx44OjoWit6snq+uFNXzFULg3bI0e5Zf5u7lx5Su5pBpvefn+m06dNBp1P/MvbPX1l4sPr+YMT5jCk54qy/h3mnYNEKbsN2lWsH1XQgIIXjL25UG5R35dvsVFuy/yd+ng/m0fVU6eZXM8G2wIEi6f58Hn39B9IEDmFarSqmvvsSqYUNA+4Gw6NwifjrzE3WL12VOsznYmGTc3FcQZDfibwPMBtyAOcB3qcdYIEd/LinlCeAv4DRwPvVai4BVQojzqeccAcMN/5cN8+fPx9vbG29vb+7d023N+syZM9y4cYMKFSrg7u5ObGwsFSpU4OnTp1y4cIGmTZvi7u7O8ePH6dSpU54XeAtK7/MYGRnRq1cv1q/Xju7c3Nzo1KkTxsbGlC1blkqVKnH9+vUC07thw4Y0vX5+fri6unL37n9uj8HBwbi6pp/3zOr5AunaJycn8+TJExwcMjewRUHF2i5Y2ppkmZcXUkf9w4fletRf3bE6ncp3YuWlldx9mrXraK5Rm0CP5WBqBWt7Q1xkwfVdiDhZm/Ld216sH9oAZ2szRq0JoOuCoxy9EVag14nato0bHd8i+uQpXD79hLLr1qUz+t+f/p6fzvxEx3IdWdBygd6MftoFszuAbjnV0ffh4+MjX8TPzy/DOUNg2rRpctasWTrVtbS0zPR8kyZN5KlTpzKc3759u6xfv76MiYmRUkoZHh6eoc6+fftk3759C0SvRqOR169fT3s9btw4OW7cuDQtffr0kVJKGRoaKt3c3GRYWFi69hcuXJAVK1ZMO5+Z3sDAQNmkSZMcdV64cEF6enrK+Ph4eevWLVm2bFmZnJycbZvnn++8efPkkCFDpJRSrl69Wvbo0SNDfV2er5+fn1ywYIH8559/ctT8PPv27cuxjt/2QDlvyB4ZejcqyzoajUbe7NxF3mjdRmqSknS+/sOYh7LO73Xk0F1DpUajybPGTAk6KuUXxaRc9baUKSl560NH8qxRR5JTNHLNyduy3je7ZZmJW+Q7i45Jv6CMvwdZ8by+iAcx8vTO23LbggC57KMtcsGArXLekD1y3pA9cuGIffKPL47L7b+cl2f33pEz//1eeizzkF8d+0qmaAruGQJ+MhObmt1Uz3tSyt8BdyHE2Ew+MObo7+Po5ePBgwf4+voSFRWFSqXihx9+4NKlS9jY2NC+fXuWLFlCyZIl83WNtm3bEhAQgK+vLyYmJrRv355vvslbFkxd9BYvXpy+ffsSFRWFlBIvLy8WLFgAQJs2bdi5cyfVqlXDyMiIWbNmZRhBV69encmTJ9OkSROMjIyoWbNmjtNZWVG9enXefvttqlWrhlqtZv78+WkePbo83wEDBvD+++9ToUIFihUrxpo1azLUKcjnmxeqN3LFb/ttAnbdpWX/zKdNno36g4cN58mWLdh17qxT384WzgzzHsYsv1nsubOHlmVaFpzwMvWhzQzYPh4OzoKmEwuu70LGSCXoWbs0b3m78seJO/y8/wbdFhyjXrliDHyjHM2rOKNSZT0FlJIkuXAgmPMHQnh8T+suapHyBMvHtyhRoST2b1RGIkiMSyEqPI6HQU+4efoRlngyyOEbGrt5kZygwcRMv1EJhMx6MWmIlPIXIcS0TIqllDKDJ46+8PX1lS9Oe/j7++Pj41NYEl4a9u/fz7Jly/JsYAuboKAg+vXrly8XvcLE39+fU6dO4ebmRseOHXVup6u3x6E/r3Fhfwjvf10fK3uzTOtIKQns2g1NbAzlt27V2cMnWZNMry29iEiIYHPnzVgaW+ZJYxaiYONQOLsG3l2r3eylBwrCqyc3xCYms+r4HX47Esi9J/GUdbSkT/0yvOXtSjHL/6K0JielcH5fCCe23CAlEZzLWFOhkgnqJV9hfO8GJWfOxKZt+meikRq+PPYlO8/vo5f5IIqHVCb09lNMLdR4NnPDu2VpTMzzF2FVCOEvpfR98XyWvUopf0l9uVtKeeSFzhrmS42CgkKmeDUvxfl9wZzdc5eG3TP35sjrqF+tUjO1/lTe2/Ye8wPmM6F2AXotCQEdv4eHF+GvATBg50u32JsZFiZqBjUuR7+G7uy48IAlhwP54p9LfLPtMs0qO9O1lhsVUow4+ud1nobHY1UCWr/ng+3TQII//BCEwG3Zb1jUrJmuXykls07NYv319QyuM5jh3r0RQvAwKAr/7UGc2hrEhUP3qN+5HFXqlUBk8y0jL+jyfeInHc8pGADu7u501tEQGAJ2dnY67TR+XbBxNKdibRcuHLqXZRgHAKvmzbUePgt0380L4OnkSY9KPVh1eRWXwy8XhOT/MDaHd9Zo4/iv7gnRoQXbfxFibKTiTa+SbBrWkB2jG9GvgTvngiJZv+gc/y44z6OYRCxbl8DUF2ye3OTugIGorK1xX7M6g9EHmBcwj98v/857Vd9juPfwNA8iF3cb2g/1pMcnvtg6mrF3xRUe3X5a4PeTXbL1+kKIcYCTEGLsc8fnaOPuKBggiuF/+anVpgzJCSmc2xecZZ1no/6k23d4smVLrvofWWskdqZ2fHnsS1I0mSd9zzO2rvDOaq3RX9v7pYjkmVuqFLfhI58yjEixxDtRTWxZC7YU1/D5yVus3HCRq30+IMzUmt1DvuTfSGMu3YviaXxS2h6NXy/8yqJzi+hWsRsTak9IM/oajeRhVDz+tyM4HB7FteoWXK5igqlL5lN++SG7CSQTwCq1zvNb2qKA7LcAKigo5BkHVyvcPR05t+8u3i1LYWKW+Z+pVfPmmFarSti8+di2b4/QMTOYrakt42uP55NDn/DXtb8KJmHL87jWgi4LYV1f2DxCG9LZQDN35YWg82HsWnoRlVrFW2Nq4lbZno+l5PqugySMW8JTeydmtRrBWf9wpN9/mwRN1CpsnE6SYPcXFom+nD7dnDf9DxOTkMLT+GSexCWSlPLfmmtT9UW+MlnOk/vrsCtfsNNm2c3xHwAOCCHipJTp9mQLIXoABee0raCgkA6ftmVY/78wLh2+h3fL0pnWEULgPGYsdwcNImLNWor1eV/n/juU7cDGGxuZe3ouLcq0wNE88xSQeaZ6ZwifAnu/AseK0KRwdkHrmwsHQziw+iqObla0H+qJdTHtaDzh8mXkpx+DQzHq/LWGjY6OxCelEBgWw63QGEIiYzkTfpDDUeuxx5sKJoPRqI0QQFlHY6xM1diaG+Nqb46bnTlVnhyk+M5ZCIeK4Fzw+010WTLuBbwYjOMTYF2Bq1FQUACgeDlbXCvbc2bXHWo0ccPIOPNZWcs3GmJRvx5hCxZg27ULRplEfM0MIQSf1f2Mrpu78u3Jb5ndJOeIsrmm0TgIvwH7vgbrElBL9w8mQ0NKyel/b3N84y3cazjQepAHxibaGe/EoCDuDBqMysaaiBEjUKfuVDczNqJqCRuqlrDhzKMz/PLvPLycPFnSejFm6mymb86uhR1DoWRN6L0OLAp+B3l2c/zthBA/Aa5CiB+fO5ahjdKp8BxSSkaOHEmFChXw9PTk9OnTmdbz9/enRo0aVKhQgZEjR6bN+33++ee4urqm7Vbdtm1bnnRkF5Z5x44dVK5cmQoVKmQZ3C2n8MV37tzByspKp9DTWeHu7p7p+cDAQOrWrUuFChXo2bMniYkZMyYlJibSv39/atSogZeXVzo30LVr1+Lp6Un16tWZOPHl9SV/hk+7MsQ+SeTK8ftZ1hFC4Dx2HCkREYQvXZqr/t1t3fnQ60P+DfqXPbf35FduZuLgzR+hfHP4ZyRcydvvdFEjpeTYhpsc33iLSnVcaPthjTSjn/TwIXc+GABSUnrpUjSpQQuf59aTW4zYO4KSViX5qflP2Rv9k4thw2Bwbwh9NurF6EP2Xj330GbaikcbmvnZsRlorRc1LzHbt2/n+vXrXL9+nUWLFjF06NBM6w0dOpTFixen1X0+uNmYMWMICAggICCA9u3bF6i+lJQUhg0bxvbt27l06RKrV6/m0qVLGeo9H754zJgxGQzo2LFjadeuXYFqe8bEiRMZM2YMN27cwN7enqWZGLLFixcDcP78eXbt2sW4cePQaDSEh4czfvx49uzZw8WLF3nw4AF79ujBmBUibpXtcS5jzel/b6PJJnGIeQ0PbNq34/Gy5STlMjx2f4/+VClWheknphObEptfyRlRm8DbK6GEN/zVH25nFvPRsDmx+RZndt7Bo4krLftVw8hIazZToqO5O2gwKU+eUGrRIkzLls3QNiwujI92f4SRMOLnlj9jb5bxgyGNQ3Ng28dQqR28uw5M9Rd6Prs5/rPAWSHEH1IbXRMAIUQj4GtgmN5U5Zbtk+DB+YLts3gNaKd7yONNmzbRp08fhBDUq1ePyMhI7t+/ny5K5P3794mKiqJevXoA9OnTh40bN+bKkOY1LPPJkyepUKEC5cqVA6BXr15s2rSJatXSLxplF75448aNlC1bFktLyxe7T2PHjh18+umnpKSk4OjoqLPxlVKyd+9e/vjjDwD69u3L559/nuED9NKlSzRv3hzQhoK2s7PDz88PIQQVK1bEyckJgJYtW7J+/XpatGiRrn10dDQjRoxIazNt2jS6deumk8bCRgiBTzt3ti88zw3/R1SqUzzLuk6jRxO1cxdh83+mxBef63wNY5UxXzb4kne2vsPfEX/TnoIdcADaWD6918GvbeCPXtB/GxT3KPjr6AH/HUH4b79NtYYlaNyrUpoHjkxOJmTsWBJu3aL0ol8w98gYKDI2KZaPdn/E4/jH/NbmN0pZl8pQR9uZhD1fwOHvoUYP6LwAjPSb40CX1ItJQoiaQohZQoggtLHzr+hV1UuILmGDQ0JCcHNzy7LOvHnz8PT05IMPPsg0UUt+wgbrGtY4q/DF0dHRzJw5k2nTMtvIrSU0NJRBgwaxfv16zp49y7p1ui8DhYeHY2dnhzp1F2pW+ry8vNi8eTPJyckEBgbi7+/P3bt3qVChAlevXiUoKIjk5GQ2btyYLqjbM7766itsbW05f/48586dS/sQMVTKejpiX8IS/x23kZrMd9kDmJQujX3PnkT+9RcJtwJzdY2qDlX5wOMDTsSc4HDI4fxKzhxLR3h/A5hYwO9dIczwfUPO7w/m+MZbVKztQpPeVdJF63z47UxiDh6i+NQpWDZokKFtkiaJsQfGci3iGrObzKa6YxYRhFOSYNNwrdH3/QC6LNK70YfswzJXAt5JPcKAtWhDPDTTu6rckouRuaEydOhQpkyZghCCKVOmMG7cOH799dd0dYoqbDBo1yDGjBmTabrIZxw/fpzGjRtTNvUrrz70ffDBB1y+fBlfX1/KlClDgwYNMDIywt7engULFtCzZ09UKhUNGjTg5s2bGdrv3r07XZwe+0zmZA0JoRL4tC3D7t8uEXQhnLKeWXvfOH40lCcbNhD6/fe4/fRjrq7zodeH/HPlH7449gUbOm3AykS3ReJcYVca3t8IyzvCso7Qbys4Vij46xQAgWdDObj2Gu6ejrTsVzVdfJ7Hv68i4vffKda/P/Zvv52hrZSS6cencyTkCNPqT6OxW+PML5IQDev6wY1d0GQSNJ1UaG6v2Y34rwDNgY5SyjeklD8BBbzb4+XlxTDHuoQNdnV1JTg4ONM6Li4uGBkZoVKpGDRoECdPnixQvbroe7He8+GLT5w4wYQJE3B3d+eHH37gm2++Yd68eQWmz8HBgcjISJJTd6FmpU+tVvP9998TEBDApk2biIyMpFKlSgC8+eabnDhxgmPHjlG5cuW08y87FX2dsXYww397UJaJWgDUDg4UG/ABT3ftIvbMmVxdw8TIhHcd3uVhzEPm+Osx/qJzFeizGTTJ2g+A8IwfzkXNo9tR7Fx6EefS1rQeUB2V0X9mMvrQIR5+8w1WzZvj/PG4TNsvPLeQv6//zWDPwVlnPYsO1d7/zT3w5lxo9kmh7nXIzvB3Be4D+4QQi4UQLfgvGctrz7Bhw9IWYkuWLEmnTp1YsWIFUkqOHz+Ora1thixQJUqUwMbGhuPHjyOlZMWKFbz11luAdv7/GRs2bMDDI+McaKtWrfjtt9+IjdUuwj1+/FhnvbVr1+b69esEBgaSmJjImjVr6NSpU4Z6nTp1Yvny5QD89ddfNG/eHCEEhw4dIigoiKCgIEaPHs2nn37K8OHD07WtV68eBw8eJDAwMNf6hBA0a9aMv/76C4Dly5enPZvniY2NJSZGG/Vw165dqNXqtHWKZ3l/IyIi+Pnnnxk4cGCG9q1atWL+/Plp7zObUjM0VEYqarUpw8PAKO5eyv6ZOvTrh5GjI49m/i/bD4nMKGtalj7V+rDu2joOBR/Kj+TscakGfTdDSqJ25G9Axv/p43i2zj+HuZUJ7T/yxNj0vyAFiUFBhIwdh2nlyrjO+h8ik3zPx6OP83PAz3Qq34nh3sMzlAPa+13aCh5dgV6rwaefnu4ma7I0/FLKjVLKXkAVYB8wGnAWQiwQQihePS/Qvn17ypUrR4UKFRg0aBA///xzWpm3t3fa62cGqUKFCpQvXz5tYXfChAnUqFEDT09P9u3bx/fff5/hGm3btqVTp074+vri7e2dK5dKtVrNvHnzaNOmDVWrVuXtt9+menXtvOPUqVPZvHkzoA1fHB4eToUKFZgzZ06ucvo6OTmxaNEiunbtipeXFz175m5H6MyZM5kzZw4VKlQgPDycAQMGALB582amTp0KaI17rVq1qFq1KjNnzkyXw3fUqFFUq1aNhg0bMmnSpExH/J999hkRERF4eHjg5eXFvn37cqWxqKjaoARWxUw5uSUwW4OusrTEefQo4gICiNqae/fJEbVGUNG+IlOPTuVxvO4f3LnGpbp25J8cD7+2LXjnjDyQGJ/M1vlnSU5MocNwTyxt/0stromJIXjESISREaXm/YQqEweHIyFHWB2+mvol6vN5/c8zz+AVeBCWtID4J9BvC1Ruq89byprMgvRndQD2wGBgT27a5fd4mRKxFDW5TcRSFJQpU6aoJeQZfSZiyYkLB4PlvCF7ZND5sGzraZKT5c0uXeS1Jk1lSmyszv0/03gl/IqsuaKmHLlnZJZJWwqMR1ek/K6qlN+4SRl4WGeNBY1Go5E7Fp2X8z/cI29fDMtQFjxmjLxUtZp8ejhzjZfCLsk6v9eRbVa1kU8TnmZ+kZNLtAlrfqotZdiNgr6FTCGLRCy5ivYvpYyQUi6SUrbIuTYIIcYIIS4KIS4IIVYLIcyeK/tRCFGA2Z8VFF5tqtQvgXUxsxxH/cLIiOKffkrygweEL/01y3pZUblYZUbWHMneu3vZeGNjPhTrgFNl+OBfsC6u9fa5ontKyYIkYNddbvg/ol7n8hlyHj9evpyobdtxGj06LVXi89yPvs+wPcOwNrHmQ+cPMy6MpyTB1o9h61jtZraBu8ChvD5vJ0f0luZFCOEKjAR8pZQeaCN69kot80X77UGhgHkZonOOHj26qCW8lBipVfi2d+dRUBS3L4RnW9fC1xfrtm0JX7KEpPtZ7/zNij7V+1C7eG1mnJzB3agCzNObGXaloP8O7fTPmt5w5Eetb3shEXzlMcc23KB8LSdqtk4fFynmxEkezZqNdauWOAzKuGYUlRjFR3s+Ii45jgUtF2Cntktf4ekDWNEZTi2GBiO0YavNbPV3Mzqi3/xeWndRcyGEGrAA7gkhjIBZwKsRtcnAUAz/q03l+sWxdjDjVA6jfgDnjz8GjYZH3+XeS0clVHzd8GvUQs2kQ5NISsk6N0CBYOkAff+Bap1g1xRtNq9CCOn89HE8/y65iF1xS5r3qZpuXj7pwQNCxo7FpEwZSsyYkWHOPjElkTH7xhAUFcQPzX6gov0LiXNu7YeFb8C901r//NbTQWUYEe2zTL1YIJ0LMQrtLt84YKeUsnfqOZWU8nshRLSUMlOHYSHEYLTrCbi4uPi8mCPV2tpaSb2oUOj4+/uzceNGHBwc0i3a50R0dHS2eyByQ8RNyb1TktKNBNau2TvaWW7ahNX2HTyeMJ6k1F3budF4OuY0v4X9RjPrZnQt1jXf2nNESsrc/pOyQX/wxKYyl6pNIMHsv70LBfkcNSmSwD2SxKdQrpXA1Oa5Z5mUhP2cOajv3efxpImkvOChJ6VkRfgK/GL86OPQh9pWtf/TZ2mOe9CflLm9llgLNy5Wn0CsZeYRVvVNs2bNMk29qLcFWbRTOXsBJ8AY2Aj0AQ4D6tQ60br0pSzuKhgKRbm4+4zk5BS5YvIRufbrkzkuvqZER8trbzSSt7p1l5rk5DxpnH5suvRY5iF3B+3Oq+Tcc2mzlF+XlPLbMlJe3pJ2uiCf46G11+S8IXvkzTOPMpTdmzpNXqpcRT7Z8W+mbef6z5UeyzzkorOL0p0/vnWllItbSDnNRsq/h0iZEF1gevMCBbG4m0taAoFSylCpjfXzN/AFUAG4kRr+wUIIcUOPGhQUXjmMjLRz/aF3nhJ0LizbuipLS5wnjCf+wgUi//wzT9cbX3s81RyqMeXIFO4+1fN8/zOqvglDDmp3+655V7s4mlhwQeQCz4Vxdu9dajRzo5y3U7qyyPXriVy7FodBA7Fpk9Fzfd21dSw+v5huFbsxsEbqvL9GA8fm4+s3RhuOousSbTIak6zjWhUl+jT8d4B6QggLoZ0cawHMkVIWl1K6SyndgVgppWHu2VZQMGAq1y2OrbM5xzfdQpNNDB8Am44dsahXj0dzvic5LPsPiswwMTLhuybfAfDxgY9JTMkYLlsvOJSHAbug/nDt4uiC+tg/Dsh3t9ER8exZfgnHUlY07Jre/MSdv8CDL77Eon49nEaNytB29+3dTD8+nUaujfis3mfaef97Z+DX1vDvp0TYe8GwE+DZI9869YneDL+U8gTwF3AaOJ96rUX6ul5R8MEHH+Ds7JzpLttnbNq0CU9PT7y9vfH19eXw4f+CYBkZGaWFfchsF62uNG3aNEPcfICDBw9Sq1Yt1Gp12o7Y7OjUqVO6e5kyZUqa9tatW3Pv3r086Vu2bFlaxM/nCQgIoH79+lSvXh1PT0/Wrl2bafuFCxdSo0YNvL29eeONN9LCSWcXm/9VR2Wkot5b5Xl8L4ZrJx9kW1cIQfGpU5Hx8Tz834s5lXTDzdqN6W9M51L4Jb458U2udwXnGbUptPka+m4BYYTXuWmw4UOIzl346WdoUjTsXHqRlGRJm4Ee6RLcJEdEEDxqJEaODrh+9x1CnT6U2fH7x5lwcAI1HGswu8ls1HFP4J/RsKgZRARBl1+44DFZ65pq4OjVq0dKOU1KWUVK6SGlfF9KmfBCuR4iQRUe/fr1SxdPPzNatGjB2bNnCQgI4Ndff00XRsDc3Dwt7MOznbMFSenSpVm2bBnvvvtujnX//vvvDItm48eP59y5cwQEBNCxY0e+/PLLAtVnYWHBihUruHjxIjt27GD06NFERkZmqPfuu+9y/vx5AgICmDBhAmPHjgWyjs3/ulC+lhPOZaw5sfkWyUnZh9EyLVeWYgMHELX5H2KOn8jT9ZqXbs6gGoNYf309f1z5I0995JmyjWDoUW6X7gHn18Fcb9g3AxKe5qobv21B3L/xhKbvVMLOxSLtvExO5t64caSEheM290fULwQYvBB2gVF7R1HGpgzzG3yNxaE5MNcLTq+Aeh/BCH/w6vXS5BbWJfWiwTPz5EyuPC7YSNFVilVhYp3sszg1btw405H28zxvTGNiYjLfxp0NN27c4MMPPyQ0NBQjIyPWrVtH+fK6bf54lulKpcr+8z06Opo5c+awaNEi3n4u2qCNjU2O2lNSUpg4cSI7duxICzA3YsQInfQ9H1KhZMmSODs7Exoaip2dXbp6WenIKjZ/nTp10rU/deoUo0aNIiYmBlNTU/bs2YO1tf6SXBQWQgjqdynPph8CuHAgJMvcvM9wHDKEqC1befDFF5TdtBGVjsnZn2d4zeHciLzB/079j7K2ZWlQMmNIYr1hbEZgufco89Yn2vj1B76FU0ugzmCoPVDrEpoNIVcj8NsWRJV6xalcL72XTujcucQcPUaJ6V9hXiP9N/hbkbcYunso9iY2LDKviu2CNyAhCqq9BU0/1Qaee8nQtx+/Atqga1WqVKFDhw7pQi3Hx8fj6+tLvXr12LhxY6Zte/fuzbBhwzh79ixHjx7NEPitIHgWBvpZuOfnmTx5MqVKlWLVqlWZjvgXLVpEUFAQAQEBnDt3jt69e+dJw8mTJ0lMTMzyQ23+/PmUL1+eCRMm8OOP2pDDWcXmf57ExER69uzJ3LlzOXv2LLt378bc3DxPGg0RtyrFKFWtGH7bg0iIzd7XXmVmRvGpU0gMDCQ89dtSblEJFTMazaCcbTk+PvAxQU+C8tRPvnAoD2+vgIF7tHlp938D31eHzSO0Gb4y+dYX9zSRXb9exNbZgka90sdwivp3J+GLl2DXsyd23dNH07wXeZvB2/tglBDN4msBOB39Gco1gQ+PaDW8hEYf0J87Z0EehuzOGRgYKKtXr65T3QMHDsgWLVqkvQ8ODpZSSnnz5k1ZpkwZeeNG+vgdUVFR0tXVNcd+mzRpIgMDA7Ms79u3r1y3bl2mZWfOnJFvvvmmlDL7e/nmm2/k1KlTM5zv2rWr3LlzZ7b6fvvtNzlt2rQsy+/duycrVaokjx07lm0/Ukq5atUq2adPHymllElJSXL06NHSy8tLdurUSbZr105u2LAhXf1z587JBg0a5NivrhiCO+eLPLodJecN2SOPbtAt/kvwmLHykkcNGXflarrzudF4N+qubLS6kezwdwcZHheeG7n5IlONDy9LuXGYlNOLa90o51SXcttEKa9slzI+Smo0GvnPTwFywbB98tGdqHRN42/ckFdq1pK33n5bpiQkaE9GBkt5dq28t76/bLOkmqy/tJq8MruslP9+JuXjwNzrK0LIwp3zlZjqeVlo3Lgxt27dIiwsDEdHx7R48+XKlaNp06acOXNG52mcguLYsWP4+fnh7u5OcnIyjx49omnTphkWSnv37k379u354osvCvT6UVFRdOjQga+//jotJWV29OrVKy0d47PY/M9o0KDBKxODPzc4lbamYm0Xzu25i2dTNyztTLOt7zLlM2KOH+f+p5/ivnZNhkVMXXCzdmNu87kM2jmIYbuHsbTNUiyMM35jLBScq8Bb86Dtt3B1G5z7E/x/gxMLQBhxVvbj9oOONK55E6eQKxDpCCojUmITCJ44D6GWuHUtierPdyH0Cjy5ywMjIz4oWZwotQmLagyjsmcf7ULzK4Iy1aNnbty4keYBcfr0aRISEnBwcCAiIoKEBO1ad1hYGEeOHMmQ/9ba2ho3N7e0aaCEhIS0WPwFxdChQ7l37x5BQUEcPnyYSpUqpRn969f/S4+3adMmqlTJ+LW2VatW/PLLL2kJVHITgz8xMZEuXbrQp08funfPImHFCzq2bt1KxYrarfHZxeZ/RuXKlbl//z6nTp0C4OnTp2laXyXqdiqHRiM5vvlWjnXV9vYUnzqF+IsXCf/1tzxfs6ZzTWY3mc3lx5cZs3+M/sM65ISpFXi+De/9BRNvQ99/eOQxjWMP21HW6hwe9yfCjomwfgDyz37c/2QSiffDcPW9i/H1P7RxdUrV4UHzT+lfuSaR5rb80n4lHrUGvVJGHxTDny/eeecd6tevz9WrV3Fzc2Pp0qWA1v1w4cKFAKxfvx4PDw+8vb0ZNmwYa9euRQiRlj7Qy8uLZs2aMWnSpAxGC2DlypX8+OOPeHp60qBBAx48yN5173lOnTqFm5sb69atY8iQIWnx9wGdwg1MmjQJDw8PPD092blzJ3Pnzs1QZ+DAgZQuXRpPT0+8vLzSkqXrwp9//snBgwdZtmxZmltrQEAAkD5HwLx586hevTre3t7MmTMnLVFMdrH5n2FiYsLatWsZMWIEXl5etGrVivh4/ceAKWxsnczxbF6KK8fu8+h2VI71bdq2xbpNG8J++omEG3nfQ9m0VFOm1p/K0XtHmXxkMikaA0nSZ2xGYvEG/BtQBws7C5p/MQwxNQzG34Rhpwi3ncDTYHNcRg7Bcs5NmPwAhh4mpO1XfBB2gMjkWH5p9Qs1nGoU9Z3oh8zmfwztMOQ5fkMgpzn+oianOf6XCUOc439GfGySXPrxQfnXzFM6xdFPCguTV+vWk7e695CaxMR8aVxybon0WOYhJx2cJJNTsg8NkR901ajRaOS/Sy7I+R/ukSHXI9KVPT10WF6qWk0Gjx2X7jldf3xdNl/bXNb/o74MeBSgV32FBUUQskFBQaEQMTVXU69zeR7ciuL6qYc51lc7OFD882nEnz9P6HPpKPPCgBoDGFlzJFtubTGIkf+VYw+4fuohtTuWpWQFu7TzCYGBhIwdi2mFCpT46ss01+CARwH03dEXiWRZ22V4OXkVkfLCQTH8rwD9+vXL4PtuSHh7e9O0adOilvFaUKV+CZxKW3P075skJeRsfG3atsW2W1fCf1mE8bVr+br2IM9BjKo1iq23tvLJoU+KbM4/4kEMB9dcxbWSHT7t3NPOpzx5QvDQjxBGRrj9/DOqVPflA3cPMHjXYOxM7VjRbgWV7F99BwHF8L8CKIZf4RkqleCNtysSE5nA6X9v69Sm+KefYlK6NLa/LSPlyZN8XX9gjYGM8RnD9qDtfLTnI6ITCzfJXkqSNiSD2tiIlv2ro1JpR/QyKYmQMWNIDAnBbd5PmLi5IqXktwu/MWLvCMralmV5u+W4WbsVqt6iQjH8CgqvGCUr2FGxtgund94m8mHOXmAqS0tKzp6N6skT7k+Zmu84PB94fMD0htPxe+BH3x19eRiT87RTQXH07xuE3Y2med+qWNn/54nzcMa32p25X3yBhY8PiSmJfHbkM+b4z6FVmVYsa7sMR3PHbHp+tVAMv4LCK0jD7hVQGxux/48rOhly8xoeRHd+i6c7d/J42fJ8X/+tCm8xv8V8gp8G03NLT/we+OW7z5wIPBvKuX3BeDZzo6znf0b88apVRPzxB8U++AC7rl24HXWb97a9x+abm/nI+yNmN5mNufrV2c2tC4rhV1B4BbG0NaV+l/KEXI3k6gndXIBjW7XCulUrHs2enedAbs/TwLUBv7f/HWsTawbuHMiyC8v0FtUzOiKePSsu41jKigbPhVqO2rWLh9O/xqpZM5zHjWXrra28/c/b3Iu5x4/NfmSo19Bcx896FVAMfx65e/cuzZo1o1q1alSvXj1TH3eAWbNmpfmoe3h4YGRklLbJyd3dPS3csK9vxuxoutKvX79MQxKvWrUKT09PatSoQYMGDTh79mym7ffs2UOtWrXSwh7fSPXrzioccm7Zv38//fr1y3A+Pj6eOnXq4OXlRfXq1Zk2bVqm7ceMGZP2DCtVqpRuPWPixIl4eHjg4eGRZVjn15Xqb5TEpawNR9bdIC5ahxj6QlBixjeYlClDyNixeUrS/iIV7SuyusNqmpduznf+3/Hh7g+5H53/fp8nJUXDv4u1oZZbD6ieFmo51t+fe+M+xtzTE5PpkxhzcByTDk2iSrEq/PXmXzQr3axAdbxUZObjaWiHIfrx37t3T/r7+0sptTF1KlasKC9evJhtm82bN8tmzZqlvS9TpowMDQ3Nt5a+fftm6j985MgR+fjxYymllNu2bZN16tTJtH3FihXlpUuXpJRSzp8/X/bt21dKKeWTJ0/S6mzatEm2adMmT/r27duX1ufzaDQa+fTpUymllImJibJOnTo5xuv58ccfZf/+/aWUUm7ZskW2bNlSJiUlyejoaOnr65tOsz4wZD/+zAgLfip/HrpX7l6W/e+mlP9pjL95U16p5SNvde8hU2JjC0SHRqORqy+vlrV/ry3rrqor11xekyd//8ye47MUitdOPUg7F3/tmrxSu4683qatXHdiqay3qp70WekjF59bLJNSkvJzK7nWV5TwKsfqefDNNyRcLtiwzKZVq1D800+zLC9RokRapExra2uqVq1KSEhIprtvn7F69WreeeedXOl4+PAhH374IbduabfiL1iwgAYNdAuF+3y9evXqERwcnGk9IQRRUdrdnk+ePKFkyZKAbmGZAWbOnMnvv/+OSqWiXbt2fPvttzrpE0Kkha1OSkoiKSkpx6/dq1evTosXdOnSJRo3boxarUatVuPp6cmOHTvShZaG/IW2ftlxcLXCu3VpTu+4TflazrjXyHkB07RcOUrO/JbgESO5N2ECrj/8gDAyypcOIQS9qvTiDdc3+Pzo50w/MZ2119bysc/H1C9ZP8/TLTf8H6WlUKzo6wJAYnAwdwYNJkkN37wNpy9/T53idZhWfxqlbYom6bmhodepHiHEGCHERSHEBSHEaiGEmRBiqRDirBDinBDiLyHES52MBSAoKIgzZ85Qt27dLOvExsayY8cOunXrlnZOCEHr1q3x8fFh0aLMk5ONHDmSJk2acPbsWU6fPp0u7EJuWLp0Ke3atcu0bMmSJbRv3x43NzdWrlzJpEmT0soyC4f8PNu3b2fTpk2cOHGCs2fPMmHChFzpSklJwdvbG2dnZ1q1apXtM7x9+zaBgYFpMfi9vLzYsWMHsbGxhIWFsW/fvgxhmaFwQlsbMnU6lMXB1ZJ9K68QH62bb711y5a4TJrI0127eZTHrF2Z4WbtxuLWi5nTdA5xSXEM2T2E97a/x67bu3K96SviQQx7V1zGpawNDbtp5/Vj7t7myrs9iHryiEmdY3hsr+aHZj+wpPUSxeg/h95G/EIIV2AkUE1KGSeE+BPoBYyRUkal1pkDDAd0GyJmQXYjc30THR1Nt27d+OGHH9KNkF/kn3/+oWHDhhR7LrPP4cOHcXV15dGjR7Rq1YoqVarQuHHjdO327t3LihUrAG2qRltb21xr3LdvH0uXLk2X9vF5vv/+e7Zt20bdunWZNWsWY8eOZcmSJQAMGzaMYcOG8ccffzB9+vS0ODnP2L17N/3790+L5V/shcxFOWFkZERAQACRkZF06dKFCxcuZJnKcs2aNXTv3h2j1NFn69atOXXqFA0aNMDJyYn69eunlT3j6dOnhISE0KVLFwDMzMxype9VwMhYRYt+1fjrWz8OrLlKm4FZpwp9nmJ9+5IYEsLj5StQFy+BQ/9+BaJHCEGrMq1o4taEv6//zfKLyxm7fyzOFs60dW9LW/e2VHOohpEq628ZSQkp7Fh0ASNjFc0HVOLEo+McOr2Rel9vxTJWw7Ih7gxsPYSO5TqiVr0SExsFir6fiBowF0IkARbAveeMvgDMgUJK3lnwJCUl0a1bN3r37k3Xrl2zrbtmzZoM0zzPwjI7OzvTpUsXTp48mcHw55dz584xcOBAtm/fjoNDxgxFoaGhnD17Nm2k3bNnT9q2bZuh3vPhkPWBnZ0dzZo1Y8eOHdka/vkvhBaYPHkykydPBrQpGl/HsMy64FTKmtodynJi8y3KeT9MmxbJCZeJE0l+8JBHM2eiMjfDvlevAtNkYmRCryq96FGpB3vv7mXzjc38ceUPVlxagbWxNd7O3lSwq0Bpm9LYm9pjYWzBpbhLJAYlEfRXIon3zbhabxfzt4/CJiKRaWskdnEqEuZ8wk/Ne7+W3jq6ojfDL6UMEULMBu4AccBOKeVOACHEb0B74BIwLrP2QojBwGAAFxeXDF4rRZ06T0rJgAEDqFq1aloO2Kx48uQJBw4c4Pfff087FxMTg0ajwdrampiYGHbu3MnUqVMztG3RogULFixg9OjRpKSkEB0drfOo/86dO3Tt2pWVK1dmaRDt7e158uQJ165do1KlSuzatYuqVasC2nDIz0IgPx8O+XlatWrFl19+Se/evbGwsODx48c6j/pDQ0MxNjbGzs6OuLg4du3axcSJmae7vHLlChEREdSvXz/tXEpKCpGRkTg4OHDu3DnOnTtH69at07V7PrR1586dSUhIICUlJdNsY7oSEhJCfHx8rpK7R0dHF3kyeGkmMXeAPSsuEvjwEiaW6Q1jlho7vYndg/s8+PwLrt24QdwbbxS4NmOM6WbUjbYl23Ip7hI3Em5w49ENjoUcI5n0YbR9/dviG9yOk+7/EGFyg05RtXjrjwBMEjREjhhGkpEbBw4cKHCNumAIP2edyGzFtyAOwB7YCzgBxsBG4L3nyo2An4H+OfVliF49hw4dkoCsUaOG9PLykl5eXnLr1q1SSikXLFggFyxYkFb3t99+kz179kzX/ubNm9LT01N6enrKatWqyenTp2d6nQcPHshOnTpJDw8P6eXlJY8ePZqhTlZePQMGDJB2dnZp+p5/ju3atZMhISFSSin//vtv6eHhIT09PWWTJk3kzZs3pZRSjhw5UlarVk16eXnJpk2bygsXLmSqccaMGbJq1arSy8tLfvLJJxnKs/LqOXv2rPT29pY1atSQ1atXl1988UVa2ZQpU+SmTZvS3k+bNk1OnDgxXfu4uDhZtWpVWbVqVVm3bl155syZTPVdu3ZNNmvWTNaoUUPWqlUr7f7ywsvm1fMikY9i5KJR++WfM07J5KSUdGXZaUxJSJC3Bw2Sl6pUlY9Xr9Gzyv9ITkmWIU9D5OXwy9LvgZ9ctHSNnDdkj9yy9LRMSUmRsefOyat168mrDd+QcZcvF5qurDCUn/MzyMKrR5+Gvwew9Ln3fYCfX6jTGNiSU1+GaPgNiawMv6GQleF/GXnZDb+UUt7wfyjnDdkjD67NXerFlPh4eWfwEHmpchX5aO6POoV+Lkge3Y6S8z/aI/+a6SeTE1Pkk61b5WUvb3m9RUuZcPt2oWrJCkP6OUuZteHXp1fPHaCeEMIidT6/BXBZCFEB0ub4OwEF64epoKCQLeVrOePZ3I1ze4O54f9I53YqU1Pc5s/DtltXwn7+mfuTP0OTmkVO30SFxbFl3lnUptB2cHXCf5pLyNhxmFWvjvua1ZiUVjx2coM+5/hPCCH+Ak4DycAZYBGwVwhhAwjgLKC/FcPXhM6dO+Pu7l7UMrLE3d2dzp07F7UMhedo0LUCDwOj2LP8ErZO5jiV1m3NTKjVlJg+HWOX4oT9/DMJV6/iOncuJm6uetMa9zSRzT8GkJKswb1mNOFjhxFz9Ch2PXpQfMpnCBMTvV37VUWvfvxSymlSyipSSg8p5ftSygQpZUMpZY3Uc71lqpePQt5RDL9CbjFSq2j3YQ3MLI3Z+vM5YiJ1H7kLIXAaOQK3+fNIvHOHwG7diNq2TS9xeBLjk9ky7ywxEQk09YnD9YcviT1zhuJffkHxL79QjH4eUWL1KCi8pljamtJhmBeJccls/fkcmuTcGW7rFi0o+9c6TEqVImTsOII/GkZSLnJC50RSYgrbF54n9M5TasbvJ+mr0aQ4OlL27/XYv/224q6ZDxTDr6DwGuPoZkXrgdUJu/uUO4clKUmaXLU3KVMG9zWrcZ4wgZhjx7jZth2PvvuOlMjIfOlKSkxhy/enCL7ymKpXf8f2zFZcPpnE4wnjMS1bNl99KyiGX0Hhtce9hiPN3q9CzAPYsfgCKSm5M/5Crcbhg/6U2/IP1q1aEb5kKdebt+D+tM+Jv3QpV1NAUqMh8sAR/h7zN/duRVPt6u9UaehK+e3bKNa3L+QzZpCCFmUvs4KCAlUblOTyxasE+Yexa8lFWn3wX3hjXTFxc8N11v9wGDiQx8uW8WTjRiLXrsW4ZEksmzTG3MMD00qVUTs6oLK2geQkNDExJAaHkHDzBnH+p4k4EcCZ0u8QZV2G2g43qfn7dIxd9bdw/LqijPjzSUpKCjVr1qRjx46Zlh88eJBatWqhVqv566+/0pUZGRmlxZnv1KlTnjU0bdqUoKCgLMvXr1+PEAI/v4xZkLLLKzBlyhQ8PT3x9vamdevW3Lt3L0/6li1bxueff55pmS7PILtnqMTjLziKVRS80aMiN8+EsmX+WRLjknNulAlmlStRcsY3VNi/j+JffIFp5co82bSZ+5M/I6hHD240a841X1+u1avPjRYtudO3Lw+//IrQM9fx8xxFjJ07bQZUo843QxSjryeUEX8+mTt3LlWrVk0La/wipUuXZtmyZcyePTtDmbm5OQEBAXrV9/TpU+bOnZtl1Eu1Ws13331HrVq1ePr0KT4+PrRq1Ypq1aoxfvx4vvrqKwB+/PFHvvzySxYuXFig+nR5Blk9w61bt3L69GkCAgJISEigadOmtGvXLttgeQrZ49WiFKaWavauuMKGOafp8JFXuty1uUFtb499z7ex7/k2UqMh6c4dEm7cIDkiAk1UFMLYGJWFBeriJXiocebIpvsIBJ2HeVK8XO6DESrozith+A/9eY2wu9EF2qdjKSsavZ19wK/g4GC2bt3K5MmTmTNnTqZ1nrlZqlR5+3KV31jyU6ZMYeLEicyaNSvT8uzyCugSjz8lJYWJEyeyY8cOVCoVgwYNYsSIEbm8y+zJ6hkq8fj1Q5V6JTC3MmHH4gv8+c1JWg2oTqkquYu6+iJCpcLE3R2TF9yONSkaTm0Nwm9bEA6uVrQd4oGdc97jKCnohjLVkw9Gjx7N//73vzwb9fj4eHx9falXrx4bN27MtE5+YsmfPn2au3fv0qFDB53qZ5ZXYPLkyZQqVYpVq1bx5ZdfZmizaNEigoKCCAgI4Ny5c/Tu3VtnfaDbM8gKJR6//ijj4UCPSb6YWRrzz9wAjm24QXJi7uLl50RY8FPW/88fv21BVG1Ygu4TfRSjX0i8EiP+nEbm+mDLli04Ozvj4+OT52h8t2/fxtXVlVu3btG8eXNq1KiRbiSan1jyGo2GsWPHsmzZMp3qZ5VX4Ouvv+brr79mxowZzJs3Ly371TN2797Nhx9+iFqt/VXKbTz+nJ5Bdijx+PVLsRKWdJ/ky+F11zn97x1ungnljR4VKePhkC8f+rinifhtD+LC/hBMLdW0Hlhd5zDRCgWDMuLPI0eOHGHz5s24u7vTq1cv9u7dy3vvvZerPp7F4y9XrhxNmzblzJkzBabv6dOnXLhwgaZNm+Lu7s7x48fp1KlTpgu8uuQV6N27N+vXry8wfc/I7zOYPHkyAQEB7Nq1CymlEo+/gDExU9P8/ap0Gu2NlLB1/jn+nuVP4LkwNLl0+3wSGsvR9TdY+dkxzu8Lpkr94rw7rZ5i9IsAxfDnkRkzZhAcHExQUBBr1qyhefPm6eLt50RERAQJqQGuwsLCOHLkSIZ8vc/HkgdISEggNjZWp/5tbW0JCwsjKCiIoKAg6tWrx+bNm/H19U1XT2aTV+D69etprzdt2kSVKlUyXKdVq1b88ssvJCdrPUAeP36skz7Q7RlkR0pKCuHh4QA6xeOH3D1Dhf8oVaUY706rS9PelYmOSGDbz+dY/ulRDv15jaBzYcRGJWbw109OTOFhUBRndt1hw3en+X3KcQL23KWMhwPvTKtLs/erYmZlXER39HrzSkz1GBpTp07F19eXTp06cerUKbp06UJERAT//PMP06ZN4+LFi1y+fJkhQ4agUqnQaDRMmjQpU6O3cuVKhgwZwtSpUzE2NmbdunWUK1cuX/ru3bvHwIED2bZtG0eOHGHlypXUqFEDb29vAL755hvat2/PpEmTuHr1KiqVijJlymTq0TNw4ECuXbuGp6cnxsbGDBo0iOHDh+ukI7tnoMszTEpKolGjRoA2Mfzvv/+eNuX0PPp4hq8jRmoV1Ru5UqVBCW6fD+fy0ftcPHSPc3uDATA2M8LUQo2RkYqEuGQSYpJ49lng4GpJ7Y5lqdawZJ69hBQKDqGPwEoFja+vr3xxisLf3x8fH58iUmRYNG3alGXLlhlsoLZly5YRFBSUpS//y4S/vz+nTp3Czc0ty70bmbF//36aNm2qP2EFQF40Jiel8PBWFOH3ool8FEdSXDIpyRpMLIyxsDbGwc0K5zI2WBcrmLUVQ3+OhqZPCOEvpfR98bwy4ldQUMgzamMjXCvb41rZvqilKOQCxfC/AvTr1w87O7uilpEl3t7eBvttREHhdeSlNvwajSbPPvSvEv369StqCdnybO3gZUejyZ0Xi4KCofLSWk0LCwsePHig/DEqFAoajYYHDx6QlJQEoMSCV3ip0euIXwgxBhgISOA80B9YCvgCScBJYIiUMim3fZcvX54LFy5w79495Y9QoVBISkrizp07xMfHG/TUmoJCTujN8AshXIGRQDUpZZwQ4k+gF7AKeLbT6Q+0HwwLctu/iYkJVatWZcOGDYSGhmZp/B88eEDx4sXzdA+FhaFrNHR9ULgaHR0dqVmzZqFcS0FBH+h7jl8NmAshkgAL4J6UcuezQiHEScAtr52bm5vTo0cPwsPD0zYQvcjJkyepU6dOXi9RKBi6RkPXB4WnUa1WU6xYMUyUXK8KLzF69eMXQowCvgbigJ1Syt7PlRkDJ4BRUspDmbQdDAwGcHFx8VmzZk2eNERHR2NlZZWntoWFoWs0dH1g+BoNXR8oGgsCQ9PXrFmzTP34kVLq5QDsgb2AE2AMbATee658MfCDLn35+PjIvLJv3748ty0sDF2joeuT0vA1Gro+KRWNBYGh6QP8ZCY2VZ9TPS2BQCllKIAQ4m+gAfC7EGJa6gfCEF068vf3DxNC3M6jDkcgLI9tCwtD12jo+sDwNRq6PlA0FgSGpq9MZif1afjvAPWEEBZop3paAH5CiIFAG6CFlFInX0wppVNeRQgh/GRmX3UMCEPXaOj6wPA1Gro+UDQWBIau7xl6M/xSyhNCiL+A00AycAZYBMQAt4FjqZ44f0spM2b4UFBQUFDQC3r16pFSTgOmFeY1FRQUFBSy56XduZsLFhW1AB0wdI2Grg8MX6Oh6wNFY0Fg6PqAlyQss4KCgoJCwfE6jPgVFBQUFJ5DMfwKCgoKrxmvjOEXQrQVQlwVQtwQQkzKpNxUCLE2tfyEEMLdwPSNFUJcEkKcE0LsEUJk6n9blBqfq9dNCCGFEIXqtqaLPiHE26nP8aIQ4o/C1KeLRiFEaSHEPiHEmdSfdftC1verEOKREOJCFuVCCPFjqv5zQohahalPR429U7WdF0IcFUJ4GZK+5+rVFkIkCyG6F5Y2nclsV9fLdgBGwE2gHGACnEUbHO75Oh8BC1Nf9wLWGpi+ZoBF6uuhhalPV42p9ayBg8BxwNeQ9AEV0boN26e+dza0Z4h28W9o6utqQFAha2wM1AIuZFHeHtgOCKAecKIw9emoscFzP+N2ha0xJ33P/S7sBbYB3Qv7GeZ0vCoj/jrADSnlLSllIrAGeOuFOm8By1Nf/wW0EIUXzzlHfVLKfVLK2NS3x8lH8Dp9aUzlK2AmEF+Y4tBN3yBgvpQyAkBK+cgANUrAJvW1LXCvEPUhpTwIPM6mylvACqnlOGAnhChROOq05KRRSnn02c+YIvhb0eEZAowA1gOF/TuoE6+K4XcF7j73Pjj1XKZ1pJTJwBPAoVDU6abveQagHXUVJjlqTP3aX0pKubUwhaWiyzOsBFQSQhwRQhwXQrQtNHVadNH4OfCeECIY7WhwROFI05nc/q4WNUXxt5ItqSHpu5CHcPOFhbKZysAQQryHNlFNk6LW8jxCCBUwB+hXxFKyQ412uqcp2lHgQSFEDSllZFGKeoF3gGVSyu+EEPWBlUIID6lj+BKF/xBCNENr+N8oai0v8AMwUUqpMdQkUa+K4Q8BSj333i31XGZ1goUQarRfs8MLR55O+hBCtAQmA02klAmFpO0ZOWm0BjyA/am/zMWBzUKITlJKPwPQB9rR6QmpzegWKIS4hvaD4FQh6APdNA4A2gJIKY8JIczQBvYylCkBnX5XixohhCewBGgnpSysv2Nd8QXWpP6dOALthRDJUsqNRarqeYp6kaEgDrQfYLeAsvy3qFb9hTrDSL+4+6eB6auJdmGwoqE+wxfq76dwF3d1eYZtgeWprx3RTlk4GJjG7UC/1NdV0c7xi0L+WbuT9cJpB9Iv7p4sot/H7DSWBm4ADYpCW076Xqi3DANc3H0lRvxSymQhxHDgX7Sr6b9KKS8KIb5EG496M9pcvyuFEDfQLsz0MjB9swArYF3qSOGOlLKTgWksMnTU9y/QWghxCUgBxstCHA3qqHEcsFho81FLtB8ChbZ9XgixGu1UmGPqOsM0tPkykFIuRLvu0B6tYY1Fmye7UNFB41S063M/p/6tJMtCjIipgz6DRwnZoKCgoPCa8ap49SgoKCgo6Ihi+BUUFBReMxTDr6CgoPCaoRh+BQUFhdcMxfArKCgovGYohl/htUII4SCECEg9HgghQlJfRwshftbTNUcLIfpkU94x1eVTQaFQUNw5FV5bhBCfA9FSytl6vIYaOA3UktoYUZnVEal1Gsr/AvUpKOgNZcSvoAAIIZoKIbakvv5cCLFcCHFICHFbCNFVCPG/1PjvO4QQxqn1fIQQB4QQ/kKIf7OIYtkcOP3M6AshRor/8i6sAUjdwLUf6FgoN6vw2qMYfgWFzCmP1mh3An4H9kkpawBxQIdU4/8T2u34PsCvwNeZ9NMQ8H/u/SSgppTSE/jwufN+QKMCvwsFhUx4JUI2KCjoge1SyiQhxHm04Rd2pJ4/jzZOS2W0Qet2pYYNMALuZ9JPCeDyc+/PAauEEBuBjc+dfwSULDj5CgpZoxh+BYXMSQCQ2tC6Sc/F09Gg/bsRwEUpZf0c+okDzJ573wFtBqc3gcmpYaOTU+vEFeQNKChkhTLVo6CQN64CTqkx9RFCGAshqmdS7zJQIbWOCm0im33ARLShwa1S61UCss3hqqBQUCiGX0EhD0htasXuwEwhxFkgAG0u2BfZjnaED9rpoN9Tp4/OAD/K/5LENAOKIrOZwmuI4s6poKBnhBAbgAlSyutZlLsAf0gpWxSuMoXXFcXwKyjoGSFEZcBFapN0Z1ZeG0iSUgYUqjCF1xbF8CsoKCi8Zihz/AoKCgqvGYrhV1BQUHjNUAy/goKCwmuGYvgVFBQUXjMUw6+goKDwmvF/IcRwpf4SgbsAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Helper class\n", + "from rocketpy import Function\n", + "\n", + "# Prepare Rocket Class\n", + "Calisto = Rocket(\n", + " motor=Pro75M1670,\n", + " radius=127 / 2000,\n", + " mass=19.197 - 2.956,\n", + " inertiaI=6.60,\n", + " inertiaZ=0.0351,\n", + " distanceRocketNozzle=-1.255,\n", + " powerOffDrag=\"../../data/calisto/powerOffDragCurve.csv\",\n", + " powerOnDrag=\"../../data/calisto/powerOnDragCurve.csv\",\n", + ")\n", + "Calisto.setRailButtons([0.2, -0.5])\n", + "Nose = Calisto.addNose(length=0.55829, kind=\"vonKarman\", distanceToCM=0.71971)\n", + "FinSet = Calisto.addFins(\n", + " 4, span=0.1, rootChord=0.120, tipChord=0.040, distanceToCM=-1.04956\n", + ")\n", + "Tail = Calisto.addTail(\n", + " topRadius=0.0635, bottomRadius=0.0435, length=0.060, distanceToCM=-1.194656\n", + ")\n", + "\n", + "# Prepare Environment Class\n", + "Env = Environment(5.2, 9.8)\n", + "Env.setAtmosphericModel(type=\"CustomAtmosphere\", wind_v=-5)\n", + "\n", + "# Simulate Different Static Margins by Varying Fin Position\n", + "simulation_results = []\n", + "\n", + "for factor in [0.5, 0.7, 0.9, 1.1, 1.3]:\n", + " # Modify rocket fin set by removing previous one and adding new one\n", + " Calisto.aerodynamicSurfaces.remove(FinSet)\n", + " FinSet = Calisto.addFins(\n", + " 4, span=0.1, rootChord=0.120, tipChord=0.040, distanceToCM=-1.04956 * factor\n", + " )\n", + " # Simulate\n", + " print(\n", + " \"Simulating Rocket with Static Margin of {:1.3f}->{:1.3f} c\".format(\n", + " Calisto.staticMargin(0), Calisto.staticMargin(Calisto.motor.burnOutTime)\n", + " )\n", + " )\n", + " TestFlight = Flight(\n", + " rocket=Calisto,\n", + " environment=Env,\n", + " inclination=90,\n", + " heading=0,\n", + " maxTimeStep=0.01,\n", + " maxTime=5,\n", + " terminateOnApogee=True,\n", + " verbose=True,\n", + " )\n", + " # Post process flight data\n", + " TestFlight.postProcess()\n", + " # Store Results\n", + " staticMarginAtIgnition = Calisto.staticMargin(0)\n", + " staticMarginAtOutOfRail = Calisto.staticMargin(TestFlight.outOfRailTime)\n", + " staticMarginAtSteadyState = Calisto.staticMargin(TestFlight.tFinal)\n", + " simulation_results += [\n", + " (\n", + " TestFlight.attitudeAngle,\n", + " \"{:1.2f} c | {:1.2f} c | {:1.2f} c\".format(\n", + " staticMarginAtIgnition,\n", + " staticMarginAtOutOfRail,\n", + " staticMarginAtSteadyState,\n", + " ),\n", + " )\n", + " ]\n", + "\n", + "Function.comparePlots(\n", + " simulation_results,\n", + " lower=0,\n", + " upper=1.5,\n", + " xlabel=\"Time (s)\",\n", + " ylabel=\"Attitude Angle (deg)\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Characteristic Frequency Calculation\n", + "\n", + "Here we analyse the characteristic frequency of oscillation of our rocket just as it leaves the launch rail. Note that when we ran TestFlight.allInfo(), one of the plots already showed us the frequency spectrum of our flight. Here, however, we have more control of what we are plotting." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEGCAYAAABPdROvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAA0tUlEQVR4nO3dd3xV9f348dc7NztkJ0AgYcgKCA5AFAeCguKeddRVZ4faWltXf22/fjtsv922ta2z1WpFWxeOigMXCrJB9g6bJEDIADLfvz8+NyRCxk1yb85N7vv5eJzHvffcc8595zzgvu9ni6pijDHGtFeU1wEYY4zp2iyRGGOM6RBLJMYYYzrEEokxxpgOsURijDGmQ6K9DqAzZGVl6YABA7wOwxhjupQFCxYUq2p2a8dFRCIZMGAA8+fP9zoMY4zpUkSkIJDjrGrLGGNMh0REicSEv8LSg7y7chdJsdGcdXQvEmPtn6YxXYX9bzWe+2hNEbc/t5DyyhoA+mcm8vSN4xiQleRxZMaYQFjVlvHU2l1lfOOfC8jLSGTGXRP4583jKD1QzQ1/n3sosRhjwpslEuMZVeXel5aSEOvj6ZtOYFjvZE4bks1j149ly579/PrtVV6HaIwJgCUS45n/LtvJos0lPHBOPj2T4w/tP2FABleN68e/5m5m6979HkZojAmEJRLjmUc/3sBRWUlcOjr3iPfumDQYQfjzzHUeRGaMaQtLJMYTS7eWsGRLCdeP748vSo54v09aAlePy+M/C7ZSWHbQgwiNMYGyRGI88czsAhJjfVw65sjSSL3rxg+gpk55eeG2TozMGNNWlkhMp9tfVcMbS7dz0XF9SYmPafa4wT17MG5ABi/M24ItwGZM+LJEYjrdzFWFHKyu48Jj+7R67JUn5LGxuIK5G/d0QmTGmPawRGI63Vtf7CCrRxzjBma0euw5o3qTEOPjjaU7OiEyY0x7WCIxnWp/VQ0zVxUydWSvJhvZD5cYG82k/GzeXr6T2jqr3jImHFkiMZ1q1tpiDlbXce7InIDPOWdkDkVllSwo2BvCyIwx7WWJxHSqj9YUkRTrY+yA1qu16k3K70lcdBRvfWHVW8aEI0skptOoKh+tKeLkwVnERgf+T69HXDSnDs5i5qpC671lTBiyRGI6zYbiCrbuPcDpQ1tdcO0IE/N7snnPfjYWV4QgMmNMR1giMZ3mo9VFAO1LJP5zPvBfwxgTPiyRmE7z2frd9M9MJC8jsc3n5mUkMrhnDz5cXRiCyIwxHWGJxHSKujpl3qY9nDQws93XmDQsm8837GF/la1TYkw4sURiOsXqXWXsO1Ad0CDE5kwc1pOq2jo+W7c7iJEZYzrKEonpFPVTnHQkkYwdkE5SrI8P11j1ljHhpEsmEhF5SkQKRWSZ17GYwMzduIe+aQntah+pFxftY/ygLD5eUxzEyIwxHdUlEwnwD2Cq10GYwKgqn2/c3aHSSL0JQ7PYvGc/BbutG7Ax4aJLJhJV/Riw6WC7iA3FFRSXV3FiEBLJaUNcN+CP11qpxJhw0SUTielagtE+Um9AZiK56Ql8sqbzxpPsr6rhYHVtp32eMV1NtNcBhIqI3AbcBtCvXz+Po4ls8zbuIatHHAOzkjp8LRFhwtBspi/eTnVtHTG+0P0W2rp3Pz9+bTkfri5ERDgzvyf/e9HR5KQmhOwzjemKum2JRFUfU9Wxqjo2O7vtI6lN8CzaUsLofmmItD5tfCAmDMmivLKGxVtKgnK9pmwsruDiRz5j3sY9fOP0Qdxy2kA+XVfMRX/+lC179ofsc43pirptIjHhYW9FFRuLKzi+X3rQrjl+UBZRQsiqtypravn6P+dTp8ort5/MvVPzeeCc4bz0rZM5WF3Lrc/Mp6LSBkUaU69LJhIReR6YDQwTka0icrPXMZmm1Zcaju+XFrRrpibEcFxeWsga3B9+by1rdpXz2yuOZXDP5EP783un8KevjmbNrjIeemtlSD7bmK7Ik0QiImUiUtrEViYipa2dr6pXq2qOqsaoaq6qPtkZcZu2W7R5L1ECx+SmBvW6pw3JZunWEkr2VwX1uusKy3n04w1cMTaXScN6HvH+6UOz+drJA/nX3M0s2mwLbRkDHiUSVU1W1ZQmtmRVTfEiJhMai7aUkN87hcTY4PbrmDA0izqFT4M8Xcrv31tDXHQU903Nb/aYu88aSs/kOH782nJbH8UYwqRqS0R6iki/+s3reExw1NUpizeXBLVaq96xuWkkx0XzydrgtZOs2F7Km0t3cNMpA8nsEdfscT3iornn7Hy+2LaPGct3Be3zjemqPE0kInKhiKwFNgIfAZuA/3oZkwme9UXllFXWBLWhvV60L4qTB2fyydrioJUKnpy1kaRYH7eedlSrx158XB+Oyk7id++uprbOSiUmsnldIvkpcBKwRlUHAmcCc7wNqfs6WF3L9pIDnfZ5izaXAMFtaG/stCHZbCs5wIYgrJq4u7yS15du59LRuaQmxrR6fLQviu9OHsqaXeW8sXR7hz/fmK7M60RSraq7gSgRiVLVD4CxHsfUbd3w1FzufH5Rp33ews17SU2IYWBmxwciNqV+pcVgdAN+Yf4WqmrquH58/4DPOW9UDvm9k3n4vbVBL5XU1qmVdEyX4XUiKRGRHsDHwHMi8jBgs/GFyNBeyazZWdZpDcSLNpdwXF4aUVHBGYh4uLyMRAZkJna4G3BtnfLcnM2cPCiTIb2SWz/BLypKuGvyEDYUV/D6kuCUSj5aU8QVf5vN0B/+l+E/eptrn/ichdY7zIQ5rxPJRcAB4LvA28B64AJPI+rGhvbqQVllDTv2HQz5Z5UdrGZNYVnIqrXqnTYkm9nrd1NZ0/65sN5fuYttJQfaVBqpd9aI3uT3TuaPMztWKqmpreN/XlvGDU/NZVvJAW6bcBTXj+/P2sIyLv3LZ/zyv6uosxKKCVOeJhJVrVDVWlWtUdWnVfWP/qouEwJD/b+21+wqC/lnLd26D1U4Li8tpJ9z2pAsDlTXsqCg/b/an5ldQE5qPJOH92rzuVFRwrfPHMKGoop2t5WoKne/uISnZxdwy6kDmfn907lvaj4/PH8E739vIleP68ffPlrP3S8utuouE5a87rV1qYisFZF9bRmQaNqnMxPJoRHtecHvsdXYyYOziPVF8d6K9q2auK6wnFnrirn2pP5Et3MCyKlH92ZYr2T+NHNdu77oH/lgHdOXbOees4fxw/NHEBftO/Rej7hoHrpkJPecPYxXF2/nx68ts7ErJux4XbX1K+BCVU21AYmhl54US8/kOFbvLA/5Zy3avJejspIC6gHVET3iojl1SBYzlu9s1xfss3MKiPVFceUJee2OISpKuPPMwawrbHsPrhnLd/Kbd9ZwyfF9+dbEQU0eIyLcPmkw3zh9EM99vpmH31/b7liNCQWvp5Hfpao2aVEnGtY7OeQlElVl8ZYSJgztnFmXzz66FzNXFbJ8eykj+wY+FUt5ZQ3/WbCV847JIauFAYiBOHdkDvm91/HrGas5++jexMf4Wj1n5Y5SvvvCYo7NS+MXl45qdXbk+6YOo6iskj+8t5bs5DiuObHtbToHqmr5aE0hK7aXUl5ZS256AqcPy2ZQdo82X8uYel4nkvki8gLwKlBZv1NVX/Ysom5uSM9k/jW3gLo6DVlvqq17D1BcXsXxIW4fqTd5eC+i5AveWb6zTYnk5YVbKa+s4bp2NLIfLipK+PH5I/jqE5/z5KyN3D5pcIvH7y6v5Jan55McH83j140JKPGICL+8bBR7Kir50avLyEyKZerInIDiq66t4+nPNvHwe2spq6whSiAu2seB6lp4A04cmMG9U/MZ0z+0VZGme/K6aisF2A+cheutdQFwvqcRdXPDevfgYHUdW/aGbk2N+vaR40LcPlIvs0ccJw7M5PWlOwKu3qqrU/7+6SaOzUsLWsI7eXAWZ43oxZ9mrmV9UfPVh1U1dXzz2YUUl1fy+PVj6ZkSH/BnxPiieOSa0Rybl8a3py3ms/Wtd33+fMNuzv/jLH725kpG90/nX7ecyOqfncOKn5zN7AfO4Afn5rO+qILL/voZ33txCcXlla1e05jGvO61dWMT201extTd1Te4r94ZuuqtxVtKiIuOIj8n8DEZHXXJ6L5sLK5goX80fWs+WF3IxuIKbj51YNAW3AL46cUjiY/xcde0xU12Sa6tU7774mLmbtrDry4/hmNy09r8GYmx0Tx1wwn0z0jka0/N47XF25o8rrDsIN99YTFXPjaH8soaHr1uDP+48QROHpxFjC8KESEnNYHbJgzio3sm8q2Jg5i+ZBtn/OZDnp1T0OaOA+WVNWwrOcCu0oPWVTnCeFq1JSJ/bGL3PmC+qr7W2fFEgiGNem6ddXTvkHzGos17GdU3NaTL4B7u3FE5/M9ry3lp4daAqmeenLWRnNR4zhkZ3HvQKyWeX156DN94dgHffHYhf7129KFeWPurarjvpS94c+kOfnBuPhcd17fdn5OeFMuLXx/Pbf+cz3emLeb1JTu4fnx/jspOYue+g7z1xU6en7uZ2jrljkmDuX3SYBJim68+S4qL5t6p+Vw6ui8/enU5P3x1Gf9esJWfXTSSUc0sAVBcXslHq4uYta6Y2et3s7O0YXxSbHQUo/ulcUZ+T84ZmUNeRmK7/1YT/rxuI4kH8oF/+19fhpvA8VgRmaSqd3kVWHfVIy6a3PQEVu8KTc+tqpo6lm0v5fqTOt7u0BY94qKZOrI3ry/Zzg/PG97itPUrd5Ty2frd3Dc1PyTJburI3vz8kpH8v1eWcdlfP+P6kwZQWVvHPz7dyIbiCu6bms9tE5ruodUW6UmxPHfLSTw5ayN/nrmW91Y2zETsixIuOrYPd545hIFZgU9RM7hnMv+69USmL9nOT99YyUWPzOKUwVlMGJJNn7QEKmtqWVdYzuwNu1m8pQRVyEyKZfygTEb0SSErKY7K2jo2FVfw6bpiHnprFQ+9tYoTB2Zw2ehczhnVm+T40PbkM53P60RyDHCKqtYCiMhfgU+AU4EvvAysOxvWK5nVO0MzXGfVzlKqauo4LsQj2pty7Un9eGXRNl6Yt4UbTxnY7HEPv7eWpFgfV49rf5ff1lxzYn8yk2L56RsrufelpQAMyk7i6RvHBbU3W2x0FN+cOIgbTxnA7PW7KSqvJCU+hpOOyiAtMbZd1xQRLjquL5Pye/L4xxt4bfF2fr62oXNldJRwdJ8Uvjt5KGfk92RETkqzHTe27NnPa4u38fLCbdz70lJ+9Noyzjq6N5eO7suJAzOOSPhVNXUUlh1kV2klhaUHKT1YTZ1CfEwUvVMSGJiVRO/UwNuUTOfwOpGkAz1w1VkASUCGqtaKiLX4hcjRfVL4YHUhB6pqW6zuaI+GpXU7v/fPmP4ZnDAgncc/3sC1J/VvsrSxeEsJby/fyV2Th7T7izZQU0fmMGVEbwp2VxAdFUVeRkJQ22Mai4/xMSn/yBUdOyIlPobvnTWM7501jL0VVewqO0hctI8+afFfGjTZkryMRO44Ywi3TxrM4i0lvLxwG68v3X5obrKc1Hh6xEWjwN6KKnZXtL7iZZ/UeEb3T+fEgRmMH5TFoOykkN1XExivE8mvgMUi8iEgwATgIRFJAt7zMrDubESfVOrUlR6C/YW/eHMJ2clx9PHoV+M3Jw7ipn/M59/zt/LVE7+8RlptnfKzN1aQmRTLLQGsORIMvijhqG4wRiM9KZb0pPYnXhHh+H7pHN8vnR+eP5xZa4tZsb2UjcUVHKypRRXSEmPpnRJPr5Q4eqXG0ys5ntTEGKIE9lfVsnPfQVbvLGPh5r0sKNjLG0t3ANArJY6TB2Vx0lEZjMhJ5ajsJJLivP5qiyye3m1VfVJE3gLG+Xf9QFXrhwbf41FY3d7Ivm7ygGXbg59IFm1xM/569Qtx0rCenDAgnV/PWMXk4T2/1LX2bx+tZ37BXn53xbH0sC8az8RF+zhzeC/ObOPcZoOye3DK4CxuYiCqyuY9+/ls/W4+W7+bT9YW8cqiht5rcdFRpCTEkBTrI8YXRbQvihifEB0ljZ67x+zkOAZl92BQdg+G9k6mT2q8lXDayJP/TSKSr6qrRGS0f9cW/2NvEemtqgu9iCtS9E1LIDUhhhXb97V+cBuU7K9iY3EFl4/JDep120JEeOiSUVzw51l8/dkF/ONr40hNjOH1Jdv53btruODYPlxyfPt7S5nwICL0z0yif2YSV4/rh6qyobiCtbvK2Fi8n5L9VZQerKa8spaa2jqqa5Waujpq65Tq2joqq+sor6uluqaORZtL2F2x5dC1k+OjGd47hfycZPJ7pzCsdzLDeifbj48WeHVn7gZuA37rf314p/MzOjecyCIijOybwrJtwW1wb2gfSQvqddtqSK9k/nDl8dzxr4VM/M0H9ElLYPn2Usb0T+ehS0bar81uSEQOlSraY29FFeuKylm1s4zVO0tZtaOMlxduo7yy4NAxeRkJ9EqOd9V8iTGkJsSQHB9Dcnx0o8doUuJjSE9y1XS+EM0eEW68SiRP+EsekwBE5AZc199NwIMexRRRRvZJ5e+fbqK6ti5oXWAXbylBhHYNsgu2qSN78+rtp/DYxxsoLq/kgXPy+dopAwJuJDaRJT0plhOSMjhhQMahfarK1r0HWLWzjFU7SllTWM7u8kq27NnP0q1V7DtQzcHqumavGeMTctMT6edfgG1gVhJHZfdgYFYSfdMSQjZFkRe8SiR/AyYDiMgE4BfAncBxwGPA5R7FFTFG9EmhqraOtbvKGdEnOBMuLyjYy7Be4VMFMLJvKn+8+nivwzBdlIiQl5FIXkYiU0Y03Z5TVVNHeWUNZQerKTtYQ+mBakoP1rCnoorNe/azZc9+CvZUsKBgL+WVNYfOi4uO8ieWJI7K6kH/zER6psSTmRRLdnIcGUmxnTqgt6O8+h/vU9U9/udXAo+p6kvASyKy2KOYIkr95IbLt+8LSiKpqa1jYcFeLh3tXfuIMZ0tNjqKjOhYMlrp0aaqFJVXsqGogo3FFWwoKmdDUQUrd5QxY/muJqejSUuMIbtHHNnJcWQd9pibnkD/zER6JceHRcnGs0QiItGqWgOciWsvCTgmEZkKPAz4gCdU9ZehCbP7GpiZRGKsj+XbS/lKEK63amcZFVW1nDAwo/WDjYkwIkLP5Hh6Jsdz0lGZX3qvuraO7SUHKC6vpKisiuLySnaXu0e3r5IlW0soLK10szU3EhcdRb+MRH/Hg0T6Z7qqtH4ZieSmJxIb3TmlGq8SyfPARyJSjFuz/RMAERlMw+DEJomID3gEmAJsBeaJyHRVXRHakLuXqChhRE4Ky7YFp+fW3I2ugHnCAJuG3Ji2iPFFHeqB1pqKyhoKyyrZunc/m3bvZ/PuCjbt3k/B7go+WVtEZU1Dm40I9ElNIC8jgX4ZifRJSyAnNZ7eqfWP8aQEaboaTxKJqv5cRN4HcoB3tGHu7yhcW0lLxgHrVHUDgIhMAy4CLJG00bF5aTw7p4CqmroO/3KZX7CH3PQEclITghSdMeZwSXHRDIyLZmBWEqcN+fJ7dXWu+mzznv1s3r2fAn8bzeY9+/lgdRHF5ZUcvspCj7hoeqfGu8SSEk9OWkOSyWnDoGLPWkVVdU4T+9YEcGpfGsadgCuVnHj4QSJyG/4qs379+h3+tgFG90vnyVkbWbmjlGM7sCaHqjJ3415OG5IVvOCMMW0SFSX0SomnV0r8l3qf1aufx2zHPrft3HfAPS85yI7Sg6zZVURh2ZHJJhDh0b0mBFT1MVwPMMaOHWuLIzRhdP80ABZu3tuhRFKwez/F5ZVN/uM1xoSH2OgoctNd20lzqmvrKCyrZOe+A2wvOciF/xfYtbtO/7IG24DG07bm+veZNsrx15UGuhhUc+ZusvYRY7qDGF8UfdMSGNM/gwuO7RPweV0xkcwDhojIQBGJBa4CpnscU5c1ul86Cwv2dugaczfuIT0xpt2jio0xXVuXSyT+LsN3ADOAlcCLqrrc26i6ruP7pR1aHrU9VJXP1hUzflBmWPRnN8Z0vi6XSABU9S1VHaqqg1T1517H05WdOND1aZ+zYXe7zt9QXMH2fQc5ZbA1tBsTqbpkIjHBM6JPCinx0cxe375E8um6YgBOtURiTMSyRBLhfFHCiUdl8lk7E8mstcXkprsBT8aYyGSJxDD+qEw279nP1r3723RedW0ds9fv5tTBWTY1uzERzBKJ4eTBrp2kraWSuRv3UFZZE/S1wo0xXYslEsPQnsn0TI7jw9WFbTrv3RW7iIuOshHtxkQ4SySGqCjhzOG9+Gh1EZU1ta2fgOv2+97KXZw6OIvE2G47QYIxJgCWSAwAU0b0pKKqljkb9rR+MG7a+K17DzC5mQV/jDGRwxKJAeDkQVkkxPh4d8XOgI6fvmQ7vihh8nBLJMZEOkskBoD4GB8Th2Xz9rJdVNc2vw41QG2d8srCbZw+NJvs5LhOitAYE64skZhDLhudS3F5JTNXtdzoPnv9bnaWHuTS0X07KTJjTDizRGIOmTgsm57Jcbw4b0uLxz0/bzPJ8dFWrWWMASyRmEaifVFcPiaXD1YXNjs4cWNxBf/9YgdfPbEf8TG+To7QGBOOLJGYL7n2pP5E+6L4w3trm3z/bx+uJ8YXxS2nHtXJkRljwpUlEvMlfdISuGF8f15euJXVO8u+9N6qnaW8tHArV56QZ43sxphDLJGYI3xr4mB6xEXz/X8v4UCVG6BYXlnDXdMWk5IQw12Th3ocoTEmnFgiMUdIT4rlt1ccx/Lt+7ji0dk88ckGLv/rZ6wtLOf3Vx5HRlKs1yEaY8KIJRLTpCkjevGXa8awq/QgP3tzJaUHqnnihrGcPjTb69CMMWHGJkkyzZo6sjdTRvRid3klmT3i8NlSusaYJlgiMS3yRQk9U+K9DsMYE8asassYY0yHiKp6HUPIiUgZsNrrOMJEFlDsdRBhwu5FA7sXDexeNBimqsmtHRQpVVurVXWs10GEAxGZb/fCsXvRwO5FA7sXDURkfiDHWdWWMcaYDrFEYowxpkMiJZE85nUAYcTuRQO7Fw3sXjSwe9EgoHsREY3txhhjQidSSiTGGGNCxBKJMcaYDun2iUREporIahFZJyL3ex2PV0TkKREpFJFlXsfiNRHJE5EPRGSFiCwXke94HZNXRCReROaKyBL/vfhfr2Pykoj4RGSRiLzhdSxeE5FNIvKFiCxurRtwt24jEREfsAaYAmwF5gFXq+oKTwPzgIhMAMqBZ1R1pNfxeElEcoAcVV0oIsnAAuDiCP13IUCSqpaLSAwwC/iOqs7xODRPiMjdwFggRVXP9zoeL4nIJmCsqrY6OLO7l0jGAetUdYOqVgHTgIs8jskTqvoxsMfrOMKBqu5Q1YX+52XASqCvt1F5Q51y/8sY/9Z9f122QERygfOAJ7yOpavp7omkL7Cl0eutROgXhmmaiAwAjgc+9zgUz/ircxYDhcC7qhqp9+IPwL1AncdxhAsF3hGRBSJyW0sHdvdEYkyzRKQH8BJwl6qWeh2PV1S1VlWPA3KBcSIScVWfInI+UKiqC7yOJYycqqqjgXOA2/3V403q7olkG5DX6HWuf5+JcP72gJeA51T1Za/jCQeqWgJ8AEz1OBQvnAJc6G8XmAacISLPehuSt1R1m/+xEHgF11TQpO6eSOYBQ0RkoIjEAlcB0z2OyXjM38D8JLBSVX/ndTxeEpFsEUnzP0/AdUxZ5WlQHlDVB1Q1V1UH4L4nZqrqtR6H5RkRSfJ3REFEkoCzgGZ7fHbrRKKqNcAdwAxcg+qLqrrc26i8ISLPA7OBYSKyVURu9jomD50CXIf71bnYv53rdVAeyQE+EJGluB9e76pqxHd9NfQCZonIEmAu8Kaqvt3cwd26+68xxpjQ69YlEmOMMaFnicQYY0yHWCIxxhjTIZZIjDHGdIglEmOMMR1iicSYIBKRzEZdineKyDb/83IR+YvX8RkTCtb915gQEZEHgXJV/Y3XsRgTSlYiMaYTiMjE+jUuRORBEXlaRD4RkQIRuVREfuVf++Ft//QtiMgYEfnIP2neDP/098aEHUskxnhjEHAGcCHwLPCBqo4CDgDn+ZPJn4DLVXUM8BTwc6+CNaYl0V4HYEyE+q+qVovIF4APqJ9+4gtgADAMGAm866YGwwfs8CBOY1plicQYb1QCqGqdiFRrQ2NlHe7/pQDLVXW8VwEaEyir2jImPK0GskVkPLhp70XkaI9jMqZJlkiMCUP+paEvB/7PPwPrYuBkT4MyphnW/dcYY0yHWInEGGNMh1giMcYY0yGWSIwxxnSIJRJjjDEdYonEGGNMh1giMcYY0yGWSIwxxnSIJRJjjDEdYonEGGNMh1giMcYY0yEhTSQiMlVEVovIOhG5v4n340TkBf/7n4vIgEbvPeDfv1pEzj7sPJ+ILKpfKMgYY4x3QpZIRMQHPAKcA4wArhaREYcddjOwV1UHA78H/s9/7gjgKuBoYCrwF//16n0HWBmq2I0xxgQulCWSccA6Vd3gn8l0GnDRYcdcBDztf/4f4Exxq/hcBExT1UpV3Qis818PEckFzgOeCGHsxhhjAhTKha36Alsavd4KnNjcMapaIyL7gEz//jmHndvX//wPwL1AcksfLiK3AbcBJCUljcnPz2/XH2GMMZFqwYIFxaqa3dpxXWqFRBE5HyhU1QUiMrGlY1X1MeAxgLFjx+r8+fNDH6AxxnQjIlIQyHGhrNraBuQ1ep3r39fkMSISDaQCu1s49xTgQhHZhKsqO0NEng1F8MYYYwITykQyDxgiIgNFJBbXeD79sGOmAzf4n18OzPSvXT0duMrfq2sgMASYq6oPqGquqg7wX2+mql7baiSLF8Odd0JZWTD+LmOMMY2ELJGoag1wBzAD18PqRVVdLiI/EZEL/Yc9CWSKyDrgbuB+/7nLgReBFcDbwO2qWtvuYGpr4S9/gcmToby83ZcxxhhzpIhYanesiM5/5RW47DK45hp45hmvQzLGmLAnIgtUdWxrx0XOyPaLL4Yf/hD++U94/32vozHGmG4jckokqnDwIAwfDikpsGgRREVOHjXGmLayEklT4uPhZz+DpUvhrbe8jsYYY7qFyEokAFdcAXl58Nvfeh2JMcZ0C5GRSEQansfEwLe/DR9+6EomxhhjOiQyEsnhbrzRJZSnn279WGOMMS2KzESSmQnnnw/PPQc1NV5HY4wxXVpkJhKA66+HXbvgnXe8jsQYY7q0yE0k554L6ekwbZrXkRhjTJcWuYkkNhYuuADeeAOqq72OxhhjuqzITSTgRrvv3QuffOJ1JMYY02VFdiI56yw3SPHVV72OxBhjuqzITiRJSS6ZvPoqRMBUMcYYEwqRkUgaD0g83IUXwpYtsGxZ58VjjDHdSGQkkpacfbZ7nDHD2ziMMaaLskSSmwsjRlgiMcaYdrJEAq5U8sknsH+/15EYY0yXY4kEXCKprISPP/Y6EmOM6XIskQBMmOC6AVv1ljHGtJklEoCEBJdMLJEYY0ybWSKpd9ZZsHIlbNvmdSTGGNOlRLd2gIhMCPBam1R1cwfj8c7kye7xvffghhu8jcUYY7qQVhMJcGOA13oFCM9E0tKAxHqjRkHPnpZIjDGmjVpNJKoaaCLp2qKi4MwzXSJRDSz5GGOMCbyNRESiROR4ETlPRM4QkZ6hDMwTU6bAzp2wfLnXkRhjTJcRSBvJIOA+YDKwFigC4oGhIrIfeBR4WlXrQhlop6hvJ3n3XRg50ttYjDGmiwikRPIz4FlgkKqerarXqurlqnoMcCGQClwXyiA7TV4eDBvmqreMMcYEJJA2kqtbeK8Q+EMwA/Lc5Mnwj39AVZVbRdEYY0yLAum1BYCIXNrS+6r6csfDCQNTpsAjj8CcOW6QojHGmBYFnEiAm4GTgZn+15OAz3BtJgp0j0QycaLrwfXuu5ZIjDEmAG0Z2R4DjFDVy1T1MuBoIEZVb1TVm0ITngdSU2HcOGsnMcaYALUlkeSp6o5Gr3cB/YIcT3iYMgXmzoWSEq8jMcaYsNeWRPK+iMwQka+JyNeAN4EWf7aLyFQRWS0i60Tk/ibejxORF/zvfy4iAxq994B//2oROdu/L09EPhCRFSKyXES+E1DkbR1cOHky1NXBhx+27TxjjIlAAScSVb0D+BtwrH97TFXvbO54EfEBjwDnACOAq0VkxGGH3QzsVdXBwO+B//OfOwK4Cld9NhX4i/96NcD3VHUEcBJwexPX7LiTToKkJNdOYowxpkVtnf13IfCmqn4XmCEiyS0cOw5Yp6obVLUKmAZcdNgxFwFP+5//BzhTRMS/f5qqVqrqRmAdME5Vd6jqQgBVLQNWAn3b+De0LjYWTj/d2kmMMSYAbZki5Vbcl/2j/l19gVdbOKUvsKXR660c+aV/6BhVrQH2AZmBnOuvBjse+DzQv6FNpkyBNWtgc3jOQ2mMMeGiLSWS24FTgFIAVV0LeDLfloj0AF4C7lLV0maOuU1E5ovI/Lq6dsze0nhaeWOMMc1qSyKp9FdRASAi0bjxI83ZBuQ1ep3r39fkMf7rpQK7WzpXRGJwSeS5lgZBqupjqjpWVcdGRbVj/a6jj4bevS2RGGNMK9ryDfuRiPwASBCRKcC/gddbOH4eMEREBopILK7xfPphx0wH6hf/uByYqarq33+Vv1fXQGAIMNfffvIksFJVf9eG2NtOxJVK3nvP9eAyxhjTpLYkkvtwo9i/AL4OvAX8sLmD/W0edwAzcI3iL6rqchH5iYhc6D/sSSBTRNYBdwP3+89dDrwIrADeBm5X1Vpc1dp1wBkisti/nduGv6FtJk+GoiL44ouQfYQxxnR14goArRzkut4uV9X80IcUfGNjYnR+dXXbT9y2DXJz4de/hu9/P/iBGWNMGBORBao6trXjAiqR+EsDq0Wka45kb+9qh337wvDh1k5ijDEtaMukjenAchGZC1TU71TVC5s/pRuYMgUefxwOHoT4eK+jMcaYsBPIColxqloJ/KgT4gk/kyfDH/8Is2fDpEleR2OMMWEnkBLJbGA0cIuqdo+VENti4kTw+eCddyyRGGNMEwJJJLEi8lXg5KYWt+o2C1o1JznZJZN//xseeqj97S3GGNNNBdLY/g3gNCANuOCw7fyQRRZOrrkG1q+HefO8jsQYY8JOIGu2zwJmich8VX2yE2IKP5deCt/8Jjz3nFv0yhhjzCGtlkhE5FSA5pKIiKSIyMhgBxZWUlPhvPNg2jSorPQ6GmOMCSuBVG1dJiKficiPReQ8ERknIhNE5CYR+SfwBpAQ4ji99/WvQ2GhSybGGGMOCXRkewZwGW6KkhzgAG7akzf9VV9hbWxcnM7vaElCFUaNguhoWLTIGt2NMd1eoCPbAxlHMkBVNwGP+7fIJOKmSbnxRteD64orvI7IGGPCQiBVW++JyP3+ad4j23XXwfHHw913w969XkdjjDFhIZDkcDzwE2CBiNyhqp+EOKbw5fPBo4/CqafCxRfDq69CevqXjykthQ0bICoKjjoKevTwItLwUFvrppY5fKusPPJ1dTWkpLj7mZ0N/fq5akRjTNgLqI0EQETGAO/jlr2tAwRQVT0mdOEFR1DaSBqbNg2uv9598U2Z4r4wt2yBdeuguLjhOJ8PTjsNbrsNvvKV7vPFWFjoptZftgyWL4cdO9x0+0VFUF4OBw64BNGeGZfrRUfDwIGQnw9jx8IJJ7gtKyt4f4cxpkWBtpEE2th+BvAwbm2RR3CJBABVLehAnJ0i6IkEYMEC+NWvYP5896WXmwuDBjVsqq5R/j//gbVrYcgQ+P3vXTfirkDVJcWVK922YkVD8igqajguM9P97dnZbktJgYQEN8Hl4Y/1W1zckc99Plea27sXdu1ySXntWve5K1e6eMDdxzPOcNukSe4zjTEhEbREIiLTcEvdflNVu+QKTyFJJIGqq4PXXoMHHoDVq+Hcc+G3v3W/tL1QWAiLF8OmTS4hFBfD7t2wZ4/7Eq/f9uyBqqqG85KS3PLDo0bByJFuGzUKevYMfQ+2sjKXuOfOhU8+gY8+cvvAxTB1KlxyCZx4oqtSNMYERTATyS3Au7S8PjtAiaqWBh5i5/E0kdSrqoI//xkefBD274dbb4Uf/ADy8lo+T9V9qRcUuMfkZDdAMjvbtSc098VZW+umdVmyxCWO+m379i8f16OHK1VkZLjrpac3PO/d263HMny4izNcvqRralximTkT3n/fJZaaGsjJcW1XN97oqsOsi7YxHRLMRPIBLom09L9SgX+o6jNtirKThEUiqVdYCD/9Kfztb660cuaZrh0lN9e9Lipy7S0FBa7UUFDg2h2a4vO5NoP6aqW0NPdLfdcuWLOmYRS+zwcjRsBxxzVsQ4e6c7vDGislJfDmm/DKK/DWW66N5thjXbL+2tdcacoY02ZBbSPp6sIqkdTbtAmefBJeesm1ATSWlgb9+8OAAW6rf56Z6ZJKSUlD43ZRkUtORUWuSio11SWIYcNcVdQxx7gk0h0SRiD27YPnn4cnnnCllsxM+Pa34Y47XEnLGBMwSySNjI2P1/kHD3odRvPKylwiiIpySSCSuwwH0+zZ8ItfwOuvu3t6zz3wve9ZCcWYAAV1zXYTYsnJbszJgAGWRIJp/HiYPh2WLoWzzoL/+R/X6+uJJ1wbkjEmKCyRmO5v1ChXhThrlkvWt97qGuPnzPE6MmO6BUskJnKccgp8+im88IKrShw/3g0W3b3b68iM6dIskZjIIuIm3Fy50rWXPPWU65jw5JOu15wxps0skZjIlJwMv/mNm31g+HC45RbXDfuLLjnm1hhPWSIxkW3UKPj4Y/j7393Ym9Gj4b77oKLC68iM6TIskRgj4gYurlrlHn/1Kzf25vXXvY7MmC7BEokx9TIz4fHH3Xxeyclw4YVw6aVupgFjTLMiY0BiQoLOP3DA6zBMV1Jd7WZrfvBBN1D0Jz9xI+RDtRRAaambG23jRjenWlmZm+ImIQESE928ZwMGuPFGNqDSdBIb2d6IJRLTbps2uelV3nzTzd/16KNuluGOUHXVaDNmuNH3c+bA5s2BnSviqt3GjXPT6J9zjq3RYkLGEkkjlkhMh6i61TDvvNPNnvz1r8NDDx25OmZrliyBp592o+3Xr3f7+vWDk05ySzgPHuxKHNnZboaDuDi3QFhFhfvcTZtcApo7Fz7/3I1/EXHjYa6+2m2ZmcH+600Es0TSiCUSExRlZW6alYcfdqWA3//efXm3NF19aWnDJJLz50NsrJvx+YIL3CJn/fq1L5a6Oli40JWUXn7ZTQMTEwPnnw833eTWaGlPNVx1tUt4K1e6xLVjR8NSyMnJLlHl5LjZo/PzoU8fm66/G7NE0oglEhNUixbBN77hSgZnngl/+pMbi1JP1TXY//3v8OKLbv2ZUaPc1CzXXBOaWYjrSzvPPedmg+7b1yWUm292s0e3pKDATcE/fbqrZmv8fyUz07XT+Hwuke7d27BaJbjkMmKEW+js6KPdNnKkSzZtSTC1ta70deBAw1Zd7T63fouOdo8xMS4h128+nyWzEAmLRCIiU3FL9PqAJ1T1l4e9Hwc8A4wBdgNXquom/3sPADcDtcC3VXVGINdsiiUSE3S1tfDYY27ly3374NRTYcwY9/zDD92v+eRkV2K55ZbOW2irutp1W378cdcGA27Cyltvdb3QYmLcvi1bYNo0N13MggVu38iRLjGefLJrD+rf/8jlB+rqXCll9WpXzbZyJSxffuQSzGlpLpnUL71cU+Niq67+crJonDTaS8QllLi4LyeYw7foaHdsa1tUVMN2+OvDt5beD/S9YD9v/He09ryp9+o3nw8591xvE4mI+IA1wBRgKzAPuFpVVzQ65lvAMar6DRG5CrhEVa8UkRHA88A4oA/wHjDUf1qL12yKJRITMrt2uelV/vMft8Z8UpJrCP/KV1zXYS97WBUUuClgnnoKtm51yyKfcQasW+eq2QBOOAEuv9zFOnhwxz6vqKghqaxY4V6XlroSWUxMw5aQ8OUtPv7IfQkJ7tja2iO3mhq34mhlpXs8fGtuf3W1K00FstXVNWyHvz58a+/7jffXPw8zAp4nkvHAg6p6tv/1AwCq+otGx8zwHzNbRKKBnUA2cH/jY+uP85/W4jWbYonERLTaWlc6eeIJ15bSty9MmQJXXdXx5GGCq3EiayrRNLWvqeeNjw/k+eGP/qQt48cHlEhC1CkegL5A45FcW4HD+00eOkZVa0RkH5Dp3z/nsHP7+p+3dk0AROQ24DaA4amp7fsLjOkOfD4491y3mfDWuIqpC+la0baBqj6mqmNVdWyi/eoyxpiQCWUi2QbkNXqd69/X5DH+qq1UXKN7c+cGck1jjDGdKJSJZB4wREQGikgscBUw/bBjpgM3+J9fDsxU12gzHbhKROJEZCAwBJgb4DWNMcZ0opC1kfjbPO4AZuC66j6lqstF5CfAfFWdDjwJ/FNE1gF7cIkB/3EvAiuAGuB2Va0FaOqarcWyYMGCchFZHfy/skvKAoq9DiJM2L1oYPeigd2LBsMCOSgiBiSKyPxAeh5EArsXDexeNLB70cDuRYNA70W3bWw3xhjTOSyRGGOM6ZBISSSPeR1AGLF70cDuRQO7Fw3sXjQI6F5ERBuJMcaY0ImUEokxxpgQsURijDGmQ7p9IhGRqSKyWkTWicj9XsfjFRF5SkQKRWSZ17F4TUTyROQDEVkhIstF5Dtex+QVEYkXkbkissR/L/7X65i8JCI+EVkkIm94HYvXRGSTiHwhIotFZH6Lx3bnNpJAprKPFCIyASgHnlHVkV7H4yURyQFyVHWhiCQDC4CLI/TfhQBJqlouIjHALOA7qjqnlVO7JRG5GxgLpKjq+V7H4yUR2QSMVdVWB2d29xLJOGCdqm5Q1SpgGnCRxzF5QlU/xs0eEPFUdYeqLvQ/LwNW0jC7dERRp9z/Msa/dd9fly0QkVzgPOAJr2Pparp7ImlqKvuI/MIwTRORAcDxwOceh+IZf3XOYqAQeFdVI/Ve/AG4Fwi/Faa8ocA7IrLAvyxHs7p7IjGmWSLSA3gJuEtVS72OxyuqWquqx+Fm0x4nIhFX9Ski5wOFqrrA61jCyKmqOho4B7jdXz3epO6eSGzaedMkf3vAS8Bzqvqy1/GEA1UtAT4ApnocihdOAS70twtMA84QkWe9DclbqrrN/1gIvIJrKmhSd08kNu28OYK/gflJYKWq/s7reLwkItkikuZ/noDrmLLK06A8oKoPqGquqg7AfU/MVNVrPQ7LMyKS5O+IgogkAWcBzfb47NaJRFVrgPpp51cCLwYy7Xx3JCLPA7OBYSKyVURu9jomD50CXIf71bnYv0XqOrQ5wAcishT3w+tdVY34rq+GXsAsEVmCWwvqTVV9u7mDu3X3X2OMMaHXrUskxhhjQs8SiTHGmA6xRGKMMaZDLJEYY4zpEEskxhhjOsQSiTEBEpHaRt2FF/unVwn2Z9wlItf7n/9DRC4/7P3yps8EEYkVkY9FJDrYcRnTEvsHZ0zgDvinEjmCf5CjqGq752nyJ4CbgNHtOV9Vq0TkfeBK4Ln2xmFMW1mJxJh2EpEB/rVunsGN+s0TkXtEZJ6ILG28toeI/D8RWSMis0TkeRH5fhOXPANY6B9I29pn/6RRyWibiPzd/9arwDVB+POMCZglEmMCl9Doy/sV/74hwF9U9WhgmP/1OOA4YIyITBCRMbhpN44DzgVOaOb6p+DWRmns142r0+p3quqP/aWjibjlAf7sf2tZC9c3JiSsasuYwH2pasvfRlLQaBGos/zbIv/rHrjEkgy8oqr7/ec1N99bDm4qn8buUdX/NPrM8kbPBXgW+F39rLWqWisiVSKS7F9rxZiQs0RiTMdUNHouwC9U9dHGB4jIXQFe6wAQ34bPfhDYqqp/P2x/HHCwDdcxpkOsasuY4JkB3ORf5wQR6SsiPYGPgYtFJME/o+oFzZy/EhgcyAeJyAXAZODbh+3PBIpVtbqdf4MxbWYlEmOCRFXfEZHhwGxX60Q5cK1/bfgXgCW4VQjnNXOJ/wL/DPDj7sat9jnX/1nTVfXHwCTgzfb/Fca0nc3+a0wnE5EHgXJV/U0T770C3Kuqa9t57ZeB+1V1TceiNCZwVrVlTHi5H9fo3mb+xdtetSRiOpuVSIwxxnSIlUiMMcZ0iCUSY4wxHWKJxBhjTIdYIjHGGNMhlkiMMcZ0yP8HVyzU7k+ke9YAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "Env = Environment(\n", + " railLength=5.2, latitude=32.990254, longitude=-106.974998, elevation=1400\n", + ")\n", + "\n", + "Env.setAtmosphericModel(type=\"CustomAtmosphere\", wind_v=-5)\n", + "\n", + "# Prepare Motor\n", + "Pro75M1670 = SolidMotor(\n", + " thrustSource=\"../../data/motors/Cesaroni_M1670.eng\",\n", + " burnOut=3.9,\n", + " grainNumber=5,\n", + " grainSeparation=5 / 1000,\n", + " distanceNozzleMotorReference=0.39796,\n", + " grainDensity=1815,\n", + " grainOuterRadius=33 / 1000,\n", + " grainInitialInnerRadius=15 / 1000,\n", + " grainInitialHeight=120 / 1000,\n", + " nozzleRadius=33 / 1000,\n", + " throatRadius=11 / 1000,\n", + " interpolationMethod=\"linear\",\n", + ")\n", + "\n", + "# Prepare Rocket\n", + "Calisto = Rocket(\n", + " motor=Pro75M1670,\n", + " radius=127 / 2000,\n", + " mass=19.197 - 2.956,\n", + " inertiaI=6.60,\n", + " inertiaZ=0.0351,\n", + " distanceRocketNozzle=-1.255,\n", + " powerOffDrag=\"../../data/calisto/powerOffDragCurve.csv\",\n", + " powerOnDrag=\"../../data/calisto/powerOnDragCurve.csv\",\n", + ")\n", + "\n", + "Calisto.setRailButtons([0.2, -0.5])\n", + "\n", + "Nose = Calisto.addNose(length=0.55829, kind=\"vonKarman\", distanceToCM=0.71971)\n", + "FinSet = Calisto.addFins(\n", + " 4, span=0.1, rootChord=0.120, tipChord=0.040, distanceToCM=-1.04956\n", + ")\n", + "Tail = Calisto.addTail(\n", + " topRadius=0.0635, bottomRadius=0.0435, length=0.060, distanceToCM=-1.194656\n", + ")\n", + "\n", + "# Simulate first 5 seconds of Flight\n", + "TestFlight = Flight(\n", + " rocket=Calisto,\n", + " environment=Env,\n", + " inclination=90,\n", + " heading=0,\n", + " maxTimeStep=0.01,\n", + " maxTime=5,\n", + ")\n", + "TestFlight.postProcess()\n", + "\n", + "# Perform a Fourier Analysis\n", + "Fs = 100.0\n", + "# sampling rate\n", + "Ts = 1.0 / Fs\n", + "# sampling interval\n", + "t = np.arange(1, 400, Ts) # time vector\n", + "ff = 5\n", + "# frequency of the signal\n", + "y = TestFlight.attitudeAngle(t) - np.mean(TestFlight.attitudeAngle(t))\n", + "n = len(y) # length of the signal\n", + "k = np.arange(n)\n", + "T = n / Fs\n", + "frq = k / T # two sides frequency range\n", + "frq = frq[range(n // 2)] # one side frequency range\n", + "Y = np.fft.fft(y) / n # fft computing and normalization\n", + "Y = Y[range(n // 2)]\n", + "fig, ax = plt.subplots(2, 1)\n", + "ax[0].plot(t, y)\n", + "ax[0].set_xlabel(\"Time\")\n", + "ax[0].set_ylabel(\"Signal\")\n", + "ax[0].set_xlim((0, 5))\n", + "ax[1].plot(frq, abs(Y), \"r\") # plotting the spectrum\n", + "ax[1].set_xlabel(\"Freq (Hz)\")\n", + "ax[1].set_ylabel(\"|Y(freq)|\")\n", + "ax[1].set_xlim((0, 5))\n", + "plt.subplots_adjust(hspace=0.5)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Apogee as a Function of Mass\n", + "\n", + "This one is a classic one! We always need to know how much our rocket's apogee will change when our payload gets heavier." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAA+Q0lEQVR4nO3dd3xUVfr48c+TRhok1FBCbwpKSyBBUcCCuqJYVkUFURFsu7prW1lX/a6ra9vfWlZdRUBRQEAUYQVEVKKi0juCGopCAAGpoZfn98c9wSGmDEkmM5k879drXrn33PacJDPP3HPuPVdUFWOMMaYoEcEOwBhjTOizZGGMMaZYliyMMcYUy5KFMcaYYlmyMMYYUyxLFsYYY4plycIUSUTOEpHvgh1HQUSkh4hsCHYcgSYiF4jIByXY7j0RuSgAIQWdiDwpIn8qo33NFZG2ZbGvcGbJIkyJyDoR2S8iuT6vl/zYTkWkRd68qn6pqq0DFOObIvJ4IPbtcwwRkTUi8m0gjxNgTwBP5c24v9EWEYnyKYt2Zb43Tj0NlMnv1yVmFZGJ+crbu/KssjiOn7HUBm4AXvOJbYPP8hgReV9EvhKRan7s8l/AY4GJNnxYsghvl6hqos/rD8EOKAjOBuoAzUSkc7CDOVku5iRVnZ1v0Q7A96zhIld2nKrOBaqJSHoZhbMV6CoiNX3KBgDfl9H+/XUjMFVV9+dfICJVgPeBZKCXqu72Y3+TgZ4iUrcsgww3liwqIRFpISKfi8guEdkmIuNc+RdulSXuTOSaAr61rROR+0VkqYjsFZHhIpIiItNEZI+IfCIi1X3Wf1dENrtjfZF3ui8ig4HrgQfcsf7nyuu75pOtIrJWRO7y2VecOxvZ4c4U/PnwHwBMAqa6ad/fQ5ZrzpgrIrtFZJKI1PBZfqmIrBCRnW7dU32WdRKRRa7O74rION+zJBHpLSKL3bZfi0g7n2WF1rEAFwGfF1D+Nt636zw3AG8VsF4WcHFBOxaRv4jInLwzFBG53dU3tpBYDgEfAH3d+pHANcDofPt9QUTWu9/pAhE5y2dZFxGZ75b9LCL/duWxIjJKRH5xv7N5IpJSSBwF/k5EJB74HxAFXKyqe115nIiMdP83K0XkAd//aVU9ACwALijkeAZAVe0Vhi9gHXBeIcveAR7C+7IQC3TzWaZAC5/5HsCGfPudDaQADYAtwEKgo9vXZ8CjPuvfDFQFqgDPA4t9lr0JPO4zH4H3pn0EiAGaAWuAC9zyp4AvgRpAQ2C5b2wF1DMe2A38DrgS2AbE+CzPAnKA04AE4D1glFvWCtgLnA9EAw8A2S6uGOBH4G637Aq8D9LH3bYd3e8lA4jES1Lr3O+gyDoWUId3gfvzlamL+We8b9DV3fRp3lv6hHXvAd4vZN8RwBfA/wEt8c5MOhaybg9gA3AGMMeV/Q6YDtwCZPms2w+oifehfS+wGYh1y74B+rvpRCDTTd+K90Ef735naUC1QmLZCnTOF9tWvAQyGaiSb/2n3LLqQCqwNP//DfAi8O9gv29D+WVnFuHtA/ctLe81yJUfBhoD9VX1gKrOOsn9/kdVf1bVHLwP7zmquki9b2gT8T4sAVDVEaq6R1UP4n0otReRpEL22xmoraqPqeohVV0DvI77JgtcDTyhqttVdT3eG7woVwAHgY+BKXgf7Pm/Zb+tqsvV+xb6MHC1zzfmKao6Q1UP47Vrx+F9WGbifRC+qKqHVfV9YK7PPgcDr6nqHFU9qqojXRyZftQxv2RgTwHlB/A+XK9xr8muLL89bh+/oarH8M5I7nLbP6OqiwqJI2+br4EaItKaQs5mVHWUqv6iqkdU9f/hJcm8fq/DQAsRqaWqufpr89phvATTwv3OFmjhTUjJ/PZ3UhXoCox0/2u+rgb+qao7VHUDBf/fFPp7Mh5LFuHtMlVN9nm97sofAASY65odbj7J/f7sM72/gPlE8JopROQpEVktIrvxvl0D1Cpkv42B+r4JDvgr3lkMQH1gvc/6PxYT5wBgvPvQOoB35jAg3zr59xft4qvvu3/3wboe72yqPpCj7itpAftpDNybrx4N3XbF1TG/HXgfhAV5C+8Du7AmKNy2OwtZhqquA2YCTYCXC1svn7eBPwA98b4cnEBE7nPNPbtc/ZL49W8+EO+sbZVraurts8/pwFgR2Sgiz4hIdCHHL+h3sg0v4Y4UkfzNSfn/b9bzW0X+noz37chUMqq6GRgEICLdgE9E5AtVzS7jQ10H9AHOw0sUSXhvdMkLJd/664G1qtqykP1twvvQXeHmGxV2YBFJBc4BuojIla44Hoh132q3ubKGPps1wvuGuw3YCJzusz9x6+a4uBuIiPgkjIbAap96PKGqTxQQV9di6pjfUrwP14J8CdRz8cwCmhewzqnAksJ2LiIX430j/xR4Fq85qDhv4zXJvaWq+7xfzfH9nYX3ZeRcYIWqHhOR439zVf0BuFZEIvDO/CaISE13Zvd34O8i0gSvj+k7YHgBx8/7nczzLVTV98Xr4J4gIpeq6ky3aBNe81PeFXG+f/M8pwKj/Kh7pWVnFpWQiFzlPkzB+/BW4Jib/xmvHb0sVMVrfvkF74P6n/mW5z/WXGCP63iNc2cmp8mvVzGNB4aISHUX/x+LOHZ/vKt0WgMd3KsVXrv7tT7r9RORNq5z9DFggqoedce6WETOdd9w73V1+Rqv3f0o8AcRiRKRPkAXn32+DtwmIhniSRCRi0Wkqh91zG8q0L2gBS5RXQJcmu8sx1d3YFpBC0SkFjAMr89hAHCJiPyukP34Hnet2+9DBSyuChzB60OIEpFHgOOXr4pIPxGp7c7UdrriYyLSU0ROd02Au/GS9jEKVtTv5B28s55JInKmK/b9v2nglh/nOvTTgBlF17xys2QR3v4nJ95nkddk0BmYIyK5eG3Vd7u2c/D6FUa6JpKrS3n8t/CacnLwvtXlv/xzONDGHesD9yHdG++DfS3eN/xheGck4H3z/NEt+xjvG25hBgCvqOpm3xfwKic2Rb2N19G+Ga+D/i4AVf0Or6P2Py6OS/AuRT6kqofwvhUPxPvA6wd8iJdMUNX5eGduL+El42y8yz3xo44nUNWFwC4RyShk+QpVXVHQMpeActW7hLYgQ4FJqjpVVX9x9RkmJ14aWyBVnaWqGwtYNB34CC9R/4jXj+Lb7HMhsML9770A9FXvEti6wAS8RLESr0O6sL/vW8DvRCSukNhG4iX3KSLSBe9LwAa83/cn7ji+/RqX4HXQF1Qf40jhX0iMCW/i3Ug2SlWHlcG+5gCvquobpQ7st/vuBdyhqped5HbvAcNVdWpZxxRsIvJPYIuqPl+CbW/HS1Ld3fwcYKCqLi/bKMOLJQtTaZUmWYhId7w29W1494u8CjRT1U1lGqQpNRGph9fc+Q3eJcJTgJdKkmgqM+vgNqZkWuO1hSfg3Sfxe0sUISsGb2iQpnjNhmOBV4IZUEUU0DMLEVmHd/3yUeCIqqb7LLsX79r12qq6zV1t8gLejT77gBtdey0iMgD4m9v0cdcmaYwxppyUx5lFT5/LFAEQkYZAL+Ann+KL8E4RW+Ld+fpfIEO84RceBdLxrtpZICKTVfWEcXCMMcYETrCaoZ7DuxZ7kk9ZH7zrthWYLSLJrq2xBzBDVbcDiMgMvCsq3ils57Vq1dImTZqUOLi9e/eSkJBQ4u1DRbjUA6wuoSpc6hIu9YDS1WXBggXbVLV2QcsCnSwU+Fi8YZNfU9Wh7pr0HFVd4nszD96dsb6X2G1wZYWVF6pJkybMnz+/xEFnZWXRo0ePEm8fKsKlHmB1CVXhUpdwqQeUri4iUuioCIFOFt1UNUdE6gAzRGQV3tAGvcr6QOKNYjoYICUlhaysrBLvKzc3t1Tbh4pwqQdYXUJVuNQlXOoBgatLQJOFG2gOVd3ibgjrjndFQt5ZRSqw0N04k8OJt+GnurIcvKYo3/KsAo41FO8mI9LT07U03xLC5VtGuNQDrC6hKlzqEi71gMDVJWB3cLshDqrmTeOdTcxT1Tqq2kRVm+A1KXVyd9ZOBm5wwyNkArvcpYjTgV7uVv3qbj/TAxW3McaY3wrkmUUKMNGdQUQBY1T1oyLWn4p32Ww23qWzNwGo6nYR+Qe/Dhr2WF5ntzHGmPIRsGThxhpqX8w6TXymFbizkPVGACPKMj5jjDH+s4EEjTHGFMuShTHGmGLZ2FA+jh5TnvloFYd+OUz82u00q51AzYQY8t0PYowxlY4lCx9b9hzgja/XcejIMd5Y8Q0A1WKjaF4nkWa1EmlWO4HmtRNoXjuRRjXjqRIVGeSIjTGmfFiy8FEvKY6Vj13I+x/NpHbz01i9dS9rtuayZuteZmVv5b2FG46vGyHQsEY8zWsn0qxWAs1q5yWTRGol2tmIMSa8WLLIJzJCqB0fQY/WdejR+sRlew4cZu22vaxxSWT11r2s3prLV9nbOHjk1ydA1q5ahfapSZzeIJl2DZNon5pMjYSYcq6JMcaUHUsWJ6FqbDTtUpNpl5p8QvmxY8rGXftZvXUv2VtyWZGzi6U5u/h01RbyRoBvkBxH+4ZJbvskTmuQRLXY6PKvhDHGlIAlizIQESGkVo8ntXo83Vv9OmDjngOHWZ6zm6UbdrI0ZxdLN+xk6rLNx5c3q51A+9RkTm+QRPuGSbSpl0RcjPWDGGNCjyWLAKoaG03X5jXp2rzm8bLtew+xLGcXS9fvZMmGXXy9ehsTF+UAXhNYyzqJZDStwZktapHZvKadfRhjQoIli3JWIyGG7q1qn3AG8vPuAyxZv5NlObtYvH4n4+dvYOQ3PxIh0C41mW4tanFmi1p0apxsV2AZY4LCkkUISKkWS6+2denVti4AB48cZdFPO/k6exuzsrfx389X89LMbGKjI+jcpMbx5NGmXjUiIuyqK2NM4FmyCEFVoiLJbFaTzGY1uadXa/YcOMycNduZlb2Nr7K38eS0VQBUj/eauc5sUYtuLWrRqEa8XbJrjAkISxYVQNXYaM5rk8J5bVIAr9nq69XbmPXDL3y9etvxTvMGyXF0a1GLnqfUOaGZyxhjSsuSRQWUUi2WyzumcnnHVFSVNdv2Hm+ymrp8E+Pmryc2OoI21YVfqm7g3FPrkBxv93kYY0rOkkUFJyI0r51I89qJ9O/ahMNHjzF37Xamr9jM/xb+xL3vLiEyQshsVoML2talV5u61E2KDXbYxpgKxpJFmImOjOBM1wHeo9pWarToyPQVm5m+YjOPTFrBI5NW0L5hMhe0TeGCtnVpXjsx2CEbYyoASxZhLEKEDg2T6dAwmb9ceArZW/YwfcXPTF+xmWc++o5nPvqOFnUSjyeO0xskWQe5MaZAliwqkRZ1qtKiTlXu7NmCjTv38/GKzUxf8TOvfr6Gl2eupn6Sdwlv73b1SGtc3RKHMeY4SxaVVP3kOG48syk3ntmUHXsP8cnKn5m+4mfemfsTb369joY14ujTvgGXdWxAizrWVGVMZWfJwlA9IYar0htyVXpDcg8e4eMVm5m4KIdXsrJ5aWY2pzdI4rKODbikfT3qVLXOcWMqo4AmCxFZB+wBjgJHVDVdRJ4FLgEOAauBm1R1p1t/CDDQrX+Xqk535RcCLwCRwDBVfSqQcVdmiVWiuKJTKld0SmXLngP8b8kmPliUwz8+/JYnpnzLmS1qcXnHBlzQti4JVey7hjGVRXm823uq6jaf+RnAEFU9IiJPA0OAv4hIG6Av0BaoD3wiIq3cNi8D5wMbgHkiMllVvy2H2Cu1OlVjGditKQO7NSV7Sy6TFucwcVEO94xfQlz0cs5vk8LlHRvQrWUtoiPtce7GhLNy/2qoqh/7zM4Gfu+m+wBjVfUgsFZEsoEublm2qq4BEJGxbl1LFuWoRZ1E7u3VmnvOb8WCH3cwcVEOU5ZtYvKSjdRMiOGS9vXp06E+HRomW8e4MWFINO/pPIHYuchaYAegwGuqOjTf8v8B41R1lIi8BMxW1VFu2XBgmlv1QlW9xZX3BzJU9Q/59jUYGAyQkpKSNnbs2BLHnZubS2Jixe/UDXQ9jhxTlm07ytcbj7Boy1GOHIOUeOHMBlGc1SCK6rFld7YRLn8TsLqEonCpB5SuLj179lygqukFLQv0mUU3Vc0RkTrADBFZpapfAIjIQ8ARYHRZHMgloqEA6enp2qNHjxLvKysri9JsHyrKox7nAX8Gdh84zEfLNzNxYQ7v//ALH2Qf5pxT6tC3cyN6tK5NVCmbqcLlbwJWl1AULvWAwNUloMlCVXPczy0iMhGvWekLEbkR6A2cq7+e2uQADX02T3VlFFFuQkS12GiuTm/I1ekNWbdtL+Pnr+fdBRv4ZOV8UqpV4aq0hlzTuSENa8QHO1RjTAkErFdSRBJEpGreNNALWO6ubHoAuFRV9/lsMhnoKyJVRKQp0BKYC8wDWopIUxGJwesEnxyouE3pNamVwAMXnsLXD57D0P5ptK2fxCtZ2Zz1zEz6DZvDh0s3cvDI0WCHaYw5CYE8s0gBJrrOzihgjKp+5Dquq+A1S4HXT3Gbqq4QkfF4HddHgDtV9SiAiPwBmI536ewIVV0RwLhNGYmOjDj+UKdNu/bz7vwNjJu3nj+MWUSNhBiu6NiAvl0a0qJO1WCHaowpRsCShbt6qX0B5S2K2OYJ4IkCyqcCU8s0QFOu6iXFcde5LbmzZwu+yt7G2Hk/MfKbdQybtZb0xtXp26URF59ej7gYe2ysMaHI7qoy5SoyQji7VW3OblWbbbkHeX/hBsbOXc997y7h75NX0Kdjfa7t0oi29ZOCHaoxxoclCxM0tRKrMPjs5gw6qxnz1u1g7NyfeHf+BkbN/omOjZLpl9GYi9vVIzbazjaMCTZLFiboRIQuTWvQpWkNHr2kLRMWbmD0nB+5990l/GPKt1yVlkoLjgU7TGMqNUsWJqQkxUczsFtTbj6zCd+s/oVRc37kja/WceSY8uHmOVyf0ZjzTq1T6vs2jDEnx5KFCUkiwhktanFGi1ps2X2AJ8d/wewtudw2agF1q8XSt0tDru3SiJRqNgquMeXBvp6ZkFenWix9WsTw5QM9Gdo/jVZ1q/L8Jz9wxlOfcfuoBXyVvY1ADltjjLEzC1OBRPnct/HjL3sZM+cnxs9fz7Tlm2lWK4HrMhrx+7RUkuNjgh2qMWHHzixMhdS4ZgJDfncq3ww5l39f3Z7k+Ggen7KSjH9+yj3jFvPN6l/sbMOYMmRnFqZCi42OPP6wpm837mb0nB+ZvHgj7y/KoXHNeK5KS+XKtFTqJcUFO1RjKjQ7szBho039ajxx+enMfeg8nrumPfWSYvnXx99z5lOfceMbc5m6bBOHjtgluMaUhJ1ZmLATFxPJ5R1TubxjKj/+spcJCzYwYcEG7hi9kBoJMVzWoQFXd07llLrVgh2qMRWGJQsT1hrXTODeXq3503mt+PKHrbw7fwNvz17HiK/W0i41iavTG3JJ+/okxUUHO1RjQpolC1MpREYIPVrXoUfrOmzfe4gPFuUwfv56/vbBcv7x4bf87vR6XJWeSmbTmkRE2GNhjcnPkoWpdGokxHBzt6bcdGYTluXsYvz89UxavJGJi3JoVCOeG7o25vqMxjYCrjE+LFmYSktEaJeaTLvUZP52cRumr9jM6Dk/8fiUlbz2xRpu696c6zMa2UCGxmBXQxkDeJfg9unQgPG3dmXc4Exa1knkHx9+y1nPzGTErLUcOGxP9jOVmyULY/LJaFaTMYMyGTs4kxa1E3nMkoYxliyMKUxms5q8MziTdwZl0qxWAo99+C1nPzOTN76ypGEqH0sWxhSja/OajLu1K+8MyqRJrQT+/r9v6f7sTN60pGEqkYAmCxFZJyLLRGSxiMx3ZTVEZIaI/OB+VnflIiIviki2iCwVkU4++xng1v9BRAYEMmZjCtO1eU3G39qVMYMyaFwjgf9zSWPk1+ssaZiwV2SyEJGuIvKy+/DeKiI/ichUEblTRPx9SHJPVe2gqulu/kHgU1VtCXzq5gEuAlq612Dgvy6GGsCjQAbQBXg0L8EYEwxnNK/FuFszGXNLBo1qxPPo5BX0eDaLt75Zx8EjljRMeCo0WYjINOAWYDpwIVAPaAP8DYgFJonIpSU4Zh9gpJseCVzmU/6WemYDySJSD7gAmKGq21V1BzDDxWNM0OQ9nGn8rV0ZfUsGqdXjeGSSlzQmLNhgI96asCOF/VOLSC1V3VbkxsWsIyJrgR2AAq+p6lAR2amqyW65ADtUNVlEPgSeUtVZbtmnwF+AHkCsqj7uyh8G9qvqv/IdazDeGQkpKSlpY8eOLbbyhcnNzSUxMbHE24eKcKkHhH5dVJWV248x4ftDrNl1jLY1IxjQtgp14n/7fSzU63IywqUu4VIPKF1devbsucCnFegEhd6UV1yi8HOdbqqaIyJ1gBkisirf9ioiZfIVTFWHAkMB0tPTtUePHiXeV1ZWFqXZPlSESz2gYtSlJ3DbMWXM3J94atoqHvnmIH86rxW3dGt6wjPDK0Jd/BUudQmXekDg6lJUM9QeEdnt89rj+9Ofnatqjvu5BZiI1+fws2tewv3c4lbPARr6bJ7qygorNybkREQI/TIb88k93Tm7ZW2emraKPi9/xbINu4IdmjGlUlQH96fAt8DjwGmqWlVVq+X9LG7HIpIgIlXzpoFewHJgMpB3RdMAYJKbngzc4K6KygR2qeomvD6TXiJS3XVs93JlxoSsukmxDL0hnVf7dWLLnoP0eXkWT0z5ln2HjgQ7NGNKpKhmqMvcFU9XAK+LSCwwDhirqtv92HcKMNHrliAKGKOqH4nIPGC8iAwEfgSudutPBX4HZAP7gJtcHNtF5B/APLfeY34e35igu/C0enRtXounpq3i9S/X8tGKzVzT7Bg9gh2YMSepyIEEVXUX8IaIjAT6Ai/iXQn17+J2rKprgPYFlP8CnFtAuQJ3FrKvEcCI4o5pTChKiovmyStO57IO9RkycRn/mr+fNUcX87febaiREBPs8IzxS3H3WZwhIv8BFgJnAJerarGJwhjzWxnNajL1rrO4pHk0k5ds5Lx/f87ERXaZrakYiurgXge8gteZPBjvm/1eEenke3e1McZ/sdGRXNkyhil3nUXjmvH8edwSBrwxj/Xb9wU7NGOKVFQz1Dq8+yMuwOtU9n18mALnBC4sY8Jb67pVmXDbGYya/SPPfLSKXs99wb29WnHjGU1OuMzWmFBRVAd3j3KMw5hKJzJCGHBGE85vk8LDHyzn8SkrmbR4I89e1Y5T6hZ7waEx5aqoZqhuRW0oItVE5LSyD8mYyqV+chzDBqTz0nUd2bRrP5e9/BUTF20IdljGnKCoZqgrReQZ4CNgAbAV70qoFng3qzYG7g14hMZUAiJC73b16dK0Bn8Ys4g/j1vC4p928tDFbYiJsmYpE3xFNUP92Y34eiVwFd5AgvuBlXjjPM0qnxCNqTzqVI1l9C0ZPD1tFcNmrWX5xt28cn0nUqrFBjs0U8kVd5/FduB19zLGlIPoyAj+1rsNHRol88CEpVz84ixeuq4jmc1qBjs0U4nZ+a0xIap3u/pMuvNMqsVFcf2wOQz7co3dk2GCxpKFMSGsZUpVJt15JuefmsLjU1byh3cWsfegjS9lyp8lC2NCXNXYaP7brxMPXnQK05Ztos/LX7F6a26wwzKVTLHJQkTiReRhEXndzbcUkd6BD80Yk0dEuK17c0YNzGD73kP0eekrPlq+KdhhmUrEnzOLN4CDQFc3n4M3bLkxppyd0aIWH/6xG83rJHLbqIU8NW0VR44eC3ZYphLwJ1k0V9VngMMAqrqPE4f+MMaUo/rJcYy/NZPrMhrx6ueruWHEXLblHgx2WCbM+ZMsDolIHN54UIhIc7wzDWNMkFSJiuSfl5/Os79vx4Ifd3DJf2ax6KcdwQ7LhDF/ksWjeHdxNxSR0XhP0HsgoFEZY/xyVXpD3rv9DCIjhGtem83oOT/a5bUmIIpNFqo6A+9peTcC7wDpqpoV2LCMMf46rUESH/6xG12b1+Shict5eNJyjh2zhGHKlj9XQwlwEZCmqh8C8SLSJeCRGWP8lhwfw4gbO3Nr92aMmv0T9727xDq+TZkqcrgP5xXgGN7zKx4D9gDvAZ0DGJcx5iRFRghDLjqVarHRPDv9O/YdOsqL13a0gQhNmfDnvyhDVe8EDgCo6g7A7wcHi0ikiCwSkQ/d/LkislBEFovILBFp4cqriMg4EckWkTki0sRnH0Nc+XcicsHJVNCYyubOni14pHcbPlqxmcFvz+fA4aPBDsmEAX+SxWERieTXq6Fq451p+OtuvJFq8/wXuF5VOwBjgL+58oHADlVtATwHPO2O1wboC7QFLgRecfEYYwpxc7emPHXF6Xz+/VZufGMuuTZEiCklf5LFi8BEoI6IPAHMAv7pz85FJBW4GBjmU6xA3mPAkoCNbroPMNJNTwDOdf0lfYCxqnpQVdcC2YD1mRhTjL5dGvH8NR2Yt24H/YbNYde+w8EOyVRg4s9ldiJyCnAu3s14n6rqymI2ydtuAvAkUBW4T1V7i8hZwAd4z8bYDWSq6m4RWQ5cqKob3LargQzg/4DZqjrKlQ8HpqnqhHzHGgwMBkhJSUkbO3asPyEWKDc3l8TExBJvHyrCpR5gdSmNhT8f4ZXFB6mXGMH96bFUq1J299SGy98lXOoBpatLz549F6hqeoELVbXIF1CjgFe0H9v1Bl5x0z2AD930+3j9IAD3A8Pc9HIg1Wf71UAt4CWgn0/5cOD3RR07LS1NS2PmzJml2j5UhEs9VK0upfX5d1u09d+m6jn/mqmbdu4vs/2Gy98lXOqhWrq6APO1kM9Vf5qhFuI9UvV74Ac3vc51UqcVsd2ZwKUisg4YC5wjIlOA9qo6x60zDjjDTecADQFEJAqvieoX33In1ZUZY/x0dqvavHVzBj/vPshVr33N+u37gh2SqWD8SRYzgN+pai1VrYl3z8WHwB14l9UWSFWHqGqqqjbB66D+DK//IUlEWrnVzufXzu/JwAA3/XvgM5fpJgN93dVSTYGWwNyTqKMxBujStAajbslg9/4jXPXqNzbMuTkp/iSLTFWdnjejqh8DXVV1NlDlZA6mqkeAQcB7IrIE6I/XFAVe81JNEckG7gEedNusAMYD3+INO3Knqtq1gMaUQIeGyYwdnMmRY8e45rVvWLlpd7BDMhWEP8lik4j8RUQau9cDwM/u8lW/LqFV1SxV7e2mJ6rq6araXlV7qOoaV35AVa9S1Raq2iWv3C17QlWbq2prVZ1WgnoaY5xT61Vj3K1diYqIoO/Q2SxevzPYIZkKwJ9kcR1eP8EH7tXIlUUCVwcqMGNM4DSvnci7t3UlKS6afsPmMGfNL8EOyYQ4fwYS3KaqfwTOBs5S1T+o6lZVPaSq2YEP0RgTCA1rxDP+1q6kVKvCgDfm8vn3W4Mdkglh/gwkeLqILMK7tHWFiCwQkdMCH5oxJtDqJsUy7tauNKuVyKCR85m+YnOwQzIhyp9mqNeAe1S1sao2Bu4FhgY2LGNMeamVWIV3BmXSpn417hi9kEmL7cp081v+JIsEVZ2ZN6PesywSAhaRMabcJcVHM+qWDNIbV+fP4xbzwSJLGOZE/iSLNSLysIg0ca+/AWuK3coYU6EkVonijZs6k9G0JveMX8z7CzcEOyQTQvxJFjcDtfGG6XjfTd8cyKCMMcERHxPFiBs7k9msJve+u4QJCyxhGE+xDz9S7/kVd4lIEnBMVfcEPixjTLDExUQyfEBnBr01n/snLEFVuSq9YfEbmrDmz9VQnUVkGbAEWCYiS4oZE8oYU8HFxUQybEA63VrU4oH3ljJ+3vpgh2SCzJ9mqOHAHaraxI3zdCfwRkCjMsYEXWx0JK/fkM5ZLWvzwHtLGTv3p2CHZILIn2RxVFW/zJtR1VmAPXbLmEogNjqSof3T6N6qNg++v4wxcyxhVFb+JIvPReQ1EekhIt1F5BUgS0Q6iUinQAdojAmu2OhIXuufRs/WtfnrxGWMnvNjsEMyQVBsBzfQ3v18NF95R7xHpJ5TphEZY0JObHQkr/ZP4/ZRC3lo4nKOKfTPbBzssEw58udqqJ75y0QkRVV/DkxIxphQVCUqkv/268Sdoxfy8AfLUVUaBTsoU278aYYCQESSRWSgiHwKLApgTMaYEFUlKpJXrk/j/DYpPDJpBTN+PBzskEw5KTJZiEiciPQVkcnAMuD/Af/AG7LcGFMJxURF8PJ1nejVJoXRKw8xYtbaYIdkykGhyUJExuA9d/t84D9AE2CHe5CRXw89MsaEp5ioCF6+vhNpKZE89uG3DPvSRgAKd0X1WbQBduA9I3ulqh4VES2fsIwxoS46MoLb21fhvY3VeHzKSgBuOatZkKMygVLomYWqdsB7El5V4BMRmQVUFZGUcorNGBPioiKEF6/tyMWn1+PxKSsZ+sXqYIdkAqTIq6FUdRXeJbOPuiE+rgXmicgGVT2jPAI0xoS26MgIXujbARH459RVqMKt3ZsHOyxTxvy+GkpVF6jqfUBj4EF/txORSBFZJCIfunkRkSdE5HsRWSkid/mUvygi2SKy1PeGPxEZICI/uNcA/6tnjCkPUZERPH9NBy5pX58np62yPoww5M9NeSdQVQW+OIlN7sbr96jm5m8EGgKnqOoxEanjyi8CWrpXBvBfIENEauCd3aTj3QS4QEQmu9FwjTEhIioygueubs/RY8d4fMpKYqIiuKFrk2CHZcqI32cWJSEiqcDFwDCf4tuBx/KuqFLVLa68D/CWemYDySJSD7gAmKGq212CmAFcGMi4jTElExUZwQt9Ox6/D8PGkgofJ31mcZKeBx7A6yTP0xy4RkQuB7YCd6nqD0ADwHcc5A2urLDyE4jIYGAwQEpKCllZWSUOOjc3t1Tbh4pwqQdYXUJVYXW5OlXZsjWSv05cRvYP33F2anT5B3cSKsPfpLQKTRYick9RG6rqv4taLiK9gS2qukBEevgsqgIcUNV0EbkCGAGc5XfEhcczFBgKkJ6erj169Ch6gyJkZWVRmu1DRbjUA6wuoaqoupx11lEGv72AN1Zspe2pp3JlWujey1tZ/ialUVQzVFX3SsdrOsr7ln8b4M9os2cCl4rIOmAscI6IjMI7M3jfrTMRaOemc/D6MvKkurLCyo0xISxvePMzmtfk/glLmLTY3rYVWVH3WfxdVf+O9+HcSVXvVdV7gTQofvwwVR2iqqnugUl9gc9UtR/wAZA3OGF3vLvEASYDN7irojKBXaq6CZgO9BKR6iJSHejlyowxIS42OpJhN3Smc5Ma3DN+CVOWbgp2SKaE/OngTgEO+cwfcmUl9RRwpXtU65PALa58KrAGyAZeB+4AUNXteONRzXOvx1yZMaYCiIuJZMSNnenUKJm7xy5i+orNwQ7JlIA/HdxvAXNFZKKbvwwYeTIHUdUsIMtN78S7Qir/Oor3yNaCth+B17dhjKmAEqpE8cZNXeg/fA5/GLOQV/ulce6pNhhERVLsmYWqPgHchDdO1A7gJlX9Z6ADM8aEl8QqUYy8uQun1qvG7aMWkvXdluI3MiHD3/ss4oHdqvoCsEFEmgYwJmNMmKoWG83bN2fQMiWRwW8vYNYP24IdkvFTsclCRB4F/gIMcUXRwKhABmWMCV9J8dGMGphBs1oJ3PLWPL5Z/UuwQzJ+8OfM4nLgUmAvgKpu5MSb7Iwx5qRUT4hh9C0ZNKwez81vzmPuWrtmJdT5kywOuc5nBRCRhMCGZIypDGomVmH0oAzqJcdy0xtzWfCjDfcWyvxJFuNF5DW8sZoGAZ9w4lhPxhhTInWqxvLOoEzqVIvlxhFzWbx+Z7BDMoXw52qofwETgPeA1sAjqvpioAMzxlQOKdViGTMog+oJMdwwfA7LNuwKdkimAP50cD+tqjNU9X5VvU9VZ4jI0+URnDGmcqiXFMeYQRlUjY2m3/A5rNhoCSPU+NMMdX4BZReVdSDGmMottXo87wzKJCEmkn7D5rBq8+5gh2R8FJosROR2NyRHa/fkurzXWmBp+YVojKksGtWMZ8ygTKpERXL963P4/uc9wQ7JOEWdWYwBLsEb4O8Sn1eaGxDQGGPKXJNaCYwZlEFkhHDd67PJ3mIJIxQUNersLlVdp6rXquqPwH68y2cTRaTYUWeNMaakmtVOZMygTEC49vU5rN6aG+yQKj1/OrgvEZEfgLXA58A6YFqA4zLGVHIt6iTyzqAMjh1Trnt9Nuu27Q12SJWaPx3cjwOZwPeq2hQ4F5gd0KiMMQZomVKVMYMyOXxUufb12fz0y75gh1Rp+ZMsDqvqL0CEiESo6ky8p+cZY0zAta5blVEDM9h/+CjXvj6b9dstYQSDP8lip4gkAl8Ao0XkBdw4UcYYUx7a1K/GqIEZ7DlwmGtfn03Ozv3BDqnS8SdZ9MHr3P4z8BGwGu+qKGOMKTenNUhi1C0Z7Np/mGuHzmbTLksY5cmf4T72qupRvGda/A9veHINdGDGGJNfu9Rk3h6YwY69h7h26Gx+3n0g2CFVGv5cDXWriGzGuxFvPrDA/TTGmHLXoWEyb97cha17DnLt0NlssYRRLvxphroPOE1Vm6hqM1VtqqrN/D2AiESKyCIR+TBf+YsikuszX0VExolItojMEZEmPsuGuPLvROQCf49tjAlPaY2r8+bNXdi8+wDXDZvD1j0Hgx1S2PMnWawGSnP5wd3ASt8CEUkHqudbbyCwQ1VbAM8BT7t12wB9gbbAhcArIhJZiniMMWGgc5MavHFjZ3J27Of6YbP5JdcSRiD5kyyGAF+LyGvubOBFEfFriHIRSQUuxuf5F+6D/lnggXyr9wFGuukJwLkiIq58rKoeVNW1QDbQxZ/jG2PCW0azmgy/MZ2ftu/j+mFz2L73ULBDClviPQSviBVE5gKzgGXAsbxyVR1Z6Ea/bjsBeBLvMaz3qWpvEbkbiFDV50QkV1UT3brLgQtVdYObXw1kAP8HzFbVUa58ODBNVSfkO9ZgYDBASkpK2tixY/2ofsFyc3NJTEws8fahIlzqAVaXUBUqdVmx7SjPLzxAvYQIHugcS2KMnNT2oVKPslCauvTs2XOBqhZ4H12UH9tHq+o9J3tQEekNbFHVBSLSw5XVB64Cepzs/oqjqkOBoQDp6enao0fJD5GVlUVptg8V4VIPsLqEqlCpSw/gtHZbGTRyPq99F83oQRlUi432e/tQqUdZCFRd/GmGmiYig0WknojUyHv5sd2ZwKUisg4YC5wDrABaANmuPF5Est36OUBDABGJApKAX3zLnVRXZowxx3VvVZtX+3di5abd3PzGPPYdOhLskMKKP8niWly/Bd5ls35dOquqQ1Q1VVWb4HVQf6aq1VW1rruyqgmwz3VogzcU+gA3/Xu3vrryvu5qqaZAS2Cu3zU0xlQa55ySwgt9O7Lwpx0MfmsBBw4fDXZIYaPYZig3eGB5GA687c40tuMlGFR1hYiMB74FjgB3upsEjTHmNy5uV48Dh9tz77tLuHP0Ql7tn0Z0pD/fi01RCk0WInKOqn4mIlcUtFxV3/f3IKqaBWQVUJ7oM30Arz+joO2fAJ7w93jGmMrtyrRU9h0+ysMfLOdP4xbzYt+OREacXKe3OVFRZxbdgc8oeBwoBfxOFsYYU976ZzbmwKGjPDF1JbFRkTz7+3ZEWMIosUKThao+6iYfc/c3HOf6DowxJqQNOrsZew8d4flPfiA+JpLH+rTFu33LnCx/Lp19D+iUr2wCkFb24RhjTNm6+9yW7D90lNe+WEN8TCQPXnSKJYwSKKrP4hS8ITaS8vVbVANiAx2YMcaUBRHhwYtOYd/xhBHF3ee1DHZYFU5RZxatgd5AMif2W+wBBgUwJmOMKVMiwt8vbcv+w0d57pPviY+JZNDZfo+Haii6z2ISMElEuqrqN+UYkzHGlLmICOHpK9ux/7Dr9I6JpH9m42CHVWH4c/Hx5SJSTUSiReRTEdkqIv0CHpkxxpSxyAjh+Ws6cN6pdXj4g+VMWLAh2CFVGP4ki16quhuvSWod3nAd9wcyKGOMCZToyAheuq4T3VrU4oEJS5iydFOwQ6oQ/EkWeaNxXQy8q6q7AhiPMcYEXGx0JENvSKNTo+rcPXYRi7fYOFLF8SdZ/E9EVuFdKvupiNQG7DmGxpgKLT4mihE3daZN/Wq8tPggX2VvC3ZIIa3YZKGqDwJnAOmqehjvqXl9Ah2YMcYEWrXYaEbe1IW68cItI+czf932YIcUsgpNFiLi+yS7c/MG71PVvcBdgQ7MGGPKQ/WEGO7vHEe9pFhuemMeSzfsDHZIIamoM4u+PtND8i27MACxGGNMUCRVEUbdkkFSfDT9h89leY51zeZXVLKQQqYLmjfGmAqtfnIc7wzKJLFKFNcPm2MJI5+ikoUWMl3QvDHGVHgNa8QzdrAljIIUlSzai8huEdkDtHPTefOnl1N8xhhTrixhFKzQZKGqkapaTVWrqmqUm86b9/9J6MYYU8FYwvgte9agMcYUIC9hVI2N4rrXZ7NsQ+VOGJYsjDGmEA1rxPPOoEyqxUVz/bDKnTACnixEJFJEFonIh25+tIh8JyLLRWSEiES7chGRF0UkW0SWikgnn30MEJEf3GtAoGM2xpg8eWcYeQmjst6HUR5nFncDK33mRwOn4HWSxwG3uPKLgJbuNRj4L4CI1AAeBTKALsCjIlK9HOI2xhgAUqv/mjD6DZtTKRNGQJOFiKTiDUA4LK9MVaeqA8wFUt2iPsBbbtFsIFlE6gEXADNUdbuq7gBmYDcFGmPKWWVPGOJ9Zgdo5yITgCeBqsB9qtrbZ1k0MAe4W1W/dM1UT6nqLLf8U+AvQA8gVlUfd+UPA/tV9V/5jjUY74yElJSUtLFjx5Y47tzcXBITE0u8fagIl3qA1SVUhUtdTqYe2/Yf4+m5B9h7WLm/cyxNkyIDHN3JKc3fpGfPngtUNb2gZUU9VrVURKQ3sEVVF4hIjwJWeQX4QlW/LIvjqepQYChAenq69uhR0CH9k5WVRWm2DxXhUg+wuoSqcKnLydYjM3Mf174+m38vOszoW9Jol5ocsNhOVqD+JoFshjoTuFRE1gFjgXNEZBSAiDwK1Abu8Vk/B2joM5/qygorN8aYoPCapLqSHB/N9ZWkSSpgyUJVh6hqqqo2wRuU8DNV7Scit+D1Q1yrqsd8NpkM3OCuisoEdqnqJmA60EtEqruO7V6uzBhjgqZBctwJCWPJ+p3BDimggnGfxatACvCNiCwWkUdc+VRgDZANvA7cAaCq24F/APPc6zFXZowxQZWXMKrHx9BveHgnjID1WfhS1Swgy00XeEx3ddSdhSwbAYwIUHjGGFNiDZLjeGdwJtcOnU2/4XN4e2AGHRomBzusMmd3cBtjTCl5ZxiZVI+Pof+wOSz4cUewQypzliyMMaYM1E+OY9ytmdSqWoX+w+cwe80vwQ6pTFmyMMaYMlIvKY5xgzOpnxzHjW/MZdYP24IdUpmxZGGMMWWoTrVYxg7OpEnNBG4eOY+Zq7YEO6QyYcnCGGPKWK3EKrwzKJNWKYkMfns+H6/YHOyQSs2ShTHGBED1hBhG35JJ2/pJ3DF6IVOWbgp2SKViycIYYwIkKS6atwd2oWOjZP74zkImLtoQ7JBKzJKFMcYEUNXYaEbe3IWMpjW5Z/wSxs9bH+yQSsSShTHGBFh8TBRv3NSZs1rW5oH3ljJq9o/BDumkWbIwxphyEBsdydD+aZx7Sh3+9sFyRsxaG+yQToolC2OMKSex0ZH8t18aF7aty2Mffsurn68Odkh+s2RhjDHlKCYqgv9c15FL2tfnqWmreOGTHwjkQ+jKSrkMJGiMMeZX0ZERPH9NB6Ijhec++Z5DR49yX6/WiEiwQyuUJQtjjAmCyAjhX79vT0xkBC/PXM2hI8f46+9ODdmEYcnCGGOCJCJC+OflpxMTFcHrX67l0JFjPHpJWyIiQi9hWLIwxpggiogQ/n5pW2IiIxg2ay0HjxzjictPJzLEEoYlC2OMCTIR4aGLTyU2OpKXZmaz5+ARnru6AzFRoXMNkiULY4wJASLCfRe0pmpsFE9OW0XugSO82i+NuJjIYIcG2KWzxhgTUm7t3pynrjidL37YSv/hc9i1/3CwQwLKIVmISKSILBKRD918UxGZIyLZIjJORGJceRU3n+2WN/HZxxBX/p2IXBDomI0xJpj6dmnES9d2YsmGnfQdOputew4GO6RyObO4G1jpM/808JyqtgB2AANd+UBghyt/zq2HiLQB+gJtgQuBV0QkNM7LjDEmQC5uV49hAzqzdlsuV7/2DRt27AtqPAFNFiKSClwMDHPzApwDTHCrjAQuc9N93Dxu+blu/T7AWFU9qKprgWygSyDjNsaYUNC9VW1GDcxgW+5Brnr1G7K35AYtlkCfWTwPPAAcc/M1gZ2qesTNbwAauOkGwHoAt3yXW/94eQHbGGNMWEtvUoNxg7ty+Ogxrn7tG5Zt2BWUOAJ2NZSI9Aa2qOoCEekRqOP4HG8wMBggJSWFrKysEu8rNze3VNuHinCpB1hdQlW41KUi1OO+jpE8O+8AV/13Fn9Oi6V1jYJb4wNWF1UNyAt4Eu8sYB2wGdgHjAa2AVFuna7AdDc9HejqpqPcegIMAYb47Pf4eoW90tLStDRmzpxZqu1DRbjUQ9XqEqrCpS4VpR4bd+7Tc/41U1s9NFU/Xbm5wHVKUxdgvhbyuRqwZihVHaKqqaraBK+D+jNVvR6YCfzerTYAmOSmJ7t53PLPXPCTgb7uaqmmQEtgbqDiNsaYUFUvKY7xt3alVUpVBr+1gEmLc8rt2MG4z+IvwD0iko3XJzHclQ8Harrye4AHAVR1BTAe+Bb4CLhTVY+We9TGGBMCaiZWYcygDNIaV+dP4xbzdjk9da9c7uBW1Swgy02voYCrmVT1AHBVIds/ATwRuAiNMabiyHuu952jF/LwB8vZvf8wd/RoHtARa+0ObmOMqYBioyN5tX8al3Woz7PTv+PJaasC+hAlGxvKGGMqqOjICP59dQeqxUUz9Is17N5/mF41ApMwLFkYY0wFljfEebXYaF6amc3qupF0765lPsS5JQtjjKng8kasTYqLZul32QF5FoYlC2OMCRODzm5G1rGfArJv6+A2xhhTLEsWxhhjimXJwhhjTLEsWRhjjCmWJQtjjDHFsmRhjDGmWJYsjDHGFMuShTHGmGJJIAeeChYR2QqUZtzeWngPX6rowqUeYHUJVeFSl3CpB5SuLo1VtXZBC8IyWZSWiMxX1fRgx1Fa4VIPsLqEqnCpS7jUAwJXF2uGMsYYUyxLFsYYY4plyaJgQ4MdQBkJl3qA1SVUhUtdwqUeEKC6WJ+FMcaYYtmZhTHGmGJZsjDGGFMsSxY+ROTPIrJCRJaLyDsiEhvsmPwlIiNEZIuILPcpqyEiM0TkB/ezejBj9FchdXlWRFaJyFIRmSgiyUEM0W8F1cVn2b0ioiJSKxixnYzC6iEif3R/lxUi8kyw4jsZhfx/dRCR2SKyWETmi0iXYMboDxFpKCIzReRb9/u/25UH5H1vycIRkQbAXUC6qp4GRAJ9gxvVSXkTuDBf2YPAp6raEvjUzVcEb/LbuswATlPVdsD3wJDyDqqE3uS3dUFEGgK9gMA81qzsvUm+eohIT6AP0F5V2wL/CkJcJfEmv/2bPAP8XVU7AI+4+VB3BLhXVdsAmcCdItKGAL3vLVmcKAqIE5EoIB7YGOR4/KaqXwDb8xX3AUa66ZHAZeUZU0kVVBdV/VhVj7jZ2UBquQdWAoX8XQCeAx4AKsQVJoXU43bgKVU96NbZUu6BlUAhdVGgmptOogK891V1k6oudNN7gJVAAwL0vrdk4ahqDt43o5+ATcAuVf04uFGVWoqqbnLTm4GUYAZThm4GpgU7iJISkT5AjqouCXYspdQKOEtE5ojI5yLSOdgBlcKfgGdFZD3e50BFOXMFQESaAB2BOQTofW/JwnHten2ApkB9IEFE+gU3qrKj3jXSFeJbbFFE5CG80+/RwY6lJEQkHvgrXlNHRRcF1MBrArkfGC8iEtyQSux24M+q2hD4MzA8yPH4TUQSgfeAP6nqbt9lZfm+t2Txq/OAtaq6VVUPA+8DZwQ5ptL6WUTqAbifFaKZoDAiciPQG7heK+4NQs3xvpAsEZF1eM1pC0WkblCjKpkNwPvqmQscwxvEriIagPeeB3gXCPkObgARicZLFKNVNS/+gLzvLVn86icgU0Ti3bejc/HaACuyyXhvAtzPSUGMpVRE5EK8Nv5LVXVfsOMpKVVdpqp1VLWJqjbB+8DtpKqbgxxaSXwA9AQQkVZADBV35NaNQHc3fQ7wQxBj8Yv7nBoOrFTVf/ssCsz7XlXt5V7A34FVwHLgbaBKsGM6idjfwetrOYz3ATQQqIl3NcQPwCdAjWDHWYq6ZAPrgcXu9Wqw4yxpXfItXwfUCnacJfybxACj3PtlIXBOsOMsRV26AQuAJXjt/mnBjtOPenTDa2Ja6vO++F2g3vc23IcxxphiWTOUMcaYYlmyMMYYUyxLFsYYY4plycIYY0yxLFkYY4wpliULY/JxI8GO8pmPEpGtIvJhAI/5vIic7aazRCTdTTd1o4deUMz2n1SUUYVNxWTJwpjf2gucJiJxbv58ICdQBxORmkCmegPc+ZanAh/hjSw6vZjdvA3cEaAQjbFkYUwhpgIXu+lr8W7kAkBEuojINyKySES+FpHWrrytiMx1z0RYKiItRSRBRKaIyBL3nJRrCjjWlXhJwVc94GPgIVWd7PYfLyLj3fMLJroB/NLd+pNdnMYEhCULYwo2FujrHoDVDu+u3jyrgLNUtSPegID/dOW3AS+o90yEdLy7gy8ENqpqe/Wek5I/KQCciXf3sK+RwEuqOsGn7A5gh3rPL3gYSMtboKo7gCruLMWYMmfJwpgCqOpSoAnet/Wp+RYnAe+6J609B7R15d8AfxWRvwCNVXU/sAw4X0SeFpGzVHVXAYerB2zNV/YJ0M+NUpunG14SQ1WX4w3z4GsL3ojJxpQ5SxbGFG4y3rMN3slX/g9gpjtTuASIBVDVMcClwH5gqoico6rfA53wksbjIlLQ0OT78/bh4xlgHl5SivIz3li3L2PKnCULYwo3Au9Rm8vylSfxa4f3jXmFItIMWKOqL+KN9NlOROoD+1R1FPAsXuLIbyXQooDyPwG7geFuhNGvgKvdsdoAp/scW4C6eAMTGlPmLFkYUwhV3eA++PN7BnhSRBbhPQAoz9XAchFZDJwGvIX3gT7XlT0KPF7A/qYAPQo4vuINMV3PHfMVoLaIfOv2swLIa9ZKA2brr4+eNaZM2aizxoQAEZkF9FbVnUWsEwlEq+oBEWmO16/RWlUPicgLwGRV/bR8IjaVjb9tocaYwLoXaATsLGKdeGCmezqaAHeo6iG3bLklChNIdmZhjDGmWNZnYYwxpliWLIwxxhTLkoUxxphiWbIwxhhTLEsWxhhjivX/AdiGB/Vp7nyBAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "def apogee(mass):\n", + " # Prepare Environment\n", + " Env = Environment(\n", + " railLength=5.2,\n", + " latitude=32.990254,\n", + " longitude=-106.974998,\n", + " elevation=1400,\n", + " date=(2018, 6, 20, 18),\n", + " )\n", + "\n", + " Env.setAtmosphericModel(type=\"CustomAtmosphere\", wind_v=-5)\n", + "\n", + " # Prepare Motor\n", + " Pro75M1670 = SolidMotor(\n", + " thrustSource=\"../../data/motors/Cesaroni_M1670.eng\",\n", + " burnOut=3.9,\n", + " grainNumber=5,\n", + " distanceNozzleMotorReference=0.39796,\n", + " grainSeparation=5 / 1000,\n", + " grainDensity=1815,\n", + " grainOuterRadius=33 / 1000,\n", + " grainInitialInnerRadius=15 / 1000,\n", + " grainInitialHeight=120 / 1000,\n", + " nozzleRadius=33 / 1000,\n", + " throatRadius=11 / 1000,\n", + " interpolationMethod=\"linear\",\n", + " )\n", + "\n", + " # Prepare Rocket\n", + " Calisto = Rocket(\n", + " motor=Pro75M1670,\n", + " radius=127 / 2000,\n", + " mass=mass,\n", + " inertiaI=6.60,\n", + " inertiaZ=0.0351,\n", + " distanceRocketNozzle=-1.255,\n", + " powerOffDrag=\"../../data/calisto/powerOffDragCurve.csv\",\n", + " powerOnDrag=\"../../data/calisto/powerOnDragCurve.csv\",\n", + " )\n", + "\n", + " Calisto.setRailButtons([0.2, -0.5])\n", + " Nose = Calisto.addNose(length=0.55829, kind=\"vonKarman\", distanceToCM=0.71971)\n", + " FinSet = Calisto.addFins(\n", + " 4, span=0.1, rootChord=0.120, tipChord=0.040, distanceToCM=-1.04956\n", + " )\n", + " Tail = Calisto.addTail(\n", + " topRadius=0.0635, bottomRadius=0.0435, length=0.060, distanceToCM=-1.194656\n", + " )\n", + "\n", + " # Simulate Flight until Apogee\n", + " TestFlight = Flight(\n", + " rocket=Calisto,\n", + " environment=Env,\n", + " inclination=85,\n", + " heading=0,\n", + " terminateOnApogee=True,\n", + " )\n", + " return TestFlight.apogee\n", + "\n", + "\n", + "apogeebymass = Function(apogee, inputs=\"Mass (kg)\", outputs=\"Estimated Apogee (m)\")\n", + "apogeebymass.plot(8, 20, 20)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Out of Rail Speed as a Function of Mass\n", + "\n", + "To finish off, lets make a really important plot. Out of rail speed is the speed our rocket has when it is leaving the launch rail. This is crucial to make sure it can fly safely after leaving the rail. A common rule of thumb is that our rocket's out of rail speed should be 4 times the wind speed so that it does not stall and become unstable." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAA4n0lEQVR4nO3dd3gU5fbA8e9JIQFCDwQEJPReAwgCQhAVKzasqFhA0Z+iotiu9XotF0VBsVwFBUWRoqIoNpr0EqSDSq+KIi30kPP7YybXvSHZ1M1sds/nefbJ7szOzHl3s2feeeedd0RVMcYYEz4ivA7AGGNM0bLEb4wxYcYSvzHGhBlL/MYYE2Ys8RtjTJixxG+MMWHGEr/JkYg0FJFlInJQRO4p5HV3EZGffV5vFpEehbmNwiYiT4nIh37mx4jIGhGpFuA4FolI00Buwysi8rGIXFoI64kRkXUiUrkQwgoZlviDmIj0FZGVInJYRH4TkTdFpHwels8xiYpIeXe9v7nbWSkiN2d622BghqqWUdXhWaxjpogcFZFUEflTRD7NbdJT1dmq2jCX5akhIpPcbewXkVUi0jc3yxax/sCPqroLQETeFxEVkV6+bxKRV9zpfTNNf1tE+otICRF5WUS2u5/tZhF51eetLwHPFEbA7v+aisgrmab3cqe/XxjbyWUsLYCWwGSf2Ob4zC8rInPd/4US/talqseAUcDDgYy5uLHEH6REZBDwIvAgUA7oANQCvs/pnz0P2ygB/OCut6O7nQeBF0Tkfp+31gJW57C6/1PVOKAeEIeTlArbB8A2N55KwA3A7wHYTkHdgROrr1+AGzNeiEgUcBWwIYvlzwe+Bh4B2gLtgTJAN2Cpz/u+AJJFpGohxb0BuMqNLcNNbuxF6XZgrGZxdamIVACmAVuAq1X1eC7W9xFwk4jEFG6YxZcl/iAkImWBp4G7VfUbVT2hqptxEkUi0Md93/si8qzPct1EZLv7/APgdOBLt7Y4OItN3eC+p7eqbnK38w1wD/CMW7OaDiQDr7vraeAvdlXdB3wOtPKJ62YRWes2FW0UkduzijkX2gHvq+ohVU1T1Z9Udaq7nkS3ZtpfRHaKyC4RecBnOxEi8rCIbBCRPSIyXkQq+szvICLzRGSfiCwXkW4+82qLyCw3/u+B+OwCFJHTgTrAwkyzvgQ6u4kLoCewAvgt0/ItgH2qut0t72equlMdm1V1TMZ7VfUokAKcl00sb4rIJJ/XL4rINBGRbML/DViZsT738zkTZwfju94J7hHifhH5UXyam0TkAnGauQ6KyI6M70BE4kVkivv5/iUis0Uku/xzPjAri/JUBmYAq4A+qprmTq8kIl+KyAERWSwiz/oeIbif5V6cypPBEn+wOhOIBT71naiqqTg1wXNyWoGq3gBsBS5W1ThV/XcWbzsHmKqqhzJNn+Ruv6Oqdgdm49boVdVv7U9EKgGXA+t9Ju8GLgLKAjcDr4hIm5zKkIUFwAgRucZNsFlJBuoD5wIPyd9NXXcDlwJdgdNwEsEIN+bqwFfAs0BF4AFgkvzdLvwRToKNB/6JUwvOTnNgY0ZS8nEUp+niGvf1jcAYTnWBG0tGee8XkTtFpHk2CXstTrNIVgYBzd2mki7ArcBNWdWkfYzh7yOTa9yYj2V6z1Scz7gKzhHIWJ95I4HbVbUM0AyY7hPLdqAykAA8CmRVoy8N1AZ+zjSrIjATmA/coqrpPvNGAIeAqjjfTVbfj7/PKexY4g9O8cCfWSQPgF34qXHmYzu7Mk90t/tnHrczXET2+yx3t8/6vlLVDW6tdRbwHdAlH/H2xtkJPQ5sEueEc7tM73naPSJYCbwHXOtOvwN4TFW3u+2+TwFXus0afYCvVfVrVU1X1e+BJcAF7g6mHfC4qh5T1R9xau/ZKQ8czGbeGOBGcc7TdMU5MsrsQpydO8DzOM1917vx7BCRzEntoLvNU6jqYZyjuqHAhzhHkDkdXX0GdBORcmSzc1LVUap60OdzbOm+H+AE0EREyqrqXlVd6jO9GlDLPbKcnc0OKKMsmT/DmkADnCO+/y4nIpHAFcCTqnpYVdcAo7NYb7afUziyxB+c/gTiM7W1Zqjmzi+s7ZxyEtbdbnwet3OPqpYDWgAVgBo+6ztfRBa4h/j7cGq1ed55uYnkYVVtilNrXAZ8nqkmvM3n+Rac2j045wU+c5sa9uHUAE+666kF9M6Y587vjPPZnAbszXRUtMVPmHtx2uOzin8OTo33MWCKqh7xne/uEBoB89z3n1TVEaraCSdp/QsYJSKNfRYrA+zLLhhVXQhsBAQY7yfujPcfwTni+AdQSVXnZooxUkRecJvMDgCb3VkZ3+cVON/vFrd5rKM7fQjOUeB3bnNfdidbM8qS+TNcjnMkNlVEWvtMrwxE8b/fu+/zDH4/p3BjiT84zcc5vL7cd6KIxOG0f05zJx0CSvm8JfNJvpyGXv0BON89vPZ1hbv9BXmI2dmgU9N+FqdJRsQ5oTYJ52RvgqqWx6nRZtfOnNvt/Omu8zScZoAMNX2enw7sdJ9vA85X1fI+j1hV3eHO+yDTvNKq+gLOEVGFTJ9Rds1M4LTb185mpw1OzXsQWTfznAdMV9WTWZT3iKqOwNmxNPGZ1RgnKWZJRO4CYnA+h6zO82RljBtjVl1WrwN6AT1wOgMkZmzKjXOxqvbCaQb6HHdn4x4hDFLVOsAlOE1YZ2dRzkM4J5lPOZekqsOAF3A6ODRzJ/8BpOFT0eB//wcy+P2cwo0l/iCkqvtxTu6+JiI9RSRaRBJxfkTb+bvHyDKc5oiK4vTsuDfTqn7HOdGYnQ/c9U1wT45Gi8h5wHDgKTeO/BiNU5O+BCiBk3j+ANJE5Hyc9vc8c09ONhORKBEpAwwA1qvqHp+3PS4ipdwTjjcDn7jT3wL+JSK13HVVlr+7V34IXCwi57k12lhxTjrXUNUtOM0sT4vTvbIzcHF2MbpNKetxeuJkZTjOuZUfs5jn276PiNzrxlHSLfNNODXXn9z5sUAS8H02n1cDnJ1wH5wmn8Ei0iq72H3McmN8LYt5ZXAqBXtwKh3P+WyvhIhcLyLlVPUEcABId+ddJCL13KOz/ThHW+mnrN3xNU5T2Cncc1XDgB9EpKG7k/wUeMr93hvh03vK3XZ1nMpBnisyocoSf5By/8EfxanVHsDpJbINONttWwUncS/HOdz+jr+TXIbngX+4zRcPZJqX0ce5h7vehe52huK0hQ8pQOzHcX6cj6vqQZxeQuNxaqvXkamXSB6UwmmD3ofTfFELZ+fiaxZO4p0GvKSq37nTh7nb/U5EDuIkgTPceLfh1GIfxdlBbcPp1prx+7jOfe9fwJNkXVv39TZOoj2Fqv6lqtMyt2+7CfE84BufyYeBl3F62/wJ3AVcoaob3fkXAzNVdSeZuEccHwIvqupyVf3VLd8HkkO3RvdczDRV/SuL2WNwmrp2AGs4NZneAGx2m4HuwDk/Ac7J4B+AVJwj2jdUdUY2IfwHuD6bk9mo6j+Bd4FpIlIX+D+co4/fcH4TH/O/J6SvA0b7/G7Cnvg/wW9M8eAeEW0CorM5KV6UscTg1MrPVvcirlws0x54XVWzO1LIapmFwK2quip/kQYvEfkIGK+qn+dj2ReBqqqa0Xd/OXCWqu4u5DCLLUv8JiQEU+LPDzfxV1L3ugSTe27zTgmcaxDa4TQV3ZafnUa4yO4ElDGmCKnqIq9jKMbK4DTvnIZzXutl3OEeTNasxm+MMWHGTu4aY0yYKRZNPfHx8ZqYmJivZQ8dOkTp0pm7qRdPVpbgEyrlACtLsCpIWVJSUv5U1VOGpC4WiT8xMZElS5bka9mZM2fSrVu3wg3II1aW4BMq5QArS7AqSFlEJMurzK2pxxhjwowlfmOMCTOW+I0xJsxY4jfGmDBjid8YY8KMJX5jjAkzlviNMSbMhHTi/2nrXr7eeNzrMIwxJqiEdOL/7KcdjP/lBGMX+rtTnjHGhJeQTvxPXNSElpUjefzzVXy7+jevwzHGmKAQ0ok/KjKCO1vG0KJGee75+CeWbM7qhkLGGBNeQjrxA8RECaP6tqN6+ZLcOnoJv/5+0OuQjDHGUyGf+AEqli7B6FvaUyIqgptGLeK3/Ue9DskYYzwTFokfoGbFUrzXtx0HjqbR971F7D9ywuuQjDHGE2GT+AGaVS/HW32S2PBHKrd/sIRjaSe9DskYY4pcWCV+gM7143mpd0sWbPyL+8cvJz3dbj1pjAkvxeJGLIWtV6vq/H7gKM99vY4qZWJ44qImiIjXYRljTJEIy8QP0K9LHX7bf4xRczdRtWwst3et63VIxhhTJMI28YsI/7iwMbsPHuX5qeuoUjaGy1rX8DosY4wJuLBN/AAREcLLV7VkT+pxHpywgvi4GLrUP+W+xMYYE1LC7uRuZjFRkbx9YxL1qsRxxwcprNqx3+uQjDEmoMI+8QOUjY1m9C3tKV+qBH3fW8zWPYe9DskYYwLGEr8roWwso29px4mT6dz03iL2pB7zOiRjjAmIgCV+EYkVkUUislxEVovI05nmDxeR1EBtPz/qVSnDqL5t2bnvCLeMXsLh42leh2SMMYUukDX+Y0B3VW0JtAJ6ikgHABFpC1QI4LbzLalWRV67tjUrt+/j/z76ibST6V6HZIwxhSpgiV8dGTX6aPehIhIJDAEGB2rbBXVu06r889JmTF+3m0c+XWlX9xpjQkpAu3O6ST4FqAeMUNWFIjIQ+EJVdwXz1bLXn1GL3QeOMWzar8RGR/JMr6Z2da8xJiSIauBrsyJSHvgMeBJ4Duimqmkikqqqcdks0x/oD5CQkJA0bty4fG07NTWVuLgsN5EjVWX8LyeYuukE59SK4rpGJTxN/gUpS7AJlbKESjnAyhKsClKW5OTkFFVte8oMVS2SB/AETuL/DdjsPtKB9Tktm5SUpPk1Y8aMfC+rqpqenq7PfLlaaz00RZ+dslrT09MLtL6CKGhZgkmolCVUyqFqZQlWBSkLsESzyKkBa+oRkcrACVXdJyIlgXOAF1W1qs97UlW1XqBiKAwZQzucTFfemb2JyIgIHurZ0Jp9jDHFViDb+KsBo912/ghgvKpOCeD2AkZEePLiJqSlp/PWrA1ERwqDzm3odVjGGJMvAUv8qroCaJ3De4pNI5yI8MwlzUg7qbw2fT1REREM7FHf67CMMSbPwnqQtryKiBCeu6w5aenKKz/8QlSkcFdyULdUGWPMKSzx51FEhPDiFS04ma4M+fZnIiOEO2wsf2NMMWKJPx8iI4SXerckLV15Yeo6oiKE27rU8TosY4zJFUv8+RQZIbxyVUvS05Vnv1pLZIRwc6faXodljDE5ssRfAFGREbx6TSvS0tN5+ss1REUIN3RM9DosY4zxy4ZlLqDoyAheu7YNPRpX4fHJq/lo4VavQzLGGL8s8ReCElERjLi+DckNK/PoZysZv3ib1yEZY0y2LPEXkpioSN7sk0SX+vE89OkKJqVs9zokY4zJkiX+QhQbHck7N7alY51KPDhxOZOX7fA6JGOMOYUl/kIWGx3JyJva0S6xIvd9sowvl+/0OiRjjPkflvgDoGSJSEb1bUdSrQoMHPcTE5ZYm78xJnhY4g+Q0jFRvH9ze86sG8+DE1fw7uyNXodkjDGAJf6AKh0Txci+bbmgeVWe/WotQ75dl3FvAmOM8YxdwBVgMVGRvHZtG8rGrmTEjA3sPXyCf/ZqRmSEjedvjPGGJf4iEBkhPH95c8qXKsFbszZw4MgJhl7VihJRdsBljCl6lviLiIjw8PmNqFAqmuenruPA0TTe6tOGUiXsKzDGFC2rchax27vW5cUrmjPn1z/o8+5C9h0+7nVIxpgwY4nfA1e3O503rm/Dqh0HuPrtBew+cNTrkIwxYcQSv0d6NqvGqL7t2Lb3MFe8NY8tew55HZIxJkz4TfwiEisiV4rIMBGZICJjRGSwiDQtqgBDWef68XzUrwMHj6Zx5VvzWbvrgNchGWPCQLaJX0SeBuYCHYGFwNvAeCANeEFEvheRFkUSZQhrVbM8E27vSKQIV709nyWb//I6JGNMiPNX41+kqkmqOkhVP1LVH1R1iqoOVdWLgeuBEkUUZ0irn1CGiQM6Eh8XQ5+RC5nx826vQzLGhLBsE7+qfpV5mohUEBFx5+9W1SWBDC6c1KhQivG3d6ROfBz9Ri+xkT2NMQHjr6nnCRFp5D6PEZEZwAbgdxHpUVQBhpPKZWIYd3sH2tSqwL2fLOODBVu8DskYE4L8NfVcDfzsPr/J/VsZ6Ao8F8igwlnZ2GjG3NKe7g2r8Pjnqxg+7Vcb38cYU6j8Jf7j+nfGOQ8Yp6onVXUtubji1+0RtEhElovIavdkMSIyVkR+FpFVIjJKRKILXozQEhsdyVs3JHF56+oM/f4XBk9cwfG0dK/DMsaECH8J/JiINAN+B5KBB3zmlcrFuo8B3VU11U3uc0RkKjAW6OO+5yPgNuDNPEce4qIjI3ipd0tqVCjJ8Onr2bb3MH0SreZvjCk4f4l/IDARp3nnFVXdBCAiFwA/5bRi92gh1X0Z7T5UVb/OeI+ILAJq5C/00BcRIdx/bkNqVy7NQxNXsuk3pWmbQ9SOL+11aMaYYkyyaz8WkY7AAi1AA7OIRAIpQD1ghKo+5DMvGuf6gIGqOjuLZfsD/QESEhKSxo0bl68YUlNTiYuLy9eyweSXvScZlnIERLi7dSyNKkZ6HVKBhMr3EirlACtLsCpIWZKTk1NUte0pM1Q1ywdO88tSYBzQF6ia3XtzegDlgRlAM59p7wCv5mb5pKQkza8ZM2bke9lg88lX07T7SzO03qNf6YQl27wOp0BC5XsJlXKoWlmCVUHKAizRLHKqv378A1S1DfAUUAF4X0Tmi8hzInKWW5vPFVXd5yb+ngAi8iROE9L9uV2HgSqlIvh0QCfaJVbkgQnLGfLtOtLTrd3fGJM3OQ7SpqrrVPUVVe0JdAfmAL1xmmmyJSKVRaS8+7wkcA6wTkRuw+kldK2qWleVPCpXKprRt7Tn2vY1GTFjA//38VKOnjjpdVjGmGIk25O7IlIxm1kLcNr+cxpUphow2j0yiADGq+oUEUkDtgDz3YuAP1XVZ/IeeviKjozgucuaUyc+juemrmXHvgW8c2MSVcrEeh2aMaYY8Ner509gO86gbAC+N4lVoI6/FavqCqB1FtPtllOFQETod1YdTq9UinvHLeOyEfMY2bctjaqW9To0Y0yQ89fUMxzYC3yDc+VuHVWt7T78Jn1TdM5rWpUJd3QkLT2dK9+cbwO8GWNy5O/k7r1AK2ACcAPwk4j8W0RqF01oJreaVS/H5Ls6U6tSKW59fzGj5232OiRjTBDze3I3ozcRMBh4C7gZsAHaglDVcrGMv70j3Rsl8OQXq3ly8irSTtq5c2PMqfyNzllaRK4TkcnA10AckKSq7xRZdCZPSsdE8fYNSfTrUpvR87dw25glHDx6wuuwjDFBxl+NfzdOTX8+8DKwEWgrIpeLyOVFEZzJu8gI4bELm/DcZc2Z/euf9H5rPjv2HfE6LGNMEPHXw2YCTu+dhu7DlwKfBiooU3DXnXE6NSuW5M6xS7l0xFxG3tSWFjXKex2WMSYIZJv4VbVvEcZhAqBL/cp8OuBMbn5/MVe9PZ9Xr25Nz2ZVvQ7LGOMxf238fUTE3/y6ItI5MGGZwlI/oQyf3dmJRlXLMmBsCv/5cYPd2MWYMOevqacSThfOFJwRNv8AYnFG2uyKc4HXwwGP0BRY5TIxjOvfgUHjl/Pc1+vYvOcwT1/SlOjIHEfsMMaEIH9NPcNE5HWc8Xk6AS2AI8Ba4AZV3Vo0IZrCEBsdyWvXtqZWpVK8MXMD2/46zIjr21A21m6AZky48Tt8gqqeBL53H6aYi4gQBvdsRGKl0jz62UqufHMeI29qR82KubmhmjEmVNixfhi6ql1NRt/Snl37j3LZG3NZtm2f1yEZY4qQJf4w1alePJ/deSYlS0Ry9dvzmbpyl9chGWOKiCX+MFavitPjp+lpZRkwdilvzbIeP8aEA3/j8fu9O5aqDi38cExRi4+L4aN+HXhgwnJemLqOzX8e4p+XNrMeP8aEMH8nd8u4fxsC7YAv3NcXA4sCGZQpWrHRkQy/pjWJlUrz+oz1bN97hBHXt6FcSevxY0wo8jcs89Oq+jRQA2ijqoNUdRCQBJxeVAGaohERITxwXkOGXNmChZv2cOWb89j212GvwzLGBEBujucTgOM+r4+700wI6t22JmNuOYPfDxzl0hFzWbp1r9chGWMKWW4S/xhgkYg8JSJP4dxkfXRAozKe6li3Ep/d1YnSMVFc8/YCRs/bbCd9jQkhOSZ+Vf0Xzg1Y9rqPm1X1uUAHZrxVt3Icn9/Vic7143nyi9X0/yCFvYeO57ygMSbo5bbrRinggKoOA7bb7RfDQ8XSJRh5U1sev6gJM3/ezQXDZ7Nw4x6vwzLGFFCOiV9EngQeAh5xJ0UDHwYyKBM8RIRbO9fmszs7ERsdybXvLOCV73+x2zoaU4zlpsZ/GXAJcAhAVXfyd1dPEyaaVS/Hl3d35tJW1Rk27Veue2chO+3OXsYUS7lJ/MfVObOn4NyLN7AhmWAVFxPF0KtbMfSqlqzauZ8Lhs/mu9W/eR2WMSaPcpP4x4vI20B5EekH/ADYDdfD2OVtavDVPV2oUaEk/T9I4cnJqzh64qTXYRljcik3vXpeAiYCk3Cu4n1CVV/LaTkRiRWRRSKyXERWi8jT7vTaIrJQRNaLyCciUqKghTBFr3Z8aSYNOJNbOtVm9PwtXPbGPNbvTvU6LGNMLuS2V88vwLeq+gAwV0Ry08Z/DOiuqi2BVkBPEekAvAi8oqr1cLqH3pr3sE0wiImK5ImLmzCqb1t+P3CUi1+bw/jF26zPvzFBLje9evrh1PjfdidVBz7PaTl1ZFQBo92H4tzRa6I7fTRwaZ4iNkGne6MEpg7sQqua5Rk8aQX3jFvGgaMnvA7LGJMNyal2JiLLgPbAQlVt7U5bqarNc1y5SCTO/XrrASOAIcACt7aPiNQEpqpqsyyW7Q/0B0hISEgaN25cHor1t9TUVOLi4vK1bLAJ9rKkqzJl4wk+X3+CSrHCgJYx1CkfmeV7g70suRUq5QArS7AqSFmSk5NTVLXtKTNU1e8DJ+ED/OT+jQJW5LRcpnWUB2YAnYH1PtNrAqtyWj4pKUnza8aMGfleNtgUl7Is3rRHz3x+mtZ95Ct9c+Z6PXky/ZT3FJey5CRUyqFqZQlWBSkLsESzyKm5aeOfJSKPAiVF5BxgAvBlXvY6qrrPTfwdcXoHZQwHXQPYkZd1meDXNrEiX9/ThR6NE3hh6jpuGLWQ3/Yf9TosY4wrN4n/YeAPYCVwO/A18I+cFhKRyiJS3n1eEjgHWIuzA7jSfdtNwOQ8R22CXrlS0bzZpw3PX96cpVv20XPYj3yzym7vaEww8HcjFgBUNV1ERuOMyqnAz+4hRE6qAaPddv4IYLyqThGRNcA4EXkW+AkYmf/wTTATEa5tfzpn1K7IwHHLuOPDpVzdtiZPXNzE69CMCWs5Jn4RuRB4C9gACFBbRG5X1an+llPVFUDrLKZvxDlZbMJEncpxTBpwJq/+8AtvztrAwk17uLFBOt28DsyYMJWbpp6XgWRV7aaqXYFk4JXAhmVCTYmoCAb3bMTH/TpwPC2dfy04yogZ6zmZbn3+jSlquUn8B1V1vc/rjcDBAMVjQlyHOpWYOvAskhIiGfLtz1z7nwVs32u3eDSmKOUm8S8Rka9FpK+I3ITTo2exiFwuIpcHOD4TgsqVimZAyxhe7t2S1Tv3c/6w2UxeZp27jCkquUn8scDvQFegG04Pn5LAxcBFAYvMhDQR4YqkGnw9sAv1qsQxcNwy7vvErvg1pijkplfPzUURiAlPtSqVZsLtHXlt+npem/4rizf/xatXt6JtYkWvQzMmZGVb4xeRfiJS330uIjJKRPaLyAoROaW3jjH5FRUZwX3nNGDCHR0BuOrt+Qy1u3wZEzD+mnoGApvd59cCLYE6wP3A8MCGZcJRUq2KTB3YhUtbVWf4tF/p/fZ8tuw55HVYxoQcf4k/TVUzGlwvAsao6h5V/QGwu3CZgCgTG83Qq1sx/NrWrN+dygXDZvPJ4q021LMxhchf4k8XkWoiEgucjXPnrQwlAxuWCXeXtDyNb+49i+Y1yvHQpJX0G5PCn6nHvA7LmJDgL/E/ASzBae75QlVXA4hIV5y+/MYEVPXyJfnotg7848LG/PjrH5z3yo92j19jCkG2iV9VpwC1gMaq2s9n1hLg6kAHZgxARIRwW5c6fPl/nalSNpb+H6QweOJyDlq3T2PyzW8/flVNU9W9maYd0r/vrGVMkWhYtQyT7+rEnd3qMjFlO+cPm82iTX95HZYxxVJu77lrjOcyxvsZf3tHIkS4+j/zeX7qWo6lnfQ6NGOKFUv8pthpm+h0+7ymXU3enrWRXq/PZe2uA16HZUyxke2VuyLSxt+Cqrq08MMxJndKx0Tx/OUt6NE4gYcmraTX63MZdG4DbutSh8gI8To8Y4KavyEbXvYzT4HuhRyLMXl2duMEvr23PI9+tpLnp65j2trdvHxVS2pWLOV1aMYErWwTv6omF2UgxuRXpbgY3uqTxKSlO3jqi9WcP2w2T1zchN5JNRCx2r8xmflr6umuqtOzG3pZVT8NXFjG5I2IcGVSDc6oXZEHJixn8MQVfL/md56/vDnxcTFeh2dMUPF3crer+/fiLB42HLMJSjUrluLjfh147ILGzPrZuehr8rIdNuSDMT78NfU86f61YZlNsRIRIfQ7qw5nNajM4InLGThuGZOW7uBflzaztn9jyMV4/PDfG643xbkpCwCq+kyggjKmMDSsWoZP7+zEmPmbeenbnznnlVnc16MBt3auTVSk9WQ24SvH/34ReQtniIa7AQF64wzlYEzQi4wQbu5Um+/v70rnepV5fuo6Lnl9Lsu37fM6NGM8k5tqz5mqeiOwV1WfBjoCDQIbljGF67TyJXnnxiTe6tOGPYeOcdkbc3nqi9WkHkvzOjRjilxuEv8R9+9hETkNOAFUC1xIxgSGiNCzWTW+v78rfTrUYvT8zZwzdBbfr/nd69CMKVK5SfxTRKQ8MARYijNM88c5LSQiNUVkhoisEZHVIjLQnd5KRBaIyDIRWSIi7QsQvzF5VjY2mmd6NWPSgDMpGxtNvzFLGPBhCr8fOOp1aMYUiRwTv6r+U1X3qeoknLb9RsALuVh3GjBIVZsAHYC7RKQJ8G/gaVVthTPm/7/zG7wxBdHm9ApMuaczg3s2ZPq63fR4eRYfzN9Merp1/TShzW/iF5HqItJWREq4k8oBDwG/5rRiVd2VMZ6Pqh4E1gLVcYZ7KOuzvp35jN2YAouOjODObvX47r6zaFmzPI9PXs0Vb81j3W826JsJXdkmfhG5F1gGvAYsEJHbcJJ3SSApLxsRkUSgNbAQuBcYIiLbgJeAR/IetjGFq1al0nxwa3teubolW/Yc5qLhc/j3N+s4esKGfDahR7K7olFE1gCdVfUvETkd+AXopKopedqASBwwC/iXqn4qIsOBWao6SUSuAvqrao8slusP9AdISEhIGjduXJ4KliE1NZW4uLh8LRtsrCxF4+Bx5ZOfjzNnRxpVSgnXNy5By8pZX/ISzOXIKytLcCpIWZKTk1NUte0pM1Q1ywewNNPr5dm91886ooFvgft9pu3n7x2OAAdyWk9SUpLm14wZM/K9bLCxshStub/+ockvzdBaD03RW99frFv3HDrlPcWhHLllZQlOBSkLsESzyKn+rtyt4dbOM1Tzfa2q9/jb04gzLOJIYK2qDvWZtRNnHKCZOEM753i+wBgvnFkvnm8GnsWouZsYPu1XegydxYBudbmja11ioyO9Ds+YfPOX+B/M9DpPTTxAJ+AGYKWILHOnPQr0A4aJSBRwFLc5x5hgVCIqgju61qVXq9N49qu1vPrDr0xaup0nL2pKjyYJXodnTL74G6RtdEFWrKpzcJpyspKnk8PGeK1auZKMuK4N17X/kye/WM1tY5bQvVEVelZJ9zo0Y/LMRqoyJg861Ytn6sAuPHZBYxZu3MOjc44w9LufOXLcev+Y4sMSvzF5FB0ZQb+z6jD9gW60TYhk+PT19Bg6i29X/2bj/ptiwV8//hfdv72LLhxjio+EsrHc0TKWcf07EBcTxe0fpND3vcVs+vOQ16EZ45e/Gv8Fbs8cu8DKGD861KnElHs68/hFTUjZspfzXvmRId+u4/BxG/nTBCd/if8bYC/QQkQOiMhB379FFJ8xxUJ0ZAS3dq7N9Ae6clGLaoyYsYEeL8/i65W7rPnHBJ1sE7+qPqiq5YGvVLWsqpbx/Vt0IRpTfFQpE8vQq1sx4Y6OlC0ZzZ1jl3L12wtYsX2f16EZ81+5Obl7r4hc5D5qBzwiY0JAu8SKTLm7M89e2owNf6RyyetzuXfcT+zYdyTnhY0JsGz78YtIWeBdnD73y93JrUQkBbhVVa25xxg/oiIj6NOhFr1ancabMzcwcs4mpq76jVs712ZAt7qUiY32OkQTpvzV+IcDa4D6qnq5ql4O1AVWAq8XRXDGhIIysdEM7tmI6Q904/xmVXlj5gaSX5rJhwu2kHbSLgAzRc9f4u+kqk+p6n//M91xf57Bue+uMSYPqpcvyavXtGbyXZ2oEx/HPz5fxfnDZjNj3W47AWyKVH4v4MpuKAZjTA5a1izPJ7d34K0+SZw4mc7N7y/mhpGLWLPTWk9N0fCX+OeJyBNuX/7/EpHHgfmBDcuY0Obc+L0q393XlScuasKqnfu58LXZDJ643O79awLO3+icd+MMq7zeZ3TNVsBPwK2BDcuY8FAiKoJbOtfmijY1eG36r4yev5kvl+/i9q516H9WHUqV8PcTNSZ//I3OeQDoLSJ1gSbu5DWquqFIIjMmjJQrFc0/LmrCDR1r8eI363j1h1/5eNFWBp3bkCva1CAywlpXTeHJsY1fVTeo6pfuw5K+MQFUq1Jp3rg+iYl3dKRauZIMnriCC4bNZvq63+0EsCk0NjqnMUGobWJFPrvzTEZc14ZjaSe55f0lXPOfBfy0da/XoZkQYInfmCAlIlzYohrf39+Vf/ZqyoY/UrnsjXkM+DCFDX+keh2eKcZyTPwi8kFuphljAiM6MoIbOiYy68Fk7u1Rnx9/+YNzX/mRxz5byW7rAWTyITc1/qa+L0QkErt1ojFFrnRMFPf2aMDMB5Ppc8bpfLJ4G12HzOTl737m4NETXodnihF/N2J5REQO8vewzAfc17uByUUWoTHmf1QuE8PTvZrxw/1dObtxFV6bvp6uQ2by3txNHE+zISBMzvwNy/y8qpYBhrjDMWcMyVxJVe3mLMZ4LDG+NK9f14Yv/q8TjaqW4ekv13D20JlMXraD9HTrAWSyl5umnqkiclbmR8AjM8bkSosa5Rl72xmMvqU9cTHRDBy3jItfn8PsX//wOjQTpHJzWeCDPs9jgfZACtA9IBEZY/JMROjaoDJd6sUzefkOXvr2F24YuYjO9eK5/9wGtDm9gtchmiCSY+JX1Yt9X4tITeDVQAVkjMm/iAjhstY1uKB5NT5csJURM9Zz+Rvz6NqgMvf2qE9r2wEY8tePfzvQuLADMcYUnpioSG7tXJvZg5N5qGcjVmzfx2VvzKPve4tYtm2f1+EZj+VY4xeR14CMM0UROAO1Lc3FcjWBMUCCu/x/VHWYO+9u4C7gJM49fQfnJ3hjjH+lY6IY0K0uN3SsxZj5m3nnx41cOmIuyQ0rc2+PBrSsWd7rEI0HctPGv8TneRrwsarOzcVyacAgVV0qImWAFBH5HmdH0AtoqarHRKRKnqM2xuRJXEwUd3arx40dExk9bzPvzN5IrxFz6d6oCvf2qE+LGuW9DtEUodwk/k+Aeu7z9aqaq0sFVXUXsMt9flBE1gLVgX7AC6p6zJ23O89RG2PyJS4miruS63HTmX/vAC55fS5nN6pClwonvQ7PFBHJbsQ/EYkCngNuAbbg3HWrJvAe8Jiq5vpSQRFJBH4Emrl/JwM9gaPAA6q6OItl+gP9ARISEpLGjRuX60L5Sk1NJS4uLl/LBhsrS/Ap7uU4kqZ8v+UE324+waET0KpyJJfWiyaxXKTXoRVIcf9efBWkLMnJySmq2vaUGaqa5QN4BXgXKOMzrSzwH2BYdstlsZ44nO6fl7uvVwGv4exI2gObcHdA2T2SkpI0v2bMmJHvZYONlSX4hEo5Dhw5rve9+622eOpbrfXQFL31/cW6cvs+r8PKt1D5XlQLVhZgiWaRU/316rkI6KeqB312EgeAAcAFudnbiEg0MAkYq6qfupO3A5+6cS0C0oH43KzPGBMYZWKjuaRuCWY/lMygcxqwaNMeLnptDv3GLGHVjv1eh2cKmb/En7HHyDzxJH/38smWe6/ekcBaVR3qM+tzINl9TwOgBPBnHmI2xgRI2dho7j67PnMe7s795zRg4UbbAYQif4l/jYjcmHmiiPQB1uVi3Z2AG4DuIrLMfVwAjALqiMgqYBxwU1Y7GGOMd8rGRnPP2fWZ/VB37uthO4BQ469Xz13ApyJyC04bPUBboCRwWU4rVtU5OO34WemTlyCNMd4oVzKagT3q07dTIu/P3czIORu5aM3vnNMkgYFn16dZ9XJeh2jywd/N1ncAZ4hId/4ek/9rVZ1WJJEZY4KG7QBCS27G6pkOTC+CWIwxQc52AKEhNxdwGWPM/7AdQPFmid8Yk2+2AyieLPEbYwosux1Aj8YJ3NG1Dkm1KuD08DbBwBK/MabQZN4BjJq7iR/W/k7LGuW4tUsdzm9WlejI/IwGbwqTJX5jTKHL2AH0O6s2k1K2M2ruZu75+CeqlYul75mJXNP+dMqVjPY6zLBlu15jTMCUKhHFDR0TmXZ/V969sS2JlUrz/NR1dHx+Gk99sZotew55HWJYshq/MSbgIiKEHk0S6NEkgdU79zNyzibGLtzC6PmbOadxArd1qUO7RDsPUFQs8RtjilTT08ox9KpWPNSzER/M38KHC7fw3ZrfaV69HLd1qc0FzavZeYAAs0/XGOOJhLKxPHBeQ+Y/fDb/uqwZh46nMXDcMrq8OIM3Z25g/+Fc3/LD5JElfmOMp0qWiOT6M2rxw31dea9vO+pWKc2L36yjw/PTeGLyKjb/aecBCps19RhjgkJEhJDcqArJjaqwdtcBRs3ZxLhF2/hgwRbOaZxA/7PseoDCYonfGBN0Glcry5DeLXmwZ0PGzPv7PECrmuXp16UO5zVNIMrOA+SbfXLGmKBVpYxzHmDew935Z6+m7Dt8nLs+Wkq3l2Yyas4mUo+leR1isWSJ3xgT9P57PcCgbrx9QxJVy8byzJQ1dHx+Gi9MXcdv+496HWKxYk09xphiIzJCOK9pVc5rWpWftu7l3dmb+M+PG3h39kYuaXkat3WpQ5PTynodZtCzxG+MKZZan16BEddXYNtfhxk5ZxPjl2zj05920KleJc4ol0ZXVTsRnA1r6jHGFGs1K5biqUuaMv/hs3moZyPW705laMoxznv1R8Yv3sbREye9DjHoWOI3xoSEcqWiGdCtLrMHd6df8xJEiDB40go6Pj+NF79Zx459R7wOMWhY4jfGhJQSURF0qh7N1IFd+Oi2M2iXWJG3Z22gy4vTueODFOZv2IOqeh2mp6yN3xgTkkSEM+vFc2a9eLb9dZgPF27hk8Xb+Gb1bzSqWoYbOyZyaevTKFUi/NKg1fiNMSGvZsVSPHJ+YxY8cjYvXtEcEeHRz1bS4blp/OurNWz767DXIRap8NvVGWPCVmx0JFe3O52r2tZk8ea9jJ63mVFzN/PunE2c3agKN52ZSOd68SHfG8gSvzEm7IgI7WtXpH3tiuzaf4SxC7by8aKt/LB2EXUrl+amMxO5vE0N4mJCM0UGrKlHRGqKyAwRWSMiq0VkYKb5g0RERSQ+UDEYY0xOqpUryQPnNWTuw915uXdLSsdE8cTk1XR8zrlL2IY/Ur0OsdAFcneWBgxS1aUiUgZIEZHvVXWNiNQEzgW2BnD7xhiTa7HRkVyRVIPL21Tnp237GDNvM2MXbuH9eZvpXC+ePh1q0aNxlZAYHC5giV9VdwG73OcHRWQtUB1YA7wCDAYmB2r7xhiTHyJCm9Mr0Ob0Cjx2YRPGL9nG2AVbuOPDFKqWjeW6M07nmnY1qVI21utQ802Koj+riCQCPwLNgGSgu6oOFJHNQFtV/TOLZfoD/QESEhKSxo0bl69tp6amEhcXl8/Ig4uVJfiESjnAyuLPyXRlxZ8nmbY1jVV/niRSICkhku6nR9OwQkRATwYXpCzJyckpqtr2lBmqGtAHEAekAJcDpYCFQDl33mYgPqd1JCUlaX7NmDEj38sGGytL8AmVcqhaWXJr4x+p+uyU1driqW+11kNTtMfLM3X0vE164MjxgGyvIGUBlmgWOTWgjVUiEg1MAsaq6qdAXaA2sNyt7dcAlopI1UDGYYwxhaV2fGkeu7AJCx89myFXtqBkiUiemLyaM56bxmOfrWTtrgNeh5ijgLXxi3PsMxJYq6pDAVR1JVDF5z2byaapxxhjgllsdCS929akd9uaLN+2jw8XbGFiynbGLtxKu8QK9OlQi57NqhITFel1qKcIZK+eTsANwEoRWeZOe1RVvw7gNo0xpsi1rFmeljXL89iFjZmYsp0PF2xh4LhlxMeV4LLW1bkyqSYNq5bxOsz/CmSvnjmA3zMeqpoYqO0bY0xRK1+qBLd1qcMtnWozZ/2fjF24hffmbuad2ZtoUaMcVybV4JKWp1G+VAlP4wzNy9KMMcZDERHCWQ0qc1aDyuxJPcbkZTuZkLKdJyav5tkpazmnSQJXtq1Bl3rxnlwXYInfGGMCqFJcDLd0rs0tnWuzeud+JqZsZ/KynXy1chdVysRwWZvq9E6qQb0qRdcUZInfGGOKSNPTytH0tHI8cn5jpq/bzcSU7bw7exNvz9pIq5rl6d22Bhe1OI1yJaMDGoclfmOMKWIloiLo2awqPZtV5Y+Dx5i8bAcTlmznsc9W8cyXazivaVWuTKpBp3qBGcrMEr8xxniocpkYbutSh1s712bVjgNMSNnG5GU7+WL5TqqVi+XGBtCtkLdpid8YY4KAiNC8Rjma1yjHYxc2Ztra3UxYso3KpQp/dNDiP8ycMcaEmJioSC5oXo33bm5PfMnCT9OW+I0xJsxY4jfGmDBjid8YY8KMJX5jjAkzlviNMSbMWOI3xpgwY4nfGGPCjCV+Y4wJM0Vys/WCEpE/gC35XDweCJU7fFlZgk+olAOsLMGqIGWppaqVM08sFom/IERkiWZ1l/liyMoSfEKlHGBlCVaBKIs19RhjTJixxG+MMWEmHBL/f7wOoBBZWYJPqJQDrCzBqtDLEvJt/MYYY/5XONT4jTHG+LDEb4wxYSakE7+I3Cciq0VklYh8LCKxXseUWyIySkR2i8gqn2kVReR7EfnV/VvByxhzI5tyDBGRdSKyQkQ+E5HyHoaYa1mVxWfeIBFREQnMTVILWXZlEZG73e9mtYj826v48iKb/7FWIrJARJaJyBIRae9ljLkhIjVFZIaIrHE//4Hu9EL/3Yds4heR6sA9QFtVbQZEAtd4G1WevA/0zDTtYWCaqtYHprmvg937nFqO74FmqtoC+AV4pKiDyqf3ObUsiEhN4Fxga1EHVADvk6ksIpIM9AJaqmpT4CUP4sqP9zn1e/k38LSqtgKecF8HuzRgkKo2AToAd4lIEwLwuw/ZxO+KAkqKSBRQCtjpcTy5pqo/An9lmtwLGO0+Hw1cWpQx5UdW5VDV71Q1zX25AKhR5IHlQzbfCcArwGCg2PSUyKYsA4AXVPWY+57dRR5YPmRTFgXKus/LUQx++6q6S1WXus8PAmuB6gTgdx+yiV9Vd+DUWLYCu4D9qvqdt1EVWIKq7nKf/wYkeBlMIbkFmOp1EPklIr2AHaq63OtYCkEDoIuILBSRWSLSzuuACuBeYIiIbMPJA8XlqBIAEUkEWgMLCcDvPmQTv9sO1guoDZwGlBaRPt5GVXjU6YdbbGqYWRGRx3AOb8d6HUt+iEgp4FGcpoRQEAVUxGlmeBAYLyLibUj5NgC4T1VrAvcBIz2OJ9dEJA6YBNyrqgd85xXW7z5kEz/QA9ikqn+o6gngU+BMj2MqqN9FpBqA+7dYHIpnRUT6AhcB12vxvZikLk7FYrmIbMZpsloqIlU9jSr/tgOfqmMRkI4zQFhxdBPObx5gAhD0J3cBRCQaJ+mPVdWM+Av9dx/KiX8r0EFESrm1lrNx2syKsy9w/qFx/072MJZ8E5GeOG3il6jqYa/jyS9VXamqVVQ1UVUTcRJnG1X9zePQ8utzIBlARBoAJSi+I1zuBLq6z7sDv3oYS664eWoksFZVh/rMKvzfvaqG7AN4GlgHrAI+AGK8jikPsX+Mc27iBE5CuRWohHNW/1fgB6Ci13HmsxzrgW3AMvfxltdx5rcsmeZvBuK9jrMA30sJ4EP397IU6O51nAUoS2cgBViO006e5HWcuShHZ5xmnBU+v40LAvG7tyEbjDEmzIRyU48xxpgsWOI3xpgwY4nfGGPCjCV+Y4wJM5b4jTEmzFjiNyHPHTXzQ5/XUSLyh4hMCeA2XxWRs9znM0Wkrfu8tjvK4nk5LP9DcRh91RRPlvhNODgENBORku7rc4AdgdqYiFQCOqgzeJjv9BrANzgjMH6bw2o+AO4MUIgmzFniN+Hia+BC9/m1OBf9ACAi7UVkvoj8JCLzRKShO72piCxyx3RfISL1RaS0iHwlIsvd+zxcncW2rsBJ8L6qAd8Bj6nqF+76S4nIeHf89c/cwdHauu//wo3TmEJnid+Ei3HANe7NeFrgXM2ZYR3QRVVb4wy49pw7/Q5gmDpjurfFuSq0J7BTVVuqc5+HzAkeoBPOVaO+RgOvq+pEn2l3AnvVGX/9cSApY4aq7gVi3KMHYwqVJX4TFlR1BZCIU4v+OtPscsAE9w5OrwBN3enzgUdF5CGglqoeAVYC54jIiyLSRVX3Z7G5asAfmab9APRxR/TM0Blnh4SqrsK5VN/XbpyRZY0pVJb4TTj5Amds9o8zTf8nMMOtwV8MxAKo6kfAJcAR4GsR6a6qvwBtcHYAz4pIVkMyH8lYh49/A4txdjBRuYw31l2XMYXKEr8JJ6Nwbse3MtP0cvx9srdvxkQRqQNsVNXhOCMithCR04DDqvohMARnJ5DZWqBeFtPvBQ4AI92RGOcCV7nbagI099m2AFVxBn4zplBZ4jdhQ1W3u0k8s38Dz4vITzg3I8lwFbBKRJYBzYAxOMl5kTvtSeDZLNb3FdAti+0rzrC61dxtvgFUFpE17npWAxlNR0nAAv37FpXGFBobndOYABCROcBFqrrPz3sigWhVPSoidXHOAzRU1eMiMgz4QlWnFU3EJpzktq3RGJM3g4DTgX1+3lMKmOHedUmAO1X1uDtvlSV9EyhW4zfGmDBjbfzGGBNmLPEbY0yYscRvjDFhxhK/McaEGUv8xhgTZv4fOb/Ak9Zef/kAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "def speed(mass):\n", + " # Prepare Environment\n", + " Env = Environment(\n", + " railLength=5.2,\n", + " latitude=32.990254,\n", + " longitude=-106.974998,\n", + " elevation=1400,\n", + " date=(2018, 6, 20, 18),\n", + " )\n", + "\n", + " Env.setAtmosphericModel(type=\"CustomAtmosphere\", wind_v=-5)\n", + "\n", + " # Prepare Motor\n", + " Pro75M1670 = SolidMotor(\n", + " thrustSource=\"../../data/motors/Cesaroni_M1670.eng\",\n", + " burnOut=3.9,\n", + " grainNumber=5,\n", + " grainSeparation=5 / 1000,\n", + " distanceNozzleMotorReference=0.39796,\n", + " grainDensity=1815,\n", + " grainOuterRadius=33 / 1000,\n", + " grainInitialInnerRadius=15 / 1000,\n", + " grainInitialHeight=120 / 1000,\n", + " nozzleRadius=33 / 1000,\n", + " throatRadius=11 / 1000,\n", + " interpolationMethod=\"linear\",\n", + " )\n", + "\n", + " # Prepare Rocket\n", + " Calisto = Rocket(\n", + " motor=Pro75M1670,\n", + " radius=127 / 2000,\n", + " mass=mass,\n", + " inertiaI=6.60,\n", + " inertiaZ=0.0351,\n", + " distanceRocketNozzle=-1.255,\n", + " powerOffDrag=\"../../data/calisto/powerOffDragCurve.csv\",\n", + " powerOnDrag=\"../../data/calisto/powerOnDragCurve.csv\",\n", + " )\n", + "\n", + " Calisto.setRailButtons([0.2, -0.5])\n", + " Nose = Calisto.addNose(length=0.55829, kind=\"vonKarman\", distanceToCM=0.71971)\n", + " FinSet = Calisto.addFins(\n", + " 4, span=0.1, rootChord=0.120, tipChord=0.040, distanceToCM=-1.04956\n", + " )\n", + " Tail = Calisto.addTail(\n", + " topRadius=0.0635, bottomRadius=0.0435, length=0.060, distanceToCM=-1.194656\n", + " )\n", + "\n", + " # Simulate Flight until Apogee\n", + " TestFlight = Flight(\n", + " rocket=Calisto,\n", + " environment=Env,\n", + " inclination=85,\n", + " heading=0,\n", + " terminateOnApogee=True,\n", + " )\n", + " return TestFlight.outOfRailVelocity\n", + "\n", + "\n", + "speedbymass = Function(speed, inputs=\"Mass (kg)\", outputs=\"Out of Rail Speed (m/s)\")\n", + "speedbymass.plot(8, 20, 20)" + ] + } + ], + "metadata": { + "hide_input": false, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.0" + } }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAE/CAYAAABBxBeBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAB0xklEQVR4nO3ddZhbVfrA8e8Z99RdUnd3F6AUBmhx98WdRQaW35IFlh0Wdy20xVm0MECL1N3d29RdMp2ZtmPn98e5006HmWlGkptM3s/z5Elyc3Pzpk3eeXPuEaW1RgghhBAi1ITZHYAQQgghhB2kCBJCCCFESJIiSAghhBAhSYogIYQQQoQkKYKEEEIIEZKkCBJCCCFESIqwOwAhhBCiKGdKWh6wHIgEcoHxwMvu1OT8SnyN24Esd2ryeGdK2g3AJHdq8s4yHuNr4BF3avImZ0pahjs1OaGMz78CaOFOTf63F/vWAB4HagO/u1OTP3ampH0B/J87NXl9WV5XGFIEVSHOlLSXgS3u1ORXrPsTgW3u1OS/WfdfBHYAG4D27tTk1DIceyzwkzs1+etitg8B0oFYYA7wuDs1ebv1+M/AVe7U5MMVfG+jgXXu1ORV1v2ngGnu1OTfK3Jc61jdgLvdqck3O1PSwoCxQEvgFndq8kpnSlon4O/u1OQbKvpaQgivHXWnJncFcKak1QE+A5KAJyvrBdypye8UunsDsALwughypqR1AMLdqcmbKhDGOcBr3uzoTk0+aOX1x4Hj1ua3gUeAWyoQQ8iSIqhqmQlcBrxi/TGvhUkaBfoDD7hTk+cAEyrxdR92pyZ/7UxJU8D9wJ/OlLSO7tTkbHdq8rlFd7b2U2X8RTca+AlYBeBOTf5nxcM+4XHgGev2CGAu8DDwH+Amd2rycmdKWiNnSloTd2ry1kp8XSGEF9ypyXudKWm3AvOdKWkuTFeOVGAoEA286U5NfteZkjYUcAH7gY7AQuAad2qydqakpQIXYFqVJrlTkx+yjpUBuIGewKfOlLSjwD8wP4JGAzhT0s4C7nSnJl9YJLSrgR+KxutMSasF/IjJK78AbwDDgW1ADvBhoZzZFVhkxdIMaA40AR4A+mKKpB3A+e7U5Bx3avJvzpS0Rdb7/wqYDox1pqRFuFOTc8v6bxvqpAiqWmYBL1u3O2B+1dR3pqRVB7KAdpgv2w1AT3dq8t1WS046JgHUwzTrFnw5XwfOwnxxs0/34u7UZA287ExJuxDzxf3BmZLmto6dAEzEFBg9gHOdKWmXYYq2aOA7d2rykwDOlLTrgIcADSzD/NK5ABjiTEl7ArgY+D+slilnStoZwAuYz/N84A53avJx67XHAedjmtQvdacmrykcszMlLRHo7E5NXmptCgfyrYsqtOuPwBXAf0/37yCEqHzW6aZwoA4wCvC4U5N7OVPSooGZzpS0Sdau3TD5byfmh+EAZ0raauBCoK1VEFUrcuyvnSlpdwMPuVOTF1j570VnSlptd2ryPuBG4MNiwhoAfF54gzMlrS7mR+YTVsFyCeAE2luxry50rG7AUismgBbAMGvf2cDF7tTkR5wpad8Byc6UtI3AHZhcPcmKPd+ZkrYB6IIp+kQZSMfoKsQ6l53rTElrgmn1mY0pOvphCpHl7tTk4oqZ+sBA4DzMrwswCaMN5st4nXU8by0C2hazvRXwljs1uYN17FZAb8wvoR7OlLTBVvPyE8Bwd2pyF+A+d2ryLExSedidmtzVnZq8seCAzpS0GMzpq8vdqcmdMIXQHYVec787Nbk7ppB6qJiYemKKxQITMaf3JgAvFdq+ABjk3dsXQvjYCOA6Z0raEkyOq4nJJwDz3KnJ262W5iWYAsQDHAPGOFPSLsL8KCyR9YPuY+Aaq2Dqh2nRKao+sK/Q/UjgD8yPyd+sbQOB/7lTk/Pdqcm7gcmF9h9Z5Li/uFOTczB9ocKBX63tywGnOzV5uTs1+U53avJFRU7l7QUalPaeRPGkJajqmYUpWPpj/og3tG57ML+KivO9lTBWWb9iAAYDn7tTk/OAnc6UtD/LEIMqYfsW61QcmCQ2Alhs3U/AJLEumISxH8w58NO8Vhtgszs1eZ11fxxwF/CKdf9b63ohcFExzz8liVnNyVcUs58kGSFs5ExJaw7kYb6LCrjHnZo8scg+QznZVwZr/wh3anKuMyWtN3AGcAlwN+b0VGk+wrQAH8PkpOJONR0FYgrdz8XkmrOBqV68rRGYlu0Cx+FE606OVYyBaZku7e91jBWLKCNpCap6ZmKKnk6YFo45mF8x/TEFUnEKJ42SCpiy6IZp8i0qs8jr/Mdq2enqTk1u6U5NHlMJr11UwXvLo/gkUjSJlUSSjBA2caak1QbeAd6wCoOJwB3OlLRI6/HWzpS0+FKenwA43KnJP2P62nQpZrcjQGLBHatlfSemZfqjEg69GjOIooAGbgLaOlPSHrW2zQQudqakhVk/ModaMTkwBdqB0t67l1pzaou28JIUQVXPLMxprYPu1OQ8qyWlGqYQKqkIKs404HJnSlq4MyWtPuY8damcKWnKmZJ2L6Z15dfT7D4RuMlKTjhT0hpaI0D+BC51pqTVtLbXsPY/JUEVshZwOlPSChLRtXj3C6xA0SRWEkkyQvhXrDMlbYkzJW0l8DumD8y/rMc+wAySWORMSVsBvEvpLSWJwE/OlLRlwAzgwWL2GQu8Y71mrLXtU8wI2+J+1AGkYRU1BazW8yuB4c6UtDuBb4DtVryfYLoLeDD9LStjdGtdzEi63RU9ViiS02FVz3LMqLDPimxLKDjF5KXvMM3Fq4CtmP5FJXnemZL2f0AcpuVpWAl9j05wpyZPcqaktQNmWx0CMzCjOFY6U9L+DUy15glZjBm6+gXwvlVkXVLoOMecKWk3Av9zpqQVdIx+By+5U5PXOFPSHM6UtER3avKRUnYdhkl4Qgg/cKcmh5fyWD5mVOfjRR6aYl0K9ru70GO9izmOq9DtbzAFS2EDgfdLCfNrYLIzJe1J60dngnWs45hTYgA4U9IecqcmZ1g/7uZhcvIzmGLuL7FY9xNKeqyIqzBFoCgHpbU+/V5CVGHOlLQHgCPu1OQPSng8GtO6NFCGoAoRGpwpaQsxp/DPsoqakvY7G1hd2vQZzpS0KZgW+Sjgv+7U5LGVGOeNwMeSm8pHiiAR8qwRZpe6U5M/LuHxVkBDd2ryFL8GJoQQwqekCBJCCCFESAqZPkHOlLSRwKuYuRc+KMuSEYHCmZL2IabT8153anJHa1sN4EvMXBhu4DJ3avIha7KvV4FzMXNi3OBOTV5kR9zecKakNcasDVQXM8LiPXdq8qtV6P3FYDqbR2O+d1+7U5OfdKakNcP0d6qJGVp7rTs1Ods6BTceM7HkAcw8SG5bghcB43R5zF+fGy/ieBD4G2bI+D7MzOtbKjsOb+MptN/FmH48vdypyQvsiMOaJNaFyXNL3anJV1V2HN7EYs0nNw5zmi4cSLFGz/kilr/87SryuG35PCRGh1mzjL6JmcW4PXClMyWtvb1RlctYzORahaUAf7hTk1thJulKsbafg5l3pxVwK2aywECWi1mfqz1mqvi7rP+jqvL+jnNyAsiuwEhnSlpf4DnMopAtgUPAzdb+NwOHrO0vW/uJEOZlHvP558bLOBZjZqXvjCk6fDbTurf53Zod/j7M5Iq2xGGdWn8MGGBNGnu/XbFghv5/5U5N7oaZG+0tX8RiGctf/3YVZls+D4kiCDMqYIM7NXmTNWrpC8y060HFnZo8DSg6eeAoTDWPdT260Pbx7tRkbU1QWM0a6h6Q3KnJuwoqf2uU1mrMRI9V5f1pd2pyhnU30rpozAi8gkVpi76/gvf9NXCG9WtJhC5v8pg/PjenjcOdmjzZnZpcMCvzHKBRJcdQpngsT2OKwmM2xnELZp2zQ2DWRLMxFs3JtSUdlGHh2LIq4W9XYbbl81Apghpi1r8qsN3aVhXUdacm77Ju78acToIgfs/OlDQnZsLFuVSh92fNubQEM+Ptb8BG4HChUR2F38OJ92c97sGcMhOhy5vPvD8+N2X97t1M8UtO+C0eZ0pad6CxOzXZl9NcePPv0hpo7UxJm+lMSZtjnbKyKxYXZlmQ7cDPwD0+isUbtuXzUCmCQoI1k2pQ93S3Jk/8BrjfnZqcXvixYH9/1jwiXTG/intT/PpqQlQZzpS0azDr8z1vYwxhmCWE/m5XDIVEYE75DMVMqPh+0cVc/ehKYKw7NbkRpi/Ox9a/VUgJlTe8A2hc6H4ja1tVsKeg2dC6LmheDbr3bE2B/w3wqTs1uWDNryrz/gq4U5MPYxZR7Idp9i0YoFD4PZx4f9bjDkxHVxG6vPnM++Nz49V3z5mSdibwD+CC0ubZ8UM8iUBHYIozJc2N6XM4wZmS1tPPcYBp4ZjgTk3OcacmbwbWcXLhV3/HcjPwFYA7NXk2ZmmgWj6IxRu25fNQGR02H2hljcTZgekE5pMe+TaYAFyPWf39euCHQtvvdqakfQH0ATyFTisFHKvfwhjMpGOFV2+vKu+vNpDjTk0+bE3Jfxamf8JkzAzYX/DX93c9ZqbuS4A/Cy2mKEKTN3nMH5+b08bhTEnrhpnFeKQP+714FY87NdlDoT/u1sSFD/lgdJg3/z/fY1pgPnKmpNXCnB7bVMlxeBvLVsyCsmOt2ftjKLSYtJ/Zls9DoiXIOjd+N2a9qtWYHvEr7Y2q7JwpaZ9jklsbZ0radmdK2s2Y4uAsZ0raeuBM6z6Yc7ybgA2Yad/vtCHkshiAWfdruLV2zxJnStq5VJ33Vx8zvf4yTIL6zZ2a/BPwKPCgMyVtA6bvRsEismOAmtb2Bzk5Kk6EqJLymDMl7SlnStoF1m4+/9x4GcfzQAJmOZslzpS0CZUdRxnj8Tkv45gIHHCmpK3C/AB62F05C6iWJ5a/A7c4U9KWAp9jhqX75IdWcX+7nClptztT0m63drEtn8tkiUIIIYQISSHREiSEEEIIUZQUQUIIIYQISVIECSGEECIkSREkhBBCiJAkRZAQQgghQlLIFUHOlLRb7Y7BV6ryewN5f0KUJJA+OxJL8SSW4tkdS8gVQZgVaquqqvzeQN6fECUJpM+OxFI8iaV4UgQJIYQQQvhbyE2WGBYZrWOjTq4Wkp+fT1iY/bVgZcSRHxlHWE6W7XFUhuLiqIz3Vxlx+Oy1Snh//owhKytLa63t/wCIE8LCwnRsbGyp+3j73fDHZ6ks31Nfx1PWnOHLeMqTv3wVT3lzqS/iqWhez8/P59ixY+XPW1rrkLrExcXpwiZPnqwDgcRxKonDnhiATB0A31O5lJyzKiIQPs+FSTylk3hOb/LkyRXKW/KLTwghhBAhSYogIYQQQoQkKYKEEEIIEZKkCBJCCCFESJIiSAghhBAhSYogIYQQQoQkKYKEEEIIEZKkCBJCCCFESJIiSIgK8GTl8P60TWzYe6T0HdN3wqzX4fBW/wQmQsbPy3fxw5Iddoch7HD0kMkr+9baHUnQkiJIiAo4mJXNv39ezYod6aXveGgLTHoCDmz0T2AiZHw+bytjZ7ntDkPYIeugySu7ltodSdCSIkgIIYQQIUmKICGEEEKEJCmChBBCCBGSpAgSQgghREiSIkgIIYQQIUmKICGEEEKEJCmChBBCCBGSpAgSQgghREiSIkgIIYQQIUmKICGEEEKEJCmChBBCCBGSpAgSQgghREiSIkgIIYQQIUmKICGEEEKEJCmChBBCCBGSpAgSQgghREjyaRGklHIrpZYrpZYopRZY22oopX5TSq23rqtb25VS6jWl1Aal1DKlVPdCx7ne2n+9Uur6Qtt7WMffYD1X+fL9CCGqNslZQoQWf7QEDdNad9Va97TupwB/aK1bAX9Y9wHOAVpZl1uBt8EkIOBJoA/QG3iyIAlZ+9xS6Hkjff92hBBVnOQsIUKEHafDRgHjrNvjgNGFto/XxhygmlKqPnA28JvW+qDW+hDwGzDSeixJaz1Ha62B8YWOJYQQlUVylhBVlK+LIA1MUkotVErdam2rq7XeZd3eDdS1bjcEthV67nZrW2nbtxezXQghyktylhAhJMLHxx+otd6hlKoD/KaUWlP4Qa21VkppH8eAlcxuBYiIiGDKlCknHsvIyDjlvl0kjuCMY3dmPgCrVq+mmmd9ifs5Dq+iG7B06VIObStbN5BA+bcIEQGfs4o6dPAYR3O1V5+RQPssSTylO108sVk76QOsWr2KvQdL3s9f8dghIyOjQs/3aRGktd5hXe9VSn2HOT++RylVX2u9y2oe3mvtvgNoXOjpjaxtO4ChRbZPsbY3Kmb/4uJ4D3gPID4+Xg8devJwU6ZMofB9u0gcwRnH5v2ZMH0K7du1Y2i3Un7Ub4mGJdClSxdoUfLxyhODqDzBkLOKGrNxLpHHcxk6dMBp31+gfZYkntKdNp4DG2EetG/XnvadS9nPX/HYoKJFmc9Ohyml4pVSiQW3gRHACmACUDBa4nrgB+v2BOA6a8RFX8BjNUFPBEYopapbnQtHABOtx9KVUn2tERbXFTqWEEKUieQsIUKPL1uC6gLfWSNAI4DPtNa/KqXmA18ppW4GtgCXWfv/DJwLbACygBsBtNYHlVJPA/Ot/Z7SWh+0bt8JjAVigV+sixBClIfkLCFCjM+KIK31JqBLMdsPAGcUs10Dd5VwrA+BD4vZvgDoWOFghRAhT3KWEKFHZowWQgghREiSIkiICsg4lgtARHgpI76O7IEZL5nbMUl+iEoIERLy88y1kj/l5eXrIfJCVGnT1u8DoJezxl8f1BpWfAM/PwQ5R2HEv6FB97/uJ0QFKKXQPh+0LwLS0UPmOraarWEEMymChKiASav20KVxNeomxZz6QOZ++OkBWD0BGvaE0W9D7db2BCmqtDAFWqqg0JS131zH1bQ3jiAmRZAQ5bQ3/RhLtx3moRFFiptVP8BPD8LxdDjjSeh/L4TLV034RphS5EsNFJqyDpjruFr2xhHEJDMLUU6/rzZz5p3Z3lpFYe8amPIfWPU91O8Co3+Euu3tC1CEBAXkS0tQaMqUlqCKkiJIiHLQWvPF/K20qB1Pm5x18MXLsOYniIyDoY/DoAchPNLuMEUIUNISFLoy9kBUIkTF2R1J0JIiSIhyWOg+yLLtHp6pNw015h2IccDgR6DP7RAvv8qE/4SHQb5UQaHJsx0csgZvRUgRJERZ5OfD2jQ+/Ho9DhpyUc7PcNbT0PNGiE60OzoRgsLDFHlyOiw0pe+AJCmCKkKKICG8kZcDy/8HM15h+74D/Hr8FW5tc5S4a+ZDZMzpny+Ej4QpJS1BocqzA+p1sjuKoCZFkBClCMs7DnPfhVmvg2cb1O3I+OYvotaGc92F50sBJGwnLUEhKvc4ZO6FpEZ2RxLUpAgSojhHD8P89+k753XI8UDjvpD8IplNhvN56p+M7FibBtVi7Y5SCGuIvBRBISd9h7l2SBFUEVIECVHYkT0w502Y/yFkH+FIjR7UHPUMNO0PwDez3Rw5lsvNA5vZHKgQhjkdZncUwu88BUWQ9AmqCCmChAA4uBlmvQaLP4X8HGg/GgY+wPK1BxlqFUD5+ZqPZrrp2rga3ZtUtzdeISzhYZAnfYJCT0FLkJwOqxApgkRo27MKZrxs1vgKC4cuV8KA+6BmC/P42ikndp2ybi+b92fy2pXd7IlViGLI6bAQ5dlurpMa2BtHkJMiSISmbfNg+kuw7heIjIe+d0C/u0pNKB/OcFMvKYZzOtbzY6BClC4sTIqgkOTZDrE1ZKLECpIiSIQOrWHjHzD9ZdgyA2Krw9DHoPetEFfMKvCFrN19hBkb9vPw2W2IDA/zU8BCnF64zBgdmtJ3SH+gSuBVEaSUqg40AI4Cbq21dMMTwSM/z6zmPuNl2LUUEhvA2c9C9+shOsGrQ4ydtZnoiDCu6t3Ex8GKyhIqeStMSZ+gkOTZAdWb2h1F0CuxCFJKOYC7gCuBKGAfEAPUVUrNAd7SWk/2S5RClEduNiz7Ema+Agc2QI0WcMHr0PlyiIj2+jAHM7P5dtEOLureiOrxUb6LV1RYKOatsDCZLDEkpW8/MWpVlF9pLUFfA+OBQVrrw4UfUEr1AK5VSjXXWo/xYXxClF12JiwcB7PfME3G9TrDpWOh3QWm83MZfT5vK8dz87lxgLPSQxWVLuTyVriSyRJDzvEMOOaR02GVoMQiSGt9VimPLQQW+iQiIcor6yDMex/mvgNHD0LTgXDBa9DiDFCqXIfMzdeMn+NmUKtatK4ra4MFulDMW9IxOgTJ8PhK422foM6As/D+WutvfRSTEGWTvsu0+iwcC9kZ0PocGPQgNO5d4UPP353HnvTjpF7cueJxCr8KlbwlkyWGoILh8dISVGGnLYKUUh8CnYGVQMFXTQNVLpmIIHNgI8x8FZZ+Dvm50PFiGPgA1O1QKYfXWjPJnUPz2vEMaVW7Uo4p/COU8lZ4GHI6LNScKIKkJaiivGkJ6qu1bu/zSITw1v4NMOVZWPkdhEVCt2ug/71Qo3KXsli09RCb0/N5enQzwsLKdzpN2CZk8la4UjI6LNQc2gwoSKxvdyRBz5siaLZSqr3WepXPoxGiNEcPwdTnYd67EBED/e+BvndCom8mL/x0zlZiI+Di7tLkHIRCJm+Fh5l5q/LyNeFSrFdtebkw/QXTAt64N4RH2h1R0POmCBqPSSi7geOAArTWWjpJCP/Iy4WFH8HkZ00h1P06GP4EJNTx2UumH8vh5xW76Fc/grgomVM0CIVM3ooIN4VPbn4+4eUY/SiCxOGt8O2tsHW2Wd7n3OftjqhK8Ca7jwGuBZZz8ty6EP6x/neY9A/Ytwacg2Dkf6BeJ5+/7I9Ld3IsJ5/BjWReoCAVMnkrwmr9kVNiVdjK72DCfaDz4aIPoPOldkdUZXhTBO3TWk/weSRCFBKXuQ0+uQQ2/AY1msMVn0Gbc8s91L2svpq/jbb1EnEm5fnl9USlC5m8VXAKLCdPiqCqJizvGPxwNyz+GBr2gIvHVHrfx1DnTRG0WCn1GfAjplkZqJpDTUUAOJYOU5+j1/y3IDoRRvzbrO0V4b8WmbW7j7B0u4d/ntcelbvFb68rKlXI5K2Ctexy86p0g1do0RrW/kKv+Q/AsT0w8EEY9rj0AfIBb4qgWEwSGVFoW5UcaipspDWs+AYm/gMy9rCr/ggaXPMWxNfyeyjfLNpORJhiVNcGLF8gRVCQCpm8dbJPkLQEVQl7V8Ovj8GmyeTHNYLrJ0CzwXZHVWWdtgjSWt/oj0BECNu7Bn5+CNzToUE3uPIz1q0/QgMbCqDcvHy+W7yDYW3rUDPB+/XFRGAJpbxV0BKUIy1BwS3rIEz5D8wfYxZ2HvkcC7JaMkQKIJ8KK+kBpdQTSqkapTw+XCl1nm/CEiHh+BGY9AS8MwB2L4fzXoa//WHOfdtkxob97DtyXIbFB6lQzFuR4dInKKjl5cLc9+C1bjD/A+hxA9yzGPrejg6Tkam+Vtq/8HLgR6XUMWARJ1djbgV0BX4Hnj3dCyilwoEFwA6t9XlKqWbAF0BNzDo+12qts5VS0ZhhrT2AA8DlWmu3dYzHgJuBPOBerfVEa/tI4FUgHPhAa51apncv7KG1Ge0w8R9wZCd0uxbO/BfE17Q7Mr5ZtINqcZEMa+u74ffCpyqct4ItZ0lLUBDbONmc+tq32pzyGplaaTPeC++U2BKktf5Baz0AuB0z9Xw4kA58AvTWWj+gtd7nxWvcB6wudP854GWtdUvgECZRYF0fsra/bO2HUqo9cAXQARgJvKWUCrcS1ZvAOUB74EprXxHI9q2Dj0fD1zea/j43/w6j3giIAij9WA6TVu7m/M4NiI6Q+VaCUSXlraDKWRFhUgQFnQMb4fMrTS7MyYLLP4XrJkgBZANv+gStB9aX5+BKqUZAMvBv4EGllAKGA1dZu4wDXMDbwCjrNsDXwBvW/qOAL7TWx4HNSqkNQMHKmBu01pus1/rC2rfKzxAblLIzYdrzMOsNiIyDc1+AnjdBAE3u9vOyXRzPzefiHrIeT7Arb94KxpxVcDosV06HBb5j6WbG59lvQUQ0nPGkmfU+MsbuyEKWr084vgI8AiRa92sCh7XWudb97UBB54uGwDYArXWuUspj7d8QmFPomIWfs63I9j6VHL+oKK1h9QT49XFI3w5drzanvhICb0HSbxZtp0XteLo0ctgdirDPKwRZzpLTYUEgPx+WfAp/PAWZe00ePOOfPlvyR3jPZ0WQ1flwr9Z6oVJqqK9ex8tYbgVuBYiIiGDKlCknHsvIyDjlvl2qYhyxWTtptf49ahxaTEa8k3XdUkl3tIMFK/0ahzf2ZuUz332US1pHMnXqVNviKE4gxBAKgiVnFbX6gJnQc/7CxWS4S29ZDbTPUijEk+RZTav175OYsRFPUhs2dH+EI0mtYOEaYI3f46mIQIsHTEwVorX2yQX4D+aXjhvYDWQBnwL7gQhrn37AROv2RKCfdTvC2k8BjwGPFTruROt5J55rbT9lv5IucXFxurDJkyfrQFDl4ti+UOunamn9bCOtZ7+tdW6OPXF46a3JG3TTR3/S2w5m2hpHcfwZA5CpfZQTAv0SLDmrqHmbD+imj/6kp67dW+p+WgfG57mwKh/PjFe1fjJJ6xfbab30K63z8+2Np4ICLR6tTUwVyVsltgQppV7HTC5WUvF0b0mPWY8/Zn3JsX5VPaS1vlop9T/gEsxoi+uBH6ynTLDuz7Ye/1NrrZVSE4DPlFIvAQ0wozzmWcmmlTVyYwemI2LBeXthty0zIS8b7l4A1ZvaHc1pNa0ZB8CirYdpVD3O5mhEeVUkbwVrzoqOkNNhAcmzwyz63PocuGQMRMXbHZEoRmmnwxb46DUfBb5QSj0DLMYsdIh1/bHVifAgJkGgtV6plPoK03kwF7hLa50HoJS6G/MrKxz4UGt9+vMswj+O7DYdoKs1sTsSr4zsUI/WdRN47Y/1JHeqf2I9JhF0fJG3AjpnFYxkPJYjRVBA+fNps+Dpuf+VAiiAlVgEaa3HFb6vlIrTWmeV50W01lOAKdbtTZwcKVF4n2NAsUvjaq3/jRmtUXT7z8DP5YlJ+NiR3ZBQ128LnlZUWJjivjNac9dni0hbvosLujSwOyRRDpWVt4IpZxW0BB3PlcV+A8bOJbD0cxhwf9D8EAxVJc4TVEAp1U8ptQqrB5dSqotS6i2fRyaC25HdkFjf7ijK5JyOJ1uD8mQdpqAWSnkrJlJaggKK1mYm/LiaMOhBu6MRp3HaIggzZPRszIyoaK2XArKYiSjdkV2QWNfuKMqkoDVow94M0pbvsjscUTGvECJ5q6Al6FiOtAQFhHW/mnUQhz4GMTLdRqDzpghCa72tyCb5tonSZeyFhOCbA6OgNejV39dJa1CQC5W8VdASlC0do+2XlwOT/g9qtjJrgImA500RtE0p1R/QSqlIpdRDnDqlvBCnys6E7COQEHzrbxW0Bm3cl8lPy3baHY4ov5DJW9ISFEAWjYMD6+GspyA80u5ohBe8KYJuB+7CzHi6A7MI4V0+jEkEu4w95jpIZ0M9p2M92tZL5NU/1pOvpTUoSIVM3goLU0SFh3E8V1qCbHUsHSb/B5oOhDbn2B2N8JI3M0YrrfXVPo9EVB0Ze811ELYEQUFrUCvu+HQRc3ZFM9zugER5hFTeio4Ik5Ygu818BbL2w4ing2ZUrPCuJWimUmqSUupmpVQ1XwckqoAju811EPYJKnB2B9MaNGFDNrnS1yIYhVTeio4Ml5YgO3m2w+w3odOl0LC73dGIMjhtEaS1bg08AXQAFimlflJKXePzyETwOtESFFyjwwoLC1Pcf2YrdmdpfpS+QUEn1PKWtATZ7M9nzND4M/5pdySijLwdHTZPa/0gZsKwg8C40zxFhLKM3aDCzTwZQWxE+3o0TgzjtT82SGtQEAqlvBUTKX2CbLNzCSz9AvreIRMjBiFvJktMUkpdr5T6BZgF7KKY2VOFOCFjj+kPFOZVjR2wwsIUo1tGsnl/JhOWSmtQMAm1vBUdEc5xaQnyv4KJEWOry8SIQcqbjtFLge+Bp7TWs30bjqgSVBhk7odF46HbtUHdSbB7nXA6NEjimbTVdG1cjea1E+wOSXgnpPJWTGSYzBhth02TzcSI5/xXJkYMUt78VG+utX4Ak1SEOL0zngTnQJhwD3x/J2SXa8m5gKCU4o2ruqOAa8fMY0/6MbtDEt4JqbwVGxVOVnau3WGEFq1hynOQ1FAmRgxi3hRBfUNlDR5RSeJrwTXfwJAUs4jgB2fC/g12R1VuzWrFM/bG3hzOyub6D+fhOZpjd0ji9EIqb8VGRpCVLafD/Mo9HbbNgYEPQES03dGIcpK1w4RvhIXDsMfgmq/NOmLvDYWV39kdVbl1auTg3Wt7snFfBreMWyAjcQLfK4RQ3oqLCueofCb9a8pzZpHobtfaHYmoAFk7TPhWyzPh9ulQpy387wb49jbYs9LuqMplYKtavHRZV+ZvOcidny6S0w8BLpTyVlxUuLQE+ZN7JmyZAQPuh8gYu6MRFSBrhwnfczSCG36GAffBqh/g7f4w7nxY8zPkB1fiPr9LA54Z3ZEpa/dy6Tuz2eU5andIonghlbfioiLIOi5Fud/Meg3iakGP6+2ORFRQedcOu9OHMYmqKCLKLCr44Co40wUHNsIXV8LrPWDO22bdnSBxdZ+mjLm+F1sOZHHBGzNZsu2w3SGJvwqpvJUQE0Fmdh75+bLWnc/tWwvrfoXet0JkrN3RiAryZsbo/Vrrq7XWdbXWdbTW1wCP+yE2URXF1TAdCe9bCpd8ZOYT+jUFXmoPv6TAwU12R+iVYW3r8O2d/YmJDOPyd2fzo8wjFFBCLW8lRIcDkCX9gnxv9hsQEQO9brY7ElEJyjub3WWVGoUIPeGR0PEiuHkS3PKnWXV5/vvwWnf47Aoch1fYHeFpta6byPd3DqBzIwf3fL6Yl35bh5ZV5wNZlc1b8dFmyrdMOSXmWxl7YemX0PUqMwpWBL3yFkHBO/udCDwNe8DF78P9K2DwQ7B9Ht2W/MP0GQpwNROi+eRvfbikRyNe+2M9704LjpasEFVl81aCVQQdOSZFkM/kHDPznuVlQ9+77I5GVJISZ4xWStUo6SGqcDIRNkqqD8OfgEF/J+OVfiT8dD806WtOoQWw6Ihwnr+kM5nHc3lx0loGtqxFx4Yye6wdQjVvJcVEAnDkmMxh5RM5x+DLq2HD73DeK1Crpd0RiUpSWkvQQmCBdV34sgDI9n1oImRFxrKm7b2QdcD0FwoCSin+c1EnasZHc+8Xizkqw5XtEpJ5KzFGWoJ8JueoGcSx4Q+44HXoeaPdEYlKVGIRpLVuprVubl0XvTT3Z5Ai9GQkNodBD8GyL4PitBhAtbgoXrqsC5v3Z/JM2iq7wwlJoZq3kmJNS1C6tARVrpyj8PmVsHGyKYC6X2d3RKKSBfcy36JqG3i/mZH1p/uDZv2x/i1rceug5nw6dyvT1u2zOxwRIgpOh6UflZagSrN3NXxyMWyaAqPehO4yM3RVJEWQCDzHM2i4/Ud4s7dZciOmGuQHT3K/c6jpL7B8h8fmSESocFgtQYePVtkzfv6zdw3870Z4qx/sWgoXvgvdrrY7KuEjJXaMFsLv0nfBvHdhwYe0OuaBxn3h7GehzblmLbIgseOwmUW6ac04myMRoSI2KpzYyHAOZkgRVG5719Bu1QswZQZExcOgB6Hf3QE/MENUjNdFkFKqDnBikRSt9VafRCRCz56VMOsNWP4/0HnQ7nwWRQ+g+6jb7I6sXNwHMgGz+rywVyjlrRrxURzMkiKozPathan/hRXfUCss2kzm2u9uiK9pd2TCD05bBCmlLgBeBBoAe4GmmDV4Ovg2NFGlaQ2bJpviZ+MfEBkHPW+CvndAjWakT5lid4Tltnm/KYKcNaUIskso5q2aCVEczJQiyGv71sG0/8Lyr03+GXg/c/K7M+DMC+yOTPiRNy1BTwN9gd+11t2UUsOAa3wblqiycrNh5bcw63XYswIS6sLw/zMFUBVpdnbvz6ROYvSJWXyFLUIub9WIlyLIK/s3wNTnYMXXEBFrFnbufw/E1yIniH98ifLxJkvnaK0PKKXClFJhWuvJSqlXfB2YqGKOeWDhOLNY6pGdULstXPAGdL4MIqLtjq5Sbd6fKafC7BdyeatGfBTr92TYHUbgOrARpj1vpt2IiDGnvAbcJ8tfhDhviqDDSqkEYDrwqVJqL5Dp27BElXF4G8x9xxRA2Ueg2WC44DVoeSaoqjmB7+b9mYzoUNfuMEJdyOWtWgnRHMg8jtYaVUW/W+VycLMpfpZ+AeFR0PdOGHA/JNS2OzIRALwpgkYBR4H7gasBB/CUD2MSVcGupeaU14pvzf2OF5lfXg262hqWr3mycjiQmS0tQfYLubxVMz6KYzn5ZGXnyalYgENbTPGz5DOzYHOf20zxkyg/UMRJp/2maK0zlVJNgVZa63FKqTggeMYrC//RGjZPhekvwuZpEJUAfW43nZ2rNbY7Or/YfGJkWILNkYS2UMxbNeKjADiQkR3aRdCRPTDlWVj8Cahw6H2LGfGVWM/uyEQAOu1kiUqpW4CvgXetTQ2B7714XoxSap5SaqlSaqVS6l/W9mZKqblKqQ1KqS+VUlHW9mjr/gbrcWehYz1mbV+rlDq70PaR1rYNSqngWGSqKtIa1v8OH54N40eZURdn/gseWAkjnw2ZAghgza50AFrWkSLITuXJW8Ges+o5zEwABfNUhZzc4zDjFXi9Byz+FHrcCPctgXOekwJIlMibGaPvAgYA6QBa6/VAHS+edxwYrrXuAnQFRiql+gLPAS9rrVsCh4Cbrf1vBg5Z21+29kMp1R64AjO0dSTwllIqXCkVDrwJnAO0B6609hX+ojWs/RXeHw6fXgyeHXDuC3DfUrPkRWw1uyP0u6XbD5MUE4FTJkq0W3nyVlDnrIJTsJv2h1jnaK1h9U/wZh/4/UlwDoS75kLyC5DUwO7oRIDzpgg6rrU+Me5SKRUB6NM9SRsF38ZI66KB4ZhfaADjgNHW7VHWfazHz1Cmd98o4Aut9XGt9WZgA9DbumzQWm+y4vvC2lf4Wn4+rP4R3h0Mn18OWfvh/Ffh3sWm6Tky5vTHqKKWbPPQpXE16ZhqvzLnrWDPWQ0cscREhrFpX5Xu/32qPSth/AXw5dVmlOm138FVX0DNFnZHJoKENyeOpyqlHgdilVJnAXcCP3pzcOuXz0KgJeYX0EbgsNa6YCGo7ZhmaqzrbQBa61yllAeoaW2fU+iwhZ+zrcj2Pt7EJcopPx9W/wBTn4e9K6FGcxj1lhnmHh5pd3S2y8rOZd2eI5zZThJwAChX3grmnBUWpnDWjGfTvhBoCcrcD5P/DQvHQozDtED3uBHCQ7gvlCgXbz4xKZhm3+XAbcDPwAfeHFxrnQd0VUpVA74D2pYvzIpRSt0K3AoQERHBlEITYmVkZJxy3y4BHYfOo87eGTTd8hXxWdvJjGvElnYPsK/2ILQnHKbP9E8cNihLHOsO5ZGXrwk7vI0pU3bZEoM4oVx5KxhyVmkSOcbKbSV/XgLts1TWeFR+Lg13/EzTLV8QkXuUHQ3Pwe28ktysRJg+w+/x+JrEc3oZGRUr+r0ZHZYPvK+UGoc5x71Da33a02FFjnFYKTUZ6AdUU0pFWL+sGgE7rN12AI2B7VbTtQM4UGh7gcLPKWl70dd/D3gPID4+Xg8dOvTEY1OmTKHwfbsEZBx5uWY9r+kvwIENULsdnDOG+A4X0t7HC5oG5L/HaWyYvglYzdXnDKROYuWdEgyUf4tgUtG8Fcg5qzSLsteycPIG+g0cRHTEX7+jgfZZKlM86ybBxMfhwHpocQac/SyN6rSlkV3x+IHEc3oVLcpK7BOklHpHKdXBuu0AlgDjgcVKqStPd2ClVG3r1xRKqVjgLMzaPZOBS6zdrgd+sG5PsO5jPf6nlbQmAFdYIzGaAa2AecB8oJU1ciMK0xFxgpfvW5QmNxsWjYc3esD3t5up5S8bD3fMgk6XBNWK7v60ZNthGlaLrdQCSJRNRfJWVchZzWsnkK9hy4GsyjysvfathU8uhs8uBTRc9RVc8w3UsaWRTlQxpbUEDdJa327dvhFYp7UerZSqB/wCfH6aY9cHxlnn2MOAr7TWPymlVgFfKKWeARYDY6z9xwAfK6U2AAcxCQKt9Uql1FfAKiAXuMtqskYpdTcwETP/x4da65VlefOiiNzj1N/5K7x+D3i2Qv2ucMXn0OacKju7c2Vatt1Dl8YOu8MIdRXJW0Gfs5rXtkaI7cugdd3Eyjy0/x09BFOeg/nvQ2Q8jPg39L4VIqLsjkxUIaUVQYVX4jsL+B+A1nq3NyNftNbLgG7FbN+EGSVRdPsx4NISjvVv4N/FbP8Zc65fVETOMdPyM/MV2qTvgIY9zfDSViOk+PHSwcxsth7M4qo+TewOJdSVO29VhZxVMEx+YzCPEMvLhUVj4c9/w7HD0P16GP6ErPElfKK0IuiwUuo8zDnrAVhzY1jnvmP9EJvwtewsM7pi5quQsRua9GOp81a6XHifFD9ltHT7YQA6N5KWIJuFdN5KjImkblI0G4N1hNimKfDrY7B3FTgHwcj/QL1OdkclqrDSiqDbgNeAesD9Wuvd1vYzgDRfByZ86HgGLBhj1vbK3GeSzcUfgHMgh6ZOlQKoHJZuO4xS0LlRNbtDCXUhn7ea10oIvrmCDmyESf8Ha9OgWlO47GNod77kIuFzJRZBWut1mNlOi26fiDmnLYLNsXRzfn3WG3D0IDQfBkMegab97Y4s6C3ddphWdRJICOU1mwKA5C3TL+jHpTuDYjX58NwsU/zMfQfCIuGMf0Lfu0J6wlXhX5KxQ8HRwzD3XZjzljnH3moEDH4EGveyO7IqQWvN0u0ezmjrzWoyQvhW89oJpB/L5UBmNrUSou0Op3j5ebDkU/rMfQJyPND1alMAyRpfws+kCKrKsg7CnLdNAXTcA23OhcEPQ8PudkdWpWw/dJSDmdl0blzN7lCEoMWJEWKZgVkEbZkFvzwKu5dxNKktUTd8Bw172B2VCFFSBFVFmfth9hsw733IzjDn1gc/DPW72B1ZlbRk22EAukkRJAJAi9oJgBkm37tZDZujKeTwVvjtn7DyO0hqCBePYfH+mgyVAkjY6LRFkFKqLvAs0EBrfY616nE/rfWY0zxV+FvGXpj1GswfAzlHocOFpvipW2kLVYtiLNt+mKiIMNrUC/J5WaqQUM5bDarFEhURxqb9AdI5OjsTZrxsBmKgYOhj0P9eiIqDAFuCQYQeb1qCxgIfAf+w7q8DvuTkhGHCbum7zDD3hR9BXjZ0uhQG/R1qt7E7spCwdJuHjg2SiAwvcQJ24X9jCdG8FR6maFYzno17bR4mn59vlt35/Uk4sgs6XgJn/QsclbnQhRAV400RVEtr/ZVS6jE4sVpyno/jEt5I3wXTXzQTHebnQpcrTPFTU1Yx95fcvHyW7/BwRe/Gp99Z+FNI563mteNZs/uIfQHsXg4/3g87FkCDbnDpOGjSx754hCiBN0VQplKqJqABlFJ9AY9PoxKlO34EZr5m+v3kZZuRFQMfgBrN7I4s5Ow5cpyjOXnBv0RB1RPSeatV3UQmrtzNkWM5JMZE+vfF3TPhs8vN6a7Rb0PnKyBMWklFYPKmCPo7ZpG/FkqpmUBtTi4mKPwpL8fM8Dz1OTPJYYeL4Iz/gxrN7Y4sZOXlmYXJo+RUWKAJ6bzVp1kNXtOwYMshhrXx49QN6ybBV9dCtSZw3Q+Q1MB/ry1EOZy2CNJaL1RKDQHaAApYq7XO8Xlk4iStYc1P8LsLDmyApgPgyi+hkYyqsFueNkVQeFhgT0oXakI9b3VvUp3IcMWcTQf8VwSt/A6++RvUaQ/XfidrfYmg4M3osGXAF8CXWuuNvg9JnGLrXPjt/2DbXKjVBq78AlqPlOnkA0RevimCwqQICiihnrdio8Lp2rgaczcd9M8LLvoYfrwXGvWGq7+CGFlDTwQHb9rwzwdyga+UUvOVUg8ppWSpbF87uBm+ug4+HAGH3HD+q3DHLGhzjhRAASTfagmSGijghHze6tu8Jst3eDhyzMcNYAs+ggl3Q/OhcO23UgCJoHLaIkhrvUVr/V+tdQ/gKqAzsNnnkYWqo4dh0hPwZm9Y/5uZU+OeRdDjBgiXuS0DTYRV/eRafYNEYJC8Bf1a1CQvX/u2NWjVBEh7EFqeZVqpo+J991pC+IBXf1WVUk2By61LHvCIL4MKRSo/z8zwPPlZOHrIjPga/gQk1bc7NFGKmMhwAI7lhMzo66AR6nmrR9PqxEaGM339Ps5sX7fyX8A9w/QBatgDLhsHEQG4RIcQp+FNn6C5QCTwP+BSrfUmn0cVSrSG9b/Rc8EDkLUdnIPg7H/LEhdBIjrCNKZKERRYJG9BdEQ4fZrXYPqG/ZV/8N3L4fMroboTrvpKWoBE0PKmJeg6rfVan0cSig5ugp8ehE2TUbEN4IrPpc9PkCloCTqem29zJKIIyVvAwJa1eCZtNTsOH6VhtdjKOejBzfDJxRCdaPoAxQXQ+mRClJE3HaN3K6VeUkotsC4vKqWk51tlmPgEbF8AI59jfq/Xoe25UgAFmYIi6Ki0BAUayVvAkNa1Afh91Z7KOeD63+D9YZB7HK75RpbAEEHPmyLoQ+AIcJl1ScesySMqau8qaHUm9L0dHSadnoNReJgiKjyMYznSEhRgJG9hZo5uWy+R7xbvqNiB8nLhj6fg00sgqRHc8ifUaVc5QQphI2/+8rbQWl9c6P6/lFJLfBRP6Mg9Doe3mMVORVCLiQyTPkGBR/KW5cJuDfnPL2vYXN5V5Y/sgW9uBvd06H4dnPNfiKykU2tC2MyblqCjSqmBBXeUUgOAo74LKUQc3AQ6H2q1sjsSUUExkeFSBAUeyVuWUV0bohTlaw3aPB3eHWRO249+Gy54XQogUaV40xJ0BzDOOp+ugIPA9T6NKhQcsCaxTd8B+fIHNJjFRoVLn6DAI3nLUs8RQ/8WNflu8Xa69vKyz2HWQZj+Isx5C2q0gGu/h7rtfRqnEHbwZu2wJUAXpVSSdT/d10GFhPqdoW4nsx7Yks+oXecCyB8sqy0HodjIcI5mSxEUSCRvneqq3k2567NFLNgTzfDSdsw5BvPeNQXQsXTodg2M/I8ZCSZEFXTav7hKqZpKqdeAKcBkpdSrSqmaPo+sqqvWBG6bBpeOAxVGh1UvwDsDzAys+dLJNphIS1Dgkbx1qpEd69G8Vjw/bcxB62JmN8/PgyWfwes94Ld/QuM+cMdMGPWGFECiSvOm2eELYB9wMXCJdftLXwYVMsLCoMNouGMWq9r9HfKy4atr4b3BsPYXM5GiCHjSEhSQJG8VEh6muH1oC7YeyWfK2n0nH7Ama+WdQfD9HZBQB67/Ca7+H9TtYF/AQviJN0VQfa3101rrzdblGcAHc7CHsLBw9tYdDHfOhdHvwPEj8PkVZj6O9b9JMRTg4qLCyZIiKNBI3iriwm4NqRmjeGPyBtMatHMxjL/ADHvPyYJLPjJD35sNsjtUIfzGmyJoklLqCqVUmHW5DJjo68BCUngEdL0S7l4AF7wBmQdMghozAjZOlmIoQMVEyumwACR5q4jI8DDOaRbJwi2HmPPRo/DeUNiz0gx5v2sedLxIJmsVIafEIkgpdUQplQ7cAnwGHLcuXwC3+ie8EBUeCd2vhXsWwnkvmxFkH4+Gsclm0UIRUExLUK7dYQgkb5Uqcz83HvuYWhzmrY21YPDDcO8S6HMbRETZHZ0QtiixCNJaJ2qtk6zrMK11pHUJ01on+TPIkBURBT1vgnsWwTnPm2H1Y5Nh3AWwda7d0QlLXFSE9AkKEJK3ipGdCdOeh1e70nzXj/yt6V6m53Vgaau7ISY0/0mEKFCm8dhKqRZKqSeUUit9FZAoRmQM9LkV7lsCZz9rltv4cIRZxHD7QrujC3kyOiywhWzeysuFhWPhte7w5zPQfAjze73O1TfeTVJMBG9M3mB3hELYzpsh8g2UUg8qpeYDK4Fw4AqfRyb+KjIW+t0F9y2FM/8FOxbBB8Phy2vM5GbCFgrIydPk5MnUBoEi5PPW/g1myo0f7zPTcdw0Ea74lKz4RiTGRHLDgGb8tmoPq3aG9PRJQpTaJ+hWpdRkzDwbNYCbgV1a639prZf7KT5RnKh4GHg/3L8Mhv0D1k2E94bAziV2RxZy5rsPMmbGZro3qUZEmHQqtZvkLcxp83HnQeZ+uPwTuHkSNOl7yi43DXBSLS4S148ri583SIgQUVpL0BvW41dprZ/QWi8DvP62KKUaK6UmK6VWKaVWKqXus7bXUEr9ppRab11Xt7YrpdRrSqkNSqllSqnuhY51vbX/eqXU9YW291BKLbee85pSITa0IToRhjwCN/5qJlgcMwIWfWx3VCFjze50bh47n4bVYnn/up6E2scvQJU7b1WJnHVwE4w9z8w5dv0EaHd+sSO+qsVF8cjZbZm3+SA/LNlZqSEIEUxKK4LqA58DLyql1iqlngYiy3DsXODvWuv2QF/gLqVUeyAF+ENr3Qr4w7oPcA7QyrrcCrwNJgEBTwJ9gN7AkwVJyNrnlkLPG1mG+KqORj3gtqnQtB9MuBsm3GOmvxc+s+1gFteNmUdsVDjjb+5NzYRou0MSRkXyVnDnrIObYez5kHsMrptw2skOL+/VmC6NHDyTtpr0YzmVFoYQwaS00WEHtNbvaK2HAGcAh4E9SqnVSqlnT3dgrfUurfUi6/YRYDXQEBgFjLN2GweMtm6PAsZrYw5QTSlVHzgb+E1rfVBrfQj4DRhpPZaktZ6jTXvu+ELHCj3xteCab2HQ32HRePjwbDi81e6oqqT9Gce57sN5HMvJY/xNfWhUPc7ukISlInkrqHPWoS0w7nzIyYTrfoB6HU/7lPAwxdOjO3Ig8zgv/7auUsIQIth4NTpMa71da/2i1ron5otfpmYGpZQT6AbMBepqrXdZD+3m5CyuDYFthZ623dpW2vbtxWwPXWHhcMY/4YrPTbP4uAvM8FhRKXLz8vlkzhbOfnkaOw8f5cMbetGmnqyrFKgqkreCLmf98ohZ8PTa783izF7q3KgaV/dpwrhZbhZukcEVIvScdhX5orTW64CnvN1fKZUAfAPcr7VOL3wKXGutlVI+75WnlLoVa6K0iIgIpkyZcuKxjIyMU+7bpXLjiMPR7lG6LfkH28fdwoZW3s8RVzX/PSoex4r9uXy+JpsdGZo21cO4t0sUGe5lTHH7LwZRfmXJW4Ges/5C5zNw4zT21hnEunWHYV3J+xb3WRqQoJkYo7ht7Bye6h9LXKT/+rYF2mdb4ildoMUDJqYK0Vr77II5Fz8ReLDQtrWYdX3AnL9fa91+F7iy6H7AlcC7hba/a22rD6wptP2U/Uq6xMXF6cImT56sA4FP4vglResnk7TeOMXeOMohUOL49Mc/9A0fztVNH/1JD3ruT/3L8p06Pz/frzH4898CyNQ+zAmBfgmGnPUXu1ea7/niz0rfT5f8WVrgPqibP5am7/t80WmPUZkC5XteQOIpXaDFo7WJqSJ5q0yTJZaFNephDLBaa/1SoYcmAAWjJa4Hfii0/TprxEVfwKNNE/REYIRSqrrVuXAEMNF6LF0p1dd6resKHUuAOTVWsyX8cLdpKhdeO5iZzT9/WMETM4+ywH2Ix89ty28PDmZkx/oyCqyKCtqctX2euW7cu9yH6NG0Oved0Yrvl+zk+8U7KhySEMHCm8kS//BmWzEGANcCw5VSS6zLuUAqcJZSaj1wpnUf4GdgE7ABeB+4E0BrfRB4GphvXZ6ytmHt84H1nI3AL17EFToiY82q9Onb4avrYMU3Zu4QUao/1+xh6POT+XTuVoY2jmDKw0O5dXALoiPC7Q5NeKmceSs4c9a2+RAZD9WaVugwdw1rSS9ndZ74fgVbDkhfQhEaSuwTpJSKAeKAWtavmYKfv0l40ZlPaz2j0HOKOqOY/TVwVwnH+hD4sJjtC4DTD4MIZY17wVlPw9TnYNNks61uJ2g+BJoNgab9ITrB3hgDzIuT1lErIZpvru3BjtULZfh7EKlI3granFXDaUaFjR8FF38ASfXLdZjwMMXLl3flvNdncMv4BXx75wASosvcbVSIoFJaS9BtwEKgrXVdcPkBMyGZCBb974ZHNsPf/oDh/wdx1WHe+/DZpfBcUxhzNkx+FtwzUfmhPV/I1gNZrNyZzpW9m9Cqroz8CkKhl7cGPwwXvgs7F8E7A2Hjn+U+VKPqcbx5VXc27svk718tIT9fZpMWVVuJZb7W+lXgVaXUPVrr1/0Yk/CF8Aho1NNcBj8EOUdh21zYNBU2TzWrTE99joFh0bBj4MmWonqdIcxnXccCzi8rzEjokR3r2RyJKI+QzVtdroAG3eCr6+Hji0xhNDTFTJtRRgNa1uIf57bjqZ9W8dqf67n/zNY+CFiIwHDatk6t9etKqf6As/D+WuvxPoxL+FpkLDQfai4ARw+Dewa7ZnxGI88G+O2fZntsdXAOOlkU1WhRpYuiX1bsplNDB41ryASIwSwk81btNnDLH/DzwzDtv7B1tjk9llj2gv7GAU5W7Urnld/X07ZekvwoEFXWaYsgpdTHQAtgCZBnbS6Y7VRUFbHVoN15bNiTQKOhQyF9F2yeZlqJNk2F1RPMflEJULejmZCtXifTUlSnHUQEf7+ZrOxclmw7zB1DW9gdiqigkM1bUfEw+i1oOgDS/g6v94Bef4N+d0NCba8Po5TimdEd2bA3gwe/WkKj6v3o2NDhw8CFsIc3vd56Au2tToAiVCTVhy6Xm4vWZgbqLTNh93LYtQyWfAbZ1iRVYRFQq82phVG9jqYVKYjERobTqk4CC9wyc24VENp5q9vVZsj85Gdh5qsw913oeSNRqqfXh4iJDOe9a3sw+s2Z3DxuPt/fNYD6jlgfBi2E/3lTBK0A6gG7TrejqKKUgpotzKVAfj4c2gy7l50sjDZOhqWfn9zH0aRIYdQJHI2KXdU6ECilGNW1AS9MWsf2Q1myJlhwk7xVqxVc+hEMexymvwRz36Uv70HOTBh4P1RrctpD1EmKYcwNvbj0ndncPHYBX93eT0aMiSqltCHyP2KajxOBVUqpecDxgse11hf4PjwRsMLCThZGHS48uT1j76mF0e7lsCYN81HCtA6dKIqswqhWa9NxOwCM6tqQFyatY8LSndw5tKXd4YgykrxVjFqt4MK3Ycgj7P7fozRYNB4WjYPOV8CgB0/9cVOMdvWTeOOqbtw8bgH3fr6Y967tQUR41e0XKEJLaX95XvBbFKLqSKgDLc80lwLHM2DvKlMcFRRG8z+AXGs9y/BoqNse6neBpgOh2SB7Ygca14ije5NqTFgiRVCQkrxVkhrNWNfmThpc8TLMeg0WjoWln0HHS+DsZ0vtMzS0TR1cF3Tg/75fwZMTVvL0qI6EhQVmi64QZVHaEPmp/gxEVGHRCaZ/QuFp/fNy4cB6q8Voqble8Z1JzEDv2IaQMdIURM5BEF/Lb+H2a1GTNydvJFS7kwQzyVtecDSEc56DgQ/C7DdMf6HNU+HCd6DF8BKfdm3fpmw/lMW7UzeRcTyX5y/pQlSEtAiJ4ObN6LAjnDiXcYIHWAD8XWu9yReBiSouPMKMKqvTDjpfZrbl55nWos3TObrwe+KWfQkLxpjH6nQwBVGzwWaWax93ug4PU7JGWBCTvOWFxLow4mnofDl8fRN8fCEMuM9MqBoeWexTUka2JSkmkucnrmV/xnHevqYHSTHF7ytEMPCmI8YrwHbgM8yU8ldghp4uwkwLP9RHsYlQExZuJnxr0I3lOZ0ZOmgA7FwC7mlmuP7CcTD3HUCZU2fNBoFzMDTtB9GVN7tzbr4mXJr6g90rSN7yTr2OcOsUmPiYGUm2eTpcMgZqNP/Lrkop7hrWknpJMTz6zTIue2c2Y2/sTT1HjP/jFqISeFMEXaC17lLo/ntKqSVa60eVUo/7KjAhCI80a5817gWD/g65x2H7AnBPN4l67rsw63VQ4dCwu2klcg6Cxn0gqvwju/LyNBFSBAU7yVtlERUH578KzYfBj/fCO4PhvJdOttIWcXGPRtROjOaOTxZy0VszGXdTb1lmRgQlb07oZimlLlNKhVmXywCrR+tfmpuF8J2IaHAOMMsB3JgGKVvhuh9g4AOAMr9iPx4N/20Gn18Jiz+BzP1lfpnsvHwpgoKf5K3y6DAabp9pWoe+vcXMHF9C37jBrWvz5W39yMnXXPT2LP5cs8e/sQpRCbxpCboaeBV4C5M85gDXKKVigbt9GJsQpSu69MfxDLNUwIbfzbD8tT+DCoPGfaFtMrQ9t9gm/qLW7j5Cs9oJPg1d+JzkrfKq1hiu/wl+edj8sMjNhpH/KXZ+r44NHXx7R39u+3ghN49bwP1ntOae4S1l5JgIGt6sHbYJOL+Eh2dUbjhCVEB0ArQ6y1xGpppO1mt+NgXRpH+YS532VkGUDPW7/iWx5+drVuzwcFH3Rva8B1EpJG9VUHgEJL9kpq+Y+zbkZcO5LxS7bmDjGnF8c0d/Hv9uOS//vo7lOw7z0uVdpcO0CAqlTZb4iNb6v0qp1ymm+Vhrfa9PIxOiIpTVebp+Fxj2GBxym4Jo7c8w/UWY9jwkNYQ255qCyDkQwiPZtD+TzOw8OjeSdZKCkeStSqSUaQEKjzTzCuXnwHmvFlsIxUaF89JlXejSyMEzaasZ9cZM3r22B62ln5AIcKW1BK22rhf4IxAhfKq6E/rdaS6ZB2D9RNNCtPgTmP8+xDig1QiWR50PRNC5UTWbAxblJHmrMikFZz1l+uNNe97M7zX6rWJPjSmluGFAM9rVT+KuzxYz+s2ZpF7cmQu6NLAhcCG8U9pkiT9a1+MAlFJxWussfwUmhM/E14SuV5lLdhZsmnKiD9HK9CiiOYsWf94O7c8jIkd+yQYTyVs+oBQMf8KMwpyaaub2GlByg1qf5jX56Z6B3PnpQu79fDGT1+zFdUEHHLFyekwEntOODlNK9VNKrQLWWPe7KKXe8nlkQvhDVJzpMD36TXhoPWvrX0DLhONE7FoE399O/1nXwfjRMH8MHNltd7TCS5K3fGBoCrS7AH53wda5pe5azxHDl7f1474zWjFh6U7OeWUaszce8E+cQpSBN0PkXwHOBg4AaK2XAoN9GJMQ9giPYH16JG1atYUHVsLf/mR7o1FweCukPQgvtoUxZ8OsN0wfIxHIXkHyVuVSCka9YUaPfX0TZB0sdffI8DAeOKs1X9/ej+jIcK76YA7/TlvFsZw8PwUsxOl5tfCL1npbkU3yKRZVjicrh93px2hdL9F0/mzUg00trod7FsKdc2DY45CTaUaZvdoF3hkIU/8Le1eXOJeKsI/kLR+IccClYyFzL3x3G+Tnn/Yp3ZpUJ+3egVzVuwnvT9/M6DdnsnpXuu9jFcIL3hRB25RS/QGtlIpUSj3Eyc6HQlQZ6/ceAaB13SJzBCll+kEMeQRunwH3LoERz0BkHEz+N7zVF97sDZOfhb1r/B+4KI7kLV9p0M2sOr9+Eiz7wqunxEVF8O8LO/HRDb3Yn5HNBW/M4NmfV5OZIz8ehL28KYJuB+4CGgI7gK7WfSGqlJ0eM6Fwo+qnWXKjRjPofw/cPAkeXGPmT0moa1qF3uoDb/WDqc/DgY1+iFqUQPKWL/X6G8RUg23zyvS0YW3rMOmBwYzu2pD3p2/ikWlZfDB9E8dzpZFO2MObyRL3Y2ZfFaJK25tuiqA6idHePympPvS+xVyO7IZVP8CKb2HyM+ZSrzN0uBA6XmSG6Qu/kLzlY0pBrdZwYEOZn1ojPornL+3CTQOb8fCns3gmbTXjZrt55Oy2nNe5PqqY4fdC+EppkyUWO9lYAZl0TFQ1+zKOExURVv6hvIn1oM9t5uLZDiu/h5Xfwh//MpcG3U0x1OFCcMiM1L4gecuParWCDX+U++nt6ifxUM8Ywhp04NmfV3PP54v5YMZm/nFuO3o3q1GJgQpRstJaggpPNvYv4EkfxyKErfalH6d2QnTl/BJ1NIL+d5vLIffJgmjSE+bSuA+0HwUtzzJ/TOTXb2WRvOUvNVvCkk/hmMd0mC6nwa1rM6BlLb5dtJ0XJ63jsndnM6J9XR46u43MOC18rrTJEscV3FZK3V/4vhBV0cGsbGomRFX+gas7YeD95nJgoymGVnwHEx83l6RG0GIotBgOzYaayRxFuUje8qNGPc31tBdgxNMVOlR4mOLSno05r3MDPpy5mbenbGTEy9MY2aEedw9vSceGsoyN8A1vVpGHUpqXhagqjuXkERMZ7tsXqdkCBj9sLgc3w6bJsHEyrP7RLOGBteZZi+HQYphpMRLlJXnLl5oNhp43m3XFGnQzp3orKDYqnLuGteSq3k34aOZmPprl5teVuzmjbR3uHt6Sbk2qV0LgQpzkbREkRJV3PDefhGg/fiVqNDOXnjeZNZl2LraKoj/NH5YZL0FkHJ0S20HMamg+DGq3kVNnInCMTIU9K+CHu8xns26HSjls9fgoHhzRhr8Nbs74WW4+mLGZC9+axaBWtbhneCvpMyQqTWkdo49w8pdUnFKqYHYrBWitdZKvgxPCn47l5FMz3sctQSUJj4DGvcxlyCNwLB3cM2Djn8SuSINfU8x+iQ1OthI1HwrxteyJN0BJ3vKziCi4bDy8OwS+uBpunQyxlddakxQTyd3DW3HjgGZ8MmcL70/fxGXvzqZ3sxrcO7wVA1rWlNFkokJK6xMkPdJESDmem0d0pFeTqPteTJJZ06ztucyLP4+hXZub02Yb/4S1abDkE7Nf477Q4wboMBoiY+2MOCBI3rJBYj1TCI1NhrHnw9BHoc25EFZ5PyjioyO4bUgLru/v5PN5W3l36iauGTOXLo2rcceQ5pzVvh7hYVIMibILkIwvhP1y8zSRgZpIqzWBHtfDZePg4Y1wy58w7AnI2g/f3w4vtoFfHjVLeAjhb036wKUfQfYR+PIaeKMXLPgQco5W6svERIZz44BmTH1kKP++sCOHs7K5/ZNFnPnSVD6bu1XWJRNl5rMiSCn1oVJqr1JqRaFtNZRSvyml1lvX1a3tSin1mlJqg1JqmVKqe6HnXG/tv14pdX2h7T2UUsut57ympE1UVFBeviY8LAh+F4SFQ8MeMORhuHsBXP+TGWq/4EOzhMeYs2HJ55X+BygUSN6qgHbnw90L4ZKPTEvmTw/Ayx3NTOqnWWy1rKIjwrm6T1P+/PtQ3ryqOwnRETz+3XIGPjeZNydvwJOVU6mvJ6ouX2b8scDIIttSgD+01q2AP6z7AOcArazLrcDbYJIPZp6PPkBv4MmCBGTtc0uh5xV9LSHKxBRBdkdRRkpBs0FwyRizhMeIZ6R1qGLGInmr/MIjzCixWyab4rxhd7O+3ssd4OeHzZxZlflyYYrkzvWZcPcAPrulD+0bJPH8xLX0S/2Dp39axc7D8kNAlM5nKV9rPQ0oWv6PAgrm7RgHjC60fbw25gDVlFL1gbOB37TWB7XWh4DfgJHWY0la6zlaaw2ML3QsIcolT+vg7lcQX9OsaVZS69DK7+2OMOBJ3qokBcX51f+DO+eYWdIXfASvdYP/3QAbfjed/yvt5RT9W9Ri/E29+fneQYxoX5exs9wM/u9kHvxyCWt3H6m01xJVi7+HyNfVWu+ybu8G6lq3GwLbCu233dpW2vbtxWwXotzy8zVhVeHsRMEfoGaDIGMvfHYZbJtjhjK3Pc/8WhdlIXmrIuq0g9FvwfAnYO47phha+R2oMHrGNYWM4dCkLzTuDdWaVngKiPYNknjlim48dHYbxszYzBfztvHt4h0Mb1uHO4a2oJdThteLk2zLhlprrZTyy2RmSqlbMc3VREREMGXKlBOPZWRknHLfLhKH/XEcy85m966dTJlywNY4iipvDInp62i97h0SMzZyqFon1re6lazpMyo/wBDir7xVWs6qCNs/z5HDCe/Vj6T0tSSlryHh4HJiFn9GxIIxAByPqo7H0Y70pLZ4HO3ISGiGDivnWn7AkEToMSiaP7bm8NvGvfy5Zi8tq4WR3DySLrXD//Kjx/Z/nyIkntPLyMio0PP9XQTtUUrV11rvspqG91rbdwCNC+3XyNq2AxhaZPsUa3ujYvYvltb6PeA9gPj4eD106MlDTpkyhcL37SJx2B9H2JSJNG7UiKFDT074Fgj/HmWOIesg/O6CReMhoS5cPIbqHS+md1Vo5bKH3/NWaTmrIgLh82ycA1jxDB4Ee1fB1jlEb5tHnW1zqLNxltktItb0K2rcx7r0hriyt+ScB2Rl5/LV/G28P30zry46Sqs6Cdw2pAWjujYg0uoMGDj/PobEc3oVLcr8XQRNAK4HUq3rHwptv1sp9QWmM6HHSjgTgWcLdSocATymtT6olEpXSvUF5gLXAa/7842Iqic/P8j7BOXnw+LxpgA6lg797oIhj5qROqIiJG/5Ulg41OtkLr1vMdvSd8G2uScvs16D/FzzWK3WpiBq0tdc12zp1Sm0uKgIbhjQjKv7NuWnZTt5Z8omHvrfUl6atJa/DWrOFb0bn/YYourxWRGklPoc82uollJqO2a0RCrwlVLqZmALcJm1+8/AucAGIAu4EcBKGk8D8639ntJaF3RavBMzkiMW+MW6CFFueVoTVDWQ1ma0zfb55rJ5GuxbA00HwLkvQN32dkcYdCRvBYik+mYC0A6jzf3sLLOszLY5sG0erPkJFn9sHouraSYNdQ6Apv2hXudSJ2qMDA/jwm6NGN21IVPW7uPtKRt56qdVvPbnevrXhZZdsmhUPc7nb1EEBp8VQVrrK0t46Ixi9tXAXSUc50Pgw2K2LwA6ViRGIQqrnRjNTs8xu8Mo2fEM84dg+zzYvsAUPpn7zGOR8ea0waC/Q6dLZX2xcpK8FaCi4kyR4xxg7ufnw4ENpijaOhe2zjIzqQNEJ5kWoqb9wTkQ6nc1y3sUoZRiWNs6DGtbh4VbDvHetI38snIPv/53MsPb1uX6/k0Z0KIWYUH1y0iUlQwTEcLSob6DVTsrb9huhWgNBzbC9nm0WvcDrH4C9q4EnW8er9nKDIFv3Asa9YLa7WTUlwgdYWFQu7W5dL/ObEvfCVtmwZaZ5vqPf5ntEbGmL1FTq6WoUc+/LDHTo2l13r22J9/88iebwhrwxbxt/L56D81rxXNtv6Zc3KMRSTHl76AtApdkTSEs7Rsk8evK3WQcz/XvavIAxzywY6Fp4dk2D3YsgKOHAKgbHgdN+8Dgh03B07BHuTqHClGlJTWATpeYC0Dm/kJF0UyY8h9AQ3iU+Q4VFEWN+0B0AgA1Y8O4eGhb7j2jFT8v38W4WVv414+reH7iWi7s1pDr+jlpU0+Wp6tKpAgSwtKhgelAvGZXOj19OZdIdibsXwe7l5tTWtvmm748aEBB7bZmCYJGvaBRb2as3MnQYcN9F48QVVF8LWh/gbmA+VGxde7JomjGyzD9BVDh0KArNO1PzXQHHOtGdIyDC7s14sJujVi2/TDjZ2/hfwu38+ncrfRuVoPr+jVlRPt6REUE2xTzoigpgoSwdGjgAGDZdk/lFEGZB2D/Wti31hQ9BdeeQvPoxVY3xU7Hi6xWnu4Q4zj1OKt2VzwWIUJdbHVoM9JcwPSx2zb3ZGvR3HfplJcNK581/YiaDYZmg+jcpB8vXNqFx89tx1cLtvHJnC3c/dliqsdFMrpbQy7t0Zj2DWQEZrCSIkgISz1HDA2rxbJwyyFuGtjMuydpDZ7tVrGz7tTrrJOTLhIZB7VaQZN+UPt6qNUG6rSHmi2kE7MQdohOgJZnmAtAzlGW/PQ+XR1HwD0dZr8BM1+BsEho2IMazQZze7NB3NK3H9PcR/h6wXY+nbOVj2a66dAgiUt7NGJU14ZUj/9rJ2wRuKQIEqKQHk2rM3fzAbTWnLLAd14uHNpsteYUKnT2r4fsQjOWxlY3BU7bZHNdu42Z18TR2HTmFEIEpshYDlfvDAWTAWZnwtY5ZuoJ93Rz6mzafwkPj2ZY494MazaEQ70G8MOeOvxv8S5cP67i2Z/XcFb7ulzSsxGDW9UO7nnHQoQUQUIU0qtxAhOW7mT77G9ofGwNHVbNgJWPmpFa+Tknd0xsYEamdLvGFDm125iiJ76WtOwIURVExZ/aUnTMA1tmm4Jo81SY/G+qo7khMp4bmvRlVcsz+Z+nHd+v30/a8l3UTYrmou6NuLRHI5rXTrD3vYgSSREkQld2JuxYdHKywT0r6HkQIJX5v3xE44hZxMfUgyZdofXIk4VOrVYyC7MQoSbGcWqfoqyD4J5hFUXTaL/xMZ4EHouqwZ9NL+Gro714d+px3p6ykR5Nq3Nht4Ykd6ovp8sCjBRBIjRobU5nbZtvJhvcNg/2rASdZx6v0QIa9qR1lzbE/aFZ1iGFiy7pzbwZswNurRwhRACIq3Hq6LOMveCeTtTmaYx0T2Zk+nvsjarGt3o43+wezhPfH+JfE1YwpFUtRvdozJnt6hITWfLM1sI/pAgSVdOJVp55VuEzH7L2m8eiEsworIEPmEnUGvU6Me9OONB29UxWHlYQEW1f/EKI4JJQBzpebC4AGXups2UWt2+ZxW1b3mXVriP8kNefH9YN4Pe1+0kIz+Ps5pFc2Lc9/do1kf5DNpEiSAQ/reHgppOntYq28tRsCa1GWLMr94Y67UpdW6hDAwffLtpOfr720xsQQlQ5CXVOrH+mgA5HD9Nh21wedc9k7pptfL+nNr+s78U361dQJ3w259dP58Iu9ejQrR8qobbd0YcMKYJE8DnmgV3LSmnl6QGDHjQFT6OeZZ5duUODJD6ek8eWg1k+CF4IEZJiq0HrswlvfTb9R0D/7Eyecs/nz4Wr+H5jHuO3N2HM9nBa/PwdoxPXckHLKOroaEhvbWbDFj4hRZAIbJn7YdfSk5fdy0yrT4GaraD12dbsyr1O28rjjSY1zArSWw5kVug4QghRoqh4YloP5dzWQzkXOJyeyc+zFvD9suq8eHA4Ly6C9srNyOWPc06N3bRs1Q7VfDA4B5lRqKJSSBEkAoPWcGTXiWKn4/I/YNFdkL795D7VmkL9LtD1anPtozW0Fm87DJjTYit3VfrhhRDiL6olxXPVyCFcNRJ2HD7KL8t28L/p2bx05FJe2gvN9+/mnDk/MzL8X3SsF28KomaDzfpnRWeZF16TIkj4X8FIrV3LTm3lKTilhSI2riG06GeKnXqdoX5nMxGhH0xbt4/29ZOonSgdo4UQ/tewWix/G9ySlvnbade9L5NW7ubXFTV4Z1M93swbTcNdRxi5axbnzPon3cM2EtawKzQbYoqixn0gKs7utxA0pAgSvpWfZ2ZV3l244FkGxz3m8bAIqN3OzMNTv4spdup2ZP7sBbYMTc84nsuirYe4eWBzv7+2EEIUVTcphmv7Obm2n5ODmdn8vnoPv67YzcfrkxiTdza1o3I4e/9qRm7/hT7TXyUyItz0h2xmtRQ17AERMjdRSaQIEpXneAbsXQV7VsDuFWaV9D0rIMfqYBweDfU6QqeLT7bw1GkPkTH2xl3IvM0HyMnT9G9R0+5QhBDiFDXio7isZ2Mu69mYI8dy+HPNXn5dsZtv1sbwSU5nqkXDGYl7GXpwNoPcr1FtyrNm3cIm/aDtudD2fEisa/fbCChSBImy0xoObzGFzp6VsGe5uT64GbCGlUcnQd0O0P36ky08tVpDeKStoZ9O3aQYIsIUL05aS+dGcp5dCBGYEmMiGdW1IaO6NuRodh5T1+3j1xW7+H1tJN8cHUWYGkWXWpohcW6G7JlE5w0PEZ72kOlD1O4CaHc+OBra/TZsJ0WQKF12JuyxWncKWnj2roLj6dYOCmo0g7odocuVpvCp2xGqNQnKNbQ6NHDw7rU9uOOTRVzx3hzubCdzBQkhAltsVDgjO9ZjZMd65OVrlm4/zNS1+5i6bh+vblW8om+jeswdDKp2gCH7pjHI/Sx1fn3UnDZrf4Epiqo3tftt2EKKIGFoDYe3UnP/XJg6zzqVtdIajm4VAlGJpsjpfJlV7HQyQ9Kjq9bigGe0q8uYG3pyy/gF/Geepk+/Y9RNCpxTdkIIUZLwMEX3JtXp3qQ6D5zVmoOZ2UxfbwqiaesimZAxChhFh6SjDNm3mCG/fkL3iU8S2bCzKYbaj4KaLex+G34jRVCo0dos/HfIbU5jnTiltRKOe+hUsF/1Zqb/TufLTMtOvY7gaAJhYTYG7z+DWtVm3I29uX7MHC57dzaf3NyHxjVkxIUQIrjUiI86cdosP1+zalc6U9eZoujdLXG8ld+fxIg8BuzZyJCtUxn8+xs0rFffFEPtzofabYOyVd9bUgRVFVqbU1RHdpv5dtJ3meuC+0d2m0vGbsjLPvm8qATTqtPpYqjbkUU7c+g+8mqITrTvvQSIPs1r8nCvGF5dks2wF6bQp3kNRrSvx5nt69KwWqzd4QkhRJmEhSk6NnTQsaGDu4a1JP1YDrM27DdF0dp4fs1sDbnQfOdBBm+fx8Df76Rv0iESWvaFZkOIOl71RplJERQMsjOLFDMlXOcUs8xDdBIk1jOXpv0gsb65OBqa4qea85TWnfQpU6QAKqRFtXB+uLsvXy3YxqSVu3lywkqenLCSDg2SOKt9XUa0r0e7+omoKvxLSQhRNSXFRDKyY31GdqyP1poNezOYum4fMzbs54uNNRmbM5KIA/l092xi0MJfGRS2nLx1zxHefDA0HwrOgWY5kCAmRZCdco+faKGpvXcmzFlTfOtNwZw6hUXEQpJV0DToZhU39U69Tqhb5frr2KFZrXgeHdmWR0e2ZdO+DH5btYffVu3h1T/W88rv62lYLdYqiOrSq1kNIsND45ShEKLqUErRqm4ireom8rdBzTmem8fCLYeYvn4/M9ZX46UdLXmRy3DsPs6APcsZOHsMg8IfoHHDRtB8iCmKGveByOBqJZciyBfyciFzbyktN7shfSccPXjiKR0AVgFhkScLmdptzAeraHGTWM9Mky6tD37XvHYCtw1J4LYhLdh35Dh/rjEF0efztjJ2lhtHbCTD29bhrPZ1Gdy6NgnR8hUTQgSf6Ihw+reoRf8WtXh0ZFsOZmbz/oRpHIhsxPR1Sfyc3hNyodm2QwzcupBBU5+iX+QGEpt2MbNXNx8GDbpWeC1HX5MMXRH5+bBtDqz+0cyRc2Sn1e9mLydGVBVQYaZlJrGeGT7euPcphc38tdvpNewCszREiHQ+Dna1E6O5vFcTLu/VhKzsXKat289vq/bw55o9fLd4B1HhYfRvWZN29ZNoUC2WBo4Y6jtiaVAtBkdspJxCE0IEjRrxUfSpH8HQoV3QWrNxXybT1+9jxvr9fLOpJh9nn0l4rqbbpu30XzePPmHf0i12L3HNekOrs8yqAEn17X4bfyFFUFlpbZaAWP41rPjWLPAZEQs1W5qCpl5nU9wUnKoqaL2Jr11qRZy5YwrEyyzFwSouKuLEPB25efks3HKISav2MHntXmas309u/qlFcWxkOPWrxdDAEUt9Rwz1C4qkQtfSiiSECERKKVrWSaBlnQRuHNCM7Nx8Fm81p86mb6jOG9sb81oeROTm03nVNnqvmEOfsLH0aBhNUrszoc05ZtRxAPwQlCzrrQMbrcLna9i/zqx51eIMONNl/kOl742wRISH0ad5Tfo0r8n/ndee/HzN/ozj7Dh8lF2eY+y0rnd5jrLz8DGmrd/H3iPH0UUaDxNjImjgiCU67xgTDy7/S5FU3xFDTGRgNzULIaq+qIiTOe+hs9tw5FgOC7ccYt7mg8zbXJMx25ryTs4FhLnzab9lC70nvUPvhH30bteCGh3PNB2sI+xZsFqKoNKk7zStPSu+hp2LAQVNB0DfO6D9aIirYXeEIgiEhSnqJMVQJymGbiXsk5OXz570Y6cWSYePstNzjHXbM5m0cjcHMrP/8rwa8VGmJck6zVb4ur4jhnqOGOmoLYTwq8SYSIa2qcPQNnUAOJqdx+JtVlG0wcFn25x86FEwB1rPXU/viF/p3TCKPl06U7fLWX792ypFUFFZB2H1BNPq454BaKjfFUY8Ax0ukrVWhE9EhofRqHocjar/dULGKVOmMHToUI7l5LHbc4ydnqPsOmy1JFnF0vZDWczbfID0Y7mnPFcpqJ0QfbIFqXCRZJ2Oq50YTXiY/c3SQoiqKTbqZCdrzmxNdm4+y3ccZu6GPcxdpfh+d30+cUeAG5wTvqN34kF6N69Fn559aNSinU/7T0oRVFj6LnilE+TnmD4+Q1Og4yVQq6XdkQlBTGQ4zlrxOGvFl7hP5vHcE6fZCl/v8hxj3Z4jTF23j6zsvFOec8fQFjw6sq2vwxdCCMCcPuvRtAY9mtbgzjPakZuXz+qdHuYuXc7ctR4mHWjGV0tiYclmXJ0XccNV1/gsFimCCkuqD2f8E5oNNiufB0CnLSHKIj46gpZ1EmlZp/gJL7XWpB/NNa1JVpHUvkGSn6MUQoiTIsLD6NS4Op0aD+Zv50F+vmb9xvXMWzCf/j27+/a1fXr0YDTgXrsjEMJnlFI44iJxxEXSrr4UP0KIwBMWpmjTqjVtWrX2/Wv5/BV8TCk1Uim1Vim1QSmVYnc8QghRGslZQgSOoC6ClFLhwJvAOUB74EqlVHt7oxJCiOJJzhIisAR1EQT0BjZorTdprbOBL4BRNsckhBAlkZwlRAAJ9iKoIbCt0P3t1jYhhAhEkrOECCBKF52mNogopS4BRmqt/2bdvxboo7W+u8h+twK3AkRERPT47bffTjyWkZFBQoL9sz1LHBJHIMQwbNiwLK11yWPwRYVURs6qiED4PBcm8ZRO4jm9jIwMzj///PLnLa110F6AfsDEQvcfAx4r7TlxcXG6sMmTJ+tAIHGcSuKwJwYgUwfAd7uqXiojZ1VEIHyeC5N4SifxnN7kyZMrlLeC/XTYfKCVUqqZUioKuAKYYHNMQghREslZQgSQoJ4nSGudq5S6G5gIhAMfaq1X2hyWEEIUS3KWEIElqIsgAK31z8DPdschhBDekJwlROAI6o7R5aGUygeOFtyPCCMiN5/cUp7iFxKHxBEgMcRqrYP9NHmVUjRnVUQgfJ4Lk3hKJ/GcnhVTZLnzVnk7E1WZy5NJC2yPQeKQOAI9BrlUjUugfZYkHonH5pjkF58QQgghQpIUQUIIIYQISVIEwXt2B2CROE4lcZwUCDGIqiHQPksST+kkntOrUEwh1zFaCCGEEAKkJUgIIYQQISro5wmqEJdjJPAqZtKyD3B5Uv30uh8C5wF7cXk6WttqAF8CTsANXIbLc8iHMTQGxgN1AQ28h8vzqg1xxADTgGjM5/FrXJ4ncTmaYVbYrgksBK7F5cn2WRwn4wkHFgA7cHnOsyUOl8MNHAHygFxcnp5+/38Rwank73UX4B0gAfP5uRqXJ916zmPAzZjP2724PBMrMZ6yfb9djmgr/h7AAeByXB63H+K5G7gfaAHUxuXZb+2vMH8jzgWygBtweRb5IZ5PgZ5ADjAPuA2XJ8fGeMZY8ShgnfW6Gbb9f518/DXgJlyeBOt+meMJ3ZYg88fuTeAcoD1wJS5Hez+9+lhgZJFtKcAfuDytgD+s+76UC/wdl6c90Be4y3r//o7jODAcl6cL0BUYicvRF3gOeBmXpyVwCJOk/eE+YHWh+3bFMQyXpysuT0/rvr//X0RwKul7/QGQgsvTCfgOeBjAeuwKoAMmJ71l5cbKUtbv983AIWv7y9Z+lamkeGYCZwJbiux/DtDKutwKvO2neD4F2gKdgFjgbzbH8wAuTxdcns7AVqBgwV+7/r/A5egJVC+yf5njCd0iCHoDG3B5Nlm/7L8ARvnllV2eacDBIltHAeOs2+OA0T6OYdeJXxAuzxHMH/6GNsShcXkyrHuR1kUDw4Gv/RYHgMvRCEjG/MEo+BXo/ziK59//FxGcSv5et8b8ogb4DbjYuj0K+AKX5zguz2ZgAyY3VlY8Zf1+F/6cfw2cYX0PfRuPy7O4hBaDUcB463lzgGq4HPX9EM/P1mMa0xLUyOZ4CloNFaYoK+hMbNP/lyMceB54pMgzyhxPKBdBDYFthe5vt7bZpS4uzy7r9m5Mc7Z/uBxOoBsw15Y4XI5wXI4lwF5Mgt4IHMblKZiZ1F//N69gvlT51v2aNsWhgUm4HAtxOW61ttn3+RDB6dTv9UpO/si7FGhs3fZ9Hizb9/tkPOZxD+Z76Lt4XJ65pezt/3+fwvG4HJHAtcCvtsfjcnyEyT1tgdf/Eo9//7/uBiYUyokFyhxPKBdBgctU//4ZtudyJADfAPefqPb9HYfLk4fL0xXza6c35kvmXy5HQR+thX5/7b8aiMvTHdP0fRcux+BTHvXn50MEp79+r28C7sTlWAgkAr7vX3cilgD4fpcWj8vRMYDjeQuYhssz3fZ4XJ4bgQaY1sXLbYxnMKaQf73U53kplIugHZz8NQTmH3iHTbEA7DnRrGmu9/r8Fc2vjG+AT3F5vrUtjhPxeA4Dk4F+mGbego77/vi/GQBcYHVK/gLTXP+qDXGAy7PDut6L6b/RGzv/X0RwKe577fKsweUZgcvTA/gc0xoD/syD3n2/T8ZjHndgOrj6Mp6i/TMLs+Pfx8TjcjwJ1AYeDIh4zLY8TH4sOJ1qx//XMKAlsMHK13G4HBvKG08oF0HzgVa4HM1wOaIwnQMn2BjPBOB66/b1wA8+fTVznnQMsBqX5yUb46iNy1HNuh0LnIX5pTEZuMR/cXgew+VphMvjxHwW/sTludr/cTjicTkST9yGEcAK/P3/IoJTSd9rl6OOdR0GPIEZKQbmc3UFLke0NWKrFaYPSmXFU9bvd+HP+SWY72HltXoWH8+aUp4xAbgOl0NZHXI9xZyCqfx4XI6/AWcDV+Ly5Bd6hh3xrMXlaGltU8AFnPw3s+P/ayEuTz1cHqeVr7OsjtDliid0h8i7PLnWsMiJmCHyH+LyrPTPazs+B4YCtXA5tgNPAqnAV7gcN2NGKFzm4ygGYM41L7fOtwI8bkMc9YFxVke3MPPanp9wOVYBX+ByPAMsxiR2Ozzq5zjqAt/hcoD5fn6Gy/MrLsd8/Pv/IoJTSd/rVrgcd1n3vwU+AsDlWYnL8RWwCjOy7C7r135lKev3ewzwsfXL/iDmB0llKimeezH9AesBy3A5fsbl+RvwM2Y4+gbMkPQb/RRPLuZ7PtvKBd/i8jxlSzyQBkzH5UjCDJFfCtxh7W/P/1fJyhyPzBgthBBCiJAUyqfDhBBCCBHCpAgSQgghREiSIkgIIYQQIUmKICGEEEKEJCmChBBCCBGSQneIfFXlcrwMbMHlecW6PxHYZg33BJfjRcyEUhuA9rg8qWU49ljgJ1yer4ts74uZWDDaunyJy+Oq0PsoPY4bgJ64PHcX89hooLM1nLQsx0zB/Dt9WsxjnTCLUt5Q9mCFCHEuxz+AqzCr1OdjVkQvbamKir7eFOAhXJ4FXu4/CDNvUg7QD5fnaKHH/B27C8jA5XmhmMfuBw7i8owv4zHfAT7G5ZlZzGPnAb1xef5ZjmirBGkJqnpmAv2BgonRamFWiC7QH5iFyzOhTAVQ6cYBt1pTm3fEzC1hl0cwU82X1dnApGIfcXmWA41wOZpUIC4hQo/L0Q84D+iOWYH8TE5d+yoQXA38B5ena5ECKHBiN7Mf3wR8Vo5n9wXmlPBYGnA+LkdceUMLdtISVPXMAl62bnfAzDZcH5ejOmZyrXbAolNaU0wLTzrQEzNZ2CO4PF9bs4O+jpmlcxslrzdUBzCzlpqJ1laZ2w4X0AIzxXkt4L+4PO9bjz2MmfAvGvgOl+dJa/s1wL1AFGbhxzvN2jGOG4HHgMOYybqO/yUKl6M1cByXZ791fyxwFLOIZB1MErkOM23/3BMtO2YSsChcnn24HJdiJq/Mw8zGWrBu14+Yibf+W8K/gRDir+oD+3F5zPe14LsJWEsefIVZI+8ocBUuzwZcjtqYlpmCHx334/LMtGZQfx3zQysScOHy/GDNJPwR0AUzk3FssZG4HGcAL2D+7s3HTPh3LSYPnY3LcY41S7w3sf/1WC7Pces99cTl2Y/L0RN4AZdnqJULmwDNretXcHles471D8wsx3sxeba49QuHA4tOLDprWrsWA4OAeExeewzohGmJf8Larx2wzsqh9wK3YybFXIXLcwUuj7aOdR72/ni1jbQEVTUuz04g12q16A/MxhQT/TBFznJcnuKKmfrAQMyXoaCF6EKgDdAe8yXrX8KrvoyZWv07XI7bcDliCj3WGfMF7gf8E5ejAS7HCMz0/L2BrkAPXI7B1hf2cmCA1aqUB1yNWSvrX5jZcAda8RRnALCoyLbq1ms/gJlS/WVMcdgJl6Ortc+ZwB/W7X8CZ+PydMFMD19gASbhCCG8NwlojMuxDpfjLVyOIUUe9+DydALeAF6xtr0KvIzL0wuzRtUH1vZ/YJZB6I1ZP+p5qzC6A7N0QjvMD5gef4nC5KSxwOXW60VgCpcPMHnh4SIFUMmxl3Ss02uLaXHuDTyJyxGJy9ED8+OqK2Ym6F4lPHcAfy2OsnF5emIKxh+AuzAF4g24HAUrp5/DyRXoU4BuVqvW7YWOE9K5TYqgqmkWpmApKIJmF7r/1/PCxve4PPm4PKswSzcADAY+t1bx3Qn8WewzTf+bnpikcRUnv3QAP+DyHLV+RU3GJIAR1mUxpmhpiymKzsAksPnWlP9nYH459QGmmJYaTzbwZQnvoT6wr8i2H621Y5YDe3B5lltr8awEnNY+I4FfrNszgbG4HLdgllMpsBezgrIQwlsuTwbmO30r5rv5pdUKXeDzQtf9rNtnAm9YOWACkITLkYDJGSnW9ilADKZVZTDwifV6y4BlxUTSBtiMy7POuj/Oel55Yi/7sYw001rk2Y/JJ3Uxxcd3uDxZuDzplLx+ZXG5rWDf5cBKXJ5dVqvVJk4usno2J/PxMuBTq7U9t9BxQjq3yemwqqmgX1AnzOmwbcDfMae8PirhOYVPL6kyv6LLsxF4G5fjfWBfoV8iRddl0dbx/4PL8+6px3DcA4zD5XmsyPbRXkZxFLNqcGEF7yufU99jPic//70p+CXn8tyOy9EHSAYW4nL0wOU5gEm4RxFClI05RT4FmILLsRxz6mes9Wjh/FBwOwzoi8tz7NTjOBRwMS7P2iLbKz3kk8cuNvbFpTwjl5ONCzFFHiucf/Io29/fo6Ucr/jcZvr5VLN+wILJaYOB84F/4HJ0sk6vhXRuk5agqmkW5rTWQasV5yBQDfNLa1YZjjMNuByXI9w6JTWs2L1cjmQrQYFp0cnD9N0BGIXLEWMVRUMx588nAjdZv+7A5WiIWeX6D+ASTq54XQOXoynmdN4QXI6auByRwKUlxLsa0//Iey5HB2DNiUUjXY4WuDxzrdES+zj5i6o1pqAUQnjL5WiDy9Gq0JaumIVBC1xe6Hq2dXsScE+hY3S1bk0E7jmRa1yObtb2aZgWaHA5OmJOwRe1FnBSsBq66Qs0tZyxl3YsNydPx11c6vFPxj4alyMWlyMRU6AUp+y5zeTryUDBIJnGuDyTMYtCO4AEa7+Qzm1SBFVNyzEdkecU2eY5pXPf6X0HrMd0dB7PySRV1LWYPkFLgI+BqwutRL0M80WcAzyNy7MTl2cSZpTDbOvX1ddAonUq7glgEi7HMuA3oD4uzy7AZb3+TExCKM40oFuhgswbhc+Zg+lnsByXYwWmYFxqbR+GGUkhhPBeAmYV8FXWd7o95rtcoLq1/T5Mvz0wAyN64nIsw6w2X9B/5WlMh+hluBwrrfsAbwMJuByrgacormOxaVW6EfiflXPyMX1pyh576cf6F/AqLscCzI/B0rk8izCn95diTsnPL2HPX/DulFthhXNbOPCJFe9i4DVcnsPWYyGd22QVeeE7pc154bvXfBXTD+h3L/f/DbjOKrRK2ica80tv4InRGUKIiik8kkqcnsvxHWbk7nov918E9MHlySlln7rAZ7g8Z1RKjEFI+gSJquZZTEdq77g8Z3mxVxMgRQogIYSNUjAdpL0sgjzdvdirCaa/aMiSliAhhBBChCTpEySEEEKIkCRFkBBCCCFCkhRBQgghhAhJUgQJIYQQIiRJESSEEEKIkCRFkBBCCCFC0v8Dg3PTWVSkf9kAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "Env.info()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Creating a Motor\n", - "\n", - "A solid rocket motor is used in this case. To create a motor, the SolidMotor class is used and the required arguments are given.\n", - "\n", - "The SolidMotor class requires the user to have a thrust curve ready. This can come either from a .eng file for a commercial motor, such as below, or a .csv file from a static test measurement.\n", - "\n", - "Besides the thrust curve, other parameters such as grain properties and nozzle dimensions must also be given." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "Pro75M1670 = SolidMotor(\n", - " thrustSource=\"../../data/motors/Cesaroni_M1670.eng\",\n", - " burnOut=3.9,\n", - " grainNumber=5,\n", - " grainSeparation=5 / 1000,\n", - " grainDensity=1815,\n", - " grainOuterRadius=33 / 1000,\n", - " grainInitialInnerRadius=15 / 1000,\n", - " grainInitialHeight=120 / 1000,\n", - " nozzleRadius=33 / 1000,\n", - " throatRadius=11 / 1000,\n", - " interpolationMethod=\"linear\",\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To see what our thrust curve looks like, along with other import properties, we invoke the info method yet again. You may try the allInfo method if you want more information all at once!" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Motor Details\n", - "Total Burning Time: 3.9 s\n", - "Total Propellant Mass: 2.956 kg\n", - "Propellant Exhaust Velocity: 2038.745 m/s\n", - "Average Thrust: 1545.218 N\n", - "Maximum Thrust: 2200.0 N at 0.15 s after ignition.\n", - "Total Impulse: 6026.350 Ns\n", - "\n", - "Plots\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAykUlEQVR4nO3deXwc1ZXo8d/Rbu2SF0neJO/gBWwkG4gJsUMSzBIgCcmEJEBIeDAMJJM3mUxIJjPMg2wzZJsEhsAQCGucleA4xo5DbAgQwDLYeAdjy7tsY+2WJfVy3h9dLdqypF6s7upune/n05/urqquOiq77+l7b91boqoYY4wxg8lwOwBjjDHJz5KFMcaYsCxZGGOMCcuShTHGmLAsWRhjjAnLkoUxxpiwLFmYpCQi/yEij7sdR5CI5IrIVhGpiuIzvxWRS+IZl3Oc94rIjngfJ+R43xGRL0W4bULOgYk/SxbGFSLSEfLwi8iJkPefTnAsDSLygTCb3QQ8r6qHnM/8XERURBaE7GeqiIQOXPpP4JtDEN+nQ87NCed89Z4/Vf2rqs443eNEGMto4Drg/pBlXxeR3U48+0XklyEfGZJzYNxnycK4QlULgw9gL/DhkGVPRLMvEcmKT5Qn+XvgsT7LmhikIFTVV4FiEak7nQOr6hMh5+oS4GCf85dInwVWqOoJABG5HrgW+IATSx3wbEjsQ3IOjPssWZhkliMij4pIu4hsCS1wnNrAV0XkDeC4iGQ5v/SnhmzzcxH5pvN6lIgsF5EWEWkSkb+KSIaIPAZMBP7g/DL+l75BiMhEYDLwSp9VjwBnicj7Bvkb1gKX9bfCif+VYLITkVucvzMvkpMTsp9FIrI/5H2DiHxFRN4QkeMi8jMRqRCRZ5xz+WcRKQvZ/jwReck5NxtFZNEgh7sEeC7k/Xxglaq+DaCqjar6QJ/PrGWAc2BShyULk8yuAJYCpcAy4J4+668hUAiVqqo3zL6+DOwHRgMVwNcBVdVrOblm81/9fHYOsKufY3QC3wa+NchxtwFnD7DubqAb+IaITHP29RlV7Qrzt0TiY8AHgenAh4FnCPzNowl8778IICLjgD8SqCGVA/8M/NZpburPHCC0f+Rl4DonOdWJSGY/nxnsHJgUYcnCJLMXVHWFqvoINAH1LXB+rKr7gk0iYXiAKqBaVT1OO3+kE6OVAu0DrLsfmDhIJ2678/lTqKqfQPv/Fwkkw/9S1dcjjCmcn6jqYVU9APwVeEVVX3cS0VPAPGe7zxBoVlqhqn5VXQ3UA5cOsN9SQs6Fqj4OfAG4mECN44iIfLXPZwY8ByZ1WLIwyawx5HUnkNenf2JfFPu6G9gJ/ElEdonI7VF8thko6m+FqnYDdzmP/hQBLQPtWFUbgDVADXBvFDGFczjk9Yl+3gf7OqqBjztNUC0i0gJcQCCx9ueUc+H0qXyAQEL4e+AuEbk4ZJNBz4FJDZYsTCrrWzPoBPJD3lf2bqjarqpfVtXJBJq3/klELhpgP329AUwapCP9YQIF5Uf7WXcmsHGgHYvIZcD5BDqF7w4TRzzsAx5T1dKQR4GqfneA7d8g0LR1CqfG9mtnm9khqwY9ByY1WLIw6WQD8CkRyRSRJUBvx7OIXO5c2ipAK+AD/M7qwwQ6sPulqvsJ1EoWDLDeC9wB9G1+wYnhmf4+JyKjgAeBG4HrgQ+LyEDNP/HyuHPci53zlud0mI8fYPsVnHxePysil4lIkXPBwCXALE6+GGDAc2BShyULk07+kUBnbgvwaeD3IeumAX8GOoC/Af+jqmucdd8h0MncIiL/PMC+7ydwiehAfgEcCl0gIvOBDufy0f48ADzt9BccAz4PPCgiIwc5zpBS1X3AlQQ6v48SqGl8hYHLhkeBS0VkhPO+zfnsXgLn/b+AW1T1BYjoHJgUIXbzI2PCE5Fc4HXgouDAvAg+81vgZ6q6Iq7BJZiIfBs4oqo/imDbtDwHw5ElC2OMMWFZM5QxxpiwLFkYY4wJy5KFMcaYsBIxAVvCjRo1SmtqamL+/PHjxykoKBi6gIaQxRYbiy02FltsUjW29evXv6Oq/U/1oqpp96itrdXTsWbNmtP6fDxZbLGx2GJjscUmVWMD6nWActWaoYwxxoRlycIYY0xYliyMMcaEZcnCGGNMWJYsjDHGhGXJwhhjTFiWLIwxxoRlyeI0HGw5wTObIpqA1BhjUpoli9Nw82PrueWJ1zjUGsktoI0xJnVZsjgNmw60AvD63hZ3AzHGmDizZBGjLo+v9/Wh1i4XIzHGmPizZBGjzU6tAqDRmqGMMWnOkkWMNuxrAaAgJ5PGtm53gzHGmDhLyynKE+H1vS2MKx3B+LIRVrMwxqQ9q1nEaMO+FuZOLKWqJM/6LIwxac+SRQyOtHVxoOUE8yaUUlkygiNt3fj96nZYxhgTN5YsYvC6018xb2IplcW59Pj8NHX2uBuUMcbEkSWLGLy+t4WsDGHW2BIqS0YA0GhNUcaYNGbJIgYb9jUzc2wxedmZVJXkATbWwhiT3ixZRMnnV97Y38rcCaUAvcmisc2ShTEmfVmyiNKbh9vp7PExb2IpACMLc8nMELt81hiT1ixZRCk4GG/uhDIAMjOEiqLcYd8M1dHtpa1H8dlVYcakJRuUF6XX9zZTmp9Nzcj83mWVJXkcHkbNUEfbu9lysJUtB9vYerCNzQdb2XOsE4B/XLOC0hHZlBfkhDxyKS/Iprwgl5EFOZQV5DAyZH1edqbLf5ExJpy4JQsRmQA8ClQACjygqv8tIuXAL4EaoAH4hKo2i4gA/w1cCnQCn1XV15x9XQ98w9n1N1X1kXjFHc6GfS3MnVBKINyAypI8tje2uxVS3Kgq+5tP9CaGLQfb2HyglSPt705vMrE8n1lji/l47Xga9zVQPraa5uM9NB3v4djxbhre6WT9nhaaO3sGrHXk52RSlp/DyEIngeQ7z4Xvvh5ZmBPYpiCXorwsMjKk330ZY+IjnjULL/BlVX1NRIqA9SKyGvgs8KyqfldEbgduB74KXAJMcx7nAvcB5zrJ5Q6gjkDSWS8iy1S1OY6x96u9y8NbRzq4dE7VScsri0ewdsdRVPWkJJJKvD4/u945HkgMB9qc5NBKW5cXCDS3TR1dyAVTRzFzbDGzxpYwc2wxJSOye/exdu0BFi2a3u/+/X6lvcvLsePdNHf2cKwjkFCaOntoCn19vIe3DnfQ3NlDZ4+v331lZoiTOHIoK8hmZEEu5f3UWIKPsvycoT9hxgwzcUsWqnoIOOS8bheRbcA44EpgkbPZI8BaAsniSuBRVVXgZREpFZEqZ9vVqtoE4CScJcAv4hX7QA61dqEKU0YXnrS8qiSPzh4fbV3ekwrPZNXl8bGjsb03IWw52Mb2xja6PH4AcrMyOKOqmMvPHsssJzGcUVl0Ws1FGRlCSX42JfmRn58ujy+QRI73cOx4D83Oc9PxbpqOe5znHrY3ttF0vIeWEx50gC6T4hw4d28982vKqK0uZ864EnKyrMvOmEiJDvTtGsqDiNQAzwOzgb2qWuosF6BZVUtFZDnwXVV9wVn3LIEksgjIU9VvOsv/DTihqt/rc4ybgJsAKioqapcuXRpzvB0dHRQWFp6yfE+bjzte6uIL83KprXg3z75yyMt9G7v51sIRjCuKbwE0UGwD6fQoe9v97Gnzs7fNz542HwePK8EWoRFZUF2cQXVRBhOLM6guzqSqQMiMoZkn2tiGml+VDg+09ygdPUpbjwZee5QDrT00dGRwuDPwh2dnwOSSDKaVZTK9LIMppZkUZLtTK3T7vA3GYotNqsa2ePHi9apa19+6uHdwi0gh8FvgS6raFtpMo6oqIkOSrVT1AeABgLq6Ol20aFHM+1q7di39ff6N/S3w0oucPWcOi2ZW9C4vaGjivo1/Y/yMObxv+uiYj3s6sQEcae/q7XQO1hiCHc8Ao4tymT2ujKvGlvTWGCaUjxiyprPBYnNbMLaj7d2s39PEuoZm6huaWNnQxvJdigjMqCiirqaM+TXl1NWUM650REJjS0YWW2zSMba4JgsRySaQKJ5Q1d85iw+LSJWqHnKamY44yw8AE0I+Pt5ZdoB3m62Cy9fGM+6BeJ2f41mZJxeulcXOwLwEjbUIdjxvPtB6UlNS347n2eOK+UTdBKePoZgxRXkJiS+ZjS7KZcnsKpbMDvQ7dfZ42bCvhfqGZtY1NPH71w/y+Mt7gUDzYl1NOfNryqirLmdGZVFMNS5j0kE8r4YS4GfANlX9QciqZcD1wHed56dDlt8mIksJdHC3OgllFfBtESlztvsQ8LV4xT0Yr89JFhknNzVV9CaL+N0Eqcvj45GXGnjq1RN8ce2f+u14njUuUGOYObaY4rzk7ztJBvk5WbxnyijeM2UUEBihv72xrTd5vLr7GH/YeBCAotws5lWXMb+6jLqacuZOKGVEjl32a4aHeNYsFgLXAptEZIOz7OsEksSvROTzwB7gE866FQQum91J4NLZGwBUtUlE7gLWOdvdGezsTjSvP9AB3PfXZU5WBqMKc2hsG/qaharyzOZGvr1iG/ubT1BTnMHlZ49lttOUNOM0O57NyTKdCSJnjS3h+vfU9Nbi1u8JJI/6hma+v/pNgMBkkuNKepNHXU0ZowpzXf4LjImPeF4N9QIwUJ39on62V+DWAfb1EPDQ0EUXm+A4gezMU/+syjjcBGnzgVbuXL6VV3c3cUZlEU/eeC49+zezaNGcIT2OGZiIMKE8nwnl+Vw1bxwALZ09vLa3mXUNzaxvaObRl/fw4Au7AZg8qoDa6mC/RxmTRhWk7OXUxoSyEdxRCDZD9dduXVk8gv3Nnacsj8WR9i6+t2oHv16/n/L8HL79kTn83fwJZGYIa/cPySHMaSjNz+H9Z1Tw/jMCFzl0e31sPtDa22m+etthfr0+8A81siCHOqfPo66mjFlj7ZJdk5osWUSht4M749Qve1VJHvV7Tq91rMvj4+EXG7h3zU66vT5uvGASX7homvU/JLncrExqq8uprS6H903B71d2vdPBuoZ3m65WbTkMQF52BnMnlDK/ppza6jLOqS4Ls3djkoMliyj4nD6LvldDQaAZqqXTw4keX9SdnqrKqi2NfGvFNvY1neADZ1bwr5edyaRRBUMSt0msjAxh6pgipo4p4poFE4HArXjrQ/o97l2zE7+CCIwvzOCSzm1cPKuSeRNKbSoTk5QsWUTB03s1VH/NUO/e1yKaQn7LwVbuWr6Vl3c1MaOiiMc/fy4XTBs1NAGbpDGmOI9L51T1ThXT0e1lw94W6vc0seq1t3n4xd088PwuKopzuXhWJUtmVbJgUjlZmdZkZZKDJYsoBDu4++uz6L0JUmtkyeJoezc/WL2Dpev2UToim7uums018ydY4TBMFOZmccG0UVwwbRRzsw4y79yF/GX7YVZubuRX9ft49G97KMvP5oMzK1gyu5KFU0eRm2VXvRn3WLKIgrf3aqhTC/SK3jvmDX75bLfXx89fbOAnf9lJl8fH5xZO4osXTUuJOaVM/JSMyOYj88bzkXnj6ezx8tyOo6zc0sgzmxr5Vf1+CnOzeP8ZY1gyu5L3TR9NQa59dU1i2f+4KHh9/Y+zgHeboQa6fFZV+dPWw3x7xTb2HOvk/WeM4V8vO/OUSQmNyc/J4pI5VVwyp4pur4+X3j7Gyk2NrN52mGUbD5KblcH7po9myexKLjqjIqrJGY2JlSWLKLx7NdSpyaIgN4vivCwa+0kW2w61cdfyrbz09jGmjSnkkc8tiPscUiY95GZlsnjGGBbPGMO3fH7WNTSzcvMhVm05zJ+2HiYrQzh/ykgumV3FB2dWMLrIBgWa+LBkEQVf79xQ/fcrVJWMOClZHOvo5vur32Tpq3spHpHNnVfO4lMLJlq/hIlJVmYG508ZyflTRnLHh2excX8LK7c0snJzI19/ahP/+vtNzK8uZ8nsSi6eXZmwiRDN8GDJIgqeQZqhINBv0djWRY/XzyMvNfDjZ9+i0+PjuvNr+NIHplFqN+ExQyQjQ5g3sYx5E8u4fckZbG9sZ+XmQOK4c/lW7ly+lbPGl3DxrEoumV3JZGvuNKfJkkUUfIM0QwFUFefx/JtH+dAPn6PhWCeLZozmG5edydQxRYkM0wwzIsKZVcWcWVXM//3gdHYd7WDVlsOs3NLI3at2cPeqHUyvKGTJrEqWzK7izKoim4LERM2SRRQGmqI8aP6kcn5Zvw+Ah2+Yz+IZYxIWmzFBk0cXcsuiQm5ZNIWDLSdY5TRV3bNmJz/+y04mlucHmqpsEKCJgiWLKAw0RXnQx84Zx5TRBcweV9Lv5bXGJNrY0hHcsHASNyycxDsd3azeGhjLYYMATbQsWUQhON3HQD/ERALtyMYko1GFuVyzYCLXLJhI6wmPDQI0UbFkEQWvX8nOFGvvNSmv7yDA5988yjObTx0EWKVexh1up2ZUgdWWhzlLFlHw+dVuq2nSTn5OVu+tZoODAFdtbuRPWw/TdLyH+994npzMDCaPLuCMyiKmVxYFniuKGFc6dPdwN8nNkkUUPD4dsL/CmHQQOgjwm1f5eeKPayieMIPtje3saGzn1d1N/H7Dwd7tC3OzmF5RyIzKYmYEnyuLKC+wy8TTjSWLKPj8/gGvhDIm3WRlZlBdnMmieeNPWt56wsNbh9vZ3tjOm87zik2H+MWrnt5tRhflMqOiiBmVRb3P0yoKyc+xIidV2b9cFLx+HXCMhTHDRcmIbOee4+W9y1SVI+3d7HBqIDsOB56feGUPXZ7AhSEiMLE8n+kV7zZjnVFZZP0hKcKSRRS8PuuzMKY/IkJFcR4VxXlcGDLvmc+v7G3q7E0igZpIG89uO4wzbKm3P2RG5ck1EesPSS6WLKIQqFnYLyBjIpWZIUwaVcCkUQUsmV3Zu7zL4+Ptox29zVg7GttZt7uJp0P6Q6aMLuAbl8+0wa1JwpJFFKzPwpihkZedyayxJcwaW3LS8rYuD282trPtUBsPv9jADQ+vY/GM0Xzj8pk2nb/L7GdyFDx26awxcVWcF+gPufb8GlZ+6UL+9dIzqW9o5uIfPs9dy7fSesITficmLixZRMHnU7KtGcqYhMjJyuD/XDiZNV9ZxMfrxvPQi7tZ/L21PPnK3t5JPU3iWMkXBa/VLIxJuFGFuXzno2fxh9suYOroQr7+1CYu/8kLHO30ux3asGLJIgpe67MwxjWzx5Xwy5vP455PzWP3Ox2s2G1NUolkySIKPhtnYYyrRITLzxrLhdNGs+WYz+1whhVLFlHw2nQfxiSF+TXlHOlUjrSdes97Ex9W8kXB6/dbn4UxSaCuJnArgPo9zS5HMnxYsoiCx6fWZ2FMEpg1toScDKhvsGSRKJYsouD1+8mxOWyMcV1OVgaTSjKo39PkdijDhpV8UfB4rWZhTLKYXpbJloNtdPZ43Q5lWLBkEQWP32+zYxqTJKaVZeDzKxv2trgdyrBgJV8UPD5LFsYki6mlmYjAOuu3SAgr+aLg9QXuwW2McV9+tjCjosj6LRLEkkUUrGZhTHKpqynjtT3NeH029Ue8xa3kE5GHROSIiGwOWfYfInJARDY4j0tD1n1NRHaKyA4RuThk+RJn2U4RuT1e8Uaix2vJwphkMr+mnOM9PrY3trsdStqLZ8n3c2BJP8t/qKpznccKABGZCXwSmOV85n9EJFNEMoF7gUuAmcA1zrau8PqtGcqYZBK8tet6G5wXd3FLFqr6PBBpY+KVwFJV7VbV3cBOYIHz2Kmqu1S1B1jqbOsKj89PltUsjEka40pHUFWSx7oG67eINzfulHebiFwH1ANfVtVmYBzwcsg2+51lAPv6LD+3v52KyE3ATQAVFRWsXbs25gA7OjpO+byq4vEpB/ftZe3axpj3fbr6iy1ZWGyxsdhiE4xt4ggPL+5oZM2aNUlzz+5UOG9RU9W4PYAaYHPI+wogk0CN5lvAQ87ye4DPhGz3M+Bq5/FgyPJrgXvCHbe2tlZPx5o1a05Z1uP1afVXl+uP//zmae37dPUXW7Kw2GJjscUmGNsjL+3W6q8u131Nx90NKEQqnLf+APU6QLma0DYVVT2sqj5V9QP/S6CZCeAAMCFk0/HOsoGWJ5zHudoiO8uaoYxJJrXVzqSCNt4irhJa8olIVcjbjwDBK6WWAZ8UkVwRmQRMA14F1gHTRGSSiOQQ6ARflsiYgzy+wG0c7WooY5LLGZXFFOZmWb9FnMWtz0JEfgEsAkaJyH7gDmCRiMwFFGgAbgZQ1S0i8itgK+AFblVVn7Of24BVBJqvHlLVLfGKeTC9NQu7GsqYpJKZIZxTXWZXRMVZ3JKFql7Tz+KfDbL9twj0Y/RdvgJYMYShxcRrNQtjklZddRk//PObtHZ6KMnPdjuctGQlX4SCNQu7raoxyaeupgxVeG2v1S7ixZJFhHqcZJFjHdzGJJ25E0rJyhCbJyqOrOSLkDVDGZO88nOymDW22GagjSMr+SJkzVDGJLe6mnI27muhx2uTCsaDJYsI2TgLY5Lb/Joyur1+Nh9sdTuUtGQlX4R6x1lk2CkzJhnVVgcmFay38RZxYSVfhGychTHJbXRRLjUj863fIk4iGmchInXAe4GxwAkCI69Xa2ASwGHBmqGMSX51NeX8ZfsRVDVpJhVMF4OWfCJyg4i8BnwNGAHsAI4AFwB/FpFHRGRi/MN0nzVDGZP86qrLaDrew653jrsdStoJV7PIBxaq6on+VjpTd0wD9g5xXEnH21uzsF8rxiSr4M2Q6huamDK60OVo0sugP5NV9d6BEoWzfoOqPjv0YSWfnt5LZ61mYUyymjK6gLL8bJuBNg4GrVmIyL8PslpV9a4hjidpBZuhcmxQnjFJS0SorS6n3iYVHHLhSr7j/TwU+Dzw1fiGllysGcqY1DC/pozd7xznaHu326GklXDNUN8PPoAHCHRyf47AvbAnJyC+pOGxZihjUkKw38KmLB9aYUs+ESkXkW8CbxBotjpHVb+qqkfiHl0SsWYoY1LD7HHF5GRl2OC8IRauz+Ju4KMEahVzVLUjIVElod6ahQ3KMyap5WZlMnd8KeusZjGkwv1M/jKBgXjfAA6KSJvzaBeRtviHlzzeHcFtNQtjkl1dTRlbDrRyosfndihpI1yfRYaqjlDVIlUtDnkUqWpxooJMBu/eg9tqFsYku7qaMrx+ZcO+FrdDSRvhRnCHHdUSyTbpwOPzk5UhNoWAMSmgdqJNKjjUwrWpPC0i3xeRC0WkILhQRCaLyOdFZBWwJL4hJgevX60JypgUUZKfzYyKIhtvMYTCNUNdBDwL3AxsEZFWETkGPA5UAter6m/iH6b7erx+69w2JoXU1pTx2p5mfH51O5S0EHbWWVVdAaxIQCxJzePz22WzxqSQ+TVlPPnKXnY0tjNz7LDqYo0LK/0i5PVZM5QxqaSuOjg4z/othoKVfhHy+KwZyphUMr5sBBXFuXYzpCFiySJCHr9aM5QxKUREqKsptyuihkhEpZ+IPBbJsnTmsQ5uY1LO/OoyDrZ2caBlwDstmAhF+lN5VugbEckEaoc+nOTl8fmtz8KYFBN6MyRzesINyvuaiLQDZ4VO9UHg1qpPJyTCJOGxcRbGpJwzKosoyMm0myENgXDjLL6jqkXA3X2m+hipql9LUIxJweP121QfxqSYrMwMzqkus8F5QyDSn8rLgyO4ReQzIvIDEamOY1xJx+u3ZihjUlFtdRnbG9to6/K4HUpKi7T0uw/oFJGzCcxE+zbwaNyiSkI9PiXLkoUxKWd+TTmq8JrVLk5LpKWfV1UVuBK4R1XvBYriF1by8fr85FgzlDEpZ+6EUjIzxO6cd5rCTvfhaBeRrwGfAS4UkQwgO35hJR+7GsqY1FSQm8XMqmLW2RVRpyXS0u/vgG7g86raCIwH7o5bVEnIY81QxqSsupoyNuxr6b2JmYleRKWfqjaq6g9U9a/O+72qOqz6LAI1C2uGMiYVza8pp8vjZ8vBYXWDzyEV6Qju9pBxFl0i4hOR1ngHl0w8Pj/ZGVazMCYV1VWXATY473REWrPova0qMAL4GIErpAYkIg+JyBER2RyyrFxEVovIW85zmbNcROTHIrJTRN4QkXNCPnO9s/1bInJ9TH/lEPD6lOwsq1kYk4rGFOcxsTzf+i1OQ9Q/lTXg98DFYTb9OafeRe924FlVnUbgpkq3O8svAaY5j5twEpGIlAN3AOcCC4A7ggkm0Xp8frKsZmFMyqqrKWP9nmYCF3aaaEXaDPXRkMfVIvJdoGuwz6jq80DfNH4l8Ijz+hHgqpDljzqJ6GWgVESqCCSk1arapKrNwGpcuo2rx+cnJ8uShTGpqq66nHc6emg41ul2KCkp0ktnPxzy2gs0ECjgo1Whqoec141AhfN6HLAvZLv9zrKBlp9CRG4iUCuhoqKCtWvXxhBeQEdHxymf93j9HNy/j7VrD8e836HQX2zJwmKLjcUWm2hj047AlVCPr3yJ946P75X/6XTegsImC2eG2TdU9YcxxDUgVVURGbL6oKo+ADwAUFdXp4sWLYp5X2vXriX086qKb+UKpkyqYdGi6acZ6enpG1sysdhiY7HFJtrY/H7l7tdW05FXwaJFZ8UvMNLrvAWFbVdRVR9wTQwx9eew07yE83zEWX4AmBCy3Xhn2UDLE8rjC+Q0a4YyJnVlZAi1E8tYZ7dZjUmkpd+LInKPiLxXRM4JPmI43jIgeEXT9bw7zfky4DrnqqjzgFanuWoV8CERKXM6tj/kLEuo4ECerAy7GsqYVFZXU86uo8c51tHtdigpJ9I+i7nO850hyxR4/0AfEJFfAIuAUSKyn8BVTd8FfiUinwf2AJ9wNl8BXArsBDqBGwBUtUlE7gLWBY+vqgn/WRBMFjbdhzGpbX5N4GLK9Xua+dCsSpejSS0RJQtVXRztjlV1oKari/rZVoFbB9jPQ8BD0R5/KAWbobKtGcqYlDZ7XAk5mRnUW7KIWkTJQkRyCQzEqwn9jKreOdBn0klvzcKaoYxJaXnZmZw1vsRGcscg0p/KTxO4VNYLHA95DAveYM3CmqGMSXl1NeVsOtBKl8fndigpJdI+i/Gq6spguGTQE+zgtokEjUl5ddVl/PQ5ZeO+Fs6dPNLtcFJGpD+VXxKROXGNJIkFm6FyrGZhTMqrDU4qaDdDisqgNQtnEkC/s90NIrKLwH0thEC/dHxHtiQJa4YyJn2UFeQwbUyh9VtEKVwz1DjevWx22LJmKGPSS11NGX984xB+v5JhF65EJNxP5d2qumegR0IiTAJea4YyJq3UVZfT1uXlrSMdboeSMsLVLMaIyD8NtFJVfzDE8SSl4DgLu62qMelhfk05AOsamphRWeRyNKkhXOmXCRQCRQM8hoV3R3BbddWYdDChfASji3Kt3yIK4WoWh4bLwLvB2HQfxqQXEWF+TZldERWFcKWf/ZQmZLoPSxbGpI266nL2N5/gUOsJt0NJCeFKv1PmcRqOvH5rhjIm3dQ5kwrWN1jtIhKDJgs3ZnhNRj1ea4YyJt3MrComPyeT9dYUFREr/SJgzVDGpJ+szAzmTihlnXVyR8RKvwhYM5Qx6amuppxth9ro6Pa6HUrSs2QRgWAzlI2zMCa9zK8pw6/w+l5rigrHSr8IeP3OPbgtWRiTVuZNLCNDYJ11codlpV8EPF6bG8qYdFSYm8WZVcU2OC8CliwiEByUl2UTjhmTdubXlLNhX0vv99z0z5JFBDx+JSczAxFLFsakm9rqMjp7fGw71OZ2KEnNkkUEPF6/NUEZk6aCg/Os32Jwliwi4PWrjbEwJk1VlYxgfNkI1u+xfovBWAkYgR6f38ZYGJPG6qrLWNfQjKq6HUrSsmQRAY/XbzULY9JYXU05R9u72dvU6XYoSctKwAh4fJYsjElnwZsh2aSCA7MSMAIen1ozlDFpbNqYQorzsqi3fosBWbKIQI/VLIxJaxkZQq3Tb2H6ZyVgBDw+PzlZdqqMSWd1NeXsPNJB8/Eet0NJSlYCRsD6LIxJf3XVgfEWdn+L/lkJGAGP1/osjEl3Z08oJTtTWGf9Fv2yZBEBj99qFsaku7zsTOaMK2G99Vv0y0rACHh8fpue3JhhoK6mnDf2t9Ll8bkdStKxEjACgWYoO1XGpLu66jJ6fH42HWh1O5SkYyVgBDw+P9l2NZQxaa/W6eS2wXmnshIwAjY3lDHDw8jCXCaPLrCbIfXDkkUErM/CmOFjfnU59Xua8fttUsFQrpSAItIgIptEZIOI1DvLykVktYi85TyXOctFRH4sIjtF5A0ROSfR8Qam+7BkYcxwMH9SOa0nPLy+r8XtUJKKmyXgYlWdq6p1zvvbgWdVdRrwrPMe4BJgmvO4Cbgv0YHarLPGDB9LZldSMiKbnz73ttuhJJVkKgGvBB5xXj8CXBWy/FENeBkoFZGqRAbW4/OTnWV9FsYMB4W5WdywsIbVWw+zvdFutRokbtzsQ0R2A82AAver6gMi0qKqpc56AZpVtVRElgPfVdUXnHXPAl9V1fo++7yJQM2DioqK2qVLl8YcX0dHB4WFhb3vb1h5nMunZPOxaTkx73Oo9I0tmVhssbHYYhPP2Dp6lH9+rpOzR2dyy9y86D+foudt8eLF60Nae06mqgl/AOOc5zHARuBCoKXPNs3O83LggpDlzwJ1g+2/trZWT8eaNWt6X3t9fq3+6nL97z+/eVr7HCqhsSUbiy02Flts4h3bd1Zs00m3L9e3j7RH/dlUPW9AvQ5QrrrSDKWqB5znI8BTwALgcLB5yXk+4mx+AJgQ8vHxzrKE8Pj8ANZnYcww8/kLJpGdmcF9a63vAlzosxCRAhEpCr4GPgRsBpYB1zubXQ887bxeBlznXBV1HtCqqocSFW9Pb7KwPgtjhpPRRblcs2AiT71+gP3NdrtVN34uVwAviMhG4FXgj6q6Evgu8EEReQv4gPMeYAWwC9gJ/C/wD4kM1uMNJAu7n4Uxw89NF05GBB54fpfbobguK9EHVNVdwNn9LD8GXNTPcgVuTUBo/fL4AhcAWDOUMcPP2NIRfOyc8Sxdt4/bFk9lTHH0nd3pwkrAMKzPwpjh7ZZFU/D6/Dz4wm63Q3GVlYBhWJ+FMcNb9cgCrjh7LI+/vGdY33LVkkUYwZqFzQ1lzPD1D4un0tnj4+EXh2/twkrAMDxe67MwZribXlHEklmV/PylBtq6PG6H4worAcPobYayq6GMGdZuXTyVti4vj/1tj9uhuMJKwDA81mdhjAHmjC/hfdNH87MXdtPZ43U7nISzZBGG9VkYY4K+8P6pNB3v4clX9rodSsJZCRiGXTprjAmqqyln4dSR/OfK7Sx9dXglDCsBw+ixDm5jTIh7P3UO500eye2/28S//X5z7w/KdGclYBi9zVB2PwtjDFCan8PDn53PTRdO5rGX9/DpB1/hnY5ut8OKO0sWYVgzlDGmr6zMDL5+6Zn86O/msnFfC1f85AU2H2h1O6y4shIwDEsWxpiBXDVvHL/5+/cAcPVPX+LpDQm7e0LCWQkYRo9NJGiMGcSc8SUs+8IFnDWulH9cuoHvrNiG34U7kMablYBh9E5RbsnCGDOAUYW5PH7juXzmvInc//wufrC+m9bO9BrpbSVgGL3NUNbBbYwZRE5WBt+8ag7f+egcth3zceW9L/Dm4Xa3wxoylizCsD4LY0w0rlkwkdsX5NHR7eMj977Iqi2Nboc0JKwEDCPYZ5GVYTULY0xkppVl8ocvLGTqmEJufmw9P/rzm/j9qd2PYckiDI/PT05mBiKWLIwxkasqGcEvbz6fj54zjh/9+S3+/vH1dHSn7pxSlizC8Hj9NomgMSYmedmZfP/jZ/Pvl8/k2e1H+Mi9L9LwznG3w4qJJYswPD6/TU9ujImZiPC5Cybx6OcWcLSjmyvueYHn3jzqdlhRs1IwjB6fWue2Mea0LZw6imW3XsDY0hHc8PCr3P/c22gKjcewUjCMYJ+FMcacrokj8/ndP7yHS2ZX8Z1ntvOlX27gRI/P7bAiYqVgGB6f9VkYY4ZOfk4W93xqHl+5eAbLNh7k6p++xIGWE26HFZYlizACycJOkzFm6IgIty6eyoPX1bH3WCdX/OQFXtl1zO2wBmWlYBg9XuuzMMbEx0VnVvDUrQspyc/m0w++wmN/a0jafgwrBcOwq6GMMfE0dUwhv791IRdOH82/Pb2Fr/1uE93e5OvHsFIwjEAHt/VZGGPipzgvm/+9ro5bF09h6bp9XPPAyxxp63I7rJNYsgjD+iyMMYmQmSF85eIzuPdT57DtUDsfvucFNuxrcTusXlYKhmHjLIwxiXTZWVX89pb3kJ2ZwSfu/xu/Wb/f7ZAASxZhdXt8dumsMSahZo4tZtltF1BXXcY//3oj/+8PW/A6M2C7xZLFIN463M72xnZmjytxOxRjzDBTXpDDo59bwA0La3j4xQaue+hVmo73uBaPJYtB3Lf2bfJzMrn+/Bq3QzHGDENZmRnc8eFZfO/jZ1O/p5kr7nmBrQfbXInFksUA9jV18vTGg3xqwUTKCnLcDscYM4xdXTueX918Ph6fn4/d9xJ/fONQwmOwZDGA+59/mwyBG9872e1QjDGGuRNK+cNtF3BmVRG3Pvkad6/aji+BN1SyZNGPli4/v6rfz9W146ksyXM7HGOMAWBMcR6/uOk8rlkwgXvXvM3/ebSeti5PQo5tyaIfq/Z48fr83HzhFLdDMcaYk+RmZfLtj8zhrqtm8/ybR7nqnhfZeaQj7sdNmWQhIktEZIeI7BSR2+N1nJbOHtbs9XD5WWOpGVUQr8MYY0zMRIRrz6vmiRvPpfWEh4/c+yLPbjsc12OmRLIQkUzgXuASYCZwjYjMjMexHnlpD10+uGWR1SqMMcnt3MkjWfaFC6gelc+Nj9Zzz1/eittEhCmRLIAFwE5V3aWqPcBS4MqhPsjxbi8Pv7SbuaMzObOqeKh3b4wxQ25c6Qh+ffN7uOLssXzvT29y25Ov449Dx7ck63S4oUTkamCJqt7ovL8WOFdVbwvZ5ibgJoCKiorapUuXRn2c5i4/T27v4b1jvJw1tnBogh9iHR0dFBZabNGy2GJjscXGjdhUlZUNXjo9ysemD3y5/2CxLV68eL2q1g14gGR/AFcDD4a8vxa4Z6Dta2tr9XSsWbPmtD4fTxZbbCy22FhssUnV2IB6HaBcTZVmqAPAhJD3451lxhhjEiBVksU6YJqITBKRHOCTwDKXYzLGmGEjy+0AIqGqXhG5DVgFZAIPqeoWl8MyxphhIyWSBYCqrgBWuB2HMcYMR6nSDGWMMcZFliyMMcaEZcnCGGNMWJYsjDHGhJUSI7ijJSJHgT2nsYtRwDtDFM5Qs9hiY7HFxmKLTarGVq2qo/tbkZbJ4nSJSL0ONOTdZRZbbCy22FhssUnH2KwZyhhjTFiWLIwxxoRlyaJ/D7gdwCAstthYbLGx2GKTdrFZn4UxxpiwrGZhjDEmLEsWxhhjwhq2yUJElojIDhHZKSK397M+V0R+6ax/RURqkii2z4rIURHZ4DxuTGBsD4nIERHZPMB6EZEfO7G/ISLnJFFsi0SkNeS8/XsCY5sgImtEZKuIbBGRf+xnG1fOXYSxuXLuRCRPRF4VkY1ObP+vn21c+a5GGJub39VMEXldRJb3sy76czbQXZHS+UFgmvO3gclADrARmNlnm38Afuq8/iTwyySK7bMMcqfAOMd3IXAOsHmA9ZcCzwACnAe8kkSxLQKWu3TeqoBznNdFwJv9/Lu6cu4ijM2Vc+eci0LndTbwCnBen23c+q5GEpub39V/Ap7s798tlnM2XGsWC4CdqrpLVXuApcCVfba5EnjEef0b4CIRkSSJzTWq+jzQNMgmVwKPasDLQKmIVCVJbK5R1UOq+przuh3YBozrs5kr5y7C2FzhnIsO52228+h7VY4r39UIY3OFiIwHLgMeHGCTqM/ZcE0W44B9Ie/3c+qXo3cbVfUCrcDIJIkN4GNOU8VvRGRCP+vdEmn8bjnfaTZ4RkRmuRGAU+WfR+CXaCjXz90gsYFL585pTtkAHAFWq+qA5y3B39VIYgN3vqs/Av4F8A+wPupzNlyTRar7A1CjqmcBq3n3F4IZ3GsE5r45G/gJ8PtEByAihcBvgS+paluijz+YMLG5du5U1aeqc4HxwAIRmZ2oY4cTQWwJ/66KyOXAEVVdP5T7Ha7J4gAQmuHHO8v63UZEsoAS4FgyxKaqx1S123n7IFCbgLgiFcm5dYWqtgWbDTRw58VsERmVqOOLSDaBwvgJVf1dP5u4du7Cxeb2uXOO2wKsAZb0WeXWdzVsbC59VxcCV4hIA4Fm7PeLyON9ton6nA3XZLEOmCYik0Qkh0AHz7I+2ywDrndeXw38RZ3eILdj69OOfQWBNuZksQy4zrmy5zygVVUPuR0UgIhUBttlRWQBgf//CSlUnOP+DNimqj8YYDNXzl0ksbl17kRktIiUOq9HAB8EtvfZzJXvaiSxufFdVdWvqep4Va0hUH78RVU/02ezqM9ZytyDeyipqldEbgNWEbj66CFV3SIidwL1qrqMwJfnMRHZSaDT9JNJFNsXReQKwOvE9tlExAYgIr8gcGXMKBHZD9xBoGMPVf0pgfukXwrsBDqBG5IotquBW0TEC5wAPpmgHwAQ+LV3LbDJaeMG+DowMSQ+t85dJLG5de6qgEdEJJNAgvqVqi5Phu9qhLG59l3t63TPmU33YYwxJqzh2gxljDEmCpYsjDHGhGXJwhhjTFiWLIwxxoRlycIYY0xYliyMGYSIjAyZMbRRRA44rztE5H/idMwvich1zuvznFlBN4jINhH5D2f55c6lkMYkhF06a0yEnIK6Q1W/F8djZBGYWuMcZ8zNDuATqrrRuZ5/hqpudQbIvQYsVNXOeMVjTJDVLIyJgQTu77Dcef0fIvKIiPxVRPaIyEdF5L9EZJOIrHSm0kBEakXkORFZLyKrpP8ZZd8PvOZM7gYwBjgEvfMQbXVeK7AWuDzOf6oxgCULY4bKFAIF/RXA48AaVZ1DYLTzZU7C+AlwtarWAg8B3+pnPwuB0AngfgjsEJGnRORmEckLWVcPvHfo/xRjTjUsp/swJg6eUVWPiGwiME3LSmf5JqAGmAHMBlY7Uyxl4tQY+qgiZP4gVb1TRJ4APgR8CriGwJQmEJgWe+xQ/yHG9MeShTFDoxtAVf0i4gmZN8lP4HsmwBZVPT/Mfk4AobUHVPVt4D4R+V/gqIiMVNVjznYnhvKPMGYg1gxlTGLsAEaLyPkQmBJc+r+B0DZgavCNiFwWnO0VmAb4gBbn/XSg3/uNGzPULFkYkwDOLXKvBv5TRDYCG4D39LPpMwTuJR50LYE+iw3AY8CnVdXnrFsM/DFeMRsTyi6dNSbJiMhTwL+o6luDbFMBPKmqFyUuMjOcWbIwJsmIyAygQlWfH2Sb+YBHVTckLDAzrFmyMMYYE5b1WRhjjAnLkoUxxpiwLFkYY4wJy5KFMcaYsCxZGGOMCev/AzvxLp5/hhHhAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "Pro75M1670.info()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Creating a Rocket" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A rocket is composed of several components. Namely, we must have a motor (good thing we have the Pro75M1670 ready), a couple of aerodynamic surfaces (nose cone, fins and tail) and parachutes (if we are not launching a missile).\n", - "\n", - "Let's start by initializing our rocket, named Calisto, supplying it with the Pro75M1670 engine, entering its inertia properties, some dimensions and also its drag curves." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "Calisto = Rocket(\n", - " motor=Pro75M1670,\n", - " radius=127 / 2000,\n", - " mass=19.197 - 2.956,\n", - " inertiaI=6.60,\n", - " inertiaZ=0.0351,\n", - " distanceRocketNozzle=-1.255,\n", - " distanceRocketPropellant=-0.85704,\n", - " powerOffDrag=\"../../data/calisto/powerOffDragCurve.csv\",\n", - " powerOnDrag=\"../../data/calisto/powerOnDragCurve.csv\",\n", - ")\n", - "\n", - "Calisto.setRailButtons([0.2, -0.5])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Adding Aerodynamic Surfaces" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we define the aerodynamic surfaces. They are really straight forward." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "NoseCone = Calisto.addNose(length=0.55829, kind=\"vonKarman\", distanceToCM=0.71971)\n", - "\n", - "FinSet = Calisto.addFins(\n", - " 4, span=0.100, rootChord=0.120, tipChord=0.040, distanceToCM=-1.04956\n", - ")\n", - "\n", - "Tail = Calisto.addTail(\n", - " topRadius=0.0635, bottomRadius=0.0435, length=0.060, distanceToCM=-1.194656\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Adding Parachutes" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally, we have parachutes! Calisto will have two parachutes, Drogue and Main.\n", - "\n", - "Both parachutes are activated by some special algorithm, which is usually really complex and a trade secret. Most algorithms are based on pressure sampling only, while some also use acceleration info.\n", - "\n", - "RocketPy allows you to define a trigger function which will decide when to activate the ejection event for each parachute. This trigger function is supplied with pressure measurement at a predefined sampling rate. This pressure signal is usually noisy, so artificial noise parameters can be given. Call help(Rocket.addParachute) for more details. Furthermore, the trigger function also receives the complete state vector of the rocket, allowing us to use velocity, acceleration or even attitude to decide when the parachute event should be triggered.\n", - "\n", - "Here, we define our trigger functions rather simply using Python. However, you can call the exact code which will fly inside your rocket as well." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "def drogueTrigger(p, y):\n", - " # p = pressure\n", - " # y = [x, y, z, vx, vy, vz, e0, e1, e2, e3, w1, w2, w3]\n", - " # activate drogue when vz < 0 m/s.\n", - " return True if y[5] < 0 else False\n", - "\n", - "\n", - "def mainTrigger(p, y):\n", - " # p = pressure\n", - " # y = [x, y, z, vx, vy, vz, e0, e1, e2, e3, w1, w2, w3]\n", - " # activate main when vz < 0 m/s and z < 800 m.\n", - " return True if y[5] < 0 and y[2] < 800 else False\n", - "\n", - "\n", - "Main = Calisto.addParachute(\n", - " \"Main\",\n", - " CdS=10.0,\n", - " trigger=mainTrigger,\n", - " samplingRate=105,\n", - " lag=1.5,\n", - " noise=(0, 8.3, 0.5),\n", - ")\n", - "\n", - "Drogue = Calisto.addParachute(\n", - " \"Drogue\",\n", - " CdS=1.0,\n", - " trigger=drogueTrigger,\n", - " samplingRate=105,\n", - " lag=1.5,\n", - " noise=(0, 8.3, 0.5),\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Just be careful if you run this last cell multiple times! If you do so, your rocket will end up with lots of parachutes which activate together, which may cause problems during the flight simulation. We advise you to re-run all cells which define our rocket before running this, preventing unwanted old parachutes. Alternatively, you can run the following lines to remove parachutes.\n", - "\n", - "```python\n", - "Calisto.parachutes.remove(Drogue)\n", - "Calisto.parachutes.remove(Main)\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Simulating a Flight\n", - "\n", - "Simulating a flight trajectory is as simple as initializing a Flight class object givin the rocket and environnement set up above as inputs. The launch rail inclination and heading are also given here." - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "TestFlight = Flight(rocket=Calisto, environment=Env, inclination=85, heading=0)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Analyzing the Results\n", - "\n", - "RocketPy gives you many plots, thats for sure! They are divided into sections to keep them organized. Alternatively, see the Flight class documentation to see how to get plots for specific variables only, instead of all of them at once." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Initial Conditions\n", - "\n", - "Position - x: 0.00 m | y: 0.00 m | z: 1471.47 m\n", - "Velocity - Vx: 0.00 m/s | Vy: 0.00 m/s | Vz: 0.00 m/s\n", - "Attitude - e0: 0.999 | e1: -0.044 | e2: -0.000 | e3: 0.000\n", - "Euler Angles - Spin φ : 0.00° | Nutation θ: -5.00° | Precession ψ: 0.00°\n", - "Angular Velocity - ω1: 0.00 rad/s | ω2: 0.00 rad/s| ω3: 0.00 rad/s\n", - "\n", - "\n", - "Launch Rail Orientation\n", - "\n", - "Launch Rail Inclination: 85.00°\n", - "Launch Rail Heading: 0.00°\n", - "\n", - "\n", - "Surface Wind Conditions\n", - "\n", - "Frontal Surface Wind Speed: -1.29 m/s\n", - "Lateral Surface Wind Speed: -0.15 m/s\n", - "\n", - "\n", - " Rail Departure State\n", - "\n", - "Rail Departure Time: 0.363 s\n", - "Rail Departure Velocity: 25.800 m/s\n", - "Rail Departure Static Margin: 2.133 c\n", - "Rail Departure Angle of Attack: 2.857°\n", - "Rail Departure Thrust-Weight Ratio: 10.143\n", - "Rail Departure Reynolds Number: 1.946e+05\n", - "\n", - "\n", - "BurnOut State\n", - "\n", - "BurnOut time: 3.900 s\n", - "Altitude at burnOut: 656.382 m (AGL)\n", - "Rocket velocity at burnOut: 280.170 m/s\n", - "Freestream velocity at burnOut: 280.271 m/s\n", - "Mach Number at burnOut: 0.835\n", - "Kinetic energy at burnOut: 6.374e+05 J\n", - "\n", - "\n", - "Apogee\n", - "\n", - "Apogee Altitude: 4780.609 m (ASL) | 3309.143 m (AGL)\n", - "Apogee Time: 25.874 s\n", - "Apogee Freestream Speed: 25.265 m/s\n", - "\n", - "\n", - "Events\n", - "\n", - "Drogue Ejection Triggered at: 25.876 s\n", - "Drogue Parachute Inflated at: 27.376 s\n", - "Drogue Parachute Inflated with Freestream Speed of: 29.080 m/s\n", - "Drogue Parachute Inflated at Height of: 3298.143 m (AGL)\n", - "\n", - "\n", - "Impact\n", - "\n", - "X Impact: 2015.767 m\n", - "Y Impact: 1344.453 m\n", - "Time of Impact: 202.495 s\n", - "Velocity at Impact: -17.477 m/s\n", - "\n", - "\n", - "Maximum Values\n", - "\n", - "Maximum Speed: 286.278 m/s at 3.38 s\n", - "Maximum Mach Number: 0.852 Mach at 3.38 s\n", - "Maximum Reynolds Number: 2.056e+06 at 3.31 s\n", - "Maximum Dynamic Pressure: 4.070e+04 Pa at 3.35 s\n", - "Maximum Acceleration: 105.104 m/s² at 0.15 s\n", - "Maximum Gs: 10.718 g at 0.15 s\n", - "Maximum Upper Rail Button Normal Force: 0.257 N\n", - "Maximum Upper Rail Button Shear Force: 0.257 N\n", - "Maximum Lower Rail Button Normal Force: 0.257 N\n", - "Maximum Lower Rail Button Shear Force: 0.257 N\n", - "\n", - "\n", - "Numerical Integration Information\n", - "\n", - "Maximum Allowed Flight Time: 600.000000 s\n", - "Maximum Allowed Time Step: inf s\n", - "Minimum Allowed Time Step: 0.000000e+00 s\n", - "Relative Error Tolerance: 1e-06\n", - "Absolute Error Tolerance: [0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 1e-06, 1e-06, 1e-06, 1e-06, 0.001, 0.001, 0.001]\n", - "Allow Event Overshoot: True\n", - "Terminate Simulation on Apogee: False\n", - "Number of Time Steps Used: 730\n", - "Number of Derivative Functions Evaluation: 2060\n", - "Average Function Evaluations per Time Step: 2.821918\n", - "\n", - "\n", - "Trajectory 3d Plot\n", - "\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg0AAAIHCAYAAAAcg2/yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3xb1d3/30d7WcMjtmPHsRMnQAiEFUYZBcoolAcopTSlg5bRXegeUNpCW0Z/paV9oBtaeDqA0lIopexSKCsBEpKQvYcTJ7E1bGtL5/eHfC+y4yHZWlbO+/XKK4mkq3OudHXP53ynkFKiUCgUCoVCMR6Gck9AoVAoFArF1ECJBoVCoVAoFDmhRINCoVAoFIqcUKJBoVAoFApFTijRoFAoFAqFIieUaFAoFAqFQpETSjQoFBWMEKJdCCGFEKbB//9LCHFZjsc+J4S4srgzzGkeHxJCPFnueSgUismjRINCUQEIIbYIISJCiP6sP9OHv05KeY6U8p4CjDdEjIzw/C+z5hEXQiSy/v+vfMaSUv5RSnlWMeerUChKgxINCkXl8D9SSlfWn65yTURK+SltHsBNwP1Z8zpHe91UWcSnyjwVikpHiQaFYgqR7XIQQhiFELcJIfYJITYLIT43wm58phDiRSFEnxDiSSFE/eDjzw/+HRi0HpyQxxy2CCG+LoRYDgwIIUxCiG8IITYOjrNKCPHerNd/TAjx36z/HyyEeEoI0SuEWCuEuCTrOfvgOW0VQgSFEP8VQthHmq8QwiCE+Nbga/cIIe4VQngG30ezTFwhhNgGPCuE+KcQ4vPDzmV59lwVCsXYKNGgUExdrgLOAY4AjgIuHOE1lwIfB6YBFuArg4+fMvi3d9B68HKeY38QeM/g8UlgI3Ay4AFuAP4ghGgefpAQwgk8BfxpcE6LgJ8LIeYNvuRHwNHAO4Ba4GtAepT5fmzwz2nALMAF3DFsyHcChwBnA/cAH86aywKgBfhnnueuUBywKNGgUFQOfxdCBAb//D2H118C/FRKuUNK6QduGeE1v5NSrpNSRoAHyAiMQvAzKeX2wfdFSvkXKWWXlDItpbwfWA8cO8Jx5wFbpJS/k1ImpZRLgb8C7xdCGIDLgWuklDullCkp5UtSytgoc/gQ8GMp5SYpZT/wTWDRMEvLd6WUA4PzfASYK4SYM/jcR8i4XeKT/CwUigMGJRoUisrhQimld/DPhTm8fjqwPev/20d4ze6sf4fJ7MYLwZCxhBAfFUIs00QPMB+oH+G4mcBxWeIoQGbxbxp8vY2M1SIXpgNbs/6/FTABjSPNU0oZBe4HPjwoUD4I/F+OYykUCjI/MIVCMTXZBbRm/X9GHsdOtr2tfrwQYibwG+BdwMtSypQQYhkgRjhuO/AfKeWZw58YXMijwGzgzRzm20VGhGi0AUmgm7c/l+HH3UNGKPwXCE/ALaNQHNAoS4NCMXV5ALhGCNEihPACX8/j2L1kYgVmFWAeTjKL814AIcTHyVgaRuJRMi6CjwghzIN/FgohDpFSpoG7gR8LIaYPBnqeIISwjjLfPwNfFEJ0CCGyszySo010UCSkgdtQVgaFIm+UaFAopi6/AZ4ElgNLgcfI7LRT4x0opQwDPwBeHHQTHD/RSUgpV5FZhF8ms8s/DHhxlNf2AWeRCYDsIuM+uRWwDr7kK8AKYAnQO/icYZT53k1m4X8e2EzGSjEkO2IU7h2c4x/yPVeF4kBHSDlZK6VCoagEhBDnAL+UUs4c98UlRAhxOfBhKeXp5Z4LZOIvgE9IKU8q91wUiqmGsjQoFFOUwZoG5w7WSWgBvgM8VO55jcChZCwBZUcI4QA+A/y63HNRKKYiSjQoFFMXQaYmgp+Me2I18O2yzmgYg6mj7ybjvigrQoizycRGdJOpE6FQKPJEuScUCoVCoVDkhLI0KBQKhUKhyAklGhQKhUKhUOREuYo7KZ+IQqFQKBSVy0jF2ZSlQaFQKBQKRW4o0aBQKBQKhSInlGhQKBQKhUKRE0o0KBQKhUKhyAklGhQKhUKhUOSEEg0KhUKhUChyQokGhUKhUCgUOaFEg0KhUCgUipxQokGhUCgUCkVOKNGgUCgUCoUiJ5RoUCgUCoVCkRNKNCgUCoVCocgJJRoUCoVCoVDkhBINCoVCoVAockKJBoVCoVAoFDmhRINCoVAoFIqcUKJBoVAoFApFTijRoFAoFAqFIieUaFAoFAqFQpETSjQoFAqFQqHICSUaFAqFQqFQ5IQSDQqFQqFQKHJCiQaFQqFQKBQ5oUSDQqFQKBSKnFCiQaFQKBQKRU4o0aBQKBQKhSInlGhQKBQKhUKRE0o0KBQKhUKhyAklGhQKhUKhUOSEEg0KhUKhUChyQokGhUKhUCgUOaFEg0KhUCgUipxQokGhUCgUCkVOKNGgUCgUCoUiJ5RoUCgUCoVCkRNKNCgUCoVCocgJJRoUCoVCoVDkhBINCoVCoVAockKJBoVCoVAoFDmhRINCoVAoFIqcUKJBoVAoFApFTijRoFAoFAqFIieUaFAoFAqFQpETSjQoFAqFQqHICSUaFAqFQqFQ5IQSDQqFQqFQKHJCiQaFQqFQKBQ5oUSDQqFQKBSKnFCiQaFQKBQKRU4o0aBQKBQKhSInlGhQKBQKhUKRE0o0KBQKhUKhyAklGhQKhUKhUOSEEg0KhUKhUChyQokGhUKhUCgUOaFEg0KhUCgUipxQokGhUCgUCkVOKNGgUCgUCoUiJ5RoUCgUCoVCkRNKNCgUCoVCocgJJRoUCoVCoVDkhBINCoVCoVAockKJBoVCoVAoFDmhRINCoVAoFIqcUKJBoVAoFApFTijRoFAoFAqFIieUaFAoFAqFQpETSjQoFAqFQqHICSUaFAqFQqFQ5IQSDQqFQqFQKHJCiQaFQqFQKBQ5oUSDQqFQKBSKnFCiQaFQKBQKRU4o0aBQKBQKhSInlGhQKBQKhUKRE6ZyT0ChUFQfUkrS6TQAQgj9j0KhmNoo0aBQKCaFJhBSqRSJREL/N4DRaMRkytxmDAYDUkpMJhMGg0EJCYViCqJEg0KhyBlNIKTTaZLJJMlkUhcI4XCYLVu2cOihh+qiwGg06mJBSsnKlSuZMWMGbrcbyAgJ7Y+ySCgUlY8SDQqFYkTGEghSSn2BzxYI2v+Hky0ENJGgCYlkMjnktUpIKBSVixINCoUib4FQCLT3yX4/JSQUispGiQaF4gCjHAIhV5SQUCgqGyUaFIoqJjtIMR6PI6WsGIGQK/kKCRVsqVAUDyUaFIoqYSwLQiwWY+3atSxYsKDwAkFKTOv/iVk4gGmFe98xGEtILFu2jDlz5uBwOABlkVAoCokSDQrFFCRfF4PJZBo1SHHSJKOY3/wj9m0v4DjhDmB+4cfIARVsqVAUHyUaFIoKp1AxCFLK4kzQbCdy3s9x/fpYGrc/BlxYnHEmgIqRUCgKixINCkUFUawgxWIsfiLUhfWFm4id/E2ku4XYjBPx7XqNuJRQwYutEhIKxcRRokGhKBOVnMUwHsK/CcdfPoiIhYgfdTnS3UK89UTcm58m0bcT6W4t7/zy/LyUkFAockOJBoWiBIwlELZu3YrT6aShoaEiBcJwDF2vY//75YAkfMlfSDdmYhiSjQvw1x2FJRGhSI6QkjKWkNizZw89PT3MmTMHUEJCceCgRINCUWDGEgga2RaEbItCpWPc8h/sf78cWdNM+L33Imtn6c8lpx3GhqN/wGF1c8o4wyLGbrC/BUMFWyoONJRoUCgmQb4CYSSm0kKSnjaf5NxziZ16A9JRO/KLKjymodAo14biQEKJBoUiRwohEMqFEGLiO/BkFPPS35M46gqko47ouf876kvnLL8V+6ookQ88OMGZTg20mJPRUEJCUa0o0aBQjECpBUIxTeqTQfTvxv7wlRh3LyNd20lq9hljvl4azBgCa0o0u9GpxEVXCQlFNaBEg+KAZzSB0NvbSzKZZNq0aUW1IFTqYmDoeh37I59AxPuInP+bcQUDQMw2DdHVDak4GC0lmOX+lEqAFeJ7G09I7NmzBykljY2NSkgoKgIlGhQHFPlYEFKpFIlEAqPRWJJ5VRKmtY9i+9fVSFcz4Yv/SLr+4JyOi9mnIZCIvl1I78wiz7J8lCLYUghBIpHQXSHKIqGoBJRoUFQtUyUGoRJv8unaWSTbTyN69o/A7sv5uJitAQBD305SVSwaSkV2vQ5Qrg1F+VGiQVEVFEMgTCp4sAIZ91wifsxr/k7iyI+TbphH9MK78h4j6phO/PAPIe2jZFZUCeMFQpYCJSQU5UCJBsWUI1sgaC6EYlgQSikaij3OeJ+DoXsF9keuQgzsJdn+TqRv1pivH42YvZHYsbdOai6FoFIWRJlMkurtJZyO0mNN0OGbTVqmOfvvZxNOhjEKI83OZmZ7ZnPOzHM4ueXkocdLmVf9DiUkFMVGiQZFRTOSQOjq6qK+vl6PNagEF8NkKPe8TSvvx/b0tUhHHeFFf5uwYNBJpzKBkGZ7YSaYJ+UOhEx2dxN68K+En3+e+Nq1mboVQMoAXQuOxHHaqXz44AsJWJMk00l29O/g9T2vM905nZNbTkZKye7wbpqdzQWd51hCIp1O09XVRVtbmxISijFRokFRMeRqQdizZ88Q0VAsqs09MRLW576H5fVfkWw7ieh77kQ66ib9ns5fLyTZeTaxM24uwAwrk5Gui1QohP9//5fQ3x4CbTEG+pxgxYJtIE506VKiS5dyit2O71OfxPOhDyHMZqSUxFIxAJ7Z/gzfeuVbLJqziDNrzsRr8hZ8/sOFhJSSrq4uZsyYoSwSijFRokFRFibjYqi2xbyc55OafhQxw6eJn/R1MBTmdiBtXlKh3XR1dRGJRHC5XHg8HlwuV0HevxIJv/IKe6+9jlRPDxiNBE48lDtbV9N8whl87tgv0eRsIt3XR+TVxYT+8hcir7xC709up/+JJ2n6yY8xNTVhM9kAOKLhCM6deS5/XPtH/mH+B5+d81kuarmoqPPPDrhUrg3FWCjRoCg6hY5BKNUiW23iRDsX4/aXEcHtJOdfQnLue2Dueyb1ntFolFAoRG9vL4FAgFDSgjHQRTKZpLa2lkgkwpYtW+jv7ycajSKlpL6+Hq/Xi91un5K1L7IDIYN//BM9P/oRpNOYFxxO4/Xfpr1zFtf0rOTw+sP1Yww1NTjPeBfOM95F+L//Zd8PfkB81Sq6rrqKlnvuwVibCR6tt9fz7eO+zfvnvJ/r/3s9N626ifWJ9Xz96K+X5HyyUTESiuEo0aAoKKUKUqymxbwUCCFASsyv/wbrf75Pum4OyUPeC0ZzXu8Tj8cJhUKEQiH6+vqIRqPY7XZqamrwer3E43FcjR0Y975FW1sbRqNxiBvpzTffxOfzEYlE2L17N5FIBKvVisfj0f9YrdZCn35xkBL/L3+J/xe/BGD3+0/hxnlr+E2TlRnCMEQwDMdx0km03Hcfuz7xSeJr1rD3+z+g6ce3DXnNIbWHcNO8m3h076MsbFpY5FPJPRtECYkDGyUaFBMmWyBEIhHS6fR+rylGkGKpbjpVZdGIDzBv9W3Y9v6XROe7ib77J+MKhmQySV9fny4QwuEwZrMZt9tNTU0N06dPx2q16t9HJBJh3759SEcdItwz4nsaDAa8Xi81NTX6Y9FolGAwSCAQYOvWrcTjcRwOhy4i3G43ZnPu4qZkgvLvD+O/914wGFj/ybO4zvs076h7B/X2+pwON3o8NP30drZf+F7CzzxDfP0GLHM6h7zGZDBxacelNDU1AfC3DX9jRs0MFjYWV0TkSz5CAjKBlzabTQmJKYgSDYqcGM+CsH79ehobG/F6vUW/AVSb26DoJKO47n8v7n3riJ38TeILP7NfF8p0Ok1/f79uRRgYGMBgMFBTU0NNTQ0dHR04HI6cvtvkrNPzCqi02WzYbDYaGxuBzLUWDocJBoPs2bOHDRs2kEql9NgIj8dDTU1NSSp1jkbyqafh3ntBCLZecyHX2R7hjBln8P0Tvo8pj9gQU1MTrnPeTd/fHiL8/PP7iYbs6zyRSvCXDX9hS2gL3zv+e5zRNn5Z71wpRt2J0YREX18fW7ZsYf78+frjyiIxdVCiQbEfE3ExZKc/lmqOxaZqxInJRvyQ97E2aGH2sVdkFuWBAd2CEAqFkFLicrlwu920trbicrnyqg+QTarjdFIdp4/4XC6fpxACp9OJ0+lk+vTpwNuiJhgMsmPHDkKhEEII3G63LiRcLldJrr/oypUkfvpTAEKfvJiv2f7OO5rfwfeO/15egkHDtmABfX97iNi6dSM+r52T2Wjml6f9ki++8EWuffla0qQ5q+2siZ9IFqUqVqWNoQkEbWzl2pg6KNFwgFPIGIRy58dPVYQQI7p2JkU6heXlH5OccSLhaUcRnHkRu9avJ/jGGySTSRwOB263m4aGBmbNmoXJVMBbQSqOiPgzVSELZA0wGAy43W7cbjczZswA3nafBINBNm7cyMDAACaTiUgkwp49e6itrS14oGUqEGDPV7+aSak85xwOuupLXLG6jo8d8jHMecaH6OfmzZTpluHwfs8N/015rB7uPPVOrv7P1Vz/8vXYjDZOaTllQuMOH6dcgl/FSEwtlGg4gChmkGIpf7hVFWtQYBKJBP17t+N99qtYu19l9/bNbD/EqZvz58+fj8VS3O6Tpg1PYn/0Uwx89Clomj/+ARMdx2TC5/Ph873dGyMej7NkyRLC4TDd3d1Eo1FsNhtutxuv14vH45nw+Usp2fud75Ls2kV6TieJj30Qu8nOpw771KTOQ8ai2gmNOObw35bdZOcnp/yEz/z7M2zr2zapsbMppWgYz4qlhETlokRDlVKqLIbs9yrlAjvVFvNikEqldPdCKBQiHA7jiWzjsFW3YonuJfTOG/Ed9TFqDQaklPT09BRdMABIqxsAEesr+ljDsVgsmM1mOjo6MA8WTdICLXt7e9m8eTOJRAKn0zkk0DIXS0v/o/8k/NxzCJeLX1zsYOf6m/jj3D9iNEzOmpLYsQMAc0tLzse4zC7uetddunVjspaCqfDbVUKiMlCioQoYTSBs3ryZjo4OoPillkspGg7E7Il0Os3AYBxCKBSiv78fIQQ1NTW43W7a29upCW/D+eevI20+wh/4K2L60UWf+0hI62BmRLz0omE4Qgjsdjt2u13PQJBSMjAwQDAYZPfu3axbt450Ok1NTc2QQMvs3XBy7156bs301Njw0VP4D09y1bSrJi0YAGIrVgBg6Zy933NjiQFNMLy+53V+vvzn/PSUn+KyTKyAVqndE4UaKxchsX79eubMmaOERIFQomGKkY8Fwe/309nZOco7FZZSi4ZSLeblQEpJJBIZUg8hnU7jdDpxu920tLTgdDr3yx6QzkOIH/t5Eod/COlsKMvcIdvSEKJc9qCxvjshBC6XC5fLRcvg7j6dTuvxEdu2baOvr0+Po/B4PMhbbiHd14c87ki+7X2Whb6FnN149qTnKZNJoq+9DoBt4cTSKKWUrOxZyQ2Lb+CHJ/5wQtftVBUNIzFcSPT09DB37lxlkSgQSjRUMKV2MUyGahQNUBqzbSKRoL+/n40bNxIKhUgkEtjtdtxuN/X19WMGKoqBPVif+iax076L9MwgfsIXij7fcRm0NIhYX9lEQ74YDAbdyqCRTCYJhUIEnn0Wnn+BtM3KDe/oxmF08tHGj5JKpSa9AEYWLybd14e5o2NE90Qu739M4zF8bsHn+Omyn/LndX/m0oMundBcqkU0jIRybRQOJRoqhKkkEEZiKgYNjkcxPudEIjEkDkErq2yxWJg2bRqtra05V0Q0dL2O/R+fQESDJHrWkfLMGPW1pbxmpM1L7ORvkmo+inJcqYW6Dk0mE76aGgbu/T8SgP2qyxDNr/CFGe/HErGwa9cudu3ahd1ux+v16laJfOJG+h97DADn2aOnTuby3X34oA+zbO8yfrrspxxadygL6hfkPAcofUxDJdzDlJCYGEo0lIGpLhBGQlka9ieVSu1XMMloNOqpg9OmTcNut9Pd3U08Hqe+PrdKgkiJefkfsT57PbJmOuFL/490w7wJz7PgGC3Ej/1s5p9lnspkCf7pzyS2bsXc3s70y67i96ZPYRAGtm/fjpSSGTNmEIlECAaD9PT0sGnTJpLJ5JBCVG63e8RCVKlAgIEnnwKg5j0j9//I9foTQvDd477Lh5/4ME9sfWJCoqGaLQ25ooTE+CjRUGSyBUIsFkNKOeUFwkhUo2jIZxwtuC47UFFKqQcqzpw5E4fDMWqqWT7nY17xZ2xPf4Nk+6lEzv1fsPvGP6jEiOA2MJjB21ruqUyYlN+P/9e/BmDpB47AlerHZx6sqZDVFdLhcOBwOGhubtaf0wpRdXV1sWbNGoAhgZYul4u+hx9GxmLYTzwRc1vbiHPIZ4GtsdRw95l3U2utzftclWgYnXyFRDqdxmKxVK2QUKKhgIxnQXj99dc55phjprxAGI1qEw2jkd3ZUQtUTCaTeqBic3MzLpcr5zLH+V4LiUMuhGSYxBEfhwJE7xcDx18WkWpZSOK8O8o9lQkT+N3vkP39DBw5lxsNj/LNHYfxvs73jXucltVSU1NDa2tGNGnpscFgMNPx0++n4e7fYQSSZ5zBwMBAzmW6x6LOlinfvaNvBxtDG3lnyztzPlaJhtwZS0i8/PLLnHDCCfrj1WaRUKJhgkzUxTDR0ryVzlT+EYyGJk6yOzuGQiHi8bheMKiuro729va8GiqNxHgiyLj9JSyv/JTIBXeDxUniqCsnNV6xkSY7JCJlG3+y12Ny715C990PwM+PCzDXO5cLZ12oP59LgaJsjEYjXq8Xr9cLQOgvD7IvEMDQ0UHi8MNYt24d4XAYi8UypOPnRBfYHy/7MUu6l/Cns//EjJrRY12yz6dUVINoGIlsIVHNJbKVaMiB4QIhmUzudxHk4mLQFqGpcnHkQ7W4J7I7O/b29tLX10csFtPjEFpaWgreunnM60EOtrN+/gekfR2ISC/S4izo+EXBbEMk9i+LXAoKcW0EfvNbZCzGvoWzWeLbyi+PvKkgNRkAZCJB4O67Aaj/1KdwZaVFx2IxgsEgwWCQ7du3EwwG6evro76+Xg+2zEWgfu2or/HBxz/I9a9cz2/f9dtxe2Io90RxyNW1oYmGqSAklGgYhvaFplIpXSBoqVUaE41BKIdoKGUjmoL3TxhjrEIsDGN1dtR6HOzevXtIN76Skghje+KrmNc+TGLOOZl21hMs3lNqpNkByfJZGiZDoquL0F//CkJw+1HdvLPlnRzTeEzB3r//n/8k2dWFub0d55lDO1VarVamTZvGtGnTAFi5ciX19fWk0+m8On42OZv45sJvcu1L13L3qrv5xPxPjDknJRpKx1QXEge0aMhVIGSbmyZDqX3xpby4yh1nMB5SZtotZ8chSPl2Z8cZM2bgdDqHfM8DAwMlvZEOx/bUNzCtfYTYSd/IZCNMpRutyY4I7yv3LCZE8N7/g2QS01mnMftIF1ceur8raKILn4zH8f/qVwB4r7wSkUPci91ux+PxjNrxs68vU3lzeMfPs9rO4oWdL3DXW3dxSsspHOw7ePR5KdFQVqaSkDhgRMNwgTAwMEAkEsHlenvnVkiBMBLabjzXALmpNF4luSe0QMXsegjZnR0bGxvp7Owc93MpZZbGEGQahIHYiV8lMe99pNpzD2arFOJHXY5IRMs2/kRvoim/n76HHgKg8apP8725cws5LYL33U+yaxfm2bNxnXvOhN5jpI6fqVSKUChEMBhk06ZNenrvhTUX4mh1UG+sr5jFulLmUQwKeb/IVUj09/djNpv1TU+xhUTVioZ4PM6GDRuYNWvWiBaEUCiE3+8fUgGu2BgGGweVilLv/sslGuLx+H4Fk7RARZ/PR1tbW0kaNU0amcbyys8w7F1F9H9+ifTMGLNgUyWTaj8VKE+dhslch8H77kNGowSPnE28Ic3oe/P8hUkqFCLwm98AUPfFL+RkZch1gTUajft1/EwkEgSDQS6xX8K2DdtYHV6N3WYfEmipxedUq6Wh1NbPdDpd1GD3kYTEnj17cLlcQ2KthlskCpmxV7Wioaenh6uvvpoHH3xwRAtCqXb72ZTDPVGq8UoliFKpFJFIhIGBAfbs2UM4HMZkMuk7r+bmZqxWa0F+ICW1nsT7sD18FeaNT5A45CJIJcBU2IDLUiJCXYiBbmgtXCxAsUmHI4T+fB8AP523jcM2/3NUk/5ErovAXXeRDoWwLVyI/aSTcj5uotey2Wymvr6e+vp6Ngc388OXfsh1ndfhFm4CgQBbt24lHo/jcDgwmUyk02mSyWROHT8nQ76ZJ5OlGmPIho+pCYPsx7ItEoW6J0IViwaLxUIymRxVHGhFOEpJNYsGKLyqH62zI6DnwBcit73cWEJbmP7cNZjCXURPu5HEkR+fWvELI2B54y7Mb95L5Eubyj2VnOl76G+kg0H2dvhY3x7jR4dcVrD3Tu7aRehPfwYGrQw5fr+F+k3V2mrxx/zcvOxm7jnzHhobG/X3HxgYYPv27QQCAV577TXS6TQulwuv1ztix8/JUq1WjXKMByNbN7ItEoVe56pWNFitVuLx+KjPlyNwr5QZBtp4pXQZTAYtUFFzM4zU2dHlcmEwGNi2bRsWiwWns7iphyX5/NIpGp+9BuIhIu+/j1Tr8cUdr8hon5c02xHJSCY+YwoUk5apFME//BGAe4/q4/1zPky9ffSy3vkuDj0/uR0Zj+N897uxHnpoXnMrxCLksXq4duG1fPmFL/O71b/TsymEyHT8rKurw2QyMWfOnBE7fgohhrg1nE7nhOdVyoU1nU6XdBEvtntiJEotVKpWNFgsFhKJxKjPl8PSUM0xDfmOFYvFhhRMyu7s2NDQMHZnx3IFKBYSKQEJBiN7T74Jf8JC2xQXDEM+L7M983cyCqbJFb6a9FxyIPzCf0l2ddHX4GTZ3DQ3HPzhgs0l8vrrDDzxBMJqpfaaq/M6tpDX+Ttb3sk5M8/hrrfu4tSWU5nrezvIM3vhGavjZzAYZMOGDQwMDGA2m4cICZvNltPnriwNhaXUQqVqRYPRaBxTNJTL0nAgiobhnR0jkQg2m02vxT9jxoyKDVQsyueXCGN7/EukazuJn/gV4g2HkQgECj9OGZFmR+YfiTDYaso7mRwI3Z+p/rjrzMO55OCDx7QyaOS0QKZS9Nx6KwDeyz+OeTBtMlcKvQh9+agvs7h7MX9e92e+c9x3ch7HZDJRW1tLbe3bfS3i8bheiGrnzp1EIhE9PVT7M9LvuppFQ7ksDeONWcjPoGpFw3gfooppKM5YI3V2NJlMesGkxsbGnHck441VbIpxsxHBbdgfvgLDvrXETr624O9fKUhTxtIgylBKOt9rI75lK5GXXkJYrZz5qVt4dw4ZVbmO0fe3h4ivXYepuRnPZYWLkZgoXquXX53+K1pdQxuJTWRxtVgsNDQ00NDQoL9HNBolGAzS29vL5s2bSSQSOJ3OIR0/Sy0aSrmIl8vSoNwTBWKsD7IcloZSC5Vin6MWqNjX18fevXvp6+sjEAjoBZPG6+w4UUr53RVyHOO2F7H941MImSZy0b16WmKlF8aaCKm2dxA575dIe/4dF0tN6IGMlaH/1KMQ7sJZRVKhEL13ZBp21X7pixjs9rzfoxiLULu7HYBALEA0GaXJ2VSQcYQQ2O127HY7TU1NwNuBlsFgkN27d7N27Vqi0Sgul4tYLIbX69VjlYqBck8UnqoWDWNR6vgCmNqWBiklkUhED1IMhUKkUik9ULG+vh6bzcZBBx1UkPFymU+xKeTnJ8L7sD90GWn3DMIX3oX0zSrI+1Yq0tNG0tNWltRmyN1KlA6H6X/kEQBumL6Y7wfWjVk5USOXxcH/i1+QDgSwHXMMzjPPzGk+pSKVTnH505dTb6vnl6f/smjjaIGWLpeLlpYWANatW4fFYkFKmen42d8/JI7C4/EULCuq1LvwUls2tDGVpaGAjPaBljqTQRtzqoiGWCw2JA4hHo9jt9upqakZsbNjMBikv7+/UFMfkym1Mx+s7igd9UQu+C2p5qPBWvk+/kkTDWDcvRymHwGu8eMDykX/v/5Fuq+fTW0Wag87IifBkAvxDRsI3f8AGAzUff1rFZdpYDQY+ejBH+X7S77PI5seYaFtYUldBk6nU3drQCbQUouP6O7uHrHjp81mm9BYpY5pUJaGKcp4X9yBEAiZqzVFi4zWREIkEsFsNufV2bGUP5RSxjRMZhzRvxv7I58gfswnSM49T3dHFHqcSkTsWY3jr5fSdcYvMM09o+C5/oWi7+8PA/Cvw5J88KAP5nXsaNe8lJJ9t9wKqRTuD1yCdZKlqIv127pg1gU8tuUxbl92Oz878md4jKWtjpuNyWSirq6Ouro6/bHhHT9jsdh+gZbjdfw8ENwTytJQIsoVCFnumAYtUFETCMM7O86ePRu73T6hi7CU51bpi6yh63Xsj3wCEe8DUfl1CiZLPB6nt7eXgYEB3njjDRy9G1kIJKID7Ny6lf7+foxGI/F4nJ6eHsxm84R2jgWd88aNxJYvJ2Y1sumoaZw8/eScjx3r+ht44kmiS5Zg8Hrxffazk5pjMa9zIQTXLbyODz7+QX6z8Td89aCvFm2sbHK9Twzv+Km5SIPBIPv27WPjxo0kk8khHT/dbvcQl9iBkD2hLA0lolyBkKUeMxwO68GKuXR2nCiltjSUapyJfF+mlfdje/qbSFcz4ff9gXTDIUWYXfnI7rKoCU+tYY7ZbGb+/PnYAlZ4E5oaamk6+HAgIyyWLVvGwMAAK1asIB6P43Q68Xq9eL1e3G53SW9+fQ9nrAyvHWbj/HmXYDJM/naYHhig50c/AqD2mqsxFqC3TTGv95numVx56JW8tvM14unRi+EVmol8z0IIHA4HDoeD5uZm4O1g7GAwSFdXF2vWrAEyFWO9Xi9Go/GAsDSM9nlq9y+VclkAylF6uJhCZaTOjgMDAwwMDFBXV5dzZ8eJUik1IcqNoet17E98mWTbyUTO+znYfeMeU8nnA2+bibXiPlqZYS1DRqsOGI1G9SA3jIP5+cm3FyKLxYLNZmPmzJm4XC49sj4QCLBjxw5CoZAeEKcJicmm546GTCTo/8ejAFx09Z0Y5+YXyzDa4uD/9a9J7d2Ldf58ai68cPLzLMF18bF5H+NdrneVTLAV8pw0K6lWVh4y1lQtk2v37t0Eg0FeffVV3G63Xhp7otbU8ShXTINyTxQIIQSpVKroDVhypZDuiXg8rouDvr4+YrGYXjDJ5/Mxc+ZMtm3bhs/nG1KQpVhUo2jIa5zBgMf09KOJnP9rkrPPggLsXEtNdgnhUCg0JCBNu67G8yMDSE00pGKjviY7sl674WudGQOBAF1dXUSjURwOxxBrRCGEb/i//yXV24tpVgeOwxcU5KYb37QpU4paCOqv/SaiAItwKXauBpGZ567oLl5a9xIfmPuBoo5X7HMyGo369eL1eunq6mLOnDl6fMSuXbuIRCJYrdYRO35OhnJkT4znnij0Zz317mp5oJWSriTRMJHFLplM6u4F7UauBSrW1NQwffr0EbuYlTKGotS75UramRv2vIXtsc8TPfd/SU87lOScc/M6vhxWL3jbOqVZEEKhEFJKPb6lo6Njwqlv0jmN8EX3Ihrnk88tNLszozbHcDisiwjN/JxtjZjIrrHvob8DcF/nXq6M+am1TU5YSynZd/MtkExSc/HFefeXKDdSSp7c/SR/3/l3DvIdxBENRxR1rFL3nhh+XQF6IarhHT+zhUS+a0c53BNQ2ntIZaymRUITDfYJFFUpBrnENGj+Ys2CoOUwaya4fG7k1bj718Yq1TjjnZNp3aPY/vVFpM0DMjXhsUrx2UkpCQQCQ6wINpsNj8dDfX39mP0+8sZsJ9Vx+qStAkIInE4nTqdTz/PPTs9bs2YN4XBYv9l7vd5xP8vkvn0ZS4MBNh3XOiHBMHxxGHjySaKLF2PweKj9/Ofyfr9cxykWUkoubb+UxYHFfH/J9/nT2X/CYixOafdKKSNts9mw2WxDOn6Gw2GCwSB79uxhw4YNpFKp/QItx9rVl0s0lJKqFg1ms3nMTpelZvgipF2k2emOWqBiTU3NkM6OhRivmFTrWKMiJZZXbsf60m2kmo8mcsFvkM5p5Z1TFtnFuILBIH19fYTDYbq7uyedJZMT6SSmjU9Bw0EwrTC1DzSGp+dp5xoIBPQc/5dffln3YXu93iFCe+DxxyGV4o05gjMWXDzp+aTDYXp+dBswGPzo9U76PTVKuQjZjDa+ccw3uPo/V3Pvmnu58tArizJOpYiG4WQL1OmDPUKyg3537NhBX18fAG63WxcSLpdLH6Mc2ROl5oAWDaU2pyeTScLhMJFIhL6+PhKJBA6HI6fOjhOhmhfycveeMK28H+tLt5GYdzHRM28F08T9oYX47LRaG5pIiEajek77tGnT6Ozs5I033ihZxU7SKeyPXEX8lG8iCywahpMdVT99+nQCgQDHHnssoVCIQCDAunXrhlhVTI/8A4BXDrNw48yzJzRm9mLk/9WvSe3Zg/XQQ6l573sLdl6lRDufdzS/gzNmnMHdb93N2W1nM6NmRtHGKgWTjTEwGAx6vZoZMzKfheYuDgaDbNy4cUjHz1QqhdlsrmqLQ1WLBovFUjZLQyKRGBKoGI1GkVJitVppaGigra2t6J0dK2JHXgTK+mOUEoQgOe99REw2kgdfAGVIsdIsVJoVQQih734K0RRs0hgzwZIiGaccV6DRaMTn8+HzvZ29EolE8K9aRXTtWiIWSM5fwNZ1W/WI+uwdY67EN28m+Ic/gBDUFSj4MZtSuie0cb505Jdodjbjs42f+TPZsYpNMcYymUz7XVtax8/t27fT29vLnj17dJE6VsfPqUjVi4ZkMjnq84W6mLQUH00gaJ0dNYXa1NSEzWZjz549RKPRIcE4xaRaLQ3lEkOGXW9g+/d3iVx4N9JRT/KQC0sybrYADQaDesCW2+2mubmZOXPmlK3Hw6gIA9JgHjN7otTY7XaiS14jCohTTuDq079Eg2ggEAjoO0aLxaK7NMa70Usp6bllMPjxfe/DNn9+UeZdyhgegGmOaVxzxDVFG2eqi4aR0Dp+RiIRhBC0trbm1PGzUoL082HqzTgPcrE05HtRacVEtJt4f38/Qgg9UDE7b304U6n3RCWPBaXPnjCt/hu2J76KdDVCNAiOwgm/7M8uuyugdn1pJlKPx0Nzc3PZKynmjNECqcSQh8pp+ZJS0v+vfwHQftFHcPjmAODNikHIvtFv2rRJD4TThIQWYySlJPn880ReeTUT/Hj154s251Iw0jgre1by8+U/54cn/RCX2VXQsapNNGSPZzAYEGL8jp/r1q0jnU5TU1OjC4lilFtXKZd5MJ5o0G7WY9WQ14LJNCtCOp3WOzu2tLTgdDpz3uUp0VC4sUqGTGN54Rasi+8g2Xo80f/5NdJRuLoX8XicQCBAX18fS5cu1Xcj2vVVzLbBRcdohlTlBCLH16whsWULsRorA4fPxjHCa4ZH1Gt1KwKBAFu2bKGvrw+z2Uyqvx/LHXcigNrPf76gwY/DKbV7Ipsl3Uv41Ypf8eWjvlz0sYpBqQsfpdPpUeuYZNcl0TKBsuuibNu2jb6+viGbBI/HM+omtFxUtWgwmUwkEolRnx++0MViMV0ghEIhPV1Ta/082UDFcvSeqMY6DaUcq33bX7BuvY/44R8idvr33q50OAGyS95qVgSTyYTNZsNkMjFv3ryCFJipFMIX3YvB1ZhXnYZi0v9Yxsrw77kJ3m/KbVbZLZs14vE467/zXURPD4mZM1nR1IjrzTd1a0Qhd4ultDQMX5jm183nos6LuH/9/byn4z0F6wBa7ZaGfMYb6frSgpqDwSAbNmzQ3WbZFS1HqstTKqpaNFgsFmKxkX2qyWSSZDLJ1q1bGRgYIBKJ6F+Mx+OhtbW14DfwUveeqNaFvJRj7Zh+Ds0HHUNy/gfyDnjUgqM0kaA11xne96O/v59t27ZVlWAASDcfhaiQWAuZSumuCf/J82mwN4xzxBh0dWF74gkQgpk/+D5z58+nv7+fQCCg7xaNRuN+5bAnSjktDZ89/LP8e/u/ufW1W7nrjLv06pHFGKsYVLpoGAmTyURtbe2QSr7ahlYrua5lR7ndbpLJJPF4fNT4G+WeyAMtEHJgYIBwOKxXvxsYGMBoNJJMJrFarTQ1NRU3Z30Q5Z6YGhh3vIr5jd8Sfc+dJM1ukoe9a9xjRmvipC0cuZZfriaMG57EYKuBWe8s91SILl1Kau9e9njgiHdeMuH3kVLSc/MtiFQKy3veg+2wwwD0mCYtLS+RSBAIBPSbfCwWK2tzronitrj53ILPcePiG/n3jn/zrhnj/xbGYyqlXOZLseo0aFl3DQ0Zsau5zv1+P6lUiqVLl47Y8bMYc6k60ZBKpVi1ahVLlizh+eef57HHHsNoNHLDDTewYMECZs6cicPhwGAw8Oabb1JfX1+yHV6pF9ZydNUsBcX8HM0r/oz16WuRnhmI8L5RXze8/LLWxMnj8YwZDDsa1fg9WV/8IdLXTqoCRMPA088AsHiemStmnDbx93nmGSKvvIJ0OnF84qpRX2c2m/e7yZerOVcujLWQn9dxHhaDhXe2FOZ7rGbRUKpz02qTWCwWduzYwXHHHZcJ9B3cuGgl16WUHHnkkQVN9yyIaBBCGKSUIzrPhRA24HnAOjjeg1JKNm/ezKJFi+jp6eHoo4/m//7v/3R3wkc/+lFef/116urquP/++2lvbwfg5ptv5q677sJoNPKzn/2Ms88eWpjlwQcf5KabbmLevHksXLiQww47jNNPP52LLrpoxHkbDIaSxhhUu3uiVBTlvNJJrP/5PpY3fkty5juJnHcn2LzATlKplP5jDAaDhMNhvdlNbW0t7e3tk7IiVFKQU0ExWhEVEAgp02kGnsmIBvNpp+A0Oyf0PulwhJ7/l2l7nfjAJRjyCH4cqTmXVg5b66sRiUR0a8RwP3exGWuxMwgD725/d2bO6eSkW4iXOhCylOnI5bRsZGfxZTeAK3RaZ85nJ4S4QQjRMcrTYxVbjwGnSykXAEcA737llVf4+te/zhe/+EU2bNiAz+fjrrvuAuCuu+7C5/OxYcMGvvjFL/L1r38dgFWrVnHffffx1ltv8fjjj/OZz3yGVGporf/3ve99vPHGG/zhD3/gmmuuYfbs2WNenOVwF5Q6ELIad7DFOC/rM9dheeO3xI68nN5zfkl3MMa6desYGBjgjTfeYNeuXZjNZmbNmsWxxx7LEUccQUdHB3V1dQec2yFnDCZIj14npVTEVqwgtWcPxqYmPnXJjyb8PoHf/obU7t1YDjmE5GmnFcR3XVdXx+zZszn66KM58cQTmTt3LhaLhd27d7N48WIGBgZYtWoVXV1dhMPhov2ec1nIX+t+jQv+cQHb+7YXfaxCUeqYhnJka4wlUoxGY8FFUz6S6GrgeSHEB4QQw5N2PyOEGNH+ITP0D/7XDJiFEDz77LNcfHGm7vtll13G3//+dwAefvhhLrvsMgAuvvhinnnmGaSUPPzwwyxatAir1UpHRwednZ0sXrx4yFjDvyyz2Txm9kSpLQ3VHNMwVUmlUvj9frY2vpsNh1zNC873sH7jZiKRCA0NDTgcDhYuXMjBBx9Mc3NzUdKfqvV7kgYTpCfexKtQaK4J57veNeHvLr5lK4F77gWg/tpvQhF2k1rvg5aWFubNm8cJJ5yAw+GgqamJaDTKmjVrePHFF3n99dfZuHEjPT09YxavKzQz3TMJJUL8ZNlPJvU+1Swaqn08yM89sR64EvgNcLYQ4gdSyo2Dz/UNvteItkghhBF4HegE7pw9e/aRXq9XN5u0trayc+dOAHbu3KkHE5lMJjweDz09PezcuZPjjz9ef8/sY0ZD63I5GtW+iFfrYjTR89KCh7Q4BMOOV6nreY29h38Gz7RDqOk8jmOHBcRWreugFBiMZbc0SCnpe/opAP49O8L7J/geeuXHCy/EdvjhsHJlYSc6CkKIIZH02dfwnj17WL9+Pel0WndneL3eCQnbXBafBnsDVxx6BXe8eQev7HqF45uPH/P1451XKSiHpaEaAi/HIh/RIIAtUsrjhBDfB/42+PeDQGqs95JSpoAjhBBe4KE1a9ZMYsq5M15xp3LEGFRrnQYoXTBfrqJhpCZOWvnljr7F1K74LtLdSm1702D8gmIyDL85R8/6IUajqax1GuJr1pDu2oXfCQedfP6E3iP8zLNEXn4ZQ00NtddcDZSvBbIWAOdwOGhubgYy1jItHW/9+vV6zE12OezxXGi5ns+lcy/l4Y0Pc9vS2/hz458nHd9QbKo1ELJc40EOokEIIeTbd2gLgJTyW0KIvwL3kIlTmJ7Le0kpA0KIf7/88sunBgIBkskkJpOJHTt26BWyWlpa2L59O62trXqgUF1dnf64RvYxo2E2m+nv7x/1+VIvqtUcCFlutCZOmhUhu7Ka1v/DarUikFheug3rKz8lOeMdRP7nV2UXDNX6PUlvO7LMdRoGnn4agLcOdfKRhgV5H5+OROj5USYOwvf5z2GsLVw10EIxUnOuaDRKIBBg3759bNy4kVQqRU1NzZBy2NmLTa6Lj8Vo4fMLPs/XXvwaL+16iVNaTinKORWKal/EK93SENVeP5gtsRQ4XAhxO1Az2nsJIRqAxKBgsANnHnLIIZx22mk8+OCDLFq0iHvuuYcLLrgAgPPPP5977rmHE044gQcffJDTTz8dIQTnn38+l156KV/60pfo6upi/fr1HHvssWNO2Gq10tvbO+rz1R6YWI7xSjVOKpWip6dHFwm5NnGyPvFVLCvvIz5/EbEzbppUhUfF2Bg3PYMxMQCHXVyW8aWU9D2VcU0YTj1xQtdn4K67SO7aheXgg3Ff/PZ5lMvSkCs2m42mpia974FWrtjv97Np0yb6+/v15lxaS+dcz+e01tP47bt+yxENRxTxDApDpQUmFpqKtDRkWRluBkKDj6VBt0J8QQhxB+Af5S2agXsG4xoMwAPnnXfeSfPmzWPRokV861vf4sgjj+SKK64A4IorruAjH/kInZ2d1NbWct999wFw6KGHcskllzBv3jxMJhN33nnnuFGh43W5rPadf7XsYIc3cQqFQnqxHK1HQ661NpKzz0L6ZhFf+OmSt7Q+0DCv+BPG4HYSZRINiY0bSW3dRsgOC864NP/jt24l8Pt7gEzwY6VUt5wII5UrjsViBAIB/H4/vb299PX1DakbMVrfEyGELhiiySg2U+U2UFOWhjJWhJRSPjbCY3LQ6rBhjOOWA0cOe/iGWbNm7Zf9ABmF/Je//GXE97ruuuu47rrrcp1yzg2rSkW1WzYKRTweH1I4KbulbEtLC+3t7axfv57Ozs6c3s+wdzWGvW+RnHcxqc6zSHFWkc8gP6bq9zQuZU65HHjm2cw/Tj6W+dPyc01IKdl36w8hkcB1wQXYFuTv2qh0rFYrjY2NNDY2Eo1GmTVrFlLK/ZpzZQuJbHH+6OZH+dmyn/HAuQ/gtXrLdyJjcCCIhoqzNIzHaEWdKoFKS7msdsvGRMhu4hQMBhkYGNCzZrQeDcOrmcVisZzPy7jpGeyPfgZp85Cc8x4w24txGoqREOVNuQz/5zkA5pz34bxvrOF//5vIiy9iqKmh7ppr9nu+0t0T+aIFDGrWu7a2NuDtLqxaF8Z4PK5XPp1hnkEgHuCut+4qaBfMQlKJO/9CkkugZ9l7TwghTFLK8ldsyYFKtDRU83i5oDVeGd7EyePx0NbWpjdxGouczktKzEvvxvrcDaQb5hG58O6KFQzVtPgMwWCEMt0qknv2EHtrFSmLCeMx+VkJ0pEIPT/8fwD4PvtZjHWVF/xYaEZbXC0WC9OmTWPatGn667TmXAa/geMcx/HAugdYaFzI3Ma5k27OVWiqPXuiogMhs7IorhJC/FNKua2I8yoIucQ0VLO7oNyiQQu+0kRCOBzWzZ0+n2/CTZzGPS8psT57PZZlvycx+2yi5/4MLBMrHVwqKk3cFYQyuifCL7wAwKoOI7MdNXkdG7jr7kzw40EH4X7/yPEYVfl95UB2qeIZM2bw7c5vc+GjF/JI7yN8yvmpIc25NLeG2+0uaSnnbKp9Ea/IQMgsDGTqMbwXWAFsG5aOWXEoS0Npx0un0+zZs2fEJk7t7e1FqaY4IkIgXU3Ej/kksZOvzex4FSUh+3qLnXIdRpJlqdMQ+nemCmTihCPzauec2LaNwO9/DwwGP45Rt7+aLEQTXXwa7A1cetCl3Lv6Xr5y7Ffo7Owc0pxr586drF69ekhzrnQ6XbLFrtQ+/2oXKTCxmIbdQMXGMWRjNpvHFQ2ltDSUmmKKhlQqNcSKEIlEiEajDAwMUFdXR0dHR8EbpWiMdl4iuB3R30265Rjix352ymRHVNPik4101JWnTkM8TvTVxRiAOecsyvkwKSX7brk1E/x4/v9gO+KIok2x0pjMYnfZwZfxnvb30OTMpHeKcZpzRaNRXnzxRRwOx5BW4cW4X1R7IGRFWxoGqzoCfIpMEyoq2coA45eRNhgMJa3dDqVdIAoVeCmlJBqNDkl5BKipqcHtdjN79mzsdjuvvfYa7e3tRT/HkUSDoet17A9fAWYnA5f/J2Man0JU+E8pb6SUJNY8gdz9FunjP0NNTU3JdkTWNWswxJNsaTFz6kG5Fx8aeOopPfix9gtfGPO11RgIOdHzcVlcuCyZdkSjdcHUmnPV1dXR3d3NCSecQCQSIRAIsHv3btauXQswpBy2w+GY9Gdc7Yv4lLA0SCnDxZhIMag090Spmej5aWVpNZEQiUSw2+243W4aGhqYNWvWiLsCbbxS/Giyz8u05mFsj38JWdNE5MJ7Ci4Yqm2BKAbJZJJAIEA4HGbp0qUkEgnmbXuUaV1P80bze/T0vXg8jt/vx2azFc0SZV2+AoCBYw/J2TWR7u/Xgx9rr74aU11dUeZWqRTiGr/x1RsJxoPcdvJt4742uxz29OnTgcx9R7NGaB1m7Xb7kHLY+V4z5fjtqpTLKUylBUKWmlxEw/AmTqFQCCGEXn65sbERm82W04VZKhGmz0VKLK/cjvWl20i2HEf0/N8gHVMv0n0qiletMJB23QA4nU6MRiPz5s3DarViDT+BoSvN4Ycfrh+zdOlS/H4/O3fuREqp7yp9Ph92++SzW2Q6jXVFRjScuejanI/r/cUvSO3di3X+fGouft+k53EgMt01nUdWPMKa3jUcXHtw3scbjcb9mnNp5bCzm3O53W5dSIwXJ1Xq7IlSI6UcN8i0bCmXQgj34OtDUyXl0mq1KkvDsPPTmjhpN/tYLIbdbsfj8dDY2EhnZ+ekIp1LJRoy40gMPetJzLuY6Jm3gim3qpATGetAtjRkB7ZptTQsFgsej4f6+npmz56N0WgkFouxZs0avQCQNBiH1GmwWq3Y7XZmzZqFy+XSd5Z+v59du3YRiURwuVx6H4Wampq8P/fYqlUYQyGMTU1YDzoot2PWrCH0pz+DwUD9t76FyGGRqbZrohDns2jOIv609k/8+q1f8+OTfzzpOQkhsNvt2O32/ZpzBYNBNmzYwMDAAFardUgBquyMrGr7noaTTqfHzEArxrnn0rDKMFjA6RbgLOA3Qohnga1AfyW7K8YLhKx2SwNkREJXVxfBYJD+/v4hTZyam5szTZwKdGGV7McZDWKN7gVhIHrOTzPuiCq+MZSa7K6JwWCQeDyup9C1tbXt1+xoVMZpjT3SzrK/vx+/369XJLRYLPh8Pn1BGM88PfDccwBsnl/HzBzmKNNp9v3gJkincX/oUqyH5L9DrgYKsbi6LC4unXspv1z5y1GtDZPdVIzVnKunp4dNmzYNac41VkxbNTDe91aMTVwuvSfSg39/RgjRCvwOuAl4BnhWCPFvYDuwT0o5+gpdBsYLhCyHpaGY4yUSCV2Fazf7WCxGKpVi+vTpRQ9GK8XnKUI7cPztMg6PxuDEs8GYf52HvMYrxTmV2eIVi8X0ayYYDALgdrvxeDw0NzdPvFiPMCJkCqTMSdRl1wDQKhJqC8LevXtZv349gF7nw+fz7Tc3/7NPYgDEiQtzmmLf3/5GbPlyjA0N1H7mMzmfWrXtYAt1PovmLuKPa//IPavv4eYTby7aONmM1pxLi7FZsmTJftaI4VVmpyoVHQg5WAlyhxBiNfBXKeUvhRA3AvcDNuBjwOPFmebEsFqt44qGqWpp0HZlmkjo7+/HZDLpN/uWlhYsFguvvfYaM2bMKMmcir34GbqXY3/oY4hklA1zv0ynqr+QN9nNv7TrRiu4VehU2fixnyG18BNM5lsaviBoqXtaXEQsFtNdGu5EAsPGbUTNsODMD4373qmeXnp/+jMA6r76FQwu1yRmOvUpxGLusri49cRbmeubO+LzpRBb2c25du/ezdFHHz0kyHLLli0kEgndGuHxeEqa3VNIKjrlkrdrMySANiGECXiRjGA4C3AXeG6TZrzsiVL3goCJ/zCzmzgFg0GSyaRuMm5tbR21I10pKaZoMG58Gvujn0Y66gi//z78m4JFGWc45bYCTJZsH7C263I4HJneATNm5FS2e8KYHWA0FtR1lJ26B0NdGl3//Cc2YFOHE+ueEKm4YcyI+57bf0I6FMJ+wgk4z6qsJmZQ2jTcQo51bNOxY45TjhRIq9U6pBx2Op3Wy2Fv3bqV/v5+jEajbokY3pyrUqloSwNgJCMcBHARcDIQB34lpfwaDCk1XRGM17CqXJaG8X442gWt3ewHBgYwm826FWGkJk6VQNEWWJnG+spPSNfNIfLe3yOd02DTksKPUyYK+bnF43F9R6VV5dSuG5vNxsKFC0t20zbuWIx5y7OkT/m6HqRa6Osj26WxeeMaJNA/by4Oh4Pu7m7WrVsHoGdoaL0RIq+9Rv8j/0BYLJnKj3l+Jso9MTbrA+u5+bWbufH4G2l1tRZtnPEYLXsiO7YruzmX9tvRmnM5nc4hBajKvTEbTkWmXGYJgXcLIf6XTPzC/wPul1L2Z7+2kgQDjH8zLpelYfgPR/MpayIhlUrp5ZdnzpxZuvLLk6TgokGmIRkDs53Ihb9HWpyZ3WsJqWRLg5SScDis3+iyXQ21tbX7uRq2b99e2uJi3W9ifvUOYu+4ZkhmSzHmIBMJWPImAL4jTqe5uVmPuNdqSAQCAbZv3058YIDGW2/FANg//GFMJXLf5UupF9hCjuW1elndu5o/rvkjXz/m6/rj5RANuWKxWGhoaKChoUE/tr+/n2AwyI4dOwiFQhiNxiGxEeVuzpVLSmnJUy6zhMBm4GIp5WuDE7EKITQnoAGISSljBZ3dJBFCjPmBlWtBCAQCul85HA5jsVhwu92TauJUCRT080xEsP3rGkQqRuSCu5HOhsK8b4WSy+emle7WXFSRSEQvxVspLqohiMFohhI0rYquWIEcGMDc0UFN4+whz5lMJurr66mvrweg5+c/J9i1C1pa2P2OE9j40kvYbDbdGuHxeMZNO642S0OhabA3cM7Mc/jH5n/w6cM/jduS8V5PpWJL2VYsrRx2IpHQRfqOHTuIRqO6NcLj8ZR8Pal090QKOEUIcdzgcQYyrgoAH/A88FRhp1dcip1yKaUcYkUIhUIMDAywe/duvF4vHR0dBSmVWkkU4kcjwj3Y/345hl1vEDv125BHw6FCU6rsiZHQzKXan3Q6TU1NDR6Phzlz5uRcdKtslHBuwef/DYDp+GPGfF180yaCd90NQPP3bmTW0UcDEIlE8Pv9ekljIcQQl0Y5/NtTXZgsmruIRzY/wsObHuYjB38EmPrnZDabhwhQzdoXCATo6uoiHA7z8ssvD7FG2O32op1zpQdCeoGDge7B/yfIiIbk4L8rkrFu+IVeELJ3glr5ZavVitvt1iPTV65cSWdnZ0XGJEyWQly8oncTjoc+gujfTfR/fkly7nsKMLNJzKdEP8jsm08wGKSvrw+TyaTffKayBaoU+J9/Fiuw7/C2UV8j02n23fg9SCaped9F2AcFA6AXEdJKGicSCd2lsXXrVhKJhF6J0OfzlWxHOZUX2Lm+uRzVcBQPrHuAS+deitFgnPKiYThCCJxOJ06nk6amJvr7+znmmGN0a8Tu3bsJh8NFa85V0ZYGKeXLwMuDWRMGMkJhLtAAvKTVc6hERrtQJ2NpyLWJ0/BxK9lHPlkmfW4yjf2RKyHWR/j9D5CefvT4x5SAYnxfWi65dnMZGBhg48aNeDyektTUqCaS+/Zh3biTmAkOPu0ilix9c8TX9f31b0SXLsVYXz9uQyqz2TzEv619X36/nw0bNhAMBlm+fDm1tbWZdE+3e1KVVEeiGu4TVx56Jdv6tpGWaYxUn2jIRju3kTJ8RmrOlV0Oe6IW54q2NAghvMAHgRPJiIYIcCgwC/i1EOIBKeXyYkxyooz3YeazyCWTyf2sCFr55YaGBr2Ubi5zmqq1IcZj0qJBGIieczvSUoP0dRRuYpOgUD9IzReq/dGCXb1eL7NnzyYajXLYYYcVZKxKIbHgo6SP/ChGc3GDxcIvvghA90ENHGJ3jvia5J499Nx+OwB1X/8aRnd+GeLZuf8Ar776KnPnzqW/v5+uri5Wr16tp+xpLo1CWBOn+gJ7bNOxQ1Iwq1k0jLbrH605l1Z1dXhzLs26mIs1oiItDVnZE6cCHwe+DLiAfcC5ZFIvfw0MFG+aE2e8QMiRFnDNVKxlM/T19U24idNwypGxUSomJBqkxLLkFxDvI37S10k3Hl6cyU2CfM8puwmYdv0YjUZ9Z9HW1nZg1Mc3GAtep2Ekup97AiNgOWH0+gA9P/whsr8fxymn4DzzzIKM63A4cLvd+7k0tDLYyWSSmpoavXplvrvJarlPRJNRHt3yKEc2HEmjsbE6r3Xy+x0PL4ed3Zxr7969bNiwIafmXGONWazrJ5/siRjwupTyBe05IYQFcEoptxVldkVGW8DHauLU3NzMnDlzCmZ6VO6JLNIprM9+G8ub95A46IJMc6MKq/KYyzllF4rRMmKyr5+5c+eOuRuo1puocccrmNf9k/Rp14O1ONUWZSqFXLwUgM6zLxnxNQPPPcfAU08j7PYJ1WTIlZFcGqFQCL/fr+8mHQ6HbonweDxjXhfVIibj6Ti3L72ds9rO4ovzvlgV5zQSk/m+xAjNubTrJxAI6M25LBbLkFbhuVgaSp5ymcV/gFVCCDtgJeOi2A7cMRjnUCel7B7rDcpF9pepldHNLr/85ptvFqbWfg4o0TBIIoLtsc9h3vAEsYWfJn7yN8uaJZEPWo8PTSRoO0qPx8OsWbOqLiNmohj2rsG89HfETvkqGeNk4Ym99Ram/giipZmGOftbqdIDA+y7KdMDofbzn8M0eEMuBQaDQb/Bw9Bg1507dxbNpVFpuC1uzm0/l0c3P8rHZ3+8an8bhXYVDL9+AD2Orre3l02bNhEKhVi9erV+/QzvDFuMzzof0dBGpqhTz+Bxksyd4Fngr2TiHW4r9AQni9Vq5YEHHmD58uVcfPHFJJNJvYxuS0sLfX19HH106QLuytUkqxQ/1JzPTUrsD30U4/ZXiJ52I4mjLi/63CZDtqshFAoN8W9XanXOAwUtnqHmpFNGvMZ7//cOUt3dWA89FPeiRQUbdyK/qexI+5aWFiCTVqu5NDZv3kwqldJrtjidI8dnTEUWzV3E3zb+jce2P8aJ5hPLPZ2iUIr7rM1mw2az0djYCMDLL79MW1sboVCIzZs36wXesmMjCr0Jzkc07AZ+C4TI1GyIk+k70S+l7BJCPFzQmU2QNWvW8Nxzz/Hyyy+zfPlydu7cyX//+19OOOEEDjnkEOx2+5DXl1r1lrodd6kryuUkGoQgcdiHSBzxsbKnVA5HczVoIqG3t5dEIkFtbS2NjY10dnYWPEq+lFSLyVuj+7knsALpYxfs91x0+QpC990HRiP13/k2ogK/N4vFsl9PBC2jZteuXQQCAZYuXarvJCuxlHEuzPLMYkH9Av6141+c2KFEQyHH1CxVM2fOBN4WooFAQC+XXUhyvvqklAHgH8AbwCpgHZkMinOFEDOBPaMdK4SYIYT4txBilRDirZ/+9KcAfPe736WlpYUjjjiCI444gscee0w/5uabb6azs5ODDjqIJ554Qn/88ccf56CDDqKzs5Nbbrllv7EWL15MOp3mC1/4AosXL+bQQw/lxhtv5EMf+tB+gqEclNrSUOrxxizbvectTOv/BUDykAsrQjAkk0l6enrYtGkTS5cu5bXXXmPHjh0YDAY6Ojqoq6vjoIMOor29Ha/XO6UFQ7WRCoUwr91C0gC+404a8pxMJNh3440gJZ6PfhTrQQcVdOxiLRAGgwGfz0dHRwfz58/H5/Mxd+5cTCYT27dv55VXXmHx4sWsW7eOvXv3jtlbp9K4YNYFuM1uBtIVGTM/acqRyQD7bww1ITpnzhy9CFUhyTfl8gbg3WTERpJMbMNM4BTgJ8A/Rzk8CXxZSvmGEKLmzjvvDJ05GMH8xS9+ka985StDXrxq1Sruu+8+3nrrLbq6ujjjjDP0xjOf/exneeqpp2htbWXhwoWcf/75zJs3Tz/2ox/96JD3MpvNY3a6LDXVLBrGuokat76A/ZGrkI56krPeBcbymPS1COVsV4MWz9La2rqfq6GaduUlx2BEFvF7Di9ZgkHCnlk+5tYM3U35f/tb4uvXY5oxA98nP1G0ORQbg8GguzS0UsbxeBy/36/7tVOpFB6PR7dGFLMC4WT4n47/4WTfyezevbvcUykK1WbFG4183BPTgXdKKQ8SQlillDEhxCHAL6WUZ4x1oJRyF7Br8N99F1xwATt37hz19Q8//DCLFi3CarXS0dFBZ2cnixcvBqCzs5NZs2YBsGjRIh5++OEhomE447XHLjWlrtOgjVeKHfJoAsW06q/Ynvgy6dpOIhf9X8kEQ3bDGa2Aks1mw+PxMG3atJxcDdUcuFpsEgs+QvqojxXt2tv9fCbV0njsUUMeN+3YQeC3dwHQ8N3vYKgAC+NEGO26s1gsNDY26n5tLeff7/ezevVqIpGIXgPE5/NVTKEw7V7Ul+wjkoxgNxX3eyn1Il4uS0OpyUc09ANvAWQ1puoGlkDubbGFEO0zZszguOOO48UXX+SOO+7g3nvv5ZhjjuG2227D5/Oxc+dOjj/+eP2Y1tZWXWTMyOpI19rayquvvjrmeBaLpaJMeKWu01BqS8PwsSyLf471hZtIzngHkQt+C9bC+deG3xSyU2cDgQCJREJvJtPe3j5luoUWC+37qZbPIPrqYpxAx+kX6I/JRALPvf8HySTuD3wA+zFj96KYKKX4HHMdY6Sc/4GBAfx+P1u3bqWvrw+z2ay/JtfCQcWgK9zF1auu5mv2r3FR50VFHascHTWr5bc1FvmUkd4GfEgIUQ9Ysv7cNvh8LoLBBfz19ttvx+128+lPf5rrr78eIQTXX389X/7yl7n77rsndiajUGmiodrdE8PHEpFeEgddQPTdPx7SHrkQY0Wj0SH1NeDt0qzTp08vSJMhZWmYOMZtL2JZ/VdSZ94EtsIGYyV378a5K0DcZqLhyBP0xwP33IN5+3ZM05up/cI1BR1zqiCEwOVy4XK59E1WLBbD7/ezb98+NmzYgJRSj67XxEYpaLI10WRt4h+b/1F00ZBOpw940VDWlMvBWgyfB75IJmsiBZiBbcBR41kahBBmMqmZf7zooouOAnTzGsBVV13FeeedB0BLSwvbt2/Xn9uxY4eeojTa46OeoMlUce6JqhcNySgi1IWsnUXslGsHn5yc2U7bPWnxCP39/axZswav10t9fX3OZbwVpcPQuxHTygdInf5toLCiIfLKKwB4jzsRMVhdM75hA/5f/gqA+u98B4PDUdAxh1MploZcsFqtNDU10dTUBGRcGsFgEL/fz65du+jv72fZsmW6NWJ4vn8hOan2JO7ruo+d/TtpcY19/54M5XBPVJpoKAb53Mm9ZERDp5RympSyWUpZL6U8Csa2NIjMJ3kXsFpK+WPt8V27dumveeihh5g/fz4A559/Pvfddx+xWIzNmzezfv16jj32WBYuXMj69evZvHkz8Xic++67j/PPP3/MSediaSj1Il7qmIZSigYRC2F/8EM4Hng/xAcyYmECgiGVSum568uWLWPJkiVs3boVgLa2NlwuF4cffjgdHR3U1tYWTTAoS0NlEnrpvwDYjzsOAJlMsvc734VEgvBJJ+LIcm9OVYp53RmNRmpra5k9ezZHH300TqeT2bNnI4Rgy5YtvPTSSyxZsoQNGzawb98+kslkQcaVUvKO2ncA8OS2JwvynmONVWpLg4ppGEoM2AokhRBatQgDgJQyPM6xJwIfAVYIIZYtWLCAm266iT//+c8sW7YMIQTt7e386leZXcKhhx7KJZdcwrx58zCZTNx55536onDHHXdw9tlnk0qluPzyyzn00EPHHHi8QMhS+3mrOabBFO2l5YUvYgxtIXrO7WDJvThNLBYb0tAJGLNKZ6k+xwNh51AoSvVZSSkJvvxfbIDluIUABP/4R2IrV2JsbKTvouKavUtJKT5T7f5XU1NDTU0NbW2Z9uLZvRDWr18PoGdp+Hy+CRUNklIyzTaNw+sP54mtT/DxeR8v6LkMH6uUi3gluieKQT6iIQJsAB4BHgXSg8engF+NdaCU8r9A9qcpAc4999xRj7nuuuu47rrr9nv83HPPHfO44Yxnaahmd0EpxxOBrXQ8+0lM0R4i7/09qfZ3jvpazdWgCQStipnH46Guro6Ojo6yBWqNRDVZGqrhXBIbNmALRenzWOiY3Ul8y1b8d/4cgIZvX8/OKtntlXsRstlsQ1wayWRSd2ns3LmTWCyGy+XSRYTL5Rp3vto5ffnIL1NjqSnq/FX2RPnLSMvBP2uAOWRqL0BGPFQsuVgaSpWSqI1XjaLB+vKPEYk+tp/+c2qHCQYtJUwTCdFoFKfTqZdhdjqdef/YSiaGqmjnUPJqdSYr0u5j6H5h8ux9/mkAwgs6IZ1m73e+g4zFcJ3/PzhOOgleeqmg41U7uS6uJpOJuro66urq9OP6+/vx+/1s2rSJ/v5+rFbrkIZcw8W/NtahdWNbiAtBtWdPlGsDkE/2RAr4xGBAo2Pw2EgOromyMl5xp3K4C1KpVEnHK+r5SQlCED3jZva0LyLhbiMej+tpj6FQSG/x6vF4JtVWPJtSiq9q2J2Xg+T8DxBZcGnBBfm+//6bGqDupNMI3Xc/sWXLMNbXU/fVrxZ0nHJTqkVoouOM5tLw+/10d3frBfmyG3Jlj7Vs7zIe3/o4Xz/660U5z1IHJpZjvPG6pBaDvGzAQoh5wI+AI8lYGN4SQnwvu112pTGee6KaYwyKPZ5x0zNYFv+cnrN/TiCSYlfYQrR3C3v27MHj8VBbW1s0V0MpLQ1KNOSHlJJIJKIX1CpkAyaZSGBbuRGA1jlH0/3pzwBQ/63rMBa4xn4lUMmiYSRsNhvNzc16e+dkMqn3Qdi+fbve3tloNLKmbw0PbniQi2ZfxFzf3IKMn021B0Lmcn7ldk8A3APcLKX82+CETgV+K4Q4TEpZOXmNWeTqnigVpRYphR4vlUrR19eHWH4/La/9gD5nB1s3rcc1bSY+nw+TyaTvOhQHBlqMSk9PD319fSxevBi73U5LdC0ztv+TnUd/g/X79jEwMEAymaSrq4umpqacfODDiS5fjjmeIj5jGoGf/wIZjeI85904TzutSGdXPqpBrJpMJurr6/UeCNu3byccDiOlpDnSjEBw35L7+NDsD+Hz+fB4PAWzTFW7e6JcMRT5ioY0oHeVklI+J4TYUamCAVQg5GTH01wN2p90Ok3nvieZseoXxFtOgAvv4pDBwj27d+8uWU0MZWmYGIU4F82Xre0gw+EwTqeTmpoa7HY7Rx11FEIIzG8ux7bladr+5ye0uRqRUvL6668jhGDTpk309fVht9upra2ltrY2p3LHkVcyFWAtu3qJbt+Dweej/utfn/Q5VSpTzdKQC3a7nba2NmbOnMl8/3zWpdZht9vZvXs3a9euRQgxxKUx0SJtpd75p9PpkgZwTxXR8DhwrRDiL0ACuAzYJIQ4HjACL0spKyow0mw2j+ueKEcviFKOl+tCkW1WDgaD9PX1YTKZ9MpxM2fOxLHiHmyrfkFizjnEzv1fhOnttKtyV59UjM1EF4Z0Ok1fXx9+v59gMKhHzXu9XmbPnq03SNJa8o42jhACk8lEc3MzTqdTv956e3vZtm0boVAIi8VCbW2tvmAMvynue+GZzE1rsG5A/XXXYixhRcNSUsqYnVKmy2aPdUrLKdy5/E5MXhPzpmd6CCUSCV2Qbt26lUQioVd61dxcucxXuSeKQ06iIava46VkijxdSSaTIkwm5fJUwA7MA0LFmOhEsVgsRKPRUZ8v9eJTSTEU2mKgBS1GIhEcDgcej4fp06ePuPNLzj6LWH838ZO+AYahZsRSf5bK0lActGwX7cadfdNuamoaMz8/n89KCIHD4cDhcOgdHLVAul27drFmzRpMJpOe0uc2mzGt3qgf7zr3HFyD3XKrkUoPhJzoWNn3lHe2vJNHNj3C7vBupjmmAZmNXkNDAw0NDcBQ0bphwwb6+/ux2+1vXxdu94guDeWeKA45iQat2qOUck5xp1N4rFar3pdgJMphaSiXaEgkEkNcDalUSt8xdnZ2jt5SNxXHvOI+Egs+jPS0ET9l//oZw8cqNtWUCllutPx7TSSk02ndutTS0rJfu/BiMjyQTmsDvXfvXja98B/qB18n6urwfOUrJZtXtVMuS0OHu4O/vedvY45vMBjweDx4PB79PTSLaFdXF6tXr8ZoNA5xaVgslqpfxCva0pCNEOJc4CygHngJeAjYA3paZkVhsVjGLIE61WIMckX7YfX39xMKhdi0aRNGo1HfMba1tWEerNk/JokI9n98EtPmZ0nXzibVduK445YCFdMwcbLNv1r1Ta/Xm991kQPS4iTtboVhN7Z8bnTZbaDX/vimt8/hE1exdP165Lp1+mLh8/lKKnCKTSktDaVi+Dlp/06mM/dok2H8JSnbQjV9+nTg7Wva7/ezZcsWksmkLhwGBgZwOBxTqldILuQiUsqePSGE+BhwFfAL4Ktk3BNzgO9JKXsLPrsCMF72RLVYGtLptB6cFgwGCYfD2O120um0vhjkrYLjA9gfvhzjtpeInnnLuIKh5MWDqmwxLxaxWEwPWHzjjTcwmUx4vd6iV99MHvJe5PyLCxINLxMJzItXAGBobmLuokVAxpUSCAT0uIhkMkkkEqGrq4va2toJlTo+0ChnTAPA5uBmLn/6cr5z3Hc4tfXUCb3vSC6Nbdu2sWfPHtatW6cLh+zCU4W2ClS7O0Qj15gGw2CA41XAJ6SUbwkhPgF8kkxJ6SagIkWDyWSqqOyJQomURCKh+52DwSDJZJKamho8Hg+zZs3SlfXWrVux2Wz5/0CiQRwPXYZh1xtEz7md5Lz3jXtINbonppqlQUqp9wwIBAL09fVhNpt1k+2CBQsK0jK81PTcfrv+79Y//EH/t9FoHFKlMJVK8eKLLxKJRFi5ciWxWEyvE1FbWzu6C64CqdaYhuFjtbpaSaQTLO5ePGHRMByDwYDT6cTr9TJ37lyklITDYQKBADt37hzVpTEZSu2eqOiYhiziZAIeIVMb9mgqvIy01WrNqWFVqZjIeNpCoMUihEKhIX6+GTNmjHrBT/T8jPvWYti3huh5vyA59z05HaOyJ0pP9s1QK6ZktVrxer37BbMGAoGS3mSMm57BuvQukhf8Chx1E36f6MqVhP7wR/3/pvr6UV9rMBgwm83Mnj0beDuIrre3lzVr1hAOh3G5XHqGxkRqRZSKUi7m5RQNZqOZo6YdxeLuxQUfS7vehRA4nU6cTictLZl23Fq2j9ZNN5VK6QLT5/PlLTDL4Z6YCsWddgGNg//uAu4A/gHsLOSkCslUdE9orgZNJAwMDGCz2fQyzJ2dnTmbfPNeXJMxMFlJtR5L/5Uvgz33dDaVPVF8RqqR4HA4dBdUJS2Chv7dGLc8TzI18dod6UiEvd+6Xv+/98orxnz98O8qW1x3dHQM6ZewceNG+vv7cTqdQyLxK+XzKxXljGnQOLbxWG5fdjvd4W4aHY0jHFm4sTQsFgvTpk1j2rRM1kY6ndYDgjWBqVkrtGtjvLLN1ZziqZFr9oS2ql6ddcydQEpK+WIxJlYoKjEQcrhI0aLXtT+JRAKXy6Xf6CYTxJPP+YnQThwPfpDY8VeTnHdxXoIh37Emy4FyY8+OVQkEAnqzL6/XO8QNVa303v5TEps36/+3HX3MpN5PDOuXoFlq/H4/W7dupa+vD6vVqlsiiuH7zpUDxT0BGdEAsKR7Ced1nFfUsUbDYDDo4lETmAMDA3oJbK1uTbZLIztoWLknRkBKuS/r388XfjqFJ5eGVaUuI51MJtm9e/cQV4PW0Km1tbWgEeC5LuTCvxnHXxYh4n2kvR1FHasQVGv2hFamWzObJhIJampq8Hq9zJkzpyDNvqYK4f/+l9B99+n/TxkFtiOOKOgY2WZrrVZEJBLR2z+vXr0ak8k0pOBUqTrilopKEA2d3k6uPPRKDvIdVLCxJttASgiBy+XC5XLp14aWAtzb28umTZtIpVJ4PB58Pt+YsXPFoKIDIUciq+BTRVPuMtKaOVQze/X395NIJPB6vUybNi0vV8NEyKUCpWHfWuwPfhDSScLvf4B04/wJj6VEQ36kUim9yuIbb7yh+1W9Xi/Nzc0FD1qcAj9ZAFI9vez99ncAMB+xgMSyNwnOmobBYR/nyMljt9ux2+16Ol8sFtM7N65duxaj0Ug0GmXv3r16v5VicKDENAAYhIFPHfapkow1GbJTgOHtQmh+v59AIMCbb745pHplLqXRJ8qUsDSITFtspJSJqSAYoPQxDclkklAopIuERCKhm5Pb29sxmUysXbuW9vb2go05FuMteiK8D/v9F4PRQuQDD5Kum3i3uWqMaSg0WoEtLetFSqmbwOfPn1/UOgMlT4m1eUnXHzykcmgu35mUkr033kiqpwfbMUfT2+rBsQysxxyd07iFPk+r1UpTUxNNTU1AZrf58ssv09PTw8aNG5FS6mbtqVgrohJiGgCiyShv9b7FQd6DcFlcRR2rUBiNRv17D4VCdHZ2Agxxd5nNZt1KVUiRWdGWhiyrwhcApxDi/4AeICKljBVxfpOm2JYGLQdeczUAutKcPn36fjvFeDxeUYGX0lFP/PhrSM56F9I3MbfEkPerspiGyV4fWoS2do0YDAb95qGJSMhkNky1xWY8knPfgzzk/LwtaX1//Svh557DUONi2ve/T/cnPwzAjFPePe6xpbj+LBYLZrOZgw8+GHi7/XNvby9btmwhlUoNKTg10VoRB1JMA8Aa/xo++ewn+dFJPypI6mW5AhMdDgcul4sZM2YAb1uqskWmVnFVy9KYCFOiuBPwH+DDwIvABuBPQojXyWRP7KrUipCFEg3ZgTFaVoPFYsHj8VBfX8/s2bPHvUFWSu8Jw+43QRhINx5G4ugrCzZWqai0rAaN7BoJoVBID5xqaGjI6fo40Ilv2UrP//sRAPXXXYdwOHBv6yFlEriPXFjm2Y3M8PbPmsvJ7/ezY8cO4vG47vf2+Xw4HI6c3rcaRcNYHOw7GJPBxIqeFQUTDZUQmDjcUpV9fezatYtIJILL5dKvj5qampy+j8nGbEyUvHpPAK9JKRcPuinigA34KbAXeF0IcY+UcvNo71MOJuOeyG7cEwwGicfjOJ1OPB7PhNPbylFMar80tF1Lcfz1Q6S97YQ/9M/9yvxOlGp0T4x1Tlqpbk0k9Pf3Y7Va8Xg8NDc3M3fu3LJF3lcCxo1PYV18B8mL7wHntHFfLxMJ9l77TWQ0mmlGdc45DPz73wgJzsOPxDDBHVmpMRqNervv2bNnk06ndb/36tWriUaj1NTU6ItErl0bi0WpLQ2j/SZsJhsH+w5m+b7lBRkrnU6XVKTn+jlmXx/acVoa8JYtW+jr68NiseguDa/XO6JLQ0pZlk1IvpYG7RMxASuklD8XQvwZ+DzwbWDz4J+KIR9LQywWG5L6COhZDc3NzQUpSVvuYlKGXW/gePBDSHstkfN/UzDBMNJYxaQcN9lsS5NWSMlut+P1emltbcXlclW0SCj1Z2YI78PY9TrJVG5R5f5f/YrYW6swNTdT981vAjDw6qsA2BbmnmpZCbvmbDSXlNfr1VP5tIJT69evZ2BgAKfTqS8k2makUiwAhWS8+8Ph9Yfz1w1/JZFKYDZOrgfKVCnrPDwNGN62WO7du5f169cDDLFW2Ww20ul0wfrE5MNERQPAyUKIGuAjwHrg3WTcFxWF1WodUTRoC4Df79e76JnNZjweT1Fr8pdTNBi6Xsfx1w8j7bWEL/kL0j29aGMVm1KMJaUkFosRDofZt28fkUhkSFBruXeIE6ESXToA0TeWErjrbhCChh98H6PbDcDOF5/EQ+5BkJV6ftkIIXC73bjdbtrb24fcizZt2kRfXx92ux2TyYTZbC56lHylWBoADq87nD+t/RPrg+uZVztv0mOVukJjob4nm802xKWh1fLRUoFjsUwoodvtpqampqRF3fJdFTuFEB8GjgEiwAvA8VLK/oLPrEBo7on+/n42btyIx+MhGAzqRXLMZjM1NTUcfPDBJdkllnqRyV5cLUvvRjoGBUNNYQXD8LGKTTHG0koO+/1+PQ1SC2xqb2+fUn0LphLpvj72XHctpNN4L78c+9EZgZAKBPBs6yVpEtgXHFHeSRaR7HoAM2bM0N1emzZtIhgM8vLLL2OxWIYUnCqkWbrUomEsjm06lt+f+Xtme2YXZKypYGnIBZPJNKTHipSSVatWIaVk06ZNumu0mA259Lnk8qKs7IkTAR9wtpRyT1FmVCD27t3Liy++yPPPP8/27ds5/fTTOeuss/jc5z5HY2OjXiQnEAiwZ8+eijYrTwYhBHIwZiN69o8RsSAyB//yhMeaAjs9jeyYlUAgoDf98nq9NDU1YbPZ6OrqIp1O5xy8Nhmq0RydC/tuuZVk1y4shxyC7zOf1h8PvJopNhua04xhCjbZmihCZFo/a66K9vZ2otGoHji3Zs0a3S+uLRKTsYpWSvYEgNviZn7dxOrEjDRWKe/rpa6roQXha2WwtWuku7ubdevW4fP5OOywwwo+dr6BkA8CrwLtQoi5ZAIhASRQDyyXUq4efrwQYgZwL5m+FfL222/nmmuuobe3lw984ANs2bKF9vZ2HnjgAXw+H1JKrrnmGh577DEcDge///3vOeqoowC45557+P73vw/At771LS677LL95nveeecRiUQ48cQTOfPMM3n66ad58cWRq11PtYUuX6zdS+l8+UfQ+kew+5Cm4ggGqHxLg2bi00RCOp3WU59aWlqqLuWx3KQd9aSmHwNj+Kb7H3+C/kcfRdhsTLv5JkSWj3bnS0/hAt3ycKCRfX3bbDaam5tpbm4G3q5MqPm8hRBDakXk4+uulDoNGku6l7A5tJlL5lxS9LEKSbndIcOvkVQqVb6UyyxLw/uA3wL7gO3AdDJdL1cBRuCXwH6iAUgCX5ZSviGEqLnzzjtDZ555Jr///e9517vexTe+8Q1uueUWbrnlFm699Vb+9a9/sX79etavX8+rr77Kpz/9aV599VV6e3u54YYbeO211xBCcPTRR3P++efj8w3tkfCPf/xD/7CklHxzMKhqJEpdRrqUGHcspuGJTxK31pFMxSjFraGSREMikRhSIwHQA9La2tpyurFWk6gstRUjNftMYnPfPaopPblrF/sGNwB1X/4Slo6hdUKSy1YA0Hri2cWdaIUy1iI0vDKhdq339vayefNm0un0kFoR41UWrRRLA8Cz25/lX1v/xfs73z+peZUjJbHUomGs8YrmKsnz9b3A96SU39EeEEJ8FghLKX83+P/9yktLKXeR6ZCJlLLvggsuYOfOnTz88MM899xzAFx22WWceuqp3HrrrTz88MN89KMfRQjB8ccfTyAQYNeuXTz33HOceeaZeqrKmWeeyeOPP84HP/jBIZMc/mGN98GWelEoxXiGrtex/+0jJJ1NrDnmFma7moo+ZrnrNGiFtrQaCUajEa/XW9TA1kJRqmj5ShFAMplkz7XXke7rw3HKKdS8//1Dnk8PDODZ1kvaaKDmiNwtDQeqi8dsNtPQ0EBDQwOQ2WVqImLbtm0kk0k9+r62tnZIJlgluScA2mra6E/0E4gF8Nnya5qX71hTmVK7XzTyvYu2Ak0AQginlHKATIzDIcDvhBBmKeWY+VVCiPYZM2Zw3HHH0d3drZtSmpqa6O7uBmDnzp16NS2A1tZWdu7cOerj4zHWjbKadpIahu7lmSwJZwM97/k9cf/EWxPnQyk/Sykl8XicXbt2EQgE9HKthe7pUY3XR6kwrf8X1pd+ROKDD4JraLvjwG9/S/SNNzA2NNBww3f3u7lHl72JSEtsh80vSb+JSmQyi57RaBwSOKe1fe7t7WXlypXEYjFqamqora0tqaU1l3OaUZO5x2/t26pEwxhUdO+JLMvBm8B5QojvAf8RQhwDHE/GZQEZN8SoCCFcwF9vv/123IMpVVnPFfULHu0Cqkb3hLTXk2o+kuhZP0Ia3MjebSUZt5gLrJSZFsaaJcHv92OxWGhqaqKlpaXiayQckESDGPathWF1GuLLluH/1a9BCKb94PsYBy2H2ex7NdNE13rkEaWYaUVSyN9SdttnGJoppFUlHBgY0IMri5XCl8tCPrNmJgDb+7ZzRMMRRR1rKlOu88u3NfYLQohPAFcAnwK2AF+XUr41klsim8Eqkn8F/njRRRcdBdDY2MiuXbtobm5m165dehRoS0sL27dv14/dsWMHLS0ttLS06O4M7fFTTz11zDmP96GWYydZrC9ahHYgXc1I93QiF/8p89jAQEXFGeSKViVNEwnhcBiHw6HHI7jdboxGo96JsFiU6vqobovG2+cl+vsJfO/7mfTKKy7HftxxIx6x99X/4APE4YeWaI6VSbHuFQaDAY/Hg8fjwWaz0d/fT2NjI36/n40bN9Lf34/T6dSFhtvtLshcclnomp3NGIWR7f3bx3xdLmNV80aioi0Nw9hFJhOimUythn0wxBqxHyJzldwFrJZS/hi4DeD888/nnnvu4Rvf+Ab33HMPF1xwAdrjd9xxB4sWLeLVV1/VKzKeffbZXHvttfj9fgCefPJJbr755nEnPNZFWi2WBtG7Ccf9F5E85L3ETv3O249XeEaDRjqd1kWC3+8nFovphZRmzZqFw+EY8j1qgY3FppoW85Kfy7DfnZQS++9+R7q7G+thh+H79KdHPEzG49Rs2A2A99gT8hqymnaXpVr0tHGyqxJqlr3sbo1Wq3VIrYiJzC2X78dkMPGvC/6Fzzpx10SuY01lxjq/Yv7O822N7QS+BXwIWAzMBPqEEF8ZzIwYzdpwIpnKkSuEEMsWLFjATTfdxDe+8Q0uueQS7rrrLmbOnMkDDzwAwLnnnstjjz1GZ2cnDoeD3/3udwDU1tZy/fXXs3BhpnHNt7/9bT0ociyqPaZBhHbieHARSEnisA8Nfa5C+0EMr5GQSCT0Gglz587V62iMRjV8bwcafX95EPPrbyCcTqbdcsuQ9MpsBlYsx5SUBFu8GD2eEs/ywGOkxUcIgdPpxOl00traCkAkEtErEq5evRqTyTSkVkQuMUS5LuS1tvHv64Uaa6oyVbpcngwcLqVs0x4QQryfTN+JCwEDsF+nSynlfxlaglq/2z/zzDP7DSKE4M477xxxApdffjmXX355ntOuvJiGQl3QIrwPx4MfRMT6CF/yF9J1nUOfL7GlYbRzSiaTQ0RCKpUas4V4LmOV4ntT7omJI11NpNrfCSYr8fUb6PlRpnul+2tfxdzaMupxO156EgvAgkNKM9EKpVSLXq7j2O127Ha77hLUWj5rxYSy4yZ8Pt+oTZZyGevV3a/y5LYnuW7hdRjExKwt1S4apkRMA5nOlkkAIYRNShkdfDxW0FkVGJPJRCqVGlGVlSumoSAd2KTE/vcrEH1dRN73J9KN+1dSK9dilEgkhhRSAvRCSq2traqQUpUipaS3t3fQzeQiNeMaTK+voeGH/w8RixE76STsZ5015nv0v7aEWqDp+NNLM+k8qTZxN1GGt3xOJBL4/X56enrYuHEjUkq8Xq9ujbBYLDkvdNv6tvHwpof59GGfpt5eP6H5lat1dKkYz9JQKXUaNgFRIcT/Ao8KIQ4GTgfuG3y+IoMDtP4TIxXzKZdoKMiYQhA75ZuQjJJqPba4Y41DPB4nEAgQjUZZsmSJ3tnP5/PR3t5e8BoJ1WgBmIqLUXbb597eXvr7+9m3bx9er5cZM2Zgs9nYd9NNDGzfTrq5ma5zzyHw5pvU19dTW1u7n1lbplLUrd+DBBqOP6V8J1YBVJqlYTzMZjPTpk3TA9qTyaQeo7RlyxZSqRSRSITdu3fvVytiOA32TL2JfZF9ExYNpa4/UWqmRCCklHKLEOJTwCeBjwFdwM1SylcGn6/Iu57ZbB61PXY5lKjBYJjcRZaMYdz2X1Kz3kWq9fjijjUKWutWrZCSViPBZDJx1FFHFb3Pe7WZ86fKzS07Vc/v95NMJnU307Rp01i3bh1z584FwLTuUeK//x4DT0kwm5nxk5/QF40wa9YsIpEI3d3drF27VveN19bWYt+9GzkwgKmlBVNj4zizGZlSFMgq1fc1lUTDcEwmE/X19dTXZxb9VCrFiy++SCQSYcWKFSQSCdxut+7OyG4IV2fL1JfYF9034fFLmT1RDlfBVHFPIKX0A7cACCEswAIhxAeklPePl3ZZLsxmM/F4aQoc5cKkFrx0Ettjn8O0/nHCH3uGdN3c4o01iJSZrnuaSNA6qmlZLXPnztV/nPv27Su6YMieV7GpJnEykRuMltWiiYR4PE5NTQ0+n4958+YNiUUZLsyTu3az+z8pwEDdF67BesjBsHSp3oJeM2vHYjF6e3vZtWsX/r/+gelA/+w2/H5/3lH61fJdQenOpVSLj9FoxGQyMXv2bGbPnj3ESrV69Wqi0SgulysjHq2Zgl77IpMTDZVU6bLQTAlLA+hCoQk4E7gA6AR+X9hpFRbNPVEpTHghkmlsT34N8/p/ET3tu+MKhomOJaVkYGBAFwkDAwPY7XY9HqESCilVm6+yUsSJVh9DEwmxWAyXy4XP5+Pggw8e06Q85H1SKfb9+jHScQP244/G/aEPjfpaq9WqN9p5/WdbAEjPP4idO3eyatUqPdWvrq6uYPUCJstUtgCMRLksrlovmI6ODqSUuhWrd3svZsxs2LqBraat+Hw+ampq8ppntYsGKM/3lm/KZR1wP3Aw8BBwrZRypfZ8JVoZoPJEw4QyNqTE+u/vYn7rAWInfInEUVfmdFgui1F2jYRAIEAkEtFrJLS3t+N0OiviRp1NNcY0lANNIGoiIRKJ6CJh7ty52O0TK+Hcd/fviK3bgdGWYto3rs7p+pFSYntrIwBzz74QS3s7kEn16+3t1esF2Gw26urqqK2tzXshKQTVdj1UyvkIIXC73bjdbmbOnMmLR76o14rYvHkz/f392Gw2PbDS7XaPuXkp5UJerl1/OcjX0uAAjiVTNvofQEAIMQ3okVLul2pZKVgsFpLJMStcl5SJLETGna9iWXo38aOuJH7CF/M6dvhY2X7pQCBAPB7H5XLh9Xrp7Owc4lusVKp9MS8Ww0VCOBzWK/8V6ruPLVtG6Le/BQEtx/sx+rw5HZfYuhV7X5xIjQXzzJn643a7Xa8Iq7nKtG6OfX19OJ1OPSbCbDZX/LWbK1MtELLQGAwGXC4XLpeLGTNm6N+93+9n+/bthEIhLBbLkIJT2a7RUmZPVOJnWBHZE1LK7UIIH3Ax8HngIODfwDNkLA8ViclkqihLw0QWvFTr8YQvvo9U24n7VdrLZSxtkdBqJGiFlPIxOVca1WRpKNY42TfaYDDIihUrdJEwUqXNySL6++m95VZIp3G/911YD+slZc7NWrH75WcBiB46a9Q5CSFwOBw4HA5aW1v1yoVaml9fXx/JZJJt27ZRW1tbFCtZtbkNKnHBA/jtyt8ST8f5zOGfAYZ+9y0tmTof0WgUv9/P7t27WbNmDUajURcRpRQN1Z7emc1EAiFTZFwU9wMIId5LJu2yYkWD1WqdsqLBtOqvpL3tpKcfTWrmSTkdk0wmh9RICIfD7N27t6pqJBwoP9CJoIkEv99Pf38/drsdn8+H0+mks7MTl8tVlHGllNT8/vek9uzBcthh1Hzte8St1pwDY/teexU74FmYe+no7MqFbW1tRCIRli9fjpSS9evXMzAwoHdzrK2tLbhIKialtKRV4meyvGc5gVhAFw0jYbPZ9HgYyKR++/1+9u7dS39/P0uWLBlScGqktPtCUMpMjXIzkUBIA3AYcMzgQy9IKStWMMDYKZflINdqhsbN/8b2+JdIzj6T6AW/HfV18XhcFwnBYBAhhF5Iqa2tjWXLlulpcNXCVLcAjDTORNF2W5pIsFqt+Hw+2trahnQrDIVCRV0cwg88gHX5CkRNDbU/+D4iz9ocNat3kARaTxy7+NNYCCEwmUzMnDmTmTNn6oGdPT09rF27lkgksp+ImOg4paBUloZKpMZcw/a+/JpWWSwWGhsb9eZbRx11lN4SfPPmzaTTaTwej26NyLcS7WhUqrWmGEyk4s77gZuAZ4EPAs8IIR6QUv6xoDMrIBaLhVhs7KKVpfzSc6mdYOhejv0fnyRdfzDRc24f8lwsFhtSI8FoNOL1eqmrq6Ojo6PghZQqlUpfzPMl1/PRyvf6/X76+vqwWCz4fL6yZrbEV62i/86fA1D77esxNTdjWvMwtme+RfzjT4G3bczjk93dJHfuRLhcWAsocIUQeiOm9vZ2pJSEQiF6e3v1ND+3261nZ+Tiqqu2Yl+VuuC5LC76E/2Teg+LxUJDQwMNDZliUalUikAgQG9vL9u2bdPrjGgiYqKBv5UYCFkRMQ2D6ZbfAA6TUoaFEPOllBcIId4EKlo0jBUIqe0mS7l7GLOJVnAb9r9dhrT5CL/3HiIpI4FduwgEAvT19WE2m/H5fDQ2NtLZ2VmyugiVRCUu5sVCM7lqliTt+58+fTo1NTVlv1ml+/vpufY6SCaJnHYqdq1dfSqBiPpBDrWqjfTd9Sx5CYDoQW2IIl7PmhXO4/HQ0dGh1wro7e1l5cqVxGIxfSdaV1dXsJ3oRDjQAyFd5oxoKOT8jEYjdXV11NVlikel02mCwSB+v5+33nqLWCymW6J8Pl/O7qxK/QyLQb5b0hRgGBQMZsAmhPAClWP7H4HxijuVOhJ/LPeElBLDq79EJqKsOOomelZvw2az4fV6aWlpqYgaCZXAVHAb5DuOdj6JREIvvxsMBjEajfh8PqZNm8acOXMq6vuXUuK/6WZSO3dimjOH/osvHulV475P9+L/4ALS8ydnZcj35p1dK2DWrFn6ItLb28vy5ctJJBJ4PB49xTOf/glThUo9nwZ7A42ORhLpBBZjceKwsptsad+/llm2du1awuGwXnDK5/MNcfdlU2mfYTHvjflmT6SEEDEhRI2Usk8IYQK+AvynONMrDBaLZcyYBq1uQql27NkLhOZzzQ5adDRdwrSWc5nWtoBZo1yklUwpd0iloNjjJJNJYrEYW7ZsYWBgACEEPp+P+vp6Zs+eXbDrshhCa+DvDxN56imE3Y7nezeyKxTKGjD390mueAuA1uPfVdD55Uv2IqJVLdTM2Vu3btW7s8ZiMeLxeFGDiittISo1i+YuYtHcRSUd02Aw6JYozZ2lFTvbuHEj/f39OByOIbUitE1gKcV8Lr/jinBPDPJ1oBHoA/4OdEsp7yjkpArNeMWdSmlpSKfTJBIJuru72bFjh1461euu4fA9f0Me+wmoaS7JXIpBqVw9leJKmghadovmchBCkEgk8Hq9zJ07d8q4mxIbNhK47TYAfN/8Jqa2Nli5cpyj9icdiVCzZR9pATVHHF3oaU4Kg8GgB012dnaSSqXYu3cvPT09LF26lHQ6rccTFTo6/0CPaagEsmNi2tra9BRfv9+vFxuzWq3YbDYSiUTJxEM5YygmknL576x/X1/Y6RSHXCwNxfqBplIpQqGQbknQ5qGVTrXZbAghsD53I5ZlvyHaMJvE4R8uylxKQbVlNRSCVCo1RCTIwZbBWsVNk8nEypUr9ytOU8mkIxF6rr0WYjEc//M/OM55936/sbSnneT8S8DiHPO9wiuWY0xLAm21GCaYzVAqNFeR0+nkmGOOIZlM6h0+N23ahJRSFxk+n2/SQckHckzDq7tf5Z7V93DD8TfoXS/LTXaKb2trK5BJcd6+fTuBQIBXXnlFb8Dm8/n26+JaKMqZ4jmpK3ow/RIyFaQr9g4+XsplrimQuZBMJvUmLMFgUDdner1epk+fjtVqZcuWLTgcDj1S17ziz1he/zXxIz8+pQWDRjWJhgkV4hoUippI0NK8tBTYYuWKl5LAj35EcvNmTB0deL/6lRFfk245hnjbcePeNENvLAHAvGD+pOdV6gXQZDINic5PJpP09vbS09PDhg0bEEIMERH5LCDVFgiZ7+/IH/WzuHsxA4mBihENI6HVQQGYO3eunt3U3d3NunXr9LiZQglJKG8xqUnNXkpZmJW2yIyXcjkZ0ZBIJIYUUgLGXSCye08Yd7yC9elrSc58J7FTvzOhOVQSpbQAVIpOze7W5/f7SaVS+jUwY8aMqhAJ2YQff5zwI/8Aq5W6m36AYYJpahqGlWsB6DjxnEJMr+iMtciaTCamTZvGtGnTgMz9obe3l71797J+/foh7o5i7ULzpVJ+R8MxGTPLUzJdOS0ARiP7mrBarTQ1NeldXBOJhG6N2rhxo25p1ETEROJippR7AkAIYQTqycQ22IAIsF1KGSjc1AqHxWIhHA6P+nw+7ol4PK4LhGAwqKtIn8+nm5rHQ19YpcTy4v8j7Wkjct7PwVC8+gql2k1UU9EbbZyxenf4/X4911vLcJnITWCquFsS27bhv/kWALxf+hLmzs5RX2ta/RC2x79E/KoXoHbWiK+R6TSR5W8CYF2woPATLjNms1kvNgSZ+0dvby/d3d2sXbtWN2XX1dXt1wb8QC9XbTZkxPZUEA1jLeJms3mIkEwmk3p21JYtW0ilUvoa4vP5cq4VMtUsDZcDXwRqgDiQBp4SQtwspcyvhFcJGK+M9Fg37Gg0OqSQktlsxuv10tDQMOHIdn08IYhc+DtENAg2T97vk894paKS3QYTRSsIpImEeDxOTU0NPp+PefPmlTWXPx8m+5nJeJzea69DhsPYzzgD53svHOeANCI91C04fPz45s3IYIiwz46peeoEAE/0N2WxWIbsQmOxGL29vXR1dbF69WrMZrMuIqrRPTER0ZBIV3RGP5DfuZlMJurr66mvrweGxjzt2LGDeDy+X8Gp4e89pSwNQohPARcA50spN2Q9/kPg+0KIayrN4mA2m8cs7qS5C7TmPppI0EryejwempubmTt3bkG+KCHTeNfcBw2fBasbaXVP+j3HHK+ExauqwT2RnWa1b98++vv79VS8qdzga7IEf/YzEmvXYmxpwXfdtQW5nvYueQGAyMEzKzIYbyQKed1ZrdYhvROi0Si9vb3s2LGD7u5u+vv7aWxspLa2Vk/vKzSVKhpqzDV0ejp18VDJTOYz1Jps1dbW6mm+2iZFq1qaXSvC6XTmNF7ZUy6FEIbBGIYrgI9LKTcIIaxAEkBK+TUhxOtkXBaBYkx2oowWCCkH2wQPDAywadMm4vE4DodD90WPVshjstSvupv6lb8l0txJ8pALC/7+wynlQj4Viy5p14FmSYhEIrhcLt3ltHPnTubNm1ew8Uai0t0Tkeeeo//+B8Bkou4HP8BQoKZXe5f8Fw/gOerYgrwfVGbzpVyx2WxMnz6d6dOnA9DY2Eg8HtfT+2w2m15oqqampiDnWqmi4bD6w7jvnPuKOKPCUcjAxOyCYx0dHUgpdXeo1oTNarXqQfeFug5yZSLuiT4ylSEB3gM8J6XsHfx/aILvWVSsVqtejKWnp0evuBeJRPTWudOmTWP69OlF//CNm5+lbuVd+Geei+ngC4o6lka1ioaJjpOda+33+wmHw3q76M7OziHmwEgkUshpT0mSu3fT+73vA+D5/OewHFo4AWVYuQ6AlhMKU9SpFNdeKRdZq9VKQ0MDLS0tuiVUa77U19eH0+nUd6nF2uQUilL64Uvt8y9mCqQQArfbjdvt1puwdXd3s3XrVjZv3kx/fz82m21IwSntuGIwkQXeT8aasBq4DtgK9AohbGRiGyrmqo3FYrz22ms89NBDLFmyhL///e9cccUVXHTRRUMWh40bN+r1EoqJCG7H/tjVxL2ddB35ZdqmcIGico+VzzjazVYTCQMDAzgcDr107FRql1xqZDJJ73XfQoZC2E46CdcHP5jzsena2SSOuhxsI7vfUn4/NbtDJMwGHAcX15IzFRm+8AkhcDgcOBwOWltbdQuZFpXf39+vm7Fra2v1DVG+4xSLfMd5Y88b/OzNn/Hd475Lu7u9qGNNllIHrVqtVmpqapg3b96Q+9uOHTsIBoPYbDaOPbZw1rts8hEN2h36EeAbQogvA24G3RPA+WQ6X+4e7Q2EEHcD5x166KGsHKwc993vfpff/OY3ep7zTTfdxLnnngvAzTffzF133YXRaORnP/sZZ599NgCPP/4411xzDalUiiuvvJJvfOMbQ8bZt28fl1xyCcFgkIULFzJ9+nSOPfZYfvrTn442r4LVaRgL25Nfg3SK3e/8f6QMxSs/O5xSnZ82ViWY2bNFQn9/v55L3d7envPNFCpTBJVyjNAvf0V8+XKM06bh+86387oxppuOINFy9KjBwtHlKwBIHTwLMcXSUitBZAohcLlcuFwuvVphf38/vb29uhl7eBvwkeZdqaIhEAuwsmcl8dToQeyjUeo6Bul0uqSp1dmBkNlisqWlBchsmMtuadCKN0kp7xFCPA/YgaiUctPg4w/k8Da/B+4AXs9+8Itf/CJf+crQAjGrVq3ivvvu46233qKrq4szzjiDdesypszPfvazPPXUU7S2trJw4ULOP//8IT7n2tpa7rvvPj3F5YUXXuDee+8ddVLFrAiZTfSMmzCEdpB2tiOza/QXmVIv5OVYZKPRqF5MSSvt6vP5aGtrm5TZthIWh3IRfeUV+u65BwwGar//PYxeb35vkE6BTILBBmJ/021s2TIAmo49ZfKTLSGVWt45u+SxZsbu6+ujt7dXb76kReVrImIi40yUfMdJD5YBMoxw7RR6rMlSaeMVU8BMJHvCBYTJ1GawCyEOAqzARinlwFjHSimfF0K05zLOww8/zKJFi7BarXR0dNDZ2cnixYsB6OzsZNasTN73okWLePjhh4eIBoPBoAsGGL+MdLF34sK/CentQPo6SPk6ED09JV3ES+2eKAWJRIJoNMqaNWsIhUJYLBZ8Pl9ROoFO9WyQiZDat4/e73wXAPcnrsJ65JF5v4dp7SPYH/s88U+8jKybvd/zva+9jAGwLjhicpPNolJLIpeDbF+41nxJawOuReW73W7C4TCxWAxXgYJbRyPf7yaWyhTkm0iHy1JfB+WwbFR8yqUQwiilTAF3A+8D9gJmMsWd7MBZwNNZWRY5c8cdd3DvvfdyzDHHcNttt+Hz+di5cyfHH3+8/prW1lZ27twJwIwZM4Y8/uqrr475/uM1rCqmpUEEtuL8w7nEj76K+Du+nHmsxDv/aohp0Ipq+f1+QqEQRqORVCpV0FTYkaim4jq5IlMper/9HdK9vViPOYaaj32s8GMkEqRXr8UA2BYcXvD3LyaVujMfDyGE3sGxo6NDT+1buXIl69evZ82aNUPagBe6/ki+5xNJZoKQHab8+5EUMzCxUsar+OJOg4IBKeUl2Y8LIWqBrwFaBkVeK8anP/1prr/+eoQQXH/99Xz5y1/m7rvvzuctxqVsXS7TSeyPXQ3CQGL+B4o/3ihMRdGgZbhoPTy0RkHTpk1jzpw5JJNJVq1ahcdTvKJYGpVkAZgMud5k+u65h9iSJRh8Pmq/dyOiCKWOo6tXY0qkCTbV5O/2OEAo9sKgpfY5nU4OOuggbDYbwWBQrxOhdV7V3BmTbQOe7/l4rB4OqzsMp3nshmeFGGuylMOyMZ5IKXtMw3AGsyVcUsp9g/UaWoA38n0frbwqwFVXXcV5550HQEtLC9u3v11ccseOHXqQx2iPj4bFYsmpuFOhsbz6vxh3vU7k3DuQ7taijzcaU0E0ZJdWDQaDCCHwer3U19ePWHmzmgIUSznOeGPEli4l9KtfA1B7w3cxDlatKzS7Xs00y03Nn1OU9y82lWQZmizagqcVMPP5fMyePVuvVNjT08O2bdtIJpP4fD5dROTrN893YT2z7UzObDsz39OZ0FiTpdTuiVJbNrKZaO+Jg4F3AY1CiG3APxgUDDLPO9+uXbv0amgPPfQQ8+dnOt2df/75XHrppXzpS1+iq6uL9evXc+yxxyKlZP369WzevJmWlhbuu+8+/vSnP405RjksDYau17G8fDuJQy7ar4CTsjRkREJ2u2hA39V0dHSM28OjUrI0qolUIEDvt66HdJqayy7DdsIJE36veDzOQDCIHejeswePq3WIuTvw+qt4gbpjTpz0vEtNpQZCToaRxsmuVAiZcseBQICenh62bNlCOp3WRYTP5xtXRKg6DYVjPJFSzHPPJ6ZBSCmlEOJU4LvAeuBF4N2AA/gWENBeN8p7/Bk4de3atbS2tnLDDTfw3HPPsWzZMoQQtLe386tf/QqAQw89lEsuuYR58+ZhMpm488479d3mHXfcwdlnn00qleLyyy/n0EMPHXPuuYiGQu/8RTJKumkB0Xd9f8TxDjTRkF1fPRAIIKXE4/Hk1eirHBwo4kSm0/hvuIHUnj1YDjsM96c+mdfxqVRKL5T12muvYTAYaLa2YD/8CsJpM1vefJNkMkkikWDfvn1YVm8CYPpxpxX2PFQgZN7ken0bjUbq6uqoq6sDMsJf6964aVPm+8wWEcN/0/l+N3e+eSdv9b7Fz0/7ec7HaJRj519J7oli3rPyuVMLMvEK7wPul1L+YvDx3wshbidjeVie9br9kFJqlWH056+44opRB7zuuuu47rrr9nv83HPP1Ws55MJ42RPFCIRMtZ1I+IMPwwgXUinrJmjjlVo0pFIpvX56IBDQ20VraZCTTQmqtsW83OfT/6c/E/3viwi3m9qbfoAYR8Rld/rs7e0llUrhdrsxm80cccQR+oJhNL6bdqORdjLCYvHixYQ2bsQRiJJ02NmeSlHn9+/X4bHSmYqBkIUex2Qy0dDQoNfYSSaT9Pb20tPTw4YNG3R3hyYi8h1nx8AOdodHLfszJso9UTwmsr0LknFLmMh0uUwBLjIlpCuSXERDoRZx47YXMXa9Rnzhp2GUVKFqtDRokdhaIJWW7uXz+WhtbZ10ENVwqi3WoBSMdlOLrVhB8I47AKj99rcxDXZgzEZmld7u7e0lGo3qnT7nz5+v/8ZWrlz59g4zGYNYBJy1YDBhNBozDZr27SMAuI48CuFysXPnTlatWqX3Vairq6voksjVcj1oFGqBNZlMQ1pAJxIJent72bt3L+vWrdPH6enpwev1jtshuC/eR425ZkJzORDcE6UsJpXNRCpC/gG4iUxlyBeA08mUkn4MIN90y1KQS52GgtwIEpFM1UchiB/9CRjlN1GqYlIaxVj4sneafr+fRCKh7zSnT5+ux6kocqNc4iQdCtF73bcglcJ16Qexv/PtQkuxWEwXCX19fXrp7eH9OUbDtOFx7P/8LPFPvIisezvgcc8b/8UCiEPnDunwGA6H6enp0Usiu91uXURUWmfRSrYATIRijGM2m2lsbNSD3bu7u9m+fTvd3d2sXbsWk8mktwEfydLUG+2l0dE40luPS7VnT0yVlEutIuQaIcT7gXcAhwDXSylfKdL8CoLJZCqJaLC+dBuG4FbC778fzPaij5crhRApWnU5TSTE43F9pzlv3jw9yG3Tpk0lUcDK0jAxss9FSknv975HatcuzPPm4fzUp9i3bx+9vb0Eg0FMJpNuKSpkJ73w8mVYAPNhQ2ORtFK4M2bM0K+3np4eVqxYoaf/aTUEyrXLguoLhCzVOCaTCafTySGHHAJkRGlvb69uabJYLLqIcLvd+GN+Dqk9ZEJjlWPnX2njVVrKpRPYAwwANiHE+cA6KeWags2sgIz34RbCPWHoXoH59V8TP+yDpNrGjgifCu4JOVjHXotJ0Hq6+3w+Dj744FF3fqVczBWTo+/++4k+9x+kw0HXpR9k+1tvjZnmWhCSSVxb9gDgO2L0hjrZ1Qy1QkR+v5+enh42b94MoC8wPp9P/42rQMj8KfUGRsNqtQ6xNEWjUXp7e9m+fTuhUIiZxpk0ykaCwSButzuv77Xad/5TKqZBCDEP+ClwMLCNTEyDj0xPiTUTqQhZCsZLT5nUD0dKbE99A+moJ3bKt8Z9eSXWaZAy0zFPEwnhcFgXCXPmzMm5C2i17cyryaIhZaYbXigUIrR0GZ6f/gwBmL9wDfNPP70ku3fDtm2YkpJAcw2z3CN3vxzxOINhSOS+5i/XTN0Wi4W6ujqsVmvViNZqszSMd8+z2WxMnz6d6dOnA3BU5Ch6enrYunUroVAIh8Ohp4COZ/k6ELInKt49kZVKeTaZPhP7Vd2oVMEAY6vpSS/iQhA94yZELAS28SsUVoKlITuwLRAIMDAwgNPp1Au75OKzznUsRfnQdm/aLj0cDjPN5aL27rtJJ5M43/9+fO99b8HGG7d41Hqts2XHpMYZ7i+PRqP09PSwa9cu/H4/y5Yt00WG1pipUJT6t1tsSrng5bM7ttvttLa26m3AI5GIbmnq6+vD6XTqImJ44GylpUBO9fGymYh7YjfQBiCE8Ga9T1RK2V+geRWF0S6kSS10Mg3CQLppQc6HlEM0pNPpISKhv79fD2zr6OgYtW3uRMaqJtEw1UzdiURCjzsJBoN6t8+ZM2diNpupr69H/r8fEenqwjx3Lt5rri7Y2MM/q3TDIcRP+SbSXvv2gxvWAuA9cnTXxESw2Wy0tLRQU1PDli1b6OjooKenR2/MpPVUqKurK0gmT6kW82oin/NZumcpX33xq9x28m0sqF+AEGK/mJeBgQF6e3v1wFmXy6WLiGq3NEypQEhgA3C1EOJfwEuD7+EmU+jpwbGKO5WL8T7cyVgarE9/ExDEzrh5xJoMo82nFB9RJBLB7/ezZ8+eIYGLk20XPRbVJhpKxUQ/t+yiWX6/HyHEkB4d2bsRIQTJfz5G/OmnEQ4HtTffhChwU6Js0nVzSU47ZEhsRO3WHgBmHHdGUcbUfL1ai+j29nbS6fSQcsjpdHpIPES+sRvK0jDxcXLdHe+N7iUQC+A0jdx3QgiBy+XC5XLR1tamx2D19vayfv16PZDXbrdTV1c3YctprlS7ZSObiVgaQmTSLXvIJBUmAAvQDfmXka4EJnrDNnSvwLz8TySOvjJnwTCZ8cYjGo3qloS+vj59l6k1pdF8hcVEiYbikp3F0tvbSzKZxOPxUFtby8yZM8esrCm2biX+i0xNNt+138Tc1lbcySbCiP4AeKaD0UKqtxfj3r0Iux1rZ2dxx84iu6dCZ2enXslQqx9gMpl0K4Tb7a6YIlPVKE5yZV9kHwD19tx6nwghdKE4c+ZMdu/erRcdW7NmDZFIhJqaGl0s2u2jZ7dNhFIv4lPC0pDFOjKBkAYyokH7e/SOUBXORFMSrS/cjLR5iR3/hbyOK9SXreXRBwIBQqEQFosFr9fL9OnTqamp0S/iHTt2FGS8XFGioXBovlxNJITD4RFTXccjHQ5j+dn/QiKB88ILcZx9dpFnDqZNz2B/9NPEr3oBWX8Q/W8uBSA8e/q4FSeLOq9hlQxjsRg9PT161L62O62rq8PpdI7q0iw21ZYJks/57Ivsw2Qw4bFMvIutzWajvb2d9vZ2pJSEQiF6e3tZtWoV0WhUrwNSW1s76ToglWRp0O6/lZRyeRxwF7CLjFgwAs3A34CvCyGMcrCN9lRhImWdjdtexLT1eaLv/HZOwY+FIB6PD+kEaTab8Xq9NDU1MXfu3FEvolKXkVbkT/Z3FI/HhxRVstls1NbWMmvWrAnFnkgpCdxyK4ZduxDt7Xi+/KVinMK47F7yPGYgMmdGWcYfDavVqkftawHCPT09rF+/noGBAdxuN/X19friokTxxMhnYe2J9lBnq5vw/WR4TIMQAo/Hg8fj0VN4NRGxYsUK4vG4HvdSW1ubsxjPHk8FQo7OcuD9QIyMdaEJ+B8yVSEBKjJ7wmAwkEqlRjTfTmRRtbxyO2lXM4kjPjqh+eQyXiKRGCISjEYjXq+XadOm0dnZmbMvdiKiaKKUcqxqIZVKEQ6H6e/vZ/PmzRiNRnw+334Wo4kS/sejhP/1L6TViu26azGUqbpiePkyPEDDUe8oy/i5IITA6XTidDp1X3koFBpSZMput5NOp0kmk0VttHYgWxoOqz+M/8/eVYfHVaXv947HM5KZuKeSulKkUKjT0qQGRRZncYotlMX54Syy6LIsUnYX2AptKBUqtNAW6p5a2riOxTM+9/dHeg53JjPJzGQsbd7n4QGSzNx7rpzzne97v/dVRigDdiwej4f4+HjEx8cjOzvbgfdSVVUFq9VKXXdlMplH5NlwIkIG8ly8fuJZlu0AcJzzowqGYUTodLn8DJ3lirDLNBApaVcvuS9ESOPMv4PXXAUI/DcBW61WGiQ0NTXRB7u3YjvBzjT078S6B5HgJq2Q5NmTy+UYMmSIX0WVLKWlaHrzzc7/vu02RAWax+AGrM2GiJIaAIAiwEGDPydM7g41OzsbNpsNFRUVqK+vx969e8Hj8WidPD4+Pmz4EOEIb4KGBbkLgnYswJH3AvxhA67X61FRUQGbzUbNt0KtSAr0sUzDuQAhD51ulkJ0mlUVAKg69ydhuWIIhUK6S3CGT4qJMcmwxfSOWGi1Wh3soskEJZPJkJWV5bddTH/QEFqQlDcJEojZk0wmQ0pKCkQiEcrKyhAdHe3XgMFuNEL31F/BmkyInDULRo6vRLBhKS2DyGhFc7wIyQrPyG2+INDPHp/PR1xcHMxmMwYNGgSz2Qy9Xo+6ujqcOHHC76ZbF2qmwWwzQ+TG8M/fx3IFZxtwYv2u1+tRXl4Ou93uEEQEG32NCJkH4Fd0qkHaARjRaVz1BBCehlVAZ9BgNptd/s6bhY5fugWi/f+EcebfwUZ3dQPsDtz2OIPBgEOHDlG76MzMzIClOvuDhuCD6Oo3NjZSIRpvzJ78gaa//Q3W0lIIMjMR/8RfoK+tDfgxubAph8A85RWwUUq0b9sMAGjLDHwHTzBA7p9IJEJiYiISzzmDkuCQaAfExMTQxcffjP2+Bk8XOqvdikuXX4r7ht+H2/Jv8/lY/tyJ8/l8KBQKKM4FvKQDR6/Xo7S0FO3t7Th16hS1AQ9k2QroY5kGlmWLAcgBgOm0x2b7AvFRJBJ1GzR4/D17PgavpRpshLzHv7XZbGhpaaGZBJvNRoOEiIgIjB071uPj9gb9QUPgQSYRwj8hDn5paWkhsXnuWL8BHUU/AGIx5K+9Cp6fVRE9ASvNhlWRBz6fD2txZ0VTOuiioJ+Hv9Hd800EiIiKYVtbG7RaLYqLi2EymajpllwuD3mKO9jwdCHXG/VgwSJW5LnMuDPsdntgvFPOwbkDZ+fOnZBKpdDpdDhz5gwYhqFZCF+0QHpCX8s0gGGYPAAPoDPrYGIYZjeAz1mW1fjz5PyJ7oIGT8Gr3Q9BzW4Yr3wB4Hd94QkjlwQJVqsVsbGx1CmQS6YpLy/v1bl4g/6gwf8gxCkSKLAsC6lUioSEBJ/4J/68bpaKCjS+9hoAIP6xxyDkaCIE9d6YWsC01wOKXBiPHAEAWLOzA37YcEnpc7UDCGO/qakJOp2Ovv9SqRQKhQLx8fEBXeTCAZ4udFqjdxoNvTmWv8AwDJRKJZTKTvIm6YAiWiB8Pt+v3Jc+lWlgGEYJ4J8AtgD4BJ1mVbeh07DqunBtuSREyF59x96PwUriYRl2A4A/CG1k4bBYLDRISE5O7rZtJ9TeE+fDsYIJruunXq+nLVokmxAuu0bWZIL+qb+CNRgQMX0aogoL6O+CvZgKKn5FxJp7YLzxJ5jOngV4gC3ARMxgPHu+LkiENCmTyZCXlwer1Qq9Xg+1Wo1Tp05BKBQ6iEydb/A4aDgn7CSX9JzN7e2xAgWRSOTgjUK4L/X19Th58iSEQiF9FuLi4nwKAPpSpkEMIIJl2ZfJDxiGKQawDgDCMWAA/iBC+gqmpQaCs5vQNuJOVNRq0NTUBJPJ5JPQDkGwHmxfxat8xfkSNBBRJYPBgD179lBt++6swUONpnffg6WkBIK0NEiXLAmLXbfpbAV4LKBPiQXjB9+H8wUCgcBhd0pMt4iro9FoRGVlJTXdCod72Rt4Ot/pjJ1S4wpJ38k09ARn7gvhPNXU1ODEiRM0YJTJZH5RJQ2rlksAbQDqGYa5BMBZAFEApgGoYxgmB0Aky7JH/XiOfoEv5Qnu7rJVUwNZ5p/QHj8RUSIRBgwY0CtiU7BTZ/3iTj2DmD3p9Xq0tLRALBbTHu3x48cHdGz+uEcdmzahfeVKQCiE7LVXwYuO9tPZ9Q6648cAANYBmQiPfEzvEYhngZhupaSkgGVZ7NixAyzL4tSpUzAYDL0SHwoHeLqQZ8dl48aBN/Y60xDO7a9isRhJSUlISkoC8IcbLVElJYJuJIgIp3nVl6DBjE6Xy58AHENn5iEdnR0U/0CnJ8Uif52gv+BJpoE4pxFOQkdHB6KjozudIAePQMToCX67eUQEKRh1zP7yhGuQbha9Xk91MaRSaReFzfr6+rB6aV3BWl2NxldeBQDEP/wwRAMHhviM/oD++HFEAYgdPhqGUJ+MHxCM55thGPD5fGRkZCAjI4PypYj4ENENIKZbgWbr+wOeBg0jFCMwQuG5a3BvjhUukEgkVJUU+KMLh2SdIiMjaRARExMT0nP15UnrAHADAAM6tRps6AwkhOhUiAzL8oRIJILJZHL4Gemf56agSWscV7KXX70LTOkOWAfPdUmA9AXBLBmcz0GDN5MDMXsirZBE9S3QLa+eoDfXjTWbofvrX8G2tyPiqqsQtbB3wjj+BnumU8IldcwVKLGEZUd22IOrYJiTk0O7dQhbn8fjUT6ErzXyQMPTd1Vv1CNSEAlJL4Tzghk0BGK+c+7CIUFEWVkZWltbYTQaUVFRAZlM5rI7K6zKE+dcLE8G4FwCCqLTUFxcDIlEAqPRiLa2NkRGRkIqlXabghbu+wz8+kOw5s/z2/mcrwt5OGUaiNkTCRKI052vHJRwRfMHH8Jy4iT4yUmQPvO02wkj2PfGphoBw6Q3EPW/92Hn8xAzaAhwNLCVy2AtFqHexTq3/JnNZuh0OtTU1OD48eMemW4FG57em8e2P4YIQQQ+vvLjgB/LHwj0sbjS5mlpabR0xTAM1QMhfCuZTIbIALdX93prxbi4WuFkj11RUYGff/4ZP//8M4qKipCWlobnn38e+fn5DhFaXV2d6y8wNkFQ9jMso24FeP7biQZ7IQ+m90SwAxTuI0icP4moUkREBKRSKXJycoImqhRMGLZtQ9t33wECAeSvvgpeiFOXXLBxaTDw8sGwLCSDBp83JMgwmt4oRCIRrZGTYJlkIdra2qijo1wuDxmJ1xsiZG/LE86GVYFEKNo7+Xw+0tPTqT9KW1sb9Ho9NVkbPXq0R34ZvqDXq6A3AQLDMF8AmD1kyBAcO9ZJjtLr9bjuuutQXl6OzMxMLFu2DFKpFCzLYvHixVi3bh0iIyPx1VdfYfTo0QCApUuX4uWXO5s3nnnmGdxyyy1djrV161Y88sgjSElJwZVXXolx48Zh8uTJmDNnjrtzc3nzhSXrwdgtsAwqcPk5X3G+L+TBOpbFYqFtr01NTRAIBJBKpUhJSUFMTEyfCRJ8uW7WujroX/o/AEDcgw9ANGRIIE7Ndxga0bZzLQBAOHhwiE/Gvwjn54phGJreJjtTZ9Mt4mlDvBaCAU8WV5ZloTVoe6XR4Omx/IVgBiiuwNUDycjIgM1mC6ywlS8fYhgmCp0ESOG57xBy/hGxLHvIzUe/Qqeew37yg9dffx2TJ0/GkiVL8Prrr+P111/HG2+8gfXr16OkpAQlJSXYvXs37r33XuzevRt6vR4vvvgi9u3bB4ZhMGbMGMyZM6fLwz9hwgTs3buX9s+/9NJLsNnc0y3cTdqCk0Wwx2fArupd5OuMfk6Db+Ba2ra1teHIkSOUEJadnX3eC+QQsFYr9E8/Dba1FZKJExF9/fWhPqUuEFT/Du2vKxABEXSZUvjuWRheCMdMQ3dwZbpFRKaIBHJJSUnATbc8WchbLa0w2819KmgIdqdGT88fwzABPR9fMw2b0El+JKuw/dw/NgB8hmGudqXXwLLsrwzDZHJ/VlRUhG3btgEAbrnlFkyaNAlvvPEGioqKcPPNN4NhGEyYMAFNTU2oq6vDtm3bMHXqVGoSMnXqVGzYsAHXO02azu2Q3XlPAH84XTosOjYzGGMzLIMKAT8/gOfTQh7IY3E7WvR6PUwmE2JjYyGTyRAVFYWRI0f2Cea4J/DmujV//DHMR4+Br1JB9vxzYbvzZRs7703KyMuCc7w+tqCHAlwzJpZl8dtvvyE2NpYKD4lEIvp7f2brPFnIdYZOjYbetFuSYwVrIQ92eSLUnSG+zrbpAGYBaMQfHRQkcPDKi6KhoYH2qiYmJqKhoQEAUFNTg7S0NPp3qampqKmpcfvzniAUCmG1Wt3+3uVixxeh40/rgQB4cPXlhbwn9PZYpGe5sbERbW1tiIqKgkwm66KNUVNTc94sEt5MAoYdO9D27/8AfD5kr7wCXlycx8cI5vUydxhhMkSjUirH+JScoB33QiBC+hM8Hs9BvZDwIQhTPzo6mgYRvSHZebLYxYnj8OioRzFUNtTn43h6LH8h2JLOfSpoYBiGOcdhsAAoZ1m22Z8nwzBMwC5GT+JOJNPgALsN4PEBxv8PxPnMafAWFouFetc3NzdDJBJBJpMhPT09JGZP4QybTofGF18CAMTeew/EI4aH+Iz+gN1uh8ViwZkzZ9DY2IgTe9V4f+oz4MEG2we78cBFUgyPM3dbJuwLOF8CVcD1WCIiIpCamupguqXT6XDixAkYjUZqukWEz7w5Vk/vskwiww0Db/B6HL4cy18I9iIeSt8JwPdMg70Xn3WASqVCXV0dkpKSUFdXRyVVU1JSUFVVRf+uurqaqqWRcgb5+aRJk3o8jkgkQltbm9vfd1lYbRZE/WsCzOMfgGWUb/as3eFC5jRwLcIbGxvBMAykUimUSiXy8vI8fiHCqb2zt/BkLCzLovGVV2FvaoJ43DjE/OlPQTo79+dD+sdJ6YiQ7OJUqbh3YxtMgnPlPjvw0d4mvDqBj4MHD0IsFlOr4b4YGPa183WHnhY8LskuMzOTGrVptVpUVFTAbrdTIyZP3Bx7um4NHQ0wWA3IiMno1TUOJjkx2ETIPpVp4GAdADHDMAoAIgBWlmXVvnzRnDlzsHTpUixZsgRLly5FQUEB/fmHH36IRYsWYffu3YiLi0NSUhKmT5+Ov/71r2hsbAQAbNy4Ea+dc/TrDmKxGHq93u3vnTMN/Nq94LU1gI1O9GVYPSLcFvJAHovbEqTX62G1WqlFeEZGhs+chGCOK9QvKgB0/PADjNu3g4mOhvS558CEYLdBpLZ1Oh1taSWlI6FQiCNHjkChUOBYbSsEYMGVU7PbgX06AR6YORLRYgG0Wi3tM4+Li4NCoYBcLg9Yq5i/cL4EqoD3zzVRTSXEc2K6RdwcBQKBg8gU97s9WVy/PfUtlp9Zjh0Ldvg2oHM4n4mQfSrTQNorWZZ9kGGYZwFMB5AE4BeGYf7Osuzh7j7PMMy3ACadOnUKqampePHFF7FkyRJce+21+Pzzz5GRkYFly5YBAK6++mqsW7cOubm5iIyMxJdffgkAkMlkePbZZzFu3DgAwHPPPUdJkd3BW04Dv/xXsDwBrBkTe/xuX3A+lyecRZXa29sDIqoU6kU8mLDW1KDpnXcBANInnoAgURWU4xInV51ORwN14uIaExPjMHlx36/kODGsfCFg++O5s9hZfHvCiLVl+7DrySuQmpoKSXwCZJFCtLS0QKvVorKyEizLQiaTUctobybIcAju+hp6c72cTbdMJhOVui4uLkZkZKQD6bJHIqRRB7lE3ut7eKGXJ8JGEZJwGhiGeQdADDrJkKsAbATwFMMwj7MsW+3u8yzLkhYHhxVsy5Ytro6Fjz76yOX33H777bj99tu9OfUeOQ1dgobq3bCrhgOiwJj+hHr3728Q/3itVovGxkaUlJR0enZkZQXUoS8Y19Cdhoe/j+EuiGRtNuhffBFsRwciJl+FiBnTA3YeAGjAp9frqYqmXC7v0QLcbreDZVlYLBbEiBg8f3UOXlxfCiGfgdXG4vnZA9ChroZImgQ+r/Na3vb1QTS2m3FZrhwTc+W4ZFg6ooUM9Ho96urqcOLECURERNBSRqDV7jzF+RKY+Pu5FovF1EOBlK90Oh1Onz4NnU4Hm82GxMREyOVyl5sHrUHbK3dLgvM5aAh1YOxtXphB54I/DsBtLMs2MwwjBPA9Ov0o4gC4DRpCCZFI1K1hlUN5wmIAv+EwLKO8C0y8QV/nNJBebyKqRNKWKpUKZrMZw4cHnqB3PnEaukPbN9/CfPAQeHI54nthd+3uetlsNtrS2tTURN09uf4r7mC322mwQP45evQo5HI5rsyW47IHL8LZ+iZIbO2wttfCGmPH6OEqSoa8/eJ07Dirw9ZTWqw6VAeGAe66NBOPTc2FSqWC1WaHyWiAVqulRDyiyyGXy0PSbns+PXOBHAvDkT9OT0/HwYMHkZSUhPb2dhw+fBhWq5XeS5lMBoFAAJ1Rh4zYjF4fO5glg2CXC/pUpoEDKwAlgDPoDCKuRmdHRdjSor3KNNjMMI+7D9bMSQE7n2AueP4IUEiampQcbDYb4uPjIZPJkJWVRQlQFovFgcAaSATrGoYyOLGUlaH5k08AANJnngY/Pr7X3+mKYyKVSqFQKJCTk9MtmY0ECDabjU5MPB4PPB4PIpEIF110Edra2lBVVYWjR4/CZDJBJBIhRi5H9oABiImJAcuyNECfPTQB1wxTws4CJ+rbsP2MDkNTOltIqxsNmP/pHlySI8PEXDkuGzAUiigh5VSUlpaCx+PRLERsbGyvr82FhmDvWmNjY5GYmIicnBwarOp0Opw9exY8Hg/qdjWGxA3p9ULcn2kIHHwNGvYDIGIJZwC8A2Axy7Jha2TVkzW2Q6ZBEgfzpY8H9HzCXTuBpBbJDtRoNCImJgYymQwpKSndktXOp51YsOCSQGqzofH//g+wWBBZMAcRl/kukGQ2myk3oaysjBrc9MQxIe+EzWZzmKz4fD74fD79fyJTTMjGMpkMw4YNQ0xMDD3uqVOnHNj2XKIcAxb5iVHIT+w0V7LZbLDZ7bhqoALbz+qw7linfstAVTRen5uP/AEDAPxRQycWwkKhEHw+H0ajMWAeC6GetP2JUC6ufD6fBnxA5zP6QMQDEJvE+P333yGRSGhGydsOm2B3T4RbpiGQ8JYIaT/3b+6K+hAAI4BkhmEiWZbt8OP5+Q09lSe4kzZPdxr2KBUg8Uw0xxcEmwjpCUwmE80ktLa2Ug/33Nxcj82egjmZnu+Zhrb/LYP56DHwEhIQv3ixV5+12+1U+4KUjxiGgUKhQHp6eo8lB5INIBM9wzAQCAQ0q2A0GqHRaKDT6dDe3o7Y2Fj63c68B66EMem+qKurw8mTJx2IchEREQ5ljuRYEf7vmoEAgBJNB3ac0ePXMzqoYjqDgeX7a7D1tLYzC5Gbh2HxElRWVqK+vp56LBBCpSftgBcqwmVHLhKJsGD4H7buhA9BOmwIt4Y8K705lj/Rn2nwEAzDCNDJYUgBcCmAWwDcB+AARwQqbOCNuFPE9zfDljQGxtmuiZj+QDA5De5gtVodRJUEAgFkMhlSU1N9lo893wieoYK1uhotH3daA0uXLOnRvdKVZkJcXBzkcjkyMzMhEAhQXl7uMvjjBgkEDNPppEeCDZZl0dTURImuRGo4OzvbK+tloVBI2fZcotzJkydhMpkchIPIboplWeQqIpCrSMFtF6fS87HY7DhZ34otJzUAgEx5JCakReH6/HgMGjgQVqsVjY2NtB1QJBLRts7eakMEetIOZitxsNDTYtdsasapxlPIl+UjWhTdxXSLZKyKi4thNpsdnhXnQPV8Dhr6VKaBgGEYJYCp6OyeyAWwHcCtpDwRbgED4EWmwdgMXks1LMNvCuj5hGLBI8IsRFSJZVmPa9meItzLLr4gGGPiHqNTxOkVsCYTIqZPQ8Tlrtt+ya5dr9ejpaXFQTPB1U6MewwugZGAx+PRkgPDMGhvb4dOp4NOp4PZbKaktdzcXL89K1yinLORErfnPzr6jy4mcu4LRyXi2tFJqGg0YscZPbaf0aFEawCP6Rz7f/fWIlMRiYvzBkIk4MFg6CRUnjlzBu3t7T5rQ4Th9OYzwmlxPaY7hsW/LsYXU77AcIUjkZphGMTGxiI2NhZZWVk0k0bKbQBo2Ss+Pv68lpEOtaumty2XfLbTV2IpgGEAHgPwPcuy7lfjMIGnmQa+tpOWYUsIrJVvMBYilu00e9Lr9ejo6MC+ffuoqFJP7XO+ItiZhvMR7atWw7RvP3hSKeIf/6MSyLIsdfgk3AGpVIrExEQMGDCg24mLLLRms5kGz6TUQDIKFosFWq0WOp0Ozc3NtHQwePDgHtPB/gDXSAno9CAhiwIpgZDfC4VCWsZIjxfjhrFJuHFcMurq62Ho6IDJYsPHv5ahqcOCaDEfkwYoMGWwEpfnJtGdK1E2JNoQcrkcCoUCcXFxId3JAcFbzMMpaNAbz/FhJD3r7vB4PMhkMshkMuTl5cFisUCv16OhoQGnTp1Ce3s7ysrKIJfLERsbG9AxhqI80ZcyDSR/+TqABwE8AWAqwzA/ASgBUMKybLsfz89v8FTciac5DgCwJ+QH9HwCxWkwGAx099ne3o7o6GhIpVJIJBKMHz/e78dzRj+noXewaTRofv99AED844/DIpGgobYWOp0OHR0d1OEzNTW1R80EwJHAGB8fj4qKCtTV1dGsgUAgoAx2IqqUnJyMQYMGhXzhlEgkVDqeBExarZZ258hkMkilUtjtdio+JRQKkZ2dDR7s2Lr4Yuwqb8KWk1psOaXBj0cb8MjkHNxzeRYsNhbCiGjk5sYjNzcXFosFOp0ONTU1OH78OA2YXGlDBGuRCFbQECz0dN10pk6HS5m456DBGUKh0MF0a8eOHRCLxZQg6y/TLVcIx/JE2LRckrIDy7K/APgFABiGmYZOPsNIdHIafglHToNYLPao5ZLXVA5WGBkw+WgCHo/XbRDjKUiKurGxEc3NzRCLxZBKpcjMzHSoNXviBNrXEMygIRjHYFkWje++B7a9HdbRo1AcHwfhyZO0rbUn7kBPBEaFQoGYmBhoNBrU19ejvr4eLMtCIpHQCTcqKirgY/UFDMNQQmVycjIaGhpQX19PA4jIyEikpKQgISEBEokELMtCyAcm5kgxMUeK567Ow6HqFqTJOsmWP5/S4MlVxZg0QIGrh6pwRZ4CiYmJSExMpBk6og1BuBYKhcIj9Vl/IJjTZzhlGiR8CSKFvV/UeTyeQ8DJvZ9Go5HyffwhWx5uLpeBvp+9IUIKAUgBHAKwCUAs0Ck1H24BA+B5ecIy9DrYUi8CAnzhfV3wiNkTYcUzDENFlbwxe+qHdwjUI82d0Ex794K/aRNYkQjRDz+MtAEDPNJM6I7ACIBmEhobGylPYODAgZQMSGr9JSUlXVwMw6HjgNvP39jYCLFYDLlcjuHDhyMyMpJeQ51Oh+PHj1P+BVeGms8Ao9M6dRysVisypRLMG5mEn46rsaFYjUgRH1MGJeCF2YMQJRYgOjoa0dHR1KSJqJ2ePXu2U/EyJobW2AMxSV+o5Qm5RO734zIM0+V+Njc3Q6fTobKyEna7nWbepFKp14Jh4ZZpCPTy2xs5tQUAbgOQDaACwNvoDB7CEp4SIe0J+QEvTZDjeVKeIKxh0gpJzJ5kMhllxV+o6KuZBrPZTHkJra2tiIqKghBAzPerAABxd96J2MGuOTWeEBhJR4JOp3PoSHBHdo2IiEBaWhrS0tIowUyr1aK0tBRCoZDuyLzpkugtSBCg1WodggBXJEzuopCRkUGDDBIIkU4PMgYAyFVG4a/Tc/HE1Bzsq2jChuManFa3I0LYORmvOlSLpDgJxmdIwePxHLgWZ8+eRUdHB019x8TEUL0Bf/mqBAvhFDTcln8bmkxNAT8PrulWbm4u7bLR6XQ4c+aMA7cmNja2x41YuGUaAg1fvSduBHAtOnkNN6HT6fISdLZgfsswDI9oOoQLPJWRFpz5CTbFILDxvZcy7Q7uFjyWdTR76ujooKJK/jR7Oh8QTK5Bb45DdjbknhISF7e1te6DD2Grq4MgMxMxN93o8FnnbIIzgdFqtdIgoampCREREZDL5Rg0aJDXBEYuwQzoJCOSHXZHRwftOCCyv/6CzWaDXq+nYyDCPr6QMJ1FgwwGA+33J2MgmRSRUIiLs2WYkCWlSpc2mw3v/1yK2mYjkmLFmDMiCQUjkpCT0BlwCAQCSKVSpKam0qBeq9Xi8OHDsNlsDtoQvi4m52OmAeg+AM+JywnaeXAhEAiQkJCAhIQEAH/o1VRXV6O5uZm+T+4C52ATE/tayyXxnhgG4FeWZU8xDBMFYBuARACBXWl7AU9kpGE1IqLoDpgufQLmCQ8F9Hy4Og1k50lElSQSicfa/xc6wpEIyQ38iJomyQ65sgK31tTA9t13AIC4vzwOls+H1WLposBISg4Mw9CedZ1OR9OriYmJGDhwoF8nFIlEgtTUVKSmptLgR6vVoqysrEtLpDfPKbekoNVqqZS1UqnssRPEW0RERDiMgRAqKyoqwDCMw66SoOiesdh6Soc1Rxvw2Y5yfLq9HI9MzsHdEzMd7gu3FTA7O5taRRMWP9GGUCgUXmVqQr2bDAV+qvgJufG5IQseCMRiMZKSkpCUlOSgJVJSUkI3ceSZIfyZYJcnQplh9vXIJnTyGQDAgE5xpzYAGn+cVCDgiYw0v6Pz9O0BJkFarVaHSZ/P51PWurPdcD/cI5wmVZLiJEJZJPAj1u7dofHttwGzGZYJE8AMH059HbgKjGazGWq1Glqt1kEdb/jw4b0mcnkKbloX+EPCmdsSSbIQrjo7yIKq1WodWjqHDBkSMMlnV2OIj49H/DkPDxKwV1dXo6WlBVFRUXQMs4cnYtYwFdQtRqwrVuOizHhYLBYcrGrCDyVGXDuej6sGJkAs/KNc4mwV7bzgcLUhAtHy7C3CJTix2W14dtezuD3/duQMC23QwIWzlgjp4tHpdFR1lLwXVqs1KIt5X2u5JNutUwAGnvvvE+j0nvgYnfoNCLfSBNCzAiPDMOCZWwEArCTer8d2Nnuy2+2QSCSQSCTIz88PGtksXCYIfyGULZdchTpyT8lOuSdCKtf0ybxzJ0zbd4CJjITlxhtx5MgRSCQSKBQKCIVCtLa20pKGXC5HRkaGz2qd/gbXBtl5B0/KHJGRkTTrYrVaIZPJkJSUFBYtnUBnBpLbNdHW1kZVB0n2IyYmBlPT+dCqS7GnwgBtuxintSY8vPwYYiUCXD1UiQWjUzAkqWvAz1U15GZqysvLAcCtNsT5Wp5whyZzE+ys3SONhlCC28WTnZ0Nm82G4uJiqoPDMIyDyFQgnvG+2nL5DefHa9Ap8NTBMAzvXFeFLdwCh54uIjdogKR3bnkk9Up2niaTCbGxsZBKpdTsicjbhgM7vS8jmI06RqORlhza29s9NvAC3BAYbTa0vv8BACD+vnuhGDUS0TodGhoaqModwzBQKpVISEgI2CTkD5AdfFRUFGJiYqBWq1FdXU0Drri4OKSkpITNDtsVGIZBTEwMoqKiEB8fD7VaTdtTgc4yR3JyMoYrFLj5qgjsKmvED0fqsepQPdYdU2PbwxdDIhLAxrIQcsy8CLiZmry8PJrlqKmpQXFxMc1yKBSKoN3ncAkavBF2Cifw+XxEREQgLi4OSqWS3tO6ujqcOHGCdvooFIpeS5cThPqe+SojnQXgYnQaVQkBCM8FC0AnGXIfgB1+OcMggcfjgbF06lKxPvQJG41GGiS0tbUhKioKUqnUraRvsL0nyOQdDhOEvxDosRBZ47a2Nhw9epSy8J01MFzBEwJj49KvYauuhj0lGcczMiA+dQpyuRz5+fm0pEEIgqRGHhkZGVZMfW7GhfArZDIZ0tLSMGTIEPqcOwszcXkE4fBMms1maLVaaLVaB4np7OxsmnLmtqYaDAbI4+Px+GUJWDItB2V6I8RCPmw2G+b9cz9yEiIxf1QSLs6WQXBuY+A8TucsB2m9LS4uhtFohM1mg1qt9jvplItw6Y7XGTuFneRi/7dcBhrcnT/3ngJ/kHBLS0vR2tqK6OhoWp7yVWW1TxEhOaJNuehst6xHJznSdu4fE4BoALV+Ps+Ag2EYtEmHoOPa5bBLs3v8e4vF4mD2JBKJIJVKkZ6e7lFEGUzmPxAeBln+hr+vIVd2W6fTwWq1Ij4+HiKRCLm5uQ5EOWd0ZyHNJTCS9Le+vBzSf/4TPABR992H8Rdf7HIi4PP5lNnNXViOHTvmwNTn2kwHGkQ9UavVOkyE7vgV3JRuTk4O3Y1VVVWhtbXVgVgWLH4GN5DR6XS0/JOVleX2/XVuTSW9/vrycvB4PJTb5IiKleKirHisOdqADcc1SIoVo3BEIuaPSkJSnKQzo3nuPnOP4awl0N7ejiNHjkCv1+Ps2bOUdEoEuvx5r8MhaOurmQag+50/l4TLLX8dP368iyaKp89+qDd/vpYnNqEHTYZwVIUE3F9wHo8HsyAGtjT3/fFcUSUAiI+P96iG7QrBDhqCfbxgwB9jMpvNtEebaCbIZDIMHjyYkvOOHz/u8v5ySw7kuSLZBGcCI/l+Imeb9tvv6DAYIJkwAQkzZng0CTgvLKTVsqamBidOnHDYxfhz8eWSv3S6c1K/57IJvmQKnHfY3JZF9pwHhFwu93sg5BzsEH0FV3bePcGZFGo2m6HT6aCuq8aVca2YPjUOJ1tF2FLWgX9sr8AAVTQSY8VoM1og4PMgEf6hq0H+cf5+sViMQYMGAXD04WhtbaWkU7lc3quMU6gXIILLky/H0qlLkRSV1OvvCvaYPD0eKX/FxMRQkSliulVRUUGzdERkyl3puk9lGrhg/rhKrq4WG24Bgyc7f2FHAwTHj8OaPRmsOA5tbW2UvGixWKjuvy+TjKvjBcJ7orvj9QVNg0CDEPYIgZEQl1JSUnpcALkERm7LHZ/Pd3jB6Q5Ur6ctfdwF1lJWhtpVqwAeD9JHHvZ5ghMIBFT+mexinBdfhULh08JOFkFut4ZCoUBqaqpfAxLnlkViPEQCIVLn92Vx5F4TrVYLAF3uhb8gEokc2vRaW1sh0+kwMKINCzIikMZrQlOTAN8cacI3e2tw7ZhkLBqTDGWMmF4HbhbCeSFy58PRW22IcAkaokXRGCIf4pfvCjeFRndw1kQh3UXEyp0rrMZ9XkN9z3wOGjhBQfiuEF6Ax+NBoitGxNHXcPiST6DhKREdHQ2ZTIZBgwb5vSUsVJyG8wmejqmjo8NBM4G4JXoS/JFAob29HSKRyCFIIJO8wWBAQ0MDNZUi4kEZGRkuv7/p408Amw3Rc+dClJfn8/i54O5isrKy6K6aWwLortWPZVka7Oh0OhrsBLtbg2s8xF30jx496rATc+dESYIOrVZLjYoUCgVGjBgRtNIHNxDKyspy0G6I7dAjN47BZzsq8cVvVXhkcjZuuSgVwB+ZK6DzmeVmsJy/n1vu4X7/yZMnafcNMdvq7t6FegEi2Fy1GQJGgEmpk3r9XeGaaegJzu26hHhdUVGB1tZW2qJsMpncHi8Yc3yv2TUMw4gAMCzLmvxwPkEFSU03NjaiqakJcqMRAJCcnIys9NEBffDO5/JEsF5Yd2Ny1kwgDObc3FxERER4TWBMSkpCdXU1KioqqEY9y7L02SECPkSTobvvNx0/jo4tW8CIxYi75+7eXYBuIBQKHUoAZGdaWVkJhmFoBoKkvbk6C/7IpPkDzoEQWRzr6upw8uRJOolGRETQEgcJLFJSUpCfnx8WCyJ3MRg8GFjQ0YGjZXX4aGcd3tp0Fu2NWiwckwIej0czm2KxGGlpabBarV2yEM5jcqUNodVqcerUKRgMhrDThnCF/5z8DyIFkX0yaAhUuUAikdCWZq4YWnNzM44cOULnIldZuLBpuSRgGEYMQAlgOIB0ADyGYeoAVAGoY1m22n+n6D/weDysXr0ae/fuxbx582hdMikpCRkZGdD8fgIAECWwwxbghy4UQUMwyyHB7DMn6WCSTfBWMwHonsCoUCgQEREBjUZD3RWBP5wVlUqlx6nzpo8+BgDEXHcdBOdkawMNsjMlLaJqtRo1NTVUETE+Ph7Z2dnUKjtcQRZHuVwOnU6H+vp6nD17FgCoi6dKpQrr1lSg87m5aEgOhuek4u+bTkIpMuDEic65RywW0wAgOjqafoabhegpiIiMjER6ejrS09Md6ubl5eU0g0TIs+GSaVB3qHFR4kV++S673d4nMw3dgctnampqohoROp2OlqgIqZLwbAIFr2cIhmGyAfwFnSqQpwGUArADuAxAKoB9DMMsY1n2d3+eqC+wWq3Yv38/Nm/ejJ9//hnl5eXYsGEDpkyZghEjRjhE3WazGRb+uRYYU0vAz+185jQEo73TZDKhtbUVBoMBlZWVdEEcOnSoV5oJ7giMFosFGo0GOp2OKgXK5XKMHDmSSsd2dHRAo9HQToaeOATG/Qdg/P13MFFRiL31lkBdGsdjnsskaLVaB0XCnJwcCASCLqJMxKzHW9njQIJca9LpYLFYKBFz6NCh1H+jsbGRtqZGRET0urXN3yDBLXmueDwerhsqR0JCDr3WRGWzvLzcQfmTkFvJM0uyYc5kSleESlI3J9oQpGx17NgxCAQCiEQiGAyGkF0nq90KrVELVaTKL9/XV8sTnsJut4PP5yMmJgbx8fHIyclxMGmz2+0OAae/4W3LpRDAdAArWZa9183fXApgLACPgobMzEzExMSAz+dDIBBg37590Ov1uO6661BeXo7MzEwsW7YMUmmnoczixYuxbt06REZG4quvvsLo0aPdfvebb76Js2fPYsqUKbjzzjsxb948/O1vf0NMTIyr84aF1/nSMKZWT069VzifOQ2BOBbXEpxYPBP57aysrF4TGBmGcSAwAug2zc0wf8jLZmZm0lo6l0OQkJBAJZVZlkXTRx8BAGJvugn8czLG/gZ3Z6nX62mrXk5OjssgwFlWmQQZxNwpPj6eyioHU4iMOwk2NjbSICA/P98lv4hrOsT1Czhx4oSDS2ZvTKR8AZfcxuVYpKenwwoeVh+qx9zUP0pmXJVNbtcKIbc6czqcS2k9ZSGcCZvl5eXQ6/U4duwYLBYLvU7BvN9agxZ21t5ng4ZwyGwQkzbixBpIeNtyaQHwCQAwDBONzs4JPvffLMvuBLDTm+/dunUrdaQDgNdffx2TJ0/GkiVL8Prrr+P111/HG2+8gfXr16OkpAQlJSXYvXs37r33Xuzevdvt9/71r391+P/u/Cd4PB4MYiXab1oPe1y6N6fvE853TkNvj8Wd+PV6PSwWCzV9ysrKAp/PR01NDT2eM1wpMDoTGI1GI22HJDV9TwmSznAm8LW0tECj0dDdu6K6Gjh0CLy4OMTeeEOvro0ziICMVquFwWCgC31WVpbX5QYuS59rk3327FkH86We/DR8HQfpdDCZTJBKpUhISPDawIob0KWnp9MARKPRoKSkBGKxmE6wgRgHyYpotVqaFXEVfL7zUwmW7q7GAFUUxqTHuxwHV7KYBKbOnA6STSHPOreUwdUIcRX4Eo+UrKysLpbiQqGQ3u/eqhl2Nx80GBoAAMoIpc/f73ysYFtV97tc9gCGYRIBPA2gFZ3BghCAAsBhAG8zDCNgWdbq60kVFRVh27ZtAIBbbrkFkyZNwhtvvIGioiLcfPPNYBgGEyZMQFNTE+rq6pCU5Flvb3dOlwzDwMYTwq4a5utpe4XzOWgAfGPxkklRr9ejpaUFkZGRkMlkGDhwYI+pU08UGInCI9m9ikQi6ibqz1Q8d7IHOnfvDe+/DwBouuIKdNTU9GrXa7fbHXbhZDHPy8vzqyuqc0sYWdRPnTpFF3WFQoH4+HifdqXO4yCL+cCBA/26mDtbZZNglIyDBFnd9cb3NI6mpiZoNBqHcXRn673iQC2W7q7GDeNSXAYMruAcmLrKpnB7/D3JQjgH1dzrxLVFb2tro0RZhULh106UYfJhWF+wHjHCrhlgX3C+lydCzUPxlfVkRCeXoRWdfIZ4dKpEEmaXzdMvYhgG06ZNA8MwuPvuu/HnP/8ZDQ0NNBBITExEQ0NnJFpTU4O0tDT62dTUVNTU1PgtaGBZFoJj/wMbmwpb+qWeDsEnnO+cBk9A6umk5ACAun32ZPFMggSr1Qqz2eySwMgwDJ1YtVqtw8Sam5sbtPQrc7oEOHoMTHQUBj/6CJrP8SVKSkogkUiQkJDQoyw0dxzchS6Y4+AqInIDMO7unZBG3YEsRCQrQgKPYI6DayLFHceZM2doAEayEO6eZSI7rdFoaBknISHBo3FsPqnBi2tP47IcGZ6cluvTGFxlU0hZ6syZM7THn3BTCJwJlVZr597O1ULEtUXnduAcPHgQdrudfr8nxNPuFjoew0NChP9IwcEuFwR7598nMw0syzYBeJf7M4Zh/gNgFflfeKjfsGPHDqSkpECtVmPq1KlUAY3zvX57ALorT9Ca4s43Yc28MihBw/maaejuWMTxUK/Xw2AwUMGstLQ0jzQTuATG6OhonD17FjqdDgqFAkqlEnw+nxLmuPbL3e36Ao3mL78EAMQsvBaC2FjIAdq26Y5MGRUVRRezpqamgO3CfQUhTJIaKknJk10vERuKjY2l7ZCEYxGIrIi/xkFKPcRfgrt7J/eKKzvtjiviDi1GC54uOomhyTF4d+EQCPn+mfydx0G4KaWlpQ6lN7lcDrPZDI1GQ0lzAwYMoHyf7koZztoQOp2OGjNxtSG4QQpBd0HD2rK1aDG34PqB1/vlWpzvO/8+GTQwnVco+dznRQAiAEwG0HjuTzxenVJSUgAASqUSc+fOxZ49e6BSqWjZoa6ujvYfp6SkUMMbAKiurqaf9wQikcht0EDASuLBGJs8/k5fEezJMlRBg9VqpR4dZPEjJYGeFo2eCIxisRjjxo2DTqdDdXU1KisrYbPZEB0djcTERAwYMCDkLYTmM2dg+OUXMGJxFy4Dd7eYkZGBlpYWVFdX4/Dhw7BYLIiIiIBSqaQdG+EMbptfR0cHKisrcfz4cZhMJohEIiQkJGDo0KEuF5RwAtcrwGw2o6qqCmfOnEFHRwcEAgHtQoiPj/fqHSbvQ6xEiM9uGoGchEhEiQL3bHK5KTabDTU1NfSe8Hg8xMXFISMjAwqFgr6v3hAquWqkAKgnCtGGIJkw0sbb3cK6vmJ9nw4awoEIyUWgz8XXpzYBQAUAzbn/FwFoAXA94KAW2S3a29tht9sRExOD9vZ2bNy4Ec899xzmzJmDpUuXYsmSJVi6dCkKCgoAAHPmzMGHH36IRYsWYffu3YiLi/O4NAF0ZhrclScIghU0BBvBChrIIl9VVYWWlhbYbDaHFHRPEbInBEaTyUR3SsSiWqVSIT8/HwKBgJLe9u7di8jISJr+D5YiIBctXy0FAEQXFIAvczTjIQ6WJJtAOgSys7MhkUgomfLIkSMO9eZw2KFzQdQkSTaBaCaMHDkSkZGRtLRy8uRJWK1Wh9bUcNNTcEViHDx4MOLi4mg7ZGVlJU6ePEnbV3tyobTY7Hh5fQlyE6Lwp4tSMTzFvfGZv2CxWGj5pL29nWpxSKVS2O126PV6qNVqnDlzhrYTy+Vy2k4MeE6oBOAQ/HIJtKWlpVQPx1kLhaC2vRYD4gf4beyhyDQE+znuc5wGlmXVzp9lGGY0gLsA7PL0exoaGjB37lwAnTvSG264ATNmzMC4ceNw7bXX4vPPP0dGRgaWLVsGALj66quxbt06qrz35bm0r6fwNNPAa6rw6nv7AgIZNJhMJlpyaGtrg9VqhUKhwJAhQ3oUPfKEwOiujdCdIyGZAImKmkajweHDhwEACoUCCQkJQdEgsNbXo/2nnwA+H7E3/8lB1U2r1cJqtUImk0GlUrnkcDiTKQl/wGg0hqyFkMDZm4KQ5FxJZxNRmoyMDNqCWFtb6+AtEaqgzhsSo3NnCQmUysrKHFreuM9kU4cFj6w4ht3lTbj7soyAjoU861qtlnqPuHpH+Hy+A6GSZAmOHz/u0J5KCK7eZiGcCbRmsxn19fUwmUzYuXMnbTtVKBQQiUWoa6/DpJRJfrsOF9oiHmz0xrAqGgDv3HewAAwALvfmO7Kzs+lkzoVcLseWLVtcHRMfnet19wXdESEpxPFgjEd8PoY3COaD5s+ggUy0hMBI9BKILXhxcbFbYh83SHCnwMglMOp0Okr8I5OgpyUHhvlDRS0rK4uS14gGAWnpC9TC27piJWCzgX/55Tjd1ITmigpERkbSgMqbkgOXlEa6DrwlU/YGRJiI8EUA+ORNwZU85npLHDlyxIFc529DKS56Q2IkcHa5JFmIsrIyyiHo4MfgmY01qG814fXCwZgzPNGv43AOeMhzMGzYMI+fA+47kpmZ2aXtUiQS0XvC5dJ4o1ApEomgUqmgVqsxZswYBz8RtUENi92COMTBZrP5hQwb6u6C8x2+choEAF4AYEUn6VEIIA/AunO/D0tbbE/KE6aJS4CJTwbpjIKH3ohJEcIeySaQRVwmkyEzM7PLIu4coJAJhlv7c1ZgJMQqnU5HU/VyudyvxD+RSESFc7gL7+nTp/1WxiALoa6uDuyyZeABME6+CklJSRg0aJBfghNCwuuJTNnbhdfZ/ImoE/rL/IlhXJtsVVdX0+P5wzPBlRKjLyTG7sAVZbLb7ahW63HbV8XgwY4l4yMxLMZAx9Tbe+JcdvA24OkOzm2XhBhKeB3EjI0rWgbA4f12RagkC7nzPT+iOQJ+HR8SkwS7d+/2izZEsDkG4Yaw5DSwLGtlGKYUgAWdLZcmAN+xLLvn3O/DLmAAPCxPRAXHDyDY8DbTYLFY0NjYSGWUiWbCgAEDPOpCsNlsDq2QDMNQFUfy/62trTRQIH4R7lL1/obzwtubMobz4hoVFQXZkSOwtbVBOHAg0mfPDtiLzCVTulKmJGUDT3wluDt/ck/kcjlSU1MDuvMncDbZIpkNQn4mwZAnC293SoyBNG0iqfH0RAWemjEAF2VJoYjgQafToaKiwsFm3JNgiBsU9lR2CAS4xFBSkiFjYRimi3Wzu1KGu4V8eMJw/LbwN7BgIeAJaJBCtCG4ZlueBqr9mYbAwhfvCQE6lR8/dvN7EYABLMse6+3J+RuelCd4mhMQlKyDefSdgCQuoOcTTi2XdrudLuJEM4GYeXmyiHMJjCKRCGfOnIFSqURCQgIkEgl4PB7MZjO1kG5tbUV0dDTkcrlX6dRAwF0Zg7SrOZcxyIJGavpE3per+lf3t7dhAxBz3bVBncB6VKZ0IlOSxVWr1aK5uZlyDMLhnhB76ezsbMqhIAsvCYbIjhfwXIkxUNC3m/HkquO47ZJ0XJItw9yRf5C0udLNRO+ABEPc9lSywHLLDoQgG+p74lyS4fpYtLa20meHuC6yLEvbO9VqNSIiIrq0dgIAn/dHhoQbpHAJtpWVlTRgksvl3WpDXMhBQzDWFF8yDTcASGQYZi0APTr5DDx0tl3GAxgCYCI6SZFhBU8yDYzuNMS/vwvrwGtgD3DQEEyQyYgL0sut1+vR0dHhtWaCOwLjgAEDqEQzaR8EOlO4CQkJSE9P73WaNpBwVcZoaGjA8ePHAXS+mHFxcVAqlS5T9eazZ2E+dgxMdDSipk8PxRAAuFam1Gg0OHHiBDo6OmgdOiEhwa/lk0DA2TOhubkZGo0GZ8+epQJFkZGRUKlUIdHkOFLTgoeXH4O+3YKCEe7nGGe9A7PZDL1ej4qKCjQ1NdF3ghBkgyl65S2c7wnJUh0+fBhGoxHAH9kjUmb0hlDJMAz1RcnNzaXlK0KiJcGUM9/iQg4agDAsT7As+zXDMNcC+AhALIBydJYnYtBpl70RwKN+PEe/oSdOA8MwYMWdEyxjaArSWQUHDMPAZrPRtrimpiYHGWVPNRO6IzDyeDx0dHSgvr4eOp2O9mvHxcXRNq+GhgZYLBZYrdawtjDm7giJgVVycjKioqJoCrW6uhpGo7FL/bV9zY8AgKjp08ELA4dF0tpJskiRkZGUUEpMwAwGA52AQ7mb7QnOJEapVIr4+HjqclldXY3W1laPWiH9AZZlsfxAHV7ZcBoJ0WJ8c/to5Cf1LIfM7Vog2arU1FSHFtXS0lKahYiLiwvbhZCULTQaDfR6PSIiIpCUlESfr4aGBjQ1NdEsga+ESufyFVdQjNtRZLVaw3ZeOR/gK6dhGYBlDMPw0ZlZiARQw7JsVfefDC16yjQwDAOb6Fx2IUgCT4GMikn0T0xu7HY7lEoltUbuaQfjCYGRuyAR8Sa5XO5S8Y/L/Fer1Th16hSio6ORkJDQa7KbP+DcRkhqz2lpaV2yCaSMwWXMS6VSyKVSGNeuBQBEX3NNKIYBwDFVTxQalUplF/MnsksMFJmyt+ByG7RabbckxrS0tC6tkESBMlD6FjvO6vHC2lO4LEeGN+fmIz7S/TPs7LURERGBhIQEDB8+vMvzxTWoqqmpcWhPJen/UIIQlzUaDVpbWxEXF4eEhIQu8wrR0SGBEFHaJN1QJLDzlFBJwOXyEG0Icm0bGhro94XDM+xPhANdsDctlwzLsjYARzg/4wEAy7LBM1XwAj0FDTweD3aSaQiSwJO/gwaS7tTr9ZQ3IJPJaOTfnYKmOwVGZwJjW1sbJTBarVav3AidCYiE1V5ZWQk+n0/tjYORXnYlSuRNGyE3PUsmLf2mTRDpdLAlJkIrlyHBbA6K/oA78ydPUvX+JFP6A+5IjKNGjeoxsHSuu3P1LbheF76aUxFYbHYI+TxcliPD3+blY3q+Enxe1+eFZEaIEBk5fl5eXo/vijM/hbx3R48ehc1mc8hCBGNnTcpbGo0GFosFcrkcaWlpHi3KXL8Pru5KeXm5w5xA3jtftCG439He3o6IiAhUVFR06cQJd3XV7hAOpRefZwBXHRLhGiwQiEQiWmtzhc6goVOtjTE2uv07f6E3bZAEZGdFNBOIsEpqaqrDwldbW+vSIMsTBUZnAiPZ8XirNeAMLtktJyfHoeZOJqWEhAS/7hRIPz2ZxLsTJfIGZNKyHzyEDgAxc+ag3WLBkSNHwLKs3yyGueBaYhuNRr+ZWHlLpvQHAkVidKVvQcypPDXZcsamExq8sfEMvrx5JNKkEbh6qIr+zlXZgdiU9+bec1sVMzMzaWDFtcn296JIAhViH0+C+t5yRpzFn4g4HLe7hAQAIpHIa4VKlmUhFAopL4mbrTpy5AgVVfNH8Bhs9OmgoS9CLBajpaXF7e8ZhoFNEIXW+48B4sBLvXrbBgl0PjRksSCaCXFxcZDJZMjIyHC7E+RG754oMHLr+aS1ytNdha+QSCTURZGkP8lul/Sje/uSc9PVer2eLnqBaFmzGwwwbN8OAJAWzEFCUhIyMzNdljFIzd2bHSJ3h6bT6RwssQPl6eCKTOkPZUqu1LBer/cqM+IruLtRAA7y1lyrb3djMdvseHfzWSzdXY1hyTHgnXt2vCk7+AvOIllEabS4uJguij11GbgCV7+ksbERUVFRlLwcqPKhWCx2IFSSzqQjR47QjAp3LD1lIZwXVudOHG4m6/Tp0/Q9ImZb3swJwS4XhNqsCrjAgobuXC6BcwsrAEjig3I+ngYN5CHX6/VoaWmBRCKhxjk9CR9xg4SWlhbKHXAmMBoMBppN4Iq49HYH7iu4hjjcFrQzZ87QSdmdEBPpCtFqtXQsJFAIZHrduGsXWKMRoiFDIOB4ojiXMZzHQjQhXI3FZDLRXStRLyT+FKHYIXWnTMlls7uqubtSYvSUXxMIOFtkc8W+uGORSCSoazbisZXFOFTdghvHp2Dx5eloadLjSKXWoS3Xk7KDv8FtGc7IyKA8o4aGBpw6dYqORS6XuwzInAWjvCk3BmIsZIHPysqicx93LFxCpXMWwmq1orm5GdHR0fR3zkEAN+ACOjN2JBAmglkkqO8p6AuFz0VPxwu77om+DI84DXY7RHs+gj1KBeuQBQE9H1dtkMAfzH0SKLAsC6lUSp0bPdVM4BIYFQoFLBYLTpw4QW10RSIRWltb0djYSOVi/amS5y9w05nOQkwkCyIWi9HW1obGxkZKfgv2WDp+3goAiLzqSo/HQgiIpIwhk8kQERFBFTjJvQrX+9KdMqVMJkNkZCTNjAVCidFf4JZduMx8snNfXsrgdIMBT05UID+6GSeKj9LgLRzHQrhBZCw6nY7alkulUsTExNAMmM1mC1j2rbdwzqiQsZw6dYoq08bExNDMpMVioUG41WrtkVAJdGpDkAwnNzNZXl4O4A9RMVfckWCrT/ZnGoIMjzINLAvB8e9hl2UHPGjgchqMRiMNEohzo1wuR0pKSo/RbncW0mRnzTAMVCoVBAIB1Go1FZbh8XhQKpVITEwMuwnDFciuis/nQygU0rGQCSEhIQEqlSroLWqsxQLDr78CACKvusqjzxAColAohFgshlqtRk1NTZde/b5QdyVjEYvFiIyMRENDA+rq6gCABr1KpTJoZMregIxFJJbAyIhhb2/EjCQNJsgYKPmNEApj6VhC3cXQE8hYIiMjERcXh4aGBiq2xLIsIiMjkZSU1KUVMhzBHYtMJoNarUZ9fT00mk6zZbFYDJVKRTdEvhIqCZE2Ly+PEstrampQXFzs0MFCMh3BXMT7g4YgQywW96jTYLfbAVEkGHNHQM/FZrPBYrGgrKwMbW1tEAqF1MvBk52LJwRGi8VC5WeJFDRRYCRkKSKYQurtMpkMCQkJYaehYLPZaA2cZEYUCgUVjSE6FFwHxdjYWNrOGehF17h/P+ytrRDm5ECY0b2bIVcDQqfTgWEYumslgZu7MkY46ii4IjGmpaVh6NChdOIOBpnSHyAllJKqBvx9TwtarQyW3jCYqqJyiY5Hjx6F3W4PWy0F8j5oNBo0NzfT9yE7O5sGbq527uFIECSdTmq1mmpBKJVKjBs3jpZPycaLzGW9JVQCndlprjaEsyNobGws1Z0JRjDcX54IMnoSdyKTAiuMAmNp9+uxyQNHNA2sViusViuSkpIwYMAAjzQTeiIwkheLkCQBUBb64MGDXQYBXMEUrgDTqVOngrrougKZ0LRaLSWqyeVyt90BzmlZIjhTWlpK1SgTEhICsugaf+90hI+YeJnL35PgTKvVorW1lbaAuSOYuStjkIWKpGBDkR3ylsQYKDKlP8Atd2m1WgBAnS0ab+1sR7sJeG5WHpJVf/jRcPkD3PZUoqVA2kO98UrwJ4hss0ajgdFopO3WgwcPdvmcOPM6yH09c+YMDczJrjrYz5lz0ONOC4JAIpE4dEy0tLRAp9Ph8OHDtPRHdBs8IVS60oZwdgQlnSV79+51CIYDpXjbn2kIMkQiEZWcdQXCaYBADBibe308Z82EqKgoyGQyDB48GBKJBMXFxYiNjXX5ArgKEkjJgUtgJHLNOp2OthDK5XKf2M48Hs+hrtvS0gK1Wo3S0lJIJBIqDBWoyZBry0uEorjZBG/AMH9I0Obl5QV80TXu3QMAkFx0EQBH8yeu0ZAvHSiudBSIeBHX6TCQu0N/khh7Q6b0B5w7BIjD6bDhw/H13nq8v7UUGbJIfH7TSAxQRXf7Xc7tqaS1jxifeWOy5QtcBT2EkOltRw3hz5DuEsJF4QoyEYJgoJ4z8myr1WoYDAbIZDIkJye7DXrcgRuocoWySBaSZF0JOdRVFqKnIILP51NOxejRoykBu6yszGFj4M9nORxaLpkQKUyF5KA7d+7EF198gffee8/l78+cOdP5kO54ErymCnTcvNGr73elmUB2x64mjePHjyMtLQ0xMTH0854oMJK2O71eD6FQSCemQBKyyMSk0WgodyAhIaFXdVAusYkoFwZj1+nMFu9tScbW1ITqyVMAoRCS5cuga211MH8KZKDlbG4kkUhoZ0lvJip3SoyeOn/6ekwS3BGCnr+UKV3JT3NNyIBOwaabvjyAVGkEXpo9EFHi3u2pCNGQ6Ju4MtnyBa5km/1h697TMbnzjkAg8Nu8YzAY6Nxis9no3BLI54y0qOp0OjrvyOVyGniTdZHbgeGKUNnR0YFTp05h1KhRXY7BLUFyxbh6M7c1NTWhpqYGQ4YMcfl7u90OkUjkr6DO5cW/oIKGvXv34oMPPsBHH33k8vdnz57tlDeVyQAPH1bCctfr9TAajVQzQSqV9ljjOnHiBBITEx1eDvJAcgmMzgsrV4I1FGUDk8lEX3Kz2Qy5XA6lUunRboqkHEk2oad2sEDDedfpjaw1rXH+sAbM3/4G88ABYP7v/xxSoMEGd9fpbUbF2fGSpNoVCkVI2m7J7pBIFXtr8+28A3dnd/5LiQ4jUmIRHylEq9GKaDHf74uV8yJCgjBPBb/cyTaHag5w19bsid+Hs2iUQCCggUIo1Bqd+VJCoZA+Z+RZYVnWgT9G5umOjg6cPXsWI0eO7PYY3HeLBPe+BF2NjY2oq6tDfn6+y9/3Bw1+xqFDh/D666/js88+c/n7srIyumi4AzHG0ev1aG5uppoJpFXOGwJjVVUV9Ho9VCoVlEoltZAmk6VOp0Nzc3OXVFo4gUxmarUabW1tLm2kCXmIcDl8FZ4JNNwp4HFlrZ2DnsjISEiXLQe7fj3i77sPcXfeEeJR/AGSUSFeGq7KGK5IjAkJCWFH6uOSKbkiXVwypSthou4yPUaLDX/bfBbf7K3BrRPS8MS03KCNx1mZ1NWi60q22d8Kqf4AyXyQLISrgIibEdPr9YiKiqIdKKH2nHGGc0DknCEilt9qtRoNDQ2Ii4tDXl5et4RKZ5D3jquLQwKV7q4HCRwHDRrk8vf9QYOfcfz4cTzzzDNYunSpy9+Xl5cjMjISybqd4NcdhOmqlxwUyhobG2G32yGVSiGTyTzSfHdHYCT8BJPJBLVajbq6OlgsFpplIA9QsHTl/QGujTTZTdntdsTExNDde1/SfSeTdn19PQwGA71vJBVMgp66G26E+eRJqP71L0hGj+r5i0MA7qRNWtRIyx3hqoRbQNodCJlSrVajvb2dTtQk69VTCrhE3Y7Hvy9GibodN1+UikcmZ0MsCE23ALfcQDJELMvSFkKlUtmn7g0JiIh3CNmpE60Zb5VQQwkiikfGQ1r2BQIBkpKS6L1xlYVwx4VwdQyiDUG6qcgm0Xn+J0HXwIED3X6XWCz21/V1eeIXFBFSLBZ7RoSs3gv+ie9xTHktbd0hXQieaib0RGAkKX6dTkf11rkW0uThEQgEYa+fwCX96XQ62O12JCYmUptfvV5P+8ID1b3gTzinK8ViMTIyMsDj8eiOymq1wm63Iz4qCuYzZwCGgWjggFCfuks4myYRjg0h6pKANVTdGN7AmWAKgL6Xree4JGazmVqWu3rWtp7S4tGVxYgS8fHJ9cNxRZ482MOgcM6OkHmAZVk0NTWhtrYWBoMhpOVIb0B4HGq1GkajEYmJiYiIiHBoh2xpaQkoOdRfIBwbMh8TZVcej4eWlhbU1dVRlV2yIfKFUOlKG0Kn06G6utpBG4IQ1EMdcF1QmYaqqircddddWL58ucPPySJRUVEBo9GI/JpvkVKzDg13HvZKM6E7AqMzkYgwld3VNK1Wq8NOiuygwiVtTEooRAOiJ9teQnDTaDQ0eCD15XAAkZLltneSbILzRM3dtbcePoyE198AUlOQtGJFSNrsnOEtidFVGSPQLHlv4E3ZoTsyZUxMDHg8HrRtZvxt8xk8NiUHCdHBD2DdyTa7yo44t7dyfRLCRYzJm3fbmRxKOgw8kWwOBrhdYzqdjupBuOL1OJdeSXmPlF69IVR2dz7E3ZQE/WKxGDk5OS55c8HINFxQQUNDQwNuuOEGfP/996irq6P1aYvFQqP7yMhI5FR8C9GeD9H2aKXL73GnwMglMPJ4PIe6FdeF0BOSJBfkPNVqNVpaWhAXF0eVAoMVdXIXIp1OR1sISQrNm0DGuZecBETBrNX6azJuXfk99K+8AnbiZdDcdBMVagp2QOQvEqPzdZFIJHQ8wcwQOXc7+Mo8J/oY3+2twu9VHXj6cjlU50plwVSmJAurVqulss2+ZHbcBbehmAvIwioSiXzSQOFqKeh0OgBw0FII9lygVqtptofwLbwJmsk8rdPp0NTU5FLnwh2h0tNSRk1NDe2ac+6ei4mJoWWt/qDBD9DpdFi9ejXeeecdGAwGTJs2DY888ghkMhmtsxP76AzrWfArd8I8cQnAdF58VwqMRFiJ3HQycZOHhky4/pRodX7Ao6OjaSTs710hSV9zBYm4Cmv+gM1mo+lM4mbpSU3aFzgTnPyxo9a9+iraVqyE9JGHEfunP1GDKW5AFChiYTBIjFybZ7JrT0hI8Htq2VXZgXBHetN6p2414bk1J/HrGT3GZ8bj/6anw9Ta6JZM6c/xEOImd2ElBlj+gLOuCXe+8TcHwt2848/giwR4Op0OLS0tARXKCsa8Q3QunE0AuYRKAF3WlO6yEDU1NbBYLMjMzATwB7eHZAlVKhXy8/Mv3KBhw4YNWLx4MWw2G+68804sWbLE6wO99tprWLNmDQQCAS6//HJs2LABmzZtcvmg19XVwWq1UuOS7giMpDOAkCS5vbjB6gzgTkxarZYKMCUkJPjESOa2hRFFSRIkBCPyd8ewVigUPk1MXItv0trlb02L+ltvg+nIESj/8Qkixo93+J07GV9fFTbdKTEGi8RIJnWNRoO2trZet/0R/g7hjhAbZn8sEizLYn2xGi+tOw2z1Y5Hp+TghnEp1M4acJxw/aFM6e5+e9KG6A8Q7QHSmk3eXV/nIuc2z+7KKP6G89zqD7luZ+GoQAb0znDuMOGSHcnc6kkWorq6GjabDRkupOpZloXRaPRnu3ffChpsNhsGDBiATZs2ITU1FePGjcO3337rtj/VHXbs2IGhQ4ciPj4eFosFEyZMwLZt27r8nd1uR0NDAzo6OpCeng4A9IZxCYzONbno6Gh680NN8Gtvb4darYZGowGfz6cBRHc7GzIeEqkSRclQt0L52svtTPrzpn/cF1RddRXsTc1I+WkDBN206jrXSj2VtXYeT7jwDZwFhjwtY5DSlFarhcFgoAuRv4Nss9WOaz7ZA2mkEK8XDkamvGcLecKb4OqH9CSS5Uq2ORy4R65agz0ZT280WAIJbzlUBGQ8arWakn2VSmXInUl7WkdcZSEYhkFVVRX4fD7S0tJcnv8FzWn4/fff8cILL+Cnn34C0JkxAICnnnrK54Pa7XaMHj0a27dvp//PJTAaDAacOXOGknkSExMhFou79CCTiDfUL1J3IPLSGo0GdrvdQW+Am03g2huH83jcqcZFRkY6cC28Fc3pDWwtLaiedCUYiQRpO3d4dSx3Ne6oqCiHNH0wlBj9AXdljOjoaCqyxDXnCoSCqZ1lUXS4HjOGKBEh5KOmyQBVrBgCLyfQnsiU3HsXKg6LN3Am7HHVCePi4hyIjP5Sew0kuORArvYLGQ9pY1er1XQ84dy2yi3N6fX6Llo2ZrMZDQ0NUKvVAICBAwfSudq5lGG32yGRSPz1XvWtoGHFihXYsGED/vWvfwEA/v3vf2P37t348MMPfT8oy2LYsGH45ZdfXBIYyX83NzejsrKSvmDR0dFISkpCUlJS2AmReILW1lZUVlZCq9XCarVSO9yUlJQ+OZ729nY6HrPZjIiICCQmJiI1NTWoDGzzyZOou+FGCHNzkLxsmc/fYzAYUFlZCY1GA5PJBIlEApVKhbS0tJBnr3yB0WhEVVUVbbsjWZWMjIyA6XSUatvx3JpTOFDVjOdnDcB1Y1L89t0mkwnV1dVoaGiAwWCgBLeMjIywXVi7g8ViQXV1Nerr69HR0UEVENPT0xEd3b3XRjjCYrGgtrYWdXV1aG9vh0AggEwmQ0ZGBmJjY0N9el7DarWivr4etbW1aG1tBZ/Ph1QqRUZGBuLj4wHAZSkD6FSMTElJCWjQcEHpNNjtdrS2tmLWrFmYNWsWCgoKkJOTg9bWVvz222/IzMykRklyuRzZ2dkQCoW0DlZXVweFQgGlUhnW/excsRCuTnx6ejokEgklANXV1dF0anx8fNiOxxVJTi6XY/jw4YiKikJjYyPUajX2798fVHld2zneB1+u8PqzrkiMQ4cORUxMDOV1HDhwwCtZ61CCEEC5ZYfBgwcjNjYWra2t0Gg0OHToEA0g/EUINNvs+HxnJf6xvRwRQj5emTMIhSMSe/29rmSb8/LyIJVKaebk2LFjYW3zzQUpv6jVajQ1NSEmJgY5OTmQyWS0I+PEiRO0KyrYHQzewpVVdkZGBhQKBRWXOnPmDCwWi0P7dKg1DroDKcdqNBqIRCKkpKQgISGBPotlZWW0C6+yshLjx4+n/11UVIQff/wRAoEAGzduDOjmKWwzDYEoTwCdD1tDQwM+/PBDLFu2DK2trYiMjMSECRPw2muvdesUyNVO6OjoCEmroDsQUhdh6nL9KdzV8u12O50YifWsUqkMC8U25xqmJ0xqIohD0spctcNALLhtP66F7rnnEDlzBhJeeaXbv/WFxOiJrHWoQM7NuexA0tru3gfnskxvuzGeXXMSKw/WYeYQJZ6angdFtO+TpS+yzf4mU/oTzlovnhizubNwD4eg1Tnw8YRYzG2DbGxsREREBA2KwuUdamhooER2lUrV7XxFrsELL7yAX375BR0dHYiIiMCCBQvw4IMP+jPLAPS18oTVasWAAQOwZcsWpKSkYNy4cfjmm2/cunt5io8++giffvop8vPzMX36dIwdOxZ79+7FypUrUV9fj+nTp6OwsLDHthXnlh2ZTAaVShU0AhR3ESImK4Sb4EutmCy4JHIPREtVT8fn1sV7y5Ym36dWq6HVaumCSzw+/IGWf/8bje++h5jrr4fsL493+b2/SYyh9iIgLX6ELEi6HXwNynztxtC0mjqDlGgRStTtqG404MqB3md7/B2U+Uqm9Cecn5HeZEadTba4fJRgZVqd51mpVEozo74EZc4dJt2JuAUC5Jo2NDRAr9cjMjISKpWqx3mWZVmcPHkSP/zwA9atWweZTIZ58+bhkksuwaFDh7BhwwYcOXIEf/rTn/DEE0/463T7VtAAAOvWrcPDDz8Mm82G22+/HU8//XSvD6zVat1mE5qamrBmzRqsXLkS5eXlmDp1KgoLCzFixIhuH1CyYyfiS/Hx8VCpVH5Ph5E0IlcsKhDyslzxFq1WSzXw/W296yvD2xeQyVStVvdKXIeLxvffR8tXSxF///2Iu+P2LgJYpK0qECTGYLkeOutOBKrbwbkbw1UZw2q349u9NfhgWxmuHKDAG3O966Qix/HV1dQbBNLm2/k4XDdPHo8XsGxUsDqTXLVGBiKjS4JgkoUgZWl/q22SDVlDQ4NX4lF2ux3FxcVYtWoVNm7ciOTkZMyfPx8FBQWQyWQu/16n03VruOgl+l7QEEq0trZi7dq1WLlyJU6dOoWrrroKBQUFGDduXI8BhHMKTaVS+ZTyd/ZA4CqMBZOp7dzK2ZsdOzfSJ7V8kk0IVjqXK+Pb0dHhsHvxZlLSvvAi2n/4AcLFD6Fp3LiQ2Uk7L7gRERF0wfU2yOOWHcgiFIruAOcyRr0tCp8dbMVZrQGX5cjw1xl5PbZREjjLNnuSpvc3emPz7QxSzycBSW/ut6/gaqA4y+L7EiCTjgeNRgOr1UozJMHsGOro6KBzk8lkclDw9TYQ55r3eVP6tdvtOHToEFavXo1NmzYhJycH8+bNwzXXXIO4uLjeDtFb9AcNvsJgMGD9+vVYuXIljhw5gokTJ6KwsBAXX3xxtw+Tc8rfkwiTKz1NZGLlcrlPD24gwG3lJK2P5OV2Ba5qHakpkkU1HBwvicCQWq32WICJ3CPjK69CvHcvrA89CHlhYch784GuO08APfp8+Lvs4G/8b18VXlx3BvIIHhYN4GNSrpROwN3dI3/INgcC3dl8d3ePnIWjeroGwYQvaqsdHR10Lgm31kiy6JNWe5FI5JCFcKeRwM04k82IVCrt9pmz2WzYu3cvioqKsHXrVgwaNAgLFizA1VdfHepulv6gwR8wmUzYvHkzli9fjn379uHiiy9GYWEhLrvssm4nWGdxH0LSk0qlVH+ddG74W3o6UCDpStJaR3YHAoHAIWIPJ3JYd3DewRGFTZlMRgMFLolR+PY7MP36KxRvvYmoyZNDffou4U58iHTRBLrs4Cs6zDY0dpiREh8BbZsZ3+6txh2XZiBCyKPZN65Illwup2MNlGxzoOCOTBkdHU0DWoPB4JAhCXXg0x3c+brI5XLY7XZa9iT3SKlUhoVZVXdwloQmQVFsbCzdGLa1tXlsLGi1WvH7779j9erV2L59O0aNGoX58+dj+vTpYRE0nUN/0OBvWCwWbN26FStWrMDOnTsxbtw4FBYWYtKkSd0y/Nvb21FbWwu1Wg2TyQSxWAylUomMjIw+2ZdPIuzq6mo0NTWBZVnExsYiNTUVKpUqrCc4dzCbzaipqXHoZZfL5cjIyKDRv3rxwzBs346Ed99B5BVXhPiMuwcJiKqqqqDX62Gz2RAVFUX1OsJhtwoANjuLoiP1+PvPpUiNl+A/t412+/zYbDbU1dWhtrYWbW1tVHgtNTW1x91duKKjowMVFRWUyBgREQGVSoWUlJSwD35cgWVZqNVqVFdXo7m5GQzDIC4uDqmpqT7LqYcaZrMZlZWVaGhogNFopMFPSkpKt5ksi8WC7du3o6ioCL/99hvGjx+PhQsXYvLkyeE67/cHDYGE1WrF9u3bsWLFCvzyyy8YMWIECgsLMXnyZBiNRqxbtw55eXlUXIl0OkRERDhwBgQCAZRKZdhH39zdEenLJ9kEhmG6pPxJWSYcdrGu0BOJkexiiRytQqGA5M23YN27F8oPPkDEpZeEeghd4Ew05fItBAJBwA2VvMWuska8uekMTta3YXhKLJ6clotRaY513O4MwYhhHJccSna44bo4OXNIuPLvYrE4KGRKf8O5ns8tpQBw4GkF2z/FV1gsFmg0GjQ0NMBsNkOhUEClUiEqKorqQuh0OmpdXVxcjFmzZiEqKgrbtm3D6tWrsW/fPkycOBHz58/HpEmTwqL01wP6g4ZgwWq14ttvv8U///lPHD16FFKpFCNGjMBTTz2FIUOGdLtwGgwGNDQ0QKPRgMfjeeQfEQy4EozyRNTGmdfRWxMqf8JXO2nS/97++OMQHD8B01+fguKqq8IitU+09kmqmxBNezq3UHMA1her8djKYiTHSfDo5GzMHKKkJj5cjoanss3kueOWMcjnQv0uuXonPOGQ+JNM6W/YbDYazHnTGskVOTObzR4/r8EA17fCarX2yN8COufJkpISvPLKKzh48CB0Oh3y8/Nx++2345ZbbukLgQIX/UFDMPDrr7/iwQcfxMCBAzFjxgxMmzYNtbW1WLFiBX766SdkZ2djzpw5mDlzZo8Sp4R0qFarwbIszUAEKyInEbS/Wqy4ffGkpkmComBlVfxpJ11/159h2r8fkr+9BX1SElXaIwtAsPq+ieIi0RroiVTXE5y7DQLlbqhtM6OmyYARqXEwWmxYfqAO145JgpDHUJEuQp7tbXcAue+EwBvsHTvRG9BoNGhpaaFsel8Jzr6QKf0NsvsmnKbetka6a8GWy+VBC/R8nXPb2tqwadMmrFq1CqdPn8aUKVMwf/58ZGZmYsuWLVi/fj2Ki4vx5ptvYsaMGUEZix/QHzQEA0ajEQKBwOWiarfbceTIESxfvhzr169HcnIy5syZg1mzZkEqlXb7vWazmT7Mnka93oLUvblmVoEyFwK6sqfJC+rPCSKQdtL1t98B06FDUP3rX5CMHuUwkZOUfyCCou7KDv7eyQRC16DZYMGXv1fh37uroIwRY+39F8HOWVRbW1sRHx9PAxV/B1+uNC4CUcZwJgoH0oo5WMqUznonpDPH3yx/kmEimxar1eoQ6PlzTNx5iGR3lUpljzyDlpYWrFu3Dj/88APKysowY8YMLFy4EKNHj3Z5fjabjXrl9BH0Bw3hBJZlcfz4caxYsQJr166FVCpFQUEBZs+eDYWie3U7V/U1X1XfXFljk2xCMFNp/pyMgmUnXXfLrTAfPQrVl19AMmJEl9+TtLpGowEAGuj50hXja9nBn+itgmKH2Yb/7KnGF79VotVoxYzBCiwcHAmRuTkkCpeAY8cMl+nvaxnDYDDQBYhlWQe9gWDB38qU3Oc4kOJR3cG5lEissX3NPnF9HoRCIVQqlUfBvV6vx9q1a1FUVISGhgbMnDkTCxcuxLBhw0JeTgkA+oOGcAXLsigpKcGKFSuwZs0aREREYM6cOZgzZ06P3Qekvk4c+HpKEToT/gA42P6GA7nK27RnMJUYuaj7080wFxcjcelXEA8b1u3fEgIf6ZghC1NPYyJZCzJZBzP93BO8lbX+6bgaj6woxviUCFyTCWTGC8PGS4PAuYxBylee3CetVguhUEg5O6HmTpDz85ZMyfVECGTGzFdwDex0Oh3sdrtXY/LU54FAo9FgzZo1+OGHH9DU1ITZs2djwYIFGDx4cFjMlwFEf9DQF8CyLMrLy7Fy5UqsXr0aPB4P11xzDQoLC5GcnNyjSIhOp0NDQwPa2tqoH0ZkZCQVWGppaUFMTAzt3giHSaA7uCNYRUdH07JDqJQY6264EeaTJ5H4n39DnO+5pLFzejw+Pp4GRaSWT8bUFxwuAdcp/3iZHNurzGjrMOBSlR06vR5aawQuGpDUJ8dEhL+kUimVWeeWbMKB3NsT3JEpZTIZ3X2HG2G5J7gz2SIOnr74PDQ0NKCoqAg//PADTCYTrrnmGixYsAC5ubnne6DAxYUTNGzYsAGLFy+GzWbDnXfeiSVLlgTycAEDy7KoqanBypUrsWrVKpjNZsyePRsFBQXIzMzstmOhtbUVlZWV0Ol0sFqtiIqKQkpKCpKTk8O2/awntLW1oaqqiu5sIyMjkZiYiLS0tJBMbLWLrofl9GkkffNfiAYN8uk7DAYDKisroVarYTabIZFI6JjCPaBzh7YOA7769RT+d6QROiMwWMrg1WlJyMjICIvdty+wWq2orKxEfX09DAYDzSikp6eHvQibO9hsNlRXV6Ourg7t7e1UiyQ9PR0xMTGhPj2fYLfbUVtbi9raWrS2tlKCaFpaWrdlLzLXrl69GmvWrAEAFBYWYv78+cjIyOjTgUIv1sMLI2iw2WwYMGAANm3ahNTUVIwbNw7ffvst8r3YCYYjSPT7/fffY9WqVWhubsasWbNQUFCAvLw8NDc349dff0Vubq5DzY/s6Lh+GOFkgd0duiMxSiQSNDc30/p6KHZGtddeC8uZs0j67juIBuR59Jnuuh0iIyNdprpJz344g6TAtxyvwxdHjdAbWQxJjML9k7IwJklCOSZAz7LW4QKuNofZbHYov5DSDOnCCQUfwxeQ7AlRMCQKofHx8bSEFo42393B2e+HO7+R8XI5W6Wlpbj44oshl8tRVlaGoqIi/Pjjj5BIJJg7dy7mz5/fY1a3r6CX6+GFETT8/vvveOGFF/DTTz8BAF577TUAwFNPPRWoQ4YEGo0Gn376Kf773//SFOlFF12EN954o1tynC9+GMGELyRGV62cwZCnrZ2/AJayMiQtXwZRTo7bv3P2DfC07BAOpDp34BII6zVagC9CVooK9RYJ3tlagfsuz8SlObIuE68rWetwkkbmMukBzwIcd2WMcHunnOXeu+MwhYPNd3dw5/Pgydz33HPP4ddff0VbWxtiYmKwaNEi3HfffX1WvbY79HI9dHkxwrtY5QNqamqQlpZG/z81NRW7d+8O4Rn5H59//jk++OADZGdn47HHHsOECRNw4MABrFy5Etdccw2mTp2KuXPnumT0MgwDqVQKqVTq4IdRWlpK/TCCuVt3R2LMzs72mMTIMAxiYmIQExODnJwcOvEfPnw4oEY4rN3eeXwXkxRpgdNoNDCZTJDJZEhKSsKgQYM83rVFREQgIyMDGRkZdOIvKSkJePueOzgHP8KIaOzS8LHimB2X50bhpYtSkQrgv5lyt+ckEomQkpKClJQU+n11dXU4efIkXWz9bbXcHbhtssQGXqlUYvjw4R4vjgKBACqVCiqVyiGYKisrg1AopHyHYJI9XRnL5eXleRxw8ng8ynvikimPHTsWMmVKwm/iZklSUlKQn5/f7TnY7XacOHECq1atwk8//YTExEQsWbIEEyZMwN69e7Fu3TpMnz4dd955Jx588MGgjCVYCMR6eN4FDRcCZs2ahT/96U8Ou+ihQ4fi5ptvRktLC9auXYt33nkHp0+fxuTJk1FQUIAxY8a4DCDi4uIQFxeH3Nxcyi4uLy+nZk0JCQl+J6y5U2IcOXKkX44VGRmJzMxMZGZmUsvdEydO+N9y12br/Def77bsMHDgQL/UvEUiEZKTk5GcnEwJrzU1NThx4kRAy02uZJsj4hOwqV6Cb7fXoMVoxfiMeFw9VEU/4+l15bZschfvsrKygMpaO6eziSBXZmZmr4MVhmEQHx+P+Ph4AJ3ZIo1GgxMnTgS8jOHKwn7IkCG9vn4MwyAqKgpRUVHIzMykZMqqqqqAK1NarVZaIiLdYRkZGT12etntdhw+fBirV6/G5s2bkZGRgfnz5+OJJ56g9wYAhgwZgltvvZV2bPWjZ/SXJ85jdHR0UEvvo0eP4oorrkBhYSEuuuiiHtOm7e3ttD3JH34Y/lRi9BVE6ZA7AfVGwa56xkzY1Gp0vPcumoRCytoOZmcAkff2VpLYHTyRbf6/dafx3b4aTB6kwB2XpGNEalwP3+o9nFsfeytrTVqTNRoN2traPJY59ie49fWWlpZeZ1ZIoErKciTQ741ypi/n4G9lyu58HnoKFPbt24fVq1fj559/xsCBAzF//nzMmjWrzxI7e4tAlCfOu6DBarViwIAB2LJlC1JSUjBu3Dh88803GDJkSKAO2SdgNBqxadMmLF++HAcOHMAll1yCuXPn4tJLL+1xwnKlmNaT+E0glRj9AbJbV6vVXmnlc8sO8Q8tBq+9HdHfr4Q0PT3kZLHuzI88uVfuZJtP1rfh898qccO4FIxKi0N9ixEdZhuyFcGTK/ZF1prrHUBMxhISEsJCj4SrvqrT6TwuYzhzkqKjoyknKRxaI31VpvTF5wHofI9///13FBUV4ddff8Xw4cMxf/58zJw5MyzmmVCjl+vhhRE0AMC6devw8MMPw2az4fbbb8fTTz8dyMP1OZjNZvz8889YuXIlfv/9d4wfPx6FhYW4/PLLe9yhdKfNHiwlRn/DOV3NJbLxeDy0tLTQyZ3spBISEqC5ajJgNiPtt53ghWErIUmNc3frZCK29SDbbLOz+KVEh3/vrsLu8iZEivh4ekYe5o5MCumYepK1Jil6kiUJFJ/F3zAYDDQwImUMhUKBuLg4sCxL71Vzc3Of6n7qjkzpq8+DxWLBzp07sWrVKvz+++8YO3YsFixYgKlTp4YFSTPc0Iv18MIJGvyBqqoq3HzzzWhoaADDMPjzn/+MxYsX44UXXsBnn32GhIQEAMCrr76Kq6++GkBn6ufzzz8Hn8/H+++/j+nTp4dyCB7BarXi119/xfLly7F9+3aMGjUKBQUFuOqqq3qshZpMJuorbzabaYtgSkpKQJUYAwmWZaHX61FdXY3GxkbY7XZER0cjJSUFSqWSpvxZmw2V48YDDIP0fXvDfqwWiwV1dXWoqamBwWAAn8+HXC532b/Osixu/PIADlW3IDFWjBvHp2LBqCTERYSXGBNJz1dXV1N/goiICCQlJSE5ObnP6lxYrVao1WqqNQAA8fHxSEtLg1zunmQaziBkytraWjpfEKXJ9PT0Hucas9mMbdu2oaioCHv37sUll1yCBQsW4Morrwx7kTCgz64n/UGDN6irq0NdXR1Gjx6N1tZWjBkzBqtXr8ayZcsQHR2Nxx9/3OHvjx8/juuvvx579uxBbW0tpkyZgtOnT4f1DtsZNpsNO3fuxMqVK/Hzzz8jPz8fhYWFmDp1KiXzNTU1oaOjA01NTQ4kxri4ODQ1NXldhwwXOHc7kJ2eQCCgO1euboLQZkPVZRPBREQgfeeOUJ++S7giZ5IaOslCNDc3IzY2FlZJPH6tNOK+K7LB5zH4/lAdIkV8TBmkgCDMdrN2ux16vR5qtZqeP+FckO6OvqSdQOBKF0KpVNKskDdljHCCK36UVCqlpTRCpiQKtTKZDEDnO7llyxasXr0ahw8fxhVXXIEFCxZg4sSJYVGK8QZ9dD25MFou/YWkpCQkJXWmYmNiYjB48GDU1NS4/fuioiIsWrQIYrEYWVlZyM3NxZ49e3DxxRcH65R7DT6fj8svvxyXX3457HY79u7di+XLl+PFF19EdHQ0rFYrDAYD3nvvPYwYMaKL9npkZCSSk5Mp4/ns2bOUcKhSqcKilkxACFzcskNCQoLLbgfSykl0E44ePQqmpQUKAAizdKi79H16errDjiw6OhoyuQI7z+rw/u5K7Cg9DR4DpDBNmDAgCbPzg0em8wTOvAZ3LaxRUVFIS0ujpEPC8I+Li6MBUzgF8tzWSLvdjoSEBAwYMKBLLV8qlSI3N5eWMbjdGCRoD6d3y9nnQalUYtSoUQ7PYFRUFG1TbWlpwcmTJ3HfffdBKBRCIpGgqakJM2fOxD333INLLrkkrO6btzif1pP+oMEDlJeX4+DBg7jooouwc+dOfPjhh/j6668xduxYvP3225BKpaipqcGECRPoZ1JTU7t9KMIdZ8+exbJly7B161bk5uZi2LBhMBqN+OWXX/Dxxx+joKAAV199tUP7EoFAIKAvCemtrqiocPDDCMUkR3ZspNWTtNo5L6juwNVNaC8thRaAVcDH7t27HYhbwR6XqwVVqVRiwIABbmveVY0G3Pb1IdQ2GyGLFOLPl2Vg0dhkRPE6A75Dhw557WLpbzg7nyoUCmRlZXnUQcHVTiAdJiSQdSZ6BhvOrZFKpdLj1siIiAikpaXRwEiv19PW20C2PvYEruaLTqejmi+etLG2tbXhp59+wg8//ACRSIRJkyYhKioKx48fxy+//AKg01Svr6v6EvT19aQ/aOgBbW1tmD9/Pt577z3Exsbi3nvvxbPPPguGYfDss8/isccewxdffBHq0wwIJk+ejJdfftlhwWBZFseOHcOKFStQUFAAuVxOLb3lcnmX7+Dz+Q6TN1dfIBhtb1y5X1J2SE5O7rVDncBoAgBI5AqMHj0aWq3WIbMS6HZSIrbD3aF2J4hls7PYeVaPJoMFc4YnIjlOglFpcXh8ag6uGqiAiP/H9Y+OjkZWVha9dmRX2xsLdk9A2j1JOYgELfn5+b0KWng8noOgGbl2hw8fBhB4WWtnASl3O29vwW2F5h6jvLwcQqGQEnYDFfC5VqFBTQAANXhJREFUU5fNzs7uMSvQ1NRELabr6uowY8YMPPfccxg+fLjDXGAymfDLL78gRGV0v+N8WE/6OQ3dwGKxYPbs2Zg+fToeffTRLr8vLy/H7NmzcezYsS79r9OnT8cLL7wQFumkQIFlWZw+fZpaekdHR2POnDm45pproFQqe+ypDoQfBnfy1Ol0EAgEdFfpT2Mhw+49UN97L8RjxyLxn5/Sn3O7ElpaWqiDZW/1+7lKg3q9noof9eRL0dBiwveH6rDiYC3qmk0YoIzCqrvHeb3oEydBtVpNsxlE/rm34yLtnnq9HhEREVRrIBgEt0DJWpM2Vq4TJhlXMNLszt0Y/tJF6c17q9Vq8eOPP6KoqAh6vZ5aTPek6Hi+oA+uJ/1ESG/AsixuueUWyGQyvPfee/TndXV1tDb17rvvYvfu3fjuu+9QXFyMG264gRJXJk+ejJKSkj5dh/MGLMuitLQUK1euRFFREQQCAebMmYOCggIkJSV1Oyn01g/DeaEmZYdApmnbN2+G9oknEXnVVUj421su/8Z54fBlXFzZZm89Db7eVYU3N52BnQUuyZZi4ehkXOmUVfAFhIhIWul8HRfxDQgXvoG76+2p+JKrcalUqpAbPpEyhq/vhy8+D8AfJntr1qxBUVERDAYDtZjOy8u7IAIFgj66nvQHDd5gx44dmDhxooN/w6uvvopvv/0Whw4dAsMwyMzMxKeffkpv+iuvvIIvvvgCAoEA7733HmbOnBnKIYQMLMuiurqaWnrbbDbMmjULc+fORVpaWo8BhHNtVKVSdZngSOrc3zspT9H6/ffQv/wKogoKoHj+uR7/3nlc7nbUrmSbPRkXy7I4XN2CoiP1uH5sCgaoorG/sgm/lOiwYFQy0mWBS1FzxyWRSGgGhMsXICp/Go0GBoOB8i7CicDHhXPGyp2sNVGaJBkY0vHQV8blroxBAvGGhgavuEgsy6K2tpZaTNvtdhQUFGD+/PnIysoKy2sSDPTR9aQ/aOhH8MGyLOrr66mld1tbG7X0zsnJ6XECIixsjUYDgUAAoVAIo9Ho0Hrmz7KDp2j+1+do+vhjxN56C6QPPeTVZ7m1e41GA4ZhIBKJYDKZHMSjPKmxVzUasOZIPX442oBKvQESAQ8vzB6IOcMTfR1ar0AkqAnXQiwWw2w2A3DkDvS1xYMra22xWCCRSGCxWGC32wPO9QgkuGUMs9kMsVgMm80Gq9Xqscw6y7KoqKhAUVER1qxZA5FIRC2mU1JS+tw16QdFf8tluCEzMxMxMTHg8/kQCATYt28f9Ho9rrvuOpSXlyMzMxPLli2jBK7Fixdj3bp1iIyMxFdffYXRo0eHegg9gmEYJCUl4f7778f9998PjUaD1atX44knnoBOp8PMmTNRUFCAQYMGdZlc7HY7DAYDTKZO0qFQKASPxwPDMGAYhl63UMCm0wEA+AqF159lWRZmsxkWiwUsy0IoFILP54NhGEr46m6itdrtEPB4MFltmPvpXhjMNozPjMfdl2Vg6uAERItDc01YloXdbofNZoPdbgefzwefzwePx4PNZqM/74sg94NlWfB4PPD5fNjtdlitVlgsFpjNZrAs2+cWSIFAQJ89APS/zWYzTCYTjEYjoqKiurxnLMvizJkzWL16NdauXYvY2FjMmzcP33//fZ+0mL4Q5mJ/oT/TEEJkZmZi3759UHAWnieeeAIymQxLlizB66+/jsbGRrzxxhtYt24dPvjgA6xbtw67d+/G4sWL+7zlt16vxw8//ICVK1eipqYG06ZNw7hx43D48GHs3bsXf/nLX9ym5135YSiVyqDJyGqeeAIdm7dA8dpriJo+rce/J7oB7mSbCcxmMx0XEclSKpWw8cXYelqH9cVq6DvMWHHXOADAz6e0GJQYjeS40MhYc30riGEW4Tdwyy5k/MTW2FP/iFDBuZODEGqdnzFnXYzeGoYFA+QZ687nwdmI6r333kN+fj7GjRuHAwcOYMOGDVAoFJg/fz4KCwsd5rC+iAt9LnaD/vJEuMHVgzpw4EBs27YNSUlJqKurw6RJk3Dq1CncfffdmDRpEq6//vouf9eXQUSkVqxYge+//x5msxnp6ekYOXIkFi1ahFGjRvW4qPiqYd8b1N9+B0yHDkH12T8hGTPG7XlxeRfeGiZZrVZsOlKB/+6tw2G1BTYWSIoVYeYQFRZflQ1hLwmNvsLZ7IsEQJ52vrgSoAoH0yVPeSfdfd7ZMCyUOhdc+PqO2O12HD16FN9++y0OHDiAqqoq8Pl8FBQUYMGCBZgwYcJ5Qfbun4tdor88EW5gGAbTpk0DwzC4++678ec//xkNDQ304UtMTERDQwMAoKamBmlpafSzROyjrz+oL774IioqKnDNNdfgueeeQ0xMDNra2rB+/Xp89NFHKC4uxpVXXomCggKMHz/e5QQlkUiQnp6O9PR06pZ34sQJr9zyvIVNqwUA8DnaFO5kmwcPHuzxotHYYcYvJTpcmi1DQowYFkEUag083DQ+FReniiBjW9HaqsGZ0xa/tHJ6CufWRHe+FZ6Ax+NBLpdDLpc72DuXl5d73ErqL7jrcPFEa8AZDMMgJiYGMTExyM7O7qJzEWxZa4PBQPlAJBs3dOjQHkWk7HY79u/fj6KiImzZsgV5eXmYP38+Xn75ZcTGxqK9vR2bN2/Gl19+idWrV+Ott1x3D/Ul9M/FnqM/aAghduzYgZSUFKjVakydOhWDBg1y+D2p3Z/PePHFF7v8LDo6GgsXLsTChQthNBqxceNGfPXVV3j44Ydx6aWXorCwEJdcconLXalYLEZqaipSU1MpY//06dN+98MgnAZGJqNlh+5km7tDmbYDP5/WYuspLQ5VN8POAs/OHIDrx6Xg6qFKzB6mAo9zvtyF7vTp07SFzt8aAFwBKZZlkZCQgLy8PL8GYAzDIDY2FrGxscjNzaXHPHr0KD2mv4WXnFsjiZZGdwqavkAikTioNwZD1ppLsCXiTyNGjOhR+dJms2H37t0oKirCtm3bMGzYMMybNw8vv/xyF6JxVFQUCgoKUFBQ4LfzDjX652LP0R80hBApKSkAAKVSiblz52LPnj1QqVS0d7eurg5KpZL+bVVVFf1sdXU1/fz5DIlEgjlz5mDOnDkwm83YsmULli1bhscffxwTJkxAQUEBLr/8cpcLtFAoRHJysks/DMIV8MUPw9TcDNZgACsUYu+xY5CdY5l7uui0GC1o7LAgQxaJpg4LrvlkN+wsMCgxGndPzMRVAxTIT4oGAJdmUTweDzKZDDKZzCGlXlZWRtUGExISvK6pc3f93DbDYcOGBY0rEhkZSaW6SXajpKSEZjc8YfO7ApHaVqvVtOUzJSUlaMJCgZK1JiURwr0Qi8Ueq01arVb89ttvWLVqFXbu3InRo0dj4cKFeOuttzyStD6f0D8Xe45+TkOI0N7eDrvdjpiYGLS3t2Pq1Kl47rnnsGXLFsjlckq+0ev1ePPNN7F27Vp8+OGHlHzz0EMPYc+ePaEeRshgsVjwyy+/YMWKFdixYwdGjx6NwsJCXHnllT0ucMQPg5DyPOmt5+66eQ0NkD/7HHhJSUj9cU2Pi462zYxjtS04UNmMXeWNOF7XiglZUvzrppEAgA3H1RieEusXMiOpqXN9DRISEtwuAuHKL3CGM4/CEyVCUqpSq9VBkcH2Fdw2VaBnWWt3Pg/ElbU7mM1m/PrrrygqKsLu3btx8cUXY/78+bjqqqvCyqAsmOifi92inwgZTigtLcXcuXMBdEb8N9xwA55++mnodDpce+21qKysREZGBpYtW0Z3lA888AA2bNiAyMhIfPnllxg7dmyIRxEesNls2LFjB1asWIFt27Zh6NChKCwsxJQpUzwierlTu+OK4IjFYjqZs8XH0XDnnVCn5WFc0Xf0uyw2O6oaDSjVdkDXbsZ1Yzp3H7d9fRC7y5sg4DEYkRqLizKluDRHhlFpcQG9LsT+mpDfCL9DJBL1qU4GZ7jq2CA7davVStPzhPCXkJAQEi0PX2A2m2lAy5W1jouLQ3Nzs0+qqUajEVu3bsXq1atx8OBBTJw4EQsXLsTll18eVoFhqNA/F7tFf9BwIeLUqVO47rrr6P+XlpbipZdeQlNTEz777DMkJCQA6FQnu/rqqwEAr732Gj7//HPw+Xy8//77mD59ekjO3RfY7Xbs2rULK1euxKZNmzBgwAAUFhZi2rRpiI6O7vazFosFlZWVqK+vh9FohEQigUqlQkZGhkOq13zmDCo/WwqbKgkDH70PS3dV4dt9NahtMsJq73y0BTwGe5dMhFjAx76KJgBAflIMIkWhYZq3tbWhvLwcWq0WNpsNsbGxSE1NhUql6hOBgjvY7XZoNBpUVVWhpaWFkiwzMjIQGxsb6tPrFSwWC6qqqlBfXw+DwQCxWEyfx56yAh0dHdi0aROKiopQXFyMq666CvPnz8ell17ap7odLrT5K8zQHzRc6LDZbEhJScHu3bvx5ZdfIjo6Go8//rjD3xw/fhzXX3891TyfMmUKTp8+3acmGgK73Y6DBw9i+fLl+Omnn5Ceno6CggLMnDkTcXGdu/yqqirYbDY0NTU5yDbHxsaiubkZDQ0NPfpG/HCkHttO65AmlSBbEYVsRSSyFJEhE1ki4Ka9GYZxkHfmSh8TSefemjQFC921RhLuikajgc1m63MqlMTXo6GhgZI0iXwzKT0RvolcLofNZkNWVhYAoLW1FRs3bsTq1atx5swZTJ06FQsXLsS4ceP6dGBIcKHNX2GA/pbLCx1btmxBTk4OMjIy3P5NUVERFi1aBLFYjKysLOTm5mLPnj190q2Tx+NhzJgxGDNmDF599VUcO3YMy5cvx5QpU8Dj8agc8DvvvINhw4Z1qSFz7ZRbWlrQ0NCAs2fPIioqCiqVinYrzBmeGDLZZi7c+UC4Ys8nJiYiMTGRlmdqa2tx8uRJv7mN+hvO7oruWiOFQiFtvyXdM4T8Gq5+F858DXckzbi4OMTFxSE3NxcGgwGnT5/GAw88gNbWVkRERMBkMqGwsBBPP/00Ro4cGVb3zx+40OavcEV/0HAB4bvvvqOCJADw4Ycf4uuvv8bYsWPx9ttvQyqVoqamBhMmTKB/Q3qQ+zrOnDmDr776Clu3bsXgwYMxZswYtLe3Y9OmTXj99dcxZ84czJ49GwkJCV0WFIZh6ITN9cMg3QokgAiFAiDZmarVajQ3N3utM8Dj8f7ganDcRktKSoJu5+wM58WU8E0GDhzo0YLI7Z4hbZY1NTU4ceIEYmNjaXAUirFxja46Ojq80r3Q6XRYu3YtVq9eDR6Ph/nz5yMuLg6HDh3C+vXr0dHRgT//+c8YOnRokEYTHFzI81c4ob88cYHAbDYjOTkZxcXFUKlUaGhogEKhAMMwePbZZ1FXV4cvvvgCDzzwACZMmICbbroJAHDHHXdg5syZWLBgQYhH0DucPHkSZWVluPLKKx06CViWxdmzZ6mlt1gsxjXXXIOCggIkJib2OIFz292EQiEl3gWSiW6xWOhiSsoLCQkJPVoVewNu+6VWq+1VK6c3cG6N7E2bpTuwLOtAKiQtj8EYGyGmmkwmj7s5WJaFWq3GmjVrsGbNGrS2tlKL6QEDBjh8lnRHKJVKDB8+PGBjCTYu9PkrROgvT1zIWL9+PUaPHg2VSgUA9N8AcNddd2H27NkAzt8e5EGDBnURbAE6swi5ubl48skn8cQTT6CyshIrV67EbbfdBpZlMXv2bBQWFiI1NdXlxB4dHY3o6GhkZ2dTP4zDhw/73Q+DK0lNHAizsrIC1j7oLLpERIMOHjzoUSunN+C2RlqtVigUCuTk5ASMh8AwDOLj4xEfH+/gMUHG5k/pZ1c+D54IZLEsi7q6OuocabFYUFBQgH/84x/Izs52e11EIhGmTJnS6/MON1zo81c4oT/TcIFg0aJFmD59Om677TYAoKIlAPDuu+9i9+7d+O6771BcXIwbbriBEokmT56MkpKSC45IRCbt77//Ht9//z0MBgO19O5u0ibgav0DoO2Oni5EZDHjai6Em48Bl2zorVQ313CMkDQD7RfiCUhwxg1gvNV24F4fu92OhIQEqFSqHsfGsiyqqqqwevVqrFmzBgKBAIWFhViwYIHboPVCQf/8FRL0d09cqGhvb0d6ejpKS0tp18Cf/vQnHDp0CAzDIDMzE59++il9CV955RV88cUXEAgEeO+99zBz5sxQnn5YQK1WY9WqVfj++++h1+tx9dVXo6CgAAMHDuxxMjeZTDSAIIusSqXqoh0QqrR5b0B0BRoaGhxS7s5Km87KhdxSTrDUJr0FKZVoNJoey0DOPg8kCOopE0PKY0VFRVi7di2ioqIwb948zJs3z6Py2IWA/vkrZOgPGvrRD39Ar9ejqKgIK1euRF1dHaZNm4a5c+ciPz+/R04BkUZWq9Uwm82QyWSQSCRoaWlBS0tLyAl6vYEr++uoqCgYDAbo9XpERkaGvW20OzgTTknpxmw2Q6fTUZ8HIp7VHViWxcmTJ/HDDz9g3bp1kMvlmDdvHubOnUt1B/rRjzCAy6Dh/OrJ6UfQcPvtt1PXPAK9Xo+pU6ciLy8PU6dORWNjI4DOSfKhhx5Cbm4uhg8fjgMHDtDPLF26FHl5ecjLy8PSpUuDPg5fIJPJcNttt+HHH3/Ezz//jCFDhuD111/HZZddhueffx4HDhyA3W53+VmRSASlUonExESIxWLU19ejoqICjY2NUCgUSEtLC1m3Qm8hEAiQkJCA5ORkxMXFQaPRoLKyEg0NDYiJiUFycjJUKlWfCxiAP5w509LSkJCQgObmZlRUVKC2thYCgQCJiYndBgzEYvqll17CxIkT8cILLyArKws//fQTNmzYgD//+c99ImC4kN/7fnSiP9PQD5/w66+/Ijo6GjfffDOOHTsGAHjiiScgk8moVntjYyPeeOMNrFu3Dh988AHVal+8eDF2794NvV6PsWPHYt++fWAYBmPGjMH+/fshlUpDPDrf0NbWhnXr1mHFihU4efIkrrrqKhQUFGDcuHE4e/YsNmzYgEsuuQQ2m42m8QnZzxc/jHCBu9ZIksbntnIS2WeVShV2/hau4InPAyFSarVaMAyDPXv2YNKkSRg0aBAOHjyIoqIibN68GTk5OZg3bx5mz55N0+x9Df3v/QWF/vLE+Y6Ojo6gauyXl5dj9uzZdPIYOHAgtm3bRl3hJk2ahFOnTuHuu+/GpEmTaI81+Tvyz6effgoAXf6uL6OjowP//Oc/8eWXX6K6uhqJiYm44oor8PzzzyMmJqbbzzpbN5NFWCqVhk0AQdoHNRqNV62Rrpw0g9Gm6g0It6ShocFrn4eOjg68/PLL2LJlC2pra5GYmIibb74Z9913X4/3va+g/72/YNDfcnk+o7q6Gtdddx3+97//ITU1NSTn0NDQQMlIiYmJaGhoAADU1NQgLS2N/h0RXHH3876OL774Au+//z4GDhyIJ598EpMnT8a+ffuwYsUKTJ48GZdccgkKCgpw2WWXuUzVczsliBJifX09Tp06hbi4OKhUqpCYS7kidObk5PTo6cGFq1ZOjUZD21Q9JRD6G8QEq6GhAU1NTZRbkpeX1+N1JhbTRUVF2L59O0aNGoWXX34Zl1xyCbZt24bVq1fj0ksvxV133YUHH3wwSCMKHvrCe8+ybNgE3H0d/UHDeQCWZZGamopx48bhu+++w+OPP47GxkZs2rQJERERuOaaa4J+TgzDXLAv6fTp03HjjTc6dAXMmjULs2bNgsViwbZt27By5Uo8+eSTGDt2LAoLCzFp0iSXO21SS5fL5WBZlkopnz59GjExMVCpVAElTTq3RiqVSuTn5/utNTIqKgpRUVHIzMyk7Y7FxcU+t3J6A1c+D54qTlosFmzfvh2rV6/Grl27MH78eCxcuBB///vfHe7jwoULsXDhQpjNZrqYns8I1/f+1ltvxcKFC6meQz98R3/QcB6AvKSJiYng8/nUulUgEFBlNLvdHvCdqUqlov3TdXV1UCqVANwLrqSkpGDbtm0OP580aVJAzzEY6E5MRigUYurUqZg6dSqsViu19H7mmWcwYsQIFBQUYPLkyS4XZYZhIJPJqD0v8cM4c+ZMFz8MX+HcGknKB678K/wNiUSCtLQ0pKWl0fJHSUkJjEaj21ZOb+HK5yE5ObmLz4MrmEwmbN26FUVFRdi/fz8uu+wyLFq0CJ988kmP5E6RSOSwuz6fEI7vvc1mc3gPFi5ciF9++QUCgQAzZszw67EuNPRzGs4jVFZW4tprr0VaWhqys7Px17/+NaCEK+fa5l/+8hfI5XJKiNLr9XjzzTexdu1afPjhh5QQ9dBDD2HPnj3Q6/UYM2YMZVWPHj0a+/fvh0wmC9g5hytsNht27dqFFStWYMuWLRg4cCC19PZEPZAr+cx1ffSkU8G5hh8VFdWF7BdKOJNEveV4uPJ58FSa2mAwYPPmzVi9ejWOHTuGSZMmYcGCBbjsssv6ZIeLPxCO7z3LsrDb7V3uicFgQEREBCwWCzZv3oz333+fCmf1o0f0EyHPV5B63cGDB3HnnXdi0qRJePvtt736jpqaGq/kVq+//nps27YNWq0WKpUKL774IgoLC3HttdeisrISGRkZWLZsGd0VP/DAA9iwYQMiIyPx5ZdfYuzYsQA66/+vvvoqAODpp5+mim8XMux2O/bv348VK1bgp59+QlZWFubMmYOZM2ciNja2x8+TTIFGo3FLNHSlO9AX9CE8PW9ffR6Azuu3adMmrFq1CiUlJZgyZQrmz5+PCRMmnHfOkd4iXN57o9EIk8nkclPEsixefPFFfPfdd5g2bRqee+45KBQKAMAVV1yBu+++GzfccEMvr8QFgf6g4XwFCRr+97//4cSJE7j++usxcOBAhxQduc+uJsyzZ88iLy8P//rXv3DrrbeG3cR4++2348cff4RSqXTY3axZswYikQg5OTn48ssvER8fj/LycgwePBgDBw4EAEyYMAH/+Mc/AAD79+/HrbfeCoPBgKuvvhp///vfw7L+ygXp71++fDnWr1+PxMREFBQUYNasWR61qDlzEiIiImC1WtHR0REQo6tggqugqdPpEBERAZFIBIPB4DUnorm5GevXr8cPP/yAiooKTJ8+HQsXLsSoUaPC/tpcaO9HR0cHHn30USxevBiDBw8G0Oli++mnn+LHH3/E/fffD7PZjLvuugu33norcnNz8cYbbwAA3n//faxfvx7r168P5RD6CvrFnc5XMAwDq9WKU6dOITIyEllZWQDgsPPqjqB08OBBAMAvv/wCHo+H5uZmPPPMM/Tnocatt96KDRs2OPxs6tSpOHbsGI4cOYIBAwbgtddeo7/LycnBoUOHcOjQITohAsC9996Lzz77DCUlJSgpKenyneEIHo+HESNG4OWXX8a+ffvw1ltvob6+HnPnzsXcuXPx5ZdfQqPRuP28UCiESCSCUCiExWKB0WiEwWCAQCBAREQEIiIiwn5RdAeGYSCRSGiwQMZmNpsdxu0Oer0e//73v7FgwQJcc801KC8vx0svvYT9+/fj9ddfx5gxY/rEtbmQ3g+WZREZGYmKigqYzWYAwP3334/rr78e+fn5ePvtt/Gf//yHtsrefffd2Lp1K/38zJkz0djYiBBtls8L9Bd2zhOcPn0aZWVlmDJlikMammVZ/Pjjjzh06BDmzp3roORGsGbNGlxxxRXIy8sD0LnjqK2tRWtrK/0OQqQMxc7j8ssvR3l5ucPPpk2bRv97woQJWLFiRbffUVdXh5aWFkyYMAEAcPPNN2P16tV9SpeeYRjk5+fjueeew7PPPoszZ85gxYoVuP766yGRSDBnzhzMmTMHHR0dWLZsGQYNGoTk5GSXzoqkffL48eOw2WxUAjmYOh++wmAw0NZP0tExZMgQhzZNruOoRqPBgQMHcN111yE+Ph5r1qzBDz/8gObmZsyePRtvv/02Bg0aFJa7ak9wPr4fZWVl1FcC+CObyjAM1Go1Ro0aBb1eDwCYM2cONm/ejNmzZyMhIQGlpaWUgDlt2jQsXrwYR48exbBhw2C1WjF+/HiUl5fTzVU/vEP4h9H98AiDBg3C4sWLMXHiRACO5YhRo0ZBo9Hg5ZdfRnV1tcPnqqursX//fnzyySfYvn072tvbcezYMaSlpdEggmEY8Pn8sJ1Uv/jiC4fJraysDKNGjcIVV1yB7du3A+jkbHD1K/q6JgTDMMjLy8NTTz2FnTt34plnnsGmTZswevRozJ8/HyUlJcjIyMC4ceOQlZXVJUUvFouRlpaGMWPGYOTIkRAKhTh16hR2796N0tJStLW1hWhkrtHe3o6ysjLs2bMHJ06cAJ/Px4gRIzB27Fikp6d30XWIjIxEZmYmxo4di4yMDFRWVmLRokUYPnw41qxZg0cffRS7du3Cs88+i8GDB4fts+0P9JX3w2azUfn1/fv347vvvkNjYyMOHDhAVVOBzpJdbW0tvefTp0+H1WpFS0sLACA7OxtNTU04fvw4gM658YsvvgDQOd/ZbDZkZWX1Zxt8RH+m4TwBj8fDyJEj6f9zJ8HU1FS8//77ANDlRdm8eTPy8vKQnp6O9vZ2mM1mnDhxAhMmTEBSUhKKi4vxwQcfYODAgbjxxhuhVCod2jedW5uCjVdeeQUCgQA33ngjACApKQmVlZWQy+XYv38/CgsLUVxcHLLzCzSOHDmCO+64A0lJSViwYAG++uormM1mrFy5Es888wxMJhNmz56NgoICZGZmulwcRSIRbYUjzo5nz56FwWDwW6ujtyDW4A0NDbT1U6VSYdSoUT12hLAsi+rqaqxevRo//vgjGIZBYWEhXnnlFcTExGDdunX45z//iaeffhoff/wxLrrooiCNKvjoS+8Hdx6RSCR4+eWX8dVXX2HChAn48ssv6e8TExNhNBpRXl6OMWPGQCQSYcyYMVi+fDmWLFmC7Oxs8Hg8/Pzzz8jPz8cTTzyB2tpaAJ2qlKRz4nwOFAOJ/qDhAgC3Hcn5Rdm0aRMmT56MyMhITJgwAW+99RYEAgFGjx6NXbt24Z577sGDDz6IPXv24N5778WKFSvA4/GgVquhVCrpi7xr1y4olUqkp6cHrZ3pq6++wo8//ogtW7bQcYnFYiqqNGbMGOTk5OD06dNISUlxyLKQnvG+jry8PGzdurWLKuNDDz2EBx98kFp6P/LII2hubqaW3nl5eS4nTaFQiKSkJCQlJdFWx/LycrS3twfcD4O0jjY0NFBio0qlQkZGRo/PFMuyKCsrQ1FREX788UdERERg3rx5+N///oekpCSH873ppptw0003oaOj47zebYbj++Gu1GkwGPDf//4Xa9euxcSJEzF+/HgMGzYMDz/8MK677jr6d2STctlll2HXrl2YMGECsrKysHDhQrz00ktYsmQJUlNTMWXKFKSnpwMALr74Yvp5hUKBF1980e/jupDQX564AEDKC86orq7Gtm3bUFhYCKAzbbl7925kZGQgPT0dX3zxBQoLC3HHHXfgvffeQ1RUFPbu3YuDBw9i2rRp+L//+z+88847KC0txX/+8x9qEQwA77zzDo3uA4ENGzbgzTffxA8//OBQh9doNDSNWVpaipKSEmRnZyMpKQmxsbHYtWsXWJbF119/jYKCgoCdX7AQERHhVsaZYRioVCrcc8892LhxI9atW4fU1FQ8/fTTuOKKK/DKK6/g+PHjbhdOPp8PlUqF4cOHY/z48ZBKpaiursauXbtw8uRJ6PX6Xi+6xMzq1KlT2LVrFyoqKhAXF4dx48ZhxIgRSExMdBswsCyLU6dO4Y033sCVV16Jxx57DAqFAkVFRdiyZQseeOABJCcnuw1wIiMjA6Y2GWqE0/tx5MgRGpBwS50Wi4X+zUsvvYRt27bhoYcewk033YTLLrsMhYWF2LdvH1pbW+lzRjKcBQUFEAqF+PHHHwEA8+bNw5gxY9De3o7o6GjMnz8f48aNo99PPh8ZGYn4+Hi/jOtCRX+m4QKGWCzG448/jtTUVNjtdowcORJ/+9vfcNNNNyEuLg4///wzfvrpJwCdixNp2zt48CDEYjFkMhkiIiLw1ltv4ZtvvkFrayveeecdNDU14T//+Q+Vr+5tCYPbG56amooXX3wRr732GkwmE6ZOnQrgj9axX3/9Fc899xyEQiF4PB7+8Y9/UNGYjz/+mLaUzZw5s0+RIP0BuVyOO+64A3fccQeampqwZs0avPzyy6ioqMDUqVNRWFiI4cOHu+wY8KcfBvF5UKvVaGxs9MrnwW6348SJE1i1ahU2btyIxMREzJs3D+vXr4dcLvf52vRlhOP7sWPHDnz//ffYuXMnhEIhPvzwQ6SmpqKpqQn//e9/8c0332DYsGG4+eabcckll8BoNEKlUiE7OxsdHR0AOqXXH374YbS1tVGzLxIApqWl4fbbb8cTTzyBcePGYcKECfjqq68czoHrN9FfivAf+nUa+kGxYcMGPPbYY/j666+RnZ2N+fPnY8WKFZDJZNi5cycefPBB7Nu3D4WFhbjhhhuwaNEiAMAbb7yB0tJSWCwWzJgxA42Njfjtt9/w1FNPYdCgQSEeVT96QmtrK9auXYuVK1fi9OnTuOqqq1BYWOhRyyHXD4MbADiLLTmLMhGfB08CDbvdjsOHD2P16tXYvHkzMjMzMX/+fFxzzTV91mL6fEZJSQkmT56M6dOn4+WXX4ZKpaK/W7VqFXbs2IGHH34YO3fuxPvvv4+ff/4Zhw8fxpIlSzBq1CiUlJTAbrdj7dq1mDdvHmbMmIHW1lbMnDkT+fn5DiTvf//737BYLJg1axZUKlW/MZV/4fpCsiwbin/6EQaw2+0uf261WlmWZdl3332XHT16NHvPPfewN910E/v555+z1dXV7JQpU9iysjKWZVnWYDCwt956K1tUVEQ/f9NNN7Fz585lFy1axGZnZ7Nbt251ew4ajYY1GAx+G1NvcNttt7EJCQnskCFD6M+ef/55Njk5mR0xYgQ7YsQIdu3atfR3r776KpuTk8MOGDCA3bBhA/35+vXr2QEDBrA5OTnsa6+9FtQx9BYdHR3sypUr2RtuuIEdOnQoe//997MbN25kW1pa2Pb29m7/aWtrY2tqatiDBw+ymzdvZn///Xf24MGD7K5du9jNmzezBw4cYKurq9m2trYev6u1tZX9+eef2cWLF7PDhg1jFy5cyH733XdsS0tLqC+Rx7hQnye9Xs8+8cQT7MqVK1mWZdn6+np2xYoVrNFoZO12O1teXs4++uij7MiRI9m0tDR23bp1Dp9vampiZ8yYwR4/fpw9dOgQe+edd7IzZ85kjx071uVYVquVNZlMbueyfvQKLtfv/qChHxQkWODiwIED7FtvvcXu3buXZVmWfeaZZ9h77rmHbWtrY1mWZbdv387eeuut7I4dO1iWZdny8nJ24sSJ7Ndff82yLMt+8skn7JIlSxy+22azsSzLsnv27GEfeOAB9osvvnD4eajwyy+/sPv37+8yyb/11ltd/ra4uJgdPnw4azQa2dLSUjY7O5u1Wq2s1Wpls7Oz2bNnz7Imk4kdPnw4W1xcHMxh+A1Go5Fds2YNe8stt7BDhgxh77rrLnbdunVsc3Oz28W+ubmZPXv2LPv777+zGzduZLdu3cpu3LiR3blzJ3vmzJluP9vS0sL+9NNP7H333ccOHTqUvfHGG9lVq1axHR0dob4UPuFCfZ6sViv7zTffsMOHD2evueYadtSoUeyf/vQnVq/XsyzLsk8++ST75JNPsizLsg8++CD72GOPsY2Njezp06fZl19+mZ02bRp72223sSaTKZTD6Ieb9buf09APCle8g1GjRmHUqFH0/wcOHIjLL7+ckquqqqqQnJyM8ePHAwDWr19PzZYAICYmBgcOHKDumwzD0HT0I488gldeeYUKynDbOEMhJOVKJMcdioqKsGjRIojFYmRlZSE3Nxd79uwBAOTm5iI7OxsAsGjRIhQVFSE/Pz9Qpx0wiMVizJ49G7Nnz4bZbMbWrVuxcuVK/OUvf8H48eNRUFCAK664As3NzVi+fDmGDRsGoVAIhUKBrKwsB5+HtrY2NDQ0YP/+/WBZFnv27MG1114LuVyOnTt3YvXq1fjtt98wbtw4LFiwAO+8846DtXhfxPnwPJGFYteuXbjkkks8+gyfz6fcmJkzZ+Lee++lv2tubkZVVRWuvvpqAJ1mYtu2bcNdd92FsrIyVFVV4amnnuriemm328PWdvtCQ3/3RD96BMvhvdx0002YOnUqfXlHjRqFH3/8kU4M27Ztw6WXXkqtndesWYMpU6YAAGVtA8B///tfCAQCXHHFFbDb7di6dSvtF+e2htrtdofPhQIffvghhg8fjttvvx2NjY0AOsVwuFbHRAzH3c/7OkQiEaZPn45//vOfOHToEObMmYN3330XWVlZuOqqq3DgwAEkJydjwoQJyM3N7aLrEB0djZycHFx00UVIS0vD8ePHMX36dGRlZeG1117DlClTcPDgQXz55ZeYNWtWnw8YukNfeJ6IRDPDMNi7dy/uuOMOt++hq58nJSXhyiuv7NL5EhkZiSlTpuCjjz7C5ZdfjqamJtx///1ISkrCjBkz8I9//IMGDNx5J1RqtP3oiv6goR89gvuycl9koFNt7fvvv8fEiRNRUlKCsrIyjBgxAgKBAO3t7Th8+DAlTJJMglqtxqZNm6izXUNDAz766CPcfffdGD9+PB555BE0NTXRz3AzIBs3bnRo1Qo07r33Xpw9exaHDh1CUlISHnvssaAdOxyxZ88ezJgxA2+//TZmz56NPXv24KuvvoJSqcSNN96I2267DUVFRZQBT2A0GrF27VrcddddmDdvHmJjY/HZZ59h3759mD9/Pj7++GNMnToVv/76a4hGFhz0heeprKwMgwYNwu+//w6gU8vl3nvvddsB5ernsbGxGDt2LPbu3QsAOHbsGJ5//nmsWrUKt912Gx577DH87W9/wzfffIO7776bureSzAbQ3/EQrugvT/TDK7h6kXNycpCTkwMA1AYX6CxVmEwmpKWlgWVZGjTo9XrU1dXRlq6zZ8+isbERzz//PKZOnYqCggK89957qKmpgV6vx6uvvoqBAwfCZDJh586diIqKwqWXXhqU8XKZ33fddRdmz54NAEhJSaH69oCjGI67n58PyMjIwFdffeUgOZyXl4eJEyfCbrdj3759WL58Od544w3k5OQgNTUVtbW1OHXqFCZPnoz77rsPEyZMcFhoHn74YTz88MOoq6ujMsLnK/rC80SyP6+88goKCgpoZglwbGMEOi3I//e//2H79u144403qAaCQCDA4MGD8de//hX5+flITEzE2LFjqfrm/Pnz6Xdwv7M/UOgDcEd2CPA//bgA0NzczO7bt49l2U5yFCE6rlmzhr3iiitYlu3svvjkk0/YRx99lJIlk5KS2Jdeeolta2tj58+fzy5dupR+55NPPsm+8847LMu67/7oDcrKyhyIa7W1tfS/33nnHfa6665jWZZljx075kBcy8rKYq1WK2uxWNisrCy2tLSUEtdcsb7Pd9hsNvbAgQPs/Pnz2T179oSc5Boq9OXnaceOHewNN9zAZmVlsdXV1S7/ZunSpeytt97KLl26tMs9bmlpYZcvX84ePXo0GKfbD/+jnwjZj+AiNjYWY8aMAQBKhAQ6U9xXXnklgM5dVGVlJXJzc8Hn8/Hbb79BpVLh2WefBQBceumlKC8vpwJRx48fx4wZMwD4f1fiSiRn27ZtOHToEHXc+/TTTwEAQ4YMwbXXXov8/HwIBAJ89NFHdPf84YcfYvr06bDZbLj99tsxZMgQv55nXwCPx8OoUaN6dFc8n9HXn6dLL70UOp0O3377Ld577z0sWbKECmix57IDN998M26++WaXn4+JicGCBQvo/3M9a/rRd9Ev7tSPoKOoqAilpaV45JFH8PPPP+Mf//gHHn74YVxyySVYvHgxeDwe3n33XZSXl+Pzzz+HUqnEgw8+iNraWrz88suYP38+Jk+eHOph9KMf5y1IULB48WKkpqaiuroazc3NePTRRzF8+PAuf0u8bfpxXsHlrqw/7OtH0DFmzBgYDAYAnW1pTz75JG27/Oabb2idt7KyEjqdDmPHjgUAHD16FCKRiHZm9HXcfvvtUCqVGDp0KP3Zddddh5EjR2LkyJHIzMykzqXl5eWIiIigv7vnnnvoZ/bv349hw4YhNzcXDz30UBeyaj860X+9PQfDMLBarWhtbcVFF12EF198ERdddBEWLVpELae5f9sfMFxAcFe3CPA//biAYbfbuyj7kXroxo0bWZbt5EB8+OGH7M0330wVI//yl7+wb7zxBqvRaIJ7wv/f3t2ERPHHcRz/LP2hTkYPZIN10N0BtXJ7oDKIomRY66CZQkiQhzp16CDU3ZPXukQXo/VSdAg9CCWd2kAhtiAIyuiBrBardSM6CMV+/4fF+ftYv+zv0/p+wV5Gd/fHgOzb2ZnvzJOZhv9M1N7ebh0dHWY2/bvxifbu3WsDAwOWz+etvr5+2oQ9FLC//8ynT5+surraxsbGwm09PT3LdtgW/tiMn98cacCCi0Qi4Q1oxo1/1xkEgcxMq1atUl1dnU6dOqU1a9ZoaGhIDx8+VFNTkzZu3LgYy/7fHTp0KLxZ0FRmptu3b6u1tfWXr5HJZPTt2zfV1taG3zH39PTMw2qXP/b3n3n+/LlaWlrCS5zz+bwaGxuL5kgf5oZowJIzfoJjZWWljh8/rlevXunGjRs6duyYfN8vysPBU6VSKZWWlsr3/XDbmzdvtGvXLh0+fFipVEpSYSjQxMsfi2WY1EJjf0938OBBdXR0hLde5yRGSMxpwDLw9OlTJRIJxeNxSSvjWu6bN29O+q/X8zy9e/dOGzZsUDqd1okTJ8IJmvh77O/pxv/OzLhzJP5DNGDJa2pqWuwlLKifP3/qzp07SqfT4bbVq1eHo5X37NmjaDSqoaEhlZWV6f379+HvFdswqYXA/v41ggETcbwJWGLu37+vysrKSYfBP3/+HM74f/36tV6+fKmKigp5nqeSkhINDg7KzNTd3a3GxsbFWvqyxP4G3BENwCJpbW3VgQMH9OLFC23ZskVdXV2SpFu3bk07Ie/BgweqqanRzp071dLSomvXroUn9V29elXnzp1TLBZTNBoNx3NjMvY38PcY7gQAAKZiuBMAAJg7ogFYAYaHh3XkyBFVV1dr27ZtunLliqTCHUeDIJDv+wqCQLlcTlLhjPkLFy4oFouppqZGjx8/Dl8rmUzK9335vq9kMllUawLwG7NNfZrnB4AF9PHjR0un02ZWuPug7/v27Nkzu3jxonV2dpqZWWdnp126dMnMzPr6+qy+vt7y+bwNDAzYvn37zMwsm81aeXm5ZbNZGx0dtfLychsdHS2aNQEIMRESWKk8z9Pu3bslFe4+WFVVpQ8fPqi3t1dtbW2SpLa2tnC6YW9vr86cOaNIJKLa2lp9/fpVmUxG9+7dUxAEWr9+vdatW6cgCHT37t2iWROAXyMagBXm7du3evLkifbv36+RkRF5nidJ2rx5s0ZGRiQVJh9u3bo1fM745MPZthfjmgBMRzQAK8j379/V3Nysy5cvq6SkZNLPIpHIogzyWYprAjAzogFYIX78+KHm5madPn1aJ0+elCSVlpYqk8lIKtyMadOmTZKksrIyDQ8Ph88dn3w42/ZiWhOA2RENwApgZjp79qyqqqrU3t4ebm9oaAivNkgmk+F0w4aGBnV3d8vMNDg4qLVr18rzPCUSCfX39yuXyymXy6m/v1+JRKJo1gTgN2Y7Q3KeHwAWUCqVMkm2Y8cOi8fjFo/Hra+vz758+WJHjx61WCxmdXV1ls1mzcwsn8/b+fPnraKiwrZv326PHj0KX6urq8ui0ahFo1G7fv16Ua0JQGjGz28mQgIAgKmYCAkAAOaOaAAAAE6IBgAA4IRoAAAATogGAADghGgAAABOiAYAAOCEaAAAAE6IBgAA4IRoAAAATogGAADghGgAAABOiAYAAOCEaAAAAE6IBgAA4IRoAAAATogGAADghGgAAABOiAYAAOCEaAAAAE6IBgAA4IRoAAAATogGAADghGgAAABOiAYAAOCEaAAAAE6IBgAA4IRoAAAATogGAADghGgAAABOiAYAAOCEaAAAAE6IBgAA4IRoAAAATogGAADghGgAAABOiAYAAOCEaAAAAE6IBgAA4IRoAAAATogGAADghGgAAABOiAYAAOCEaAAAAE6IBgAA4OSfRXrfyCK9LwAAmCOONAAAACdEAwAAcEI0AAAAJ0QDAABwQjQAAAAnRAMAAHDyL796IiOI/tR5AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\n", - "Trajectory Kinematic Plots\n", - "\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAALJCAYAAAByYL20AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAADweklEQVR4nOzdeXxcVfn48c8z2Zs2k+50g6ErlK2UfQ+bAgOCKAgqiyKgooK4MMhPvYJ8GVFRFBSKIIusiqwDZamEfS0UKJRCgSlt6d502jRJm+X8/jh30kk6M5nMnuR5v17zmjvn3nvuOXOT5uk5554jxhiUUkoppVT6PIUugFJKKaVUX6cBlVJKKaVUhjSgUkoppZTKkAZUSimllFIZ0oBKKaWUUipDGlAppZRSSmVIAyrVb4iIT0SMiJRmmE+jiEzMVrkKTUTeE5G6LOYXFpGjMjjXl62yZMr9eZmcx+v1q5+tWMX0c6ZUIWhApYqKiMwWkcvjpJ8oIisyDZZSYYwZbIz5xL3urSLy23Tzcv8obBGREd3S33L/mPsyLG6PjDG7GGPq3es6IvKvXF8zEyJS5343lxS6LJkQkXoR+U5sWuzPVpavpT9nShWYBlSq2NwGfFNEpFv6GcCdxpi2ApQpU58Cp0c/iMhuwKDCFafonQWsA84sdEESyUdgnwb9OVOqgDSgUsXmQWA4cEg0QUSGAscDt4uIR0QCIvKxiKwVkftEZFi8jERkrIg8LCLrRGSRiJwbs69ERH7h5rNRROaKyAR3nxGRySJyHvAN4OduV80jIvIzEbm/23X+IiLXJqnTHXQNDs4Cbu+Wh99tTdggIktExOm2/0wRWezW+Zex3SFua8B9InK7W5f3RGTvmHPDInKUiBwD/AL4mluft2P3xxzfpXVBRM6IufZl3cqV8v1IhYhUA18FLgCmxNbD3X+uiCxw6/m+iMx00yeIyH9FZLVbjutizvm2e06DiDwhIjskuHaFiPxBRD4TkZUicoOIVLn76kRkqYhcIiIrgH+KyFARedS9ZoO7Pd49/krsz/B17nd9nZve2cUoIl73nq12v9//JyIed9/ZIvKCW54GEflURI7t4evTnzOlCkgDKlVUjDHNwH10/cNwKvCBMeZt4IfAScBhwFigAbg+QXb3AEvd474K/J+IHOHuuxj7v/njgBrg20BTt7LMAu4Erna7ak4A/gUcIyK10NlScRrd/nB18wpQIyI7i0iJe3z37pBNbp1rAT/wPRE5yb3GdOBv2OBuDOAFxnU7/0tufWuBh4Hruu3HGDMb+D/gXrc+eyQpMzHX/ju2hXAsNtgdH3NIb+5HKk4GGoF/A09gg4JoWU4BHOz3VIOt81r3O30UWAz4sN/NPe45J2L/uJ8MjASeB+5OcO0gMBWYAUx28/lVzP7tgGHADsB52H8//+l+3h5oxv3ejTGXudf6gftd/yDO9f6KvZcTsd/fmcC3YvbvBywERgBXAzeLbNNyG0t/zpQqJGOMvvRVVC/gYGA9UOl+fhH4sbu9ADgy5tgxQCtQiv1jatztCUA7MCTm2KuAW93thcCJCa5vgMnu9q3Ab7vtfxw4190+Hng/SV3CwFHA/3OvfwzwlFtGA/gSnPdn4E/u9q+Au2P2DQK2AEe5nx3g6Zj904Hm7mWIOfZf8coY87nzGPfa98Tsq+527YT3I8n3EbfO7v6ngT+726cDq4Ey9/MTwIVxzjnAPW6ba7r36pyYzx5s4LxD7L0GBBtsTOqW76fudp1b78okZZ8BNMR8rge+E+9nCyhx85ses+98oN7dPhtY1O2eG2A7/Tnr+edMX/oqxEtbqFTRMca8AKwBThKRScC+wF3u7h2AB0RkvYisx/5D2w6M7pbNWGCdMWZjTNpitv6PewLwcZpFvA34prv9TWxXS0/uAL6O/UO5TWuWiOwnIs+43T8R4LvYlgmwdVkSPdYY0wSs7ZbFipjtJqBSsjPOp/u1N3W7dqr3o0diu1wPx7YKAjwEVGJbUiDxPZsALDbxx9ftAFwbU7512OCpe8vLSGwAMTfm2NluetRqY0xLTHkHiciNbjfVBuA5oNZtHerJCKAM+zMZFfvzCTH31L3nAIN7yFd/zpQqEA2oVLG6Hds18U3gCWPMSjd9CXCsMaY25lVpjFnW7fzPgWEiMiQmbXtgWUw+k1Ioh4mT9iCwu4jsim2hujPOMV0zMWYxdtDwccB/4xxyF7YLZYIxxgvcgP3DD7CcmO4Pd1zP8BTKHrcocdI20XXw8nYx28uxAUv02oO6XTvV+5GKM7D/Jj3ijlP6BBtQRbv9Et2zJcD2Cf6wLwHO71a+KmPMS92OW4Ptstsl5jivMSY2gOn+3f0EmAbsZ4ypAQ510yXB8d2v14oNFKJifz7Toj9nShWOBlSqWN2O7cI4F9siFHUDcKW4A4tFZKQ7TqYLY8wS4CXgKhGpFJHdgXPYOqbkH8AVIjJFrN1FJN4fj5XYMS6xebcA/8H+cXrNGPNZinU6BzjC/d93d0OwLWotIrIvtpUh6j/ACSJyoIiUY7tKko2lSWYl4IsOfnbNA04TkTJ3kPFXu137eBE52L325XT9dyOl+5Gis4DfYLvOoq+vAMe59+YfwE9FZC/3nk12r/sa9g9yUESq3ft9UEz5LhWRXdzyed2xWF0YYzqAm4A/icgo99hxIvLFJOUdgg3C1rsDpH/dbf82Pzsx12vHjhW8UkSGuPW4mG3HPKVDf86UKgANqFRRMsaEsQFRNfZ/1FHXup+fFJGN2IG4+yXI5nTsuKrPgQeAXxtjnnb3XYP9g/YksAG4GaiKk8fNwHS3q+HBmPTbgN1IrbsvWqePjTFvJNj9feByt06/cssWPe897KDce7CBQyOwCtic6rVj/Nt9Xysib7rbv8S2/DRgA5po92r02he4acvdY5bG5Neb+5GQiOyPba253hizIub1MLAION0Y82/gSrcsG7EthcPc4OQE7Nikz9zyfc0t/wPA74B73G65+UCip+Uuca/1invs09gWqET+jP2ZWePWe3a3/dcCXxX7lN5f4pz/Q2yrzSfAC269bklyvZToz5lShSHGJGuVVkrFIyLbAx9gBwlvyPO1B2MH7U8xxnyaz2tnSkTCQJ0bMKsi1pd/zpQqBG2hUqqX3G6Mi7FPJeUlmBKRE9xB0NXAH4B3sU9NKZU1+nOmVPpyN9uv463EPvVS4V7nPziRX+N4d8Q2KQ8H5gJn4ES24HgrsONm9sI+3fE1nEg4Z+VTKg3uH5qV2CeyjsnjpU/Edi8K8AZwmumbzct/xrZ6qOLUX37OlMq7XLZQbQaOwInsgR1cegyOd3/seIY/4UQmY/vJz3GPPwdocNP/5B6nVFExxmwydrLCXdyB7/m67ndinjw70hizMF/XziZjzJ+NMesLXQ4VX3/5OVOqEHIXUDkRgxNpdD+VuS8DHIF9ogPswN6T3O0T2fo013+AI3G86T5hopRSSimVN7ld4NPxlmC79SZjlwn4GFiPE4lOwLeUrRPZjSM6sZsTacPxRrDdgmsSZe/xeExVVbwHs/q3jo4OPJ6BN/xN6z2waL0HFq33wJKo3k1NTcYY0ye/kBwHVJF2YAaOtxb72PpOmefpPQ+7jhYVZSWEQqGMs+xrGhsbGTy4pwmT+x+t98Ci9R5YtN4DS6J6H3744c0FKE5W5DaginIi63G8z2DXxqrF8Za6rVTj2Toz8DLsTLlLcbyl2IU5uy97AE5kFjALwAQrTV1dXe7LX2Tq6+vReg8cWu+BRes9sGi9+48cjqHyjnRbpsDxVgFHY9dfeoatM+SehV2vC+ykbdElJr4K/A8nok+XKKWUUqro5bKfcgzwDI73HeB14CmcyKPY2YgvxvEuwo6Rutk9/mZguJt+MRDIYdmUUkoppbImh/NQRd4B9oyT/gmwb5z0FmCbNbaSMTVjWNO4mRGDK7bdufhlmH0JHPlrmHxkb7JVSimllOqVPjmSvlNJKXMWrIy/79W/w/K34cHvQ9uW/JZLKaWUUgNK3w6oklkxH0rKoXEFLHq65+OVUkoppdKUn6f88s0YWL8Y9vsuzLsT3n8Qdjqu0KVSSimlVAZ8gdAtwPHAqnDQv6ubNgy4F/Bh1548NRz0N/gCIQGuBY4DmoCzw0H/m7kqW/9soWpZDx1tUDMWph4DHz4B7a2FLpVSSimlMnMr266jGgDmhIP+KcActj7UdiwwxX2dB/w9lwXr8wFVpLmVw37/DKfc8BKfrHZXutnkTl81aATs5LcB1uKXClZGpZRSSmUuHPQ/B6zrlhy7dF33Je1uDwf9Jhz0vwLU+gKhMbkqW5/v8ntz8XoWr21i8domrp3zEdeetic0uavVVA+H7Q+A0kr4IAQTDytsYZVSSimVkKeqptQXCL0RkzQrHPTP6uG00eGgf7m7vQIY7W5vXdLOii53t5wc6PMB1fzPIwAcNnUkr3/qBq2b3IBq0Agor4ZJR9iA6tjfgeh6y0oppVQx6mje0BYO+vdO9/xw0G98gVBBJgXv811+SxuamTiimiN3HsXnkRaWNjTFtFCNsO87+WHDUjuNglJKKaX6k5XRrjz3fZWbHl3SLip2ubus6/MtVAC7jPOyj28YAK99uo7xsS1UYAemiwcWPAJjZxSmkEoppZTKhejSdUG2XdLuB75A6B5gPyAS0zUYly8Q2hs4BBgLNAPzgafCQX9DT4XoFwHVbuNqmDZ6CDWVpbweXsfJg9ZC+WAoq7QHVI8A3yHw3gNwxP/Tbj+llFKqD/IFQncDdcAIXyC0FPg1NpC6zxcInQMsBk51D38MO2XCIuy0Cd9Kku+3gB8CnwJzgYVAJXAwcIkvEJoP/DIc9H+WKI9+EVDtPKYGj0eYucNQ3vpsPUxYA4OGdz1o16/AIz+y3X7aSqWUUkr1OeGg//QEu7ZZYy4c9BvgghSzHgQcFA76m+Pt9AVCM7DTL/TvgGq7GtsSNXX0EF76eC3tw9ZSEh0/FbXzCRC6GObfrwGVUkoppTqFg/7re9g/r6c8+kVAFV0cefLIwWxp62BZZAvbD+sWUA0aZp/2e+8BOPpy7fZTSimlFAC+QOhKYEfg+8Bl4aD/Z73No88/5QfgrSoDYNKoagAWNZZvfcIv1i4nQ2QJLH09n8VTSimlVHEbD1wEXANsl04G/SKg8nhsa9OkkYMB+Li5etsxVGDX8yupsN1+SimllFJWJBz0rwIc4PB0MugXAVVU7aByRlSXsah9dPwWqkovTDka3nsQOtrzXj6llFJKFZ9w0P8j9/0zYId08uhXARXAxKFlfNwxduscVN3t+hVoXAGfPpvfgimllFKqqPkCoauBal8gVOYLhOb4AqHVvkDom6mc2+8CqslewyIzFhOvyw9g2nFQ4YV5d+e3YEoppZQqdl8IB/0bgOOBMDAZSGmAep8PqGoHlXX5PKm6hfUMYZ0nQUBVVgm7fcXOmt6yIQ8lVEoppVQfEZ39wA/8Oxz0R1I9sc8HVMOry7t8nlxpg6RFzYMSn7TH16GtGd5/MIclU0oppVQf86gvEPoA2AuY4wuERgItqZzY5wOqsbVVXT5PKrXr+H28sSze4db4vWH4FJh3Vy6LppRSSqk+wBcIjQUIB/0B4EBg73DQ34pdsubEVPLo8xN7Xn7irl0+jzUrGcx2vL9qc+KTRGDG12HOb2DtxzB8Uo5LqZRSSqki9g9fIDQMqAdmAy8AhIP+TcCmVDLoOaByvHFXXsaJ9Ljycj7UVnVtifK0NLB72VLmLR2d/MQ9ToP/XQFv3wNHXJbDEiqllFKqmIWD/uN8gVAlduHlLwN/8AVCn2GDq9nJFkWOShxQOd6kKy/jeOcDv8SJ9HiRXPJ0X0KmuYEZlSuZtXwjW9o6KC9N0KtZMxYmHm67/eoC4CnJfWGVUkopVZTCQX8LbgAF4AuEdgSOBa7zBULbhYP+fZOdn6yFahBwEE4k7srLON4Z9LDycl50X5KvJcJ2Ve20bTRsaGntXOcvrr3OgvvOhI+ehGnH5rSYSimllOobfIFQDRAB7nFfjT2dk6SFKpJ05WWcyLxelS5HtlnjuLmBwRW2Wps2tyUPqKYdB4O3g9dv1oBKKaWUGuB8gdD5wG+wT/YZN9mEg/6JPZ2byhiqq4HfYsdPzQZ2B36ME/lXugXOqeb1DK61QdTGlrbkx5aU2VaqZ6+GhjAM9eW8eEoppZQqWj8Fdg0H/Wt6e2IqT/l9ASfycxzvl7Gzhp4MPAcUaUDVwOAxlQA0bu4hoAKYeSY893uYeysc5eS0aEoppZRKny8QmgbcG5M0EfgVUAucC6x2038RDvofS+MSH2OnSui1VAKqLrOG4kQiON50rpUTXXr82luhdRMVVXZSz5bWFBZA9o6HqcfCm3dA3aVQmqSLUCmllFIFEw76FwIzAHyBUAmwDHgA+Bbwp3DQ/4cML3Ep8JIvEHoV6Jx/Kbp4cjKpBFSP4ng/wHb5fQ/Hm9qsoY53AnA7MBrbDzkLJ3ItjncYNrr0YVu8TsWJNOB4BbgWOA4bHZ6NE3kzhfJt1bwegJLKIQB0GJPk4Bj7fBsWhuxyNLt9tVeXVEoppVRBHAl8HA76F/sCoWzleSPwP+BdoKM3JyabNmEsTuRznEjAHUcVwYm043hTnTW0DfgJTuRNHO8QYC6O9yngbGAOTiSI4w0AAeAS7KOJU9zXfsDf3ffUNdupsUoqBwPQnupXMfEIGLojvDZLAyqllFKqbzgNuDvm8w98gdCZwBvAT8JBfzrzZZaFg/6L0ylMshaqf7itSfXEzBqKE0lt1lAnshxY7m5vxPEuAMZhg7E696jb3PwvcdNvx4kY4BUcby2Od4ybT2pa1gPgqawBWmnvSLGFyuOB/b4Lsy+BpW/YpWmUUkoplVeeqppSXyD0RkzSrHDQP6v7cb5AqBz4EraLDmwjzBXYHrErgD8C306jCI/7AqHzgEfo2uW3rqcTk02bcByOt8usoTjezllDezWhp+P1AXsCrwKjY4KkFdguQbDB1pKYs5a6aV0DKsd7HnCe/TCKF154gapSO5Jq2No32B1Y+OkSYDvenT+fyjUfpFTEkrbtOaCkmnUP/Zr3d/lZylUrhMbGRurr6wtdjLzTeg8sWu+BRes9sCSqd0fzhrZw0J9Kq8axwJvhoH8lQPQdwBcI3QQ8mmbRTnffL41JM9jB70klH0PlRLrMGorj7Zw1FMe7HU4k6ayh7jmDgfuBi3AiG7oMaHciBsebYjNS5zmzABut3jjFHHLIIZ3zTvH2SngXdpt5ALz9KTvtPJ26PcamnnfHOYx6+XpGzZgItdv3qlj5VF9fT11dXaGLkXda74FF6z2waL0HlizU+3Riuvt8gdCYcNAfbYD5MnaZvF4LB/07plugBOuyxOF4Y2cNPRu7BE1P55Rhg6k7cSL/dVNX4njHuPvHAKvc9GXAhJizx7tpqXPHUNkuv14MSo/a73z7/uqNvTtPKaWUUnnhC4SqgaOB/8YkX+0LhN71BULvAIcDP+5lnkljGl8gVOMLhHZNdkwqE3vGnTUUJ5K8+cs+tXczsAAnck3MnoeBs4Cg+/5QTPoPcLz3YAejR1IZP9Vl2gR3DFVJlX3KL+UxVFHe8bDLl+HN2+36fhVDene+UkoppXIqHPRvAoZ3Szsjw2y/4guErsb2yM3FzmdVCUzGBmg7AD9JlkEq0yb8FNgVJ9LbWUMPAs4A3sXxznPTfoENpO7D8Z4DLAZOdfc9hp0yYRF22oRv9fJ6toWqooaS0jIgjYAK4IALYP5/7LxUB3y/9+crpZRSqk8JB/0/9gVCw4CvAKcAY7DTRS0AbgwH/S/0lEcqAVV6s4Y6kRfYduniqCPjHG+AC3p9nVjN66GqFo/HXrbXXX4A42bC9gfCy9fDPt+B0vKMiqSUUkqp4uc+yXeT++q1VAKqS4GXcLxdZg3FifQ4a2g+dFkcubkBKmspcRNTnoequ0Muhju/Cu/cCzMzbUVUSimlVH+XSkCV9qyhedeyHqqG4nGH2ren00IFMPkoGLMHvPAnmPF18JRkrYhKKaWU6n9SCajKcCJpzRqad80NMGrnzhaqjnTGUIFt9jrkJ3DfmfDeAzp7ulJKKaWSSiWgetydTLPLrKE4kR5nDc275vVQNZQST7TLL82ACmCnE2DENHj+GtjlZDqbvZRSSinVb/kCoQOx6w13xkjhoP/2ns5LJaBKe9bQfJDouHdjbJdfZYaD0qM8HjuW6oHz4cPZsNNxmRdWKaWUUkXLFwjdAUwC5gHtbrIBshBQOZG0Zw3Nq9YmaN8CVbGD0jMIqAB2/So883/w/B9g2rHdRsArpZRSqp/ZG5geDvp7HUAk7sdyvMlnQne8NTjepLOG5lXzevse2+WXSQsVQEkpHPxjWDYXFs3JLC+llFJKFbv5wHbpnJisheorON6MZg3Nh85GI3fZGSprO9PSHpQea8Y37NN+/7sCJh+prVRKKaVU/zUCeN8XCL1GzLjxcND/pZ5OTBxQOZEf43gTzhrqTtxZPNxlZ6gauvUpvyzEU5SW22VoHvwefPAo7HxCFjJVSimlVBFy0j0x+Rgq+yRf2rOG5lW0haqqNjtP+cXa7VT7tN//roRpx+m8VEoppVQ/FA76n/UFQqOBfdyk18JB/6pUzu0/cwHEjKESEUQyfMovVkkpHH4prF5g56VSSimlVL/jC4ROBV7D9sydCrzqC4RSmoyyHwVUW8dQAZSIZK+FCmD6l2HULvapv/a27OWrlFJKqWJxGbBPOOg/Kxz0nwnsC/wylRP7T0DVsh6kBCqGAODxSOZP+cXyeOCIy2Ddx/D23dnLVymllFLFwtOti28tKcZKKcxD5Z0L3ALchRNpSKt4+dDcAFW1nU/hlYhk5ym/WNOOg7Ezof4quxxNWVV281dKKaVUIc32BUJPANGWk68Bj6VyYipR19eAscDrON57cLxfxPEWzdwBW6dNWA9VQzvTSzxCe7aXchaBL1wBG5bBK3/LcuZKKaWUKqRw0P8zYBawu/uaFQ76L0nl3FRmSl8EXIbj/SVwPLa1qh3H+0/g2qJZ06+5oXP8FIAnm4PSY/kOhqnHwvN/gplnQfWI7F9DKaWUUnH5AqEwsBG7NExbOOjf2xcIDQPuxa7BFwZODQf9afWqhYP++4H7e3teKmv5gePdHfgWcJx7kTuBg4H/ATN6e9GcaFkPg7YGN7aFKgcBFcDRv4G/HQDP/g6O+31urqGUUkqpRA4PB/1rYj4HgDnhoD/oC4QC7ueUWpYAfIHQC+Gg/2BfILQRu3ZflAAmHPTX9JRHqmOo1gM3AwGcSHTm0FdxvAelWthc6VwcuXk9DJ/cmV6S7UHpsUZOg5lnwhu3wL7nw4jJPZ+jlFJKqVw5Eahzt28D6ulFQBUO+g9234ekW4BUxlCdghM5EidyV2cw5XjtgslO5OR0L5x123T55WBQeqy6S6GkAuY4ubuGUkopNYB4qmpKfYHQGzGv8+IcZoAnfYHQ3Jj9o8NB/3J3ewUwOp3r+wKhO1JJiyeVLr//ADPjpO2VygXyoqMDWiJxBqXnMKAaMhoOuhDq/w8+ewW23z9311JKKaUGgI7mDW3hoH/vHg47OBz0L/MFQqOAp3yB0AexO8NBv/EFQukGALvEfvAFQqWkGO8kWcvPu5ObsRfHG9sSVYNdJLkoiACbI4Cx0ya4PJLDLr+oA39gu/2e+AWc87Sdq0oppZRSORMO+pe576t8gdAD2Mk3V/oCoTHhoH+5LxAaA6S0XEyULxC6FPgFUOULhDa4yQJswT7116NkLVTTsE/11QKxKwJvBM7tTUFzLmbZmagST467/ADKq+0A9QfOt5N97vmN3F5PKaWUGsB8gVA1dvLNje72F4DLgYeBs4Cg+/5Qb/INB/1XAVf5AqGrwkH/pemULUkLVeQh4CEc7wE4kZfTyTxvui07A9FB6Xm49m6nwus3w9MO7Hw8VHrzcFGllFJqQBoNPOALhMDGMHeFg/7ZvkDodeA+XyB0DrAYuw5fr4WD/kt9gdBQYAoxvXHhoP+5ns5N1uX3c5zI1cDXcbynb7s/8qN0CpsTLevte0wLlUfIfQsV2G6+Y38HNx0Bz14NX7wy99dUSimlBqBw0P8JsEec9LXAkZnm7wuEvgNcCIwH5gH7Ay8DR/R0brJBPwvc9zeAuXFeRUFgawtVzBiqnA9KjzVuJsw8A169AVZ/mJ9rKqWUUirbLgT2ARaHg/7DgT2xU0f1KFmX3yPu+20ZFy/X4oyhysug9FhH/AreewhmXwLf/G/MmjhKKaWU6iNawkF/iy8QwhcIVYSD/g98gdC0VE7s+bE0x/sUjrc25vNQHO8TaRc1FxKMocpLl1/U4JFw+KXw8f9gYUrrKCqllFKquCz1BUK1wIPYKRkewo7J6lEq81CNxIms7/zkRBpwvKN6X8bcEBE7hqq0Csq2zuaQ9xYqgH2+A3NvhdmXwqQjoKwqv9dXSimlVNrCQf+X3U3HFwg9A3iB2amcm0pA1Y7j3R4n8pm9hHcHuq5zU3jNDV3GTwF4PEI+G6gAKCmza/vddgI893s48ld5LoBSSiml0uELhEqA98JB/04A4aD/2d6cn0pAdRnwAo73WewY8EOAeFPBd+V4b8HOY7UKJ7Krm7bNatBui5cA12IXX24CzsaJvJlyLZrXdxk/BVCSr6f8utvxUNjjdHjxL7DbKTBq5/yXQSmllFK9Eg76232B0EJfILR9OOj/rLfnpzCGKjIbu/TMvcA9wF44kVTGUN0KHNMtLQDMwYlMAea4nwGOxc75MAUbrP09hfwB9ym/lkiX8VOQ56f8uvvCb6FiMDz6Y7ssjlJKKaX6gqHAe75AaI4vEHo4+krlxFTXSjkQu4pzHXZOhp45keeAdd1ST8SuAo37flJM+u04EYMTeQWoxfGOSbFsbpdf1xaqgoyhiqoeAUdfAZ+9DPP+VZgyKKWUUqq3fontXbsc+GPMq0c9d/k53iB2ToY73ZQLcbwH4kR+kUZBR+NE4q0GPQ5YEnPcUjdtOd053vPo7HIcRf2z9Ry4fgUNMoqF9fWdh22INNPWAfUxaXllxjPDO53qxy7ltTU1tJbXZi3rxsbGwtWrgLTeA4vWe2DReg8sxVrvcND/rC8Q2gGYEg76n/YFQoOAklTOTWUM1XHADJyI7btyvLcBb2EXEUyfEzE43t43ITmRWUQXKrxxiqk7rA7PS82M8e3MmLq6zsNu/vhVGje3UVd3UEbFzMgu/4QbDuagxsfh5Buzlm19fT11MXUdKLTeA4vWe2DReg8sxVpvXyB0LrbRZhgwCdu4cwMpzMKeapdfbcx2JovVrezsyrPv0dWglwETYo4b76b1SNq3QOumuF1+BRmUHmvUTnDQhfDOPfBJrx4WUEoppVT+XQAcBGwACAf9HwEpTRWVSkB1FfAWjvdWt3VqLpDugnXR1aCh62rQDwNn4ngFx7s/EInpGkyucx2/2i7JdnHkIpjd4dCfwrCJ8MiPYMumQpdGKaWUUoltDgf9W6IffIFQKSlOFZXKU353Ywei/xe4HzgAJ3Jvz+d578YuKDgNx7sUx3sOEASOxvF+BBzlfgZ4DPgEWATcBHw/lcIDcZedAXdQejE8YFdWBV+6DhrCMOfyQpdGKaWUUok96wuEfgFU+QKho4F/A4+kcmKStfy8M7ulLHXfx+J4x/Y4T5QTOT3Bnm37IZ2IwTaz9ZpEW6i2mTahQPNQxeM7CPY9D169EaafBDscUOgSKaWUUmpbAeAc4F3gfGyDzz9SOTHZoPRkjwka4IhUS5dTnV1+3Sb2LJYuv6gjfw0fPgEPXQDffQHKBxW6REoppZSKEQ76O7A9ZTf19twkLVSRwzMoU/5EF0buvvRMMQxKj1UxGL70V7j9S/DMlfDFdIehKaWUUiqbfIHQuyQZKxUO+nfvKY9U5qEaBFwMbI8TOQ/HOwWYhhN5tBdlzZ0EY6iKroUKYOJhsPe34eXrYfqJMGHfQpdIKaWUUnYyz4ykMg/VP7FP9h3ofl6GHaRVJAGV20JVUdMluUQKuPRMMkdfDh89BQ9+H777vB20rpRSSqke+QKhCcDt2InBDTArHPRf6wuEHOBcYLV76C/CQf9jqeYbDvoXx1wjdmLPKlKLlVKaNmESTuRqoBUAJ9KEu4ReUWhugEovlHStr8dTZF1+URVD4Et/gbUfwdNOoUujlFJK9SVtwE/CQf907AwEF/gCoenuvj+Fg/4Z7ivlYCqWO7Hnf4DobNzjgQdTOTeVgGoLjreKaN+i450EbO51KXMlzjp+4LZQFVuXX9SkI2C/78KrN8CipwtdGqWUUqpPCAf9y8NB/5vu9kZgAXY282xJe2LPVJqxHGA2MAHHe6d7obPTKWXWGRIGVB5PkcxDlchRjp09/cHvw/dehurhhS6RUkopVVCeqppSXyD0RkzSrHDQPyvesb5AyAfsCbyKjU1+4AuEzgTewLZiNaRRhM3hoH+LLxCKXiPliT2TzUN1PXAXTuRJHO9cbNOaABfiRNakUcjcSNRC5YGOYm2hAjt26is3wU1H2FnUv/YvkOLpSVVKKaXyraN5Q1s46N+7p+N8gdBg7GTjF4WD/g2+QOjvwBXY4OcK7NRP306jCN0n9vw+KU7smazL70PgDzjeMHAJ8DlO5NGiCqYgeZdfh+GYPz/H1bM/KEDBUrDdbnDkr+CDR+GtOwpdGqWUUqro+QKhMmwwdWc46P8vQDjoXxkO+ttj5pFK9zH6AHZge+zEnv8vlRMTB1RO5FqcyAHAYcBa4BYc7wc43l/jeKemWdDsSxBQiQiNm9v4YMVG/lb/MU+9v7IAhUvB/hfAjofC4wFY/WGhS6OUUkoVLV8gJMDNwIJw0H9NTPqYmMO+DMxP8xJVwC3hoP+UcND/VeAWN61HKcxDFVkM/A74HY53TzfzXwElaRY2u1rWJ+jy6zptwo/ufotfnzCdr+0zASmmrjWPB758I9xwMNx3Jpw7B8qrC10qpZRSqhgdBJwBvOsLhOa5ab8ATvcFQjOwXX5hbOtSOuZg1xpudD9XAU+ydeqohFKZ2LMUOBY4DbsOXz12oHpxMB0JA6qoX58wnacXrCTw33d58v2VXH7iLowfWkRLv9SMha/8A+44GR69GL58g46nUkoppboJB/0vEH/qprSmSYijMhz0R4MpwkF/oy8QSilgSNLl5z0ax3sLdlHkc4EQdk6q03AiD2VY4CxxW6DiPeUXE5BMHDmYO769H788fjovf7yWo695jr/VL6KltT1fBe3ZpCOg7lJ45x5487ZCl0YppZQaiDb5AqGZ0Q++QGgvoDmVE5O1UF0K3AX8BCeSzqOH+ZPgKb+omspSPB7hnIN35Jhdt+M3D7/H1bMXcvtLi/nhkZM5de8JlJWkMiVXjh36M1jyCjz2c9hudxg3s+dzlFJKKZUtFwH/9gVCn2NbwrYDvpbKickGpR+BE/lH0QdTkPApv6ghlWWd2+Nqq5h15t7cfe7+jK2t5LIH5nPUNc/y4FvLCr9UjccDJ/8DBo+Gu0+HyNLClkcppZQaQMJB/+vATsD3gO8CO4eD/rmpnFsEzTJZkGBiz6iaym0b4g6YNJz7v3cgt5y9N4PKS7no3nkcd+3z3Pf6Eja2tOa0uElVD4dv/Btam+DOU6FlQ+HKopRSSg0gvkDoAqA6HPTPDwf984HBvkDo+6mc228DqtgWqpqqsm32g51a4YidRhP64cH89fQ9aevo4Of3v8Pev32aH9z1JrPnryhMcDVqJzj1Nlj9Afz7bGgrnpV+lFJKqX7s3HDQvz76wZ1t/dxUTkxpBeWiV1m7TVJsC1VFafK40eMRTthjLMfvPoa3lqzngTeX8cg7n/PoO8sp9Qh7+4Zy4KQR7LXDUPaYUMvgijx8bZOOgBP+DA//EO49A069Hcoqc39dpZRSauAq8QVCEg76DYAvECoBylM5se8HVOWDoXTbukanTagqK0l53ikRYeb2Q5m5/VB+dcJ05i5uoH7hap79cDV/evpDjAGPwLTtath1bA1TRw9h6nZDmDp6MNvVVGZ/fquZZ0JHGzz6Y7jn63DKP6HSm91rpMIY6GgH07713XTYdE8JiAfEfe/8rNM+KKWU6nNmA/f6AqEb3c/nu2k96vsBVZzuPtja5VedZmtSWYmH/ScOZ/+JwwkcuxMbWlqZ99l65i5u4M3PGnhm4Wr+PXfroPEhlaVsP2wQ44dWMX7o1vfRNRUMqy5nxOAKKsvSmAt172+DpwweuRBm1cFX/7ntMR0d8OFs2LwBdj4h/sSgbZth4wpoXBnzWuW+r7bnbmmELZvcVyNsabIBXWrrQm5rmyDLDbw8JeAphZKyrdueMve9xE2Ppm09dpd1DbDqlphjS6GkNO6xnXlFj+3ltRKfX+Zul8Wc76ZpEKmUUn3dJcB52EHpAE9hl7LpUT8IqGrjJke7/KorsjOhe01lGYdOHcmhU0d2pq3btIUPV27ko5Ub+XBlI0sbmvhk9Sae/XA1La0d2+QxqLyE4YPLGVZdwfDqcmqryhhcWUp1RSmDK0qpLi+huqKUIZWlVJaVUF7qoaLUQ/moL1F+go+KpwOU33gy2w3fkw2DV1M6qJbWFQvY/O4DfLRmM6OlgcnlF8Ko6VBZA+1tdib5DZ9D87o4tRIYNBwGj7LdpoNGQO0OttWvvNou4FxStjUI6gyO3M9gW6o6oi1W7bbVapu0DjetY2srV0erDdY62qE9uh3zam+1+9o2Q0cjdLRR1RyBVevdY9z9scd2prfZ6+WbdAvIYoO1ktKYYCw2MCuNObasa4DonjN5xSpoeaLrcZ3BZOr5bFu2FPLxlGigqJQaMNy1AG9wX/gCoUOAvwIX9HRuPwioErVQ2ffq8txVcVh1eWcrVixjDGs3bWFpQzOrN25m3abNrN20hbWNW1i3aQtrGjezItLCwhUb2bSljU2b22htT6UV6Bf27XPgPwBbgEnATzuP+OSAF/CsWQibN9o/irU7wIT9YMgYGLKdnZJhyGj7PmiE/WPaR7xRX09dXV1qB3d0xARo3YOvBMFbbEDW3tb1/PbY7dZu53bfn+S4zgAyZn9by9btznO25jN6c4tdqjN6jsnzhLSeRAFXssCsp6AxXoDX9bixyz6FNz5JMWhMnM+2ZSuzU5QopVQcvkBoT+B04FTgU+C/qZzXd/6aJpIooMpyC1VviAgjBlcwYnBFyudsbmunsaWNTZvbadzcRnNrG5vbOtgSfbVv3X7v/QXsMGoIbVtaKB88jIohQ5k9fwXPf7SGFydfzCHHjuz5gv2dxwOeclIcS1jUXuweSBqTJJhLHJhtDRRbkwR47T0EjfHyiXNc2xbo2BRnf4KytbfSvWt5KsBHufpWJXlg1uugMUGrYEm53S4pd19lMellMelbjxmy4SNYPizOMWVbP2tQqFRW+QKhqdgg6nRgDXAvIOGg//BU8+i3AVW0y29QDluosqmitISKwSUMH9zzsfVNn1BX13Wdxq/MHE/d7+u55qkPOXjyiOJaAFpll8jWP679SUdHl2Dvxeef46D9900QuCULGltJ3irYLWjsTT5bmlJosYw9p63XX8NeAG+mcKCnNE5w1i14iwZfCYK3znGD0e7qznGGsdsxabFjIJMeE29f7DGeri+gsnkFNCyOSZdux8i2aXGPiabrv4GqVz4AngeODwf9iwB8gdCPe5NB34g2kulhUHpepjgoApVlJfz46Clccv+7/OuVxZxxgK/QRVKqdzwe8FRAqW3ZbS33Qs2YAhcqQ8bY4Kp9y9bgq32L+2qL2d56zDvz3mT36dOSHpNKPluPabVjETdv7Hae233c2bUdHd/ofs5z1/L+AK9mM8d4AVhs0BUTeHUP2qJr78bb7gzUJGaJ3u7pyba75rfPpk3w/uAE12Tb9JSvk8r1idlOVOc4ZejNvu6Brft5l9Vr7ENG2+RRMCcDpwHP+AKh2cA9xF+EOaG+H20kCKiiBpXnv8uvUE7ZawKz56/g8kffZ2xtFUfuPLrQRVJqYBOx07rEmdolkXVLPLBzXe7KlKrOB0zaEgdd0TTTPS3OeSZmHKPpAMzWa5gOFix4n52nTdv6EEvnMR0xx5mu+7scE92fxjHd99svoNu2+x79btLZjpN3k1lN9bCYcbgJr5/mNWPzjM2vo2PrdqJrJitPj/sSHOd+HtTUCKsbEuSRf+Gg/0HgQV8gVA2ciF3Tb5QvEPo78EA46H+ypzz6bUDVtMX+7yrdaRP6Io9H+NPXZnDmLa9x7u1vcNFRU/nuYZMo72FiU6WU2oZIzBO9qY8HTdfKhnp23rMu59cpNu/15mGbfuT1RPX+UWG7asNB/ybgLuAuXyA0FDgFO5XCwA2oNm22YxcKMSi9kGoHlXP3uftzyf3vcM1TH3LPa59x1oE+vrbPBGoH9f0B2koppVQ+uMvOzHJfPSqugMrxHgNcC5QA/8CJBHs8J0FA1bjFBlR9ZVB6NlVXlHLd12dy6t6r+Vv9Iq56/AN+/8RCDpg0nCN2GsU+vmHsPKam80lIpZRSqq/wBUJdYoVw0N9zrJAHxRNtON4S4HrgaGAp8DqO92GcyPtJz0sQUG12J9ZMa3byfiI6Een7n2/g4bc/54n3VvCbR+zXObiilBkTapk6egiTRw1myujB7DBsEMMHV2igpZRSqii5a+t1iRV8gdDD4aA/eayQB8UTUMG+wCKcyCcAON57sAPD0gqo6qaN5NaXwuy347DslrIPmj62huljawgcuxPL1jfzRngdb4QbeGtJA3e9trjLrO4lHmHk4ApG11Qwckgl3qoyhlTamdwHV9pZ3KvcWdzLSjyUl3g6t6OBmLgPv4iI+27zFmTrttjPPTExcxMt3tDOe59Htj0mS+MYU8kntjyZ5ZNKeexRH69vx/tZQwb5pHBQXuuVyjGGhevaqfpkbe6vlUpOeaz7/DXtlHy0OuN8evMzlmk+vV6dSrbdfGd1G/Lh6u67u/z70T2ty7Fd0iThcSIx/w5tk1+8fdL5uXtZtnlQrtu+RMfH5vV5YwefrG7s/PfSI13/nYx+FgRP9EG/3j18VpQimw2rN25O59R9gUXhoP8TAF8glFqskAfFFFCNA5bEfF4K7NfjWdXxJ7GsmzaKj648lrISHZAda1xtFeNmjOPEGeMA6OgwLFvfzKJVdumclRs2s3JDCys3bmZpQxMLlrexsaWVxs1tdBTuAYytXnqh0CUojFdeKnQJCuO1VwpdgsJ447VCl6Aw5g7Qer/wbKFLUBjPPJ3OWenFCnlQTAFVahzvediFC/E0dlD//IsFLlD+NTY2Ul9fn9U8BZgATKgARrovADxABcaUs6UdmtoMW9qhzUBbh6Gtg85Xh9n6f31D1/9Fd6abrtu9mXakpaWFysrKhOXvsY5Z+k9dtv5vmEp5BGhubqGqKn69U75WlsqTSk7ZulZzczNVVVUZXysVqd6LfFyruamZQYOS1zvla2XpoJTuaSrXomtjVux2U1Mzg6qq4jZ2dTknzgHp7Dfd9sb+29T9vHj/lsXPa2t6oryI/TcQ++9aRUWl+2+m3dMRk2/3fzOjkyH09TaqzZs3U1Gx7dOjV1bVlPoCoTdikmaFg/6UBoUXWjEFVMuwf9OjxrtpXTmRzhH3JlhpBuLjpvUD9DFbrffAovUeWLTeA0uiel9x1oa2cNC/d5JTU4sVCqCYAqrXgSk43h2xX85pwNcLWySllFJKFZHXgSm+QKjoYoXiGWDkRNqAHwBPAAuA+3Ai7xW2UEoppZQqFuGgf5tYIRz0F0WsUEwtVOBEHgMeK3QxlFJKKVWcwkF/UcYKkspjs8VKRDqA5kKXowBKgd4vY9/3ab0HFq33wKL1HlgS1bvKGFM8vWe9UFwtVL33pjEm2eC1fklE3tB6Dxxa74FF6z2waL37jz4ZBSqllFJKFRMNqJRSSimlMtTXA6o+MdlXDmi9Bxat98Ci9R5YtN79RJ8elK6UUkopVQz6eguVUkoppVTBaUCllFJKKZWhPhtQicgxIrJQRBaJSKDQ5ckFEZkgIs+IyPsi8p6IXOimOyKyTETmua/jCl3WXBCRsIi869bxDTdtmIg8JSIfue9DC13ObBKRaTH3dZ6IbBCRi/rjPReRW0RklYjMj0mLe3/F+ov7+/6OiMwsXMkzk6DevxeRD9y6PSAitW66T0SaY+77DQUreIYS1Dvhz7WIXOre74Ui8sXClDpzCep9b0ydwyIyz03vF/c7yd+u/v37bYzpcy+gBPgYmAiUA28D0wtdrhzUcwww090eAnwITAcc4KeFLl8e6h8GRnRLuxoIuNsB4HeFLmcO618CrAB26I/3HDgUmAnM7+n+AscBjwMC7A+8WujyZ7neXwBK3e3fxdTbF3tcX34lqHfcn2v337m3gQpgR/ff+5JC1yFb9e62/4/Ar/rT/U7yt6tf/3731RaqfYFFxphPjDFbgHuAEwtcpqwzxiw3xrzpbm/Erls0rrClKrgTgdvc7duAkwpXlJw7EvjYGLO40AXJBWPMc8C6bsmJ7u+JwO3GegWoFZExeSlolsWrtzHmSWNMdNboV4DxeS9YjiW434mcCNxjjNlsjPkUWIT9d7/PSVZvERHgVODuvBYqx5L87erXv999NaAaByyJ+byUfh5oiIgP2BN41U36gds0ekt/6/aKYYAnRWSuiJznpo02xix3t1cAowtTtLw4ja7/0A6Ee57o/g6k3/lvY/+3HrWjiLwlIs+KyCGFKlQOxfu5Hij3+xBgpTHmo5i0fnW/u/3t6te/3301oBpQRGQwcD9wkTFmA/B3YBIwA1iObTLujw42xswEjgUuEJFDY3ca21bcL+f9EJFy4EvAv92kgXLPO/Xn+5uIiFyGXd/sTjdpObC9MWZP4GLgLhGpKVT5cmDA/Vx3czpd/9PUr+53nL9dnfrj73dfDaiWARNiPo930/odESnD/kDeaYz5L4AxZqUxpt0Y0wHcRB9tCu+JMWaZ+74KeABbz5XRpmD3fVXhSphTx2LXqlwJA+eek/j+9vvfeRE5Gzge+Ib7xwa3y2utuz0XO5ZoasEKmWVJfq4Hwv0uBU4G7o2m9af7He9vF/3897uvBlSvA1NEZEf3f/KnAQ8XuExZ5/av3wwsMMZcE5Me27f8ZWB+93P7OhGpFpEh0W3soN352Pt8lnvYWcBDhSlhznX5n+tAuOeuRPf3YeBM92mg/YFITNdBnycixwA/B75kjGmKSR8pIiXu9kRgCvBJYUqZfUl+rh8GThORChHZEVvv1/Jdvhw7CvjAGLM0mtBf7neiv13099/vQo+KT/eFfSrgQ2wEf1mhy5OjOh6MbRJ9B5jnvo4D7gDeddMfBsYUuqw5qPtE7FM+bwPvRe8xMByYA3wEPA0MK3RZc1D3amAt4I1J63f3HBswLgdasWMmzkl0f7FP/1zv/r6/C+xd6PJnud6LsGNIor/nN7jHfsX9+Z8HvAmcUOjyZ7neCX+ugcvc+70QOLbQ5c9mvd30W4Hvdju2X9zvJH+7+vXvty49o5RSSimVob7a5aeUUkopVTQ0oFJKKaWUypAGVEoppZRSGdKASimllFIqQxpQKaWUUkplSAMqpVTWichwEZnnvlaIyDJ3u1FE/paja14kImcm2X+8iFyei2srpZROm6CUyikRcYBGY8wfcniNUuy8PTPN1kWGux8j7jEHmZjJM5VSKhu0hUoplTciUicij7rbjojcJiLPi8hiETlZRK4WkXdFZLa7dAUispe7UOxcEXkiwSr0R2CX6mlzz/mRiLzvLrp7D3SuHVaPXd5FKaWySgMqpVQhTcIGQ18C/gU8Y4zZDWgG/G5Q9Vfgq8aYvYBbgCvj5HMQMDfmcwDY0xizO/DdmPQ3gEOyXgul1IBXWugCKKUGtMeNMa0i8i5QAsx2098FfMA0YFfgKdtjRwl2GY/uxgALYj6/A9wpIg8CD8akrwLGZq/4SillaUCllCqkzQDGmA4RaTVbB3V2YP99EuA9Y8wBPeTTDFTGfPYDhwInAJeJyG5ud2Cle6xSSmWVdvkppYrZQmCkiBwAICJlIrJLnOMWAJPdYzzABGPMM8AlgBcY7B43FZif81IrpQYcDaiUUkXLGLMF+CrwOxF5G7tq/YFxDn0c2yIFtlvwX2434lvAX4wx6919hwOhXJZZKTUw6bQJSql+QUQeAH5ujPkowf7RwF3GmCPzWzKl1ECgAZVSql8QkWnAaGPMcwn27wO0GmPm5bVgSqkBQQMqpZRSSqkM6RgqpZRSSqkMaUCllFJKKZUhDaiUUkoppTKkAZVSSimlVIY0oFJKKaWUypAGVEoppZRSGdKASimllFIqQxpQKaWUUkplSAMqpZRSSqkMaUCllFJKKZUhDaiUUkoppTKkAZVSfYCI+ETEiEhphvk0isjEbJWrl9d2RMQpxLXjEZFbReS3ebzeDSLyy3xdTymVXxpQKZUnIjJbRC6Pk36iiKzINFhKhTFmsDHmE/e6aQcUIvINNzjr/jIi8qt0yyfWJyLyfrp5FAMROVtEXohNM8Z81xhzRQ6uFe8+tIrIJ9m+llIqMQ2olMqf24Bvioh0Sz8DuNMY01aAMqXFGHOnG5x1voCLgJXATRlkfSgwCpgoIvtkoahZl4/Atzfi3IepwDog68GbUioxDaiUyp8HgeHAIdEEERkKHA/cLiIeEQmIyMcislZE7hORYfEyEpGxIvKwiKwTkUUicm7MvhIR+YWbz0YRmSsiE9x9RkQmi8h5wDeAn7stGo+IyM9E5P5u1/mLiFzbU8VEZE/gz8Bpxpjlvf1iYpwFPAQ85m7HXmMXEXnKrfNKEflFCvXdKeachSJyapI6HC8i80RkvYi8JCK7x+wLi8glIvIOsElESmPu1UYReV9EvuweuzNwA3CA+92ud9O7tAiKyLnuvVvn3suxMfuMiHxXRD5yy3N9nEA8Xh1KgfuAR4wx/+zx21ZKZY0GVErliTGmGfvH7syY5FOBD4wxbwM/BE4CDgPGAg3A9QmyuwdY6h73VeD/ROQId9/FwOnAcUAN8G2gqVtZZgF3Ale7LRsnAP8CjhGRWuj843wacHuyernH/we4whhTn+zYHvIZ5NblTvd1moiUu/uGAE8Ds906TwbmJKuviFQDTwF3YVu9TgP+JiLT41x7T+AW4Hxs0Hsj8LCIVMQcdjrgB2rd1sSPscGxF/gN8C8RGWOMWQB8F3jZ/W5r41zvCOAq7P0fAyzG3tNYxwP7ALu7x30x+TcIwNVANfCDFI5VSmWRBlRK5ddtwFdFpNL9fKabBvaP8GXGmKXGmM2A4x7bpYvJbX05CLjEGNNijJkH/IOtgdp3gP9njFlorLeNMWt7KpjbsvQccIqbdAywxhgzN9E5bqvJ7cB87B/zTJwMbAaeBEJAGTaAARtcrDDG/NGt80ZjzKvuvkT1PR4IG2P+aYxpM8a8BdwfU79Y5wE3GmNeNca0G2Nuc8uyf8wxfzHGLHEDY4wx/zbGfG6M6TDG3At8BOybYl2/AdxijHnTvdeXYlu0fDHHBI0x640xnwHPADOSZSgiXwG+BXzFGNOSYjmUUlmiAZVSeWSMeQFYA5wkIpOwf4DvcnfvADzgdvGsBxYA7cDobtmMBdYZYzbGpC0GxrnbE7CtJ+m4Dfimu/1N4I4ejr8E2AU4yxhj0rxm1FnAfW7w04INfqLdfsnqlGjfDsB+0e/T/U6/AWyX4NifdDt2Ava7jloSe4KInBnTRbge2BUYkUI9cfNdHP1gjGkE1rL1HgKsiNluAgYnykxEpgI3Y++DDkZXqgCKanClUgPE7djWpGnAE8aYlW76EuDbxpgXu5/QreXic2CYiAyJCaq2B5bF5DMJ22qUTLwA6EHg7yKyK7aF5+eJThaROuAy4FBjzPoerpWUiIwHjgD2dVtaAAYBlSIyAlun0xKcnqi+S4BnjTFHp1CEJcCVxpgrkxzT+X2JyA7YwfdHYrv22kVkHiDdj03gc2wQF82vGtvVuCzhGQm4XaX3AzcYYx7u7flKqezQFiql8u924CjgXLZ294EdyHyl+8caERkpIid2P9kYswR4CbhKRCrdwdPnYMdAge3+u0JEpoi1u4gMj1OOlUCXOanclqH/YFvNXnO7m7YhImOwY34ucrvSMnUG8CE2yJzhvqZix4mdDjwKjBGRi0SkQkSGiMh+7rmJ6vsoMFVEzhCRMve1jztovLubgO+KyH5uHtUi4nfHbsVTjQ2aVgOIyLewLVRRK4Hx0TFgcdwNfEtEZrjjtP4PeNUYE+7pi4rjBmzr1mVpnKuUyhINqJTKM/eP5kvYP8qxLQrXup+fFJGNwCvAfttkYJ0O+LAtHQ8AvzbGPO3uuwY7+P1JYAO2K6gqTh43A9PdLqsHY9JvA3YjeXffudiuyGtl2zmQbkhyXiJnAX8zxqyIfWGDhbPclrijgROwXWEfAYcnq697zhewLVufu+f9DogdaA6AMeYNt07XYR8GWAScnaiwxpj3gT8CL2ODp92A2JbF/wHvAStEZE2c858GfoltWVqObWFL1AKXkIhsjw1G9wci3e9Fb/NTSqVPMh/2oJTqT9w/0h8A2xljNmQxXwfAGONkK0+llCoW2kKllOokIh7sNAT3ZDOYUkqp/k4HpSulgM6B0SuxT58dk4NL1OcgT6WUKgra5aeUUkoplSHt8lNKKaWUylCf7vLzeDymqirew0v9W0dHBx7PwIuFtd4Di9Z7YNF6DyyJ6t3U1GSMMX3yC+nTAVV5eTmbNm0qdDHyrr6+nrq6ukIXI++03gOL1ntg0XoPLInqLSLN+S9NdvTJKFAppZRSqphoQKWUUkoplSENqJRSSimlMtSnAyozdAJLG5ri7/zwCfjDNHj3P/ktlFJKKaUGnD49KB3gxUVr+No+22+74/WboXEFPHoxTD0GKgbnv3BKKaWUyhpfIHQLcDywKhz07+qmDQPuxa5vGgZODQf9Db5ASLBrpB4HNAFnh4P+N3NVtj7dQpXUinehdgfYHIH3Hyp0aZRSSimVuVvZdiWHADAnHPRPAea4nwGOBaa4r/OAv+eyYP0zoGpvhY2fwx6nwVAfvPffQpdIKaWUUhkKB/3PAeu6JZ8I3OZu3wacFJN+ezjoN+Gg/xWg1hcIjclV2fp8l197B9z16mfsOKKa/XYchscjsGmN3Tl4FEw/CV6+DprWwaBhBS2rUkoppbJudDjoX+5urwBGu9vjgCUxxy1105aTgC8Q2hs4BBgLNAPzgafCQX9DT4Xo8wHV8x+t5vH5KwC46KgpXHTUVNi0yu6sHgXj9oIX/wwfhGDmGYUrqFJKKaWS8lTVlPoCoTdikmaFg/5ZqZ4fDvqNLxDq9SLFvkDoW8APgU+BucBCoBI4GLjEFwjNB34ZDvo/S5RHnw+oXvlkLQC+4YN48K1lXHjkFKRxtd05eBSMmWHHUr3/oAZUSimlVBHraN7QFg769+7laSt9gdCYcNC/3O3Sc1tVWAZMiDluvJsWzyDgoHDQH3emdl8gNAM7Fqv/BlQNTa3M3L6WL+85jl8+9B4fr97E5E1uQFU9EkRg+onwyt+0208ppZTqfx4GzgKC7vtDMek/8AVC9wD7AZGYrsEuwkH/9ckuEA765/VUiD4fUAHss+MwDp06ErAtVpPb3eB08Cj7vstJ8NJftNtPKaWU6sN8gdDdQB0wwhcILQV+jQ2k7vMFQucAi4FT3cMfw06ZsAg7bcK3kuR7JbAj8H3gsnDQ/7Pelq1/BFQ7DGP7YYMYOaSCN8Lr+ObQVVBaCeXu3FNjZ9qn/d79twZUSimlVB8VDvpPT7DryDjHGuCCFLMeD1wEXAOUpVO2fjFtwuRRgxER9vUN4/VwA2xabQeki9gDRGD3r8Gnz0EkUfepUkoppQaoSDjoXwU4wOHpZNAvAqrtvJUAzNxhKMvWN7OqYSMMHtn1oN2/BhjbSqWUUkop5QoH/T9y3z8Ddkgnj34RUFWWlQCw+3gvAPPXl9sWqljDJ8H4feGde8H0+olKpZRSSvVzvkDoaqDaFwiV+QKhOb5AaLUvEPpmKuf2i4AqaucxNYjAu5uGbNtCBbDH12DV+3ZZGqWUUkqprr4QDvo3YNcLDAOTgZQGqPergGpwRSk7Dq9mfssoO2VCd7ucDJ4y20qllFJKKdVV9GE9P/DvcNAfSfXEfhVQAey2XSXvdeywbZcf2Dmopn4R3rkP2tvyXzillFJKFbNHfYHQB8BewBxfIDQSaEnlxD4fUG1XU9nl867DDJ8zgrWlcVqoAPY43S5Ns+jpPJROKaWUUsXOFwiNBQgH/QHgQGDvcNDfip2/6sRU8ujz81CN9nYNqHapaQJgftMwDot3wtQv2tarubfCtGNyXj6llFJKFb1/+AKhYUA9MBt4ASAc9G8CNqWSQc8BleONu/IyTqTHlZfzIXDMTl0+7zJoPVDJ/EhF/ICqpAz2/KZdMHnD51AzNveFVEoppVTRCgf9x/kCoUrsLOxfBv7gC4Q+wwZXs5MtihyVuMvP8X4Lx/smcClQhV15eRV25eWncby34Xi3z7gWGdp5zJAun71t65gon/PGio7EJ808E0wHvPWvHJdOKaWUUn1BOOhvCQf9s8NB/4XuAs0/wTY8XecLhF7r6fxkLVSDgINwInFXXsbxzqCHlZfzQZCuCc0NHOj5nAeWTKC9w1DikW1PGrYjTDwc3rwdDvkJeEryU1illFJKFT1fIFQDRIB73FdjT+ckDqicSNKVl3Ei83pVulzpHi81rWNy2Vo2tbSzvmkLwwdXxD9vr7Pg32fDx8/AlKNyXUqllFJKFTlfIHQ+8Bvsk33RWcBNOOif2NO5qYyhuhr4LXb81Gxgd+DHOJGi6C+T7gFV8zq8FUALRJpbEwdU0/wwaATM/acGVEoppZQC+CmwazjoX9PbE1OZNuELOJG0Zg0tiOYGvJW2Cy/S3Jr4uNJyOzh94WOwvqC9lkoppZQqDh9jp0rotVSmTegyayhOJILjTedaObHNCKmmddRUDQNgY0sPk3fu8x146a/w2k3whStyUj6llFJK9RmXAi/5AqFXgc3RxOjiycmk0kL1KI63c9ZQHG/Ks4YWRPM6SisHA9DWkeRJP4DaCbDz8fDmbbAlpWkmlFJKKdV/3Qj8D3gFmBvz6lGSQenesTiRz3EiAXccVQQn0o7jTXnW0IJoWkfpaDuVQnsP8RQA+30P3n8I3r4H9jknt2VTSimlVDErCwf9F6dzYrIuv3/geLeZNRQnktqsoY53AnA7MBo7Un4WTuRaN897AR92TNapOJEGHK8A1wLHYfsvz8aJvNnTZSR2VHpHO7RE8FTWANDeUwsVwPb7w5g94NUbYe9vxxnlrpRSSqkB4nFfIHQe8Ahdu/zW9XRikok9I8dhZwytx84a+gqO97843vNSnNCzDfgJTmQ6sD9wAY53OhAA5uBEpgBz3M8Ax2LntZoCnAf8PYVrdNW8HjCUVkUDqhTOEbGtVGsWwsf/6/UllVJKKdVvnI47joqt3X1vpHJi8kHpTqQFd9p1+9m7IzbwuQ7Hux1OZN8k5y4HlrvbG3G8C4Bx2O7COveo27AB2yVu+u04EYMN3mpxvGPcfFLTbFfD8bgBVY9jqKJ2PRme+hW8fD1MPjLlyymllFKq/wgH/Tume24qg9Itxxs7a+jZ2CVoUj3XB+wJvAqMjgmSVmC7BMEGW0tizlrqpiXVpYOu2bbIlQ6qBaDDmG2Oj6u0AvY7Hz6eA8vfSe0cpZRSSvULvkAoaUzjC4RqfIHQrsmOSWViz7izhuJEepw11D1/MHA/cBFOZEOXKReciMHxphj1dOZ3HrZLEBjF888/T2WpDauGr3md3YD3P14CbMf89xYwNLIopWxLW3di/5Iq1v33Ut7fpXin2QJobGykvr6+0MXIO633wKL1Hli03gNLEdb7K75A6Gpsj9xcYDVQiZ1783BgB+zafgmlMg/VT4FdcSK9njUUx1uGDabuxIn8101d2dmV53jHYBdcBlgGTIg5e7yb1i3PyCxgFgA3TjGHHHII1RVuNeZ9DvNhxr4Hw5uLmDJ1GnX79mb95vMY9dJfGbXbBBg+qRfn5Vd9fT11dXWFLkbeab0HFq33wKL1HliKrd7hoP/HvkBoGPAV4BRgDHaFmAXAjeGg/4We8kgloEpv1lD71N7NwAKcyDUxex4GzgKC7vtDMek/wPHeA+yHnaahx/FTXR7Ka4p2+Q0FoD3VLr+o/b8Pr9wAL/0FTri2d+cqpZRSqs9yn+S7yX31WioBlR3t7ni7zBqKE+lp1tCDgDOAd3G889y0X2ADqftwvOcAi4FT3X2PYadMWIQN4L6VWhViNK8DKekclN7e0cuAash2MOPrMO9OqLvUflZKKaWU6kEqAVV01tB3gRQfmwOcyAvEWRnGte2jdPbpvgtSzt8lsZdoboCqWkpL7Fj7XgdUAAf9yM6c/vJ18IXf9v58pZRSSg04qQRUZTiRtGYNzbumdVA1DI/HBllpBVTDJsKuX4HXb4YDL4TBI7NcSKWUUkr1N6lMm/C4O5nnGBzvsM5XMWpeB4OGUeoGVG3pBFQAh10CbS3wko6jUkoppfo7XyB0ty8Q2jnBvjtSySOVgCrtWUPzoeug9AaoGkZJJi1UACOmwO5fg9f+ARtXZl5IpZRSShWzo4DZvkAo3tCjXVLJIIV5qCJpzxqad83rYMzulEiGARXAoT+Dd+6DF/8Mx1yVnfIppZRSqhgtxa4Ec5svEDoWODsc9Pdquqgka/l5k8+E7nhrcLxJZw3Nu6Z1UDU08xYqsPNQzTjdjqXakPrqN0oppZTqc0w46F8RDvq/iH0Q7w1fIHSMuy/RA3ZdJGuh+gqON6NZQ/OqtRnamqFqKCKCRzIMqMC2Ur19D7xwDRz3++yUUymllFJFKxz0X+MLhOYA//IFQn6gPJXzkrRQRX4MHI9d4PgU4ArgYmAKcCNO5FCcyOuZFjxr3IWRGWTHy5d6PL2f2LO7oT7Y85sw91ZY/1lmeSmllFKqWHVphQoH/W8D+2DjpJ1SySD5GConktGsoXnlzpJOlQ2oPJ4stFABHPpz20r1vyvh5Bszz08ppZRSxWav7gnhoL8FuMAXCKU0KWUq81AVtc6n/JrdgCqmhaqtPQsBlXcc7PddePFaOPAHsN1umeeplFJKqbT4AqEwsBFoB9rCQf/e7jp89wI+IAycGg76G1LNMxz0J5y4PBz0pzSQOpVpE/qGbi1UJR6hI9Muv6iDfwyVXnjq19nJTymllFKZODwc9M8IB/17u58DwJxw0D8FmON+zqs+H1B1Lj3TrYWqxCO0daS+Uk5SVbVw6E/h4znwSX128lRKKaVUtpwI3OZu3waclO8CJO7yc7x3A5fjRBbE2XcHTuSMHJar96KD0quGAjagas9SPAXAPufCqzfCU7+Cc+vtIC2llFJKZY2nqqbUFwjFTh4+Kxz0z+p2mAGe9AVCBrjR3T86pmtuBTA63TL4AqEDsV2HnTFSOOi/vafzko2hOgo4EMd7NU7k+m77Upo1NK+a1kFpFZRVAVAiQnu2WqgAyirhiP8HD5wP7/0Xdvtq9vJWSimlFB3NG9piuvESOTgc9C/zBUKjgKd8gdAHsTvDQb9xg61ec5eZmQTMw47RAhvAZRRQdc4aiuM9FjgbJ9KrWUPzYeug9IbO7j7IQQsVwG6nwkvXwZzfwE7H2yBLKaWUUnkTDvqXue+rfIHQA8C+wEpfIDQmHPQv9wVCY4BVaWa/NzA9HPT3OiBL1m9lcCIrcCKds4bieHs1a2heNa3rHJAO0YAqyxGVxwNfvNLOSfXyddnNWymllFJJ+QKhal8gNCS6DXwBmA88DJzlHnYW8FCal5gPbJfOialNm+BErsHxzgH+heNNedbQvGpeB4OGdn4s9Qht2ZiHqruJh8HOJ8Dz18CMr0PN2OxfQymllFLxjAYe8AVCYGOYu8JB/2xfIPQ6cJ8vEDoHWAycmmb+I4D3fYHQa8DmaGI46P9STycmC6i6tkI5kbdxvPsAfyTFWUPzobOQTetg9NahXVmdNqG7o6+AD5+Epx04uftYOaWUUkrlQjjo/wTYI076WuDILFzCSffEZF1+28waihNpwYlcAIxP94I509zQ+YQfuNMmZGNiz3iG7Wgn+XznXljyWm6uoZRSSqm8Cgf9zwIfAEPc1wI3rUfJ1vJLPADJiaQ0a2jeGBN3UHrOWqgADr4YhoyBxy+BbI/VUkoppVTe+QKhU4HXsGsYnwq86guEUnqsv89PpiQi0BIB077NoPScjKGKqhgMR/0GPn8T3rknd9dRSimlVL5cBuwTDvrPCgf9Z2KfIPxlKif2+YAK2GaWdIg+5ZfDgApgt1Ng/D52LFXLhtxeSymllFK55gkH/bFTLqwlxVip56f8HO9c4BbgLpxIygsN5osANEVnSd8aUJXmI6DyeODYq+GmI+CZ/4Njg7m9nlJKKaVyabYvEHoCuNv9/DXgsVROTCXq+howFngdx3sPjveLON7imocqTguVR3Lc5Rc1bibscw68diMsfzv311NKKaVUToSD/p8Bs4Dd3descNB/SSrnptBCFVkEXIbj/SVwPLa1qh3H+0/gWpzIunQLnjXd1vEDKC0RNrfmabD4Eb+E9x+CRy+Gc57Sdf6UUkqpPioc9N8P3N/b81Kc2NO7O/At4Dj3IncCB2NnUJ/R24tmkwh2Diro0uWXtxYqgKpa+MKV8MB58OatsPe383NdpZRSSmXMFwi9EA76D/YFQhuxa/dFCWDCQX9NT3mkOoZqPXAzEMCJRGcOfRXHe1CvS50LzesAsYGNqzTX0yZ0t/up8NYddoD6TifA4JH5u7ZSSiml0hYO+g9234ekm0cqfVOn4ESOxInc1RlMOd4d7Xvk5HQvnFVN66DSC56SzqScTuwZjwj4r4EtTfDk/8vfdZVSSimVFb5A6I5U0uJJpcvvP8DMOGnbzqQey/Hegh1ztQonsqubNgy4F/ABYeBUnEiDO8j9WmyXYhNwNk7kzVQqICLuOn7DuqTnZdqE7kZOhYN+BM//Efb8Jux4SH6vr5RSSqlM7BL7wRcIldJTvONKHFA53p3cjL043tiWqBqgMoW8bwWuA26PSQsAc3AiQRxvwP18CXAsMMV97Qf83X1PTXNDl/FTAKUeD+357PKLOuSn8O5/4NEfw3dfgLJUviqllFJKFYovELoU+AVQ5QuEohNLCrAF+9Rfj5K1UE3DtjDVAifEpG8Ezu0xZyfyHI7X1y31RKDO3b4NqMcGVCcCt+NEDPAKjrcWxzsm5SVumtZBddcxS55CtFABlA+C4/8E/zoZnvs9HJnSBKtKKaWUKpBw0H8VcJUvELoqHPRfmk4eSVqoIg8BD+F4D8CJvJxmGbsbHRMkrQBGu9vjgCUxxy1107YNqBzvecB59sMo6uvr2a/hcyIdtXxQX9952JrVLTRu6qA+Ji1/Sthp9BGMeuFPzG0ez6bBO2Y198bGxgLVq7C03gOL1ntg0XoPLMVa73DQf6kvEBqK7TGrjEl/rqdzk3X5/RwncjXwdRzv6dvuj/wordJuPd/geHvfhOREZhFtfrtxiqmrq4OXmqny7cx2dXWdhz2y6m0+a1pLXUxaXu27O1y/L/ssuxW+MwdKUpuhIhX19fWFq1cBab0HFq33wKL1HliKtd6+QOg7wIXAeGAesD/wMnBET+cme8pvgfv+BjA3zisdK3G8YwDc9+h6OcuACTHHjXfTkjNA2xbYsnGbQel5WXommUHD4Ljfw/J58MrfClcOpZRSSqXqQmAfYHE46D8c2BM7dVSPknX5PeK+35Zx8bZ6GDgLCLrvD8Wk/wDHew92MHok5fFTcWZJBzuGKm8TeyYy/SSY5rfr/O18PAybWNjyKKWUUiqZlnDQ3+ILhPAFQhXhoP8DXyA0LZUTe56HyvE+heOtjfk8FMf7RArn3Y1tJpuG412K4z0HG0gdjeP9CDjK/Qx24cFPgEXATcD3Uyk8kDCgsi1UeVp6JhER8P8BSsrg4R9BIZ46VEoppVSqlvoCoVrgQeApXyD0ELA4lRNTGdgzEieyvvOTnTdqVI9nOZFtx11ZR8Y51gAXpFCWbcVZGBkKNA9VPDVj4QtXwCMXwpu3w15nFbpESimllIojHPR/2d10fIHQM4AXmJ3KuakEVO043u1xIp/ZS3h3oOs6N4UVZx0/KKKACmDmWXZuqid/CVOOtkGWUkoppYqGLxAqAd4LB/07AYSD/md7c34qS89cBryA470Dx/sv4DkgrTkaciJBC1WpRwozsWc8IvClv0BHKzz8Q+36U0oppYpMOOhvBxb6AqHt0zk/hcWRI7NxvDOxjw4CXIQTWZPOxbLPJGyhKtjEnokMmwhHXw6P/VS7/pRSSqniNBR4zxcIvQZsiiaGg/4v9XRiqpMjHQgcGvP50V4VL5ea10FJOZRXd0kuLYan/Lrb+xx4/yF44jKYdDjUphUEK6WUUio30l7eJJWn/ILYeRned18X4nj/L90LZl1zg33CT6RLcolHMAY6iimo8njgxOsBAw9dAIV+ClEppZRSndxxU2GgzN1+HXgzlXNTGUN1HHA0TuQWnMgtwDHYNf6KQ9O6bbr7AErcAKtoxlFFDd0BvnglfPocvHFzoUujlFJKKZcvEDoX+A9wo5s0DjuFQo9SCajALpAc5U21YHnRtA4GDd8muaTEDaiKqYUqauZZMOlIeOpXsO6TQpdGKaWUUtYFwEHABoBw0P8R0PNUUaQWUF0FvIXjvRXHext22Zkr0yxo9jWvg0FDt0nubKEqxoBKBL70V/CUwYPa9aeUUkoVic3hoH9L9IMvEColxamiUhhDFbkb+4Tff4H7gQNwIvemV84cSNTl5ynSLr8o7zg4NgifvQSv/r3QpVFKKaUUPOsLhH4BVPkCoaOBfwOPpHJikrX8vDO7pSx138fieMfiRFIapJVzzQm6/KIBVXuRBlQAe5wO7z8Mcy6HyUfDyKmFLpFSSik1kAWAc4B3gfOxS+P9I5UTk02b8Mck+wxwRKqly6mOtm0m9QQ7bQJQfFMnxBKBE66Fv+0HD5wH5zxl1/1TSimlVN6Fg/4O7JrCN/X23CQtVJHDMyhTfsXt8rO9mR3F2uUXNWS0DaruOxOe/R0c8f8KXSKllFJqQPEFQu+SZKxUOOjfvac8Upgp3TsIuBjYHidyHo53CjANJ1I8k3vG7fKz70XdQhU1/UTY4+vw/B9t19/2+xW6REoppdRAkvF0UKk85fdPYAt2tnSAZcBvM71wVsXp8utsoeoLARXAsb8D73jb9bd5Y6FLo5RSSg0Y4aB/cfTlJk1xt1cB61LJI5WAahJO5GqgFQAn0gRI0jPyLW6Xn33vEy1UAJU18OUbYf1nMLt41p5WSimliokvEDrGFwgt9AVCi3yBUCDLeXef2HM8WZzYcwuOt4po36LjnQRs7nUpcylJC1V7X5rjaYcD4aCL4K07YEHx9KgqpZRSxcAXCJUA1wPHAtOB032B0PQsXiLtiT1TWRzZAWYDE3C8d7oXOjudUuaEeKCydpvkilIbULW09qGACqDuUvh4DjzyIxi/jx20XgSMMXQYaOvooL3D0NpuMDED/mPH/ptu53XJp8u+2PRuLYlxGhbXt3SwakNL7wvfx2m9Bxat98Ci9e61fYFF4aD/EwBfIHQPcCJ2reFs2BwO+rf4AiHc/FOe2DPZPFTXA3fhRJ7E8c7FTu4pwIU4kTUZFzkrjA2mPNs2tFWX26o1bWnPc5kyVFoOJ98ENx5qF1D+xr+3Wfg5nkv+8w7/fWsp3z1sEnv7hjHGW8mQylJa2wyb29pp2tLOhpZWNjS3ue+tcT63daY3b2mnvcPQ1mE634tC/ZxCl6AwtN4Di9Z7YNF698Y4YEnM56VANp/k6j6x5/fJeGJP+BD4A453DHAfcDdO5K2Mi5pFno0rYdBOcfdVlZcA0LSlLZ9Fyo6R0+Doy+Hxn9sFlPf5To+nvPlZA63thuufWUSqsU+JR6ipLKWmqoyayjJqqkoZNWQwNZVlVJZ5KC3xUFoilHqEEo/HfZfOd49Il1gvNuyTmB3d48EuH2OP61a+7ud9uPBDpk4beJOfar0HFq33wKL13soYOOsvNaW+QOiNmORZ4aB/Vh6LloOJPZ3ItcC1ON4dgNOAW9yxVHdjg6sPMyx0xqS1Oe74KYDqimhA1cdaqKL2ORc+nA1P/D/Y8TAYMSXp4UMHlbP/xGHcdObevLsswtrGLTRubqOsxEN5qYdBZSV4B20NnGoqyxhUXtIl8Cl29c2fUrffDoUuRt5pvQcWrffAovXu6ozmDW3hoH/vJKcuAybEfB7vpmVLFXBLOOi/CTrHbFUBTT2dmMI8VJHFwO+A3+F49wRuAX4FlGRQ4CwxcZ/wAxhU1ke7/KI8Hjjxb/D3A+C/5/Y4i7rBIHgYUlnGgZNG5LGgSimlVN68DkzxBUI7YgOp04CvZzH/OcBRQKP7uQp4kq1TRyWUwuLI3lIc7wnugPTHgYXAyWkXNYsE4k7qCVu7/DZt7oNdflE1Y+ws6p+/Bc9cmfRQY1IaaqWUUkr1WeGgvw34AfAEsAC4Lxz0v5fFS1SGg/5oMIW7PSiVE5MNSj8aOB04DngNuAc4DyeyKaOiZpWBQUPj7qmpslXb2NKazwJl3/QTYeaZ8MKfYeLhMPGwuIcZNKBSSinV/4WD/sewY5tyYZMvEJoZDvrfBPAFQnsBzamcmKzL71LgLuAnOJGGzMuYIwm6/CpKSxhUXkJDUx8PqACOCcLil+CB8+F7L8U9xBiDFNl8q0oppVQfcxHwb18g9Dm2I2w74GupnJhsUPoR2ShZziXo8gOorSpjfX8IqMqr4Ss3wz+Ogod/CKO3fepPW6iUUkqpzISD/td9gdBOwDQ3aWE46E8pkEhlYs/iluApP4DaQeWsb9qSx8Ik1treQcOmLUSaW2nc3Mamze00bm6lcXM7jS2tbNrSTtOWNja3drClvWPre1v71u3KG9j89jI2VaziD/Oft9MWYKco+GjlRmbuEL/7UymllFI98wVCFwB3hoP++e7nob5A6PRw0P+3ns4troDK8R4DXIt9gvAfOJFgj+ck6PIDqB1Uxvrm3LZQtbZ3sCLSwrL1zSxraGbZ+maWR5pZ07iFdZvsa23jZja09Dw4vsQjVJbaaQ4qSkvcd8/Wd+84ajevYXjzIigfhSmvpsNAhzHsOs7LCbuPzWldlVJKqX7u3HDQf330Qzjob3DX9+tDAZXjja7PczR25tPXcbwP40SSTyefpMtv6KByFqzYkJXitbS288GKjXy4YiMfrdrIolWNLFrdyLKG5m0m0hwxuJzh1RUMqy5n+tgahleXM6y6nOHV5Z2TaFZXlDI4+qospbqihIrSFGai2LgjW/6yD+Udj8M3n4ayyqzUTymllFKU+AIhCQf9BjrnoSpP5cTiCajc9XlwIp8A4HhTW5+nOvGcS7WD0h9DtaZxMy8uWsPcxQ3MW7KeBcs30NpuI6fyUg8TR1QzY8JQvjxjHOOGVjGudhDjhlYxxltJZVkOp+gash0Lp/2I3eb/Fub8Bo65KnfXUkoppQaW2cC9vkDoRvfz+W5aj4opoEptfR7Hex5wXvRj/WvvJhyNHVm9hYZNrfzvmWfwpDBie8nGDl5b3sY7a9pZvMEuqlxZAjt6PRy9fSk7ej1sP8TDyEGCRzqAiH1tgrZNsHgZLE69vmlrrNyZoeP8jH/lb7yzaQTrhu+Vh6sWXmNjI/X19YUuRt5pvQcWrffAovUuOpdgY4zvuZ+fAm5K5cRiCqhS40RmAbMA2oOVpu7wwxMeuqjkEx79ZAF77X8w3qr4s4w3bm7jntc+4z9zl/LBik2UeIS9th/KKfuP4NCpI9llrJcST3E9PldfX8/4s2+Gm45g90/+Dl98CQaPKnSxcq6+vp66urpCFyPvtN4Di9Z7YNF6F5dw0N8B3OC+8AVChwB/BS7o6dxiCqiyvj5PNIiKNLVuE1Ct3riZW1/6lDteXsyGljb23L6Wy0/cBf9uYxg+uCKTy+ZHWZWdSmFWHTz4Pfj6v+1yNUoppZRKmy8Q2hM7sfmpwKfAf1M5r5gCqteBKTjerK3PM3SQHUfW0LSF7YfbmeNXbmjhuv8t4t43ltDa3sExu2zH+YdNYsaE2owKXxCjp8MXr4THfgqv3Qj7f6/nc5RSSinVhS8QmooNok4H1gD3AhIO+hN3g3VTPAGVE2nD8UbX5ykBbsGJZLQ+z9Bq2yq1vrmVSFMrf3t2Ebe9FKat3XDK3uM579BJ7DiiOvOyF9I+34FFT8NTv4LRu8DoXaFqqM7yqZRSSqXuA+B54Phw0L8IwBcI/bg3GRRPQAXgRLK6Po+3yrZQPfjWMi6+dx7rmrbw5RnjuOioqZ0tVn2eCJx4Pfz9QLjtBJtWUQPDdoThk2HYJPs+fDIMn2iDLaWUUrlljH3ZD1vTop/dbelohbbN7uc4x3V+7s2+RMd1vXZ29sW5dgplHrTpM1i1YNt9hXMytmfsGV8gNBu7fnGvWibEdP8S+pDKykrT0tKScP/axs3s9dunAdh5TA1/OGV3dhnrzVfxcibuYL7IUgi/CE1roeFTWPsxrF0EkSVgOrYeN2g41G4Pg0ZA9UioHm7fywfbcVmllfY9ui0lIB4buIkn/gvY5pct5e14v5jETX/zzbnM3HPPNK8T75rxr9Or7R6vSYplSby9cOFCpk2b2sPxPV2nN99L7+5Let9LT9+XYcnSJUwYNz71a6ZUFmK2s/W9xLkXGXwv69atY9jQoSl9R9n7XvLxHcXJP2Zfy+ZmKssr4u7b5pop7TNdknosV9Iy9+LaKiPymw1NxpiCdR35AqFq7JRNpwNHALcDD4SD/id7Ore4WqiyLHYg+t3n7kftoJTm5uqbvONhjzjrN7Zthobw1gBr7Uew4XPYtNr+76BpDbQlDkqLyUyAtwpdivybBvBhoUvRG+J2Obv/uUtze0x7O6wudfPrnndvt3u6JsmPSeua0e3efS8l7c2wpTy170ti8s/J9xLzH/RUytLTNRPmLzSsWM6YMWPi7kt2XtJ9cY/rvo8Uz8tiuTrfhE8+/ZSJEyf2ssyp7otzH3NRnzS+5/feX8Auu+yy7Xm/OYlCCgf9m4C7gLt8gdBQ4BTsVAoDO6AqLfHw0AUHsePIamoq40+b0O+VVsDIafYVjzGwZRNsaYTWZhtctTZv3TYGTEfyV1S6f0RT/KP09jvvsMfue6R/nZSuSYL0ZNu9vX6376uH67z88isccOCBaZSl23Uy+l562M7BmL0XivSx6lx7a4DWe2F9PWMGYL0/66hn4iF1hS5G3q1eUw+71BW6GEmFg/4G7DRNs1I5vl8HVAB79MWn9/JJBCoG21eRa1haCpPrCl2MvNtcOQJqdJ1GpZQqZjpxkVJKKaVUhjSgUkoppZTKkAZUSimllFIZ6tPTJohIB9Bc6HIUQCnQVuhCFIDWe2DReg8sWu+BJVG9q4wxfbKxp68PSn/TGLN3oQuRbyLyhtZ74NB6Dyxa74FF691/9MkoUCmllFKqmGhApZRSSimVob4eUKU02VY/pPUeWLTeA4vWe2DRevcTfXpQulJKKaVUMejrLVRKKaWUUgWnAZVSSimlVIb6bEAlIseIyEIRWSQigUKXJxdEZIKIPCMi74vIeyJyoZvuiMgyEZnnvo4rdFlzQUTCIvKuW8c33LRhIvKUiHzkvg8tdDmzSUSmxdzXeSKyQUQu6o/3XERuEZFVIjI/Ji3u/RXrL+7v+zsiMrNwJc9Mgnr/XkQ+cOv2gIjUuuk+EWmOue83FKzgGUpQ74Q/1yJyqXu/F4rIFwtT6swlqPe9MXUOi8g8N71f3O8kf7v69++3MabPvYAS4GNgIlAOvA1ML3S5clDPMcBMd3sI8CEwHXCAnxa6fHmofxgY0S3taiDgbgeA3xW6nDmsfwmwAtihP95z4FBgJjC/p/sLHAc8DgiwP/Bqocuf5Xp/ASh1t38XU29f7HF9+ZWg3nF/rt1/594GKoAd3X/vSwpdh2zVu9v+PwK/6k/3O8nfrn79+91XW6j2BRYZYz4xxmwB7gFOLHCZss4Ys9wY86a7vRFYAIwrbKkK7kTgNnf7NuCkwhUl544EPjbGLC50QXLBGPMcsK5bcqL7eyJwu7FeAWpFZExeCppl8eptjHnSGBOdNfoVYHzeC5ZjCe53IicC9xhjNhtjPgUWYf/d73OS1VtEBDgVuDuvhcqxJH+7+vXvd18NqMYBS2I+L6WfBxoi4gP2BF51k37gNo3e0t+6vWIY4EkRmSsi57lpo40xy93tFcDowhQtL06j6z+0A+GeJ7q/A+l3/tvY/61H7Sgib4nIsyJySKEKlUPxfq4Hyv0+BFhpjPkoJq1f3e9uf7v69e93Xw2oBhQRGQzcD1xkjNkA/B2YBMwAlmObjPujg40xM4FjgQtE5NDYnca2FffLeT9EpBz4EvBvN2mg3PNO/fn+JiIil2HXN7vTTVoObG+M2RO4GLhLRGoKVb4cGHA/192cTtf/NPWr+x3nb1en/vj73VcDqmXAhJjP4920fkdEyrA/kHcaY/4LYIxZaYxpN8Z0ADfRR5vCe2KMWea+rwIewNZzZbQp2H1fVbgS5tSx2LUqV8LAueckvr/9/ndeRM4Gjge+4f6xwe3yWutuz8WOJZpasEJmWZKf64Fwv0uBk4F7o2n96X7H+9tFP//97qsB1evAFBHZ0f2f/GnAwwUuU9a5/es3AwuMMdfEpMf2LX8ZmN/93L5ORKpFZEh0Gztodz72Pp/lHnYW8FBhSphzXf7nOhDuuSvR/X0YONN9Gmh/IBLTddDnicgxwM+BLxljmmLSR4pIibs9EZgCfFKYUmZfkp/rh4HTRKRCRHbE1vu1fJcvx44CPjDGLI0m9Jf7nehvF/3997vQo+LTfWGfCvgQG8FfVujy5KiOB2ObRN8B5rmv44A7gHfd9IeBMYUuaw7qPhH7lM/bwHvRewwMB+YAHwFPA8MKXdYc1L0aWAt4Y9L63T3HBozLgVbsmIlzEt1f7NM/17u/7+8Cexe6/Fmu9yLsGJLo7/kN7rFfcX/+5wFvAicUuvxZrnfCn2vgMvd+LwSOLXT5s1lvN/1W4Lvdju0X9zvJ365+/futS88opZRSSmWor3b5KaWUUkoVDQ2olFJKKaUypAGVUkoppVSGNKBSSimllMqQBlRKKaWUUhnSgEoplXUiMlxE5rmvFSKyzN1uFJG/5eiaF4nImUn2Hy8il+fi2koppdMmKKVySkQcoNEY84ccXqMUO2/PTLN1keHux4h7zEEmZvJMpZTKBm2hUkrljYjUicij7rYjIreJyPMislhEThaRq0XkXRGZ7S5dgYjs5S4UO1dEnkiwCv0R2KV62txzfiQi77uL7t4DnWuH1WOXd1FKqazSgEopVUiTsMHQl4B/Ac8YY3YDmgG/G1T9FfiqMWYv4Bbgyjj5HATMjfkcAPY0xuwOfDcm/Q3gkKzXQik14JUWugBKqQHtcWNMq4i8C5QAs930dwEfMA3YFXjK9thRgl3Go7sxwIKYz+8Ad4rIg8CDMemrgLHZK75SSlkaUCmlCmkzgDGmQ0RazdZBnR3Yf58EeM8Yc0AP+TQDlTGf/cChwAnAZSKym9sdWOkeq5RSWaVdfkqpYrYQGCkiBwCISJmI7BLnuAXAZPcYDzDBGPMMcAngBQa7x00F5ue81EqpAUcDKqVU0TLGbAG+CvxORN7Grlp/YJxDH8e2SIHtFvyX2434FvAXY8x6d9/hQCiXZVZKDUw6bYJSql8QkQeAnxtjPkqwfzRwlzHmyPyWTCk1EGhApZTqF0RkGjDaGPNcgv37AK3GmHl5LZhSakDQgEoppZRSKkM6hkoppZRSKkMaUCmllFJKZUgDKqWUUkqpDGlApZRSSimVIQ2olFJKKaUypAGVUkoppVSGNKBSSimllMqQBlRKKaWUUhnSgEoppZRSKkMaUCmllFJKZUgDKqWUUkqpDGlApVQfISI+ETEiUpphPo0iMjFb5erFdetEpD7f101ERM4WkRfyeL1viMiT+bqeUiq/NKBSKo9EZLaIXB4n/UQRWZFpsJQKY8xgY8wn7nVvFZHfppOPiPxLRP7ZLe0wEVkrImPSLZ9bprZM8ii0eMGvMeZOY8wXsnyd0SKyRkTquqXfIiL3ZPNaSqnkNKBSKr9uA74pItIt/QzgTmNMWwHKlK4LgWNF5GgAEakEbgJ+YoxZnk6GIlINfAWIAN/MVkGzTURKCl0GAGPMSuDHwE0iUgUgIkcCxwM/LGTZlBpoNKBSKr8eBIYDh0QTRGQo9g/g7SLiEZGAiHzstvTcJyLD4mUkImNF5GERWScii0Tk3Jh9JSLyCzefjSIyV0QmuPuMiEwWkfOAbwA/d7sBHxGRn4nI/d2u8xcRubb79Y0xa7F/tGe5gdCvgY+NMbdm8P18BVgPXA6c1a0cw0TknyLyuYg0iMiDMftOFJF5IrLBrfMxbrpXRG4WkeUiskxEfpsoGBKRnUTkKff7XCgip8bsu1VE/i4ij4nIJuBwEfGLyFvuNZeIiBOT3XPu+3r3uz2gexejiBwoIq+LSMR9PzBmX72IXCEiL7r370kRGRGv3MaYO4CFwOVuUHUj8CNjzOoev22lVPYYY/SlL33l8YVtxflHzOfzgXnu9oXAK8B4oAL7x/Fud58PMECp+/k54G9AJTADWA0c4e77GfAuMA0QYA9guLvPAJPd7VuB38aUZQywCah1P5cCq4C9ktTnfuBhYC0wIclxdUB9D9/NHOBqYDTQFntdIATcCwwFyoDD3PR9sS1aR2P/kzgO2Mnd94D7HVYDo4DXgPPdfWcDL7jb1cAS4FtunfcE1gDTY76nCHCQe41Ktz67uZ93B1YCJ8W7V3GuNwxowLZMlgKnu5+j96ge+BiYClS5n4NJvrfx7vf/EPBgoX/G9aWvgfjSFiql8u824KtuFxnAmW4awHeBy4wxS40xmwHHPbbL2Cq3tekg4BJjTIsxZh7wDzcvgO8A/88Ys9BYbxvbopSUsV11zwGnuEnHAGuMMXOTnPZ94AjgcmPMkp6ukYiIbA8cDtxlbFfWHNz6uOOpjgW+a4xpMMa0GmOedU89B7jFGPOUMabDGLPMGPOBiIwGjgMuMsZsMsasAv4EnBbn8scDYWPMP40xbcaYt7CB4ikxxzxkjHnRvUaLMabeGPOu+/kd4G7gsBSr6wc+Msbc4V7vbuAD4ISYY/5pjPnQGNMM3IcNmuMyxiwFfgUcBXwvxTIopbJIAyql8swY8wK29eMkEZmEbWG5y929A/CAiKwXkfXAAqAd22ITayywzhizMSZtMbZ1BmACtoUjHbexdfzSN4E7kh3sBj9rgPfSvF7UGcACNzgEuBP4uoiUYeuzzhjTEOe8RHXdAduStTzm+7wR21IV79j9ose5x34D2C7mmC7BoojsJyLPiMhqEYlgg+G43XJxjMXer1ix9w9gRcx2EzC4hzzfAxpMmuPXlFKZyfkTRUqpuG7Htr5MA55wgxKwf7S/bYx5sfsJIuKL+fg5MExEhsQEVdsDy2LymQTM76EcJk7ag8DfRWRXbMvNz3usTXacCWwvItFAohQ73uw4bFfdMBGpNcas73ZetK7dLQE2AyNMz4P9lwDPGmOOTnJM9+/qLuA64FhjTIuI/JmtAVW87zXW59ggLtb2wOwezlNKFSltoVKqMG7Hds+cy9buPoAbgCtFZAcAERkpIid2P9ntWnsJuEpEKkVkd2zX17/cQ/4BXCEiU8TaXUSGxynHSqDLnFTGmBbgP9iA4TVjzGeZVDQVInIANijaF9u1NQPY1S3DmW6ry+PA30RkqIiUicih7uk3A98SkSPdQf3jRGQn95wngT+KSI27b5KIxOuWexSYKiJnuHmXicg+IrJzkmIPwbaatYjIvsDXY/atBjro9t3GeMy93tdFpFREvgZMd8uhlOqDNKBSqgCMMWFsQFSNHdAdda37+UkR2YgdoL5fgmxOxw5+/hw7+PrXxpin3X3XYMfdPAlswAYdVXHyuBmY7nZzPRiTfht2wHXS7r4sOgs7RuldY8yK6Av7fRwv9knHM4BW7FijVcBFAMaY17CDyf+EHTj+LFtbf84EyoH3sYO+/4MdeN+F28r3Bez4qs+x3W2/wz4YkMj3sU/WbcSOX7ovJr8m4ErgRfe73b/b9dZiW/9+gh1M/nPgeGPMmh6/KaVUURJjemqZVkoNNO4A8Q+A7YwxG7KUZx3gGGPqspGfUkoVE22hUkp1ISIe4GLgnmwFU0op1d/poHSlVCd3gs6V2CfOjsly9mHsfE5KKdXvaJefUkoppVSGtIVKKaWUUn2CLxC6BftAx6pw0L+rm+Zgn5iOLrf0i3DQ/1i+y9anAyqPx2OqquI9uNS/dXR04PEMvOFvWu+BRes9sGi9B5ZE9W5qajLGmGRfyK3Y+d9u75b+p3DQ/4fslbD3+nRAVV5ezqZNmwpdjLyrr6+nrq6u0MXIO633wKL1Hli03gNLonqLSHOy88JB/3O+QMiXo2JlpE8HVEoppZRSwA98gdCZwBvAT8JBf7xlqnJKAyqllFJKFQVPVU2pLxB6IyZpVjjon9XDaX8HrsAu+XQF8Efg2zkqYkL9IqAyxtBhoMQj3XfY1wDsn1ZKKaX6mo7mDW3hoH/v3pwTDvqja6HiC4RuokBLOPWLSOOKRxdw6NXP0NERMwVEZBn8aVf4656wQRdfV0oppfojXyAUu5zUl+l5Ufic6BctVLe8+CkAKza0MLbWfervzdtgw1K7/fjP4Wv5WpJMKaWUUrngC4TuBuqAEb5AaCnwa6DOFwjNwHb5hYHzC1G2fhFQRa1p3Lw1oPr8LRg1HXY9Gf73W1g0ByYfWdgCKqWUUipt4aD/9DjJN+e9IHH0iy6/qH88/ylvL1lvP6z5EEbtDAf+CIZNtK1UbZsLWj6llFJK9U/9KqB6+O3P+f6db9oPm9ZC9SgorYBjfw9rF8HL1xW2gEoppZTql/p8l197R9e1CJetb7YtUVs2wqDhNnHKUbDzCfDs72G3U6F2QgFKqpRSSqli4QuEKrHL2BwCjAWasQPaQ+Gg/73e5tfnW6g2bWnbNrFpnX0fNGxr2hevsu9PXJr7QimllFKqaPkCod8ALwIHAK8CNwL3AW1A0BcIPeULhHbvTZ59voVq0+ZtA6qOTWtspFg9Ymti7QQ47Gcw53L48EmY+oW8lVEppZRSReW1cND/6wT7rvEFQqOA7XuTYd9vodrcvk3aw++4c3xFu/yiDvgBjNwJHroAGlfloXRKKaWUKjbhoD8U3fYFQtvEQuGgf1U46H+je3oy/SCg2raF6qJn3Kf5ugdUpRXw1X/C5g3wwPnQ0ZGHEiqllFKqmPgCoZt9gdAjvkBoB+CGbOTZbwKq8w6dyH47bh0z1W5k24AKYPR0OCYIH/8PXvxznkqplFJKqSJigFOBXwJxgoXe6/MBVaMbUJ2w+1juOGc/JgyzE3s+3bEXVA2Nf9JeZ8MuX9464adSSimlBpKl4aC/GfgZsEM2MuzzAVXTFjuGqrqihPJSD//35d0AOL/1Yigpi3+SCJzwFzue6r6zYEVBlv1RSimlVAGEg37HfW+ILsbsC4Q8vkCoJt08+3xAFW2hGlxhH1jceczW76KtPckYqcoa+Ma/oWIw3HkKrP8sp+VUSimlVHHxBUJ3+QKhGl8gVI2dg+p9XyD0s3Ty6vMBVXQMVbUbUI0YXMEV270AwLqmLclP9o6zQVXrJvinHxrCuSyqUkoppYrL9HDQvwE4CXgc2BE4I52M+kVAJQJVZSWdaSPb7bQJqzemsHbfdrvBmQ/ZJ//+6Ye1H+eqqEoppZQqLmW+QKgMG1A9HA76W7ED1nut7wdUW9oZVFaCxyOdacO2rACgYVNrapmM3RPOegTamuEfR0L4xVwUVSmllFLF5UYgDFQDz7nTKGxIJ6P8z5TueCuB54AK9/r/wYn8Gse7I3AP9vHFucAZOJEe+uxsC1W0uw8AYyjbbJeeae3NPFNjdofvPA13fQ1uPxGODcLe59gB7EoppZTqN3yB0AHAK+Gg/y/AX2LSPwMOTyfP9AIqGxTFXVAQJ9LTgoKbgSNwIo043jLgBRzv48DFwJ9wIvfgeG8AzgH+3lNRGje3dQ5IB2DLJso6mgFoa+9lq92wiXDOU3D/ORD6CXzyLHzpL4mnX1BKKaVUX3QmcL0vEPoQmA3MDgf9K8JBv8Gu59drvQ+oHO9vsMFUPXZBwVVAJTAVCLrB1k9wIu/EPz9igEb3U5n7MsARwNfd9NsAhxQCqo0tbQypipkeoWktpdipFJI+5ZdIVS18/d/w8nUw5zdw/Wtw7O9g+onaWqWUUkr1A+Gg/3sAvkBoJ+BY4FZfIOQFnsEGWC+Gg/5t17ZLQozpZSuO4/XjREJJ9tsFBZ1I4jVwHG8JtltvMnA98HvgFZzIZHf/BOBxnMiucc49DzgPoOqqpr0OdB6mshR+to+d0HPIho/wvnENR235A9/bo4L9xqTfqzl44yKmLbyeIY2fsHbY3iya/G2aB41LO79saWxsZPDgwYUuRt5pvQcWrffAovUeWBLV+/DDD28yxlQnOs8XCN2CbdRZFQ76d3XThgH3Aj7seKhTw0F/Q2/L5AuEqrDdfccCB0Tnp0pVGi1UcYIpx+sBBuNENuBEVmFbrZLl0Q7MwPHWAg8AO/Xi+rOAWQAmWGkor8K3XQ11dTPt/kVthN+wQeXUnXaibs/xKWe9rTo47mx47UaGP/N/DH/9hzDj63DYJVA7IYN8M1NfX09dXV3Brl8oWu+BRes9sGi9B5YM6n0rcB1we0xaAJgTDvqDvkAo4H6+JNUMfYHQUGACNiZaAfwzHPT/sLcFS/8pP8d7F463BsfbORkWjrd3k2E5kfXY5rUDgFocbzTAGw8sSyWLDS1t1FTFxIXN6ykVG1C19nYMVTwlpXDABfCjebDvefDOvfCXPeG/58Pn8zLPXymllFIpCQf9zwHruiWfiB0qhPt+Uqr5+QKhK4B3gL8Cf3Rff0inbJk85Tfdtkh5v4GdDCuA7cb7fdKzHO9IoBUnsh7HWwUcDfwOG1h9Ffuk31nAQ6kUYkNzKzWVMWOomhs6x1C1d2QhoIoaPNI++XfABfDSX+Gtf8E798CE/WHG6TD9JDv+SimllFJp8VTVlPoCodghQ7PCQf+sHk4bHQ76l7vbK4DRvbjkqcCkcNDf46wCPckkoCpzn9I7CbgOJ9KK400lghkD3OaOo/IA9+FEHsXxvg/cg+P9LfAWcHOPOYmwua2DmthB6S3rMxuU3pPaCXDc1XD4L+CtO2DubfDIhfDYz2HqF2Gn42HyUVCdlcWrlVJKqQGjo3lDW2/HLsUKB/3GFwj1pjVlPlBLT0OVUpBJQBWdDOtt4Dkcb2qTYdmn//aMk/4JsG+vSiC2x9IbG1A1r6esrBw2Z6nLL5GqWjjwh3DAD+DzN+Hte+G9B2DBw7Zc4/eBSUfADgfCuL2hfFDuyqKUUkoNXCt9gdCYcNC/3BcIjaF3wdFVwFu+QGg+dlonAMJB/5d6W4h0pk04APtEXpfJsHC8aU+GlTaPDaTGDa3amta8npLKGmiEtt5M7JkuERi3l30dE4Tl8+DDJ+CjJ+DZ34HpsOUctxeM3xu2291OIjp8ih2fpZRSSqlMPIwdKhSkF0OGXLdhhx29C2QUNKTzF/1M4Hocb+dkWDiRFe78UmlNhpUuM2QkAONrYwOqBkoHDQGgLZtjqFLh8cC4mfZ1+KXQEoHPXoXFL8Dil+C1m6DdDYBLq2D0dBi5EwyfBMMn29ewiVBWlfw6Siml1ADkC4TuBuqAEb5AaCnwa2wgdZ8vEDoHWIwdF5WqJne29IylM23C9+y7t3MyLBxvl8mw3GkR8qZLC1XLesoqa4A0ZkrPtkovTP2CfQG0t8GaD2HFO7D8Hfu+aA7MuzPmJIGasVAzDrzj3Pfx9r1mHFQPp6StCYzRiUaVUkoNKOGg//QEu45MM8vnfYHQVdhWrtguvzd7m1H6fU5O5APgA+BP7tN6hwOnANcAaQ8oS8eg8thpExrwDJ0I5GhQeiZKSm2r1OjpsMdpW9M3b4S1H8PaRfa9IQwbltqga+Hj0NbSJZtDAF4qg0HDoGqYHc9VWWvz3OWkvFVHKaWU6uOiY7r3j0mLrt7SK5kN4nG820yGhRPp9WRYWdXcgIyrpaxE8t/ll66KITB2hn11Zww0rbMB1obPoWkdH7/7GpPGDrXpzeugeT189hJsWqUBlVJKKZWicNCftbHfGbRQea8AzgY+YetArrSiuqxqXg9VQyn1ePpOQJWMiJ2CoXo4jNkDgCWRcUzqPsPsoz+G+fdrV6BSSinVA18g9E3grnDQH7cryxcITQLGhIP+F1LNM5MWqlOBSTiRjCfDyprWFmhrhspaSj1Ca7F1+eXS8Ml2EHzTOp0DSymllEpuOHa6hLnYSclXA5XYNYYPA9ZgJyxPWSYBVdYmw8qalvX2vWoopSWS3ZnSi92wSfZ93ccaUCmllFJJhIP+a32B0HXYXrWDgN2BZmABcEY46P+st3lmElBdBbyF4+0yGRZOpNeTYWVNs7u4dFUtpSWe3E7sWWyGT7bvaxfBhN7Nj6qUUkoNNOGgvx14yn1lLJOAKmuTYWWiojRmfef/3959x7dVnY8f/xxJ3nYUO3srO4QQSNgjEGYBUWgppdBN+4PyLS3QRQV8294OvoiWDtrSkQJlj5YNgrDDJiEJCVmELGXv2Eq8ben8/jhXtjzkoWHZ1vN+5b4k3Xt17zmRJT0659zn1FSY24JSXA7d+67yS6dSDzjzYM/qTJdECCGEyDrJBFTVdrb0jDphQkz3VlMLVSkuZ3l2dfk5XTB0GuxamemSCCGEEFknmYDqbSx3m2RYWKFuJ8NKxq0XH9H8IDqGKn8gOY4QDdkUUAEMO8JMeSOEEEKIuDy+gCfo9wZTecxkAqqUJcNKRlFey6SeABSU4nRsya4uP4DhM2DZg3BoN5QMy3RphBBCiN7qVY8vcBdwe9DvTcm0eclkSu/ZiZDjaJFyqaYCUJA3AJezn+Sh6o5hh5vb3SskoBJCCCHimwX8Clji8QW+F/R73072gAnM5ef+KvAwVqj95h/LPREYgRXqcjKsZLRIYVlTbqZhcThMpvRsa6EaNsPc7l4Fk87KbFmEEEKIXiro9x4CfuDxBY4GXrMnWo5gwgod9HtndveYibRQDcKkS0hZMqyUqSk3c9oBTkcfmnomVQrLYMBo2LEs0yURQgghejWPL3AGcAdwF3AnSWYsSKCFKnQHljtuMiysULeTYSVDxfb51VZAQSkAOQ4HjdmUhypqzHGw5QOZgkYIIYSIw+MLPAqMBr4c9HtXpOKYiY2hskIpTYaVjLZdfiagcjmzbOqZqHEnwaonoWILlI7LdGmEEEKI3ujVoN97VyoP6Oh8lz6kpsKMocJ0+WVVpvSosfZFl1vez2w5hBBCiF4q1cEUJJc2ITGWewxwPzAMk2Zhnt2NWAY8BniAIHApVqi8s8O1vMqvuYUqx+nIrsSeUUOnQ54bNr8HR16W6dIIIYQQWaH7LVSW25PkORuBH2GFpmNyWF2D5Z6OGcj+GlZoMvAaXRzYrqKdfpGIGUNlD0p3ObK0y8/hNOOoNr+b6ZIIIYQQKefxBYIeX2CFxxdY5vEFFme6PFGJtFC9iuW+C7gdK9T9ZFhWaCew075/CMu9BhgFXATMtfe6D1gA/LTLx60/BDrSYgxV1l3lFzXpTJjvgwOboGx8pksjhBBCpNrpQb93XyoO5PEFTsL0jjXFREG/9/7uHieRMVSzMN11S7DccxJ4fjPT2jULWAgMs4MtgF32OTrV1OXXNDHyQABcjizt8gOYfI65XfdyZsshhBBC9GIeX+AB4HbgFOBYezkmkWMprRMMOiz30ZiuuRbJsLBCXUuGZbmLgTeBW7BCT2K5K7BCA2O2l2OFStt53lXAVQB5/xx69HMPziPXqSg+tJFjlvyAlYffyL4hJzDv4zo+LQ9z+2mFidWvF6usrKS4uLjDfY5b+F1q84fy8ZFWzxSqB3Sl3v2R1Du7SL2zi9S7pTPPv6h+zLUPx6YxmBf0e+fF7uPxBTYB5Zhx2P9svb07PL7AGmB60O9NugUmwbQJ7uSSYVnuHOAJ4CGs0JP22t1Y7hFYoZ1Y7hHAnvafG5oHmP+8f07Wp556Kvk5TtioYAnMOOZkGD+HF/YtZ2PlPubOnZtABXu3BQsWdF6vus9TuGgec088GvJKeqRc6dalevdDUu/sIvXOLlLvliI1BxuDfm9nLUSnBP3e7R5fYCjwiscX+CTo976VYFFWAsOJDkVKQiJTzzQlw8IKdT8ZluVWwN3AGqzQH2K2PAt8A/Dbt8905XBNXX61FeY22uWXjXP5xZp+Ebz/V1j9LMz6SqZLI4QQQqRE0O/dbt/u8fgCTwHHAYkGVIOB1R5fYBFQF3OOC7t7oAQHpYeSyd9wMvA1YAWWe5m97iZMIPUfLPe3gc3ApV05WNNVfrUhcxtzlV9jJAuv8osafSyUTYCPH5WASgghRL/g8QWKAEfQ7z1k3z8HM8lxoqyUFIzEpp5JLhmWmTQ53pwoZ3b3cB0NSs/KqWeilIKZl8GCWyG0DdyjM10iIYQQIlnDgKc8vgCYGObhoN87P9GDBf3eNz2+wDDMYHSARUG/t/0hR53o+cSe6VJbAcoJuWaQW062Tj0Ta+alsOD/4OPHYM6PMl0aIYQQIilBv3cjcGSqjufxBS4FfodJ1aSAv3h8gZ8E/d7Hu3usPh9QNTV11VRAvrupycrpUNmbNiGqbDyMOxmW3AsnXQfOPv9yCyGEEKl0M3BstFXK4wsMAV4Fuh1QJT6Xn+VeguW+BsvdNrVBD1LRPr/aiqbuPmgelJ5wWoj+4sRrzETJq5/OdEmEEEKI3sbRqotvPwnGRsk0WXwJuAL4EMu9GPg38DJWKDMRTG2oaUA6QI7DBFqNEU2OM96QrSww5TwYPAXe/RPM+EKryQ+FEEKIrDbf4wu8BDxiP/4S8EIiB0qihSq0Hit0MzAFeBi4B9iM5f6lPdFxj2jR5RfTQuW0g6is7/ZzOOCka2HXCtjweqZLI4QQQvQaQb/3J5jcljPtZV7Q7+36tHcxkhtUY7lnYlqpzieaqNOkb38dOCqpY3dRizxUA8c2rc9xmFixIRwxiT+z2cxL4Y1b4K3fwcQzpJVKCCGEsAX93icwMUxSEg+oLPcSoAKTpNOHFYomxFqI5T452YJ1W3RQus1lt1BldeqEKFcenPZTeP56WPWk6foTQgghspTHF3gn6Pee4vEFDmGmsIlSgA76vQO6e8xkWqi+iBXa2GKN5R6PFdqEFbo4ieN2i1IKtDZjqGIHpceMoRLA7K/D4nvg5Z/BlHMhtyjTJRJCCCEyIuj3nmLfpmxutsTHULV/SWG3LzNMiYZqiDS0GJTucpqqZXW29FgOJ5z/Ozi4Hd7+faZLI4QQQmScxxd4oCvruiKRufymAYcDbix3bEvUACA/kUIkrVWWdIhpoZIuv2ZjTzDZ09+9A6ZdAKNmZ7pEQgghRCYdHvvA4wu4gKMTOVAiXX5TgQuAgcBnY9YfAq5MpBAJi8ZK0YmR2xtDJV1+LZ3nh01vwZNXwpWvt/g/E0IIIbKBxxe4ETOPcIHHFzhor1ZAPeaqv25LZC6/Z4BnsNwnYoXeT+SkKRdtoYrt8rOv8mvM9ulnWisohS/8C+6/CP57BXz5P5JBXQghRFYJ+r23Ard6fIFbg37vjak4ZiJdfjdghX4LfBnLfXnb7aFrU1CuLrJbn2pD5jamyy+azLNBuvza8pwC3t/Dc9fBSzfB+b/NdImEEEKIHhf0e2/0+AKlwGRihi0F/d63unusRJom1ti3ixN4bno0dfkNbFrltFuosj6xZzxHfxP2fgof3AlFQ+DUH0t+KiGEEFnF4wv8P+A6YDSwDDgBeB84o7vHSqTL7zn79r5uPzdd2hmUXmAn86yub+z58vQV5/waqvfDG78xQek5v5GgSgghRDa5DjgW+CDo957u8QWmAf+XyIGSmRz5FSz3wJjHpVjulxI+XjKiLVR5zXm4BhbmABCqachAgfoIhxM+93c47jvw/l/hqe9AfXWmSyWEEEL0lNqg31sL4PEF8oJ+7yeYi++6LZk8VEOwQhVNj6xQOTA0ieMlrqYC8twmQLC5C0xAVSEBVcccDjjvNjjjf+Hj/8BdZ5p5/4QQQoj+b5vHFxgIPA284vEFngE2J3KgZC7vCmO5x2KFtgBgucfRMn17z6kNQUHLy/9Li3IBqKiuz0SJ+hal4NSfwMjZppVq3lw48Ro45QfmqkAhhBCil/D4AucCdwBO4K6g3+tP9FhBv/fz9l3L4wu8AbiB+YkcK5mA6mbgHSz3m5jcDXOAq5I4XuJqK1oMSAcoynWS53Kwv1ICqi6bdCZcswheuhne/TMsvhdOvhaOvxryijNdOiGEEFnO4ws4gTuBs4FtwIceX+DZoN+7OsFjrQr6vdMAgn7vm8mULYnJkUPzsdyzMSPiAa7HCu1LpjAJq6loMSAdzBx/g4vz2FtZ1+5TRByFZfD5v5sWqjdugdd/bYKrIy+DWV+B4TNl4LoQImlaa7SGiNZENNSHNTX1YfuxWaft2+g6nWQfSNLPT0EnjELhcIBTKRxKUdWgqaxrxKHAoRROh8KpFErZc9WK1o4D1gf93o0AHl/gUeAioNsBVdDvDXt8gbUeX2Bs0O/dkmzBks3oeBJwaszj57v0LMt9Dybb+h6s0Ax7XRnwGOABgsCl9risztVWwODJbVYPLs7tFS1UDeEItQ1hqurCVNY1UlMfprq+keqGMLX1YeoaI9Q3RqgLm9sG+7a+MUJ9uPm2oTFCY0SzfWctj21bQkNY0xiJ0BjW5Oc4+fLxYzhj2rDUFHr4DLj8Edi2GBb+A5b8Gxb9E9xjYep5MO18GHcytREH+6vqOVBZz6HaBqqidasPm6WukZqGMA3hCA1hTThiytwQ1jSGTX0a7XqEI+bjSmvsW/PhFf0gLS+v4R+fvt+0HcwUQ3kuB7kuB7kuJ7lOcz/PXnKcDhz2B5NDKfOh5TAfVtEPNGV/kDVtgy4FjV35qOvK56Hq5Eifbm1g56Kuv9djvzRivwBaro//JN3+6qbXo73nxzu2jvMN1np1e+XcsKmeT9SGOOdov15tz9N5/btSluhzIhFNWGtza9/Xmqb7rddHz9+d/689e2p5fMfSts+LU/82x+vqfk2PdYv3XOv3oLkfrU/Mffsgup3nRyLafK7F+UxrjMQJjl5JqKel73ut/eu5Yj8/VIv1Ks762P3bf3JX9o/3udWdv62WG9s+LxLROF55IZEgdxSwNebxNuD4bh+lWSmwyuMLLAKqoiuDfu+F3T1QEi1Ubj/mUsOH7DXXYblPwgrd1IVn3wv8Fbg/Zp0PeA0r5Mdy++zHP+3oIKrKbhCrqWjT5QcwqDiP3Qdru1Cc7tNas/tgHcH9VQT3VbH7YB0HqupMcGEvtQ1h9lfWc6gusdQNDoUJFOwgIcfpwOVU1NdGKI9U4nI6yHGaXzTvrN9HfTiSuoAqWs9RR7PjzL+w0vNTNnzyEdu2b2fru/Vse3s9u/V+qrswfaPLoZrK7nIoU2771jxWuBwOnHagEw1olP1/oOz7YQ2RCKCaPxTqGyMcqm1sEXyaANUEqg3hSMwXRx+2KksvFFj7SaZL0IJDgdOhWrQkOByqzXqHMq0QjjhffBD/S7G6JsK+8MF2t8V7jtkWc78LX47R4yl7H/Pea/kedNj3W+xnvwEVoBygcLR5vkMp+0eOgzyn+ezKdTUvOQ7V5kfOpk0bmTRxYlNLjYpui5Yj2mrTpZ8yHdU5qacneXaIaOyA2wTfn65bz4QJEwnbjyMR3bQP7QTk3f3BFDcI6sKPIK3b/n919DdInL9B87yWu23ZsoWxY8e22eb70wCXxxeIzXM5L+j3JjQVTBf9LFUHSqaF6nzgKKyQmdvFct8HfISZG6djVugtLLen1dqLgLn2/fuABXQSUNFgB0u1FW26/MC0UK3aEeq0OPFordl7qI5N+6pM4LS/muC+Kjbtq2Lz/mpqGsIt9i/JdzG4OI+yolxGlxZSkOtkUFEug4pyyc9xUpTnoijPSWGui8JcJwW5TgpynDEtLM3BU67TgcvZ/kWYCxYsYO7c01qs+9yd7yZcz9Z1Xr3zIG99uo/3Nuxj5fYQ5dXRKyWLKCuawehheUzPPcQZjdspqw5SVvkpZbqcAVRR5Gik0D2YorKRFA4eTcFQD7mDJ8CAUVAyHPJKEi6bqfeJCdcr2r0Q1i27GiJaoyO06Gro9HhdafpPzS689957nHjiSZ2WJ96XaIuPtW584DWv7/zXcJvjqfb3i3fc9o799ltvM+fUOV0KDjoqS3fr1eY5PdztYv7O5/boOXuDBWobc0+bmOli9LgFDZuZe+qETBejxy1YsIu5c6e1WX9DzcHGoN97TAdP3Q6MiXk82l6XkKDf+6bHFxgHTA76va96fIFCzGD3bku2y28gcMC+n+wsu8OwQjvt+7uA9ptaLPdV2IPflQ7z1msvc2pjLRt3lrNlwYIWu1btr2ffoQbeeOONLn0ohiOaTQcjrD0QZm15hE0VYQ7FZF1wKhhSqBhW6GDOSMWwolyG2Y9L803ri1FvLzEiQI29AA32cpDuq6ysZEGruh48WENjjWqzvqu2HAzzzvZGFu4KE6ozX/OjixVHlDnxeHIZO8DBqGIHBS5lV6YImAJMQUVOp7gySFHVZgpqdlBYvYOCvYsp2PIczkjL/4dGZwH1uWXU5ZVRn1tGfa6bhpwBMUtJ0/1GVzHa0fwn2l69s0FOYzWffPRBpovR4xpqq1j03juZLkaPy9a/c6l3dkmi3h8Ckz2+wHhMIHUZ8OVEy+HxBa7ExBRlwERMl+I/gDO7e6xkAqpbgY+w3G9gfuCdiummS54V0lju9n+8W6F52DNBa3++PvW4mfA2TJg+iwnHzm2x6wbXJgKbVjPr+JMZWJjb7uEawhHeWb+PJ5Zs461P93Kw1nTPTR5azHlHDuTwkW48g4sYP6iIkQPz47Ya9aT2fsH+adW7lOS7mDu3613JkYjm5dW7+NuCDXy8rYpcp4Mzpg3jrOnDOHXyYIYO6Lw7r5MTwKEdcGAjHNoFh3biOrQL16GdFB7aBQeDULEf6ivjHyPPbQbKF5SyvxYGjZpkPy5rWt98OwiKh4Or/de6r8raFgupd1aRemeXROsd9HsbPb7A94CXMC1J9wT93lVJFOUazED3hfbx13l8gYRyaiZzld8jWO4FmHFUAD/FCu1K+HiwG8s9Aiu0E8s9AtjTpWdFp51pZwzV4GLzxbqvsq5NQLVxbyV3v7OJwIqdVFQ3UJLv4rwZwzl1yhCOG1/G0JIkg4ke1t1eiffW7+NXz6/mk12HGD+4iF9eeDgXHjmyKX9XSjgc4B5tlo401ELNATMNTnX01r5fcwCq9kHNAXIObYGtC6GmHOrite0p07U4YFTzud1jwD0KBo6F0vGQPyDOc4UQQvR2Qb/3BeCFFB2uLuj31nt8AQA8voCLBHNqJjCXn3t2qzXb7NuRWO6RWKGliRQEeBb4BuC3b5/p0rNq7TFS7Y6hygNgX2U9k4ZCbUOYv76+npdW7WLdnkryXA7OmzGcC2aOZM6UweS5Euo27VNC1Q3c8sJq/rN4G+MGFfKnLx3FBTNHZLblLScfckbCgJEd7rY09hdNuMEEVtGgKxqIHdwBoW0Q2gq7V8Kn86Gx1YUJhYOhbDyUTTABVuz9osGSFkIIIbLHmx5f4CagwOMLnA18F3gukQMl0kL1+w62aboyQ7PlfgQzAH0wlnsb8AtMIPUfLPe3MWnfL+1SaaLz+LV7lZ9pbVm94yDPf7yDZ5bt4FCtyffx/TMm8fUTPQwpyevSafqDdbsPccW9H7IzVMv/zJ3IdWdOJj+njwaRzhwoHmqWjmhtAq3QVqjYYrofD2yC8k2w+T0z3U7sj5HcEhNgDZrUapnYbtAuhBCiT/MB3wZWAN/BtHzdlciBEmihCp2eyIlaHePyOFu6PQis4y4/Eyz96vnV5LoceI8YwRePGc0J4wfhcGRXK8S76/dx9QNLyMtx8vjVJzJrbGmmi9QzlDKtTkWDYeSsttsb66B8swmwDmyyA64NsOMjWP006EjzvoWDWwZY0ftl4yGnoMeqJIQQIjWCfm8E+Je9JCWZPFSFwA+BsVihq7Dck4GpWKGuJfdMlWgLVTutB6WFuQwszMHlUDx61YlMGtp/p0/pKDxcuHE/37r3QzyDirjnimMZNVC+/Ju48mDIFLO01lgP5UHYvz5m2QDrX4VlD8bsqMw4rdggKxp0DRzbYtJuIYQQmefxBVbQwVipoN87s7vHTOYqv38DSzDZ0sFcvvhfupotPVWq9wOq3RYqp0Px9g2nU5Dj7BVX52XCtvJqvvPgEkaXFvDwlcczqDh7ujiT5sqNH2zVHTLBVTTIigZcHz/WcsC8IyemC7FVwFU8TMZrCSFEZlyQ6gMmE1BNxAp9Ccttuu+sUDWWu+e/HSp3m+4cZ/tVKcnP6eEC9R6RiOa6R5cRDmvu+saxEkylUl4JjDzKLLG0NlcltmjVirZsvQbhmLklc4vbb9UaNAnyk03rJoQQIp6g37s5er9VYs8CEoyNkgmo6rHcBUSbzCz3RKDnZyI+tNv80hdtpld5eNEWlmwu5/dfPJLxg4syU6hsoxQUDzHLuFZZ3SNhcwVi61atbYth5ZO0aH0uGtIUYI0JOWDNISibKOO1hBAihdpJ7DmaDCT2tID5wBgs90PAycA3kzheYioloIK202PU1If5wyufcsKEMi6ePSpDpRItOJxQOs4sk1q9Vxvr7EHxG1q2aq17hYmVu2FjdNpLZXJrlU0wrVllE2PGa43rd0lNhRAizTKY2NNy3wk8jBV6Gcu9BDgBMyb6OqzQvkQKkZTK3TCk7XxA2e6xD7dwoKqeH50ztcfnIhMJcOXB0GlmaeXtV19gzmHDzRWI0ZatAxtMq1b0ogwA5YSBY+wrDyfGBFwTwD02bre4EEJksQwm9oRPgdvtbOb/AR7BCn2UyMlTonI3lEgLFTRP2BuOaP719iaOGVfKsZ6yDJdKJCvsKoRRs83SWvWBlkHW/g3mdssHLaf0ceRAqScmyIoJuAaMMlnthRAi+2QwsacVugO4A8s9DjMp4T32WKpHMMHVp4kUJGGRRjN/W5aLbYNauGk/2ytquPF8abnr9wrtOQ3HHNtyvdZQuadlkLV/PezfCBvfhMaa5n1d+SZLfGyQFR0cL1ciCiH6twwm9oyyQpuB24DbsNyzgHuAn2MmK+wRKtoq11m27CzzwoqdFOQ4OXOatNxlLaVMy23JMBh3UsttkQgc2hkTZG0w3Yn71sG6lyFc37xvbrE9NY89IL7U07wMGC3diEKIvq4AM8HyvwA8voDTXlfd3QMlk9jTBZyHaaU6E1iAGajeg+yAqkRaqKLCEc38lbs5Y9pQCnIloaRoh8NhJot2j4Lxp7bcFgmbaXqiQVa0dWvXCvgkAJGGmOO4TELTUk/bYEsmoRZC9A2vAWcB0TESBcDLNOfY7LJEBqWfDVwOnA8sAh4FrsIKVXX7WMmKDhuTq/wA08uzdEs5+yrrOO8ICTJFAhzO5qCo9VXDkbCZfLp8k8kgH10ObIJVT5tJqmMVlDUfq03r1ijJIC+E6A3yg35v04DToN9b6fEFChM5UCItVDcCDwM/wgqVJ3LS1Il2+UlAFR3msmiT+VI7ZdLgDJZG9EsO+yrCgWPatmwB1IZaBlrRYGvHR7DmWTPeselYOWZanngBV15J2qsjhBBAlccXmB30e5cCeHyBo4GaTp7TrkQGpZ+RyInSQaHNGI+8/jtHX3ctDh5g0tBiBhZKPiLRw/LdMOJIs7QWboSD21u2bh2w729f0jL9A0DhYGY7y2DfzLYBV8lIuSpRCJEq1wP/9fgCOzDXdw0HvpTIgfr2iFKtZUB6jIjWLNlczvlHjMh0UYRoyelqTmranpryNi1b4Y0fwbYPYdVToMMxx8o1SUxbjNka17xOxm4JIboo6Pd+6PEFpgFT7VVrg35vQ0fPiadvB1QgKRNirN9TxcHaRo4eV5rpogjRPQWlZhk5q2nV8gULmDt3LoQbzED51l2J5UHYurDlZNTRYzUFXNFAa5wZKO8eI9nkheinPL6ABVwJ7LVX3RT0e1/o5DnXAA8F/d6V9uNSjy9wedDv/Vt3z9/HAyotST1tCsW+SjOV4lFjBma2MEKkkjPHTLVTNqHtNq1N61bFZjvY2tx8f9cKWPtCyzQQKBgw0gRb0UArNvgqHi7diUL0bX8M+r23d2P/K4N+753RB0G/t9ye3y+7AiqFlgHprbgcCo9MhCyyhVLNyU1jWreaRHNulQftQCsm4Nq4wGyLnWXCmWcPlh/XfitXgbT+CtHPOD2+gAr6vRqa8lAl1IzdpwMqQAKqVjyDi8hxyi9sIYCWObc4ue32xjqosLsTK4ItA65ti9sOls93NwdXJSNNDrySES1v892SXV6IBDkKBrg8vsDimFXzgn7vvG4c4nseX+DrwGLgR0G/t7NsBPOBxzy+wD/tx9+x13Vb3w+oJKlnC5OHyhWPQnSZKw8GTzJLe2pDJshq3cK1bx1sestsb3PMguYAq3gIFA2FoiH2/ejjweZ+XokEX0LEiNQcbAz6vcfE2+7xBV7FXInX2s3A34FfY5qdfw38HvhWJ6f8KXAV8D/241eAf3Wz2EBvC6gs97nAHZjpa+7CCvk7fY5c5QdAfTgCwCQJqIRInXw3jJhplvbUV0PlLji403QfHtoVc7sL9qyBqrfMOK/2uPLtIGtIU9A1fn8N5K1uG4QVlkkyVJH1gn7vWV3Zz+ML/At4vgvHiwD/sBc8vsAc4C/ANd0tW+8JqCy3E7gTOBvYBnyI5X4WK7S6w+fJVX4AbCs3ecjGy/gpIXpObmH8AfOxGuuhej9U7YGqvVC519zGLod2wq4VjKncA1ueaHsM5YDCQXaAZbdwFQ429wsH2beDm28LSmWAvcgqHl9gRNDv3Wk//DywsovPm4WZAeZSYBPwZCLn7z0BFRwHrMcKbQTAcj8KXAR0HFANGJn2gvUF0Sv8RpcmlDFfCJFOrlwYMMIsnXjrjTeYe8JR7QddlXua7+9YBtX72u92BBOAFZTFBF+tg65WjwvKZLJr0df91uMLHIXp8gtixkO1y+MLTMEEUZcD+4DHABX0e09P9OS96d0zCtga83gbcHybvSz3VZj+TjQOFiz6uEcK15tUVlayYMGCdrdt/WQZ1Zv756/Sjurdn0m9s0tlVRULFi6PWTPQLGoylGCWGCrSSE7DQXIaQuTWh5ru5zQcbH5cvp+cPZvIrQ/haqw0V0i3olE0uoppyBlAfa6bhhx3zP0B7TwegHbkpK7e2fp6S71TJuj3fq0bu38CvA1cEPR71wN4fIEfJHP+3hRQdY0VmgfMA4j48/XcuXMzW54MWBBNeBhrfgCAz33mdJyO/jnItd16ZwGpd3ZJe73DjWYi66p9poWrah9U70dV7SOneh85VfsorN5v1h9cb7oqdaT9Y+W5oWiQ3co1JOa+3QKWU2DGibnyWt46cpoH4ysFKD5YuIgTjjzCPFYOQJnz6ojJlK+1maBbh826SLhr2yKxx4jdFmnnOWH7VsfcD3fhOTHnaLE90ur5bY+1f/9eBg10mzo7XPYSe99lxs61eOwy+dmcuTG38e7ndWGfVvd7oKu4F7y/LwYuA97w+ALzgUcxU88krDcFVNuBMTGPR9vrRDf012BKCJEiTpe5mKerF/REImZQfVPw1RyEtXhcsdnMy1i9r+VE2F10AsDCbj8tQ5QJcpQDlNO+7zTBYPR+i+32rXLEbHeAcpDTUA31TjsobDQBV6TRDr4aW66LLuFGiDS0SlqbQg5X14OvFvc72e5qXjd85yZYvqvtvj0k6Pc+DTzt8QWKMMOLrgeGenyBvwNPBf3el7t7zN4UUH0ITMZyj8cEUpcBX85skYQQIss5HKblqWgQDJna+f5am/xd1QegsdZe6sxtQy001jS3AqGbbj9Zs4Zp06bGrI80ByRNgYij1f3YbaptINOlbY5uBkfOlKa6WJpMS000CAvX20uD+b+O3m9x29H9+i7s0+p4jXXmfkMNhOtMkBf3OXVtij4NYG0y/3OpEfR7q4CHgYc9vkAp8EVMKoU+HFBZoUYs9/eAlzBpE+7BCq3KcKn6jOU/PwfdzrgIIYToUUo1z83YDbsqFjBt1ty0FKnfUspu4ckBevEV3u0Efu+/8yYnHnd0ywCssR5+eVLGimknAW0aVtRdvSegArBCLwAdTmQo2ucu7LmmUiGEEKLL2gn86vKHdJ5upI/pn5eDCSGEEEL0IAmohBBCCCGSJAGVEEIIIUSSlNZ9dyCzUioC1GS6HBngArp/XXLfJ/XOLlLv7CL1zi7x6l2gte6TjT29a1B69y3VWsedlbq/UkotlnpnD6l3dpF6Zxepd//RJ6NAIYQQQojeRAIqIYQQQogk9fWAKqHkW/2A1Du7SL2zi9Q7u0i9+4k+PShdCCGEEKI36OstVEIIIYQQGScBlRBCCCFEkvpsQKWUOlcptVYptV4p5ct0edJBKTVGKfWGUmq1UmqVUuo6e72llNqulFpmL+dnuqzpoJQKKqVW2HVcbK8rU0q9opRaZ992bwbWXk4pNTXmdV2mlDqolLq+P77mSql7lFJ7lFIrY9a1+/oq48/2+/1jpdTszJU8OXHq/Tul1Cd23Z5SSg2013uUUjUxr/s/MlbwJMWpd9y/a6XUjfbrvVYp9ZnMlDp5cer9WEydg0qpZfb6fvF6d/Dd1b/f31rrPrcATmADMAHIBZYD0zNdrjTUcwQw275fAnwKTAcs4MeZLl8P1D8IDG617reAz77vA27LdDnTWH8nsAsY1x9fc+BUYDawsrPXFzgfeBFQwAnAwkyXP8X1Pgdw2fdvi6m3J3a/vrzEqXe7f9f259xyIA8Yb3/eOzNdh1TVu9X23wM/70+vdwffXf36/d1XW6iOA9ZrrTdqreuBR4GLMlymlNNa79RaL7XvHwLWAKMyW6qMuwi4z75/H/C5zBUl7c4ENmitN2e6IOmgtX4LONBqdbzX9yLgfm18AAxUSo3okYKmWHv11lq/rLWOZo3+ABjd4wVLszivdzwXAY9qreu01puA9ZjP/T6no3orpRRwKfBIjxYqzTr47urX7+++GlCNArbGPN5GPw80lFIeYBaw0F71Pbtp9J7+1u0VQwMvK6WWKKWustcN01rvtO/vAoZlpmg94jJaftBmw2se7/XNpvf8tzC/1qPGK6U+Ukq9qZSak6lCpVF7f9fZ8nrPAXZrrdfFrOtXr3er765+/f7uqwFVVlFKFQNPANdrrQ8CfwcmAkcBOzFNxv3RKVrr2cB5wDVKqVNjN2rTVtwv834opXKBC4H/2quy5TVv0p9f33iUUjdj5jd7yF61ExirtZ4F/BB4WCk1IFPlS4Os+7tu5XJa/mjqV693O99dTfrj+7uvBlTbgTExj0fb6/odpVQO5g/yIa31kwBa691a67DWOgL8iz7aFN4ZrfV2+3YP8BSmnrujTcH27Z7MlTCtzsPMVbkbsuc1J/7r2+/f80qpbwIXAF+xv2ywu7z22/eXYMYSTclYIVOsg7/rbHi9XcDFwGPRdf3p9W7vu4t+/v7uqwHVh8BkpdR4+5f8ZcCzGS5Tytn963cDa7TWf4hZH9u3/HlgZevn9nVKqSKlVEn0PmbQ7krM6/wNe7dvAM9kpoRp1+KXaza85rZ4r++zwNftq4FOAEIxXQd9nlLqXOAG4EKtdXXM+iFKKad9fwIwGdiYmVKmXgd/188Clyml8pRS4zH1XtTT5Uuzs4BPtNbboiv6y+sd77uL/v7+zvSo+EQXzFUBn2Ii+JszXZ401fEUTJPox8AyezkfeABYYa9/FhiR6bKmoe4TMFf5LAdWRV9jYBDwGrAOeBUoy3RZ01D3ImA/4I5Z1+9ec0zAuBNowIyZ+Ha81xdz9c+d9vt9BXBMpsuf4nqvx4whib7P/2Hv+wX7738ZsBT4bKbLn+J6x/27Bm62X++1wHmZLn8q622vvxe4utW+/eL17uC7q1+/v2XqGSGEEEKIJPXVLj8hhBBCiF5DAiohhBBCiCRJQCWEEEIIkSQJqIQQQgghkiQBlRBCCCFEkiSgEkKknFJqkFJqmb3sUkptt+9XKqX+lqZzXq+U+noH2y9QSv0qHecWQghJmyCESCullAVUaq1vT+M5XJi8PbN18yTDrfdR9j4n65jkmUIIkQrSQiWE6DFKqblKqeft+5ZS6j6l1NtKqc1KqYuVUr9VSq1QSs23p65AKXW0PVHsEqXUS3FmoT8DM1VPo/2ca5VSq+1Jdx+FprnDFmCmdxFCiJSSgEoIkUkTMcHQhcCDwBta6yOAGsBrB1V/AS7RWh8N3APc0s5xTgaWxDz2AbO01jOBq2PWLwbmpLwWQois58p0AYQQWe1FrXWDUmoF4ATm2+tXAB5gKjADeMX02OHETOPR2ghgTczjj4GHlFJPA0/HrN8DjExd8YUQwpCASgiRSXUAWuuIUqpBNw/qjGA+nxSwSmt9YifHqQHyYx57gVOBzwI3K6WOsLsD8+19hRAipaTLTwjRm60FhiilTgRQSuUopQ5vZ781wCR7HwcwRmv9BvBTwA0U2/tNAVamvdRCiKwjAZUQotfSWtcDlwC3KaWWY2atP6mdXV/EtEiB6RZ80O5G/Aj4s9a6wt52OhBIZ5mFENlJ0iYIIfoFpdRTwA1a63Vxtg8DHtZan9mzJRNCZAMJqIQQ/YJSaiowTGv9VpztxwINWutlPVowIURWkIBKCCGEECJJMoZKCCGEECJJElAJIYQQQiRJAiohhBBCiCRJQCWEEEIIkSQJqIQQQgghkiQBlRBCCCFEkiSgEkIIIYRIkgRUQgghhBBJkoBKCCGEECJJElAJIYQQQiRJAiohhBBCiCRJQCVEH6CU8iiltFLKleRxKpVSE1JVrm6e+5tKqXszce72KKUspdSDPXi+m5RSd/XU+YQQPUsCKiF6iFJqvlLqV+2sv0gptSvZYKkrtNbFWuuN9nnvVUr9JpHjKKWKlVJBpdRXYtaVKKW2KKUuSaaMSqkFSqlypVReMsfJJKXUXKXUtth1Wuv/01r/vzSc6/tKqZVKqdyYddcrpT7qib8pIYQhAZUQPec+4KtKKdVq/deAh7TWjRkoU0K01pXAd4A/KaWG2Kt/CyzWWj+e6HGVUh5gDqCBC5MtZzooozd9dt4JVAA3A9gtkL8Evt2X/qaE6Ot604eCEP3d08AgTMAAgFKqFLgAuF8p5VBK+ZRSG5RS+5VS/1FKlbV3IKXUSKXUs0qpA0qp9UqpK2O2Oe3upQ1KqUNKqSVKqTH2Nq2UmqSUugr4CnCD3Q34nFLqJ0qpJ1qd589KqTvaK4PW+iUgAPxZKTUXuBT4bsL/O8bXgQ+Ae4FvtCrLGKXUk0qpvfb/z19jtl2plFpj13e1Ump2zP/TE/ZzNimlro13YqXUCUqp95RSFUqp5XadotsWKKVuUUq9C1QDE5RSV8Scc6NS6jv2vkXAi8BI+/+20i5Hiy5GpdSFSqlV9vkWKKUOi9kWVEr9WCn1sVIqpJR6TCmV3165tdYR4NvAD5RSRwD/Av6mtV7atf9yIURKaK1lkUWWHlowX3Z3xTz+DrDMvn8dJpgYDeQB/wQesbd5MK02LvvxW8DfgHzgKGAvcIa97SfACmAqoIAjgUH2Ng1Msu/fC/wmpiwjgCpgoP3YBewBju6gPqXATmAfcEUndf8mcG8n+6zHBGVHAw3AMHu9E1gO/BEosut9ir3ti8B24Fi7vpOAcZgfjEuAnwO5wARgI/AZ+3kW8KB9fxSwHzjfft7Z9uMh9vYFwBbgcPv/JQfwAhPtc56GCbRm2/vPBba1qlvs+abY/9dn28e6wa57rr09CCwCRgJlwBrg6k7+7260X4e1QH6m/9ZlkSXbFmmhEqJn3QdcEtPa8HV7HcDVwM1a621a6zrMF/AlrcfB2K1NJwM/1VrXaq2XAXfZxwL4f8D/aq3XamO51np/ZwXTWu/EBGpftFedC+zTWi/p4DnlwCqgEHiys3N0RCl1CiYQ+o99zg3Al+3Nx2GCi59oravser9jb/t/wG+11h/a9V2vtd6MCbCGaK1/pbWu12bs2L+Ay9o5/VeBF7TWL2itI1rrV4DFmAAr6l6t9SqtdaPWukFrHdBab7DP+SbwMjGtj534EhDQWr+itW4AbgcKgJNi9vmz1nqH1voA8BwmcO7I25gW0Me11rVdLIcQIkUkoBKiB9lBwD7gc0qpiZhA4WF78zjgKbsLqALTKhEGhrU6zEjggNb6UMy6zZhWFoAxmGAkEfdhggvs2wc62lkp9VVM69mrwG0JnjPqG8DLWut99uOHae72GwNs1u2PCYpX33GYbreKmP/Tm2j7/xnd94ut9j0F02oXtTX2CUqp85RSH9jdrhWY4GtwF+oJ5jXcHH2gTbfdVppfQ4BdMfergeJ4B7MHpP8T+AvwPZWhKzmFyGZyBYgQPe9+TGvSVOAlrfVue/1W4Fta63dbP8EerB21AyhTSpXEBFVjMd1e0eNMBFZ2Ug7dzrqngb8rpWZgxnbdEO/JSqmhmC64S4FPgFVKqYe01m93ct72jlVgH8eplIoGEnnAQKXUkZg6jVVKudoJqqL1bW0rsElrPbkLRdgKPKC1vrKDfZr+v+wrEJ/AvI7PaK0blFJPY7r/Wuwbxw7giJjjKUxguD3uMzr2M0z37HVADSa4OjvBYwkhEiAtVEL0vPuBs4Arae7uA/gHcItSahyAUmqIUuqi1k/WWm8F3gNuVUrlK6VmYgYlRwc83wX8Wik12b4ibaZSalA75diNGVcUe+xa4HFM69AirfWWDurxV+BprfUbdnfhDcC/VGLpDj6HaY2bjunaOgo4DNON9XXMeKKdgF8pVWTX++SY+v5YKXW0Xd9J9v/hIuCQUuqnSqkCe7D+DKXUse2c/0Hgs0qpz9j75SuT+mB0nPLmYgK+vUCjUuo84JyY7buBQUopd5zn/wfwKqXOVErlAD8C6jCva7fYAee1wJVaa43pKvYopa7o7rGEEImTgEqIHqa1DmK+OIuAZ2M23WE/flkpdQgzQP34OIe5HNPVtgN4CviF1vpVe9sfMF/YLwMHgbsx43NauxuYbndxPR2z/j5M60nc7j6l1OcwXWI/ianXXXZ5fh7veR34BvBvrfUWrfWu6IIJ2r6Cafn5LGbA+RZgG2YcElrr/wK3YILAQ5hWtjKtdRjTynYUsAnT1XoX0CbIsYPUizBdgnsxLVY/Ic5npN0yeC3m/7kcM9br2ZjtnwCPABvt/9+RrZ6/FtOl+he7XJ8FPqu1ru/qfxiYKzoxr+MtWuv19rFrMMH675RS7XVvCiHSQJkfNEIIYSilxmK68IZrrQ+m8LjfBOZqrb+ZqmMKIURvIS1UQogmyiSs/CHwaCqDKSGE6O9kULoQAmhKSLkbc/XZuWk4xTJMRm8hhOh3pMtPCCGEEH2Gxxf4ASb/nMYkMb4i6PdmPPeadPkJIYQQok/w+AKjMBeEHBP0e2dgZlFoL1lvj+vTXX4Oh0MXFLR38VL/FolEcDiyLxaWemcXqXd2kXpnl3j1rq6u1lrrzv5DXECBxxdowMzSsCMNRey2Pt3ll5+fr2trM97K1+MWLFjA3LlzM12MHif1zi5S7+wi9c4u8ertLHTXj7n24RUxq+YF/d55sft4fIHrMKlSaoCXg37vV9JZ1q7q0y1UQgghhOg/IjUHG4N+7zHxtnt8gVJMzrjxmItc/uvxBb4a9HsfjPecnpJ97YxCCCGE6KvOAjYF/d69Qb+3ATMp+0mdPKdHSAtVP1HXGAYgz+Xs2ROHG6GmHOoOQiQMThc4XJBTCAWl4Ojh8gghhOjPtgAneHyBQkyX35nA4swWyZCAqp84+tevUh+O8OlvzkvfSSIR2LoQNr0F2z6EfWshtB10OM4TFBQOguKhUDoeBk2AsokwaCIMmgQlI0CpOM8VQgghWgr6vQs9vsDjwFKgEfgImNfxs3qGBFT9RGVdYxoPvgc++DssfwQO7QQUDD0MxpwAM8dB8TDIKzEtU+EGiDRAQw1U7YOqvVC5Gw5sgPWvQriu+bg5hTB4CoyYCcNnwvAjYNgMyCtOX12EEEL0aUG/9xfALzJdjtYkoBLx1VfBm7fBwn9CYx1MPQ9m/AYmnw35beaX7VwkDAe3w/4NsH89HNgIe1bDmudh6f32TgrKJpgga+Qss4w4MrHzCSGEED1EAirRvu1L4L9XQMVmOPJymPNjGDwpuWM6nDBwrFkmnt68Xms4uAN2rbCXj2H7Ulj1VPM+gyZxmHMk5K0yQdbwmdKSJYQQoteQgEq0tfwxePb7pivvmy+A5+T0nk8pcI8yy9SYKeSqD8COj5oW96YP4KW3ok+CIVNh5OzmlqzhMyAn+xK9CiGEaMvjCxwDzAFGYgawrwReCfq95ek4nwRUoqUl98Jz14FnDnzxPigalLmyFJbBpDPNAnywYAFzjz4Mdi5rDrTWvwrLHzb7KycMnQ4jj2oOsoYdDq68jFVBCCFEz/L4AlcA3wc2AUuAtUA+cArwU48vsBL4WdDv3ZLK80pAJZqtfNIEU5POhi89CDn5mS5RWyXDoOQzMOUz5rHWZqD8jo9MN+GOj+CTAHz0gNnuzDVBVTTAGjkLhkwDZ07m6iCEECKdCoGTg35vTXsbPb7AUcBkTAqGlJGAqp9pCEfIcSaQr3X7Unj6f2DsiXDZQ32nVUcpGDDSLNO8Zp3WULGlRXchK56AxfeY7a58c0VhbJA1eIrkzBJCiH4g6Pfe2cn2Zek4b88HVJZ7DHA/MAzQwDys0B1Y7jLgMcADBIFLsUJp6efsz2oawt0PqGoPwn++AUVD4NIH+k4wFY9SUDrOLId/zqyLRKB8U8sg66OHYJGdviSnyFxNOHKW6TIcfgQMmmwSlQohhOgzPL7ALZipab4L3Bz0e3/SE+fNxLdFI/AjrNBSLHcJsATL/QrwTeA1rJAfy+0DfMBPM1C+Pq22PsyA/G52Z833wcFt8K2XoXhIegqWaQ6HnVB0IhxxiVkXCZv0DdGuwh0fweK7odGecNuVb8ZkjbBzZA0/EoZNh9yizNVDCCFEZ0YD1wN/AHpsfEcGWqhCO4Gd9v1DWO41wCjMZIdz7b3uAxYgAVW31TTEy1oex6a3YdlDcMoPYcyx6SlUb+VwmisFh0yFoy4368KNJgP8rhWw82OTwmHVU2awPoBymCzvw49oTkY6fGb/DUSFEKLvCQX93j0eX8AC3uupkyqtdU+dqy3L7QHeAmYAW7BCA+31CihvetzyOVcBVwEU3Fp99IsvvdIzZe1FKisrKS5umYPpm/OrAPj1yQWMKelal5+KhDlm8fU4IrV8eOxfiTh7d1dfe/XuEVqTV7eX4spNlBzaSHHlJoorN5Jft7dpl7rcMiqLx1NZPIHK4vEcKplAbf4wE4AlKWP1zjCpd3aRemeXePU+/fTTq7XWKesG8PgCzqDf282WhsRkLqCy3MXAm8AtWKEnsdwVLQIoy12OFSrt6BD5+fm6trY2veXshRYsWMDcuXNbrPP4AgA8+d2TmD22w/+2ZkvvN/mmLn0Apl+Y4lKmXnv1zqjqAy2Tke5aAXvXNs9tmFtit2Ad0dxtOGRat8eo9bp69xCpd3aRemeXePVWSqUsoPL4Ar8FfoPJQTUfmAn8IOj3PpiK47eWmRG3ljsHeAJ4CCv0pL12N5Z7BFZoJ5Z7BLAnI2Xr42rruxiIN9bBm7+FUUfDYZ9Nb6H6q8IymHCaWaIaamDPmpZB1kcPwiLTgogjxwRVsUHW8CNkah0hhEi9c4J+7w0eX+DzmIvdLsb0ivWTgMp0590NrMEK/SFmy7PANwC/fftMj5etDyvIcVLTEKa6qwHV8kcgtBU+e4e5Kk6kRk4BjJptlqhIGA5sgl3Lm8dmrX+lOSEpwMBxMZNE24HWgJHy2gghROKiMY4X+G/Q7w1Fe3PSebKedDLwNWAFlnuZve4mTCD1Hyz3t4HNwKUZKFufVZBrAqouDUqPROD9O02agIlnpL9w2c7hNPMgDp4EM77QvP7QLjvAWt7corXmuebthYNg+BFMaBgIZXtNkDV4suTLEkKIrnne4wt8guny+x+PLzAESNs4oUxc5fcOEO9n95k9WZT+pCDHfMl2KaBa/yrs+xQuvktaQDKpZLhZJp/dvK7uEOxaGdNl+DGjd70DW582210FJnVD7BWGww6H3MKMVEEIIXobjy8wMuj37gj6vT57HFUo6PeGPb5ANSajQFokHlBZ7nYnHZRknJlRmGsCqqq6xs53Xnw3FA9vTnopeo+8Ehh3ollsb7/+KqdNH95yAPyqJ2HJv80OTakcZsaMzZoJRYMzVAkhhMiouzy+QBkm/dJ84B2AoN9bBVSl66TdD6gsd4eTDmK5VwI/wwqldI4c0bGiPPNSdhpQHdwB616Gk6+X+ez6CO1wwfAZZsHOlxWdXic2yNq6EFY+3vzEkpFtB7+XjpdWSSFEvxb0e8/3+AL5mNyWnwdu9/gCWzDB1fxUT4oclUgLVSFwMlao3UkHsdxHkYZJB0XHcl0m31FlXSddfsseBh2BWV/tgVKJtImdXuewC5rXt5fKYf2rzakc8gbAsBkxQdZMGHqYBNdCiD7D4wsMBO7C5LDUwLeCfu/7sfsE/d5a7ADKfs544Dzgrx5fYHjQ7z0u1eVKoIUq1OGkg1ihZQmWRaRAZV1D/I1aw8ePwbiTzRQsov9pN5VDLexZ3TLIWvoANNgt364CGH0MjDsJxp4AY06QMVlCiN7sDkxL0yUeXyAX09ATl8cXGACEgEftpTIdhUpmDFW7CbOwQmnJ7yC6prK2gy6/3avMYPTjr+65AonMy8lvJ5VDBA5sNKkcti6Cze/BW78zrZfOPDOGa+IZZhl6uJkLUQghMszjC7iBUzHz/xL0e+uB+jj7fgf4JebKvmgWcx30eyeko2zJXOV3DlboBix3jyTMEl3TYZffqifNAObDen9WdJFmDkfbVA61B804rA1vwIbX4ZWfm6VoKEw8HSacbm5Lhme27EKIbDYe2Av82+MLHIkZy32dPeC8tR8DM4J+776eKFgyAVWLhFlYoRCWZHvOGDv27rDLb81z4JkjE/mK9uUPMCkcomkcDu5oDq7Wv2a6i8G0WE35DEw513QVSl4sIUSKOAoGuDy+wOKYVfOCfu+8mMcuYDbw/aDfu9DjC9wB+ICftXO4DUB1+krbUjIB1fNY7qaEWVjutCbMEl1TFa+Fav8G0913zLd7tkCi7xowEmZ9xSyRCOxeYYKrda/Cu3fAO3+AgjKYfI4JsCaeAQUDM11qIUQfFqk52Bj0e4/pYJdtwLag37vQfvw4JqBqz43Aex5fYCFQF10Z9HuvTUlhW+n+wAjLPdLchnzAScAxWKEGTBSYtoRZomsq46VN+PQlczv13J4rjOg/HA6TWf+UH8AVAbhhI1xyj2nNWvcSPH4F/G4i3HsBvPdX2Lc+0yUWQvRDQb93F7DV4wtMtVedCayOs/s/gdeBDzBdg9ElLRJpoboLy90mYRZWKK0Js0TXHIo3KH3dSzDkMCj19Gh5RD9VMNCMvZrxBTNX4bYP4dP5JnB/+WazlE003YJTzjFXlkpqBiFEanwfeMi+wm8jcEWc/XKCfu8Pe6pQiaRNOB/L3SJhFpa7KWGWJPTMrHYTezbUwOb34bgre75Aov9zOE26hbEnwFkWlG82yWM/fQk+vAs+uBPy3DD5LJhynrktKM10qYUQfVTQ710GdNQtGPWixxe4CniOll1+B9JRrsTGUFmhFgmzsNxNCbOw3MOxQilPmCW6pqYhTGM4gssZ05u75QMI18GEuRkrl8gipeNM8H7clVBfZQa2f/qiCbBWPgHKaXJeTT3PLGVpuYJZCCHsqSW4MWadBnpd2gTDcvdIwizRdVV1YdyFMQHVpjfBkQNjT4z/JCHSIbfIZHI/7AIzsH37Elj7gukefOkmswyZZgKrKefJVYNCiJQJ+r3je/J8yST2bDdhFlZIfm5mWGV9I+7CmPEqm96C0cdCXnHmCiWEwwFjjjXLWb+AA5tMYLX2BXjvL/DOH6FwsBl3NfVcnI3J/94TQmQfjy9wStDvfaeD7QOAsUG/d2Uqz5vMJ9aPgRlYoR5JmCW6rkW29Poq2LkcTr4ucwUSoj1l4+GE/zFLTYWZc3Dti/DJc7DsQU5WObD7dDvAOs+kcRBCiM59weML/BYzLGkJJhFoPjAJOB0YB/wo1SdNJqDq0YRZousO1sYk99y+BCKNZn42IXqrgoFwxCVmCTfAlvfZ/to8xuxbYQa4B34II45qHnc1fKaZIFoIIVoJ+r0/8PgCZcAXgC8CIzA5M9cA/+yo9SoZyQRUNwLvYblbJMzCCqUlYZboXFGuk6r6MBXVMQHVloWAMt0sQvQFzhwYfyobJkUYc9ppsHdt87irBX5YcCsMGGW3XJ0P4+eAKy/TpRZC9CL2lXz/spcekUxAFU2YtQKIpKY4IlEaTWlRLlX1NZRXx8wTufUDGHqYXKYu+ialYOg0s8z5IVTuNTnV1r4Iyx+BxXdDbrGZY3Dq+TD5M1A0KNOlFkJkoWQCqhysUI8lzBKdKyvKZVt5DRXRgEpr0+U37YLMFkyIVCkeArO+apaGWnPBxacvmgBrzXNm8u8xxze3Xg2eLF2DQogekUxA9SKWu03CLKxQWhJmic4V5bpwORTl0S6/ii1QUw4jZ2W2YEKkQ06+ycI+5Rzw/gF2LjOB1doX4dVfmKVsYvO4qzEngFOuHBRCpEcyny49mjBLdE4pGFiY29xCteMjcysBlejvlDJ/5yNnwek3QWibCaw+nQ+L5sH7f4X8gWYi56nnwaQzId+d6VILIdLA4wv8CPhj0O+NtFo/CPht0O/9djrOm0QeqlCPJswSXVNamMOBqpiAypEDww7PbKGE6Gnu0c3Z2usOwYbXYe18E2Ct+I95X3hONt2CU8412d2FEP3FVGCpxxe4Juj3vgvg8QW+C9wA/CldJ01gLj/3KVih+JccmszpY7FCKU2YJbqmtCi3uctvx0cwbLpcASWyW14JTL/ILJEwbF3UPO7qxRvMMvRwu2vwfNPK5XB0flwhRK8U9Huv8vgCJwF3enyBlcA0YB1wYtDv3Zmu8ybSQvUFLHePJ8wSXVNamMOmfVVmQPquFTDt/EwXSYjew+GEcSea5exfwf4NzeOu3vkjvH07FA+DKZ+xUzKcBrmFmS61EKL7VgKLgHMBB/CjdAZTkFALVegHWO64CbM6bL0SaVdamMvS6gqo3A01B2DYEZkukhC916CJcNL3zFJ9wM7W/gKsfAqW3g+uAjOp+NTzTNdgybBMl1gI0QmPL/A1zNR4/wQmAkdiWqs+BX4c9Hv3pOO8iY2hMlfy9WjCLNE10UHpetdKFMj4KSG6qrAMZl5qlsZ62PyOGXe19kXTRYiCCafBkV82kz3nFmW6xEKI9l0CnB70ezfbj5d4fIETgauBD0jTxXNyDXE/U1qYQ0NYU7VzLcUgAZUQiXDlwsQzzHLebbBnNax+BpY/Ck9dBYESmPUVOO4q08olhOg1gn7vRe2s08DfPb7A4+k6rwRU/UxpUS4A5bs2U1w42PzqFkIkTinzw2TY4XCaD7a8D0vvgw/vhoX/NOOtjr/adA1KElEherWg37s3XceWS1n6Ca3NbWmhHVDt322yRAshUsfhMOkWLp4HP1gJp91gZiN44HPwj1NgxePmSkIhRNbpfkBluX+E5W77PMs9CMt9dyoKJRKjFAwuNgHVvgPlMGhShkskRD9WMtwkEb1+JVz0Nwg3wBPfhr8eC0sfMOOwhBBp4fEFnB5f4COPL/B8pssSlUiX31RgKZb7GqzQuwBY7rQnzBJdM9ydD8DOGicMnpLh0giRBXLyzXiqIy+HT56Dt26HZ78Hb94Gc35k5h105mS6lEL0N9dhsgsM6GgnOx+Vh5h4J+j33p+OAiWSNuEqLPdJwJ1Y7hYJs7BCac3xIDo3pDgPh4Lduky6/IToSQ6HSR562IUm/cKbt8Hz18O7fzJjr2ZeavJgCSGS4vEFRgNe4Bbghx3s9wAmbcIyINoXr4FeElAZbRJmSTDVO7icDobmR9hZXyYtVEJkglIw+WyYdBasewVe/zU8fTW88weYeyNM/5xkYhciDkfBAJfHF1gcs2pe0O+d12q3P2F6xUo6OdwxwHT7Cr+0S2TqmXYTZmG5PwV+jBVKS8Is0XXDcqrZVTcIBsr8ZEJkjFIw5RwTXK15Dt64BR6/Aob9Hk6/2SQLlasChWghUnOwMej3HhNvu8cXuADYE/R7l3h8gbmdHG4lMBzokQafRFqoLgFOxwo1JczCcqc9YZbouhGqnA2OYeCUrBhCZJxSMP1CmOaFlU/Cgv+DRy+HkbPhjP81ua4ksBKiq04GLvT4Audjpr0b4PEFHgz6vV9tZ9/BwGqPL7AIqIuuDPq9F6ajYImMoWqTMAsrpIG/Y7nTljBLdN1wvZt3IzMzXQwhRCyHE2Z+EQ7/PCx/xIyxevBiGHcKnP1LGB33R7kQwhb0e28EbgSwW6h+HCeYArB6qFhAqvNQWaG0JcwSXTe8YRuHIrlU1jVmuihCiNacLpj9Nfj+Ejjvd7BvLdx1Jjz2Vdj7aaZLJ0S/EfR73wQ+wYy1KgHW2OvSQkZG9jf1VYxo3AbArlBthgsjhIjLlQfHXwXXLoO5N8GGN+BvJzBl7Z1wcEemSydErxf0excE/d4L4m33+AKXYi6g+yJwKbDQ4wtckq7yZGaQjeW+B7gA2IMVmmGvKwMew+SLCAKXYoXKM1K+vqxiK8PVAQB2H6xl0tDiDBdICNGhvGKY+1M45lvw9u0MX3QX/HmWmc7mlOuhoDTTJRSir7oZODbo9+4B8PgCQ4BXgbQMT0q8hcpyLzHJPd2JvNvvxaRciOUDXsMKTQZesx+LLmq6JrRiC8MxAdVOaaESou8oHgLn3cai4/5m8lm9ewfccZS5bajJdOmE6Isc0WDKtp809swl00L1JeAK4EMs92Lg38DL9gD1jlmht7DcnlZrLwLm2vfvAxYAP02ifFlHoSC0hWGqHAVsL5cPYSH6mtqCYXDePDjp+/DqL+GVn5tJmOfeaLKxy9W7QnTVfI8v8BLwiP34S8AL6TpZEi1UofVYoZuBKcDDwD3AZiz3L+3uu+4aFpMcdBcwLOGyZbOKLeS7FCMHFrBxX2WmSyOESNTwI+Crj8M3njfzBj77Pfj7SfBJoHk2dCFEXEG/9yfAPGCmvcwL+r1pa6hROpk3puWeiWmlOh94CXgIOAX4GlboqE6e6wGejxlDVYEVGhizvRwr1LY70XJfBVwFUHBr9dEvvvRK4uXvoyorKykubjk26jcf1JDnhH8X/pXiyg1c6vgTlQ0a66SCDJUy9dqrdzaQemeXduutNYP3fcCEjQ9QWLOd0IBpbJzwdUIDD89MIdNAXu/sEq/ep59+erXWuigDRUpa4m3HlnsJUAHcDfiwQtGkWQux3CcncMTdWO4RWKGdWO4RQPsZ163QPEzEifbn67lz5yZwqr5twYIFtK73X9a8R0GOk6G6FoZP4ZjSMfx38VZOO+00VD9JGthevbOB1Du7xK/36RD+CSx7EPcCP7OW3QRTzoUzfwHDpvd0MVNOXu/sks56e3yBd4J+7ykeX+AQMUOMAQXooN/b4YTKiUqmM/6LWKGNLdZY7vFYoU1YoYsTON6zwDcAv337TBJly16hbTDpLCYMKaKqPsyeQ3UMG5Cf6VIJIVLB6YKjvwlHXAqL/glv/9F0Ax55OZx+Iwwcm+kSCpFxQb/3FPu2s7n+UiqZ0e7tXXbYtUsRLfcjwPvAVCz3Niz3tzGB1NlY7nXAWfZj0S0aqvZCyXAmDjFNqRv2yjgqIfqd3EI45Qdw3TIzeH3lE/CXo2H+TVC1P9OlE6JX8PgCD3RlXaokMjnyNOBwwI3ljm2JGoCZV6cLxwhdHmfLmd0uj2gWbgAdhuJhTBhiuqA37K3ipImDM1wwIURaFJbBOb+G478DC26FhX+Hjx6Ak6+FE74LuX1yKIoQqdJikKHHF3ABR6frZIl0+U3FJOUcCHw2Zv0h4MoUlEkkKlxvbouHMnxAPoW5TjZKC5UQ/Z97NFx0J5z4fXjtV/D6b2DRv+C0n8Lsr4MzJ9MlFKLHeHyBG4GbgAKPL3DQXq2Aeuwx2OmQyOTIzwDPYLlPxAq9n/oiiYQ12tcFlAxHKcXEIcWs2y0BlRBZY+g0uPxh2LIQXrUg8EN4/04443/NpMz95AIVIToS9HtvBW71+AK32pMp94hEuvxuwAr9Fvgylrtt150VujYF5RKJiGmhAjh85ADmr9qF1rrfXOknhOiCscfDFS/AupdNYPX4FfDen+EsCybMzXDhhOgZQb/3Ro8vUApMJmZIUtDvfSsd50tkUPoa+3YxsKSdRWSA1jomoDI5UWeMclNR3cA2yZguRPZRCqZ8Bq5+Bz73D6jaB/dfBPd/DnYsy3TphEg7jy/w/4C3MHkyf2nfWuk6XyJdfs/Zt/elujAiOSpcD7klTQNRZ452A7Bie4gxZYWZLJoQIlMcTjjqctPlt/hueOt2mHcazPiC6Qosm5DpEgqRLtcBxwIfBP3e0z2+wDTg/9J1smQmR34Fyz0w5nEplvulFJRJJCpc39TdBzB1eAk5TsWK7aEMFkoI0Svk5MOJ15hUC3N+DGtfhL8eC4EfQ2X7eZSF6ONqg35vLYDHF8gL+r2fYC6sS4tk8lANwQpVND2yQuXA0Lh7i/RrrG/q7gPIczmZOryEZVsqMlcmIUTvku+GM38G134Es78BS/4NdxwFr98CtQc7fboQfcg2jy8wEHgaeMXjCzwDbE7XyZIJqMJY7ua0vJZ7HC1TvIueFq5r0UIFcKynjI+2llPXGM5QoYQQvVLJcLjgD3DNIphyDrz1W/jzUfDB35uvGBaiDwv6vZ8P+r0VQb/XAn6GmSrvc+k6XzJTz9wMvIPlfhOT32EO9qTFIkPC9eZDMsYJEwbx73eDfLwtxLGesgwVTAjRaw2aCF+8F0661lwRON8HH/wNTr8ZjviiGYMlRB/j8QWcwKqg3zsNIOj3vpnucyYxhio0H5gNPAY8ChyNFZIxVJmiIxBpbNNCdZwdRC3cKNNRCCE6MGo2fONZ+NpTUFAKT30H/nkqfPoyaOl8EL2DxxcY4/EF3vD4Aqs9vsAqjy9wXXv7Bf3eMLDW4wv02ASXyXT5AZwEzLWXE5ItjEhCpNHcFg1psbq0KJdpw0t4b4MEVEKILph4Bly5AC65B+qr4OEvwr1e2PphpksmBEAj8KOg3zsdE3dc4/EFpsfZtxRY5fEFXvP4As9Gl3QVLPEuP8vtx1yO+JC95jos90lYoZtSUTDRTWE7oCoc1GbTaVOHcPfbmzhU20BJvkxBIYTohMNh0ipM+ywsvQ/e/C3cfRZMuwDO/AUMmZLpEoosFfR7dwI77fuHPL7AGmAUsLqd3X/Wk2VLpoXqfOBsrNA9WKF7gHMxc/yJTIi2UBW0HSd11mHDaIxo3l63r4cLJYTo01y5cNyV5orA02+GjW/C346HZ78PB3dkunSiH3IUDHB5fIHFMUvcsdkeX8ADzAIWtrfdHjcVBHLs+x8CS1NfaiOZQelgJkg+YN93J3kskYxIg7ktbBtQzRozkIGFOby6ZjfnHzGihwsmhOjz8orhtBvgmG/B27+HD++Cj/8Dx38HTvmBGXMlRApEag42Bv3eYzrbz+MLFANPANcH/d528314fIErMRfLlQETMS1Z/wDOTF2JmyXTQnUr8BGW+14s932YaWduSU2xRLd10ELlcjo4c9owXlm9W9InCCESVzQYzr0VvrcYpn8O3v0z3HEkvPMnaJAprkTP8PgCOZhg6qGg3/tkB7teA5wMHAQI+r3rSGO+zGSu8nsEMyDsSUzFTsQKPZaicolu0mE7UIrzS/GzR47gUG0jb67d24OlEkL0S6Xj4OJ/mnkCxxwPr/4C/jwbltzXPJ5TiDTw+AIKk09qTdDv/UMnu9cF/d76mOe6SGO+zATm8nPPbrVmm307Ess9EiuUtv5J0YFIIzhc4Gz/JT150mDKinJ5ZtkOzjl8eLv7CCFEtwyfAV/5LwTfNUHVc9fC+381cwRO+6wZ3C5Eap0MfA1Y4fEFltnrbgr6vS+0s++bHl/gJqDA4wucDXwXeC5dBUtkDNXvO9imgTMSLItIRjSgiiPH6eDCI0fy8MItHKiqp6wotwcLJ4To1zwnw7dfgU+eh9d+Bf/5OgyeasZXHXEJOOXqYpEaQb/3HUwy8a7wAd8GVgDfAV4A7kpT0RJpoQqdnoZyiEREIlC1F0LboLG20w+tLx8/lnvfC/L4kq1cderEHiqkECIrKAWHfRamnAern4Z3/ghPXw2v/dIMZj/6m20SDwuRTkG/NwL8y17SLpk8VIXAD4GxWKGrsNyTgalYoedTVThh0xr2b4AdH8HeTzh8zbuwygcHNpr5+wDqfwklAzo8zJRhJRzrKeWBDzbz7VMm4HR0NcgXQogucrpMq9SML8C6V2DhP+CNW+Ct38HhnzdXBo46OtOlFP2YxxdYQQdjpYJ+78x0nDeZtAn/xlzZd5L9eDvwX0ACqmTVhmDbh7BtsbndvgRqys025aQofxiMPQomnwXusTBwDLzoguKSTg/97VPGc/WDS5m/chfemZJCQQiRJkqZSZennAP71sGiebDsYfj4MRg5C2Z/HWZcAvkd/xAUIgEZyYmZTEA1ESv0JSz35QBYoWostzR5JKKxDrYuNEnzNi6AHUvN3HwoGDodDrsQRh9jftUNmsyid95j7ty5LY/x2rvmA6wTZ08fzvjBRfzjzQ2cf8RwVBeeI4QQSRk8Gc7/HZzxM1j+iLka8PkfwEs3m/QLs78m8wWKlAn6vZuj9z2+wDhgctDvfdXjCxSQfP7NuJI5cD2Wu4Bos5rlngjUpaJQWaFqP3z6Iqx53gRRjTWgnCZwmvNj8JxiJivN67zVqTucDsXVp03gp0+s4JXVu+WKPyFEz8kfYLr8jrvK/HBcej+seAKWP8xxBSPBcQXMvBRKPZkuqegH2knsOZo0JvZMJqCygPnAGCz3Q5hLGb+ZgjL1X9UHYNWTsPIp2PKeaYVyjzG/ziaeAeNO7pHm7y/MHs0/39zI7S+v5czDhslYKiFEz1LKtLiPOho+83+w6mnq3vwbhW/cYsZbjT0RZn4JDv+cZGEXybgGOA57apqg37vO4wuk7cqIRPJQ3Qk8jBV6Gcu9BJPcUwHXYYVksrjWwg2w/jVY/jCsfRHC9eZy4jk/MhONjjiyS111qeRyOvjROVO55uGlPPrhFr5y/LgePb8QQjTJLYJZX2F5aBRzj5oIK/4Dyx+F56+HF2+AKefCkZfBpLPN3IJCdF1d0O+t9/gCQG9M7AmfArdjuUcA/wEewQp9lNpi9QOVe2DJvfDh3VC5CwoHmUuHj7w8I0FUa+cfMZwTJpTx2/lrOW/GCMlLJYTIvIFjzI/NU35ormr++DFY8TisedZMqzXjYjjiizD6OEkaKrqilyf2tEJ3AHdguccBlwH32GOpHsEEV5+mtoh9zM7l8MHfYeUTpjVq4png/T1MPietv666O55TKcWvLpqB989v84tnV/GXy2elp2BCCNFdSpkxpKNmwzm/gQ1vwMePwkcPmomZ3WNMCoYjLoHhMzP+A1X0Wr08sWeUFdoM3AbchuWeBdwD/BxwpqZofczWD02elXUvQW6xSWJ33FXm6pYe0t0r9qYMK+G6Mydz+8ufcvb0YVx45Mg0lUwIIRLkzGlOv1B3CD55AVY+Dh/8Dd77MwyabHJeHXFJj37eij6hALgn6Pf+C8DjCzjtddXpOFkyiT1dwHmYVqozgQWYgerZZdsSeP3XsPEN0yR9xv+aQCrfnemSdcnVp03k9U/2cNOTKzh85AAmDinOdJGEEKJ9eSVw5JfMUn0AVj9jegPevA3e9MPwI0xuqxlfMN2HItu9BpwFVNqPC4CXac6fmVLd74S23Gdjue/BTIp8JRDA5KS6DCv0TIrL13uVB+Hxb8FdZ8DulXD2r+H6FXDqT/pMMAVmgPpfvzybXJeDK+9fTHlVfedPEkKITCssg2OugG8+Dz9cA5+5FZy5ZpLmP82Au8+BhfPMeFaRrfKDfm80mMK+X5iukyUyqu9G4D3gMKzQhVihh7FCVSkuV+9VUw4v/y/89VjT9HzaT+HaZXDytZDXN1t3Rg4s4B9fPZpt5TX8v/sXU1MfznSRhBCi6waMgBO/C1e+bj6Pz/iZ6R588Sfw+6lw/0Ww9IHmGSdEtqjy+AKzow88vsDRQE26TpbIoPQz0lCO3k9r+Pg/8NJNUL0fjvoKnHEzDOgf446OG1/Gn750FN97eCnf+Pci7vnmsRTnpS2hrBBCpEfZeDj1x2bZvdp0Ca58HJ79HgR+CJPOMl2CU88zKRtEf3Y98F+PL7ADk95pOPCldJ1MvjFjNIYjuJztNNod2AjP/9CMkxp1DHztKRiRlrkVM+r8I0bwp8tm8YPHlnHZvPf519ePYYS7INPFEkKIxAybbpYz/he2LzXB1aonYe0LkFMIUz4Dh18Mk8+GHPms62+Cfu+HHl9gGjDVXrU26Pc2pOt8WR1Q1dSHWbK5nMWbD/DgB1vYV2lmzpk7dQhHjh5IrlMzZNfbDPj0CcocNYw47Y8MOO7LuIvyM1zy9LnwyJEU5zm59pFlfPYv7/LHLx3JnMlDMl0sIYRInFIw+miznPNr2PyeCa7WPAurnjJXZk893+S5mngGuPIyXWKRAh5f4BrgoaDfu9J+XOrxBS4P+r1/S8f5si6g2lZezWtr9jDvrY1sr2i/K3XB2r0sWLvXfjQC+J65+xI4Xn6NkvwcpgwrZuiAfKYMLWFQcS7jBhUywp3P0AH5lOS5+vSkw2dMG8ZT3z2J/3loKV+7exFfPn4sPz5nqiT/FEL0fQ4njJ9jlvNvh+BbsPJJWPOcydKe54ZpXhNcTZhr0jaIvurKoN97Z/RB0O8tt+f3k4AqWXsP1XHKbW80PZ4wpIjrzpzMKZMGs3hzOe6CHEaWuMj/6G5c7/8ZR76bg6ffwsFRc1i35xAb9lSx91AdSsGnuw+xYluIwMc725ynIMfJcHc+wwbkMXxAPsPc+QwfYJYhJXkMKcljcHEeRb14jNLkYSU8//1TuP2ltfz7vSDPLd/Bd+dO4isnjGVAvnzACCH6AafLtEhNPAO8fzAT1a96Ej553kwXVlAKh33WdAt65pj9RV/i9PgCKuj3amjKQ5W2loF++9dR3xjh+sc+YvbYUgpynTy/fCfvb9zftP2Oy47ioqNGNT3+zOHDYc8aePJq2LnMDFo8/3YGFpYBMGNU+6kQ6hrDHKiqZ8v+anYdrGX3wVp2herM7cFaPgyWs+dQLQ3htqnM81wOSgtzKS3KpbQwp/m2MJfSwlwG2vcHFuYwsNBsixfMpGNyovwcJ/97wXQuPXYMtwTWcNv8T/jbG+u55JjRfGH2aA4fOaBPt8QJIUQTV25zAtHGOjMH66onTevV0vuhcDBMv9AEV+NOMi1dIiM8vsC5wB2YROJ3Bf1ef5xd5wOPeXyBf9qPv2OvS4t+F1BFIpqbnlrBox9uBeCFFbuath02YgBXnzaB48aXtRxsHQnDe38xs5znlcAX7zOznHdBnsvJCHdBh4O3IxFNeXU9uw/Wsa+yjj2H6th7qI7y6nrKq+rNbXUDa3YepLyqnoqahrhTyTgUDMxTTPrkfUaXFjCqtIADVfUs31rBGdPSM4n2lGEl3Pet41ixLcS8tzfy0Adb+Pe7QcYPLuL0qUOZM2Uws8eW4i6QlishRD/gyoNp55uloQbWvWKCq+WPwuJ7oHgYTP+cmf5mzPG9Yl7BSERTH45QH47Q0BghrDVoiGjQaHOrNVqbi9YjWqOxb6PbYh5Hb2PF/n5WqLbrOtsec6wdlRHW7znUtFYp8yO+M3Yr053A2Zh8mB96fIFng37v6nZ2/ylwFfA/9uNXgH91epIE9a6AynK3iDqxQvGiTgD0gOF8694P+euXZ1GY66Kiup5TbnuDyrrGNvv+7SuzOW/G8LYtKrtXwzPXwI6lpmnX+0coTu0gbIdDMag4j0HFXRvoGIloQjUNVNQ0UF5dT0V1PeVV5vGBqjo+WruZRgULNx1g57Ia8lxOvDNH8L3TJ6W03K0dMdrNXy6fRUV1Pc9/vJNXVu/mwYWbuefdTSgF4wcVMXV4CVOGlTBpaDGjSgsYNbCAIcV5OBzSkiWE6INyCkzL1PQLob4KPp1vWq2W3AuL/gkDRpngasbFMOrohOcVbAxH2HOojp2hGrZX1LKjooby6noO1TbaS0PTbVVdmLrGMPWNERrCJpAKR9LRT5Fm77yVyLOOA9YH/d6NAB5f4FHgIqBNQBX0eyPAP+wFjy8wB/gLcE2CJe5Q7wmoLHebqBPL/SxWqL2os8nrn+zhyaXbOVjbwG/nr21av+DHc5l7+wIAHrvqBI6fMKjlExtq4J0/wdu/N5nNv3C36ebrBV1YDocy3X9FuYynbZ6UBXm7mDv3RMC8CR1K9WjAMrAwl6+eMI6vnjCO6vpGlm2pYPHmclbtCPHJrkPMX7WrxS8bp0PhLshhYEEOAwpyzP1Cc1uY6yLX5SDXqexbB7kuJ7kuBzlORZ7LQa7LgVKKFXsbYa3JehwNjKO1bv5lpQlHmu9H7F9a0V9nEa2JRFr9CoupW+tfZLpVZ2rb7a202qH19jbP72R/gHXBBja+s6mDY3b8Qdp6s8OhKMp1UpTnojjPRVGei6I8J0W5rqZ1+TkO6c4VorXcIvM9MeMLJnHo2hdNcLVoHnxwJ7jHmt6NGRfDiKPifp+EahpYuqWc1TsO8sayWqwP32BreU2boCjX6aAk32UvOZTkuxg8uIjivBzycqKfl+azMse+n+t0kON04HAoHMq0FDmUKYpSpt3IoRRKNd+2XQ9gb7PL0v7npG5nXfPaluta7rt69WoOmz69aV0koqltCPOVPw9weXyBxTGnmxf0e+fFPB4FbI15vA04vt3/aMDjC8wCLgcuBTYBT8bbN1m9J6Cyo06s0EYALHfcqDNKHdzF6NJ83l63l5dW7W5a//qPTsMzuIgnv3sSq3ccbBlMNdTAsodNIHVwO8z8kpmyoGhQO2fo/drNm9WDCnNdnDRpMCdNGty0rrYhTHB/FTsratleUcOuUC0VNfVUVDeYlrfqeoL7qwjVNFBdb35lddmSD9NQiz7gkw5/V6ScQ2ECrVw72Mpz4XQonHbw7nIonA6FQ5nb6DanQ7XqAmj5hRL7KF5XQPQ5u3bX8uzuZe3upOg82GsdDMds6M5qAAYW5jBxSLFZhhYxpDhPAs4U0FpT2xChur6R/TURth6opjGiCUcihCPQGIkQid5qTWNYE9aacKR5icYgOubHUesv/Ojj1tt13O3t/5Bqs78+CaaehB5fDbuWo7ctgXc+Rr+13PR0jJxtWq0GjKSuMcKOUC0LN+5n2daKpnIPKVAcM3EAF8wcyciBBYwcmM/IgQWMcOdT0l8vANKagXuXMccTgdqDUBuCOnN7ec3BxqDfe0wyh/f4AlMwQdTlwD7gMUAF/d7TU1D6uHpTQNWtqBPAGanjxIPz+W/53KZ13zltAhPsCX5njy1l9vBc2LUS9q+DDa/Dmueh5oBJ0HnxPPCckvqaZLn8HCfThg9g2vABXdpfa93UbF3fGLGbsSPU2ffrwxG01ixZupTZs2e3+2GplPkV5lCq6VdW9Avfodrf7nA0/yqL1fp7ss3XZpvt3Xt+R0FGe89/5513mXNKq7/T1ufoxjkbwxGq6sNU1zVSWddIVV3Yvm2kqt48rmraZtZV14dbfIk1hCPUNGgikegXHPaXYEwY00FrXuwXVrwWwpqaCNtqD7RZ30mDXKt6d3N9O4GaRrPvUD01Dc1TMhXnuRg6II+hJXkMKclnSHEeZUU5TS18JfmmtS/P5WzRepAT06LQ1JKgmoNQpaDR/v912K0G0RaE3i4c0eyrrGNHRQ07Q7XsDNWyv7KO/ZX17K+qo7y6gao687dUXR+mpr6R6oZwy9fzzTfiHr/3KwTm2AtQYS+r9wPmgiinghmjB/K90ydxwsRBzBjlZukH7zJ37tGZKHDiwg0mEKoLmWCoNtQmMGp63LSuosU+c3QE3kno7NuB2JmvR9vrYn0CvA1cEPR71wN4fIEfJHS2buhNAVXXWO6rMIPM0DgYN2Qg2OPO/1XwV45eE2LvhgHk1ldQULOT3IaKpqc2Ogs4UHY026eeT8g9HYKNEFzQ41VIVmVlJQsWLMh0MXrccFcNBzcuz3Qxel59FR8tejetp8i3l6Z22jx7SZvOA4TKygjFxZkf7AuKiM6jvFazs0qzsyrC7qoIofpaDpTXsGmXpqJOU5fKKTBffjFOSexbuyvG7plpvh+jTddw64N11n3d2fG68HyHgpJcxYBcRXEOFLgUA/Mgv1CR51TkunLId0KeUxFpqKOwIK/pR5BDmQCk5f3mbU1LzPnaa/WM9wNGtVrR5kdIO8fsyvrYsrjqDzHowBLKDnzI4INrGEwF9YeGUb7pSCrKZ7Bm7SSqwkU9+3muIzjDtTjDNbgaq+ylOuZ+Fc5wdattlS32cUbqOj1No7OQRlchja6i5iVvEOFCs64qkoOzsNTeVth0C1/r7NAfApM9vsB4TCB1GfDlVvtcbK9/w+MLzAcepSsfOklSnY2/6DGW+0TAwgp9xn58o7kN3RrvKfn5+Xrllr2c9QczsG35sS/jrvjETIBZNNjM6VQ6vvl22AxzaWwft2DBAubOnZvpYvQ4qXd26Wv1rm+MNLXsHao1tw32VVfRVteGcISGRtMa22Cvj16FFf0o3rBxI+M941us1wB2l5aOWR/dx/6XhtbUrj9fKcWQkjxGDMhnxMB8RrgLGFiQ0+XxnX3t9e62Q7tNZvYNr0PwHdNqA0SUC8egCWZe2IIyKCxrvs0pNFccOlzmavRIY8wS+7gB6quhvtIsdZVmAH17jxuqOy+rw2XGFkeXvAH2/QGQP7CddbGP3eZq+U7SSsR7vZVS1VrrDidZ9PgC5wN/wlzAdk/Q770lzn5FmKFDlwNnAPcDTwX93pc7/T9IQG9qofoQmIzl7ijqbGPC4GLGDSpk1MAC3F+4I91lFEKIduW6HOS6zMUkyVigtjF37uQUlUr0GiXD4LgrzRJuhD2rYNcKtn70OuMK66ByN1RsNUNSairodnZB5YDcEjNwPq/Y3OYWw4DRLR/nFjfvkxcNkAa0DJ5yCnrFBVrxBP3eF4AXurBfFfAw8LDHFygFvohJpdDPAyor1Ijl/h7wEnbUiRVa1dnTHA7FC9fOweXsvS++EEII0cTpghFHwogj2RQazbjWLTWRsBlr1FBtkoxGwqbFx+FqtcSsc+X16iAo04J+bzkwz17SovcEVABWqEtRZ2u9eQoXIYQQolscTtPlR1mmSyK6oTeM+BRCCCGE6NMkoBJCCCGESJIEVEIIIYQQSeo9aRMSoJSKADWZLkcGuIC2Exb2f1Lv7CL1zi5S7+wSr94FWus+2djT10dzL9VaJ5Wivi9SSi2WemcPqXd2kXpnF6l3/9Eno0AhhBBCiN5EAiohhBBCiCT19YAqbQm6ejmpd3aRemcXqXd2kXr3E316ULoQQgghRG/Q11uohBBCCCEyTgIqIYQQQogk9dmASil1rlJqrVJqvVLKl+nypINSaoxS6g2l1Gql1Cql1HX2eksptV0ptcxezs90WdNBKRVUSq2w67jYXlemlHpFKbXOvi3NdDlTSSk1NeZ1XaaUOqiUur4/vuZKqXuUUnuUUitj1rX7+irjz/b7/WOl1OzMlTw5cer9O6XUJ3bdnlJKDbTXe5RSNTGv+z8yVvAkxal33L9rpdSN9uu9Vin1mcyUOnlx6v1YTJ2DSqll9vp+8Xp38N3Vv9/fWus+twBOYAMwAcgFlgPTM12uNNRzBDDbvl8CfApMByzgx5kuXw/UPwgMbrXut4DPvu8Dbst0OdNYfyewCxjXH19z4FRgNrCys9cXOB94EVDACcDCTJc/xfU+B3DZ92+Lqbcndr++vMSpd7t/1/bn3HIgDxhvf947M12HVNW71fbfAz/vT693B99d/fr93VdbqI4D1mutN2qt64FHgYsyXKaU01rv1Fovte8fAtYAozJbqoy7CLjPvn8f8LnMFSXtzgQ2aK03Z7og6aC1fgs40Gp1vNf3IuB+bXwADFRKjeiRgqZYe/XWWr+stY5mjf4AGN3jBUuzOK93PBcBj2qt67TWm4D1mM/9PqejeiulFHAp8EiPFirNOvju6tfv774aUI0CtsY83kY/DzSUUh5gFrDQXvU9u2n0nv7W7RVDAy8rpZYopa6y1w3TWu+07+8ChmWmaD3iMlp+0GbDax7v9c2m9/y3ML/Wo8YrpT5SSr2plJqTqUKlUXt/19nyes8Bdmut18Ws61evd6vvrn79/u6rAVVWUUoVA08A12utDwJ/ByYCRwE7MU3G/dEpWuvZwHnANUqpU2M3atNW3C/zfiilcoELgf/aq7LlNW/Sn1/feJRSN2PmN3vIXrUTGKu1ngX8EHhYKTUgU+VLg6z7u27lclr+aOpXr3c7311N+uP7u68GVNuBMTGPR9vr+h2lVA7mD/IhrfWTAFrr3VrrsNY6AvyLPtoU3hmt9Xb7dg/wFKaeu6NNwfbtnsyVMK3Ow8xVuRuy5zUn/uvb79/zSqlvAhcAX7G/bLC7vPbb95dgxhJNyVghU6yDv+tseL1dwMXAY9F1/en1bu+7i37+/u6rAdWHwGSl1Hj7l/xlwLMZLlPK2f3rdwNrtNZ/iFkf27f8eWBl6+f2dUqpIqVUSfQ+ZtDuSszr/A17t28Az2SmhGnX4pdrNrzmtniv77PA1+2rgU4AQjFdB32eUupc4AbgQq11dcz6IUopp31/AjAZ2JiZUqZeB3/XzwKXKaXylFLjMfVe1NPlS7OzgE+01tuiK/rL6x3vu4v+/v7O9Kj4RBfMVQGfYiL4mzNdnjTV8RRMk+jHwDJ7OR94AFhhr38WGJHpsqah7hMwV/ksB1ZFX2NgEPAasA54FSjLdFnTUPciYD/gjlnX715zTMC4E2jAjJn4drzXF3P1z532+30FcEymy5/ieq/HjCGJvs//Ye/7BfvvfxmwFPhspsuf4nrH/bsGbrZf77XAeZkufyrrba+/F7i61b794vXu4LurX7+/ZeoZIYQQQogk9dUuPyGEEEKIXkMCKiGEEEKIJElAJYQQQgiRJAmohBBCCCGSJAGVEEIIIUSSJKASQqScUmqQUmqZvexSSm2371cqpf6WpnNer5T6egfbL1BK/Sod5xZCCEmbIIRIK6WUBVRqrW9P4zlcmLw9s3XzJMOt91H2PifrmOSZQgiRCtJCJYToMUqpuUqp5+37llLqPqXU20qpzUqpi5VSv1VKrVBKzbenrkApdbQ9UewSpdRLcWahPwMzVU+j/ZxrlVKr7Ul3H4WmucMWYKZ3EUKIlJKASgiRSRMxwdCFwIPAG1rrI4AawGsHVX8BLtFaHw3cA9zSznFOBpbEPPYBs7TWM4GrY9YvBuakvBZCiKznynQBhBBZ7UWtdYNSagXgBObb61cAHmAqMAN4xfTY4cRM49HaCGBNzOOPgYeUUk8DT8es3wOMTF3xhRDCkIBKCJFJdQBa64hSqkE3D+qMYD6fFLBKa31iJ8epAfJjHnuBU4HPAjcrpY6wuwPz7X2FECKlpMtPCNGbrQWGKKVOBFBK5SilDm9nvzXAJHsfBzBGa/0G8FPADRTb+00BVqa91EKIrCMBlRCi19Ja1wOXALcppZZjZq0/qZ1dX8S0SIHpFnzQ7kb8CPiz1rrC3nY6EEhnmYUQ2UnSJggh+gWl1FPADVrrdXG2DwMe1lqf2bMlE0JkAwmohBD9glJqKjBMa/1WnO3HAg1a62U9WjAhRFaQgEoIIYQQIkkyhkoIIYQQIkkSUAkhhBBCJEkCKiGEEEKIJElAJYQQQgiRJAmohBBCCCGS9P8BydleHXFmMP4AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\n", - "Angular Position Plots\n", - "\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi4AAAGDCAYAAAAMIJtyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABmEklEQVR4nO3dd3hUVfrA8e87k0kPCSWEQEAQIdKRZsECuip2XRQVC66uuGvdqu66q25xf+6ua2+ray8o9u5ao6hrAUGliHQJhJ6QXmbm/f1xb+IQkhDIZCYzeT/Pc5+Z285952RkXs859x5RVYwxxhhjYoEn2gEYY4wxxrSWJS7GGGOMiRmWuBhjjDEmZljiYowxxpiYYYmLMcYYY2KGJS7GGGOMiRmWuBjTzkSkv4ioiCS462+IyIxWnlsgIj9t3whbR0QeFpG/Runa7V4PIlIuInuHsTwVkX3CVV64iMhqEflRtOMwZk9Z4mJMmLg/CFXuD2D90rvxcap6jKo+Eobr7ZAQNXPM9SJS58ZSIiKfiMiBrSj7PBH5qK0xRpIbs4rI6Y22Xy8ijzfatlMipKrpqrrS3R+1JK2eiExyP89V0YzDmI7GEhdjwusE9wewflkf7YCAp1U1HcgGPgKeFxGJckztYQawDTg32oGESbx9HmPCwhIXYyIs9P/2RcQrIv8SkS0iskpELm2iFWUvEflYRMpE5C0R6eFu/9B9LXFbVFpsSVHVOuARoBfQXUSuFpEVbrmLReQUN6YhwL3AgfUtNSHFdBWR19xzPhORgS18zmdEZIOIbBeRD0VkWMi+h0XkrubKEpEjReRb99w7gRYTLRHZCzgMmAkcLSK93O1TgN8Dp7uf5SsRuQE4BLjT3Xane6yKyD4iMhM4C7jS3f9K6P5Gn+GvIeu/FZEiEVkvIuc3ii9JRG4Ske9FZKOI3CsiKS18njTgVOASYJCIjAvZV9/SNsMtb4uIXBOyP0VEHhGRYhFZIiJXikhhM9fxhHwPtorIbBHp1lJdGxNtlrgYE10XAscAo4ExwMlNHDMd+AnQE0gEfuNuP9R9zXJbd/7X0oVEJAk4D1irqluAFTg/4JnAn4DHRSRXVZcAPwP+55abFVLMGe6xXYHlwA0tXPINYJAb95fAE432N1mWm5g9D/wB6OHGObGlz4bTKjFXVZ8DluAkHqjqm8DfcFudVHWUql4DzAEudbddGlqQqt7nxvoPd/8Ju7h2fYL0G+BI9zM3HkNyIzAY5++8D9AHuLaFIn8MlAPPAP/FaX1p7GAgHzgCuNZNOAGuA/oDe7vxnN3CdS7D+c4dBvQGioG7WjjemKizxMWY8HrRHUtSIiIvtuL4acBtqlqoqsU4P3CNPaSq36lqFTAb58dvd0xzW03WAmOBUwBU9RlVXa+qQVV9GlgGTNhFWS+o6ueq6sf5cW82FlV9UFXLVLUGuB4YJSKZrSjrWGCRqj7rthLdCmzYRVznAk+6758k8t0r03D+TgtVtQLn8wLgdsvNBH6pqttUtQwnmTqjhfJm4CRbAZzPc4aI+Bod8ydVrVLVr4CvgFEhsfxNVYtVtRC4vYXr/Ay4xv3+1f+dTpUWxk0ZE22WuBgTXierapa7nNyK43vjJBT11jZxTOiPdiWQvpsxzXbj6amqh6vqPAAROVdEFtQnWsBwnBaOlrQqFrcL7Ea3C6IUWO3uCi2/ubJ2qBN1ZoJtql7qrzURGAA85W56EhghIqN38VnCqfHfcU3I+2wgFZgXUtdvutt3IiJ9gcn80EL1EpAMHNfo0FbVHy3UHbAX8EJIXEuAAJDTwjnGRJUlLsZEVxGQF7LedzfO3eOp3d0xIfcDlwLd3e6ghfwwlqSt08ZPB07C6TLJxOm6gF2MVXEVEVIPbotFS/Uywy13gYhsAD4L2Q5Nf5Zdfb6m9lfiJCD1ejUXM9Av5P0WoAoYFpLUZroDpptyDs6/za+4n2clTuLSqlvo2b3v1FrgmJC4slQ1WVXXtfJaxkScJS7GRNds4AoR6SMiWcDu3Pq6GQjijGXYXWk4P86bAUTkJzgtLvU2AnkikrgHZQNkADXAVpwf+7/txrmvAcNE5Mdul8Xl7JgkNBCRZJyukZk4XU31y2XAdPf8jUB/EQn9924jLddbU/sXuGV63TEth4Xsmw2cJyJDRSQVZ5wJAKoaxEkSbxGRnm7cfUTk6GauPQNn7E/o55kKHCsi3VuIOTSW34lIVxHpg5OcNude4AY3kUVEskXkpFZcw5ioscTFmOi6H3gL+BqYD7wO+HGa61ukqpU4A1o/dpv6D2jtRVV1MfAv4H84P9IjgI9DDnkPWARsEJEtrS03xKM43SXrgMXAp7sR2xbgNJzxPltxBrt+3MzhJ+O0ZjyqqhvqF+BBIAGYgjPAFWCriHzpvr8NZyxHsYg0NQbkAWBoo7FKVwAnACU4g3/rt6Oqb+CMxXkPZ6Dxe43Ku8rd/qnbdfYOzsDaHbh/w72Au0I/j6q+7J5/ZjP1EOrPQCGwyr3OszhJZFNuA14G3hKRMpy/0/6tuIYxUSNO97ExpiMQkWOAe1V1r2jHYuKDiPwcOENVD9vlwcbEAGtxMSaK3GduHCsiCW6z/nXAC9GOy8QuEckVkYnuM1rygV9j3ykTR6zFxZgocsdDfADsi9Pl8RpwhaqWRjUwE7Pc8Sqv4dxpVYJzt9XvVLU2mnEZEy6WuBhjjDEmZlhXkTHGGGNihiUuxhhjjIkZcfFY56ysLN1nn312faAJi4qKCtLS0qIdRqdh9R05VteRZfUdWbFU3/Pmzduiqk0+XTouEpecnBzmzp0b7TA6jYKCAiZNmhTtMDoNq+/IsbqOLKvvyIql+haRNc3ts64iY4wxxsQMS1yMMcYYEzPioqvIE6xh7bdzqVNBxIvH6wFPAoIHT4KXJF8iKUkJpCSn4E3JAo/la8YYY0wsiovEJa1iLX2fOqJVx9apl22SyTbpxhZvTzb5+rA1qQ/bk/MoT+uHP60XGSlJdElJoEuyj4zkBLqk+OiS7CMzJYG0pAR8Xg8+j4cErzjvvYIzga0xxhhj2lNcJC7Fvl5cXHs+0yf0Jc0HGgyCBiAYQINB/AE/dXV+/HU1+Kq3klyzmbSaLQyqXcsBVV/gq6prKKsGH99rT1YHc9ig3diOUE6QEqkmnSoypIo0qkinijSpoQ4v1ZpIDYnUio9akqiVROokEb/48Ah4BTyiBMRHwOMjID6CkkBQvE7CIx438fGACOLxoPXbxAvicRaPB8SLiAc8znZxX/E425taF4/TAoUnAfEkNKw7+xLAm4DH40W8Xne/F/Em4PEkIF7nHI/Hg3h9eLxeCrduZ/GqQsSTgDchAY/Xi8eTgNfrwSOCxyN4RfB4wCuC1/PDNq9H8DS8YgmfMcaY3RIXiUuVJ43Xgwdw3eFHkNMlefdODgagdB1sWwnbVpK0bRX7bFvJwG0rofRLFAjiwZ+QQq03nRpPCrUJPajxpLHVkwxBP55ADb5ANcmBWrzBaryBKhKC2/FqLUEEVUEBT9BPQqAOr/pJ0Dq8BABFVBFACDrrgMc5Ew8d78nGIwG+2Xl7QAU/XoJ4CIQszid117V+u7Mt6L4PivuKh4B4UTwN21Q8BN1jFK+zXzyoJLivXlS8IF7U47zicbd5vKgnAXHfO0uCu7iJmjfBSQi9znaP14t4fG7S5sXjJm/eBDeJ8zrnOEmbD6/Xi3h97noCXq8Pr899TfDh9fpITEzEl+AlwSskej34vB68HkvajDFmd8VF4tImHi9k9XOWvScBuEnED7yAD0iJfHSg6i4B0KCTaGkwZD3YsK7BAMFgkEDAeR8I+AkGAwQDfncJEAwE0KCz3vAa8DvnuvvU3afB+vX61itn2/rC78ntlYMGA4i7jaDfiSHgD4nTjwQD7nvnWDSIuK1hHg3gVT8+DSLBAKKhSxDROjxa07DNo0EE5zyPBpCgmyK5270aQAjiVSclSiAQjb9Ys/zqJGJ+PNS6r34SCOIlUJ+4iZcATmtc/dItAAs/SSboJmMqCagngaDHh3oSUE8ieBJQrw88PtSb6LakJYLXh3h9SEJiw6s3wYfXl4Q3IRGvL4kEXyJeXyI+XxIJiYn4EpPw+ZLwJSaRmJiIeJPA63MWT/2rN9rVaYzppOIqcYnL/38VcZZW3AAmOElWe/+krC8oID9GngVAQ7eh313qE76Q9WB9EhcgEKgj4HeXQICgv45goP69n2CgjmDQ7773Ewz6Ub+/iWQwgAbrGhJBGhLEOnefH3H318cibiJI0I+4SZ+oHw1W49U6fP5qxE32vPjdljs/CTjrCRrAh58EAvikfZO2+lYzvyQQIIGAx+n+DEiC0w3q8aENiZXzviHxaUiikvD4kt0lCa8vBW9iMgmJySQkpeBLTMbjS4GEpB8Wb/375Ka3eX3ufy/GmHgVV4mLMTvxeACP84PWgkglfXtidx8aparU+gP4/bXU1dRQV1dLoK4Gf10tdbXOq/O+moC/Fn9tjZOo1dUQ8NcSrKt1Xv21TqLmr4OAs06gzl1qIViHBOuQoB8J1LrJlh9PoA6P+vFqndM9SjUJVODDj4+A++rHJ3581JFIHUnUkST+sNSX35PkJFKeJILeJDQhCRJSwJeKJKYgial4E1PxJjmvkpgKvlTwpdB7XSF8uRZ8KQ3bfnhN2XE9IdmSJGOiIL4SF/s3xBhEhERfAom+BEhJjXY4qCp1AaXGH6DGH6S6LkB1XYDyuiBV7vuq2gDVdX5qq6upq62krqYaf001/toqArXVBOqqCNbVEKyrQutqCPprEH81BGoQfy0SqEGCNXgDtST4a51EiDoSxU8yNSRTSwpVJMt2UqglmRpSpJYUd1+yOAP0BwMsa+XnEg/BhDQ0MQ2SMvAkZSDJ6UhiBiSlQ2L6D6+h75MyfnhNyYKUrk4yZEmQMa0SV4mLWOZiTIcjIiQmCIkJHjIicD1/wEmIquoCVNYEqKj1U1kboKLGz/baAJW1ASpr/VTU/PBaVVNLXU0lm9YXkpmWRKC2kmBdFdRWIv4qpK6KhGANyVJDCrWkUkOKVJNeV01aVTVpUkU61aTLRjI8a8iQatKoIkWrSKRulzGrx0cwOQtJ7YonpauTzKR0heSsH96nZO28PTkTvHH1z7gxu2TfeGNMXEnwesjweshI9rG7mVJL3XK1/iBVtQHKauoor/FTVu2nvNpPaXUdJdV+Cmv8lFXXhWx31iurqgnUlKPVpVBbTnKwijT38QqZUkEW5c5rbTmZZeV09VTQ3bOJLCrIoJxUrWwx5mBiBqR0xZPaVKLTDdKy3aXHD68JSbtXMcZ0IHGRuNTfMGwtrcaY9pKY4CExwUNmasvjpVqiqtT4g5TukODUsb3KWVZX1vFVVR0llbWUVNZRUlVHeUUVgapiqCohNVBGppSTRUVD0pPlL6dLVQXdSyro7tlAlmcFXbSc9GCZ+8iFJuJI6oLslNA0sZ7e00mC7B9X04HEReJijDGxQERI9nlJ9nnpuQf9ZtV1AbZX1TlJTWUtJW6Ss6mijm8rathaXsvWilq2VtSwrayGqsrtZAS204PtdJdSZ6GUHv7t5FSXkVNSRg8poivbSQ+U4iG40zU1IRnJ6AUZvaFLLmS4S5fcHbdZK46JkLhKXOz/CYwx8aw+6WntgzZVlYraAFvLa5yEpry24f3c8lq2VdSwubyGTaU1bCmtxFNd3JDg9GA72bKd3oFi+gW307u8mJ7rV9M1sAWf1u58sZRukNkHMvtBVl/I7Bvy2g9Su1vLjQmLuEpcjDHG/EBESE9KID0pgb26p+3y+Oq6AJvLathYWs2mkNfFpdUN24u2VyHV2+klxfSSbeRIMb2lmAG12+lXXExu8WK6171PYrDR2BxfKmTm/ZDQZPUje1MlrM+C7gOdu6yMaYW4Slxs3htjjNlzyT4vfbul0rdby7fRl1bXUVRSzfqSKtaVVLG+pIqCkirWl1SzrqSKDdVVpAfLyZMt9JHN9PFsId9bwoDybfQpL6T79/NIqSthGMDim5xC03o6CUy3gdB9b/d1IHTbGxJ3nXSZziOuEhdjjDHtr0uyjy69fOT3arqVJBBUNpVVs664iu+3VbJmayWfb6vkGff9lvIaUqlmL9lIf9nA0KTNDAtuYcCWjeRseJPU2i2NLpgHPfeFnkMge4j7mm8JTScVV4mLtbcYY0z0eT1CbmYKuZkpjOvfbaf9FTV+vt9Wyesffk5G7tGs2lLJnE3lLN9czraKWtKoor9sZJBvI/ulbmMIG+hftIbuKz/EG6wfXyPQda8fEpn6pUc+JCRG9gObiIqrxMUYY0zHl5aUwJDcLmzMSWDSoQN32LetopYVm8tZvqmcFZvKeX9zOf/ZXE5hcRUeDdBPNjE8YR0HZGxiRHA9fdd/R+ayt/GoO2WENxF6DoXeoyF3tPPac5glM3EkrhIXG+JijDGxrVtaIt3SujG+UUtNVW2AFZvL+XZDGUuKSnmtqJSbikoprqzDh58BUsRBGZuYmFbI0OpV5Hz9HAnzHnZO9vggZ+gPiUyfcZAzzGY5j1FxlbgYY4yJTymJXob3yWR4n8yGbarKhtJqlhSVsqSojEXrt3P92u2sK6kClL09mzmyaxETU9eSX7eSHotexPvlI87JiemQNw76HgB9J0DeeEjuEp0PZ3ZLXCUuNleRMcZ0HiI/jKU5fN+chu2byqr5au12Fqwt5qu123lybQllNX5AGZK0lRN7rOfgpBUMLFlIyqp/IBoEBHKGw4BDYMBh0H+i3aLdQcVV4mJ5izHGmJ4ZyRw5NJkjhzrJTDCorNxSzvzvS1iwtoQXVvfn7+tGAqfQ3VfNqTkbmJy6miG1C+nyxQPIp3eDeKHPWNj7MCeR6TvBng7cQUQ1cRGR1UAZEAD8qjpORLoBTwP9gdXANFUtjlaMxhhjYpvHI+zTM4N9emZw2ri+AGwtr+GL1dv4dOU2PliZzb+/6w9MoltSkLN7b+Co1KUMrphH4px/wYf/hIQU2OtAGHQ05E+Brv2j+ZE6tY7Q4jJZVUNv2r8aeFdVbxSRq931q1pTkA3ONcYY0xrd05OYMjyXKcNzASiprOXTlVv54LstPLs0ldtX9QYmMypbmJ6zloO9i8jd8gmeN6+CN69y7lzKPwYGH+O0zHg80f1AnUhHSFwaOwmY5L5/BChgV4mLtrjXGGOMaVFWamJDIqOqLN9UzgffbeaD7zbzxyVCbSCPFN+xTNu7lmldFrJv6cd4P7oV5vzLeerv4KMg/zjY5wjrUmpn0U5cFHhLRBT4t6reB+SoapG7fwOQ0+zZjViDizHGmLYSEQblZDAoJ4OfHrI3lbV+Plu5jXe/3chrCzfyyNJRJCXsxzEDf8NZPZYxuvITfItfgfmPQ3ImDD0JRpwGe020W67bgahGr7lCRPqo6joR6Qm8DVwGvKyqWSHHFKtq1ybOnQnMBOjSM29s15/cyz0/SiUlwdKX9lZeXk56enq0w+g0rL4jx+o6smKxvoOqLCsOMnejny82BCipURIERnZXpnVZxCF1n5Cz7VMSAtXUJHZjU89D2JhzKOXpA6M+niGW6nvy5MnzVHVcU/uimriEEpHrgXLgQmCSqhaJSC5QoKr5LZ3bq/9gTT7jFhb+6WjSk6LdiBT/CgoKmDRpUrTD6DSsviPH6jqyYr2+g0Fl/tpiXv9mA298U8T67dWkJXr58Yhu/CT7WwYUvYEsexuCddB9Hxh5Oow+CzL7RCXeWKpvEWk2cYnaaCIRSRORjPr3wFHAQuBlYIZ72AzgpehEaIwxxjTP4xHG7tWNPx4/lI+vPpzZFx3IsSNyee6bbRz+ZneOWH8RDx70NqVH/gsycuH9G+DW4fDEabDkVQjURfsjxKRoNk/kAC+I03SWADypqm+KyBfAbBG5AFgDTGttgdZJZIwxJhpEhAkDujFhQDeuO3EYr39dxOy5a/nzO+u5wdObSYOv4yfHwkGlb+JZ8Dg8fZaTzIw7H8aeB+k9o/0RYkbUEhdVXQmMamL7VuCIyEdkjDHGtF16UgLTxvdl2vi+rNhczrPzCnluXiFnf1tDXteJzNh/GtO7LiXt64ecVpgP/gHDToEDfg59xkQ7/A4vrm48t+e4GGOM6UgGZqdz1ZR9+eTqw7nnrDH0zkrhhjeXM/ZZH9ek/5nCsz6E8RfA0jfg/snw8PHw3VsQDEY79A7LRrIaY4wx7SzB6+GYEbkcMyKXxetLeeST1Twzt5AnPw9yzPBp/Pz0Sxmx8UX49B548jTIHgIH/xKGTwWv/VSHiq8WFxvlYowxpoMb2rsLfz91JB9dNZmfHzaQOcu2cML9X3PW4vF8cdL7cMp9IB54YSbcNQEWPAkBf7TD7jDiK3GxvMUYY0yM6NklmSun7Mv/fncE1xw7hKUbyjnt/rmc+dlefHr0S3D6E5CYBi/+HO4cC189BcFAtMOOurhKXIwxxphYk56UwIWH7s2cKyfzh+OGsHxzOWfc/zlnfdyDr497Gc582nki7wsXwb2HwNI3oYM8gy0aLHExxhhjOoCURC8/PeSHBGbx+lJOvOsTLp6bzYpTXoVTHwJ/Fcw6HR6cAms/j3bIUWGJizHGGNOBJPucBObDKydz+RGDKFi6maNu/YhrVwxm23kfwfG3QPFqeOBIeO5C2L4u2iFHVFwlLjbGxRhjTLzISPbxqyMH8+GVk5k+oR9PfPY9k27+iAerJ1N3yRdw6G9h8Utw5zj44J9QVxXtkCMirhIXY4wxJt70SE/iLycP540rDmFU3yz+/Opijr77Sz7Iuwgu/RwGHQnv/9W5A2nZ29EOt93FVeJit0MbY4yJV4NzMnj0/Ak8MGMcqjDjwc+55PVtbDj6PpjxCiQkwxOnwjM/gbIN0Q633bSYuIhInoj8RkReEpEvRORDEblbRI4TkQ6T9HTesdXGGGM6ExHhiCE5vPmLQ/j1kYN5Z8lGfnTzBzy4ri/+Cz+EydfAt6/BnRPgiwfi8gm8zSYfIvIQ8CBQC/wdOBO4GHgHmAJ8JCKHRiLI1rIxLsYYYzqDpAQvlx0xiLd/eRjj+nflz68u5qR/z2XRoIvg559A71Hw2q/g0ROheE20ww2rlp4j/C9VXdjE9oXA8yKSCPRrn7CMMcYYsyv9uqfy0HnjeWPhBq59aREn3fkxP580kEunv0DS10/Af6+Bew6Co/4K2j/a4YZFsy0uzSQtoftrVXV5+EPac9bgYowxprMREY4dkcs7vzqUk0b34Y73lnP8HR8zP/tEuPgTZ8bpV3/ByK//BKXrox1um7XUVTRERB5wl2GRDMoYY4wxuycrNZF/TRvFQz8ZT0WNn6n3fMLfP62kdvoLcOxNZG5f7LS+fPt6tENtk5YG2N4PXA1cBdwXmXDaRmyQizHGmE5ucn5P/vvLQzltbF/uKVjByXf/j6X9zmDuuJshMw+eOhNe/y3UVUc71D3SUuKyAjjVXb6PTDhtY2mLMcYY4zy87u+njuT+c8exqayaE+74iOc35hA8/x044GL4/D74zxGweWm0Q91tLSUu5wErcZKWsyMSjTHGGGPC5sihOfz3F4cyKT+bp5fWcs6jC9h00HUwfTaUFcF9k2Hhc9EOc7e0NDhXVfW/qvq6qsbEPNrWU2SMMcbsqHt6Ev8+Zyw/GZ7IvDXFHHv7HD5gDPzsY+g1HJ49H978HQTqoh1qq7Q0OPd+ERnRzL40ETlfRM5qv9CMMcYYEw4iwmF5Pl659GC6pyUx48HP+b+PS6g752XY/2fw6d3wyAkx8cTdlrqK7gL+KCJLROQZ94m5D4rIHOATIAN4NiJRtpINzjXGGGOaNygng5cuncj0/fvx7w9WMu0/81i7/3Uw9QEo+gruPQQK50Y7zBa11FW0QFWnAeNxkpg5wMvAT1V1lKrepqo1EYrTGGOMMWGQ7PPyt1NGcNf0MSzfWM6xt8/hDSbChe9BYio8dCx806HaJXawy/mGVLVcVQtUdZaqvqiqsTcE2RhjjDE7OG5kLq9fcQh7Z6fz8ye+5A+f+Kk+723oMxaeuwAKbgTteLMBdpiJEo0xxhgTWX27pfLMRQcy89C9efzT7zn5oW9ZeezjMGo6FPwfPPfTDve8l7hJXGx4izHGGLP7EhM8/P7YITz0k/FsLK3mhLu/4NW9/wA/uh4WPguPHA/lm6IdZoNWJy4iktqegbRFx2vIMsYYY2LL5PyevHb5IeT3yuDSWQu4fttR1J36GGxcBPcf7rx2ALtMXETkIBFZDHzrro8SkbvbOzARmSIiS0VkuYhcvcvj2zsgY4wxJs71zkrh6YsO5IKDB/DwJ6s59YPubDz1BQj64YGjYPk70Q6xVS0utwBHA1sBVPUr4ND2DEpEvDh3Mh0DDAXOFJGhzZ5gTS7GGGNMWPi8Hv54/FDuPXsMKzeVc9RTpXx8+DPQbQA8eTp89VRU42tVV5Gqrm20qb2fpDsBWK6qK1W1FngKOKm5g7fXKkFLXowxxpiwmTI8l1cuO5jeWSmc9fT33Jp3K8G9JsILF8FHt0TtjqOEVhyzVkQOAlREfMAVwJL2DYs+QGiyVAjsH3qAiMwEZgKk5uzFsQN8FBQUtHNYBqC8vNzqOoKsviPH6jqyrL4ja0/r+5fDlce9Cdz60Ube6Xoh93QP0ved6ylcMpfl+1wAEtn7fFqTuPwMuA0nmVgHvAVc0p5BtYaq3gfcB5Cfn693X3RUlCPqPAoKCpg0aVK0w+g0rL4jx+o6sqy+I6st9X3UEfDcvEKuefEbptZdzotDBpG35EHyshLhlH9DQmJ4g23BLhMXVd0CRHpOonVA35D1PHebMcYYY6Jg6tg8hvfJ5OdPzOPgBT/i8X3TOWjR7VBTBtMedZ66GwHNJi4icgctDHtV1cvbJSLHF8AgERmAk7CcAUxvx+sZY4wxZhfye2Xw8qUH87vnv2H6VwdwXW8v5y2/FXl8Kkx/CpIz2z2GllpcojbLkqr6ReRS4L+AF3hQVTvGDeTGGGNMJ5aelMDtZ4xmQv+u/OVVD6tSf8Wf1t6GPHw8nPMCpPVo1+s3m7io6iPteuVdUNXXgdejGYMxxhhjdiYinHNgf0b1zeLiJ5JYV5XAvzfdhvehY5BzXoDMvHa7dmseQPeKiLzcaHlMRK4QkeR2i8wYY4wxHdrIvCxeu+wQZNCRnFl1JdXb1hF84GjYuqLdrtmae5hWAuXA/e5SCpQBg911Y4wxxnRSmak+7jtnHEdMOZnTa66htLQU/3+Ogg3ftMv1WnM79EGqOj5k/RUR+UJVx4uIjTsxxhhjOjmPR/jZYQPZr+8ZXPhkGrdX/onu/zkG37nPIv0OCO+1WnFMuoj0q19x36e7q7VhjcYYY4wxMWv/vbtz9xVn8n+9bqWwNo3ah06ifNF/w3qN1iQuvwY+EpH3RaQAmAP8RkTSgKgO4DXGGGNMx5KdkcQtF53InEMeY0Ugh6RnpvPte4+HrfzWPIDudREZBOzrblqqqtXu+1vDFokxxhhj4oLXI8w4cgKL9n6Vb5+YxtAPLuWNtYUccdaVJCa0bYqA1p49FhgGjAKmici5bbqqMcYYY+LesIH9GPir/7K8y/4cs+r/mHXzL1ixqaxNZbbmdujHgJuAg4Hx7jKuTVc1xhhjTKeQmp5J/i9eZX3f45lR+Qgf3nkR//lwOYHgns0u3Zq7isYBQ1WjNH+1McYYY2Kb10fvnzxG5cu/5icLHuTZt8s4Y+GV3HjafgzMTt/1+SFa01W0EOi1R4EaY4wxxgB4PKSedDM66Xec6v2Qizddzym3vcv9H67crdaX1rS49AAWi8jnQE39RlU9cfejNsYYY0ynJYJMuhpSuzPp9d/ybPo/Oe31y3h9YRH/PHUU+/TcdetLaxKX69sapzHGGGNMgwkXIildGfTiz/mox42cvvlXHHtbKT89ZACXTN6nxVNbczv0B6HrInIwcCbwQdNnGGOMMcbswohTkYxcMp46k1dTrue2/n/jtoIVPPdlYYuntep2aBHZT0T+KSKrgb8AS9oesTHGGGM6tf4T4YK38SSm8su1V/DeMcXkdGl5/uZmExcRGSwi14nIt8AdwPeAqOpkVb0zvJEbY4wxplPKzoefvgu5I9n7/Ut4aUhBi4e31OLyLXA4cLyqHqyqdwCB8EVqjDHGGAOk94QZr8B+ZyNz/tnioS0lLj8GioD3ReR+ETkCkDCGaYwxxhjjSEiCE++EKX9v8bBmExdVfVFVz8CZo+h94BdATxG5R0SOCmesxhhjjDGIwAE/a/GQXQ7OVdUKVX1SVU8A8oD5wFXhidAYY4wxpvV2a4pGVS1W1ftU9Yj2CsgYY4wxpjltm1vaGGOMMSaCLHExxhhjTMxozSP/Y1JdXR2FhYVUV1dHO5S4k5mZyZIl8fsMwuTkZPLy8vD5fNEOxRhjTCNxm7gUFhaSkZFB//79EbG7uMOprKyMjIyMaIfRLlSVrVu3UlhYyIABA6IdjjHGmEbitquourqa7t27W9JidouI0L17d2upM8aYDioqiYuIXC8i60RkgbscG7LvdyKyXESWisjRbbxO24M1nY59b4wxpuOKZlfRLap6U+gGERkKnAEMA3oD74jIYFW1qQaMMcYY0+G6ik4CnlLVGlVdBSwHJkQ5pj3m9XoZPXp0w7J69WoKCgo4/vjjAXj55Ze58cYbWywj9PjGbr31ViorK5vcN2nSJPLz8xk1ahQTJ05k6dKlzV5j9erVPPnkkw3rDz/8MJdeeumuPh4AW7Zswefzce+997bq+JZiGD58eJvKMMYYE/+i2eJyqYicC8wFfq2qxUAf4NOQYwrdbTsRkZnATIDs7GwKCgp22J+ZmUlZWVk7hN16KSkpzJkzZ4dtixcvxu/3U1ZWxuTJk5k8eXKLcVZWVjYc39gtt9zCySefTPfu3XfaFwgEuO+++xgzZgwPPfQQv/zlL3n66aebvMbixYt59NFHOeGEEwBnfFBtbW2zcQUCgYZ9jz32GOPHj+fxxx/nrLPOavZz7Ep5eTnBYDDqf7N61dXVO32noqW8vLzDxBLvrK4jy+o7suKmvlW1XRbgHWBhE8tJQA7gxWnxuQF40D3nTuDskDIeAE7d1bUGDx6sjS1evHinbZGWlpa207b3339fjzvuOFVVfeihh/SSSy5RVdXly5fr/vvvr8OHD9drrrmm4dz3339fDzvsMJ06darm5+fr9OnTNRgM6m233aY+n0+HDx+ukyZN2uk6hx12mH7xxReqqrpkyRIdMmSIrlq1Sg8++GDdb7/9dL/99tOPP/5YVVX3339/7dKli44aNUpvvvlmfeihh/SUU07Ro48+WvfZZx/97W9/u0PZpaWlDe8POeQQ/eyzz3TgwIG6du3aHT7773//ex05cqTuv//+umHDhhY/56pVq3TYsGGqqur3+/U3v/mNjhs3TkeMGKH33nvvHtR+23SE70+9999/P9ohdBpW15Fl9R1ZsVTfwFxt5je/3VpcVPVHrTlORO4HXnVX1wF9Q3bnudva5E+vLGLx+tK2FrODob27cN0Jw1o8pqqqitGjRwMwYMAAXnjhhWaPveKKK7jiiis488wzd+p2mT9/PosWLaJ3795MnDiRjz/+mMsvv5ybb76Z999/nx49erQYxyuvvMKIESPo2bMnb7/9NsnJySxbtowzzzyTuXPncuONN3LTTTfx6qvOn+Hhhx9mwYIFzJ8/n6SkJPLz87nsssvo27fvDuWuXbuWoqIiJkyYwLRp03j66af59a9/DUBFRQUHHHAAN9xwA1deeSX3338/f/jDH1r8nPUeeOABMjMz+eKLL6ipqWHixIkcddRRdnuyMcaYqN1VlBuyegpOSwzAy8AZIpIkIgOAQcDnkY4vXFJSUliwYAELFixoMWkB+N///sdpp50GwPTp03fYN2HCBPLy8vB4PA1jZVrjrLPOYvTo0Xz88cfcdNNN1NXVceGFFzJixAhOO+00Fi9e3Oy5RxxxBJmZmSQnJzN06FDWrFmz0zFPP/0006ZNA+CMM85g1qxZDfsSExMbxuaMHTu2IeaWPme9t956i0cffZTRo0ez//77s3XrVpYtW9aqz2yMMSa+RWuMyz9EZDSgwGrgIgBVXSQis4HFgB+4RMNwR9GuWkY6uqSkpIb3Xq8Xv9/fqvOeeOIJxo0b17B+/fXXk5OTw1dffUUwGCQ5OblN15w1axYbNmzgiSeeAGD9+vUsW7aMQYMG4fP5Gm4r3p2Ywem+vOOOOzj66DbdDW+MMSYORaXFRVXPUdURqjpSVU9U1aKQfTeo6kBVzVfVN6IRXzQccMABPPfccwA89dRTrTonIyNjtwazbt++ndzcXDweD4899hiBQGCPygH47rvvKC8vZ926daxevZrVq1fzu9/9bodWl6a05nMeffTR3HPPPdTV1TVcq6KiYrfiM8YYE5862u3Qndatt97KzTffzMiRI1m+fDmZmZm7PGfmzJlMmTKFyZMnt+oaF198MY888gijRo3i22+/JS0tDYCRI0fi9XoZNWoUt9xyS6vKmjVrFqeccsoO26ZOnbrLxKU1n/OnP/0pQ4cOZcyYMQwfPpyLLrpot1psjDHGxC9xBu/Gtvz8fG38nJIlS5YwZMiQKEW0+yorK0lJSUFEeOqpp5g1axYvvfRStMNqUlvmKoqVz9mRvj8FBQVMmjQp2mF0ClbXkWX1HVmxVN8iMk9VxzW1L24nWYw18+bN49JLL0VVycrK4sEHH4x2SO2is3xOY4wx7cMSlw7ikEMO4auvvop2GO2us3xOY4wx7cPGuBhjjDEmZljiYowxxpiYYYmLMcYYY2KGJS7GGGOMiRmWuLQjr9fL6NGjGT58OCeccAIlJSW7XUZBQUHDo/Nb4+GHH2b9+vXN7vf7/WRnZ3P11VfvsP1vf/tbw/uSkhLuvvvuhvX169dz6qmnArBgwQL++9//tjqeetdffz033XTTbp938sknc8ABB+z2eY1NmjSJuXPntrkcY4wx0WWJSzuqn6to4cKFdOvWjbvuuqvdr7mrxOXtt99m8ODBPPPMM4Q+w6elxKV37948++yzgJO4vPXWW+0Q+c5KSkqYN28e27dvZ+XKlRG5pjHGmI7NEpcIOfDAA1m3zpnoesGCBRxwwAGMHDmSU045heLiYgCWL1/Oj370I0aNGsWYMWNYsWLFDmV88cUX7LfffqxYsYJ58+Zx2GGHMXbsWI4++miKiop49tlnmTt3bsPkilVVVTvFMWvWLK644gr69evH//73PwCuvvrqhpmszzrrLK6++mpWrFjB6NGj+e1vf8vq1asZPnw4tbW1XHvttTz//POMHj2ap59+eqeWlOHDhzdMqHjDDTcwePBgDj74YEIfELhixQqmTJnC2LFjOeSQQ/j222+brLPnn3+eE044gTPOOGOH6QHOO+88Lr/8cg466CD23nvvhqQqGAxy8cUXs++++3LkkUdy7LHHNuwL9dZbb3HggQcyZswYTjvtNMrLy3f59zPGGNMxdI7nuLxxNWz4Jrxl9hoBx9zYqkMDgQDvvvsuF1xwAQDnnnsud9xxB4cddhjXXnstf/rTn7j11lsbkoZTTjmF6upqgsEga9euBeCTTz7hsssu46WXXiI3N5dzzjmHl156iezsbJ5++mmuueYaHnzwQe68805uuummHSZXrFddXc0777zDv//9b0pKSpg1axYHHXQQN954I3feeScLFiwAYPXq1SxcuHCHdXBmfP7zn//MJ598wn333Qc4XUBNmTdvHk899RQLFizA7/czZswYxo4dCzhTFdx7770MGjSIzz77jIsvvpj33ntvpzJmzZrFtddeS05ODlOnTuX3v/99w76ioiI++ugjvv32W0488UROPfVUnn/+eVavXs3ixYvZtGkTQ4YM4fzzz9+hzC1btvDXv/6Vd955h7S0NP7+979z8803c+2117bqb2mMMSa6OkfiEiX1rRjr1q1jyJAhHHnkkWzfvp2SkhIOO+wwAGbMmMFpp51GWVkZ69ata5j/J3Tm5iVLljBz5kzeeustevfuzcKFC1m4cCFHHnkk4CRGubm5u4zn1VdfZfLkyaSkpDB16lT+8pe/cOutt+L1esP+2efMmcMpp5xCamoqACeeeCIA5eXlfPLJJ5x22mkNx9bU1Ox0/saNG1m2bBkHH3wwIoLP52PhwoUMHz4ccMa+eDwehg4dysaNGwH46KOPOO200/B4PPTq1avJOZw+/fRTFi9ezMSJEwGora3lwAMPDO+HN8YY0246R+LSypaRcKsf41JZWcnRRx/NXXfdxYwZM3a7nNzcXKqrq5k/fz69e/dGVRk2bFhDV09rzZo1i48++oj+/fsDsHXrVt57772GBGhPJCQkEAwGG9arq6tbPD4YDJKVldXQmtOc2bNnU1xczIABAwAoLS1l1qxZ3HDDDQAkJSU1HLs7822pKkceeeQuJ4M0xhjTMdkYlwhITU3l9ttv51//+hdpaWl07dqVOXPmAPDYY49x2GGHkZGRQV5eHi+++CLgtEJUVlYCkJWVxWuvvcbvfvc7CgoKyM/PZ/PmzQ2JS11dHYsWLQIgIyODsrKynWIoLS1lzpw5fP/996xevZrVq1dz1113NfyA+3w+6urqWiyjfl/omJD+/fvz5ZdfAvDll1+yatUqAA499FBefPFFqqqqKCsr45VXXgGgS5cuDBgwgGeeeQZwEommpgCYNWsWb775ZkOs9V1PLZk4cSLPPfccwWCQjRs3UlBQsNMxBxxwAB9//DHLly8HoKKigu+++67Fco0xxnQclrhEyH777cfIkSOZNWsWjzzyCL/97W8ZOXIkCxYsaBhf8dhjj3H77bczcuRIDjroIDZs2NBwfk5ODq+++iqXXHIJ8+fP59lnn+Wqq65i1KhRjB49mk8++QRwBq7+7Gc/22lw7gsvvMDhhx++Q0vFSSedxCuvvEJNTQ0zZ85k5MiRnHXWWXTv3p2JEycyfPhwfvvb3+7wOSZPnsy3337bMDh36tSpbNu2jWHDhnHnnXcyePBgAMaMGcPpp5/OqFGjOOaYYxg/fnxDGU888QQPPPAAo0aNYtiwYTvNDr169WrWrFmzw23QAwYMIDMzk88++6zZOp46dSp5eXkMHTqUs88+mzFjxpCZmbnDMdnZ2Tz88MOceeaZjBw5kgMPPLDZwcHGGGM6HtmdZvaOKj8/X0PvWgFnXMiQIUOiFFF8KysrIyMjI9phNKm8vJz09HS2bt3KhAkT+Pjjj+nVq9dul9ORvj+xNBV9rLO6jiyr78iKpfoWkXmquvNdJnSWMS6m0zj++OMpKSmhtraWP/7xj3uUtBhjjOm4LHExcaWpcS3GGGPiR1yPcYmHbjATefa9McaYjituE5fk5GS2bt1qP0Jmt6gqW7du3eE5OsYYYzqOuO0qysvLo7CwkM2bN0c7lLhTXV0d1z/sycnJ5OXlRTsMY4wxTYjbxMXn8zU8vMyEV0FBAfvtt1+0wzDGGNMJxW1XkTHGGGPijyUuxhhjjIkZlrgYY4wxJmbExZNzRaQMWLrLA0249AC2RDuITsTqO3KsriPL6juyYqm+91LV7KZ2xMvg3KXNPRrYhJ+IzLX6jhyr78ixuo4sq+/Iipf6tq4iY4wxxsQMS1yMMcYYEzPiJXG5L9oBdDJW35Fl9R05VteRZfUdWXFR33ExONcYY4wxnUO8tLgYY4wxphOwxMUYY4wxMSPmExcRmSIiS0VkuYhcHe144p2IrBaRb0RkgYjMjXY88UREHhSRTSKyMGRbNxF5W0SWua9doxljPGmmvq8XkXXu93uBiBwbzRjjiYj0FZH3RWSxiCwSkSvc7fYdD7MW6jouvt8xPcZFRLzAd8CRQCHwBXCmqi6OamBxTERWA+NUNVYeYhQzRORQoBx4VFWHu9v+AWxT1RvdxLyrql4VzTjjRTP1fT1Qrqo3RTO2eCQiuUCuqn4pIhnAPOBk4DzsOx5WLdT1NOLg+x3rLS4TgOWqulJVa4GngJOiHJMxe0RVPwS2Ndp8EvCI+/4RnH98TBg0U9+mnahqkap+6b4vA5YAfbDveNi1UNdxIdYTlz7A2pD1QuLoj9NBKfCWiMwTkZnRDqYTyFHVIvf9BiAnmsF0EpeKyNduV5J1W7QDEekP7Ad8hn3H21WjuoY4+H7HeuJiIu9gVR0DHANc4ja3mwhQp183dvt2Y8M9wEBgNFAE/Cuq0cQhEUkHngN+oaqlofvsOx5eTdR1XHy/Yz1xWQf0DVnPc7eZdqKq69zXTcALON11pv1sdPur6/utN0U5nrimqhtVNaCqQeB+7PsdViLiw/khfUJVn3c323e8HTRV1/Hy/Y71xOULYJCIDBCRROAM4OUoxxS3RCTNHeiFiKQBRwELWz7LtNHLwAz3/QzgpSjGEvfqf0Bdp2Df77AREQEeAJao6s0hu+w7HmbN1XW8fL9j+q4iAPd2rlsBL/Cgqt4Q3Yjil4jsjdPKAs7M4k9afYePiMwCJuFMPb8RuA54EZgN9APWANNU1QaUhkEz9T0JpxldgdXARSHjL0wbiMjBwBzgGyDobv49ztgL+46HUQt1fSZx8P2O+cTFGGOMMZ1HrHcVGWOMMaYTscTFGGOMMTHDEhdjjDHGxAxLXIwxxhgTMyxxMcYYY0zMsMTFGNNuRKR7yEy0G0Jmpi0Xkbvb6Zq/EJFzW9h/vIj8uT2ubYxpf3Y7tDEmIiIx87KIJABfAmNU1d/MMeIeM1FVK9srFmNM+7AWF2NMxInIJBF51X1/vYg8IiJzRGSNiPxYRP4hIt+IyJvuo8sRkbEi8oE7wed/Gz0FtN7hwJf1SYuIXC4ii91J5Z6ChvlwCoDjI/JhjTFhZYmLMaYjGIiTdJwIPA68r6ojgCrgODd5uQM4VVXHAg8CTT21eSIwL2T9amA/VR0J/Cxk+1zgkLB/CmNMu0uIdgDGGAO8oap1IvINzvQdb7rbvwH6A/nAcOBtp6cHL87sto3lAktC1r8GnhCRF3GmT6i3CegdvvCNMZFiiYsxpiOoAVDVoIjU6Q+D74I4/04JsEhVD9xFOVVAcsj6ccChwAnANSIywu1GSnaPNcbEGOsqMsbEgqVAtogcCCAiPhEZ1sRxS4B93GM8QF9VfR+4CsgE0t3jBhOjM+Ma09lZ4mKM6fBUtRY4Ffi7iHwFLAAOauLQN3BaWMDpTnrc7X6aD9yuqiXuvsnAa+0ZszGmfdjt0MaYuCIiLwBXquqyZvbnAE+q6hGRjcwYEw6WuBhj4oqI5AM5qvphM/vHA3WquiCigRljwsISF2OMMcbEDBvjYowxxpiYYYmLMcYYY2KGJS7GGGOMiRmWuBhjjDEmZljiYowxxpiYYYmLMcYYY2KGJS7GGGOMiRmWuBhjjDEmZljiYowxxpiYYYmLMcYYY2KGJS7GGGOMiRmWuBhjjDEmZljiYowxxpiYYYmLMcYYY2KGJS7GGGOMiRmWuBhjjDEmZljiYowxxpiYYYmLMaZNRKS/iKiIJLTjNc4SkbfCWN55IvJRuMoLFxGZJCKF0Y7DmI7MEhdjYoSIrBaRH+3BeQUi8tP2iGkP4igWkaRG23f4XE0lQqr6hKoeFXKMisg+kYm8aSLysIj4RSQ3mnEY09lY4mKMaZGIeMNQRn/gEECBE9taXrSJSBowFdgOnB3lcIzpVCxxMSbGiUhXEXlVRDa7LRqvikieu+8GnIThThEpF5E73e37isjbIrJNRJaKyLSQ8h4WkXtE5HURqQAmi8hxIjJfREpFZK2IXL+bYZ4LfAo8DMwIudZjQD/gFTe+K4EP3d0l7rYDQ7t2RKR+/1fu/tOb6voJbZURke4i8rIb/+fAwEbHNlsfzZgKlAB/Dv08blnXi8hsEXlURMpEZJGIjAvZP8atyzIReUZEnhaRvzZ1ERHpLSLPuX/bVSJy+S7iMibuWeJiTOzzAA8Be+EkAVXAnQCqeg0wB7hUVdNV9VK3teBt4EmgJ3AGcLeIDA0pczpwA5ABfARU4CQfWcBxwM9F5OTdiPFc4Al3OVpEctz4zgG+B05w4/sHcKh7Tpa77X+hBalq/f5R7v6nW3H9u4BqIBc4312AhtaTXdVHYzOAWcBTwL4iMrbR/hPdfVnAy7h/DxFJBF7ASeC6uWWc0tQFRMQDvAJ8BfQBjgB+ISJHt+LzGhO3LHExJsap6lZVfU5VK1W1DCfhOKyFU44HVqvqQ6rqV9X5wHPAaSHHvKSqH6tqUFWrVbVAVb9x17/G+cFt6RoNRORgnKRqtqrOA1bgJEYR4XZ1TQWuVdUKVV0IPBJySGvqI7S8fsBk4ElV3Qi8i5OYhfpIVV9X1QDwGDDK3X4AkADcrqp1qvo88HkzoY8HslX1z6paq6orgftxEitjOi1LXIyJcSKSKiL/FpE1IlKK09WS1cLYlL2A/UWkpH4BzgJ6hRyzttE19heR990ui+3Az4AerQxxBvCWqm5x15+kUfdKO8vGSRZCP9OakPetqY9Q5wBLVHWBu/4EMF1EfCHHbAh5Xwkku4ONewPrVFVD9u9Q143i6t0ort8DOc0cb0yn0G63LxpjIubXQD6wv6puEJHRwHxA3P3a6Pi1wAeqemQLZTY+50mc7o5jVLVaRG6lFYmLiKQA0wCviNT/mCfhJFajVPWrJq7VeL01KoDUkOuGJh2bAT/QF/jW3dYvZH9r6iPUuUC/kM+TAHQHjgVe2sW5RUAfEZGQ5KUvTitUY2uBVao6qJVxGdMpWIuLMbHFJyLJIUsCzjiUKpzBrN2A6xqdsxHYO2T9VWCwiJwjIj53GS8iQ1q4bgawzU1aJtD6rp6TgQAwFBjtLkNwxt3Ud680jm8zEGy0rbHG53wFDBOR0SKSDFxfv8PtrnkeuN5tnRrKji0+ra4PETkQZ2DvhJDPMxwnsWvcXdSU/+HUx6UikiAiJ7llNeVzoExErhKRFBHxishwERnfiusYE7cscTEmtryOk6TUL9cDtwIpwBacO3febHTObcCp4txxdLs7DuYonLES63G6Nf6O0xLSnIuBP4tIGXAtMLuV8c4AHlLV71V1Q/2C03pzlpt4/R/wB7c75DeqWokzTudjd9sBTZR7PfCIu3+aqn6Hc4fPO8AynAHFoS4F0t3P+jDOYGYAdrM+ZuCM//mm0ee5DTjeTRybpaq1wI+BC3DuSjobJ3GqaeLYAM74m9HAKpy/73+AzJauYUy8kx27Wo0xxkSSiHwG3KuqD+3yYGOMtbgYY0wkichhItLL7SqaAYxk51YyY0wzbHCuMcZEVj5OV1sasBI4VVWLohuSMbHDuoqMMcYYEzOsq8gYY4wxMSMuuoqysrJ0n32iOlFsp1JRUUFaWlq0w+g0rL4jx+o6sqy+IyuW6nvevHlbVDW7qX1xkbjk5OQwd+7caIfRaRQUFDBp0qRoh9FpWH1HjtV1ZFl9R1Ys1beIrGluX1QTFxFZDZThPJDJr6rj3OcgPA30B1YD01S1OFoxGmOMMabj6AhjXCar6mhVrZ/2/WrgXfcx1++668YYY4wxHSJxaewkfpi59RGcR4YbY4wxxrT9dmh37o6zgUOAXJzHkC8EXgMeV9XtLZy7CijGmVTt36p6n4iUqGqWu1+A4vr1RufOBGYCZGdnj509u7VPIDdtVV5eTnp6erTD6DSsviPH6jqyrL4jqy317Q8qy0uCbKkKUlqreEXISBT6Znjoky54RHZdyG6YPHnyvJCemB20KXERkTdw5vZ4CZgLbAKSgcHAZOAE4GZVfbmZ8/uo6joR6Qm8DVwGvByaqIhIsap2bSmO/Px8Xbp06R5/DrN7YmmAVzyw+o4cq+vIsvqOrN2t7xp/gI+WbeGNhRt4e/FGtlfVNXlc97REjhnRi59MHMDA7PAkoiLSbOLS1sG556jqlkbbyoEv3eVfItKjuZNVdZ37uklEXsCZJXWjiOSqapGI5OIkQ8YYY4yJgEBQeWbuWm566zu2lNeQkZzAkUNzmDKsF/m9MuienkSdP8iW8hq+KtzOnGWbmT23kMc//Z6TRvfmuhOG0S0tsd3ia1Pi0kTS0upjRCQN8Khqmfv+KJzZXV/GmYH1Rvf1pbbEaIwxxpjW+Xj5Fv7y6mK+3VDG2L268s9TRzJxnx4kJjQaEpsEXdMSGZSTwalj8/hjeQ0PfrSK++es5OPlW/jrySOYMrxXu8TYpsRFRA7BmS4e4B5VLdiN03OAF5xhLCQAT6rqmyLyBTBbRC4A1gDT2hKjMcYYY1pWVRvg2pcW8sy8QvK6pnDX9DEcO6IX0sqxKz3Sk7hyyr6cMKo3v579FT97fB5njO/LX08eToI3vPcBtbWr6F/Aoe77OcD41p6oqiuBUU1s3woc0ca4jDHGGNMKKzeXc/ETX7J0YxmXTB7IZYcPItnn3aOyhuR24aVLJ3LL299xd8EKtpTXcuf0/fa4vKa0NXEpAP4EBIH/tTkaY4wxxkTMq1+v56pnvyYxwcND541nUn7PNpfp83q4csq+9MpM5rqXFzHjwc+5f8Y4uiT7whBx28e4XCki+YBXVReHJSJjjDHGtKtgUPm/N5Zw/5xVjOmXxZ3Tx9A7KyWs1zj3wP5kpvj49eyvOOeBz5l14f6kJrb9gf1t7nhS1aWWtBhjjDGxodYf5JezF3D/nFXMOHAvnr7owLAnLfVOGt2Hu84awzeFJVw+awGBYNueHQdtTFxE5BUROUFEdmr/EZG9ReTPInJ+W65hjDHGmPCoqPHz00fn8tKC9Vw1ZV+uP3EYvjAPnm3s6GG9uP7EYbyzZCN/fmURbX3wbVvbbC4EfgXcKiLbgM04D6DrD6wA7lRVu53ZGGOMibKyWmX6fz7jm8IS/j51BKeP7xexa597YH8Ki6u478OV9O2Wyk8P2XuPy2rrGJcNwJXAlSLSnx8e+f+dqla2pWxjjDHGhMfmshr+77MqttRUc+/ZYzlqWPs8Y6UlV0/Zl8LiSv72+hKG9u7CQQObfT5ti8LWPqSqq1X1f6q6wJIWY4wxpmPYVlHL2f/5jC3VyqPnT4hK0gLg8Qj/PHUUA3qkcfmsBWwqrd6zcsIclzHGGGM6iO1VdZz74Ges2lrBL8Ykc8De3aMaT1pSAvecPZbymjoumzUffyC422VY4mKMMcbEofIaP+c99DlLN5Tx77PHMrR7+B4C1xaDczK44eQRfLZqG7e8891unx+2xEVEUtxnuhhjjDEmiqpqA1zw8Bd8XbidO87cj8n7tv3BcuE0dWwep4/ry90FK/hs5dbdOjcsiYuInAAsAN5010eLyMvhKNsYY4wxrVfjDzDzsbl8vnobN08bxZThudEOqUnXnjCUft1S+fUzX1FWXdfq88LV4nI9MAEoAVDVBcCAMJVtjDHGmFaoCwS55In5zFm2hb//eCQnje4T7ZCalZaUwM3TRrG+pIq/vrqk1eeFK3GpU9Xtjba1/fF4xhhjjGkVfyDIL55a4Dzo7aRhTBvfN9oh7dLYvbrxs8MG8vTctby9eGOrzglX4rJIRKYDXhEZJCJ3AJ+EqWxjjDHGtCAYVK589mte+6aIa44dwrkH9o92SK32ix8NZkhuF373/NdsLa/Z5fHhSlwuA4YBNcAsoBT4RWtOFBGviMwXkVfd9QEi8pmILBeRp0UkMUwxGmOMMXFHVbnmxYU8P38dvzpyMBceuudPpY2GxAQPt5w+itIqP79/4ZtdTgkQlsRFVStV9RpVHa+q49z3rX2yzBVAaOfW34FbVHUfoBi4IBwxGmOMMfFGVfnzq4uZ9fn3XDxpIJcdvk+0Q9oj+/bqwq+PGsx/F23k+S/XtXhsmx75LyKv0MJYFlU9cRfn5wHHATcAvxIRAQ4HpruHPIIz8PeetsRpjDHGxBtV5R//XcpDH6/mJxP789uj83F+RmPTTw/Zm3eXbOL6lxe1eFxbJ1m8qY3n34oz11GGu94dKFFVv7teCHTcIdHGGGNMlNz53nLuKVjB9P37ce3xQ2M6aQHweoSbThvFMbd92OJx0tbppfeUiBwPHKuqF4vIJOA3wHnAp243ESLSF3hDVYc3cf5MYCZAdnb22NmzZ0coclNeXk56enq0w+g0rL4jx+o6sqy+99wbq+p4emktE3sncMGIRDytSFpipb4/WlfHH88+ap6qjmtqf1gSFxH5hp27jLYDc4G/qupOj8UTkf8DzgH8QDLQBXgBOBropap+ETkQuF5Vj27p+vn5+bp06dI2fw7TOgUFBUyaNCnaYXQaVt+RY3UdWVbfe+ax/63mjy8t4riRudx2+mgSvK0brhpL9S0izSYu4bqr6A3gNeAsd3kFJ2nZADzc1Amq+jtVzVPV/sAZwHuqehbwPnCqe9gM4KUwxWiMMcbEtNlfrOWPLy3iR0NyuHU3kpZ40tYxLvV+pKpjQta/EZEvVXWMiJy9m2VdBTwlIn8F5gMPhClGY4wxJma9tGAdVz3/NYcM6sFdZ+2HrxMmLRC+xMUrIhNU9XMAERkP1E9D6W/+NIeqFgAF7vuVONMHGGOMMQZ4c2ERv5r9FfsP6MZ954wjKaFjzPQcDeFKXH4KPCgi6YDgPIDupyKSBvxfmK5hjDHGdDrvLN7IZbPmMyovk//MGE9KYudNWiBMiYuqfgGMEJFMdz103iK73ccYY4zZA28t2sAlT37J0NwuPPSTCaQnhau9IXaFpQZEJAmYCvQHEurvJVfVP4ejfGOMMaazaUhaemfy6PkTyEzxRTukDiFcqdtLOLc/z8OZr8gYY4wxe+jNhRu49MkvGd4nk0cvmECXZEta6oUrcclT1SlhKssYY4zptN5cWMSlT85nRF4mj5xvSUtj4bqX6hMRGRGmsowxxphO6Y1vnKRlZJ7TPWRJy87C1eJyMHCeiKzC6SoSQFV1ZJjKN8YYY+La698Ucdms+Yzum8XDPxlPhiUtTQpX4nJMmMoxxhhjOp3Xvi7i8qecpOWR8+3uoZaEpatIVdfUL8AW4BDg7nCUbYwxxsSzZ+au5bJZX7KfJS2tEpbERUQSReQUEXkGKAKOAO4NR9nGGGNMvHrwo1X89tmvOWhgD0taWqlNNSQiRwFnAkfhTI74KDBeVX8ShtiMMcaYuKSq3PLOMm5/dxlThvXitjNHd+rH+O+OtqZ2bwJzgINVdRWAiNzW5qiMMcaYOBUIKn95dTEPf7KaU8fmceOPR3TKWZ73VFsTlzHAGcA7IrISeIofJlc0xhhjTIjqugC/mr2A17/ZwAUHD+CaY4fg8Ui0w4opbUpcVHUBsAC4WkQOwuk28onIG8ALqnpfmyM0xhhj4sD2yjoufHQun6/exh+OG8JPD9k72iHFpLC1TanqJ6p6GZAH3AIcEK6yjTHGmFi2rqSKU+/9hPlri7n9zP0saWmDsA9fVtUg8Ja7NEtEkoEPgSQ3jmdV9ToRGYDT5dQdZ+6jc1S1NtxxGmOMMZHw1doSLnx0LlW1AR45fwIHDewR7ZBiWjRHA9UAh6vqKGA0MEVEDgD+DtyiqvsAxcAF0QvRGGOM2XOvfV3EtH//j8QED8/+/CBLWsIgaomLOsrdVZ+7KHA48Ky7/RHg5MhHZ4wxxuw5VeWOd5dxiTvD84uXTCS/V0a0w4oLYUtcRORgEfmJ+z7b7fLZ1TleEVkAbALeBlYAJarqdw8pBPqEK0ZjjDGmvVXVBrjiqQX86+3vOGW/Pjzx0/3pkZ4U7bDihqhq2wsRuQ4YB+Sr6mAR6Q08o6oTW3l+FvAC8EfgYbebCBHpC7yhqsObOGcmMBMgOzt77OzZs9v8OUzrlJeXk56eHu0wOg2r78ixuo6seKzvzZVBbp9fQ2FZkKmDfBy3tw+RjnG7cyzV9+TJk+ep6rim9oVrcO4pwH7AlwCqul5EWt0mpqolIvI+cCCQJSIJbqtLHrCumXPuA+4DyM/P10mTJrXtE5hWKygowOo7cqy+I8fqOrLirb4//G4zNzw1n2DQw0M/Gcuk/J7RDmkH8VLf4eoqqlWn6UYBRCRtVye43UlZ7vsU4EhgCc7UAae6h80AXgpTjMYYY0zYBYPKXe8v57yHPqdXl2ReuezgDpe0xJNwtbjMFpF/47SWXAicD9y/i3NygUdExIuTQM1W1VdFZDHwlIj8FZgPPBCmGI0xxpiw2lpewy+eXsCcZVs4cVRvbpw6gtREmyixPYWldlX1JhE5EigF8oFrVfXtXZzzNU73UuPtK4EJ4YjLGGOMaS+frdzK5U/Np7iyjr+dMoIzJ/TtMONZ4lnY0kI3UWkxWTHGGGNinT8Q5K73V3Dbu9+xV/c0HjpvAkN7d4l2WJ1GmxIXESnDHdfSFFW1v6Qxxpi48f3WSn45ewHz1hRz8uje/OXk4WQk+6IdVqfS1kkWMwBE5C9AEfAYIMBZOGNYjDHGmJinqjz/5Tque3kRInDbGaM5abQ9ZiwawtVVdKL76P5694jIV8C1YSrfGGOMiYpNpdVc8+JC3l68kQkDunHztFHkdU2NdlidVrgSlwoROQtnckQFzgQqwlS2McYYE3Gqygvz1/GnVxZTXRfg98fuywUH743XYwNwoylcict04DZ3UeBjd5sxxhgTczZsr+b3L3zDe99uYuxeXfnHqSMZmB0bT52Nd+G6HXo1cFI4yjLGGGOiJRhUnvj8e/7xxrfUBYP88fihnHdQf2tl6UDCkriIyEM0cXeRqp4fjvKNMcaY9rZ4fSm/f+EbFqwt4aCB3bnhlBEM6LHLB8GbCAtXV9GrIe+TceYuWh+mso0xxph2U1JZy63vLOOxT9eQleLjltNHcfLoPvYwuQ4qXF1Fz4Wui8gs4KNwlG2MMca0B38gyJOff8/Nb39HaVUd0/fvx2+OyicrNTHaoZkWtNeECoMAm2HKGGNMh/TRsi38+dVFfLexnIMGdufaE4ayby97ZmosCNcYl8ZP0N0AXBWOso0xxphwWb2lgr++toR3lmykX7dU/n3OWI4ammPdQjEkXF1FGeEoxxhjjGkPRduruOO95cz+Yi1JCR6umrIv5x/cn6QEb7RDM7spXC0u76rqEbvaZowxxkTS1vIa7i5YwWOfrkFVmb5/Py49fB96ZiRHOzSzh9o6yWIykAr0EJGuOPMUAXQBbBIHY4wxUbG9qo7/zFnJAx+torouwNQxeVx+xCD6drNH9ce6tra4XAT8AugNfBmyvRS4s6UTRaQv8CiQgzM+5j5VvU1EugFPA/2B1cA0VS1uY5zGGGM6gZLKWh75ZA0PfryK7VV1HD8yl18eOdieehtH2jo79G3AbSJymaresZun+4Ffq+qXIpIBzBORt4HzgHdV9UYRuRq4Ghvoa4wxpgWbSqt54KNVPP7pGipqA/xoSA6/PHIQw3pnRjs0E2Zt7So6XFXfA9aJyI8b71fV55s7V1WLgCL3fZmILMHpXjoJmOQe9ghQgCUuxhhjmvD91krum7OC2XML8QeCnDCqNz+fNNBubY5jbe0qOgx4DzihiX0KNJu4hBKR/sB+wGdAjpvUgHNbdU4bYzTGGBNHVJUvVhfzwEcreXvxRhI8HqaOzeNnh+3NXt3tEf3xTlR3mmJo9wsRGaCqq3a1rZlz04EPgBtU9XkRKVHVrJD9xaratYnzZgIzAbKzs8fOnj27rR/DtFJ5eTnp6dZfHClW35FjdR1Zu1vf/qDy+YYAb62uY3VpkDQfTO7r44h+CXRN9rRjpPEhlr7fkydPnqeq45raF67E5UtVHdNo2zxVHbuL83w48xz9V1VvdrctBSapapGI5AIFqprfUjn5+fm6dOnStn0I02oFBQVMmjQp2mF0GlbfkWN1HVmtre+i7VXM+nwtT33+PZvKatg7O43zJw5g6pg8UhLtOSytFUvfbzeHaDJxaesYl32BYUBmozEuXXAmW2zpXAEeAJbUJy2ul4EZwI3u60ttidEYY0zsCQaVOcu38Pina3h3yUYUOHRQNn+f2p/DBmfj8diTbjurto5xyQeOB7LYcZxLGXDhLs6dCJwDfCMiC9xtv8dJWGaLyAXAGmBaG2M0xhgTI9aVVPHCl4XMnlvI99sq6Z6WyMxDBzJ9Qj/6dbdnsJi23w79EvCSiByqqh+G7hORibs49yN+eGBdY/bEXWOM6SQqa/38d9EGnp1XyCcrtqIK+w/oxq+PGsyU4b3ssfxmB+GaHfpWYEyjbXc0sc0YY4xBVVm6LcDrz37Fa18XUVEboG+3FK44YhBTx+TZE25Ns9o6xuVA4CAgW0R+FbKrC2ApsjHGmAaqyqL1pbz2TRGvfr2etduqSUss4tgRuZw6No/x/bvZ2BWzS21tcUkE0t1yQmeILgWmtrFsY4wxMU5V+XZDGa99XcRr3xSxaksFXo9w0MDuTOkT4JenTSY1MVyN/6YzaOsYlw+AD0TkYVVdU7/dnYfoDOCfbYzPGGNMjKlvWXlr0QZe/aaIlZsr8AgcNLAHMw/dm6OH9aJbWiIFBQWWtJjdFpZvjKquEZFs4DTgTJxJF18IR9nGGGM6vlp/kE9XbuXtxRt5Z8lGirZX4xHYf0B3zp84gCnDe9EjPSnaYZo40NYxLhnAj4HpwGCcR/wPUNW8MMRmjDGmAyuuqOXDZZt5e/FGPli6mbIaPyk+L4cM6sGvjhzM4fv2pLslKybM2trisgn4HPgD8JGqqoic0vawjDHGdDSBoPJ1YQkFSzfzwXeb+aqwBFXokZ7EcSNz+dGQHA4e1INkn92bYdpPWxOX3+GMZbkbmCUiT7c9JGOMMR3FprJq5ny3hYLvNjNn2WZKKusQgdF9s7jiiEEcNjibUXlZdjeQiZi2Ds69FbhVRPbGSWBeBHqLyFXAC6r6XZsjNMYYEzHFFbV8tmor/1uxlU9WbGXZpnLAaVU5Yt8cDsvP5pB9etA1LTHKkZrOKlyDc1cCfwP+JiLDcQbovg7sE47yjTHGtI/S6jq+WLWtIVFZsqEUVUjxeRk/oBs/HpPHIYN6MDS3i7WqmA4h7PehqepC4Bp3McYY00GoKoXFVcxds415a4qZu7qYpRvLUIXEBA9j+3XlVz8azIEDuzMyL4vEBE+0QzZmJ3YDvTHGxKm6QJBF60uZt6aYeWu2MXd1MZvKagBIT0pgv35ZHDM8l/EDujKmX1cbVGtigiUuxhgTJzZsr+arwhK+WlvCvDXFfFVYQnVdEIC8rikcNLA7Y/fqyti9upHfKwOvdf2YGGSJizHGxKCSylq+LtzO14UlLFjrvNa3piR4hKG9u3DmhH6M26sb4/p3JadLcpQjNiY82voAum8AbWoXoKo6si3lG2OMcW5JXlJUxpKiUhatL+XrwhLWbK1s2L93dhoT9+nByLxMRvXNYmhuF+v2MXGrrS0ux7flZBF50C1jk6oOd7d1A54G+gOrgWmqWty2MI0xpuOrCwRZsbmcJUWlDYnKkqJStpTXNhzTOzOZkXlZnD6+L6PyshjeJ5PMFF8UozYmstr6HJc1uz6qRQ8DdwKPhmy7GnhXVW8Ukavd9avaeB1jjOlQtlXUNiQmi91EZfmmMuoCTiN2YoKHwTnpTM7vyZDcLuybm8HQ3C5kpdrzU0znFpYxLiJyAHAHMARIBLxAhap2aek8Vf1QRPo32nwSMMl9/whQgCUuxpgYpKpsLK1hxeZyZ9lUzorNFSzbVMbG0pqG47IzkhiS24VDBzvPSxmS24UBPdLwee12ZGMaC9fg3Dtxnpz7DDAOOBdn0sU9kaOqRe77DUBO28Mzxpj2U+MPsGZrpZuYOMlJfaJSURtoOC49KYGB2WlMHNiDfXMzGOImKTZrsjGtJ6pNja3dzUJE5qrqOBH5un5ArojMV9X9WnFuf+DVkDEuJaqaFbK/WFW7NnHeTGAmQHZ29tjZs2e3+XOY1ikvLyc9PT3aYXQaVt+R01Jd1wWVLZXKpqogmyrc10plQ4XzGvovabdkITdNyE3zkJvucV7ThKwkQcRuQa5n3+3IiqX6njx58jxVHdfUvnC1uFSKSCKwQET+ARQBe9rGuVFEclW1SERycWag3omq3gfcB5Cfn6+TJk3aw8uZ3VVQUIDVd+RYfUfO62+/T49B+7FmayVrtlXw/dZK1myt5PttlazfXkXo/+elJnrp1y2VcQPTGZidxsCe6QzMTmdAjzTSkuxJE61h3+3Iipf6Dtd/XefgJCqXAr8E+gJT97Csl4EZwI3u60vhCNAYYypq/KwrqWJdcRWFxZUUuu/XFlfx/dYKiivr4N2PGo7vkZ5Iv26pTBjQjX7dUtmru7P065ZGj/REaz0xJgranLiIiBf4m6qeBVQDf9qNc2fhDMTtISKFwHU4CctsEbkAWANMa2uMxpj4p6psr6qjsLiKwuKqhgRlXUkl60qcbSWVdTuc4/MKvbNSyOuawpThuQRKipg8fgR7dU+jX/dU0q3lxJgOp83/VapqQET2EpFEVa3d9Rk7nHtmM7uOaGtcxpj4oaoUV9ZRtL2KDdurKdpe/cNraVXDemXIQFhwunP6ZKXQp2sKo/Ky6NM1hbyuqfRxk5Xs9KQdZjwuKNjKpBG5kf54xpjdEK7/nVgJfCwiLwMV9RtV9eYwlW+MiVMVNX42l9WwqazGfa1mY2kNG7a7CUmpk6DU+oM7nOf1CDkZSfTKTGZIry5Mzu9JbmYyeV1T6JOVSp+uKXRN9Vl3jjFxJlyJywp38QAZYSrTGBOjAkFla4WTiIQmJZtDkpP69xWNWknA6cLplZlMbhenpWTKsGRnPTOZXpkp5GYm0yM9ySYJNKYTCkvioqp/AhCRVFWt3NXxxpjYVFnbqHWktJrN5TWNWkxq2FpeQ7CJJy1kJCeQnZFEdnoSI/KyyE5PomeXpB9e3X1dUxN36MIxxph64Xpy7oHAA0A60E9ERgEXqerF4SjfGNN+/IEg2ypqncSjfMeWkYbF3V5e49/pfK9HyE53ko6cLsmM6JNJdkYSPTPcRCQjiZ4ZTgtJSqJN/GeMaZtwdRXdChyNcyszqvqViBwaprKNMbtJVSl3x47s0FVTvnPXzbaKXbeODO+TSY/0RHpmJO+QlPTMsNYRY0xkhe1eP1Vd22gQ3M4d18aYNqkLBNlaXrvTOJHN5TVsKt2xxaSqrumxI/WtI32ykhndN6uhVSS02yY7I4lkn7WOGGM6nnAlLmtF5CBARcQHXAEsCVPZxsS1+uePbClvNIi1vIbNpTUs/b6KGxd8yKayGrZVNP3EgaxUX0PCMaZfSDLidtPUJyaZKT5rHTHGxLRwJS4/A24D+gDrgLcAG99iOi1VpaI2wJaymh3urtncxDiSLeW11AaCO5WR6PWQnZFEksI+OamM3avrzslIRhI90hNJSrDWEWNM5xCuxCXffXJuAxGZCHwcpvKNibpaf5CtFTVsKatlS3kNW8prKK6sZWtFLdvKa9lWUb/dea3x75yMiED3tB9aQ/bpmbFD60h9q0l2RhJdkhMQEXd+kSbnGjPGmE4nXInLHcCYVmwzpkOpCwQbnsBatN15TPyWslpKqmopqayjpNJ53ea+NsXnFbqlJdItzWn9GJidTvf0RHqkJ9E9PYnu6YkNg1m7pSaS4N3T+UeNMca0KXFxb4M+CMgWkV+F7OoCWNu1iboaf4D1JdXOhHrFVazdVunOZePMX7OprGaHGX8B0hK9ZKUmkpXqo2tqIrlZzhNYs9OT6ZGRSHZ6Ej0ykuielki3tETSkxLs6azGGBMhbW1xScR5dksCOz4xtxQ4tY1lG7NLdYEgRW5isra4smGCvfoEZWNZ9Q6JSYLnh0n1Dh2UTW5WCn2yksnNTKF3Vgq9s5JJTbSJ9YwxpqNq07/QqvoB8IGIPKyqa8IUkzEN/IEgG0qrWbut6odWE/d1XXEVRdurdngGiUcgNzOFvt1SOHhQD/K6ptC3ayp5XVPI65ZKry7J9ph4Y4yJYeH6X8tKEfknMAxIrt+oqoeHqXwTp2r8AYpKqllX4iQihcWVFLrv15U4k+wFQjITEejVJZm+XVPZf0C3hoSkPkHplZmMz8aQGGNM3ApX4vIE8DRwPM6t0TOAzWEq28Sw8hp/Q7fNuuJK1m93kpT1bnKyuXzHMSYegZwuzgy/4/bqSp+GFpNU+nZLITczhcQES0yMMaazClfi0l1VHxCRK0K6j75oS4EiMgXn2TBe4D+qemM4AjVto6pU+ZW12yrZVlFLcaW7VNSxubyGjaXO01w3llazsbSG7VU73omTlOChT5YznuSwwdn06ZpCXtdU+rjjTqzFxBhjTEvClbjU/zoVichxwHqg254WJiJe4C7gSKAQ+EJEXlbVxW2O1DQIBJWSylqK3dt+iyvrKK6sDdnmbN9WEXpLcC11AYV33t+pPJ9XGh6MNqBHGvsP6E7vLGe8Sd+uqfTpmkL3tES7A8cYY8weC1fi8lcRyQR+jfP8li7AL9pQ3gRguaquBBCRp4CTgCYTF38QVm2pIKiKqhJU3Pc7vtZvDwSVmrogtYGA+xqkpi5ITSBITV2A2kCQWn+QGn+QQFBJ9HpI9nlI9nkblhSfl2Sfp9nWAY8ICV4hwSMkeD3uq5Dgcd57Q9a9HsEjIAjicc71iPMqUr/uHtPMj34wqBRX1rKlvJat5TVsrahle1Ud26tCkpKGFpI6trn7m5PgEbJSfWSlJtItNZH+PVLZLzWLrmmJbCtay7gR+9I1NZGuaYl0dW8btsfJG2OMaW9hSVxU9VX37XZgMoCI/KINRfYB1oasFwL7N3dwYXmQyTcVtOFyTfN5nQSj1h9scvbcaAlNasRNaOoCusMg1lApPq+TXKQl0jU1kT5dU+nmJiX12xveu88vaenZJAUFG5g0rm97fkRjjDGmSe35wIpfAbe2V+EiMhOYCZDZsw8zRybhAffHHAR3EdzWjB+2e0TwecDnBZ/HeZ/gLqHrHveHW1UJKNQEnAShNgi1AagNKk1MMQPgtu5AQBV/EALqLA3bg9qwTd0lGHKuojtsVwWl0Xr9NiBBoEuSkJkoZCQKXRKFVB+k+YREb30CEgCq3MVVB5SAlsA2nGVXysvLKSgoaM2fyYSB1XfkWF1HltV3ZMVLfbdn4tKWPoN1QOj/0ue52xqo6n3AfQD5+fn6++k/asPlzO5w5s6ZFO0wOg2r78ixuo4sq+/Iipf6bs/bN9rSufIFMEhEBohIInAG8HJ4wjLGGGNMrGrrXEVlNJ2gCJCyp+Wqql9ELgX+i3M79IOqumhPyzPGGGNMfGjrI/8zdn3UHpf9OvB6e5VvjDHGmNhjT/oyxhhjTMwQ1Q50n+8ecruslkY7jk6kB7Al2kF0IlbfkWN1HVlW35EVS/W9l6pmN7WjPe8qiqSlqjou2kF0FiIy1+o7cqy+I8fqOrKsviMrXurbuoqMMcYYEzMscTHGGGNMzIiXxOW+aAfQyVh9R5bVd+RYXUeW1XdkxUV9x8XgXGOMMcZ0DvHS4mKMMcaYTiDmExcRmSIiS0VkuYhcHe144p2IrBaRb0RkgYjMjXY88UREHhSRTSKyMGRbNxF5W0SWua9doxljPGmmvq8XkXXu93uBiBwbzRjjiYj0FZH3RWSxiCwSkSvc7fYdD7MW6jouvt8x3VUkIl7gO+BIoBBnjqMzVXVxVAOLYyKyGhinqrHyLICYISKHAuXAo6o63N32D2Cbqt7oJuZdVfWqaMYZL5qp7+uBclW9KZqxxSMRyQVyVfVLEckA5gEnA+dh3/GwaqGupxEH3+9Yb3GZACxX1ZWqWgs8BZwU5ZiM2SOq+iGwrdHmk4BH3PeP4PzjY8Kgmfo27URVi1T1S/d9GbAE6IN9x8OuhbqOC7GeuPQB1oasFxJHf5wOSoG3RGSeiMyMdjCdQI6qFrnvNwA50Qymk7hURL52u5Ks26IdiEh/YD/gM+w73q4a1TXEwfc71hMXE3kHq+oY4BjgEre53USAOv26sdu3GxvuAQYCo4Ei4F9RjSYOiUg68BzwC1UtDd1n3/HwaqKu4+L7HeuJyzqgb8h6nrvNtBNVXee+bgJewOmuM+1no9tfXd9vvSnK8cQ1Vd2oqgFVDQL3Y9/vsBIRH84P6ROq+ry72b7j7aCpuo6X73esJy5fAINEZICIJAJnAC9HOaa4JSJp7kAvRCQNOApY2PJZpo1eBma472cAL0UxlrhX/wPqOgX7foeNiAjwALBEVW8O2WXf8TBrrq7j5fsd03cVAbi3c90KeIEHVfWG6EYUv0Rkb5xWFnAm6HzS6jt8RGQWMAlnBteNwHXAi8BsoB+wBpimqjagNAyaqe9JOM3oCqwGLgoZf2HaQEQOBuYA3wBBd/PvccZe2Hc8jFqo6zOJg+93zCcuxhhjjOk8Yr2ryBhjjDGdiCUuxhhjjIkZlrgYY4wxJmZY4mKMMcaYmGGJizHGGGNihiUuxhhjjIkZlrgYY9qNiHQXkQXuskFE1rnvy0Xk7na65i9E5NwW9h8vIn9uj2sbY9qfPcfFGBMRInI9UK6qN7XjNRKAL4Exqupv5hhxj5moqpXtFYsxpn1Yi4sxJuJEZJKIvOq+v15EHhGROSKyRkR+LCL/EJFvRORNd84VRGSsiHzgzkz+30aPL693OPBlfdIiIpeLyGJ3NtynoGEivwLg+Ih8WGNMWFniYozpCAbiJB0nAo8D76vqCKAKOM5NXu4ATlXVscCDQFPTTUwE5oWsXw3sp6ojgZ+FbJ8LHBL2T2GMaXcJ0Q7AGGOAN1S1TkS+wZl37E13+zdAfyAfGA687fT04AWammMlF1gSsv418ISIvIgz71O9TUDv8IVvjIkUS1yMMR1BDYCqBkWkTn8YfBfE+XdKgEWqeuAuyqkCkkPWjwMOBU4ArhGREW43UrJ7rDEmxlhXkTEmFiwFskXkQAAR8YnIsCaOWwLs4x7jAfqq6vvAVUAmkO4eNxhY2O5RG2PCzhIXY0yHp6q1wKnA30XkK2ABcFATh76B08ICTnfS427303zgdlUtcfdNBl5rz5iNMe3Dboc2xsQVEXkBuFJVlzWzPwd4UlWPiGxkxphwsMTFGBNXRCQfyFHVD5vZPx6oU9UFEQ3MGBMWlrgYY4wxJmbYGBdjjDHGxAxLXIwxxhgTMyxxMcYYY0zMsMTFGGOMMTHDEhdjjDHGxIz/B3GQXJ1iZjEgAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\n", - "Path, Attitude and Lateral Attitude Angle plots\n", - "\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjQAAALJCAYAAACjh7nEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAACkI0lEQVR4nOzdeZwdVZ3//9fn3tv7nk5n3xdCFkIgYV8MIAgoOyo6CgiIzojbjD9F/c6IzjCi4z6iiIKDorKvgiAoEVC2BBJCErLv+9rpTm93+fz+qOrOTae705109+3l/eRxH7fq1Kmqzz196f7knFNV5u6IiIiI9GaRTAcgIiIicqSU0IiIiEivp4RGREREej0lNCIiItLrKaERERGRXk8JjYiIiPR6SmhE5LCY2RwzuyHTcYiIgBIakX7NzNaYWa2ZVae9fpqBOMaYmafFsMbMbu7uODrKzK41s5czHYeIQCzTAYhIxl3k7s9318nMLObuiVY2l7p7wsxOAf5iZvPd/ZlOOnaP09viFenJ1EMjIi0ys1vM7N609cZelBb/IWRm15nZEjPbbWbPmtnotG1uZp8xs+XA8kOd291fARYB08zsRDN7xcz2mNlmM/upmWW3dWwz+7GZrTezvWY2z8zOaPa5HjSze82syswWmtlRZvZVM9sW7ndeWv0SM7srPPdGM/svM4ua2WTgDuCUsFdpT1g/x8y+Z2brzGyrmd1hZnnhttlmtsHMvmJmW4Bfm9lAM/tj+Pl2mdlLZqbfzSIdpP9pROSImdklwNeAy4EK4CXgD82qXQqcBEw5xLHMzE4DpgJvAUngi8BA4BTgHOBfDnHsN4AZwADg98CDZpabVv8i4LdAWXiOZwl+Hw4HvgX8Iq3u/wEJYAJwHHAecIO7LwE+Dbzi7oXuXhrWvw04Kjz/hPCY/5F2vCFhXKOBG4F/AzYQtNtggnbUM2lEOkgJjYg8FvYONL4+eRjH+DTwbXdfEg6h/DcwI72XJty+y91r2zjODmAX8CvgZnf/i7vPc/dX3T3h7msIko33NNvvgGO7+73uvjPc5/tADjAprf5L7v5sGOuDBMnEbe4eB+4DxphZqZkNBi4EvuDu+9x9G/BD4KqWgjczI0hSvhjGUxW2RXr9FPANd68P440DQ4HR7h5395dcD9kT6TDNoRGRSzthDs1o4Mdm9v20MiPonVgbrq9vx3EGNp9TYmZHAT8AZgH5BL+35jXbb32zfb4EXA8MI+jtKCbo4Wm0NW25Ftjh7sm0dYDCcP8sYHOQqwDBPwRb+ywVYYzz0uobEE2rs93d69LW/we4BfhzuM+d7n5bK8cXkVaoh0ZEWrOP4I9zoyFt1F0PfMrdS9Neee7+j7Q6h9vr8HPgXWCiuxcTDMlYszpNxw7ny3wZ+BBQFg4FVbawT3usB+oJEq3Gz1Xs7lObnze0gyAhmppWv8TdC1uKFcDdq9z939x9HHAx8K9mds5hxCrSrymhEZHWzAfONLNRZlYCfLWNuncAXzWzqdA0kfaDnRRHEbAXqDazo4F/bkf9BLAdiJnZfxD00HSYu28G/gx838yKzSxiZuPNrHHIayswonGSsrungF8CPzSzQQBmNtzM3tfaOczsA2Y2IRyuqiSYM5Q6nHhF+jMlNCLyZLP70DwK4O7PAfcDbxMM8fyxtQO4+6PAd4D7zGwv8A5wQSfF9yXgo0AVQbJw/yHqPws8AywjGO6qo33DXa25GsgGFgO7gYcI5rwA/JXgaqwtZrYjLPsKsAJ4NWyL5zlw/k5zE8M61cArwM/c/YUjiFekXzLNPRMREZHeTj00IiIi0uspoREREZFeTwmNiIiI9HpKaERERKTX69M31istLfUJEyZkOox+Y9++fRQUFGQ6jH5D7d291N7dR23dvXpbe8+bN2+Hu1c0L+/TCc3gwYOZO3dupsPoN+bMmcPs2bMzHUa/ofbuXmrv7qO27l69rb3NbG1L5RpyEhERkV6vxyQ0Zna3mW0zs3da2W5m9hMzW2Fmb5vZ8d0do4iIiPRMPSahAf4POL+N7RcQ3FFzIsHTbH/eDTGJiIhIL9Bj5tC4+4tmNqaNKpcAv/Hg1savmlmpmQ0Nn7XSog1VKU677a+tHtDsEOvNnmV38Pbm+1ur25oXtLVvy9s7FtsRHfsw22FvVS0/XPT3jp2rjVjtgPJW4rH21z2gvB11OhKXdaBu8y128MdpV4zbt9fxwMZ5B21vZbGdbXuI+u1p2w58hubLh2qXto5naTGbQcQsLAvKLTyQYU31I7Z/mfT6YZ2I7T/m6tUNLGFl2rnSjnXAvuH6Qct20L4cFOf+erD/uJFmx4tGjIhBJGJEzYiYEYkQLEfCdSOsF7xa22f/tv37NJ4jGp43fXvz3yciPUWPSWjaYTgHPo9lQ1h2QEJjZjcS9OBQOHgUYwviABzqCQ/NN3vzkrZXD9zWgbotnruDsaYXdvjcRxgrvr8sL5IkVVvVZt0DV1s/W/qW1trD27n9oHLvpDotVPCWth/W+Vve4mnvqVSKTfu2tu/8Hfk8tNymHfmZHFR+ROf3g/drdrz070LzZQ8rNV9u2tdbj+kgy95tb80+K0iwguQrGiZ9saakJyiLRsJ3s7TloDxiRtQgFtm/f/N6qUScB5b+mWgEsiKQFTGyIsE+TetRwjILy9KWowfuE1ES1qbq6mrmzJmT6TCOWG9KaNrF3e8E7gSYNGmS3/vZVh9yK52st82U7+3U3p3P3fcnQh6k3Kmw7MUXX+SMM87EObiOp2i53NPKvYU6YSaVauG8HmZfjeWNdVLupFLBe9IddyeZgmQqXHYn5ZBKOcmUB/XDsvT1ZKrxWAfuE2xrtk8qXG46X7hPyoknnUQqRbJxOZkikXISYXk86eG2sDwV1KlroW4iGdRriBspSxJPpg75D7z2yIoauVlR8rOj5GfHwvcoedkxCrKj5IXrBdmxpuX87BjFeVkU56a952ZRnJdFTizSp3qq+srvkt6U0GwERqatjwjLREQ6RePwULh2wLbsqJGXHe32mPqjxj+w7kECVJ9I0ZBIUZ9IUh9P0ZBMhe/Ben2i8ZVMqxusNy7XNiSpbUiyryFBbUOSmoYklTUNbN4TLNc0JKhpCPY/lOxohKLcAxOe0vxsyguyGVCQTVnB/uXygmzKC3Moy8/qU0lQT9SbEpongJvM7D7gJKCyrfkzIiLSu5kZWVEjKxqBnO45ZzLlTclNVV2cytoEe+vi7K2Ns7cuQVVdnL3NyvbWxlm3q4Zd+xqoqku0eNzsaISKohyGlOQyuDiHQUW5TctDivMYVZ7PkOJcohElPYerxyQ0ZvYHYDYw0Mw2AN8AsgDc/Q7gaeBCYAVQA3wiM5GKiEhfFY0YRblZFOVmMbg4t8P7NyRS7K5pYGd1Q/C+r4Gd1fVs3VvPtr11bNlbx9ItVby4bAfV9QcmP1lRY3hpHiMH5DNyQD6jBuQzsiyfMQPzGV9RSG6Wegjb0mMSGnf/yCG2O/CZbgpHRESkw7JjEQYX57YrGaquT7Btbx2b9tSxfncN63bVsD58/WnhZnbXxJvqRgxGlxdw1OBCjhpcxMTBRRw1uJCxAwvIiSnRgR6U0IiIiPQnhTkxCisKGVdR2OL2qrpgKGvV9n0s31rFsq3VLNtWxfNLtpFMBbOloxFj4qBCpo8o4ZgRpUwfXsLRQ4v6ZZKjhEZERKQHKsrNYuqwEqYOKzmgvD6RZNX2fSzbWsXSLVUs2rSX5xZv5YG5G4Cgl2jGiFJmjSnjhDEDOH50GSV5WZn4CN1KCY2IiEgvkhOLMnloMZOHFjeVuTsb99Ty9oZK3lq3mzfW7ObOF1fxszkriRgcM6KU0yeUc/qECo4fXdone3CU0IiIiPRyZsaIsnxGlOVz4TFDAahtSPLW+t28tmoXf1+xgzv+torbX1hJXlaU0yYM5Lwpgzl78qAMR955lNCIiIj0QXnZUU4dP5BTxw/ki+ceRVVdnFdX7eLFZdv5y5KtPL9kK2YwviTCsshKPjB9GMNK8zId9mFTQiMiItIPFOVmce6UwZw7ZTDfumQqizfv5fnF23jk9RX899Pv8t9Pv8uJYwdw8bHDuPCYoQwoyM50yB3SoYTGzAqAWndPmdlRwNHAn9w9fohdRUREpIcws6YJx8fGNjJ62gk8uWATTyzYxP977B2++eQizp0ymKtOGMXpEwYS6QU3/OtoD82LwBlmVgb8GXgD+DDwT50dmIiIiHSPsQML+Nw5E/ns2RNYsrmKh9/cwCNvbuDphVsYUZbHh2eN5CMnjWJgYTfdsvkwdDShMXevMbPrgZ+5+3fNbH4XxCUiIiLdzMyYMqyYKcOm8OXzJ/Hsoq3c9/o6vv/cMn76wgqumDmCT54xjrEDCzId6kE6nNCY2SkEPTLXh2V979ovERGRfi4nFuXiY4dx8bHDWLGtmrteXsVD8zbwh9fXcd6Uwdx45jhmjh6Q6TCbdDSh+TzwVeBRd19kZuOAFzo/LBEREekpJgwq5NuXT+dfz53EPf9Yw29fXcuzi7Yyc3QZnzpzHOdOGZzxp4m3O6Exsyhwsbtf3Fjm7quAz3VFYCIiItKzVBTl8KX3TeKfZ4/nwbnr+dXLq7nxt/OYPqKEfztvEmdOHJixxCbS3orungRO78JYREREpBcoyIlx7WljmfOl2fzPldPZWd3ANXe/zod/8Sqvr96VkZg6OuT0lpk9ATwI7GssdPdHOjUqEREROSLxeJwNGzZQV1fXZr2SkhKWLFly2OeZVgC/vHgI+xqSVNUlqNy8hpd2rKMkL4usaLv7TQ6Sm5vLiBEjyMpq33OoOprQ5AI7gbPTyhxQQiMiItKDbNiwgaKiIsaMGdPmMFBVVRVFRUWdcs5Uytmxr57tVfWkUlBckM3g4hxiHUxs3J2dO3eyYcMGxo4d2659OpTQuPsnOhSRiIiIZERdXd0hk5nOFokYg4pyGZCfzdaqenZVN7CntoFBRbmUF2YTaWcsZkZ5eTnbt29v/7k7EqiZHWVmfzGzd8L16Wb2/zpyDBEREekemZqgG4tGGF6ax8TBheRnx9hcWcuKbdVU1yfafYyOxt7Rwa1fEly2HQdw97eBqzp4DBEREekHcrOijCnPZ3R5AamUs2p7Net31RBPpjr9XB2dQ5Pv7q83y5ran26JiIhIv2JmlORlUZQTY1tVHdurG9hbG2dwSS7lBdmd1ovU0R6aHWY2nmAiMGZ2JbC5UyIRERGRPmf16tVccsklnHjiCVx87ntg90bysqNs2hMMQ9U0dE6/SEd7aD4D3AkcbWYbgdXowZQiIiI92jefXMTiTXtb3JZMJolGO/4UoynDivnGRVPbrBOPx7nhhhu48847GT9+PE8//TQ/+P7/cPfdd1NZG2dzZR0rtlVTXpDDkJIcopHDv8y7owmNu/t7zawAiLh7lZm173oqERER6Vcee+wxFi1axBVXXAFAIpHgjDPOoKamhs//y7+QlZXFjBNP4z0XXkZlXZxhJbmU5GUd1jBURxOah4Hj3X1fWtlDwMwOn1lERES6RVs9KZ15H5rmFixYwK233sr1119/QPlvf/tbrrzySi666CI+/OEPc921H2fj7lrW7aqhKDeLYaW55MQ61mvUrr4dMzvazK4ASszs8rTXtQQ32ztiZna+mS01sxVmdnML2681s+1mNj983dAZ5xUREZGuMXToUJ599llSqeCqpoULF+LubNiwgZEjRwIQjUbJz44xYVAhw0ry2FefYPnWarbtrcPd232u9g5WTQI+AJQCF6W9jgc+2e6ztSJ88OXtwAXAFOAjZjalhar3u/uM8PWrIz2viIiIdJ3rrruOVCrF5MmTmTFjBt/5zncwM0aMGMGGDRsAmpIdM2NgUQ5HDS6iKDfGlr11bKuq54017Xs2VLuGnNz9ceBxMzvF3V85vI/VphOBFeHTuzGz+4BLgMVdcC4RERHpBnl5eTz00EMHlV9++eXcdNNNPPXUU1x00UUHbMuORRhdXsDe2jg7N8AH73iFy48bzs0XHM2g4tYHhTo6h2anmf0FGOzu08xsOnCxu/9XB4/T3HBgfdr6BuCkFupdYWZnAsuAL7r7+uYVzOxG4EaAiooK5syZc4ShSXtVV1ervbuR2rt7qb27j9q6c5SUlFBVVXXIeslksl31OttPfvKTpuWWzm9ASQ68f2wWT8zfyNNvb+Ti8a0/qLKjCc0vgf8P+AUEdwo2s98DR5rQtMeTwB/cvd7MPgXcw4EPySSM6U6CS8uZNGmSz549uxtCE4A5c+ag9u4+au/upfbuPmrrzrFkyZJ2TfbtyknBRyovN5fbP3Uea3bs4z//uJgH3t3Wat2OXvCd7+6vNyvrjDvibARGpq2PCMuauPtOd68PV3+FrqwSERHpF8YMLOCua0/gj589vdU6PeVOwW8AE81srJllEzwf6on0CmY2NG31YmBJJ5xXREREeolpw0ta3dYZdwr+2OGHFnD3hJndBDwLRIG73X2RmX0LmOvuTwCfM7OLCXqEdgHXHul5RUREpG/oUEITXoV0wJ2COysQd38aeLpZ2X+kLX+V4EnfIiIiIgfoUEJjZqXA1cAYINZ4a2J3/1xnByYiIiLSXh0dcnoaeBVYCKQ6PxwRERGRjutoQpPr7v/aJZGIiIiIHKaOXuX0WzP7pJkNNbMBja8uiUxERESknTqa0DQA/wO8AswLX3M7OygRERHpG1avXs0ll1zCrFmzOPHEE1m6dGmXnKejQ07/Bkxw9x1dEYyIiIh0gT/dDFsWtrgpL5mAaEfTAWDIMXDBbW1Wicfj3HDDDdx5552MHz+ep59+mttuu41f//rXHT/fIXT0E6wAajo9ChEREelzHnvsMRYtWsQVV1wBQCKR4IwzzmDVqlXceuutVFZWtvjwysPR0YRmHzDfzF4AGh9DoMu2RUREerI2elJqu/BZTgsWLODWW2/l+uuvP2jbXXfdxZVXXtlp5+roHJrHgFuBf7B/Ds28TotGRERE+oyhQ4fy7LPPkkoFd3pZuHAh7t4l5+ronYLv6ZIoREREpM+57rrreOGFF5g8eTJ5eXlMmzaNe++9t0vO1dE7BU8Evg1MAXIby919XCfHJSIiIr1cXl5ei3Nkdu7cyde//nXeeustvv3tb/PVrx75k406Oofm18A3gB8CZwGfoOPDViIiItKPlZeXc8cdd3TqMTuajOS5+18Ac/e17n4L8P5OjUhERESkgzraQ1NvZhFguZndBGwECjs/LBEREZH262gPzeeBfOBzwEzgY8A1nR2UiIiISEe0u4fGzKLAh939S0A1wfwZERERkYxrdw+NuyeB07swFhEREZHD0tE5NG+Z2RPAgwR3DQbA3R/p1KhEREREOqCjCU0usBM4O63MASU0IiIikjEdvVOw5s2IiIhIj9PROwXnAtcDUznwTsHXdXJcIiIiIu3W0cu2fwsMAd4H/A0YAVR1dlAiIiLSN6xevZpLLrmEWbNmceKJJ7J06dIuOU9H59BMcPcPmtkl7n6Pmf0eeKkrAhMREZHO8Z3Xv8O7u95tcVsymSQajXb4mEcPOJqvnPiVNuvE43FuuOEG7rzzTsaPH8/TTz/Nbbfdxq9//esOn+9QOprQxMP3PWY2DdgCDOrckERERKQveOyxx1i0aBFXXHEFAIlEgjPOOIPHHnuMp556ir1793L99ddz3nnnHfG5OprQ3GlmZcC/A08QPPbg3484CsDMzgd+DESBX7n7bc225wC/IbhD8U6Cm/yt6Yxzi4iI9GVt9aRUVVVRVFTUJeddsGABt956K9dff/1B2y699FJ2797Nl770pe5NaMzsUqAUONHdnwXGHfHZ9x87CtwOnAtsAN4wsyfcfXFateuB3e4+wcyuAr4DfLizYpDMc/eWCtteb29ZC3W8pe3p9VpaTis78JBt7N/KMQ/5edvY392JVFYS37at+Qc5gs/R/n1a/BwtxdGOz9HSLu39HC3uf0C7dt7nyFqxgpqioo59jqbyrv0c3uLPq4XPccjP3trPo3k8LVRoz/9zB9Vp+Ry5SxZTWVXd4XO09/htxXiocx58jg6es6PHP5xzhOupyUeT2LGzhR0OFKmvJ1Ff32adNs/fyNKXg5VBxcU88+STfPySS4hEIixcsoRpkydjZmDGt/793/nU1VeT2LMnKGu2f6qujqoXXsAiEYhEwFqf+tuuhMbMfkZwZdM/gP80sxPd/T/bs287nQiscPdV4fnuAy4B0hOaS4BbwuWHgJ+amXmLP/1AZP06Xps5Zf/naKGmHVzUYr321DnoWO08X/N6hxtTe+u1tx3wtHKj5c+TVlaBs9gs/J/J0uq0M3jpkApgRaaD6EcGAGszHUQ/UQJsynQQfUDy9p8S37L5kPUi7J9P0tk+dvbZvPD880w74QRyc3KYOmECd992G+7Ov//wh7z3lFM4pryc+IYNLe6f3LWLDZ+5qV3nam8PzZnAse6eNLN8gonAnZnQDAfWp61vAE5qrY67J8ysEigHdqRXMrMbgRsBRpfks2bq0AMO4i385fYW1lqqd9B+aXVazvO9KctsVnqIGA4+frBfC8c65Odp6dj743IcdydFCofwPfzPD1hrWk6Rwj1tuekM1vR+YFzWckLfYuxpiRBGxCKYRWj6z4JXtHGZaFPZAXWIEok0rkebyqONy03HCtajFsEsuv+4TftEiVoUw5pld42L6cstbT/4c7X0r5iW9jlgpYV96uvrycnJbdc+fsD3sIVjtnGeQ+6Tvpi2zwE/8zY/Z+e1jR9Be7a6PVypraslLy/voH2aPmdLx0lfPOh3QfPy9u9zyM/Z0n5HtE943kNsP+h/6hb/dXaIX65m1NTUkJ+f375jHuJ43kUxduiYHTxey78vm5/j0McsLisjMWLEIc+ZSiaJHMak4Fal/SM2C/jNAw8cUJZw+Pkv7uCvb77JHneW793L9Z/4RIs9UcnaWvbe/JXgz5angjo33NDyR2qjg2N/JbM33f341taPlJldCZzv7jeE6x8HTnL3m9LqvBPW2RCurwzr7GjpmABHHzXB313wRtBFZdHgPRJNW7dDfynkkNydpCf565y/curpp5JIJYin4vtfyfiB62llDakG4sk4iVSChmRDU1l9sp54Mk5DsoGGVEPwHi43bWtWrz5Z33S8xuVEKtEpnzFqUbKj2WRHs8mKZJEVySIWiRGLxA5YjlmMrGiwnmVZwbKF9aJZTfsesNxa2SHW570xjzNOPaMphsY6MYsd2HUrnWLOnDnMnj0702H0C2rrzrFkyRImT558yHpdOYfmSLX0GcxsnrvPal63vT00R5vZ243HAsaH6wa4u08/koCBjcDItPURYVlLdTaYWYygV3JnWwctrF4N3xlziFNbkOTE8qCgHPIHQuFgKBkBJcOD9+IRwXvRkKDuoSQTQaLUnrp9gJkRsxjZkWwKswszHc4BUp46OCkK19MTn+bbWkygwqQpnoo3JW2JVOLAZU9Qn6hnX2ofCU8EyVrje7NEryHZ0Ep/XQc81HJxa0lQ84TskEnUIRKrFo9xiH0aY4hFYkTaGA8XEemI9iY0h07xjswbwEQzG0uQuFwFfLRZnSeAa4BXgCuBv7Y1fwagPrcCzv8GpJLgqfDVuOwHljfsg5odsG8H7FoFa16C+r0HHtCiUDQUiodCJAtwiNdCvCbYv2FfsJxs2F8/lgPRbIjlQiwbojlBGYTdax7Ui8aCY0azIBILe5EMsP3LFmm2nr49/WWtLDd7NT/WAWUtnTMSpLCt1BuxfiW8+m7aOVuI/6Dzpk3yale9xljbF2/EINci5LZYLwqRQohGILul9mypzdNiaPpehPulL6d377exPZlKEfcE8cZkxxPEk4mwrHF9fxKUSO1ff3vR20yYNOGgHrDGnq6WesfS92+su69hX6s9aOn7dYUDerQ60luVVta0bzsTq+xIdvsSs3A9J5qjxEukF2hXQuPua7syiHBOzE3AswSXbd/t7ovM7FvAXHd/ArgL+K2ZrQB2ESQ9bWrIKoGT//nwA6urhMqNsHcjVK4Plis3QNXmIAkCKBwEWfmQXQjZ+eFyQZCsJOshUR8kOInG5XpINCY84R85T0EyDql40LuTqAv29xTg+xOwpmUO3ubJ/fscVL+FV6px/7Q6BxwvraydJgCsPPzm7o+i4Su3zVrNk63g/dxUiuiCrGaJFm0nYQdso41tjesxsGzcnARG3CLEjeAdiJsF6xhxMxqMcD3tvWk5qJNovt0g7hBPQjzlxIkTpyHc14m7E8epJhWup0iE73FSwXu43ODJI+3zalGWxYgRpeC+fHKi2eRGc8iJ5pITzSEnlkNuLC9Yz8ojN5pLdjSb3FiwPTeaG9RprB/u09K23FguebE8siJZGjYU6aCO3oemy7j708DTzcr+I225DvhgtwaVWxK8Bk85dN2+zNuX+Lz80kucftqpLSdjB6ynl9FCWUv10mM4VL20pK+tRK2prJV4WywLE8XGdmmMKyg4zO0cev/mbYCzcd1aRo0Y0Sx5bbbcYlLcymducb/gZZ4iCyerzZ9ts2MfVDcZ9op62nKq2XIqXE6mLbdS3vJ0d5IcnGgFSZgRx0ikr5ulJWYHrzcY1FuEOjMazKgzoz5i1Dcum1Fjxp5WtiUPMymJYeRZlDyLkR+JkR/JDl7RHPKjueTFcsmP5ZEfyyc/K5+87ELyswrIyy4mP7uI/NwS8nOKyc8pIy+3JNgWyyMW6TG/8kU6nb7dcmhNw1ttd7snsgohf0D3xCSsmjOHUf154uQBw8ZBUmSeIuZJYqkUeQclSy0lVC0lTon9r2TjcpxF77zN1ElHNa03337wepJ4IpijVZespz4Vpy7ZQH0qTn2qgfpUIihLJaj3RNO22lScGk9S63XUeJIaUtQY1JixPRKh1oyaiFFrEWoiHUuactzJdyMfo8CiFFqMwkgWhZFsiqK5FMbyKIwVUJRVQGF2EUU5xRRml1CYW0ZhXhmFuQMozK8gklMY9ERnFQTD5SI9QEdurBcFfuPu/9SF8YiItI9Zt/4x3b6tBI6d3aF9ssJXwZGePJUMh63rgle8FhL1eLyGhoZ91NTvobahmpqGvdQ0VFMT3xe+aqhN1lKTqKUmUUdtsp6aZD01qQaqUg1Up+JsSzawkir2mVNtkGhHglSQSlGYSlGUSlHoUOIRSohSEolREsmhNJZHSVYBxdkllOaUUpJXTmn+QPJzy7G8UsgtDnq/c9LelRjJEWr3Nyi8B81oM8t294auDEpERNJEosEcvez8A4oNyAlfZZ1wGnenLl5Dde0OqvZtp7p2B9W1u6iq30113R6q6/dSFa9iX0M1VfF9VCdrqUrUsjVZz9JUA5Uep5YaoAbiO4NJUvv2Hz/mTkkyRUkqRUkqSUkyRWkqxYBkkgHEKI/mMiCWT2G9sX39cEpzy8gqqID88qD3N7/84OXGiyyk3+toSrwK+LuZPUHa19Tdf9CpUYmISLczM/KyC8jLLqCiZPRhHaMh2UBlfWXwaqhkT/0e9tbuZk/NViprtlNZt4vKut1U1u9lc7yaxYl97ErUkiCcU0c95AGplVADpdUpBiSSQdKTTDIglWJQIsmgZJKKRJLBkWwGZZdSmD8Ayx8YJDkFFcHtNwoHBxduNC7nlQW3z5c+qaMJzcrwFQF65l14REQkY7Kj2VTkV1CRX9HufdydqngVu2p3satuFy/OfZGh44eyq24XO+t2sqt2J7tqtrG8dic76ndRlag96Bh57GZQfA+Ddi2jYksdg+MNYdKTYHAyyZBEkgo3ogWD0pKcQVA8DIqHB/cdKw5fucWd2STSTTqU0Lj7NwHMLN/da7omJBER6U/MjOLsYoqzixlTMoa9BXuZffTsVuvXJerYXrOdrTVb2V67nW0124LlmmB5QbjckDpwdkQMY0gkh2GpOobVrWRY5UKGLa9kWCLBsESCwYlk8EcxpzgtyRkW3Fy1bDSUjYHS0UEypJ6edlu9ejVf+MIX2LhxI5FIhN/+9rdMmjSp08/ToYTGzE4huB9MITDKzI4FPuXu/9LpkYmIiLQgN5bLyOKRjCwe2Wodd6eyvpKtNVvZVrONLTVb2FS9qen1j+pNbI/F8YLypn1iRBieVcgoy2F00hlVt4HRO99hVNV2hiaSNN37PZYbJDZlY8LXaBgwHgZODMp74ATnLf/939QvebfFbYlkkl2H8SynnMlHM+RrX2uzTjwe54YbbuDOO+9k/PjxPP3009x22238+te/7vD5DqWjrf4j4H0Ed+3F3ReY2ZmdHZSIiMiRMDNKc0spzS1l0oCWewMakg1s2beFjdUb2bxvM+ur1rN271rWV61n7t611GbVQmk2lA4nKxJjRM4ARkXzGZuKMr6hgQnV6xi37h/k11ftP2gkCwaMhfKJMHBC+D4RKo6GvNLu+fA9yGOPPcaiRYu44oorAEgkEpxxxhksWbKEH//4x+zYsYNzzjmHf/7nI7gJbqjDaaS7r292B8vkEUchIiLSzbKj2YwqHsWo4lEHbXN3dtTuYO3etayrWhe8713H2qq1vFK5NhjOygWGlTG8YAoTcgcxPpLHhESCCdWVjN+1guwVz+1/FA4EQ1eDp8CgyTBoarA88KhuuVKrrZ6Urnw45YIFC7j11lu5/vrrD9p2xx13kEqluPrqqzOS0Kw3s1MBN7Ms4PPAkiOOQkREpAcxs6bJzbOGHPhg50QqwYaqDazcs5Lle5azcs9KVuxZwd93L2p67lmsKMb4kWcyuXAkk6NFTG6IM6lyG/nbl8LKF4KbL0Lw7L7yiTBsBgydAcOOgyHHHHSJfm81dOhQnn32WT7xiU8QiURYuHAh06ZNw8x44okn+PnPf87HP/7xTjlXRxOaTwM/BoYTPETyz8BnOiUSERGRXiAWiTGmZAxjSsZwzuhzmsrjqTjr9q5j+Z7lLN21lCU7l/Di9rd4rG4XAIYxeshopky5jul5gznWs5hUtYusrYth5V9hwR+CA1kkGKIaOiNIdIbPhCHTgwcc9zLXXXcdL7zwApMnTyYvL49p06Zx7733AnDxxRdz8cUX8/73v5+PfrT586g7rqNXOe0AdKdgERGRZrIiWYwvHc/40vGcP+Z8IBi62lazjSW7lgSvnUuYu20eT9dsAyAnmsOU8ikcO+lTHFswiunxJIN2roJN82HF87Dg98HBY7kw7HgYdRKMPBlGntgrHjWTl5fHQw89dFD5nDlzeOSRR6ivr+fCCy/slHO1K6Exs/+lpSfBhdz9c50SjYiISB9iZgwuGMzggsHMHjm7qXzLvi0s2L6ABdsX8Pb2t/ndkt/xf+Ew1PDC4cwaPYsTT/onTigYxdDd62Dda7D+VfjH/0Lqh8FBBh4FI0+CMafD2PdA8dAMfMLDM3v2bGZ38rPo2ttDM7dTzyoiItKPDSkYwpCCIbxvzPuA4IqrJbuWsGDbAt7a9hZzNszh8ZWPAzCicAQnDj2RE875V04YMI3BezYGyc2612DJk/DWb4ODDjwKxs0Okpsxp2fok2VOuxIad7+nqwMRERHpr7Kj2RxbcSzHVhzL1VOvJuUplu9ezhtb3uD1La/z3NrneGT5IwCMLRnLGcPP4Iyz/5XjB84ge8dSWPU3WP03eOteeP3OYB7OBY/C3hLIKQqejm59+2aAHb2x3gu0MPTk7md3WkQiIiL9XMQiTBowiUkDJvGxKR8jmUqydPdS3tjyBn/f+Hf+8O4f+M3i35AXy+PkoSdz+vDTOePYnzI0txw2vBEkNwZUb4PqrUEyk1OU9nTzrEx/xE7X0aucvpS2nAtcASQ6LxwRERFpLhqJMqV8ClPKp3DN1Guoidfw+pbXeWnDS7y88WVeWP8CABNKJ3DmiDM595iLiW6P4oMnYg37oL4S6vZCXWVwwKz8/cmNtzpFNqO8g3F19Cqnec2K/m5mr3fojCIiInJE8rPymT1yNrNHzsbdWVW5ipc3vsxLG17iN4t+w93v3M3XJn6N2OYYwwYNI79kJFYCxGuhPkxsqjZD1WYKLAap0uBOxtmFcODNczPC3dm5cye5ubnt3qejQ07p14hFgJlASUeOISIiIp3HzJouF79m6jVU1lfywvoXeHndyzSsbmD45uHELEZuLJfcWC7ZkWzMDFJZkKgjWV9JNLUFPAUWhay8oAcnlpPR5CY3N5cRI0a0u35Hh5zmEcyhMYKhptXAwfczFhERkYwoySnh0gmXcumES6luqObFDS/y1NqneHnjy9Ql6yjLKeO8MefxgXEf4NiKmfztb39j9qmnBfe9WfIELH0GGqqCIalJF8KUS2DcWZDV/t6STOjokNPYrgpEREREOldhdiEXjruQC8ddSE28hr9v+jt/XvNnHlvxGPcvvZ+RRSOZFpnGuLpxjJpyMUy5GOJ1sGoOLH4clj4V3ME4uwgmnQ9TL4cJ53TL86c6qr031vuyu383XP6guz+Ytu2/3b3t54eLiIhIRuVn5XPu6HM5d/S5VDdU8/y65/njyj/yzJZn+NOjf2J6xXQuGncR7xvzPsomnR8kMIkGWPMiLHoM3v0jLHwwmEg86UKYdnnQc9NDHsnQ3ovSr0pb/mqzbed3UiwiIiLSDQqzC7l0wqX86n2/4pvDv8kXZ36RmngNt752K2c/cDaf++vnmLN+DolIBCa8Fy75KXxpOXzsYZh8MSz7E/z+Q/C9CfDYv8Dy5yEZz+hnau+Qk7Wy3NJ6h4QTje8HxgBrgA+5++4W6iWBheHqOne/+EjOKyIiIlAWK+OyaZfxiamfYNnuZTy58kn+uOqPvLD+BSryKrh0wqVcNuEyRhaPDJKbCe+FxA+DYalFjwR3K57/O8grg6M/EPTcjDkToh2dpntk2ns2b2W5pfWOuhn4i7vfZmY3h+tfaaFerbvPOMJziYiISAvMrOlmfp+f+Xle3PAijyx/hLveuYtfLvwlJw05iSuOuoKzR51NTiwHjjoveCXqg6eFL3o0GJp667eQXw6TL4Kpl8Ho07sluWnvGY41s70EvTF54TLh+pFOe74EmB0u3wPMoeWERkRERLpBViSLc0adwzmjzmHLvi08vuJxHl3xKF9+8cuU5JRw0biLuHzi5UwsmxhMEJ50QfCK1wVXSy16FN5+EOb9HxRUBMNUUy+D0adCJNolMVtH78TX6QGY7XH30nDZgN2N683qJYD5BJeL3+buj7VyvBuBGwEqKipmPvDAA10StxysurqawsLCTIfRb6i9u5fau/uorbtXe9s75SmW1S3jH9X/4O2at0mSZEz2GE4pPIWZBTPJiRx45VMkWc+AXW8yaNtLlO+cSzRVT312GdsrTmV7xWlUlkw+rOdLnXXWWfPcfVbz8m5JaMzseWBIC5u+DtyTnsCY2W53L2vhGMPdfaOZjQP+Cpzj7ivbOu+kSZN86dKlRxa8tNucOXM6/XHw0jq1d/dSe3cftXX3Opz23l23mydXPskjyx9hZeVK8mP5XDD2Ai6beBnTB04PbtyXrmEfLP9z0HOz7M+QqIWioUHPzVHnBcNS7bzPjZm1mNB0y4wdd39va9vMbKuZDXX3zWY2FNjWyjE2hu+rzGwOcBzQZkIjIiIina8st4yrp17Nx6d8nAXbF/DI8kd4evXTPLz8YcaXjOeyiZfxgXEfoDyvPNghuyAYcpp6GdRXw7JnguTmzXvg9V9ALA/GngkTzw0mHQ/o+G3vuncKcsueAK4BbgvfH29ewczKgBp3rzezgcBpwHe7NUoRERE5gJkxY9AMZgyawZdP+DLPrHmGR1c8yvfmfo8fzfsR7xn5Hi6feDmnDjuVWCRMOXIK4Zgrg1e8Ftb8Pei9Wf5nWP5sUKd8Aow+LZhzM+oUKB11yMcw9ISE5jbgATO7HlgLfAjAzGYBn3b3G4DJwC/MLEVw75zb3H1xpgIWERGRAxVmF3LlUVdy5VFXsmL3Ch5b8RhPrnqSv6z7C4PyBnHxhIu5dMKljC4evX+nrDyY+N7gxXdh50pY/lxw1dTix4IeHICiYTD6FBh5cqvnz3hC4+47gXNaKJ8L3BAu/wM4pptDExERkcMwoWwCXzrhS3z++PDy7xWPcPc7d/Orhb/i+EHHc+HYCzlvzHmU5TabMls+Pnid/GlIpWDbYlj3Cqz9R/B65+FWz5nxhEZERET6pqxoFueMPodzRp/DtpptPLHyCZ5c+ST/9dp/8e3Xv83Jw07m/WPfz9mjzqYgq+DAnSMRGDIteJ34SXCHvZvgmy0/gVsJjYiIiHS5QfmDuOGYG7h+2vUs272Mp1c/zTOrn+FrL3+NnGgOZww/g7NGncXpw09nQO6Agw9gBiXDWz2+EhoRERHpNul3JP7C8V9gwfYF/Gn1n3hu7XM8v+55DGN6xXTeM+I9vGfke5hYOvHgy8BboIRGREREMiL9KqmvnPgV3t31Ln9b/zf+tuFv/OStn/CTt37CkIIhzBw8k+MHHc+MQTNaPZYSGhEREcm4iEWYUj6FKeVT+OcZ/8z2mu28tPElXt74Mq9tfo2nVj3V5v5KaERERKTHqciv4PKJl3P5xMtxdzZUb2D+tvlczMUt1ldCIyIiIj2amTGyaCQji0a2WqfjT4USERER6WGU0IiIiEivp4RGREREej1z90zH0GXMrApYmuk4+pGBwI5MB9GPqL27l9q7+6itu1dva+/R7l7RvLCvTwpe6u6zMh1Ef2Fmc9Xe3Uft3b3U3t1Hbd29+kp7a8hJREREej0lNCIiItLr9fWE5s5MB9DPqL27l9q7e6m9u4/aunv1ifbu05OCRUREpH/o6z00IiIi0g8ooREREZFer88mNGZ2vpktNbMVZnZzpuPp68xsjZktNLP5ZjY30/H0NWZ2t5ltM7N30soGmNlzZrY8fC/LZIx9RSttfYuZbQy/3/PN7MJMxtiXmNlIM3vBzBab2SIz+3xYru93J2ujrfvE97tPzqExsyiwDDgX2AC8AXzE3RdnNLA+zMzWALPcvTfdnKnXMLMzgWrgN+4+LSz7LrDL3W8Lk/Yyd/9KJuPsC1pp61uAanf/XiZj64vMbCgw1N3fNLMiYB5wKXAt+n53qjba+kP0ge93X+2hORFY4e6r3L0BuA+4JMMxiRw2d38R2NWs+BLgnnD5HoJfTHKEWmlr6SLuvtnd3wyXq4AlwHD0/e50bbR1n9BXE5rhwPq09Q30oR9aD+XAn81snpndmOlg+onB7r45XN4CDM5kMP3ATWb2djgkpeGPLmBmY4DjgNfQ97tLNWtr6APf776a0Ej3O93djwcuAD4TdttLN/Fg7LjvjR/3HD8HxgMzgM3A9zMaTR9kZoXAw8AX3H1v+jZ9vztXC23dJ77ffTWh2QiMTFsfEZZJF3H3jeH7NuBRgmE/6VpbwzHxxrHxbRmOp89y963unnT3FPBL9P3uVGaWRfAH9nfu/khYrO93F2iprfvK97uvJjRvABPNbKyZZQNXAU9kOKY+y8wKwglmmFkBcB7wTtt7SSd4ArgmXL4GeDyDsfRpjX9YQ5eh73enMTMD7gKWuPsP0jbp+93JWmvrvvL97pNXOQGEl539CIgCd7v7rZmNqO8ys3EEvTIQPMH992rvzmVmfwBmAwOBrcA3gMeAB4BRwFrgQ+6uyaxHqJW2nk3QHe/AGuBTafM75AiY2enAS8BCIBUWf41gboe+352ojbb+CH3g+91nExoRERHpP/rqkJOIiIj0I0poREREpNdTQiMiIiK9nhIaERER6fWU0IiIiEivp4RGRLqdmZWnPdl3S9qTfqvN7GdddM4vmNnVbWz/gJl9qyvOLSJdT5dti0hGdceTrM0sBrwJHO/uiVbqWFjnNHev6apYRKRrqIdGRHoMM5ttZn8Ml28xs3vM7CUzW2tml5vZd81soZk9E97CHTObaWZ/Cx+M+myzu542Oht4szGZMbPPmdni8GF890HT84LmAB/olg8rIp1KCY2I9GTjCZKRi4F7gRfc/RigFnh/mNT8L3Clu88E7gZaukv1acC8tPWbgePcfTrw6bTyucAZnf4pRKTLxTIdgIhIG/7k7nEzW0jwGJNnwvKFwBhgEjANeC4YMSJK8LTg5oYCS9LW3wZ+Z2aPETxCotE2YFjnhS8i3UUJjYj0ZPUA7p4ys7jvn/SXIvj9ZcAidz/lEMepBXLT1t8PnAlcBHzdzI4Jh6Nyw7oi0stoyElEerOlQIWZnQJgZllmNrWFekuACWGdCDDS3V8AvgKUAIVhvaPopU8aFunvlNCISK/l7g3AlcB3zGwBMB84tYWqfyLokYFgWOrecBjrLeAn7r4n3HYW8FRXxiwiXUOXbYtIv2BmjwJfdvflrWwfDPze3c/p3shEpDMooRGRfsHMJgGD3f3FVrafAMTdfX63BiYinUIJjYiIiPR6mkMjIiIivZ4SGhEREen1lNCIiIhIr6eERkRERHo9JTQiIiLS6ymhERERkV5PCY2IiIj0ekpoREREpNdTQiMiIiK9nhIaERER6fWU0IiIiEivp4RGpB8yszlmdkOm48gkM/uamf0q03F0lJmtMbP3ZjoOkZ5GCY1ILxX+Yas1s+q0108zEMcYM/O0GNaY2c3dHUdHuft/u3uXJXVmNjtsl6901TlEZD8lNCK920XuXpj2uqkrT2ZmsTY2l7p7IfAR4D/M7PwO7t/XXAPsAq7OdCAi/YESGpE+yMxuMbN709Ybe1FaTCjM7DozW2Jmu83sWTMbnbbNzewzZrYcWH6oc7v7K8AiYFrYS7HBzL5iZluAX5tZxMxuNrOVZrbTzB4wswFp5zvdzP5hZnvMbL2ZXRuW55jZ98xsnZltNbM7zCwv3DbQzP4Y7rPLzF4ys0i47StmttHMqsxsqZmd00obXWxmi8JjzDGzyWnb1pjZl8zsbTOrNLP7zSy3jfYvAK4EPgNMNLNZLfwsrgk/yw4z+3ra9jwzuyf8WSwxsy+b2YZWztNmW4r0J0poRPo5M7sE+BpwOVABvAT8oVm1S4GTgCmHOJaZ2WnAVOCtsHgIMAAYDdwIfDY83nuAYcBu4PZw/9HAn4D/DWOZAcwPj3MbcFRYNgEYDvxHuO3fgA3hPoPDz+NmNgm4CTjB3YuA9wFrWoj7qPAzfyE8xtPAk2aWnVbtQ8D5wFhgOnBtG01xOVANPAg8S9Bb09zpwCTgHIIercYE6hvAGGAccC7wsTbO02pbivQ3SmhEerfHwh6FxtcnD+MYnwa+7e5L3D0B/DcwI72XJty+y91r2zjODoIhll8BN7v7X8LyFPANd68P9/808HV33+Du9cAtwJVh79FHgefd/Q/uHnf3ne4+38yMIBn6YhhHVRjnVeE54sBQYHS430vu7kASyAGmmFmWu69x95UtxP5h4Cl3f87d48D3gDzg1LQ6P3H3Te6+C3iSILFqzTXA/e6eBH4PXGVmWc3qfNPda919AbAAODYs/xDw3+6+2903AD9p4zxttaVIv6KERqR3u9TdS9NevzyMY4wGftyYFBEkJUbQA9JofTuOM9Ddy9x9srun/xHe7u51zc73aNr5lhAkHoOBkUBLCUcFkA/MS9vvmbAc4H+AFcCfzWxV46Rkd19B0OtyC7DNzO4zs2EtHH8YsLZxxd1T4WdOb4Mtacs1QGFLjWBmI4GzgN+FRY8DucD7m1Vt7XjDOLC922r7ttpSpF9RQiPSN+0jSAAaDWmj7nrgU80Sozx3/0daHT+CWJrvux64oNn5ct19Y7htfAvH2AHUAlPT9ikJJyHj7lXu/m/uPg64GPjXxrky7v57dz+d4I+/A99p4fibwu1AMHRGkFxtPIzP+3GC361PhvOGVhEkNC0NO7VkMzAibX1kG3XbakuRfkUJjUjfNB8408xGmVkJ8NU26t4BfNXMpgKYWYmZfbALY7sDuLVxSMvMKsJ5PBD0arzXzD5kZjEzKzezGWGPyS+BH5rZoHC/4Wb2vnD5A2Y2IUxEKgl6KVJmNsnMzjazHKCOIClKtRDTA8D7zeyccGjo34B64B8t1D2Ua4BvEgxJNb6uAC40s/J27P8Awc+jzMyGE8wBak1bbSnSryihEendnrQD70PzKIC7PwfcD7wNzAP+2NoB3P1Rgl6L+8xsL/AOcEEXxvxj4AmC4aEq4FWCCce4+zrgQoKEYhdBYtY4t+QrBMNKr4ZxPk8wqRZgYrheDbwC/MzdXyCYP3MbQQ/PFmAQLSR37r6UYPLt/4Z1LyK4JL6hIx/MzE4m6Om53d23pL2eCGP/SDsO8y2CCc6rw8/0EEFy1ZJW21Kkv7Fg3pyIiPREZvbPwFXu/p5MxyLSk6mHRkSkBzGzoWZ2WniPmUkEvVWPZjoukZ5Ol/aJiPQs2cAvCO53swe4D/hZJgMS6Q005CQiIiK9noacREREpNfr00NOpaWlPmHChEyH0W/s27ePgoKCTIfRb6i9u5fau/uorbtXb2vvefPm7XD3iublfTqhGTx4MHPnzs10GP3GnDlzmD17dqbD6DfU3t1L7d191Nbdq7e1t5mtbalcQ04iIiLS6ymhERERkV5PCY2IiIj0en16Do2IiEhvk0o5dYkktQ1JauNJ6uJJahtS1MaD9fp4knjSaUgmiSec+mSKeCJFQzJFQyJFPHxvvh5POvXheiKVIplyUinYtaeWHy36Oyl3Ekkn5U4y5STdSYXvyWT4nqJpeyrlJFKOh8+fNSx4D94wwMIVa/xwtn/ZzDCDqBmRiBE1IxoxIpEWysL3aKTpSAdRQiMiInIY6hNJ9tUn2VefoLo+kfberKwhQV2YnNTGU9Q2hElKPHngcrhen2jp+antZwbZ0QjZsQg5sQhZ4XJ2NFjOikXIioQJQ8TIiUJxXhZRoyl5iEXTkoi05CLYhzDRiBCNQMSMxjvaNd7bzp20svAdp/mt75qSo8YkKi1hanqlJ1ap1u+dp4RGRET6nVTKqW5IUFkTp7I2zt7a8L0ueN//SrC3Nt4sYQmSloZk+xKP7FiE/OwoeVnBKzcrSl64XpafHS5Hmralb8/LipJ7wL4RcrOi+5OUWISsqJETjTYtx6Idm00SXOV04uE0Y0bce0PL5UpoRESkV6tPJNlTE2fXvgZ21zQ0Le+paWDXvnjwXtPA7ppgeU9NnKq6OG38Y59oxCjJy6I4N0ZJXhaFuTHKC/IpzIlREL6KcmMUZEcpyIkdUB4sR5vKsjqYYMjhUUIjIiI9SjzlbNhdw7aqerZX1bOtqp6d1fXsqYmzu6YhTFb2Jy37GpKtHqsgO0pZQTZl+dmUFWQzekA+pflZlOQFr+K8LIpz96+XhNsKsqNN8z+kd1BCIyIiXc7dqa5PsK2qnm1769lWVcf2tISlcX1bVZC48OcXDjpGUW6sKTEpL8xm4qBCSvOzGVCQFb5nU5qfxYAwgSnNzyInFs3Ap5VMUEIjIiKHLZVydtU0NCUpjb0q28MkJSgP1mvjB/ekZEcjVBTlMKg4hzHlBZw4dgD7dmzmpOlHB+VFuQwqzmFAQbaGbqRNSmhERKRF7s6emjgb99SycU8tm/bUsnF3LZsqa9m4p44tlbXsqG5o8cqTopwYFcU5DCrKYcbI0jA5CRKXQUW5DCrKoaIoh5K8rIOGdubM2cnsE0d118eUPkIJjYhIP5VIptiyt45Ne+rYuKeGTXvq2LA7TFzCBKam2fyUnFiE4WV5DC/N46hBFQwqzqGiMIdBxUGSMqgol4qiHPKyNdQj3UsJjYhIH7WvPtHUu7KxWaKycXctW/bWHXSlT3lBNsNK8xhfUcCZEysYVprLiLI8hpUGScyAgmxNlpUeSQmNiEgvVlUXZ9X2fazaUR2+72PNjn1s2F1LZW38gLqxiDG0NJdhJXmcPL6c4WGSMqw0j+FleQwryVPPivRaSmhERHowd2fnvgbW7aphffhat6uGNTtrWL1jH9ur6pvqRiPGyLI8xg4s4PhRZUGSEiYtw0vzqCjKafPW8SK9mRIaEZEMiydTrN1Zw7pd+1i3s4Z1u2pZv3t/8tJ8HktFUQ6jBuQz+6gKxlUUMq6igPEVBYwaUEB2TFcCSf+khEZEpJu4O5sr61iwfg9LNu9l+bZqlm+rZs2OfSTSJrPkZUUZNSCfkQPyOXX8QEYOyGPUgHxGDchnRFm+hoVEWqCERkSki+ypaWDBhkoWrN/D2xv2MH99JTuqgyGiiMGY8gLGDyrkvCmDmTCokDEDCxhZls/AQk28FekoJTQiIp0gkUyxdGsV89buZt7a3cxfv4e1O2uA4OnH4wYWcOZRAzl2RCnHjizl6CFF5Gapp0WksyihERE5DJW1cd5at5s31+5m3rrdzF+3p+mZQoOKcjh+VBlXnTCKY0eUMG1ECcW5WRmOWKRvU0IjInII7s6WfSkemrch7IHZxfJt1bgHQ0eThxZz5cwRHD+6jJmjyxhemqchI5Fu1mMTGjOLAnOBje7+ATMbC9wHlAPzgI+7e0MmYxSRvqkunmThxkrmrd3N3DW7eXPdbnbtawAWUJwb4/jRZVw0fRgzR5dx7MhSCnJ67K9SkX6jJ/9f+HlgCVAcrn8H+KG732dmdwDXAz/PVHAi0nds3VvXNPdl3trdLNpUSTwZXHU0bmABZx89iMK6bXz0vJOZUFFIRPdyEelxemRCY2YjgPcDtwL/akHf7dnAR8Mq9wC3oIRGRDoomXKWbqli7tpdTQnMht21QPCcomNHlHL96eOYObqM40eVUl6YA8CcOXM4anBRJkMXkTaY+8FPSc00M3sI+DZQBHwJuBZ41d0nhNtHAn9y92kt7HsjcCNARUXFzAceeKC7wu73qqurKSwszHQY/Ybau33iKWd1ZYplu5Is251i+Z4ktYlgW2mOMaE0wsSyKBNLI4wqjhBrpfdF7d191Nbdq7e191lnnTXP3Wc1L+9xPTRm9gFgm7vPM7PZHd3f3e8E7gSYNGmSz57d4UPIYZozZw5q7+6j9m7ZvvoE89bu5rXVO3lj9W7mb9hDQyIFwIRBhVx6/ABOHFvGrNEDGFHW/sm7au/uo7buXn2lvXtcQgOcBlxsZhcCuQRzaH4MlJpZzN0TwAhgYwZjFJEeoqouzty1u3l11U5eW7WLdzZWkkg50YgxbVgxV588mhPGDuCEMQMYUJCd6XBFpIv0uITG3b8KfBUg7KH5krv/k5k9CFxJcKXTNcDjmYpRRDJnb12cN1bvChKY1UECk3LIihrHjijlU+8Zx0ljy5k5ukxXH4n0I73p//avAPeZ2X8BbwF3ZTgeEekGNQ0J3lizm3+s3MGrK3eyMExgsmMRZows5aazJnDSuHKOH1WmZxyJ9GM9OqFx9znAnHB5FXBiJuMRka5X25BkXjiE9MqqnSxYv4dEysmKWlMCc8r4gRw3qlSPDhCRJj06oRGRvq8unuTNtARm/vo9xJPBHJhjhpfwyTPHccq4cmaNKSM/W7+yRKRl+u0gIt0qmXIWbqzkb0u38/eVO5i/bg8NyRQRg2NGlHLd6WPDBGYAhZoDIyLtpN8WItLltlXV8eKyHfxt2XZeWr6dPTVxzGDasBKuPW1MUw9MkR7gKCKHSQmNiHS63fsaeG31Ll5bvZNXVu7k3S1VAAwszOGcowfznkkVnD5hoC6jFpFOo4RGRI5YfSLJ3DW7mbN0Gy8t39GUwORmRZg1egD/3/uGMXtSBZOHFOs5SCLSJZTQiMhh2bC7hjlLtzNn6Xb+sXIHNQ1JsqMRZo0p40vnHcXJ48qZPqKU7Fgk06GKSD+ghEZE2qWqLs6b6/bw0rLtzFm2nRXbqgEYXprHZccNZ/akQZw6vlw3sxORjNBvHhFp0ZbKOl5fs4u5a3Yxd81u3t2yN7ihXTTCSeMGcNUJI5k9aRDjKwra/TwkEZGuooRGRABIpZw31+3mqYWb+eu721i7swaAguwox40q47NnT2TWmDJmjtb9YESk59FvJZF+bvWOfTw8bwOPvrWRjXtqyY5FOGPCQD5+8mhOGlvO5KFFxKKaByMiPZsSGpF+qLI2zlNvb+bhNzcwb+1uIgZnTKzgS+87ivdOHqz7wYhIr6OERqSfSCRTvLRiBw/P28CfF2+lIZFi4qBCbr7gaC47bjiDi3MzHaKIyGFTQiPSxy3bWtU0pLStqp7S/Cw+csJIrpg5gmOGl2hCr4j0CUpoRPqgypo4TyzYyIPzNvD2hkpiEWP2pEFcOXM4Zx09iJyYnlItIn2LEhqRPiKVcl5ZtZP731jPM4u20JBIMXloMf/+gSlcMmMYAwtzMh2iiEiXUUIj0stt2F3DQ/M28ODcDWzcU0tJXjCk9MFZI5k2vCTT4YmIdAslNCK9UEMixetbEtx112u8vGIHAKdPGMhXLjia86YMJjdLQ0oi0r8ooRHpRVZsq+b+N9bx8Jsb2bWvgWElxufOnsgHZ41gRFl+psMTEckYJTQiPdy++gRPLdzMg3PX88aa3cQixnsnD2ZK7m4+c8XZRPX0ahGRrktozGwEcBVwBjAMqAXeAZ4C/uTuqa46t0hv5+68sWY3D85dz1MLN1PTkGRcRQE3X3A0Vxw/goqiHObMmaNkRkQk1CUJjZn9GhgO/BH4DrANyAWOAs4Hvm5mN7v7i11xfpHeqrImzkNvbuB3r65l1Y59FGRHufjYYXxw1giOH1Wme8aIiLSiq3povu/u77RQ/g7wiJllA6O66Nwivc7bG/Zw76treWLBJuriKY4fVcr3PngsFx4zRA+CFBFphy75TdlKMpO+vQFY0RXnFuktKmvj/PHtTTzwxnoWbKgkLyvKZceN4GMnj2LqMF1uLSLSEV015DQZ+FK4+gN3X9QV5xHpbdyDm9/94fX1PBve/G7S4CK+efFULjt+OMV6KKSIyGHpqr7sXwKXAQ48DpzWRecR6RX21Sd49K2N/OaVNSzbWk1JXhZXnTCSK/U8JRGRTtFVCc1K4EqChGZdF51DpMdbtb2a3766lofmbqCqPsHUYcV898rpXHzsMN38TkSkE3VVQnMtcB4QBT7WRecQ6ZH21Sd4dtEWHn1rIy8t30EsYlx4zFCuOXUMx48qVW+MiEgX6KpJwQ482xXHFumJGhIpnlu8lacWbuKv726jLp5ieGkeX3jvRD564igGFedmOkQRkT6tqyYF/xL4ibsvbGFbAfBhoN7df9cV5xfpLnXxJA/OXc/P56xkU2UdAwtzuHLmCC6ZMZyZo8qI6MZ3IiLdoquGnG4H/t3MjiG498x2ghvrTQSKgbsBJTPSa1XVxbn/jfX88qVVbN1bz6zRZdx6+TGcObFCd+8VEcmArhpymg98yMwKgVnAUIJHHyxx96VdcU6RrranpoGXlu/ghXe38dzirVTVJzhp7AB++OEZnDKuXHNjREQyqEtvQeru1cCcrjyHSFdKpZznl2zlrpdX88aaXaQcSvOzOG/qEK4+ZTTHjizNdIgiIoKeti3SqsWb9vLVRxeyYP0eRpTlcdNZE3jPpApmjCzTsJKISA+jhEakmdqGJD/6yzJ+9dJqSvOy+J8rp3PZccOJRSOZDk1ERFrRIxMaMxsJ/AYYTHBzvjvd/cdmNgC4HxgDrAE+5O67MxWn9D0vLd/O1x5dyPpdtXx41ki+euHRlOZnZzosERE5hC5NaMysiiAhMSAFLACudvc1h9g1Afybu79pZkXAPDN7juCGfX9x99vM7GbgZuArXRW/9B976+Lc+scl3D93PeMGFnDfjSdz8rjyTIclIiLt1NWTgovS183sCuB/gA8eYr/NwOZwucrMlgDDgUuA2WG1ewgmHCuhkSPywrvb+OojC9lWVcen3jOOL773KD2WQESkl7Hgpr5ddHCzJwl6aJqKgPcQXvnk7he34xhjgBeBacA6dy8Nyw3Y3bieVv9G4EaAioqKmQ888MARfgppr+rqagoLCzMdRrvtizu/X9LA3zclGF5oXH9MDuNKek8i09vau7dTe3cftXX36m3tfdZZZ81z91nNy7t6Ds33mq3nAUcB32/PzuF9bB4GvuDue9Pv8+HubmYHZWPufidwJ8CkSZN89uzZhxe5dNicOXPoLe393OKt3PLoQnbtS/LZsydw09kTyIn1nmQGeld79wVq7+6jtu5efaW9uzqhmZm2nA1cCPzc3f92qB3NLIsgmfmduz8SFm81s6HuvtnMhgLbOj1i6dMqa+N888lFPPLmRiYPLebX157AtOElmQ5LRESOUFcnNOlzaOqAb7r7Xw61UzicdBfBnYV/kLbpCeAa4Lbw/fFOjFX6uBeXbefLD73N9up6PnfORG46awLZMV2KLSLSF3T1pOBvHuaupwEfBxaa2fyw7GsEicwDZnY9sBb40BEHKX1edX2C/356Cb9/bR0TBhVy59UzmT6iNNNhiYhIJ+qR96Fx95cJJhC35JzujEV6t5eX7+ArD7/NpspaPnnGWP7tvEm6gklEpA/qkQmNyJGqrk/w7aeX8LvX1jFuYAEPffoUZo4ekOmwRESkiyihkT5n7ppdfOH++Wzco14ZEZH+QgmN9BnxZIqf/GU5t7+wghFl+eqVERHpR5TQSJ+wesc+vnD/fBas38OVM0dwy8VTKczR11tEpL/Qb3zp1VIp5zevrOG2Z94lOxrh9o8ez/unD810WCIi0s2U0EivtX5XDV96cAGvrd7F7EkV3Hb5dIaU5GY6LBERyQAlNNIrPT5/I//v0Xdw4LtXTOeDs0aQ/mgMERHpX5TQSK9SXZ/gG48v4uE3N3D8qFJ+fNVxjByQn+mwREQkw5TQSK+xYP0ePn/fW6zbVcPnzp7A586ZSCyqRxeIiIgSGukFEskUd760ih/8eRkVRTn84ZMnc9K48kyHJSIiPYgSGunR3tlYyc2PvM07G/dywbQhfPvyYyjNz850WCIi0sMooZEeqbYhyY+eX8avXl7NgIJsfv5Px3P+tCGa+CsiIi1SQiM9zuod+7jxN3NZvq2aq04YyVcvmExJflamwxIRkR5MCY30KC+8u43P3fcWsYjx2+tP5IyJFZkOSUREegElNNIjJFPO7S+s4IfPL2PykGJ+8fGZuhxbRETaTQmNZNzrq3fxzScXsWjTXi47bjj/fdkx5GXr6dgiItJ+SmgkY/bUNPCtPy7mkTc3MrQklx9fNYOLjx2mib8iItJhSmgkIxZuqOS6e95g974G/mX2eG46ewL52fo6iojI4dFfEOl2Ly/fwad+O5fS/Gwe+8xpTBtekumQRESkl1NCI93G3Xlg7nr+32PvMG5gIfdcd6Keji0iIp1CCY10uVTKeW7JVv73r8t5Z+NeTp8wkNs/erzuLSMiIp1GCY10mWTKeeadLfzvX5fz7pYqRpfn890rpnP58cP1UEkREelUSmik09U0JHhw7gbu/vtq1u6sYVxFAT/88LFcNH2YEhkREekSSmik0+yuS/GdZ97l96+to7I2zoyRpXz5fUdz/rQhRCO6FFtERLqOEho5Yut21nDHiyt54PVaUqzk/GlDuP70ccwcXZbp0EREpJ9QQiOHxd15c91ufvXSap5dtIVYNMIZI2J886ozGFWuRxaIiEj3UkIjHZJKOc8s2sKdL65i/vo9lORl8en3jOfaU8ew+M1XlcyIiEhGKKGRdmlMZH78/HKWbq1iTHk+37pkKlfOHNF0h9/FGY5RRET6LyU00qZEMsVTCzfz8zkreXdLFeMqCvjxVTP4wPRhmugrIiI9hhIaadHGPbX84bV1PDB3Pduq6pkwqJAffvhYLj52uBIZERHpcZTQyAGq6uL8bM5K7nppNYlUirMmDeKjJ43irEmDiCiRERGRHkoJjQCws7qeR9/ayM/nrGTnvgYuP344/3ruUYwo0yRfERHp+ZTQtFM8mWJLZR0AFUU55GZFMxxR55izdBv3vrqOOUu3kUg5J48bwN0XTObYkaWZDk1ERKTdlNC0Iply3lizi6fe3syrq3ayesc+EikHwAwmDynmtAnlnDd1CDNHlfW64Zhte+v4j8cX8cyiLQwszOH608dy6XHDmTy0ONOhiYiIdFivS2jM7Hzgx0AU+JW739ZZx3Z3Fm3ayyNvbuTJtzexvaqe3KwIp4wr571TBjOmPB/D2LinltdW7+Sef6zlly+tZnhpHpceN4xLZgxn4qBCzILkJpVydtc0sKO6gexYhGGlueTEMtez4+6s2VnDc4u38NO/rqAukeLL50/ik2eMI0vPWBIRkV6sVyU0ZhYFbgfOBTYAb5jZE+5+WLdAiSdTbNpTy+od+3h99S6eW7yV5duqyYoaZ00axEXHDuPsowdRkNNyM+2rT/DnxVt49K1N/HzOSm5/YSXFuTEKcmLEk0Eykwx7dQCyYxGOHVHC8aPLmD68lAmDCsnLihLmP+RmRRlYmN2UEHWW2oYkP5uzggfnbmDL3mDY7LQJ5XzrkmmMryjs1HOJiIhkQq9KaIATgRXuvgrAzO4DLqGVe7qtr0ox67+eD9eCxMJ9/9qemgYa841oxJg5uoxbL5vG+48ZSml+9iGDKciJcdlxI7jsuBFsr6rnz4u38O7mKuriSWJRo7wgh4GF2ZQX5tCQSPHulr28vmY3d7+8mnjSWzxmXlaU0eX5jK8oZOzAAgYV51Can01pXhZl+dkMKMxmcFFOu59avXFPLdf/3xu8u6WK904ezGfPmcDJ48oZN7Cg0xMnERGRTDH3lv+w9kRmdiVwvrvfEK5/HDjJ3W9Kq3MjcCNA4eBRM6/4f3dC+He78c9343thtlGRZ1TkRxhdHCEv1j1/4OMpZ2NVim01TkPKcQ/m5dQlYHtNii01zpZ9KbbXOqkWfjwGlOYYpTlGUY5RnB28SnKMkvC9IAu21Tj3LmmgPun887E5TK/o2vy1urqawkL1+HQXtXf3Unt3H7V19+pt7X3WWWfNc/dZzct7Ww/NIbn7ncCdAJMmTfL/u+l9GY7o8MWTKfbUxKmsbWB3TZw9NXF2VNezeU8tmyrr2F5Vz659DayqrmdHdQMNydRBxxhTns+dV8/iqMFFXR7vnDlzmD17dpefRwJq7+6l9u4+auvu1Vfau7clNBuBkWnrI8KyPikrGqGiKIeKopxD1nV39tYl2F5Vx7aqevbWxinKzeKEMQPIjmnCr4iI9G29LaF5A5hoZmMJEpmrgI9mNqSewcwoycuiJC+LCYO6vjdGRESkJ+lVCY27J8zsJuBZgsu273b3RRkOS0RERDKsVyU0AO7+NPB0puMQERGRnkOTK0RERKTX61WXbXeUmVUBSzMdRz8yENiR6SD6EbV391J7dx+1dffqbe092t0rmhf2uiGnDlra0rXq0jXMbK7au/uovbuX2rv7qK27V19pbw05iYiISK+nhEZERER6vb6e0NyZ6QD6GbV391J7dy+1d/dRW3evPtHefXpSsIiIiPQPfb2HRkRERPoBJTQiIiLS6/XZhMbMzjezpWa2wsxuznQ8fZ2ZrTGzhWY238zmZjqevsbM7jazbWb2TlrZADN7zsyWh+9lmYyxr2ilrW8xs43h93u+mV2YyRj7EjMbaWYvmNliM1tkZp8Py/X97mRttHWf+H73yTk0ZhYFlgHnAhsIHmr5EXdfnNHA+jAzWwPMcvfedHOmXsPMzgSqgd+4+7Sw7LvALne/LUzay9z9K5mMsy9opa1vAard/XuZjK0vMrOhwFB3f9PMioB5wKXAtej73anaaOsP0Qe+3321h+ZEYIW7r3L3BuA+4JIMxyRy2Nz9RWBXs+JLgHvC5XsIfjHJEWqlraWLuPtmd38zXK4ClgDD0fe707XR1n1CX01ohgPr09Y30Id+aD2UA382s3lmdmOmg+knBrv75nB5CzA4k8H0AzeZ2dvhkJSGP7qAmY0BjgNeQ9/vLtWsraEPfL/7akIj3e90dz8euAD4TNhtL93Eg7Hjvjd+3HP8HBgPzAA2A9/PaDR9kJkVAg8DX3D3venb9P3uXC20dZ/4fvfVhGYjMDJtfURYJl3E3TeG79uARwmG/aRrbQ3HxBvHxrdlOJ4+y923unvS3VPAL9H3u1OZWRbBH9jfufsjYbG+312gpbbuK9/vvprQvAFMNLOxZpYNXAU8keGY+iwzKwgnmGFmBcB5wDtt7yWd4AngmnD5GuDxDMbSpzX+YQ1dhr7fncbMDLgLWOLuP0jbpO93J2utrfvK97tPXuUEEF529iMgCtzt7rdmNqK+y8zGEfTKQPAE99+rvTuXmf0BmA0MBLYC3wAeAx4ARgFrgQ+5uyazHqFW2no2QXe8A2uAT6XN75AjYGanAy8BC4FUWPw1grkd+n53ojba+iP0ge93n01oREREpP/oq0NOIiIi0o8ooREREZFeTwmNiIiI9HpKaERERKTXU0IjIiIivZ4SGhHpdmZWnvZk3y1pT/qtNrOfddE5v2BmV7ex/QNm9q2uOLeIdD1dti0iGdUdT7I2sxjwJnC8uydaqWNhndPcvaarYhGRrqEeGhHpMcxstpn9MVy+xczuMbOXzGytmV1uZt81s4Vm9kx4C3fMbKaZ/S18MOqzze562uhs4M3GZMbMPmdmi8OH8d0HTc8LmgN8oFs+rIh0KiU0ItKTjSdIRi4G7gVecPdjgFrg/WFS87/Ale4+E7gbaOku1acB89LWbwaOc/fpwKfTyucCZ3T6pxCRLhfLdAAiIm34k7vHzWwhwWNMngnLFwJjgEnANOC5YMSIKMHTgpsbCixJW38b+J2ZPUbwCIlG24BhnRe+iHQXJTQi0pPVA7h7yszivn/SX4rg95cBi9z9lEMcpxbITVt/P3AmcBHwdTM7JhyOyg3rikgvoyEnEenNlgIVZnYKgJllmdnUFuotASaEdSLASHd/AfgKUAIUhvWOopc+aVikv1NCIyK9lrs3AFcC3zGzBcB84NQWqv6JoEcGgmGpe8NhrLeAn7j7nnDbWcBTXRmziHQNXbYtIv2CmT0KfNndl7eyfTDwe3c/p3sjE5HOoIRGRPoFM5sEDHb3F1vZfgIQd/f53RqYiHQKJTQiIiLS62kOjYiIiPR6SmhERESk11NCIyIiIr2eEhoRERHp9ZTQiIiISK+nhEZERER6PSU0IiIi0uspoREREZFeTwmNiIiI9HpKaERERKTXU0IjIiIivZ4SGhFpYmZzzOyGTMfRmczsDjP790zH0VFm5mY2IdNxiPQWSmhE+hgzW2NmtWZWnfb6aQbiGBP+UX66Wfm9ZnZLO4/xf2b2Xx0457Vm9nJ6mbt/2t3/s73H6KjwnG5mH+6qc4jIoSmhEembLnL3wrTXTV15MjOLtbH5JDM7tSvPn2HXALuAqzMdiEh/poRGpB8xs1vM7N609cZelBYTEjO7zsyWmNluM3vWzEanbXMz+4yZLQeWt3Ha7wK3tnL8g3pUGodazOxG4J+AL4e9TE+G2282s5VmVmVmi83ssrB8MnAHcEpYf09YfkAvj5l90sxWmNkuM3vCzIY1O/enzWy5me0xs9vNzFr7YGF7vAe4EXifmQ1J2zbbzDaY2b+Z2TYz22xmn0jbXm5mT5rZXjN7w8z+q3lbpNXNMbPvmdk6M9saDqPltRaXSH+khEZEWmRmlwBfAy4HKoCXgD80q3YpcBIwpY1D/Qw4ysze25Hzu/udwO+A74a9TBeFm1YCZwAlwDeBe81sqLsvAT4NvBLWL23hM50NfBv4EDAUWAvc16zaB4ATgOlhvfe1EebVwFx3fxhYQpCApRsSxjkcuB643czKwm23A/vCOteEr9bcBhwFzAAmhMf7jzbqi/Q7SmhE+qbHwh6GxtcnD+MYnwa+7e5L3D0B/DcwI72XJty+y91r2zhOLUEPTbvnwrTF3R90903unnL3+wl6h05s5+7/BNzt7m+6ez3wVYIenTFpdW5z9z3uvg54gSCJaM3VwO/D5d9z8LBTHPiWu8fd/WmgGphkZlHgCuAb7l7j7ouBe1o6QdhDdCPwxbCtqwh+Fle18zOL9AtKaET6pkvdvTTt9cvDOMZo4MeNSRHBPBEj6B1otL6dx/oVMNjMLjpkzUMws6vNbH5aXNOAge3cfRhBrwwA7l4N7OTAz7QlbbkGKGwljtOAsezv4fk9cIyZzUirtjNMBpsfrwKIcWD7tdaWFUA+MC/tMz8TlotIqK2JfCLS9+wj+OPYaEhrFQn+wN7q7r9ro46356Tu3mBm3wT+E1jUWjzpc1BaOn7YO/RL4ByCoaWkmc0nSLTaE88mgkSt8XgFQDmwsT2fo5lrwvPObzbN5hpg/iH23Q4kgBHAsrBsZCt1dxD0ck1198OJU6RfUA+NSP8yHzjTzEaZWQnBkEtr7gC+amZTAcysxMw+eATn/i2QC5yfVrYAmGpmM8wsF7il2T5bgXFp6wUEScv2MKZPEPTQpNcfYWbZrcTwB+AT4flyCIZuXnP3NR35IGGsHyIYCpqR9vos8NFDXPWFuyeBR4BbzCzfzI6mlauk3D1FkMT90MwGhecfbmZtze0R6XeU0Ij0TU/agfeheRTA3Z8D7gfeBuYBf2ztAO7+KPAd4D4z2wu8A1xwuAGFf8T/AxiQVrYM+BbwPMFcmOZX+dwFTAmHWh4L55p8H3iFIHk5Bvh7Wv2/EvQAbTGzHS3E8Dzw78DDwGZgPIc3F+VSgl6T37j7lsYXcDdBz/f5be0cuolgwvAWgmTvD0B9K3W/AqwAXg1/Fs8Dkw4jbpE+y9zb1WMsIiJdyMy+Awxx97audhKRVqiHRkQkA8zsaDObboETCS7rfjTTcYn0VpoULCKSGUUEw0zDCIbPvg88ntGIRHqxXjfkZGbnAz8GosCv3P22DIckIiIiGdarEprwZlTLgHOBDcAbwEfCiYIiIiLST/W2IacTgRXuvgrAzO4DLgFaTGhKS0t9woQJ3Rhe/7Zv3z4KCgoyHUa/ofbuXmrv7qO27l69rb3nzZu3w90PurFkb0tohnPg3TQ3EDxHpkn4QLsbASoqKvje977XfdH1c9XV1RQWtnhTVekCau/upfbuPmrr7tXb2vuss85a21J5b0toDil8oN2dAJMmTfLZs2dnNqB+ZM6cOai9u4/au3upvbuP2rp79ZX27m2XbW/kwNuDj+DwblkuIiIifUhv66F5A5hoZmMJEpmrgI+2VjnlUFkbJxoxIgYRs3A5WG/2/BURERHppXpVQuPuCTO7CXiW4LLtu919UWv111WlOPabf271eGYQNSM3K8rg4hyGluQxckAeU4YWM2VYMZOHFpOf3auaSEREpF/qdX+t3f1p4On21B2Qa/y/90/GHZLuJFOOu5NMBeseltXGk2zdW8emPXX86Z0t/OH1YN5xxGDSkGJmjCzluJGlHDOihJED8inM2d9syZSzp6aBXfsa2LkveK9tSFKSl0VZQTYDC7MpL8yhIDva1COUTDnxZIpEGE9OLEpW1NRjJCIicph6XULTEcXZxg1njDt0xTTuzqbKOhZtrGThxkrmr9/DH9/exB9eX9dUpzAnRjRipFJOdUOC9tzKJzcrQlYkQl0iSTx58A4Rg5xYlJysCDmxCIYdsC0aNWKRCNGIETUjEjGiEYhGIkQNopEgIYo2DquFw2xNdcPyWDR4z4pEiEWNrGiEWMSINb0fWJbVrH4sGiGrWf1YJKi3ak+SgRsryYoGcWY1rx+1YJ+wvhI4ERHpLH06oTkcZsbw0jyGl+Zx3tQhAKRSzqod+1i8eS+b9tSypbIOdycSMYpysxiQn8WAwhzKC7IZUJBNXlaUyto4u2oa2FXdwI7qenZU15NIOblZUXJjUbJiwR93gIZEivpEirp4kvpEivp46oCYUmFPUiLlJFIpkqmglynlQVkqFWwP1lPUJ5yk09QD1bitcTmeDOolkvt7ihJhWepI77P4avOHJbcuGgna4IAEqFmiFQ23x6IHJlWxtH3Tk6qm+mkJWeMxWyoL9jkw6cpqVj/WLIZo1FqtryRNRCQzlNC0QyRiTBhUyIRBvec6/cOVSjnxMNlJJIPlpiGyMOmJJ/cnQIm0bW/OX8DkqdNaqR8mTqlg+cCkykmmUsTDbcF50/ZJ7j9PQyLFvoYkyRYSsngydcBwXmP83Xkz7GiHEq20ZKupJys9YQvrHXCc/QnZ+rUNLIusTEvYgvecWITsaITsWIScWDR8D9bTl3OiQY9gdjRCJKJETER6NyU0coBIxMiJRMk5jG9GalOM2WGvVk+STO1PnhqTnPRkKJmWpO1P5lJNPWLpCVxT8pVMT7QOrN+YpKXXT0/S0pO5RGp/krY/mQsSs/QYGxPEZKpZkrb83U5po6yotSMJiqYlQ5GmZKj1faLNEqjGfaLN9t2/T3Y0ol4uETksSmikz4tGjOhhJmk9VTLl/OWFOZx6+hlpPVlB4hNPBkOYjUOZDYkUDckk9fEUDeG2/duTwfb0uo3lydQB+1TWxsPtybTjBnXqE8kjH64MNSY5ObEoedkR8rKi5GXHyMuKkJ8dC9ej5GVFyc+Okhu+56UvH1AnbZ+wLKoeKZE+pw/9ihfpP6IRIztqB1xxl2mJZJDgNCQOTKgak6YDE6YgyTq47v6Eqj6Roq4hSW08SU34vr2qntp4ktqm8gR1zeactUd2LNKUEDUmOwU5MQrDV0FOjKLcGAXZMQpzYxTlxFizJYEt205hTpTCnCwKcqIUhe+xaG+7R6lI39NzfhuKSK8WTJKOkJ/dvedNpZy6RJDk1DQkqYsfmATVNoTb4knqGtLLE/vrNSTZ15BgW1Udq3ckqapLsK8+2J7uZ/NfbzGG3KxIUzJUGCZCRblZlORlUZofvDe9mq/nZZGlhEjkiCmhEZFeLRIx8rNj5GfHKO/kYyeSwfym6voEL7z0CpOnH0d1fZDsVNclqK5PNK1XhWWNyxt217B4U5zK2jj7GpJtnqcgOxomO9mUh/evGliYw8CinOA9XK8oCq6mVI+QyMGU0IiItCIWjVCSF6EkL4sRRRFmji47rOPEk8EcpANeNfuX9zQtN7CjuoE1O/exo7q+1eG0svwsKpqSnfBVFCY9aevlBTlkx5T8SP+ghEZEpItlRSNNiUd7uTv7GpLsqKpvupfV9uqGA9Z3VDewYMMedlTVt9oLVJKXxcDCbAYV5TK0JJchJbkMLc1jWEkuQ0vyGFqSS2l+lq4uk15PCY2ISA9kZk3zcsYMLDhk/dqGZJj01IdJz/6bem6vqmdbVT2vrd7Flr11JJtdkpaXFWVoSS5DS3MZUpzHsNIw2SkNkqChJXkU58aU9EiPpoRGRKQPyMuOMnJAPiMH5LdZL5lydlTXs2lPLZsr64JXuLypspZ/rNzB1r11B12GX5AdZWhpHiPK8hg9IJ9R5QWMHpDP6PLgnLlZ0S78dCKHpoRGRKQfiUaMwcW5DC7O5bhW6iSSKbZV1bO5Mkx69gTJzuY9dazbVcPcNbuprk8csM+Q4lxGlec3JTmjygsYN7CAcRUF5GfrT410PX3LRETkALFohGGleQwrzWtxu7uza18Da3fVsG5nDWt31rB21z7W7axhzrLtbK+qP6D+sJJcxg8qZHxFYfhewISKQiqKcjSMJZ1GCY2IiHSImVFemEN5YQ7Hjzr4yq+ahgTrdtWwevs+Vm6vZmX4/uDc9QdMXi7KjQVJTkUh4wcVcPSQIiYPLca78wFs0mcooRERkU6Vnx3j6CHFHD2k+IByd2fL3jpWbmtMdILXyyu28/CbG5rqFWTBtGWvMHloMZOHFnH0kGImDSnSPB1pkxIaERHpFmYWXiqex+kTBx6wbW9dnGVbqliyeS9/eXMplckUD8xdT03YoxOLGEcNLmL6iBKmjyhl+ogSJg0p0l2WpYkSGhERybji3CxmjRnArDEDGFm/htmzTyOVctbvrmHJ5r0s3FjJ2xsq+dM7W7jvjfVA8EyuyUOLOXZECTNGljJr9ABGDsjTvJx+SgmNiIj0SJGIMbq8gNHlBZw/bSgQDFut31XLgg17WLixkgXr9/DwvA385pW1AAwqymHWmDJmjh7ArNFlTBlWrF6cfkIJjYiI9BpmxqjyfEaV53PRscOA4N46y7ZWMXftbuat2cUba3bz9MItQHDTwBkjSzlx7ABOHV/OcaPK9DiIPkoJjYiI9GrRiIUTiIv5+MmjAdhSWcfctbuYu2Y3c9fu4id/Xc6P/7KcvKwos8aUcer4gZw2oZypw0qIRjRE1RcooRERkT5nSEkuH5g+jA9MD3pxKmvivLp6J6+s3Mk/Vu7gO8+8CwQP+jzzqArOmjSIM4+qYEBBdibDliOghEZERPq8kvws3jd1CO+bOgSAbVV1vLJyJ39bup05y7bz+PxNmMGMkaXMPmoQZx89iGnDizXBuBdRQiMiIv3OoKJcLpkxnEtmDCeVct7eWMmcpdt4Yel2fvSXZfzw+WUML83jfVOHcMExQ5g5qoyIhqZ6NCU0IiLSr0UixoyRpcwYWcoX3nsUO6rr+eu723j2nS3c++pa7v77aiqKcjh/6hAumDaEE8cOIKYrp3ocJTQiIiJpBhbm8KFZI/nQrJFU1cX567vb+NPCLTw4bz2/fXUtAwtzuPz44Vxx/AgmDSnKdLgSUkIjIiLSiqLcrKahqZqGBH9bup1H39rI3S+v5s4XV3HM8BKunDmCi48dRpkmFGeUEhoREZF2yM+OccExQ7ngmKHsrK7n8fmbeGjeBr7xxCL+66nFvHfyYK44fgTvmVShm/llgBIaERGRDiovzOG608dy3eljWbxpLw+/uYHH3trIn97ZwsDCbD40ayT/dPJohpfmZTrUfkMJjYiIyBGYMqyYKcOmcPMFRzNn6Xbuf2M9d/xtJXf8bSXnTB7MNaeM4bQJ5boEvIspoREREekEWdEI504ZzLlTBrNhdw2/f20d972xnucWb+XoIUXccMY4Lj52mB690EXUqiIiIp1sRFk+Xz7/aP5x89n8z5XTcYcvPbiAM777V34+ZyVVdfFMh9jnKKERERHpIrlZUT44ayTPfOEM7rnuRCYOKuI7z7zLabf9lR8+t4w9NQ2ZDrHP0JCTiIhIFzMz3nNUBe85qoK3N+zhp39dwY//spy7Xl7N1aeM5sYzx1Gar8u+j4R6aERERLrR9BGl3Hn1LP70+TN4z6QKfv63lZzx3Rf46V+Xs68+kenwei0lNCIiIhkweWgxt3/0eJ7+3BmcNLac7/15Ge/5nxf4v7+vJp5MZTq8XkcJjYiISAZNHlrMr66ZxSP/cioTBxVxy5OLed8PX+T5xVtx90yH12v0uITGzG4xs41mNj98XZi27atmtsLMlprZ+zIZp4iISGc6flQZv//kSdx1zSwwuOE3c/nYXa/x7pa9mQ6tV+hxCU3oh+4+I3w9DWBmU4CrgKnA+cDPzCyaySBFREQ6k5lxzuTBPPuFM7nloiks2rSX9//kZf7zj4up1vyaNvXUhKYllwD3uXu9u68GVgAnZjgmERGRTpcVjXDtaWOZ86XZfPiEkdz999W89/t/4+mFmzUM1QrraQ1jZrcA1wJ7gbnAv7n7bjP7KfCqu98b1rsL+JO7P9Rs/xuBGwEqKipmPvDAA90Yff9WXV1NYWFhpsPoN9Te3Uvt3X3U1gdbsSfJbxY1sK4qxfSKKNdOzWZAbuf0SfS29j7rrLPmufus5uUZSWjM7HlgSAubvg68CuwAHPhPYKi7X9fehCbdpEmTfOnSpZ0ev7Rszpw5zJ49O9Nh9Btq7+6l9u4+auuWJZIp7nllLd97dimxiPG190/mqhNGHvEzonpbe5tZiwlNRm6s5+7vbU89M/sl8MdwdSMwMm3ziLBMRESkz4tFI1x/+ljOnTyYrzz8Nl99ZCF/fHsT37liOiPK8jMdXsa1u7/KzMrMbKqZjTOzLpt7Y2ZD01YvA94Jl58ArjKzHDMbC0wEXu+qOERERHqiUeX5/O6Gk7j1smksWF/JBT96icfn69/3bfbQmFkJ8BngI0A2sB3IBQab2avAz9z9hU6O6btmNoNgyGkN8CkAd19kZg8Ai4EE8Bl3T3byuUVERHq8SMT4p5NGc+bECr5w/3w+f9985izdzrcumUpRblamw8uIQw05PQT8BjjD3fekbzCzmcDHzWycu9/VWQG5+8fb2HYrcGtnnUtERKQ3Gzkgn/tvPJnbX1jJT/66nLlrd/GjD89g5ugBmQ6t27U5dOTu57r7b5snM+G2ee7+hc5MZkRERKRjYtEIn3/vRB741CkAfOgXr/Krl1b1u8u7DzkXxszyzaygO4IRERGRwzNzdBlPfe4Mzjl6EP/11BI+8/s3qaqLZzqsbtNmQmNmnwPuAn5pZl/snpBERETkcBTnZvGLj8/kqxcczbOLtnLJ7X9n2daqTIfVLQ7VQ3MN8FHgY0Crc1tERESkZzAzPvWe8fzuhpPYW5vgkp/+nWfe2ZzpsLrcoRKa7wKPAA8DP+ryaERERKRTnDyunKc+dzqThhTx6Xvf5PYXVvTpeTVtXuXk7vcD93dTLCIiItKJBhfnct+NJ/Plh97mf55dyspt1Xz7imPIifW9Zzsfag7NIR/u0J46IiIikhm5WVF+fNUM/vXco3jkrY189JevsaO6PtNhdbpDDTk9bmbfN7Mz0690Cu8WfL2ZPQuc37UhioiIyJEwMz53zkRu/+jxvLOxkit//g/W7azJdFid6lD3oTkH+AvB3XoXmVmlme0E7iV4uOQ1bT0cUkRERHqO908fyu8/eTK7a+Jc/vN/sGhTZaZD6jSHvA+Nuz/t7v/k7mPcvcTdy939VHe/1d23dEeQIiIi0jlmji7j4X8+heyo8eFfvMrinX3jKUJd9pBJERER6ZkmDCri4X85lWGlufxgbh1Pvd37L+tWQiMiItIPDS3J48FPncrYkgif/cObPPLmhkyHdESU0IiIiPRTJflZfGlWLiePK+ffHlzAA2+sz3RIh+1QT9vGzPKBC4BRYdFa4Bl371vTo0VERPqhnJhx97Un8KnfzuPLD79NfTLFx08enemwOuxQ96G5EngROBH4V6CQ4DLtt8zssq4PT0RERLpablaUO6+eyXsnD+LfH3uHu19enemQOuxQPTTfBE50931mdp67/yeAmQ0E/g482tUBioiISNfLiUX52T/N5PP3vcW3/riYWNS4+pQxmQ6r3Q41h8aAVLic/gCIZLhNRERE+ojsWISffOQ4zp0ymP94fBH3v7Eu0yG126ESmluAF83sW8AgM/uamf2MoHfm5q4OTkRERLpXVjTCTz96HGceVcHNjyzk8fkbMx1SuxzqTsEPAGcBbwM/AOqAvwInuPsjXR+eiIiIdLecWJRffGwmJ40dwL8+sIBn3un596lpz52Cq939IXf/Qfh6yN33dUdwIiIikhl52VF+dc0JHDuihM/+4S3+tmx7pkNqk+5DIyIiIi0qzInx60+cyIRBRfzzvfN4Z2PPffaTEhoRERFpVUleFv/3iRMoy8/m2l+/wfpdPfM2dEpoREREpE2Di3O557oTiCdTXHP36+za15DpkA6ihEZEREQOacKgIu66ZhYb99Ry/T1vUNvQs57SrYRGRERE2mXWmAH8+KrjmL9+D5/9w1skkqlD79RNlNCIiIhIu50/bQjfvHgqzy/Zyr8/vgh3P/RO3eCQD6cUERERSXf1KWPYXFnHz+esZFhJLp89Z2KmQ1JCIyIiIh335fdNYmtlHd9/bhmjyvO5ZMbwjMajIScRERHpMDPjtiumc+LYAfx/D73NW+t2ZzQeJTQiIiJyWLJjEe742EyGFOfyyd/MY9Oe2ozFooRGREREDtuAgmzuumYW9fEk198zl331iYzEoYRGREREjsjEwUX85KPHsXTLXr54/3xSqe6/8kkJjYiIiByxsyYN4uvvn8KfF2/le39e2u3n11VOIiIi0imuO20MK7ZV8bM5K5kyrJgPTB/WbedWD42IiIh0CjPjlouncvyoUv6/B99myea93XZuJTQiIiLSaXJiUe742EyKcmPc+Nu57KnpngdZKqERERGRTjWoOJc7Pj6TrZX13fbMp4wkNGb2QTNbZGYpM5vVbNtXzWyFmS01s/ellZ8flq0ws5u7P2oRERFpr+NHlfGtS6by0vId/M+zXT9JOFM9NO8AlwMvphea2RTgKmAqcD7wMzOLmlkUuB24AJgCfCSsKyIiIj3UVSeO4mMnj+IXL67iiQWbuvRcGbnKyd2XQDB5qJlLgPvcvR5YbWYrgBPDbSvcfVW4331h3cXdE7GIiIgcjv/4wFSWbqniyw8tYEJFIVOGFXfJeXraZdvDgVfT1jeEZQDrm5Wf1NIBzOxG4EaAiooK5syZ0/lRSouqq6vV3t1I7d291N7dR23dvbqjvf9pbIpvbnau/uXL3HJKHoXZB3VoHLEuS2jM7HlgSAubvu7uj3fVed39TuBOgEmTJvns2bO76lTSzJw5c1B7dx+1d/dSe3cftXX36q72HjNlDx/6xSvcty6f//vECcSinTvrpcvm0Lj7e919WguvtpKZjcDItPURYVlr5SIiItILzBhZyq2XTuPlFTv4zjPvdvrxe9pl208AV5lZjpmNBSYCrwNvABPNbKyZZRNMHH4ig3GKiIhIB31w1kiuPXUMv3xpNY+91bn9Epm6bPsyM9sAnAI8ZWbPArj7IuABgsm+zwCfcfekuyeAm4BngSXAA2FdERER6UW+/v7JnDxuAF95+G0WbqjstONmJKFx90fdfYS757j7YHd/X9q2W919vLtPcvc/pZU/7e5HhdtuzUTcIiIicmSyohFu/+jxDCzM4VO/ncuO6vpOOW5PG3ISERGRPq68MIdffHwmu2oa+JffvUm8E+4krIRGREREut204SV854rpvL56F//5xyO/rVxPuw+NiIiI9BOXzBjO4k17+cWLq5g6rJgPnzDqsI+lHhoRERHJmC+ffzRnTBzIvz+2iDfX7T7s4yihERERkYyJRoz//chxDCnJ5dO/ncfWvXWHdRwlNCIiIpJRpfnZ/PLqWVTXJ/j0vfOoTyQ7fAwlNCIiIpJxk4YU8YMPHctb6/bwH48twt07tL8SGhEREekRzp82lM+ePYH7567nrpdXd2hfXeUkIiIiPcYX33sUK7ZVc+vTSxg1IJ/zprb0nOuDqYdGREREeoxIxPjhh2cwfUQpn79vfrsfj6CERkRERHqU3Kwov7p6FgMKsrnunjfYsLvmkPsooREREZEep6Ioh19/4gTq40muvut1dh7imU9KaERERKRHOmpwEXddewIb99Ry3f+9wb76RKt1ldCIiIhIj3XCmAHc/tHjeWfTXj5977xW6ymhERERkR7tvVMG850rpvPS8h2t1lFCIyIiIj3elTNH8NwXz2x1uxIaERER6RUmDi5qdZsSGhEREen1lNCIiIhIr6eERkRERHo96+jTLHsTM6sClmY6jn5kIND6FHTpbGrv7qX27j5q6+7V29p7tLtXNC/s6w+nXOruszIdRH9hZnPV3t1H7d291N7dR23dvfpKe2vISURERHo9JTQiIiLS6/X1hObOTAfQz6i9u5fau3upvbuP2rp79Yn27tOTgkVERKR/6Os9NCIiItIPKKERERGRXq/PJjRmdr6ZLTWzFWZ2c6bj6evMbI2ZLTSz+WY2N9Px9DVmdreZbTOzd9LKBpjZc2a2PHwvy2SMfUUrbX2LmW0Mv9/zzezCTMbYl5jZSDN7wcwWm9kiM/t8WK7vdydro637xPe7T86hMbMosAw4F9gAvAF8xN0XZzSwPszM1gCz3L033Zyp1zCzM4Fq4DfuPi0s+y6wy91vC5P2Mnf/Sibj7AtaaetbgGp3/14mY+uLzGwoMNTd3zSzImAecClwLfp+d6o22vpD9IHvd1/toTkRWOHuq9y9AbgPuCTDMYkcNnd/EdjVrPgS4J5w+R6CX0xyhFppa+ki7r7Z3d8Ml6uAJcBw9P3udG20dZ/QVxOa4cD6tPUN9KEfWg/lwJ/NbJ6Z3ZjpYPqJwe6+OVzeAgzOZDD9wE1m9nY4JKXhjy5gZmOA44DX0Pe7SzVra+gD3+++mtBI9zvd3Y8HLgA+E3bbSzfxYOy4740f9xw/B8YDM4DNwPczGk0fZGaFwMPAF9x9b/o2fb87Vwtt3Se+3301odkIjExbHxGWSRdx943h+zbgUYJhP+laW8Mx8cax8W0ZjqfPcvet7p509xTwS/T97lRmlkXwB/Z37v5IWKzvdxdoqa37yve7ryY0bwATzWysmWUDVwFPZDimPsvMCsIJZphZAXAe8E7be0kneAK4Jly+Bng8g7H0aY1/WEOXoe93pzEzA+4Clrj7D9I26fvdyVpr677y/e6TVzkBhJed/QiIAne7+62ZjajvMrNxBL0yEDzB/fdq785lZn8AZgMDga3AN4DHgAeAUcBa4EPursmsR6iVtp5N0B3vwBrgU2nzO+QImNnpwEvAQiAVFn+NYG6Hvt+dqI22/gh94PvdZxMaERER6T/66pCTiIiI9CNKaERERKTXU0IjIiIivZ4SGhEREen1lNCIiIhIr6eERkS6nZmVpz3Zd0vak36rzexnXXTOL5jZ1W1s/8D/396dh0dZ3vsff39nMtn3EAKBEHZQUEB2UBZbFa37sdbT06qtrbXa0/Ucte3pqafbr9tprV2serRad1v3tdVWwA1kBxHZwhL2JSwBsuf7+2MmEDBElmQmM/m8rmuumXm2+c7tXOHjfd/P85jZD9rjs0Wk/em0bRGJqWjcydrMkoD5wBnuXn+UbSyyzUR3P9BetYhI+1APjYh0GGY2xcxeiLy+zcweMLM3zGydmV1uZj83syVm9krkEu6Y2UgzmxG5MerfjrjqaZOzgflNYcbMvmpm70duxvcYHLxf0HTgwqh8WRFpUwo0ItKR9SMcRi4GHgJed/fTgCrgE5FQ81vgCncfCdwHtHSV6onAvGbvbwVGuPvpwA3Nls8FzmrzbyEi7S4p1gWIiLTiZXevM7MlhG9j8kpk+RKgNzAIGAq8Gh4xIkj4bsFH6g4sa/Z+MfCwmT1D+BYSTbYBxW1XvohEiwKNiHRkNQDu3mhmdX5o0l8j4b9fBix19/EfcZwqILXZ+08Ak4CLgO+a2WmR4ajUyLYiEmc05CQi8Ww5UGhm4wHMLGRmQ1rYbhnQP7JNAChx99eBW4AcIDOy3UDi9E7DIp2dAo2IxC13rwWuAH5mZouAhcCEFjZ9mXCPDISHpR6KDGMtAO5w992RdVOBF9uzZhFpHzptW0Q6BTN7GrjZ3VceZX0R8Ii7fyy6lYlIW1CgEZFOwcwGAUXuPvMo60cDde6+MKqFiUibUKARERGRuKc5NCIiIhL3FGhEREQk7inQiIiISNxToBEREZG4p0AjIiIicU+BRkREROKeAo2IiIjEPQUaERERiXsKNCIiIhL3FGhEREQk7inQiIiISNxToBGRk2Jm083sC7GuA8DM9plZ31jXcSQzu9/MfhTrOkQSmQKNiGBma82sKhIImh6/i1Et15nZB2ZWaWZbzewlM8s6ln3dPdPdy07iszMj3/3lEz2GiMRGUqwLEJEO4yJ3fy1aH2ZmSe5ef8SyycBPgGnuvsDM8oGLolUT8C9ADXCOmXVz9y1R/GwROQnqoRGRVpnZbWb2ULP3vc3MzazF/yEys8+b2TIz22VmfzOz0mbr3MxuMrOVwMoWdh8NvOPuCwDcvcLdH3D3ysj+95vZH83s1UgPzowWjt+/2ba/N7MXI9vONrN+H/F1rwH+CCwGPnPE91prZv9hZovNbI+ZPW5mqc3W32xmm81sk5l9oXktLbTRhWa20Mx2m9nbZnb6R9QlIh9BgUZE2oyZXQJ8B7gcKATeAB49YrNLgbHAqS0cYjZwnpn9j5lNNLOUFrb5N+CHQBdgIfBwKyVdBfwPkAesAn7cSu2lwJTI8R4Grm5hsyuBaUAf4HTg2si+04BvAh8H+keOc7TPGQHcB3wJKADuAp47yncVkWOkQCMiTZ6J9Bg0Pb54Ase4Afh/7r4sMpz0E2B4816UyPoKd686cmd3f4NwGDoDeBHYaWa/MrNgs81edPeZ7l4DfBcYb2YlR6nnaXd/N1LLw8DwVmr/LLDY3d8HHgOGRMJHc3e4+yZ3rwCeb3a8K4E/uftSdz8A3NbK51wP3OXus929wd0fIDzMNa6VfUTkIyjQiEiTS909t9njnhM4Rinwm6ZQBFQABvRotk15awdw95fd/SIgH7iEcC9I87Ooypttuy/yGcVHOVzzOTAHgMxWPvpqIr097r4RmEF4COpYjlfM4d+rte9YCnyreXgESlr5DiJyDBRoROSj7AfSm73v1sq25cCXjghGae7+drNt/Fg+1N0b3f0fwD+Boc1WHeyNMbNMwsFn07Ec82jMbAIwAPi2mW0xsy2Eh8U+fbS5QkfYDPRsqcYWlAM/PqKN0t39yKE5ETkOCjQi8lEWApPMrJeZ5QDfbmXbPxIOBUMAzCzHzD55rB9kZpeY2VVmlmdhY4DJwKxmm11gZmeaWTLhuTSz3L3VXp9jcA3wKuF5PcMjj6FAGnD+Mez/BPA5MzvFzNKB77Wy7T3ADWY2NvIdM8zsE8d6arqItEyBRkSaPH/EdWieBnD3V4HHCZ/5Mw944WgHcPengZ8Bj5nZXuA9ji0QNNkFfJHwGVB7gYeAX7h784m/jwDfJzzUNJIjzkY6XpEzla4EfuvuW5o91gAP8uFhpw9x95eBO4DXCU8+bgpgNS1sO5fwd/wd4e+7isjkYhE5ceZ+TL2/IiIxZ2b3Axvc/b9iXUtrzOwUwmEu5chr7YhI+1APjYhIGzCzy8wsxczyCPdSPa8wIxI9CjQiIm3jS8A2YDXQAHw5tuWIdC4achIREZG4px4aERERiXsJfXPK3Nxc79+/xVupSDvYv38/GRkZsS6j01B7R5faO3rU1tEVb+09b968He5eeOTyhA40RUVFzJ07N9ZldBrTp09nypQpsS6j01B7R5faO3rU1tEVb+1tZutaWq4hJxEREYl7CjQiIiIS9+Iu0JjZNDNbbmarzOzWWNfT0bg7FftrWb/zABX7a2NdjoiISFTE1RwaMwsCvwfOATYAc8zsOXd/P7aVRce+mnq27Kli855qtkQeWyur2ba3hm2VNWyvrGFbZTV1DYdOxT/31CJ+fsXp5KYnx7ByERGR9hVXgQYYA6xy9zIAM3sMuARoMdBU1jqPzF6PWfi9QbPXRn5GMr0K0inJSyctOdj+1TdTW99Ixf5a9lbXUd/gNLpT3+hs3VtNecWB8GNXFeUV4Z6Wyup6ahsaP3ScvPQQXbNS6ZqdQt/CDLpmpVKYlUJ2ahLlFQf444wyLr/zbe69ZjR9usTPLHYREZHjEVcX1jOzK4Bp7v6FyPvPAmPd/SvNtrkeuB4guVv/kd2vuf2Yjt0z0zi9MInxxUmUZB3/SJy7s2m/s35vI1X1TmqSUZBq5KYYaUlGTYOzvrKRFRUNrNjdyPq9jTS00vRpSVCYFqAw3chODh8jMwR5qQHyU428yLGTg9ZqXcsrGrhjQTWNDhf2DTGsMIkemYZZ6/udiH379pGZmdnmx5WWqb2jS+0dPWrr6Iq39p46deo8dx915PKECzTN9R84yN+cswgAx2n6qg40Njo799eybud+1u44wOw1O3l3TQX1jc6Q4mwuP6MnFw8rpjArpdWaNu6u4pkFG3l6wUZWbdv3kd8hJSnAsJJcRpbm0TMvjZy0EEkBI2BGMGB0zUqlJD+8vK1CR3nFAW55cjFvr94JQJfMZD47rjdfmtyX1FDb9UzF26l/8U7tHV1q7+hRW0dXvLW3mbUYaOJtyGkjUNLsfc/IshYFDbrlpB71YCX56QwvyY28G8DOfTU8v2gTT87fyA9feJ+fvLSMif27MGlAF84ozaN75Fgbd1Uxq2wnM1fs4N21FQCMKs3jR5cOZUyffHLTQ+ytqmPT7mq2V9awr6aetOQg/QozGNojh5Sk6A5vleSn88gXx1FecYB3ynby96Vb+PVrK3hu0UZ+8clhnNErL6r1iIiItLV4CzRzgAFm1odwkLkK+HRbHbwgM4VrJ/bh2ol9WLm1kqcXbOSlJZv50YrtLW5/avdsvvHxgVw2oge9CtIPW9c1K5X+XbPaqrQ2UZKfTkl+OleOKmHGiu3c+uRirrjzbS48vZirRpcwrm8BgUDbD0WJiIi0t7gKNO5eb2ZfAf4GBIH73H1pe3zWgKIsbp42mJunDWbLnmqWbNzD9soaALpmpTCiVy4Fma0PR3VkkwcW8vdvTOL211byxNxynlu0ie45qXx+Yh+unlAa9V4kERGRkxFXgQbA3V8CXormZ3bLSW116CpeZaWG+N6Fp/Kf5w3i1fe38tic9fz4pWX8edZavnvBqZw3pKhdJg+LiIi0tbi7sJ60vdRQkIuGFfPwF8bx4HVjSAsFueGheVz6h7f5y9xyqmobYl2iiIhIqxRo5DBnDSjkpa+exY8uHcq+6jr+86+LGf/Tf3D7ayvYfUBXHhYRkY4p7oacpP0lBQN8Zlwp/za2F7PXVHDvm2u4/bWV3PvGGq47qw+fP7MP2amhWJcpIiJykAKNHJWZMa5vAeP6FrBs815uf20Ft7+2kj+9tZbrzuzDZ8aVkp+hWyqIiEjsachJjskp3bO567OjeP4rZzKyNI9fvbqCCT/9B9975j3W7tgf6/JERKSTUw+NHJfTeuZw37WjWbG1kv97o4zH55Tz0Ox1XDC0O2OzNHlYRERiQz00ckIGFmXx8yuG8eatU/ny5H7MWLGd/367muvun8Pssp3E0y01REQk/inQyEnpmpXKzdMG89YtZ3NZ/xALy3fzqbtncenv3+L5RZuob+EO4SIiIm1NgUbaRE56iEv6J/PWrWfzk8tOo7K6nn9/dAFTfjmdR2avp7ZewUZERNqPAo20qdRQkE+P7cVr35zMPVePoktmCt95eglTfzmdh2ato6Ze82xERKTtKdBIuwgEjHNOLeLpGyfwwOfH0DU7hf965j2m/mI6M45ys08REZETpUAj7crMmDywkKe+PIE/f34MWakhPvend3l8zvpYlyYiIglEgUaiwsyYNLCQp26cwFkDCrnlySXcOX21zoYSEZE2oUAjUZWRksQ9V4/i4mHF/OyVD/jWXxaxt7ou1mWJiEicU6CRqEtOCnD7p4bz1bP788yCjXz8f2fw3KJN6q0REZETpkAjMREIGN88dxBP3ziRouxUvvroAj5z72zW6DYKIiJyAhRoJKaGleTyzE0T+eElQ1i8YQ8X3vEGLy3ZHOuyREQkzijQSMwFA8Znx/fm79+YxMBuWdz48Hx+/OL7usqwiIgcMwUa6TC656Tx+PXjuXp8Kfe8sYZ/+7/ZbKusjnVZIiISBxRopENJTgrwg0uG8utPDWPRht1c8Js3eWnJZk0YFhGRVinQSId02YiePHPTRIqyU7jx4fl88c/z2LJHvTUiItIyBRrpsAZ3y+bZmyby7fMH88bK7Uz7zUxefX9rrMsSEZEOSIFGOrSkYIAvTe7Hy187ix65aXzxz3O57bmlVNfpJpciInKIAo3Ehb6FmTx14wQ+N7E397+9lsv/8Dart++LdVkiItJBKNBI3EhJCvL9i4Zw7zWj2Lyniot++yZ/mVuuCcMiIqJAI/HnY6cU8fLXJnF6zxz+86+LueGheezYVxPrskREJIYUaCQudctJ5eEvjOM7Fwzm9Q+2c96vZ/K3pVtiXZaIiMSIAo3ErWDAuH5SP1746pl0z03lSw/O49tPLeFAbX2sSxMRkShToJG4N7Aoi6e+PJEbJvfjsTnruei3b7J0055YlyUiIlGkQCMJITkpwK3nD+ah68ZSWV3PZb9/m7tnrqahUROGRUQ6AwUaSSgT+3fhla9PYsqgQn7y0gd86q53WLtjf6zLEhGRdqZAIwknPyOZuz47kl9dOYzlWys5/zdv8MDba2lUb42ISMJSoJGEZGZcfkZPXv3GZMb0yef7zy3lM/fOZuPuqliXJiIi7UCBRhJat5xU7v/caH56+WksKt/NtF/P5Ml5G3QxPhGRBKNAIwnPzLhqTC9e/tokBnfP4lt/WcSXH5rPTl2MT0QkYXS4QGNmvzCzD8xssZk9bWa5zdZ928xWmdlyMzsvhmVKHOpVkM5j14/n2+cP5p8fbOPcX8/k5SWbY12WiIi0gQ4XaIBXgaHufjqwAvg2gJmdClwFDAGmAX8ws2DMqpS4FAwYX5rcj+f//UyKc9P48sPz+coj86nYXxvr0kRE5CR0uEDj7n9396ZLvc4CekZeXwI85u417r4GWAWMiUWNEv8GdcviqRsn8K1zBvK3pVs499czeOU93TpBRCRe2YlMjjSznoR7S84CioEq4D3gReBld29sk+LMngced/eHzOx3wCx3fyiy7t7IZ/31iH2uB64HKCwsHPnEE0+0RSlyDPbt20dmZmasyzhu5ZWN/N+SGtbtbWRc9yCfOSWFzGSLdVkfKV7bO16pvaNHbR1d8dbeU6dOnefuo45cnnS8BzKzPwE9gBeAnwHbgFRgIOGhoO+a2a3uPrOVY7wGdGth1Xfd/dnINt8F6oGHj6c+d78buBtg0KBBPmXKlOPZXU7C9OnTidf2vuqCRu6cvprf/nMlqyrr+f5FQ7jw9O6YddxgE8/tHY/U3tGjto6uRGnv4w40wP+6+3stLH8PeMrMkoFerR3A3T/e2nozuxa4EPiYH+pC2giUNNusZ2SZyEkLBQN89WMDOOfUIm59cjH//ugCnlmwkR9eOpTi3LRYlyciIh/huOfQHCXMNF9f6+6rTrQgM5sG3Axc7O4Hmq16DrjKzFLMrA8wAHj3RD9HpCWndM/mqRsn8r0LT+Xt1Ts551cz+L83yqiqbYh1aSIi0ooTGXI6BfiPyNtfufvSti2J3wEpwKuR7v5Z7n6Duy81syeA9wkPRd3k7vpXRtpcMGBcd2Yfzj21iP965j1+9OIy7py+mouGFTNlUCHj+haQGtIJdiIiHcmJDDndA1wGOPAsMLEtC3L3/q2s+zHw47b8PJGjKclP54HPj+HdNRXc80YZj767nvvfXktaKMjkgYVcPaGU8X0LOvQ8GxGRzuJEAs1q4ArCgWZ925Yj0vGM6ZPPmD75VNc18E7ZTl7/YBsvLt7MK0u3MKxnDl/7+ACmDuqqYCMiEkMnch2aa4EywmHmM21ajUgHlhoKMnVQV35wyVDeuvVsfnLZaezcX8vn75/LJb9/i78v3UJdQ5tcsUBERI7TcffQRM46+ls71CISN1JDQT49thefHNWTp+dv5Levr+T6B+eRlx5i2tDuXDq8mNG98wkE1GsjIhINJzIp+B7gDndf0sK6DOBTQI27H9f1Y0TiUSgY4MrRJVx2Rg/+GRmKenbhRh59dz09ctP45KiefHpsL7pmpca6VBGRhHYic2h+D3zPzE4jfO2Z7YQvrDcAyAbu4zgvhicS70LBAOcN6cZ5Q7pxoLaevy/dypPzN3D7ayv5/euruPD0Yq6Z0JvhJbmxLlVEJCGdyJDTQuBKM8sERgHdCd/6YJm7L2/b8kTiT3pyEpeO6MGlI3qwevs+HnxnHX+dt4GnF2xkeEku107ozQWndSc5qcPdSk1EJG6dSA8NAO6+D5jedqWIJJ5+hZncdvEQvnXuQJ6ct4E/v7OOrz++kB+9+D6Xn9GTT47syYCirFiXKSIS90440IjIsctKDXHtxD5cPb43b6zawSOz13Hfm2u4e2YZw0ty+fTYXlw8rFgX7BMROUEKNCJRFAgYkwcWMnlgITv21fDMgo08Nqecm/+6mJ+8tIwrR5XwmbGl9CpIj3WpIiJxRYFGJEa6ZKbwhbP6ct2ZfZhVVsGDs9Zy75truOeNMqYMLOTfxpYyZVAhSUHNtRER+SgnHGjMbBBwBzCS8L2V3gC+6e7lbVSbSKdgZozvV8D4fgVs2VPNo++u59F31/OFP8+la1YK/zIyPNemb2FmrEsVEemwTqaH5kHgNg5dZO9fgIeAySdZk0in1S0nlW+cM5CvnN2f1z/YxhNzy7l7Zhl3Tl/NmN75fGp0CRec1p20ZM21ERFp7mQCTRrw78ANkfcGDDOz5wDc/eKTrE2k0woFA5w7pBvnDunG1r3VPDl/A3+Zu4Fv/WURtz2/lMtH9KB/QLdZEBFpcjKB5h5gAYfuBxUChgL/e7JFicghRdmp3DilP1+e3I9ZZRU8Nmc9j84pp7a+kSfXv8W/jinhwtOLyUjRlDgR6bxO5i9gMXAN8Hzk/SeAP7r7jJOuSkQ+pPlcm9v21/Lzv8xgbkU9tzy5hB88/z4XDSvmytEljCjJ1Z2/RaTTOZkL691qZs8CYwAHrnf3BW1WmYgcVV5GMuf1DvGTayYxf/0uHp9TznOLNvHYnHIGdM3kU6NLuGxEDwoyU2JdqohIVJxUH7W7vwO800a1iMhxMjNGluYzsjSf/75oCC8s2sTjc8v50YvL+NkrH/DxU4r45KieTBqg079FJLFp0F0kQWSmJHHVmF5cNaYXK7ZW8viccp5esJGX39tCYVYKl4/owRW61YKIJCgFGpEENLAoi+9deCq3TBvM68u38dd5G7j3zTXcNbOMYT1zuGJUCRefXkxOeijWpYqItAkFGpEElpwU4Lwh3ThvSDd27Kvh2YWb+Mvccr73zHv88Pn3OWdIEVeM7MlZ/btoSEpE4poCjUgn0SUzhevO7MPnJ/Zm6aa9/HXeBp5duJEXF2+ma1YKl47owcXDihlSnK2zpEQk7ijQiHQyZsbQHjkM7ZHDdy44hX9+sI2/zis/ePfvvoUZXHhad8b368KIXrm6A7iIxAUFGpFOLDkpwLSh3Zg2tBu79tfy8ntbeG7RRn77+iru+OcqQkHj9J65jOqdx+jSfEaW5pGXkRzrskVEPkSBRkSA8LVtPj22F58e24s9VXXMW1fB7LIK5qyt4L4313DXjDIATu2ezZRBhUwd3JURJbmaeyMiHYICjYh8SE5aiLMHF3H24CIAqusaWFS+m7nrdjFzxXbumlnGH6avJjs1ibMGFjJlYCGTBxXSNSs1xpWLSGelQCMiHyk1FGRs3wLG9i3gpqn92Vtdx1srd/D68m1MX76dFxdvBmBoj2ymDOzKhH4FnFGap/k3IhI1CjQictyyU0Ocf1p3zj+tO+7O+5v3Mn35dqYv38Yfpq/id6+vIjkYYHhJLuP65jOxfxfOKM0jpOEpEWknCjQiclLMjCHFOQwpzuGmqf2prK5j7tpdzCrbyayynfwuMsE4KyWJif27MHlQIZMHFlKcmxbr0kUkgSjQiEibykoNMXVwV6YO7grA3uo63l61gxkrtjN9+XZeWboFgIFFmZw1oJDxfQsY3SefnDRdtVhETpwCjYi0q+zUENOGdmfa0PDw1Mpt+5ixfDvTV2zjwVnruPfNNQQMhhTnML5fwcGAk5miP08icuz0F0NEosbMGFiUxcCiLL44qS/VdQ0sLN/NO6t38k7ZTu5/ay13zywjGAhf/G983wLG9ytgdO880pP150pEjk5/IUQkZlJDQcb1LWBc3wK+Qfj08PnrdvFO2U7eWb2Te98s448zVhMKGsN65jKhXwHj+hVwRi+dQSUih1OgEZEOIzUUZEL/Lkzo3wWAA7X1zF0bDjhvrz40wTg5KcAZvXIZ17eAsX0KdIsGEVGgEZGOKz05iUkDC5k0sBAITzCes6aCd1bvZNaandzxj5U0+srwKeK9chnXJ59xfQsY0SuPtGQFHJHORIFGROJGdmqIj51SxMdOCV/BeE9VHXPXVjB7TcVhp4g3DVGN7pPPmN75jOydR3aqzqISSWQdNtCY2beAXwKF7r7DzAz4DXABcAC41t3nx7JGEYmtnLTDA05ldR1z14WvgTO7rIJ7ZpZx5/TVmMHgbtmM6Z13MOR0zdZtGkQSSYcMNGZWApwLrG+2+HxgQOQxFrgz8iwiAkSugTOoK1MHha+Bc6C2noXrd/Pu2vBNNp+Yu4EH3lkHQGlBOiN75XFGaR6jeucxoGsWwYDFsnwROQkdMtAAvwZuBp5ttuwS4M/u7sAsM8s1s+7uvjkmFYpIh5eenHTYJOO6hkbe37SXOWsreHdNBTNXbuepBRsByEpJYnivXEaW5jGqNJ/hvXJ1LRyROGLhfNBxmNklwNnu/jUzWwuMigw5vQD81N3fjGz3D+AWd597xP7XA9cDFBYWjnziiSei+wU6sX379pGZmRnrMjoNtffJc3e2VzkrdzWwancjq3Y3sqGyEQcM6JkVYEBugP55QYqTqyktyCA8+i3tSb/t6Iq39p46deo8dx915PKY/O+Hmb0GdGth1XeB7xAebjoh7n43cDfAoEGDfMqUKSd6KDlO06dPR+0dPWrv9lFZXcfC8t3MXbuL+et38e763fyzvAYwCrMaGNkrj5Gl4aGqoT2ySUnS2VRtTb/t6EqU9o5JoHH3j7e03MxOA/oAiyL/F9QTmG9mY4CNQEmzzXtGlomItJms1BBnDSjkrAHhU8UbGp0VWyt59NXZVKZ0Yd66XQfvR5WcFOD0HjkHA87I0jy6ZKbEsnyRTqtDDRC7+xKga9P7I4acngO+YmaPEZ4MvEfzZ0SkvQUDxindszm7V4gpU4YDsK2ymvnrdjNvXQXz1u3iT2+t5a6ZZUB4svGwnrkML8llWEkuQ4qzddE/kSjoUIHmI7xE+JTtVYRP2/5cbMsRkc6qa1Yq04Z2Y9rQ8Mh5dV0DSzftYd66Xcxft5s5ayt4btEmAJIigagp4AwvyaFPl0ydUSXSxjp0oHH33s1eO3BT7KoREWlZaijIyNJ8RpbmH1y2dW81C8t3s7B8N4vKd/P0go08OCt8ynhaKMjAokwGdcticLdsBnXLold+Ot1yUgkFA7H6GiJxrUMHGhGReFWUncp5Q7px3pBwL05Do1O2fR8Ly3ezbHMlH2zZyz+WbeOJuRsO7mMGRVmp9MhLozg3jR65aZTkp1Gan0FpQTrFuWnq2RE5CgUaEZEoCAaMAUVZDCjKOmz59soaVmytZOOuKjbsrmLjrio27a5iUfluXnlvM3UNhy6tEQoaPfPS6V2QTp8umfQtzAg/umRSlJ2iU8qlU1OgERGJocKsFAqzWj4zqqHR2bK3mnU797N+5wHWVRxg3c79rNlxgHfKdlJd13hw24zkIH0KM+jTJZM+XTLomRfu4SnOTaN7TqomJkvCU6AREemgggGjR2ToaUK/w9c1RsLOmh37Kdu+j7Id+ynbvp+F5bt4YfEmjrxmapfMZIpz0yjOCYec4tzUg4GnODeNgoxkAhrOkjimQCMiEocCATsYRiZGbu3QpLa+ka17q9m4Ozx8tWl3FRt3V7NpdxWrt+9j5srtHKhtOGyf5KQAxTmpB4952OtIAEpP1j8Z0nHp1ykikmCSkwKU5KdTkp/e4np3Z29V/aHAs6cq8jocet5atYOte6tpPKKXJy89FBnCSqNrdgpdI8NlXbNSI88pdMlMITlJZ2pJ9CnQiIh0MmZGTnqInPQQpxZnt7hNXUO4l6cp5DTv7dmw6wDz1++iYn9ti/vmpYcOzg1qHnYOLUuhMCuV7NQkTWSWNqNAIyIiHxIKBuiZl07PvJZ7eSAcenbsq2F7ZQ3b9tawfV/Tc3V4WWUNc9ZWsK2yhtr6xg/tn5IUOCzk5GekkJ8RomJzHbsWbCAvPZmCjBTyMkLkZyRryEtapV+HiIickFAwQPec8BBUa9ydvdX1bK+sZltlOAA1BZ7wczVl2/czb90udh2oo6HRefSDRR86TmooQH56MnkZyeRnJJOXnkxOWuiwR3ZaEtlHLMtMUU9QZ6BAIyIi7crMDoaL/l2zWt22sdF5+R/TOWX4aHYdqKVifx0V+2uo2F8XeX/osb7iAHur6thTVfeh+T7NBQNGdmpSJPCEDntu/shKTSIjJYnMlCTSk4NkpoTfZyQnkRoKKBR1cAo0IiLSYQQCRkbI6FuYecz7uDv7aurZEwk3e6rqDgadvVWHL296bNxVdfB1fWtpKCIYMNKTg2QkJ5GREoyEnqYAFCQtOUhKUpDUUJDUUCD8nBQgLTm8LLwusjyyTVqoaV2A5KQAoWCApIApOJ0gBRoREYlrZkZWaois1BA9845vX3enqq6BPVV1VFbXs6+mnv019eyvaQg/1x563bTuQG3Dwdcbd1exv6aeqroGqusaqKlrpLbhw/OFjkdyMEAoaISSApHXTYHHCDW9DwYIJdnBEBQwIxgwAgEj2PTajGCAZq8PPTdfX76+lgV1KyJtCYZFnjm0LBKymrJW822a9jlsvdnh+zctO7h/eEVL+x+5jOb7t9JuCjQiItJpmRnpyeHelu45bXPMhkanOhJwqusbD72ua6SmriESfiLL68Ov6xsaqWtopLbBqa0Pv2561Nb74e8bnNrIfnur6mlodBrdaWh0GtxpPPjMh5Y1NB6xPrKM1Svb5svHkAKNiIhIGwoGLDz3JiU+/omdPn06U6ZMwd1xByfccwVNr8Hxw64+3XyZH1zmB7dvWth8m5aOyWH7H+WYfvj63j9r+XvER2uLiIhIu2o+JESrgzsdky7nKCIiInFPgUZERETingKNiIiIxD3zI+8xn0DMrBJYHus6OpEuwI5YF9GJqL2jS+0dPWrr6Iq39i5198IjFyb6pODl7j4q1kV0FmY2V+0dPWrv6FJ7R4/aOroSpb015CQiIiJxT4FGRERE4l6iB5q7Y11AJ6P2ji61d3SpvaNHbR1dCdHeCT0pWERERDqHRO+hERERkU5AgUZERETiXsIGGjObZmbLzWyVmd0a63oSnZmtNbMlZrbQzObGup5EY2b3mdk2M3uv2bJ8M3vVzFZGnvNiWWOiOEpb32ZmGyO/74VmdkEsa0wkZlZiZq+b2ftmttTMvhZZrt93G2ulrRPi952Qc2jMLAisAM4BNgBzgH919/djWlgCM7O1wCh3j6eLM8UNM5sE7AP+7O5DI8t+DlS4+08joT3P3W+JZZ2J4ChtfRuwz91/GcvaEpGZdQe6u/t8M8sC5gGXAtei33ebaqWtryQBft+J2kMzBljl7mXuXgs8BlwS45pETpi7zwQqjlh8CfBA5PUDhP8wyUk6SltLO3H3ze4+P/K6ElgG9EC/7zbXSlsnhEQNND2A8mbvN5BA/9E6KAf+bmbzzOz6WBfTSRS5++bI6y1AUSyL6QS+YmaLI0NSGv5oB2bWGxgBzEa/73Z1RFtDAvy+EzXQSPSd6e5nAOcDN0W67SVKPDx2nHjjxx3HnUA/YDiwGfjfmFaTgMwsE3gS+Lq7722+Tr/vttVCWyfE7ztRA81GoKTZ+56RZdJO3H1j5Hkb8DThYT9pX1sjY+JNY+PbYlxPwnL3re7e4O6NwD3o992mzCxE+B/Yh939qchi/b7bQUttnSi/70QNNHOAAWbWx8ySgauA52JcU8Iys4zIBDPMLAM4F3iv9b2kDTwHXBN5fQ3wbAxrSWhN/7BGXIZ+323GzAy4F1jm7r9qtkq/7zZ2tLZOlN93Qp7lBBA57ex2IAjc5+4/jm1FicvM+hLulYHwHdwfUXu3LTN7FJgCdAG2At8HngGeAHoB64Ar3V2TWU/SUdp6CuHueAfWAl9qNr9DToKZnQm8ASwBGiOLv0N4bod+322olbb+VxLg952wgUZEREQ6j0QdchIREZFORIFGRERE4p4CjYiIiMQ9BRoRERGJewo0IiIiEvcUaEQk6sysoNmdfbc0u9PvPjP7Qzt95tfN7OpW1l9oZj9oj88Wkfan07ZFJKaicSdrM0sC5gNnuHv9UbaxyDYT3f1Ae9UiIu1DPTQi0mGY2RQzeyHy+jYze8DM3jCzdWZ2uZn93MyWmNkrkUu4Y2YjzWxG5MaofzviqqdNzgbmN4UZM/uqmb0fuRnfY3DwfkHTgQuj8mVFpE0p0IhIR9aPcBi5GHgIeN3dTwOqgE9EQs1vgSvcfSRwH9DSVaonAvOavb8VGOHupwM3NFs+Fzirzb+FiLS7pFgXICLSipfdvc7MlhC+jckrkeVLgN7AIGAo8Gp4xIgg4bsFH6k7sKzZ+8XAw2b2DOFbSDTZBhS3XfkiEi0KNCLSkdUAuHujmdX5oUl/jYT/fhmw1N3Hf8RxqoDUZu8/AUwCLgK+a2anRYajUiPbikic0ZCTiMSz5UChmY0HMLOQmQ1pYbtlQP/INgGgxN1fB24BcoDMyHYDidM7DYt0dgo0IhK33L0WuAL4mZktAhYCE1rY9GXCPTIQHpZ6KDKMtQC4w913R9ZNBV5sz5pFpH3otG0R6RTM7GngZndfeZT1RcAj7v6x6FYmIm1BgUZEOgUzGwQUufvMo6wfDdS5+8KoFiYibUKBRkREROKe5tCIiIhI3FOgERERkbinQCMiIiJxT4FGRERE4p4CjYiIiMS9/w9EwlrdM1EPsgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\n", - "Trajectory Angular Velocity and Acceleration Plots\n", - "\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnMAAAIsCAYAAACZaC8sAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3xb1dn4v0eSJW95xE6cqexJEgJhBggbKlYpGwq0UFpaKP317VDfFt7biTqhgw5KKXvPgNjD7JFBSCCbRJm2Ey95ylr398e5kmVb3tcz5/v53I907z333OceHVuPnvMMoes6CoVCoVAoFIqRiWWoBVAoFAqFQqFQ9B2lzCkUCoVCoVCMYJQyp1AoFAqFQjGCUcqcQqFQKBQKxQhGKXMKhUKhUCgUIxilzCkUCoVCoVCMYJQyp1AoFAqFQjGCUcqcQqFQKBQKxQhGKXMKhUKhUCgUg4DL48tyeXxWs/sVqgKEQqFQKBQKhfm4PD4LcAlwObAUaAEcQCXgA/7l97q39fc+yjKnUCgUCoVCMTC8CUwHfgKM83vdk/xedzGwDPgQ+K3L47uivzdRljmFQqFQKBSKAcDl8aX5ve5wf9t0h7LMKRQKhUKhUAwMk1we32EALo/vuFQN+qvIgVLmFApTEEL4hRCnDLUcYI4sQojPhRDLzZHIPIQQmhBCG2o5UjGc5kBfGGz5h+scUyhM5h/AhS6P70rgqwN1E6XMKUYdQohSIUSNEMIx1LL0FiHES0KIX6Q4fq4QolwIYRsMOXRdn6/reqlx7xGnpIzkOdCe0fAsqeZQ8hxTKEYxW/xetwcoAI4aqJsoZU4xqhBCuIDjAB04Z2il6ZpOFLN7gSuEEKLd8a8CD+q6Hhl4yUY2I2kOQKfzIH7OxTB/lsH6gaFQjFBeAPB73bcDdw7UTZQypxhtXImMELoHuCr5hGEd+IEQYp0QIiCEeFQIkW6cWyKE+EQIUS+EeNw496uka3UhxIyk/XuSz7e7j0cI8YXR1wYhxJfbyfBjIcQ6oDHFF+EzQCHyCzx+TT5wFnCfsT9eCPGkEOKAEGKHEOK7nQ2GEGKuYdmpNZa1zkk6N0kI8ZTRT5UQ4m/t5DxFCHE/MBl4TgjRIIT4kRDih0KIJ9vd5y9CiD93IkOOEGJP+yU1IcREY1wLO5O/j/RpDhjnh8s86MmzpPz8uvlcezN3Om2bSv7OnjfVHErq45SkPruaq11+bu3ktgkhbjauqRJCXGbM25929qwKxUDh97pfBHB5fBcif6zj8vh+5vL4nnJ5fEvMuo9S5hSjjSuBB43tdCHE2HbnLwLOAKYCC4GrhRB24GnkF2YB8DDwZfrOF0hlzAn8HHhACFGSdP5SwA3ktbe06breDDxmPEeyzJt0Xf9UCGEBngM+BSYAJwPfE0Kc3l4IIUSa0fYVoBi4EXhQCDFbCGEFngd2Ai6jr0fa96Hr+leBXcDZuq5n67r+O+AB4AwhRJ5xHxsyj9J9nYzH/wCfp1hS2ws0Aod0cl1f6fUcABhO86C7Z+ns8+vqc+3l3OlJ2/byp3zeTuZQ+/t1OleTmqX83FLwK+AEYJHR5makIvyXTtorFIPBzX6vu97l8S0DTgH+g/SnMwWlzClGDUKIZcAU4DFd11cjv1wua9fsL7qu79N1vRr55bEY6cdgM86FdV1/Cvi4r3Louv64cY+YruuPAluBI9rJsNtQ3FJxL3BBkuXhSuMYyKSTRbqu/0LX9ZCu69uBfyOVqfYcBWQDXqPtG8gv+ksNecYDP9R1vVHX9aCu6+/28PnKgLeBC41DZwCVxpi3wVAurgfuMvaLhBDTjH50IAJkCCGcQoiPDcvNgp7IkYp+zAEYZvOgm2fp7PPr6nPtzdzpSds28vfgebuiq7mafL9Un1vymOUC3wOu03U9AHwEzEG6KNSbNc8Uij4QNV7dwJ1+r9sH2M3qXClzitHEVcAruq5XGvsP0W5pCihPet+E/AIZD+zV2yZd3N1XIYQQVwoh1hrLRbXAAmBMT/s2vnwrgfOEENORX4gPGaenAOPjfRv9/y/Q3voE8rl267oeSzq2E2lpmQTs7IcP3r1APNHlFcD9nbRbgLS0vGzsfx+4DkAIkQHkAPuRn4UbeKKP8sTp6xyAYTYP6PpZOvv8uvpcezN3etK2jfw9eN6u6Gquxunsc0vmJGCLoXyC/LIMAH9Nus6MeaZQ9Ja9Lo/vX8DFwAsuj8+BiTqYeY6rmjMLCKIFot22VShMxlAMLgKsQoj4P30HkCeEWKTr+qddXF4GTBBCiKQv8klIS0icJiAzaX8csCeFHFOQFoyTgQ90XY8KIdYCyQENPcnUfR/SIjcbeFnX9Qrj+G5gh67rM3vQxz5gkhDCkvQlORnYYvQzWQhh64FCl0reZ4B/GNaNs4AfdXLtBKBG1/U6Y/8MWhW/E4Aa4BNDvgOiQ9xHz+nnHIBhNA+6exY6//y6+lx7M3d60jYhfw+et7s539Vc7Q3jjb7iXIdU0OsBdF0P0895plD0BpfHdzTS7zXuJvAHv9dd6/L4SoAfmnWfvmuFmtOC5rwMzelDc+4HNgFlaM4NaM7fozlndNeFQmEi5yHN2POQyy+LgbnAO7T1P0vFB8a1NxjO0+fScXloLXCZEMIqhDgDqYikIgv5xXUAQAjxNaSForfch/Sr+AatS6wgl/3qDefzDEOeBUKIpSn6+AipfPxICJEmZADC2Ugfqo+RyotXCJElhEgXQhzbiSwVwLTkA7quB5HWjYeAj3Vd39XJtdVArhBiqhDiUqSlZJ7hb6cBt7ezxvSH8+j7HIDhNQ/Oo+tn6ezz6+pz7c3c6U3bnjxvhznUjq7mam/YAywWQpQIIY5ERoEXG/6QCsVQcCWwGrgbyAXqAfxed5nf637FrJv0x8TXpt4YWmASWqBNvTE0Z7/rjSkUPeQq4L+6ru/Sdb08vgF/Ay4XXaRP0HU9BJwPXAPUIpcNn0cWRI5zE/LLpRZZMPmZTvraAPwRqRhUIJ373+vtw+i67gfeR35Jrkg6HkVawhYDO5DLsXchnc5TPdfZwJlGu78DV+q6vsno52xgBtI5fQ/S/J+KW4GfGctnP0g6fq/xfJ0tsQKsRH4hr0WO7znAMUh/qo+A33ZxbW/p8xyAYTcPunwWpMWrw+fX1efay7nT47Y9fN7O5lD8+k7navdD1YaXkEEUG5EBLOcj594bvexHoTAFv9d9vd/rXoL88ZoP3OPy+D5weXy/cXl8x7s8PqsZ9+l7bVbNmYYW6LoERU/aKBTDECHER8A/dV3/71DLMlwRQkxGWuTHJS2j9rfPe4A/6Lr+WSfnNQBd1zUz7tcDedQ8GIV0N88UioHE5fFlACcif7wc7fe6D+9vn333mYsraZrzQuAltEA9mvNm4FDgV2iBNUqRU4wUhBAnAJuRVoHLkakPXhpSoYYxQqau+D7wiImK3AtIS9BsIcS/dF2/x4x+eymDmgejnOEwzxQHDy6P7/tdnN7h97pvNOM+ZgRA3IwWeBzNuQzp/Pp7ZO6UI03oW6EYLGYj87tlAduBC4wUHIp2CCGykEtpO5EOvaag6/qXetCs1Kz7dYKaB6OcHs4zhcIscozX2ciUP3G3mbPpR+qj9vR9mTWO5vwELXAomvNWYD1a4KHEMYVCoVAoFIqDHJfH9zbg9nvd9cZ+DuDze93Hm9G/GZa5vWjOfwGnIoMeTM2dolAoFAqFQmEWLo/vDODPgBW4y+91eztp9xVk1P5Sv9e9qp+3HQuEkvZDpM7x2CfMUOYSuVPQArVoTlNzpwwkFotFz8jIGGoxDgpisRgWi9LxBws13oOLGu/BRY334DHSxrqpqUnXdb1TgY3o0TuQBqg9wEqXx7fC73VvaNcuBxm9/pFJot0HfOzy+J429s9Dlg40hX4EQDhlIjwt0AQ81Xo8UIbMczTssdvtNDY2DrUYBwWlpaUsX758qMU4aFDjPbio8R5c1HgPHiNtrIUQnZVJjHMEsM3vdW8HcHl8jwDnAhvatfslMnWSKcYpv9f9a5fH9yKyfjHA1/xe9ydm9A39s8xdCdyB5tyCjPZ6CS1Q3s01CoVCoVAoFEPFBNqWottDu4BNl8e3BJjk97p9Lo/PtJVGv9e9BlhjVn/J9Cc1yfXy1TkHmSvlHjSnE5lM+CXgPVXaS6FQKBQKxWBhyci1uTy+ZP+2O/1e9509vd7l8VmAPwFXmy2by+PLB2YC6fFjfq/7bTP67r/PnBbYhEwcehuaM54I70LkYPQ7Ed5I4/4P/Mwb7+SwKfnywO6VsOsDOOZGUPUAFQqFQqEYMGLNdZFukvDuRdZcjjPROBYnB1mKrtTl8YGsv7zC5fGd058gCJfHdy3SB28isirJUciKKSf1tc9k+uMz12UiPLSAKYnwRhLBcBTtuQ1MzM/g1f93AvbqLfCfU+TJjDxY0pPykAqFQqFQKAaIlcBMl8c3FanEXQJcFj/p97oDwJj4vsvjKwV+YEI0603IPHMf+r3uE10e3xzgN/3sM0F/QlRyjO1w4HrkOvQE4FvAkv6LNvLYWtFANKazs6qJR1fthjd+CRkFkJ4Ha7oqX6lQKBQKhWKg8XvdEeAG4GVkDd/H/F735y6P7xcuj++cAbx10O91BwFcHp/D73VvQiYSNoX++Mz9XL463waWoAXqjX0N8PVftJHHxjJZ1Sg33cYbGyv46v73YLYbCqZKxa5hP2QXD7GUCoVCoVAcvPi97heAF9odu6WTtstNuu0el8eXBzwDvOry+GqQVXRMwYw8cwOaCG8ksaGsjky7lUMn53OgJgDNNeA6Fgqmywa7P4a5Zw2tkAqFQqFQKAYNl8cngO/6ve5aQHN5fG8CTkys+2yGMncf8DGaMzkR3r0m9Dvi2FhWx+xxOYzNdbBxl5HqZsqxkD0WLGmwJ7Uy99iq3by15QB3XHZQrk4rFAqFQjFq8XvdusvjewE4xNh/y+x79D+tsxb4NfA1oMbYvoYWMM2pb6Sg6zoby+qYW5JLcU46lUFBNGcS5E2GtHQongvln3W4rrYpxI+eWIdvXRktEZXJRaFQKBSKUcgal8e3dKA6N8MyB7DD6CsdyEFzHo8WMCV3ykihtilMXTDCtDFZpFktxLBQXXwkRfF0JEVzYOf7Ha7bVd2UeL9/jY9Jpd+DUzQV+apQKBQKxejhSOByl8e3E2gEBKD7ve6FZnRuQp4554DmThkpHGhoAWBsbjo2YgDsz55FUbxB0WxY/xgE6yA9N3FdVUOru2HFm3cyqbkKXrkZFlwA9szBEl+hUCgUCsXAcfpAdm6GZS6ROwUtcKJREeKgW2bdXyeVuaIcB2n1+wA44HC1NiiaI18rt8LEwxKHqxqTlLmGECz8Mnz+tLTizTxlwOVWKBQKhUIxMLg8PuH3unW/191p5Gq8TX/u03+fOQiiBYIAaE6HURHCtNwpI4UDDXIIinMcFIVl2bf9tpLWBnFl7sCmNtdVGRY9gAo9H066GawO2P5m6huVrYPa3anPKRQKhUKhGE686fL4bnR5fJOTD7o8PrvL4zvJ5fHdC1zV35uYYZnbg+bMw8idguY0NXfKSKGNZa7pC2AaB8hvbZDvAqu9ozLXGMJhs6BHI1RYx0HBNBh/KOxZ2fEm+z6BO5eDxQY3rpZ9KhQKhUKhGK6cAXwdeNioOlGLjC+wAq8At/u97k/6e5P+KXOaUwDfRQvUAhqa0/TcKUn3OgP4M3IA7kILeNuddyDTpBwGVAEXowX8psvRCQfqW8hIs5LtsCFqNpMjxnEgmGT4tNqgcGYHZa6yoYUx2Q6C9Q3Up4+X9VsnLIFV/4VoRF4X593b5WssIt+ffXtbIfauBls6jJ0/EI+oUCgUCoWiFxhVH/4O/N3l8aUhS4U1GznnTKN/y6xaQCc5i7IWeAstsAItEOr8or7cx2kF7gDOBOYBl6I557VrdQ1QgxaYAdwG/LZHfUfDHbdYrNci7q9voSjHgRACqrZRZGthf32wbaMxM6XPXBL1wQg56Tay9EYa7UY5uPFLINIMBza2Noy0wLbX4LCrZXDEhmekrHHWPwH/Pklue1e3vW/ZOpmweLij6/DZk/D89+GLN1K3CQdTHx9qmmuh7FNoODDUkigUCoViGOL3usN+r7vMbEUOzFlmXYPmXIoWSLEuaBpHANvQAtsB0JyPAOcCG5LanAtoxvsngL+hOYWhcKbEGmuBX47peCLdCde/D86JPRbwgKHMAVC5laIMncr6djrtmJmwcYVUzGyybTAcJcMSReiNNNrGyXYTjOTBe1fDuEPk+z0rIdQAM08HdPjsCdj+lgySiMXg9Z9D7gRoaYDXfwlXPiOvW/cYPPUN+f64H8DJN/f4mQadt34Hpb+Ry8ir/iP9B4/7H2mt3PIyvPxTqNoq/Q+XfR8WnA/WNNi/CdY9Kq2eGfkwcSlMOQbGzIKmaihbCwc2g8Uql6aLZkPeFKk8Nh6A+jJoqgJHLmQWQO54SMuQMkVaoKVebjaH7D9+Ttdh3xr4+C6phEYN/8dxC2HhRTDrTCn7/o0yYfTuldC4H7KKpAzjDoFiw4raVAU1O6B2l7S82tJl6bfscZAzFjILIRY1fnCEjC0s26bnyvP2LNkmFiGrwS+X5aNhEFY5TjaHfLU65JK/zS5fhbX1M7DYwNKD33jRCISb5P0dObJfhUKhUAwJZihzRwKXoznb5E5BC5iSO8VgApDs9b/HuG/qNlogguYMAIVAZZtWmvM64DoAHQvbp17e5rTQY0zZ+Rj7HvsR22Ze12MB/RVNTMi28O6rz7GsqRJrWoTdVbWUlpYm2hQfiDBPj/Hxy4/SlCV9ISsqm0mP1JNNkPJGZHtd51hbFgdW+dhS7wJgiv8xpgLv7o4RtTo41prJgdfvYPNeG3k161hcu4sNc/8HR0sl07ffy+oV/yKYPo4jPv4eTbmzac4oYdw7f2D7ngoqxxyJy/8IWY07qc+ZSVnJKQSc88hs2s2Yyo+xh2pozhhHfc4sGrMm4mipIqtxN9ZoM+G0XJozxhOy52GNBrFF6kkL1wOCmMWGLmzowmq8TyNmsRGzpNHUHKX0zeSgDkPHFlJxKNn3CrO33EH52BPZMut6Zm++g7Fv/JID615D6BHGVK2kMXMiB6ZcwpjKD8h++jpCz/+QqNVBRnA/MWGlKXMi9lAt9rUPAhATaVj0JOtlL4gJG0KPIehopY1a7MQsUhlPi9QTsaZTMfYkavIXkdm0lzGVH5L7ys/glZ+16a8hexrB9LHYAzVk7XuCtNX3dOg7Ys0iZrFhjbZgjfXdCrkUYFXfro0J+ZnFLHbj87MDAmu0BUssKF/1SJtrohY7EVuWsWUTsWWhCyu6sAACXVhS7MePpRn3S0MXVuM8yH8lMk9jqzz2xPuo1d7mmOwref5Zk87ZpGI9QDQ0NLT5W1cMLGq8Bw811iMDM5S5Ac2dYjpa4E7gToCYN12fdtXfO7Z5xsLEz59m4pX/klaHHtBY+jLzpk1g2ZwmeA/GFRezq9rB8uXLWxvtzYWNt3HE1DyYJ4//Yf07FIXriDYGackubG2/+wjGN5UxPr5//1+gaC7LTjXKgQXOpWTTC5QsOxqefwzsOcz78g9Aj8Gfn+ewA09Jy06sBecV9+EcMxOe/ibT1t/PtB33g8MJk48ia9cHjKt4A2wZcmkXwJ4DofrejGrfsaRJK1SoHqafzLhLH2aczQEnngpv/46i9/4i/QZPupmsY75Lls0uLZHbXsW+/nFpOZt6PJZ555GdXSStZdXbYef7WPZvBOcE6UM49hDQo1C9A/Z/DvXl8v5ZRZAzTlq2Qo3SUhfYiyXcKBXNtExpsXNkQyQITdVYg7VYw0GIhWH8odjmn8+E9FwmJD9X5TbY/aF8vnwXlpJF5Kalk8gwqOsQ2C2tihartAjmu7BlJAXNtDRAQ4WUtbla9mVNk9Y0q12+t1hl7sKmKim/xQYWK59v3Mz8RUvkNXpMWg2jIYiEjPdhOXbRFimLFApiUSyRIJZIizwfaZHPrUel5S8tS1om7carsEKoEWtLAGswgCMYkEvOwQDEQvLeelRaDBOveuv7WMSQq6XVsjkgCDnPbA75mpbedt/mkH8DaelJr8Zmz5LzwJ4pn9+eaexnJV7fX7WWY446Tp63mpWLXdEZpaWlbf+3KgYMNdYjg77/14kvYWqBziNXu1nm7AV7gUlJ+xONY6na7EFz2pCBGFV9utuSq2Dtg7BhBRx6ebfNg+EodcEIxTkOqPwUgOzcPBrKGts2LJwhX6ta/eaaQ1HSowFIg13JRqQJS2SQQ7hZfkHv/ggWXdJ6fv758OnDsOFZ+PwZueQYTzJ8ys9hxQ3y/Yk/g2IjLcp5/5RLlJEgHPktyBojFYDPn4HydXJZcvaZcpmxbh/sWQXVX8jl2zGzICMPGiuhaptUHuxZkFEglx7Rk3wO40uB8S/qIF9sWs/0SUaqlmQLSSQonzF/Khz+dbn0B3Kpb7kHTvix/PJPXvqzWGDW6XJrjxBQOF1uqcguhsntjboDwJgZcusMIWSpt7zJnbdxZMuts2fpggNVpTB7ea+vG1J0qUyCbiiYSa/RkPSXjCRtiX1D4YyF5ZyLhVuXoOPnunxtln0FA0afza19h5tlf91wDMhU6SAV7TbKXudKYMo2OeNh3ILW5XyFQjFqcXl8P/Z73T3z8e+C/vyEfBPN+STwLFpgV+Ko5rQDy5B5U94E7umPgAYrgZlozqlIpe0S4LJ2bVYY9/wAuAB4o8+K5KQjpOK19sEeKXOVRq64MdkOqahZ0sjOzachGEDXdRkUAdK3KXuctNoYBMMx0sPV2DIyaGxJWroav0RaL8rXSwtRqAGmHNt6ftpySM9r9Ydbek3ruSVfNSxNDTJYIo7VBsf/oK3w9izjGds9Z+54mHdOx4fNd8HEw7sdk/bsbiplel9+3QkxoMtjimGEEJ1btdIypC/rUBANyx894SYINUG4sd1rE1s++4RZUyd2ON7muqYqCO1uezzSyVK61QFzvgSHXgHTTpQWWIVCMeJxeXyPJe0KYDE9Ddjsgv4oc4ncKYaSVUu73ClogX7nTgHiPnA3AC8b/d+NFvgczfkLYBVaYAXwH+B+NOc2oBqp8PUNIWDxZfD6L+SSXcG0LpvXNMpf7gVZdti+FQqmkp1hJxLTaYnESE9L+kc8ZmYby1wwHCWj5QD2/Dk0Hoi2tksEQaxp/YfvWtZ63maXlqx3/wSHXCRz0yUz50u9fmyFQpECa5q0SmfkddpkX804Zh2zvPd9x6IdlcTanbC9FNY/LqvB5E2Wf+sLL5Y/slLRWAn7N8hgmxq//CFndUD2WGnZnXSkdDlQKBRDTZ3f6742vuPy+P5hRqf9WGYNJHKnoDkTuVOMnHPmowVeIDkNijx2Szt5LjTtfgsvkVGhax+Gk37aZdPqJhm1WpBll6lHCmeS45BD29AS6ajMffaUXD4SguZQmHS9mYzcAhr3RlotebnjpRVv7yporuVOx9Xoq+v55gnFrX2dfAssurRPy3AKhWIYYLFKv9xk39xxC2COG077FWx+AVb+B17T5DZmNoydJ9uHg1Lxq94ufT3jpGUZPp4tEKxtPZ7vktZ91zJwHQd5yZ4rCoViIHF5fIf5ve7VwK/bnepawegh5njqaoEwUGZKX8MF5wSYfqL0S1v+ky7TNdQaylxeukX+Y519JtnphjIXjMjl1ziFM+U/2MZK9KwxBCMxMiwhsvKL0PV6mkJRsgxFkGnLYd0j6Dr8puUheHET3zwhSXETAopmmfzgCoViWGBzwPwvy+3AZpmeZ3splH8mU+VY7ZA/RfqOFs2F4rky2Cd7bKtrQqhJpuzZ9SHseh82vyjdR0Ba/MYtlEpeZoH0f+1JwFd2sbwmd4Ja/lUoes5VLo/vJ8AfgB0ALo/vT36v+/tmdK7Crrpi8eXw5DWw812YenynzaobDctcuEI6S4+ZSbZD5t1qaGmbwoExM+Vr1VZC6QXEdEG6CJGVXwLU09gSaVXmDv86rHuEPXprLrw2PngKheLgoGi23I79bu+us2dKl40JS+Dob8tI8P0bwP8O7PoAKj6Hba+3RrL3BqtdKpAli4ztUKlMpqX3vi+FYvSzHzgHeMrl8dUDdlrDpvqNUua6YvaZMjXBxue7VOZqmsIIAc4GmdOYwplkh+XQ1gc7UeYObCZYtBSA9MxssrNk5FpjKMlvbvKRcOWzbNiTBi/UAlJxLEy29CkUCkVPsVjkMu64BXDU9a3Hw83QXCPT4XT1Y1GPyVQ5NX4Z1V6+DjY+B2vuM/q3SQVv/KHS6jdmpgwmyxnfs2TUCsXo5Qpgtt/rbnF5fOOBWwFz4gpQylzX2LNkJNnmF+DM33b6T66mMYQzIw1rzWZ5YMxMsqvl8kMHy1zeFBmFum8NwVmXApCRN450m2wfDEfbtp+2nED1bmR8CeytbVbKnEKhMJe0jJ6nQimaDZzQuh/Pmbhvraw6Ura2rYIH8kdx7gTpvpI70Xgdn/R+goxWVqsOitHLbmAqsMnvde9DLrtuBG43o/OBU+Y054/RAv0Otx1y5rhhy4vyF2jJopRNappC5GcawQ+ZhZBZQHaTzDHX0NIuR5UQMrXHnlU010qn5fTCSYkgiQ7KHFDX3NrHvtogC3teZUyhUCgGluScifF0Rrouy+RVbTO2L6BuLwT2wo635Dm9XXUVe3arwpfvMpZuF0PxvNb8kwqFCbg8vjOAPyOzY9zl97q97c5/H7gWiAAHgK/7ve7Oc+r2jJuAJ10e3xqkRW4CsmqWKZinzGnOAcmdMuTMOgMQsPmlbpS5NPlPq1Auo2Y7WgMgOjBxKZR6CW56FRhLxtgZOGxyCSIY7lg+qi6pj/pg38pTKRQKxaARj8jPHZ/aRSUagYZyqdzV7TFe90Jgj5Gw/ElYdbdsa0mTEbwTj5A1l5PzbSoUvcTl8VmBO4BTkaVBV7o8vhV+rzu51vsnwOF+r7vJ5fFdD/wOuLg/9/V73RtcHt8S4BSkflSOrClvCmZa5urQAoncKWhOU3KnDDnZRVL52vIiLP9xyiY1jWFKnOlwYEuiKkGOEc1a336ZFWDOWVB6K83v/g34JeljZ+KIW+YiHS1zyQpch2VbhUKhGGlYbeCcKLcOZbaRgRq1frl0W7ZWvq59CFb+G4AjMsZD3SlSsZtyTNeVVBSKthwBbPN73dsBXB7fI0ilKqHM+b3u5ELiHyL93fqN3+tuAXzGZipmKnO/ardvSu6UYcGs0+GNX0JdGeSWdDhd0xRiXrFD5noaI1OFOGwWbBbRtqpDnHELYOJSmndKC2u6PY30NGmZa0m5zCpLhe2vb0ndn0KhUIwmLBaZrL1gmixVCNKaV/4p+N+jac0KMjc82+qX55xsWO2OkXn0CqYp/7uDFEtGrs3l8a1KOnSn3+u+M2l/AtJ/Lc4eUv6iSHAN8KKJIg4I/VfmNOdfgDmAjub8FHgILbAWLVDd776HC7PPlMrc1lfgsKs6nK5pCpGvB+TO2PkACCHITrelXmYFuPwJWt55G96ADLs1yWcu1TJrmMJsB7XN4dSWPoVCoRjtWG0w4TCYcBifhRey/PjjZZqVne/L9FFfvA7rHpFtc8YbyZGXKeXuICPWXBfxe929rzmZApfHdwVwOG0ifoYnZljmNgDPAWnAPOABNOc/0QJ/M6Hv4UHxPPnLb8tLHZS55lCUYDhGfmS/PDD2kMS5bIetc+UrI4/mkqXAGjLSWpW5lhTLrHXNYXLTbeQ4ulAOFQqF4mAiOc3KkdfJoIvKrVKx878rAy3WG67cceVu6nHyNX+qUu4OXvYCyeVPJhrH2uDy+E5BrjCeYCyPmobL4xvn97rLzezTBMtc4J9Jey+gOf8GrARGjzInhFxq/eQBmY8pKYS/xqj+kB/cDVlFkDM2cS67G+Wr2cgpl55mIb2bAIgJeRlkp9vUMqtCoVCkIl4Rp2iWTLiu6zIobcfbUrnbXtqq3OVOkErdzNNgxsmQkT+koisGlZXATJfHNxWpxF0CXJbcwOXxHQr8CzjD73XvHwAZXgCWmNmhmdGs3wJmADlAnWn9DhdmnyGdb3e8A7NOSxyOV3/Ib9iWWGKNk5Nu6zJgIR7skGyZS5WapD4YJjc9hyx71/0pFAqFwkAImbR4zExYek2r5c7/jlTutr0O6x4FYYXJR8v/8bPOhDEzhlpyxQDi97ojLo/vBuBlZGqSu/1e9+cuj+8XwCq/170C+D2QDTzu8vgAdvm97nNMFMN0s7CZARAvIEN9z0dmNh5dTFkmC1hvebGNMlfbJCNN8+s3w/y2IfjZDhtVhrKXioRlrhufuWA4SobdKn3wUihzFXVBVqzdx7XHTVWlvhQKhSIVyZa7pddALAp7V0v3mc0vwSs/k1vRXDjkKzD/fCic3n2/ihGH3+t+AamzJB+7Jen9KQMswr/N7tCMAIjHgVvQAhuB/6A5/4vM0fJ8v/seTqSlw/QTZbFrXU/4W1Qby6wF0SpZviaJLIeNnVVNnXYZt8Kl26xYLYI0q0iZmqQ5FCU9zUqOw0ZFfbDDefdf3qGyIcTJc4uZVpTd50dUKBSKgwaLFSYdIbeTb4GanVKx+/xpeONXcptwOBx2tYyotWcNtcSKUYLf6/672X2aYZm7H3gUzSmA1UjTZEfz0mhgjhs2PQ97VsEkWVe11lDm8kQ9uNoms8yy22gMdbHMGo4llDiQSl2qZdZgJEZGmpUsh42GA23703WdygYpQ1kgqJQ5hUKh6Av5U+DIb8otsAc+ewrWPggrboCXfgILL5KKXcnCbrtSKAab/lc+1gIr0AILgcuBN5AWudP73e9wZM5ZssZgPPydVp+5vIJiIwFmKxl2K02hjspZnOZwlHSbJbE06kizdFhmDUdjRGM66WkWqcy1tO0vOVq2LNDRaqdQKBSKXuKcCMd+F779IXz9ZZh7llTs/nUc3LkcVt8Doc5XXRSKwcbEAIjAOmCdaf0NR9JzpXXusyfh9FvBZqe2sYUcmkibtqxD80y7NeEXl4pmwxcujsNm7ZA0uDm+FJtmJSOto+WuuqHVJ6880Nynx1IoFApFCoSAyUfJ7YxbYd1jUpF77iZ47efSinfEdZBZMNSSKoY5Lo/PAXwFcJGke/m97l+Y0X//LXMHGwsvgeYa2CyrcVQf2EeBqEtZfzDLYSMS0wlFUq86B8PRROADyBQl7X3mgknKXKbdSnM4iq7rifNxnz2Afcoyp1AoFANDRr5U3q5/H772ovS1K70VbpsPL/4YancNtYQHNbquc9urW4ZajK54Flk2LAI0Jm2mYGY068HB9JOgYDq8/UeYew41ZX7yrBEZ0t6ODENRawpFsNvsHc53VOastLRbZg2GYolzGXYr0ZhOKBrDYZPX1SRFy+6vMzWvoUKhUCjaI0Rr6bCKDfD+X2DlXfDxv2HBV2DZ9zqkqVIMPPe+7+fPr28dajG6YqLf6z5joDo31zKnOceZ2t9wxGqDE/8XKtbD3adT0xSmoGAM2DM7NM20x5W51EutzaFoQuEDqbB1sMwl5aKLt40reNDqszfemU59MNyPB1MoFApFrxg7D778T/juWjjyW7DJB/84Bh6/Wua0UwwKq3fW8CvfxqEWozved3l8h3TfrG+YbZkzPavxsOSQC6B8HXxwBzXWa5hVkjoXUUY3ylwwHGunzHUMgEiuEhHvrzkcxUka0FqBYkphFrXNSplTKBSKQSdvEpzxGzj+B/DBHfDhP2DDs7DoUjjhxzJSVjEgVDa08J0H1zA+LwMdnZ1DLVDnLAOudnl8O4AWZOJg3e91mxIebbbP3MGTsfbUX8BPy6mx5JOf09EqB5Bpl7pyZ0EQzeEojrTWjyBVapL4fobhMwdy2TZOTVOYNKugxJlOXTtlbn99kAv/+T6rd9b08uEUCoVC0WsyC+Dkm+GmT+HI62H9E/DXw+CFH0Jj1VBLN+qIRGN89+FPqGkK8Y8rlpCbnjbUInXFmcBM4DTgbOAs49UUzLbMmZ7VeDgTjFloCkXJz0w9gVIpX22uD0cpznEk9tNTRKsGjeAJR1LJr+akNo0tEbIcNnIz0qhrt8x626tbWemv4blP93HYFFV7UKFQKAaF7CJpqTvmBnjrd7DyP/Dpo3DCD2X0q83RfR+KbvnTq1t4/4sqfnfBQuaPd2KzDF97kt/rHlCjobnKnBYwPavxcCZRyiurY3ADJC2zpkgEDK1luuKkyjPXZpk1rswlWfoaWiJk2aUy19ASIRbTsRgT2l8pA2X2p6gaoVAoFIoBJnc8nH279KeLlwtb+R84/dcw+0uJSkKK3vPqhgr+XvoFlx4xiYsOnwSAdRgrcwAuj28RcJyx+47f6/7UrL6Hf2oSzVmA5nwVzbnVeE1tYtKcL6E5a9Gcg1ZGLO6vlp+ZWpnL6sEya7qtXZ65dgEQLZGOy6zJlrmmlihZDiu56TZ0vW0S4d01Mqnltv0NvXquoSIcHZ2FQxQKxUFO8Ry44gm44kmZeP6Ry+DhS6DGP9SSjUh2VTXx/cfWsmBCLv93dmvksM0yfFUal8d3E/AgUGxsD7g8vhvN6n/4PnkrHuB1tMBM4HVjPxW/B746aFLRvTIXV74aWzpbZo21scx1HQDRusyaHFDRGGpdZgXa+M0dqJepSvbUDP9kwh/vqGb+LS/z6EqVq0mhUIxSZpwC33oHTvsV7HgH7jgK3v49RFRaqZ4SDEf51gOrEcA/Lj+sTXqvYazLAVwDHOn3um/xe923AEcB3zCrcxPKeTlv7NRaZg7nAvca7+8FzkstR+B1oH4A5ehATWN8mTW1z1xGCktaMs0p8sz1JAAi2N5nzm5LOH7G/eaC4SgtkRjZDhtNoWjKmq/DCd+6fYSiMR78SClzCoViFGNNg2NuhBtWwqzT4I1fwb9OgL1rhlqyEcH/Pfs5G8rquP2SxUwqaBt8OJwtc8gA0eQv4igmBo2a4TM3FliJ5lwD3A28jBbQu7mmd/1rgTLjfblxv76jOa8DrgMQepTS0tI+d/XBTqk4bf50NeWbOn4mLRE5DJ9t3EJpi7/NuZguK0OU791FaWk5AOV7QkRiOq+/8WZi7X/Ddmn9+/jD92gMy/4+Wb8BZ63MYbS/uoniTAs7Nsul1Lc/WMWBQis1QWnhK3LEaGgB32tvUZgxdBO9oaGhy7H+eLO0Hn6+N8Arr7+J3Tq8fR+GO92Nt8Jc1HgPLqNmvIu/ToF1IbM3/x37v09m1+Qvs3PKJcSsqVd7hoLhNNZv7wnz6Gchzp6WhqV8I6XlbXPLBWqHtX/4f4GPXB7f00gl7jykzmQK/VfmtMDP0Jw3I8Ntvwb8Dc35GPAftMAXPevD+RqQKuHwT9vdS0dz9k9R1AJ3AncC6N50ffny5X3uas2rWxCbtuI+5QRs1o6KUiymw2svMG6Si+XLZ7U51xSKwMsvM3fmdJafIPPUbRZfwLZNHHXscWQ55EfzSXgLbNnKqScupz4YgdJXmDx1BsuXTZUdffQGrgkFHHfUVH678l2mzZnP8vnj2FxeD6Vvs3DaOHas3cesQw7jkInOPj9rfyktLaWrsf7Bu6+SaY/SFIoyad5hzC3JHTzhRiHdjbfCXNR4Dy6ja7yXQ/O18MpPmfLJA0xp+gzO/xeMP3SoBQOGz1h/tjfAg6+9z7EzCrn960emDHa4379yCCTrGX6v+08uj68UONY4dJXf615rVv/mmGqkJa7c2CJAPvAEmvN3Pbz+FLTAghTbs0AFmrNEtnOWAPtNkdkEqhpaKMi0p1TkACwWQUaaleYUqUmSfeHixN8nL4kGI1EcNgsWiyDdLu/TJgAiFCXTYcXZzmeu1vDnmzYmW8ra2OqTsbWivk0ZsKGmujFEZUOI0+dLfX77gbbl6uqDYf5euo1dVU1DIZ5CoVAMLBl5cO4dcPmT0FIPd50K7/0FYiooDGTZym8/uIb8TDt/vuTQTqNWLcMwmtXl8b1rvNYDpcBvjO0dl8dXZ9Z9TLDMOW8CrgQqgbuAH6IFwmhOC7AV+FE/77ACuArwGq/P9rM/06hqCFGY3bU5PNNuTVkBojnJFy5OupFAOJ5bDiAYavWrs1stWC2iY2oSR7LPnFQcA4ZSN60oC2gt+7W/Loj7L+9SlOPg7R+dOCxCubdWSFfH0+aN5elP9rKjsm307a0vbuKhj3bx+sb9PHn9MUMhokKhUAw8M0+B69+DFTfCqzfD9jfhvH9CTv+8i0YyLZEo37x/NeWBIA9fdxRjsjvP0Tcc88z5ve5lxmvOQN7HDMtcAXA+WuB0tMDjaAGpRWiBGDLDcX/xAqeiObcCpxj7oDkPR3PelWilOd8BHgdORnPuQXOebsK9u6SqsYXCrK6TP2Y6Uitz8ajVdHs3lrmkkl9CSEtfvL9wNEYoEiPLbiM7XerlCctcJ8rc2t21hKIx9tY2s35voJdPPDDEo23nluQyNtfBjspWC1w4GsO3TrpMrt5Zk8idl0ygKSyXtIeA217dwmm3vcX72yqH5P4KhWKUkVkAFz8AZ90GO9+XtV6/eGOopRoSYjGdHz6+jo/91fzhokXdJr8fDsaJznB5fL/tybG+YoYyl44WaJvZWHNKAbVA/yvfaoEqtMDJaIGZxnJstXF8FVrg2qR2x6EFitACGWiBiWiBl/t9727okWUuzZayAkRcYUu3tX4EDuN9S1J6Ehnx2tomw25NWPWaWuRrlsOG1SLIcdgS0awBI6HxpIJM0qyCKkOZq6hvXW79eEdreRl/ZSOn3/Y2f3h5c3ePbTplAanMjXOmMyk/kz01rcrc1ooGAs1hfnj6bADe3Nx2lf2Vz8tZ/MtXOOuv7w56xO6bm/bz59e3sqWige8+srbTFDTVjSH21w1rx1yFQjGcEAIO/zpc9xZkjYEHvgLv/An0ofnROlT86dUtrPh0Hz86YzbnLBrfbfvhaJlL4tQUx840q3MzollPBX7c7tiZKY6NOiobWro0+YJUvrpcZm1TAcKwzEWSLXNt05ck++A1Gq/xlCW5GWnUNbcus8YVvPxMO9UNhjIXCGK1CCbmZ/DxjmquO14GX9z22hY2V9SzuaKeU+eNZdGkPEAqIv99bweHTHBy2vxUMSr9pywQpCDLTnqalYn5Gaz0t9aS3VgmXQpOnz+WR1bu4qPt1XztWBn8EY3p/N+Kz9F12FBWx7/f3s6NJ89MXBsMR7n9ta3UNIa48eQZTMxPXUO3rzz88S6Kcxz85dJDueTOD3lqzR6+erSrTRvfujK+9+gnRGI6PzhtNt85cUbKvppCEWI6ZDvMrrCnGM2UB4K8t62SmqYQkwoyOXJqAXmd5L1UjECK58C1r8OKG+D1n8Pe1XDePyB99AeI/efdHfztzW1cesQkrjeCBLujpz5zLo/vDODPgBW4y+91e9uddwD3AYcBVcDFfq/b33Pp2/R1PfBtYJrL41uXdCoHeL8vfaai798cmjMhIJqzvYDv9VOuYU8oEqMuGKGwk1JecTLt1pQVIIKpfOZsqQIgYh2VubhlzlDm4pGvOemtlrna5hDOjDSEEBRk2Vstc3VBirIdHD6lgLe27EfXdaIxnTc37edLh4zjrc0HuP/DnSyalIeu63z7wdV8uF0aQ/95xRLOWCBjUVb5q/njK1twZqTxozNmM61IBlpEYzrvbauktjnMCbOKEoEZIH0fKgItjHU6cCRVvigLBBmXmw5IS+KKT/cRjsZIs1rYVF6H3WbBVZjFUlcBb20+gK7rCCF4/4tKygJB7rhsCY+t2s0DH+3kW8unk2YEpPzv0+t5as1eAD7cUcWz3zk28UXXHIry6xc28OqGCuaMy+Xms+Yxozg7IVM0pvPC+jK2VNRzyAQnx88qavM5BJrClG4+wJVHT+HIqQXMH5/Lgx/t4oqjpiCMEj17a5v54ROfMn+8kxJnOr9/eTNTx2TxpUNKEv2EIjF+88JGHvhwJzrw5UMnoJ0zv4NSV1EX5MX1Zeyvb2H+eCcnziki097xz7c5FGXr/nq210ZZ2BiioIv5GV+mz7RbEzKnQtd1qhtD+Ksa2VLRQF1zGNeYLJZMzqcop/MfM6FIjAMNLYQjMcbkOJSiaiL764L8yreR59ftI9nDwGGz8OVDJ3DjyTOZkJfRp74bWyI0tkTQka4fyX/DiiHAkQ0X/BcmHA6v3gL/PgkuexQKe6bgjET+8+4Ofvn8Bs5cMI5fnLugy/9PyfTEMufy+KzAHUhD1B5gpcvjW+H3ujckNbsGqPF73TNcHt8lwG+Bi3v7HAYPAS8Ct9K26EG93+uu7mOfHejPf9dOBUwshQ5z9NwSlv22oy9CUY6Dh79xVJsv7/bEfdAKu7HMZdqtiRquyaSKZnWkdVxmlQEQbZdZ45a+xvgyaxvLXDyaNUye8U+4MNtOtRHNWlHfwthcB4snOXlyzR721jazp6aZumCEcxaNx5lh5+lP9nDzWfNYt6eWD7dX8zP3XJ77dB+ep9azeFI+lQ0tXHn3x+Smp9EUiuD+ywFuPmseCybk8r9Pr+ezvXWJZ//KkoksmpTHE58GueHN12hoiZCeZuHwKVIBCjSHeWPTfk6cXQTApPxMYjrsq21mSmEWG8vqmT02B5vVwhGuAp5as5ftlY1ML8rmhfXlZNmtnDy3GIfNwrX3reK1DRWceUgJa3bV8NSavVy/fDqnzB3LJXd+wP889in/vvJwwrEY192/ine3VXLq3LGs9Fdz7t/e5davLOTshSV8vKOaXzy/gc/3tQYajcl28I3jpnLczCJqm0I8umo3oWiMcxdPQAjBFUdN4SdPrWf1zhoOdxUA8OfXthCJ6fztskMpzkmn7F8f8KMn1jG3JJepY7KIRGPc9MgnvPhZOZcsnUSG3cq97/tZs7OGP19yKIdMdBJoDvPPt77gv+/tIBiOYbUIojGdLLuVrxw2kbMWjifbYWPdnlpe3VDBu9sqaTECaH7x4atMyMtg/vhcFkxwMibbQXldkC3l9WzZX4+/spGYLgNvJhdkMik/k0kFmWQ7bDSHoxyob8Ff1ciOykaZFqcdQsBSVwFnLhjH/PFOshxWdlc3sW5PgFU7a/h0d21CFoDiHAfzx+cyf7yTsbkO0tOsBJrDlAWC7KxqYnd1E1WNISKxGALITreR40gjJ91GTnoauRky0MeRZqGxJUJdc4S6YJi65jDBcAy7zYLDZiHLYSPLYSPbYSXLLl0QWiIxWiJSeY3EYkRiOtGoTtT4MWO1CNKsgjSrBZvF0vreKrAbPw6iMdk+FtOJxHRixrUxHfZXtPBqzXpsFoHVIq+zWoSxL7AaX0YxHXTkNbquo+sy56TVInDYLJw4p5j547tOIfTR9iq+/eAa6lsifOP4aXz50AmMzUnniwMNPPXJXp5YvYenPtnL14518e0TZuDM7FoZi0RjfLi9Gt/6fby3rYpd1W2jxicXZHLIRCeLJjo5dHI+Cyc62/wY6w2NLREaQxHCUR1d18m028hyWPvc30GDEHDMDVCyCB67Eu46GS55CKaMvoCwuw1F7oz54/jLpYcmfpz3BGvPkgYfAWzze93bAVwe3yPI4gTJyty5gGa8fwL4m8vjE36vu9fr3H6vOwAEgEtdHl8+MBNIN+6N3+t+u7d9pqIflrlAQkAzBBkSoi0cMbWgzaGdVU2s3llDZUNLl8tylQ1SOerOZy7DbktZASJ+LD2FZS65PmswEm1j/ctIqhLRuswqP8bc9DT21kr/s0BzOFHiqyDLwfqaWkAus04pzEwso366O8Cne2pJswqWzSxiYn4mD3+8i6fX7OHFz8oZl5vOV4+ewklzinH/5V2u/u/HHKhvIT/TzlPfPgZdhx88/in/+/R6AMZk27nt4kVMLsjiwY928ujK3dz/4U5y0sC9aBKHTs5jU3k9H+2o5q53dyQUzkMmSnkmFkhrwp6aZiYXZLKxrI6T5xYDJJSklTuqmTYmizc2VSQsZifOKWZCXgb3f7iT0+eP4+crPqc4x8ENJ84gy2Hjp1+ai/bcBm5Z8Rn+yibe3VbJ776ykIuWTqIs0Mx3HlzDdx/+hJ89vZ66YIQSZzp/vfRQTps/lg+3V/OP0m3c+uImbn1xEyAjiy8+fBILJsjljnMWjefXvo08+NEuDncVsKOykSfX7OWqo12JeXTH5Utw/+Udrn9gNfd87QhufXEjL35Wzs1nzeMaI2/g6fPH8b1H1nLOHe8yrySXHZWNNIejnLtoPN89eSZTCrP4aEcVT6zewyMf7+a+D1rdVSfkZXDpEZM5alohmzZ8Rta4aazfG+CzfQFe3ViBroNFgKswi5ljs/nSghKy021U1rews1oqUx/tqKYpFCEjzUpepp1pRVmct3gCrjFZTB2TycziHJyZaWzb38DbWw7w4vpyfv5c8v9A+et4/vhcrjhqCrPGZmOzWKioD7JtfwMb9tXx9tZKoknmpLgyObkgiyVT8kizWmSd4WCY+mCE+mCEPTVN1JdFqA9KxS073UZuuixjl5ueRkGWhVBUJxiOsr8+SGNllAbDwhTTdexWC3abFYdNKloJJctiwWqBaExaKiPRGOGoLt/HdMKRGCGjZrA1cY1UziyGsiaApmCUDbXlCSUxEpOKXiQWo7PYHCHAIuT1UUOx+8MrWzhn0Xj+cOEi7La2X0y6rnP/hzv5xXMbmFyQyaPfPIoZxa0BcodnFXC4q4DvnDiDP76ymTvf3s4jH+/mOydO54LDJrWx0oajMVb5a3h+3T5e+qycqsYQWXYrx80s4qLDJ5KXaUcI+X9k/Z4Aa3fVJgKR7DYLiyfmsWRKPrPHZTMuN4OcdBvhqFSYm8NRDtS1sC/QTHkgSFkgSFmgmbJAMOWPAoAch42iHAdjchwU5TgoyjZek/aLcxwUZHWeCuqgYOpx8I3X4cGL4N5zZDqTRX01GA0vdF3nz69v5fbXtnL6/LH89bLeKXIAFx4+kd9l5NpcHt+qpMN3+r3uO5P2JwC7k/b3AEe26yrRxu91R1weXwAoRGbt6BMuj+9a4CZgIrAWWc7rA+CkvvaZTH+WWd9FCyxDc9YDyf+uBKCjBYb9or5orOZPFy1uc+zJ1XtYvbOm2/Q+8WXLMd0GQFhTBkDErW/ta7MCbeqzNoeipOe1tsm0WymvCyfOAWQ54pY5GxvLjACI5nDin3dh8jJrfZAjphYwZ1wudquFdXtqeX1jBUdNKyTbYWPBBCcLJzrRjC9o7ex5OGxWphVl88vzFuB5ch1FOQ7uu+YIxhpLo/d9/QhWfLqPhpYIZy8cn7AEHDYln1vOmkdFXQt7Nqzi5JMWthmDWEzHYhFEorFEFNIkQ/HZXd3EgeJsqhpDiQTC04uyKMyy87G/mvnjnVTUtXDyXBmyb7UIrjx6Cre+uImv3v0Rn+4J8KeLFiWWoK86xsXn++p44MNdpFkFv/3KIVy0dBIAJc4MHrnuaJ75ZC+f7K5l9thsLl46OfHZnDCriBNmFeGvbGT93gDZ6TaWugraLBtmOWycv2QCj3y8mx+ePpvfvbQJu9XC9ctbl0Im5GVw28WLueaelRx16+sA/PD02QlFDuCoaYW89L3juPvdHXyyu5ZFk/K4/MjJbaw1x0wfwzHTx3DLWfNYs6uG5lCMmWOzmVmcnViOSK/cxPLjpyWuaWiRilB+pr1LizOQWMbuiiWT81kyOZ/vnTKLXVVN+KsaaWyJMDE/k+nFWSmXgOOEIjFqm0MEQzGcmWnkptt6vIwyXOkqsWrMsOgJZES6RZDyeQNNYe56dzt/fWMbLZEot128ODGOjS0R/vfp9Ty7dh8nzSnm9ksWJ9IRtWdCXgZ/umgx1y6bhvelTfzmhU387qXNzBqbQ1GOg7pgmI1ldYlI+ZPmFnP2whKWzy7ucm5UNrSwZmcNK/3VfOyv4a53thPpJoq8KMdBiTMdV2EWx0wfw9jcdHLSbQlrZ1MoQkNLhMqGEAcaWjhQ38LGfXW8Xd9CfYqAIouAnPQ0YpEwjndfSyjl8eFsHx+gGwcsFkGm3UqG3UamURoxy2EjPzONgiwHhdl2CrPsFGTZKcy2U5DlIC8jbVjmLaNgGlz7Kjz6VXj6OqjeDss9MIL/hoLhKD96Yh0rPt3H+Usm4D1/Ya8VOZD/l2LNdRG/1334AIjZX24ClgIf+r3uE10e3xxkvjlT6I9lbpnxOqC5UwabuFIR7SZqqCpumesmNUmG3ZqIOk2mOVU0aydJg9tY75KiWRsNZS7ZMpfwmWsKM22MTEtSkGU3LBxhapvCjM11YLdZmD8hl8dW7aamKcwVR01J3OP6E6bz7YfWsGhiHpcnHb/gsImcsWAcDpulzR+axSI479AJKZ8/L9NOXqadshTlzuL/KJN/aZc407FaBLtrmthgBD/ElTkhBEtdBby3rZK8DDtpVsHJc4oT1159rIunP9nLe9uqWD67iPMWt8okhOD3Fy7imydMJz8zrcPyuN1m4aKlkxIKXipcY7JwGWOaim8cN43HV+3hzD+/Q6A5zA9Om9XBp+zE2cWsuGEZb205wBFTC1jqKujQT16mne+fNrvT+yS3O2lOz/JPZTtsPfZZ661iNbkwk8mFPQ8usdssFOek9+oeIxmLRWDpQQlGZ2Ya/3PabAqy7Pz8uQ2ccfs7XHn0FELRGA99tIt9tc388PTZXH/C9B4pGfPG53Lf14/g830BfOvK2FBWR1VDiJx0G5csncxR0wo4flZq38tUjMl2cNr8cYlAqFAkxq7qRvbXtVAXjOAwlrkdaVaKcxyMzU3vYF3sDc2hKJUNLeyvb6HSUPQO1LcQaA6za88exo4bm1CUYzE9UeVSGG9EYl8ukTeFojSFozSHIpTXhWlsiVDdGErk5myPRUB+plTwkrfCLDv5ifcO8rPSEq+DtlyckQ9XPAXP/z94ywsN5eD+E1hG3nJ1RV2Qbz2wmk921fKjM+T8HuAfd3uB5H/0E41jqdrscXl8NsCJDIToD0G/1x10eXy4PD6H3+ve5PL4uv9H30OUR3I74v8ko9384qxqiPvMdW2Zy3JYaQpHO1g7gimiWeOKXbKfUXOobQBEZlprQEVTS8do1oaWCLGYTqA5nHBcjlvoNpXL5Lxxi9opc8fyeyMVyelJkapnHlLCyp+eQl5GWocljYF2YrdZLUzIy8Bf2US2Q8o/d1yrkffcxeN56fNy7n5vB6fNG0t+0tKRw2blme8cy+byeuaPz035hZcc5GA2kwoyue3iRfzxlS2ct3g81y9PHbm6YIKTBROGrrSaYnjztWOnMrckl1ue/Yxf+WR2p0WT8vj9BYs4enphr/ubP97ZrR9eX7DbLMwozmmz1GsmGXYrkwoyOxRTBygtPcDy5YeYcp9wNEZNY4iqxpBRjaaFauN9VWMocW7r/gZqGkPUNIU6XTrPdtgS1r3CLAdjsuPWPvm+MEsuFY/Nla/9Ulpsdjj3b5BdDO/+CZpr4Px/g61rA8Nw4qXPyvA8tZ6WcKxNgN0AsxKY6fL4piKVtkuAy9q1iRcr+AC4AHijL/5y7djj8vjygGeAV10eXw2ws8sreoEZFSDuBW5CC9Qa+/nAH9ECX+9330NAq6Ny159bZWMLdpulW+Um024jGtMJRWNtfrW1Wua6Thrc0kWeubhlLithmbOh63KJtS4YxpnZuswKrWk+4srclUdP4dPdtSybOYbx7SLfuku5MpDMHpfDpvI6rBbBhLyMNg7cp8wby7EzClm/J4DnzDkdrk1Psyb8AYeCMxaUDNY/JMUo5qhphbzy/06goi6I3Wpp86NFYS5pVgvFuekU5/bMWhw1fixXN7ZQ3ShfqxpDVDeEqG4KUdUgFcE9NU2s21NLVWMopXHAbrMwLjedcc50SpzydbwzI5Fvc3JhZvc/noWAU/5PJhp+5WcQrJMJhx0D96PVDMoDQX7l28Dz68o4ZIKT2y9ZzPSiwZHZ8IG7AXgZmZrkbr/X/bnL4/sFsMrvda8A/gPc7/L4tgHVSIWvv/f9svFWc3l8byKtfS/1t984ZphZFiYUOQAtUIPmHB4VgvtA3BDVE8vcmB78soqnHmkORTsoc3aj5mqceNLgZJ+5YCTaJn1JcjRr3DKXkWSZA5kSQ9dJWObiS4ob9rVV5nLS07jzyuHnWjB3XA6vb6ygoSXCQiMwIk6a1cID1xxJOKr3awlHoRgJjO2hgqEYPKwWkVhy7QmxmE5dMExlQ6vlb39dkLK6oAwQqQ2yZlcNFYGWRLBNnMIsO5MLM5lSkMnkwizjVe4X5Thav3+OuVEuva64Ee47F654UtZ7HWbUBcPc/e4O/v229Lf8f6fM4vrl0wf9f7nf634BeKHdsVuS3geBC826n8vjE8BEv9cdD6p4y6y+45ihzFnQnPloAZnpVXMWmNTvkGARPVtmrWxo6TYtCbQugTaFouQlrRa0JJXpimOzWrBZRCKaNR5Z1z7PXCgSIxrTaQxFjSg9+YeQa5T0iqcWyM9su8y6dnctABPz+5Z/arBYODGPmA4VdS0smzGmw3khBHbbyHX2VSgUBw8Wi0j4DndFLKZT3RSirDbIruomdlY3sru6iZ1VTaz017Di07Y5BTPSrDIKvDATV2EmrjHH4TruPqa8/QPG3/dlLFc+PWwUuj01TTz40S4e+mgXgeYwp88fy0+/NK9XvrYjGb/Xrbs8vhcAc3wDUmCG0vVH4AM05+NIX9MLgF+b0O+QEA+A6G6ZtTwQ7JFSlJGkzCXT3C5/XJz0NGvCMhc0fOeS28WVw+ZwlKZQhExHq6IXj26LK3N5hjI3IS8DIaTPXFGOIxHhOVw5YXYRmYYF8tR5B2+BaYVCcfBgsQjGZDsYk+3gkIkdfRxDkRh7apoSaYR2VsnNX9nI21sOGL7WFuBP2HeEmPybZ3FNncmU4jwZvFWYiaswi/F5GQNew1TXdb440MjrGyt4bWMFq3dKW8+p88Zy40kzD1af4TUuj2+p3+teORCdm+AzF7gPzbkKmStFB85HC2zo5qphS08DICrqghzu6rroL7RGmrZPT9IcjnawzIFU3OLlvOKBDhntLHPxc40t0YS/HLQus+6siitz8pdghl2Wydpd3YxrBPwSSrNaeP7GZdhtlg6+fAqFQnEwYrdZmFaUnai2k0wsplNeF8Rf1SgVvC2f4d/oZ+eOGO9uH5cwDIDMAznW8NVr77NX4kxnbG46Y7IdOGyWbt2IdF2uEFU3hPiisoHN5fVsKqtj7e5a/Mb30LySXG48aSYXLZ3U56oko4QjgStcHp8faMRI4+b3uhd2eVUPMctEk0YiMJwRXfulJwEQwXCUmqYwJc7uJ2ZmJ5a59jVX4zhs1kQOungghCOtY5BEc8iwzNlTWeYaARlWH2d6UbahzHWeWmM4keoflkKhUCg6YrEIxudlMD4vg2OmA0dMhi1WePQK9KJ5VJz/OP4GKzsNZa/c8NfbWFbHG5v2p0xsn2YV5KSnYdPDFKx9u41ip+s6tU1hqptChCJt/fxKnOnMK8nlmmVTOWnu2INdgUvm9IHs3Ixo1puAbwBPIhW6B9Ccd6IF/trvvoeARJ65LpIGlweCQM+ckxPLou2XWTtT5pIsc3HfuWTLXNzSJ5dZo2Q6ki1zbX3m8pJqKs4el0Pp5gMcM6P3qQ0UCoVCMcKYdTpc/ADikcsY9/xVjLviSY6a1vH/v67r1DVHKK9rrdRR0xRK5CbdtnMvOe2qIQngkAlpFGTbKciUefemFGQyZ1xut+XjDmJ2AZcD0/xe9y9cHt9kYBwmpScxwzJ3DXAkWkCagzTnb5G5WUakMteTAIjyOqnMlTh7oszFl1k7WuZSLrParLSE48uscZ+55GjW1szpTaFIoi4rtOaA213djBCty64AN540k8UT8xIJPxUKhUIxypl1Opx/JzxxDTz2VbjkYZmfLgkhBM7MNJyZacwe1zFnYGlpFcuXD7+sByOQvwMxpEvaL4B6pBFsqRmdmxEPLIBkTSUKPUh3PkzpSQBE3DI3rkfKXHyZta3PXDAca5MwOI4jzZJIGhy30LXJM5fWaplrbIm2yd5us7bmvXNmpLVxcs122DjzkJIBd3xVKBQKxTBiwVfg7Nth22vw1Dcg1nFJVTEoHOn3ur8DBAH8XncNYFoCSTMsc/8FPkJzPo1U4s4D7jah3yGhJ3nm4sXse2KZy0iKPk2mOdxJNKvNmvCVSxkAYW9NLNwUiiTqssbJTbfR0BJps8SqUCgUioOYw66GlnqZWPi5HDjnryO6lusIJezy+KwYtexdHl8R0lJnCv23zGmBPwFfQ9YtqwSuQgvc1u9+h4jEMmsXlrnd1U2MyXb0qKZhZwEQMjVJJ9Gs7QIg2pTzSuqvMRRtEwABrUurPbEaKhQKheIg4Zgb4fgfwif3w5sjNnvYSOYvwNPAWJfH92vgPeBWszrvu2VOc9ZjaJgGIumcjhbI7XDNCMBmMeqjhjtXmHdWNTG5oGcROvFyXfFqDXFaIp1HsyYscymUueTUJE0tkQ4KZTyidXwPIm0VCoVCcRBx4k+hvhze/j3kToDDvzbUEh00+L3uB10e32rgZOPQOX6ve5NZ/fdDmQsMTHXlIWZaURZ2m4UPt1dxxoLUwQK7qptY2oMccyBDxjPSrCktc53lmYv7zMUVyva1WUFa5prC0TYBEADpxn5JnrLMKRQKhSIJIeCs26RC5/sfyB0vgyQUA4bL4+vU8OXy+HS/122K4Wt4lwIYArIcNo6fWcTLn5dzy1nz2tROBZmFuyzQzOSCCb3o00pTks+crutdJA1utcy1BkB0tMxVN4bQddqkJgE4c8E43t5ygMWTeqZsKhQKheIgwpoGF94D93wJHr8arvbBhCVDLdWoxe91D4rhywSfOadAc16B5rzF2J+M5jyi3/0OIWcuGEdZIMine2o7nNtb20xMh0kFPa+kkGG3tskzF47qxHRSBkA4bJYuAyDiil1VYwtAB8vcpUdM5sWbjuOUucU9lk+hUCgUBxGObLjsccgaAw9dBDX+oZZI0U/MSE3yd+Bo4FJjvx64w4R+h4xT5o7FZhG89Fl5h3Oby+sBmFHc8woFmWm2NqlJUvnCxUlPs7amJgl3zDNntQgcNgtVDSHZd4ogjLklud2WYVEoFArFQUzOWLj8SYiG4aGLIRgYaolGNS6PT7g8vitcHt8txv5kl8dnmuHLDGXuSLRAIncKWsDU3ClDgTMzjWNnjOHFz8rR20W1rttTi80imFvS82XuDHtbn7m45S11njmpzMWXYu1WS4fccJl2KwfqDcuco2MfCoVCoVB0S9EsuOg+qNoGT3wdopHur1H0lQE1fJmhzIXRnIncKWhOU3OnoDkL0Jyvojm3Gq8dncE052I05wdozs/RnOvQnBf397ZnLhjHruomNpTVtTn+6Z5a5pTkpLSqdUZmJ8pcPNI1GYfNiKaNxAiGozhSLMXmZdoTJbuyHMrtUaFQKBR9ZNoJ4P6jTCr8yk+HWprRzIAmDTZDmYvnTilGc/4aeBf4jQn9xvEAr6MFZgKvG/vtaQKuRAvMB84Abkdz5vXnpqfOG4tF0GapNRbTWbcnwKKJveu6vTLX3IVlLq4ktoRjnaYvKciys9+wzBVmOXoli0KhUCgUbTjsajjqO/DRP2Hlf4ZamtHKME0arDnvQHMeixZ4EPgRMvldGXAeWuBxk+QDOBe413h/L7LCRDtZAlvQAluN9/uA/UBRf25amO3gmOljePqTvcSMahA7qhqpD0Z6rcxl2G00J/nMxX3hOktNAjKStbP0JQVZrcr8mJwRvaKtUCgUiuHAab+EmafDCz+EL94camlGIwnDl5E0+F2GRdJg2AL8Ac1ZAjwGPIwW+MQcsdowFi1QZrwvB8Z22VpG0tqBLzo5fx1wHYDQo5SWlnba1SFZEd7d1sLfnnydhUU23tkTBiBUvpXS0tTdpyJQ1UJtQ+u9NlZJy9ymz9cjytsqa/698h6l77zP7rIQ0VCsg4wtddIqJ4D1Kz8YEfVWGxoauhxrhbmo8R5c1HgPLmq8Bwbr2Ks5dN8mHA9fwZolf6A5s0SNtUm0SxosgPP8XvdGs/oX7R38e43mnAJcYmwZwMNIxW5LL/p4DUiVofenwL1ogbyktjVogdRJ1KRiWYosKfZhd7dNT0/Xg8Fgp+dbIlGO/92bTMjL4Mnrj+HCf37A/voWSn+wvEP+ua74+XOf88SqPaz/uUzO+Oam/XztnpU8/e1jOHRy20d56bNyvvXAanzfXcbvXtpMbVOIZ29Y1qbN717axN9LvyA/M41Pbjmtx3IMJaWlpSxfvnyoxThoUOM9uKjxHlzUeA8gNX6480TIKoJrX6P0wzUjaqyFEE26rmcNtRztcXl89wI3+b3uWmM/H/ij3+v+uhn99997XgvsBH4L/BbNeShwN3AL0PMIAS1wSufnnBVozhK0QJmhrO3vpF0u4AN+2hNFric4bFa+f+osfvzkem58+BNW7azh5hSJhLsj0y6TBuu6jhAiZc3VOPHo1KZQ1AiA6HyZ1W4zw+VRoVAoFAqDfBdcdC/cdx48dR2UXDfUEg0aLo+vAHgUcAF+4CIjUCG5zWLgH0AuEAV+7fe6H+1B9wvjihzIAAiXx3eoKYJjTtJgG5rzbDTng8CLwGbg/H7328oK4Crj/VXAsylksCPXou9DCzxh4r254LBJnL9kAs+vK2OpK5+Ll07qdR+ZdhvRmE4oKn3lEgEQKRS1THtbZS6Vwjc2V5bqKspRwQ8KhUKhMJmpx8OZv4UtLzJ1x4NDLc1g4gFe93vd3QZc+r3uRMCly+PL60HfFsMaByQUR9PSUfSjNqvzVGS+lC8BHwOPANehBRrNES2BF3gMzXkNsBO4yLj/4cC30ALXGseOBwrRnFcb112NFljb35tbLYI/XriI75w4g6mFWb22ykGr0tbUEsVhs3YZzRpPAtzUEqGhJcKE/IwObc5YMI4/XriI2eNGZXlchUKhUAw1S6+F8vVMWXMvrD8TDrlgqCUaDM4Flhvv70W6bf04uYHf696S9H6fy+OLB1zWdtP3H4EPXB5fPED0QuDX/ZbYoD9a4U+Ah4D/MRIFDwxaoArpMNj++CrgWuP9A8ADAyWCEILpRT2v+NCehLUtHCWfpMoOKfLMxds2hqI0tkTJSlHhIc1q4SuHTeyzPAqFQqFQdIkQ8KU/UPvFSvKevQEKZ8D4xUMtVbdYMnJtLo9vVdKhO/1e9509vHys3+vuccClUcGh84DLJPxe932GXCcZh873e90beihXt/TDMhc4qftGCmi1wMXTkzS1RNocTyZumWsORWhsiaikwAqFQqEYGmx2Pp//Y479/GfwyGVwXSlkD++637Hmuojf6z68s/Muj6+rgMsEfq9bd3l8nUaIujy+EuB+4Cq/192jfHGG8maaApeM0hQGgcTSqZE4uDEky3SlCmCIW+YaWqI0hiJkK2VOoVAoFENE2J4HlzwE/zkNHr0CrnoObCPXX9vvdXcacOny+CpcHl+J3+suM5S1lAGXLo8vEXDp97p7FHA50NGsKhxyEMhKCmoAaXXL7KSmaty/rrqxhZiuynUpFAqFYogpWQjn/R12fwS+/4H+pjQbvnQbcOny+BIBl36vuzcBlx2iWYFhEs2qOQWas/fhnQcZrcusrZa5zE5qu1osgky7NVGuK7sTpU+hUCgUikFjwflw/A/hk/vh4566oI04vMCpLo9vK3CKsY/L4zvc5fHdZbSJB1xe7fL41hrb4h70PUyjWQG0gI7mfAE4xBxxRifxZdbGuM9cKEJmFxa3TLuN/UaVB2WZUygUCsWwYPn/QsUGeOknUDQbpi0faolMxe91pwy49HvdiYBLv9fd14DL5GhWAVyAidGsZiyzrkFzLjWhn1FLZrtlVhml2rnFzZlhY29tM6CUOYVCoVAMEywWOP9fMGYWPH41VG8faolGDH6v+z5kDt4KZB3764CjzOrfDE3hSOByNOdOoBGpcepogYUm9D0qaL/M2hyKJqx1qSjMcvCxvxpABUAoFAqFYvjgyIFLH4J/nwQPXwbXviqPKXqCA5iCzDG3A3jSrI7N0BRON6GPUU0Hy1woQokzvdP2+Vlpifd5mWmdtlMoFAqFYtApmAYX3gP3nw9PfRMufkBa7RQdcHl8s5AFFi4FKpHlwoTf6z7RzPuYUM4rsBOoQybXm5K0KQziyYETeea6scwVZLWGfauSXQqFQqEYdkxbDmfcCpt9UPqboZZmOLMJmSj4LL/Xvczvdf8VWdPVVPpvmdOc1wI3AROBtcg14A9ozXJ80BOPUG31mYskrHWpKEiyzBVk2gdcPoVCoVAoes0R10H5enj791A8T0a8DhW6Ds98e+ju3znnA5cAb7o8vpeQpU97Xxe0G8ywi94ELAV2ogVOROZNqTWh31FFpt1Kk1GTtaeWOatFYLMq07VCoVAohiFCgPuPMOlIqUiVfTp0sux4Gz59aOju3wl+r/sZv9d9CTAHeBP4HlDs8vj+4fL4TjPrPmZoCkG0QBAAzelAC2wCZpvQ76gi026jIRhB13WaQhGyusgfV5glrXF2pcgpFAqFYjhjc0ifucwCGRDRcGDwZdB1ePM3kDN+8O/dQ/xed6Pf637I73WfjVzJ/AT4sVn9mxEAsQfNmQc8A7yK5qwBdprQ76jCmZFGXTBMSyRGTKdLy9yR0wo4dkYhR04tHEQJFQqFQqHoA9nFsuTX3WfAY1+FK1eAbRBdhL54A3Z/KK2EfGPw7ttHjOoPdxqbKZjgMxf4cvwdmvNNwAm81O9+RxnOjDQCzWEaW2QQRFc+cyXODB681rT0MwqFQqFQDCzjF8N5d8ATX4cXfgBn/1kuww40ug5v/hqck+DQrzISlLmBwNwkZlrgLVP7G0U4M9LYF2imLiiVudwMlT9OoVAoFKOIBV+Bis/hnT+CcyKc8KOBv+fWV2Dvajj7L3LJ9yCl7xqF5qwHdNpGZcT3dbRAbv9EG13kZqRR1xymtikEQF6GilJVKBQKxSjjxJ9BXZm0ltmz4egBjDCNReV98qbA4ssG7j79xOXxCWCi3+vePVD36IcyF1Apn3tBfJm1tiks91UyYIVCoVCMNiwWOOevEGqAl38CjmxYcuXA3OuDO2QE7fl3gXX4fqf6vW7d5fENaB17M/LM3ZL6eOAX/e57FOHMSCMc1SkzAn/zVf44hUKhUIxGrDb4yl3wyGWw4rvSQmd2DrqKDfDGL2HOWXDIBeb2PTCscXl8S/1e98qB6NwMx63GpPfpwFnARhP6HVU4M+Svhp3VcrjyMobvrwiFQqFQKPqFzQEX3Q8PfAWe+gboMfOUrkgInv4mOHLhrNsHJ9Ci/xwJXO7y+NrUsfd73abUsTcjmvWPbfedfwBe7ne/o4x4jVV/pVTmcpUyp1AoFIrRjD0TLn8MHr4UnrwWmmvgCBOiTd/+HZSvk+lQsov639/gMKB17AciK20mMiGeIomxuTLKZnN5PbnpNqyWEfFLQqFQKBSKvuPIgcsfh1lnyJQlL/0EopG+97f2YRktu+gymOM2T84Bxu91D2gdezN85tYjo1gBrEAR8Mt+9zvKKHFmAOCvamJyQeYQS6NQKBQKxSCRliGrRLx6M3z4d6j4DL58J+SW9K6fVXfD8/8Pph4P7j8MjKwDhMvjG9A69mZY5s4Czja204DxaIG/mtDvqKI4x0HcGDcxP2NohVEoFAqFYjCx2uCMW+Hcv8PulfD3I+HTR2TS3+7Qdfjg71KRm3kaXPYY2LMGXmZzSdSx93vdptexN0OZ+0rSdjHwXTTnNWjOxSb0PWqwWS2MzU0HYHpR9hBLo1AoFArFEHDo5fCtd2HMbBnE8K/jYZMPIi0d2+o6bHsN/nOqTHMy92y4+EFp6Rt5BP1edxDA5fE5/F63qXXszYhmPdzYnjP2zwLWAd9Ccz6OFvhdv3rXnAXAo4AL8AMXoQVq2rWZAjyNVE7TgL+iBf7Zr/sOABlGCS+1zKpQKBSKg5YxM+DrL8G6R6HUK1OY2DJgytEw8QiINENjpVyOLftUluo66zY49Epp4RuZ7HF5fHkYdexdHp+pdezNGJWJwBK0QAMAmvP/AB9wPLAa6J8yBx7gdbSAF83pMfZ/3K5NGXA0WqAFzZkNfIbmXIEW2NfPe5vKLWfN4+r/ruTIaQVDLYpCoVAoFEOHxSqrNhxyIWx7HbaXyu0tL1jtkFUMOeNk6pHFl4Nt4HOzujy+DsYjv9dd00nbXGAD8Izf676hu779Xneijr3L4zO9jr0ZylwxkGwfDQNj0QLNaM4UdtNecy6w3Hh/L1BKe2VOC4SS9hwMTJRuv1k+u5jtv/kSFhXJqlAoFAqFrNww+wy5AYSbwZY+VLnjPMDrfq/b6/L4OjMexfkl8HZfbuL3uk2vY2+GMvcg8BGa81lj/2zgITRnFlJr7S9j0QJlxvtyZFhvRzTnJKRFcAbww06tcprzOuA6AKFHKS0tNUFERXc0NDSosR5E1HgPLmq8Bxc13oPHQTbW3RuPAJfHdxhSF3kJ6WbWKS6Pr8s69n6v25Q69kLvSSRJd2jOw4Fjjb330AKrenn9a8C4FGd+CtyLFshLaluDFsjvoq/xyDXps9ECFV3dNj09XQ8Gg70SVdE3SktLWb58+VCLcdCgxntwUeM9uKjxHjxG2lhbM52hSd99aH3SoTv9XvedPbnW5fHV+r3uPOO9AGri+0ltLMAbwBXAKcDhPVlmHWjM8SSUylvvFLi215/S+TlnBZqzBC1QhuYsAfZ309c+NOdnwHHAE32WSaFQKBQKxYgi1lwX8XvdnVrLXB5fV8ajBH6vW3d5fKmsXd8GXvB73XtcHl+P5XJ5fCnr2Pu9blPq2JuRNNiBTEviatOfFjBFQGAFcBXgNV6f7dBCc04Eqgw/vXxgGXCbSfdXKBQKhUIxCvB73Z0aj1weX4XL4yvxe91lLo+vM+PR0cBxLo/v20A2YHd5fA1+r9vTza0HtI69GZa5Z4EAMnLVjICH9niBx9Cc1yDDeC8C4ku730ILXAvMBf6I5oyvQ/8BLbC+k/4StLS06EKI5gGQWdERG9CPGi6KXqLGe3BR4z24qPEePEbaWPcnCV23xiO/1315/L3L47sauczanSKH3+tuU8fe5fGZWsfenNQkWuAME/pJjRaoAk5OcXwVcK3x/lVgYR96X6PrepfOiwpzEEKsUmM9eKjxHlzUeA8uarwHj4NsrL3AYy6Pr43xyOXxHQ58y+91X2vivUytY9//AAjNeScySW+3lrDhxkE2SYcUNdaDixrvwUWN9+CixnvwUGNtDi6PL2Ude7/XbUr5UzMsc8uAq9GcO5DLrAKIoQUWmdC3QqFQKBQKxUjnrKT3EaDC73WbtnxthjJ3ZtJ7AUwCfmJCv4NBj8KVFaagxnpwUeM9uKjxHlzUeA8eaqzN4SvtD7g8vgCw2u91r+1v52blmTsUuAy4ENgBPIkW+Fv/O1YoFAqFQqEY2bg8vodIXcfeBTzu97r7Vfq075Y5zTkLuNTYKpH1zARa4MT+CKRQKBQKhUIxypgILPF73Q0ALo/P1Dr2/alhugk4CTgLLbAMLfBXINofYRQKhUKhUChGISnr2Pu97mZMSOvWH2XufKAMeBPN+W8058m0rT02bBFCnCGE2CyE2CaE6DY/jKJ/CCH8Qoj1Qoi1Qoi+VwpRpEQIcbcQYr8Q4rOkYwVCiFeFEFuN185L4Cl6RSfjrQkh9hpzfK0Q4ktDKeNoQQgxSQjxphBigxDicyHETcZxNb8HgC7GW83v/vMg8JHL4/s/wyr3HvCQy+MzpY69GalJspDFaS9FWuruA55GC7zSX+EGAiGEFdgCnArsAVYCl+q63u/BVKRGCOEHDtd1vXKoZRmNCCGOBxqA+3RdX2Ac+x1Qreu61/jBkq/reoeC0Yre08l4a0CDrut/GErZRhtCiBKgRNf1NUKIHORy1HnA1aj5bTpdjPdFqPndb4x8dYk69n6v2zTjhgnlvAKNwEPAQ0YprQuBHwPDUpkDjgC26bq+HUAI8QhSGVXKnGJEouv620IIV7vD5wLLjff3AqXIv0tFP+lkvBUDgK7rZcgVIHRdrxdCbAQmoOb3gNDFeCtMwFDeBmR1yozUJK1ogRpkGPNwDmWeAOxO2t8DHDlEshws6MArQggd+Jeu68N5fowWxhr/mAHKgbFDKcxBwg1CiCuR/6z/R9f1mqEWaDRhKNCHAh+h5veA0268j0XN737h8vhS1rH3e92m1LHvj8+cQtFTlum6vgSZk/A7xjKVYpDQpS+FCTmIFF3wD2A6sBhp2fhjl60VvUIIkQ08CXxP1/W65HNqfptPivFW87v/PIu0KEeAxqTNFMy1zI0M9iITG8eZaBxTDBC6ru81XvcLIZ5GLnW/PbRSjXoqhBAluq6XGX4w+4daoNGMrusV8fdCiH8Dzw+hOKMKIUQaUrF4UNf1p4zDan4PEKnGW81vU5jo97oHrI79wWiZWwnMFEJMFULYgUuAFUMs06hFCJFlONIihMgCTgM+6/oqhQmsAK4y3l+F/FWoGCAMhSLOl1Fz3BSEEAL4D7BR1/U/JZ1S83sA6Gy81fw2hfddHt8hA9W5ORUgRhhGWPXtyGK3d+u6/uuhlWj0IoSYBjxt7NqAh9R4m4sQ4mGkM/gYoAL4P+AZ4DFgMrATuEjX9eohEnFU0cl4L0cuQemAH/hmkk+Xoo8IIZYB7wDrgZhx+H+RflxqfptMF+N9KWp+9wuXx7cBmIGskpWoY+/3uk2pY39QKnMKhUKhUCgUg4XL45uStJuoY+/3uk3J2XcwLrMqFAqFQqFQDBp+r3snUADcgEyl8wvgBbP6PxgDIBQKhUKhUCgGHJfHl7KOvd/rNrWOvVLmFAqFQqFQKAaGTUg/xLP8Xvc2AJfH9//MvolS5hQKhUKhUCgGhvORWTPedHl8LwGPMAB17FUAhEKhUCgUCsUA4vL4Utax93vdppQ+VcqcQqEYVgghCoHXjd1xQBQ4gAzrv0/X9W8PwD2/hyzcfl8n588CjtB1/Raz761QKA4uXB5fvI79xX6v+2Qz+lTKnEKhGLYIITSgQdf1PwzgPWzAGmCJruuRTtoIo82xuq43DZQsCoVC0RdUahKFQjEiEEIsF0I8b7zXhBD3CiHeEULsFEKcL4T4nRBivRDiJaMkEUKIw4QQbwkhVgshXm6XyT7OScCauCInhPiuEGKDEGKdEOIRSNT/LAXOGpSHVSgUil6glDmFQjFSmY5UxM4BHgDe1HX9EKAZcBsK3V+BC3RdPwy4G0hVfeRYYHXSvgc4VNf1hcC3ko6vAo4z/SkUCoWin6hoVoVCMVJ5Udf1sBBiPbI030vG8fWAC5gNLABelaukWIFUJYhKgI1J++uAB4UQzyDLosXZD4w3T3yFQqEwB6XMKRSKkUoLgK7rMSFEWG91AI4h/7cJ4HNd14/upp9mID1p3w0cD5wN/FQIcYixBJtutFUoFIphhVpmVSgUo5XNQJEQ4mgAIUSaEGJ+inYbkZGyCCEswCRd198Efgw4gWyj3SzgswGXWqFQKHqJUuYUCsWoRNf1EHAB8FshxKfAWuCYFE1fRFriQC7FPmAs3X4C/EXX9Vrj3ImAbyBlVigUir6gUpMoFIqDHiHE08CPdF3f2sn5scBDuq6bkhNKoVAozEQpcwqF4qBHCDEbGKvr+tudnF8KhHVdXzuogikUCkUPUMqcQqFQKBQKxQhG+cwpFAqFQqFQjGCUMqdQKBQKhUIxglHKnEKhUCgUCsUIRilzCoVCoVAoFCMYpcwpFAqFQqFQjGCUMqdQKBQKhUIxglHKnEKhUCgUCsUIRilzCoVCoVAoFCMYpcwpFAqFQqFQjGCUMqdQKBQKhUIxCLg8viyXx2c1u19VzkuhUCgUCoViAHB5fBbgEuByYCnQAjiASsAH/MvvdW/r732UZU6hUCgUCoViYHgTmA78BBjn97on+b3uYmAZ8CHwW5fHd0V/b6IscwqFQqFQKBQDgMvjS/N73eH+tukOZZlTKExACOEXQpwy1HKAObIIIT4XQiw3RyLzEEJoQghtqOVIxXCaA31hsOUfrnNMoTCZSS6P7zAAl8d3XKoG/VXkQClzilGIEKJUCFEjhHAMtSy9RQjxkhDiFymOnyuEKBdC2AZDDl3X5+u6Xmrce8QpKSN5DrRnNDxLqjmUPMcUilHMP4ALXR7flcBXB+omSplTjCqEEC7gOEAHzhlaabqmE8XsXuAKIYRod/yrwIO6rkcGXrKRzUiaA9DpPIifczHMn2WwfmAoFCOULX6v2wMUAEcN1E2UMqcYbVyJdCq9B7gq+YRhHfiBEGKdECIghHhUCJFunFsihPhECFEvhHjcOPerpGt1IcSMpP17ks+3u49HCPGF0dcGIcSX28nwYyHEOqAxxRfhM0Ah8gs8fk0+cBZwn7E/XgjxpBDigBBihxDiu50NhhBirmHZqTWWtc5JOjdJCPGU0U+VEOJv7eQ8RQhxPzAZeE4I0SCE+JEQ4odCiCfb3ecvQog/dyJDjhBiT/slNSHERGNcCzuTv4/0aQ4Y54fLPOjJs6T8/Lr5XHszdzptm0r+zp431RxK6uOUpD67mqtdfm7t5LYJIW42rqkSQlxmzNufdvasCsUA8gKA3+u+HbhzwO6i67ra1DZqNmAb8G3gMCAMjE065wc+BsYjfyVtBL4F2IGdwE1AGnA+EAJ+lXStDsxI2r+n3Xk/cIrx/kLjHhbgYqARKElqtxaYBGR08gz/Bu5K2v8msNZ4bwFWA7cYck8DtgOnt5fFeJZtwP8abU8C6oHZgBX4FLgNyALSgWWdPE/ivbFfYjxTnrFvA/YDh3XyPBrwcorjAmgAlvfi89UAzew5YJzr1zxIMU79mgddPUtnn19Xn2t3c6fdZ96Ttm3k78HzntLu2ZLv1+lc7e5zSzFmXuA1wAmcbbT9HMgZ6v9Pajt4tyk/fv7CKT9+Psd4/7MpP37+qSk/fn6JWf0ry5xi1CCEWAZMAR7TdX018AVwWbtmf9F1fZ+u69XAc8BipOnbZpwL67r+FPKLo0/ouv64cY+YruuPAluBI9rJsFvX9eZOurgXuCDJ8nClcQxknqIiXdd/oet6SNf17Ujl75IU/RwFZANeo+0bwPPApYY844Ef6rreqOt6UNf1d3v4fGXA28gvb4AzgEpjzNsghLAC1wN3GftFQohpRj86EAEyhBBHCCE+EEK8LYR4WAiR1hNZUtyvr3MAhtk86OZZOvv8uvpcezN3etK2jfw9eN6u6GquJt8v1eeWPGa5wPeA63RdDwAfAXOQLgr1Zs0zhaIP3Oz3uutdHt8y5I/t/yD96UxBKXOK0cRVwCu6rlca+w/RbmkKKE9634T8AhkP7DWUizi7+yqEEOJKIcRaY7moFlgAjOlp38aXbyVwnhBiOvIL8SHj9BRgfLxvo///Bcam6Go8sFvX9VjSsZ3ABKRFZafedx+8e4F4bqQrgPs7abcAKAZeNva/D1wHIITIAHKQVr3dwEm6rh+PtMKc20e5+joHYJjNA7p+ls4+v64+197MnZ60bSN/D563K7qaq3E6+9ySOQnYYiifIK18AeCvSTKbMc8Uit4SNV7dwJ1+r9uHnJ+mYJ7jqubMAoJogWi3bRUKkzEUg4sAqxAi/k/fAeQJIRbpuv5pF5eXAROEECLpi3wS0hISpwnITNofB+xJIccUpAXjZOADXdejQoi1yCXFOD1J7ngf0iI3G7lEWWEc3w3s0HV9Zg/62AdMEkJYkr4kJwNbjH4mCyFsPVDoUsn7DPAPIcQCpD/fjzq5dgJQo+t6nbF/Bq2K3wlADfBJuy/xEJC83yP6OQdgGM2D7p6Fzj+/rj7X3sydnrRNyN+D5+1uznc1V3vDeKOvONchFfR6SFiV4/RpnikUfWSvy+P7F3AqMlGwAxMNan3vSHNa0JyXoTl9aM79wCagDM25Ac35ezTnjO66UChM5DzkL595yOWXxcBc4B2kUtQVHxjX3mA4T59Lx+WhtcBlQgirEOIMpCKSiizkF9cBACHE15AWit5yH9IU/w1al1hBLvvVG87nGYY8C4QQS1P08RFS+fiRECJNyACEs4FHjH7KAK8QIksIkS6EOLYTWSqQPlMJdF0PAk8grUUf67q+q5Nrq4FcIcRUIcSlyF+i84QQeUj/t9uTFTlDKTgNuYzWW86j73MAhtc8OI+un6Wzz6+rz7U3c6c3bXvyvB3mUDu6mqu9YQ+wWAhRIoQ4EhkFXiyEaGMB6ec8Uyh6jMvjO9rl8Qnkj7OXgdP9Xnct0vfzh2bdpz9aYZsSFWiBSWiBNiUq0Jz9LlGhUPSQq4D/6rq+S9f18vgG/A24XHSRPkHX9RDS2f0aoBa5bPg8soZenJuQXy61yBp7z3TS1wbgj0jFoAI4BHivtw+j67ofeB/5Jbki6XgUaQlbDOxALsfehXT2TvVcZwNnGu3+Dlyp6/omo5+zgRnALuSX4MWdiHMr8DNj+ewHScfvNZ6vsyVWgJXIL+S1yPE9BzgG6U/1EfDbeEPD3+l+4Gpd1/uSRLPPcwCG3Tzo8lmQFq8On19Xn2sv506P2/bweTubQ/HrO52r3Q9VG14CXkEGPTyM/DzXAm/EG5gwzxSK3nAlMpjobiAXGdiD3+su83vdr5h1k76X89KcaWiBrv8QetJGoRiGCCE+Av6p6/p/h1qW4YoQYjLSIj8uaRm1r33ZkErrH3Vdf72LdhqArutaf+7XC7nUPBhF9HSeKRRm4/L45iB/rJyO/FH0JvLHx3t+r7vf7mn9r82qOS8EXkIL1KM5bwYOBX6FFljTX+EUisFCCHECsBlpFbgc+CcwrZ2PjcJACGEB/gTk6rr+dRP6+ypwO7DeOPQPIyKyfTsNBk6ZU/NgdNPTeaZQDCQujy8DOBGp3B3t97oP72+fZgRA3IwWeBzNuQzp/Pp7ZLjtkSb0rVAMFrOBx5DLmtuBC9QXeGqEEFnIpbSdyICGfqPr+v10vVwbp9SM+3WBmgejmF7MM4XCFFwe3/e7OL3D73XfaMZ9zFDm2oTbogV8aM6UGdEViuGKrut3MpDZuUcRuq43kjotxGDcu3SA+1fzQKFQmEmO8Tobmb8x7gN9Nv3IY9keM5ZZnwf2IsNtlwDNwMdogUX9lk6hUCgUCoVihOPy+N4G3H6vu97YzwF8fq/7eDP6N8MydxFyqeUPaIFaNGcJJobbDiQWi0XPyMgYajEOCmKxGBaLylE9WKjxHlzUeA8uarwHj5E21k1NTbqu68NR4LHI3IZxQqRO2N0n+q7Mac6jgQ/RAk3AU63HA2XIPEfDHrvdTmNj41CLcVBQWlrK8uXLh1qMgwY13oOLGu/BRY334DHSxloI0VmZxKHmPuBjl8f3tLF/HrK2syn0R3uVuVM05yNozqvRnOPMEkqhUCgUCoVitOD3un8NfA1Z9aYG+Jrf677VrP77YZkLXC9fnfHcKfegOdvkTlGlvRQKhUKhUCjA73WvAQYkbVv/fea0wCZk4tDb0Jzx3CkXInNQ9Tt3yoimpR6aayBnPFjNK4NrNk2hCDaLBbttOLoZKBQKhUIx8nF5fPnATCA9fszvdb9tRt/98ZnrMncKWsCU3ClJ9zsD+DNgBe5CC3jbnXcg16QPA6qAi9ECflNl6CnV2+GVm2HLSxCLQEY+HPs9OOZGsFi7uG4HhBpg7AIQovN2JjPvlpc5wlXAY986etDuqVAoFAqFmXxxoGGoRegUl8d3LbIc4ERkibmjkOXvTjKj//6YiwYldwoAmtMK3IFMf7IHWInmXIEW2JDU6hqgBi0wA815CbLmY2e1JgeODc/CM9+W74/6NhROh43Pw2v/B/534Ct3SeUumaov4NnvwK4P5H7+VDjpZ7DgK61KXWAvfPRPqPgcxsyEuWfDlGPl+XAzbC+F2t3gyIZxh8CY2YAuFcSaHWDPhtzxkD0W7FkdlMWP/dUDOiwKhUKhUAwU0ZjOJXd+ONRidMVNSF3pQ7/XfaJR3us3ZnXeH5+5n8tX59vAErRAvbGvAb7+i9aGI4BtaIHtxj0eAc4FkpW5cwHNeP8E8Dc0p0ALdJpIz6JH4c1bpbVMWIxXK1jTYOx8mHQU2Ow9kzAWhTd+Be/+CSYcDhfdB84J8txhV8Pqe8D3A/j3SXDxgzB2Hug6rHsMfN+X9zztV1LR++if8OQ18PG/4bCrYM8q+OQB0KNQPBd2vi/bFEyHrCIoXw/hdlG5ljTZXo91lNVqh1N+Dkd/m3C09byu64hBtAgqFAqFQmEGn+yq4UB9y1CL0RVBv9cddHl8uDw+h9/r3uTy+Gab1bkZjlwDmjvFYAKwO2l/Dx3LhbW20QIRNGcAKETWWGxFc14HXAcg9Ai81Xa1NpmoJZ2a/IVUFR5OVeHhhByFKdvZW6qYs+kvFNSsZV/J6Wyd/g30T7YCW5Nauchd9Evmf/5b0v55HFWFS3G0VJJbv5Va5zw2zv0+LaEiOXqzf8445xtM234/9meuJ2qxs7/4OHZOuZhgxlgs0RaKDrxH8f53sNbV01h0ApVjjqQheypp4XqyG7aT1ehHF1aaMicQTC/BEgviaKnCHqqheP+7ZL1yC+83TKY6lpWQcM0Tf6KxYD4xa3r7R+w3DQ0NlJaWmt6vIjVqvAcXNd6DixrvwWOkjPWjm0PdNxpa9rg8vjzgGeBVl8dXgyyJaApmKHP3AR+jOZNzp9xrQr8DgxZIlOuJetN1/q9WWtX0aOtrpAV2f4R12+uM2foqY7b8XV47biHMOgOmnQCZhdCwH7a+AqvvhVgYzrqd8Yd/jfGd3nw5nHQ+vPVbira9Chk5cMJt5B16JUd3CJA4GcI3Q91erNnFlDhyKGlz/vTEuzykJttj9q6Gf5/EssJqvpi0HN58C4AZn/0R55SFcPULEE8S2XAA/G/D5GMgt6TzPrthpOUq6jXVO2CTD8YtgGnLh1qa0T/ewww13oOLGu/BY6SM9S9WlQLhoRYjJS6PTwDf9XvdtYDm8vjeBJzIzB+mYEY066/RnC8CxxlHvoYW+KTf/bZlLzApaX+icSxVmz1oThtyoKq67VkII9I0aSgcOTDHLTddhwObZDDDlpfhnT/A279Lut4K886Fk2+GgmndP0nOWDjrT923A0hLlz53ZjN+CeRNhk0+AmPOThxuKlqEc9f78OnDcOjlUOOHu06Fxv1y+feyx2DSERAOSovmxueheI4M7ph4uByr8vWw+UVAh8lHweSjwebA3lIjj8ci4JwERbMhLQMiIenTl1EA2UXmP+tgUPUF3HWyjFwGWPb/4KRbWhVigKZqWPUfKP9MBrgsvQYyCzr2FWqExgPStzFtGFcnKf8MtrwIlVvlUv+MU2Dq8V0H+MRiEKoHR+6gBvgoFIrRzbb9DWyvHL4FAPxet+7y+F4ADjH23zL7Hmbly9hh9JUO5KA5j0cLmBJua7ASmInmnIpU2i4BLmvXZgVwFTI65ALgja785XqMENJPrXiu/JJuqoa9ayBYK7+MSxan/lIezggBs78Eq++hYXHrH0DTVx4E38Xw6s3gWgYPXQzRFun/95oG954Dx/8APnsS9m+QFqgd78DG56SfYLAWqrYB8S9qHdIywZ7FMY0H5CeTkMEiz4WbpF+fxQYX3C0V4zixKGx/U/Y37cS2ytFwobESHviKfJ5vvg2r/gvv3gbBOnD/UY719rfgqeugoRzypsCGZ+CDv8Hyn8DhX5fXbi+FT+6DTS9IK68lDaYcIy3BM0+F9Dyo/gIqPoN9ayGwW45ZTgkUzpDbmJnSYly3j8LKj2HNbpkex54llcPc8VKJz8hrlT/cDMEANNfK/tKdUnFPlUonFoMvXocP/w5fvCGPOSdJ5fODv0HuRFjyVTjkQhnE01wD5etgx1vy+crWSct3WhaMmSEV/anHy7mTVSTHKhiAwB6o2gq1u+Q4OrLl8+dOgKJZ8p5dKY0KheKg4pUN5QDkZ6aZt25pPmtcHt9Sv9e9ciA6N8Ey5xzQcFt5j0AEzXkD8DIyNcndaIHP0Zy/AFahBVYA/wHuR3NuA6qRCp/5ZBbAzFMGpOtBZfaZ8NE/CW18EYyF4eaYFc7+M/zrOPjzQml1/OpTUmmbfAw8cim88UuZN++yx2HWadDSAB/fKa2W+VPh6Btg7jlgc4D/XfmlH2nmi1oL05dfJo/X+GVUbqhRKhoF02QfT35DRuEWz5FL3Q9fKpUHgBmnGpHAedICuOVlWPlvqazMPBUO+zpkGT6NwTp5XX2F7GvC4VIhiNPSAA0VUnnJHS+DT/pCuFnKWF8GVz0HJYvgrNsgPRfe+7N8zpxxsPYhqWxd/phsU7EBXv4JvPRjeP3ngJABLBkFsPRaGXxTtRW2vCLbvfyTtvfNyJf9xSJSQWq8v4NohwB81oncViOoR4/JPjogpFKYPVYqd+jy86jdCU1VkD0OTv4/WHKVHPNwEDb7YM39UHqr3BDyOpDjPHEpHPtd+Yx1++SPgdX3ykAekMqrsMgfD+1lod1vMlu6nDOOHPkssaicB6F6+drSIJ8ts1D+vWaNkTLnGFtGgbyXHAQ5BtGwfLVYpeXQkSPbZRVKRdOerayJCsUw5dUNFRwywdkmoG8YciRwucvj2wk0Yvxz83vdC83oXOh6P41XmnM9RrgtWmCxURHiN2iB802Qb0BJT0/Xg8HgUIsxNETDcPtCfLWT+E74JgAe++bRHDG1QFqH1j4Ih34VZp/Rek0sBnV7pDWolwpQt34XDfvhjiNkhO7VPnj6Opnm5YzfyvOv/FRaZI69CT5/Cna8La1c2cWwZ6X8gp9zFrTUSStQNMkZ1mqXykRahlSwqr6gVdFIk4pB/hQ5Js01UtmItEjFM2uMVACyx0nLYLhZKi/hJplPsHYXXHRvW4uirkvr1dt/kO2WXAmnaFJxTW6zvVT6XOoxaQmdeZq8ZzI1fmnZCzdJOYvnynFIViyaa6XVrnIbNFdDTgmrv6jgsOPOkEpJqFEqr3X7pLyN+wEhFZq41SvdKeVorpUKW0OF/Exa6lrHMLcEpp8Ec87uPMq7ZqdUpOv2SWVozExpgUtWpuNEWmD3x7B/I9Tvk0pZdrGcX2Nmyh8Hjhw55s010hpZuQUObJZjH26Sn5mwyHb2bPnqMLImNVdLS3rjAalw11ekUBZ7iNWYC5mFcq7FI98tcquqqaOweJz8u0jPk0pkZqGhEI6RCmF2MWSO6XmEvKJTRoof12hguI/1/vogR/7mdf7fKbN4YX0ZL/+/E5p0Xc/q/srBxeXxTUl13O91m2JMNGOZNYgWCKI5ZeJeLbAJzWlauK1igLCmwZd+R+iphxM+o81ho/ranC/JrT0Wi1ymGwiyi8H9J3jia/D76TJ58um/gaO+Jc+PXwxPfB2e/560TJ35ezj8a/I59m+SFp5NPqk0LP2GzMNXMA0q1kulaecHss/ieXIZMG+KXM6s3iEVhNqd8ks6awyULDSWgJulYlNfDge2SGUnLV2eS8uQCseXfg+zTm/7LELA0d+ReQbj++0RAqafKLeuyHfBYa6u22TkwYTD5GZQf6BUKqggFYu8SSkvNZ38KXLpuCfYHDD1OLl1hT1Tbs4J0g+zr+i6dAVoapdT0ZomrYcWm7TOtTRIC19TlVQEmyrlcnpTlXyNthjBUjGpkMYi2EM1UBOU+801ctM7qWZosbXOIVu63NKMV5tDzu+8yXKOFkyT8yx34vB0M1AohpjXN+5H1+HUeWN56bPyoRanAy6PT/i9br0rpS3epj/3MUOZ24PmzMMIt0VzmhpuqxhA5p5N6LRF8OR6AJpDqZbcBpEF58svyM+flsrYoqSV8slHwffWS58858S2Vq7iOXD27XJrT85Y6Zw/FKhlueGFEFJRap+02wRWt7dexGLSqhlXABsPSItoY5W0KIabIdJsvBpKYCQorb4VG2DzS22tiLYMwy9yhvQddOTK5fy0zLbKaPy91W4sMRdLq6CyBipGKa9uqGBifgZzxuUM13+5b7o8vieBZ/1e9674QZfHZweWIX393wTu6c9N+qfMaU4BfBctUAtoaE7Tw20VA0tLpNXHIGGZG0oOuUBuqbBYZRSsQjHcsVikxTQjr28R6bGYVP6qtsmI4cqt0o9y31rpS9k+SXiXCOkqkDe57eacJK1/zonSMqhQjDAaWyK8u62Sy4+cjBACy/DU5s4Avg487PL4pgK1yGBRK/AKcLvf6+53BpB+KnMBHc2ZCLdFC5gebqsYWEJJylw40v/gX4VCYQIWS2vAhmtZx/PRiLT8hZulu0A0IpeIY2HpRxhpMayC+6WvYGCPdCXY/TF89lTHJeBsQ9lzTmi15mUXydfkLUUpQIViqHhnayWhSIxT58k6BT2dmi6Pr02td7/X7W13/njgdmAhcInf636irzL6ve4g8Hfg7y6PLw0YAzQbOedMw4xl1jVozqVogQEJt1UMLMmWuZbhHQmkUCjiWG19T4kUjciAkNpdcgvslope7S4jOroSWgKpr7VlSP/WgqkyWKlwuvE6Q/p3pkppo1AMEK9trCA33cZSl/xb6Ek5SpfH16HWu8vjW+H3upPLg+4CrgZ+YKa8fq87DJSZ2WccM/7yjgQuR3O2CbdFC5gSbqsYWFraWOaUMqdQjHqsNhkQkzcJODZ1m0hLkq9fu62uTEYTf/aEzAuY6NchgzWKZkPRXOnLWjRHRiUrJU9hMtGYzhub9nPinGLSrDI4qIeGuSOAbX6vezuAy+PrUOvd73X7jXMj5kvRjL+w07tvohiuJC+zhpRlTqFQgIyqdU6QW2fouowMrv5C+vQd2CTTxuxZKROLx7HaoXBmq3IX3wqmKSVP0Wc+2VVDdWOIU+a2loIXAiwZuTaXx7cqqemdfq/7zqT9ntR6H3H0/S9JcwrpMxfoPHI13kYxbAlFYmSkWWkOR5VlTqFQ9BwhjKTKhbLMXzKhRqnYHdgkt/2bYM+q1Epe0WyZPzFu0SuY2vdE3oqDhlc3VpBmFZwwu7UMpEUIYs11Eb/XffgQijYk9Odn0ZtozieBZ9ECiXBbNKep4baKgaUlEiXTbiUYiQ737NkKhWKkYM+CCUvklkxCydsMBzbK172rZSLwOJa01uXa4nkyf+LEpTIVi0Jh8NqGCo6aVkhueqvi38Nl1p7Ueh8wXB7fqcBFwB1+r3uty+O7rp3lsE/0R5lLhNsaNVNraRduixbod7itYmAJRWLYbRbsVosKgFAoFANLV0pe5RZpwYtb8/Z9Ap8/A+iyykfxfJh8JEw6CkdQl8u8KrL2oGT7gQa+ONDIlUe72hzvYWqSlcBMI01IZ7XeB5KvA9cDP3N5fAXAYjM67ccyayARbovmTITbGjnnFCOEULRVmVOpSRQKxZBgz4Lxh8otmWAd7F0Fuz6C3R/Cp4/Ayrs4GmCDBq7jYNoJMPWErv37FKOK1zZWAHDy3OK2J3qgy/m97ojL42tT693vdX/u8vh+Aazye90rXB7fUuBpIB842+Xx/dzvdc83Sfx6Iy3JD1wenxdZDrXfmON9qgUGLNxWMbBEojo2i8Bus6hlVoVCMbxIz5X1gKefJPejEdj/OVveeIBZ9krY9hqse0SeK5zZqthNPW5AKn0ohgevbdjP3JJcJuZntjlu6aGh1u91vwC80O7YLUnvVyKXX03D5fEd5ve6VwO+pPt4XB7fjWb0r0KJDnIisRg2i4U0q6VNZKtCoVAMO6w2KFnEvgk1zFq+XFbK2L9B1l/e8RasfRhW3iWXZUsWwYxTZe3k8UtUbdtRQnVjiFU7q7nhxBkdzomees0NDVe5PL6fAH+MH3B5fH/ye93fN6Nzpcwd5ESiOjarIM0mOljmPtxeRZpVcNiUPiYnPQgoDwS57wM/31o+vY0jrkKhGAQsFhi3QG7H3ACRkAyo2PEWfPEGvPMHePt3kDlG1miedZp8TXcOteSKPvLmpv3EdDhl3tgO54a5vr4fOAd40uXx1QN24AOzOlfK3EFOOKZjs3YMgGiJRLnkzg+xWy1s+fWZQyjh8OZ/Hl/Le9uqcBVmcdHSSd1foFAoBg6bHaYcLbflHpkHb9vrsPVlua17RKZEmXYizDsXZp/Z90oaiiHhtY0VjM11sGB8R4V8mFvmrgBm+73uFpfHNx64FTAtSNQ8ZU5zJsJt0QJr0ZzXoQX6HW6rGFiisRg2iyDNammTZ648EARUIuHuqG0KA7ChrG6IJVEoFB3ILICFF8otFpUJjTc+BxtWSOXOYpM+dvO/LJU7lf5kWBMMR3lrywHOO3QClhQOcsM8uHk3MBXY5Pe69yGXXTcia8D2GzMtc4lwWzSnaeG2ioEl3EkAxN7a5sT7hpYI2Q5lxE1FRZ1UejeVK2VOoRjWWKww+Si5nfYrmfpkw7NyW3EDvPBDmHcOLL4MXMcP+zW7g5EPt1fRFIpy6tyOS6zQs9qsQ8hNyCXWNUiL3ARkCVRTMHO21qMFatECPwBOw6RwW8XAEonGSDOWWZOtcNWNocT7fUmK3WDx7QdXc+29q4jFhm+6lGA4SmWDHKeKupYhlkahUPQYIWSuu1N/Dt/9BK59HRZfCptfgvvOhT8vhDd+DdU7hlpSRRKvbawgI83K0dMLU54fzqqc3+veACwBHgEygPL/3959h8dRXQ0c/t1Vt8pI7kW2BxdMMTbFYIoJpkPWlBA6CT2EJCSkfWHTJ5AyaaRQkpheQ29hwWDAoplmjLHBNq5jW+5FHkuy+s73x8yuV9KqrDRatfM+jx5vmb1z92qsPXvLubh7wvrCz+6WF2O3DDuEofmy3FZ0rYaIQ1psmHVf4LSnqj52266qS3m9XlqyBYAlG22mji5M+fnbIzoUreVksL1cgjkheiWloHia+3P672F5GBY9Cm/92f2ZdCYc/S03p13P7vnp0xzH4bWl2/jS/oPJzkhLeEx7U5N0F8sM1uCmJgm3dWyyOh/MGdo/gQMAB0ObATzqzpmzb+t02aLL1TU4ZKQpHAJUxQVt5dWJb6dCRc2+QHLT7qoeG8xtst0eyynFGm+v3MHe2noGZMpwtBC9VkYOHHK++2NvhI/vgwX3whcvwbDJblA3+XzIyO7umvY7n23cw5Y91fz4oEktHtPDh1m7lB/DrEuBPwP/wF16+zCGdoMP5YoUiOaZy2ySZ25PXAAX30uXCvHDulu8OWk90ebdbt2mFhcCSO+cEH2JNgpO+gX84HM4+zZwIvD8d+BvB7tDsJU7uruG/crcZVsJKDhx0pAWj+npPXNdqfPBnGH/G8Oei2G/hGH/BZgGfLPT5YqUqI84pKUpMpvkmSuvro+7ndqeuY1lvSOY2+31ZO4/PB+QYE6IPikjBw6/HL41Hy5/AYqPdIdf/z4FXjPc9Ceiy722dCtHjC1iUF5WK0f1jmhOD4WH+12mn6lJrgcmAPmALO3rJeobHDICClCNFkBU1TYwKDeTnZW17KlObc9cfFC01e65wVyF1y6jCnOA7plbKIRIEaXc7cLGnQDbv4A3/wjv/B0+vMsdfj3mO7KFWBcpLdvL0s17CJ15QKvH9aJR1pdwF0P4xs/VrC8By3D3M/uDj+X2CrX1EX7w+CLO+PtbPLOwtN2vcxyHJaU2Dd20arO+IUJ6WqBZnrnq+ghaTgZZ6YFGQ66pED3fhKF5bOvBvV0VNXXkZKQxKDcTaDmY21VZ2yjVixCilxsyCc6/F779nrujRLSnbt4foGp3d9euz3lpibv1+5mTW+/Q6kXDrL7X1IdhVu1JDO1ADHs9hn0PcBbwu06Xu6/8gRjaXAxtpfdv4q8+hjYHQ9uNob2Y8Pku9vD763j2k43sqqzlDy8vp7quoV2v+8frKznr9neY/daaLq5hYvURN89cRnqA2oZ9AWV1XQNZGWnkZ6c3GnIF+O2LS/n2Ix93WZ3K43q8Uh1IJqO8up787HS0HHcbr5aCuYtnv8dx5huUxaV7EUL0AUMPhAsfgOvfdXvs3jThH1Phg/9AQ8/929XbvLh4M4eM0hg7KLfV43r4DhDx7vK7QD965h4CHsfQlmBo9wNPAH5uGxACXsewJwKve/cT+TPwdR/P224VNfX8842VHD9xMH+76FC2l9fwzMKNbb7OcRye+GgDAPe9uxbHSX3vXH3E3ZvVXQCxLwCtrmsgOyNAblY6e+NWl+6pruPud9by0pIt2Hu75o/Vnuo68rLSKRqQkfLFF8kor6knLzudglaCubU7KlmxtQKA/y3elNL6CSFSZPhkuOhh+OZbMGIqvPwT+NdxsOq17q5Zr7duZyWLS21mTRnR5rG9Jc+zZQbv9LtMPxZAvIBhTwEuA97AzTd3eqfL3ecc4AHv9gPAuS3U43Wg3MfztlvJF9vYvbeOG06cwLHjB3HA8HyeX9R2MLd6eyWb7GoOGaWxrbyG0rLUD8XVNXirWdMD1MX1zNXURchOT2NAZjqVtfuCvPU798Zud9WuB+XV9RR4QVKiACm8eDNn3/4ONfXt6/3sKuXV9eRnpZMWUORnpSes62cb7djtJaV2s+eFEH3IiKlw+fNw8X8hUgcPfxUeuQB2rOzumvVaLy52h1iD7QjmelHPnO98XABhLwYW+1bePsMw7M3e7S1A4n082svQrgOuA1BOAyUlJZ0qDuDhT6vJz4TKdYt5c71idFYNb64r57U35pHeyiD++5vcXqcji6pYshEef3U+04anNk9ZbV09mzeVkhFQ1NTva49tu6ooyFLU1zlsrK2IPf7Rln09ZXPmL6RqfUa7zlNRUdHutl5bWk2gIULZtk3sqarjjXnzCHgzWyOOw3decQPKu56bx+TB3ZfXbdO2KrLSoKSkhEzVwIq1pZSUbG90zOuralHA/kUB3l+xiZKSspTULZn2Fp0n7Z1aPb+9B6Am/4ni0hcZu+YJAncczfox57Nu7Pk4gfb9zewpurutH5tfxXgtwKpPP2RVG8du395zF8x1tZ6R4dTQXgMSzWz8eePjbAdD69xYpGHPBmYDOGa2M3PmzE4VV9cQ4XslcznjkGJOOnEqAJUDNzP30YUMnngYh7aS8PbDOctJD6zhB+fP5IGlc1EDRzNzZvOEiB+vK+PGxz7hz+dPbXEbk45y5r7MfmPHkpORRmTNCo7/0gnujhAL32TU0Dwqaxuwq+qYOfM4AFa9vQYWLQNg8Kj9mDlzQrvOU1JSQnvb+j8r3mdEToQpk4bzv9XLmHbMDAqy3T+ApWV74ZV5AOzMGsHMmQcn+Y798/tP3mT04DxmzjyCYZ++TY6WzcyZjXexe2rTQooH7uZLBw/nwffWccIJJ6QksWUy7Z2sqtoGcjITZ2Dvr7qyvUVzvae9T4WKn8Ocn6J/9hh6xcdw1t9Bn9HdFWu37mzr1dsr2DDnTX456yBmztivzeOf3vxJCmrVMXoonAV8FdCJi70sM3izH+X3jBFmwz4Fw56c4Od5YCuG5vavuv9u69a6NvHh2l3sqa7nlIP2dRhO0901Ggus1vMPrdhazvgheeRnZ1BclIMVN4QZ718lqyktq+I3//vcv4p76iIRMtIUGelugBHNNVdd30B2Rhp5WWmN5szZVXUoBbmZaV2WV628po787IzYwoI9ccOXG3btG4peta2iS87fXtEFEOBu6ZVomLW0rIoxAwdQXDSAmvpIbC/X3mru0q1M+c0r3Dp3RXdXRYjeIW8onH8PXPY0NNTC/UF44XtQ0y2zgnqVFz/djFIQPKTtIVbo8VnmnsedNlYPVMb9+MLfnjlDG45hb/G1THgBuAIwvX+f97n8Tpm7dCtZ6QGOnzg49tiwgmyKi3L4eF0Z1x7f8mvX7dzLuCHu6pziohy316mJSMRh/mo30/jKbRVU1tSTm+XPry0ScXAcSAu4CyAAahsiZGekUV0XITsjQFpAsTduztyeqjrys9IZlJfFjorGwdy2PdWs2FrBseMHEejEGvHy6nrGD0mnIMd9n3ZVHcXeGuYNu9w2mjq6kHUtBL+pUlHtLoAAN5hbs6N5cLmzsgZ9UBHFRW4uutKyvQzJb5708qUlm9lZUcPXj9G7tM6dUVsf4cdPfkpGWoB/vr6SMw4ezkEjC7q7WkL0DhNPgW+/DyW/h/m3w5oSOPdfoB/X3TXrsV5cvIkjxw5kuNa+7dN6eGqSYssMntFVhfvdM/eSz+WBG8SdiqGtBE7x7oOhTcPQ7o4dZWhvA08CJ2NopRian4swEnIch7lLt3L8xMHN9uScWlzIss0tLxBwHIfSsipGFw0AoLhwQMIFEOt27WVvbQNfPmQ4DRGHT0t3NzvG2lHJ3trkV33WRdxeuIw0dwEEEMs1565mTSM3M43K2sY9c9qADAbnZTYL5r5+z4d87Z4PeOXzzsXzlTX15GWlx4ZW41e0bijbS0DB0eMGsnF3FfUNjRdOr9tZyVX3fcjq7V3baxeJOFTU1pPv1bGlnrkd5bUMystilBfMJco3t21PNd9+ZCG/fP5z3li+tUvr3Rkfrt2FXVWHcfbBpAcUL3wqq3OFSErmADjtt3D1HFABt5fulZ9DXf+d69WS5Vv2sHJbBbOmtq9XDnr83qzz9VD4kK4q3O85c/63pGHvBE5O8PgC4Nq4+630gXWNpZv3sHF3Fd87ufm8sQlD83j5s82xoKipHRW1VNU1MHqgF8wV5bC9vKbZ8dGA8IIjRvPSki2s2FLOseP39QJu2l3FzL+UsN/gXF77oTvfrb3qvdWr6QFFhtczF13RWlMXidVjb01cz1x1PQXZGQzKzWJVXMBUXdfAF1vdYYP5q3dyZju7xROprGlgQGZaLOVHfK650rIqRmg5jB+cR0PEYbNdHWtDgJ8/+xnvrNqBUsu498ojm5Xtl8raehwH8r1eUm1A82CusqaeqroGBudlxXaJSBSwP/T+utjt+961OOmAzq3x6SqvL3d7oc+aMpL/fbqJ15dtbTMje31DhK3lNYzUsnv6H1ohUmfM0XD9OzD3V/Ce10t3wf0weGJ316zHeOKjUjLSVLuHWKHH7wAxA7hSD4XXAjW48ZJjmcEpfhTud8+c74nwerK5S7eiFAk/fCcOyyPi0GIP0QZvSDU6/FY8MPGHfXQo8cj9BpKflc7q7Y2H2B/9YD3g5jNbnKDXrqklpTZ6KMznm2zqvV0nGg2z1kdoiDjucGu62zNX2xCh1uux21NVh5aTweD8xj1zn2/al3bjw7WN5wo6jsP2vfvKaE0k4lBV18CAzMTJeHdU1DAkPyvWbtFhV4CGiMOH3jzFt1Zsp6q261KXRBMbx8+Zq66LNEqXstObHzc4L5P87AwKB2QkHEpfuL6MyaMKuPJYnY+sXd2ecqUl76/ZxVH7DSQnM43p+w1k5bYKdu9teQ5gdV0D5975LseZb3DDfz/ptl1OhOiRsvJg1q1w6ZNQvhn+cwJ8+nh316pHqKlv4NlPSjn1oGFt7MXaWA9PTXImMBE4DXdzhVnev77wN5gzbN8T4fVkc5du5fAxRQnnQO0/zN18vaVJ+tEgZF/PnPtv0w/70rK9FA3IIC8rnXFDcpvNy1q4vizW6/P+msZB1KMfrOenzyxpNAT78mdulpd5y7fFhigz0gJkpO+bMxcNJqJJg4FYGXZVHQXZGQzOy2L33rrYgonlW9xeuXMPHcnq7RWNhj//89Ya/u+tKv7w8rKEbRGvyts5o1HPXKNgrpZBuZmM8N7z5ri9W0vL9lJbH+H0g4dRH3GaBbd1DRFueXEpT33c/u3WWlLhLQqJzplLlDh4uxfsDvb+GI0qzGFjk2A9EnFYXGozpbiQY8cPorouwqL1jesd9avnP+PgX83h7rdTv1tIdV0DK7eWM6VYA+CIsQMB9/pryR3zVvHZxj0cPW4g4cWbedqHdheiz9n/NLeXbsRUePY6eO47UNu984G722tLt1G2t44Lp41O6nU9ec6cZQbXJfrxq/yesZq1F9q4u4rPN+3h1IMSD4npg3JJCyhWbk0czEV74GI9c0WJe+Y2lFXFAr3xQ/JYE9czFw0ETjpgKOOH5PJR3OrZrXuq+dmzS/jvh+u5710r9niDt8tEIKBiPXPuDhDu/4La+kisR8udM+cGK9HEwXuqvZ45L0DZ5W1RtWl3FekBxTHjB1EfcdjgvQ/Hcfjvh27v4RMfbYgFQVGfrC/DeOHzWN2jiy0GZKWTn5WOUo2DuV2VNQzKy2SENyF2s918desFR7h/ABY2CYoemG9xzztr+fGTn/L2ysb54JIV7ZnLy9rXMweN67qzSTDnLnJp/Pu1dlZSXl3P1GKN6eMGoRR8sLb5Kuh3Vu7gwffWUVnbwO9fWtYoGXFTe6rr2F3t5yYs7srr+ojD5JFuMHfo6ELSA4oFVuJgrrY+wiMfrOf0g4fx328czSGjNO4oWdVm79wXW8r566tfcO87a2NfFITo8wpGwhX/gy/9BBY9AveeBrvXd3etus1jH61npJbN8ROHJPW6Hj7Mih4KT9VD4Ru8n6l+li3BXAe9ttSdqN5SMJeZHkAfNICV2xIvPy8t28vgvMzYwolh+dlkpKnY8GvsuF17Ge0NwY4bkstmu5pKLyDaULaXipp6Jo8qYPIordGCi3nL3QwuRQMyeO6TfbtRNHhz4tJUXDAXUPsWQDREqPaGQ7MzAgzIis6bc8+5p6qegpz0WIASTU+yaXc1wwqymTA0D4C1Xg/i6u2VrNu5l+nD06isbeD91TtjdXn18y185c753D/f4nFvW7NoIDkgI42At7PCHi9wchyHXZW1DMzNIjsjjYG5mWyK65mLBnNH6gMZO2hAs565h99fx+FjChmSn8Vdb69t9jt5ZmEpZ/z9LX4XXtri1mrVdQ1EIg7l3jy++AUQ0HRI2Btmzc8E3N7XjburGpW9xAvKDhlViJaTwfgheXy6oXG9AR58z2JYQRYf/fwUBmSmt9g79/qyrcww3+AHJVXc/L+W30f0vazcWt6ufYQXrnODtsmj3GAuJzONg0cWsGBd4mDujeVb2VVZy8VHjUEpxfUnjGfdzr2tBtEfryvjq/+azx3zVnHzi0u57O4P2r3HcWVNvQR/ondLS4eTfg6XPQll62H2TFj7dnfXKuVKy/byzqodnD9tdFJzwKH9w6x6KHyGHgp/oYfCq/RQuNkWoXoonKWHwo97z3+gh8J6UhVJfM4bgUeAod7Pw3oo/N3Olhvlw3Ze2ncxtCIf6tKrzPlsC+OG5DJ+SF6Lx0wcms/KFodZqxhVtG/ifiCgGFnYuOcmEnEo3b1vxeu4IdFAye2di87HmzA0jwNHFLDZro7NYZq/eidD8rP47kkTWbmtIjZ8G10NO6wgOzYUmh4IxC2AiMQ+QJv2zNXWR6iqa/B65twAZWdcz9zIwmz2G+zWMdqDuGSje74vj8sgKz3Au16aFYB/v7ma/QbnMqwgK3bO6MrZXC+IjN/Sq7ymnroGh0G57rlHaNls3t24Z25wXhbagAwmj9T4LG4e38bdVVg79zJrykguPnI076zc3ihP3pJSm5ueXsyeqjruenst98+3Gv2+IhEH44XPOeCXczjEeIUnF7hDhvFz5qD5/D6AgV59RxXmsLe2gbK4PW1Xb68koIilqDl0dCGLNuxuFIRV1zXw9sodnH7wcIbkZ3H+EcWEvVQm8XZU1PCjJz9lVNEAZoxK59531zZaXBHvgzU7mf771zn1b29x8l/f5N1VOxIeB/DsJ6X8/uXlTBqWH+tBBneo9dMNuxPOhZzz2RYG5mbyJe+b9akHDWNgbiZPLNiQ8By19RF+8PgiBuZmMj90MrdeOJUP1+7i18+3nltxceluLvj3fA7+9Ssc9Ks5/PSZxe3Of1hV28CqbRWs37mXiMznEz3FxFPhG2/AgMHw4DnwwWzohn27u0t0GswFRxQn/dr27M2qh8JpwB24c9gOAi7RQ+GDmhx2DVBmmcEJwN+APyZdmeauAaZbZvBXlhn8FXA08A0fygX8Wc06DPgIQ1sI3Au8gmH3iivPyR3Edx5d2OzxIXlZ/HLWQS1+K9hsV/H+2p1876TWVx6NG5LLa8u2UtcQiQVLUaVleznY6+WIGlWY0yg42V5RQ219JPYBGg0cV2+vYPIojdXb3IBp3OA8KrwVp0s37+GYcYN4f81Ojhk3KJb/7p2VO7hg2mg+8obFsjMCjYZZM+IWQEQDq6z0NAZ4mf4ra+pjq0oLcjJiAcquSq9nzq7i8DFFDMzNpHBABmu8gPPzjXvISg9QnBfgSH0g73k9c6u2VbBw/W5+ETyQpxdupLrODQiiw6w5XhBZkJ0RG7rc5fV0DYwFc41z863aXsGEoW5QNHmURnjJZuy9biqVaLBy3AS3PW57YxVzPt/C148eC8DfX1tBXlY6L914PN9/fBF/fXUFZ08dGZt8e0t4KffPt/jq4cWs2VFBeIk797C1YG5nRQ0F2elkpbttGJ9rLvoeVm+vYPTAAbGVw1NHF/LUx6Vu2hpvPuU7K3dQVdfAKQe6vcCXTh/D/fMtnv1kI9cePy52vn+8tpLKmnr+efGhbFi6gIz8gfwuvIzjJgxu9KXj/TU7ueLeDykuyuGnZx7A3e+s5er7P+K+K4/k2An7Vko3RBz+/MoX/PvN1Rw9biD/uuyIRitSp+lF3PvuWj7fZHPYmH3f5+obIsz7YjsnHzg09n8oMz3AuYeO4qH3La93NZN4j36wjvW79nL/VUcyXMvmvMOLWbO9ktvnreLI/QZyfoI/7G+t2M51Dy2gIDuDG0+eyLbyGp7+uJTXl23jzssOZ5o+sNlrwL32/vbaCl5ftjV23Q3Oy+SsqSO56tj9GDNoQMLXgds7vGjDbj5Yu4svtpRT2xAhLzOdjMo6RmwpZ/9hee1atbt7by2rt1d6eSPTGD1wAEPz25dLK2rbnmreWbWD5VvKqaptYEh+FoeOLuSY8YOa/b0RvczgCXDta/DMdfDy/8GOL+DMP0Ggb++80hBxeHJBKTMmDG6UpaD92tUzdxSwyjKDawD0UPgx3GS+S+OOOQcwvNtPAbfrobCyzGBnYhsFxA81NLS3wu3R+WDOsH+Bof0Sd4XGVcDtGNoTwD0Y9upOl9+V0jJY3iQXXHl1PdvKa7j6uJb/qD+/aBOOA185bFSrxY8bkkd9xGH9rr2NPkwbIg4bd1dxxuTGS65HFuY0GoaKLpIo9i7qsYMGoBSxFa1rdlQwMDeTotxMDhzhLrhYtrmc0UUD2FZewzS9iAlD8xhWkMXbK3c0ej91DU5capJ9eeZqGyKxD7iczLTYAojKmvpYoBJNTQLuis1IxGGLXc0IzQ1W9hucy1qvjks37+GA4fmkBeo5dsIg/jTnC3ZU1MRy0c2aMpKXlmyOBZDRhRbRIFLLyYgFkTu9wHGQ1ys4sjCbD9e6waHjOKzaVsE5h44EYPIoN5nt55tsjp0wmPmrdjA4L4v9h7m/h/FDcgkv3sTXjx7Liq3lvL58G98/ZSKFAzL5RfAgTvvbm9w6dwW/+8ohvLliO/e9a3HlsTrG2QezYddejv+Tu6VY0zlz9t7Gw6yD41ZixXLNlVUxpbgQgNXbKhpdG4d5278t2rA79sds7tKt5Gelc/Q4dyu3/Yflc+joQp5YsIFrZuyHUopt5dU8vmAD5x1WzMRh+WxcpjC/egin/e0tfvzkpzx1/bGkBRQbd1fx7UcWUlyUwxPfPIZBeVmcdvBwLp79Htc8sIB7rzySY8YPory6ju8/tojXl2/ja0eP4ddnHdwsQJg21g3gPl5X1iiYW7h+N3ZVXSz4jLrwyGLufXctz32ykavjtubZU13HP99YxbHjB3HC/vvmyPzg1P35eF0Zv3huCYeM0pg0PD/23Idrd3HtgwsYPySPh645KtbOlx8zlusf/piLZ7/PL4IHcsWxeiy4sqvq+MdrK3nwPYucjDQunDaaw8cUUVXXwDsrd/DQe+t4YL7FaQcN5+oZ+3H4mELS0wI4jsOnpTbhxZt4acmWWK7AkVo2OZlplO2tY1dlLQ8ve4tRhTmcfOBQTjpgKEeMLSI/OwPHcdhZWcsHa3bx7uodzF+1I+FuL8VFOZx76CiuOk5vdQXfss17uO2Nlcz5bAsRB7LSA+RkprHbu/a0nAxOOXAY5x42kmPHD273UFVlTT3Wzkq2l9fQEHFITwuQl5XOhCF5aAN6136ifUJ2AVz8KLz2a5j/T7A3ujtJZOZ2d826zFsrt7Nxd1WbKY9actyEQQRyCtL1UHhB3MOzLTM4O+7+KCB+iKAUmN6kqNgxlhms10NhGxgEtDyE0bb7gA/0UPhZ3CDuXNwOMF/4k2fO3TN1C7AFd6uKIuApDG0uhv0TX87RBdSeLbz+o5mNHnt5yWa+9chC9tYlTsLrOA7PLtzI4WMK0Qe3/p8qOnS2Zntlow/sbeXV1DU4sblwUSMLc9hW7vbGZaYHYvPnosOs2RlpFBflsMYbXl29rZLx3jmG5mczOC+TZZv3xIZADx9ThFKK4ycOYe7SraSn7fuj3hBxYnOM3AUQ+/LM1USHWdPjV7M2xHrItJwMCnLSSQ8odlbWsqOihroGh1GFbs/CuMF5vLtqB47jsHTzHs6cPBzY5eXH+4L3Vu/k5c82M7VYY7j3gVgVC+b2rWYFKMhJjw0rR1N9RAPJ4Vo2e6rrqaxxf9ydI9x2PtibqP/ZJptjxg/i3dU7OW7CoNgHe3DKSG5/YyXb9lQz+601ZGcEuNzbfWHC0DyuOm4/7nlnLUUDMnnkg3XsPywv9gcm/htjbqwHMbpbxb7rZkdFTaNgbt+KZTcYiEQc1u6obLR7yKTh+WSlB1i0YTdnTR1JQ8Th9eVbOWHSkFjADXDhtNH87NklLC61mTq6kHveXkt9Q4TrZ46PHTM0P5vfnH0wNz62iN+Gl3LhtNF86+GPqauPMPvyabGAYWBuJo9cezQXzX6PS+9+ny9NHMLnm2zK9tZxyzkHt7grxdCCbMYMHMACq/FOJ68v30pGmmr0vgAOGF7A1GKNJxZs4Krj9gVZ/3lzNbsqa/npmQc26tVKCyj+ccmhBP/5Dt965GNeuGEGeVnpfLxuF9c+8BHFRTk8cu30Rr18B44o4IUbZvDDxxdh/G8pj320gZMPHMqO8lpeWrKZitp6Lj5yND86bVKj380lR41hi13Ng+9ZPPLBeuZ8voWMNMWowhx2VtZSXl1PRppixoTB/PDU/TnxgKGx8zqOwzNz5lE3aAKvL9/GkwtKefA9d3g7PyudmrjUPnlZ6UzfbyCXHDWGCUPzKByQQUWNO3fxvdU7uaNkFQ+9v46bzzmYs6eObNQen27YzZ0lq3jlcze4v+5L4zl76kgOGJ5PIKDYW1vP/FU7eemzzby6dAtPLyxlWEEW5xw6ihkTBnPA8HwG5WXREHHYULaXVdsqWLWtgmWb97B08x7W7qhscTRvSH4WE4fmMXFoHvsPz2fSsHwmDsuPfYkRXSQQgNNugcIx8PJP4P5ZcOnj7hZhfdDsN9cwvCCb0w9OtFV722ZNGUmkak+9ZQan+Vy1TrPM4K16KFwCRLf8uMIyg4v8Kt+HnjntRuBy3Ij1buD/MOw6DC0ArAR6bDCXSE5sWDHxxOsP1+7ii63l/PbcyW2WNT42f6wCdzTatW8la+Oev+LCHBzHXYk6euCA2D6k8fOU4le0rt5e0WgBxoEjCvhso01upjs8eoDXk3HW1JE89XEpzy/axAn7D+HNFdupjzixlYUZafsWQNTWR4h2wER3gAB3Llt0IUJBTjpKKQbmZrKroja2CCHaMzduSC5PLyxl9fYKdu+t46ARBVCzi8kjC9ByMvhteClb99RgnOVOU8hO39ersK9nbl+PV3QHiOjK2YHRnjktmp6kim3ePKnoAoyBuZmMKsxhyUY3i/j28hqOi0u2fO6hbjB31f0f8cWWci6bPqZRUPDj0ybxyfoybp+3ioNGFHDnZYc3Sub8+HVH89bK7bFty6K9GE3nzMX3Jmk5GeRnp8eGhjfurqKmPtIo0M9IC3DIKC22CGLRhjJ2VNQ2W2gza+oIfhteyp0lq/jVWQdz33yLcw4dxX5NvmCcPXUkC6wy7nvX4r53LfKy0nng6qOazfUckp/F8985jlvnruCDNbuYWlzIDSdNaNTjlsi0sUW8tdIN3KOBxxvLtjF9v0GxxSHxLpg2ml889xlLNrrpWLbY1dzzzlrOOXQkhxRrzY4fmp/NbZccxqV3vc9F/3mPqaMLefrjUkZo2Tx49VHNhmuj7XzX5dN45pON3PXWGv5Vspqs9DTOnDyca47fLxboNzVcy+YnZxzADSdN4NXPt7J8SzkbdrlD4lNHF3LqQcMSBi9KKQblBJh51BguPmoM1XUNvL9mJ19sKWfT7iqyM9IYkp/FYWOKmFKsJRwCPWH/IVx7/DhWbi3n/55azI2PLeL2N1Zx4gFDUQo+WruLhet3U5CdzvdOmsA1M8Y16y0bkJnOKQcN45SDhlFd18Dry7bx7Cel3PvOWma/1XI6m1GFORw8soBzpo5i4rA8huZnkZEWoD4SYffeOlZvr2DF1gpWbqvgqY9LYyvbwR2eHpqfzaC8TDLS3O3/0pSiriHipjnyci/W1Efcn7oGMtID5Gamk5eVTm5WGvnZGQzJz2J4QTZDC9x/hxVkM1zLTphwvV866hvuitenroF7ToWvPwsDx7X9ul7k0w27eW/NTn725QMafXHtAhuB+Jwnxd5jiY4p1UPhdEADdtIBeij8jmUGZ+ihcDngEDe0qofCjmUGfdkT0Y+euYHAeRh245nWhh3B0Gb5UH5KRXuimm5VBe438D+98gXDCrISzuFpShuQwaDczEbpRCBu+LSoec8cuB/ybjC3l6H5WY3+oI0bnMcHa3ZRVlnLzsraWO8fwNHjBvHnV75gR0WtmzrC+9A4fsJgLjlqNJ9usPn+KRN5c8V2GiIR6r3tvNKaLIBQXjySnZHGgGjPXE1DLFCJfqANzM1kZ2Utm6LDTl79x3kBxYuL3XllB40soHytG/BcdZzO319bSUaa4iuHuW2YnaBnLhpEFmTvWwARXWwRvwAC3JW063a6bRwN5gAOHukGt9GVvcfF9RSNG5LHZdPH8tD76xihZfOdExvv4pGTmcZT1x/LotLdHDyyIDbvLWr6uEFM94Y9o5pu6bWjopZjcxsPl40qzIkN00UXsIwf2jiwmjq6kIffX0dtfYRXl24lPaCYOanxN/GC7Ay+c+IE/vzKF3yyfjcBBT8+fRJNKaW45dzJnHrQMDaU7eXESUNjv6em8rMz+PVZByd8riVH6EU888lG1u3ciz44l/U797JyWwWXHDUm4fFnTR3JH19ezl9fXcH9Vx3Jb8NLiUTc4LklR48bxD8uPoxb567gmYVuItHfnH1wq0ORgYDi/COK2/X/tKkBmemc28YUitZkZ6Qxc9LQZr+z9pg4LJ+nrj+GFz7dxEPvr+P+dy0ijsMBI/L52ZcP4JKjxiQMkhPVIThlBMEpI6isqWfh+jLW7qhkV2UtacpdbDVhaB7jh+bFpgq05OS44XLHcaeIrNhaHgt2t+2pYWdlLfWRCPUN7pfEjLQAWRkBstIDFA7IJCs9QFZGGplpAeoaIlTW1FNRU8/2ihrW7Khk256a2N+AeFpOBsMKshgWDfAKshlWkMX2rfUMLN3NsIJsBudlJb3qsVc6IAhXvgiPnA/3ngmXPw9DOzYc2RPNfmsN+VnpLf7t8NFHwEQ9FN4PN2i7GLi0yTHRPeHfA84H3ujofDnLDM7w/s1v69jO8COYy24eyGl/xLBvwrDbzhLbw4wuGkBmWoD/e/JTSsuquGz6GLIz0nAchwfmW3y8rozff+WQdn9jTJToN9ozN6qwaTDnBifRxLIbyvY2mwQ6fmguVXUNvOXNrYvvYZkxYbAXzNXwrbjhtkBA8Yfz3B1Dtu1xe9HqI05s666MgCIjLs9ctMcuOyNAjvc+K2rqyYmbMwdub872ipq4YM6tf7Tn4z9vriEjTXHgiAI+9DKBfOP4cSgUp08eFutZyMlIo9oL4qJbh+XEzZmrqnNX0u6qrGVAZlqs7UcW7uuZW7WtgrysdIYX7JtEfvS4Qby6dCt/eHk5U0cXNmtv4+yDOXPycMYMGsDQguaTzwMBxeFt9EzFi195W1sfwa6qazSUB25vbLRnLjr3sWkv2YwJg7nnnbWUfLGNuUu3cvS4QQl7hK49fj+27anmvTU7ue2Sw5q9v3hfipuL5qdpXvLgBevK0AfnxvaWPfnAxIGMlpPB90/dn1teXMq5d7zLp6U2Pz5t/zYnO581dSSzpoyIzeXqy9LTApx3eDHnHV5MQ8QhoDq352RuVjrHTxySdM6uRJRSFBcNoLhogK/bzjmOQ3lNPVvtarbsqWbrnhq27qlm655qttjuvyu3VrC9oib29+mfn7wLuIliB+VlMSg3k6IBmd484gwGDnDnEw/MzYxtqTeiMLvZF7NepXgaXPkSPHQu3Hem20M38tDurlWnWTsqefmzzVz3pfHt+rLSqXO5c+BuAF4B0oB7LTP4uR4K3wwssMzgC8A9wEN6KLwK2IUb8HWKHgr/0TKDN7X1WEf5EcydCjStzJkJHusVhmvZPPPtY/n9S8u45cWl3P32Go4ZP4jV2yv5dMNuTth/CBdMa/+3/XGD83htWePN00vLmve4wb7gJBoclZZVxSaZx5cH8MIid5PzyXErYqcUawQPGUHp7ioubKGO0W+wDXHDrOlpjRdAKC/TRHZGGmkBRU5GGntr69lT7R4T3e1ghJbNiq3b2bS7mgGZabGAY/TAnFgP1LHjB8WGTMH9YLnxlMargHMy0mK57fbNmWu8s0J5dR07K2piix/ATa+ilNszt2p7BeOH5Db60Dvv8FHc/KK7QOm8BD0taQHVaPVmZ2k56ftW3lY2zjEXVVyUw/trduI4Dqu3V1A0IKPZUOGMiYMZnJfJdQ99DMC3ThhPIlnpafzmnLaH+7vSxKF5DMnP4tXPt3D+EcXMXbaV8UNyGTuo5fmkVx6rs7OihpeWbOY7J47n2zOb722ciFKq0bzP/qBf9Djh/m4LsjMoyM5g4rCWOzAaIg47K2oIz3uX4omT3cDPrmZ7eQ279tZSVlnLsi17KKusZXdVXbM5gErB0Hw3sCsuGhBLLzV+SB7jhuT2jmHdYQfBVS/Dg+fCA2e5eenGHN3dteqUu99ZQ3rAHblJBcsMvgS81OSxX8XdrgYu8Pm0XRordTyYM7RvAd8GxmFoi+OeyQfe7WS9utXkURqPfuNo3l21g7veXsO7q3YwND+bW86dzKVHjUnqD+y4IbnsXFAbS5EBbo65pkOs4AZPg/MyKS2ror4h0mwTeSC24OH15dsYmu8OP0Qppbj90sNitxNJD+xb6BBdABG/N2tdQ4Royq1s7xtsblY6lbUNBAJ1ZKYHYn/whmvugo11OysZWZgTO6dSii8fMpy73l7LWVNHttlG2RmBWLLgvbX1ZKUHYm1ckBNdWFDHTi9hcFRmeoDBeVls2u32zB3XJDArHJDJHZceTkVNHecfkdy2MB2h5WRg7XB73aLD9INym/bM5VBRU8+eqvpmK1mjMtICXDNjHH+cs5wDhudz3uHJDxWmSiCgOGfqSB54z+L9NTt5d9VOfnDK/q2+Ji2g+MkZB/CTM/rOEJFIjbSAYmhBNvtpacxsIWF7VEPEwa5yVxpvK69mY1kVG3dXxf79ZEMZ/1u8KRbwKeWOluw/LJ8DR+Rz4IgCDhxRENvNp0cZNB6uftnNQ/fQV+Cyp0A/ru3X9UA7Kmp4ckEpXzlsVKPPs75CD4VjsZIeCjeNleb7dZ7O9Mw9CrwM/AGIz6BcjmE334+oFzpuwuBmAUKyYrnhdlTEhuxKd+9tcfhu7KBc1u6sZLNdTUPEia1kjRqSn0W6txXXkQnyaLU1HJOWFu2Zi8RSk2Q0yTMXzT+Xnek+lpuVxt6aehyHRsN9I7VsHAfeW7OzWTv97MsH8sNTJ8WGS1uTk+HOmXMch721DbF5ixC3TVZ1Pbsqa5v9Z99/WB7zvtjOjooaDhzefB5pcMqIZo91lfg5c9FgbkiCnjlwh9BXb6/g5BaGqr41czxnTh5OfnZ6z/sgaeKCaaO59921XDz7fQZkpnH5MWO7u0pCkBZwF2kNzM1sNJc2XnVdA9bOSlZvq2T1dnd17xdbyr15xe7fwZyMNPYfns9BcQHeAcPzu3w4sE1asdtDd38QHrnAHXId0zTDRs/3nzdXU9sQ4Rtf6lsLOuK0GCtZZtC3WKkTPXO2DdjAJX5Vpi+KT09y+Jgit8dtdzXFUxPPbxo/JJc3lm9n3c5ojrnGxyml+MGp+/PnV77gug5c/OleYFAfceK28wo02s6rtj6CUsR66wZkuj1zdQ1OLAUHuEPS4A6NNu1hUkq1K5ADdwEEQE19hMra+tg8Pdg3Py/6DfvAEY0DtiPGFPHuKneR0fRxiZPEpkrjYM4bZk0wZw7gnVU72FFRy8GjWl7I1Fbqm55i0vB8/nLBVO5+ey2hMw+gKMEKUyF6ouyMNA4YXsABTb4I1tQ3sHKrm7Zl2eZylm3ew8ufbeG/H+5LT7bf4FymFGscMkpjSnEhk0cVNJpSkhJ5Q909Xe/7Mjz8VXdRRPERqa1DJ2zYtZcH5q/j/MOLWwy4ezvLDMZiJT0ULgImAtkAeiiMZQbf8uM8nRlmfQfDnoGhRZfbRinAwbB9WW7b240eOICMNBXbN3SzXU19gh63qHFD8nhiQSkfeMlwJyWYP/KdEyfwtaPHdijHUzSYa2hwYqtZ09NU7PHaendv1uz0tFgvX25mGpU19VQHVKNzxqd4iF9Vm6zocG51XQNVtQ2xrbyg8c4KOytrG82ZAzgirnfyoBHde8nFL9aIbrXVdMXl/sPyyc1M4++vrQBg+n6DmpXTG0Un7AvRF2SlpzF5lNZoTrLjOGzZU+3m5du0h8WlNh+u3cXz3vzlgHJX008tLuRIfSBH7jcQfdCATi1eaZf84W5Ad/+X3SHXK17oNYsi/vrqFygFPzyt9akZfYEeCl8L3IibCmUR7nZe7wEn+VF+Z3rmZnj/duly294uIy3AhKH5LPN2mlixtRyAicMSfwuZ7AVIj36wnuEF2S2mX+hoss60+J652A4QCqXceXO1DQ7VdQ1kZ+xbMTggmj/NcRr1ugzJ31e3EzqxWjLag1dV10BlbUNsKy/YtwBiw6691NZHGNKkPY6fMJi/XTSVMQMHdPsqR22A2za7q9xEytkZgViKlajM9ADHjB/Ma8u2UjQgg4l99NuoEH2NUooRWg4jtJxGK3m3lVezpNRmcanNko02ry3bypPe/qKD87I4Ui9ygzt9IAeOyO+av1PaKK+HLuiudL36FRjScrqfnmBJqc1zizbx7ZnjYzlK+7gbgSOB9y0zeKIeCh8A/N6vwlPcJ9w/HTSiIJZK5AsvmJswNHEMfNiYQsDNqdYV872UUqQFFA1xw6zR+XKZ6W4OqKrahkaruvKz3ES3kYjTbJXi49cdzd7ahk5NXI0Oq1bVNlBVW98oABqYm0lAEUui2/Q/fSCwL19ddxvi9RpuL6+JbeWV6Fv5uYeN5N1VO/jRaZNiSYeFEL3T0PxsTj4wO5aPLxJxWLOjgg/XlvGRtYuPrF28/Jm7fWFuZhqHjy3imPGDmLn/UA4cke9fz13hGLjiebjndLeH7ppX3Xl1PVB9Q4SfPruYwXlZjXat6eOqLTNYrYfC6KFwlmUGl+uhsG8Rtx87QDwA3Ihh7/buFwF/xbCv7nTZfcTBIwt4emEpm+0qvthSzvCC7BZ71nKz0glOGUF48WYu66LkiWneAor6uNWs4C6EiA2zxgVzRbkZlFXWEnGgsEnW+aaJczsi2gtYXRehsqaBkYX7zpGRFmBIfhaLvGAuOk+vJxribZS+rbyGLXZ1o5x38WZNGcmsKW2v8hVC9D6BgGLC0HwmDM3n0unu3/DNdhUfrt3FAquMD9fu4k9zvuBPc9wE9CfsP4SZk4Zy3ITBnd8ebeA4+NrT7qKIh86Dq+fAgO6dS5zIfe9afLZxD7dfelhsXnQ/UKqHwoXAc8BcPRQuA9a1+ook+NEzNyUWyAEYdhmGdpgP5fYZR+3n/md6f81OFlhlHD62sNXj/3HRoXz/5Imt5lvqjPSAor4hQl0sz5wbzEV75qrrGsiK205lYG4WZd52W00n9PshOmm4sraeqrqGZpOIh2s5cT1zPTeYG+oNO2/3Ep4eOFKmjQoh3BGFcw4dxTmHuvkut+6p5s0V23nzi+3M+WwLTywoJS2gOHxMITMnDeXUg4YxcWhex3rtRkyBS/7rBnOPXODOocvsOYupNuzay61zV3DyAUMJHpK6bAPdzTKDX/FuGnooPA93i7A5fpXvRzAXwNCKMOwyAAxtoE/l9hkHjSigcEAG989fx8bdVW2uQk1PC3RZIAfEUptEe+YyvNxzGWkBar1gLr5nblDcPLlEe2F2Vp63Qraipp7KmnoGNJlnNrwgi09xJxjHz9PraYYWuHXbuqeazXY1Jx7QNzfDFkJ0zrCCbC6cNpoLp42mviHCog27KfliO2+u2M6fX/mCP7/yBeOG5HLm5OGcOXkEB48sSC6w02fA+ffCE1+HJ66ASx6DtO7/WK6tj3DDfz8hPeBuM9jli0N6CD0UVkCxZQY3AFhm8E2/z+HHb/evwHsY2pO4K1nPB37nQ7l9RiCgOPfQUdw/30IpOKWNZJddLT0t4M6Za2jSM5cWoLbe3Rw7p9Ew674AbnCe/8FcvpdXrqK6nr21zXvmoit/3ZXBPXcrp6z0NAoHZLBqewVVdQ0tDrMKIURUelqAafpApukD+fHpk9i2p5pXlm5lzmeb+feba7hj3mpGD8zhjIOHc8bkERw2urB9c20PnAXBW+HF78Ocm+DLf3EzI3ejP7y8jE837OZflx3e4h7RfZFlBh09FH4JOKSrzuHDnDn7QQxtAe7yWgc4D8Ne2uly+5gbTppA2d5aDk2wR2iqRefM1XmpSZougKiub2jUG9fodhcMs0Z75vZU11FRUx+7H3XG5OHc/c5axrSxf2dPMDQ/i0/W7wZgRKEEc0KI5AwtyObrR4/l60ePZVdlLa8t3crLn23m/vkWd729luEF2Xz5kBHMmuoGdq32bk27Cnatgfn/hIHj4Zhvp+6NNPH8oo3c967FlcfqnNmPhlfjLNRD4SMtM/hRVxTuV79rBm6vXPS2aGJwXhb/uLhnTCVMD6hGO0CkxxZAuD1zTYdZ44dWuyIQzfN65rbtcXOzFTQJ5o4YW8Rvzj64xc3be5JhBdm8vXIHABNbWLEshBDtMTA3kwuPHM2FR45mT3UdbyzbRnjJZh5+fx33vruW4qIcglNGcNaUkS0PxZ7yGzege+VnMHA/mHRmyt/H2yu38+MnP+UofSA/+/KBKT9/DzEd+JoeCltAJV5OXssMTvGjcD9Ws94IfAN4GrdyD2NoszHs2zpdtugSra1mrWtwqK5rvJp1v7idCLpiAUKuN6y62a4C9gV3UUoprjhW9/28XeGQUVosmOtMImUhhIhXkJ3BuYeN4tzDRrGnuo65n2/lf4s3cc/ba/nPm2vYb3Aus6aMYNaUkUwaHvdFMhCA8+5ykwo/dY27p+uIqSmr98fryvjmQx8zfkged10xLbbbUD90elcW7kfP3DXAdAy7EgBD+yNuVmN/gjl3QcXjgA5YwIWxxRb7jjkU+BdQADQAv8OwH/fl/H2Qu5rVzTMXTRgM7jBrbUOEqiZJg7Mz0vjBKftT1xDpkgmrgYAiNzONzXY1QLNh1t7kiLHunruD87J69Pw+IUTvVZCdwVePKOarRxRTVlnLK59v4X+LN3HHvFXc9sYq9h+W56VAGsG4IXmQOcBdBHHXyfDoRfCNeVDQ9UOdj3+0nl8+9zkjCrN58OqjOp96pXdbD1wGjLPM4M16KDwGGI5P6Un8+LRRuAFUVAP7hlz9EAJex7AnAq/TeKPaqL3A5Rj2wcAZwN8xtEIf69CnxCcNji5+gLhh1iZJgwFuPGUiPz696zKK52Wnx4K5bt/AuhOOnziE0JkH8Nx3ju3uqggh+oGi3EwuPmoMj1x7NB/87BRuOedgCgdk8rfXVnDSX98k+M+3+VfJajbUFcClj0P1Hnjicqiv6bI61dQ38NNnlnDT00uYPm4gz337OIbKgrA7gWPYt599OXCHX4X7EczdB3yAoRkY2m+AD4B7fSg36hzgAe/2A8C5zY4w7BUY9krv9iZgG9Dx/aX6uIy0APWRCHUNkVhaEoCs9AA19RH21jU0Sw/S1fKy0tkS7ZnL6r09c5npAa4/YTzFLey9K4QQXWVIfhZfP0bniW8ew3uhk/nlrIPITA/wxznLOf5P8zjnaZu79v83a9avxwn/GByn7UKT9MWWci76z/v898P1fHvmeO6/6qhGGRH6semWGfwOUA1gmcEywLeG8WM1660YWglwnPfIFRj2ok6Xu88wDHuzd3sL0HpeD0M7CreBVrfw/HXAdQDKaaCkpMSvevYaVXur2Nqwl7pyhROpj7VBeVk123ZHaIg4bCldT0nJFt/OWVFR0WpbO7VVVNS4c/iWL/mE8rUyRNkZbbW38Je0d2pJe7fPeODGg2C7nsNHW+r5YMsefrchjd9xK2Pf38KhK+5ivD6OiUVp5KQnHlBrb1tbdgP/W1PHx1sbyEmHGw7NYlr2Ft5+y7/PkV6uTg+F03CzfqCHwkOAiF+FdzyYM7RyvEp5VNxzDobd/vT3hvYa7thxUz9vfJztYGgtf5UwtBHAQ7gBZeJGMuzZwGwAx8x2Zs6c2e5q9hWFn71DYW4mw7Rscsq2EW2Dl3Z8yqc7NwEOB0+ayMwZ+/l2zpKSElpr67tXfcAa2104cNLxx/SXjZe7TFvtLfwl7Z1a0t7Ju8D7d8OuvZQs30rJvA28snMo1TtrCCiYNLyAI8YWcviYIg4cUUBxUQ752RkttnVFTT2frC/j43VlvLd6Jx+s3UV+djrfO3kiVx+nUzhAeuOa+CfwLDBMD4V/h/sr+YVfhXcimLP9y7tg2Ke0/Jy2FUMbgWFv9oK1bS0cVwCEgZ9j2O/7Vrc+KDpnrq7BISMu+eSAzHSq6yLe7dQPsya6LYQQwj+jBw7g68fux9cPu5jq2afxYcUQFkz5DZ9sa+C5Tzbx8PvrY8dqORkUZjSgr/mQhohDbYM7Paeypp5V2yqIOG4e4gOGF/Dj0/bn8mP1/rTXalIsM/iIHgp/DJzsPXS2ZQaX+1V+b/jUfAG4AjC9f59vdoShZeJGvA9i2E+ltHa9UHog4K5mbYiQntZ41WpUTqqDOW8Fa2Z6QII5IYToajmFZF/6EF+66yS+tO1ncGWYBpXOiq3lrNleyYayvZSW7WXxqo3s3ltLelqA9IAiLyudQbmZnDF5BNPGFnHYmMJevWitq+mhcIujmHoo7Fhm0JdNvP3IM6fwltti2DdjaO5yW8P+sNNlu0zgCQztGtwlvBd6550GXI9hX+s99iVgEIZ2pfe6K32eu9dnuHnmIrHUJFHxvXFNt9TqatEAbmh+Vr/Zr08IIbrVkElw9j/hqavh9d+QdtpvOXBEAQeO2BdflJTsZObMGd1Yyd7NMoMpyR7vxyf2nbiT+E4CbsZdbvs0cKQPZYNh72Rft2T84wuAa73bDwMP+3K+fiA9TVFd7+7NGp+apHEwl9qeuXyvZ26QrHoSQojUmfxVsN6F+bfB2OO6ZYcI0Xl+LBmcjmHHltt6CX3lE7kHS4/lmYuQHugZw6yjvX1Xa+p9W9wjhBCiPU7/vbsrxLPXQ5kvOWxFE3oorPRQ+Gt6KPwr7/4YPRQ+yq/y/Qjm6jC02HJbDM3X5bbCf2nenLm6BoeMHtIzN7W4EICzpo5M6XmFEKLfy8iGC+4HJwJPXQX1td1do76oS5MG+zHMGl1uOxRD+x1wPj4utxX+a9QzF7cAIieuZy43xXPmJg3P58OfncygvKyUnlcIIQQwcBycc7u7O8TcX8GZZnfXKOX0ULjZ9qFect+mx80BjgbesczgrHYWP90yg4frofAn4CYN1kNh30YxO94zZ2h3YGjHYdiPAD8B/gBsBs7FsJ/0qX6iC6SlKW8HiMYLIOKHVofkpz6oGlqQTVpAFj8IIUS3OOgcmP4t+OBfsLR54oh+IAS8bpnB1rYPBfgz8PUky+7SpMGdGWZdAfwFQ7OAq4H5GPbtGPYyX2omukx6QFEfcVOTxG8GPyh3XwDXdG9WIYQQ/cCpN8OoI+D5G2DXmu6uTaq1vX0oYJnB13GHSZMRG8X0kga/g9sJ5ovOJA3+B/APDG0scDFwL4aWA/wX+C+GvcKfKgq/pQWUm2cu0ng1qz5Y9hMVQoh+LT0Tzr8P/nM8PHklgQm9a9ZUIKcgXQ+FF8Q9NNsyg7Pb+fJhlhls//ahSWiSNFgB51pm0LfOLz/2Zl0H/BH4I4Z2GHAv8CtAunZ6qIxAwJ0z12SYVRI/CiGEoGgsnPtveOwSxqt74eTTurtG7Rap2lNvmcFpLT2vh8Lt2j7UMoOOHgq3vH1okvRQ+AHgRssM3uHdL9JD4XstM3i1H+X7kTQ4HTgTt3fuZKAEMDpdrugy7py55qlJAH591kEMlFxvQgjRvx3wZTj2u4yafxsseQoOOb+7a+QLywy2uH2oHgpv1UPhEZYZ3KyHwi1vH9oxUywzuDuuHmV6KHyYX4V3YphVOxV3ie2XgQ+Bx4DrMOxKf6omuoq7mjXSLGkwwFXH7ddNtRJCCNGjnPxr7M/mov3vRhh5GAwa39016mptbx/acQE9FC6Kro71Vs76ljaiMwX9FHgU+JGXKFj0EmneAoi6SOMFEEIIIURMWgZLD/oxx3z6f/DkFXDNa25Our7LBJ7QQ+FG24fqofA04HrLDF7r3X8bOADI00PhUuAaywy+0kbZfwXe00PhaLaPC4Df+VXxziyAOMmvSojUiuWZazJnTgghhIhXkz3EnT/334vg1V9A8C/dXaUuY5nBhNuHWmZw3/ah7v3jO1D2g97CjGjsdJ5lBpd2tK5NpTYzrOgR4neASJeeOSGEEK2ZdAYccwO8dzvoM+Dgc7u7Rr2SF7z5FsDFk0/yfsjNMxehPhJptJ2XEEIIkdDJv3bzz73wXdi1trtr0+voofADeihcGHe/SA+F7/Wr/M4Fc4amMLTRPtVFpEh6miLiQF1989WsQgghRDPR/HMoeOpq2b81ec1WswK+rWbtZDBnO8BL/lRFpEp0nlxNfaTZalYhhBAioaKxcO4dsGkhvGZ0d216m4AeChdF7/Sk1axRCzG0IzHsj3woS6RAmtcbVx+RBRBCCCGScOBZcNQ34f073PlzB3y5u2vUW8SvZlXA+fi4mtWPMbbpwHsY2moMbTGGtgRDW+xDuaKLxAdwsgBCCCFEUk67BUZMhee+Bbs3dHdt9tnQc/uULDP4IHAesBXYDFwHHO1X+X70zJ3uQxkihdLigrkM6ZkTQgiRjPQsb//WE9z5c1e9BGndvB1kTTk8fF731qFtWcBY3Bxza4Gn/SrYn71ZDa0ImAjEZxNc1+myRZeInycnPXNCCCGSNmg8nPV3ePoaeOO3cOpvurc+nzwMNXu6tw4J6KHw/ri7ZV0C7AAeB5RlBk/08zx+7M16LXAjUAwswu02fI99ifFEDxO/glVSkwghhOiQQ84H62149+8w9jjY/7TuqUekAd7/F4w+Gni1e+rQsuXA28AsywyuAtBD4R/4fRI/umVuBI4E1mHYJ+Iutd3tQ7miizSaMyfDrEIIITrqDBOGHQLPfKP78s998RLsXgfHfLt7zt+683DnyM3TQ+G79FD4ZNwFEL7yI5irxrCrATC0LAx7OTDJh3JFF8lI33cdpckwqxBCiI7KyIGLHnJvP/41qK1MfR3euxMKx8ABs1J/7jZYZvA5ywxejLuX6zzg+8BQPRT+lx4K+9aV6ccneSmGVgg8B8zF0J5H5sv1aJlpabHbsgBCCCFEpwzcD86/F7YtdXeIcJzUnXvjQlg/H6ZfD4G0to/vJpYZrLTM4KOWGTwLd1raJ8BNfpXvxwKIr0RvYWjzAA2Y0+lyRZfJTN8Xw8sCCCGEEJ024WQ4+VduMuGRh8Gx303Ned+/EzLz4bCvp+Z8PvB2f5jt/fjCt+zDABj2m76WB2BoA3FXf+iABVyIYZc1OWYs8CxuT2MGcBuG/W/f69JHZMUFc/G3hRBCiA477vuw6ROY+ysYNBEmndG159u+Aj5/Fo66DrILuvZcPVzHgzlDKwccGk/ki953MGy/WjYEvI5hmxhayLvftGtyM3AMhl2DoeUBn2FoL2DYm3yqQ58S3zOXndFzu6WFEEL0IkrBOXfC7vXw5JVw5YtQPK1rzuU4MOcmyMiFGT/smnP0Ip0I5ux8H+vRmnOAmd7tB4ASmgZzhh2/428W/swF7LMaB3PSVEIIIXySlQeXPgn3nAKPXgjXzHVz0vnti5dg9Rvuatq8If6X7yM9FFZAsWUGu2y7DD/yzP0q8eP2zZ0u2zUMw97s3d4CDGuhHqOBMDAB+L8We+UM7TrcbTRQTgMlJSU+VbP3WLenIXZ76ZLFNGzs+t65ioqKftnW3UXaO7WkvVNL2jt1OtrWORNv4rBPbqLhri+z8PA/UpdZ6FudAg21HPnRD4gMGM2CvRNxevi1YJlBRw+FXwIO6apz+DFnLn4dcjYwC1iWVAmG9howPMEzP298nO1gaImXyRj2BmAKhjYSeA5DewrD3prguNikQ8fMdmbOnJlUVfuCVdvKYf5bABxz1BFMKS7s8nOWlJTQH9u6u0h7p5a0d2pJe6dOp9p6yv5w/yyOs/4Olz8P2Zo/lXrrz1C9FS5/nhPGdbBuqbdQD4WPtMxgl2wg68dq1r82vq/9BXglyTJOafk5bSuGNgLD3oyhjQC2tVHWJgztM+B44Kmk6tFPZKXv64mTOXNCCCG6RPE0uPABeOwyePAc+PqzkFPUuTK3LIG3b4UDz4beE8gBTAcu00PhdbidYApwLDM4xY/Cu2LC1ADcHCp+eQG4wrt9BfB8syMMrRhDy/FuFwEzgC98rEOfkimrWYUQQqTC/qfDRQ/D1s/hgbNgz+a2X9OSPZvgkQshuxDO/JNvVUyR04HxuFudnoU7inmWX4X7MWduCe4qVoA0YAhwS6fL3ccEnsDQrsFNRnyhd95pwPUY9rXAgcBfvSFYBfwFw17iYx36lCxZzSqEECJVJp0Bl/wXHr8c7j7ZvT1ianJl1JS7gVxNOVw9BwpGdE1du4hlBtfpoXARMBF3SlqUL5ss+DFnLn7/jHpgK4Zd70O5LsPeCZyc4PEFwLXe7bmAL12V/UFe1r5fu/TMCSGE6HITToFrXoFHL4J7z4DTboFp17jpTNpSU+GmOtm2FC57AoZP7vLq+k0Pha/F3cu+GFgEHA28h9tT12l+fJJ/Ne7nIuB7GNo1GNqhPpQtukD8rg/52RndWBMhhBD9xvBD4BvzYMwxEP4RPHQubF7c+mtWvgZ3HgOrXoNZt7pBYe90I3AksM4ygycChwG7/Srcj2DOHe6EUd7PN4EzgLswtJ/4UL7oQmmyN6sQQohUyR8GX3sagrfCxk/gP8e7w6cf/Ac2fgy1lbB1KSx5Cp68Ch75KmTkwNWvwBFXdnftO6PaMoPVAHoonGWZweXAJL8K92OYtRg4HMOuAMDQfo2b7+1LwMdAr5ulKIQQQoguohQceQ1M/ip88G/4+AFYmSAJRloWnHATHP8jSM9KfT39VaqHwoXAc8BcPRQuw6f5cuBPMDcUqIm7X4eb6LcKQ6tp4TWimz3z7WO7uwpCCCH6s5xCmBlyf+yNUPoR7FgBRToMO9jd3zU9M2XV0UPhZnvBW2awrMkxhwL/AgqABuB3lhl8vK2yLTP4Fe+moYfC8wANmONX3f0I5h4BPsDQoilDzgIexdBygaU+lC+6wOFjOpnrRwghhPCLNsr96V4h4HXLDJp6KNzSXvB7gcstM7hSD4VHAh/rofArlhnc3d6TWGbwTd9q7PEjafAtGNrLwHHeI9d7K00BLut0+UIIIYQQXa/NveAtM7gi7vYmPRTehpuSbXeiAvVQuBw3fVv8BPXofccygwV+VNyPnrlompAFbR4nhBBCCNFFAjkF6XooHB+PzLbM4Ox2vnyYZQbb3gveo4fCRwGZwOqWjrHMYH47z90pfiQNzsJNS6I3Ks+wb+502UIIIYQQ7RSp2lNvmcFpLT2vh8Lt2gveMoOOHgon3gveLWcE8BBwhWUGI23VSw+Ff5XoccsM+hIr+dEz9zxg465c7VULHmpqahylVFV316OfSMdNKi1SQ9o7taS9U0vaO3V6W1vntPakZQZbTFSnh8Jb9VB4hGUGN3vBWsK94PVQuAA3a8fPLTP4fjvrVRl3Oxt3w4Vl7Xxtm/xJTWLYZ/hQTndY6DhOixG88I9SaoG0depIe6eWtHdqSXunTj9r6+he8CYt7AWvh8KZwLPAg5YZfKq9BVtm8K9NyvkLkCAfS8f4kTR4PoZ2iA/lCCGEEEJ0FxM4VQ+FVwKnePfRQ+Fpeih8t3fMhbh5dK/UQ+FF3s+hHTjXANw8vb5QjtPikHD7GNpSYAKwFneYVQERDDvJXXRTr5994+hW0tapJe2dWtLeqSXtnTrS1v7QQ+EluKtYAdJwV8DeYpnB2/wo349h1jPjbitgNPBTH8pNhfaucBGdJ22dWtLeqSXtnVrS3qkjbe2PWXG364Gtlhn0bS5i53vmAAztMOBS4ALcHrqnMezbO1+wEEIIIUTvpofCP0zwsA18bJnBRZ0tv+M9c4a2P3CJ97MDdwsMhWGf2NlKCSGEEEL0IdO8n/9592cBi4Hr9VD4ScsMdmof+84Msy4H3gZmYdirADC0H3SmMkIIIYQQfVAxcLhlBisA9FD417jpTb6Em9qtU8FcZ1azngdsBuZhaHdhaCfTeLuKHkspdYZS6gul1CqlVKi769PXKaUspdQSpdQipZTsFOIzpdS9SqltSqnP4h4bqJSaq5Ra6f0rm/H6pIX2NpRSG71rfJFS6svdWce+Qik1Wik1Tym1VCn1uVLqRu9xub67QCvtLdd35w2lcS7eOtwdJ6rwIUevH6tZc3H3M7sEOAl4EHgWw361s5XrCkqpNGAFcCpQCnwEXOI4ztJurVgfppSygGmO4+zo7rr0RUqpLwEVwIOO40z2HvsTsMtxHNP7wlLkOE7TDaNFB7TQ3gZQ4TjOX7qzbn2NUmoEMMJxnIVKqXzcHoxzgSuR69t3rbT3hcj13Sl6KPxL4Cvsy113Fm5eu7/ibjnWqb3s/VkAEWVoRbiLIC7CsE/2r2D/KKWOAQzHcU737v8UwHGcP3RrxfowCea6nlJKB16MCy6+AGY6jrPZ+wNd4jjOpO6sY1+SoL0N5MOuyymlngdu937k+u5ice19HHJ9d5oeCk/DbUuAdy0z6NtIlb/BXC+glDofOMNxnGu9+18HpjuOc0P31qzvUkqtBcpwc+z8x3EcWeruswTBxW7HcQq92wooi94XnddCMHclsAdYAPzIcZyy7qpfX+S1+VvAZGC9XN9dq0l7/xC5vns0P/LMCdGWGY7jbFRKDQXmKqWWO47zVndXqr9wHMdRSvWvb22p9y/gFtwvLLfgDp1c3a016kOUUnnA08D3HcfZ48ZvLrm+/ZegveX67iQ9FM4CvgroxMVelhm82Y/y/djOq7fZiJvYOKrYe0x0EcdxNnr/bsPd0+6o7q1Rv7DVG36KzoNJuGG08IfjOFsdx2lwHCcC3IVc475RSmXgBhaPOI7zjPewXN9dJFF7y/Xti+dx1xfUA5VxP77ojz1zHwETlVL74QZxF+MmPBZdQCmVCwQcxyn3bp8G+PJNRLSqzQ2jhX+UUiMcx9ns3f0K8Flrx4v28YZQ7wGWOY5za9xTcn13gZbaW65vXxRbZvCMriq8382ZA/CWVf8dd3+0ex3H+V331qjvUkqNw+2NA/fLw6PS3v5SSv0XmAkMBrYCvwaeA54AxgDrgAsdx9nVTVXsU1po75nAobjDUBbwzbgPP9FBSqkZuPlMlwAR7+GfAR8g17fvWmnvS5Dru1P0UHg2cJtlBpd0Rfn9MpgTQgghhEgVPRReCkzA3fK0Bjcvb8Qyg1P9KL8/DrMKIYQQQqTSmXG3Fe7c/Z/6VXh/XAAhhBBCCJEylhlcBwwEbgBKcOeOv+RX+dIzJ4QQQgjRBfRQeH/cOYeXADuAxwFlmcET/TyPBHNCCCGEEF1jOe6iklmWGVwFoIfCP/D7JBLMCSGEEEJ0jfNwU6DN00PhOcBjuHPmfCWrWYUQQgghupAeCufiJg2+BDgJeBB41jKDr/pRvgRzQogeRSk1CHjduzscaAC24y7rf9BxnG93wTm/D+xyHOfBFp6fBRzlOM6v/D63EKJ/0UPhIuAC4CLLDJ7sR5kSzAkheixvA/sKx3H+0oXnSAcWAoc7jlPfwjHKO+Y4x3H2dlVdhBCiIyQ1iRCiV1BKzVRKvejdNpRSDyil3lZKrVNKnaeU+pNSaolSao63vyRKqSOUUm8qpT5WSr0S3c+ziZOAhdFATin1PaXUUqXUYqXUY+Bu5o6bTmBWSt6sEEIkQYI5IURvNR43EDsbeBiY5zjOIUAVEPQCutuA8x3HOQK4F0i0ldxxwMdx90PAYY7jTAGuj3t8AXC87+9CCCE6SVazCiF6q5cdx6lTSi3B3Wd5jvf4EkAHJgGTgbnuKClpQKL9JEcAy+LuLwYeUUo9h7vHbdQ2YKR/1RdCCH9IMCeE6K1qABzHiSil6px9E4AjuH/bFPC54zjHtFFOFZAddz8IfAk4C/i5UuoQbwg22ztWCCF6FBlmFUL0VV8AQ5RSxwAopTKUUgcnOG4Z7kpZlFIBYLTjOPOAmwANyPOO2x/4rMtrLYQQSZJgTgjRJzmOUwucD/xRKfUpsAg4NsGhL+P2xIE7FPuwN3T7CfBPx3F2e8+dCIS7ss5CCNERkppECNHvKaWeBX7iOM7KFp4fBjzqOI4vOaGEEMJPEswJIfo9pdQkYJjjOG+18PyRQJ3jOItSWjEhhGgHCeaEEEIIIXoxmTMnhBBCCNGLSTAnhBBCCNGLSTAnhBBCCNGLSTAnhBBCCNGLSTAnhBBCCNGLSTAnhBBCCNGLSTAnhBBCCNGLSTAnhBBCCNGLSTAnhBBCCNGN9FA4Vw+F0zr6etkBQgghhBAihfRQOABcDFwGHAnUAFnADiAM/Mcyg6vaW570zAkhhBBCpNY8YDzwU2C4ZQZHW2ZwKDADeB/4ox4Kf629hUnPnBBCCCFECumhcIZlBus6e0yU9MwJ4QOllKWUOqW76wH+1EUp9blSaqY/NfKPUspQShndXY9EetI10BGprn9PvcaESJHReih8BIAeCh+f6ID2BnIgwZzog5RSJUqpMqVUVnfXJVlKqTlKqZsTPH6OUmqLUio9FfVwHOdgx3FKvHP3uiClN18DTfWF95LoGoq/xoToh/4FXKCHwpcDX+9sYRLMiT5FKaUDxwMOcHb31qZ1LQRmDwBfU0qpJo9/HXjEcZz6rq9Z79abrgFo8TqIPqfTw99Lqr5gCNHHrLDMYAgYCBzd2cIkmBN9zeW4k0fvB66If8LrHfixUmqxUspWSj2ulMr2njtcKfWJUqpcKfWk99xv417rKKUmxN2/P/75JucJKaVWe2UtVUp9pUkdblJKLQYqE3wQPgcMwv0Aj76mCJgFPOjdH6mUeloptV0ptVYp9b2WGkMpdaDXs7PbG9Y6O+650UqpZ7xydiqlbm9Sz1OUUg8BY4D/KaUqlFI/UUr9n1Lq6Sbn+adS6h8t1CFfKVXadEhNKVXsteuglurfQR26Brzne8p10J73kvD318bvNZlrp8VjE9W/pfeb6BqKK+OUuDJbu1Zb/b01qXe6UuqX3mt2KqUu9a7bn7f0XoXoBi8BWGbw78DsTpfmOI78yE+f+QFWAd8GjgDqgGFxz1nAh8BI3G9Dy4DrgUxgHXAjkAGcB9QCv417rQNMiLt/f5PnLeAU7/YF3jkCwEVAJTAi7rhFwGggp4X3cBdwd9z9bwKLvNsB4GPgV169xwFrgNOb1sV7L6uAn3nHngSUA5OANOBT4G9ALpANzGjh/cRue/dHeO+p0LufDmwDjmjh/RjAKwkeV0AFMDOJ368BGH5fA95znboOErRTp66D1t5LS7+/1n6vbV07TX7n7Tm2Uf3b8X5PafLe4s/X4rXa1u8tQZuZwGuABpzlHfs5kN/df5/kR36a/oy96cULxt70Yr53+xdjb3rxmbE3vXh4suVIz5zoM5RSM4CxwBOO43wMrAYubXLYPx3H2eQ4zi7gf8ChuF3c6d5zdY7jPIP7wdEhjuM86Z0j4jjO48BK4KgmddjgOE5VC0U8AJwf1/NwufcYuPmIhjiOc7PjOLWO46zBDf4uTlDO0UAeYHrHvgG8CFzi1Wck8H+O41Q6jlPtOM477Xx/m4G3cD+8Ac4Adnht3ohSKg34FnC3d3+IUmqcV44D1AM5SqlhSqn5Sqk3lVJvKKVGtKcuCc7X0WsAeth10MZ7aen319rvNZlrpz3HNqp/O95va1q7VuPPl+j3Ft9mBcD3gescx7GBD4ADcKcolPt1nQnho19aZrBcD4Vn4H4Jvwd3Pl1SJJgTfckVwKuO4+zw7j9Kk6EpYEvc7b24HyAjgY1ecBG1oaOVUEpdrpRa5A0X7QYmA4PbW7b34bsDOFcpNR73A/FR7+mxwMho2V75PwOGJShqJLDBcZxI3GPrgFG4PSrrnI7PwXsAiOZA+hrwUAvHTQaGAq94938IXAeglMoB8nF79Xbg9iCdgDucfE0H69XRawB62HVA6++lpd9fa7/XZK6d9hzbqP7teL+tae1ajWrp9xbvJGCFF3yC28tnA7d59/26zoTwS4P3bxCYbZnBMO51mxSZuCr6BC8wuBBIU0pF/+hnAYVKqamO43zayss3A6OUUirug3w0bk9I1F5gQNz94UBpgnqMxe3BOBl4z3GcBqXUItwhxaj2JHd8ELdHbhLuEOVW7/ENwFrHcSa2o4xNwGilVCDuQ3IMsMIrZ4xSKr0dAV2i+j4H/EspNRl3Pt9PWnjtKKDMcZw93v0z2Bf4nQCUAZ80+RDPxx0WS0onrwHoQddBW++Fln9/rf1ek7l22nNsrP7teL9tXfOtXavJGOmVFXUdboBeDuA4TkPccx26zoTw2UY9FP4PcCpuouAsOtDRlnzPnKHlYmgd3j9MiC5yLu43nINwh18OBQ4E3sYNilrznvfaG7zJ0+fQfHhoEXCpUipNKXUGbiCSSC7uB9d2AKXUVbg9FMl6ELfL/RvsG2IFd9iv3Jt8nuPVZ7JS6sgEZXyAG3z8RCmVodwFCGcBj3nlbAZMpVSuUipbKXVcC3XZijtnKsZxnGrgKdzeog8dx1nfwmt3AQVKqf2UUpfgfuM8SClViDv/7e/RD2+l1KFKqQ+AG4CFLTVMK86l49cA9Kzr4Fxafy8t/f5a+70mc+0kc2x73m+za6iJ1q7VZJQChyqlRiilpuOuAh+qlIr1dPhwnQnRaXoofIweCivcL22vAKdbZnA37pzQ/0u2vLaDOUMLYGiXYmhhDG0bsBzYjKEtxdD+jKFNaKsIIVLgCuA+x3HWO46zJfoD3A5cplpJn+A4Ti3uZPdrgN24w4Yv4u6VF3Uj7ofLbty99J5roaylwF9xA4OtwCHAu8m+GcdxLGA+7ofkC3GPN+D2hB0KrMUdNrobd7J3ovd1FnCmd9ydwOWO4yz3yjkLmACsx/0QvKiF6vwB+IU3fPbjuMcf8N5fS0OsAB/hfiAvwm3fs4FjcedTfQD8Ma6+ixzHmQ78EneLm2R1+Brwzt+TroNW3wtuj1ez319rv9ckr512H9vO99vSNRR9fYvXattN1cgc4FXcRQ//xf19LgLeiDtXZ68zIfxwOe4io3uBAtwFP1hmcLNlBl9NtrC2t/MytDdxVwY9D3yGYUe8xwcCJ+JOyH0Ww3442ZML0VN539z/7TjOfd1dl55KKTUG98vd8Lhh1I6Wlel9oKOUOh131eQPExxnADiOY3TmfEnUS66DPqS915kQqaKHwgfgfok5HffL0jzcLyXvWmawobXXxmvPnLlTMOzmW0oY9i7gaeBpDC2jvScUoidSSp0AfIHbK3AZMAX3P5RIQCkVwF3M8FhnAznPoUqpv+AOLVYDV/tQZtLkOujzesR1JkSUZQaX434p/pseCufgdpJdANwKTGtvOW33zEUZ2gXAHAy7HEP7JXAY8FsMW+YciF5PKXUdcAvusOYa4KeO44S7t1Y9k1IqF3cobR1whuM4HV7x2YFzzwRwumgbKLkOhBCpoIfCrfYIW2bw1mTKS2Y16y8x7CcxtBm4K5b+jJsLZXoyJxSiJ3IcZzZ+ZOHuBxzHqSRxWohUnLuki8uX60AIkQr53r+TcPM6RudGn0UH8lsms5q1US4UDLtDuVCEEEIIIfozywz+xjKDvwGKgcMtM/gjywz+CHe3lzHJlpdMz9xGDC2WCwVD61AulJ4kEAg4OTk53V2NfiESiRAI9OrLpVeR9k4tae/UkvZOnd7W1nv37nUcx+k9FXYTcdfG3a8lcSLvViUTzF2Im/DzLxj2bgxtBB3IhdKTZGZmUllZ2d3V6BdKSkqYOXNmd1ej35D2Ti1p79SS9k6d3tbWSqmWtknsqR4EPtRD4We9++fi7vmclLaDOUM7Bngfw94LPLPvcXszbnJKIYQQQgiRJMsM/k4PhV8Gjvceusoyg58kW057euYuB+7A0FbgLtGfg2FvaeM1QgghhBCiDZYZXEgndyNpR8+c/S33Xy2a2O5+DK1RYjsMu92J7YQQQgghhEsPhYuAiUB29DHLDL6VTBntnzNn2LHEdhhahxPbCSGEEEII0EPha3G3CSzG3XruaNxt8U5Kppz2zJlrLbHdWgz7u8mcUAghhBBCAG4gdyTwvmUGT/S29/p9soW0Z/luvvczDfgWMMr7uR44PNkTCiGEEEIIAKotM1gNoIfCWd72XpOSLaQ9c+Z+4/6rvQUcjmGXe/cNQLa5EUIIIYTomFI9FC4EngPm6qFwGe5WiUlJJs+cL4nthBBCCCH6Oz0UVsD3LDO4GzD0UHgeoOEuLk1KMsHcg8CHGFp8YrsHkj2hEEIIIUR/Z5lBRw+FXwIO8e6/2dGy2r/lhWH/DrgKKPN+rsKwk56kJ4QQQgghAFioh8JHdraQZHrmANZ6r8kG8jG0L2HYSeVCEUIIIYQQAEwHLtND4XVAJaAAxzKDU5IpJIk8c5ovuVCEEEIIIQQAp/tRSDI9c7FcKBj2id6OEP4OsxraGcA/gDTgbgzbbPJ8Fu7cvSOAncBFGLYV9/wYYClgYNh/8bVuQgghhOj19FC4UaxhmUGzyfPNYg3LDFpxz8diDcsMdijW0ENhZZlBxzKDLa5cjR7TnvLaP2cOqjHsasANqtwdIZLOhdIiQ0sD7sDdMuwg4BIM7aAmR10DlGHYE4C/AX9s8vytwMu+1UkIIYQQfYYeCjeLNfRQOGGsYZnBrow15umh8He9wDC+fpl6KHySHgo/AFzR3sKS6ZkrxdAK8XKhYGgdyoXSiqOAVRj2GgAM7THgHNzoN+ocwPBuPwXcjqEpDNvB0M7FndNX6WOdhBBCCNF3HAWssszgGgA9FG5XrBHtJdND4XPxJ9Y4A7ga+K8eCu8H7MZdj5AGvAr83TKDn7S3sPYFc4amgO9h2LsBA0PrcC6UVowCNsTdL8WdGJj4GMOux9BsYBCGVg3cBJwK/LjVsxjadcB1AMppoKSkxIeqi7ZUVFRIW6eQtHdqSXunlrR36vS2tg7kFKTrofCCuIdmW2Zwdtz9pGINywzW66GwDQzSQ+H2xxpt8HZ9uBO4Uw+FM4DBQJWXcy5p7QzmbAdDi+VCwbA7nAulixjA3zDsCgytjSPt2cBsAMfMdmbOnNnVdRNASUkJ0tapI+2dWtLeqSXtnTq9ra0jVXvqLTM4rYuKN4C/WWawQg/5twGWZQbrgM2dKSOZOXMLMbRO50JpxUZgdNz9Yu+xxMcYWjpu7+BO3Kj6TxiaBXwf+BmGdkMX1lUIIYQQvU9SsYYeCjeLNfRQ2MKLNfRQuEfEGsnMmZsOXIahNcqFgmEnlQulFR8BEzG0/XAb8mLg0ibHvIA7IfA94HzgDQzbAY6PHeHuGVuBYd/uU72EEEII0Td8BEz05qm1O9bwVpXGYg09FDaACssM9ohYI5lgzpdcKC1y58DdALyCOwHwXgz7cwztZmABhv0CcA/wEIa2CtiF+0sQQgghhGiTNweuUaxhmcHP9VD4ZmCBZQZjsYYeCveaWEM5ThspTKKrRTt7TA+UnZ3tVFdXd3c1+oXeNu+it5P2Ti1p79SS9k6d3tbWSqm9juPkdnc9kqWHwtcDxwIvAV8DwpYZ/Fd7X9+eOXPzMLTvegl59zG0TAztJAwtqVwoQgghhBCikZNwY6mvW2ZwFjA1mRe3Z5g1lgvFm8+2mya5UDDsdudCEUIIIYQQjez08tj927tfk8yL2w7m3F0f7gTuxNBiuVC8nHNCCCGEEKID9FD4CMsMfoy7vRiWGfyf99QzyZSTzAIIMOxO50IRQgghhBAAXKGHwj8FYnu86qHwrZYZ/GEyhSQXzAkhhBBCCL9sA84GntFD4XIgEzclSlKSSRoshBBCCCH88zVgkmUGRwInAm8BHyZbiARzQgghhBDdYwOwH4BlBjdZZvAK4JvJFpL8MKuhNcuFgmG3OxeKEEIIIYQA4EbgaT0UXgh8AozC3WUrKR3pmYvlQsGwk86FIoQQQgghwDKDS4HDgceAHGALcE6y5XRkAcRODNvB0DqUC0UIIYQQQrgsM1gDhL2fDulIz9zfATDsDuVCEUIIIYQQ/ml/z5yh/RM4AHAwtE+BRzHsRRj2m11VOSGEEEII0bpkeuaWAn/GzVK8DXgYQ7uhS2olhBBCCNGP6KHw8I6+NomeOfvfcfdewtBuBz4Cbu/oyZufQzsDN1hMA+7GsM0mz2cBDwJHADuBizBsC0M7FTBxk+3VAv+HYb/hW72EEEII0SfooXCjWMMyg2aT55vFGpYZtPRQuFmsYZlBP2ONl3AXQyQt+TlzhnY9hvYX3IbY05GTtlBuGnAHcCZwEHAJhnZQk6OuAcow7AnA34A/eo/vAM7CsA/BXWn7kG/1EkIIIUSfoIfCzWINPRROGGtYZjBhrGGZwa6KNVRHX9iRBRAvAcuAYuAPHT1xAkcBqzDsNRh2Le4y3abLc88BHvBuPwWcjKEpDPsTDHuT9/jnQI7XiyeEEEIIEXUUsMoyg2ssM9juWEMPhZVlBj+xzGCjWMPrxfPLXR19YTILIJ4EfoVhLwPuwdDuw01w92JHT97EKNxMyFGlwPQWjzHsegzNBgbhRstRXwUWYtiJU6YY2nXAdQDKaaCkpMSHqou2VFRUSFunkLR3akl7p5a0d+r0trYO5BSk66HwgriHZltmcHbc/aRiDcsM1uuhcIuxhpdWxBeWGbyzo69NJs/cQ8DjGJoCPgbygEhHT9wlDO1g3O7Q01o+xp4NzAZwzGxn5syZKalaf1dSUoK0depIe6eWtHdqSXunTm9r60jVnnrLDE7rynPooXDbsUaKJbMA4gXgBQxtCnAo7hDtSz7WZSMwOu5+sfdYomNKMbR0QMOdnAiGVgw8C1yOYa/2sV5CCCGE6BuSijX0ULhRrKGHwrFYwzKDPSbW6MDerPZiYLH/VeEjYCKGth9uQ14MXNrkmBdwJx2+B5wPvOHtRlGImzk5hGG/2wV1E0IIIUTv9xEwUQ+Fk4o1LDPo6KFwIV6sYZlBX2INb87dVwGduJjMMoM3J1NORxZAdA3DrgduAF7BXWDxBIb9OYZ2M4Z2tnfUPcAgDG0V8EMg5D1+AzAB+BWGtsj7GZridyCEEEKIHswyg81iDcsMfq6HwjfroXCjWEMPhVuMNfRQeJH309lY43ncBRf1QGXcT1KU4zidrEfvlZ2d7VRXV3d3NfqF3jbvoreT9k4tae/UkvZOnd7W1kqpvY7j5HZ3PdpLD4U/s8zg5M6W07GeOUPrcJZiIYQQQggBwHw9FD6ks4UkP2fO1eEsxUIIIYQQAoAZwJV6KLwWqMFNHOxYZnBKMoV0NJjrcJZiIYQQQggBuDtRdFpHg7kOZykWQgghhBBgmcF1fpTTsWDOsDucpVgIIYQQQrj0UHgqcLx3923LDH6abBk9JzWJEEIIIUQ/oofCNwKPAEO9n4f1UPi7yZbT0WFWIYQQQgjROdcA0y0zWAmgh8J/xE1WfFsyhbS/Z87QvouhFSVTuBBCCCGEaJECGuLuN9CBRabJ9MwNAz7C0BYC9wKvYNj9N+OwEEIIIUTn3Ad8oIfCz+IGcefixlhJSaJnzv4FMBF3m4srgZUY2u8xtPHJnlQIIYQQor+zzOCtwFXATmAHcIVlBv+WbDnJLYBwe+K2eD/1QBHwFIb2p2RPLIQQQgjRH+mh8Dvev+VACfB77+dtPRTek2x57R9mNbQbgctxI8e7gf/DsOswtACwEvhJsicXQgghhOhvLDM4w/s334/ykumZGwich2GfjmE/iWHXAWDYEWCWH5URQgghhOgvvNWrbT7WlmSCuWwMu3GmYkNzT2jYy5I9sRBCCCFEP3dqgseS3uIrmdWspwI3JThh08c6ztDOAP4BpAF3Y9hmk+ezgAeBI3AnC16EYVvecz/FzdfSAHwPw37Ft3oJIYQQok/QQ+FGsYZlBs0mzzeLNSwzaHnPNYo1LDPYoVhDD4W/BXwbGKeHwovjnsoH5idbXts9c4b2LQxtCTAJQ1sc97MWWNzWy9vN0NKAO3ADxIOASzC0g5ocdQ1QhmFPAP4GeD2D2kHAxcDBwBnAnV55QgghhBAA6KFws1hDD4UTxhqWGWwUa3jHNYo1vPI64lHgLOAF79/ozxGWGbws2cLa0zP3KPAy8AcgFPd4OYa9K9kTtuIoYBWGvQYAQ3sMOAdYGnfMOYDh3X4KuB1DU97jj2HYNcBaDG2VV957rZ4xbzAX/Wa2j29BtKS+vp5/vbmiu6vRb0h7p5a0d2pJe6dOH2zro4BVlhlcA6CHwu2KNfRQOBZrWGawBlirh8LtizUSsMygDdi4wWQRbuq3bK9OWGbwrWTKazuYM+zYCZOtbJJGARvi7pcC01s8xrDrMTQbGOQ9/n6T145KeBZDuw64zr2TT319facrLtrBcaStU0naO7WkvVNL2jt1ellbB3IK0vVQeEHcQ7MtMxjfa5NUrGGZwXo9FE4+1mgnPRS+FrgRKAYWAUfjBocnJVNOO4I57R0MewaGVg7E7/igAAfDLkjmhN3OsGcD7i/WzHaevuXb3VuffqKkpISZM2d2dzX6DWnv1JL2Ti1p79TpbW2tfvudessMTuvueiThRuBI4H3LDJ6oh8IH4OabS0p7euZmeP/6kgulFRuB0XH3i73HEh1TiqGlAxru5MT2vFYIIYQQ/VtSsYYeCnd1rFFtmcFqPRRGD4WzLDO4XA+FJyVbSDKrWbvaR8BEDG0/3Ma5GLi0yTEvAFfgdkGeD7yBYTsY2gvAoxjarcBI3LHnD1NWcyGEEEL0Bh8BE/VQOKlYwzKDjh4KvwA8qofCfsYapXooXAg8B8zVQ+EyYF2rr0ggib1ZtQcwtMK4+0UYWtKbwbZcvl0P3AC8AiwDnsCwP8fQbsbQzvaOugcY5C1w+CHRBRmG/TnwBO4ExjnAdzDsBt/qJoQQQohezzKDzWINywx+rofCN+uhcKNYw1vgEIs1LDPYLNawzGCnYg3LDH7FMoO7LTNoAL/0zn1usuUox3HaPgrA0D7BsA9r87FeJDs726muru7uavQLvW3eRW8n7Z1a0t6pJe2dOr2trZVSex3Hye3uerSHt0K22DKDG9o8uA3J7AARwNCKYvcMbSA9a5hWCCGEEKJXsMygA7zkR1nJBHN/Bd7D0G7B0H6Lm6H4T35UQgghhBCiH1qoh8JHdraQ9vesGfaDGNoC3NwnDnAehr20jVcJIYQQQojEpgNf00NhC6jES/tmmcEpyRSS7DBphnei6G0hhBBCCNExp/tRSDKrWW8EHgEGA0OBhzG07/pRCSGEEEKIfmg9cDxwhWUG1+GOfA5LtpBkeuauAaZj2JUAGNofcXOw3JbsSYUQQgghBHcCEdwpbDcD5cDTuLtCtFsyCyAUEJ9PpYF9Q65CCCGEECI50y0z+B2gGsAyg2VAZrKFJNMzdx/wAYb2LG4Qdy7gX9JgIYQQQoj+pU4PhdNwh1fRQ+EhuD11SUlizpx9K3AV7v5kO4ArMOy/JXtCIYQQQggBwD+BZ4Fheij8O+Bd4A/JFtJ2z5yhleNFjB4V95yDYRcke1IhhBBCiP7OMoOP6KHwx8DJ3kNnW2ZwebLltCOYs/OTLVQIIYQQQiSmh8ItdpTpobBjmcGkOspkOy4hhBBCiBSyzKCvHWVJ7AChKeAyYByGfTOGNgYYjmF/6GeFhBBCCCFE+yXTM+dLLpSEDG0g8DigAxZwIYZdluC4K4BfePd+i2E/gKENAJ4ExuOmS/kfhh3qdJ2EEEII0W/ooXCzWMRLFdL0uEaxiGUGH9BD4WaxiGUG24xF9FA41lFmmcGb9VB4DDDcMoNJdZQlk2duOoYdy4XiBVtJ50JpQQh4HcOeCLzu3W/MDfh+jbuP2VHArzG0Iu/Zv2DYBwCHAcdhaGf6VC8hhBBC9A8h4HXLDLYYi3gBX6NYRA+FY7GIZQZjsYgeCrcnFrkTOAa4xLtfDtyRbMWTCebqMLRYLhQMrUO5UFpwDvCAd/sB3Bx2TZ0OzMWwd3mB5FzgDAx7L4Y9z62TXQssBIp9qpcQQggh+od2xyKWGdzl9drNBc6wzOBeywzOA7DMYDKxSMqTBkdzoQzF0H4HnM++bsbOGoZhb/ZubyHxvmSjgA1x90u9x/YxtELgLOAfLZ7J0K4DrgNQTgMlJSUdrLJIRkVFhbR1Ckl7p5a0d2pJe6dOb2vrQE5Buh4KL4h7aLZlBme38+XDLDPY6VhED4ULaSsW2ceXpMHtyTN3B/Aohv0IhhbNheLuAGHYy9p9JkN7DRie4JmfNz7OdjA0J8FxbZWfDvwX+CeGvabl4+zZwGwAx8x2Zs6cmfSpRPJKSkqQtk4dae/UkvZOLWnv1OltbR2p2lNvmcFpLT2vh8LtikUsM+jooXDSsYgeCsdiEcsMthyL7BPrKPOSBp8P/DLZ87anZ24F8BcMbQTwBPBfDPuTZE+EYZ/S8nPaVgxtBIa92TvPtgRHbQRmxt0vBkri7s8GVmLYf0+6bkIIIYTo8ywz2GIsoofCW/VQeIRlBjfroXCnYhHLDP69nfWJTxqsgHMtM9j+jjJP23PmDPsfGPYxwAm4W3ndi6Etx9B+jaHtn+wJW/ACcIV3+wrg+QTHvAKchqEVeQsfTvMeA0P7LaAB3/epPkIIIYToX9odi+ihcJG38CEWi+ihcNKxiB4KPwBssczgHZYZvB3YoofCSe97n8zerOsw7D9i2Ifhrro4F0g6emyBCZyKoa0ETvHug6FNw9Du9s6/C7gF+Mj7udldDKEV43aPHgQsxNAWYWjX+lQvIYQQQvQPJnCqHgo3ikX0UHiaHgrfDWCZwWaxiGUGd+mhcKNYRA+FF+mhcHtikSmWGdwdveMtgDgs2YonkzQ4HTgTuBi3O7AEMJI9YeKy7Z3s25cs/vEFwLVx9+8F7m1yTCnx+8UKIYQQQiTJMoMJYxHLDDaKRSwz2CwWscxgR2ORgB4KF0Xz2XmpT5Lenas9CyBOxe2J+zLwIfAYcB2GXZnsyYQQQgghRMxfgff0UPhJ7/4FwO+SLaQ90d9PgUeBHyXclUEIIYQQQiTNMoMPeqlUTvIeOs8yg0uTLacdPXP2SW0eI4QQQgghkuYFb0kHcPGS2QFCCCGEEEL4RA+FH/CSDEfvF3XtalYhhBBCCOEnX1azti+YMzSFoY1OtnAhhBBCCNGigJevDujK1awQ3WLrJeCQZE8ghBBCCCESil/NqnC380p6NWsyw6wLMbQjkz2BEEIIIYRozjKDDwLnAVuBzcB1wNHJlpNMV9504DIMbR1QiRtBOhj2lGRPKoQQQgghAMgCxuLmmFsLPJ1sAckEc6cnW7gQQgghhGhMD4X3x92Q4RJgB/A4oCwzeGJHyktub1bYAwzDjSCjP0IIIYQQov2W4yYKnmWZwRmWGbwNaOhoYcnszXotcCNQDCzCHdN9j31Zi4UQQgghRNvOw93rfp4eCs/B3Sq1w/vMJ7MA4kbgSGAdhn0ibh6U3R09sRBCCCFEf2SZwecsM3gxcAAwD/g+MFQPhf+lh8KnJVteMnPmqjHsagwNDC0Lw16OoU1K9oQJGdpA3PFiHbCACxPuA2toVwC/8O79FsN+oMnzLwDjMOzJvtRLCCGEEP2Cl+OtUSziJfFtelyjWMQygw80ef4FYJxlBtuMRSwzWAk8Cjzq5Zu7ALgJeDWZuifTM1eKoRUCzwFzMbTngXXJnKwVIeB1DHsi8Lp3vzE34Ps17qrao4BfY2hFcc+fB1T4VB8hhBBC9C8h4HXLDLYYi3gBX6NYpEnS3w7HIpYZLLPM4GzLDJ6c7GuTWQDxFQx7N4ZtAL8E7gHOTfaELTgHiEa2D7RQ7unAXAx7l9drNxc4w62blgf8EPitT/URQgghRP/S7ljEMoO7vF67WCyih8LdFoskvWUEAIb9ps/1GIZhb/Zub8FdMdvUKGBD3P1S7zGAW3CzKO9t80yGdh1uUj6U00BJSUnHaiySUlFRIW2dQtLeqSXtnVrS3qnT29o6kFOQrofCC+Iemm2ZwdntfPkwywymJhbxWdvBnKGVAw6NV1lE7zsYdkG7zmRorwHDEzzz88bH2Q6G5rSrTLfcQ4HxGPYPMDS97ePt2cBsAMfMdmbOnNnuU4mOKykpQdo6daS9U0vaO7WkvVOnt7V1pGpPvWUGp7X0vB4KtysWscygo4fC7Y5F9FD4UGC8ZQZ/oIfCejtfo4BiywxuaPPgNrQjmLPzO3sSr5xTWn5O24qhjcCwN2NoI4BtCY7aCMyMu18MlADHANMwNAv3/QzF0Eow7JkIIYQQQngsM9hiLKKHwlv1UHiEZQY366Fwh2IRPRS28GIRPRQusczgTFrgBYy+7HufTJ65XyV+3L65s5UAXgCuAEzv3+cTHPMK8Pu4RQ+nAT/FsHcB//LqqAMvSiAnhBBCiCS1OxaJW/RwGvBTywzGYhGvZ+7F1gK5OAv1UPhIywx+1JmKJzNnrjLudjYwC1jWmZPHMYEnMLRrcFfIXgiAoU0Drsewr3UXPmi3ANE3fLMXyAkhhBBCdJYJPKGHwo1iET0UngZcb5nBay0zuEsPhRvFIl4g11HTgcv0ULjRvveWGUxq33vlOO2fntaIoWUBr/TmXrDs7Gynurq6u6vRL/S2eRe9nbR3akl7p5a0d+r0trZWSu11HCe3u+vRXnoonHBbVMsMJpX6LZk8c00NwB0rFkIIIYQQSfKCtk7ve5/MnLkluKtYAdKAIbjLcIUQQgghRJL0UNiXfe+T6ZmbBZzl/ZwGjMSwb0vmZEIIIYQQIia2771lBju8730ywdxX434uAr6HoV3j5XkTQgghhBDJqbbMYDWAHgpnWWZwOZD0vvfJBHPuylI30/Eo4Ju4W1jchaH9JNkTCyGEEEL08JHd0AAACIpJREFUc6V6KFyIt++9Hgp3aN/7ZFKTFAOHY9juBrKG9msgDHwJ+Bj4U7InF0IIIYTorywz+BXvpqGHwvMADZiTbDnJBHNDgZq4+3W4e6pWYWg1LbxGCCGEEEK0wTKDHd73Pplg7hHgAwwtmhH5LOBRDC0XWNrRCgghhBBC9Cd6KNzqvveWGWzfvveeJFKT2LdgaC8Dx3mPXI9hL/BuX5bMSYUQQggh+ivLDPqz770nmZ45vOBtQZvHCSGEEEKIVumhcMJ97y0zmNS+98kkDc7CTUuiN3qdYSd1QiGEEEIIAfi0730yPXPPAzbuytU+seChpqbGUUpVdXc9+ol0oL67K9GPSHunlrR3akl7p05va+uc7q5AMiwz+Nf4+3oo/BfglWTLSS41iWGfkewJeriFjuNM6+5K9AdKqQXS1qkj7Z1a0t6pJe2dOtLWKdehfe+TCebmY2iHYNhLkj2JEEIIIYRoTA+Ffdn3PplgbgZwJYa2FneYVQERDHtqsicVQgghhBDMirtdD2y1zGDSw9rJBHNnxt1WwGjgp8mesIeZ3d0V6EekrVNL2ju1pL1TS9o7daStu9ZXmz6gh8I28LFlBhe1txDlOE7bR0UZ2mHApcAFwFrgaQz79vYXIIQQQgghAPRQ+FFgGvA/76FZwGLczCFPWmawXVultt0zZ2j7A5d4PzuAxwGFYZ+YdK2FEEIIIURUMXC4ZQYrAPRQuEP73gfaccxy4CRgFoY9A8O+DWjoUJWFEEIIIURUwn3vLTNYRRJp4NoTzJ0HbAbmYWh3YWgn03gvsV5HKXWGUuoLpdQqpVSou+vT1ymlLKXUEqXUIqWU7CDiM6XUvUqpbUqpz+IeG6iUmquUWun9W9SddexLWmhvQym10bvGFymlvtyddewrlFKjlVLzlFJLlVKfK6Vu9B6X67sLtNLecn13nUeAD/RQ+Nder9y7wKN6KJzUvvftnzNnaLnAObjDrScBDwLPYtivJlnxbqWUSgNWAKcCpcBHwCWO47S70URylFIWMM1xnB3dXZe+SCn1JaACeNBxnMneY38CdjmOY3pfWIocx7mpO+vZV7TQ3gZQ4TjOX7qzbn2NUmoEMMJxnIVKqXzcYadzgSuR69t3rbT3hcj13WX0UHga+/a9f9cyg0l3eiSxnZddCTwKPIqhFeEugrgJ6FXBHHAUsMpxnDUASqnHcINUCeZEr+Q4zltKKb3Jw+cAM73bDwAluP9fRSe10N6iCziOsxl3ZAjHccqVUsuAUcj13SVaaW/RhbzgrVOjVsmkJtnHsMtwlyv3xiXLo4ANcfdLgendVJf+wgFeVUo5wH8cx+mN101vM8z7wwywBRjWnZXpJ25QSl2O+0f5R47jlHV3hfoSL4A+DPgAub67XJP2Pg65vruEHgon3PfeMoNJ7XvfnjlzQnTWDMdxDsfNVfgdb5hKpIjjzqVIIgeR6IB/AeOBQ3F7Nv7a6tEiKUqpPOBp4PuO4+yJf06ub/8laG+5vrvO87g9zfVAZdxPUjrWM9e7bcRNeBxV7D0muojjOBu9f7cppZ7FHep+q3tr1edtVUqNcBxnszcPZlt3V6gvcxxna/S2Uuou4MVurE6fopTKwA0sHnEc5xnvYbm+u0ii9pbru0sVW2aw0/ve98eeuY+AiUqp/ZRSmcDFwAvdXKc+SymV602kRSmVC5wGfNb6q4QPXgCu8G5fgfvtT3QRL6CI+gpyjftCKaWAe4BljuPcGveUXN9doKX2luu7S83XQ+FDOltIcjtA9BHesuq/425qe6/jOL/r3hr1XUqpccCz3t104FFpb38ppf6LOxl8MLAV+DXwHPAEMAZYB1zoOM6ubqpin9JCe8/EHYJyAAv4ZtycLtFBSqkZwNvAEiDiPfwz3Hlccn37rJX2vgS5vruEHgovBSbg7qoV2/feMoNJ7XvfL4M5IYQQQojupofCY+Puxva9t8xgUrn8+uMwqxBCCCFEt7PM4DpgIHADboqdm4GXki2nPy6AEEIIIYToNnoonHDfe8sMdmjfewnmhBBCCCFSaznu/MRZlhlcBaCHwj/oaGESzAkhhBBCpNZ5uNk05umh8BzgMTqx770sgBBCCCGE6AZ6KJxw33vLDCa1VaoEc0KIHkUpNQh43bs7HGgAtuMu33/QcZxvd8E5v4+7cfuDLTw/CzjKcZxf+X1uIYQA0EPh6L73F1lm8ORkXivBnBCix1JKGUCF4zh/6cJzpAMLgcMdx6lv4RjlHXOc4zh7u6ouQgjREZKaRAjRKyilZiqlXvRuG0qpB5RSbyul1imlzlNK/UkptUQpNcfbkgil1BFKqTeVUh8rpV5pksk+6iRgYTSQU0p9Tym1VCm1WCn1GMT2/ywBZqXkzQohRBIkmBNC9FbjcQOxs4GHgXmO4xwCVAFBL6C7DTjfcZwjgHuBRLuPHAd8HHc/BBzmOM4U4Pq4xxcAx/v+LoQQopNkNasQord62XGcOqXUEtyt+eZ4jy8BdGASMBmY646SkgYk2oJoBLAs7v5i4BGl1HO426JFbQNG+ld9IYTwhwRzQojeqgbAcZyIUqrO2TcBOIL7t00BnzuOc0wb5VQB2XH3g8CXgLOAnyulDvGGYLO9Y4UQokeRYVYhRF/1BTBEKXUMgFIqQyl1cILjluGulEUpFQBGO44zD7gJ0IA877j9gc+6vNZCCJEkCeaEEH2S4zi1wPnAH5VSnwKLgGMTHPoybk8cuEOxD3tDt58A/3QcZ7f33IlAuCvrLIQQHSGpSYQQ/Z5S6lngJ47jrGzh+WHAo47jJJX7SQghUkGCOSFEv6eUmgQMcxznrRaePxKocxxnUUorJoQQ7SDBnBBCCCFELyZz5oQQQgghejEJ5oQQQgghejEJ5oQQQgghejEJ5oQQQgghejEJ5oQQQggherH/Byuqg82XcmZlAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\n", - "Trajectory Force Plots\n", - "\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAGDCAYAAADahUEXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABrOklEQVR4nO3dd3hUVfrA8e87kwaE3hEh2BCQGHqHRHGxEXDVtSJW1oLYsKz6QyzrIqioIHYBBVew44qsWCJFEEFCl0UUEKQLUkPa+/vj3oRJn5TJZJL38zz3yZ17z733nZMJ83LuueeIqmKMMcYYE2o8wQ7AGGOMMaYkLIkxxhhjTEiyJMYYY4wxIcmSGGOMMcaEJEtijDHGGBOSLIkxxhhjTEiyJMaYECciV4nIFz6vVUROCWZMVZ2IxLi/h7Bgx2JMZWZJjDEVgIhsEpGjInJIRHaIyBQRifbnWFWdrqp/8fM6SSKS4l7nTxGZJyLtixlnf5/XQfmyFpF497qTcm1fICLXlmcsJZHr9521NAt2XMaEGktijKk4BqpqNBAHdAD+EaDrDHevUw9IAt4O0HUC7TAwRERiSnuiILWYDFTVaJ/l9+IcbK08xlgSY0yFo6o7gP/iJDMAiMgDIrJRRA6KyFoRuchn37UisqAE18kA3gXa+pxriog84fM6XkS2uutvAy2AT92Wg/uAeW7R/e62HiLiEZGHRWSziOwSkbdEpLZ7jqyWm6EiskVE9ojIQz7X6yoiS0XkgIjsFJFnC3kL+4EpwCP57fQzjhtEZAvwtVuPC0VkvIjsF5FfRKSnu/039xxDfc5/gYgsd2P9TURG+135BRCRSBF5TkR+d5fnRCTS3RcvIltF5H4R2QFMFhGviDzo89lYJiInuuVPF5G5IvKHiKwXkb+VNj5jKhpLYoypYESkOXAe8LPP5o1AH6A28CgwTUSalvI6EcBVwGJ/yqvqEGALx1sQxgJ93d113G2LgGvdJQE4CYgGJuY6XW+gNXA2MEpE2rjbnweeV9VawMnAzCLC+idwsYi0zmefP3H0A9oAA9zX3YCVQH3gHZwkrwtwCnA1MNHnNt9h4BqgDnABcIuIDC4i3qI8BHTHSWDPBLoCD/vsb4LTgtYSGAbcDVwBnA/UAq4HjohIDWCu+x4aAZcDk0SkLcZUIpbEGFNxfCwiB4HfgF34tDCo6nuq+ruqZqrqDGADzhdcSbwgIvuBg8BwnKSoLF0FPKuqv6jqIZzbYpfnuv3xqKoeVdUVwAqcL2yANOAUEWmgqodUtdAEy221ehl4rIRxjFbVw6p61H39q6pOdlupZgAnAo+p6jFV/QJIxUloUNUkVV3l/k5WAv/GSYr89bHb4rNfRD72ifkxVd2lqrtxfjdDfI7JBB5x4zkK3Ag8rKrr1bFCVfcCFwKb3PeSrqrLgQ+AS4sRnzEVniUxxlQcg1W1JhAPnA40yNohIteISHLWlx5whu/+YhqhqnWAajhfdu+LSGxpAs+lGbDZ5/VmIAxo7LNth8/6EZxWEoAbgNOAn0TkBxG50I/rPQUMEJEzc233J47fch2z02f9KICq5t4WDSAi3UTkGxHZLSJ/AjdTvN/JYFWt4y6DC4nZt8PvblVN8Xl9Ik4rXW4tgW4+SdJ+nASpSTHiM6bCsyTGmApGVb/F6evxNICItARew2k1qe8mIKsBKeV1MlV1Ps5tq6ynmw4D1X2K5f7Syz3tfe7XAL/jfIlmaQGkkzNBKCimDap6Bc4tkKdwEqwaRRyzF3gOeLwEceQXv7/eAWYBJ6pqbZwWoVL9Tsg/Zt8Ov7nj/Q3ntltuvwHf+iRJWbf7billfMZUKJbEGFMxPQec47Yu1MD58toNICLX4bTElJqI9MDp2LvG3ZQMnC8i9USkCXBnrkN24vQvybIb5xaH77Z/A3eJSCu3/8iTwAxVTfcjnqtFpKGqZuJ03MU9f1GeBXri9G8pdRx+qgn8oaopItIVuLIMzvlv4GERaSgiDYBRwLRCyr8OPC4ip4ojVkTqA/8BThORISIS7i5dfPoeGVMpWBJjTAXk9od4CxilqmuBZ4BFOElEe2BhKU4/UdyxSXAer35YVT93972N00dlE/AFTr8QX//C+ZLdLyIjVfUITufahe627sCb7nnmAb8CKcDtfsZ2LrDGje154HKf/ioFUtUDwFicTq9ZShOHP24FHnP7MY2i6E7I/ngCWIrTuXgV8KO7rSDPutf9AjgAvAFUU9WDOK1rl+O05OzAadmKLIMYjakwRLU0ranGGGOMMcFhLTHGGGOMCUmWxBhjjDEmJFkSY4wxxpiQZEmMMcYYY0KSJTHGGGOMCUmVbhbUOnXq6CmnnBLsMCqcw4cPU6NGoWOGVTlWJ3lZneRldZKX1UleVid5lWWdLFu2bI+qNsy9PahJjIicizMWhBd4XVXH5NofiTNWRidgL3CZqm4q7JyNGzdm6dKlgQk4hCUlJREfHx/sMCoUq5O8rE7ysjrJy+okL6uTvMqyTkRkc37bg3Y7SUS8wIs4s/W2Ba7IZ4bVG4B9qnoKMB5nsCZjjDHGmKD2iekK/OzOMJuKM+X9oFxlBgFT3fX3gbNFpLRzkxhjjDGmEgjaiL0icglwrqre6L4eAnRT1eE+ZVa7Zba6rze6ZfbkOtcwYBhA/UaNO7345jsljquyjl985MgRqlevXnRBwPcjob4/1fkZ6DoqTpbqEfCK+9OT9VrwCoR5ju/LL/c9dOgQ0dHR+Zy16rI6ycvqJC+rk7ysTvIqyzpJSEhYpqqdc2+vFB17VfVV4FWAyKan6v3zi5xqpQoSoGrWiwiEez1Eej1EhDlLZJiHtGMe6tUOIzLMQ2S4h8gwL1Huz8gwD1Hh3hzbo8K8RIW76+HHt0Xm2Oalms8+jye0Gg7tvn5eVid5lWedpKWlsXXrVlJSUsrleiVVu3ZtoqKigh1GhVKSOomKiqJ58+aEh4f7VT6YScw24ESf183dbfmV2SoiYUBtnA6+BWpQTRh/2ZmlCkyK1RYQGtauW0fbNoVPYFvQjToRp0ZEnLpxfhZcPrfiNPYVp5VHFTJUycjMJD1DychU0jKVjIxM0jOV1Axne1pGJqnpmaS6P4+lOz+37ThGregIjqVnkpKWyf4jaaSmZ5KSnkFKWibH0jJIccuWVITXk2+CE+mzXi3cm73fN0mqlis5igr3EhXmoVrE8XNF+pQN99qICaby2bp1KzVr1iQmJibfFtWK4uDBg9SsWTPYYVQoxa0TVWXv3r1s3bqVVq1a+XVMMJOYH4BTRaQVTrJyOXmnsp8FDMWZvfcS4Gst4v5XdLhwUYfmAQg3tNX5cwPxHU4IdhgVivO/ya5Flst0E6KUNCe5SUnLyE50nG1u0pPurB9NdZIf3/LH0t3taU6SdDQ1g/1H0zh2IIOjaTmPK2nS5PVInsSnoNdZiVNkrte//p5Oyurtzna3BapahDdPK1RkmKdCf6GYyiMlJaXCJzCmbIgI9evXZ/fu3X4fE7QkRlXTRWQ48F+cR6zfVNU1IvIYsFRVZ+FMK/+2iPwM/IGT6BhTrjweIcrjfImXh8xMzU6SjmYnSceTpaOpxxOflPRMUlIzshOro6luS1JqRnaydDQtg4Mp6ew+eOz4Odzjj+WXMK380a84I93bcr4tSL635CLCPER4j9++i/BZIrO3e49vz3W7L/un15tne1Z5S6aqBvsdVx3F/V0HtU+Mqs4GZufaNspnPQW4tLzjMiaYPB6hekQY1SMCf63MTHVvpzlJz7cLFhHboXOOROh4i5OT/Bzzvd2WoxXq+M8jqensP+rexvO5hZeansmxjNLdosvNN/nJLxHKnUhFhnlzHpOrbM5Eycv6nemwfhfhXo+7COHu8VmvI7wewnz2hXs9eEOsP5TJ36ZNm7jwwgtZvXp19rbRo0cTHR3NyJEjyy2O+Ph4tm/fTlRUFBEREbz22mvExcUVekzPnj357rvv8n0P4Ly3Nm3a0Lp1a1SVGjVqMHnyZFq3bl3oeZ988kkefPBBAPbv388777zDrbfeWqr3V1KVomOvMaZkPB6hWoSXahFOK1OTGh7aNqsV8OuqanYfJd/+SlkJz7F8t2fk27fpeNmMvElThrN+MCWdvVnn8L2uWyYto4jeWMt/KPZ79LgdysNzJTdZ62FeDxE+28Oy18VJiDw5y4W5ZSK8HsI8HsLDhHBPruM8HsLDnGOzyh8v4+zPKh+WfX73uKxruNstCQseVUVV8Xhy9nObPn06nTt3ZvLkydx7773MnTu30PN89913RV7r5JNPJjk5GYBXXnmFJ598kqlTpxZ6TO4kZtKkSZbEGGOqDhFxnwIrn1t0Rcnq95Qj+UnLIC1DWfT9EmI7dCQ13e0onumUSctwl3RnW1r68Q7laelKemZm9npaRqbzusD1TI6mOcekZxzvlJ6ekUlqRu7tmWSWw1gQIhDucZKZrMTH6xHCPUJa6jFqLk3KkQB53cTJWfdQLdzDK0PyPBFb6cTHx3PmmWfyzTffkJmZyZtvvknXrl0ZPXo0Gzdu5Oeff2bPnj3cd9993HTTTQCMGzeOmTNncuzYMS666CIeffRRNm3axIABA+jWrRvLli1j9uzZtGzZMt9r9ujRg3HjxgHOY8yDBg1i3759pKWl8cQTTzBokDPkWnR0NIcOHfL7vRw4cIC6desCMGXKFJYuXcrEiRMBuPDCCxk5ciRz5szh6NGjxMXF0a5dOzIyMti4cSNxcXGcc845jB07lvvuu4/PP/8cVWXUqFFcdtllJCUlMXr0aBo0aMDq1avp1KkT06ZNK/WtQktijDFVXmH9nrbX9tKxRd0gRFWwjMysBCgr0Tn+JF6aT9KTVSYtKynKdPfnWM8kzT1PVqKUkXl8e0au49MzlK3bt1O/QS13W87rHUvLJC0zg0MBeCL60U/XsPb3A2V6zrbNavHIwHalOseRI0dYuHAhy5cv5/rrr8++bbNy5UoWL17M4cOH6dChAxdccAGrV69mw4YNLFmyBFUlMTGRefPm0aJFCzZs2MDUqVPp3r17odebM2cOgwcPBpxHkj/66CNq1arFnj176N69O4mJiX4nB1kJyMGDBzly5Ajff/99oeXHjBnDxIkTs1tvNm3axOrVq7Nff/DBByQnJ7NixQo2bdpEQkICffv2BWD58uWsWbOGZs2a0atXLxYuXEjv3r39irMglsQYY0yI8XoEryd4rVhJSfuIj+8YtOuXp4KSAd/tV1xxBQB9+/blwIED7N+/H4BBgwZRrVo1qlWrRkJCAkuWLGHBggV88cUXdOjQAXBaUjZs2ECLFi1o2bJloQnMVVddRWpqKocOHcpOGlSVBx98kHnz5uHxeNi2bRs7d+6kSZMmfr0/39tJM2bMYNiwYcyZM8evY/OzYMECrrjiCrxeL40aNaJfv3788MMP1KpVi65du9K8ufP0cFxcHJs2bbIkxhhjTNVQ2haTkqhfvz779u3Lse2PP/7IMY5J7kQn63V+21WVf/zjH/z973/PsW/Tpk1Fzvg8ffp0OnXqxL333svtt9/Ohx9+yPTp09m9ezfLli0jPDycmJiYEg8MmJiYyHXXXQdAWFgYmZnHO+CXxWCDkZGR2eter5f09PRSn9NGxzLGGGMKEB0dTdOmTfn6668BJ4GZM2dOjhaEGTNmAE4rRO3atalduzYAn3zyCSkpKezdu5ekpCS6dOnCgAEDePPNN7P7qmzbto1du3b5HY+I8Pjjj7N48WJ++ukn/vzzTxo1akR4eDjffPMNmzfnO9mzXxYsWMDJJ58MQExMDMnJyWRmZvLbb7+xZMmS7HLh4eGkpaUBULNmTQ4ePJi9r0+fPsyYMYOMjAz27NnDvHnz6Nq16PG4SspaYkzJZKSDZoB4QTzgsXzYGFM5vfXWW9x2223cfffdADzyyCPZX/bg9Evp3bs3GRkZvPnmm9nbY2NjSUhIYM+ePfzf//0fzZo1o1mzZqxbt44ePXoATpI0bdo0vF7/bw9Wq1aNe+65h3HjxvHUU08xcOBA2rdvT+fOnTn99NOL9d6y+sSoKhEREbz++usA9OrVi1atWtG2bVvatGlDx47Hbx8OGzaM2NhYOnbsyPTp0+nVqxdnnHEG5513HmPHjmXRokWceeaZqCpjx46lSZMm/PTTT8WKy19BmwAyUOJa1NTkJ84KdhgBVLKe3H/s20e9uoV1TtTj8wNoJmRmQGY6ZKZB+jFIT3F+ph52lsy0fELLSmi8OZMbf7d7vO7cBlnrnlzrnlzbw6BeK2jS3lkanAZe/+bbAJsTJz9WJ3lZneRVnnWybt062hQxZUowxcfH8/TTT9O6descQ+wHYyyZiqakUzHk9zsXkco7AaQv0UxIq6QTHZYi4fRmHIXUIkZPEwHE+ekJg7BI52d4FIRFgTcSIqpDeHWIqOEkFJmZTotMZoaT/ORYzyxie0audS1ie2rO86Wnws9fQsYx901GQKM20LwLxPSGlr0humGJ68wYY0zFVumSmCPVm8MNXwQ7jApneWX932RGOuzdADtWw46VzpL8b/jBaRKlYRs4+Sw4/QJo0d1JvIwxpowkJSUB5OgXAk5LjAm8SpfEmCrGG+a0vjRqA7HuDBUZabB9BWyaD7/OdxKaxS9C9frQ+jxoOxhOSghq2MYYY0rPkhhT+XjDoXlnZ+l9Fxw76Nx2+ukzWDsLlk+DGg05pU53aF0Xmp4Z7IiNMcaUgCUxpvKLrAntLnKWrH40K/5Ns59mwyufOklMx2ug/aUQVTvY0RpjjPGTPRdrqpawCDj9fLjsbb7rORXOf9rpnPzZPfB0a/jkNtj2Y7CjNMYY4wdLYkyVlR4eDV1vgpvnw03fQOzfYPWH8FoCvNIPkt+BtABMAGOMCSnR0dFBvf6mTZuoVq0acXFxtG3blmuuuSZ7sLmCzJo1izFjxgBOJ+Onn346T5nRo0dzwgknEBcXx+mnn84tt9ySY5Te/CQnJzN79uzs10lJSX7Nlh0oRSYxIhIlIpeIyPMi8p6IvCUi94lI+Y//bEwgiMAJHSHxBbjnJ6d1Jj0FPr4FxreDrx6HA78HO0pjTBWR33D8WXMcrVq1iq1btzJz5sxCz5GYmMgDDzxQ5LXuuusukpOTWbt2LatWreLbb78ttHxIJTEi8iiwEOgBfA+8AswE0oExIjJXRGIDHqUx5SWqttM6c+tiuOYTOLEbzH8Gxp8B710LmxeVarweY0zlkJycTPfu3YmNjeWiiy5i37597Nq1i06dOgGwYsUKRIQtW7YAThJy5MgRdu/ezcUXX0yXLl3o0qULCxcuBJxWkSFDhtCrVy+GDBlS4HW9Xi9du3Zl27ZtAHz66ad069aNDh060L9/f3bu3AnAlClTGD58uN/vJzU1lZSUFOq6g6LGx8ezdOlSAPbs2UNMTAypqamMGjWKGTNmEBcXx1NPPcXLL7/M+PHjiYuLY/78+WzatImzzjqL2NhYBg4cmP3+r732WkaMGEHPnj056aSTeP/994tT3QUqqmPvElV9pIB9z4pII6BFmURiTEUiAifFO8u+Tc5j2j++BWs+gmYdoMdw51Ftr/WNN6bcfP4A7FhVtuds0h7OG1Psw6655homTJhAv379GDVqFGPGjGHSpEmkpKRw4MAB5s+fT+fOnZk/fz69e/emUaNGVK9enRtvvJG77rqL3r17s2XLFgYMGMC6desAWLt2LQsWLKBatWoFXjclJYXvv/+e559/HoDevXuzePFiRITXX3+dsWPH8swzz/j9PsaPH8+0adPYvHkz5513HnFxcQWWjYiI4LHHHmPp0qVMnDgRgKNHj+YYmXjgwIEMHTqUoUOHMmnSJEaMGMHHH38MwPbt21mwYAE//fQTiYmJXHLJJX7HWZBCW2JU9bMi9u9S1aWljsKYiqxuDPzlCbh7HVzwrPPI9gc3wAtx8N1ESDkQ7AiNMeXozz//ZP/+/fTr1w+AoUOHZt9S6dmzJwsXLmTevHk8+OCDzJs3j/nz59OnTx8AvvzyS4YPH05cXByJiYkcOHAgezLIxMTEAhOYrDmOGjduTNOmTYmNdW6CbN26lQEDBtC+fXvGjRvHmjVrivVesm4n7dq1i8OHD/Puu++WqE6yLFq0iCuvvBKAyy+/nAULFmTvGzx4MB6Ph7Zt22a3GJVWof+NFJHJQEFt56qqN5RJFMaEgoga0OUG6HQdbPivk8B88RAkjYFOQ6H7LVC7ebCjNKbyKkGLSXnr27cv8+fPZ/PmzQwaNIinnnoKEeGCCy4AIDMzk8WLFxMVFZXn2Bo1ahR43qw+MXv27KFXr17MmjWLxMREbr/9du6++24SExNJSkoq8UjB4eHhnHvuucybN4/LL7+csLCw7E6+KSll84BDZGRk9npZzdtYVMfe/wCf5VpWAmcDA8okAmNCjcfjjPx73WcwLAlanwuLX4Lnz4SPboZd64IdoTEmgGrXrk3dunWZP38+AG+//Ta9evUCoE+fPkybNo1TTz0Vj8dDvXr1mD17Nr179wbgL3/5CxMmTMg+V3JycrGu3aBBA8aMGcO//vUvwGkVOuGEEwCYOnVqid+TqrJw4cLs2bljYmJYtmwZQI7+KzVr1swxxULu1z179sxuzZk5c2Z2C1SgFHU76YOsBVgOnAfcCowBTgpoZMaEgmYd4OLX4Y4V0OUmWPsJTOoO71zmdAI2xoS8I0eO0Lx58+zl2WefZerUqdx7773ExsaSnJzM/fffDzhf/qpK3759AafPSp06dbI7zL7wwgssXbqU2NhY2rZty8svv1zseAYPHsyRI0eYP38+o0eP5tJLL6VTp040aNCg2OfK6pR7xhlnkJGRwa233grAyJEjeemll+jQoQN79uzJLp+QkMDatWuJi4tjxowZDBw4kI8++ii7Y++ECROYPHkysbGxvPvuu9l9dwJFimrSEZHTgYeBDsA4YJqq5n3+q4Jo3bq1rl+/PthhVDhJlXUCyFIISJ0c+QOWvAZLXoEje52nm3rfBaed684SXrHZ5yQvq5O8yrNO1q1bR5s2bcrlWqVx8OBBatasGewwKpSS1kl+v3MRWaaqnXOXLeoR6/eA2cAiIB6YBdQSkXoiUq/YkRlT2VWvB/H3w52r4bxxcHA7/PtyeLm3M5BeZkawIzTGmEqjqD4xXQABRuKME7MUWOYu9lSSMQWJqA7dhsHtP8LglyEjFd6/Dl7s5owEnFH4aJvGGGOKVlSfmBhVbeUuJ7lL9uvyCtKYkOUNh7grnMHzLp0CYVHOSMATOsIPb9i0BsYYUwpF3U6KKWK/iEixnyl1b0fNFZEN7s+6+ZSJE5FFIrJGRFaKyGXFvY4xFYbH68yiffN8uHImRDeGz+52nmha9CKkHg52hMZUWGX1OK6p+Ir7uy7qdtI4EflARK4RkXYi0khEWojIWSLyOM6UBCXpcfUA8JWqngp85b7O7Qhwjaq2A84FnhOROiW4ljEVhwicNgBumAvXzIIGp8J/H4Tn2sO8pyHlz2BHaEyFEhUVxd69ey2RqQJUlb179+Y7hk5BCh3sTlUvFZG2wFXA9UBTnORiHU6H33+qaknawwfhdBQGmAokAffnuvb/fNZ/F5FdQENgfwmuZ0zFIgIn9XOWLd/D/Kfh68fhuxecKQ26/d2Zx8mYKq558+Zs3bqV3bt3BzuUQqWkpBTry7cqKEmdREVF0by5/zd4ipz4RVXXAg8VK4qiNVbV7e76DqBxYYVFpCsQAWws4ziMCb4W3eCq9+D3ZPh2LHzzT1g00ZIZY3BGkm3VqlWwwyhSUlISHTp0CHYYFUp51EmR48SU+MQiXwJN8tn1EDBVVev4lN2nqnn6xbj7muK01AxV1cUFlBkGDANo2LBhp6KmKK+KDh06RHR0dLDDqFAqap1EH9xIzKYZNNj7PWlh0WxtPoitzS8gI6zgIcnLSkWtk2CyOsnL6iQvq5O8yrJOEhIS8h0nJmBJTGFEZD0Qr6rbs5IUVW2dT7laOAnMk6rq17zdNthd/mzArrwqfJ1ktcys/wyi6vi0zNQK2CUrfJ0EgdVJXlYneVmd5FWWdVKiwe4CaBYw1F0fCnySu4CIRAAfAW/5m8AYU6k0i4Mr3oFh30LLnvDNE04H4G/H2czZxhiDn0mM+yj11SIyyn3dwu2nUlJjgHNEZAPQ332NiHQWkdfdMn8D+gLXikiyu8SV4prGhKZmcXDFv53JJn2TmXnj4NjBoo42xphKq8iOva5JQCZwFvAYcBD4AGdE32JT1b04M2Hn3r4UuNFdnwZMK8n5jamUmnVwkpnfl0PSU/D1E87s2b3vgi43Qni1YEdojDHlyt/bSd1U9TYgBUBV9+E8LWSMKW/NOsCV78KNX0PTM+GLh+H5OGfiyfRjwY7OGGPKjb9JTJqIeAEFEJGGOC0zxphgad4JhnwE186GeifB7JEwoTP8+DZkVNiJ5o0xpsz4m8S8gNPJtpGI/BNYADwZsKiMMf6L6QXXzYarP4QaDWDWcHixK6x8z2bNNsZUan4lMao6HbgP+BewHRisqu8FMjBjTDGIwClnw01fw+X/dvrHfHgjvNQL1s4CG7LdGFMJ+ft0Undgm6q+qKoTgW0i0i2woRljik0ETj8f/j4fLpkMmekwcwi8Gg8/f2XJjDGmUvH3dtJLwCGf14fcbcaYisjjgTP+CrcuhsEvwdE/YNpfYcqF8NuSYEdnjDFlwt8kRtRnaF9VzcT/x7ONMcHiDYO4K2H4UjhvHOz5H7xxDrxzGexcE+zojDGmVPxNYn4RkREiEu4udwC/BDIwY0wZCouEbsPgjmQ4exRsWeT0l/lwGOzbFOzojDGmRPxNYm4GegLbgK1AN9wJF40xISSiBvS5B+5YAb3vdDr9TugMs++FQ7uCHZ0xxhRLkbeE3PFhxqvq5eUQjzGmPFSrC/1HQ9e/w7dPwQ9vwPLpxDS7ALp3gKjawY7QGGOKVGRLjKpmAC3dCRmNMZVJraYw8DkY/gOcNoCYzTOd0X+/mwhpKcGOzhhjCuVv59xfgIUiMgs4nLVRVZ8NSFTGmPJV/2S4dDJLo3rTef9n8MVDzrxM8ffDmVc6HYSNMaaC8bdPzEbgP275mj6LMaYSOVTzZBjyIQz9FGo2gVm3w6TusOYjyLSZRowxFYtf/71S1UcBRCTafX2o8COMMSGtVV+48Uv46TP4+nF471pnssmzR8HJZzuD6hljTJD5O2LvGSKyHFgDrBGRZSLSLrChGWOCSgTaXAi3fAeDX4aj+2DaxTDlAti8KNjRGWOM37eTXgXuVtWWqtoSuAd4LXBhGWMqDI8X4q5wBsw7/2nY+zNMPhemXQK/Jwc7OmNMFeZvElNDVb/JeqGqSUCNgERkjKmYwiKh600wIhn6Pwpbf4BX+8HMa2DXT8GOzhhTBRVnxN7/E5EYd3kYG7HXmKoporozUN6dK6Hvfc7EkpO6O6P//mH/LBhjyo+/Scz1QEPgQ+ADoIG7zRhTVUXVhrMegjtWQs/bj4/+O+t22P9bsKMzxlQBhSYxIvJXAFXdBzyiqh1VtZOq3uluM8ZUdTXqw18ed+Zl6nIjrHgXXugAn9wGezcGOzpjTCVWVEvMwz7rXwUyEGNMiKvZBM4fCyOWQ+frYNX7MLEzvHcd7Fgd7OiMMZVQUUmMFLBujDH5q90czh8Hd66CniNgw1x4uRe8czn89kOwozPGVCJFDXZXTUQ64CQ7Ue56djKjqj8GMjhjTAiLbgTnPOp0Al7yGiyeBG/0dwbS63MPtOpng+YZY0qlqCRmO5A1P9IOn3UABc4KRFDGmEqkWl3odx90vxWWTXYml3xrEJzQGfqOhNPOtWTGGFMihSYxqppQXoEYYyq5yGjnKaYuN0HydFj4HPz7cmjUDvrcDe0ucgbWM8YYP/n7iLUxxpSN8CjocgPc/iNc9ApkpsMHNzidgH98C9JTgx2hMSZEBCWJEZF6IjJXRDa4P+sWUraWiGwVkYnlGaMxJsC84XDm5XDrYvjb2xBZ0xlj5oU4WPwypB4JdoTGmAouWC0xDwBfqeqpOI9uP1BI2ceBeeUSlTGm/Hk80DYRhn0LV30AdVrCnPvhufYw/xlI+TPYERpjKqhC+8SISMfC9pfi6aRBQLy7PhVIAu7P5/qdgMbAHKBzCa9ljAkFInBqf2fZ/J2TwHz1GCx4HroNg263OAPrGWOMq6ink54pZF9pnk5qrKrb3fUdOIlKDiLica9/NdC/hNcxxoSilj2d5fflMP9ZmPc0LHoROl0HPYdDrWbBjtAYUwGIqgbmxCJfAk3y2fUQMFVV6/iU3aeqOfrFiMhwoLqqjhWRa4HOqjq8gGsNA4YBNGzYsNPMmTPL5k1UIocOHSI6OjrYYVQoVid5VdQ6qX54Cy22fEDjnfNQ8bCjydlsafFXUqrl909M2aqodRJMVid5WZ3kVZZ1kpCQsExV89yR8TuJEZEzgLZAVNY2VX2rJMGIyHogXlW3i0hTIElVW+cqMx3oA2QC0UAEMElVC+s/Q+vWrXX9+vUlCatSS0pKIj4+PthhVChWJ3lV+DrZtwkWPg/LpzlPNZ1xifN4dqM2Abtkha+TILA6ycvqJK+yrBMRyTeJ8atjr4g8AkxwlwRgLJBYinhmAUPd9aHAJ7kLqOpVqtpCVWOAkcBbRSUwxphKrm4MXDjemTm7+63w02cwqTu8exVsswHEjalq/H066RLgbGCHql4HnAnULsV1xwDniMgGnP4uYwBEpLOIvF6K8xpjqoJaTWHAP+Gu1dDvftg0H15LgLcvgk0LIEC3yY0xFUtRHXuzHFXVTBFJF5FawC7gxJJeVFX34iRFubcvBW7MZ/sUYEpJr2eMqaSq14OEB6HHcFj6JiyaCFMugBO7O/MznXqOTWlgTCXmb0vMUhGpA7wGLAN+BBYFKihjjCmWqFrORJN3roLzxsGfW+GdS+GVvrDmY8jMCHaExpgA8CuJUdVbVXW/qr4MnAMMdW8rGWNMxRFezRlTZsRyGPQipB2B94bCi90g+R3ISAt2hMaYMuT3iL0iEisiiUBH4BQR+WvgwjLGmFIIi4AOV8NtS+CSyRAWBR/fAi90hCWvQdrRYEdojCkDfvWJEZE3gVhgDc4jz+AMdvdhgOIyxpjS83jhjL86M2Rv+MIZNG/2SPh2rDNoXufrnTmbjDEhyd+Ovd1VtW1AIzHGmEARgdMGwKl/cZ5kmv8MzB3ljAbc7Wbo9nenk7AxJqT4eztpkYhYEmOMCW0i0KovXPMJ3PgVtOwF345xJpv84mE4uCPYERpjisHflpi3cBKZHcAxQABV1diARWaMMYHUvDNc8Q7sXAMLxjtzM33/KnQcAj1HQN2WwY7QGFMEf5OYN4AhwCqO94kxxpjQ17gdXPw6xP8DFj4Hy6bCsinQ/m/OY9vGmArL3yRmt6rOCmgkxhgTTPVPhsQJ0O8B+G6Ck8iseIf29TrBiZlwUoINnGdMBeNvErNcRN4BPsW5nQSAqtrTScaYyqX2CXDeGOg7En54g5oLJznTGTRqBz1uhfaXQlhksKM0xuB/ElMNJ3n5i882e8TaGFN51WgA8fezKLMj/eruhEWT4JPb4MvR0OUm6HKDU8YYEzRFJjEi4gX2qurIcojHGGMqFPWEOwPnxV0FvyTB4kmQ9KTzmPaZlzmzaTdqE+wwjamSikxiVDVDRHqVRzDGGFNhicDJCc6y+39OMrPi3/DjW3Dy2c7gedZvxphy5e/tpGQRmQW8BxzO2mh9YowxVVLD02Dgc3DW/zmzZ//wmttvpi30uM36zRhTTvwd7C4K2AucBQx0lwsDFZQxxoSEGvWh373O7NmDJgHi9JsZfwZ8Ow4O7w12hMZUan61xNiM1cYYU4iwSOhwFcRd6fSbWfQifPOE028m7gqn30yDU4MdpTGVjl8tMSLSXEQ+EpFd7vKBiDQPdHDGGBNSsvrNXP0+3LoYYi+F5dNhYmd45zL4dR6oBjtKYyoNf28nTQZmAc3c5VN3mzHGmPw0auMMnnfXGmc04K1LYepAeKUvrJgB6anBjtCYkOdvEtNQVSerarq7TAEaBjAuY4ypHKIbQvwDcNdqGPgCpB+Dj4bB87HOLNpH9wU7QmNClr9JzF4RuVpEvO5yNU5HX2OMMf4Irwadhjq3ma76ABqeDl89Cs+2hdn3wh+/BDtCY0KOv0nM9cDfgB3AduASwDr7GmNMcXk8cGp/uOZjuHkhtLsIlk6GFzrCjKthy/fBjtCYkOHv00mbgcQAx2KMMVVLkzNg8CQ4exQseQ1+eB3WfQrNu0CP4dBmIHi8wY7SmAqr0CRGREYVsltV9fEyjscYY6qemk3g7P+DPndD8jvOI9rvDYW6Mc7j2XFXQWR0sKM0psIp6nbS4XwWgBuA+wMYlzHGVD0RNaDrTXD7Mvjb2xDdGD6/D8a3cyaePLA92BEaU6EU2hKjqs9krYtITeAOnL4w7wLPFHScMcaYUvB4oW2is/y2BL6bAAufh+8mOlMa9BwOjdsFO0pjgs6fWazrAXcDVwFTgY6qas8EGmNMeTixK1z2NvzxKyx+CZa/DSvegZPPcvrNnHyWTTppqqxCbyeJyDjgB+Ag0F5VR1sCY4wxQVCvFZw/1hk87+xRsHMtTPsrvNTL6Udjg+eZKqioPjH34IzQ+zDwu4gccJeDInKgpBcVkXoiMldENrg/6xZQroWIfCEi60RkrYjElPSaxhhTKVSvB33ugTtXupNOKnx8CzzX3pmryQbPM1VIoUmMqnpUtZqq1lTVWj5LTVWtVYrrPgB8paqnAl+5r/PzFjBOVdsAXYFdpbimMcZUHlmTTt7yHVz9ITRuC189Bs+2g88fgH2bgx2hMQHn72B3ZW0QTv8a3J+DcxcQkbZAmKrOBVDVQ6p6pNwiNMaYUCACp5wNQz5yBs9rmwg/vAYvxMF718G2H4MdoTEBIxqEGVVFZL+q1nHXBdiX9dqnzGDgRiAVaAV8CTygqhn5nG8YMAygYcOGnWbOnBnI8EPSoUOHiI62cSZ8WZ3kZXWSVyjWSWTKHk7Y9h+a/f5fwjKOsL/2Gfx24mD21u8EUvr/u4ZinQSa1UleZVknCQkJy1S1c+7tAUtiRORLoEk+ux4CpvomLSKyT1Vz9IsRkUuAN4AOwBZgBjBbVd8o7LqtW7fW9evXlzL6yicpKYn4+Phgh1GhWJ3kZXWSV0jXScoB+PEt56mmA1uhwWnOE02xl0F4VIlPG9J1EiBWJ3mVZZ2ISL5JTMBuJ6lqf1U9I5/lE2CniDR1A2tK/n1dtgLJqvqLqqYDHwMdAxWvMcZUOlG1nDFl7kiGv77u9KP5dITTCXjeODjyR7AjNKZUgtUnZhYw1F0fCnyST5kfgDoi0tB9fRawthxiM8aYysUbDrGXwt/nwzWfQNNY+PoJZyTg2fc6Y9AYE4KClcSMAc4RkQ1Af/c1ItJZRF4HcPu+jAS+EpFVgACvBSleY4wJfSJwUjxc/YHzVFPWDNoTOsLMobB1WbAjNKZY/JrFuqyp6l7g7Hy2L8XpzJv1ei4QW46hGWNM1dC4nTOD9lkPw/evOMnM2o+hRU/oeTucdi54gvX/XGP8Y59QY4ypymo1g3MehbvXwIB/wZ+/wbtXwKRuTqfg9GPBjtCYAlkSY4wxBiJrQo9bYcTy452AZ91uIwGbCs2SGGOMMcf5dgIe8rFz2ylrJOA5/4D9vwU7QmOyBaVPjDHGmApOBE5OcJYdq+C7CbDkVfj+Fdo07A2n14cm7YMdpanirCXGGGNM4Zq0h7++CnesgO63UH/v9/Byb3hrMGz8GoIw8rsxYC0xxhhj/FW7OQz4J4s9Pegd9T/4/mV4+yInyek5wnlk2xse7ChNFWItMcYYY4olPTwa+twNd66CxImQngof3gQvdIBFk+DYoWCHaKoIS2KMMcaUTFgkdBwCty6GK2ZAnRbw33/A+Lbw5aOQejjYEZpKzpIYY4wxpePxQOtz4brZcONXzqjAqz8Ab0SwIzOVnPWJMcYYU3aad4a/vQWpR6x/jAk4a4kxxhhT9iKqBzsCUwVYEmOMMcaYkGRJjDHGGGNCkiUxxhhjjAlJopVspEUROQisD3YcFVADYE+wg6hgrE7ysjrJy+okL6uTvKxO8irLOmmpqg1zb6yMTyetV9XOwQ6iohGRpVYvOVmd5GV1kpfVSV5WJ3lZneRVHnVit5OMMcYYE5IsiTHGGGNMSKqMScyrwQ6ggrJ6ycvqJC+rk7ysTvKyOsnL6iSvgNdJpevYa4wxxpiqoTK2xBhjjDGmCrAkxhhjjDEhKaSSGBE5V0TWi8jPIvJAPvsjRWSGu/97EYnx2fcPd/t6ERlQroEHUEnrRERiROSoiCS7y8vlHnyA+FEnfUXkRxFJF5FLcu0bKiIb3GVo+UUdWKWskwyfz8ms8os6sPyok7tFZK2IrBSRr0Skpc++Svk5gVLXS1X9rNwsIqvc971ARNr67Kuq3z351kmZf/eoakgsgBfYCJwERAArgLa5ytwKvOyuXw7McNfbuuUjgVbuebzBfk9BrpMYYHWw30OQ6iQGiAXeAi7x2V4P+MX9Wdddrxvs9xTMOnH3HQr2ewhSnSQA1d31W3z+dirl56S09VLFPyu1fNYTgTnuelX+7imoTsr0uyeUWmK6Aj+r6i+qmgq8CwzKVWYQMNVdfx84W0TE3f6uqh5T1V+Bn93zhbrS1EllVWSdqOomVV0JZOY6dgAwV1X/UNV9wFzg3PIIOsBKUyeVlT918o2qHnFfLgaau+uV9XMCpauXysqfOjng87IGkPXETJX97imkTspUKCUxJwC/+bze6m7Lt4yqpgN/AvX9PDYUlaZOAFqJyHIR+VZE+gQ62HJSmt91Vf6cFCZKRJaKyGIRGVymkQVPcevkBuDzEh4bSkpTL1CFPysicpuIbATGAiOKc2wIKk2dQBl+91TGaQeMf7YDLVR1r4h0Aj4WkXa5smdjwJmzZJuInAR8LSKrVHVjsIMqLyJyNdAZ6BfsWCqSAuqlyn5WVPVF4EURuRJ4GKhUfaVKooA6KdPvnlBqidkGnOjzurm7Ld8yIhIG1Ab2+nlsKCpxnbjNm3sBVHUZzv3N0wIeceCV5nddlT8nBVLVbe7PX4AkoENZBhckftWJiPQHHgISVfVYcY4NUaWplyr9WfHxLjC4hMeGihLXSZl/9wS7g1AxOhKF4XSga8XxjkTtcpW5jZydWGe66+3I2bnqFypH56rS1EnDrDrA6Zy1DagX7PdUHnXiU3YKeTv2/orTWbOuu17V66QuEOmuNwA2kKsDXygufv7tdMD5B/bUXNsr5eekDOqlKn9WTvVZHwgsdder8ndPQXVSpt89Qa+MYlbc+cD/3D+gh9xtj+H8bwAgCngPp/PUEuAkn2Mfco9bD5wX7PcS7DoBLgbWAMnAj8DAYL+XcqyTLjj3cA/jtNSt8Tn2ereufgauC/Z7CXadAD2BVe4/UquAG4L9XsqxTr4Edrp/I8nArMr+OSlNvVTxz8rzPv+efoPPF3oV/u7Jt07K+rvHph0wxhhjTEgKpT4xxhhjjDHZLIkxxhhjTEiyJMYYY4wxIcmSGGOMMcaEJEtijDHGGBOSLIkxxpQLEanvM3PtDhHZ5q4fEpFJAbrmnSJyTSH7LxSRxwJxbWNM4Nkj1saYcicio3FmPH46gNcIwxmHoqM684blV0bcMr30+KSGxpgQYS0xxpigEpF4EfmPuz5aRKaKyHwR2SwifxWRsSKySkTmiEi4W66TO3ncMhH5r4g0zefUZwE/ZiUwIjJCRNaKyEoReRdAnf/FJQEXlsubNcaUKUtijDEVzck4CUgiMA34RlXbA0eBC9xEZgLO9AidgDeBf+Zznl7AMp/XDwAdVDUWuNln+1KgsszibkyVYrNYG2Mqms9VNU1EVgFeYI67fRUQA7QGzgDmOneD8OLMjJtbU2Cdz+uVwHQR+Rj42Gf7LqBZ2YVvjCkvlsQYYyqaYwCqmikiaXq8414mzr9ZgjO3U48iznMUZ+6wLBcAfXEmo3tIRNq7t5qi3LLGmBBjt5OMMaFmPdBQRHoAiEi4iLTLp9w64BS3jAc4UVW/Ae4HagPRbrnTgNUBj9oYU+YsiTHGhBRVTQUuAZ4SkRU4s+H2zKfo5zgtL+Dccprm3qJaDrygqvvdfQnAZ4GM2RgTGPaItTGm0hKRj4D7VHVDAfsbA++o6tnlG5kxpixYEmOMqbREpDXQWFXnFbC/C5CmqsnlGpgxpkxYEmOMMcaYkGR9YowxxhgTkiyJMcYYY0xIsiTGGGOMMSHJkhhjjDHGhCRLYowxxhgTkiyJMcYYY0xIsiTGGGOMMSHJkhhjjDHGhCRLYowxxhgTkiyJMcYYY0xIsiTGGGOMMSHJkhhjjDHGhCRLYowxxhgTkiyJMcYYY0xIsiTGGGOMMSHJkhhjjDHGhCRLYowxxhgTkiyJMaYSEpGrROQLn9cqIqcEM6ZgE5EkEbkx2HEYY8qOJTHGVFAisklEjorIIRHZISJTRCTan2NVdbqq/sXP6ySJSIp7nT9FZJ6ItC9mnP19Xse4SVOYv+coKyLyoIj86r6XrSIyo7xjyI+IXCsiGW5cWcvEYMdlTKizJMaYim2gqkYDcUAH4B8Bus5w9zr1gCTg7QBdJ2BEZCgwBOjvvpfOwFdBiKOg5G2Rqkb7LMOLeV4REfs32xgf9gdhTAhQ1R3Af3GSGQBE5AER2SgiB0VkrYhc5LPvWhFZUILrZADvAm19zjVFRJ7weR0vIlvd9beBFsCnbuvCfcA8t+h+d1sPEfGIyMMisllEdonIWyJS2z1HVsvNUBHZIiJ7ROQhn+t1FZGlInJARHaKyLMFhN8F+K+qbsyqM1V9NVeZliKy0K2zL0Skgc91uovIdyKyX0RWiEi8z77rRGSde9wvIvL33PUhIveLyA5gsr/17R7fU0R+cFvBfhCRnj77kkTknyKyEDgCnCQi7URkroj84dbHg25Zj89nYq+IzBSResWJxZhQY0mMMSFARJoD5wE/+2zeCPQBagOPAtNEpGkprxMBXAUs9qe8qg4BtuC2GKnqWKCvu7uOu20RcK27JAAnAdFA7tspvYHWwNnAKBFp425/HnheVWsBJwMzCwhnMXCNiNwrIp1FxJtPmSuB64BGQAQw0n3fJwCfAU/gtEaNBD4QkYbucbuAC4Fa7vHjRaSjz3mbuMe1BIYVEF8ebpLxGfACUB94FvhMROr7FBvinrMmsBP4EpgDNANO4Xhr0+3AYKCfu28f8KK/sRgTiiyJMaZi+1hEDgK/4XyRPpK1Q1XfU9XfVTVTVWcAG4CuJbzOCyKyHzgIDMdJisrSVcCzqvqLqh7CuS12ea5bL4+q6lFVXQGsAM50t6cBp4hIA1U9pKr5JliqOg3ni3wA8C2wS0Tuz1Vssqr+T1WP4iRDce72q4HZqjrbrc+5wFLgfPfcn6nqRnV8C3yBk0BmyQQeUdVj7rnz091t5claugMXABtU9W1VTVfVfwM/AQN9jpuiqmtUNR0nkdqhqs+oaoqqHlTV791yNwMPqepWVT0GjAYuCUbfJGPKiyUxxlRsg1W1JhAPnA743v64RkSSs74UgTN89xfTCFWtA1TD+aJ8X0RiSxN4Ls2AzT6vNwNhQGOfbTt81o/gtNYA3ACcBvzk3m65sKCLuB2a+wN1cL7UHxeRAX5coyVwqW+SgdMy1BRARM4TkcXuLZz9OMmNb13vVtWUguJyLVbVOj7LYvLWC+7rE3xe/+azfiJOC1x+WgIf+cS/DsggZx0bU6lYEmNMCHD/9z8FeBpARFoCr+G0mtR3E5DVgJTyOpmqOh/ntlXW002Hgeo+xZrkPqyI1wC/43zJZmkBpOPcHikqpg2qegXOLaCncBKsGkUck6aq7wErcZK7ovwGvJ0ryaihqmNEJBL4AKfuG7t1PZucdZ3fe/ZH7noBp262FXDu33BuxxX0Hs7L9R6iVHVbAeWNCXmWxBgTOp4DzhGRM4EaOF9uu8HpeIp/X9ZFEpEeOB1717ibkoHzRaSeiDQB7sx1yE5yfrHuxrm94rvt38BdItJKnMfEnwRmuLdIiornahFpqKqZwH53c2Y+5a4VkQtEpKbbyfU8oB3wfe6y+ZgGDBSRASLiFZEot8Nuc5y+M5Hu+0p3z+vX4+t+mA2cJiJXikiYiFyGU/f/KaD8f4CmInKniES677Wbu+9l4J9ugouINBSRQWUUpzEVkiUxxoQIVd0NvAWMUtW1wDPAIpwkoj2wsBSnnyju+CU4j1c/rKqfu/vexumjsgmnL0jusVf+BTzs3sYYqapHgH8CC336frzpnmce8CuQgtN/xR/nAmvc2J4HLi+g38kB4EGcjsb7gbHALapa5FNaqvobMMg9fjdOq8a9gEdVDwIjcPrQ7MPpHDzLz9iLuu5enNt39wB7gfuAC1V1TwHlDwLn4PSZ2YHTDyrB3f28G9cXbj+qxUC3/M5jTGUhqiVtBTXGGGOMCR5riTHGGGNMSLIkxhhjjDEhyZIYY4wxxoQkS2KMMcYYE5Iq3UiOderU0VNOOSXYYVQ4hw8fpkaNQofWqHKsTvKyOsnL6iQvq5O8rE7yKss6WbZs2R5VbZh7e6VLYho3bszSpUuDHUaFk5SURHx8fLDDqFCsTvKyOsnL6iQvq5O8rE7yKss6EZHcI1sDQb6dJCLnish6EflZRB7IZ3+kiMxw938vIjFBCNMYY4wxFVDQkhh3htkXcWbmbQtcISJtcxW7AdinqqcA43GGHDfGGGOMCWpLTFfgZ3dW21TgXZwRM30NAqa66+8DZ4tIqeaGMcYYY0zlELQRe0XkEuBcVb3RfT0E6Kaqw33KrHbLbHVfb3TL7Ml1rmHAMIBajZp3umXMmyWOq7KOX5x67BgRkZF+lVXfWlCnTjT3egAVJ0v1CnhEnJ8e57VXwOtxtoW528I8QrgHvB4I90C4R0hNOULt6OqEe4Rwr7PdU8Vz5EOHDhEdHV10wSrE6iSv8qwTEaFGjRp4vd5yuV5JqSr2f+ycSlInGRkZHD58mNy5SUJCwjJV7Zy7fKXo2KuqrwKvAkQ2PVXfXZ8a5IgqIgGsXnISIOcUPBFeD5FhHiLDPUSGeYny+RkV7iUq3EtkWNZ61j6f/WEeqkVklXO2Vwv3Zh9bLes4dz3cKxXqHz7rnJiX1Ule5Vknv/76KzVr1qR+/foV6m8lt4MHD1KzZs1gh1GhFLdOVJW9e/dy8OBBWrVq5dcxwUxitgEn+rxuTs7p533LbBWRMKA2ziRpBWpR08OPo0s3wWxF/kMpqfnz59OnT59Cy/i+a98qECT7tcjx1/7WUnFaborTMKgomZmQnplJRqaSnqmkZyjpmZmkZyhpGZmkuT9TMzJJS8/kWEYmx9Kc1ytXr6HVKadxLC2TY+mZpKRlkJrh/ExJy+RYegbH0pzXWfsPpKSRkuZTxt2XmpFnUmW/eIQcSY5vspQ74YkK9xAV5s1OkqLybMt9rM9xbvJVGT/bpnJLSUkhJibGPrtVgIhQv359du/e7fcxwUxifgBOFZFWOMnK5Tizw/qaBQzFman3EuBrLeL+l0egZlR4AMINbdXChOjIStHwlo+SNTPX2vc/4ru1LJMIMjKVY+kZHE3NICU9K8nJyE52UtIyOOqz7rvvqLt+NO140pSSnsGR1HT+OOxTPj3TPX9GsZI9X1kJTe7EKev1gX0pzNqZTKRP8uObCEWFeYksoFUqe5/7M8LrIcxr42ma0rMEpuoo7u86aN9qqpouIsOB/+J8C72pqmtE5DFgqarOAt4A3haRn4E/cBIdYyocr0eoHhFG9YjA/0mpKsfSnRallOzEyU2Istbdn0dTjydJx9KOJ1j5JVsHU9LZeyiTHZv+yJFspWeWvBeURyAizEloIsO92bfrIrIWryc74XG2ebPXI8N8ynp9jglzbuNlH1/o+TxEer3Z616PfRkaU5kE9b/mqjobmJ1r2yif9RTg0vKOy5iKTESyW0JqU7atjvn1dUjPyMyR/GTdWjuWfrxl6fi24z9Ts5YM57ZbakZmnu2p6ZmkpGVy4Gh6jm3H0p3beVnbyur5gzCP5Eh4cidFkV5Pnv17dx/jv3+sJNzryV4ivEJY9mvnnGGevOvhYR7Cc6+HiXOc77p7nqzjrOWh4ti0aRMXXnghq1evzt42evRooqOjGTlyZLnFER8fz/bt24mKiiIiIoLXXnuNuLi4Qo/p2bMn3333Xb7vAZz31qZNG1q3bo2qUqNGDSZPnkzr1q0LPe+TTz7Jgw8+CMD+/ft55513uPXWW0v1/kqqst5fMMaUkTCvh2ivJ2i3I1Wd/k5ZyU92IpSRX7J0PBFKdftApfomRLkSqOMJU9Y25zbe/qPOudIyMjl4OIP/Hdzl9LFKzyTNjSWQwjxCmPd4ghPmkeOJTo6kx6eMmwRFhDk/w7xCeNZP9xxhPsmSs/144hTmc50wn+1ej+/xzvbNBzJYv+NgjmtknT973eMkgab4VBVVxePJWX/Tp0+nc+fOTJ48mXvvvZe5c+cWep7vvvuuyGudfPLJJCcnA/DKK6/w5JNPMnXq1EKPyZ3ETJo0yZIYY4zJj4jzZRvu9VDDv1ECylR+rVNZiVV6hpKakUm6TyfytGKup7stVM75fLZnHi/rdFTP2u57rPPzSGp6dqLnex7fTu5Z8aZlllHL1nfzCt0dEebhf0+cVwYXqtji4+M588wz+eabb8jMzOTNN9+ka9eujB49mo0bN/Lzzz+zZ88e7rvvPm666SYAxo0bx8yZMzl27BgXXXQRjz76KJs2bWLAgAF069aNZcuWMXv2bFq2zL/PXo8ePRg3bhzgPO4+aNAg9u3bR1paGk888QSDBjlDrkVHR3Po0CG/38uBAweoW7cuAFOmTGHp0qVMnDgRgAsvvJCRI0cyZ84cjh49SlxcHO3atSMjI4ONGzcSFxfHOeecw9ixY7nvvvv4/PPPUVVGjRrFZZddRlJSEqNHj6ZBgwasXr2aTp06MW3atFK3OloSY4wxxXQ8sYJqJexYHkwZmb6JTc6EJzUj8/j+DM0uk555fD155SpOb9MuO6HKcH/6lguERz9dw9rfD5TpOds2q8UjA9uV6hxHjhxh4cKFLF++nOuvvz77ts3KlStZvHgxhw8fpkOHDlxwwQWsXr2aDRs2sGTJElSVxMRE5s2bR4sWLdiwYQNTp06le/fuhV5vzpw5DB48GICoqCg++ugjatWqxZ49e+jevTuJiYl+JwdZCcjBgwc5cuQI33//faHlx4wZw8SJE7NbbzZt2sTq1auzX3/wwQckJyezYsUKNm3aREJCAn379gVg+fLlrFmzhmbNmtGrVy8WLlxI7969/YqzIJbEGGNMFeP1CF5PyZMv7851xMc2LcOIKq6CkgHf7VdccQUAffv25cCBA+zfvx+AQYMGUa1aNapVq0ZCQgJLlixhwYIFfPHFF3To0AFwWlI2bNhAixYtaNmyZaEJzFVXXUVqaiqHDh3KThpUlQcffJB58+bh8XjYtm0bO3fupEmTJn69P9/bSTNmzGDYsGHMmTPHr2Pzs2DBAq644gq8Xi+NGjWiX79+/PDDD9SqVYuuXbvSvHlzAOLi4ti0aZMlMcYYY6qG0raYlET9+vXZt29fjm1//PFHjsHYcic6Wa/z266q/OMf/+Dvf/97jn2bNm2iRo0ahcYyffp0OnXqxL333svtt9/Ohx9+yPTp09m9ezfLli0jPDycmJgYUlJSiv0+ARITE7nuuusACAsLIzPzeN+vkp7TV6TPqPFer5f09PRSn9N6XRljjDEFiI6OpmnTpnz99deAk8DMmTMnRwvCjBkzAKcVonbt2tSuXRuATz75hJSUFPbu3UtSUhJdunRhwIABvPnmm9l9VbZt28auXbv8jkdEePzxx1m8eDE//fQTf/75J40aNSI8PJxvvvmGzZs3l/i9LliwgJNPPhmAmJgYkpOTyczM5LfffmPJkiXZ5cLDw0lLSwOgZs2aHDx4MHtfnz59mDFjBhkZGezZs4d58+bRtWvXEsdUlErXEiMopBWRMVbBxxclMw3SjxVcQH1mRdJMyEyHzAzISIP0FOfY9BRIOwKphyD1iFPO4wXxgHjddfFZ9+Ra9xSx3ZvPuqeA7d4q+Xs0xpS/t956i9tuu427774bgEceeST7yx6cfim9e/cmIyODN988PndfbGwsCQkJ7Nmzh//7v/+jWbNmNGvWjHXr1tGjRw/ASZKmTZtWrLmhqlWrxj333MO4ceN46qmnGDhwIO3bt6dz586cfvrpxXpvWX1iVJWIiAhef/11AHr16kWrVq1o27Ytbdq0oWPHjtnHDBs2jNjYWDp27Mj06dPp1asXZ5xxBueddx5jx45l0aJFnHnmmagqY8eOpUmTJvz000/FistfQZsAMlA6N/Pq0mE2WVuVIB6odxI0PgOatIcmsc7Pmk38SnBsTpy8rE7ysjrJqzzrZN26dbRp06ZcrlUS8fHxPP3007Ru3TrHPEHBGEumoinpfFL5/c5FpPJOAOnrWGR9OPuBQkpUrqTNX7/88isnnVTUhFrifvkLeMPBE+a0eIRVg7BIZwmvDhE1nJ+eMNAMp8VGM5zWnOz1zFzrmXm3Z7rHZK9n5lrPzGe7z3UyjsGeDfD7clj78fG3Uas5xPR2llZ9oE5La7UxxphKqNIlMakRdaHP3cEOo8LZkpHESX3igx1G4KT8CTvXwPaVsGUR/PwlrHzX2VfvJDj9Ajh9IDTv4tyiMsaYMpCUlASQo18IOC0xJvAqXRJjqqio2tCyp7N0v9lprdn9E/w6H/43Bxa/DN9NgBqNoM1AiL2seFNmG2OMqXAsiTGVkwg0auMs3YY5LTUb5sJP/4Hkd2DpG3SLagJyHcRdBXVODHbExhhjismSGFM1RNWG9pc4y7GDsO5TUpImUS3pX5A0Bk7pDx2vgdbnOf2BjDHGVHiWxJiqJ7ImxF3Jiv3NiD8zBpZPh+XTYOYQiG4CnYY6CU3t5sGO1BhjTCGsh6Op2urGwFkPwZ2r4Ip3oWksfDsWnmsPM4bApoXWd8aYKi46OrjDdmzatIlq1aoRFxdH27Ztueaaa7IHmyvIrFmzGDNmDOB0Mn766afzlBk9ejQnnHACcXFxnH766dxyyy05RunNT3JyMrNnz85+nZSU5Nds2YFiSYwxAN4w51bSVe/BHSug5+2waT5MOR9e7g3LpjoD/BljTIDlNxx/1hxHq1atYuvWrcycObPQcyQmJvLAA4UNN+K46667SE5OZu3ataxatYpvv/220PKWxBhT0dVtCec8BnethcQJzrZPR8D4tjB3FPy5NbjxGWOCLjk5me7duxMbG8tFF13Evn372LVrF506dQJgxYoViAhbtmwBnCTkyJEj7N69m4svvpguXbrQpUsXFi5cCDitIkOGDKFXr14MGTKkwOt6vV66du3Ktm3bAPj000/p1q0bHTp0oH///uzcuROAKVOmMHz4cL/fT2pqKikpKdStWxdwBvFbunQpAHv27CEmJobU1FRGjRrFjBkziIuL46mnnuLll19m/PjxxMXFMX/+fDZt2sRZZ51FbGwsAwcOzH7/1157LSNGjKBnz56cdNJJvP/++8Wp7gJZnxhjChJR3ekb02EIbF4I37/iPKa96EVodxH0GA7N4oIdpTFVx+cPwI5VZXvOJu3hvDHFPuyaa65hwoQJ9OvXj1GjRjFmzBgmTZpESkoKBw4cYP78+XTu3Jn58+fTu3dvGjVqRPXq1bnxxhu566676N27N1u2bGHAgAGsW7cOgLVr17JgwQKqVatW4HVTUlL4/vvvef755wHo3bs3ixcvRkR4/fXXGTt2LM8884zf72P8+PFMmzaNzZs3c9555xEXF1dg2YiICB577DGWLl3KxIkTATh69GiOkYkHDhzI0KFDGTp0KJMmTWLEiBF8/PHHAGzfvp0FCxbw008/kZiYyCWXXOJ3nAXxK4kRkc5AH6AZcBRYDcxV1X2FHljw+eoBM4AYYBPwt9znEpE44CWgFpAB/FNVZ5TkesaUisjxEYD3bXaSmR+nwqr3IKYP9LgNTh1gg+gZU0X8+eef7N+/n379+gEwdOhQLr74YgB69uzJwoULmTdvHg8++CBz5sxBVenTpw8AX375JWvXrs0+14EDB7Ing0xMTCwwgcma4+jXX3/lggsuIDY2FoCtW7dy2WWXsX37dlJTU3PMru2Pu+66i5EjR5KWlsYll1zCu+++y+WXX168CvGxaNEiPvzwQwAuv/xyRo0alb1v8ODBeDwe2rZtm91iVFqFJjEich1wO/ArsAxYD0QBvYH7RWQ18H+quqWY130A+EpVx4jIA+7r+3OVOQJco6obRKQZsExE/quq+4t5LWPKTt2WcO6TEH+/00/m+5fh35dD/VOh53CIvRzCo4IdpTGVUwlaTMpb3759mT9/Pps3b2bQoEE89dRTiAgXXHABAJmZmSxevJioqLz/TtSoUaPA82b1idmzZw+9evVi1qxZJCYmcvvtt3P33XeTmJhIUlJSiUcKDg8P59xzz2XevHlcfvnlhIWFZXfyTUkpYlJlP0VGRmavl9W8jUX917E60EtVL1bVJ1X1dVWdqKojVLUTMB44tQTXHQRMddenAoNzF1DV/6nqBnf9d2AX0LAE1zKm7EXVhl4jnE7AF7/h3Hr69A54PhYWjHcG1zPGVEq1a9embt26zJ8/H4C3336bXr16AdCnTx+mTZvGqaeeisfjoV69esyePZvevXsD8Je//IUJEyZknys5OblY127QoAFjxozhX//6F+C0Cp1wwgkATJ06tbBDC6WqLFy4MHt27piYGJYtWwaQo/9KzZo1c0yxkPt1z549efddZ8qXmTNnZrdABUqhSYyqvqiqRwvZn6yqX5Xguo1Vdbu7vgNoXFhhEekKRAAbS3AtYwLHG+4MoDfsWxjyMTRqC1+OhvFnOJ2AD+4IdoTGmFI6cuQIzZs3z16effZZpk6dyr333ktsbCzJycncf79zMyEmJgZVpW/fvoDTZ6VOnTrZHWZfeOEFli5dSmxsLG3btuXll18udjyDBw/myJEjzJ8/n9GjR3PppZfSqVMnGjRoUOxzZXXKPeOMM8jIyODWW28FYOTIkbz00kt06NCBPXv2ZJdPSEhg7dq1xMXFMWPGDAYOHMhHH32U3bF3woQJTJ48mdjYWN59993svjuBIoU16YjIqAJ3gqrq44Uc+yXQJJ9dDwFTVbWOT9l9qlq3gPM0BZKAoaq6uIAyw4BhAA0bNuxU1KNnVdGhQ4eCPtZBRROoOok+uJEWWz6k4e7vUPGwo8lZbGlxMSnV8vtzqFjsc5KX1Ule5VkntWvX5pRTTimXa5VGRkYGXq832GFUKCWtk59//pk//8zZmp2QkLBMVTvnLltUEnNPPpurAzcC9VW1RJ9iEVkPxKvq9qwkRVVb51OuFk4C86Sq+vU8VuvWrXX9+vUlCatSS0pKIj4+PthhVCgBr5M/foHvJjqjAWemOy02ve+GRqcH7pqlZJ+TvKxO8irPOlm3bh1t2rQpl2uVxsGDB6lZs2aww6hQSlon+f3ORSTfJKao20nPZC3Aq0A14HrgXeCkYkd23CxgqLs+FPgkdwERiQA+At7yN4ExpkKpdxJc+CzcuRK63wLrPoVJ3Z2RgLevCHZ0xhgT8op8JlRE6onIE8BKnKeZOqrq/aq6qxTXHQOcIyIbgP7ua0Sks4i87pb5G9AXuFZEkt0lrhTXNCY4ajaBAf+EO1dD35HwSxK80hemXwpbvg92dMZUeGX1JIup+Ir7uy7qEetxwF9xWmHaq+qhkod2nKruBc7OZ/tSnFtVqOo0YFpZXM+YCqFGfTjrYWdKgyWvOYPmvfkXZ6yZviOhVT9nTBpjTLaoqCj27t1L/fr1Efv7qNRUlb179+b7+HlBihrs7h7gGPAw8JDPB0ic62mtkgRqTJUWVdtJWrrfAksnO6MAvzUImneBvvfBqedYMmOMq3nz5mzdupXdu3cHO5RCpaSkFOvLtyooSZ1ERUXRvHlzv8sXmsSoqg1BakygRNRwBsjrciMkT4MFz8M7l0KzjhD/D0tmjMEZhK24o9AGQ1JSEh06dAh2GBVKedRJoUmKiBT59JE/ZYwxhQiPchKZ25fBwBfg8B4nmXntLPjfF2D9AYwxJl9FtbR8IiLPiEhfEckeD1lEThKRG0Tkv8C5gQ3RmCoiLAI6Dc2bzLx+NmyYa8mMMcbkUtQj1mcDXwF/B9aIyJ8ishenw20TnAHo7PFnY8pSjmTmeTi0G6ZfYsmMMcbkUuQs1qo6G5hdDrEYY3yFRUCna+HMK2HFOzDvGSeZOaGT02fmlP7WZ8YYU6VZx11jKrqsZCZPy0x/2PiNtcwYY6osS2KMCRW+ycyFz8HB7fD2YJhyIWxeFOTgjDGm/FkSY0yoCYuAztfB7T/CuU/Bnv/B5HNh2sWw7cdgR2eMMeXG7yRGRHqLyHXuekMRqfgP7htTmYVHQfeb4Y5k6P8obFsGryXAu1fBzjXBjs4YYwLOryRGRB4B7gf+4W4Kx6YEMKZiiKgBve+EO1ZC/IPw6zx4qRe8fz3s2RDs6IwxJmD8bYm5CEgEDgOo6u+AzTluTEUSVQvi74c7VkDvu2D95/BiV/j4Vti3OdjRGWNMmfM3iUlVZ2pJBfAd+M4YU8FUrwf9H3GSmW43w6r3YUInmH0vHNwZ7OiMMabM+JvEzBSRV4A6InIT8CXwWuDCMsaUWnQjOPdfMGI5dLgKfngDXoiDLx+Fo/uDHZ0xxpSaX0mMqj4NvA98ALQGRqnqhEAGZowpI7VPcMaXGf4DtD4fFjwLz8fCgvGQeiTY0RljTIn527G3FTBfVe9V1ZHAAhGJCWhkxpiyVf9kuOQNuHkBnNgdvhwNL3SApW9CRlqwozPGmGLz93bSe0Cmz+sMd5sxJtQ0aQ9XzYTrPoe6MfCfu5wOwKs/AM0s8nBjjKko/E1iwlQ1NeuFux4RmJCMMeWiZU+4fg5cORPCqsH719Np2Uj4+SubysAYExL8TWJ2i0hi1gsRGQTsCUxIxphyIwKnDYCb58NFrxKWfhCm/RWmDoStS4MdnTHGFMrfJOZm4EER2SIiW3AGvhtW0ouKSD0RmSsiG9yfdQspW0tEtorIxJJezxhTBI8XzryMJV0nwXnjYPdP8PrZzui/u9YFOzpjjMlXkUmMiHiBW1S1O9AWaKuqPVV1Yymu+wDwlaqeCnzlvi7I48C8UlzLGOMn9YRDt2EwIhkSHnZG/53UAz662QbMM8ZUOEUmMaqaAfR21w+p6qEyuO4gYKq7PhUYnF8hEekENAa+KINrGmP8FRkN/e51BszrORzWfGQD5hljKhx/byctF5FZIjJERP6atZTiuo1Vdbu7vgMnUclBRDzAM8DIUlzHGFMa1evBX57IOWDe82fC3EfgyB/Bjs4YU8WJ+vEUgohMzmezqur1hRzzJdAkn10PAVNVtY5P2X2qmqNfjIgMB6qr6lgRuRborKrDC7jWMNw+Og0bNuw0c+bMIt5R1XPo0CGio6ODHUaFYnWSV1F1Uu3IdmI2vUOjXfPJ8FbjtxMvYmvzC8kIq16OUZYv+5zkZXWSl9VJXmVZJwkJCctUtXPu7X4lMWVNRNYD8aq6XUSaAkmq2jpXmelAH5zxaaJxHumepKqF9Z+hdevWun79+gBFHrqSkpKIj48PdhgVitVJXn7Xyc418M2T8NN/oHp9Z8LJLjdCeLWAx1je7HOSl9VJXlYneZVlnYhIvkmMvyP2NheRj0Rkl7t8ICLNSxHPLGCouz4U+CR3AVW9SlVbqGoMzi2lt4pKYIwx5aRxO7h8Otz4NTQ9E754GJ6PgyWvQfqxYEdnjKki/O0TMxkn8WjmLp+620pqDHCOiGwA+ruvEZHOIvJ6Kc5rjClPzTvBkI/g2tlQ7ySYPdLpALxsCqSnFnm4McaUhr9JTENVnayq6e4yBWhY0ouq6l5VPVtVT1XV/qr6h7t9qaremE/5KQX1hzHGVAAxveC62U5CE90IPr3DmTF78cs2yaQxJmD8TWL2isjVIuJ1l6uBvYEMzBgTYkTg5LPgxq/g6g+gTkuYcz881x7mPwMpfwY7QmNMJeNvEnM98Decx6G3A5cA1wUqKGNMCBOBU/rD9Z87k0w2i4OvHoPx7eGrx+Gw/f/HGFM2wgrbKSLdVXWxqm4GEgsra4wxebTs6Sy/L4f5zzotMosnQadroeftUKtZsCM0xoSwolpiJmWtiMiiAMdijKmsmnWAy96G276HtoPg+1ecQfM+vQP++CXY0RljQlRRSYz4rEcFMhBjTBXQsDVc9DKM+BE6DIHkfztPM31wk000aYwptqKSGI+I1BWR+j7r9bKW8gjQGFMJ1Y2BC5+FO1dCj9vgp89gUndn1uxty4IdnTEmRBTaJwaoDSzjeIvMjz77FDgpEEEZY6qImk2cuZl63+3cYvr+ZWcU4JMSoO9IaNnL6ShsjDH5KDSJcUfLNcaYwKpeDxL+4cyY/cMbsOhFmHIBnNgd+twDp55jyYwxJg9/H7E2xpjAi6wJve90bjOd/zQc2AbvXAqv9IE1H0FmRrAjNMZUIJbEGGMqnvBq0PUmGLEcBk2CtKPw3rXwYjdYPh0y0oIdoTGmArAkxhhTcXnDocNVcNsSuHQKhEXBJ7fCCx2dySbTjgY7QmNMEBWZxLjTDPxUHsEYY0y+PF5odxHcPB+ufA9qNXUmm3wuFhY+D8cOBjtCY0wQFJnEqGoGsF5EWpRDPMYYUzAROO0vcP1/Yeh/oHE7mDsKxp8B3/wLjvwR7AiNMeWoqEess9QF1ojIEuBw1kZVtakIjDHlTwRa9XGWrctgwbPw7Rj4bgJ0uR56DHce3zbGVGr+JjH/F9AojDGmpJp3gsunw861sGC883j2969Ch6uh1x1Qt2WwIzTGBIhfSYyqfhvoQIwxplQat4WLX3PGm1nwHPz4FiybArF/cwbTa3hasCM0xpQxv55OEpHuIvKDiBwSkVQRyRCRA4EOzhhjiq3eSZD4AtyxArr9HdZ8DC92hRlDYPuKYEdnjClD/j5iPRG4AtgAVANuBF4MVFDGGFNqtU+Ac/8Fd612Rv395Vt4pS9MuwQ2Lwp2dMaYMuD3ODGq+jPgVdUMVZ0MnBu4sIwxpozUaABn/x/ctQrOHgW/L4fJ58Lk8+Hnr0A12BEaY0rI3yTmiIhEAMkiMlZE7irGsXm4s2DPFZEN7s+6BZRrISJfiMg6EVkrIjElvaYxpoqLqu20yNy5Cs59CvZtgml/hdcSYN2nkJkZ7AiNMcXkbyIyxC07HOcR6xOBi0tx3QeAr1T1VOAr93V+3gLGqWoboCuwqxTXNMYYiKgO3W+GEckw8AU4uh9mXA0v9YAVMyAjPdgRGmP85FcSo6qbAQGaquqjqnq3e3uppAYBU931qcDg3AVEpC0Qpqpz3RgOqeqRUlzTGGOOC4uATkNh+FK4+A0QD3w0DCZ0hKVvQvqxYEdojCmCv08nDQSSgTnu6zgRmVWK6zZW1e3u+g6gcT5lTgP2i8iHIrJcRMaJiLcU1zTGmLy8YdD+Erh5IVz+b6cPzX/ugufPhIUvEJZ2KNgRGmMKIOpHpzYRWQacBSSpagd32ypVbV/IMV8C+Q2Z+RAwVVXr+JTdp6o5+sWIyCXAG0AHYAswA5itqm/kc61hwDCAhg0bdpo5c2aR76mqOXToENHR0cEOo0KxOsnL6gRQpc7+lbTc/D51968k3RPFjqb92dr8QlKqNQ12dBWCfU7ysjrJqyzrJCEhYZmqds693d8Re9NU9U8R8d1WaPajqv0L2iciO0WkqapuF5Gm5N/XZSuQrKq/uMd8DHTHSWxyX+tV4FWA1q1ba3x8fOHvpgpKSkrC6iUnq5O8rE6yJAB3wPYV7Pl4FM23z6H5ts/g9AucKQ1adHemPqii7HOSl9VJXuVRJ/527F0jIlcCXhE5VUQmAN+V4rqzgKHu+lDgk3zK/ADUEZGG7uuzgLWluKYxxhRP0zP5qc1dcOdq6HM3bF7oPJ79WgKsfA8y0oIdoTFVmr9JzO1AO+AY8G/gAHBnKa47BjhHRDYA/d3XiEhnEXkdsmfPHgl8JSKrcDoWv1aKaxpjTMnUauqMMXPXWrjgGTh2ED68EZ6LdaY4OLo/2BEaUyX5O3fSEZy+LA+VxUVVdS9wdj7bl+KMBpz1ei4QWxbXNMaYUouoDl1uhE7Xw89znckmv3wEvh0LHYdAt5uhXqtgR2lMleFXEiMip+G0isT4HqOqZwUmLGOMqcA8HjhtgLPsWOUkMz+8AUtePd5v5sRuVbrfjDHlwd+Ove8BLwOvAxmBC8cYY0JMk/Zw0ctw9iPww2tOMrPuUzihM/S4DdokOo9xG2PKnL9/Wemq+lJAIzHGmFCW1W+mzz2Q/A4sngTvXwe1T3RuM3W8BqJqBTtKYyqVQjv2unMc1QM+FZFbRaRp1jZ3uzHGGF8RNaDrTTB8mTN4Xp0W8MVD8Gxb+O9DsH9LsCM0ptIoqiVmGc54MFk3du/12afASYEIyhhjQp7HA6ef7yzbfnRaZha/5CxtE51+M83zjN1ljCmGQpMYVbVu9sYYU1ondISLX4f+o+H7V2DZVFjzEZzY3ek3c/oF4LFZVYwprqJuJ3URkSY+r68RkU9E5AW7nWSMMcVUuzn85XG4ew2c+xQc3A4zh8ALHWDxy3DM5mkypjiKGuzuFSAVQET64gxK9xbwJ+4w/8YYY4opsiZ0vxlGLIe/vQXRjWHO/TC+LXw5Gg5sL/IUxpiikxivqv7hrl8GvKqqH6jq/wGnBDY0Y4yp5DxeaDsIbpwLN8yFVv1g4fPwXHv46GbYsTrYERpToRWZxIhIVr+Zs4GvffbZwAfGGFNWTuwKl70Nt/8Ina+HtZ/Ay73grcHw85eghc65a0yVVFQS82/gWxH5BDgKzAcQkVNwbikZY4wpS/Vawflj4a41zrgzu9bBtIvhpV6wfDqkHwt2hMZUGIUmMar6T+AeYArQWzX7vwIenEkhjTHGBEL1es7AeXeuhMHuWKOf3Orcapr3NBz5o/DjjakCirwlpKqL89n2v8CEY4wxJoewSIi7Es68AjZ+DYsmwtePw/xnoMPV0P0WqGdDdpmqyfq1GGNMKBCBU852lh2rnUknl06GJa9Bmwuh5winX40xVUhRfWKMMcZUNE3OgItegjtXQe+74Nf58MY58Po5sHYWZNo8vaZqsCTGGGNCVa2m0P8RpxPweePg0E5n8LyJneGH1yH1SLAjNCagLIkxxphQFxkN3YY5g+ddOhWq1YXP7oHx7eCbJ+HQ7mBHaExAWBJjjDGVhccL7QbDjV/BdXOgRXf49iknmfn0DtizIdgRGlOmrGOvMcZUNiLQsoez7NngPNGU/G9n4snW50PP250ERyTYkRpTKkFpiRGReiIyV0Q2uD/rFlBurIisEZF17qST9hdnjDHF0eBUGPi802+m332wZRFMPhde7w9rPrZOwCakBet20gPAV6p6KvCV+zoHEekJ9AJigTOALkC/8gzSGGMqjeiGkPCgk8xc8Awc2QvvDYUJHeH7VyH1cLAjNKbYgpXEDAKmuutTgcH5lFEgCogAIoFwYGd5BGeMMZVWRHXociPcvgz+9jbUaASf3+v0m/n6CTi0K9gRGuO3YCUxjVU1a675HUDj3AVUdRHwDbDdXf6rquvKL0RjjKnEPF5om+jMoH39F9CylzOdwfgzYNbtsNsGZjcVn2iAZkYVkS+BJvnsegiYqqp1fMruU9Uc/WLcSSafBy5zN80F7lPV+flcaxgwDKBhw4adZs6cWSbvoTI5dOgQ0dHRwQ6jQrE6ycvqJK+qVCfVjvxO862f0GTH13gzU9lTvytbWvyVA7Xb5ChXlerEX1YneZVlnSQkJCxT1c65twcsiSmMiKwH4lV1u4g0BZJUtXWuMvcCUar6uPt6FJCiqmMLO3fr1q11/fr1gQo9ZCUlJREfHx/sMCoUq5O8rE7yqpJ1cmg3/PCaM6XB0T+geVfoNcJ5ssnjrZp1UgSrk7zKsk5EJN8kJli3k2YBQ931ocAn+ZTZAvQTkTARCcfp1Gu3k4wxJtB8OwGf/zQc3gUzroaJXWDpm3gyjgU7QmOA4CUxY4BzRGQD0N99jYh0FpHX3TLvAxuBVcAKYIWqfhqMYI0xpkqKqA5db4Lbf4RLp0BULfjPXXRffBN8OxaO/BHsCE0VF5TB7lR1L3B2PtuXAje66xnA38s5NGOMMbl5vNDuImg7GDYt4OCnj1D/m3/CgvHQ4WrocRvUjQl2lKYKsmkHjDHG+EcEWvVhVewouHWxk9gsnQwvdID3roPflwc7QlPFWBJjjDGm+Bq1gcGT4M6VzjQGP38Jr8bDlAthw1wIwkMjpuqxJMYYY0zJ1WoG5zzmdAL+yxOwdyNMvwRe6gkpfwY7OlPJ2QSQxhhjSi+qltMi0/XvsPoDZ46mqNrBjspUcpbEGGOMKTthERB3hbMYE2B2O8kYY4wxIcmSGGOMMcaEJEtijDHGGBOSLIkxxhhjTEgKygSQgSQiBwGbATKvBsCeYAdRwVid5GV1kpfVSV5WJ3lZneRVlnXSUlUb5t5YGZ9OWp/fTJdVnYgstXrJyeokL6uTvKxO8rI6ycvqJK/yqBO7nWSMMcaYkGRJjDHGGGNCUmVMYl4NdgAVlNVLXlYneVmd5GV1kpfVSV5WJ3kFvE4qXcdeY4wxxlQNlbElxhhjjDFVQEglMSJyroisF5GfReSBfPZHisgMd//3IhLjs+8f7vb1IjKgXAMPoJLWiYjEiMhREUl2l5fLPfgA8aNO+orIjyKSLiKX5No3VEQ2uMvQ8os6sEpZJxk+n5NZ5Rd1YPlRJ3eLyFoRWSkiX4lIS599lfJzAqWul6r6WblZRFa573uBiLT12VdVv3vyrZMy/+5R1ZBYAC+wETgJiABWAG1zlbkVeNldvxyY4a63dctHAq3c83iD/Z6CXCcxwOpgv4cg1UkMEAu8BVzis70e8Iv7s667XjfY7ymYdeLuOxTs9xCkOkkAqrvrt/j87VTKz0lp66WKf1Zq+awnAnPc9ar83VNQnZTpd08otcR0BX5W1V9UNRV4FxiUq8wgYKq7/j5wtoiIu/1dVT2mqr8CP7vnC3WlqZPKqsg6UdVNqroSyMx17ABgrqr+oar7gLnAueURdICVpk4qK3/q5BtVPeK+XAw0d9cr6+cESlcvlZU/dXLA52UNIKuzaZX97imkTspUKCUxJwC/+bze6m7Lt4yqpgN/AvX9PDYUlaZOAFqJyHIR+VZE+gQ62HJSmt91Vf6cFCZKRJaKyGIRGVymkQVPcevkBuDzEh4bSkpTL1CFPysicpuIbATGAiOKc2wIKk2dQBl+91TGEXuNf7YDLVR1r4h0Aj4WkXa5smdjwBnue5uInAR8LSKrVHVjsIMqLyJyNdAZ6BfsWCqSAuqlyn5WVPVF4EURuRJ4GKhUfaVKooA6KdPvnlBqidkGnOjzurm7Ld8yIhIG1Ab2+nlsKCpxnbjNm3sBVHUZzv3N0wIeceCV5nddlT8nBVLVbe7PX4AkoENZBhckftWJiPQHHgISVfVYcY4NUaWplyr9WfHxLjC4hMeGihLXSZl/9wS7g1AxOhKF4XSga8XxjkTtcpW5jZydWGe66+3I2bnqFypH56rS1EnDrDrA6Zy1DagX7PdUHnXiU3YKeTv2/orTWbOuu17V66QuEOmuNwA2kKsDXygufv7tdMD5B/bUXNsr5eekDOqlKn9WTvVZHwgsdder8ndPQXVSpt89Qa+MYlbc+cD/3D+gh9xtj+H8bwAgCngPp/PUEuAkn2Mfco9bD5wX7PcS7DoBLgbWAMnAj8DAYL+XcqyTLjj3cA/jtNSt8Tn2ereufgauC/Z7CXadAD2BVe4/UquAG4L9XsqxTr4Edrp/I8nArMr+OSlNvVTxz8rzPv+efoPPF3oV/u7Jt07K+rvHRuw1xhhjTEgKpT4xxhhjjDHZLIkxxhhjTEiyJMYYY4wxIcmSGGOMMcaEJEtijDHGGBOSLIkxxhhjTEiyJMYYUy5EpL6IJLvLDhHZ5q4fEpFJAbrmnSJyTSH7LxSRxwJxbWNM4Nk4McaYcicio4FDqvp0AK8RhjOYVkd1Jj/Nr4y4ZXrp8ZmZjTEhwlpijDFBJSLxIvIfd320iEwVkfkisllE/ioiY0VklYjMEZFwt1wndwbcZSLyXxFpms+pzwJ+zEpgRGSEiKwVkZUi8i6AOv+LSwIuLJc3a4wpU5bEGGMqmpNxEpBEYBrwjaq2B44CF7iJzAScOZ46AW8C/8znPL2AZT6vHwA6qGoscLPP9qVAnzJ/F8aYgAsLdgDGGJPL56qaJiKrAC8wx92+CogBWgNnAHOdu0F4ge35nKcpsM7n9Upguoh8DHzss30X0KzswjfGlBdLYowxFc0xAFXNFJE0Pd5xLxPn3yzBmaCyRxHnOYozAWqWC4C+ODPqPiQi7d1bTVFuWWNMiLHbScaYULMeaCgiPQBEJFxE2uVTbh1wilvGA5yoqt8A9wO1gWi33GnA6oBHbYwpc5bEGGNCiqqmApcAT4nICiAZ6JlP0c9xWl7AueU0zb1FtRx4QVX3u/sSgM8CGbMxJjDsEWtjTKUlIh8B96nqhgL2NwbeUdWzyzcyY0xZsCTGGFNpiUhroLGqzitgfxcgTVWTyzUwY0yZsCTGGGOMMSHJ+sQYY4wxJiRZEmOMMcaYkGRJjDHGGGNCkiUxxhhjjAlJlsQYY4wxJiT9PyMAsPMnqMojAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAALJCAYAAAC0pSkNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3xb1fn48c+jLXmv2HGcvfeCQAiBsCmbMgqUTaEthZbSQueve38LpRQKhVL2LqPsHUMYISQhZO/pxHG8bdmStc7vjys7smMnDrHlxH7eeemlq3vPvffoWLEenynGGJRSSiml+gJbT2dAKaWUUipZNPBRSimlVJ+hgY9SSiml+gwNfJRSSinVZ2jgo5RSSqk+QwMfpZRSSvUZGvgo1cuJyBwRKenpfLQlIitEZE4XXu+nIvLvhNfnisg2EfGLyNSuuk9XEpErReTDns6HUn2JBj5KJZGIFItItYi4ezovPc0YM94YU7w/54jIEBExIuJo53p/MMZ8I2HXX4EbjDGpQHVH5yVc+1ciEo4HSjUi8rGIzNyf/B2oeB5HdNG1OiyrhDSJ77n5cWtX3F+pg5UGPkoliYgMAWYDBjjrAK7T4ReZamUwsGI/z3k6HijlAnOBZ7s8Vwefp40xqQmPv+zPyfp5VIcaDXyUSp7LgfnAQ8AViQdEpFBEnhORchHZJCLfTTj2KxH5r4g8JiJ1wJXx9C+JSJWIrBeRaxPSe0XkoXjN0krg8IRjt4jIc23ufaeI/D2+XSwivxWRj0SkXkTeEpHchLTPishOEakVkQ9EZHzCsYdE5J8i8nq85uAjESkQkTvieVmd2OQkIptF5MT4tj3eVLUhft9FIjJwfwo3Xk6PiYhbRPyAHfhCRDYAH8ST1cTztteaHGNMBHgcGCAiefHrZ4jIAyJSKiLbReR3ImKPHxshIu/Hy6VCRJ6O79+j1iVext9oe08Rac7jF/E8fk1EskTklfjnojq+XdTmWh39vPbrPbeTn7PEao6sid9nbMKxzSLyIxFZCjSIiENEjo7XktWI1cR4ZTytW0T+KiJbRaRMRO4VEe/+5EWprqSBj1LJcznWl+njwCkikg8gIjbgZeALYABwAnCTiJyScO7ZwH+BzPj5TwElQCFwPvAHETk+nvaXwPD44xRaB1mPAaeKSGb83g7gIuCRhDSXAFcB/QAX8MOEY68DI+PHFsfzkuhC4OdYNSZNwCfxdLnx/N/eQdncDFwMnAakA1cDjR2k3StjTFO81gZgsjFmOHBM/HVmvFbjk71dQ0RcWD+vSqA6vvshIAKMAKYCJwPNAcxvgbeALKAI+MeXyHdzHifH8/g01u/oB7FqrwYBAeCuNqd29PPar/ecSERGAU8CNwF5wGvAy/FyaXYxcDrWZ3IA1mfjH/H0U4Al8XR/AkbF942Ip/1FZ/OiVFfTwEepJBCRo7G+vJ4xxiwCNmB9YYFVI5NnjPmNMSZkjNkI3I8VkDT7xBjzojEmhhVEzAJ+ZIwJGmOWAP/G+qIGK/j4vTGmyhizDbiz+SLGmFKsmoAL4rtOBSrieWr2oDFmrTEmADyD9YXVfP5/jDH1xpgm4FfAZBHJSDj3BWPMImNMEHgBCBpjHjHGRIGnsQKG9nwD+LkxZo2xfGGMqey4RLvNhSJSgxVgXAucb4yJxIPU04CbjDENxphdwN/Y/TMKY/18C+M/ky7psGyMqTTGPGeMaTTG1AO/B45tk6zDn1cnXRivpWl+FAJfA141xrxtjAlj9ZfyAkclnHenMWZb/L6XAO8YY540xoTj+V4iIgJcB3w//nmsB/5A68+2UkmlgY9SyXEF8JYxpiL++gl218QMBgoTv3yAnwL5CedvS9guBJq/RJptwfpLuvn4tjbHEj0MXBrfvhR4tM3xnQnbjUAqtDRH/SneHFUHbI6nyU1IX5awHWjndSrtG4gVDPa0Z4wxmVhlvxyYHt8/GHACpQk/o39h1bIA3AoIsCDePHR1V2RGRHwi8i8R2RIv8w+AzOYmtrh2f1774RljTGbCYwfWZ6jlcxMPuLex+zMGrT9jHf388gAfsCih3N6I71eqR2inNKW6Wbw/w4WAXUSav6TcWF9gk7G+QDYZY0bu5TImYXsHkC0iaQnBzyBge3y7FOuLaEXCsUQvAveIyATgDKwv7c64BKvJ7USsoCcDqxlIOnn+3mzDappb3gXXao/Zd5KExMZUiMh1wEIReQIrf01Abrz/T9v0O7FqiJpr996J99mpjSfxAXXx7YL9yMoPgNHAEcaYnSIyBficzpX5fr3nNnYAE5tfxGtuBrL7M9b2+tuAGe1cpwIr4B1vjNneznGlkk5rfJTqfucAUWAcVjPEFGAsMA+reWoBUB/vLOqN16xMEJHD27tYvPnqY+CPIuIRkUnANVj9d8Bq7vhJvGNsEXBjm/ODWP1tngAWGGO2dvJ9pGF9+VdifZH/oZPndca/gd+KyEixTBKRnL2kd8ffe/NjX7/LyoEYMKyzGTLGrAHeBG6NNxG+BdwmIukiYhOR4SJyLICIXJDQ6bgaKyiIGWPKsYKFS+M/16uxAryOlLXJYxpW4FAjItlY/bc6a7/fc4JngNNF5AQRcWIFYE1Yn7v2PA6cKCIXxjs654jIlHhN0f3A30SkH4CIDGjTf02ppNLAR6nudwVWP4ytxpidzQ+sTqpfx/rr/QysgGgT1l/J/8aqUenIxcAQrL/MXwB+aYx5J37s11jNFJuwvqzbNmWB1dw1sYNjHXkkft3twEqsEWpd5XasL9u3sGpGHsDqU9IRP1ZA0Pw4fi9pMcY0YvWP+Sje5HJkJ/P1f8B18S/ty7E6D6/ECm7+C/SPpzsc+FSs0WQvAd+L99UCqyboFqyAcTwdBw9g9Zt6OJ7HC4E7sMqhAqu83+hkvg/kPTcHfZdidVauAM4EzjTGhDpIvxWrD9QPgCqsjs2T44d/BKwH5seb697BqsVSqkeIMQdSG6qUOhSJyCBgNVBgjKnbV3qllOottMZHqT4m3ix0M/CUBj1Kqb5GOzcr1YeISApWP5ItWEPZlVKqT9GmLqWUUkr1GdrUpZRSSqk+Q5u6gMzMTDNiRJcsiKw6oaGhgZSUlJ7ORp+h5Z08WtbJpeWdXIdSeS9atKjCGNPuRJka+AD5+fksXLiwp7PRZxQXFzNnzpyezkafoeWdPFrWyaXlnVyHUnmLSNsZ61toU5dSSiml+gwNfJRSSinVZ2jgo5RSSqk+QwOfbvL4wmUccddvOOfBfxKN6ZQBSiml1MFAA59u8uiqB2lMe5YNtntYV1G2x/FFW6pYv6u+nTOVUkop1V008OkmVaGSlu2Vu1p3Lo/FDOfd8wkn3v5BsrOllFJK9Wka+HSTgNmFM2ZNIbC2clurY2vKdtf0+JsiSc2XUkop1ZcdcoGPiGwWkWUiskRE9ph8Ryx3ish6EVkqItOSnccKfwPGUc2w1MkAbK3b0er451trWrZX7tA1IpVSSqlkOeQCn7jjjDFTjDGHtXPsK8DI+OM64J6k5gxYtH0TIjGm9psCMQc7G0pbHd9VH2zZLq9vSnLulFJKqb7rUA189uZs4BFjmQ9kikj/ZGZgadkGACbmD8dusqlsat25OTHYqfBr4KOUUkoly6G4ZIUB3hIRA/zLGHNfm+MDgMRONSXxfa2qXUTkOqwaIfLy8iguLu6yDH66cRHYIbS1Alc0ndpIWavrr9oUpDBVKPUbFq5Yy+DQ5i6796HA7/d3aXmrvdPyTh4t6+TS8k6u3lLeh2Lgc7QxZruI9APeFpHVxpj9Hh4VD5juAxg9erTpyvVH/q/kVQi7OO+ks3nwyXfYGvi81fomf1/5EcMzHIRK60nN6cecOZO67N6HgkNpvZfeQMs7ebSsk0vLO7l6S3kfck1dxpjt8eddwAvAjDZJtgMDE14XxfclTW1kF06Tg4iQ5y3A2OupDQRajpfXN5GX6iY31UV5fahlfyxmeGLBBgKhaDKzq5RSSvUZh1TgIyIpIpLWvA2cDCxvk+wl4PL46K4jgVpjTClJ1BStxW1LB2BAWn9EDKvKd8/rU+kPkZPqIjfVTWXD7j4+D332KX9cdQ4/eeOpZGZXKaWU6jMOqcAHyAc+FJEvgAXAq8aYN0TkWyLyrXia14CNwHrgfuD6ZGcyRD0+ewYAud4sAHb6q6xjkRiBcJQMr5M0jwN/cPc8PsXb3gdgrf/jJOdYKaWU6hsOqT4+xpiNwOR29t+bsG2A7yQzX23FpJ5UZyYAOT6r5qey0Zqvpz4YBiDN4yTV7Wg1geHGujVgh4aQjvRSSimlusOhVuNz0GsMN4E9QJY7G4BcXyYAVYFaAOrjNTzpXgepbWp8GsxOAGojJSillFKq62ng08W2VJcDkO2xmrjyUqwmr5qgtUxFXXONj9tJmtuBPxQhFl+9PYLferZVJjXPSimlVF+hgU8X21a7C4A8Xw4A+amZANQ0WU1ddYHmGh8nqR4HxkBjOEosZjA2K/ARe5BAKJzknCullFK9nwY+Xaykzqrx6Z+aC0C/VKvGpz7UusYn3esgxW11sWpoilDeUI/YwkgsDYCd/ppkZlsppZTqEzTw6WJlDRUAFKZbK7N7HC5MzIU/bNXmtO3cbO2LsKXaOs8n+QCU1le1pH/ms21YfbaVUkopdSA08OliuxqtgGVwZl7LPpvx0hgPfFqaujwO0jxW4ONvilBSZwU+Oa5C6zoNNQB898nPufW5pazQVdyVUkqpA6aBTxerDFRijI2BGbkt++x4CUYbgN01PikuB6luJwD+YIQyv9WheUBqEbA78Jm7xmo6K6luTEr+lVJKqd5MA58uVttUA1EfPpezZZ8DL00xK/BpCEVJcdmx2aSlqcvfFKY63vl5cIa12kZlYw3R2O7mrc2VGvgopZRSB0oDn/1013vruPi++by9sqzd4/5IDXaT1mqfy5ZCyFiBS2MoitdlBTzNTV31wQj+kNUUNjRrAADVwVrqArtHdm3RwEcppZQ6YBr47IfXlpXy17fW8kVJDT97YRmNocgeaRojtThpHfh47ClEjLVIaWMoQorbDtAyqsvfFMEfsgKbMblWjU9NsJ6qxt0LmFY3hFBKKaXUgdHAp5OiMcPvX13FhAHp/OfKw9lV38SzC/ecYTlk/HjsrQMfrz2FmFiBT0NTFF+8xsfnsgKgQDhKQ9gKfEbkFGKMUB+uaxXs1AZ0Xh+llFLqQGng00nzN1ayvSbAt44dzpHDcijK8vLppj1nWA7TgM/ROvDxOVMxklDjEw943A4bIhAMRWmMNGCMjVSnBzEugpEA1Y1WsNMvza2Bj1JKKdUFuiXwERGbiEwVkdNF5HgR6dcd90mml5bsINXt4MSx1jw70wZlsWhLdav5dYwxGGkg1Zne6txUZypii1AXDMT7+FiBj4jgddoJhKMEIo1IzI3NZgPjIhRtaqnxGZKT0hL4hCIxPt5QkYy3rJRSSvU6XRr4iMhwEbkPWA/8CbgYuB54R0Tmi8hVInLI1TKFozFeX17KyePz8TitoGX64CzK6prYURtsSVcfagCJkeHObHV+htsKhHbW18RrfBwtx7xOO42hKMFoI2LcANhw0RQLtvTxGZLra+nofNPLj/LND4/jvXVruu39KqWUUr1VVwchvwMeA4YbY04xxlxqjDnfGDMJOAvIAC7r4nt2u8+31lAXjHDyuIKWfdMGWYuQLt5S3bKvpNZq+sr2ZLQ6P8NtNX3taqix+vjEOzcDeOI1Pk3RADY8ANiMm1AsSG0gjMMmFGR4qW+KEI0ZltS8BsB7mz/thneqlFJK9W5dGvgYYy42xnxg2llfwRizyxhzhzHm4S97fREZKCJzRWSliKwQke+1k2aOiNSKyJL44xdf9n7NPlxXjk1g5vCcln1j+qfhddpZvHV34LO9efZlb1ar87M8Vo1PeUMtgXC0pVMzgNdlJxiOEooFsMcDH4e4icSaaGyK4HPZyfBacwLVBcLEjACwtHzFgb4tpZRSqs9x7DtJ54nIMXs7boz54ABvEQF+YIxZLCJpwCIRedsYs7JNunnGmDMO8F4tPlxfwaSizJYABMBptzGqII21ZfUt+3bUWzU++altAx+rxqcqUEdDU3SPpq5AKEqYIE7xAvHAxzTRGLJGgKUlDHtviO0EO1Q0be2qt6eUUkr1GV0a+AC3tLPPAJOAgYC9neOdZowpBUrj2/UisgoYALQNfLpMXTDMFyW1XD9n+B7HhuT4WJTQ1LWrwdouSM1ulS7DmwpAbbCBpoirZTg7WDU+jaEoEWcAn82qGXLY3DRFGmiM1w41d4ZuDEUx9loEaIrVo5RSSqn906WBjzHmzMTXIjIL+DmwE7ixK+8lIkOAqUB7nV1misgXwA7gh8aYPdqFROQ64DqAvLw8iouL273PojKrb02qv4Ti4tJWx0x9iO3VYd55by4Om7B862oAytZtoXjn7kVFt9Za5y3fsA4YT+m2zRQXbwcgUB/EHzZE+gWJhaC4uJhYCCISoKR0F9GQYcMaK657fd6HiM2aNDFk6ikuLiYaM5Q2GIrSvlyrZe32VYxafz8bJ/yAlJwBX+oa+8vv93dY3qrraXknj5Z1cml5J1dvKe+urvEBQEROAP4fVm3PH4wxb3fx9VOB54CbjDFtly1fDAw2xvhF5DTgRWBk22sYY+4D7gMYPXq0mTNnTrv3evfF5fhcJVx11nG4HK2Di4q0El7a8AUjJs1gSG4Kj/9vPtTA2SecTI4vpSVddulm7nsL3JlWzc/EcaOYc8RgAJ7atoiNFX6QCOm+DObMmUP69v9SH9yCNy0DV4rhiOmjYfF80or6w1rA2DG2AHPmzOGGJxbzytJSPvvZieSlufe3KPnkvucZazZQU7WAmef9fb/P/zKKi4vpqLxV19PyTh4t6+TS8k6u3lLeXT2c/XQR+Rj4IfBzY8xx3RD0OLGCnseNMc+3PW6MqTPG+OPbrwFOEcltm66zPlpfwRFDs/cIegAGZfsA2FJlzbpc21SHiTnJ9vpapcuKN3XVBK31uFLaNHUFwlGMhPDYrc7NbrsHI00E4ut6NXeGLqmtAsAZy0PsARpDIV5ZatUmbapo+FLvz1m/DQB7w64vdb5SSil1KOnq4ewvA0VYnZBvFZGXEh8HenEREeABYJUx5vYO0hTE0yEiM7De455TLHfC9poAGysaOHpkXrvHB+dYAc7WSivoqA/XYoulEL99ixyf1bm5rskKkNqO6gqEYhgJ43YkBj5hq3Oz096ytteOOivwSXNYw+rXVZS3XGdr1ZdbxNQbtK7ha9zxpc5XSimlDiVd3dR1XBdfr61ZWPMALRORJfF9PwUGARhj7gXOB74tIhEgAFzU3vD6zvhwnRUUHD2i/QqjvFQ3Tru0TGLYEKnDTsoe6XwuN8bY8IetAKl5cVKwRnX5m4I4JYo3XuPjdXjjMz2H4p2brfS7GqrBBv28A6hqXMLy0t19jr5s4OOL1safa77U+UoppdShpKs7N7/flddr5/ofArKPNHcBd3XF/T5cX0m/NDej8lPbPW6zCf3SPJTFA59g1I9L2k8rxkVD2Fqvy5tY4+O0E4yGcAI+pzWc3euwnqsb/XhdBS1re1UGaiEFBqcPZHUjrCkva7lOyZcMfNJiVhep1KiOElNKKdX7dXUfn5dF5Mx4P5y2x4aJyG9E5OquvGd3icYMH62v4OgRuXs0XSUqyPBQGg98QsaPt83K7M3EuAlGrMCnbR8fEWtpCq/TqvHxxQOfsGkixe1oCZRqglbtzIisQcDumaJtQsvyFo8vXExJddv+3u0zsRgZxgp40owGPkoppXq/ru7jcy0wG1gtIp+JyGsi8p6IbAT+BSwyxvyni+/ZLRZvraaqIcTxY/e+vmpBhoeyOivwiUoDKc72Ax8bbiLGSpfYx8fjtIPNWocrJV7j01zzgy2E12nHZbdhtwnBmNVUNizLGna+s94KhIblpVIXCPPFju38acUVXPbizzv1HhsbG3BKlDrjwyshwsEv10G6qzU0RajwN/V0NpRSSvVCXd3UtRO4Fatj8xCgP1Y/m7XGmC/XFtND3l5ZhtMuHDuq/Y7NzQrSPby3ahexWAxjayTNld5uOjtuxGbVyiT28fG57IjEAx+X1Vk61WUFPmILx48LPpedkK0JYo6WmaHLG6yanaG5KWws93P/Iqv/eLVZ2qn32OivJQUot/cjPbYZf/UusvoP7dS53eny/yxgQ7mfj398fKvJHpVSSiWPMYa6QISddUF21gWZVxJm00ebaAxFaWiK0BiKAlbLhddpPTK8Tgbn+Biam0JemnuvLSY9pdu+VYwxm4HN3XX97mSM4e2VZRw5LIc0zx6tdq30z/AQCEdZX1GFSJTMNiuzN3OIB+KBj69NH5/m/WnxgCc1HgAhoZa0PpedkITAuMlJsYKrmqCfVLeD3FQXS7ZFWFuzHIBYJ7tyB+KBk9+VB8HN+GurWgKf1Z+9S2PxHYy74Sk83j07bHeXsrogW7ZsJlsa+Gh9JSeNy0/avZVSqi+qbQyzemcd68v9bKlsZFNFA1sqG9hWFSAQjrZOvNyaUNduk5bvp2A4Sji65xdPisvO1EFZHDMql2NG5TE6Py0pgVB9MLzX4/rndDs2lPvZVNHA1bOG7DNtfrrVL+fzEms4eLYnq910TnEjthpsAu6EOYE8zt01PmluK+BJiwc+Ygu1jOjyuRzU2kLYcJETnxdI7E2kuh2ke53UBsI4IzVgA+OopKKhnt+9vJ5BOSncfNKodvPU5LcCn5AvH4LQ6N+9/IbrjR8wJrqJT994kCPOvWGf5dBVVpfW8ZTrtxRJOQ9vmgAa+CilVJcIR2NsLG9g9c46Vu+sZ3Wp9dzcTxXA5bAxONvHkNwUZo/Mo3+Gh/x0DwUZHjatXMJJxx6Nz211wUgMYiLRGMFIjCp/iM2VDWyubGDDLj+fbKzkD6+t5g+vrSY/3c1Zkwu55IjBDM3tvj+of/vK3lex0sCnHW+vtCbzO7ETX7q5qdZsyavjI6zyUjLbTee0WTU+KS5Hqw+L17W7j096PPBJ98Q/ELbWNT5IGBtuvE43JuYACZHqcZDhdRKKxAhEa1p6bb23biMvLrGCsZtOGInNtmeUHWyMd4JO6w9VEPTXthxLj8aDoK3zgeQFPv7tKxlhs/KdseUNYGbS7q2UUr2BMYby+iZWxYObNTvrWbWznvW76ltqZpx2YXheKkcOy2F0QRpjCtIYmZ9G/3RPu98XAA2bbWSluNo95rDbSLXbSHU7GJTj4xh2dxMprQ0wb20F76wq48GPNnP/vE2cNC6fm04cyfjCjC597++uKuOZhSV7TdNtgY+IeIFBxpg13XWP7vL2yp1MHJBB/wzvPtM2LxOxsdIKlvJTsttN57Z7EQm1GsoO8T4+8cAnw2MFPhnxAEgk3JLe57Ij0RAOse4nxm3V+DgdpMeb40LUYY/5MLZG5q7bBFj7t9cEGJjdejZpgHDAGsnlyBwAW6C+ppIVO2oZnuUglxoAUvyb91kGXSm6a/fHJatmjyXWiMUMUWNw2ru6X75SSh16GpoirNvlZ+3OelbtrGN1aT1ryuqpagi1pClI9zCmfxrHjspjbP80RhekMSw3td0VCQAwBgLV4C+DxioIVEFjFQO3LoLi+RBpij+CIDZwesARf7jTIb0QMgZAxkDw5dA/w8uFhw/kwsMHsqsuyOOfbuU/H23i9DvLOHfqAH562tgvteRSW9UNIX78/DLGFKSxZS/pumutrjOBvwIuYKiITAF+Y4w5qzvu15XK65v4fFsNN53QfvNQW3nxGp+tNRWQAoVpHQc+2KwamkRep1WTA5Adb8JqVePjtAIfr8sBwZDVVwiw4UFsVlNXhtcJGMTuJ1WGUc9a1laUEp/XkW3VjXhdNoyBvDRPy72bA5+UnCIA3lq8jkfmf8gdJ6ZxDhA1Qn54W6fKoas4qtYBsDVlEgP96zDGtNSQxWKGbz74IaVVdTxy/Ulkd/CXh1JK9TZNkSgbyxtYW1bPmp311nNZPduqAi1pvE47owrSOHlcPmMK0hjTP50xBWlk+tr8royGoXYL1GyB6oTn2hKoL4X6nRDdc2TtcICNgM0JDjfYXYCBcBAigT3SA5DSDwZMtx5F0+k38Ei+f9Iorj56KPd9sIH7PtjIu6vK+OWZ4zlvetEBldEvXlpBdUOIh646nDe/33G67qrx+RUwAygGMMYsEZGeHy7UCe+uKsMYOt2pNt3rwGW3UeqvwpkCRRntz/LssXsQW2iPztIe5+4an5wUK+BpXttLbKGWUU0pLjsSCuGyWR2b7XjAtruPD7YmxBahv3cI9YG1bKkppznwKakOcM2b38AhTpZ9+9mWe0eCVuCTkW+lc0at4exfrFjJOcAa72TGBZdQ568nPdUapr9lzRJ2vP5Xhn/tj/TrP7BTZbQ/0vwbqbDlUpM7jTH+R6n2B8hOs2qrFm4o5XtbbmCAVPDG+49w8WkndPn9lVKqJzU0Raw+MhWNrN/lbwlwNlU0EI2PXHHYhGF5KUwuyuTC6QMZVZDG6Pw0BmX7rGaqWMyqralZB+vaCXDqSsDEdt/U5oCMIquGZuARkFZgdYFI7Qe+HPBlgzebeQuXMfv4U8Bm3zPjxkA0BIEaqNtuPWq2wc6lsH0RrH3dSufwwvDjyJhwHrccfwZfnVbET55fxg+e/YIP11fw23MmkOre/9DklaU7ePmLHfzgpFEUZsf2mra7Ap+wMaa2Te/tL7VsRLK9vbKMAZlexvZvfz6etkSE3FQXFWIFDR3V+PicPsQWoe3P0+uyQ3wCw+bRXFnxGh+x7W7qsvoChXDZrBomR3ONT7yPj9itBVBHZo1gbeAtxN7AmII0Vu+s57mli3GkbACgpLYGf8BGhteJiQc+qbnWvEDpYkXs1WVbwAWNeVNh2xJ2lWwkfcxkAOqf/x4zm5bwydOGfjc93qky2h95wa2UewYjeaNwbYlSvnUt2eOnAFC28CXOtG22ymjZv6FN4NNc5Tu5KOOgGEL56mO3IyWfMfmy/2PAgAP7S0Yp1TsYY6gNhCmpDlBS3cimikY2VzSwqbKBzRUN7KrfXdMiYi2GPSo/jVPHF7QEOENzfLjCtfFAZoX1vCkxwNm6Z41NagFkDYHBMyFzMGQN3v2cVgj2fYcDUceG9oOe5sw63JCWbz0GTGt9PFADJQth3Vuw+lVY8xp4Mhg+7XKe/Nq3uXtRLne8s5ZVpXU8dNUMCjI87d6mPbvqg/y/F5czuSiDrx2ZydVv7n2e5O4KfFaIyCWAXURGAt8FPu6me3WZYDjKh+sruHjGoP364sxNc1MZCkDMic/Vfr+g5tmYm+fyaeZNqPHxxBcpbe7r03Y4u9hCVpMZ4LR5EVuNVePjcSB2q1f+oPQBsN2OzeFnQKaXCn+IZbtWYu9vXfKRRe/z4LtOCjO9/C7HCpa8qVn48ZKKFfhkixUQ+QZPg20PUrtzC4yZTKgpyIjgChAYWTOPaDSGvQv72hhjKIxu5x+Z/YjZNzIBq7Mz8cAnY+vb1EkaO7KOYEblBwSawnjdVg1aLGZ4/m83MrZxIc9N+wnnn/PVLsvXl7F62UJOX/9rAD56KsaAHzzdo/lRSiVHKBKjrC5IWV2Q7TUB61FtPe+IbzeEWg8Rz0lxtYyiGprrY2i2ixEeP4MdlXgaSqF2EdRug2Ul8GGJ1SQV8re+sSfTCmL6jYXRp8aDmiHWc+ZAcO67z2q38mbCyBOtx6l/gs0fwKKH4JO7sc+/l+9Ov4IZl1zLN/67hXP/+REPXTWD0QX7roAwxvDT55fTEIry/84eyHVvX8t2//a9ntNdgc+NwM+AJuAJ4E3gd910ry7zyYZKmiIxjhuz99ma28pLdbOmthGb6Xh4XopzdzBDOGBVAeaOtAIbWxhjBJfNaoe12WyYmBOxRVoCH4fNhkgYTzyA8tp9VNt2keK2JowSmxX45KVkYIulIfYGMn0u+md4WN1YS3OM/v7GNYSj49lS2Uidq5aoEewuHw2tAp86IsZG/ohp8CE0VljdxDYt+5jREmaldzrjAotYv34lI0ZPAGDRu89Q9MGtrBh6Fcdf+cv9Kr9mNdVVBB1NPOXeBru2cbrbTWTXWsD6cA8OrGBr+lRsI08mu+odli6bz6TDZgOw4oPnuSz4BNhg8Oc3UXnsceRk7Z5aYPW6tawtfoLMkTM5Zs4pXyp/e2OM4fnF2xmQ5eXIYTlUz3+CqBFWZh7L9Jp3qa6qICu7/WZQpdTBzxhDdWOYnbXBlsBmZ/NzbZCddU3sqgtS2RDa49wsn/XH5tBsDycPFoZ5GhjorKfAXkOe1OIJVlhNU3WlUFIC9TtaN0UB+HKt5qicETD8eEgf0LrWxtO1o6O6lc0Gw+ZYj+rN8OEdsPBBjvziKd6Z+X3OWTiR8+/9mAeuOJwZQ9tvRWn23OLtvLOqjO+fUsBvF32X0oZS7j7hbo7giA7P6ZbAJz5L88/ij0PG3DW78DrtHLGPgm5rYLYP8TfiaGdl9mYtszKbXXDXDKjdCtMux33mndZaXcbZqpbJxJyQMApsVWkduEIUplt9fLJ9aZQ2NVHTGCbd62yp8emXmoFTUmmyB8jyOclP97AmtHvtrk2124HxAFRWVREQL6ki1BsvadLI0NwUsmvqqZW0lskMozXW0MDazUsAkMOuhnmL2LHqE0aMnoCJxej34S/Il2qyNv2ddeu+xsiRYwBrWYz5//0bsdQCjj/nmg6HSQJU7tjAes/unv1v+jI4umwt//lwE1P7CVMpZXG/8xg+7Svw6a3Ur3wH4oGPWXAfu8im8fS7GfLqxXz48h0cfblV41KyZQOZj5/KWVQSKfk7H1X/kVnnfqvlPlVl21j63J+xB2tIm3EJU44+rVW+TCxGydYN2B1OCouGtJv391bv4gfPfgHAwp+fSF7ZB6x1jsF7zI14Xi5m6YfPMeOsb7Y6Z9eOrVT++6v4Yn4az7yXsdPndFg2SqmuZ4yhMRSlqiFEhb+JqoYQlQ0hKv3W6511QcpqrQBnV10ToWjrYESIMSwlzLDUELO9QYoGBujvCtDP5idL6smM1eALV+Jo3AX1ZbC5Ys+ABqyRUKn9rOaoobOtvjYZRdYjc5AV5Lj2HJnbK2QNgTPvgJnfgTd/RsH83/J+/8O4ru4qrnpwAU9edySTijLbPXVHTYBfv7SCqUNsvFPzK8oay/jnCf/ksILD9nrL7hrV9TZwgTGmJv46C3jKGNP1f2p3EWMMc9fsYtaIHGv9rP0wdVAmT29vJBrpuE0y1WUFRV+pfwway2H06bD4EWT8V8EWsQKdBGluHzW2MK5gFXgy+MrEfqxcF2FYjhWUFaZnsrK2CRGsod3xGp/CtCxctlTE3khWiotgJIrU1GOPZWCMYHPUMiwvhZLqAM5ogKDTQypQZ6wan2NG5pK9sJ46ySDHnUItadSWbeHOd9dxePlagsbJqNnnEZ73PSIliwHYuHoJw00pSwZdyZStD7Hp3X8zcuRfAVj87xs5vuo5AF7zV3Pa5bcAEA2HeP/xPxKu3kb2sd/m8GnTqS/bzHK3C6c4GJE1ksVNazi+ZAO/eWUlJ3jW8gBQkp9HXWgjw2xFpG7/EICyndsZ2/AZiwov4sjDT2P5O1MZt/FBwsFbcLhT2P70TUwxdZSd/QTVb/6Rw5b8nLWDxzBq2hw2r/iUtGcv5GhTR5O4SHnnZZYsOoWRl92BL7OAL95/Ad+Hf2RUND7aTArZMeoyxpx0DZm5+VRXlCHAu6t3tfzsXvl0FVdG1jFvwLXMmjyHmpdTMevfBVoHPiWPfpPJ0fU0iQv/y1fROHoJvtTWf7WZWIzlH79GY8VWxp9wCalpmZ34RPasBn8dDqcTt7uHq9Z7kaqGENurA2SlOBmQ6T0o+rD1hHA0Rk1jmJrGEDWBMMvKIzSt2EkwHKUpHCMYiRIMRwmGYwTCUQKhKI2hCIFwjEDIWmKhMWTt9zdFqGxooikcIY0AaTSSLo0tzzmOIKM8YY5xBcnzBslNaSATP2mxWryROpyhGmzBaiRqoBbrkcjmgNR8K6BJHwCFU63AJrVffH/+7u3eGtTsj9yRcMnTsOxZ3K/fykOhm7nDfRlXPCA8862jGJnfutkrFjP88NkviNpqaMx9mJrGSu498V6m5U/r4Aa7dVdTV25z0ANgjKkWkf1rP0qyDeXW9NzXHTO8/QSBGihfY81tkJIHBRPBYTVNTRuUhXwaINjUcVOG22YFRcObFsPMG+HYH8EdE2H+PYh4wbQOfPJSUpmdGUH+Nh4yB3H+5S9w27rdI76G5mRh2xHihyePBmjV1OUkBbFXkeVzYYzB5qjHY8vEGDshZy2jstPwOOykVgQI2awvp6ED+hNprKG0MJ0ssWp8AGqdeaQEd3L722v5t3M1O5wDGObyss01jIxqa4mMHQtfYjhQdPINbHjic0aUvkpd4A9UbV3FzMrn+bzfOWQ0bGLmhjtYvu58ItEoS/9+Hsf7PwCg7n+v8NymO+gfLWGZ28Wo9OFMzZ/O05WrGSylVv7C69joc/CzHQ/ADvhewWgu2f4hX2zeRfn7D3GiRBl07JUAhGbdQvZ7l/Dhs7cRzhzGcY0fsGj4d5g+7XScRVOpvOdYsl66gvc+PZfDdj5NQLys/+obDB01nnmP/JwjdjxC09+nUSppTGEXpZLHwtE/xGBI2/g6R675M5HV/0c1KWTF+0NtjNzM6LFN1NVlMLd4OVfaIWPULGwOB5vSDmdY3QKi0RiVDSFyUt1s27iSaYGPWTD4WtInnMqY185j/nN/5sgr/tDyGTCxGJ/ecy1Hlv8XgNIlt1N52SsMHj6m9YfLGJYVP0PjyreI+XIZeuK1FAwc0e7nMBaNUlVWgic1ndT09mcZ/7Ii4RCf3X8D08us/M7vfxGHXXMHDufepx2oKN2KMYbcgoGITednSvTZ5ir+9vZaPt5Q2bJvWG4KVx09lAumF+33H2mbKxr4fFs1O2qChCIx0jwOhuWlMDwvlaIsH/a91Mi2pykSpaQ6wOaKBsrqmmhoiuBvihCMRHHZbbjsNtxOG16XgxSXHZ/Ljs/lIMVtx2m3EY4awtEYkfhzXTBMhT9Epb+JyvhzbUMDDf56Qo31REONeGmyHhLCR5B1n7/Xsu0lhEea8BAmW0Kk2sOk2ML4JIxPQngkhIf4wwTxuhrw2PeyOHMo/nB4W0Y2kZYNvqHWdsKIJ2s7a/e2O83q8Ks6TwQmXQhDj0VeupHvr/s3I2U9V/87yhPfntNqPrp7P9jAJ1s2MnDcw9SGavnXSf9iSr8pnbpNdwU+MREZZIzZCiAig+miUV0icirwd8AO/NsY86c2x93AI8B0oBL4WnzdsL0qXmP9xT4ncVHSpnpY9TJ88RRs+qD1W/Dlwql/hEkXUpTlxeEMMLHfgA6vb49PPBiw2WD6VVbv98kXwSd348w6oaXvTjOP3U2wdIn1QahcR+DjvwPgjadLcaZgiOGu/BxiQ1uaulJcKTglFbEHSHHbcTm8iKOOdGd/7OLCH1pPfrobr8vOsqZaHst08Je6LQzOyoZwGV6XgxzqqHRbAWAotZDCJmsun2FSSo3Xmt8omDeRESWvs76sntSS99lmH8jAopEEp11M0Yc/5rl33qD/uicowMHQ83+HI1SN54Fj2fnk9dRLBidGP+CT4d9j2qlX0Xj/2Zyx9AaqSGX1kBTOyp/CmOwxhMXQ6Grgqa+No+zJu3g1JTdelnbeygjwjR1N/OW+/3Cz4wVKXIP5iI2s/PhVvjHlG6z6eCrT198FwFbnECZ/7f8BkN2vkJKLniL69CUcX/YgG9xjSL3sMcYMHAnA7G/ewcqlXycw9zYcYT87ht/IpK9cS39P88/nF6xfMo/KRS9iC1RifLkctvV+KoreoAw/pIM9OAQaYPhkqxmOESeQ9/lcvn/vg7xUVceUfuP4TvQVBhph5KnXk1U4jM/nzmTcpgepq/oe6dnWVArz/3cPM8v/y/x+F5I+6QyK3vk2kUfPZv1lLzNiuPVzqK+tYvMDlzOxbh6Nxo2HEOF/P8BHA69g0td+SVqa1TS6dcNqtr/xV8aUv0EuVrC20jGOqqFnMmT2JRQNGgJAdVUFG+a/QmzdW/SrXYbDhKlx5VOfO42U0ccybOpxpKa135dg0T3XMLPqJT7LOh1MhCN3Ps5nd5Uz7cYnsTv2/FWzY8WH+F+4mVERa9LKTbZB1E2/gUmnXoN0MMKkfMcWNn7yPLGKDeBMwTdsBmOO/Apuz97/Ym6or2X7hmXEwk2kZvenYNBIHM69r8MHEIvG8Df68ddWYhM7vvRMUn2p2PajU38oHKWmpopgoBFPahopvjS8Lsdem3231wS4763PWfb5p0z1lfHD4XXkO/z4ow5WVsLSl338/K18powbz8kzp1tTS7QTNDY0RVi4dgvLVqxk06Z12Pyl5FCHiwguCRNA+Mx4mIuHkM1LWnoWudnZFORmk56RjtftxWbCEGmirqGBmroG6urrafTXEmioIxyow2eC+CRIKkFyJchggvgkhI0odmIIBjsxbBhsxFpte4lhiz/sxLCJtd9JFK+E8NKEnXjTkACdmOPOIOD0Ig4POH3W5HpOrxW8ONOtfQ4PuFKsJiZPBnjSO9jOsLYdOmdYUqXlw8VPwQd/4YziPzIkvI1v3X0rv7rsZA4fks3nW6v529yPyRn5IGGC/OukfzE5b3KnL99dgc9PgQ9F5H2sj+ts4LoDvaiI2IG7gZOAEuAzEXnJGJO4MMc1QLUxZoSIXAT8Gfja3q5b12S4a+56huelMDDDBevetoKd1a9akzJlDYFjfghFh0NKrtUxef498Py11lwFs27C4QwwfVDHgc+wbOuv6+1pI60e9gBjzoSP/s4xRWHKHZmt0nsiTQSiTXDeA7D0KRpXvQQ57laBD0Djg6fidaaS4TmOQMyJ0+bEJamIrZFYNEZBuhdx1JPjnYhLvGwLLiIYjjKiXypP+hupdRjuW3ofv3enQ1M9o/PTSJN6Iv2tYWCDhoyEhuWcOCSTQVt2UZputVYWjp1J+vbnuPCOx3jJtYwVAy5gIFA062KaPvol0z/7IUVSzrLC85maPxAYyK7Dvs+JC28DYG3Recy89NcgQv735lL66DdorF5Bo83G0MxhjMyyApF1TienpFdRm7adGzMyGJlVxOlDT+eOxXewzZvB/a5/4wuV89yUy/ndp78HYEHpAp669Haanv02xkD+JY+wqGopb25+k6n9pnLGqDOQny2HhnKGp/UHEYwxxEwMu83OuEmHw6SnOvxZjpgymxFTZre8fuLPr1Dm9XPjxJ/y5pa3WRpbyOLGfKZlWoHakCPOYs2KXzPPcze+QWHWxJxU76pjTdoRjCscBkDa6b8h5dmT+efjN7B00AwG2tL57pLfscY9nhnX3YPN4aAkI5Ps5y6k/NGzeGr67bgIc9jiHzE2Vkbx4Bs46tJfsrN0M6X//RGzSv5NyW0vsSB9Fl7/VvpHl9AfWJp+LJEBMzANlfTf8Sbj1v2Z2Nq/sMlWhAEGxnZwmESpw8dG7ySiDi8ZjVsZW/Ig9u3/IfSug3mFl1J49q94aP526oJhrp41lKalz3NE1UvML7ycI6/7BwDzH/wRR265l0/vuoLDb3y0VbCw+MW/M/HzX2OTTD4ZfhNis5O34Xkmf3Yr2z6/CzPnpww66mtgs7U094Xm38ek+g85QqKEjR2nRGHrvTTM9bAidQbRkaeQN/pIvGlZ1FWUUr1pMWbbQnJqlzEksplRsrtvRcjY2WLrT7VnIIH0IUjWUMTpIRash7oSnP4dZARKKIjuIF0CpCf8/JuMgxpJp9aejd+ZS5Mnl5jTh0RDxPy1fPrZHXhC1aREa0iL1ZJp6uknkZbzY0ZowEM9KfhtaTTa0wjbU7DFQjhiTThjQbJiVfxaqqwv+ihQ5rGaRSJNjArXcq4zCDFgufUI46DKlkOlPY+QuPDEGvBG/WTHqjhWAhzbfPOEWM+IHTBIYp+Thvijs/OWxr9BYnYPxp2KuFIRdwri9GFsDozYiCHEjI0oNiJGiBohgo2YEcRmb/VwOB14nE6cThfi8sUDF6/13PJ6976FS1dx2MzZu9M0Bzxa03Los9lgzo+hYCJjn7uOByM/5dL76rng1BN4cOFHeAffi8dl518n/ZvxueP369JdHviIiA3IAKYBR8Z332SMqeiCy88A1htjNsbv9RRwNpAY+JyNNYEiwH+Bu0REjDEd1jiFmhqY1TSP7xRVwe3XQsMua2jglIth0kUwcEbr/0gDpsPo0+DFb8M7v8KfMZBwLEyOJ6fDjI+NWcPr3GOObn2dtP4E/Tvx5raeKdrdWE2T3QEjTwYgsOENoP/uwMdYXyKNWYPIqdvF7JS1zLNbwdCEgv5s2xHlpNenw4gzsNkbGJ7Vn3RXOotrw5yQthSTMppah1Ukb295m59lz8HXVM/ALLh8QAobzKf8ZcvbnJRVBKEaLhnaSGOJoS6/AID04TPgHfie51XcJkzu1NOtjHsziR11E0M++jN+ZzbjLvhFy3vqd/r/IzZiBsuWLmHyBT9qKVNJyaHwWy+wcOdCePMqhqQPYXjmcGzYWOtycUrJApyBrSyzDeaywqM5efDJ3LH4DuaOns3lS17BeLN5NLyF0VmjufXwW7nmrWt4YGcxN3//UwDe3fIuNxXfhCA8u/ZZPtv5Gb+c+Uvs6YWEY2HuXXIvT656kqZoEycMOoEbp93IwDQrOG0MN/LKxlf4tPRTPA4Pk/Mmc/yg48n1WkFNNBblhX6pFEaauGbKhcwZfARfe/ksHirsR3NLsyM7m+/m9ydFovz66Nu5d/7/8dv8EDcXzGBcPE3GsKFcM3g8i+yroWY184ElAzL4xozrGWWPj+wbNpr7Zl3DB5tfYEvlraTGYgzJtzF+0HWcc+TlOJ1OvPl5mK//jNsWj2TD1neImo/xuR286p3JlCkXMnXoLDI9mTSEG6htupxn1n/C2rXvEG7YgQPB4RlN0aCZTJpwAvmpBRgM4ViYBZVbWLPqA6o2F+MJvMCfnlvEZkcKdrEz74VUbgx/Ro1vJMde/ueWn/fUy3/DCw9Wk1X5Er+452RW5UzHbhyMq17MsQ2f81rqeEZ/7d8cOXAUIkJD0w94+dX7SV11P6kffo+P5/+RBkce/Zp2MCxajjfm4YP+5zL02G8xZNQ0gk0BVs1/Ff/ylyis+YjMpR8SXSZEgTQgxxiajJdS9yg+638F3oFTsbt8BKu3E63YgLt2I5mBbYzZuRBP2e7VnIPGSYUtl2pPEavSrH4ZNl8mGEMsUAvBWuyBSlzBcjJDu8gMrsJFiDBOwtgJRzw0OjIJeAup80ygxJuNpORic3qIhRoxTX4k5MfWVIcjVIMvXIc7upOIzUXU6SFiz6HGNwrvyKlkDp4IeaOtkTvx+VPEGGsZgboSyks2smLNKuoqN1PKFvxU4TABso2XYWY4lSmzySwYQtHg4biyBlpLCaTkgcON2OzWpHORIDT5IVRvPYcbaWioo76ulqamJozdhbG5SE9NISPVh8PltZpxXCngSgVXCrZ25naR+KM7Gy/9m5qsviGq9xpzOvZr3iT30XN5Tn7LucWbqSt6mxxfKg+e+m+GZQ7b70t2eeBjjImJyK3GmGeAV7r48gNo/bdICewxZq0ljTEmIiK1QA7QYeA1VHZyt/NOKHHCqFOsJqiRJ1vNUR1xuODsu6FqI1Wv3QwFGWR7Oh4N5l37BgDB/HG7d9psMOZ0gttfJcWW8KOIRfE2VFLri1exjjyJgNv6m7M58PGVWiOIGk74f1C+EVl+LwXZVr+OIzKivL4D/BmF2Na9CIMGMLFgIFk2J4+ug8GLvk/E4YX8TC5y5PFUpJwFppE5IT8vrnqSNW4XHrHzp0//xOyRV+IBhsp8vlJUSF3tk3z6cYhfzPgJNk8mJzTN4985eWwMfMhxW9ycOOhEvCf+BEYcTY3TxYq6lfSPVjMhdwI2sWEbcyqVpS421W3GLnYGpA7AHv+luaXOGjY/KH0QbrubIRmDWdfYAAsfZIHHQ4QYswbMYmD6QMZmj+Vtu43Lz/0XH3m9bPjk5/zh6D8wo/8Mzht5Ho+sfITThp2Gx+7hZx/9jAk5E3jglAd4YPkD3Lf0PoKRIOeOPJe7ltzF0vKlnDT4JHI8Ofxvw/94e+vbnDjoRJw2J8XbiqkP1zMgdQCBSICXNrzEHz79A2Ozx5LpyWRt9Vp22Zr4VVU19liEUU4PX6+r55EMYXXVakZnjeYXH/2CXQ7hwZ3lTCmayRzSuTG8nb+W/Q//kv5kuDO454t7CDqD3FId4OyaSuZ5PfyzaBQ/+uLP/H39o6S50lhXs46YiTGtcCoXhgW/ibBKmnis/DUee/k1bGIjlvDXe2FuIZmekayqKaUutp2Xlv0Vlv21/Q9oy4DEWti+FrY/3HG6lAyGhCo5Mm8wxu1hfekCbrenAk04np1FtiebUDREbVMtxmmgIA8ow9n0KmERVqXCc6l5QA3MPR+33U3MxAjH4sFHkQ3Ix2pa3oX1ayo+ERULkAWf4fvcRzgaJhQLWX9mZaRhhTvtqQTexbHrfVw2Fy67C3uGHZNhiJp0YrEUIrEoxsRAwGlz4bA5sNuiOGxbccgOHDaH9fA4sIsdQTDkArmYhCbwhvoGMjMysYvduobYsdnCOKQcu9ix2+zx5yzskosg1v+LhIcgDM0YypCR51rNM22JQEoOpOQQTc/n/chSXmYxTa0mrAvjsDVydOEQzhw+nQEDjwV7O7/PROK1JV5IWFQyEKigpHYzFcEKorEoMROjICWTIelDyPXm9tnO1aqHFEzAdvUbvP/U2VSn/I98Ry6PnvEYhamFX+py3dXU9Y6I/BB4GqviFABjTFU33W+/ich1xJvf0gb6+PqoYzkh4ySGpUyEMqDsk05dxz3o2zirrUVBtq3ZSvG24j3vFQszedn/oCibZevX0a98d5qspoEEMTjLd1BcbO3PqFmJJ9JErbG37KtPGwnsYM3S5YTXhZFlr0EmfLilhgrHOOrtTjx1lRTPfQ/n8kchHeaO+A79S14FNhBa+AapVcshAxYOOhN37TKgidl+N897XbxavoFjgYeXPcaEpibOS5vDrwPF3LbmfW4Bbt7wHDaBo30zeG7dc5SWlnJd7lHcHl3EUo8b35a5vLzpVYa5hzHFN4VVgVWsDq5u+VJIs6UxxjsGf9TPpqZNBLdafZKc4qTAWYBLXJSGS/HZfKxduJb1sp7McBar3SmwdQ3zcvNwiYu61XUUrylmeGw4r1S9wvOuc3mi8lEy7Bl4t3op3lbMjOgM3pK3+Nbr3yJmYogRLvBcwIKPFjCRiZyZeSYvb36Z1ze/jtfm5ercq5nKVAjChPwJvFn3Jh9v+xhjDGO8Y5idM5shriEA7AzvZFHjIjb4N7ClfguFjkIudQ7jq/XP8NkbT+IN7ODamlpeyMzn+tevZ6h7KAsaFnCR5yimBJ5i26PfoqjkXX486Bx+64twzxf3ADDUPZRLCi5hSK5QVfY+AzLH84OMMSxsWMjywHJCgRCnpJ/C4SmHk+fc/QV1IlCbWsuq4CoqwhX47D7ynfkMcg0izW4FAn78uFPclIZK2RXZRWOsEa948dq8ZDoyybZn47V5iRAhGAtSE62hJlJDfbQeEcGOnVR7Kmm2NFLtqWRHIhzx+Y+wlxUTcmXha9zG3LE3sjAlnZ3hndRF63A6naR50shz5JHnzGNEQznDyj8lhrCu35Fs9eVSHa2mJlJDdbQaGza8NitPKbYUUmwpeG1eYsQImzCBWIDGWGPLczAWxCEOnOJsedjEhh07NmzEiBExESJErGcTIWqiLdsxYgiCiGBr/ic2DIaosb7oo0R3b0eiRIlvm+juYEeanwSDwW3cBOuDxEyM5n/N6aMmau1pPmZimPi/GDGM2b3dGGvkn4v+yWU5lzHaO3qP3ymhWIj36t7j7bq3iZkYM1JnMM03jUJXIQZDaaiUFYEVLCpdRHFJMV6bl2m+acxImcFQ99BWgUvMxCgLl7GhaQMbmzayIbiBqmjHv6rd4qafsx8FzgL6O/tT6CqkwFlAuj0dp+zZbypqogRjQYImSCAWsLZj8W0TpCnWhMvmwi1uPDYPHvHgtXlJs1uft/au2czv97f8jlTdr6fKO2ZivFLzCm+nCtNChttLVrH1nRdZmzlu3ye3o7sCn+Y+Nd9J2GeA/a+Tam07kLhAVFF8X3tpSkTEgfX3YGWbNBhj7gPuA8ganmWWhjfhsi/m6jk37nem3nUsgu2vMScrzLiZc/ZMsOIFomE/kE3h4ELmTElIEzmK4MP3MdwWYs6c+P433+Z5BOP1tux717MI1jzEzHwHYwsy+OKT7ZBZwKiJozi66BjuKf8/sup2MKf8YT5r2A7p+QyfMpnA2KHw/veZvO0VCqIGMvrjOOxUygPTkaX/YsZXb+eoZf9k6c7FLPS42RGr5lt1fs494VyKNxte2rmA8n65rHdE+UedYc7VD3Dn4ju5f9n9fOwEryed22f9nuMHn8jz65/nniX38Hz18xSkFPDNyd/k+IHHs7F2I3O3zeXzss/J8GYwzTGN0yafRszEWFu9lk21m2iKNjEuZRyXj7+cMdnWqKX1y9bz98WLqbXZ+Cgzh6P6z+Ck404CYKR/JK8//zp3Vt5JZbCSH0z/ASdOOLGlWFO2pfCTD39CijOFu4+9m4l5E1uOzWEO36j9BptrNzM9fzoZ7taddc/m7L3+vC/m4tY7di6Htc9w+OBUKG0EcXHnif/gxve/z4KGBVw+7nJ+OP0H8PA2Bm55GdzpjDrvtzyaUcSWui1EY1GGZiR+Ge3uknYCnVuPbG95Li4u3v3Z6iqHTYG3f4GzoQLO+D3Hjzub4zt5am9evKOrynrhzoX8dv5v+Wf5P7lkzCVcM/Eacr25NIYbeXH9i9y/7H4qAhWcPPhkbj7sZgaktt+/MBqL8mnpp7y88WXe3fouH/k/Iteby+D0wbhsLmpDtWyt24o/bM0CnOPJYXrRdCbnTWZE5gj6+frhiNdGlzaUsqVuC1vqtrC5djPra9bzWc1nre6X5kzDaXe2BHFN0SYCHS1e2UmpzlSyPdnkeHPI9mST6c7E6/DidXjZWbuT8fnjcdldOG1OHDZHu897O+awOUhxpuCyawfmfemW3yX7UB2s5hcf/YLiumLOH3U+Px13Dc5HziZn5R/g8v9B0fT9vmZ3TWDYXQuSfgaMjC94uh24CLikTZqXgCuAT4Dzgff21r8HoJ+jH9dOvJb/LP8PdaE60l3pe0u+h+qB02H7a2R/eCdMutTqAJ1o0UPYMwbitrv3/CXgcBF0evDU7YBYFBBY8SLuvAEEo7tnAG3MsUZZeVe9AiVLSBHrP2ljpBEAvyeNfL8TVr5IxqgTILyOmqYa6uKTF+YdfSu5Q+fgmHsdpQ2l7GzcSf+UQjx5Yzmm6BiKtxXz/3JzSLO5+EpDI/hy+dHhP+K8l8/j3RQf19TUMiff6tB749QbGZY5jHXV6/jqyK8yOH0wABeMuoCvjvgq5YFy8rx5LU1YY3PGcvqw01veS3FxMXNGzNlnuTb30n/p7L+wfcmdXDlgVsuxAakDuHjMxTy26jFGZI7g4rGtg5FjBx7LvK/Ns/6ilz17GQzLGMawjAONw+NyR1qrFG9fBNsXQ+EUphcewTvnv0NjpLGlPxAXPgqfPwrDjrUmJoOWsjvk5I6Ei5/s6Vz0WocVHMaTpz/JXxf+lSdWP8Hjqx4n15tLdVM1kViE6fnTue3Y2/Y5Z4ndZueoAUdx1ICjaAg38M6Wd/i09FO2+7fTGGkky53FpGGTGJczjun50xmYNrDDZqyhGUM5qvCoVvvqQnWsr17PptpNVAQqqApWEYlFWq7htrtJdaWS5kwjxZlCmmvPZ6/DSzASpDHcSEOkAX/IT12ojupgNVXBKiqDlVQFqqgKVrGlbgtfNH1BIBIgEAkQMzFeXvByl5S51+Elw51BpjuTDFcGGe7dj0x3JpnuTLI8WWR7ssnyZJHlzsLn3PtoQnVgPt7xMT//8OfUNNXwkxk/4eIxF1ufrctfgge/Ao+dC1e8Av0n7dd1u2sCQyfwbeCY+K5i4F/GmHCHJ3VCvM/ODVhLYNiB/xhjVojIb4CFxpiXgAeAR0VkPVCFFRzt0+yi2dy/7H7m75jPyUNO3q98VTXVAJAVqIU3fwpfvS/h4EbYWAzH/Qxf6SstgUqigM2ONxSAzfOsYZZ1JXjHHEWwasnuNDErCPJufB+iUVKmfR2q59EYjgc+kQCpo0+H408lI38MPH8qtaFaKgJW16bco27CZneS78tnZ+NOttRuafnS/cqQr/C3BX9hO0GuduThMevBl8PA9AG8cPYL7Pjftzms+n045iuAtTDrGcPOaLcs7DY7BSkF+1V+HZmQOwGHzcFfltwJwKzCWa2O33r4rZw0+CTGZI/B3U7/BXtHi+l1NYcbhh4LSx6HUAMcZdUa+py+1r8YU3Lg6JuSkyd1yPM5ffxi5i+4bNxlvLn5TXb4d5DtyeaYomOY2m/qfvezSXGmcPaIszl7xN5rNPdHuiudafnTOjVp3N6kOFPI8XY8OKQ9xhjeKX6Hw2YeRigaImIihKNhIrEI4Vjnn8OxcLyzf631x2JTHTVNNayrWUdtUy21TbVETbTdPHjsHisIigdCzdvZnuyW1821VFmeLNJd6do/qhP8IT93L7mbx1Y9xrCMYfzzxH+2tAQAkDEArngZHjwNHj0Xrn4Tctufu6w93dXUdQ/WwMl/xl9fFt/3jQO9sDHmNeC1Nvt+kbAdBC7Y3+tOzJ1Iuiudedvn7XfgUx2sJsWZgvvom+GDv8DEC62F2ADm/tHqVDj1Urzl77Zb7Rs0UTx2F3z6L2s0mcODp99YguXzMcYgIi3neadfA5Egvjk/hhdOpSFsdaGqD9eT6suDESeQEbH6z9Q21VLRWEGmOxOn3Won75/Sn23129hSt4XThllLM6S6UvnP4T9n8SvXc35a/JePz3oekDqAAWc/AOvfhkl7nRWgy3kdXk4ZcgqvbnyVIwqOYGD6wFbHReSAf+F2mTGnWWUEML5nF0hVvcvQjKF8a/K39p2wjxERnOIky9O1E3G2ZYzBH/a31EDVNNW0bFcHq6lu2r29uW4zVcGqDpv3HOIg0xOvOXJbNUeZ7szdtUhtgqZMd2by/oA7CMRMjJc3vMzfFv2NymAlF42+iJsPu7llUE8rWYOtpq7/nGwFP9e8Ben990zXju4KfA43xiTOJvSeiHzRTffqEg6bg1mFs5hXMo+YibXbPNKRymAlWe4sa66flS9a8/tc+pw1x8+yZ+CYWyC9EK/Du8d/iOa/OjwDj4DFL1k7j7oRd3wUV1O0CY/DszvwOfUPYHPii4+AaQg3EI1FCUQCpDqtWZ09Dg9uu5u6pjrKA+W7m1qA0dmjeXzV4wCMyto9hH5MwXTG1PuhaZ01RNWZsPxGah5MaduimBw3TbuJEZkjOGv4WT1y/06bdBFsnW81Ae1ntWtvEQ6HKSkpIRgM9nRWekxGRgarVq06oGt4PB6KiopwdmKCRdX9RIQ0VxpprjQGpQ/q1DnBSNAKjpriwVHzo6m6VdC0qmoVVcEq6kP17V7HIQ7yU/IpSCmgMKXQek4tpH9Kf/qn9qfAV9ArmtuMMXxQ8gH3fnEvyyuXMylvEnedcBcTcifs/cTcEfD1/8LDZ8JjX4WrXgPvvgPh7gp8oiIy3BizAUBEhmFNw3VQm100m9c3v86qylX7NSFSdbCabG+21eRxydPw0Blw/3HWwfyJcPTNgFV13dw01ax5CKp36HGQORmiITj6+3jXPw9Y/4GaA5/mTnqANVGhzUVjuLGlY2Jz4AOQ4cpoaerK8+4eBZRYXTgpL+EL2hcPjkJ+a86Qg0RBSgHfmHjAFYXdz+Vr3cTZB5WUlJCWlsaQIUP6bHV+fX09aWkdDavfN2MMlZWVlJSUMHRod3WVVN3N4/DQP9UKTjojHAtT21S7uxYpHhyVB8opbSil1F/KwrKF7GrctUezW5Y7i4KUAvqn9KcwtZABqQPon9qfAakDKEwt3O8+q8nkD/l5deOrPL32adZVr2NA6gB+f/TvOWPYGZ2vfBgwDS56HB6/AJ64CC57YZ9rn3VX4HMLMFdENmIN+BwMXNVN9+oyswbMQhA+KPlgvwKfqmAVhSnx+QSyh8G178Hy58FE4fBrW2pP2qvxaX7tcfrgmKtb9nvs1jnBqPXXc2O4cY/qvhRnCo2R3YFPmmv3L9wMTwa1TbWUB8oZmrH7F+iEnN0R9IjMhDZRp8eq6Qn5W5q5lNofwWCwTwc9XUFEyMnJoby8vKezopLIaXOS681tVTvfnkgsQnmjFQztaNjBzoad7PDvaBlx90npJ3t8x6Q6UylMLdwdFKXsDooKUwrJcGck9f9sVbCK+Tvm887Wd5hXMo9gNMiY7DH8btbvOG3YaS1/3O+XYXPgq/fDs1daj4se32vyLg18RMRhjIkYY94VkZFA8wQUa4wxTXs792CQ7clmUt4k5m6by7enfLvT51UHq1tXyaUVwMzr90jndXjZ1bir1b5gvD+Ox9F6Zffm183HA5HAHlWaPqePhrA1CgJ2L2MBkOnOpCJQsUeNz4isEdx6+K0UpRa1DFNtle/K9dazUl+CBj0HTstQdcRhc7TUJE1jz/6NxhhqmmrY0bCDHX7rsd2/nVJ/Kdv92/ls52ct/UKb+Ry+lsAo35ffMm1AtiebHE8O2V7reX9rjkLREJWBSjbWbmRt9VrWVq9lddVq1tesByDXm8s5I87hrOFnMSF3woF/7sefA423was3w0t7n5amq2t8FkDLT+Ovxpj9nxSnhx038DjuWHwHOxt2dmp0kjGG6mC11cdnH3wO3x6jujoMfNrU+AQigT1qfFoCn+amLtfupq4CXwGvb3qdiInQP6V1detl4y5rP4PZw6zAJ2/PCdOUUkod3ESkpZP0+Jw9Wy2MMdSF6loHRQ1WULTDv4PlFcupDla3mo28mUMc+Gw+sl7Iwm1343F48Ng9CGKNkjMRIrEIjeFGKoOVe/RbyvflMzJrJKcNPY0j+h/B+JzxXd9x+/BroLES5v5+r8m6OvBJDNlmdZjqIHb8oOO5Y/EdvLf1PS4Zu+8OvXWhOiImstflKpp5nV4C4dbVkM2BjdfeZnX2NjU+jZF2mrocKVYfn3iNT5pzd1NXQUoBEWMtjNjZdmb6jYV1b0HBxH2nVeogZLfbmThxIpFIhKFDh/Loo4+SmZnZZdcfMmQICxcuxOFw8MQTT3D99XvW7HbWQw89xMknn0xh4Zebdl+p/SUiLXMTjc0Z226aSCxCTVONNYdSoJKqYFXL9srNK8nMziQQDdAUaaIp2oTB4LA5cIsbh83BgNQBHOk5klxvLjneHAanD2ZU1qg9JortNsfcAg3lQAfL89D1gc9eJwo8FAzNGMqQ9CHM3Ta3U4FPdbAaoFNDKvfax6eDpq7m4+3V+KQ4U6x5JkK1AK0+WInBTtsanw4dcyuMPt1ahV6pQ5DX62XJkiUAXHHFFdx999387Gc/6/L71NTU8M9//vOAA58JEyZo4KMOKg6bY3d/ozZfa8X1xcw5dk5PZKvzRODUP7O3wKerF84dIyJLRWRZwvZSEVkmIku7+F7d5vhBx7Nw58KWWY/3piporWnTqRofh5fGSCOJE0nvq6mredRXIBLA52inj0+kgbomK5+JbbDDM4a3bHd6dmB3Kgw6wlo8ValD3MyZM9m+3VrRZsOGDZx66qlMnz6d2bNns3r1agCeffZZJkyYwOTJkznmGGu+1Yceeogbbrih5TpnnHHGHusT/fjHP2bDhg1MmTKFW265Bb/fzwknnMDs2bOZOHEi//vf/wDYvHkzY8eO5dprr2X8+PGcfPLJBAIB/vvf/7Jw4UK+/vWvM2XKFAKBA1vWQSmVYB/fYV1d49N+3dkh5riBx/Gf5f9hXsm8VksttKe5xqczgY/P4SNqooRj4ZZ1YZqbupoDnWZ7NHWFGylKbb3Kkc9hDY9vDtASR3VN6TeFQWmDyPHm6Bo0Kul+/fIKVu7Y9x8O+2NcYTq/PLNzoy2j0Sjvvvsu11xzDQDXXXcd9957LyNHjuTTTz/l+uuv57333uM3v/kNb775JgMGDKCmpqbTefnTn/7E8uXLW2qXIpEIL7zwAiJCU1MTRx55JGedZc09tW7dOp588knuv/9+LrzwQp577jkuvfRS7rrrLv76179y2GGH7Vc5KKUOTJcGPsaYLV15vZ4yKW8SOZ4c5m6bu8/AZ1fAGqW1r2GIQEtTVSAS2B34xAObts1YnW3qagw3UttUS5ozrVVHMZvYePKMJ9tdykGp3ioQCDBlyhS2b9/O2LFjOemkk/D7/Xz88cdccMHuCd2bmqya1FmzZnHllVdy4YUX8tWvfvkZt40x/PSnP6W4uBiHw8H27dspKysDYOjQoUyZMgWA6dOns3nz5i99H6XUgeuueXwOaTaxMWfgHN7Y/AahaGivNSa7GnfhEEenm7rAqr1p7o/TYR+f9pq62gxnT3enUx+upzpYTbp7z6GGB/PEVap362zNTFdr7uPT2NjIKaecwt13382VV15JZmZmS+1MonvvvZdPP/2UV199lenTp7No0SIcDgexWKwlTWdmon788ccpLy/ngw8+IDs7myFDhrSc53bv/uPDbrdrs5ZSPUw7c3Tg+EHH0xBuYMHOBXtNV9ZQRp4vr1PD8poDl8QOzvszj0/bGp8cjzXR4Oa6zRrkKJXA5/Nx5513ctttt+Hz+Rg6dCjPPvssYNXOfPGFtYLOhg0bOOKII/jNb35DXl4e27ZtY8iQISxZsoRYLMa2bdtYsGDP3wFpaWnU1+8erltbW0u/fv1wOp3MnTuXLVv2Xfnd9hpKqeTolsBHRL7XmX0HsyP6H4HX4aV4W/Fe0+1q3EU/X79OXTOxqatZh8PZ7bubuppXEG4b+DTXMm2u25y8oYJKHSKmTp3KpEmTePLJJ3n88cd54IEHmDx5MuPHj2/pfHzLLbcwceJEJkyYwFFHHcXkyZOZNWsWQ4cOZdy4cXz3u99l2rQ9J4rLyclh1qxZTJgwgVtuuYWvf/3rLFy4kCOPPJJHHnmEMWPG7HFOW1deeSXf+ta3tHOzUknWXU1dVwB/b7Pvynb2HbTcdjeHFxzOJzs+2Wu6ssayVot97k1LU1fCJIbBSBC72PeYRdlus+O2uwlEAi2BUttRXc2BTyAS0MBHKcDv97d6/fLLL7dsv/HGG3ukf/7559u9zuOPtz/lfWL/nCeeeKLVsU8++aTdtbqWL1/esv3DH/6wZfu8887jvPPOa/c+Sqnu06U1PiJysYi8DAwTkZcSHnOBqq68VzLM7D+TrfVb2e7f3u5xYwxljWWdrvFpDlwSa3wCkQAeh6fd6bpTnCk0hBtaJj30OtvU+Hh39ytqWStMKaWUUh3q6hqf+UApkAvclrC/Hjhk5vFpNrNwJgCf7PiE80edv8fxulAdgUigU0tbQAc1PtHgHkPZE9M3Rhpb0nfUxwegKK31UHellFJK7amrA5//GmOmi0ijMeb9rrywiPwfcCYQAjYAVxljatpJtxkr0IoCEWPMl54kY1jGMPp5+3UY+JT4SwD2mF+nI801NonLVgQjwT06NjfzOa15eppriNoGPonz9mjgo5RSSu1bVwc+NhH5KTBKRG5ue9AYc/sBXPtt4CfGmIiI/Bn4CfCjDtIeZ4ypOIB7Ada6JkcWHsn7Je8TjUX3GLm1rX4b0Pmgo7mpq20fn7YBTWL6xkhjh318bGJjWMYwNtZuZGDawM69KaWUUqoP6+pRXRdh1bQ4gLR2Hl+aMeYtY+KrblpNakmp4phZOJPaplpWV63e41hJvVXj09mgo71RXYFooMOmruaZmRvD7Td1ATx06kP8dtZvNfBRSimlOqGrZ25eA/xZRJYaY17vymu3cTXwdEfZAN4SEQP8yxhzX3uJROQ64DqAvLy8PdbiaRaLWhOZPf7R45yccXKrYwsqF5BmS2PBR3uf66clY8YgCKvXr6a40rpfWYU1u2t792+sbaQ8XM7CLxYCsGLJCmpcNXukyyST4pL2838w8vv9HZa36nrJKu+MjIw+Py9NNBrtkjIIBoP6f6QT9HdJcvWW8u7SwEdELjXGPAaME5E91u3aV1OXiLwDtNdT+GfGmP/F0/wMiADtjzeFo40x20WkH/C2iKw2xnzQTl7uA+4DGD16tJkzZ06H+Xr4pYfZ5d5F2zSPvPkIw73D99i/N74nfOQNyGPODOuce1+5lyxPVrvXePvDtynfWc6w0cOgAo6ZeUyvqNkpLi7erzJTByZZ5b1q1ao9hnInm91uZ+LEiUQiEYYOHcqjjz5KZmYmAKeeeirz58/n6KOP5pVXXumW+7c3nP3L8Hg8TJ06tQty1Lvp75Lk6i3l3dVNXSnx51T2bOZK3dfJxpgTjTET2nk0Bz1XAmcAXzeJS5y3vsb2+PMu4AVgxgG+J2b2n8niXYtbNVEZY1hXvY5hmcP261peh3ePmZs76uPTPKqrIdzQ8lop1bHmJSuWL19OdnY2d999d8uxW265hUcffbQHc6eUOhh0aeBjjPlX/PnXbR/AAS3VLCKnArcCZxljGjtIkyIiac3bwMnA8vbS7o+ZhTMJx8IsLlvcsm9L3RZqmmqYlDtpv67VHMw029twdp/Thz/sb1l9PcOlkxQq1VkzZ85k+/bdc3CdcMIJPV4jpZTqeclcpPRm4I4DOP8uwI3VfAUw3xjzLREpBP5tjDkNyAdeiB93AE8YY/acrnU/TcufhsfuYe62ucwaMAuAJeVLAJjSb8p+Xcvn8LU7gWF7MlwZRGIRyhrL8Dq8OO3OL5V/pZLu9R/DzmVde82CifCVP3UqaTQa5d133+Waa67p2jwopQ55yQx89pyaeD8YY0Z0sH8HcFp8eyMw+UDu0x6vw8uxA4/l7S1v8+MZP8Zhc7Bk1xLSXGkMzRi639dq29TVUeCT5ckCYFvdNl2EVKlOCAQCTJkyhe3btzN27FhOOumkns6SUuogk8zAp90+OYeKrwz9Cm9ufpP5pfM5esDRfFH+BZPyJmGT/Wst9Dq8LX12jDF7bepqXn9rS/0W0t0a+KhDSCdrZrpacx+fxsZGTjnlFO6++26++93v9khelFIHp65eq6teROraedQDh/RiUrMHzCbLncXDKx5mc+1mNtRsYGre/o+6SOzjE46FiZlYh52Ws9xWjc/Ohp1a46PUfvD5fNx5553cdtttRCKRfZ+glOozurpzc5oxJr2dR5oxJpm1S13OZXfxrcnfYn7pfK59+1q8Di/njdr/lZV9zt19fJqf3XZ3u2kzPZkt2xr4KLV/pk6dyqRJk3jyyScBmD17NhdccAHvvvsuRUVFvPnmmz2cQ6VUTzikg5Fku2jMRSyvWM780vncNP0mcr25+32NxD4+zTMyp7raH+mf6c5sd1sp1T6/39/q9csvv9yyPW/evGRnRyl1ENLAZz/YxMYfZv/hgK6RGPj4w9Yv6RRnSrtpE2t5BqQOOKD7KqWUUqrrJzBU+9Dc1BWNRVs6Oac626/xcdh2x6WD0gclJX9KKaVUb6aBT5I1BzkNkYZ91vgATM6zRudrjY9SSil14LSpK8mam6/8IX9L4NNRjQ/AHcfdwTNrnmF8zvik5E8ppZTqzTTwSbI0lzVlfn2onoZQvKmrg87NALneXK6fcn1S8qaUUkr1dtrUlWTNQU59qL5TTV1KKaWU6joa+CRZqxqfeOdmn8PXk1lSqtew2+1MmTKFCRMmcOaZZ1JTUwPAkiVLmDlzJuPHj2fSpEk8/fTTPZtRpVSP0cAnydKdVh+f+rBV4+Nz+LDb7D2cK6V6h+YlK5YvX052djZ33303YM3k/Mgjj7BixQreeOMNbrrpppagSCnVt2gfnyRrW+Ozt47NSqkvb+bMmSxduhSAUaNGtewvLCykX79+lJeXk5mZ2UO5U0r1FA18kizFZfXnqQ/V4w/5W14r1Zv8ecGfWV21ukuvOSZ7DD+a8aNOpY1Go7z77rtcc801exxbsGABoVCI4cOHd2n+lFKHBm3qSjKnzYnX4aUuVKc1Pkp1sUAgwJQpUygoKKCsrIyTTjqp1fHS0lIuu+wyHnzwQWw2/fWnVF90yNT4iMivgGuB8viunxpjXmsn3anA3wE78G9jzJ+SlslOyvHkUBWsoipYRZ4vr6ezo1SX62zNTFdr7uPT2NjIKaecwt133813v/tdAOrq6jj99NP5/e9/z5FHHtkj+VNK9bxD7U+evxljpsQf7QU9duBu4CvAOOBiERmX7EzuS643l4pABRWBii+10KlSau98Ph933nknt912G5FIhFAoxLnnnsvll1/O+eef39PZU0r1oEOmxqeTZgDrjTEbAUTkKeBsYGWP5qqNXG8uG2s3UhWsIseT09PZUapXmjp1KpMmTeLJJ59ERPjggw+orKzkoYceAuChhx5iypQpPZpHpVTyHWqBzw0icjmwEPiBMaa6zfEBwLaE1yXAEe1dSESuA64DyMvLo7i4uOtz24GmqiY2+jcCUF1STXFd8u59MPD7/Ukt774uWeWdkZFBfX19t99nb0pLS1vl4YknnmjZrqqq2iN9V+c3Go12yTWDwaD+H+kE/V2SXL2lvA+qwEdE3gEK2jn0M+Ae4LeAiT/fBlz9Ze9ljLkPuA9g9OjRZs6cOV/2Uvtt9RermbdkHgBHTDqCOUOSd++DQXFxMcks774uWeW9atUq0tLSuv0+B7P6+vouKQOPx8PUqVO7IEe9m/4uSa7eUt4HVeBjjDmxM+lE5H7glXYObQcGJrwuiu87qPTz9WvZ1qYupZRSKnkOmc7NItI/4eW5wPJ2kn0GjBSRoSLiAi4CXkpG/vbHpNxJLdtjs8f2YE6U6lrGmJ7OwiFPy1Cp7nXIBD7AX0RkmYgsBY4Dvg8gIoUi8hqAMSYC3AC8CawCnjHGrOipDHdkeObuidP2tjK7UocSj8dDZWWlfnEfAGMMlZWVeDyens6KUr3WQdXUtTfGmMs62L8DOC3h9WvAHkPdDyYiwpOnP6mTF6pepaioiJKSEsrLy/eduJcKBoMHHLR4PB6Kioq6KEdKqbYOmcCnt5mQO6Gns6BUl3I6nQwdOrSns9GjiouLtVOyUge5Q6mpSymllFLqgGjgo5RSSqk+QwMfpZRSSvUZoiMwQETqgTU9nY8+JBeo6OlM9CFa3smjZZ1cWt7JdSiV92BjTLurgGvnZssaY8xhPZ2JvkJEFmp5J4+Wd/JoWSeXlndy9Zby1qYupZRSSvUZGvgopZRSqs/QwMdyX09noI/R8k4uLe/k0bJOLi3v5OoV5a2dm5VSSinVZ2iNj1JKKaX6DA18lFJKKdVn9PnAR0ROFZE1IrJeRH7c0/npzURks4gsE5ElIrKwp/PT24jIf0Rkl4gsT9iXLSJvi8i6+HNWT+axN+mgvH8lItvjn/ElInLa3q6hOkdEBorIXBFZKSIrROR78f36+e4GeynvXvH57tN9fETEDqwFTgJKgM+Ai40xK3s0Y72UiGwGDjPGHCoTYB1SROQYwA88YoyZEN/3F6DKGPOneGCfZYz5UU/ms7fooLx/BfiNMX/tybz1NiLSH+hvjFksImnAIuAc4Er0893l9lLeF9ILPt99vcZnBrDeGLPRGBMCngLO7uE8KfWlGGM+AKra7D4beDi+/TDWLy/VBToob9UNjDGlxpjF8e16YBUwAP18d4u9lHev0NcDnwHAtoTXJfSiH+5ByABvicgiEbmupzPTR+QbY0rj2zuB/J7MTB9xg4gsjTeFadNLFxORIcBU4FP0893t2pQ39ILPd18PfFRyHW2MmQZ8BfhOvKlAJYmx2rX7btt2ctwDDAemAKXAbT2am15GRFKB54CbjDF1icf089312invXvH57uuBz3ZgYMLrovg+1Q2MMdvjz7uAF7CaGlX3Kou31ze32+/q4fz0asaYMmNM1BgTA+5HP+NdRkScWF/Cjxtjno/v1s93N2mvvHvL57uvBz6fASNFZKiIuICLgJd6OE+9koikxDvJISIpwMnA8r2fpbrAS8AV8e0rgP/1YF56veYv4bhz0c94lxARAR4AVhljbk84pJ/vbtBRefeWz3efHtUFEB+OdwdgB/5jjPl9z+aodxKRYVi1PAAO4Akt664lIk8Cc4BcoAz4JfAi8AwwCNgCXGiM0Q65XaCD8p6D1QxggM3ANxP6oKgvSUSOBuYBy4BYfPdPsfqd6Oe7i+2lvC+mF3y++3zgo5RSSqm+o683dSmllFKqD9HARymllFJ9hgY+SimllOozNPBRSimlVJ+hgY9SSiml+gwNfJRSBy0RyUlYCXpnwsrQfhH5Zzfd8yYRuXwvx88Qkd90x72VUt1Ph7MrpQ4JyVj5XEQcwGJgmjEm0kEaiaeZZYxp7K68KKW6h9b4KKUOOSIyR0ReiW//SkQeFpF5IrJFRL4qIn8RkWUi8kZ86n1EZLqIvB9fJPfNNrPQNjseWNwc9IjId0VkZXxRxqegZU2oYuCMpLxZpVSX0sBHKdUbDMcKWs4CHgPmGmMmAgHg9Hjw8w/gfGPMdOA/QHszh88CFiW8/jEw1RgzCfhWwv6FwOwufxdKqW7n6OkMKKVUF3jdGBMWkWVYy8+8Ed+/DBgCjAYmAG9bLVXYsVaXbqs/sCrh9VLgcRF5EWv5j2a7gMKuy75SKlk08FFK9QZNAMaYmIiEze7OizGs33MCrDDGzNzHdQKAJ+H16cAxwJnAz0RkYrwZzBNPq5Q6xGhTl1KqL1gD5InITAARcYrI+HbSrQJGxNPYgIHGmLnAj4AMIDWebhSH6MrUSvV1GvgopXo9Y0wIOB/4s4h8ASwBjmon6etYNTxgNYc9Fm8++xy40xhTEz92HPBqd+ZZKdU9dDi7UkolEJEXgFuNMes6OJ4PPGGMOSG5OVNKdQUNfJRSKoGIjAbyjTEfdHD8cCBsjFmS1IwppbqEBj5KKaWU6jO0j49SSiml+gwNfJRSSinVZ2jgo5RSSqk+QwMfpZRSSvUZGvgopZRSqs/QwEcppZRSfYYGPkoppZTqMzTwUUoppVSfoYGPUkoppfoMDXyUUkop1Wdo4KOUUkqpPkMDH6XUAROROSJS0tP5aEtEVojInJ7Oh1Lq4KGBj1K9jIgUi0i1iLh7Oi89zRgz3hhTvD/niMgQETEi4o8/ykTkFRE5qZuy2VE+NotIICEffhEpTGYelOqNNPBRqhcRkSHAbMAAZx3AdRxdladDWKYxJhWYDLwNvCAiV7aXsBvL60xjTGrCY8f+nKw/R6X2pIGPUr3L5cB84CHgisQDIlIoIs+JSLmIbBKR7yYc+5WI/FdEHhOROuDKePqXRKRKRNaLyLUJ6b0i8lC8ZmklcHjCsVtE5Lk2975TRP4e3y4Wkd+KyEciUi8ib4lIbkLaZ0Vkp4jUisgHIjI+4dhDIvJPEXk9XgPykYgUiMgd8bysFpGpCek3i8iJ8W27iPxURDbE77tIRAbuq0CNMTuNMX8HfgX8WURsCdf+kYgsBRpExCEiP064/koROTchL3YRuU1EKuLlf0O8Zmm/ghMRccff7474447m2r3mJsd4vnYCD+7tfYvIGBF5O/4zXiMiF+5PXpQ6FGngo1TvcjnwePxxiojkA8S/rF8GvgAGACcAN4nIKQnnng38F8iMn/8UUAIUAucDfxCR4+NpfwkMjz9OoXWQ9Rhwqohkxu/tAC4CHklIcwlwFdAPcAE/TDj2OjAyfmxxPC+JLgR+DuQCTcAn8XS58fzf3kHZ3AxcDJwGpANXA40dpG3P8/E8jU7YdzFwOlbtUATYgFXjlgH8GnhMRPrH014LfAWYAkwDztmPeyf6GXBk/DqTgRlY5dGsAMgGBgPX0cH7FpEUrJqsJ+Lv6yLgnyIy7kvmS6lDgzFGH/rQRy94AEcDYSA3/no18P349hHA1jbpfwI8GN/+FfBBwrGBQBRIS9j3R+Ch+PZG4NSEY9cBJQmvXweujW+fAaxMOFYM/Dzh9fXAGx28p0ysZruM+OuHgPsTjt8IrEp4PRGoSXi9GTgxvr0GOLsT5Tgkfk9Hm/2e+P5ZCde+eh/XWtJ8T+A94JsJx05s7z5t8u4HauKPF+P7NwCnJaQ7Bdgc354DhABPwvF23zfwNWBem33/An7Z059lfeijOx9a46NU73EF8JYxpiL++gl218QMBgpFpKb5AfwUyE84f1vCdiFQZYypT9i3Bau2qPn4tjbHEj0MXBrfvhR4tM3xnQnbjUAqtDQH/SneLFOH9eUPVm1Os7KE7UA7r1Np30CsoOHLan7vVQn7EssAEblcRJYklPEEdue9bZm1OrcD5xhjMuOPcxKuk1jeW+L7mpUbY4IJrzt634OBI9p8Jr6OVWOkVK+lHd+U6gVExIvVBGSP9+0AcAOZIjIZ60t2kzFm5F4uYxK2dwDZIpKWEPwMArbHt0uxvlBXJBxL9CJwj4hMwKrxubWTb+USrCa3E7GCngygGpBOnr8327Ca5pZ/yfPPBXZh1aA0aykzERkM3I/VjPiJMSYqIkvYnfdSoCjh3H32L+rADqygJbHsEzs9mzbpO3rf24D3jTFJHa2mVE/TGh+leodzsJqmxmH1/ZgCjAXmYfX7WQDUxzu9euM1KxNE5PD2LmaM2QZ8DPxRRDwiMgm4Bqv/DsAzwE9EJEtEirCanBLPD2L1t3kCWGCM2drJ95GG1W+nEvABf+jkeZ3xb+C3IjJSLJNEJGdfJ4lIvojcgNWv6SfGmFgHSVOwgo7y+HlXYdX4NHsG+J6IDIj3f/rRl3wfTwI/F5G8eKfwX7D759Kejt73K8AoEblMRJzxx+EiMvZL5kupQ4IGPkr1Dldg9dfZaqxRSDuNMTuBu7CaLwSr5mUKsAmowPpCzNjLNS/G6u+yA3gBq+/HO/Fjv8ZqYtkEvMWeTVlgNXdN7OBYRx6JX3c7sBJrhFpXuR0r+HgLqAMeALx7SV8jIg3AMqyOwRcYY/7TUWJjzErgNqzO1mVY7/2jhCT3x++9FPgceA2IYAWs++N3wML4dZZhdez+3V7St/u+4zV5J2N1at6B1fz4Z6yaQqV6LTGmba2oUkodOBEZhNXBusAYU9fT+TnYiMhXgHuNMYN7Oi9K9SVa46OU6nLx4fM3A09p0GOJNzGeFp/vZwBW09kLPZ0vpfoarfFRSnWp+PwwZVhNVqfG+wv1eSLiA94HxmCNPnsV+J4GhkollwY+SimllOoztKlLKaWUUn2GzuMDZGZmmhEjRvR0NvqMhoYGUlJSejobfYaWd/JoWSeXlndyHUrlvWjRogpjTF57xzTwAfLz81m4cGFPZ6PPKC4uZs6cOT2djT5Dyzt5tKyTS8s7uQ6l8haRtrPJt9CmLqWUUkr1GRr4KKWUUqrP0MBHKaWUUn2G9vHpYzaW+/nlSytYsq2G3FQ3J47txyVHDGZo7qHRYU0ppZQ6EFrj04fsqAlw/r2fsHx7LWdPKWRobgoPfrSZE29/n1+/vIJAaH+XDFJKKaUOLVrj04f85uWVNIYivPrd2QzPSwVgV32QO95Zx0Mfb+aTDZXce+l0hmjtj1JKqV5Ka3z6iEVbqnhjxU5uPH5kS9AD0C/Nwx/OnciDVx7Ozrog59/7CevK6nswp0oppVT30cCnj3jkky2keRxcNWtIu8fnjO7Hf781ExG46L75bCj3JzeDSimlVBJo4NMHVPqbeH3ZTs6bVoTP1XHr5oh+aTx93ZEAXPPQZ9Q0hpKVRaWUUiopNPDpA95aWUYoGuPCwwbuM+2wvFT+ddl0dtQEuf7xxUSisSTkUCmllEoODXz6gHdWllGU5WVs/7ROpT9sSDa/P3cCH2+o5J/FG7o5d0oppVTyHPSBj4gMFJG5IrJSRFaIyPfi+7NF5G0RWRd/zorvFxG5U0TWi8hSEZnWs++gZwVCUT5cX8GJY/MRkU6fd8FhAzl7SiF/f3cdn2+t7sYcKqWUUslz0Ac+QAT4gTFmHHAk8B0RGQf8GHjXGDMSeDf+GuArwMj44zrgnuRn+eDx4foKmiIxThqXv9/n/ubsCRSke7jp6SU0NEW6IXdKKaVUch30gY8xptQYszi+XQ+sAgYAZwMPx5M9DJwT3z4beMRY5gOZItI/ubk+eHy4rhyfy87hQ7L3+9wMr5PbL5zM1qpGfvXSim7InVJKKZVch9QEhiIyBJgKfArkG2NK44d2As1VGgOAbQmnlcT3lSbsQ0Suw6oRIi8vj+Li4m7Ld0+auzzA0DT4+MMPvvQ1zhjm5NlFJeRGyjmi/4F/ZPx+f68t74ORlnfyaFknl5Z3cvWW8j5kAh8RSQWeA24yxtQl9lcxxhgRMftzPWPMfcB9AKNHjzZz5szpwtweHOqCYUrefIvvnjCSOXNGfenrzJodo+Rfn/DYGj+XnHIUA7N9B5Sv4uJiemN5H6y0vJNHyzq5tLyTq7eU90Hf1AUgIk6soOdxY8zz8d1lzU1Y8edd8f3bgcRx20XxfX3O51triBm+VDNXIqfdxt+/NhVj4Kanl+gQd6WUUoesgz7wEatq5wFglTHm9oRDLwFXxLevAP6XsP/y+OiuI4HahCaxPmXh5irsNmHKwMwDvtagHB+/P3cCi7ZU84/31h945pRSSqkecCg0dc0CLgOWiciS+L6fAn8CnhGRa4AtwIXxY68BpwHrgUbgqqTm9iDy2eYqxhemk+Lumh/z2VMG8P6acv7x3jqOGJbNUcNzu+S6SimlVLIc9IGPMeZDoKMJaE5oJ70BvtOtmToEhCIxlmyr4ZIZg7v0ur85ZwJflNTw3Sc/55UbZ1OQ4enS6yullFLd6aBv6lJfzvIdtQTDMQ4fktWl1011O/jXZdNpDEW5/vFFhCLa30cppdShQwOfXur9NeWIwIyhB9axuT0j+qXxl/MnsXhrDX94bVWXX18ppZTqLhr49ELGGF5fXsr0QVnkpLq75R5nTCrk6llDeejjzbz0xY5uuYdSSinV1TTw6YWWltSytszPudMGdOt9fnLaGA4bnMWPn1vKurL6br2XUkop1RWSEviIyEwRuTu+aGi5iGwVkddE5DsikpGMPPQlzyzchtth48zJhd16H6fdxt1fn4bP5eCbjy3Cr+t5KaWUOsh1e+AjIq8D3wDeBE4F+gPjgJ8DHuB/InJWd+ejrwiGo7z0xQ5Om9ifdI+z2++Xn+7hrkumsqWykesfX0wwHO32eyqllFJfVjJqfC4zxlxjjHnJGLPDGBMxxviNMYuNMbcZY+YAHychH33Cmyt2Uh+McMH0oqTd88hhOfzh3AnMW1fOxffPZ0dNIGn3VkoppfZHtwc+xpiKrkijOufZhSUUZXk5clhOUu/7tcMHcfcl01hX5uf0O+cxd/WufZ+klFJKJVkymro2icjGhEfi6w3dff++pKS6kY82VHD+9CJsto7mfOw+p03sz0s3zCI/3cNVD33GH19fRVjX9VJKKXUQSUZT12HA4QmPGcBtWLMxL0nC/fuM5xZZa7Gen8RmrraG5aXy4ndm8fUjBvGv9zdy0X3z2a5NX0oppQ4SyWjqqjTGVALVwBnAXGAmcLox5rzuvn9fEYsZnl20jaOG51CU5evRvHicdn5/7kT+cfFU1uys57S/z+PtlWU9miellFIKktPU5RSRbwIrgdnAOcaYS40xK7v73n3J/E2VlFQHuPCwgT2dlRZnTi7klRuPZmC2l2sfWcivXlpBU0RHfSmllOo5yVikdBMQAe4AtgKTRGRS80FjzPNJyEOv9+zCEtI8Dk4ZX9DTWWllSG4Kz337KP70+moe/GgzC7dUcekw7fejlFKqZyQj8HkHMMDk+CORATTwOUB1wTCvLy/lvGlFeJz2ns7OHtwOO788czxHDc/lh89+wa92hpF+W7nwsIGIJL8TtlJKqb6r2wMfY8yV3X2Pvu6VL0oJhmNccBA1c7XnpHH5vP692VxzXzE/em4Z76zaxZ++OrHb1hNTSiml2kpGH59LRaTD+4jIcBE5ei/H/yMiu0RkecK+X4nIdhFZEn+clnDsJyKyXkTWiMgpXfdODl7PLtrGqPxUJhcd/Kt/FGZ6ueVwDz8/fSzvrynnlDvm8d5q7fislFIqOZLR1JUDfC4ii4BFQDnWUhUjgGOBCuDHezn/IeAu4JE2+/9mjPlr4g4RGQdcBIwHCoF3RGSUMabX9qhdv6uez7fW8PPTxx4yzUY2Eb4xexhHj8zlpqeWcPVDC/n6EYP42elj8bmS8ZFUSinVVyVjOPvfgWnAk0AecEL89Xas5SzOM8as28v5HwBVnbzd2cBTxpgmY8wmYD3WvEG91rMLS3DYhHOmdu9K7N1hTEE6/7thFtcdM4wnFmzl9Ds/ZOHmzv6olVJKqf2XlD+v4zUub8cfXeUGEbkcWAj8wBhTDQwA5iekKYnv65Ui0RjPLd7O8WP6kXuI9pNxO+z89LSxHDe6Hz989gsu+NcnXDFzCLeeOlprf5RSSnU5Mcb0dB72SUSGAK8YYybEX+djNZEZ4LdAf2PM1SJyFzDfGPNYPN0DwOvGmP+2c83rgOsA8vLypj/zzDNJeS9daWVllL98FuQ7U9wcXnDoBAl+v5/U1NQ99gcjhmfXhnh3a4Q8r3DVBDfjcg6+UWqHmo7KW3U9Levk0vJOrkOpvI877rhFxpjD2jt26HxbJjDGtPSGFZH7gVfiL7cDiUObiuL72rvGfcB9AKNHjzZz5szplrx2p7deWIbPtZ0bvnocXtehEyAUFxfTUXmfeiIs2FTFj55byl8+a+DiGYP4yWljSPc4k5vJXmRv5a26lpZ1cml5J1dvKe9krNXV5USkf8LLc4HmEV8vAReJiFtEhgIjgQXJzl8yRKIx3li+kxPG5h9SQU9nzBiazevfm803jxnG059t5ZS/faCrvSullOoSSQt8RCRfRB4Qkdfjr8eJyDWdOO9J4BNgtIiUxM/5i4gsE5GlwHHA9wGMMSuAZ7CWx3gD+E5vHdE1f2MVVQ0hTp/Yf9+JD0Eep52fnDaW56+fRZrHwVUPfcZ3Hl/MztpgT2dNKaXUISyZTV0PAQ8CP4u/Xgs8DTywt5OMMRe3s7vDc4wxvwd+/+WyeOh4ddkOUlx25ozO6+msdKspAzN5+cajuf+DjfzjvfUUr9nFzSeP5oqZg3HYD8kKS6WUUj0omd8cucaYZ4AYgDEmAvTK2pjuFo43c504Lv+gXKKiq7kddm44fiRvf/9YZgzN5revrOTMuz5i0Zbqns6aUkqpQ0wyA58GEcnBGomFiBwJ1Cbx/r3GJxsqqW4Mc1ovbebqyKAcH/+58nDuvXQaNY0hzrvnY37y/FJqGkM9nTWllFKHiGQ2dd2M1fl4uIh8hDWZ4flJvH+v8erSUlJcdo4d1bubudojIpw6oT+zR+Zxxztr+c9Hm3lzRRk/OnU0F0wfiM12aMxerZRSqmckrcbHGLMYa4mKo4BvAuONMUuTdf/eIhyN8caKnZzUR5q5OpLidvCz08fx6nePZnheCj96bhlfvedjlpVoJaJSSqmOJXNU13eAVGPMCmPMciBVRK5P1v17i4/WV1AbCHP6pMKezspBYUxBOs98cya3XziZkuoAZ939IT99YZk2fymllGpXMvv4XGuMqWl+EV9i4tok3r9XePmLUtLcDmaPzO3prBw0RISvTivivR8ey5VHDeGpBVs58fYPeH1ZaU9nTSml1EEmmYGPXRKWDxcRO+BK4v0PecFwlLdW7OSUCQV9upmrI+keJ788czwv33g0+eluvv34Yr792CJ21evcP0oppSzJDHzeBJ4WkRNE5ASs1drfSOL9D3nFa3ZR3xThrMnazLU34wszePE7s7j11NG8u3oXJ93+Af9dVMKhsC6dUkqp7pXMwOcW4D3g2/HHu8CtSbz/Ie/lL0rJSXFx1PCcns7KQc9pt3H9nBG89t3ZjOyXyg+f/YIrHvyMkurGns6aUkqpHpSUwCferLXKGHOvMeb8+ONfvXU5ie7gb4rwzqoyTpvYX2cs3g8j+qXyzDdn8uuzxrNwcxUn3v4+d723jqaIfvSUUqovSso3aDzAWSMig5Jxv97o7ZU7aYrEOGuKNnPtL5tNuOKoIbx987EcN7off31rrbXw6Rpd+FQppfqaZFYdZAErRORdEXmp+ZHE+x/SXv6ilMIMD9MHZfV0Vg5ZAzK93HPpdB65egY2m3DVg5/xjYcXsrVSm7+UUqqvSObMzf8viffqVaobQnywtpyrjx6qMxN3gWNG5fHG947hPx9t4s5313Hi397nm8cM45vHDifVncz/EkoppZItmTM3vw+sBtLij1XxfWofXlteSiRmOFMnLewyLoeNbx07nPd+MIdTxxfwj/fWM+f/5vLY/C1EorGezp5SSqluksyZmy8EFgAXABcCn4qIrtXVCc8tKmFkv1QmDEjv6az0OgUZHu68eCovfmcWw3JT+fmLyzn17/N4d1WZDn9XSqleKJl9fH4GHG6MucIYczkwA23+2qcN5X4Wb63h/OlFJMz/qLrYlIGZPP3NI/nXZdOJxQzXPLyQi++f///Zu+/4uur68eOv990rezZJ9y7dLbtAGZUhUmUpgoqiiAsXCqJ+UUB/OFBBVGRvEARkjwINs4UOSlu6R9omTbPXzd33fn5/nJPkpk3atE3vbZPP8/G4j3PumZ/7yUnuO5/J8u1N6U6apmma1o9SGfhYlFLJ3Wga+nJ/EblPRGpFZHXStlwRWSAiG81ljrldROR2EdkkIitFZGb/f4zUenpZJVaL8IUZpelOyoAnIpx5VDGv/fhkbpx/FBtr/Jz/zw/4xgNLWF2lJz/VNE0bCFIZ+LwqIq+JyOUicjnwEvByH857ADhrt23XAW8qpcZiDIR4nbn9bGCs+boS+Fc/pDtt4gnFM8urOGVcAYWZrnQnZ9CwWy189fgRvPPzU/nZmeNZtq2Jc//+Hlc9vIz1u9rSnTxN0zTtIKSycfPPgH8DU83XXUqpa/tw3jtA426b5wMPmusPAp9P2v6QMiwGskVkSD8kPy3e31TPrtYQF84qS3dSBiWv08b3Th3Du9eeyg9PH8t7m+o567Z3uPrxj9lYowMgTdO0I5Ec6gacIvJ7pdT15vo8pdSCA7jGCOBFpdRk832zUirbXBegSSmVLSIvArcopd4z970JXKuUWtrDNa/EKBWioKBg1pNPPnlAn+9QuvOTEKvq4/ztVA/2AdSN3e/34/P50p2M/eaPKF7ZGmXB9iiROMwqsvLZUXZGZR3eE8Yeqfl9JNJ5nVo6v1PrSMrvU089dZlSanZP+1IxaMlZwPXm+h+A/Q589kYppURkv6M3pdRdwF0A48ePV3Pnzu3PZB20lmCUj994gy8ePZx5p01Od3L6VXl5OYdbfvfVuUBje4QHPqjggfe3cuOiECeNzee7c8dw3Kjcw7IB+pGc30candeppfM7tQZKfh+pkz7VdFRhmcuORtNVwNCk48rMbUecF1fuJBxL6Gquw1Cu18FP5o3j/etO4xdnT2BtdRuX3L2Y8//1AW+s0d3gNU3TDmepKPEpFJGfAJK03kkp9ZcDuObzwNeAW8zlc0nbvy8iTwDHAi1KqeoDTnmaKKV47MPtTCjOYEppVrqTo/Uiw2Xn26eM5msnjOCpZZX8++3NfPOhpYwp9PGNE0dy/sxSXPbDuxpM0zRtsElFic/dGCM1+5LWk197JSKPA4uA8SJSKSJXYAQ880RkI3CG+R6MXmJbgE3mvb7bvx8lNVZWtvDpzlYuPW74YVl1onXnslv5ynHDWXjNXP76xWk4bRauf3YVx/+/N/nTa+uoaQ2lO4mapmma6ZCX+CilfnuQ51/Sy67TezhWAd87mPsdDh5ZvA2Pw8rn9UzsRxS71cIXZpTx+emlfLS1kXvf28o/yzfz77e3cO7UIVwxZxRTynQJnqZpWjrpGRkPMy2BKC+s3MkXZpSR4bKnOznaARARjh2Vx7Gj8tjeEOD+D7by5JId/G/FTmYNz+HLxwzjs1OH6GowTdO0NDhSGzcPWM98XEkomuDSY4elOylaPxiW5+GGzx3FoutP51efnUhje4SfPvUJx/7+TW58YQ2bav3pTqKmadqgokt8DiNKKR79cDvTh2YzWTdqHlAyXXa+edIorpgzkkWbG3j0o+08vLiC+97fyrEjc/nyscM4a3IxTpsuBdI0TTuUUhb47N6by9QCLFNKrUhVOg5nH2xuYFOtnz9dODXdSdEOERHhhDH5nDAmn7q2ME8t28HjH23nh0+sINtjZ/60Ei6cNZTJpZm6YbumadohkMoSn9nm6wXz/bnASuAqEXlKKfXHFKblsHT3u1vI9zn43DTdqHkwKMhw8t25Y7jq5NG8t6meJ5fu4PElO3hw0TbGF2Vw4awy5s8ooTBDz9OmaZrWX1IZ+JQBM5VSfgARuQFjotKTgWXAoA58Nta0Ub6+jp/MG6cbvQ4yFotw8rgCTh5X0Nm4/enllfzu5bXc8uo65o4r4IJZZZw2oVA/G5qmaQcplYFPIRBOeh8FipRSQREJ93LOoHHPu1tx2S1cdtzwdCdFS6Msj53LjhvOZccNZ1Otn6eXV/LM8kreXFeLz2njM5OK+Nz0EuaMycdu1X0TNE3T9lcqA59HgQ9FpGOU5c8Bj4mIF1iTwnQcdurawjz7cRUXH11GrteR7uRoh4kxhT6uPWsC13xmPIs2N/D8J1W8snoXz3xcRY7HztlThnDetBKOGZGLZQBNYqtpmnYopSzwUUrdJCKvAieYm65KmjX90lSl43D08KIKookEV8wZle6kaIchq0WYMzafOWPzuenzk3lnQz3Pf7KTZ5dX8diH2ynKdPLZKSWcNbmYWcNzsOogSNM0rVcp7c6ulFoiItsAF4CIDFNKbU9lGg43/nCMhxZv44yJRYzM96Y7OdphzmmzMm9SEfMmFRGIxHhjbS3Pr9jJI4u3cd/7W8n3OZg3qYgzjyrmhNH5OGy6OkzTNC1ZKruznwfcCpRgzKY+DFgHHJWqNByOHlm8jeZAlO+dOibdSdGOMB6HjfOmlXDetBLaQlHK19fx2qe7eH7FTh7/aAcZThunTSykjBizQlE9ErimaRqpLfG5CTgOeEMpNUNETgUuS+H9DzuBSIy739nCyeMKmD40O93J0Y5gGS47n5tWwuemlRCKxvlgcz2vrt7FG2traWyP8O+VCzh6RC6nTijgtAmFjC7w6XGCNE0blFIZ+ESVUg0iYhERi1JqoYj8LYX3P+w89uF2Gtoj/PB0Xdqj9R+X3cppE4o4bUIRsXiCe59bSLOnlIXravn9y+v4/cvrKMtxc+r4Qk6bUMhxo/JwO3Q3eU3TBodUBj7NIuID3gEeFZFaoD2F9z+shKJx/v3OFk4Ynces4bnpTo42QNmsFsbnWpk7dwLXnjWBnc1BFq6vZeG6Ov67rJKHF2/DabNw7Kg8ThpjNKAeX5She4lpmjZgpTLwmQ8EgR9j9OLKAm5M4f0PK098tJ26tjB/v2RGupOiDSIl2W4uPXY4lx47nFA0zkdbG3lrXS3vbqzjdy+vBSDf5+CE0UYQNGdMPiXZ7jSnWtM0rf+kJPARESvwolLqVCABPNhP160A2oA4EFNKzRaRXOA/wAigArhYKdXUH/frL8FInH+Wb+aYEbkcNyov3cnRBimX3do5YjRAdUuQ9zbW8/6met7b1MDzn+wEYFSBlzlj8jlxTD7Hjswl26PHmtI07ciVksBHKRUXkYSIZCmlWvr58qcqpeqT3l8HvKmUukVErjPfX9vP9zwo972/ldq2MHd8eWa6k6JpnYZkublo9lAumj0UpRTra9o6A6H/LqvkoUXbEIHxRRkcOzKXY0flcfSIXAoynOlOuqZpWp+lsqrLD6wSkQUkte1RSl3dz/eZD8w11x8EyjmMAp+m9gh3lm/mjImFHDNSt+3RDk8iwoTiTCYUZ/LNk0YRiSVYsaOZD7c08FFFI08ureTBRdsAGF3g5ZiReRw3KpdjRuYyJEtXjWmadvgSpVRqbiTytZ62K6UOuNpLRLYCTYAC/q2UuktEmpVS2eZ+AZo63u927pXAlQAFBQWznnzyyQNNxn55fF2Y1yti3HSim7KMwTm4nN/vx+fzpTsZg8ahyO9YQrGtNcH6xjjrmhJsbIoTjBn7CtzC+FwrY7ItjMm2UuITLIOk67x+tlNL53dqHUn5feqppy5TSs3uaV/KAh8AESkAUErV9dP1SpVSVSJSCCwAfgA8nxzoiEiTUipnb9cZP368Wr9+fX8kaa8qmwKc9ue3mT+9hD9dNO2Q3+9wVV5ezty5c9OdjEEjFfkdTyjWVrfy4dZGPtzSwJKKRpoCUQAynDamD8tmxrAcZprLLPfAHExRP9uppfM7tY6k/BaRXgOfQ17VZZa63AB8H7CYm2LA35VSB9WrSylVZS5rReRZ4BigRkSGKKWqRWQIxijRh4U/vroeEfjxvHHpToqm9SurRZhcmsXk0iyumDMSpRQVDQGWb2ti+fYmlm9v5o63NpIw/88aU+hj5rBsZg7LYfqwbMYU+LDp2eY1TUuBVLTx+TFwInC0UmorgIiMAv4lIj9WSv31QC5qzupuUUq1meufwege/zzwNeAWc/lc71dJHWN27Z1cfdoY3T1YG/BEhJH5Xkbme7lgVhlgzEu3ckdzZyC0YE0NTy6tBMBlt3BUSRZTSo3X1LIsRhX49ISrmqb1u1QEPl8B5iX3vFJKbRGRy4DXgQMKfIAi4Flz2H0b8JhS6lURWQI8KSJXANuAiw8q9f0gGk/wf8+tpizHzXf1nFzaIOVz2jhhTD4njMkHQCnF1vp2VlW1sLKyhVWVLTy5dAcPfFABgMdhZXKJUYo0tSyLKWVZjMzz6sEVNU07KKkIfOy7dTcHjHY+InLAFf1KqS3AHg1llFINwOkHet1D4f73t7Kx1s89X52Ny66nBtA0MEqFRhX4GFXgY/70UsBoK7Slzm8EQlXG67GPtnHf+wkAvA4r44szmDgks/M1oTgDrzOVHVQ1TTuSpeKvReQA9w0I1S1B/vbGRk6fUMgZk4rSnRxNO6xZLcLYogzGFmV0VpHF4gk2mcHQmp2trKlu5flPdvLoh9s7zxue52FicUcwZARGZTluPRGrpml7SEXgM01EWnvYLoArBfdPG6UU1z+zioRS3PC5o9KdHE07Itmsls4xhToopahqDrK2uo111a2s3dXK2uo2Xluzi46OqhlOGxOGGEHUuEKfEVAV+ijIcOqASNMGsUMe+CilBm3dzlNLK1m4vo4bPjeJYXmedCdH0wYMEaEsx0NZjod5SSWp7eEY62vaWFfdxtrqVtbtauWlldU8Fox2HpPpsnUGQWOSAqIhWS4dEGnaIKArxg+RquYgN724hmNH5vK140ekOzmaNih4nTZmDsth5rCuobuUUtT7I2ysbWNTrZ8NNW1srPGzYE0NTyzZ0Xmcz2ljdKGPMQU+RhV4O3uljcjz4nYM2v/fNG3A0YHPIRCLJ/jxf1YQV4o/XThN90LRtDQSEQoynBRkODlhdH63fQ3+MJtq/Wys9ZvLNt7bVMfTyyu7HVeS5WJEflcwNKrACIiG5nqw6/GHNO2IogOfQ+Cvb2zgo62N/PWL03QVl6YdxvJ8TvJ8To4dlddte3s4RkVDO1vr29laZy4b2nlxZTUtSdVmVoswLNfD8DwPw3I9RBqjhPJ3MSzXw9BcNxmugTlCtaYdyXTg08/e3lDHPxZu5ouzh/KFGWXpTo6maQfA67RxVEkWR5Vk7bGvqT3Clvp2KuqNgGhLvZ/tjQGWbWuiLRTjifXLOo/N8djNIMh4DTNfQ3M8DMl26dIiTUsDHfj0o811fq5+/GMmFGfw2/m6F5emDUQ5XgezvA5mDd9zCsCXFixk2MSZ7GgKsL3ReO1oDLC6qoVXV+8iluiaG9FqEYZkuSjNdlOS7aYk28WQLDel2W6GZLsoyXaTqUuMNK3f6cCnnzS1R/jGA0uwWYS79UCFmjYoee3CFHOU6d3FE4pdrSG2NxjBUEdwtLM5yEdbG9nVGiKe6D5ptM9p6wyISrLdlGQZAdGQbBclWW6KMl264bWm7Scd+PSDYCTOlQ8vpbolxOPfOo6hubpdj6Zp3VktQmm2UaJz/Oi8PfbHE4q6tjBVzUGqW4LsbA6yszlkLFuCrK5qoaF9zzFfM102ijJdFGW6KMxwUpjpoijTaW5zUpjhojDTidOmAyRNAx34HLRgJM4VDy5h2bYmbr9kRo/F35qmaftitQjFWS6Ks1xAz39HQtE41S1mMNQcpLYtTG1riJrWMDVtIT7c2k5tW4hoXO1xbo7HbgRHZoBUkOEkz+swl07yMxzkeZ3keh16clhtQNOBz0FoD8e46pFlLNrSwK0XTePcqSXpTpKmaQOYy27t7FLfm0RC0RyMUtMaoqY1RG1r2FhvMwKk2tYQG3a10dAe7jFAEoFcj4M8n4N8s9dbV4DUsc1Y5nodeBxWPfCjdkTRgc8BqmkN8Y0HlrC2upU/XjCV82fqHlyapqWfxSLkeh3keh1MHJLZ63FKKVqDMerbw9S3hWloj1DvD1PvN5YN5vqqymbq/RH84ViP13FYLWR77OR4HJ3LHK+dbI+DnI733bY5yHLbdamSljY68DkASysa+cHjH9MSjHLv147m1AmF6U6SpmnafhERsjx2sjx2Rhf49nl8KBo3gqO2MA3tYerbIjQGIjQFIjS3R41lIMrmOj9N26I0ByLderF1vzdkuuzkeIxgKMttJ9NtJ9NlM5d2Mt02c7nndt1eSTsYOvDZD+FYnH+Vb+bvb22iNNvNU1cd3+M4H5qmaQONy27tbJzdF0op/OEYTWZQ1BEYGetGYNSxbA5E2N4YoDUYpTUU7bEKLpnTZiHTbceWiFC85n0yXF3Bkc9pw+uw4XVajXWnrXO5+zanzaKr6QahARn4iMhZwG2AFbhHKXXLwVwvkVC8vmYXf359A5tq/Xx+egk3fX6yHpVV0zStFyJChstOhsu+XyPYK6UIRRO0hqK0haK0BGO0hqJmUBTrDI5agzE2b6/C6bTREoxS2RigNRTFH44Riib6dC+rRfA6rEmBUUeQZMXrsOFyWHHbzZej+9KVvM1uxe2wGNvM7S6bVU9XdJgacIGPiFiBfwDzgEpgiYg8r5Ras7/Xag1FeXXVLu58ZzNb6toZme/l/st11ZamadqhIiJGQOGwUpTp2uux5eUNzJ177B7bY/EE7ZE47eEY7eEY/nCM9nDcXMZoj8S61s3t/lDX9tq2EO3hOOFYnGAkTiAaR+29EKpHTpulW3Dksltx2Cw4bBac5sths+CwWnDauu9zJO+zW3FaLXvst1ks2K2CzWrBZhFsVjGWFgtWi2C3diyl873NYqwP5pKuARf4AMcAm5RSWwBE5AlgPtBr4BNNwOqqFsKxOLWtYTbU+Hl/cz3LtjURTygmDcnkji/P4OzJQ3SDPE3TtMOczWohy20hy90/pfJKKSLxBKFIgmA0brwixjIUjRPoWDeXHftDPRwbjiWIxBK0hWI0xBJE4gnCsTgRc3skliAcS/TaPqq/dARAycGRRTpeRgBqsYBgvLeIEAwG8C1/G4sI0nGMua/jHNntPQoUCqVAmXlpLI33dHtvHpd0LLvvM7cnlDH2VTyhSKjdl/v47IcyY9OkFNiR9L4S2PNfgiRV/gTn/v29btsmDcnkqlNGcer4QmYNzxnU0bGmadpgJiI4bVacNitZpKaJQyKhzKBot8AoniAcNZbReIJY3Piyj8YTxjKhiCcSRM3tsXjXejSRIB7vOiYWV8TMY2JmEKEUJMzAwggwjMAkoaCmJkR+gY9Egs7tHUFI8jkd14gnFGIBwWIGSkYg1fF1KiIIHdu7v8c8rmu/dF3DDNCsYvRitIoRxCWvr9xL3g7EwKdPRORK4EqA7MISfjjTid0CPrtQ7LXgssWBXfgrdvF2RVqTOuD4/X7Ky8vTnYxBQ+d36ui8Ti2d3wYBHOb6PpueW83XAfBnxPD52g7s5BT77V72DcTApwoYmvS+zNzWjVLqLuAugPHjx6sfX3xGalKnUV5ezty5c9OdjEFD53fq6LxOLZ3fqTVQ8tuS7gQcAkuAsSIyUkQcwJeA59OcJk3TNE3TDgMDrsRHKRUTke8Dr2EU6N2nlPo0zcnSNE3TNO0wMOACHwCl1MvAy+lOh6ZpmqZphxdRBzI4wQAjIm3A+nSnYxDJB+rTnYhBROd36ui8Ti2d36l1JOX3cKVUQU87BmSJzwFYr5Sane5EDBYislTnd+ro/E4dndeppfM7tQZKfg/Exs2apmmapmk90oGPpmmapmmDhg58DHelOwGDjM7v1NL5nTo6r1NL53dqDYj81o2bNU3TNE0bNHSJj6ZpmqZpg4YOfDRN0zRNGzQGfeAjImeJyHoR2SQi16U7PQOZiFSIyCoRWSEiS9OdnoFGRO4TkVoRWZ20LVdEFojIRnOZk840DiS95PdvRKTKfMZXiMg56UzjQCEiQ0VkoYisEZFPReSH5nb9fB8Ce8nvAfF8D+o2PiJiBTYA84BKjHm+LlFKrUlrwgYoEakAZiuljpQBsI4oInIy4AceUkpNNrf9EWhUSt1iBvY5Sqlr05nOgaKX/P4N4FdK/TmdaRtoRGQIMEQptVxEMoBlwOeBy9HPd7/bS35fzAB4vgd7ic8xwCal1BalVAR4Apif5jRp2gFRSr0DNO62eT7woLn+IMYfL60f9JLf2iGglKpWSi0319uAtUAp+vk+JPaS3wPCYA98SoEdSe8rGUA/3MOQAl4XkWUicmW6EzNIFCmlqs31XUBROhMzSHxfRFaaVWG66qWficgIYAbwIfr5PuR2y28YAM/3YA98tNSao5SaCZwNfM+sKtBSRBn12oO3bjs1/gWMBqYD1cCtaU3NACMiPuBp4EdKqdbkffr57n895PeAeL4He+BTBQxNel9mbtMOAaVUlbmsBZ7FqGrUDq0as76+o96+Ns3pGdCUUjVKqbhSKgHcjX7G+42I2DG+hB9VSj1jbtbP9yHSU34PlOd7sAc+S4CxIjJSRBzAl4Dn05ymAUlEvGYjOUTEC3wGWL33s7R+8DzwNXP9a8BzaUzLgNfxJWz6AvoZ7xciIsC9wFql1F+Sdunn+xDoLb8HyvM9qHt1AZjd8f4GWIH7lFK/S2+KBiYRGYVRygNgAx7Ted2/RORxYC6QD9QANwD/A54EhgHbgIuVUrpBbj/oJb/nYlQDKKAC+HZSGxTtAInIHOBdYBWQMDdfj9HuRD/f/Wwv+X0JA+D5HvSBj6ZpmqZpg8dgr+rSNE3TNG0Q0YGPpmmapmmDhg58NE3TNE0bNHTgo2mapmnaoKEDH03TNE3TBg0d+GiadtgSkbykmaB3Jc0M7ReRfx6ie/5IRL66l/3nisiNh+LemqYdero7u6ZpR4RUzHwuIjZgOTBTKRXr5RgxjzlRKRU4VGnRNO3Q0CU+mqYdcURkroi8aK7/RkQeFJF3RWSbiJwvIn8UkVUi8qo59D4iMktE3jYnyX1tt1FoO5wGLO8IekTkahFZY07K+AR0zglVDpybkg+raVq/0oGPpmkDwWiMoOU84BFgoVJqChAEPmsGP38HLlRKzQLuA3oaOfxEYFnS++uAGUqpqcBVSduXAif1+6fQNO2Qs6U7AZqmaf3gFaVUVERWYUw/86q5fRUwAhgPTAYWGDVVWDFml97dEGBt0vuVwKMi8j+M6T861AIl/Zd8TdNSRQc+mqYNBGEApVRCRKKqq/FiAuPvnACfKqWO38d1goAr6f1ngZOBzwG/FJEpZjWYyzxW07QjjK7q0jRtMFgPFIjI8QAiYheRo3o4bi0wxjzGAgxVSi0ErgWyAJ953DiO0JmpNW2w04GPpmkDnlIqAlwI/EFEPgFWACf0cOgrGCU8YFSHPWJWn30M3K6Uajb3nQq8dCjTrGnaoaG7s2uapiURkWeBnyulNvayvwh4TCl1empTpmlaf9CBj6ZpWhIRGQ8UKaXe6WX/0UBUKbUipQnTNK1f6MBH0zRN07RBQ7fx0TRN0zRt0NCBj6ZpmqZpg4YOfDRN0zRNGzR04KNpmqZp2qChAx9N0zRN0wYNHfhomqZpmjZo6MBH0zRN07RBQwc+mqZpmqYNGjrw0TRN0zRt0NCBj6ZpmqZpg4YOfDRN0zRNGzR04KNpaSYic0WkMt3p2J2IfCoic9Odjr0RkQdE5GZz/SQRWZ/uNPWX5M+maVr/0YGPpiURkXIRaRIRZ7rTkm5KqaOUUuX7c46IjBARJSJ+81UjIv8UEfshSmYnpdS7Sqnxh+La5nMRMj9TvYg8IyJDDsW9erl/vwbHInK5iLy3j2PKzZ/ltN22P2tun9tf6ekPIvIbEXkk3enQDn868NE0k4iMAE4CFHDeQVzH1l9pOoJlK6V8wBTgeOB7aU5Pf/i++ZnGAD7gz2lOTypsAL7a8UZE8jB+nnVpS5GmHSQd+Ghal68Ci4EHgK8l7xCREhF5WkTqRGSriFydtO83IvJfEXlERFqBy83jnxeRRhHZJCLfSjrebVZjNInIGuDopH0/E5Gnd7v37SJym7leLiI3icj7ItImIq+LSH7SsU+JyC4RaRGRd0TkqKR9D5ilL6+YJRfvi0ixiPzNTMs6EZmRdHyFiJxhrltF5HoR2Wzed5mIDN1XhiqlaoEFwKT9yMsnReQh8z6fisjspP0zRGS5ue8/gCtpX7dSETP914jISjM//iMiycf/XESqRWSniHzTLMUY04fP1Az8D5iedK0JIrLA/HmvF5GLk/adIyJrzDRXicg15vY9Sl16SoOIeIFXgJKkkrQSETlGRBaJSLP5Oe4QEcdu17pKRDaax/xDDBOBO4HjzWs17+XjPgp8UUSs5vtLgGeBSNJ9nOYztNN8/U3MEtOOn4mZ17VmOj9v5skGM7+uT7qWRUSuM5+zBvNZyDX3dZQmfk1EtotR8vZLc99ZwPVmWv0i8slePpM2yOnAR9O6fBXjD/2jwJkiUgTGH2PgBeAToBQ4HfiRiJyZdO584L9Atnn+E0AlUAJcCPxeRE4zj70BGG2+zqR7kPUIcJaIZJv3tgFfAh5KOubLwNeBQsABXJO07xVgrLlvuZmWZBcDvwLygTCwyDwu30z/X3rJm59gfOmdA2QC3wACvRzbSURKzM+42Hzfl7w8DyP/soHngTvMcx0YAcfDQC7wFHDBPpJwMXAWMBKYClxuXuss8zOdgVGCM3dfnyXpM+UB5wObzPdejODuMYx8/xLwTxHpCPbuBb6tlMoAJgNv9fVeAEqpduBsYKdSyme+dgJx4McYP7vjMfLyu7udfi5GYD0VIy/OVEqtBa4CFpnXyt7L7XcCa4DPmO+/SvdnEeCXwHEYgeA04BiMZ6xDMUaAWgr8H3A3cBkwC6OE9dciMtI89gfA54FTMH53moB/7Ha/OcB48/P+n4hMVEq9Cvwe+I/5maahab3QgY+mASIyBxgOPKmUWgZsxggwwPjiKFBK3aiUiiiltmD88f5S0iUWKaX+p5RKYHwRnQhcq5QKKaVWAPfQVWVwMfA7pVSjUmoHcHvHRZRS1cA7wEXmprOAejNNHe5XSm1QSgWBJ0kqeVBK3aeUalNKhYHfANNEJCvp3GeVUsuUUiGM/9xDSqmHlFJx4D/ADHr2TeBXSqn1yvCJUqqh9xyl3ixJqALaMYIq6FtevqeUetlM08MYX6ZgfLnagb8ppaJKqf8CS/aSBoDblVI7lVKNGAHXdHP7xRj5+KlSKoCRV/tyu4i0APUYP+MfmNvPBSqUUvcrpWJKqY+Bp+n6GUaBSSKSqZRqUkot78O99sn8OS4271kB/BsjYEh2i1KqWSm1HVhI0rOyHx4CvioiEzCqMBfttv9S4EalVK1Sqg74LfCVpP1RjOc9ihHQ5gO3mc/ppxiBVcfP+Crgl0qpyqRn+ELpXn38W6VUUCn1CUYArYMcbb/owEfTDF8DXldK1ZvvH6OrJGY4RjVDc8cLo1i9KOn8HUnrJUCjUqotads2jP94O/bv2G1fsgcx/iPGXD682/5dSesBjPYmHdVRt5jVBK1AhXlMftLxNUnrwR7e++jZUIxgsK/yzZIED/A+8Jq5vS95ufvnc5lffCVAlVJKJe3fPe9212NesefPIHm9N1crpbIwSk9ygDJz+3Dg2N0+06UYJR1glEqdA2wTkbdF5Pg+3GufRGSciLwoRtVmK0aJR/5uh/X2+ffHM8BpwPfZ81kEIy+Tfw7bzG0dGswgFoxnDHp/7oYDzybl41qMkq29PR8H8pm0QUw3wtQGPRFxY5QAWEWk44+qE8gWo0fLDmCrUmrsXi6T/GW8E8gVkYyk4GcYRukHQDVGIPFp0r5k/wP+JSKTMUoTft7Hj/JljCq3MzCCniyMqgLp4/l7swOjam71/pyklAqKyAPANWK0RepLXvamGigVEUkKfoaxfwFZ8rXKkt7vs71SB6XUKjG6mf9DRGZifKa3lVLzejl+CTBfjJ5t38copRuKURLm6ThORIp7Or/jMj1s+xfwMXCJUqpNRH6EUa3ap4/Rx+NQSgVE5BXgOxjPwO52YgQsyc/zzr5efzc7gG8opd7ffYcYnQ/2mtQDvKc2yOgSH00z2hTEMRrgTjdfE4F3MaqnPgLaRORaMRomW0Vksogc3dPFzOqrD4D/JyIuEZkKXIHRfgeML75fiEiOiJTRVWXScX4Io2roMeAjs5qiLzIw2u00YHyh/r6P5/XFPcBNIjLWbCA71WzrsldmI9evYPyX3sB+5uVuFgEx4GoRsYvI+RjtSQ7Ek8DXRWSiiHiAX+/n+Q9ilEKcB7wIjBORr5jpsovI0ea1HSJyqYhkmVU9rUDCvMYnwFEiMl2MRte/2cv9aoC83aotM8zr+c1qqO/sR/prgDJJagy9D9cDp5hVart7HPiViBSYwe3/0fWs7687gd+JyHAA85rz+3huDTDCbEemab3SD4imGVVa9yultiuldnW8MBrVXopRYnIuRkC0FaONxz0YJSq9uQQYgfGf77PADUqpN8x9v8WoDtgKvE7P1QcPYnQF72lfbx4yr1uF0W5i8X6cuy9/wQgWXsf4sr0XcO/l+GYR8WN8GR0PnGe2DYqz/3kJgFIqgtGo+HKgEfgiRjXMflNKvYLRtmohRiPljrwK9/H8CHAb8GuzVO8zGO2UdmIEeX/AKDUEI/CrMKujrsJ4plBKbQBuBN4ANgK9jqujlFqHEWBsMauBSjAatX8ZaMNoJ/WfvqTd9BZGCc0uEanf18FmO6ne0nczsBRYCazCaCx/oAMv3obRoP11EWnD+Lkc28dznzKXDSLSL+2otIFJuleXa5p2OBCRYcA6oFgp1Zru9Ax0YnTxXg04lVKxdKdH07RDR5f4aNphxiyq/wnwhA56Dh0R+YIYY9DkYJTQvKCDHk0b+HTgo2mHEXNMmFZgHsZ4P9qh822gFqNxdJz9ayOjadoRSld1aZqmaZo2aOgSH03TNE3TBg09jg+QnZ2txozZ5xQ9Wj9pb2/H6/WmOxmDhs7v1NF5nVo6v1PrSMrvZcuW1SulCnrapwMfoKioiKVLl6Y7GYNGeXk5c+fOTXcyBg2d36mj8zq1dH6n1pGU3yLS66juuqpL0zRN07RBI20lPiJSiDGRYwnGXC2rgaXmJI+apmmapmn9LuWBj4icClwH5GLMM1MLuDCmDRgtIv8Fbh0I45fEEwqrpT+mSdI0TdM0rT+ko8TnHOBbPc0/ZM7AfC7GGCZPpzph/el/LzxD3ScL+OJPbyPT3dfpcDRN0zRNO5RS3sZHKfWz3iZdVErFlFL/U0od0UEPwPRVv+dbscdY8OQ/e9z/4ZYGNta09bhP0zRN07RDI51tfLIxZr4ekZwOpdTVaUpSv4pHQwCcsuVWAsFv43F3zee4tb6dL961mNJsN+9fd1q6kqhpmqZpg046u7O/jDHz7ipgQDVobmz1MzSxkxZLJvm0sq16O8NHje/c/9a6WgCqmoPpSqKmaZqmDUrpDHxcSqmfpPH+h8z2DZ8wXeJsyD2erIbXaKvbAUmBz86kgKctFCXDZU9HMjVN0zRt0EnnOD4Pi8i3RGSIiOR2vNKYnn7TvPVjABwTPgNAsKGy2/7kwGdLXXvqEqZpmqZpg1w6A58I8CdgEbDMfA2M4ZNrPiWKjeKp8wCINFd3272zOUiG0yhsa2gPpzx5mqZpmjZYpTPw+SkwRik1Qik10nyNSmN6+o2vvYJqawkZBWXElAXadgt8WkJMKskEoKk92rm9NRjhgUcfpqZJ9/bSNE3TtEMhnYHPJiCQxvsfMt5IA357PmKx0mjJwRao6dynlKKxPcLYIh8ATYFI577X7r2Byzd+n41v3J/yNGuapmnaYJDOxs3twAoRWQh01vcMhO7smfEmajNHANBizcMVquvc5w/HiCcUQ3M8WASaA10lPrMaXzIP2pXK5GqapmnaoJHOwOd/5mtAicbi5Kkmqt0FAAScBWQEuxo3dwQ6OV4H2R5HtxIfZ8Jo9GzZrWpM0zRN07T+kbbARyn1YLrufSg1NTVQKFEkowiAiLuQHP/Kzv0tQSPwyXLbyfbYOwOheDxBrmoGAVdQBz6apmmadiiks43PgNRcuwMAe1YxAAlfETnSRjBgNGfqCHyy3XZykkp8mluacIuxnhGu2f2ymqZpmqb1Ax349LP2+p0AuHJLAbBmGgFQY40REHWU8GR57GS57bSGjPfNdUZ1WBg7eYn6lKZZ0zRN0wYLHfj0s2CzEfhk5JUAYPPmGdvbGoHuVV0eh5VAOA6Av96o3tppG4pXBVBKpTTdmqZpmjYYpLyNj4jcD/T2ra6UUlekMj39Ld5i9MjKKRoKgN2bBUDI3wRAc9Cozsp2O/A5bbRHYgBE/Q0AtLlLcca2EAwGcXs8KU27pmmapg106Wjc/GIP24YCPwasB3txERkKPAQUYQRYdymlbjvY6/aZv5YoVlwZRkmPy5cDQKS9xdgdimG1CC67BY/DRrtZ4hMN+Y2lpwjawN/WiNvj4eYX17BsexMPX3EsPmc6O+FpmqZp2pEv5d+kSqmnO9ZFZBRwPXAycAtwbz/cIgb8VCm1XEQygGUiskAptaYfrr1P9mAtjZJDkQgALl+2kaiAEfgEInG8Disigs9ppT0SQylFNGQ0fpaMYqiBYFsziYJS7nlvKwCba/1MG5qdio+gaZqmaQNWWtr4iMgEEXkEeAF4D5iklPqXUiqyj1P3SSlVrZRabq63AWuB0oO9bl+5wvW02brmWnVnZAMQDxqBT3s4htcsufE4bSgFwWicRMSYrLSjN1jY39LZ8BmgpjWUiuRrmqZp2oCWjjY+TwGzgFsxqrfiQKaYJSRKqcZ+vNcIYAbwYQ/7rgSuBCgoKKC8vLxf7jkk0kiLLbfzeoloiNOAhuptlJeXU1EVgliC8vJydm43ApsFC98lXmM0it7REGAK8OknywhUdk1g+t6yVTjq1vVLGtPN7/f3W35r+6bzO3V0XqeWzu/UGij5nY5GI0djtL25BmOiUgAxlwrol4lKRcQHPA38SCnVuvt+pdRdwF0A48ePV3Pnzu2P21Jd7qc9YwKd11OK6HtWcj02Tpg7lwe2fkSBLcLcuXNoXF7JQ2s+YdqsY9i8+Tnww7jpx0MFDC/JJzx6Gry3GIDs4mHMnTu+X9KYbuXl5fRXfmv7pvM7dXRep5bO79QaKPmdjjY+Iw71PUTEjhH0PKqUeuZQ36+DUopM1UaVKyc5MbSLG4kYM64HwnHcdqMNt8dhZH97JAbRAEGcuDOMc2PBVhr8XTV/tW1dpT+apmmaph2YlLfxMauf9rZfRKTsIK4vGI2k1yql/nKg1zkQrX4/XgmjPHndtgfEizVq9NoKRLva+HT00moPx5FYkIg4cZuNoePBVhrajWAn22OnLWR0e48nFGt3tqTi42iapmnagJOOxs1/EpGnReSrInKUiBSKyDAROU1EbgLeByYexPVPBL4CnCYiK8zXOf2S8n1oazSmmrDsFviELB5s0a4SH4/DLPFxGsv2SAxLNEDE4sKbaZT4JEKt1PsjiMCwXE9nQ+eXHrudiXcNY1vFllR8JE3TNE0bUNJR1XWRiEwCLgW+AQwBAhi9r14GfqeUOuAuTEqp9+hqM5RSbU21ADgyuwc+EasXR8zotdUeieF17F7iEyMrHiJqceF0eYkpCxJuoz0cw2O3kuW24w8bJT4zNv0LgKZtnzB8RL80h9I0TdO0QSMtI+KZY+r8Mh33PhhKKR78oAKHzcqFs8pw2LoXmIVa6gBwZhZ02x6x+XCHjKAoEI53lvR0lPwEwnHyEiFiNheIEMKJxEIEInHcDhs+p41dLUYsmKcaQSBQo0t8NE3TNG1/6aGA98Mtr6zj3+8YAceGmjZ+c95R3fZH2ozJRT1Zhd22x+w+3IEKlFLdSnw6lv5wDHsiRMzqAiAsTiQWJBCJ4XVayXDZaAvFUIkEdoySH9Ww+dB9UE3TNE0boPQkpX20qdbP3e9u4Yuzh3LBzDKeWLKdpvbu4y3G2owSn8zcom7b444M3CpAOJYgobra9rjNEp9gNI5ThYhb3YAR+FjiQaPEx27F5zSqusKhduxiTHHhatt+SD+vpmmapg1EOvDpo4cXVWCzWvj5WeP59imjCEUTPPtxVbdjVMAYe9GX073ERzky8BHo7JnVUdLjtFkQgXA0jkOFiduMwCciDiyxEMGI0RDa57LhD8fwN9d1XtMVbT5UH1XTNE3TBqy0BT4i8mZfth0OQtE4z35cxVlHFZPnczKuKIPSbDfLtzd1O06CTbTjwmJ3dt/uzMQpMRpajHEUO9r2iAhuuxV/OI5LhVFm4BO1uLAlQgQiMTwOG5kuI1BqqqvtvKYz0X7IPq+maZqmDVTpGMfHJSK5QL6I5IhIrvkaQQrn1NofC9bU0BqK8cWjh3ZumzY0i5WV3cfTsYUbaZXMPc4Xl7GtvsFoA+RNmmXdZbfSHIjglgjKnhT4xDsaN1s7BzpsaTJKfGrIxW0GPn9/cyPff2w50Xiivz6upmmapg1Y6Sjx+TawDJhgLjtezwF3pCE9+/Tap7vI9zk5flRXN/WpZdlsbwzQmNTOxxFpIWDN2uN8q8cIfFqaGoCutj0AbruVxkAEN2GwewCIWZzYEyGCUaOqq7P3V4sRONVZi/EpP9F4glsXbODFldXsaAwc0GeLxBJ8tLXfpkfTNE3TtMNaygMfpdRtSqmRwDVKqVFKqZHma5pS6rALfCKxBG9vqOP0CYVYLF3DA00tMwKclZXNndvcsRaC9j0DH7snG4CWZqNqrKOND4DLbqHJH+4W+MStLmyJCO3mYIcuc4qLcJsROLW6SvCpAHVJM7Yf6JQWt76+nov/vYhVlXo0aE3TNO3It6/vs7S18VFK/V1EThCRL5ujOH9VRL6arvT0ZklFI22hGKdP7N5geUppFiJ0q+7yxVuIOrL3uIbDa5T4+FuNkhVPcomPw0prIIBNEoijI/Bx41AhgmYbn47jY+1G4BPyDcUqiu01XW1+aloPbMzHj3c0A7Bsmy710TRN045ssXiCa59euddj0jaOj4g8DIwGVgBxc7MCHkpXmnryxtoaHDYLc8bmd9ue4bIzMs/Lmp1Gg+WOCUp3JU9QanKZVV1BfyuQ362Nj1HV5QcBixn4JGxOnCpMwKzq6qgaiwdbSShBMkugBnbuqum8Tm3rAU5iqoxFjZ4EVdM0TTvC3f9+BWuqW/d6TDoHMJwNTFJKqTSmYa+UUry5tpYTR+d1NjBONiLfS0WD0cg4GAqRKQGUO3eP49xmiU+w3fhheJNKfFx2K/FwAFxgdRqBj7K5cagIShklQh2zuSfCfgI48WQZbY1qamvpKLSraQ0RjcV5495fMfyEC5g0ZXafPmPHRKh1OvDRNE3TjmA7GgP8ZcEGzphYyL17OS6d4/isBorTeP992lTrZ3tjgNMnFvW4f1iuh8qmIEopmhuMaieLN2+P47w+o91PJGhMVOrZrcTHLUbQYXX6ACPwcWFs89i7SnwSkQBBnHjMiUwbG4xeXsWZLmrawnzw3F2cXf1Pgq/+ts+fsaNx9oG2EdI0TdO0dFNK8av/rcYicOP8yXs9Np0lPvnAGhH5COj81lVKnZe+JHX3xlojmNm9fU+HYbke/OEYTYEo7c3GsTZf/h7Hub0ZAKiIUTrUUYIDZokORvBh6yjxsXtwSgwrcTwOW9fx0SBhixOHxwik/K1NeB0lFGY6aQtFcVcvBED6WIiWSCiag8as763BKFsb6vlwxwa+NP2EPp2vaZqmaYeDF1ZW8/aGOm743CSKMh17PTadgc9v0njvPnljbQ2TSzMZkuXucf+wXCNQ2d4YQMwJSl1ZewY+YpbkuFUYt92KNal3mNtuNXp0AXaXcZyY4/m4iJjj+BiBj1OFCIsLh9lmKBz043PZOufycoaNxs++cHWfPl97JEZHjNQWivL1F66nQRYxJOs/nDJyUp+uoWmapmnp1ByIcOMLnzKtLIuvHj+Cvy3/y16PT2evrreBCsBuri8BlqcrPburbQuxfHsTp0/ouZoLYFheV+ATNgMfd1YPpUNWBzEseCSE12nttsuVVNVld3kBEEdX4JPcnd1NhKjFhdMMfCzRdrxOY/b2tlAUb8zomVUUq0YpRWVTgOZA9/nEkrWH453r/nCMxvhGAJ5bt7DXczRN0zTtcPKHV9fRFIjy+/On8L9Nz/DApw/s9fh0TlnxLeC/wL/NTaXA/9KVnt29tnoXSsFnpw7p9ZiyHCNAqWwKEPObpS05PQQ+IoRw4yG8RyNpl72rqsvh7ijxMQIqt0TwOGydc3q5JUzM6sLlMarOPITIcNrIcNlpC8XIjDcDkCXtVO6qY84fFvKth5b2mn5/2Jg7rDDDiT8UQ5npqPLv2mveaJqmadrh4KOtjTz+0Q6umDOSNlnLzYtv5kTPsL2ek87Gzd8DTgRaAZRSG4GeG9OkwYsrqxlb6GNcUUavx3gcRjVTTUuIRLsxqnJmT4EPELG48BDqNoYPdK/qcnqMEh+rs6PEJ4zHYUVEjEbOhIlZ3bjNxtJewnidRhpaAmFyVTN1GA2fF368FoAlFd3nE0vWEfgUZ7mMai+r0QapIVTT6zmpcNc7m3l4UUVa06BpmqYd3sKxONc/u4rSbDefP8bGT8p/wghHNn9a8/5ez0tnG5+wUioiYrR3EREbnaPKpFdta4iPKhr54elj93lscaaLXa0hJNhECDsus53O7iIWN17pIfBxWPao6rI5jKXbrOoyjrPiiYRptblxudzEVEfVmY0Mpw1ntAWbK0GNcwQF4SZ2Vu8EzIETwzF8zj1/1O1m4FOU6QJLGBGj6qst1sCHWxq4+90t/PPSWThsqYuP28Mxfv/yOgDmzygl02VP2b01TdM0Q2soSm1rmJZghJZglJZglGXbolS8vxWLRRCMibYzXDaKM10UZbooznJ1Ns1Ihbve3sKmWj9/v2wc17zzQ+yJBHdUrCJj5FyMWbB6ls7A520RuR5wi8g84LvAC2lMT6dXOqq5pvRezdWhOMvFrtYw1nATrZKJS6TH46JWD26zhCaZO6mqS+xm4GP27upo3AxG4OOKRmi2eRCLhQAuvElVXblidJUPZIyE8MfU11bTEfhU1Pmpe/pnWBwuTvnO3zvv3VHiMyTLhVi7ZnuPJNr54l2LAVi+vYnjRu3ZRf9QqWoOdq5/WtXK8aNTd29N07TBQilFvT/Cxto2NtX62VjjZ1tjgOrmINUtoc7vhz2sXbPX6xZkOJk5LJvZw3OZOTyHaWVZ2Kz9/8/zljo/f1+4ibOn5PPfHTdT46/m3p27KC2eCV96FL7WcyEEpDfwuQ64AliFMXHpy8A9aUxPp5dWVjO+KIOxe6nm6lCU6WJTbT0OaaLdsuc8XR1iNjdes+oqWabb3lnVhTlys9VplvhIV5sgt92KhxDYXQCExKg666jqysAIGBI5I6AeIua8XgAfL1rAV5qeBECp2+koZUsu8ekMfOI+YnQFQR9tbUxp4FPZ1DXZ6rpdrRw3KpfWYIwsjy750TRN219KKWrbwmys8bOxto2NtX42metNgWjncRlOGyPyvYzM93LimHyGZBklOFlue+dr1fIlnDTnRJRSJJRx7ZZglF2tIWpaw9S0hthU62fZtiZe+9RoMlGY4eT8mWVcNLuM0QW9ByP7+5l++exqnDbBXfIs721fzh8bWpmeNRq+/CSYtSa9SVvgo5RKAHebr8PGrpYQS7Y18uMzxvXp+OJMF7VtYVzuFoL2zF6PS9g8uKWm2wSlAJkuO24xe17ZjKCmo8qrW1VXR8mQWSoUEhdes6rL57KRIUbA4MgfCRshW9oYle9lS307rds+6bxfXfUO4t4Ccr2OzsDHKPExAieXFBCUys7jdzQGiMbjbG9uYHTeoW+CVdnUVeJT1RTk4cXb+L/nPuWfl87knD6UwKVLcyDCNc+8x0ljyvjacX17djRN0/qLUorqlhAba/1srDFLccz11lBX6U2W2864Ih9nTR7C2EIfY4t8jC3MoCjT2flPcW+2O4Vcb/cxcgozXT0WEtS2hfhoayP/+7iKu9/dwp1vb2bW8By+ddIozjyqaJ/32ptnllexaEsDnz1pDQu2v8R3W0Ocbc+HrzwL7ux9np/OubrOBW4ChpvpEEAppXqPHlLg5VXV++zNlawo00k8oXDFWmj19P6Fp+weo8THuXuJjw03YQLKicd8EBxuI7hxEsFptq/x2AW3RDrn8wqJGzdhMlw2Ml12fGaJT2bxaACyaWd0oY8t9e3Ym7d0/qTXrnifb72fzbxJRUwuNUqoirNciMUodcq2FxGKbwWJgbJR3RLi/P/8nK3hN7nrtP9wwvDxfcqXA1XZFOSL9ndxebOoai5mVZUxCeyTS3cc1oHP395dwOLYL/hg+WjOn/4kGbptkqZph0AioahqDpqBTRsba/xsqPWzudbfrXoqz+tgTKGP86aXMLYwg7GFPsYU+Sjw7TvA6Q+FGS7OnVrCuVNLqG0L8ezyKp5YsoOrHlnGtLIsfn3uJGaP2HOKp31pbI9w80trGDdqC+/UP8RnQzGuijrgG/8DX0GfrpHOqq6/AecDqw6n+bpeWlXNxCGZfS6SK8o0SmmyaaWxhwlKOzm8uCXcc4kPYYI48HQc6u7qzt7xgGbajAe6oxosiMvo1eWwkut14BMz8Mktok25yZE2SrPdOG0W8qVrBvmNG9cTiR/NS6uqKct1YxEo8DnBDHyKvUPY1QpiCTIsu4iqlgD19tcRC9zz8TOcMPwXxBOq2yCM/SlQu4U/WP8FIbikYSor/JvwjHiV5TXzUepo/v7WJvzhGNefM/GQ3P9AvVn5EmJTWL2b+N+nS/nKrOP53UtraApEuXH+UT3O9aZpmtabQCTG1vp241XXzpb6djbV+tlU6ycY7RqDrSDDydhCHxfOKmNMoc8IcAp95PmcaUx9d4UZLr59ymiumDOSZz+u4q8LNnDhnYu49NhhXHf2hP36R/Hml9bgZysW9wNMDyt+2xJBvvEqZA/t8zXS+dd4B7D6cAp6alpDLNvWxE/n9b2qojjLhYUE2bRj8RWglOKRtY/w5vY3KfYWc/2x15PpyEScXryE9vgCzHQbVV1BnLRGWnFZXbjM8XzcXTN5kGUz6mJtZjVYQ9ROnrQyPN9Lvs9JJkZVlyczh2bJIFv8tHoc5Puc5LW3UmEdwYh4Bc21lcDRgNF42Gs2ju4o8RmeVcqKVhBrkGll2bywej0ds3BsaV3Pve9t5e9vbeSpbx/fpzZQ+yujYWXnekHN+1hKN2B1VxKNv86LK8/jLws2AEbD82lDs/v9/geiPRyliRXk28bSENvIG1vfY1zOOO5+dysAE4oz+OZJo9KcSk3TDidKKRrbI1Q1B6lsClLZFGB7Y4AtdUawU90S6nZ8ababUQVeLjlmmFk9ZQQ42Z69T89wOLFZLVw0eyjnTBnCra9v4IEPtvLepnr+8eWZnTUQe/PKqmqeXfkpBeMeIjcW4baGNpxffR7y990Du1s6DvQD9IOfAy+LyNt0n6tr72NNH0KvrzEaY501ue9zpxZnusihDYso7JmF3LT4Jp7a8BQTcyfyWsVrbGjawOOffRyL04eH8B4jN2e67LgI84HLyS3/mUuOK4e7595JFnT29gLItBolPjazu3zM5sEbr2XSmHwSSnVWdXl9WVRaMsmO+2n12MnzOcgNtNLmLKQ5UE+hNHde86OKRgp8TjJcts7AZ0RWKewAsQaYVJLJSxuM8YlUwkGz2sFfXl9PeyTOg4sq+MlnRvLkqnf5+swzcNr7p2qn2L+WOFYEmGzZxFveTQBYPVt4bMnGzuMWrq/FahGueeoTfjJvHJ85Kn3z3X64fStia+OUkq/zfEUTm9s+5Y21NTisFkYX+nhmeRXfPGkU72zawR/efZKfzbmQuWOHpy29mqYdWomEoqE9Qm1biNq2MLWtIWpbw+xqDXUGOlVNwW4lN2C0vxlV4OX40XmMyvcyqsDHyHwvI/K8nT18BwKv08b/fW4SZ08p5gePfcz5//yA331hMhfN7r3UpqY1xHXPLSZv1P1YE638o6aR3C8/DUOm7ff90xn4/A7wAy7gsAhZX1u9i1EFXsYU9r3leZ7PSZ60AvCxo4WnNjzH1yZ9jZ/O/ilvV77ND976AY+tfYwzXD6cEsVj617A5bJbcBHiLwVW3DY3jaFG7ll3P78HThvdlY5MqxGYNFqjtIRbOGHiMJzbtmI3uwlmSAC/cuGz2ghYM8mJtdDqsZPrdZAjfuqcE2gO5VIkTZw2oZCF62uZnVjJRdZNeCzHgyWCSlgZm2+2o7EGKMtxIzajm3ye5Sga1Ce0RyKAlY+3N3P+Uz+igQ9ZXfdN7jj3hwddBdYejjE2tpH67AlYLUKuvwKROEcXnMqSuoV8vO0T7vUtAIuVB7ZeyzubdrAl9gLXPX80p064hNc/raGqOcBXjx+R0rEkllWvB2DGkPG8VzWSulAFH2xuYObwbE4aW8CfXlvPzuYAP3jrByScm7l64UIWDXsWj8PGIx9up8Dn4MyjilNS765p2oGLxRNGQGP2YKptC3cPbtrC1LaGqfOHiSf2rMzI8dgpzXEzpsDHKeMKKMtxU5bjoTTbTWmOmyz34GobePSIXF7+4Un84PHl/Oy/K9nZHOLq08fs8bcwkVD8+KkPUQV3oiw13FbTwOgLH4Jhxx3QfdMZ+JQopfY+d3wKNQciLNrSwJUnj9qvLyCrRciTVmqsVu5sWsDkvMn8cNYPERHmDp3LnNI53L3qbk7O+hwAmdZot/NFhC2eIHV2uPX4G1has5SnNjzF9XYPR5d1TY6aYY2xxOXke9X34nr6cZ7ImMGweFfXbx9B/LjxAUFbJqXhKuodxjxeebRS48nDH8ynMNbM8DwPxZkufhe8l5HtNbBsJhcdnc/CSh8jc4zGYWINMiTLjdiMoG5awQwW1n2M2Js5bfRE3lxfiS9jGWKBD2pe4ckl53PD859y4/yj9hq1701Vc5BJlm00530Wmygs0TeADL448XMsqVvITM97nB54B4Dnt05k6ZAKnAWrCUc+5rlP5nDNk6sBCEUTfGfuaB77cDvD8zzMHX9oe6NtaNwMwHG1H/GWI5O3YvV8Wl3Pj04/ihPH5POn19Zz/csvknBuJss6lBbnNv6+6AUKbTO48UVjTIw/XjiVi2cPJRZPsL6mjUlDMg/rQKiqpZHflt+PRSzccOrXGZKR3bmvwR8mw2VP6cCXA1k8oVi3q5UGf4TRhT5Ks3ueNFk7MKFonKZAhMb2CE3tURoDEZraI9T7jSCmI7CpaQ3T2B6mh3iGPK+DggwnRZkuxhdlUJhprBdmOCnIcFGU6aQgw4nTNnBKbfpLrtfB/Zcfw3XPrOSvb2ygsT3Mb847qtvfv7veXcfq8B+xeHZya10jx5z3bxhzxgHfM52Bz8si8hml1Ov9fWEROQu4DbAC9yilbtnXOW+urSWeUJx5AFUmeTTzf/m5RFWM35/0e+yWrqj9O9O+w6UvX8pyWy2jgZOG7/lHa1NuHJ8STh16KvnufB5f9zjv+bycFe2q4/VaIvwlNxtB8Ef93Bbcwq2RdlAKRPBJkP/5vNQvvplpbi9HBfzElcIWDxiNpL0FJEKNFAS343FYKfbZKA7VEQesa18gMWYamU4fWU6jnnWe/T2GZvwAsbWhElaOHjKFhXVgsTdxwawyFlYsRSwxPGo47dbt/PzZxZDw8P9eWceW9iU8sulWJmScwsNfuIkXPtnJ6EIfM4ftpfE3sKummnHSjr9gLGKxUtP0Gig4eegcRLnId26iXo3CRYgz1du8mdFOrrOYRnbxy5f/w5/s7zHe2civ3vsmDaEG/rPpThLRbB5yXE80Jjz24XbmTy/hrMlDiMUTBKLxfhkZurKtAk8Cit66ifleHwsLc7E4dzG17AQmDcnEYbPwQfV7OPMsPPvZOzntfxfxasWrtGz3ceKYPAKROLe8so5Tx+fx+Sd/QotlMbnqRF697K9E48I/yzcRCMf5/mljOhvTp1NLKMD8/15O2Ga0YTr3qbd485IncNlc/PSpT3hpZTVeh5UbzjuKi80gOBaP81HlJop92YzK6z7xbygax2G1YDlEDeaPZG9vqOOmF9ewqdbfue3kcQXc8LlJBzQmSke7kuqWEBYRCjKML+QjQUeA0tQepTkQoSkQ5cPtUT5duIn2cIxoPEEkliASV+YyQbRjGU8QjiU6j4nGEwQicZraI7RH4j3ezyJGiX6hGdBMKc2iMMNJoRnQdCzzfU4d5B8kh83CrRdNI8/r4O53t2K1WPj1uUYHltve/JT71/8SvNv5XWMLcz//IIw98KAH0hv4fAe4RkQiQEcxyEF3ZxcRK/APYB5QCSwRkeeVUr0ON+mPKv725gaKM11M7UMDq921ZK9jhcfNr6Z9j5FZI7vtm5I/hZFZI3mxdT0XAVm7lfjEE3E+dMY4yZqF3WpnWsE0cl25vOWu56xo15g2IdnFaqeTn468kAa3i0c+fZB6EuTHI2BzEioK848MC6z/D2vz8zinMcBp4/JoqtrEkionD9hWcVyOhy/WN+Fz2CiSRo4ZVcZxoRh3b19MYOgIPHYPvurViFJMtq2jcMmfmTRUURvJ5fhhY2ElzHMt4LiSS7G6jIlMvzThEu5bfwtWTwXfmPFZ7n53Mw9t/CsWeyvrgi9w3j3j2LCtAJtFuPbcQu5bdyuWuI3Hp01m6dYQrcEoF8wqQxFjxfpyRtqsZAwZQ9zipGqzDVvMg9vmJsdWRrNzDbu8p1KQk0l0y6OI5PKnk//At1//HiOyXuaiho8hBn9I3Mr5m6djz14BwE9e9XLsTgtns4SX1x1N8IIrueW9h2iO7eALY77AT+aewm0L1hGNxbnq1PGMyPOyeEsDTrulM1jb0RjE7bD2+CURCa9lTDyMzL2ecUuNMTitrp1MNIOe4bkeatwbGRtVFNw2hTOKx/GGYxltwXP45knTsVssXHbvh8z99//DUvA+Q2U0leodrnz+VtprT2ZlZQtWi/D6ml288P053LXsRZ7f/DQ+eza/OemHHDdsHPe/v5UPNjcwMt/Lt08ZxZAsN9FYnI0NtUTjic60todjbKlr7/yP9EB8/6VbCdu28tXRv0YQHtx8I1e9+AcKY1/gpZXVfPuUUayqbOHn/12J224lK7OZH711DVHbDpSyMMp5Og/Ov4kGf4LfPL+GDzbX47BZmD+tlGvOHE9BhpNYPM5bW1bhjwQ5deQUcjzGl3wkluDj7U1UNQfJ8zmZMSy7z8FrRz+Kw7kkrUMiofhn+Sb+/PoGRuZ7+dOFUxmW6+GjrY3c/e4Wzr7tXa4+bQzfPmU0dquFxrpqtnz4IrGmHYjdjW/4DMbPPh2b2fZuQ00bT3y0gzfW1rC9MdDtXgUZTo4ZkcucsfnMGZPP0FxPT0nqpjUUNQbEq2ljgzkYXnVLiGAkTigaJxpP4DM7TmS6bWS57WSag+Blux1kuW14HDaiiQSxuCIaTxBLKPyhGE2BCM2BqBHkBDqCnAihaKLnxKxZj90q2K0WHDaLsTTXHVYLdpt0bvM5bTg8xjFus0dsrtdBjsdBrtduLh3keB1ku+2HZMRhrWciwvXnTCSWUNz3/lYsAtVtTSxuvhHlreL/mgN89vzHYMScg75XOgcw7P8uQYZjgE1KqS0AIvIEMB/oNfCpDyawNwb56bxx+/1f5+bmzawt2sKJgRAXH/W1PfaLCOeNPo/blt/GDpuNoRF/t/2f1H1CoyhOcxhVTFaLlblD5/Ja8Bmi0XY6/qS3+raCH84Zdgrt2aU88OkDPJfh5YpIO9icPOttowwbXz/uF9y0+CbKPS5Oj7Ry4oh2LqoqoD24kXeAUq+DK2Zlcfv2Kt4HFrtsoOK0t1XjdfqwrnyCDKVoyR8DS+6hYNZZeNUQRq55GptSTHCuJPeZi/ncrBN4e5eLbw+bzMNr4fLMu7hO6nnCkwf2Zr419uc8sO6vZMbv4l/jzub2mqP468pfY3VXgkX46uMXMa3yWLarYu57T2jMfwKx+Xm8dAjvFo9GOTLZabMx3GF84c0pKKU8sp6hk0/BlVPKqp1PYo3bmFU8jaML57Ay8QprwzMZPe+75D7/beyZwjnDL2Z9/Xa2JF7kF44dFCjhvMQiLi5fSiC3EgfwYv1H2G4fxq8i76MQ/rvmFC4vLqHBvhiwUJw4hgvbLIxsWkUbHmqLT2B1YS6L6hYTJ0yxaxRN1p3MDFtgzo8pdWaSsfYOxhduptgMLL4wI5+7t1VyQls7HPc9Llr5IG8U5TKubBMnjTkPiwij8i205r7I9GCYu3ct5IdFxbydeIK26hJu++I8RuZ7uejORXz5nl9Qk/cGOWKhOaH4UfmHOHZ9hV2t4xhflMGizQ08vXwbJ41cxJLYy4RsEewxB089cgIZlgt4bnWAmFlWP70si8+Ob2FpzQtsD2/HKnbG+cYxIXseb23x8ukuPygYXeDlxKFCpmslS2rfZ1VsFVNjufys9k2wu1kZG8bH7c/x0dah/HTeXH5w+lgisQRfvnsxP/3va7hH/AubxPmS/Vg2hZtZGlnAmY9sILjzCqwWL1edMprG9gjPfFzFa2uqOX7ydhY1PUTc1gzAbz6yMtI6g6OcZ/P2ejdVAcEY9sv4T/G08QWMLWlkTeN7VAW2EFNxshyFjMqcRIl7NmurFJ/ubO2cDiXf52RModGWb0hOlLithqZQHfF4BLfFS6a9lGAol5rWODuaAjT4I/jDMawWIcfjINtjpzDDRXGmkwxvhCh+FAkc4mRDRSNLXl9FIGyhZbcv72hcmcFAx8tOhsuG12nFaTNKKsJRCEUVi7c0UNEQ4AszSrnlgimdVSTHjsrji8cM5bfPr+HPr2+gfNkqfsATnOBfwHAbREWwKnBtSND4WhYfZp/L4+pMPqix4rBamDM2n68eP5yyHA+gqGoOsbqqhQ821/PSqmrAnHIgO8RIdpAVb0RQKISKeAErIyVUBu20JQ2I57JbGFPoY0yBD4/TittuxW614A/HaA1GaQvF2NkcYm11Gy3BaO9TIWCUsmSbeZzjcVCa7eKokkxyPHayPUaA0rnutbN2xVLOOeMUXYU0QIgI/3fuJKLxBPcuWkXhsDuIu5u4pS3OORf9F0pn9st90jq4iIicB5xsvi1XSr3YD5ctxegq36ESOHZvJ1hcVeQe9Wteby0ltuw05g2fx1F5R+3zP8OWcAtXv3U1XrFwUwDE2vMv37mjzuX25bfzos/Dd6Ld/9tauGMhNqWY4+4anO+UslN4ZuMzLIs00NF06+3mNUwLhSnMKIWskczylvF0NMrXw22sD9aw0hLlOlsp5489nweW38G/syOcFmjkD+vuIwE8d+zvuH7VP/h1fpz/t/013nY8BREocuaCrZZAoJ5Mbz588hyZpUW0FE2EzR9T37iR4QVTsL7zJ0qGllA5ag4se5lmV5AJvhI8D3+eKblu1mbnYl1yF5cUFPK0cvLNRb8jYg/yaGYGs3f8hR+5PFzjzuW3rTFikVZuylfMzH+E74RCfL2wiGFxxRR/iJd9Xlq8OeRllLLTbme60wj9Jit43molOHQ8WYVTWOZ0MyHhwmqxckl+GYvqhF3HnMnEKRfw+Ee/B2J8b8ZXCbdUc9Fbi/hjwQj+fMUHvPjQhay1beNU5wR+9Zn/x1efuYgFJRv5jOUkSp0+Xm1ZTJNrHcdaSiERZal6k6ey4nzZbiOWCPKqYwMVATs+twWfsrHLanS/d3smgc2BZfbXGbf6DuL29Z3Pz2zr//iXwOxJX4TTf88xw48nZ9G1TPH9F5v6ASQSfKPodv6QiHFl5mTkhJu5bsk9LKaKo0v/wufEA43CbcP+zbX2ak4IhPm7FLGzvYbvZlmpG3IPt+fkc17ZdLZnruf3ka28i4NpsTBntAT4yO3iXVs52ZE3+c4QK9MsXmpibbxui3H7TgcWpRgXjxKwCAuCW3gz8ApHE+breTasKsEmi+K/jXYCFgvORIKTgiGub94F/gaI+Lk93ML8siFMLP0rV+16A54vxBFs5t7EJr4+rIldYuWR6l2Miho99F72evhlgWJSyS+4I5JBQWU2JGJcnd/A7x1h3m5zcFQ8zJea/GQkEnzgdvGc7yO2BpcwLy/AZXY/o5WdGoeHN+yK10I23q80npPSaAyfSrBD2djQ8BaiFBMjUc71xCh1AVjYaRU2x4UPGqzUtfT8OytKURqLMyIeZ7w9gccuRLHQbBGaI8KGFuGddguh3f9REqAaMuMJCuIJCmMJJqBwu0EQ2kRoQ/BHhK0xoTUgtFohZj4rFqXISEB2to15ZaOZOOEzvLezgTHZY8hz5eGP+mkIN3DOcTvJczxNW937/N1m4acFwwhL9xIRV0IYGnuDIdHXuWjcUEaMPZ1hJVPJdUWwW+xYLVby8hOMGNbKydMaqKpYRn31KlSgEpSfBhF22QSHUjiUwieKuVaFeDxY7Xm4MkrJzR9NcclRZOTn4XN68dq93ar6AVQ8igo2otrrSLQ3EfPXE26tIR5qRVQMi0rgdGbgcWXj9ebidudideeCNxu8BcbL1nP/l10uiw56BhgR4asnOVjc8leaE23cHsvi5K/9FzJL+u0e6Ry5+RaMAWUeNTf9UEROVEr9IkX3vxK4EmBYmZ1Lm1tZrrJ5YPUD3Lf6PnKsOUzzTGOaZxqjnKOwSPciz/Z4O3fV3UVVuIq/tmfjTsQoLy/v9X4TbaU874twwpIPaNra1U395aqXOToUpam2haXm+dFEFLuC1/3VhMrLqY/Wsy5UwzXtAd5f+glRxzaOj5Ryh72Sh8sfYlGiCmdCcXSbg/feeY+zZRJ3OZu48LXvsSFezTVNLdRubedyy1x+x8N8b9kfcCsLgiKDHJp842gLNeOpqYJwC3YZTUVjPTUFc6gNb2HK1g+Jx2P47GWs9bewcdTlbIi+zhmVuwgqB4VZc1gQ/Ij3Z9zCm/X/4IRAO2FrCVNKTifW/jR/GDefT4OfMiIW5njLcGpzJzDdsZ0/5xnd0/Nw8vvocNY7Q7zMdl7+8G1K7CXsslrJaW6ivLycvG0bwAVPf7yIUa4aNjtsfKutkfKFCxmz5hVcHsVTdRVEy9/gPw4Lp7UHCD//N/LrP+Iie5AnMizc+OofedXRyPCohT+sX4Bz/Vvcb4FLh43me2xEwoLT5ePmVpjfsAiAdwpn8qdMC7fZagE3Iyz5/LLdwrlN27GrKAszi7jJF2VE0Wc6f/5FzhEsjFew/JnbCHtKWL7+PiTLQzsnmsdkcLR9DO/ENlP7t2PwxUL8Nw9GOfJoL/4+5Y0WGPUL5lfdxROW1bz26g8YGY1xQ0kxJXi5cMSv+MBdDErx45ZV3NH0CL/0NPLYrtfZarMRczv5inUyJw47j4Q9i+HNOzg1toEXgot5ILMFaAcslKgMzo8P4zjvDApzi7EkIuwI7GRReDWfuHbyodtoY1akHJwg+YxUo5iceRTO0jLW2zNZb/5OOEN1fLX+Jf5mXcYDTWv46rYPidi8XJvrYrPNzrWOk6mffhw1VjeWRIjSUD3XtH/CrY5lfNke5eJQCy0WeCZbCOHk0thQ5rvHobKyidm8fCER49RoE6/F1vG6bxuv+7rPwzNR+fhGvIgTbEPJ8mYiKo6Khdgcb+QTVccnjmaedrQTFqOky66EocrJFOVmeMxLcdxLrrixiJU2iVNHO/WWADutQSptQVYTpZ04FiAbK5nKRomyMz3hIDfuIEPZsGIlJIpIIkrEpmggSoMtQr0tykaJEiJBAvBhwacseJWFEqxMVFYyY1a8yoISCJOglRiNiRa2BtaweMWGXv+mWJSi2OUi1zWS413DKLAX4BAHcRUnpEI0xZpoCVexI7SDOmp4dcsTsOWJXq9nXBQ8XsEleTgtLiziIEqcmIoRUxHiKkpIxYlLC8RaYNca2NX/c0vblcKVULhVApdSOJTgxIpTbDjEhgMrTmzYlLBwixO7WLFjwYEFe+fLigMLNunYbsMmggMrdqzYxYHTmoHdlkHC7iNu9RCzeYjZvMStHuJWFxwB1aKp5Pf79/o91x9WNS/k4eZn8MTj/CFaAmN/RvnyDUDvvwv7K50lPucA0805uxCRB4GPgYMNfKqA5G5FZea2bpRSdwF3AUwdUaB+2h4B1UzLlW/zdtU7LNi2gA+qPqC8rZxcVy6nDj2VibkTcVgdbG3ZyktbX6I52swfTvkDp77xZ/COYO7cub0mqnX5Wn656p/EymzMPc44bmvLVmq31fLNQICh08YzNOn8Zx78FUucUX59yik88OkDsBPOCAQoPeV0cGZw/Do/D33wAS8kFrE1UMO5oSjjRkxk3Ny5nLzDy7oX3+AdTzWneodz2dbtWE/9LATqmfmPP7H4xCuZ2VzL7xs+pCHfSc7M8whuvI8h0TrwFTOkaCz+aDvZJ99M6+uXUdbSgHXeb5hMI69te42sC35By3/fZOyI03Cf9gc+37yeV99YxIphMWqbFFef8Sdyxp3PmcCb7wR4ZesrIPCPM//BkLKTWV9ezt1zjuP+1ffTHG7m65O/TrG3GEvdSnj5UoZNHMbYnLHEt8PoRJC5c+fSsvKH4ALXUBeZuZmoHTC7vYnji/3w7hLm5M1iZXwjdUPq8O+I8FXvGMZsvg+A75x7K+9s+y9PNT5FtjOb2896DPe6V6GliiEzv8KzeaN4Yt0ThONhvjD2CwzNGAqt1WBzcrInl5OUotJfidvmJt+d3+3nehZwplLdSgcb1+3i5Q9/R37FPxlmz+Bel50JWaM45/RzO4/JqMng9VcvZ2mmkxxbDputDfxuznWcOvq0zmNOiJ/Imlcv5+esxiIWspzZ3P3ZxyjxJf/ncypzYt/igU8fYMmuJZyVMZSvH/V1RmSN6DyivLyci+ZeyUVAXaCOzS2byXPlMSZ7z26jM4DzzPVoPEqCBE7rvhu/Hqcu5OO3fsA/q97HcepvWV2/mvcrXuW6Y67jyxMv3eP4acBRtSv47aLfcnuzURJ0YumJ/Hz2zxmV3fNgj3OAn0faeL/qfar8VeS6cpldPNv4efVgAvBZcz2hEjSGGkmoBDmunD1KJfpLeXn5Xv8O9JlS8MHttL/xG7bklLB53Ok0OZxktFSTs+VdRsQSDD3pWhzHfQcsfSjxaK8nsPQeaja+SnP9OmIkiAEWi53M7BFklh5DxujT8I48Fatz742mlVKE42H8wQb8Natpr11NW+NG2oONtIWaSYCRJovdmFTZmYE4MxFXlrnMRJxZiMONmFWWkViYYKSVcKiFUKSNULjFfLURivoJRQOEYkFC8QitiSghwoRQBEUREiEskNjfIEUBMePlCSTwJRL4EspcJvAphc9ix2dx4rO6ybR7yXJkkO3MIsuVR5YnnyxvET5vEVZPnjFHlCsb3Dmdk0kPNP32fPcgHAvxt9e+yyMtS5geiXLr9B9SePRVhyT4TPc4+tlAo7m+/62Ke7YEGCsiIzECni8BX97bCWFnLpz+M3jpp2S1VnPe6PM4b/R5BKIB3q16lze2vcErW1/h6Y1PA2Cz2JhdNJsfzP0BUwumQvu1UDprr4k6Y+hcfv/JHTxds5iOI8t3lANwans72Lv39jrNks3NiV2sbVzLaxWvMcmRS2lsO9iNhodOVzYXtLVzv3UHLquLbzc0wHij2ZTFm8ffa+rYdc4tDGneiVgWgzMDLDYK43HOsxdA62o8Ng+VsSBMnE9g0wN4/XUw/XIy7e3sbK+mPsP4ki84+ko47ruUfno/LeEWltd9DMC4o68Cbz5HuzLx2r3c+cmduG1uTh3R1eL+18f9mmEZwxiTPYaTy07u3O6yufjO9O90+8yFHqPbeU2gBo/5OUtaa6GpgqzGCoryJrKxeSOheAiLWJiKE/5zGYiF+dO+yRsf3cQtH93CzMKZzDj177DyP5A7ipwxp/P45Av4sPpDphdOp9hbDAVHdd43C/j2tG93/4FldlU9ikivX64d+5ONz58CwHqngyHBVj7J9nFh6QndjplROINCTyH/yvRgFSt5YThrxFndjnFYHdw579888OkDBKIBvj756515lMxtc/Odad/hO9O+s8e+3RV4Cijw9G0+G7u178GBiHDLSbdw9cKr+fPSP2MRC1fPuJovT+j9V2964XSeOe8ZagI1uKwusl3Z+7xPhiODs0aetc/jdmcRyx5B62FNBE78Id7S2Ux5/VdMWfygsd1ig4nnwbwb92uIfrz5eE65jpGnXAfxGLTXgdUOrixjuV9JE1w2F66MUvIzSmHMmft1fn9K/iKOJWJE4hHC8TCReMRcDxGOhYnGw4TjYcKxEBFzfzDShj/USHuoibZQM+2RVvwRP/6oH38sSHU8RHs8gl9FCdAOqh3CtcZwu61daRClyEgkyOp4xRNkKSHLYifH6ibP5iXPmUWeK488TwF5viF4vEXgyQV3btfSnd23IHYA+mTNf/n1R79jq8T4csLLNRc8jD1v/0Zj3h/pDHz+H/CxiCzEqBk/GbjuYC+qlIqJyPeB1zC6s9+nlPp0nydOOBdeugbWPA+FRjc6j93DmSPO5MwRZxJPxGkINRCJRyj0FOKwJtU5BxqMeui98HgKONffzrPWdfw81Ey2K5tXK15lYvZYird2BTQdznIU8OfgLr7+6tcJxAJclzkVrGu7fjEcXn7Q1Mzomd9k8oQvUPKPE8FsCIw7BwtQEk9AoBG8+cYfUocHnFnQVgPN23EX5BOMBVH5YwlYrXjyxsKcH5O14u+0hFuoC9QBkD9iLiR9+b+x7Q0AxuUYU3s4rA6+OeWb3Lb8Nq6YfAWZjq6OeRmODL4/4/v7zH6AfHc+FrFQG6jFZc5UXxqNwkd3AzAxazQr61ZS2VbJxNyJeKecC6//Gk75OadMuIhvBqtZ27CW64+9HnFlwjHf6rx2jivngL4wD8To7NHYLDZWHfcV8kpPIfTa5cwumt3tGItY+PGsH/OLd40CzltPubX7M2XKcGTwgxk/SEm6D5bP4ePez9zL1pat5LhyyNnb3HUmETECUa1nI06Eb70FLZUQqIeckX2afXqvrLZugf1AYbPYsFlsnf809adYIkZbpI2WcAstkRZagk20tO+ipb2GlkAdLaFGWsLNtIRbaYm1sz0WpDkRpk1FgAhEmyBaAW1ADbgTCfLicfLiHUtjvcDqotiRQ5G3kGJfGZmZQ5GsEsgoMX5mGSVGoDRAquBqtpZz+3v/x/OJJooTCe4cdREnnvzrQx4AprNX1+MiUk7HxFFwrVJqVz9d+2Xg5f06KaMYhh4D616Audfusdtqsfb43zbREIRbjeBib+weLm7185/MDJ5Y/wTHDTmONQ1r+MXU78LHb+5R4pPlyOR7jXCrBJiQO4HzLUVG4NLB4cMOzM+aAC7z3k6zo5wzC8RiBD2BevAkpS2jyPgj2lqFZ+hoApFaQvEQcRTeqV8CVxaZjkxaI63UBmqBrpKYiblGQPhaxWuU+ko7x/wBuGLyFZw3+rye86iPbBYb+e58qtursZoP/pBYDBbdAXYvJ448i/Klf2RH2w6+O/27MO0ymHEZYETOP5z5wwO+d39y2VxML5jO4p2LsYoVm9g4esjRexx37qhzyXXlku3MZlLepDSktP+JSK9VVdoBEjFKd/anhEfrVzaLrc/BfLJoPEpDqMF4Bc2Xv4qGtmoaArU0hhrYHm7m42gbzfEQRiu0AMQroKUCd1OC4lic4niMIbE4xbEYxQmhyJFFsbuAIRlluLOHQWYZZJVBVqmx3vHP7uEoEqB61eM8sOoenlatJET4euYkrjzjr/gyS1OShJQHPiKye3+0SnNZIiIlSqnlqU5Tp4nnweu/hMatkDty38eDEVjAPkt8sLsZF40xz13GXSvv4rG1j1HgLmB+yUnGfkf3BpvYXFzuD3LqpW9S4C7A/dLPupcKdRwf8UPY7CLvNEtaLBajnjnYCO313YOyzFLY/BYkYri9hQQD22iPthsfwW5cM8uZRVzF2da6DaCziqDUV4rP7sMf9TOrqHvVnogcVNDTYUTmCCpaK1BKGSVrw8pg+wcw/mxOH3kWv1v6RwDmj55/0Pc6lE4oOYHbP76dtY1rOab4mG6lYLsfN1BEo1EqKysJhUL7PniAysrKYu3atQd1DZfLRVlZGfZ+mv9OSx+71U6xt7hPpZqxRIz6YD272nexK7CLmvYadvmr2NWyjV3+ajaG6qiPJg+HUgfBOnL8yxgSizIkFmdIzAiQShLCEFcuQ3wl5GQMRbLLjL/9WR3LUqM9UiqCI6WgcQuhLQtZvPllnmn+lHdcdgThc1kT+NZJNzI0qelBKqSjxGcpsBowIwaSc14Bp+1xRqpMPNcIfNa+ACde3bdz2o3qoH0GPiLg8PJr3yRas0up9lfzmxN+gzdhdkHdrcQHuweiQYZnmpNZRgPdj+kMfNqNEieA5EaJ7lwINhnpyxvdtb14MmxZaBySUUK0JkqreX5H4NPxJb2peRM2sXX+lyMiXDTuIu7/9H4uHHfhPjLmwAzPHM7r214nkUgwKmsUnHQ1LHsATv4ZBZ4CXrvgNYKx4G4NfA8/54w6h79//HcUissmXpbu5KREZWUlGRkZjBgx4ogYJPBQaGtrIyPjwIcoU0rR0NBAZWUlI0f28Z8vbUCwWWz7DJKi8Sg1gRp2te+iur2amkANO/07qW7ZRoW/ig+CdQQTHb2GE0AlrrYdFDfFGBKLUWKWGpXE4gzBxhB3AUW+MuzZZUZJUUYxePKMlzff+Afa4TO+e/b2O60UhNsg1AL+GmjYRKJ+E9vrVrGoYRXvWiJ85HIStljI9Xi5vHQuXzzmJwzJKOvXPOyrdAQ+PwEuBILAE8CzSin/3k9JkZwRMGQ6rPnffgQ+fSzxAXB4yYlFueece7q2bf/QWO4R+LggGuycksIIfJJKfMwghWjAeOCgq6oLjAc20GgEPslpGzK9c9WTaRSd1wWN4K0j8OkIdNY0rKHQU9itK/+PZ/2YyydfTq4rd9+f9wCMyBxh1KOHW7hkwiVQPAU+e2vn/sM94OlQ6ivl3jPvJRgLdmvUPZCFQqFBHfT0BxEhLy+Purq6dCdFOwzZrXbKMsoo6yVgUErRGmmlur3aCIjaq6n2V7PTX8Wuth2Ut1fTEElqmU0EUVsoaNjMkF0RCuNxcuJxcuIJchJxsuMJPErhUeC2uihIWNj0iYsEoBASgD8eoikepNEiNFktVNtsbHTY2Wy3E7RYwGdluGMIF5acyJzRn+XYIcftV8eJQyHlgY9S6m/A30RkFEaPqzdFZBvwe6XUilSnZw9HfQHeuAGaKoxAaF/8NcZyX218wCzF6T6AYef73Rvk2d2g4hCPGoN37R74WG1gdRpVXR2jQScHPp5cqN9onJectjKzrcnIU3CbVWO7Bz5FHmMupYrWCmYWdq+ZFJFDFvQA3bphj8o6stuKHF28Z7uegU4HPQdP56F2oESELGcWWc4sJuRO6PGYcDzcWWJU7a/uCpL8VWwO1NIUaqI56kfRw2ysPfKYL0Ou3cfYzJFcUDCFcbkTmFk0s6vm4jCRzsbNW0TkOcANfAUYB6xIV3o6dQQ+n/4P5vxo38e3GsO8k9GHXhIOn1E1laxjPq7dAx+bWQIUCxqBTyQArt3aiTi8ZlVXW9f1O7hzwZw1HG9S25uc4XDV+5BVhqf6AwDqzXZKPrtx/hBv12cZ4ktt74/kuc527wmlaZqmHRyn1cnwzOF7DUbiiTgtkRaaw80EY0GC0SCBWIBlnyxj0lGTsIgFCxYQ4x/mHGcOee48spxZh2yMrP6UjsbNHSU98zGmlngCo7QnuNcTUyVnuDEmz6fP9DHwqTJ6TfVlwCqHp4fAZy8lPmAERq4sY5mxW91vRyDVWdWVFBi5k3of7F4NVzzZOMQMruqDRuDT0Q00ubdWiTe1VUtDM4Yyf/R8wvEwo7NH7/sETUtitVqZMmUKsViMkSNH8vDDD5Odnd1v1x8xYgRLly7FZrPx2GOP8d3vfveAr/XAAw/wmc98hpKSI6P6Vhs8rBYrua7cPUr3E5sSzB0xNz2J6kfpmHp2E3Ax8CqwCBgGfEdEfiIiP0lDevZ01PlQ/Qk0bN73sa07+z4mRkcJTbLOwGf3Nj5JgQ9AtH3P4MjhNXt19dDGx5MU+Ph67m3VEejsXtWVXNQ+s6h/JoXbHzfPuZk/nfInXeSv7Te3282KFStYvXo1ubm5/OMf/zgk92lubuaf//znQV3jgQceYOfOnf2UIk3T+iodVV03Qmfl4d7HRk+Xoz5v9O769Fk4+Zq9H9u20+ge2Bd2D7TtNlRRb1VdewQ+wT2Do+SqLosNbElTC7iTIvVe2irtXuLTUdUFcNupt/HPFf/co9u6pvXFb1/4lDU7W/d94H6YVJLJDZ/re7fX448/npUrjUlkN2/ezPe+9z3q6urweDzcfffdTJgwgaeeeorf/va3WK1WsrKyeOedd3jggQdYunQpd9xxBwDnnnsu11xzTbeh+q+77jo2b97M9OnTmTdvHjfccAPz58+noaGBeDzOzTffzPz586moqODss89mzpw5fPDBB5SWlvLcc8/x0ksvsXTpUi699FLcbjeLFi3C7Xb39DE0Tetn6Wjc/JtU33O/ZZXB0GP7Fvi07oTSPrZFcfi6GiJ36CjxceyljQ8YbXx2H+uno+os3GaU9iSXkHiSAp9eRnpNDnwE6XwPcNqw0zhtWPpGFtC0gxGPx3nzzTe54oorALjyyiu58847GTt2LB9++CHf/e53eeutt7jxxht57bXXKC0tpbm5uc/Xv+WWW1i9ejUrVqwAIBaL8eyzzyIihMNhjjvuOM47z5j1bOPGjTz++OPcfffdXHzxxTz99NNcdtll3HHHHfz5z39m9mzdlk3TUindc3Udvo46H169Fuo2QMG4no+JhozpKjL7WEfv8BgBTLKO97bd2gh1tBnq6NK++zg+YARSgcauwCfZCHNgxOIpvSYnuarLY/foqiWt3+xPyUx/CgaDTJ8+naqqKiZOnMi8efPw+/188MEHXHTRRZ3HhcNhAE488UQuv/xyLr74Ys4///wDvq9Siuuvv57y8nJsNhtVVVXU1Bg9PkeOHMn06dMBmDVrFhUVFQd8H03TDl462vgcGSbNB8QY06c3LTuMZfawvl2ztzY+ds+eg0N1VH1FQxCPGF3be6vqivjBsVvg482H7y+Fy57pNTkdJTxtkbbO9j2adiTraOOzbds2lFL84x//IJFIkJ2dzYoVKzpfHaMr33nnndx8883s2LGDWbNm0dDQgM1mI9ExsCj0aSTqRx99lLq6Ot555x1WrFhBUVFR53lOZ1cVtNVqJRaL9fOn1jRtf+jApzeZQ6BsNqzfy5RfTRXGsi/j/YAx6GAsCIl417ae2u5AVwlQNJDUAHr3qi5v18jNu5f4AOSP7bVhM4DH1lW9pgMfbSDxeDzcfvvt3HrrrXg8HkaOHMlTTz0FGKUzn3zyCWC0/Tn22GO58cYbKSgoYMeOHYwYMYIVK1aQSCTYsWMHH3300R7Xz8jIoK2trfN9S0sLhYWF2O12Fi5cyLZt2/aZxt2voWlaaqStqquXHlwtwLLDYiBDgHFnwVs3GWP19NRza38DH0fSaMsdgUo0uGdAA10lPrFQUgPoHqq6wm3Gy9OHARR347Q6sYmNmIp1a9isaQPBjBkzmDp1Ko8//jiPPvoo3/nOd7j55puJRqN86UtfYtq0afzsZz9j48aNKKU4/fTTmTZtGmBUT02aNImJEycyc+aePRvz8vI48cQTmTx5MmeffTbXXnstn/vc5zjuuOM45phjmDCh58Hjkl1++eVcddVVunGzpqVYOtv4zDZfL5jvzwVWAleJyFNKqT+mLWUdxp9jBD4bX4NZl++5v3GrUTLjK+rb9ToaMEeSA5/2nkt8ktv4dLQD2r1xsyfPKEFqq4Gc/Z/Xp2OUz4ZQgw58tAHB7+/eeeCFF17oXH/11Vf3OP6ZZ3quCn700Ud73J7cPuexxx7rtm/RokU9ztW1evXqzvVrrunqLHHBBRdwwQUX9HgfTdMOnXRWdZUBM5VSP1VK/RSYBRQCJwOXpzFdXQonGu131r/S8/6OaS362ii4Y2Tl5J5dvVV1dbbxCfY+1k9HwNW2c8/BDfuoY16uPHfeAZ2vaZqmaUeSdAY+hUA46X0UKDJHcA73fEqKiRilPlvK9+yNBcaUEPtT0tIZzCRdKxrccwwf6GrjEwv2PrpzcvudAwx8OkZpznfvf1WZpmmaph1p0hn4PAp8KCI3iMgNwPvAYyLiBdakMV3djTvLaGezpbz79ki7MQlo0X502+2oqkru2RUN7DmGD5ilO2Ic26fA58CGvXdajR4nOvDRNE3TBoO0BT5KqZuAbwPN5usqpdSNSql2pdSl6UrXHoafaMyBtWG36q7qlUYX87L9GHysM/BJquqK9DA+DxilTZ3d1XsZ5DC5bdEBlviMyBwBwOT8yQd0vqZpmqYdSdI9gOFyoKojHSIyTCm1Pb1J2o3NAWNOhw2vQSIBFjNWrFpmLEv2Yy6rzsAnuaor0HNVF3SN9NzbtBbJPbn6Mjt8D34484ccXXw0MwtTPyeXpmmapqVa2kp8ROQHQA2wAHgReMlcHn4mnAv+Gqh4t2vbzuWQNRQy+tijC7oCl25VXb00bgZw+iDsN3p+wZ7HWW3wmd/BlIuNWeUPgMfu4YzhZ+hRmzVN07RBIZ1tfH4IjFdKHaWUmqqUmqKUmprG9PRuwmfBlQUfP9y1rWoZlO5nKUlHr67obm18ehs8sKPEJ+zvfn6yE74PF9wNVvv+pUXTBiAR4bLLLut8H4vFKCgo4NxzzwVg3bp1HH/88TidTv785z+nK5mapqVROgOfHRgDFh7+7G6Y+kVY8zy0NxiNmpsqoOyY/buOY7cSn97m4Oo83tc1CSn0PDqzpmmdvF4vq1evJhg0qocXLFhAaWlp5/7c3Fxuv/32buPpaJo2uKSzjc8WoFxEXiKp+7pS6i/pS9JeHP1NWHIPvPlbQIHVaQRD+8OeNIAhmHNwJfZe1dW605iSwuEDi/WAk69pKfXKdbBrVf9es3gKnH3LPg8755xzeOmll7jwwgt5/PHHueSSS3j3XaOaurCwkMLCQl566aX+TZumaUeMdJb4bMdo3+MAMpJeh6eC8XD892D5g7D8IZhxGfgK9u8aFivY3F29ujpKfvbVuDncavQs0zRtn770pS/xxBNPEAqFWLlyJccee2y6k6Rp2mEkbSU+SqnfpuveB2zeTUbvKYsdZn3twK7h8HaNy9MR+Dh7mS6iozt7qJdJSDXtcNWHkplDZerUqVRUVPD4449zzjnnpC0dmqYdnlIe+IjI35RSPxKRFwC1+36l1HmpTlOfiRilPgfD4ekKeDqWu8/B1cGZYTRsDreBS5f4aFpfnXfeeVxzzTWUl5fT0NCQ7uRomnYYSUeJT0fXqMHZpaKjwTJ0VXk5einNcWUZPcACDeDVIytrWl994xvfIDs7mylTplBeXp7u5GiadhhJeeCjlFpmLt9O9b0PC/akEp+O3lq9lfh0BDuNWyF31KFPm6YNEGVlZVx99dV7bN+1axezZ8+mtbUVi8XC3/72N9asWUNmpi5R1bTBIh1VXavooYqrw8GM5SMifwI+B0SAzcDXlVLNB3q9Q2J/2vh4zcbTEV3VpWl94ff799g2d+5c5s6dC0BxcTGVlZUpTpWmaYeTdFR1nWsuOxrLdFR9XcZeAqI+WgD8QikVE5E/AL8Arj3Ia/Yvh9eouoKkqq59BD5wwFNSaJqmaZrWJR1VXdsARGSeUmpG0q5rRWQ5cN1BXPv1pLeLgQsP9FqHTEdPLdjPwOfAJiHVNE3TNK1LOgcwFBE5USn1vvnmBPp3XKFvAP/Zy82vBK4EKCgoSFkDyHH1LeT7m/igvJyh21cyGnjno49JWF17HGuNBTjJXF9VUU+DPzVpPNT8fr9ucJpCqcrvrKws2traDvl9DmfxeLxf8iAUCunfkT7Qf0tSa6DkdzoDnyuA+0QkCxCgCSNY2SsReQPoqfjjl0qp58xjfgnEgEd7u45S6i7gLoDx48erjjYAh1zodWj4wGhz8Nb7sEU4+bQzja7yeyYS3jNWp5wwD0pm7HnMEai8vJyU5beWsvxeu3YtGRmDe7yptra2fskDl8vFjBkD4/f9UNJ/S1JroOR3OgcwXAZMMwMflFJ9mrdLKXXG3vaLyOUY7YhOV0odbJuh/ufwGlVciYSxdPh6DnrA2D7/n7DxNSiYkNp0apqmadoAlLbAR0ScwAXACMAm5pe/UurGg7jmWcDPgVOUUoF+SGb/c2UZy3CrEfj01qOrw4xLjZemaZqmaQctnXN1PQfMx6iSak96HYw7MOb7WiAiK0TkzoO8Xv9zZxvLULMxKnNvY/homrbfRITLLrus830sFqOgoIBzzzU6kz766KNMnTqVKVOmcMIJJ/DJJ5+kK6mapqVJOtv4lCmlzurPCyqlxvTn9Q4Jd46xDDabVV068NG0/uL1elm9ejXBYBC3282CBQsoLS3t3D9y5EjefvttcnJyeOWVV7jyyiv58MMP05hiTdNSLZ2BzwciMkUptSqNaUg9V7axDDYZwU/He00bQP7w0R9Y17iuX685IXcC1x6z72G5zjnnHF566SUuvPBCHn/8cS655BLeffddAE444YTO44477jg9mKGmDULprOqaAywTkfUislJEVonIyjSmJzU6SnxCzRBsBE9uWpOjaQPNl770JZ544glCoRArV67k2GOP7fG4e++9l7PPPjvFqdM0Ld3SWeIzOP/idLTxCTYZIzh78tKaHE07FPpSMnOoTJ06lYqKCh5//HHOOeecHo9ZuHAh9957L++9916KU6dpWrqlrcTHHMF5KHCauR5IZ3pSpqPEJ9BoVHW5dYmPpvW38847j2uuuYZLLrlkj30rV67km9/8Js899xx5efofD00bbNLZnf0GYDYwHrgfsAOPACemK00pYXeDzQVNWwGlq7o07RD4xje+QXZ2NlOmTOk20uz27ds5//zzefjhhxk3blz6EqhpWtqks6rrC8AMYDmAUmqniAyOYV99hVDzqbGuq7o0rd+VlZVx9dVX77H9xhtvpKGhge9+97sA2Gw2li5dmurkaZqWRukMfCJKKSUiCkBEBk+/7qyhsH2xsa6rujSt3/j9/j22zZ07t3OY/XvuuYd77rknxanSNO1wks42NU+KyL+BbBH5FvAGcHca05M6WWWg4sa6rzC9adE0TdO0QSSdc3X9WUTmAa0Y7Xz+Tym1IF3pSanMrgHVyB+bvnRomqZp2iCTzqouzEBngYjkAw3pTEtK5QzvWre705cOTetnSimkt0l3tT45HOdW1rSBJOVVXSJynIiUi8gzIjJDRFYDq4Eac5LRgW/S543lyFPSmgxN608ul4uGhgb9xX0QlFI0NDTgcrnSnRRNG7DSUeJzB3A9kAW8BZytlFosIhOAx4FX05Cm1HJnw083gM2Z7pRoWr8pKyujsrKSurq6dCclbUKh0EEHLS6Xi7Kysn5KkaZpu0tH4GNTSr0OICI3KqUWAyil1g2qIvKMonSnQNP6ld1uZ+TIkelORlqVl5czY8aMdCdD07S9SEevrkTSenC3fbqMXNM0TdO0QyYdJT7TRKQVEMBtrmO+1xXbmqZpmqYdMikPfJRS1lTfU9M0TdM0DUB0DwwQkTZgfbrTMYjkA/XpTsQgovM7dXRep5bO79Q6kvJ7uFKqoKcdaR3H5zCyXik1O92JGCxEZKnO79TR+Z06Oq9TS+d3ag2U/E7nlBWapmmapmkppQMfTdM0TdMGDR34GO5KdwIGGZ3fqaXzO3V0XqeWzu/UGhD5rRs3a5qmaZo2aOgSH03TNE3TBg0d+GiapmmaNmgM+sBHRM4SkfUisklErkt3egYyEakQkVUiskJElqY7PQONiNwnIrUisjppW66ILBCRjeYyJ51pHEh6ye/fiEiV+YyvEJFz0pnGgUJEhorIQhFZIyKfisgPze36+T4E9pLfA+L5HtRtfETECmwA5gGVwBLgEqXUmrQmbIASkQpgtlLqSBkA64giIicDfuAhpdRkc9sfgUal1C1mYJ+jlLo2nekcKHrJ798AfqXUn9OZtoFGRIYAQ5RSy0UkA1gGfB64HP1897u95PfFDIDne7CX+BwDbFJKbVFKRYAngPlpTpOmHRCl1DtA426b5wMPmusPYvzx0vpBL/mtHQJKqWql1HJzvQ1YC5Sin+9DYi/5PSAM9sCnFNiR9L6SAfTDPQwp4HURWSYiV6Y7MYNEkVKq2lzfBRSlMzGDxPdFZKVZFaarXvqZiIwAZgAfop/vQ263/IYB8HwP9sBHS605SqmZwNnA98yqAi1FlFGvPXjrtlPjX8BoYDpQDdya1tQMMCLiA54GfqSUak3ep5/v/tdDfg+I53uwBz5VwNCk92XmNu0QUEpVmcta4FmMqkbt0Kox6+s76u1r05yeAU0pVaOUiiulEsDd6Ge834iIHeNL+FGl1DPmZv18HyI95fdAeb4He+CzhP/f3t2HW1XW+R9/fwKfJfHhRCAYKsQ1aqb5UGY5Jy0fCqVp1DBLnNEhfzNO4zQzSemkWZbajJk9U6KiIpqkYoJK6lF//cwEpBAVIZUAQRJERVEEvr8/1n10edpnnw3svTZ778/ruvZ19l7rXmt995d1sb/Xuu+1bhgqaXdJWwIjgcl1jqkpSdouDZJD0nbAkcCj5beyKpgMjErvRwG31jGWptf5I5z8HT7Hq0KSgCuAxyPi0twqn9810F2+m+X8bum7ugDS7XiXAb2AcRFxYX0jak6S9iC7ygPQG5jgXFeXpOuBdmAX4DngPOAW4EZgN2ABcGJEeEBuFXST73ayboAAngG+mBuDYhtJ0keAB4DZwPq0+Gtk4058fldZmXyfRBOc3y1f+JiZmVnraPWuLjMzM2shLnzMzMysZbjwMTMzs5bhwsfMzMxahgsfMzMzaxkufMxssyVp59xM0EtzM0OvkvTjGh3zLEmnlFk/XNIFtTi2mdWeb2c3s4ZQxMznknoDM4EPRMTabtootTk0Il6tVSxmVhu+4mNmDUdSu6Rfp/fnS7pa0gOSFkj6jKRLJM2WdEd69D6SDpB0X5ok984uT6HtdDgws7PokfQlSY+lSRknwptzQnUAwwv5smZWVS58zKwZ7ElWtBwHXAvcGxHvA1YDn0rFzw+A4yPiAGAcUOrJ4YcCM3KfxwD7R8S+wBm55dOBj1b9W5hZzfWudwBmZlUwNSLekDSbbPqZO9Ly2cBgYBiwDzAt66miF9ns0l31Bx7Pff4jcJ2kW8im/+i0DBhQvfDNrCgufMysGbwOEBHrJb0Rbw1eXE/2/5yAORFxSA/7WQ1snfv8KeAw4FjgHEnvS91gW6e2ZtZg3NVlZq1gLtAm6RAASVtI2rtEu8eBIanNO4BBEXEvcDawA7B9avdeGnRmarNW58LHzJpeRKwBjgculvQHYBbw4RJNp5Jd4YGsO+za1H32CHB5RKxM6z4G3F7LmM2sNnw7u5lZjqSbga9ExLxu1vcDJkTEEcVGZmbV4MLHzCxH0jCgX0Tc3836g4A3ImJWoYGZWVW48DEzM7OW4TE+ZmZm1jJc+JiZmVnLcOFjZmZmLcOFj5mZmbUMFz5mZmbWMlz4mJmZWctw4WNmZmYtw4WPmZmZtQwXPmZmZtYyXPiYmZlZy3DhY2ZmZi3DhY+ZVURSu6RF9Y6jK0lzJLUXfMxVkvYo8phmVh0ufMwakKQOSS9I2qresdRbROwdER0bup2k0yQ9IellSc9JmiKpT4XH3D4intqIYw6WFJIe6bJ8F0lrJD2zofusNUnPSPp4veMwqxYXPmYNRtJg4KNAAMdtwn56VyumRiPpb4FvAydFRB/gb4AbCgxhW0n75D5/Dni6wOObtSwXPmaN5xTgd8BVwKj8CkkDJE2S9BdJT0v6Um7d+ZJuknStpJeAU1P7yZJWSJov6Z9y7beRdFW6svQYcFBu3X9JmtTl2JdL+n563yHpm5J+m66o3CVpl1zbX0paKulFSfdL2ju37ipJP5Y0NXUp/VbSuyVdlmJ5QtL+ufZvXpGQ1EvS1yT9KR13hqRBJXJ4EPBgRDwCEBErIuLqiHg5F8NPJU1L+7lP0ntyxwxJQ3JtfyTp9tT2IUl79vBveE2Xf7tTgPFd8vk3KY8rU3fecbl1G5qjns6LGyWNT/HPkXRgWncNsBtwWzrOV3r4XmabPRc+Zo3nFOC69DpKUj8ASe8AbgP+AOwKHAGcJemo3LYjgJuAvmn7icAiYABwPPBtSYentucBe6bXUbz9h/pa4GhJfdOxewMjefuP9+eAfwDeBWwJ/Gdu3VRgaFo3M8WSdyJwLrAL8DrwYGq3S4r/0m5y82XgJOCTwDuBfwReLdHuIbLcfUPSod10GZ4MfDMdc1aJGPNGAt8AdgTmAxeWaQtZ/kamQm0vYPsUEwCStiD7t7yLLEf/ClwnaVhuHxXlqMLz4jiyc6EvMBn4IUBEfAH4M3Bs6t67pIfvZbbZc+Fj1kAkfQR4D3BjRMwA/kRWYEB2FaMtIi6IiDVpDMrPyX6UOz0YEbdExHqyH8hDgbMj4rWImAX8gqywguyH9cJ0NWQhcHnnTiJiCXA/cEJadDTwfIqp05UR8WRErAZuBPbLbT8uIl6OiNeB84H3S9oht+3NETEjIl4DbgZei4jxEbGOrEtqf0o7HTg3IuZG5g8Rsbxro4h4APgM8AHgdmC5pEsl9co1uz0i7k8xngMc0s3Vo854fx8Ra8kKpP26addpETAX+DhZvq/psv5DZMXQRenf8h7g12RFXf6YleSokvPi/0bElLTtNcD7e4jfrGG58DFrLKOAuyLi+fR5Am9diXkPMCB1jayUtBL4GtAvt/3C3PsBwIrO7p1kAdlVgc71C7usy7sa+Hx6/3n++sd7ae79q2Q/5J3dURel7qiXgGdSm11y7Z/LvV9d4vP2lDaIrBjsUURMjYhj4OhbIgAAGFZJREFUgZ3IroSdSlY4dVqYa7sKWEGWk1JKftcejE/HPIm/zt0AYGEqUDvl/22g8hxVcl50jX9rtfAYMGtuPrHNGoSkbciuwvSS1PlDtRXQV9L7yX6on46IoWV2E7n3zwI7SeqTK352Axan90vICok5uXV5twA/UTZIdzhQ6fiPz5EVGh8nK3p2AF4AVOH25Swk65p7tNINUnFxt6R7gPyA4zev7kjanqxAerYKMXaaRNalNCMi/izpvbl1zwKDJL0jV/zsBjy5Ecep5LwoJ3puYtY4fMXHrHF8GlgH7EXWlbIf2d1ID5B1l/weeFnS2Wlgci9J+0g6qNTOUvfV/wO+I2lrSfsCp5GNP4Gse+qrknaUNJBsnEl++9fIxpJMAH4fEX+u8Hv0IRuTshzYluzuqmr5BfBNSUOV2VfSzl0bSRohaWT6bpJ0MPC3ZIPGO31S0kckbUk21ud3KWdVERGvAIfz9qtMnR4iu/LyFUlbKHtO0bFk43A21AadFyU8B/iZRdY0XPiYNY5RZONm/hwRSztfZFcNTia7YjKcrCB6GnierBDYoZv9QdbNMpjsCsPNwHkR8Zu07htk3StPkw2y7dodA1l31/u6Wded8Wm/i4HHeHuxsakuJSvY7gJeAq4AtinR7gXgn4B5qd21wHcjIj+AeQLZAO8VwAG81a1XNRExPSL+qmsuItaQFTrHkP07/hg4JSKe2IhjrGPDz4u87wDnpm6y/+yxtdlmThG+imlmG0fSbsATwLsj4qV6x1Mtkq4CFkXEufWOxcyqy1d8zGyjpNukvwxMbKaix8yamwc3m9kGk7Qd2diPBWS3spuZNQR3dZmZmVnLcFeXmZmZtQx3dQF9+/aNIUOG1DuMlvHKK6+w3Xbb1TuMluF8F8e5LpbzXaxGyveMGTOej4i2Uutc+AD9+vVj+vTp9Q6jZXR0dNDe3l7vMFqG810c57pYznexGinfkro+af5Nde3qknS0pLnKZoUeU2L9VpJuSOsfkjQ4LR8sabWkWen109w2B0ianba5XFI1ngZrZmZmTaBuhU+aDPBHZA/o2gs4Kc1SnHca8EJEDAG+B1ycW/eniNgvvc7ILf8J2YPJhqaX7zgxMzMzoL5XfA4G5kfEU+kppRPJ5u/JG0H2ZFjIHo1/RLkrOJL6A++MiN9FdrvaeLLH/JuZmZnVtfDZlbfP/LyIt888/LY2EbEWeBHonHdnd0mPSLpP0kdz7Rf1sE8zMzNrUY06uHkJsFtELJd0AHCLpL03ZAeSRgOjAdra2ujo6Kh+lFbSqlWrnO8COd/Fca6L5XwXq1nyXc/CZzEwKPd5YFpWqs0iSb3JJtVbnrqxXgeIiBmS/gS8N7Uf2MM+SduNBcYCDBs2LBplpHozaKQ7A5qB810c57pYznexmiXf9ezqehgYKml3SVsCI4HJXdpMJpuRGuB44J6ICEltaXA0kvYgG8T8VEQsAV6S9KE0FugU4NYivoyZmZlt/up2xSci1ko6E7gT6AWMi4g5ki4ApkfEZOAK4BpJ84EVZMURwGHABZLeANYDZ0TEirTun4GrgG2AqellZmZmVt8xPhExBZjSZdnXc+9fA04osd0kYFI3+5wO7FPdSM3MzKwZeK4uMzMzaxkufMzMzKxluPAxMzOzllF2jI+kgWQDij8KDABWA48CtwNTI2J9zSM0MzMzq5JuCx9JV5I99fjXZHNkLQO2JnteztHAOZLGRMT9RQRqZmZmtqnKXfH534h4tMTyR4FfpWfv7FabsMzMzMyqr9vCp5uiJ79+DTC/6hGZmZmZ1UiPg5slDU+Tga6Q9JKklyW9VERwZmZmZtVUyQMMLwM+A8xOc2SZmZmZNaRKbmdfCDzqosfMzMwaXSVXfL4CTJF0H2lGdICIuLRmUZmZmZnVQCWFz4XAKrJb2besbThmZmZmtVNJ4TMgIjzpp5mZmTW8Ssb4TJF0ZM0jMTMzM6uxSgqf/wPcIWm1b2c3MzOzRtZjV1dE9CkiEDMzM7Na8+zsZmZm1jJc+JiZmVnLqGvhI+loSXMlzZc0psT6rSTdkNY/JGlwWv4JSTMkzU5/D89t05H2OSu93lXgVzIzM7PNWCW3s9eEpF7Aj4BPAIuAhyVNjojHcs1OA16IiCGSRgIXA58FngeOjYhnJe0D3Ansmtvu5IiYXsgXMTMzs4bR7RWfzru3cndydX5+VdLaKhz7YGB+RDyVZnqfCIzo0mYEcHV6fxNwhCRFxCMR8WxaPgfYRtJWVYjJzMzMmli3hU9E9ImId6ZXH6A/2VOclwLfr8KxdyWbB6zTIt5+1eZtbSJiLfAisHOXNn8PzIyI13PLrkzdXP8tSVWI1czMzJpAj11dkvoCZwGnABOAgyJieW3Dqoykvcm6v/IPWDw5IhZL6gNMAr4AjC+x7WhgNEBbWxsdHR21D9gAWLVqlfNdIOe7OM51sZzvYjVLvrstfCTtAvwH2ZiaccD+EfFiFY+9GBiU+zwwLSvVZpGk3sAOwPIU30DgZuCUiPhT5wYRsTj9fVnSBLIutb8qfCJiLDAWYNiwYdHe3l6db2U96ujowPkujvNdHOe6WM53sZol3+Wu+CwA/gJcCbwKnJbvNarC7OwPA0Ml7U5W4IwEPtelzWRgFPAgcDxwT0REugp1OzAmIn7b2TgVR30j4nlJWwDDgd9sYpxmZmbWJMoVPt8FIr2v+tObI2KtpDPJ7sjqBYyLiDmSLgCmR8Rk4ArgGknzgRVkxRHAmcAQ4OuSvp6WHQm8AtyZip5eZEXPz6sdu5mZmTWmbgufiDi/1gePiCnAlC7Lvp57/xpwQontvgV8q5vdHlDNGM3MzKx5lLud/VxJO5ZZf7ik4bUJy8zMzKz6ynV1zQZ+Lek1YCbZeJ+tgaHAfmTdSN+udYBmZmZm1VKuq+tW4FZJQ4FDyZ7j8xJwLTA6IlYXE6KZmZlZdfT4HJ+ImAfMKyAWMzMzs5ry7OxmZmbWMlz4mJmZWcvosfCRdGgly8zMzMw2d5Vc8flBhcvMzMzMNmvl5uo6BPgw0Cbpy7lV7yR7KrKZmZlZQyl3V9eWwPapTX7KipfI5s0yMzMzayjlnuNzH3CfpKsiYkGBMZmZmZnVRI/P8QG2kjQWGJxvHxGH1yooMzMzs1qopPD5JfBT4BfAutqGY2ZmZlY7lRQ+ayPiJzWPxMzMzKzGKrmd/TZJ/yypv6SdOl81j8zMzMysyiq54jMq/f2v3LIA9qh+OGZmZma1U8kkpbsXEYiZmZlZrVUyZcW2ks5Nd3Yhaaik4bUPzczMzKy6KhnjcyWwhuwpzgCLgW9V4+CSjpY0V9J8SWNKrN9K0g1p/UOSBufWfTUtnyvpqEr3aWZmZq2rksJnz4i4BHgDICJeBbSpB5bUC/gRcAywF3CSpL26NDsNeCEihgDfAy5O2+4FjAT2Bo4GfiypV4X7NDMzsxZVyeDmNZK2IRvQjKQ9gdercOyDgfkR8VTa70RgBPBYrs0I4Pz0/ibgh5KUlk+MiNeBpyXNT/ujgn3+laWvrOezP3uwCl/JKrFy5Wp+Mtf5LorzXRznuljOd7GaJd+VFD7nAXcAgyRdBxwKnFqFY+8KLMx9XgR8sLs2EbFW0ovAzmn577psu2t639M+AZA0GhgNsG2/waxcuXKjvoRtuHXr1jnfBXK+i+NcF8v5Llaz5LuSu7qmSZoJfIisi+vfIuL5mkdWYxExFhgLMGzYsLjz7GPqHFHr6OjooL29vd5htAznuzjOdbGc72I1Ur7LjfCtZIwPZFdTepHN2H6YpM9selgsBgblPg9My0q2kdQb2AFYXmbbSvZpZmZmLarHKz6SxgH7AnOA9WlxAL/axGM/DAyVtDtZcTIS+FyXNpPJHqD4IHA8cE9EhKTJwARJlwIDgKHA78muSPW0TzMzM2tRlYzx+VBEVP3OqDRm50zgTrKrSeMiYo6kC4DpETEZuAK4Jg1eXkFWyJDa3Ug2aHkt8C8RsQ6g1D6rHbuZmZk1pkoKnwcl7RURZe+M2hgRMQWY0mXZ13PvXwNO6GbbC4ELK9mnmZmZGVRW+IwnK36Wkt3GLiAiYt+aRmZmZmZWZZUUPlcAXwBm89YYHzMzM7OGU0nh85c03sbMzMysoVVS+DwiaQJwG7knNkfEpt7VZWZmZlaoSgqfbcgKniNzy6pxO7uZmZlZoSp5cvM/FBGImZmZWa31+ORmSQMl3SxpWXpNkjSwiODMzMzMqqmSKSuuJHuC8oD0ui0tMzMzM2solRQ+bRFxZUSsTa+rgLYax2VmZmZWdZUUPsslfV5Sr/T6PNlEoWZmZmYNpZLC5x+BE4GlwBKyyUI94NnMzMwaTiV3dS0AjisgFjMzM7Oa6rbwkXR5uQ0j4kvVD8fMzMysdspd8TkDeBS4EXiWbHJSMzMzs4ZVrvDpD5wAfBZYC9wA3BQRKwuIy8zMzKzquh3cHBHLI+KnEfExssHMfYHHJH2hqODMzMzMqqnHwc2SPgCcBHwCmArMqHVQZmZmZrVQbnDzBcCngMeBicBXI2JtUYGZmZmZVVu55/icS9a99X7gO8BMSX+UNFvSHzfloJJ2kjRN0rz0d8du2o1KbeZJGpWWbSvpdklPSJoj6aJc+1Ml/UXSrPQ6fVPiNDMzs+ZSrqtr9xoedwxwd0RcJGlM+nx2voGknYDzgAOBAGZImgy8DvxPRNwraUvgbknHRMTUtOkNEXFmDWM3MzOzBtVt4ZMeXFgrI4D29P5qoIMuhQ9wFDAtIlYASJoGHB0R1wP3phjXSJoJeLZ4MzMz61GPg5trpF9ELEnvlwL9SrTZFViY+7woLXuTpL7AscD3c4v/XtJhwJPAv0dEfh/5bUcDowHa2tro6OjY8G9hG2XVqlXOd4Gc7+I418VyvovVLPmuWeEj6TfAu0usOif/ISJCUmzE/nsD1wOXR8RTafFtwPUR8bqkL5JdTTq81PYRMRYYCzBs2LBob2/f0BBsI3V0dOB8F8f5Lo5zXSznu1jNku+aFT4R8fHu1kl6TlL/iFgiqT+wrESzxbzVHQZZd1ZH7vNYYF5EXJY7Zn7W+F8Al2x45GZmZtasepydXdKh6c6rJyU9JelpSU/1tF0PJgOj0vtRwK0l2twJHClpx3TX15FpGZK+BewAnNUl1v65j8eR3YpvZmZmBlR2xecK4N/JHly4rkrHvQi4UdJpwALgRABJBwJnRMTpEbFC0jeBh9M2F6RlA8m6y54gu8Ue4IcR8QvgS5KOI5tiYwVwapXiNTMzsyZQSeHzYu5W8apIXVJHlFg+HTg993kcMK5Lm0V0M2FqRHwV+Go1YzUzM7PmUUnhc6+k7wK/InuGDgARMbNmUZmZmZnVQCWFzwfT3wNzy4Ju7pYyMzMz21z1WPik2dnNzMzMGl65SUo/HxHXSvpyqfURcWntwjIzMzOrvnJXfLZLf/sUEYiZmZlZrZWbq+tn6e83igvHzMzMrHYqeYDhHpJuk/QXScsk3SppjyKCMzMzM6umHgsfYAJwI9AfGAD8kmyOLDMzM7OGUknhs21EXBMRa9PrWmDrWgdmZmZmVm2VPMdnqqQxwESy5/d8FpgiaSeAiFhRw/jMzMzMqqaSwufE9PeLXZaPJCuEPN7HzMzMGkIlDzDcvYhAzMzMzGqt2zE+kg6S9O7c51PSHV2Xd3ZzmZmZmTWScoObfwasAZB0GHARMB54ERhb+9DMzMzMqqtcV1ev3MDlzwJjI2ISMEnSrJpHZmZmZlZl5a749JLUWRgdAdyTW1fJoGgzMzOzzUq5AuZ64D5JzwOrgQcAJA0h6+4yMzMzayjl5uq6UNLdZE9svisiIq16B/CvRQRnZmZmVk1ln9wcEb+LiJsj4pXcsicjYuamHFTSTpKmSZqX/u7YTbtRqc08SaNyyzskzZU0K73elZZvJekGSfMlPSRp8KbEaWZmZs2lkikramEMcHdEDAXuTp/fJt0yfx7wQeBg4LwuBdLJEbFfei1Ly04DXoiIIcD3gItr+SXMzMyssdSr8BkBXJ3eXw18ukSbo4BpEbEiIl4ApgFHb8B+bwKOkKRND9fMzMyaQb3uzuoXEUvS+6VAvxJtdgUW5j4vSss6XSlpHTAJ+FYag/TmNhGxVtKLwM7A8113Lmk0MBqgra2Njo6OTfpCVrlVq1Y53wVyvovjXBfL+S5Ws+S7ZoWPpN8A7y6x6pz8h4gISVGiXTknR8RiSX3ICp8vkD1csWIRMZb0IMZhw4ZFe3v7BoZgG6ujowPnuzjOd3Gc62I538VqlnzXrPCJiI93t07Sc5L6R8QSSf2BZSWaLQbac58HAh1p34vT35clTSAbAzQ+bTMIWJSeQbQDsHzTv42ZmZk1g3qN8ZkMdN6lNQq4tUSbO4EjJe2YBjUfCdwpqbekXQAkbQEMBx4tsd/jgXtyt+GbmZlZi6vXGJ+LgBslnQYsAE4EkHQgcEZEnB4RKyR9E3g4bXNBWrYdWQG0BdAL+A3w89TmCuAaSfOBFcDI4r6SmZmZbe7qUvhExHKyaTC6Lp8OnJ77PA4Y16XNK8AB3ez3NeCEqgZrZmZmTUPuCQJJLwNz6x1HC9mFEnfaWc0438VxrovlfBerkfL9nohoK7XCk41m5kbEgfUOolVImu58F8f5Lo5zXSznu1jNku96DW42MzMzK5wLHzMzM2sZLnwyY+sdQItxvovlfBfHuS6W812spsi3BzebmZlZy/AVHzMzM2sZLnzMzMysZbR84SPpaElzJc2XNKbe8TQzSc9Imi1plqTp9Y6n2UgaJ2mZpEdzy3aSNE3SvPR3x3rG2Ey6yff5khanc3yWpE/WM8ZmIWmQpHslPSZpjqR/S8t9ftdAmXw3xfnd0mN8JPUCngQ+ASwimx7jpIh4rK6BNSlJzwAHRkSjPACroUg6DFgFjI+IfdKyS4AVEXFRKux3jIiz6xlns+gm3+cDqyLif+oZW7NJk1n3j4iZkvoAM4BPA6fi87vqyuT7RJrg/G71Kz4HA/Mj4qmIWANMBEbUOSazjRIR95PNUZc3Arg6vb+a7D8vq4Ju8m01EBFLImJmev8y8DiwKz6/a6JMvptCqxc+uwILc58X0UT/uJuhAO6SNEPS6HoH0yL6RcSS9H4p0K+ewbSIMyX9MXWFueulyiQNBvYHHsLnd811yTc0wfnd6oWPFesjEfEB4BjgX1JXgRUksn7t1u3bLsZPgD2B/YAlwP/WNZomI2l7YBJwVkS8lF/n87v6SuS7Kc7vVi98FgODcp8HpmVWAxGxOP1dBtxM1tVotfVc6q/v7LdfVud4mlpEPBcR6yJiPfBzfI5XjaQtyH6Er4uIX6XFPr9rpFS+m+X8bvXC52FgqKTdJW0JjAQm1zmmpiRpuzRIDknbAUcCj5bfyqpgMjAqvR8F3FrHWJpe549w8nf4HK8KSQKuAB6PiEtzq3x+10B3+W6W87ul7+oCSLfjXQb0AsZFxIX1jag5SdqD7CoPQG9ggnNdXZKuB9qBXYDngPOAW4Abgd2ABcCJEeEBuVXQTb7byboBAngG+GJuDIptJEkfAR4AZgPr0+KvkY078fldZWXyfRJNcH63fOFjZmZmraPVu7rMzMyshbjwMTMzs5bhwsfMzMxahgsfMzMzaxkufMzMzKxluPAxs82WpJ1zM0Evzc0MvUrSj2t0zLMknVJm/XBJF9Ti2GZWe76d3cwaQhEzn0vqDcwEPhARa7tpo9Tm0Ih4tVaxmFlt+IqPmTUcSe2Sfp3eny/pakkPSFog6TOSLpE0W9Id6dH7SDpA0n1pktw7uzyFttPhwMzOokfSlyQ9liZlnAhvzgnVAQwv5MuaWVW58DGzZrAnWdFyHHAtcG9EvA9YDXwqFT8/AI6PiAOAcUCpJ4cfCszIfR4D7B8R+wJn5JZPBz5a9W9hZjXXu94BmJlVwdSIeEPSbLLpZ+5Iy2cDg4FhwD7AtKynil5ks0t31R94PPf5j8B1km4hm/6j0zJgQPXCN7OiuPAxs2bwOkBErJf0Rrw1eHE92f9zAuZExCE97Gc1sHXu86eAw4BjgXMkvS91g22d2ppZg3FXl5m1grlAm6RDACRtIWnvEu0eB4akNu8ABkXEvcDZwA7A9qnde2nQmanNWp0LHzNrehGxBjgeuFjSH4BZwIdLNJ1KdoUHsu6wa1P32SPA5RGxMq37GHB7LWM2s9rw7exmZjmSbga+EhHzulnfD5gQEUcUG5mZVYMLHzOzHEnDgH4RcX836w8C3oiIWYUGZmZV4cLHzMzMWobH+JiZmVnLcOFjZmZmLcOFj5mZmbUMFz5mZmbWMlz4mJmZWcv4/88YQN8QyN8OAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\n", - "Trajectory Energy Plots\n", - "\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAImCAYAAABeqfAdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAADVXklEQVR4nOzdd3wUZf7A8c93S7LpCUkIvVelgwJiwQLoCSgKZzsFe+c8f3a9E/W8s5/t1LOCXcSuqNgQO016B0MNJYH0urvP74+ZbDaVAEk2JN83r3ntzDPPzDy7k02+PM8zzyPGGJRSSimlmhJHqAuglFJKKVXXNMBRSimlVJOjAY5SSimlmhwNcJRSSinV5GiAo5RSSqkmRwMcpZRSSjU5GuAodZgQkQ4ikisizno6f66IdKmPcyulVEPTAEepRkREUkXklKDtc0Vkn4icYIzZYoyJNsb46uA6c0XksuA0+9ybDvA8I0XEbwdHwcvwQy1jfROR1iLykoikiUiOiKwRkXtEJCrUZWsIIjJNRF4PdTmUqi8a4CjVSInIZOC/wOnGmO9DXZ4a7LCDo+Dll7q8gFjq7PeViLQAfgEigOHGmBhgFBAPdK2r6yilQkcDHKUaIRG5EngUGGOM+dlO6yQiRkRc9vZcEblPRH6yayDmiEhS0DmGicjPIpIpIktFZKSdfj9wHPC0XdvytJ1uRKSbvR4hIo+KyGYRyRKRH0Uk4iDex0GVMejY+0XkJyAf6CIio0VkrV2mZ0TkexG5TETCRGSviPQNOr6liOSLSHIVRbsRyAH+YoxJBTDGbDXG/NUYs8w+/hgRWWBfa4GIHFOhbP+0y54rIp+ISKKIvCEi2Xb+TkH5jYhMFZFNIpIuIg+XBmwi4hCRu+zPereIvCoicRXu+WQR2WIfe2fQeR0icpuIbBSRDBGZaQdvNR4rIqcCdwDn2OVfaqdPscuYIyJ/iMgFB3rPlWo0jDG66KJLI1mAVOA9YBfQv8K+ToABXPb2XGAj0AOrJmIu8IC9ry2QAfwJ6z8yo+zt5KBjL6twfgN0s9f/a+dpCziBY4DwKso7EthWw/s51DJuAY4EXEAykA2cZW//FSgpfR/AM8CDQdf+K/BJNeX6FbinhnK3APYBF9rXOs/eTgwq2was2p44YBWwDjjFzv8q8EqFz/Y7+7wd7Lyl5b7EPlcXIBp4H3itwj1/wf78+gNFQO+g9/gr0A4IB/4HvFXLY6cBrweVMcr+fHva262BI0P9ndBFl4NdmmUNjoi8bP9PaUUt8k4RkT0issReLtvfMUodolFYf7SW1yLvK8aYdcaYAmAmMMBO/wsw2xgz2xjjN8Z8BSzECiZqZNcsXAL81Riz3RjjM8b8bIwpquaQNnYNTPAS3I/lUMo43Riz0hjjBU4DVhpj3re3nwR2BuWdAZwnImJvXwi8Vk2ZE4G0Gj6G04H1xpjXjDFeY8xbwBpgXIX3tdEYkwV8Dmw0xnxtl+1dYGCFcz5ojNlrjNkCPI4VNAFcADxmjNlkjMkFbgfOLa2ps91jjCkwxiwFlmIFKwBXAXcaY7bZ92caMLGWx1bFD/QRkQhjTJoxZmUNeZVq1JplgANMB049gPzvGGMG2MuL9VQmpUpdjVXj8WLQH+vqBP+Bz8eqAQDoCEwKDjqAY7H+V74/SYAHq+alNnYYY+IrLHl1VMatQettgreNMQbYFrT9m33+kSLSC+gGfFxNmTOo+bNoA2yukLYZq9ap1K6g9YIqtqMpL/i9bLavUdW1NmPVAqUEpdX0GX4Q9PmtBny1PLYc+56dgxU0pYnIZ/bnqNRhqVkGOMaYecDe4DQR6SoiX4jIIhH5Qb/YKoR2ASdj9ZN55iDPsRWrmSM46Igyxjxg7zc1HJsOFFL/nW33V0YoX840rKYYwOp4HLxtm4FVM3QhMMsYU1jNtb8GJkj1HZd3YAUPwToA22t8RzVrX+FcO6q5VgfAS/mAqTpbgdMqfIYeY0xtylnpZ8AY86UxZhRW8LcGq3lLqcNSswxwqvE8cL0xZjBwE+X/sJwtIstEZJaItK/6cKXqjjFmB1aQc6qI/OcgTvE6ME5ExoiIU0Q8Yj3SXRoQ7MLq81HVtf3Ay8BjItLGPn64iIQfzHs5hDJW9BnQV0TOtJtgrgVaVXHOCVhBzqs1XPsxIBaYISIdAUSkrYg8JiL9gNlADxE5X0RcInIOcATw6cG+WeBmEUmwf4f8FXjHTn8L+JuIdBaRaOBfWLXG3lqc8zng/qD3kCwiZ9SyPLuATkGdnVNE5Ay7ebEIyMVqslLqsKQBDmD/UjkGeFdElmB11Cutvv4E6GSM6Qd8hfU/RKXqnd1X4ySsPhX/PsBjtwJnYD0pswfrf/o3U/adf8I+7z4RebKKU9yE1QdoAVZt54NU//uijVQeB+fsOihjxfzpwCTgIawmpiOw+uwUBeXZCizGqp34oYZr78X6zpcAv4lIDvANkAVsMMZkAGOB/7OvdQsw1i7DwfoIWAQswQrWXrLTX8bqKzQP+AOr9uz6Wp7zCaxmuDn2e/gVGFrLY9+1XzNEZDHW534jVo3SXuAErOZSpQ5LYjVjNz9iPcL5qTGmj4jEAmuNMTX2TxBrBNm9xpi4hiijUqp6ds3DNuACY8x3QekvY/ULuitkhatARAzQ3RizIdRlUaq50BocwBiTDfwhIpMgMKhYf3s9OOgZj9WJTykVAnZzVrzdXHYHIFi1FqX7O2E9Rv5S1WdQSjUXzTLAEZG3sEYx7Ski20TkUqxHNS+1B7xaiVV1DjBVRFba6VOBKaEos1IKgOFYT3elYz2yfab9+Dkich+wAnjYGPNH6IqolGoMmm0TlVJKKaWarmZZg6OUUkqppk0DHKWUUko1Oa79Z2la4uPjTbdu3UJdjGYtLy+PqKio/WdU9UbvQejpPQg9vQehVxf3YNGiRenGmEqT6ja7ACclJYWFCxeGuhgh4/db43Y5HKGrvJs7dy4jR44M2fWV3oPGQO9B6Ok9CL26uAciUnFaFaAZBjjN0RfrFvPob8+zq3gVfmcWGEFMJB5akhzenkEpgzi3z8n0adUh1EVVSiml6oQGOE2Y3+/n8o8f4rfMNxG/h2R3P1pFtsFn/GQXZ7G3eAdbi+azdftcPtr+GG5fe0aknMrfhp9DlxYp+7+AUkop1UhpgNOEnTvr76wu+JgU5zCmn/kA7eMTK+Xx+nzM2bCEj9fNZcGeb5mb/gLfffQyncJHcvfx13FUO+2vpJRS6vCjAU4TddfXr7C64GM6h43iw3MeqbbPjcvp5E89B/OnnoOB/+PL9b/z1IIZpBbN5eKvv6ON6xhuP+YaTuzSt2HfgFKqWSkpKWHbtm0UFlY3AXzdi4uLY/VqHZw+lA7kHng8Htq1a4fb7a5Vfg1wmqC1e3bw0ZZniaAbsyY9dEAdisd0H8iY7gNZsXML/5j7X9YVfMX1834i8YeB/HXIVZx15PB6LLlSqrnatm0bMTExdOrUCRFpkGvm5OQQExPTINdSVavtPTDGkJGRwbZt2+jcuXOtzq3j4DRBV3/+D4wU89DI+whzHVwM26dVB94/90E+Gj+b/jFnsde3mrsXXsHwV/7MCwu+DDyNpZRSdaGwsJDExMQGC27U4UVESExMPKAaPg1wmpinfvmIPeY3hsRPYmSXPod8vq6JrXjj7Gl8NelLRrSYQq7ZzpOrbuLo6eN5aN5Mir3eOii1UkqhwY2q0YH+fGiA04Tsys3ihVWP4PK25r9/uqlOz90qJoHnxv0fP57/Fae2uo4Sk8drf9zHkBknc80n/2FH9t46vZ5SSjW06OjowPrs2bPp0aMHmzdv5rnnnuPVV189qHOmpqby5ptvBrYXLlzI1KlTa338yJEj6dmzJwMGDGDAgAFMnDjxoMrRHGkfnCbkyk//id+ZxZ2D/kVUeHi9XCPOE8nDY67kfu+lPPHLB7y7/i1+2Psyo997g24RJ3LL8Es5pmOverm2Uko1hG+++YapU6fy5Zdf0rFjR6666qqDPldpgHP++ecDMGTIEIYMGXJA53jjjTcO+JiaGGMwxoR0wNeG0LTfXTMyc/mPbCj8kq7hozin33H1fr0wl4ubj5vE/Eve559HvUgb1xA2FH7FFd/9meNmXMgri77SfjpKqcPOvHnzuPzyy/n000/p2rUrANOmTeORRx4BrBqVW2+9laOPPpoePXrwww8/AODz+bj55ps56qij6NevH//73/8AuO222/jhhx8YMGAA//nPf5g7dy5jx44FIDc3l4svvpi+ffvSr18/3nvvvVqXc8qUKUydOpVjjjmGLl26MGvWrMC+hx9+OFCOu+++G7ACrZ49e3LRRRfRp08ftm7dyn333UfPnj059thjOe+883jkkUfYuHEjgwYNCpxr/fr15bYPJ1qD0wTkFRXx7/n34ZA4/jf2rga//hlHDOWMI4ayevc27v/hJZZmfc5jK27kiSWtOK7VOG499i+0i2vR4OVSSh2e7vlkJat2ZNfpOY9oE8vd446sMU9RURFnnnkmc+fOpVev6muivV4v8+fPZ/bs2dxzzz18/fXXvPTSS8TFxbFgwQKKiooYMWIEo0eP5oEHHuCRRx7h008/BaypCUrdd999xMXFsXz5cgD27dtX5fUuuOACIiIiABg1ahQPP/wwAGlpafz444+sWbOG8ePHM3HiRObMmcP69euZP38+xhjGjx/PvHnz6NChA+vXr2fGjBkMGzaMBQsW8N5777F06VJKSkoYNGgQgwcPpmvXrsTFxbFkyRIGDBjAK6+8wsUXX1zrz7kxqdcAR0SGA38BjgNaAwXACuAz4HVjTFZ9Xr+5uP7zx/C6dnBp9/toFZMQsnL0btmO18++m8yCm3j4x3f4cusH1sCB70+nfdgIrhr4F844YmjIyqeUUjVxu90cc8wxvPTSSzzxxBPV5jvrrLMAGDx4MKmpqQDMmTOHZcuWBWpSsrKyWL9+PWFhYdWe5+uvv+btt98ObCckVP37u7omqjPPPBOHw8ERRxzBrl27AuWYM2cOAwcOBKxaovXr19OhQwc6duzIsGHDAPjpp58444wz8Hg8eDwexo0bFzjvZZddxiuvvMJjjz3GO++8w/z586t9D41ZvQU4IvI5sAP4CLgf2A14gB7AicBHIvKYMebj+ipDc/DDH6uYv28myc6juOGYM0NdHADiI6K4f9Ql3M8lfLJ6Ps8ufo0txT9x14K53PdrR/q6htE/fwgJkdH7P5lSqtnZX01LfXE4HMycOZOTTz6Zf/3rX9xxxx1V5gu3+zg6nU689pOkxhieeuopxowZUy5vcI1NXQsP6mtpjAm83n777Vx55ZXl8qamptZ61u6zzz6be+65h5NOOonBgweTmFh5FPzDQX32wbnQGHOpMeZjY8wOY4zXGJNrjFlsjHnUGDMS+LmmE4hIqogsF5ElIlJpCnCxPCkiG0RkmYgcng2FB8nr83HT3L8jxs2zp90b6uJUaVzvo5l9wVN8cdbXnJh0BV5TxELzDse/fRLj37qRj1b9pn11lFKNRmRkJJ999hlvvPEGL730Uq2PGzNmDM8++ywlJSUArFu3jry8PGJiYsjJyanymFGjRvHf//43sF1dE9WBGDNmDC+//DK5ubkAbN++nd27d1fKN2LECD755BMKCwvJzc0NNKGBNWLwmDFjuPrqqw/b5imoxxocY0x6XeQBTqwh32lAd3sZCjxrvzYLd3z9EvmOdfyp1VR6JbcLdXFq1C6uBU+efj1+/7VMm/UiPxctZFPhd9y14Cum/dKWESmnceMx5+okn0qpkGvRogVffPEFxx9/PMnJybU65rLLLiM1NZVBgwZhjCE5OZkPP/yQfv364XQ66d+/P1OmTAk0HQHcddddXHvttfTp0wen08ndd98daP4KFtwHJykpia+//rracowePZrVq1czfLg16nx0dDSvv/46TqezXL6jjjqK8ePH069fP1JSUujbty9xcXHlrvnBBx8wevToWr3/xkhKq7Xq/MQiOUB1Jy8CNgJ3GmO+qeEcqcCQ6gIcEfkfMNcY85a9vRYYaYxJq+6cPXv2NGvXrq3dm2jEVu7ayrmfnUWkdOCXye8eVo/7zZ07l5EjR7Itay//+eUdvt/xGUXOzRjjJEkGMrHnWVw2eAwed/Vt1+rQlN4DFTp6D8pbvXo1vXv3btBrNvepGnJzc4mOjiY/P5/jjz+e559/PvDE1COPPEJWVhb33XdfvZbhQO9BVT8nIrLIGFOpk1J91uBUW2IRcQJ9gDfs12pPA8wREQP8zxjzfIX9bYGtQdvb7LRqA5ymwO/3c/UXd2HEy39Ouv+wCm6CtYtrwaOnXg1czZfrf+f5xe+wLm8u/1t7B8+vepDeMSO5ZMDZjOk+cL/nUkopdWCuuOIKVq1aRWFhIZMnTw4ENxMmTGDjxo18++23IS7hoanPGpxoY0zufvJcb4x5qob9bY0x20WkJfAVcL0xZl7Q/k+BB4wxP9rb3wC3GmMWVjjPFcAVAMnJyYNnzpx50O+rMZi1fSHfe2fQ038613U+NdTFOWCl/2uoSqGvhM92Lmd+/q/kudci4sdR3IpursGcnnwUXaIPz85ujU1N90A1DL0H5cXFxdGtW7cGvabP56vUdKMa1oHegw0bNpCVVf4B7BNPPLHKGpz6DHC+AZZgPUW1yBiTZ6d3wXqK6s/AC8aYWdWepPz5pgG5xphHgtKaXRPVlsw9nP7+GYQRz08XfnhYNuPUtmp+fXoaT89/j592zqHI+QcAkf7uHN9mDFOHTqR9vAY7B0ubR0JP70F52kTVPNVnE1W9tW0YY04GvgGuBFaKSJaIZACvA62AyTUFNyISJSIxpevAaKwxdIJ9DFxkP001DMiqKbhpCq74dBrGkce9I+49LIObA9E9qTVP/Ok6Fl7yMS+cOIvBsedS5M/ii51Pc9qHJ3P8jIv49/fvsC+/xopCpZRSzVC9DvRnjJkNzD7Iw1OAD+zZQ13Am8aYL0TkKvvcz9nn/hOwAcgHDt/n2WrhhQVfst03jz5RZ3J6z7qbl+RwMKxDT4Z1uBO//3Y+WbOAV5d/wLq8H3gz9Z+8selBkp39GdVxNJcPPp3k6NhQF1cppVSINdqpGowxm4D+VaQ/F7RugGsbslyhkpGfw9PL/o2DZJ4be1uoixMyDocjMDVEsdfLG0u/44N1n/NHwa+8lbqQNzc9TJKjHyd1OIUrjxpHSnTc/k+qlFKqyTk8H79phq745H78rgxuGnQX8RG1G42yqQtzubh48Cg+Pu8xFl00j1v6PUFXz4lk+Nbz7pYHOfndkRw/4yKmffsqO7L3hrq4SqlGzul0MmDAAPr06cO4cePIzMysMf/06dPZsWPHfs9bMd9ll13GqlWrDrW4la5x3XXXVZmenJzMgAEDAktdX7ux0gDnMPD+yl9YWzCbju6TuXDgSaEuTqMU5nJx4cCT+Oi8R/l98jzuGPA03SNGkenbxHtbH2b0+ycy/JU/c/1nT7Jg24ZQF1cp1QhFRESwZMkSVqxYQYsWLcqNMlyVgw1wXnzxRY444ohDLm9tnXPOOSxZsiSw1MW1S6eoaMzqPcARkUdFJDQTizQBeUVF3PfrNBz+WJ4f+49QF+ew4HI6Oa//CXxw7kMsnvw9dw18hiOjxlHg38fc9Be45JsJDHxpDOfP+gezlv+E1+cLdZGVUo3M8OHD2b59OwBLlixh2LBh9OvXjwkTJrBv3z5mzZrFwoULueCCCxgwYAAFBQXce++9HHXUUfTp04crrrgCY0yV+UaOHMnChdZoJm+99RZ9+/alT58+3HrrrYHrR0dHc+edd9K/f3+GDRsWmEzzk08+YejQoQwcOJBTTjklkH6gSp/imzhxIr169eKCCy4IzGe1aNEiTjjhBAYPHsyYMWNIS7Oe3Rk5ciQ33HADQ4YM4YknnmDBggX069ePAQMGcPPNN9OnjzWs3fHHH8+SJUsC1zr22GNZunTpQZXzUDREH5zVwPMi4gJeAd7SWcRr74pP/x2YKbxNbItQF+ew43I6OaffcZzT7zgAftq8mjeWfcGi9B9ZlvsRyxd/wD0LYmgXPpjRnU7iooGnkBipj40qFVKf3wY7l9ftOVv1hdMeqFVWn8/HN998w6WXXgrARRddxFNPPcUJJ5zAP/7xD+655x4ef/xxnn76aR555JHATN/XXXcd//iH9R/RCy+8kE8//ZSJEydWyldqx44d3HrrrSxatIiEhARGjx7Nhx9+yJlnnkleXh7Dhg3j/vvv55ZbbuGFF17grrvu4thjj+XXX39FRHjxxRd56KGHePTRR2t8P++88w4//vhjYPuXX34B4Pfff2flypW0adOGESNG8NNPPzF06FCuv/56PvroI5KTk3nnnXe48847efnllwEoLi4OBGd9+vThhRdeYPjw4dx2W1nf0EsvvZTp06fz+OOPs27dOgoLC+nfv1KX2npX7wGOMeZF4EUR6Yn1lNMyEfkJawyc7+r7+oezj1b9xtKcD2jjOrbRzBR+uBvRsTcjOvYG/saWzD28svgLvt82l23Fv/Lyhrm8tO5eYunBgKRhTDziZEZ27nPYjhStlDowBQUFDBgwgO3bt9O7d29GjRpFVlYWmZmZnHDCCQBMnjyZSZMmVXn8d999x0MPPUR+fj579+7lyCOPZNy4cdVeb8GCBYwcOTIw39UFF1zAvHnzOPPMMwkLC2Ps2LEADB48mK+++gqAbdu2cc4555CWlkZxcTGdO3fe7/s655xzePrppyulH3300bRrZ81jOGDAAFJTU4mPj2fFihWMGjUKsIK91q1blzsXQGZmJjk5OYE5r84///zAhJ2TJk3ivvvu4+GHH+bll19mypQp+y1jfWiQp6jsqRl62Us6sBS4UUSuNMac2xBlONzkFBUw7Ze/45AYXhr7z1AXp0nqEJ/M3SddCFxIXlERby6byxebvmNT7iJ+2PsyP/z4MjI3nnaeAYxsfxzn9z+FdnFai6ZUvatlTUtdK+2Dk5+fz5gxY/jvf//L5MmTa3VsYWEh11xzDQsXLqR9+/ZMmzaNwsLCgy6L2+3GHiYFp9MZ6PNy/fXXc+ONNzJ+/Hjmzp3LtGnTDvoa4eHhgfXSaxhjOPLIIwO1PBVFRe3/IZfIyEhGjRrFRx99xMyZM1m0aNFBl/FQNEQfnP8Aa7HGq/mXMWawMeZBY8w4QCcZqsYVH/8bryuNK464VUfsbQBR4eFcftQY3jvnAX6/9CteHfUxp7W6nhaurmwt/pXX/riPUz84kaNfnsAlH/6bWct/orCkONTFVkrVg8jISJ588kkeffRRoqKiSEhI4IcffgDgtddeC9TmxMTEkJOTAxAIZpKSksjNzWXWrLJxbIPzBTv66KP5/vvvSU9Px+fz8dZbbwXOXZ2srCzatm0LwIwZMw79zVbQs2dP9uzZEwhwSkpKWLlyZaV88fHxxMTE8NtvvwHw9ttvl9t/2WWXMXXqVI466igSEhLqvJy10RA1OMuAu0qnaqjg6Aa4/mHn/ZW/sDzvQ9q5jue6YdVXb6r6M7BNZwa2saYwyy8p4v2VPzN7w3eszV7Igqw3WbD4TaYtDCdBetEvaQjjehzPKV3749J5bZRqEgYOHEi/fv146623mDFjBldddRX5+fl06dKFV155BYApU6Zw1VVXERERwS+//MLll19Onz59aNWqFUcddVTgXBXzlWrdujUPPPAAJ554IsYYTj/9dM4444wayzVt2jQmTZpEQkICJ510En/88cd+30vFPjjPPPNMtXnDwsKYNWsWU6dOJSsrC6/Xyw033MCRR1Z+Vuill17i8ssvx+FwcMIJJxAXVzbu2ODBg4mNjeXii0M3/m69zUUVuIDIoCqSs4DNxpgGf86ssc9FlVWYzwlvnIFfCpl99kdNsknkcJ+DZ316Gu+unMtP239lW8Fy/K491g5fNMmuIxiccjQTep3AsPY9Gm3/ncP9HjQFeg/K07moDj/BE8Y+8MADpKWl8cQTTwBWB+qRI0eyZs2aGn8P1udcVA1Rg/MMMAirJkeAPsBKIE5ErjbGzGmAMhw2Lv/kfnyunVzT+8EmGdw0Bd2TWnPHCecB5wHw+44/mLXyOxbsnM/OkhV8sXM+X+x8GvEm0Dq8D4NbDmZszxGNOuBRSqkD9dlnn/Hvf/8br9dLx44dmT59OgCvvvoqd955J4899lhIf+c1RICzA7jUGLMSQESOAO4FbgHeBzTAsb2z7AdW5X1CB/dIrj76T6EujqolqzmrM3AJfr+fHzev5sM1c1m8eyE7ihexI+0HPkl7HHwxJLl60TdxIKd2O4ZTuvYnzNVoZ0tRSqkanXPOOYGnqoJddNFFXHTRRSEoUXkN8du1R2lwA2CMWSUivYwxm0p7iCvYlZvFvxb8HQcJvHz2vaEujjpIDoeD4zsfyfGdrfZqr8/HvNSVfLb+J5bu+Z3dxav5Ln0B36U/Dz95iHN0p1dCf07uNIyxvY4mJjwixO9AKaWahoYIcFaJyLNAaRfrc+y0cKCkAa5/WJj84R34nHu5bcATtIoJTY9zVfdcTicnde3HSV37BdIWbd/IJ2t/YsHORWwvWMlvma/z25LXuX+xi0jTiY7RvTmq1QBO7zmcI1Pah7D0Sil1+GqIAGcycA1wg739E3ATVnBzYgNcv9F7aN5Mtvvm0S96An8ZoB9JUze4bVcGt+0KWFW4GzN28v6qH/l1x0K25K1mdd5s1vzxCa/9AeKNJ9Hdnd4JfTmh4xBO7TGYOE9kaN+AUkodBuo1wLEH+JttjDkRqGos6dz6vP7hYMXOLby24VHC6MiLZ9wZ6uKoEOia2Iqbj5sITASsQR7nbPid7/5YwOp9K9hTvI4f9i7gh70vc99iJx5/e9pF9mJQSn9O6TJEOy8rpVQV6jXAMcb4RMQvInEHMv+UiLQHXgVSAAM8b4x5okKekcBHQOkgAO8bYw6rziten48rPr8ZIyX8Z+SDRLrD93+QavJiwiM4+8hjOPvIYwJpa/Zs47O1vzE/7XdSc1ezoeAbNm75gne3AL4IoqUT7aO7M7BlP07pOpjBbbpo0KPUAcjIyODkk08GYOfOnTidzsAUCvPnzycsLKzOrjVlyhTGjh3LxIkTq80zffp0Ro8eTZs2bQBr4Lwbb7yxTmchnz59OgsXLqw0jcP06dO5+eabAwMKArz55psNOgN6XWiIJqpcYLmIfAUEBvszxkyt4Rgv8H/GmMUiEgMsEpGvjDGrKuT7wRgztu6L3DCu+ewxchyrGJNyTaBTqlJV6ZXcjl7J7YCzASgsKeabTcv4YfPvrEhfSVrhBlblfcbq1I95MxXwRRIjnegY3ZNBrfpyUpdBDGzdWYMepaqRmJgYmAF72rRpREdHc9NNNwX2e71eXA341OP06dPp06dPIMB58cUXG+zaUP38VYeioT/Dhvht9z7wd2AesChoqZYxJs0Ys9hez8GakbxtTcccbt5a+j0/732dJBnCw6OvDHVx1GHG4w7j9J5DeGD05Xx6/uMsuuRTfjnvF/551Iuc2uo6OniGUmhyWJ73Ea9uupcpX59J/+nHMPyVPzNp5h28se1Xvlq/hPySolC/FaUardIRiIcOHcott9zC/PnzGT58OAMHDuSYY46hdNDY6dOnc9ZZZ3HqqafSvXt3brnlFsCaqHLKlCn06dOHvn378p///KfSNe69916OOuoo+vTpwxVXXIExhlmzZrFw4UIuuOACBgwYQEFBASNHjgzM4v3WW2/Rt29f+vTpw6233ho4V3R0NHfeeSf9+/dn2LBh7Nq1C4BPPvmEoUOHMnDgQE455ZRA+oEqHZxy4sSJ9OrViwsuuIDSwYIXLVrECSecwODBgxkzZgxpaWkAjBw5khtuuIEhQ4bwxBNPsGDBAvr168eAAQO4+eabGTp0KADHH398IMAEOPbYY1m6dOlBlbNUQ8wmPkNEIoAOxpgDHkJYRDphzVn1WxW7h4vIUqyxdm4Kfhy9wjmsMfeB5ORk5s6de6DFqFM7C3P41/YHcJh4rms/iXnz5oW0PA0tNzc35PegqYoDTg/vyeltegKQ5y1madZ2VuVuZqtvK1lsZ3Xe54jDy68/v4H50YnL24o42tDG3ZZuke3oH9eOpPD9T6inDo1+D8qLi4sLzNf0+NLHWZ+1vk7P3z2uOzf0v6Fcms/nq3KOqKKiItxuNyUlJezcuZMvv/wSp9NJdnY2s2fPxuVy8d1333HLLbfw+uuvU1hYyO+//84PP/xAeHg4gwcP5uKLL2bPnj1s2bIlMD1D6QzcJSUlFBQUkJOTw+TJk/nb3/4GwOWXX867777LaaedxsCBA/nnP//JoEGD8Hq9+Hw+8vLyWLduHbfccgvz5s0jPj6eM888k7feeouxY8eSl5dH//79ue222/j73//O008/zS233EL//v356quvEBFmzJjBP//5T/71r39RWFhIcXFxpc+gsLCQt99+u9zfpq+//pr8/Hx+//13fvvtN1q3bs2oUaP46quvGDJkCNdccw1vv/02SUlJvPfee9xyyy0888wz+Hw+cnNz+e677wAYOnQoTz75JEOHDuXuu+/GGENOTg7nn38+zz//PA8++CDr168PTItRVdlq+72p9wBHRMYBjwBhQGcRGQDca4wZX4tjo4H3gBuMMdkVdi8GOhpjckXkT8CHQPeqzmOMeR54HqypGkI5PLrX5+OE1y7EOPL417DnGde7+U3HpUPUN6zTK2znlxTxv0/fJTvOsCJ9NdvzNrLXrGavLGBFAXxYAOJtQZyrA52iu3Nkck+GtTuSYe174HHXXT+E5k6/B+WtXr06MGR/WFgYzjqe1y0sLKzSlADVTRMQHh5OeHg4breb8847j/j4eMAKUC655BLWr1+PiFBSUkJMTAwej4dTTjmFdu3aAXDkkUeSkZFB37592bx5M3fccQenn346o0ePxuFw4Ha7iYiIICYmhjlz5vDQQw+Rn5/P3r17GTBgADExMTidTqKiogLlK91evXo1J554Ip07dwasQfUWLFjAeeedR1hYGJMmTUJEGD58OF999RUxMTGkpqZy2WWXkZaWRnFxMZ07dw6Uu6rPxePxcO6551ZqooqMjOToo4+mV69egDXf1O7du9mxYwerV69mwoQJgBU4tm7dOvA+LrzwQmJiYsjMzCQvL49TTjkFsGrIvvjiC2JiYrjooovo168fTzzxBDNnzuSSSy6p8t54PB4GDqzdPN0N0Rg2DWtSzbkAxpglItJlfweJiBsruHnDGPN+xf3BAY8xZraIPCMiScaY9LoqeH248pNHyJbljE65qlkGNyr0It3hDExoV+6Pq9/vZ236Dr7d9Du/71rFpqz17C1J5fecpSzJNbzxBxi/E7c/hRZhHegY04Ujk3owvP2RDGnbTUdkVnXq1qNv3X+mBhIVVVab+fe//50TTzyRDz74gNTU1HLfofDwsodEnE4nXq+XhIQEli5dypdffslzzz3HzJkzefnllwP5CgsLueaaa1i4cCHt27dn2rRpgVnJD4bb7aZ0AN3SMgBcf/313HjjjYwfP565c+cybdq0g75GVe/TGMORRx5ZbiLRYMGfYXUiIyMZNWoUH330ETNnzmTRohp7stRKQ/xWKjHGZFUYtdhf0wFiZX4JWG2MeayaPK2AXcYYIyJHY/UnyqijMteLZ377lN8y36Cl42geGXN1qIujVIDD4aB3y3b0btkOKJvBfl9+LvNSV7JgxyrW7d3Ajvw/2FO8lt1Zv7IgC6ZvBON3EWZak+TuQMfYrvRN7sExHY5kQOvOOru6alKysrICTxaVzrtUk/T0dMLCwjj77LPp2bMnf/nLX8rtLw1mkpKSyM3NZdasWYEnq2JiYqpsPjv66KOZOnUq6enpJCQk8NZbb3H99dfXutwzZszYb7kPVM+ePdmzZw+//PILw4cPp6SkhHXr1lWagTw+Pp6YmBh+++03hg4dyttvv11u/2WXXca4ceM47rjjSEg49AFvGyLAWSki5wNOEekOTAV+3s8xI4ALsZ6+WmKn3QF0ADDGPIc1aMjVIuIFCoBzTX1PjX4Iftq8mmdX3oPbtOHdPz+uT7Oow0JCZDRnHDGUM44YWi59V24WP/yxgoVpq1i/byNp+ansLFlBWuZP/JoJL6wH43cTZlqR4G5L26iO9GjRhf4p3TmmYy8SI3UGZ3X4ueWWW5g8eTL//Oc/Of30io2/lW3fvp2LL74Yv9/6P/2///3vcvvj4+O5/PLL6dOnD61ateKoo44K7Cvt4BwREVGuZqR169Y88MADnHjiiRhjOP300znjjDNqLMe0adOYNGkSCQkJnHTSSfzxxx815gd45513+PHHHwPbzzzzTLV5w8LCmDVrFlOnTiUrKwuv18sNN9xQKcABeOmll7j88stxOByccMIJxMbGBvYNHjyY2NhYLr744v2WrzakvmMCEYkE7gRGY80m/iVwnzHm4OvhDkHPnj1Nac/3hrIrN4sx70zEJ9m8PPoNjmrXrUGv39ho34PQq697sDUzgx83r2DxzjWs37eB3YXbyPXtwO/ch0jZ7xrxxhPtaEOypx2d4jrTJ7k7R7XrSb+UDs0m+NfvQXmrV6+md+/eDXrN6vrgqPqTm5tLdHQ0AA888ACbN2/m2WefBWDHjh2MHDmSNWvWVPt7oKqfExFZZIwZUjFvQzxFlY8V4DTLYXqLvV4mvncdXudubuzzcLMPblTT1j4+kfPiT+C8/ieUS88syOPXrWv5PW096/ZuZFvuZvaWbGdj4fdsKp7Dt3uAVeVrfVpFtqVzXEd6J3dmcJtu9Ehs02yCH6Waqs8++4x///vfeL1eOnbsGOjI/Oqrr3LnnXfy2GOP1dn3vCGeouqBNfdUp+DrGWNOqu9rh5rf7+fsd28mkyWcknIVlwwZHeoiKRUS8RFRnNpjEKf2GFQu3e/3s3rPduZvW8OKPRvYlPkHuwu3kl68nl2+31iWa/hoO7AEjD8Mtz+ZOFcrWka2pWNsB3ondmZgm+70Temg/X2UOgycc845nHPOOYHt0n5GF110ERdddFGdXqsh+uC8CzwHvAj4GuB6jcaVnzxKavHX9I4Yz+OnXRvq4ijV6DgcDo5MaW/Pmj6q3L68oiKW7NzE0p0bWZuRytbsrewp3E6mdxvpuUtYne/ji53ASusJL5c/iRhnK5I8bWgb3ZYu8e05omUnBrTuTKuYQ++wqJQ6vDREgOM1xjzbANdpVO759jV+zXyVlo5hvHn2YTVFllKNQlR4OCM69mZEx8r9Moq9Xlbu3srvO9azJiOV1OzN7M7fTrZvF/sKVrOhqJjvM4CN9gG+CNwkEeNMJsnT2gqAEtrTO7kjA1p3ISU6rkHfm6qaMYYKT9wqFXCgfYYbIsD5RESuAT4AAuPCG2P2NsC1Q+KZ3z7l3S2PEmV68OG5T2rVuVJ1LMzlYmCbzgxs07nSPr/fT2rmHpbt/IM16ZtJzdrGjtzt7C3aSbZ3Bxn5y1lXWMJ36UDpYLm+SMJIIsbZkqSIVrSJakP72NZ0T2xH7+QOdG2Rot/jeubxeMjIyCAxMVGDHFWJMYaMjAw8Hk+tj2mIAGey/XpzUJoB9jvY3+HohQVf8syqvxPmb817E18gJjwi1EVSqllxOBx0aZFClxYpwLBK+/1+Pxv37mLZrj9YGxQA7SveRaZ3K+l5S1hb4IV0YJN1jPE7cfrj8ThaEOtKJtHTkjbRregQ15auCW05MqUDneKTtRP0IWjXrh3btm1jz549DXbNwsLCA/qDqeregdwDj8cTGC26NhriKarK/8Vqol5Z9BVPrLgdt78l70+YQbu4FqEuklKqAofDQfek1nRPag0cU2m/3+/nj327WbV7C+sztrE5ewdpeWlkFO4mpySdXcVrSPP9ysp8P+wuO8743Tj98UQ4Eol1J5HkSaFVVArtYlLomNCK7olt6JbYmkh3eKVrKmsU3tLpBxrK3Llzaz3sv6of9XkP6i3AEZFbjDEP2euTjDHvBu37lzHmjvq6dij856cPeGndvbj9ycw8YzqdWrQMdZGUUgfB4XDQNbEVXRNbYc0yU5nX52N9Rhqr9mxhox0E7crfxd7C3eR409lZvIId3p9YnmfKB0FGEH8UbhOPyxdN4vb3aOFJJCUyhbYxLemU0FoDIaXqSH3W4JwLPGSv3471NFWpU7FGJm4S7vr6FT7c9jge04FZE17S4EapJs7ldAZNbVG1wpJiNu7dxYaMHfyRmca27J3sytvD3qI9ZBfvJcefzrai7WwtyUVyqwmEiCfCkUCMK4G48AQSPYmkRCXRJqYl7eOS6ZzQis4JLXUuMKWqUJ/fCqlmvartw5LX52Pyh/exLPc9YkxvPv7ziyRHx+7/QKVUk+dxhwU9Al9Z6UjGFQOh7Tm72Jm7OxAI5fv3klO8hW3eXCTfBxUezygNhlwmhnBHHFGueGLdCbTwJJIc2YI20S1pG5dMp/gUurZoRXzE/ic+VKopqM8Ax1SzXtX2YWdPbjaT3vsrGSyknWsksyY+QlS4VikrpQ7M/gKhUn6/n+3Z+9i4N42tWbvZlr2HXfnppOenk1m0j5ySfeT7skgv3sgubzZSVARZlc9j/OE4/dG4JBqPI4ZIZxzR7ljiw+NJ8CSQHNmClKgE2sQm0T4umQ7xSfqwhDos1WeA019EsrFqayLsdeztw7rb+uy1i7jjx1vwOvdwfOIlPH36X/XpCaVUvXI4HLSPT6R9fGKt8mcW5LFx7042Z+5mW9Zuduamsys/nX2Fe8kpySLfl02RP5tcXxo7vXlQVAjZVZ/L+MNx+KNwSzThEkOkK5ZodxxxYfHEhcfSIiKOxIg4kqMSSIlOoFV0Am1iWxDniazDT0CpA1NvAY4xpskNGpFfUsT1nz3Ob/veRiSSm/o+xpTBp4S6WEopVUl8RBSD23ZlcNuutcqfV1TElqw9bMtKZ3t2OjvzMkjP38fewn1kFmaSW5JFnh0U5RXvZFdpUJRT/TmN34WYSFwmErdEEe6IJsIZTaQ7hhh3LLHhMSR44kiMiCc5Kp6UqASSo+NpFR1HUmSsjj2kDon2TKult5Z+z8MLH6DEtY0kxxBeOP1f9mOmSil1+IsKD99vx+mK8oqK2JGzl7ScvezOzWR3/j7S8zPJLMwisyib7OJs8kpyyPfmUOjPJc+XQZZvK8abbwVHuTWf3/jDcRgPDhOBSyIIk0jCnRF4nFFEuqKJdEURExZNTFg0cZ5oEiLiaOGJITEylqSoOA2UmjkNcPbj6w1Lufenx9jHYpBYLuryD24+blKoi6WUUiEXFR5O9/DWB/WfvcKSYnbmZLIjZy87c/exJ88KjrKKcskpziW3OJe8kjwKfHkUePMo9udTbPLJL8nA7y3AX1yIOIr2fyGsQElMGA7jwUk4LgnH5YjAlEDMtnfwOCPwOCOIcEUS6Y4gyh1JTFgU0WGRxIZHExseSXxENC0iYoj3RJEUGUOcJ1K7JjRyjTbAEZFTgScAJ/CiMeaBCvvDgVeBwUAGcI4xJrUurp1XVMTLi7/grbVvkyMrMP5wjk44n4dHX0diZExdXEIppZo1jzuMTi1aHtKwGsVeL+n52ezOyyY9L4uM/GwyCrLILMwhq9AKlHKKc8kryaXIX0CRr5AifwFefxHF/jxKJJ+8oh0YKcJIMeIoqfW1jREwLsS4EcIQ48ZBGE4Jwylu3GIFUm5HOGHOMNyOcMKd4YQ7PXhc4XicHiJcHiLdZUuUO4LosAiiwyOIdIcT4Q4n0h1OlDuciLBwot0eItxuDaxqqVEGOCLiBP6LNb3wNmCBiHxsjFkVlO1SYJ8xppuInAs8CJxT+Wz75/f7Wb1nO5+s/ZmvN3/DLu/v4CgEfwxHtTifu46/xB72XSmlVGMR5nLRJrYFbWIPbtT40kf1SxV7vewtyGFfQR57C3LILMwjszCX7KJ8cgpzyS7OI78kn9ySfPJL8in0FVLsK6LYV0SJKabEX4TXX4zXFFNgsvGbYvwU45dioAQjJYjDd8jv2/hdgBMxLgRX4NUhbhy4cODCKW6cYqW5xI1LXDjEidPhwilOHOLEZa87xYXL4cLlKF239rkdVn63vTgdTsKc7sC22+UmzM4b5rTSHA4HTnHgEAcOh+AUa9vpsNLK1gWnw8mG3HTi01Jx2ekiWGVyOHA5HHY5BZEDD+rkQGfnbAgiMhyYZowZY2/fDmCM+XdQni/tPL+IiAvYCSSb/byhth2izNW3H0kJhizxs1v8pLp95Ditw6J9MLQ4jNFEcnJYNOEH8aGqmmVmZhIfHx/qYjRreg9CT+9B6IXiHnjxU2gM+cZPgd9PAYZCYygwfgopey02hmIMJQJFxk8JUIKVVowp2xaDFwJ5SzB47dcSAW/pqxj8gA/wicEH+KV0G8xhPDrdiikrFhljhlRMb5Q1OEBbYGvQ9jZgaHV5jDFeEckCErGmyCtHRK4ArgDwdPLwbkQBTgPRfiHBJwwpcNLN56C338kA48SNA/BTUJBNQT28uebO5/ORmZkZ6mI0a3oPQk/vQeiF8h6E2UtcjblKo4767yTtw48fKAG8WIGP1w6kfPZSgrHTwSvgM1bgVJbf4gf8YjCAMda2ETsdayA8vz0cntcYELHS7DzY+0vz7q/O66Zq0htrgFOnjDHPA88D9OjZ0yydsjzEJWreKlYLq4an9yD09B6Ent6D0KuLe3DTX6uufmqs7S/bgeBhPdvZaVXmsZuo4rA6G9foMK6FU0oppVQtNdYanAVAdxHpjBXInAucXyHPx8Bk4BdgIvDt/vrfAKxbty5XRNbWcXnVgUmiiqZE1aD0HoSe3oPQ03sQenVxDzpWldgoAxy7T811wJdYjY8vG2NWisi9wEJjzMfAS8BrIrIBa/q5c2t5+rVVdUZSDUdEFuo9CC29B6Gn9yD09B6EXn3eg0YZ4AAYY2YDsyuk/SNovRDQEfeUUkopVUlj7YOjlFJKKXXQmmOA83yoC6D0HjQCeg9CT+9B6Ok9CL16uweNcqA/pZRSSqlD0RxrcJRSSinVxGmAo5RSSqkmp9kEOCJyqoisFZENInJbqMvTHIlIqogsF5ElIrIw1OVpDkTkZRHZLSIrgtJaiMhXIrLefk0IZRmbumruwTQR2W5/F5aIyJ9CWcamTkTai8h3IrJKRFaKyF/tdP0uNJAa7kG9fReaRR8ce3bydQTNTg6cV2F2clXPRCQVGGKM0YG1GoiIHA/kAq8aY/rYaQ8Be40xD9jBfoIx5tZQlrMpq+YeTANyjTGPhLJszYWItAZaG2MWi0gMsAg4E5iCfhcaRA334M/U03ehudTgHA1sMMZsMsYUA28DZ4S4TErVO2PMPKyBMIOdAcyw12dg/ZJR9aSae6AakDEmzRiz2F7PAVZjTdis34UGUsM9qDfNJcCpanbyev1gVZUMMEdEFtkzvKvQSDHGpNnrO4GUUBamGbtORJbZTVjaNNJARKQTMBD4Df0uhESFewD19F1oLgGOahyONcYMAk4DrrWr7lUI2fO3Nf126sbnWaArMABIAx4NaWmaCRGJBt4DbjDGZAfv0+9Cw6jiHtTbd6G5BDi1mZ1c1TNjzHb7dTfwAVbToWp4u+z28NJ28d0hLk+zY4zZZYzxGWP8wAvod6HeiYgb6w/rG8aY9+1k/S40oKruQX1+F5pLgBOYnVxEwrAm5vw4xGVqVkQkyu5YhohEAaOBFTUfperJx8Bke30y8FEIy9Islf5RtU1Avwv1SkQEa4Lm1caYx4J26XehgVR3D+rzu9AsnqICsB89e5yy2cnvD22JmhcR6YJVawPWJK9v6j2ofyLyFjASSAJ2AXcDHwIzgQ7AZuDPxhjtBFtPqrkHI7Gq5A2QClwZ1BdE1TERORb4AVgO+O3kO7D6gOh3oQHUcA/Oo56+C80mwFFKKaVU89FcmqiUUkop1YxogKOUUkqpJkcDHKWUUko1ORrgKKWUUqrJ0QBHKaWUUk2OBjhKKaWUanI0wFFKhZyIJIrIEnvZKSLb7fVcEXmmnq55g4hcVMP+sSJyb31cWylV/3QcHKVUoyIi04BcY8wj9XgNF7AYGGSM8VaTR+w8I4wx+fVVFqVU/dAaHKVUoyUiI0XkU3t9mojMEJEfRGSziJwlIg+JyHIR+cKe5wYRGSwi39uz1n9ZYSj4UicBi0uDGxGZKiKr7BmN34bA5ItzgbEN8maVUnVKAxyl1OGkK1ZwMh54HfjOGNMXKABOt4Ocp4CJxpjBwMtAVVOCjAAWBW3fBgw0xvQDrgpKXwgcV+fvQilV71yhLoBSSh2Az40xJSKyHGteuS/s9OVAJ6An0Af4ymphwglUNa9Na2B10PYy4A0R+RBrrq5Su4E2dVd8pVRD0QBHKXU4KQIwxvhFpMSUdSL0Y/0+E2ClMWb4fs5TAHiCtk8HjgfGAXeKSF+7+cpj51VKHWa0iUop1ZSsBZJFZDiAiLhF5Mgq8q0Gutl5HEB7Y8x3wK1AHBBt5+sBrKj3Uiul6pwGOEqpJsMYUwxMBB4UkaXAEuCYKrJ+jlVjA1Yz1ut2s9fvwJPGmEx734nAZ/VZZqVU/dDHxJVSzZKIfADcYoxZX83+FOBNY8zJDVsypVRd0ABHKdUsiUhPIMUYM6+a/UcBJcaYJQ1aMKVUndAARymllFJNjvbBUUoppVSTowGOUkoppZocDXCUUkop1eRogKOUUkqpJkcDHKWUUko1ORrgKKWUUqrJ0QBHKaWUUk2OBjhKKaWUanI0wFFKKaVUk6MBjlJKKaWaHA1wlFJKKdXkaICjlFJKqSZHAxyllFJKNTka4CillFKqydEARymllFJNjgY4SimllGpyNMBRSimlVJOjAY5SSimlmhwNcJRSSinV5GiAo5RSSqkmRwMcpZRSSjU5GuAoFUIiYkSkW4iuPV1E/llP514pIiMP8RzTROT1uimRUqq50QBHqSqISG7Q4heRgqDtC6o5ZqSIbKvDMsy1A6D+FdI/sNNH1tW16pox5khjzNz6Or/9Wfsr3KdcERleX9esKyLSWkReEpE0EckRkTUico+IRIW6bA1BA1fVUDTAUaoKxpjo0gXYAowLSnujAYuyDriodENEEoHhwJ4GLENjtSP4PtnLL3V5AbHU2e9JEWkB/AJEAMONMTHAKCAe6FpX11FKaYCj1AERkXAReVxEdtjL43ZaFPA50CaoNqGNiBwtIr+ISKb9P/anRSTsAC75BnCOiDjt7fOAD4DioDI5ROQ2EdkoIhkiMtP+Q1q6/1gR+dkuw1YRmRJ0/gQR+cyuSfhNRLoGHfeEnT9bRBaJyHFB+6bZ13nVPnaliAwJ2p8qIqfY604RucMuX459rvb7u8ahsGu/7hORn+xrzhGRpKD9w4I+k6XBtWH2sfeLyE9APtBFREaLyFoRyRKRZ0TkexG5TETCRGSviPQNOr6liOSLSHIVRbsRyAH+YoxJBTDGbDXG/NUYs8w+/hgRWWBfa4GIHFOhbP+0y54rIp+ISKKIvGF/hgtEpFNQfiMiU0Vkk4iki8jDpQGb/XNzl4hsFpHd9r2Ms/d1so+dLCJb7GPvDDpvtT9zNR0rIqcCd2D9TOeKyFI7fYpdxhwR+UOqqSVV6kBogKPUgbkTGAYMAPoDRwN3GWPygNMoX6uwA/ABfwOSsGpeTgauOYDr7QBWAaPt7YuAVyvkuR44EzgBaAPsA/4LICIdsQKvp4Bku9xLgo49F7gHSAA2APcH7Vtg528BvAm8KyKeoP3jgbexah8+Bp6u5j3ciBWY/QmIBS7BChxqc41DcT5wMdASCANuAhCRtsBnwD/t694EvFchILkQuAKIAbKAWcDtQCKwFjgGwBhTjPUZ/CXo2POAb4wxVdWynQK8b4zxV1VgO0j4DHjSvtZjwGdi1dyVOtcuX1usWp9fgFfs97IauLvCaScAQ4BBwBlYnz/AFHs5EegCRFP5Hh4L9MT6uf2HiPS206v9mavpWGPMF8C/gHfs70h/sf5z8CRwml2jdQzlf0aVOjjGmGa3AC8Du4EVtcz/Z6w/MiuBN0Ndfl0adgFSgVPs9Y3An4L2jQFS7fWRwLb9nOsG4IOgbQN0qybvXOAyrD+ebwG9gHX2vm3ASHt9NXBy0HGtgRLAhfVH+YNqzj8deDFo+0/AmhrKvg/ob69PA74O2ncEUFDNZ7YWOKOWn3XFa7xeTb6RgB/IrLBEBX12dwXlvwb4wl6/FXitwvm+BCYHHXtv0L6LgF+CtgXYClxmbw/FasYUe3sh8Odqyr0euKqG938hML9C2i/AlKCy3Rm071Hg86DtccCSCj9fp1b4HL6x178Brgna1zPo56aTfWy7oP3zgXNr8TO3v2PL3Vcgyr53ZwMRh/p91UWX0qW51uBMB06tTUYR6Y71R2KEMeZIrD9QqvlqA2wO2t5sp1VJRHqIyKcislNEsrH+95pUXf5qvA+cBFwHvFbF/o7AB3ZzSybWHx8fkAK0xwrKqrMzaD0f63/xpWW/SURW200lmUBchbJXPNYjIq4qrlFtGWpxjZrsMMbEV1jyavHeOgKTSj8v+7rHYv2RLrU1aL1N8LYxxmAFmKXbv9nnHykivYBuWDVaVcmocJ2KKv58YW+3DdreFbReUMV2NOUFv5fgn9eqfpZdWD83pWr6DKv7mdvfseXY9+wc4CogTawm015V5VXqQDTLAMcYMw/YG5wmIl1F5Au7H8APQV+wy4H/GmP22cfubuDiqsZlB9Yv91Id7DSw/tda0bPAGqC7MSYWq/+BHMgFjTH5WM1MV1N1gLMVq3o/+A+9xxiz3d53wJ1X7b4wt2DVXiYYY+KxmmoOqOxB5atUhjq+xoGW57UKn1eUMeaBoDzB9zINaBdUbgnets3Aqmm7EJhljCms5tpfAxOk+o7LFX++wPoZ217jO6pZ+wrnKv15repn2Uv5gKk6Nf3M7U+l74kx5ktjzCis4G8N8EItzqNUjZplgFON54HrjTGDsdrkn7HTewA9xOqs+KvdSU41X28Bd4lIslidVv8BlD7yugtILO2oaYsBsoFcO2i++iCvewdwgrE7plbwHHC/3d8Gu2xn2PveAE4RkT+LiMvukDqgFteLwfpjtwdwicg/sPrPHIwXgftEpLtY+tl9SuryGgfidWCciIwRqwO0R6zHzisGLaU+A/qKyJl2DdW1QKsqzjkBK8ip2Ecq2GNY73FG0P1qKyKPiUg/YDbW75vz7ft1Dlbz36cH+2aBm0UkQayO3X8F3rHT3wL+JiKdRSSasr4x3lqcs6afuf3ZBXSSss7OKSJyht0XpwjIxWp+VOqQaIAD2F/uY7A6OC4B/kdZNbIL6I7V5n8e8IKIxDd8KVUj8U+sPhbLgOXAYjsNY8warD8am+yq+zZYwfL5WE/OvEDZH5cDYozZYYz5sZrdT2A1icwRkRzgV6x+IRhjtmD1rfk/rFrLJVido/fnS+ALrMfUNwOFlG/qOBCPATOBOVjB3ktYj0kf6jWCn1grXc7e30HGmK1YnW3vwAqutgI3U83vQ2NMOjAJeAiriekIrJ+BogrnXIxVO/FDDdfei/W7pgT4zb5f32DVXG0wxmQAY7HuVwZWDddYuwwH6yNgEda9/wzr8werL+JrwDzgD6zP//panrPan7laeNd+zRCRxVif+41YNUp7sTouH+x/BJQKKO0U1+yI9Sjlp8aYPiISC6w1xlRqGxeR54DfjDGv2NvfALcZYxY0aIGVUo2CXfOwDbjAGPNdUPrLWP2C7gpZ4SoQEYPVPLoh1GVRqqFpDQ5gjMkG/hCRSRAY3Kv0f7kfYtXeYDdJ9AA2haCYSqkQsZuz4kUknLJ+VL8G7e8EnEVZ7YhSKsSaZYAjIm9hPXrZU0S2icilwAXApWINPLUSqwobrGr0DBFZBXwH3GxXIyulmo/hWE+CpWM9in2mMaYAQETuA1YADxtj/ghdEZVSwZptE5VSSimlmq5GW4MjIi+LNXz4imr2i4g8KSIbRGSZiAxq6DIqpZRSqnGqalCuxmI61rDh1T1yeRrW003dsXrvP0stevHHx8ebbt261VER1cHIy8sjKqpZTJzcaOk9CD29B6Gn9yD06uIeLFq0KN0YU2nut0Yb4Bhj5knQpHFVOAN41R5V9Fe7A2BrY0xaTedNSUlh4cKFdVlUdYDmzp3LyJEjQ12MZk3vQejpPQg9vQehVxf3QEQqjv4NNOIApxbaUn7MjG12Wo0BjoKcwhIy80vILiyhyOsnzOnA43YQ63GTFB2Ow1HfA8kqpZRS9etwDnBqTUSuwJoZmOTkZObOnRvaAjWw3GLDj9u9LE/3siXbT05J9XmdAi08QrsYB+3tpUOMg+RIwSF1E/jk5uY2u3vQ2Og9CD29B6Gn9yD06vMeHM4BznbKz7HSjmrmazHGPI81FQM9e/Y0zaVK0u83vP7bZh78dg15xT56pEQzdmACHROjSIoOJzrcRbjbQYnXT6HXT1Z+MTuyCtmyN581adl8uikPv/2QXYTbSbeW0XRPiaZnSgw9UmLo0SqGNnEe5AADH60WDj29B6Gn9yD09B6EXn3eg8M5wPkYuE5E3sbqXJy1v/43zUlhiY//e3cpny1L4/geydzxp170anVg0/wUFPtYtyuHNTuzWbszl/W7c/hpQzrvLy6LI6PDXVbg0zKazslRdE6MonNyFJ0So/C4nXX9tpRSqlZKSkrYtm0bhYXVzXsKcXFxrF69ugFLpSo6kHvg8Xho164dbre7VvkbbYBjD8Y3EkgSkW3A3YAbwBjzHNakdH8CNgD5wMWhKWnj4/cb/vbOEj5fsZPbTuvFlcd3OeBaFoCIMCf928fTv318ufSs/BLW7c5h3a4c1u3MYd2uXOau28O7i7aVy9c6zkPnpCg6JUXRJckKejolReH169hLSqn6tW3bNmJiYujUqVO1v/9ycnKIiYlp4JKpYLW9B8YYMjIy2LZtG507d67VuRttgGOMOW8/+w3WrL6qgge+WMPnK3Zy1+m9uey4LnV+/rhIN0d1asFRnVqUS88t8pKanscf9pKansem9Dw+W5ZGVkFZxx8BWv32De0SImifEEm7hAjatYgMbLeO8+ByNtohmpRSh4HCwsIagxt1eBEREhMT2bNnT62PabQBjjo4r/2SyvPzNnHR8I5cemztoty6Eh3uok/bOPq0jau0b19eMX9k5PHHnjzmLV6FMy6RbfsK+HVTBmnZhQQPqO10CK3jPGUBT3wEreM8tIrz0DrOQ+vYCGIjXPqLSylVI/0d0bQc6P3UAKcJ+Wb1Lu7+eCUn92rJP8Ye0ai+3AlRYSREhTGoQwKJORsYOXJAYF+x109aVgHb9hWwdW++9brPev1+3R725BZRcUaRCLczEPSUBj6t4iJoHeshJdZDUkwYiVHhhLm0JkgppZojDXCaiOXbsrjuzd85sk0cT50/8LBq4glzOeiYGEXHxKpHsyzx+dmdU8TOrALSsgrZmVUYeN2ZXchvm/ayM7sQXxV9exIirbF9kmOspXQ9kBYdHgiGnDr+j1KqjmRkZHDyyScDsHPnTpxOJ8nJ1mC78+fPJywsLJD38ccf54orriAyMrLGc44cOZJHHnmEIUOGVEpPS0sjIiICgG7dujFr1qy6fDuHJQ1wmoDtmQVcMmMBLaLCeGnyECLDmtZtdTsdtI2PoG18RLV5fH5DRm4RO7IK2Z1dSHpuMXtyikjPLWJPThF7cotYsjWTPTlF5Bf7Kh0vAnERbhIiw0iItF+j7PWoMDvd2m4RFUZ8ZBjxkW7ch1EgqZRqOImJiSxZsgSAadOmER0dzU033VRl3scff5y//OUv+w1wavLGG29UCnwOhTEGYwwOx+H7O65p/SVshrIKSrj4lfkUFvt445qhtIz1hLpIIeF0CC1jPbV6/3lF3kDgUxYAFZOZX8y+/BL25RWTllXI6rRs9uYXU1jir/ZcMeEuYiPcxHis11iPm9gIl/3qJjY4vUKeGI9ba42Uaka++eYbbrrpJrxeL0cddRTPPvss//vf/9ixYwcnnngiSUlJfPfdd1x99dUsWLCAgoICJk6cyD333HNQ15syZQqxsbEsXLiQnTt38tBDDzFx4kQAHn74YWbOnElRURETJkzgnnvuITU1lTFjxjB06FAWLVrE7NmzefXVV3n99ddJTk6mffv2DB48mAkTJjBp0iQWL14MwPr16znnnHMC241FvQY4IjIc+AtwHNAaKABWAJ8Brxtjsurz+k1dsdfP1a8vYtOePF695Gh6pOjjjrURFe4iKtxVbZNYRQXFPvblF1tLXkml9ZxCL9mFJWQXlLA9s4DVadY0GDmF3v2eOzrcRVS4k6gwl12u4HUXUWFOosJdRIe7iAx3Wq9hVr7S9dJ9EW6n1igpVYV7PlnJqh3ZldJ9Ph9O58GN13VEm1juHndkrfMXFhYyZcoUvvnmG3r06MFFF13Es88+yw033MBjjz3Gd999R1JSEgD3338/LVq0wOfzcfLJJ7Ns2TL69etX4/kvuOCCQBPVqFGjePjhhwFIS0vjxx9/ZM2aNYwfP56JEycyZ84c1q9fz/z58zHGMH78eObNm0eHDh1Yv349M2bMYNiwYSxYsID33nuPpUuXUlJSwqBBgxg8eDBdu3YlLi6OJUuWMGDAAF555RUuvrjxjdRSbwGOiHwO7AA+Au4HdgMeoAdwIvCRiDxmjPm4vsrQlBljuO39Zfy8MYNHJvXnmG5JoS5SkxUR5iQiLII2NTSRVcXnN+QWeckuKLEDoLJAKLuwLD2/yEdusZe8Ii/5RT7SsgrJK/aSV+Qjr8hLQUnlJrXquBxChNtJuNtJRJiDCLcV+HjcTut92Nt79xQxL2dVIE/F/R63kzCXg3CXgzB7CXdZaWFOB+Fu+9XlaFSd2ZVqrHw+H507d6ZHjx4ATJ48mf/+97/ccMMNlfLOnDmT559/Hq/XS1paGqtWrdpvgFNdE9WZZ56Jw+HgiCOOYNeuXQDMmTOHOXPmMHDgQMCaLmH9+vV06NCBjh07MmzYMAB++uknzjjjDDweDx6Ph3HjxgXOe9lll/HKK6/w2GOP8c477zB//vyD+lzqU33W4FxojEmvkJYLLLaXR0VE/yofpMe/Xs/7i7dzwyndmTi4XaiLo6rgdAhxEW7iImo36mZ1fH5DfmnAYwdCuXYwlFdctl5Y4qPQ66Og2E9BibVdUOyjoMRa9uYVW2klPrJyfSzcs5X8Yi+HOu5imDM4CHJUCoLKBUeleZwOXE7B7XTgdjpwOQSX04G79NXe53IKbof1WrrfHXSsq0J+t1NwOSrvdzkEZ+kiohPKNjPV1bQ0xoH+/vjjDx555BEWLFhAQkICU6ZMqXE05v0JDw8PrBv7cVRjDLfffjtXXnllubypqalERdWuZvvss8/mnnvu4aSTTmLw4MEkJiYedBnrS70FOFUENweVR1X27sKtPPHNeiYObsdfT+4e6uKoeuZ0CDEeNzGeQwuUgpXO/2KMocRnKCjxUVRSFgwVFPso9vop8vop9vop9vkp8lpppelFQetWHh9FJVbeculeP5n5xda2z09RiZ8Snx+v31Di9VPi9+P1mQYf4drlsAIdp0jZelAQ5HRUWOzAqOw4cDkcOBylr1aa0+HA6cA+zoFTCFzHIYLDYY3nkbajiG8yV+AQa9shgsPOKwIOEQQC6VXlEextKTumbL99XFV5HKXbFa8BUHrusnFHrHUC1yxNrDKPfXxpGlWkiZRdAypfl9I8lL9m4ByBc0mlcpWeo8TnpzCo9rOqkLbEZyiqWEN6CLFvdYf6/H5cLhepqamsWrOWbt26MWPGq4w49jiKvT6io2PI2JdJbHwCGXv3ERkZRURUNFu37+Dzzz/n2OOOp9jrxxgosb9TwapL9/sNXl/59GKvn5NOGcU9d9/NpHPOIyY6mu3bt+N2uynx+jFY5wIYOnQ411x7NTfdciter5dPPv2Uyy67nBKfH6c7jFGjR3P11Vfzv+dfoMRXfV/Fmvj85oCO9fkN6blFtcpbn01UOUB1v7GKgI3AncaYb+qrDE3Rj+vTuf395Yzolsi/JvTV5gF1SESEMJdY4wUdYk3ToTLGCnK8PkOxz4+3NAjylQZAfkp81naJz1TaX+LzU2L/Qvf6TCBwKvH58dvn9vvLXn1BaT6/9UfIZww+f+lSmmb/ofD78fmpcC4/fj8U+HxB57IXU3Y9n996IsVvrOP9BoqKvSzdm2Zt+w0maJ/flG0byrZV7b0wvjXsytl/xtxa5DlE6bnFREa6+ftDT3HWxEn4vF6O7D+IE844nzU7cxh7zoWMOfU0klNa8dLMT+jc80h69upNqzZt6TPoaNKyClmzM4v8Yi+pGTlE7cqk7M+rIb+4hPMuOB+Px3rIIr5FC154ZxZZhUVsz8pm7e49gMFvDGv37KLDgP6cOG4sQ4cPBSAyKpJ/P/UkDqeTIm8Ja9J3AIbozm0YdtIJ9O3XhxZJSXTs3pV8h581e6xpeYafdgqz3n+PDgN7s3bP1qAIr6of1oppQduF6WVp+/mTtisvnUnTp+3/QwfEhOBbIyJOoA/whjGmT0Neu2fPnmbt2rUNeck6s2ZnNpOe/YU28RG8e/VwYuvwf/QNSWfwDT29B6F3oPfAmKqDIEPQtr90v5VWGlQF8pQLpMrylAZRfr+VN/jPQuk1rNegstj77JTA/tK04Dym9MigPKVpZccZgk5Xds2yQ8vlsdIrlqvsuDbspWv3HgSdspLCgkI8Ho91jP0P4y/bMnYaBhOUTmCfXYbAsaX7qSKt7Jyl+8unlT8y+FyhlJ+bT2R0JAX5BUweP5lpj07jiP5HAML0/75CTnYOU2+fWlatRlAtXzkVU60tY4xdWxdc7VdupZy0Tdu5b8Nj5dK+Pe/jRcaYSh2Q6rMGJ9oYk1vVPmOMD1gqIv+rr+s3NVv35jP55flEhDl5+eKjDtvgRil1cEqbdRyH0obSyBljKPIVUegtpNBXSIG3oPJ6he1iXzFFviKKfEWB9WJfMWfEnkGWN80K8vAHxnUpt278mIK6CyJK/1BbTWeVXx0I4qhmv71e7jxV7bP/BZr+KuwLPr7G9YrHBZ2vNC/AX6b+hVWrVlFYWMjkyZOZdPIkACZMmMDGjRv59ttvA09/HYwD7Qfl31XCN+d+VC5Nzqv6O1GfnYw/EpElWE9RLTLG5AGISBesp6j+DLxQj9dvMtJzi7jo5fkUFPuYedXwGge8U0qp+uI3fgq9heR788kvya/0WmVA4rOCkiq37fXgYw6G2+Em3BlOmDOMcGc44c5wxkaPxef3ISI4xWkHiGL3SXIgCCUlJXjCPUEBiCOQL7Bemr9coOKoFGAEBwxNyZtvvlll+gcffNDAJTlw9dnJ+GQR+RNwJTBCRBIAL7AWaxycycaYnfV1/aYit8jLxa8sIC2rgNcvHUqvVrGhLpJS6jDgN37yS/LJK8mzApCgIKSq4CTfa+Wtaf+BBiBuhxuPy0OEMwKPyxNYIpwRxETGWNtOO80VUXnbGXRM0HbperjLCmYcUnn8p9WrV9MlvkuN5cvJySEmsnE9RaXqTr0O9GeMmQ3Mrs9rNGVFXh9XvLqQVWnZvHDRYIZ0ahHqIiml6pnP7wsEG7nFueSWlC15xXnWa4n1Wrq/dDt4f15JXq37cLgcLqLcUUS6Iq3Fbb3GRceV2w68Bq1HuCPKbZcGIOHOcFwOHSxfhY7+9DVSPr/hb+8s4eeNGTw6qT8n9Uo5+JPl7oa1s2H3GijYCwhEJFhLXDtI7gXJPSBc/yej1KEwxpDvzSe7KJvs4mxyinOspcR6LU3PLckldU8qb855s1Lwku/Nr9W1otxRRLmjiHZHE+2OJsodRUpkSiCt9DXSHVkWvFQMVOxXt1P79KmmRwOcRsgYw98/WsHs5Tu56/TenH2wA/kVZMK3/4RFr4DfC+4oiE4G47f2FVUYurzlEdDpWOh0HHQ9CcKjD/WtKHVYMcZQ6CsMBCOBwMQOVrKLsssHLMXZldL8puYxPUoDD0eJg5belsSGxdI6qjXRYdHlApbg7UC6nRbpisTpOLgpBpRqLjTAaYQembOWN3/bwtUju3LZcTW3IVdr9xp488+QtQ0GT4ajr7BqaoI7wXmLIXML7FkDu1fB5p/h99dh/vPg8kC3U+CIM6HHGPBo3x91+DDGUOAtILMok6yiLLKKs8gsyiS7KNvaLrK2s4qzyC7KLpfP6695DrEIVwQx7hhiwmKIDY8lOTKZLvFdAmlx4XHEhMWUW2LDYokNiyXKHRVottFH9Zu+6OhocnOth4lnz57NDTfcwFdffcXnn39OZGQkF1100QGfMzU1lZ9//pnzzz8fgIULF/Lqq6/y5JNP1ur4kSNHkpaWFpi3qlu3bsyaNeuAy3E4qPcAR0QeBV42xqys72s1BU99s57/freR845uzy1jeh7cSfZuglfPAAxc8gW0P7rqfK4wSOpmLb3HWmneYtj6G6z+GFZ9DGs+BWcYdBkJvcZCz9MguuXBlUupg1DgLSCzMDMQpJQGKIGlQvBSGrjUFKhEuCKIC48jLiyOuPA4usZ3JS48LhCIxIbHWoGJO7YsSAmPJcYdo8056oB98803TJ06lS+//JKOHTty1VVXHfS5UlNTefPNNwMBzpAhQ6qcg6om1c1bdbBKH7t3OBrXZL8NUYOzGnheRFzAK8BbOot41V6Yt4lHv1rHWQPbcv+ZBzlKcdZ2mHEG+Irh4tnQsveBHe8Kg87HWcupD8K2+Xag8wmsnwOfCLQfCr1Ot5bErgdeRtVs+Y2frKIs9hXuY1/RvvKv9npmYSZ7C/eSWZTJvsJ9FPqqn4cnwhVBbFgsceFxxIfH0yW+C7FhscSHx1sBTOliBzLx4fHEhscS7gyv9pxK1aV58+Zx+eWXM3v2bLp2tX5fTps2jejoaG666SZGjhzJ0KFD+e6778jMzOSll17iuOOOw+fzcdtttzF37lyKioq49tprufLKK7nttttYvXo1AwYMYPLkyQwcOJBHHnmETz/9lNzcXK6//noWLlyIiHD33Xdz9tln16qcU6ZMITY2loULF7Jz504eeughJk6cCMDDDz/MzJkzKSoqYsKECdxzzz2kpqYyZswYhg4dyqJFi5g9ezavvvoqr7/+OsnJybRv357BgwczYcIEJk2axOLFiwFYv34955xzTmC7PtV7gGOMeRF4UUR6AhcDy0TkJ+AFY8x39X39w8Vrv6Ry/+zVnN63NQ9N7HdwkwHm7rFqbgr2wZRPDjy4qcjhgA7DrGXM/bBrJaz5zKrV+erv1tLyCCvQ6T4G2g4C7RfQrBR6Cw8oWMkqzqq2j0qkK5IETwIJ4QkkRSTRPaE7CeEJJHgSiA+PDwQnwcGLBiqqVj6/DXYur5Qc4fOC8yD/DLbqC6c9UGOWoqIizjzzTObOnUuvXr2qzef1epk/fz6zZ8/mnnvu4euvv+all14iLi6OBQsWUFRUxIgRIxg9ejQPPPBAIKABq6mz1H333UdcXBzLl1vvdd++fVVe74ILLgg0UY0aNYqHH34YgLS0NH788UfWrFnD+PHjmThxInPmzGH9+vXMnz8fYwzjx49n3rx5dOjQgfXr1zNjxgyGDRvGggULeO+991i6dCklJSUMGjSIwYMH07VrV+Li4liyZAkDBgzglVde4eKLL671x3woGqQPjj01Qy97SQeWAjeKyJXGmHMbogyN2cyFW/n7Rys5pXdLHj93AC7nQVTzFeyD1yZYfW4ufB/aDKzbQopAqz7WMvJW2LcZ1n5uBTs/PAbzHoaIFtDtZOg2ynqN0sniDzelTwFlFGSQUZhhvQavF2awt3BvYD2vJK/K8zjEQXx4fCBA6RrflYTwBOI98bTwtCi3Hh8eT4InQYMV1eS43W6OOeYYXnrpJZ544olq85111lkADB48mNTUVADmzJnDsmXLAv1jsrKyWL9+PWFhYdWe5+uvv+btt98ObCckJFSZr7omqjPPPBOHw8ERRxzBrl27AuWYM2cOAwdaf1Nyc3NZv349HTp0oGPHjgwbNgyAn376iTPOOAOPx4PH42HcuHGB81522WW88sorPPbYY7zzzjvMnz+/2vdQlxqiD85/gHHAN8C/jDGl7+xBETk8J4WqQ2/P38LtHyznuO5JPH3+INwHE9wU5cIbkyB9LZz3NnQ8pu4LWlFCRxh2lbXk74VN38H6r2DD17D8XUCsGp1uo6D7aCvgamTts82FMYbs4uxygcpv2b+xbPGycsFKRoEVvFTXJBQfHk+iJ5HEiESOTDySFhEtSPQkWrUunoRAsNLC04KYsJgqB19TKiSqqWkpOMBpAg6Uw+Fg5syZnHzyyfzrX//ijjvuqDJfeLgV3DudTrxeq++YMYannnqKMWPGlMsbXGNT10rLUXr90tfbb7+dK6+8slze1NRUoqKianXes88+m3vuuYeTTjqJwYMHk5iYWHeFrkFD1OAsA+4qnaqhgmp6vzYP03/6g2mfrOKEHsn878LBeNwH0bxTUghvnw/bF8OfZ1g1Jw0tsgX0Odta/H5IW2IFOuvnwPcPwvcPQGSi9eh5l5GEF+r/1OtCib+EjIIM0gvS2ZO/hz0F9pK/x0orsF73Fu6tssOtM9NJgieBRE8iLTwt6BjbMRDAJEYkBtZbeFqQ4EnA7dDOtUodqMjISD777DOOO+44UlJSuPTSS2t13JgxY3j22Wc56aSTcLvdrFu3jrZt2xITE0NOTtUzoI8aNYr//ve/PP7444DVRFVdLU5tjRkzhr///e9ccMEFREdHs337dtzuyr8LRowYwZVXXsntt9+O1+vl008/5YorrgDA4/EwZswYrr76al566aVDKs+BaIgAZynQs0KH2Sxgc02djUXkVOAJwAm8aIx5oML+KcDDwHY76Wm7v89h4bnvN/LA52sYfUQKT50/kHDXQQQ3vhKYdTH88T1M+B/0Hrf/Y+qbw2HV3LQdBCfcAnkZsPFb2PCV9br8XYYDrPu39WRWl5FWh+aIQ/sSNiXFvmLSC9LZnb87EKgEBzDp+VbavsJ9lUaqFYQWnhYkRyaTFJFEj4QeZUGLJzFQ67Jm8RpOP+l0rWVRqgG0aNGCL774guOPP57k5ORaHXPZZZeRmprKoEGDMMaQnJzMhx9+SL9+/XA6nfTv358pU6YEmo4A7rrrLq699lr69OmD0+nk7rvvDjR/BQvug5OUlMTXX39dbTlGjx7N6tWrGT58OGA9+v7666/jdJb/m3XUUUcxfvx4+vXrR0pKCn379iUuLq7cNT/44ANGjx5dq/dfF6S0GqreLiDyKzAIqyZHgD7ASiAOuNoYM6eKY5zAOmAUsA1YAJxnjFkVlGcKMMQYc92BlKdnz55m7drQtYwZY3j86/U88c16xvVvw2N/7n9wzVJ+P3xwhdUc9KdH4OjL676wdc0Y2L2aDXNepJtjG2z+CYpzAYE2A8oCnvZDwd30JhT1+X1kFGawK28Xu/KtJRDEBAUwWUWV436nOEn0JJIUmUTLiJYkRSaRHGEFMS0jWwbWEyMSazU8vo7BEnp6D+rX6tWr6d275gctDnQma1Wz3NxcoqOjyc/P5/jjj+f5559n0KBBADzyyCNkZWVx3333lTvmQO9BVfdVRBYZYyp1KmqIGpwdwKWl4+CIyBHAvcAtwPtApQAHq+lqgzFmk33M28AZwKoq8h42vD4/d3+8kjd+28Kkwe144Ox+OA/maSljYPb/WcHNyXcfHsENWB2VU45gW/vxdBs50qqB2r4INs21lp+fgh//Y42703aI1Zeo4zHWOD6NfBqJYl8xu/N3W4FL3q6y9dIlbxfpBen4jK/ccS6Hi+SIZJIjkukQ04HBKYOtbbsGpnQ9ITxBR65VSjVqV1xxBatWraKwsJDJkycHgpsJEyawceNGvv322wYtT0PU4KwwxvSpKk1ElhhjBlRxzETgVGPMZfb2hcDQ4Noauwbn38AerNqevxljtlZThiuAKwCSk5MHz5w5s07e24Eo8hqeWVrE0j0+xnZxc1Z3N46DGefGGLpsepUOW99nc4ez+aPLgY+EGWqlUX5FTm8BcVkric9cQXzmCmJyNiL4MTjIielKVtyRZMYfQVbckXjdDTeNRKG/kExfJpneTDJ9mWT5sgLrpem5/txKx4VLOPHOeOJd8dZr0HqcK454ZzxRjqiQNBNVdw9Uw9F7UL/i4uLo1q1bjXl8Pl+lphbVsA70HmzYsIGsrPK13CeeeGLIanBWicizQOmza+fYaeFAySGc9xOsQQOLRORKYAZwUlUZjTHPA8+D1UTV0NXC6blFXDp9AcvT87nvzD5cOKzjwZ9s3iOw9X046jI6/ukROh5MkBRiNVfNn1a2WpQL2+Yjm38mdvPPxG77nPbbPgQEUo60a3eGWjU8ce3LT0NRSz6/jz0Fe0jLSyMtN816DVp25u4kp6Ryh76E8ARSolLoEtmFlMgUUiJTaBnZkpSolMB2dFjj/eOlzSOhp/egfq1evXq/TR/aRBV6B3oPPB5PuX5HNWmIAGcycA1wg739E3ATVnBzYjXHbAfaB223o6wzMQDGmIygzReBh+qgrHVuxfYsrnxtERl5RfzvwiGMOuIQZgX/7Xn49j7ody6c9vBB/UE/rIRHW09edbXj1pJCq0lr889W/53f37DmzQKIbgXthljBTrujrT497gjySvKqDFzSctPYmbeTXfm7KjUbxYXH0TqqNe2i2zEkZQito1pbwUtkCilRViCjY7YopVTjVq8Bjt1ZeLYx5kTg0SqyVK7XtywAuotIZ6zA5lzg/Arnbm2MSbM3x2NNCdGovL94G7e/v5wWUWG8c8Vw+rePP/iTLX4VPr/Zmg/qjP82zzFl3B7oNMJauBnjLWHftl/Yvvl7tqctZkfmctL2/MTOpU7S3G52uMPIkfJNsC5xkRKVQuuo1gxOGUyrqFa0jm5Nm6g2tI5qTauoVkS6I0Pz/pRSStWZeg1wjDE+EfGLSNyBzD9ljPGKyHXAl1iPib9sjFkpIvcCC40xHwNTRWQ84AX2AlPq4S0clGKvn3/NXs30n1MZ1qUFT58/iKToQ/gf/+9vwMdTrUHzJr588EOLH4Zyi3PZnrudbbnb2J6zne255ZcCb0FZ5giIiW1Na3c0bXwwsDCX1pk7aV1cSGuvl9ZhcSSlDMDZYhC0GWTV8sS0Ctl7U0opVX8a4i9lLrBcRL4CAoP9GWOm1nSQMWY2MLtC2j+C1m8Hbq/boh66dbty+Ns7S1i5I5tLj+3M7af1OripF0otfQc+uha6ngjnvA6uptU0UuQrsoKVCsHLtpxt7MjbUemR6Sh3FG2j29Iuph3DWg+jbXRba4lpS5uoNpX7vfhKYNcK2LoAdvxuLRu/gdL5kGLaWKMsB5YBOsWEUqpOOJ1O+vbti9frpXfv3syYMYPIyKpriOfOnUtYWBjHHHNwI9FnZmby5ptvcs011wCwY8cOpk6dGpjqoSqpqamMHTuWFStWVErv3bs3PXv2DKTdeOONXHTR4fVQS0MEOO/bS5Pm9xte/ukPHvpyLTHhLp6/cDCjjzzE2oHls+DDq6yB8M5902qiOQxlFWWxJXsLW3KsZUH6Al6a/RLbc7ezp2BPubxuhzsQtPRN6kvbGGu9XXQ72ka3JS487sBmWXe6y4KXUkW51sR7pQHPjt9h7WwoHTQvrgO07mdNpteqL6T0gfgOTb/Pk1KqTkVERLBkyRLAGujuueee48Ybb6wy79y5c4mOjj6kAOeZZ54JBDht2rSpMbjZn65duwbKXle8Xi8uV8O1QDTEbOIzRCQC6GCMaZJzT63akc3dH69gQeo+TumdwgNn9z20JimAFe/D+5dDxxFw3juNeuA7Ywz7ivaxJXsLW3O2WoGMvb45ezPZxdnl8sc74+kW3Y0RbUcEgpl2Me1oE9WG5Mjk+n9sOjwaOg63llKF2bBzmRXsbF9sra/5jEDQEx5nPbnVqq814WhKH2u29kZ8X5RSjcdxxx3HsmXL2Lt3L5dccgmbNm0iMjKS559/ntjYWJ577jmcTievv/46Tz31FL169eKqq65iy5YtADz++OOMGDGCadOmsWXLFjZt2sSWLVu44YYbmDp1KrfddhsbN25kwIABjBo1imuvvTZQO5OamsqFF15IXp7ViPL0008fdCAVHR3NX//6Vz799FMiIiL46KOPSElJYc+ePdWWd+PGjWzatIkOHTrw5JNPcv7557Njxw6GDx/OnDlzWLx4MU8++SQtWrTghhtuAODOO++kZcuW/PWvfz3oz7whJtscBzwChAGdRWQAcK8xZnx9X7u+ZeYX8+icdbzx22biItw8NLEfkwa3O7Aahqqs+gjeuwzaD7MmzwwLfadXYwzpBenlgpfg9dySsv7iDnHQOqo17WPac2qnU+kQ24H2Me3pENOBdjHt+PXHXxvf47GeWOh0rLWUKs6DXatg13LYucKq9fn9dSidQVuckNTdCnZa9YGWR0ByL+uR9ebYCVypRurB+Q+yZu+aSumHMg5Orxa9uPXoW2uV1+v18vnnn3Pqqady9913M3DgQD788EO+/fZbLrroIpYsWcJVV11FdHQ0N910EwDnn38+f/vb3zj22GPZsmULY8aMYfVq61maNWvW8N1335GTk0PPnj25+uqreeCBB1ixYkWg1qV0VnKAli1b8tVXX+HxeFi/fj3nnXceCxcurLHMpcFSqaeeeorjjjuOvLw8hg0bxv33388tt9zCCy+8wF133cVf//rXasu7atUqfvzxRyIiIrjuuus46aSTuP322/niiy8Cc1NdcsklnHXWWdxwww34/X7efvvtQ551vCHqiqZhjUw8F8AYs0REujTAdetNbpGX137ZzPPzNpJVUMKFwzpy46iexEXWwWSEqz+FWZdYjzxfMNOqbWggfuNnd/7ucs1JW7OtQGZrztZyHXqd4qRtdFvax7ZnQMsBdIjpEAhk2ka3JcwZ1mDlrjdhUdD+KGsp5ffDvj+sfj077cBn62+wIqgq2B0FyT2tGp7kXtbSstdBj9WjlDo8FRQUBIKE4447jksvvZShQ4fy3nvvAXDSSSeRkZFBdnZ2pWO//vprVq0qG7w/Ozub3FzrP5Knn3464eHhhIeH07JlS3bt2lVjOUpKSrjuuutYsmQJTqeTdevW7bfs1TVRhYWFMXbsWAAGDx7MV199td/yjh8/PjD31Y8//sgHH3wAwKmnnkp8fDwAnTp1IjExkd9//51du3YxcODAQ551vCECnBJjTFaFWg1/A1y3zu3MKuTtBVuY/nMqmfklHN8jmdtP60Xv1rF1c4HSZqnWA+CCWfUyPUGRr4gduTsCHXu35mxlc85mtmZvZWvOVor9xYG8LoeLdtHt6BjbkaNbHU2H2A5WIBPTgVbRrZrn7NIOByR2tZYjzihLL9gHe9bC7tWwZ431uuFrWPJGWZ6waCvwSe5tBTzJvazt2HZa46NUPaqupqW+B/oL7oNzoPx+P7/++iseT+W+l+HhZV0gnE4nXq+3xnP95z//ISUlhaVLl+L3+6s8Z2253e5AK0XwtWsqb1RUVK3OfdlllzF9+nR27tzJJZdcctBlLNUQAc5KETkfcIpId2Aq8HMDXLdO5Bd7mbcunfcWb+PbNbvx+Q0n92rJ9Sd3Z8ChjGtT0ZK34KNrrJF5z59pNZkcoBJ/CRkFGWQUZJBekE56QTppeWllTyflbGd3we5yx4Q7w63mo9gOHNv22LLmpNgOtIpspfMf1VZEAnQYZi3B8vdagc+e1bB7jfW6fg4seb0sj8sDLbpCUjdI7G41eyV2t7Y9cSilmo7jjjuON954g7///e/MnTuXpKQkYmNjiYmJKVeTM3r0aJ566iluvvlmAJYsWVKuyaiimJgYcnIqj7oOkJWVRbt27XA4HMyYMQOfz1dlvkNR2/KOGDGCmTNncuuttzJnzhwyMzMD+yZMmMA//vEPSkpKePPNNw+5TA0R4FwP3AkUAW9hjW1zX41HhFB2YQkrtmexYnsWv2zM4KeNGRR7/SRFh3HF8V0496j2dEysXTRaawtfgU9vgM4nwHlvQVgUxhjyvflkFWVZS3FWYD27OJvMwkwyCssCmYyCDPYV7at0akFIiUqhbXRbhrUZZj2NZD+Z1Da6LS0jW4ZkLqRmI7JF5Q7NYAU+u1dD+jrI2GAtO1dYTZTBIytHtYTEbpWDn4SO1hNiSqnDyrRp07jkkkvo168fkZGRzJgxA4Bx48YxceJEPvroI5566imefPJJrr32Wvr164fX6+X444/nueeeq/a8iYmJjBgxgj59+nDaaadx7bXXBvZdc801nH322bz66quceuqptapRqdgH55JLLmHq1OpHd6ltee+++27OO+88XnvtNYYPH05KSkqgFi0sLIwTTzyR+Pj4OpkjrN4n22xs4jq1MuMeuR4HbhziBr+L/GJDTgFk5vvZne0F4wLjJCUmiqGdWjKsSxJ92sbjCpr5u2JHYp/fR4m/BK/fS4m/xFp8JWXr/hKKfcXkl+ST580jvySffG8++WlLyd+5lPzoJPITOpHnK7CCmKJsvKb6akeP00NiRCJJEUmBJbDtSSqX7m5kfwh1Dp4aeIthXypkrIf09farHQDlp5flEwfEtYOEztCis/3apWx9P3239B6Ent6D+rV69Wp69+5dYx6di6rhFRUV4XQ6cblc/PLLL1x55ZUsW7YMsJq5Bg0axLvvvkv37t2rPL6q+yoioZlsU0R6YM091Sn4esaYKifGrG/FksXSvLcr73ADcRAZ1CKQA3ydDV8vAZbUbTkiXBFE+g2RRTlERrcgKqkHcWFRtHZZY73EhcURFx5HfHg8seGxge3SRedCaqJcYZDcw1oqyt8LGRutoGfvJtj7h9XhedXHULC3fN6o5ArBT9BrVHLDvBellKpgy5Yt/PnPf8bv9xMWFsaTTz4JWE9ajR07lgkTJlQb3Byohmiiehd4DmtCzLpv+DtAHcI6sPAvCyn2FVPsKy5XwxJc4xLY5yupNBmjoXytlzEGp8OJ2+EuW5zuctsuh4twZzhR7ig84sLx2Y3w+2sw4C8w7nFtblD7F9nCWoKf6ipVmFUW8AS/bv4Zls2E4J9ZVwRHhSXCNvvJrvgOZUtce4hO0U7PSql60b17d37//ffAdmm/oSOOOIJNmzbV6bUaIsDxGmOebYDr1Fq4Mzx0NSDFeTDzAquj6fG3wIl36KPD6tB54qxpJtoMqLzPWwT7NpcFPVlbyV+/iKi8dGtQw4q1P84wq/mrNOCJ7wjx7cu2Y9uAdj5XhwFjzKGPS6YajQPtUtMQAc4nInIN8AFWR2MAjDF7qz+kicrdA2+dY42WO/Y/MOTQH4NTar9c4ZWavVaGB/X/KMqFrK2QuRUyN9vrW6ztdV9CXvkn7xAnxLS2Ap3YNhDbFuLalq3HtoHoVs1qUljV+Hg8HjIyMkhMTNQgpwkwxpCRkXFAj7g3xG+gyfbrzUFpBjisB/s7YGnL4O3zIW+PNWlmr9NDXSKlLOHR1qCELavpkFlSAFnb7KBnixUAZe+A7O3WgIfrvoTgWd3B6gQdnVIW8ARe21i1Q6VBkKsJDAipGqV27dqxbds29uzZU22ewsLCQxoTRh26A7kHHo+Hdu3a1frcDTEXVef6vkajt/JD+PBqa6yUS74oP/GjUo2dO8J6PD2pmo5/xkBhJmRtLwt8sneUre9ZCxu/heLcysdGtICYVlYwVNNrWB0PzaCaPLfbTefONf/5mTt3LgMH6u/jUKrPe1BvAY6I3GKMechen2SMeTdo37+MMXfU17UbDb8P5j4A8x6CdkdbNTcxKaEulVJ1S8QK3iMSrDm5qmIMFGVXCIDSIHcn5OyyXtPXQ+4u8JdUPj4sxvruRLeq+jWqpfV0WGQL7R+klALqtwbnXOAhe/12rKepSp0KNO0AJzvNmnYh9QfrSamxj1l9IZRqjkSsjtCeuOqbwsCa66tgnx347LQCnuDXnJ2wfZEVFFVsFgOraSwy0Qp2opLs14rrpdstrZoh7Z+hVJNUnwGOVLNe1XbTsm4OfHiV1XfhzGdhwPmhLpFShweHA6ISrSXlyOrzldYIldb+5KVb/dsCi72943drvajyZIYAuCKqDoYiE+2lhdWMVrruidMaIqUOE/UZ4Jhq1qvabhoKs+HrabDwJUjpC5Neqb7fglLq4AXXCFU1KGJFJYXWSNDBwU/pkmu/5qRZM8Tn7am6mcy6METEWwFPhD0uUWSi1TxXMRiKCNqnnamVanD1GeD0F5FsrNqaCHsde7vpdVtf+wV8dqPVt2DYtXDyP8Dd9N6mUoclt8d6eiuuFk9gGANFOZCfYY0RlL/Pfs2wRpMOXs/ebs0hlp9RdZNZqbAYKzDyxNuvcfTMLICir6w0T1yl/YF1bdpW6qDUW4BjjGke9bj7Uq1am5UfQMsj4M+vQrtKU2IopQ4XIuCJtRYO4CHQkgIr6AkERnvLXvP3Wk+aFWTao05vokXmLsj4FUryaj6vy1N14BMcGIXHQniMtXjiytbDYyAsWvsZqWZJR+I6WPl7Yd4jsOAFa+CzE++EETdoVbRSzZU7whrwMK5trbL/UjrZprfYCnoKM63Xgkx7PTNoPSg9dyfsWWOnZ7P/Fn8pC4A8seWDn0BgVNX+WGsJi7KXaB28UR1W9Kf1QOXuhvkvwPz/WdXYAy6wpluIbRPqkimlDkeuMIhOtpYD5fdbHaiLcoJe7fXC4O3S/XZa/l5r+o7SffurRSrlDC8LdgKBT3XbkVXsq2Ld5dEaJlUvNMCpDWNg20JYPN2auNBXAj3/BCfdBSlHhLp0SqnmyuGwmqgi4g/tPD4vFAcFQ4VBQVNxXtCSW/V6/l5ruyS/bF+tCbgjrRowd6TVXyqwHmE96eaOqLA/KL+rQv7gvK6gvK5wfQKumWm0AY6InAo8ATiBF40xD1TYHw68CgwGMoBzjDGpdVYAvx92LYfVn8Dyd62+Nq4IGHghDLsGkrrV2aWUUiqknK6ywRrrgt9vdbquKSgK3i4pKFu8pev5VpCVuztof7716ivafxmq4nBZQY8zDFwehpb4YWW8Ffw4w61XV7iVp1JaeLljq04LK9t2uKxXZ5j1+TrDwOEGp9tOc1t5tPaq3jTKAEdEnMB/gVHANmCBiHxsjFkVlO1SYJ8xppuInAs8CJxzUBf0+6wv0e5V1mOiO363BujLz7AGDut8gjXzd++xVgc+pZRS1XM4ypqiaFn35/f7wFtYPuipGAR5C4P25Vt9nbyF4LNfvYVkb99KRGJcUFoR5OdZr74i6zWwFB58YFWTcoFPcPATtF5VusNpBUjBr1K6Xppub4uzdmmB9Irndll/CwOLlK0jFdKlmnRHhWOsNE/BLmuOu3LHCNUOl3cAAWGjDHCAo4ENxphNACLyNnAGEBzgnAFMs9dnAU+LiJj9zKceUbADpo+1f6CLrCAmJw383rJMce2h+2joMhK6nKjTKyilVGPicAYFUAdv9dy5pIwcWfsDjCn72xEIeoKCo9I0v9dK9xVbzX++YmtsJV+JnRa0HkgP2uevKp/Xrr3KsvP4rDS/F4wvaDvo1QTn8R/SZ1VfhgH8Vj/nbqwBTltga9D2NmBodXmMMV4RyQISgfSKJxORK4ArAPq2CiNzXwZGXPgdbko83SiKG0pReCL5ke3Ije6M1x1jHbgPWLQaWF23766Zy83NZe7cuaEuRrOm9yD09B6EXv3cAwHc9rKfAMxhLw3xl9gYxPgR4wOsV2vxB736K6QF5/UjxgDWeayn90xQmgGsIKp0f/n82Ocy9qu1XVRYgCc8vJr8tXpjwMNV7mmsAU6dMsY8DzwP0LNnTxP/t19CXKLmbW7p47EqZPQehJ7eg9DTexB6dXIP/lJ1gOM4tLPWm+1A+6DtdnZalXlExAXEYXU2VkoppVQz11hrcBYA3UWkM1Ygcy5QccbKj4HJwC/ARODb/fW/AVi3bl2uiKyt4/KqA5NEFU2JqkHpPQg9vQehp/cg9OriHnSsKrFRBjh2n5rrgC+xHhN/2RizUkTuBRYaYz4GXgJeE5ENwF6sIKg21hpjdC6FEBKRhXoPQkvvQejpPQg9vQehV5/3oFEGOADGmNnA7App/whaLwQmNXS5lFJKKdX4NdY+OEoppZRSB605BjjPh7oASu9BI6D3IPT0HoSe3oPQq7d7ILXol6uUUkopdVhpjjU4SimllGriNMBRSimlVJPTbAIcETlVRNaKyAYRuS3U5WmORCRVRJaLyBIRWRjq8jQHIvKyiOwWkRVBaS1E5CsRWW+/1tEU0qoq1dyDaSKy3f4uLBGRP4WyjE2diLQXke9EZJWIrBSRv9rp+l1oIDXcg3r7LjSLPjj27OTrCJqdHDivwuzkqp6JSCowxBijA2s1EBE5HsgFXjXG9LHTHgL2GmMesIP9BGPMraEsZ1NWzT2YBuQaYx4JZdmaCxFpDbQ2xiwWkRhgEXAmMAX9LjSIGu7Bn6mn70JzqcEJzE5ujCkGSmcnV6pJM8bMwxoIM9gZwAx7fQbWLxlVT6q5B6oBGWPSjDGL7fUcrBmU26LfhQZTwz2oN80lwKlqdvJ6/WBVlQwwR0QW2TO8q9BIMcak2es7gZRQFqYZu05EltlNWNo00kBEpBMwEPgN/S6ERIV7APX0XWguAY5qHI41xgwCTgOutavuVQjZ87c1/XbqxudZoCswAEgDHg1paZoJEYkG3gNuMMZkB+/T70LDqOIe1Nt3obkEOLWZnVzVM2PMdvt1N/ABVtOhani77Pbw0nbx3SEuT7NjjNlljPEZY/zAC+h3od6JiBvrD+sbxpj37WT9LjSgqu5BfX4XmkuAE5idXETCsCbm/DjEZWpWRCTK7liGiEQBo4EVNR+l6snHwGR7fTLwUQjL0iyV/lG1TUC/C/VKRARrgubVxpjHgnbpd6GBVHcP6vO70CyeogKwHz17nLLZye8PbYmaFxHpglVrA9Ykr2/qPah/IvIWMBJIAnYBdwMfAjOBDsBm4M/GGO0EW0+quQcjsarkDZAKXBnUF0TVMRE5FvgBWA747eQ7sPqA6HehAdRwD86jnr4LzSbAUUoppVTz0VyaqJRSSinVjGiAo5RSSqkmRwMcpZRSSjU5GuAopZRSqsnRAEcppZRSTY4GOEqpkBORxKDZhHcGzS6cKyLP1NM1bxCRi2rYP1ZE7q2Payul6p8+Jq6UalQaYqZtEXEBi4FBxhhvNXnEzjPCGJNfX2VRStUPrcFRSjVaIjJSRD6116eJyAwR+UFENovIWSLykIgsF5Ev7GHgEZHBIvK9PanrlxVGSi11ErC4NLgRkakissqe8O9tCMxNNBcY2yBvVilVpzTAUUodTrpiBSfjgdeB74wxfYEC4HQ7yHkKmGiMGQy8DFQ1YvYIYFHQ9m3AQGNMP+CqoPSFwHF1/i6UUvXOFeoCKKXUAfjcGFMiIsuxpl35wk5fDnQCegJ9gK+sFiacWDMUV9QaWB20vQx4Q0Q+xJrKotRuoE3dFV8p1VA0wFFKHU6KAIwxfhEpMWWdCP1Yv88EWGmMGb6f8xQAnqDt04HjgXHAnSLS126+8th5lVKHGW2iUko1JWuBZBEZDiAibhE5sop8q4Fudh4H0N4Y8x1wKxAHRNv5eqAzfSt1WNIARynVZBhjioGJwIMishRYAhxTRdbPsWpswGrGet1u9vodeNIYk2nvOxH4rD7LrJSqH/qYuFKqWRKRD4BbjDHrq9mfArxpjDm5YUumlKoLGuAopZolEekJpBhj5lWz/yigxBizpEELppSqExrgKKWUUqrJ0T44SimllGpyNMBRSimlVJOjAY5SSimlmhwNcJRSSinV5GiAo5RSSqkmRwMcpZRSSjU5GuAopZRSqsnRAEcppZRSTY4GOEoppZRqcjTAUUoppVSTowGOUkoppZocDXCUUkop1eRogKOUUkqpJkcDHKWUUko1ORrgKKWUUqrJ0QBHKaWUUk2OBjhKKaWUanI0wFFKKaVUk6MBjlJKKaWaHA1wlFJKKdXkaICjlFJKqSZHAxyllFJKNTka4CjVTIjINBF5PdTlqC0RMSLSrY7POVdELqvLcyqlGicNcJRqIkQkN2jxi0hB0PYFDVyWVBE5pRb5OttlfbYhynUgDjUYso8vtD//dBF5X0Ra12UZlVLV0wBHqSbCGBNdugBbgHFBaW8cyLlExFU/pazkImAfcI6IhDfQNRvSdfb96AHEA/8JRSEa8H4q1WhogKNU8xImIq+KSI6IrBSRIaU77FqXW0VkGZAnIq6KzUQiMl1E/mmvJ4nIpyKSKSJ7ReQHEXGIyGtAB+ATu/bilqoKIiKCFeDcBZQA46rI9icR2WTXgDwsIg772G4i8r3I/7d33+FxVNfDx79Hq7Lq1ZbVbMkFV3Dv2NgQEgIOJoSEajCdJEBIQkIS3gD5JaQQIJCQ0E0JhGZ6C9VyAcddLrhh3CT3ot7Lef+YkSzLsiUbSSvtns/jfXZ26pmdXe3xvXfulUJ32UuN9jtBRJa4y5aIyISjHP+wKjsRyXTPN1hE7gYmAQ+55/CQu84AEfnIPd8NIvKD1rzpqnoQeBUYcqwYRWSqiKxuFNNHIrKk0ev5InKeO50qIq+KyD4R2SIiNzc5t9ki8pyIFAEzWxOnMf7EEhxjAsu5wIs4pQlvAQ81WX4xcA4Qp6o1Lezr50Ae0A1IBn4DqKrO4PASpHuOsv2pQLobz8vAFc2s811gFDACmA5c5c7/PfAhEO/u4x8AIpIAvAv8HUgE7gfeFZHEFs7lMKp6OzAftwRGVW8UkUjgI+A/QHfgIuBfIjKopf2JSBLwPWBFCzH+D+jnJo8hwClAqohEi0i4+17MdxO9t4GVQBpwBnCLiHyr0WGnA7NxrvVxleAZ4w8CMsERkVkisldE1rRi3Znu/5By3Ic1UDRd2QJVfU9Va4F/A0ObLP+7quaqankr9lUNpAC9VLVaVeerqh5HLFcA76tqPk7ScJaIdG+yzl9U9aCqbgcewEnA6o/dC0hV1QpVXeDOPwf4UlX/rao1qvoCsJ7mS4eO1zRgq6o+5e57BU6pzPePsc3fRaQAJxHZBfzsWDG67/sSYDIw0t3uM2AiMM7d7gAwGuimqv+nqlWquhl4HCfpqrdQVd9Q1bpWXk9j/EpAJjjA08BZx7H+S6o6zH080U4xGdMRdjeaLgO8Tdpn5B7Hvv4KbAI+dKuRftXaDd3SiO/jliyo6kKcUp9LmqzaOJ5tQKo7/UtAgMVuVVt9yU6qux5NtktrbWzH0AsY61bJFbiJy6VAj2Nsc7Oqxqlqmqpeqqr7WhHjXGAKTpIzF8gGTnMfcxvFktoklt/glKTVO55raYzfCcgER1XnAQcbzxORPiLyXxFZ5tZzD/BReMb4UtMSmDIgotHrhh9zVS1W1Z+ram+cqq+ficgZR9lPU98FYnCqeHaLyG6cH/im1VQZjaZ7AjvdY+9W1WtVNRW43t1PX3d5ryb76AnsaCaG0qOd21HOIReY6yYs9Y8oVf3hMc/0SC3F2DTBmcuRCU4usKVJLNGqevYx4jcmoARkgnMUjwE3qepI4FbgX42WfU9EVrmN9jKa39wYv5QDXCIiHhE5C+dHFgARmeY29hWgEKgF6tzFe4Dex9jvFcAs4GRgmPuYCAwVkZMbrfcLEYl3v3c/AV5yj/19EUl318nH+TGvA94DThKRS9zGwhcCg4B3jnJuk0Wkp4jEAr9usrzpObzj7nuGiIS4j9EiMvAY59mclmL8HOgPjAEWq+oXuKVHwDx3ncVAsTiNwsPd6zNEREYfZyzG+C1LcAARiQImAK+ISA7wKE7bAnAa8mWq6ik4DQyf8UmQxvjGT3DarxTgVMe80WhZP+BjoARYCPxLVee4y/4E/D+3+uTWxjsUkfpGsQ+4JTH1j2XAfzm8FOdNYBlOMvIu8KQ7fzSwSERKcBpL/0RVN7vtU6bhNIA+gFOVNU1V9zc9MVX9CCdhWuUeo2kS9CBwgYjki8jfVbUY+CZOO5edONV9fwGO6/b2lmJU1VJgOfCFqla5my0EtqnqXnedWncfw4AtwH7gCSD2eGIxxp/J8bUJ9B8ikgm8o6pDRCQG2KCqx+yES0Q8wEFVtT8ixhhjTCdmJTiAqhYBW0Tk++D0zyEiQ93pxknPucA6H4RojDHGmOMQkAmOiLyAU+TbX0TyRORqnOL3q0VkJfAFTh8SADe7d2msBG7GOswyxhhjOr2AraIyxhhjjP8KyBIcY4wxxvi3gBuALS4uTvv27dvyin6qtLSUyMhIX4fhM4F+/mDvgZ1/YJ8/2Hvgb+e/bNmy/araren8gEtwkpOTWbp0qa/D8Jns7GymTJni6zB8JtDPH+w9sPMP7PMHew/87fxFpGnP4EAAJjjGGGO6rrKqGvYWVXKgtIqDpVUcLK2krKq21dsHe4IIK6treUXT5VmCY4wxplOorq1jT1EFuwor2FlQzs4C53lXoTtdWE5BWfXXPk5kCAwaWsiQNOvSzJ9ZgmOMMabdqSoHSqsaEhcnaSlnp5vM7CqoYG9xBXVNbuyN8QaTGhdOalw4I3rFkRIbTo8YLwlRoSRGhpIQGUpkaDAirYtjZ0EFMx5bwKVPLOL5a8ZakuPHLMEBqqurycvLo6KiwtehtLvY2FjWreuafRV6vV7S09MJCQnxdSjGmCYqqmvZUVDOjvxydhSUH1kCU1hBVc3hVUOhwUGkxYWTEuvl1H5JpMZ6SY0LJyUunNRYLylx4USFte3PVFxEKL8a4+WBVViS4+cswQHy8vKIjo4mMzMTae1/A7qo4uJioqOjfR3GcVNVDhw4QF5eHllZWb4Ox5iAU15Vy46CMnLzy8nLdxKZvPwyZ7qgnH3FlYetHySQHOMlJdbLkLRYvjm4R0PSkhobTmqcl4TIUJ/8ze0WEcSL143hosf+Z0mOH/OLBMcdI2opsENVpx3v9hUVFQGR3HRlIkJiYiL79u3zdSjG+KWSypojkpaG6fxyDpRWHbZ+iEdIjQsnPT6c0/t3Jy3emU6LCyct3qlGCvZ03q7WMhIiePG6cZbk+DG/SHBwRjxeB8Sc6A4suen87BoZc2Iqa2rZV1zJnqJKluyuYfOCLQ3VSXkFThLTtPFuaHBQQ8IyODWWdDeBceZF0D06jKCgrv2dtCTHv3X5BEdE0oFzgLuBn/k4HGOM6TCqysHSKnYXVTTcfbSnsMJ9Xcmeogr2FldysEnpCzlrCQ/xOMlKfDjDMuJIj48gzS2RSYsPJymy6ycwrdE0yfnPtWMZnGpJjj/o8mNRichs4E9ANHBrc1VUInIdcB1At27dRr788suHLY+NjcXXvRufffbZPPzwwzz44IMsWrSIqqoqtm3bRr9+/QD4xS9+wWOPPcYf/vAHRowYccLHqa2txePxHDbvnXfeoW/fvgwYMOCI9f/4xz/yzDPPkJSURE1NDXfeeSdnn332CR+/tebPn8/zzz/PI488ctj8TZs2UVhYeML7LSkpISoq6uuG16UF+nvQVc6/pk4pqFTyK9xHpZJfUcfBikbzK5Um7XYRIDZMiPcKcWFCfJgQ507HhQlhdRWkxkcSFRK4paLNfQb2ldXxp8UVVNcqvx4bTmpU561e+7q6ynegtaZOnbpMVUc1nd+lS3BEZBqwV1WXiciUo62nqo8BjwH0799fm/bguG7dOp83vPV4PERFRfH4448DsHXrVqZNm8aqVasa1nnyySeJjIw8Zqw1NTUEBx/9sjbXyPiDDz4gJCSE0aNHH7F+WFgYP/vZz7j11ltZt24dkyZNYu/evQQFtd+Xv6amhoiICEJCQo6I1ev1Mnz48BPet7/14HkiAv096AznX1un7CuuZEdBGTsKKtiRX95wt9Huogp2F1awv6TqiO28IUH0iPGSHOdlUKyX5FgvKTFeesR63Qa94SRFhR6z7UtnOH9fO9p7MHJ0CT949H88sLKOV24YS69E/xnOoLFA+Qx0igRHRMYDlwGTgBSgHFgDvAs8p6pH+y/7ROBcETkb8AIxIvKcql7WAWH7xCuvvMKPfvQjCgoKePLJJ5k0aRJPP/00r732GiUlJdTW1vK73/2Oe++9l3feeQeAG2+8kVGjRjFz5kzuvPNO/vvf/xIcHMw3v/lNzj//fN566y3mzp3LH/7wB1599VX69OnT7LEHDhxIcHAw+/fv55NPPuGPf/wjqso555zDX/7yF1555RUWLlzI/fffz4MPPsiDDz7I5s2b2bx5MzNmzOCzzz5j2bJl/OxnP6OkpISkpCSefvppUlJSmDJlCsOGDWPBggVcfPHFjBw5siPfVmPaVP0t0zvddi47C8rJq39dUM7uQqekoLHY8BBSYp1kZUhqLD1ivfRwk5f66djwkIAtdekIvbtF8fw1Y7nosYVc8vgiXr5hPGlx4b4Oy5wgnyc4IvI+sBN4E6cdzV6cZOUkYCrwpojcr6pvNd1WVX8N/NrdzxScKqqvldz87u0vWLuz6Ovs4giDUmO48zuD22RfNTU1LF68mPfee4/f/e53fPzxxwAsX76cVatWkZCQQHZ2drPbHjhwgLfffpuNGzciIhQUFBAXF8e5557LtGnTuOCCC4557EWLFhEUFER1dTW33XYby5YtIz4+nm9+85u88cYbTJo0iXvuuQdwqpgSExPZsWMH8+fPZ/LkyVRXV3PTTTfx5ptv0q1bN1566SVuv/12Zs2aBUBVVVXDOGFHOwdjOoOK6lry8svIPVjO9oNlbD9Y1pC87CwoP6L0pf6W6bS4cIZnxJN2inu3kXvHUWo79PdiTkz/HtH8++qxXPz4/7jsiUW8dP04ukd7fR2WOQGd4Rs1Q1X3N5lXAix3H/eJSFLHh9U5nX/++QCMHDmSrVu3Nsw/88wzSUhIOOa2sbGxeL1err76aqZNm8a0aa27o/5vf/sbzz33HNHR0bz00kssXbqUKVOm0K2bM3jrpZdeyrx58zjvvPMoKSmhuLiY3NxcLrnkEubNm8f8+fM5//zz2bBhA2vWrOHMM88EnPZAKSkpDce58MILj+etMKbd1NUpe4sryc0vY/sBJ4HJPVjmvD5Yxp6iw/t88YYEuclKBINTY0hze96tf+4R6yWkE98ybQ43JC2Wp68cw4wnF3HZE4t48brxJESG+josc5w6Q4JzmYh8BqxQ1ZrmVmgmAWpunWwg++sG01YlLe0lLCwMcNrs1NQcersiIw/VFQcHB1NXd6jlYX0PzcHBwcyZM4fFixcze/ZsHnroIT799NMWj/nTn/6UW2+9teH1m2++edR1J0yYwFNPPUX//v2ZNGkSs2bNYuHChdx3331s376dwYMHs3Dhwma3bXwOxrS38qpath4obUheDnvOLz+s110RSInxkpEQweR+3chIiKBnQkTDc1KUbzqsM+1nZK94nrhiFFc+tYQZTy7ihevGEeO1XtS7ks6Q4KQDDwIDRGQ18BnwOfC5qh70aWRdVK9evVi7di2VlZWUl5fzySefcOqpp1JSUkJRURFnn302EydOpHfv3gBER0dTXFzc6v2PGTOGm2++mf379xMfH88LL7zATTfdBMCkSZO44447uOOOOxg+fDhz5swhPDyc2NhY+vfvz759+1i4cCHjx4+nurqajRs3Mnhw504qTddVW6fk5ZexeX8pW/aVsmV/Kcu+LOc3Cz9hZ+HhQ7NEe4PpmRDBScnRfGNgMulu8tIzIYLUOC9hwZ6jHMX4qwl9knhkxkiufWYp1zyzlGevGoM3xD4HXYXPExxVvRVAREKBUcAE4ErgMREpUNVBvoyvK8rIyOAHP/gBQ4YMISsrq+Guo+LiYr7//e9TXV2NqnL//fcDcNFFF3Httdfy97//ndmzZx+1kXG9lJQU/vznPzN16tSGRsbTp08HnAQnNzeXyZMn4/F4yMjIaLj9PDQ0lNmzZ3PzzTdTWFhITU0Nt9xyiyU45murrq1j24FSvtxTwpd73ceeYjbvLz2sJCbGG0xSGIzrnUhWUiSZSZFkJkbSMyGC2Aj737k50tT+3bnvB0O55aUcbvzPCh65bESn7qHZHOLzBKeRcJyeiGPdx05gtU8j8qHMzEzWrFlz2LzGDW+TkpIa2uDMnDmTmTNnHrbuPffc09Dgt+k+mt56PXHiRNauXdtsHHfddVez8y+++GIuvvjiI+b36dOHxn0rffjhh4ctHzZsGPPmzWs2LmNaUllTy5b9hxKZTXuL+XJPCVv2l1LTaBjqjIRw+nWP5rSTutGnWxS9u0WSlRRJQmQoc+fOZcqUYb47CdPlTB+WRlF5Nb998wtue3U1f73glIDoBLGr83mCIyKPAYOBYmARTvXU/aqa79PAjDE+U15Vy1f7SvjSTWCcZKaEbQdKqc9jggR6JUbSt3sUZw5Kpl9yFP26R9O7WyQRoT7/02b8zIzxmRworeKBj78kPiKE288ZaO2uOrnO8FegJxAGfAnsAPKAAl8G5AszZ84kLi7O12F0GpmZmZx33nm+DsO0s6qaOrbsL2X97iI27ilmw+5iNuwpJi+/nPqCwOAgITMpkgE9ovnOKSn0TY6mX/cospIirT2E6VA/OaMf+aVVPLFgCwlRofxoim97wDfH5vMER1XPEicNHozT/ubnwBAROQgsVNU7fRpgB2laxRToMjMzyczM9HUYpo3U1Sl5+eVs2FPMht1FbNhTwobdRWzed6hqyRMk9E6K5JT0OC4YkeGWyETRKzGS0GBr82B8T0S48zuDyS+r5p7/biA+IpSLx/T0dVjmKHye4ACo02hjjYgUAIXuYxowBuiQBEdVrbixk+vq46YFin3FlWzcU8z63cVs3F3M+j3FfLmnmLKq2oZ10uPD6Z8czRkDkxnQI5qTkp2qJbtTyXR2QUHCvd8fSmF5Nbe/vpq48BC+fXJKyxuaDufzBEdEbsYpuZkAVOPeIg7MooMaGXu9Xg4cOEBiYqIlOZ2UqnLgwAG8XutRtLMoq6phw24nkdngPjbuKeZAo5GrEyJD6Z8czQ9GZdC/RzT9ezjVS9HWn4jpwkKDg3j4shFc9sQifvJiDjHhIUzsa/3RdjY+T3CATOAV4KequssXAaSnp5OXl8e+fft8cfgOVVFR0WWTBK/XS3p6uq/DCDiqyq7CCtbtKnIfxazbVcSWA6UN7WQiQj30c/uPOalHdEOpTLfoMN8Gb0w7iQgNZtbM0Vz46P+47tmlvHT9eIakxfo6LNNIZ0hw7lDVkmOtICJRLa3zdYSEhJCVldVeu+9UsrOzv9Zo3Ma/VdbU8uWeEtY2JDNOQlNYXt2wTs+ECAamRHPusFQGpsQwsEcM6fHhdtusCThxEaE8e/UYzv/X51z59BJe++EEMhIifB2WcXWGBOdNEcnBGWxzmaqWAohIb5zBNn8APA7M9lmExvihfcWVjZIYJ5H5al9JQ6Pf8BAP/XtEc/bJKQxKiWZgSgz9e0Rb9ZIxjSTHeHn6ytF87+HPueKpxbx6wwTibdyqTsHnCY6qniEiZwPXAxNFJB6oATYA7wJXqOpuX8ZoTFe3t6iClXmFrMwtIHt1Bbcu+Jj9JYcGjEyN9TIwJYYzByU7pTIp0fRKjMRjpTLGtKhfcjSPXz6KGU8u5ppnl/L8NWOtC4NOwOcJDoCqvge85+s4jPEHRRXVrMkrJCevgJW5BazKK2SXO+6SJ0hIixSm9O/WkMgMSokhLsL+x2nM1zG2dyJ/u3AYN76wnFtezOGfl46w/yD4WKdIcIwxJ6ayppZ1u4pZmVvASjeh+WpfacPyzMQIxmQlMDQ9jqEZsQxOjeV/n81nypShPozaGP90zikp7C4axO/fWcvv31nLnd8ZZHfm+pAlOMZ0EbV1yuZ9JeS4pTIr8wpYt6uI6lqnzUxSVBjDMuI4b1gaQzPiOCU91kpmjOlgV5+axc6Ccp5csIXUOC/XTT724MWm/ViCY0wnpKrsLKxgVW5BQ1XTmh1FlFTWABAVFszJabFcfWpvhmXEckp6HCmxXvvfojGdwO1nD2R3UQV/fG89yTFepg9L83VIAalTJDgi4gG+UNUBvo7FGF8oqqhmVW4hObn55OQWkJNb2NAIOMQjDEqJ4bvDnZKZYRmx9E6KstuyjemkgoKE+74/lH3Fldz6ykq6RYcxoY91BNjROkWCo6q1IrJBRHqq6nZfx2NMe6qurWPD7mJW5BaQs91pO/PVvpKGTvN6d4tkcr8khvWM45T0OAamRNsQBsZ0Md4QD4/PGMUFj3zO9c8u45UfjmdAjxhfhxVQOkWC44oHvhCRxUBDK0lVPdd3IRnz9ag6g0yuzHOSmZzcAtbsLKSiug6AxMhQhmXEce7QVIZlxDE0PY7YCOtnxhh/EBsRwtNXjeH8f33GzFlLeP3HE0iJDfd1WAGjMyU4vz3eDUQkA3gWSAYUeExVH2zrwIxprWNVNYUGBzEkNYZLxvRiWM84hmfEkR4fbu1mjPFjaXHhPDVzDD94dCEzZy3hlR+OJ8Y6y+wQnSbBUdW5ItIL6KeqH4tIBNBSuXwN8HNVXS4i0cAyEflIVde2e8Am4DWualqZ65TOHFHVdFISwzPiGJoRx4AeMYQGB/k2aGNMhxuUGsMjl41k5lOLuf7ZZTxz1Rj7W9ABOk2CIyLXAtcBCUAfIA14BDjjaNu4g3PucqeLRWSdu50lOKZNqSo7CsqdUplmqpoSrKrJGHMMp/ZL4q/fP4WfvrSSX726ivt+MNRKb9tZp0lwgB8DY4BFAKr6pYh0b+3GIpIJDK/f3pivw6qajDFt7bvD09l+oJy/fbyRnokR3PKNk3wdkl8TrS9P9zERWaSqY0VkhaoOF5FgYLmqntKKbaOAucDdqvpaM8uvwykdolu3biNffvnltg6/yygpKSEqKsrXYfhMc+dfU6fkFdexudB9FNSyq1Sp/2b0iBT6xHroHRdE79ggMqKDCO7Ct2jbZ8DOP5DPH3z7HqgqT6yu4rOdNVx7cigT0zq+pNffPgNTp05dpqqjms7vTAnOPUABcDlwE/AjYK2q3t7CdiHAO8AHqnp/S8fp37+/btiw4esH3EVlZ2czZcoUX4fhM9nZ2QwZNZ6lW/NZtu0gK7Y3X9VU//DHqib7DNj5B/L5g+/fg6qaOmY+tZglWw/y7FVjGd8nsUOP7+vzb2si0myC05mqqH4FXA2sxhlZ/D3giWNtIE6dwJPAutYkNybwqCpf7Sth6dZ8lm7LZ/66Mvb892PAqpqMMb4RGhzEw5eN5HsPf871/17Kaz+aSN/u/lOi0ll0pgRnKvCcqj5+HNtMBGYAq0Ukx533G3d0chOAKqprWbOjkCVuCc2ybfnkl1UDEB8RQmZUEFed1o9RmfEMSYu1DvSMMT4RGx7CUzNH891/fcaVTy/m9R9NJCkqzNdh+ZXOlOBcDjwsIgeB+cA8YIGq5h9tA1VdANh/twPYgZJKlm3LZ9k2p4RmdV4hVbVOdVPvpEi+MTCZ0ZkJjMyMp3dSJHPnzmXKaTb4nTHG9zISInjyitFc+NhCrnlmKS9eNw5viP2nq610mgRHVa8AEJFU4ALgn0AqnShG41t1dW51k5vQLNuWz5b9TqfXoZ4ghqTFMHNiJqN6xTOyVzyJ9r8hY0wnNzQjjgcvGs4Nzy3jJy+u4MGLhluS00Y6TfIgIpcBk4CTgf3AQzglOSZAlVfVkpNbwPLt+SzdepDl2wsoLHeqmxIiQxnZK54LR2cwqpdT3WR/FIwxXdG3Bvfgt+cM4v/eWcu3HpjHb88ZxBkDu1t7wK+p0yQ4wAPAVzid+81R1a0+jcZ0uD1FFW5j4IMs35bPFzuLqKlz7vLr2z2Kbw/pwUi3dCYrKdK+/MYYv3HVqVn07xHNb99cwzXPLmVc7wRuP3sQJ6fH+jq0LqvTJDiqmiQig4HJwN0i0g/YoKozfByaaQe1dcr63UWH2s9szWdHQTkA3pAghqbHcd3k3ozKjGdEz3jiIkJ9HLExxrSviX2T+OCWybyweDsPfPwl33loAd8dnsat3+pPWpwN0nm8Ok2CIyIxQE+gF5AJxAJ1vozJtJ2iimpW5ha4/c/ks2J7PqVVtQB0jw5jVGY8V52axahe8QxKjSHEY+O0GGMCT4gniMvHZ3Le8DQezv6KJxds4d3Vu7j61Cx+OKWPDdR5HDpNggMsaPR4SFXzfByPOUGNB6HM2V7AyrxDg1AGCfTvEcP5I9IbSmes7xljjDlcjDeE284awGXjenHfBxt4OPsrXlqSyy3f6MfFY3rafwJbodMkOPVDMrjDLpguoqVBKBPdnoGnD01lWE+nd+Bo+x+IMca0SlpcOPdfOIwrJ2Zx93truePNL3j6s6386tsDOHNQsv3n8Bg6TYIjIkOAf+OMJi4isg+4QlXX+DYy01hxRTWr8grJyS1ghZvQ2CCUxhjTvk5Oj+WFa8fx6fq9/PG9dVz372WMyUrg9rMHMjQjztfhdUqdJsEBHgN+pqpzAERkijtvgg9jCmg1tXVs2FN8WOnMJreqCZyO9Cb3S2oomRnQI4bQYCs2NcaY9iAinDEwmdNO6saLS3L520cbmf7PzzgpOYrhGfEM7xnH8J7x9O0ehacLDwjcVjpTghNZn9wAqGq2iET6MqBAoqrsLKxwE5l8VuYWsnpHIeXVTkPg+IgQhmXEMe0Ut6rJDwehNMaYriDYE8Rl43oxfVgqzy/azqLNB/hg7W5eWpoLQFRYMEMzYhuSnmEZcQHZ8WlnSnA2i8hvcaqpAC4DNvswHr9WUlnDqtwCpyGw+9hX7FY1eYIYlBrDhaMzGr4cPRMirKrJGGM6kWhvCDec1ocbTuuDqrL1QBkrtuezYnsBK3LzeXjuV9S6fYn1SoxgeIZTwlNXWMuEmjq/L3HvTAnOVcDvgNcAxenF+CqfRuQnamrr2LinhJzcAt5fXckfV8zly72HqpqykiI5tW8SQ9NjGdYznoEp0TYIpTHGdCEiQlZSJFlJkZw/Ih1weoNfvaOwIen5/KsDvJGzE4A/L/mAk9NiG6q1hveMIyXWv/ra8XmCIyJe4AagL7Aa+LmqVvs2qq5tV2F5Q5uZFbkFrM47VNUUGQKje4dz9skpDMtwSmesEz1jjPE/4aEexmQlMCYrAXCaIuwqrOC5/35GVVQqK3ILeGbhNh6fvwWAHjFeN+Fxkp6Tu/gQOD5PcIBngGqcEptvAwOBW3wZUFdSUlnDaveuppzcfHJyC9hT5FQ1hXiEQamxXDg6oyGZ2bJ6MVOnjvFx1MYYYzqaiJAaF86YHsFMmTIIgKqaOtbtKnJKedy7Y99fsxuA4CBhYErMoaQnI55eiV2nuUJnSHAGqerJACLyJLDYx/F0WsUV1azdWcQXO4tYs7OQL3YU8eXeYtwqVnolRjCud2JDMjMoNeaIqqatXeSDaYwxpv2FBgcxNCOOoRlxzHTn7S+pJMdtx7NiewGvLsvj2YXbAOeGk+E94xva8wzNiO20fZt1hgSnoTpKVWu6SmbY3g6UVPLFYclMIVsPlDUsT4oKY3BqDN8a0oPh7oczIdKqmowxxnw9SVFhfGNQMt8YlAw4Ywd+ubfYabzstuf5dP1eAESgX/fOeZt6Z0hwhopIkTstQLj7WgBV1Rjfhdb+VJXdRRWs2VHEFzsLG553FVY0rJMeH87g1Bi+NyKdwWkxDEmNpXuM14dRG2OMCRSeIGFAjxgG9Ijh4jE9ASgsr2ZVXkFD0tMZb1P3eYKjql23BdNxqqtTth0s44udhU7JzA7n+WBpFeBkwr2TIhmTlcDgVCeRGZQaY42AjTHGdCqx4SFM6teNSf26ARzXbeojesYzICW63cfT8nmC46/yS6tYv7uY9buL2LC7mHW7i9m4u7jhbqYQj9CvezTfGNidwamxDElzsuPIMLskxhhjupbjvU09LDio3W9T7/K/piJyFvAg4AGeUNU/d8RxVZUt+0vZuKeY3IPl7ChwHjvd54KyQ3e6x0eEMKBHDBeNyWBAj2gGp8bSLznK+poxxhjjt452m/qK7QUs357Piu357XqbepdOcETEA/wTOBPIA5aIyFuquratj1Vbp6zbVcSiLQdZtPkAS7YeJL9REhMVFkxaXDipcc4F6pkQ4dZZRtMtOqzL3FZnjDHGtIf629RT48I555QUACpralm3q/iwqq22uk29Syc4wBhgk6puBhCRF4HpwNdKcCqqa8kvq2J3YQVLt+azaMsBFm85SFFFDQA9EyI4Y2AyozPjGZQSS8/ECGK8wZbEGGOMMcchLNjT0LXJlROdefuKK52Oat2kZ3aj29QTIkPdtjxOKc8p6bFH3XdXT3DSgNxGr/OAscfaYHtxHSN//1GzyxSnzrC+nUy9rKRIzjklhbFZiYztneB33VkbY4wxnUW36DDOHJTMmY1uU9+4p9Ft6rkFfNLoNvWjEa0fkKgLEpELgLNU9Rr39QxgrKre2GS964DrAKKSe478/m8fO+o+QzwQHSJEhQoxoUJWbBDxXv8ZkKykpISoqChfh+EzgX7+YO+BnX9gnz/Ye+AP519arWwprOWrgjoeuPZby1R1VNN1unqCMx64S1W/5b7+NYCq/ulo2/Tv3183bNjQQRF2PtnZ2UyZMsXXYfhMoJ8/2Htg5x/Y5w/2Hvjb+YtIswlOVy+aWAL0E5EsEQkFLgLe8nFMxhhjjPGxLl2CAyAiZwMP4NwmPktV725h/WIgcItwIAnY7+sgfCjQzx/sPbDzD+zzB3sP/O38e6lqt6Yzu3yCc7xEZGlzRVmBws4/sM8f7D2w8w/s8wd7DwLl/Lt6FZUxxhhjzBEswTHGGGOM3wnEBOfo94gHBjt/E+jvgZ2/CfT3ICDOP+Da4BhjjDHG/wViCY4xxhhj/JwlOMYYY4zxO36Z4IjIWSKyQUQ2icivmlkeJiIvucsXiUimD8JsV614D2aKyD4RyXEf1/gizvYiIrNEZK+IrDnKchGRv7vvzyoRGdHRMbanVpz/FBEpbHT97+joGNuTiGSIyBwRWSsiX4jIT5pZx28/A608f3//DHhFZLGIrHTfg981s47f/ha08vz9+ncAVfWrB06Hf18BvYFQYCUwqMk6PwIecacvAl7yddw+eA9mAg/5OtZ2fA8mAyOANUdZfjbwPiDAOGCRr2Pu4POfArzj6zjb8fxTgBHudDSwsZnvgN9+Blp5/v7+GRAgyp0OARYB45qs47e/Ba08f7/+HfDHEpwxwCZV3ayqVcCLwPQm60wHnnGnZwNniBxrTNIupzXvgV9T1XnAwWOsMh14Vh3/A+JEJKVjomt/rTh/v6aqu1R1uTtdDKwD0pqs5refgVaev19zr2uJ+zLEfTS9q8Zvfwtaef5+zR8TnDQgt9HrPI78Yjeso6o1QCGQ2CHRdYzWvAcA33OL5meLSEbHhNZptPY98mfj3eLr90VksK+DaS9utcNwnP/BNhYQn4FjnD/4+WdARDwikgPsBT5S1aN+Bvzxt6AV5w9+/DvgjwmOaZ23gUxVPQX4iEP/izGBYTnO+C1DgX8Ab/g2nPYhIlHAq8Atqlrk63g6Wgvn7/efAVWtVdVhQDowRkSG+DikDtWK8/fr3wF/THB2AI2z0HR3XrPriEgwEAsc6JDoOkaL74GqHlDVSvflE8DIDoqts2jN58RvqWpRffG1qr4HhIhIko/DalMiEoLz4/68qr7WzCp+/Rlo6fwD4TNQT1ULgDnAWU0W+ftvAXD08/f33wF/THCWAP1EJEtEQnEajr3VZJ23gCvc6QuAT9VtceUnWnwPmrQ1OBenjj6QvAVc7t5JMw4oVNVdvg6qo4hIj/q2BiIyBudvgd/8YXfP7Ulgnaref5TV/PYz0JrzD4DPQDcRiXOnw4EzgfVNVvPb34LWnL+//w4E+zqAtqaqNSJyI/ABzt1Es1T1CxH5P2Cpqr6F88X/t4hswmmIeZHvIm57rXwPbhaRc4EanPdgps8Cbgci8gLOXSJJIpIH3InTyA5VfQR4D+cumk1AGXClbyJtH604/wuAH4pIDVAOXOQvf9hdE4EZwGq3DQLAb4CeEBCfgdacv79/BlKAZ0TEg5O8vayq7wTQb0Frzt+/fwf86/NsjDHGGOOfVVTGGGOMCXCW4BhjjDHG71iCY4wxxhi/YwmOMcYYY/yOJTjGGGOM8TuW4BhjfE5EEhuNaLxbRHa40yUi8q92OuYtInL5MZZPc2+pNcZ0QXabuDGmUxGRu4ASVb23HY8RjDNUwQh3DKLm1hF3nYmqWtZesRhj2oeV4BhjOi0RmSIi77jTd4nIMyIyX0S2icj5InKPiKwWkf+6QxMgIiNFZK6ILBORD44yQvjpwPL65EZEbhaRte6ggy+CMxozkA1M65CTNca0KUtwjDFdSR+c5ORc4DlgjqqejNMT7zlukvMP4AJVHQnMAu5uZj8TgWWNXv8KGO4OOnhDo/lLgUltfhbGmHbnd0M1GGP82vuqWi0iq3GGIfmvO381kAn0B4YAH7nDLHmA5saXSuHwcXdWAc+LyBscPqr2XiC17cI3xnQUS3CMMV1JJYCq1olIdaOxk+pw/p4J8IWqjm9hP+WAt9Hrc4DJwHeA20XkZLf6yuuua4zpYqyKyhjjTzYA3URkPICIhIjI4GbWWwf0ddcJAjJUdQ5wGxALRLnrnQSsafeojTFtzhIcY4zfUNUqnFGy/yIiK4EcYEIzq76PU2IDTjXWc2611wrg76pa4C6bCrzbnjEbY9qH3SZujAlIIvI68EtV/fIoy5OB/6jqGR0bmTGmLViCY4wJSCLSH0hW1XlHWT4aqFbVnA4NzBjTJizBMcYYY4zfsTY4xhhjjPE7luAYY4wxxu9YgmOMMcYYv2MJjjHGGGP8jiU4xhhjjPE7luAYY4wxxu9YgmOMMcYYv2MJjjHGGGP8jiU4xhhjjPE7luAYY4wxxu9YgmOMMcYYv2MJjjHGGGP8jiU4xhhjjPE7luAYY4wxxu9YgmOMMcYYv2MJjjHGGGP8jiU4xhhjjPE7luAYY4wxxu9YgmOMMcYYv2MJjjHGGGP8jiU4xhhjjPE7luAYY4wxxu9YgmOM8TkRmSkiC9p4n5kioiIS3Jb7NcZ0DZbgGOPnRGSriJSLSLGIFIjI5yJyg4h0+PdfRO5yk46xHX3sY/m6yVCj7Uvcx1YR+VVbx2mMaT1LcIwJDN9R1WigF/Bn4DbgyaOtLCKetg5ARAS4HDjoPvujOFWNAi4G7hCRszo6ACuxMsZhCY4xAURVC1X1LeBC4AoRGQIgIk+LyMMi8p6IlAJTReQcEVkhIkUikisidzXel4hcLiLbROSAiPzWLbX4xjEOPwlIAW4GLhKR0CbLRUQeEpFCEVkvImc0WjBTRDa7pVBbRORSd36QiPw/N469IvKsiMQ2d/Cm8bmlSc+5L+e5zwVuCcx4d52rRGSdiOSLyAci0uuYb7BLVRcCXwBDjhWjiDwjIj93p9PcUqAfu6/7iMjB+pI2EZkmIjmNSuFOaXJut4nIKqDUkhxjLMExJiCp6mIgDyfpqHcJcDcQDSwASnFKWuKAc4Afish5ACIyCPgXcClO0hILpLVw2CuAt4GX3dffabJ8LPAVkATcCbwmIgkiEgn8Hfi2Wwo1Achxt5npPqYCvYEo4KGWzr8Zk93nOFWNUtWFIjId+A1wPtANmA+80NKOxDERGAysaCHGucAUd/o0YHOjWE4D5qtqnYgMB2YB1wOJwKPAWyIS1ujQF+NcpzhVrTmekzfGH1mCY0zg2gkkNHr9pqp+pqp1qlqhqtmqutp9vQrnx/00d90LgLdVdYGqVgF3AHq0A4lIBPB94D+qWg3M5shqqr3AA6paraovARtwfrAB6nBKQ8JVdZeqfuHOvxS4X1U3q2oJ8Guc0qG2KMG4AfiTqq5zE4Y/AsNaKMXZj1MF9wTwK1X9pIUY5wKnuqU0k4F7gInuvk5zlwNcBzyqqotUtVZVnwEqgXGNjv13Vc1V1fI2OHdjujxLcIwJXGk4P8b1chsvFJGxIjJHRPaJSCHOD36Suzi18fqqWgYcOMaxvgvUAO+5r58Hvi0i3Rqts0NVGydJ24BUVS3FqVK7AdglIu+KyIBGcWxrsk0wkHyMWFqrF/CgWyVUgPNeCccuqUpS1XhVHaiqf28pRlX9CqekbBhOado7wE4R6c/hCU4v4Of1sbjxZLj7rnfY9TMm0FmCY0wAEpHROD/UjW/NbloC8x/gLSBDVWOBR3B+4AF2AemN9heOU3VyNFfgVM1sF5HdwCtACE61WL00tyFyvZ44pUyo6geqeiZOddh64HF3nZ04P/6Nt6kB9jQTQykQ0eh1j0bTzZU+5QLXq2pco0e4qn5+jPNsTksxzsUpEQtV1R3u6yuAeA5VxeUCdzeJJUJVG1eZHbUEzZhAZAmOMQFERGJEZBrwIvCcqq4+xurRwEFVrRCRMRyejMwGviMiE9zGwndxKPlpesw04AxgGk5JxTBgKPAXDq+m6g7cLCIhIvJ9YCDwnogki8h0ty1OJVCCU2UFTrXZT0UkS0SicKqRXjpKG5QcnKqhEBEZhZNU1Nvn7rN3o3mPAL8WkcHuecS6cR2vlmKcC9zIoYbO2e7rBapa6857HLjBLVUTEYkUpxF49AnEY0xAsJb2xgSGt0WkBudHfC1wP84P+LH8CLhPRB7C+RF+GafBMar6hYjchJMoRQIP4LShqWxmPzOAHFX9sPFMEfk7TrXLEHfWIqAfTjuWPcAFqnpARFKAnwHP4pRS5AA/dLeZhVNNMw/wAh8ANx3lfH6Lk2zku+fzH9w2SKpaJiJ3A5+JSAhwlqq+7iYkL7rtbgqBj3BKn45HSzHOxUkm6xOcBTglTfWvUdWlInItTuPkfkC5u948jDHNksOrvI0x5vi5iUAB0E9Vt/g4HGOMsSoqY8yJEZHviEiEW3V0L7Aa2OrbqIwxxmEJjjHmRE3HaUC7E6fa5CK1ImFjTCdhVVTGGGOM8TtWgmOMMcYYvxNwd1HFxcVp3759fR1GQCstLSUyMtLXYQQ0uwa+Z9fA9+wa+F5bXINly5btV9VuTecHXIKTnJzM0qVLfR1GQMvOzmbKlCm+DiOg2TXwPbsGvmfXwPfa4hqIyLbm5gdcghOoSitreGlJLl/sLCLEI/TvEc2pfZPol2z9hBljjPE/luAEgE17S7hi1mJ2FJTTI8ZLVW0dLy5xhq3pnxzN1ZOyOG9YGqHB1iTLGGOMf7AEx88dKKlk5lOLqaypZfYN4xmVmYCqsquwgo/X7eGFxbn8cvYqHsn+irvOHczkk46oxjTGGGO6HEtw/Nwf31vPnqIKXrlhAsMy4gAQEVLjwrl8fCYzxvXi0/V7+f07a7l81mKuGN+L35wzkLBgj28DN8aYTqC6upq8vDwqKip8HYpfio2NZd26da1a1+v1kp6eTkhISKvWtwTHjy3fns+ry/P44ZQ+DclNUyLCGQOTmdg3ib9+sIEnF2xh2fZ8Hr98FCmx4R0bsDHGdDJ5eXlER0eTmZnJ4YPdm7ZQXFxMdHTLbUFVlQMHDpCXl0dWVlar9m2NLvzYQ59uIjEylBuntnxbvDfEw2+nDeLxy0exdX8Z3/vX52zaW9wBURpjTOdVUVFBYmKiJTc+JiIkJiYeV0maJTh+6ss9xXy6fi+Xj88kMqz1BXVnDkrmpevHUV2nfO/hhSzblt+OURpjTOdnyU3ncLzXwRIcPzXrsy2EBQdx2biex73t4NRYXvvhBOIjQrj0if8xZ8PedojQGGOMaT+W4Pihiupa3l65i+8MTSUxKuyE9pGREMHsH06gb/corn1mKa+vyGvjKI0xxrTGlClT2Lp1KwAzZ84kKyuLoUOHctJJJ3H55ZeTl9c+f5+3bt1KeHg4w4YNY9CgQdxwww3U1dW1y7GayszM/Nr7sATHD328bg8llTWcPzzta+0nKSqMF64dx+jMBH760kqemL+5jSI0xhhzov7617+ycuVKNmzYwPDhwzn99NOpqqo6Yr3a2tqvfaw+ffqQk5PDqlWrWLt2LW+88cbX3uex1NTUtNm+WmycISLjgcuASUAKUA6sAd4FnlPVwmNsuxUoBmqBGlUdJSIJwEtAJrAV+IGq5otTufYgcDZQBsxU1eXufq4A/p+72z+o6jPu/JHA00A48B7wE7Xh0XljxQ6SY8IY2zvxa+8r2hvCU1eO5qcv5fCHd9ex/WAZd0wbRLDHcmNjTGD53dtfsHZnUZvuc1BqDHd+Z/AJbSsi/PSnP+X111/n/fffZ/r06URFRXH99dfz8ccf889//pNPP/2Ut99+m/LyciZMmMCjjz6KiLBkyRKuvvpqgoKCOPPMM3n//fdZs2bNUY8VHBzMhAkT2LRpE1u3buWqq65i//79dOvWjaeeeoq0tDT69u3L5s2bKSwsJDExkTlz5jB58mQmT57Mk08+SWpqKjfddBNr1qyhurqau+66i9NPP52nn36a1157jZKSEmpra5k7d+6Jvp2HOeavlIi8D1wDfACchZPgDMJJNrzAmyJybgvHmKqqw1R1lPv6V8AnqtoP+MR9DfBtoJ/7uA542I0hAbgTGAuMAe4UkXh3m4eBaxttd1YrztmvHSytInvDPqYPS8MT1DYN47whHh66ZATXTsri2YXbuPLpJRSWV7fJvo0xxnw9I0aMYP369YAzeOXYsWNZuXIlp556KjfeeCNLlixhzZo1lJeX88477wBw5ZVX8uijj5KTk4PH03K/Z2VlZXzyySecfPLJ3HTTTVxxxRWsWrWKSy+9lJtvvhmPx0P//v1Zu3YtCxYsYMSIEcyfP5/Kykpyc3Pp168fd999N6effjqLFy9mzpw5/OIXv6C0tBSA5cuXM3v27DZLbqDlEpwZqrq/ybwSYLn7uE9Eko7zmNOBKe70M0A2cJs7/1m3BOZ/IhInIinuuh+p6kEAEfkIOEtEsoEYVf2fO/9Z4Dzg/eOMx6+8u3oXNXXKecO+XvVUU54g4fZzBtG3exS3v76G8//1GbNmjqZXoo3Ea4wJDCda0tLeGldceDwevve97zW8njNnDvfccw9lZWUcPHiQwYMHM2nSJIqLixk/fjwAl1xySUPi09RXX33FsGHDEBGmT5/Ot7/9bWbMmMFrr70GwIwZM/jlL38JwKRJk5g3bx5btmzh17/+NY8//jinnXYao0ePBuDDDz/krbfe4t577wWcW/Dr2w+deeaZJCQktOn70lI9w2UiMlpEjpoINZMAHbYY+FBElonIde68ZFXd5U7vBpLd6TQgt9G2ee68Y83Pa2Z+wFJVXlqynQE9ohmY0j6DaF44uif/vnosB0qrOO+fn7Fo84F2OY4xxpjWWbFiBQMHDgSc3n7rS2QqKir40Y9+xOzZs1m9ejXXXnvtcffIXN8GZ8WKFdx1113HXHfy5MnMnz+fxYsXc/bZZ1NQUEB2djaTJk0CnN+oV199lZycHHJycti+fTv9+/cHIDKy7f+z3FIJTjpOu5gBIrIa+Az4HPi8vkSlBaeq6g4R6Q58JCLrGy9UVRWRdm8z4yZX1wF069aN7Ozs9j6kT6zeV8OaHZXMHBzapsV8zfn1yGD+tryCSx7/HxcNCOUbPYNb3UdBSUmJ316DrsKuge/ZNfC91lyD2NhYiot92+lpbW0tJSUlFBcXU11dTXl5OcXFxagqjzzyCDt27GDixIkNcdY/FxQUoKqEhYWxa9cuXn75ZaZPn47H4yEyMpJPP/2U0aNH8+yzz1JXV3fEeZaUlDQ7f8yYMTz11FNcfPHFPP/884wfP57i4mIGDhzIZ599RmZmJtXV1QwePJhHHnmEl19+meLiYqZOncp9993Hvffei4iwcuVKhgwZQkVFBVVVVYcdR1Wbfd8rKipa/b05ZoKjqrcCiEgoMAqYAFwJPCYiBao6qIXtd7jPe0XkdZw2NHtEJEVVd7lVUPWdrOwAMhptnu7O28GhKq36+dnu/PRm1m8ujseAxwD69++vU6ZMaW61Lq2uTvnLPxaQkRDEby6e0iEjg591ejU/fSmH59ftZa/E86fzTyapFbelZ2dn44/XoCuxa+B7dg18rzXXYN26da0aSqA9eTweoqKiiI6OJiQkhDvuuIN7772XsrIyxo0bx9y5c0lMPHRTSX280dHRXHfddYwfP54ePXowduxYwsLCiI6O5qmnnuLaa68lKCiI0047jfj4+CPOMyoqiqCgoCPmP/zww1x55ZU89NBDDY2Mo6OjiY6OpmfPnkycOJHo6GhOP/10Zs+ezbhx4wgKCuL3v/89t9xyCxMnTqSuro6srCxeeOEFvF4voaGhhx1HRJp9371eL8OHD2/dG6eqLT6AWJwGvL8HPgaWAk+1sE0kEN1o+nN3H38FfuXO/xVwjzt9Dk77GQHGAYvd+QnAFiDefWwBEtxli911xd327JbO5aSTTlJ/9NryXO112zv6xoq8Dj1uXV2dPjF/s/b9zbs65I7/6sPZm7S8quaY28yZM6djgjNHZdfA9+wa+F5rrsHatWvbP5AWnHbaabply5Y23WdxcXHD9J/+9Ce9+eab23T/rVVUVNTs/F69ejU7v7nrASzVZn7vj1mCIyKPAYNxbvVe5CYp96tqa/rvTwZed6stgoH/qOp/RWQJ8LKIXA1sA37grv8ezi3im3BuE7/STcAOisjvgSXuev+nh6rHfsSh28TfJ0AbGFfW1HLvBxsZnBrDd05J7dBjiwhXn5rFaScl8af31vPn99fz5IItXD+5N5eO7UV4qI1Kbowxnc27777Ln/70J2pqaujVqxdPP/20r0Nqcy21wekJhAFf4lT/5AEFrdmxqm4GhjYz/wBwRjPzFfjxUfY1C5jVzPylwJDWxOPPnvvfdnYUlPPn751MUBvdGn68+naP5smZo1m85SAPfrKRP7y7jkfmbnYSnXE9iQi1geuNMeZEzJw5k7i4uDbd54UXXsiFF17YpvtsS7fccsvX3scxG2qo6lnAaOBed9bPgSUi8qGI/O5rH918bUUV1Tz06Zec2jeJSf26+TocxmQl8Pw143jlhvEM6BHN3e+tY9Jf5vDo3K8oq2q7HiqNMaajqI/7j22PBKezay7BOd7r0OJ/q92SlTUiUgAUuo9puJ3uHdfRTJt7bO5m8suque2sAb4O5TCjMxN47pqxLNt2kAc+/pI/vb+eR+dt5tpJvcmqCfjOpo0xXYTX6+XAgQMkJibaqOI+pKocOHAAr9fb6m1aaoNzM86dUxOAatxbxHGqi1afeKimLewtquCJBZv5ztBUTk6P9XU4zRrZK4F/Xz2WZdvyefCTL/nLf9cTFQJfeTZxxYRMosKs6soY03mlp6eTl5fHvn37fB2KX6qoqGh10uL1eklPT295RVdLvy6ZwCvAT/VQ53ymk3jgky+prVN+8c3+vg6lRSN7xfPsVWNYvj2fu15exF8/2MDj8zdzzalZzBifSWx4iK9DNMaYI4SEhJCVleXrMPxWdnZ262/7Pk4tJTh3qGrJsVYQkaiW1jFt76t9Jby0JJcZ43rRMzHC1+G02oie8fxslJe4PsP4+ydfcu+HG3k4+yu+PyqDKydm2tAPxhhj2kRLCc6bIpIDvAksU9VSABHpDUzFucX7cWB2ewZpjnTvBxvwBgdx4+l9fR3KCRmWEcesmaNZs6OQWQu28PyibTyzcCtnDkzm6lOzGJOVYPXdxhhjTlhLPRmfISJnA9cDE91RvGuADcC7wBWqurv9wzSNLd+ez/trdvPTb5zUqp6DO7MhabHcf+Ewbvv2AP69cBvPL9rGh2v3MCQthisnZHHOKSl4Q6wvHWOMMcenNXdRvYfTCZ/pBFSVP7+/nqSoUK6Z5D/1wskxXm79Vn9+PLUvr6/YwazPtvDzV1by+3fXcsGIdC4e25M+3aJ8HaYxxpguwm5h6WKyN+xj8ZaD/H76YCL98A6k8FAPl4ztycVjMli4+QDPL9rO059v5YkFWxjfO5FLx/Xkm4N6dMhYW8YYY7ou//uF9GO1dU7pTWZiBBeN6enrcNqViDChTxIT+iSxt7iCV5bm8cLi7dz4nxUkRYXyvRHpfG9kOicl+3YQPGOMMZ2TJThdyOsrdrBhTzEPXTKcEE/glGB0j/by46l9ueG0Psz7ch//WbSdJxds4dF5mzk5LZbvjUjj3GFpJESG+jpUY4wxnUSLCY6IeIAvVLVzdZUbYCqqa7n/ww2ckh7L2UNSfB2OT3iChKn9uzO1f3f2l1TyZs5OXl2Wx11vr+Xu99YxtX93zh+RztQB3QgLtobJxhgTyFrTyLhWRDaISE9V3d4RQZkjPblgCzsLK7j3+0N9NqBmZ5IUFcbVp2Zx9alZrNtVxGvL83h9xU4+XLuHGG8wZ5+cwvRhaYzNSrD3yxhjAlBrq6jigS9EZDFQWj9TVc9tl6jMYfYWVfDPOZv45qBkJvRN8nU4nc7AlBhuP2cQt501gPmb9vNWzk7eWrmTF5fk0iPGy7nDUjl3aCqDU2Osbx1jjAkQrU1wftuuUZhj+usHG6iureM3Zw/0dSidWrAnqKEKq7yqlo/W7eGtnB3MWrCFx+Ztpm/3KKYPTeXcYanWY7Ixxvi5ViU4qjpXRHoB/VT1YxGJAKyRQwdYnVfI7OV5XDepN5lJ9qPcWuGhHs4d6pTc5JdW8d6aXby5Yif3fbSR+z7ayPCecUwfmsq0oaldvrNEY4wxR2pVgiMi1wLXAQlAHyANeAQ4o/1CM7V1yu1vrCYxMpQfd9EhGTqD+MhQLh3bi0vH9mJHQTlvr9zJGyt2cNfba/n9u+uY2DeJ84al8s3BPWx0c2OM8ROt/Wv+Y2AMsAhAVb8Uke7tFpUB4OnPt7Iqr5B/XDycGK+Ntt0W0uLCueG0PtxwWh827C7mzZwdvJmzk5+9vBJvyGrOGJjMtwb34LR+3YiNsPfcGGO6qtYmOJWqWlXfQFNEggFtt6gMefll3PfhBqb278a0UwLztvD21r9HNL88awC/+FZ/lm3L582cnby7ehfvrtqFJ0gYnRnPGQOSOX1gd3onRVoDZWOM6UJam+DMFZHfAOEicibwI+Dt9gsrsKkqv31jDarw+/OG2A9rOxMRRmUmMCozgbvOHUxObgGfrt/DJ+v2cvd767j7vXVkJkYwdUB3Jp/UjbFZCUSEWlWWMcZ0Zq39K/0r4GpgNc7I4u8BT7RXUIHupSW5zNmwj99OG0R6fISvwwkoniBhZK94RvaK5xffGkBefhlz1u/lk/V7eX7Rdp76bCshHmF4z3hO7ZvExL5JDE2PJTiAepY2xpiuoLUJzlTgOVV9vD2DMbBlfym/e3stE/smcuWETF+HE/DS4yOYMT6TGeMzKa+qZem2gyzYtJ/PNu3nbx9v5P6PNhIdFszY3omc2jeRMVmJ9O8Rjcc6FzTGGJ9qbYJzOfCwiBwE5gPzgAWqmt9ukQWg6to6bnkph9DgIOuxuBMKD/UwqV83JvXrBsDB0ioWfnWABZv2s2DTPj5etweAaG8wo3rFMyozgTFZCZycFos3xHpVMMaYjtTafnCuABCRVOAC4J9Aamu3N63z5/fXszK3gH9eMoKU2HBfh2NakBAZyjmnpHCO2wg892AZS7YeZMnWfJZsPcicDRsACPUEMTQjllGZCYzOjGdoehyJ1veOMca0q9b2g3MZMAk4GdgPPIRTkmPayJs5O3hywRZmTshs+ME0XUtGQgQZCRGcPyIdcEp4lm49yNJtTsLz+LzNPJzt3HyYHh/O0PQ4hmbEckp6HCenxRJpffAYY0ybae1f1AeAr3A695ujqlvbK6BA9MXOQm57dRVjshK4/RwbjsFfJESG8s3BPfjm4B4AlFfVsiqvgFV5heTkFbAqr4B3V+8CQAT6dY/ilPQ4BqfGMDDFecSGW188xhhzIlpbRZUkIoOBycDdItIP2KCqM9o1ugCwt6iC6/+9jLjwUP55yQhC7G4cvxUe6mFs70TG9k5smHegpJJVeYWszCtgZW4Bc9bvZfayvIblaXHhDHITnkHuIyMh3LoOMMaYFrS2iioG6An0AjKBWKCu/cIKDIVl1Vw+azEHS6t48bpxdIu2dhmBJjEqjKkDujN1gNMxuKqyr7iStbuKWLuriHW7ilm7s5BP1u2hzu1aMzosmH7JUfTtHkW/7tH0TY6iX/coUmPDrWG6Mca4WltFtaDR4yFVzWthfdOC8qparnpmCZv3lTJr5mhOSY/zdUimExARusd46R7jZUr/Q6OhlFfVsnFPsZv0FLFxTzGfrt/Hy0sPfRXDQzxu0hNF3+Qo+naLone3KDISwgkLtru4jDGBpbVVVKcAiEhU+4YTGIoqqrnm6aWs2J7PPy8Zwan9knwdkunkwkM9DM2IY2hG3GHz80ur2LSvhC/3lLBpbwlf7i1m4eYDvLZiR8M6QQKpceFkJkbSKzGCzMRISvbWkLanmIyECLuF3Rjjl1pbRTUE+DfOaOIiIvuAK1R1TXsG54/yS6u4fNZi1u0q4h8Xj+DbJ9sdU+bExUeGMjoygdGZCYfNL66o5qt9pWzdX8qW/aVsO1DK1gNlvLt6FwVl1QA8uHweIpAS4yU9IYL0uHDS48NJiw8nPT6CtLhwUuK8VvpjjOmSWltF9RjwM1WdAyAiU9x5E9onLP/01b4Srn1mKTsKynn88lEN7S6MaWvR3hCGZcQxrEmJD0BBWRWvfTSfxF4D2HagjK37S8nLL2fRloO8kVPe0NYHnLu7ukeHkRbnJj3x4aTFhdMjxkuPWC/JMV4SI0Ot7Y8xptNpbYITWZ/cAKhqtohEtlNMfil7w15uemEFoZ4gnrtm7BH/4zamo8RFhNI71sOUYWlHLKuurWN3YQU7CsrJyy9nR345efll7CgoJye3gPfX7KK6Vg/bJsQjdI/2khwT1pD09IhxnpPdRKhHjJfwUCsJMsZ0nNYmOJtF5Lc41VQAlwGb2yck/1JVU8cDH2/kkblf0b9HDI9fPtIG0DSdVognqKHDwubU1jl3ee0uqmB3YQV7iirYXVTBnkLnecPuYuZt3E9JZc0R20aHBZMUHUZiZChJUWEkRTvPiVFhdIty50WFkRgVSlRYsN0Kb4z5Wlqb4FwF/A54DVCcXoyvaq+g/MW6XUXc+spKvthZxIWjMrjz3EFEhFpvtabr8gSJUyIT64WMo69XUllzKAFyk599xZXsL3EeX+0rYdGWSvLd9kBNhQUHuQmPk/jERYQSFxFCfEQIcRGhxEeEHpqODCE+ItQaSxtjDnPMX1sR8QI3AH2B1cDPVbX5v0imwYGSSu7/aCMvLN5OXEQoj84Yybfc3myNCQRRYcH07e701XMs1bV1HCytchOfKva7SdCBUmd6X0kluworWLeriPyyasqra4+6L29IEPERoW4C5CQ9sREhxHhDiAkPJtobQow3mJhw99kbQkx4CNHeYMJDPFZiZIyfaak44RmgGqfE5tvAQOCWdo6pyzpQUsmzC7cx67MtlFXVcvn4TG75Rj/iIkJ9HZoxnVKIJ6ihrU5rVFTXUlBWTX5ZFfllVRSUVTe8LiirIr+suuF53e4iCsuqKaqoPqLdUFPBQdKQ7DQkRGHOc1RYCJFhHiLDgokMdZ4jQoOJCgsmIszjPIfWPwcTGmy9kRvTGbSU4AxS1ZMBRORJYHH7h9S1qCpLt+Xz2vI8Xl+xg4rqOs4clMxtZ/Wnb/doX4dnjF/xhnjoEetxqshaSVWprKmjqKKaovIaiiqqKa6ooajcfa6obnZ6X3EJReU1lFbWUFJVgx47R2oQ6gkiIsxDZGhwo8TInQ4NxhvqwRvsYe+uKtbUfYk3xNPwCA/xEB4ahDfYgzfUeV0/3xsShDfEQ1hwkJU2GdMKLSU4DdVRqlrTGb9UInIW8CDgAZ5Q1T+39zGLKqpZti2f7PV7+WT9XvLyywkP8TB9aBrXTs6yxMaYTkREGhKIE/1qqioV1XWUVNZQVlXjPtc6z5W1lFbWUFpV4z67rxvNL6uqZX9JJSWVNVRU11FZXUtpVQ3vbN54AucD3mAP4W4CFBYSRFiwh9DgIMI8QYQGO48w9znUU//ac/gyTxBhIYeWH7aO59B6IZ4ggj1CSJDz3Hg6xBNEcJDgCRJLukyn01KCM1REitxpAcLd1wKoqsa0a3QtEBEP8E/gTCAPWCIib6nq2q+z36qaOord/+XtK6kk92AZuQfL2bK/hFU7Ctm8rxRw6vzH907klm+cxLeH9CAyzBoQG+OPRMRJKEI9QNuMGZednc3ESZOpqK6lvLqWiqo6KmpqKa9yX7sPZ7quYX6lO69hfnUtldV1VNXWUVVTS1lVDQXldY3mHXpUuq/bQ4hHCA4KIqQ+8Wn0OthNhI5MloIIddfzeASPOMmSJ8iZDgqShgQqSJzkKkgETxB4goLc9WlYL8jdPjjI2faw/dXvo9GytftqCNq4z0nQcK5zkDj7O+y1ONuKOAlm49dBUr+es67gzg86tG3TfYm0Yt/QsJ45Mcf8RVbVzn5bwhhgk6puBhCRF4HpwFETnB0ldZx+bzZ1qtQp1Kmi6tz+WlNXR3FFDZVH+QOQEutlSFos3x2WxrCecYzOTLA7N4wxJyzE45SQRHtDOuyYqnp44uNOV9Yc/lxV65Q01dQp1bV11NQ6fyOra5Wa2jpq6pz91Livq+vcZ3e9mlqlutbdtsl21e4xS6tq3W2c+XV1Sq0qtbXuc53zN7qmto469+90bf06da2sM2zJss7d8kLEKVFwpp0pOWyZ++rwJ6ThtTSabn4/jbdtWHaMbaTJhkeueyiuo+2nfllFRQXhiz892ul/LV29yCENyG30Og8Y23QlEbkOuA4gMrkX3YIrDmXL7sUXwOMW/UaEeIgIFsKDITpU6BYeRGK4EOoRoAQooXbHDv63o+mRTGuUlJSQnZ3t6zACml0D3+sK1yDUfRyTx320CaHRz+4xqSoK7n9UnUetgjZM62HL6hTqGtZ3lpWWlRPmDadOnf5P9LBnbXjd/HL3WADuc31MTderz8WOvh9tsp8m+3eXNXpy34Mj5zV+7SzXw9dpss2R+9Oj7E/r/x3n/o4Wl6M6uI7gkBO/OfvIaA/p6glOq6jqYzhDS9C/f3996ZazfBxRYMvOzmbKlCm+DiOg2TXwPbsGvmfXwPfa4hq8+JPm53f1+xl3cHh3Y+nuPGOMMcYEsK6e4CwB+olIloiEAhcBb/k4JmOMMcb4WJeuonJvXb8R+ACnFniWqn7h47CMMcYY42NdOsEBUNX3gPd8HYcxxhhjOo+uXkVljDHGGHMES3CMMcYY43dEWzvAip8QkWJgg6/jCHBJwH5fBxHg7Br4nl0D37Nr4HttcQ16qWq3pjO7fBucE7BBVUf5OohAJiJL7Rr4ll0D37Nr4Ht2DXyvPa+BVVEZY4wxxu9YgmOMMcYYvxOICc5jvg7A2DXoBOwa+J5dA9+za+B77XYNAq6RsTHGGGP8XyCW4BhjjDHGzwVMgiMiZ4nIBhHZJCK/8nU8gUhEtorIahHJEZGlvo4nEIjILBHZKyJrGs1LEJGPRORL9znelzH6u6Ncg7tEZIf7XcgRkbN9GaO/E5EMEZkjImtF5AsR+Yk7374LHeQY16DdvgsBUUUlIh5gI3AmkIczSOfFqrrWp4EFGBHZCoxSVet3ooOIyGSgBHhWVYe48+4BDqrqn91kP15Vb/NlnP7sKNfgLqBEVe/1ZWyBQkRSgBRVXS4i0cAy4DxgJvZd6BDHuAY/oJ2+C4FSgjMG2KSqm1W1CngRmO7jmIxpd6o6DzjYZPZ04Bl3+hmcPzKmnRzlGpgOpKq7VHW5O10MrAPSsO9ChznGNWg3gZLgpAG5jV7n0c5vrGmWAh+KyDIRuc7XwQSwZFXd5U7vBpJ9GUwAu1FEVrlVWFY10kFEJBMYDizCvgs+0eQaQDt9FwIlwTGdw6mqOgL4NvBjt+je+JA6ddT+X0/d+TwM9AGGAbuA+3waTYAQkSjgVeAWVS1qvMy+Cx2jmWvQbt+FQElwdgAZjV6nu/NMB1LVHe7zXuB1nKpD0/H2uPXh9fXie30cT8BR1T2qWquqdcDj2Heh3YlICM4P6/Oq+po7274LHai5a9Ce34VASXCWAP1EJEtEQoGLgLd8HFNAEZFIt2EZIhIJfBNYc+ytTDt5C7jCnb4CeNOHsQSk+h9V13ex70K7EhEBngTWqer9jRbZd6GDHO0atOd3ISDuogJwbz17APAAs1T1bt9GFFhEpDdOqQ04g7z+x65B+xORF4ApOCP27gHuBN4AXgZ6AtuAH6iqNYJtJ0e5BlNwiuQV2Apc36gtiGljInIqMB9YDdS5s3+D0wbEvgsd4BjX4GLa6bsQMAmOMcYYYwJHoFRRGWOMMSaAWIJjjDHGGL9jCY4xxhhj/I4lOMYYY4zxO5bgGGOMMcbvWIJjjDHGGL9jCY4xxudEJFFEctzHbhHZ4U6XiMi/2umYt4jI5cdYPk1E/q89jm2MaX/WD44xplMRkbuAElW9tx2PEQwsB0aoas1R1hF3nYmqWtZesRhj2oeV4BhjOi0RmSIi77jTd4nIMyIyX0S2icj5InKPiKwWkf+649wgIiNFZK47av0HTbqCr3c6sLw+uRGRm0VkrTui8YvQMPhiNjCtQ07WGNOmLMExxnQlfXCSk3OB54A5qnoyUA6c4yY5/wAuUNWRwCyguSFBJgLLGr3+FTBcVU8Bbmg0fykwqc3PwhjT7oJ9HYAxxhyH91W1WkRW44wr9193/mogE+gPDAE+cmqY8ADNjWuTAqxr9HoV8LyIvIEzVle9vUBq24VvjOkoluAYY7qSSgBVrRORaj3UiLAO5++ZAF+o6vgW9lMOeBu9PgeYDHwHuF1ETnarr7zuusaYLsaqqIwx/mQD0E1ExgOISIiIDG5mvXVAX3edICBDVecAtwGxQJS73knAmnaP2hjT5izBMcb4DVWtAi4A/iIiK4EcYEIzq76PU2IDTjXWc2611wrg76pa4C6bCrzbnjEbY9qH3SZujAlIIvI68EtV/fIoy5OB/6jqGR0bmTGmLViCY4wJSCLSH0hW1XlHWT4aqFbVnA4NzBjTJizBMcYYY4zfsTY4xhhjjPE7luAYY4wxxu9YgmOMMcYYv2MJjjHGGGP8jiU4xhhjjPE7/x/NT2yyu7HWHgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\n", - "Trajectory Fluid Mechanics Plots\n", - "\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAALJCAYAAACX/njYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAC770lEQVR4nOzdeXxU1fn48c8zkz0TCJCwIztBdmRVXIIr7q2K+4La4m5bW1ut1t1fa6u2WrUW/VI3XFBri/uC4IK4gGVHBBFk3wmZ7Mk8vz/uTZyESTIJM5kk87xfr3ll5t5z733OTJYn55x7jqgqxhhjjDHNmSfWARhjjDHG1McSFmOMMcY0e5awGGOMMabZs4TFGGOMMc2eJSzGGGOMafYsYTHGGGNMs2cJizEm4kTkKRG5J9Zx1EZE1onIsbGOwxgTPktYjIlD7h/sUhHJqrH9fyKiItKrCWPp5V7zrRrbnxORO5oqDmNM82YJizHx63vgvMoXIjIUSItdOIwTkcNieP0GE5GEWMdgTLywhMWY+PUscHHQ60uAZ4ILiMjJbqvLPhHZULPFQ0QOF5HPRGSvu39K0O52IvKmiOSLyBci0reeeP4M3Btqh4hMEZFPa2xTEennPn9KRB4TkbdFxC8i80Sks4j8TUT2iMg3IjKyxmnHiMgKd/+/RCQl6NyniMgit16ficiwoH3rROR3IrIEKLCkxZimYQmLMfHrc6CNiBwsIl7gXOC5GmUKcJKaTOBk4CoR+QmAiPQE3gb+DmQDI4BFQceeC9wJtAPWUEsyEuQxYMABjC05G7gVyAJKgPnA1+7rV4AHa5S/ADgB6AsMcI/FTWymA1cAHYB/ArNEJDno2PNw3o9MVS1vZLzGmAawhMWY+FbZynIcsBLYFLxTVeeq6lJVDajqEuAF4Ch39/nAB6r6gqqWqeouVV0UdPhrqvql+wd9Bk5CU5cinKSmsYN1X1PVhapaDLwGFKvqM6paAbwE1GxheURVN6jqbve6ld1jU4F/quoXqlqhqk/jJEDjg4592D22qJGxGmMayBIWY+LbsziJxxRqdAcBiMg4EZkjIjtEJA+4EqfFAqAH8F0d594a9LwQ8IURz5NAJxE5NYyyNW0Lel4U4nXN628Ier4e6Oo+7wn82u0O2isie3Hq2rWWY40xTcASFmPimKquxxl8exLw7xBFngdmAT1UtS3wOCDuvg043SmRjKcUpxvp7qDrgNM1VTUgWEQ6R+ByPYKeHwRsdp9vAO5V1cygR5qqvhAcagSub4xpAEtYjDGXA0erakGIfRnAblUtFpGxOK0xlWYAx4rI2SKSICIdRGREBOJ5FkgBJgVtWwwMFpER7uDYOyJwnWtEpLuItAduwek2AngCuNJtXRIRSXcHH2dE4JrGmEayhMWYOKeq36nqglp2Xw3cJSL5wG3AzKDjfsBpmfk1sBtnwO3wCMRT4V6rfdC2b4G7gA+A1cCnoY9ukOeB94C1OF1b97jXWgD8HHgE2IMzYHhKBK5njDkAomotm8YYY4xp3qyFxRhjjDHNniUsxhhjjGn2LGExxhhjTLNnCYsxxhhjmr0WtwZGZmam9uvXL9ZhNLmCggLS09NjHUaTs3rHF6t3fLF6x5fa6r1w4cKdqppd3/EtLmHp1KkTCxbUdgdm6zV37lxyc3NjHUaTs3rHF6t3fLF6x5fa6i0i68M53rqEjDHGGNPsWcJijDHGmGbPEhZjjDHGNHutKmFZv6uAs/7xGTO+CKs7zBhjjDEtRIsbdFuX57/8gQXr97Bg/R6OGpBN93Zp9R9kjDHGmGavVbWwrNqaT9vURETg5QUbYx2OMcYYYyKkVSUs63cVcnj/LMb1bs+bS7fEOhxjjDHGREhUExYRmSQiq0RkjYjcFGL/QSIyR0T+JyJLROSkA7neTn8JWelJnDS0C2u2+1m9Lf9ATmeMMcaYZiJqCYuIeIFHgROBQcB5IjKoRrFbgZmqOhI4F3issdcrqwiQX1xO+/RkJg3ujAi8tXRrY09njDHGmGYkmi0sY4E1qrpWVUuBF4HTa5RRoI37vC2wubEX21NQCkB7XxId26Qwpmd73l5m3ULGGGNMayCqGp0Ti5wFTFLVn7mvLwLGqeq1QWW6AO8B7YB04FhVXRjiXFOBqQDZ2dmjZs6cud/1NuQH+MO8Iq4ZkcyYzgm8v66MGd+U8sfDU+nia/lDdfx+Pz6fL9ZhNDmrd3yxescXq3d8qa3eEydOXKiqo+s7Pta3NZ8HPKWqD4jIocCzIjJEVQPBhVR1GjANICcnR0OtRTBvzU6Y9wVHjB3J+D4dyMkrYsYfP2RXWg/Oy+3fBFWJLlt7Ir5YveOL1Tu+WL0bJ5pND5uAHkGvu7vbgl0OzARQ1flACpDVmIvtcruEOqQnAdClbSqHHJRp41iMMcaYViCaCctXQH8R6S0iSTiDamfVKPMDcAyAiByMk7DsaMzFdvtLAGjvJiwAJw3twoot+/h+Z0FjTmmMMcaYZiJqCYuqlgPXAu8CK3HuBlouIneJyGlusV8DPxeRxcALwBRt5KCa3QWliEBm2o8JyynDuiIC//lfzYYdY4wxxrQkUR3DoqpvAW/V2HZb0PMVwIRIXGtXQSnt0pLweqRqW+e2KRzWtwP/WbSJXx7bHxGp4wzGGGOMaa5a/u0zrt0FpdW6gyr9dGR31u8q5Osf9sQgKmOMMcZEQqtJWHbVkrBMGtKZlEQPr1m3kDHGGNNitZqEZXdBadUdQsF8yQkcP6gzbyzZQml5IMSRxhhjjGnuWlXCEqqFBeCnh3Rjb2EZc1Ztb+KojDHGGBMJrSJhqQgoewtDt7AAHNEviyxfkt0tZIwxxrRQrSJhySsqI6DU2sKS4PVw6vCuzF65vWrNIWOMMca0HK0iYdld4E4a50uutczkUT0orQjY4FtjjDGmBWoVCcsuf/Vp+UMZ1LUNw7u35cWvfiBaCz4aY4wxJjrqTFhExCsiM5oqmMbaW1QGQGZaYp3lzh17EN9u8/O/DXubICpjjDHGREqdCYuqVgA93bWAmq28wsqEpe4wTx3elbQkLy9++UNThGWMMcaYCAlnav61wDwRmQVUrSKoqg9GLaoG2lPodAllptbdwuJLTuC04V3576LN/OGUQWSk1F3eGGOMMc1DOGNYvgPecMtmBD2ajb1FZSR6hbQkb71lzxnTg6KyCmYt3twEkRljjDEmEuptYVHVOwFEJE1VC6MfUsPtLSwjMy0prMUNR/TIZGDnDJ7/4gfOH3uQLYhojDHGtAD1trCIyKEisgL4xn09XEQei3pkDZBXVFpvd1AlEeGiQ3uyfPM+Fq63BRGNMcaYliCcLqG/AScAuwBUdTFwZBRjajCnhSX88Sg/HdmNNikJ/OuzddELyhhjjDERE9Y8LKq6ocamiijE0mh7C8tomxr+jUxpSQmcM6YH7yzbypa8oihGZowxxphICCdh2SAihwEqIoki8htgZZTjapC9haUNamEBuPjQXgRUmfG53eJsjDHGNHfhJCxXAtcA3YDNwAj3db1EZJKIrBKRNSJyUy1lzhaRFSKyXESeDzPuavYWlYU9hqVSj/ZpHHtwJ57/8geKy5pVg5Exxhhjaqg3YVHVnap6gap2UtVsVb1QVXfVd5yIeIFHgROBQcB5IjKoRpn+wM3ABFUdDPyyoRUoKa+gsLSiwS0sAFMO68XuglLeWLKlwccaY4wxpumEc5dQHxF5XUR2iMh2EfmviPQJ49xjgTWqulZVS4EXgdNrlPk58Kiq7gFQ1e0NrUBeUXiz3IZyWN8O9O/o41/zvrf1hYwxxphmTOr7Qy0in+O0lLzgbjoXuE5Vx9Vz3FnAJFX9mfv6ImCcql4bVOY/wLfABMAL3KGq74Q411RgKkB2dvaomTNnVu3b5A9wy6dFXD08mbFdwpm4t7q5G8p4ankpvx2TwqAO9U88Fyt+vx+fzxfrMJqc1Tu+WL3ji9U7vtRW74kTJy5U1dH1HR/OX/g0VX026PVzInJjA2Ks7/r9gVygO/CxiAxV1b3BhVR1GjANICcnR3Nzc6v2fbVuN3w6n8NGj+Dw/lkNDmB8WQVv3DeH+Xt9XH1mnTlYTM2dO5fgescLq3d8sXrHF6t3fDnQetfaJSQi7UWkPfC2iNwkIr1EpKeI/BZ4K4xzbwJ6BL3u7m4LthGYpaplqvo9TmtL/4ZUYE+Bu45QI8awAKQkerl0Qi8+Wb2T5ZvzGnUOY4wxxkRXXWNYFgILgLOBK4A5wFzgKuCcMM79FdBfRHq7qz2fC8yqUeY/OK0riEgWMABnscWw7XXHsLRt4F1CwS4c15P0JC/TPm7QpY0xxhjTRGpNWFS1t6r2cb/WfNQ76FZVy4FrgXdx5m2ZqarLReQuETnNLfYusMud+n8OcGM4dyAFyyusHHTb+ISlbVoi5409iDeWbGHD7ma5XJIxxhgT1+odw+Lennwy0Cu4vKo+WN+xqvoWNbqPVPW2oOcK3OA+GmVvUSlej+BLbviA22CXHd6bpz5bx/99+j13nDb4gM5ljDHGmMgKZ+K414EpQAcgI+jRLOwtdCaNO9BVl7tmpnLaiK689NUGdrvjYowxxhjTPITTLNFdVYdFPZJG2lvUsIUP63LVUX157X+bePKTtfx20sCInNMYY4wxBy6cFpa3ReT4qEfSSM46Qg2fNC6U/p0yOGloF57+bB17C62VxRhjjGkuwklYPgdeE5EiEdknIvkisi/agYWrsksoUq47uh8FpRX836ffR+ycxhhjjDkw4SQsDwKH4kwg10ZVM1S1TZTjCtvewjLaRqhLCGBg5zacOKQzT81bV3UHkjHGGGNiK5yEZQOwTJvpYjt5RWVkpkamS6jS9cf0J7+knOnzrJXFGGOMaQ7CGXS7FpgrIm8DJZUbw7mtOdrKKgL4S8ojNui20sFd2nDC4E5Mn/c9lx3e+4AmpTPGGGPMgQunheV7YDaQRDO7rfnHlZojn1Bcf0x/8ovLeWreuoif2xhjjDENU28Li6re2RSBNEblnTzRaAEZ3LUtxw3qxJOfrmXKYb0iOk7GGGOMMQ1TbwuLiMwRkQ9rPpoiuPrsdQfFtovQbc013XDcAPKLy5n2yXdROb8xxhhjwhPOGJbfBD1PAc4EyqMTTsNUJizRGmNycJc2nDa8K9M/XceUw3qTnZEclesYY4wxpm71trCo6sKgxzxVvQF3heVYy4vASs31+dVxAyitCPDonDVRu4Yxxhhj6hZOl1D7oEeWiJwAtG2C2OrVFAlL76x0zh7dnee/+IGNe2wlZ2OMMSYWwrlLaCGwwP06H/g1cHk0gwpXZcLSJsq3HV93dH8AHp69OqrXMcYYY0xo4dwl1LspAmmMvKIyMpIT8HoObKXm+nTNTOXC8T156rPvueKovvTN9kX1esYYY4yprtYWFhE5sq5HUwZZm31FZVFvXal09cS+pCR6efC9b5vkesYYY4z5UV0tLDeG2KbAMKAH4K3v5CIyCXjILfukqv6plnJnAq8AY1R1QX3nrZRXVNZks9Bm+ZL5+RF9eGj2ai5bv4dRPds1yXWNMcYYU0cLi6qeGvwA/gQkAluBn9R3YhHxAo8CJwKDgPNEZFCIchnAL4AvGhp8UyYsAFOP7EN2RjL/762VNNOllYwxxphWKZy7hI4RkbnAPcCDqjpeVV8P49xjgTWqulZVS4EXgdNDlLsbuA8oDj9sR1MnLOnJCfz6uAEsXL+Hd5ZtbbLrGmOMMfFOamspEJGTgVuAPOBeVf20QScWOQuYpKo/c19fBIxT1WuDyhwC3KKqZ7pJ0W9CdQmJyFRgKkB2dvaomTNnAvDLOYUMy/Zy2ZCmm9AtoMpt84ooDcD/OzyVhCgP+K3k9/vx+eJvsK/VO75YveOL1Tu+1FbviRMnLlTV0fUdX9cYlteBjcAu4Lci8tvgnap6WgNjrUZEPMCDwJT6yqrqNGAaQE5Ojubm5gJQ9MHbDOxzELm5Bx9IKA3m7baDS6Z/yfqkXlx+eNPcRDV37lwq6x1PrN7xxeodX6ze8eVA611XwjKx0Wd1bMIZnFupu7utUgYwBJgrIgCdgVkiclo4A2+LyyooKQ80aZdQpaMGZHNE/ywenr2asw7pbgsjGmOMMVFW16Dbj+p6hHHur4D+ItJbRJKAc4FZQefPU9UsVe2lqr2Az4GwkhVwbmmG6E8aV5vfn3Qw+4rLeGSOTSZnjDHGRFs4M902iqqWA9cC7wIrgZmqulxE7hKRA+pOgqaZlr8uB3dpw+RR3Xn6s/Ws21kQkxiMMcaYeBG1hAVAVd9S1QGq2ldV73W33aaqs0KUzW3oHCwQu4QF4DfH55CU4OHuN1bELAZjjDEmHkQ1YYmm5pCwdGyTwvXH9GP2N9uZ8832mMVhjDHGtHbhzMMyQESeEJH3ROTDykdTBFeX5pCwAEw5rDd9stO5640VlJRXxDQWY4wxprUKp4XlZeBr4Fac6forHzHVXBKWpAQPt586mO93FjD903UxjcUYY4xprepdrRkoV9V/RD2SBqpMWNqkhFOF6DpqQDbHDerE3z9czU9HdqNz25RYh2SMMca0KnWt1txeRNoDr4vI1SLSpXKbuz2m8orK8CUnkOBtHsNw/nDyIMoDyp/eXhnrUIwxxphWp67miYU4qzNXzj0f3A2kQJ9oBRWOpl5HqD4HdUjjiiP78PcP13D+uJ6M7R3znM4YY4xpNeqaOK63qvZxv9Z8xDRZAWfiuFhNGlebq3L70rVtCn/4zzLKKgKxDscYY4xpNcK5S+gaEckMet1ORK6OalRhcFpYYj9+JVhaUgJ3nT6EVdvyeeKTtbEOxxhjjGk1whkA8nNV3Vv5QlX3AD+PWkRham5dQpWOHdSJSYM789AHq/lhV2GswzHGGGNahXASFq+4qxMCiIgXSIpeSOFprgkLwO2nDSLBI9z632WoaqzDMcYYY1q8cBKWd4CXROQYETkGeMHdFlPNOWHp0jaV35yQw8ff7uCNJVtiHY4xxhjT4oWTsPwOmANc5T5mA7+NZlD1KSmvoLgs0GwTFoCLD+3F0G5tufP1FVVzxhhjjDGmcepNWFQ1oKr/UNWz3Mc/VTWmc9A3l1lu6+L1CH88Yyi7C0r48zvfxDocY4wxpkUL5y6h/iLyioisEJG1lY+mCK42+ypnuW3GCQvAkG5tuXRCb2Z88QML1u2OdTjGGGNMixVOl9C/gH8A5cBE4BnguWgGVZ+W0MJS6YbjBtAtM5XfvrqE4jJbHNEYY4xpjHASllRVnQ2Iqq5X1TuAk6MbVt1aUsKSnpzAn84cytodBfz1/W9jHY4xxhjTIoWTsJSIiAdYLSLXishPAV84JxeRSSKySkTWiMhNIfbf4HY1LRGR2SLSM5zztqSEBeCI/tmcN7YHT3yylv/9sCfW4RhjjDEtTjgJyy+ANOB6YBRwEXBJfQe587U8CpwIDALOE5FBNYr9DxitqsOAV4A/hxN0XmHLSlgAbj7pYDq1SeG3r1jXkDHGGNNQ4dwl9JWq+lV1o6peqqpnqOrnYZx7LLBGVdeqainwInB6jXPPUdXK6WA/B7qHE3ReUTnQ/AfdBmuTksgfzxjK6u1+Hp69OtbhGGOMMS1KrYvxiMisug5U1dPqOXc3YEPQ643AuDrKXw68Xc85AadLKD3JS6I3nAai5iM3pyOTR3Xnnx+v5cQhXRjavW2sQzLGGGNaBKlt6ngR2YGTcLwAfAFI8H5V/ajOE4ucBUxS1Z+5ry8CxqnqtSHKXghcCxylqiUh9k8FpgJkZ2ePOu7WZ/lmdwUP5KbVX8NmpqBMueXTItIT4fZDU0nySv0HAX6/H58vrKFDrYrVO75YveOL1Tu+1FbviRMnLlTV0fUdX9dyx52B44DzgPOBN4EXVHV5mLFtAnoEve7ubqtGRI4FbqGWZAVAVacB0wBycnI0tW0HOmoRublHhBlK8+LruYNLpn/J/MKO3H7q4LCOmTt3Lrm5udENrBmyescXq3d8sXrHlwOtd619KqpaoarvqOolwHhgDTBXRPZrIanFV0B/EektIknAuUC1biYRGQn8EzhNVbeHG/S+ojLaptaVazVvRw3IZsphvfjXvHV89O2OWIdjjDHGNHt1DgIRkWQROQNnorhrgIeB18I5saqW43TzvAusBGaq6nIRuUtEKse//AXnFumXRWRRfeNmKjXnhQ/DddOJAxnQycdvXl7MLn/IhiVjjDHGuOoadPsMMAR4C7hTVZc19OSq+pZ7fPC224KeH9vQc0LrSFhSEr08dO5ITn9kHjf9eynTLhqFSHjjWYwxxph4U1cLy4VAf5x5WD4TkX3uI19E9jVNeKG1hoQF4OAubfjtpBzeX7GN57/8IdbhGGOMMc1WrS0sqtos7xlWoKisolUkLACXTejNx6t3cufrKxjWLdNudTbGGGNCaJZJSV0C7l3YrSVh8XiEv50zgqz0JK6asZC9haWxDskYY4xpdlpswpKZlhTbQCKofXoSj104im37ivnVS4uoCISeG8cYY4yJVy0uYamoSlhaRwtLpRE9Mrn91MHMWbWDe99cGetwjDHGmGalxU1mElDFC7RrRS0slS4c35O1OwqYPu97urdL5bLDe8c6JGOMMaZZaIEJC3hpPWNYarrl5IPZtLeQu99cQUZKApNH96j/IGOMMaaVa3ldQgHna7v01tfCAuD1CH87ZyQT+mZx4ytLeHb+uliHZIwxxsRci0tYAgoJHiE9yRvrUKImNcnLk5eM5piBHfnDf5dz48uL8ZdWH4i7bV8xv39tKVc9t5DisooYRWqMMcY0jRbZJZSZltTqZ4VNSfQy7eLR/PX9b3ls7hre8MLcvMV0y0xl9fZ8PlixnVK3uam4bCGPnH8I6ckt7uM0xhhjwtLiWlgqtPXdIVQbr0f4zQk5vHn9EYzo6OX9Fdt4aPZqFq7fw/njDuKjG3P54xlD+ejbHZz6yKd8sGKb3RJtjDGmVWpx/5IHVGkXJwlLpYO7tOGKYSnk5uZSVhEg0ftjntmzQzrd26Xyh/8s42fPLCA7I5kxvdoxoFMGWb5kMlIS8Ijg9TgtUhUBJaBKRUCDnkOFKoGgbeWVzwP64z5V1M2HREAQ96uzQYK2/1jG/SoS+rga25zXP55rzfoy1n+2rtr5al6r2nUqz1q1LahsLdcJFZdTJvi1BG0Pulao61R7XyrDqXGuOq4DsDavgvYb99aIN+g8NetST8zBZavOVUfM+39GNT7fqhhC7AvxPoUs28pbSY0xkdUCExZom9o6B9yGIzhZqXRE/2ze+9VRfLByG28t3cLijXt5a+nWiF/b6xE8AqrOEgmq6n6N+KWqW7k8yhdopubPi3UETSY4OfK891aIhLD2JKpa0hgywQyRQIdIEoMTwerlQ1ynxnmoEVPNpLJmol0ZVWX5ffuKeOyb+aHrWyPp3e86DalvLYl27fXd/x+C4GSUWvbXfF+D4w9OWDdsKGV+0coQ/yzs/3nv//6F+Mcn6MMI55+jat9HNd6D4NeVB4RKzGvGRM1zBH0/VJZZubmcvEWb9vssa6sXQTHv/3lX/1xrlglV7+DPt656h/5+qv29qPY1xPfvpvwAq7flh6xXOFpcwlKhxF0LSziSEjycNLQLJw3tAkBZRYDdBaXkF5ejqgQUFMUrgscjeMVpdal87vFQta3yUdkyU3lMfTSoBaZmQqME7XNf//i8RvITVP7TefOYMGHCfuei6rgfy2qoOGrsr55k1YwhqGxDY652jR/3VTu2lpiryla9d8qSJUsZMmRovdepLB98rv3qXXMf1d/jkO9jzfirvf+1XKdGfX987+q+zo/fL7Bu/XoOOuigWj7rmt9fIa5TR0xV710tdada+f3ru9/7FvJ7ouZnFPp9q/k+eQU8nqByAVACdfw8/fgZ1fysg8uH+oyq16WO966W9zXs+gZ9DxFqP0pFRQDZsK7a+1qzvkHfJq3LkkWxjiA25n3c6ENbXMLiDLq1hKU+iV4Pndqk0KlN012z8j/coC0HfM6MJKF9K72FvS6erSvJHdQp1mE0ublzt5CbOzDWYTS5uXPnkpt7aKzDaHJOvXPDLl89CauehNdMqAixLdQxwf8o7PePT/C59ktqa0mygpKr2sp88cWXjB03tlrCV1s9Gl2vkMllw+pV873Y772qM8Hcv17Lly9n0OBB+8X8k/sIS4tLWJTWtY6QMcaY8NTsZorEP0Wx8IPPQ99sX6zDaHLpu1eRO6xro49vcXcJgbWwGGOMMfEmqgmLiEwSkVUiskZEbgqxP1lEXnL3fyEivcI5b2tcR8gYY4wxtYtawiIiXuBR4ERgEHCeiAyqUexyYI+q9gP+CoTVk5XZStcRMsYYY0xo0WxhGQusUdW1qloKvAicXqPM6cDT7vNXgGMkjMkZOrVNiWigxhhjjGneJPg2u4ieWOQsYJKq/sx9fREwTlWvDSqzzC2z0X39nVtmZ41zTQWmAmR27DrqtZdmRCXm5szv9+Pzxd8gLat3fLF6xxerd3yprd4TJ05cqKqj6zu+RdwlpKrTgGkAOTk52pDb4FqLht7+11pYveOL1Tu+WL3jy4HWO5pdQpuAHkGvu7vbQpYRkQSgLbArijEZY4wxpgWKZsLyFdBfRHqLSBJwLjCrRplZwCXu87OADzVafVTGGGOMabGi1iWkquUici3wLuAFpqvqchG5C1igqrOA/wOeFZE1wG6cpMYYY4wxppqoDbqNFhHJB1bFOo4YyAJ21luq9bF6xxerd3yxeseX2urdU1Wz6zu4RQy6rWFVOKOJWxsRWWD1jh9W7/hi9Y4vVu/GaZFT8xtjjDEmvljCYowxxphmryUmLNNiHUCMWL3ji9U7vli944vVuxFa3KBbY4wxxsSfltjCYowxxpg4YwmLMcYYY5q9FpWwiMgkEVklImtE5KZYxxMtItJDROaIyAoRWS4iv3C33yEim0Rkkfs4KdaxRpqIrBORpW79Frjb2ovI+yKy2v3aLtZxRpKI5AR9potEZJ+I/LI1ft4iMl1EtrsLn1ZuC/n5iuNh9+d9iYgcErvID0wt9f6LiHzj1u01Ecl0t/cSkaKgz/3xmAV+gGqpd63f1yJys/t5rxKRE2IT9YGrpd4vBdV5nYgscre3ps+7tr9dkfkZV9UW8cCZLfc7oA+QBCwGBsU6rijVtQtwiPs8A/gWGATcAfwm1vFFue7rgKwa2/4M3OQ+vwm4L9ZxRrH+XmAr0LM1ft7AkcAhwLL6Pl/gJOBtQIDxwBexjj/C9T4eSHCf3xdU717B5Vryo5Z6h/y+dn/HLQaSgd7u73tvrOsQqXrX2P8AcFsr/Lxr+9sVkZ/xltTCMhZYo6prVbUUeBE4PcYxRYWqblHVr93n+cBKoFtso4qp04Gn3edPAz+JXShRdwzwnaquj3Ug0aCqH+MswxGsts/3dOAZdXwOZIpIlyYJNMJC1VtV31PVcvfl5zgLxLYqtXzetTkdeFFVS1T1e2ANzu/9FqeueouIAGcDLzRpUE2gjr9dEfkZb0kJSzdgQ9DrjcTBH3ER6QWMBL5wN13rNp1Nb21dIy4F3hORhSIy1d3WSVW3uM+3Ap1iE1qTOJfqv8ha++cNtX++8fQzfxnOf5qVeovI/0TkIxE5IlZBRVGo7+t4+byPALap6uqgba3u867xtysiP+MtKWGJOyLiA14Ffqmq+4B/AH2BEcAWnGbF1uZwVT0EOBG4RkSODN6pTjtiq7wXX5xVzU8DXnY3xcPnXU1r/nxrIyK3AOXADHfTFuAgVR0J3AA8LyJtYhVfFMTd93UN51H9n5JW93mH+NtV5UB+xltSwrIJ6BH0uru7rVUSkUScD3yGqv4bQFW3qWqFqgaAJ2ihzaV1UdVN7tftwGs4ddxW2Uzoft0euwij6kTga1XdBvHxebtq+3xb/c+8iEwBTgEucH+R43aJ7HKfL8QZyzEgZkFGWB3f1/HweScAZwAvVW5rbZ93qL9dROhnvCUlLF8B/UWkt/uf6LnArBjHFBVuH+f/AStV9cGg7cF9ez8FltU8tiUTkXQRyah8jjMocRnO53yJW+wS4L+xiTDqqv3n1do/7yC1fb6zgIvdOwnGA3lBzcotnohMAn4LnKaqhUHbs0XE6z7vA/QH1sYmysir4/t6FnCuiCSLSG+cen/Z1PFF2bHAN6q6sXJDa/q8a/vbRaR+xmM9qriBI5BPwhl1/B1wS6zjiWI9D8dpMlsCLHIfJwHPAkvd7bOALrGONcL17oNzl8BiYHnlZwx0AGYDq4EPgPaxjjUKdU8HdgFtg7a1us8bJyHbApTh9FdfXtvni3PnwKPuz/tSYHSs449wvdfg9N9X/ow/7pY90/3+XwR8DZwa6/gjXO9av6+BW9zPexVwYqzjj2S93e1PAVfWKNuaPu/a/nZF5GfcpuY3xhhjTLPXkrqEjDHGGBOnLGExxhhjTLNnCYsxxhhjmj1LWIwxxhjT7FnCYowxxphmzxIWY0xEiEiHoBVntwatyOsXkceidM1fisjFdew/RUTuisa1jTFNy25rNsZEnIjcAfhV9f4oXiMBZ96KQ/THRQRrlhG3zAQNmpzNGNPyWAuLMSaqRCRXRN5wn98hIk+LyCcisl5EzhCRP4vIUhF5x53WGxEZ5S4Et1BE3q1lBdejcZYyKHePuV5EVriL6r0IVeuWzMWZ/t4Y04JZwmKMaWp9cZKN04DngDmqOhQoAk52k5a/A2ep6ihgOnBviPNMABYGvb4JGKmqw4Arg7YvwFkh1xjTgiXEOgBjTNx5W1XLRGQp4AXecbcvBXoBOcAQ4H2nRwcvzjTnNXUBVga9XgLMEJH/AP8J2r4d6Bq58I0xsWAJizGmqZUAqGpARMr0x4F0AZzfSQIsV9VD6zlPEZAS9Ppk4EjgVOAWERnqdheluGWNMS2YdQkZY5qbVUC2iBwKznL1IjI4RLmVQD+3jAfooapzgN8BbQGfW24ArXela2PihiUsxphmRVVLgbOA+0RkMc6Kr4eFKPo2TosKON1Gz7ndTP8DHlbVve6+icCb0YzZGBN9dluzMabFEpHXgN+q6upa9ncCnlfVY5o2MmNMpFnCYoxpsUQkB+ikqh/Xsn8MUKaqi5o0MGNMxFnCYowxxphmz8awGGOMMabZs4TFGGOMMc2eJSzGGGOMafYsYTHGGGNMs2cJizHGGGOaPUtYjDHGGNPsWcJijDHGmGbPEhZjjDHGNHuWsBhjjDGm2bOExRhjjDHNniUsxhhjjGn2LGExxkSNiMwVkZ/Vsq+XiKiIJDR1XA0hIrkisjHWcRgT7yxhMaaVEJF1IlIkIn4R2SoiT4mIL9ZxRZqI3OEmOmcHbUtwt/WKYWjGmCiyhMWY1uVUVfUBI4CRwM2xDSdqdgN3iog31oE0RHNvTTKmObOExZhWSFW3Au/iJC4AiMh4EflMRPaKyGIRyXW3TxaRhcHHi8gNIvJf9/lTIvKoiLwpIvki8oWI9A0qe5iIfCUiee7Xw0LFJCJeEblfRHaKyFrg5Br7p4jIWvca34vIBXVU8R2gFLiwlmtV64pyz/1p0GsVkatFZLV7vbtFpK/7/uwTkZkiklTjnL93Y18XHJuIJLv1+kFEtonI4yKS6u7LFZGNIvI7EdkK/KuOOhlj6mAJizGtkIh0B04E1rivuwFvAvcA7YHfAK+KSDYwC+gtIgcHneIi4Jmg1+cCdwLt3HPe6563vXveh4EOwIPAmyLSIURYPwdOwWn5GQ2cFRRvunuOE1U1AzgMWFRHFRX4A3C7iCTW/W7U6gRgFDAe+C0wDScB6gEMAc4LKtsZyAK6AZcA00Qkx933J2AATnLYzy1zW41j2wM9gamNjNWYuNciExYRmS4i20VkWZjlzxaRFSKyXESej3Z8xsTQf0QkH9gAbAdud7dfCLylqm+pakBV3wcWACepagnwklsGERkM9ALeCDrva6r6paqWAzP4seXmZGC1qj6rquWq+gLwDXBqiNjOBv6mqhtUdTfwxxr7A8AQEUlV1S2quryuiqrqLGAHEHJQbxj+rKr73OssA95T1bWqmge8jZNYBfuDqpao6kc4SdrZIiI4ScivVHW3quYD/w8nwQuu1+3usUWNjNWYuNciExbgKWBSOAVFpD9OP/4EVR0M/DJ6YRkTcz9xWyhygYE4rQLg/Hc/2e0O2isie4HDgS7u/qeB890/wBcBM91EptLWoOeFQOVg3q7A+hoxrMdpZaipK04iFVwOAFUtAM4BrgS2uN1PA+uvLrcCtwApYZStaVvQ86IQr4MHLO9xY6y0Hqc+2UAasDDofX3H3V5ph6oWNyI+Y0yQFpmwqOrHOIPuqrj9z++IyEIR+STol93PgUdVdY977PYmDteYJue2AjwF3O9u2gA8q6qZQY90Vf2TW/5znDEhRwDnA8+GeanNOMlQsIOATSHKbsHpbgkuFxzzu6p6HE4S9Q3wRH0Xd1uK1gBX19hVgJNIVOpc37nq0c7ttqp0EE7dd+IkN4OD3te27sDnqjAP8NrGGFpowlKLacB1qjoKp3/+MXf7AGCAiMwTkc9FJKyWGWNagb8Bx4nIcOA54FQROcEd/JriDgjtHlT+GeARoExVPw1xvlDewvn5Ot+9tfgcYBDVu5MqzQSuF5HuItIOuKlyh4h0EpHT3aSgBPDjdKWE4xacMSjBFgFniEiaiPQDLg/zXHW5U0SSROQInLE4L6tqACex+quIdHTr0k1ETojA9YwxQVpFwiLOXBOHAS+LyCLgn/zY1J0A9MdpIj8PeEJEMps+SmOalqruwElCblPVDcDpwO9xxn1sAG6k+u+AZ3EGmz7XgGvswvnj/WtgF07icIqq7gxR/AmcO5cWA18D/w7a5wFuwGm12A0cBVwVZgzzgC9rbP4rTovRNpzurhnh1ahWW4E9bnwzgCtV9Rt33+9wWnk+F5F9wAdATsizGGMaTVRbZmulOBNEvaGqQ0SkDbBKVbuEKPc48IWq/st9PRu4SVW/atKAjWnm3FtxtwOHqOrqWMdjjDHBWkULi6ruA74XkckA4hju7v4PTusKIpKF00W0NgZhGtPcXQV8ZcmKMaY5apGzLorICzhJSJY4a3zcDlwA/ENEbgUSgRdxmp7fBY4XkRVABXCj24xtjHGJyDpAgJ/ENhJjjAmtxXYJGWOMMSZ+tIouIWOMMca0bi2uSygzM1P79esX6zCaXEFBAenp6fUXbGWs3vHF6h1frN7xpbZ6L1y4cKeqZoc4pJoWl7B06tSJBQsWxDqMJjd37lxyc3NjHUaTs3rHF6t3fLF6x5fa6i0iNWfLDsm6hIwxxhjT7FnCYowxxphmzxIWY4wxxjR7UUtYRKSHiMwRkRUislxEfhGijIjIwyKyRkSWiMghB3LNT1bv4LA/zmbh+t31FzbGGGNMixHNFpZy4NeqOggYD1wjIoNqlDkRZ52f/sBU4B8HcsGXvtrA5rxi7n5j5YGcxhhjjDHNTNQSFlXdoqpfu8/zgZVAtxrFTgeeUcfnQKaI7LceULhWbc0HYNGGvazd4W/saYwxxhjTzDTJGBZ3ocKRwBc1dnXDWTW20kb2T2rCtjWvmGMP7gTAJ6tDLRZrjDHGmJYo6vOwiIgPeBX4pbtIYWPOMRWny4js7Gzmzp27X5nSCiW/pJw25bvJShVmffENPUvXNT7wZsbv94esd2tn9Y4vVu/4YvWOLwda76gmLCKSiJOszFDVf4cosgnoEfS6u7utGlWdBkwDyMnJ0VATz2zaWwTvf8jYoQPxtNnD7JXbOPLIo/B4JAI1iT2baCi+WL3ji9U7vli9GyeadwkJ8H/ASlV9sJZis4CL3buFxgN5qrqlMdfb5S8BoIMvmUP7dGBPYRnfuGNajDHGGNOyRbOFZQJwEbBURBa5234PHASgqo8DbwEnAWuAQuDSxl5sl78UgA6+JAZ3bQPAZ9/tZJD73BhjjDEtV9QSFlX9FKizP0ZVFbgmEtfb4bawZPuS6ZqZSu+sdOZ/t4ufHdEnEqc3xhhjTAy1mplug1tYAA7t24Evvt9NeUUglmEZY4wxJgJaUcJSQmqil7Qkp9HosL4d8JeUs3RTXowjM8YYY8yBajUJy05/CVkZSVWvx/fpAMD8tbtiFZIxxhhjIqTOhEVEPCJydlMFcyB2FZTSIT256nWWL5mcThnM/84SFmOMMaalqzNhUdUA8NsmiuWA7PSXkuVLqrbtsH4d+PL73RSXVcQoKmOMMcZEQjhdQh+IyG/c1ZfbVz6iHlkD7fSXkOVLrrbtqAHZlJQHrFvIGGOMaeHCua35HPdr8O3HCjSb+4UDAWV3QWnVHUKVxvfpQHKCh49W7WBiTscYRWeMMcaYA1VvwqKqvZsikAORV1RGRUCrjWEBSEn0cmjfDsxdtR0YHJvgjDHGGHPA6u0SEpE0EblVRKa5r/uLyCnRDy18uwoqp+VP2m9f7oBs1u0qZN3OgqYOyxhjjDEREs4Yln8BpcBh7utNwD1Ri6gR9hSWAdAuLUTC4nYFOa0sxhhjjGmJwklY+qrqn4EyAFUtpJ4p95tanpuwZKYl7revV1Y6vTqkMffbHU0dljHGGGMiJJyEpVREUnEG2iIifYGSqEbVQHuLnISlber+CQs4rSzzv9tltzcbY4wxLVQ4CcvtwDtADxGZAcymmc3NkldPwjJxYEdKygPMW7OzKcMyxhhjTISEc5fQ+yLyNTAepyvoF6rarP7yVyYsGSmhE5ZD+3QgIzmB95Zv45iDOzVlaMYYY4yJgHDmYQE4Cjgcp1soEXgtahE1wr6iMtqkJOD1hB5ak5TgIXdgRz5YuY2KgNZazhhjjDHNUzi3NT8GXAksBZYBV4jIo9EOrCH2FpbSNsSA22AnDO7EroJSFqzb3URRGWOMMSZSwmlhORo4WFUrB90+DSyPalQNlFdUVuv4lUq5OR1JSvDw7vJtjHNXcjbGGGNMyxDOoNs1wEFBr3u425qNcBIWX3ICh/fL4t3lW3FzL2OMMca0ELUmLCLyuojMAjKAlSIyV0TmACvdbXUSkekisl1EltWyP1dE8kRkkfu4rbGVyCsqIzN1/0njajphcCc27S1i+eZ9jb2UMcYYY2Kgri6h+w/w3E8BjwDP1FHmE1U94Gn+84rKaFNPCwvAsQd3wiNLeWfZVoZ0a3uglzXGGGNME6k1YVHVj4Jfi0ibusqHOP5jEenV+NDCvk5YXUIAHXzJTOiXxazFm/n18QMQsbuFjDHGmJZA6hvPISJTgbuAYiCAMxeLqmqfek/uJCxvqOqQEPtygVeBjcBm4DeqGnIwrxvDVIDs7OxRM2fOrNpXUq5c8UEhkwckcnKf+ruFPtlYxv8tK+UP41Pom+mtt3xz4ff78fl8sQ6jyVm944vVO75YveNLbfWeOHHiQlUdXd/x4bSY3AgMicJkcV8DPVXVLyInAf8B+ocqqKrTgGkAOTk5mpubW7VvS14RfPAhhwwZSO7Yg0IdXs0hxWU8+80HbPB05vLcwQdeiyYyd+5cgusdL6ze8cXqHV+s3vHlQOsdzl1C3wGFjb5CLVR1n6r63edvAYkiktXQ8+wtrHta/prapCRydE5H3liyhYqA3S1kjDHGtAThtLDcDHwmIl8QtOihql5/IBcWkc7ANlVVERmLkzztauh56ltHKJTTR3TlneVbmf/dLg7v3+AcyRhjjDFNLJyE5Z/Ahzgz3QbCPbGIvADkAlkishFnEcVEAFV9HDgLuEpEyoEi4FxtxAQpjUlYJg7sSEZyAv9dtMkSFmOMMaYFCCdhSVTVGxp6YlU9r579j+Dc9nxAGpOwpCR6mTSkM28v28qdpw8mLSnsm5+MMcYYEwPhjGF5W0SmikgXEWlf+Yh6ZGHKqxzDUs9aQjVNHt0Df0k5by7ZEo2wjDHGGBNB4TQtVLaU3By0TYF6b2tuCnlFZXgEfA1sJRnTqx19stKZuWADk0f3iFJ0xhhjjImEeltYVLV3iEezSFbgx1luPZ6GTQInIkwe3YOv1u3hux3+KEVnjDHGmEioN2ERkYtDPZoiuHA46wg1rDuo0pmjuuH1CDMXbIhwVMYYY4yJpHDGsIwJehwB3AGcFsWYGmRvmNPyh9IxI4WJOR15deEmyirCvgHKGGOMMU2s3oEfqnpd8GsRyQRejFZADRXuwoe1OWdMDz5YuY3ZK7czaUjnCEZmjDHGmEgJp4WlpgKgd6QDaax9B9DCAjAxJ5uubVN49vN1kQvKGGOMMRFVbwuLiLyOc1cQOAnOIGBm7Uc0rbyiMjIbeEtzsASvhwvG9+Qv765i9bZ8+nfKiGB0xhhjjImEcO4Fvj/oeTmwXlU3RimeBlFV8g6whQXg3DE9eGj2ap6Zv567f7LfwtLGGGOMibFwbmv+KOgxr7kkKwD+knIqAnrACUsHXzKnDuvKq19vZF9xWYSiM8YYY0yk1JqwiMj3IrK2lsd3TRlkbSqn5c9MTTrgc005rBeFpRW8urDZ5GPGGGOMcdXVwjKa6rc0jwMeAARYFPXIwlCZsBzIXUKVhnZvy8iDMnlm/noCgQavwWiMMcaYKKo1YVHVXaq6C9gDnALMAQ4FTlbVM5sovjpVrSMUgYQF4LIJvfl+ZwHvr9wWkfMZY4wxJjLq6hJKFJErgBU4E8b9RFUvVNUVTRZdPRqzUnNdThzSmR7tU/nH3O9QtVYWY4wxprmo6y6h73HuCvob8AMwTESGVe5U1X9HN7T6VY1hOYDbmoMleD1MPaIPf/jvcr74fjfj+3SIyHmNMcYYc2DqSlg+wJl/Zbj7CKZAs0lYItXCAjB5dA/+9sFqHv/oO0tYjDHGmGai1oRFVac0YRyNsreojASPkJbkjdg5UxK9XDqhF/e/9y0rt+zj4C5tInZuY4wxxjROY6bmD4uITBeR7SKyrJb9IiIPi8gaEVkiIoc09BqVk8aJyIEHHOSi8b1IT/Ly+EfN4u5tY4wxJu5FLWEBngIm1bH/RKC/+5gK/KOhF8grKqNthMavBGublsiF43vy+uLNrNnuj/j5jTHGGNMwUUtYVPVjYHcdRU4HnlHH50CmiHRpyDUOdOHDukw9sg8piV4enr06Kuc3xhhjTPikvtt3RWQy8I6q5ovIrcAhwD2q+nW9JxfpBbyhqvst0CMibwB/UtVP3dezgd+p6oIQZafitMKQnZ09auZMZ+3FOz4rok2ScMPolPpCaZSZq0p5+/sy7jk8lW6+aDZG1c/v9+Pz+WIaQyxYveOL1Tu+WL3jS231njhx4kJVHV3f8eEsfvgHVX1ZRA4HjgX+gtN9M66hwTaWqk4DpgHk5ORobm4uAIEv59C7eya5uSOjct1hY0r56L4Pmb8vk0dOafAQm4iaO3culfWOJ1bv+GL1ji9W7/hyoPUOp9mgwv16MjBNVd8EDnzxHtgE9Ah63d3dFra8ojIyo9QlBNA+PYkpE3rx5tItfLstP2rXMcYYY0zdwklYNonIP4FzgLdEJDnM4+ozC7jYvVtoPJCnqlvCPTgQUPYVR28MS6WfH9GH9KQEHvrAxrIYY4wxsRJO4nE28C5wgqruBdoDN9Z3kIi8AMwHckRko4hcLiJXisiVbpG3gLXAGuAJ4OqGBJ5fXI5qZBY+rEtmWhKXuq0syzblRfVaxhhjjAmt1jEsItI+6OXcoG0lwH4DY2tS1fPq2a/ANWFFGUI0Zrmtzc+P7MOML37gj2+v5LnLx0V83hdjjDHG1K2uFpaFOInJQmAH8C2w2n2+MPqh1e3HdYQiMZymbm1SErn+6H7MW7OLud/uiPr1jDHGGFNdrQmLqvZW1T44awqdqqpZqtoBOAV4r6kCrE1TtrAAnD+uJ706pPHHt1ZSXhFokmsaY4wxxhHOGJbxqvpW5QtVfRs4LHohhWdvUSnQdAlLUoKH300ayLfb/LyycGOTXNMYY4wxjnASls0icquI9HIftwCbox1YfZq6hQVg0pDOjOrZjgff/5aCkvImu64xxhgT78JJWM4DsoHX3EdHd1tM/TiGpekSFhHh9ycdzPb8Eh6ds6bJrmuMMcbEu3pnulXV3cAvmiCWBskrLCMpwUNKordJrzuqZzvOPKQ7T3yyljNHdadvdvxNr2yMMcY0tbpua34dqHWhIVU9LSoRhSkvigsf1uemEwfy3oqt3DFrOc9cNtZuczbGGGOirK4WlvubLIpGiGXCkp2RzK+PG8Adr6/gnWVbOXFogxaZNsYYY0wD1ZqwqOpHlc9FJAkY4L5cpapl0Q6sPtFeR6g+F47vyYtfbeDuN1ZwVE42aUnhrCNpjDHGmMaod9CtiOTiTBj3KPAY8K2IHBndsOq3tzB2LSwACV4Pd/9kCJvzim2dIWOMMSbKwrlL6AHgeFU9SlWPBE4A/hrdsOoXyy6hSmN6tefcMT144pO1LNm4N6axGGOMMa1ZOAlLoqquqnyhqt8Csc0UgH1FZVFf+DAcN590MFm+ZH77yhLKbAZcY4wxJirCSVgWiMiTIpLrPp4gjMUPo6m8IkB+SXmTzsFSm7apidzzkyF8szWfaR+vjXU4xhhjTKsUTsJyFbACuN59rHC3xcy+YmeW2Vh3CVU6fnBnTh7WhYc+WM2a7f5Yh2OMMca0OvUmLKpaoqoPquoZ7uOvqlrSFMHVJhbT8tfnjlMHk5bs5TcvL7bFEY0xxpgIC+cuoQki8r6IfCsiaysfTRFcbWIxLX99sjOSufv0ISzasJe/f2jT9htjjDGRFM7kIf8H/ApYCFREN5zwNMcWFoBTh3dlzqrt/P3D1Rw5IItRPdvHOiRjjDGmVQhnDEueqr6tqttVdVflI5yTi8gkEVklImtE5KYQ+6eIyA4RWeQ+fhbOefcWlgLNL2EBuPO0wXRrl8ovXlxEfnHM59czxhhjWoVwEpY5IvIXETlURA6pfNR3kIh4cSabOxEYBJwnIoNCFH1JVUe4jyfDCXqf28LSHG5rrikjJZG/nTOCzXuLuH3W8liHY4wxxrQK4XQJjXO/jg7apsDR9Rw3FlijqmsBRORF4HScu4wOSHPtEqo0qmd7rju6Pw/NXs0R/bP46cjusQ7JGGOMadHCSViOVdXGjF3pBmwIer2RH5OfYGe6U/1/C/xKVTeEKFNNXlEZqYlekhO8jQiraVx3dD/mr93F7/+9jCFd29K/U0asQzLGGGNaLFHVugs4dwS9CkxX1ZVhn1jkLGCSqv7MfX0RME5Vrw0q0wHwq2qJiFwBnKOq+7XciMhUYCpAdnb2qBP+8CzLdlbw14lp4YYTE3uLA9z2WRG+ROG2Q1NJSZBGn8vv9+Pz+SIYXctg9Y4vVu/4YvWOL7XVe+LEiQtVdXSIQ6oJp4VlOHAu8H8i4gGmAy+q6r56jtsE9Ah63d3dVqXG4N0ngT+HOpGqTgOmAeTk5Ghq2w50LC8kNzfmazDWq2P/nVz45Be8tSOTh84dgUjjkpa5c+eSm5sb2eBaAKt3fLF6xxerd3w50HqHM3Fcvqo+oaqHAb8Dbge2iMjTItKvjkO/AvqLSG8RScJJemYFFxCRLkEvTwPCasHJKyqjbTOag6Uuh/XN4objBjBr8Wae++KHWIdjjDHGtEjhTBznFZHTROQ14G84qzf3AV4H3qrtOFUtB64F3sVJRGaq6nIRuUtETnOLXS8iy0VkMc60/1PCCbo5rNTcEFfn9iM3J5u7Xl/OgnW7Yx2OMcYY0+KEc1vzapy7e/6iqiPdafq3qeorwDt1Haiqb6nqAFXtq6r3uttuU9VZ7vObVXWwqg5X1Ymq+k04Qbe0hMXjEf52zgi6ZaZy5XML2bS3KNYhGWOMMS1KOAnLMFW9XFU/q7lDVa+PQkz1amkJC0BmWhJPXjKakrIAP396AYWl5bEOyRhjjGkxwklYuorIbBFZBiAiw0Tk1ijHVSsFCksryGxhCQtAv44ZPHzeSFZu3cdvXl5MIFD3HVrGGGOMcYSTsDwB3AyUAajqEpwBtDFR+Te+pQy6rWniwI7cfOJA3lq6lb9+8G2swzHGGGNahHBua05T1S9r3I4bs/6MqoSlBbawVPr5EX1Ys93P3z9cQ+e2KVwwrmesQzLGGGOatXASlp0i0henN6ZyQrgtUY2qDq0hYRER/t9Ph7LTX8of/rOMLF8yJwzuHOuwjDHGmGYrnC6ha4B/AgNFZBPwS+DKaAZVlwp3Zt7MtKRYhRARCV4Pj5w/kmHdM7n+hf/xld3ubIwxxtQqnInj1qrqsUA2MBA4Cjg82oHVprKFpSUOuq0pLSmB6VPG0C0zlcuf+oplm/JiHZIxxhjTLNWasIhIGxG5WUQeEZHjgELgEmANcHZTBVhTa+gSCtY+PYlnLh9LRkoi5z/xOUs3WtJijDHG1FRXC8uzQA6wFPg5MAeYDPxUVU9vgthCqkxY2rSShAWge7s0Xpw6noyURC548nMWb9gb65CMMcaYZqWuhKWPqk5R1X8C5wGDgBNUdVGTRFaLgEKblAS8nsavfNwc9WjvJC1tUhM5d9rnfLBiW6xDMsYYY5qNuhKWssonqloBbFTV4uiHVLcKbblzsNSnR/s0/n3VYfTr6GPqswt44uO1NrmcMcYYQ90Jy3AR2ec+8oFhlc9FZF9TBVhTQCEztWXfIVSXjm1SeOmK8Rw/qDP3vrWSS/71Jet3FYQsu3FPISu3xOyjMMYYY5pMrfOwqKq3KQMJV0CVzFbawlIpLSmBf1x4CC98uYG731jBMQ98xKiOHva03UiWL5nNe4t4a+lWPl69A48Ifzj5YC4+tBeeVtZNZowxxlQKZ+K4ZiWgrWvAbW1EhPPHHcSxB3fksbnf8fJX6/jVS4ur9ndpm8JlE3qzeMNe7nh9Ba8t2swlh/bk8P5ZdMxIiWHkLZ+6c/1oUG+c1thXfVtwuf2PJcxywdcoKlf2FZftf2wDzhFOnIQ8thHXqFHfRp0D2OIPsGa7n5olQx9bzzW0+r5Ixrn/ucKMs/J7q0YMK3dVkPTdzv0OrlmuMXHW+z0T8lqh46xZMvSx1a8Vqlzl+VduLidv0aYQ9Wl8nIRx/XDjpJ7Pva73KVScldZ8X8Zqz9oDjpNq5bRG+fDOUf29q6s+DY+z5vfxDz+UMq9gRa11qI/UfCObu9Su/fWGR//NvT8dGutQmtQHH87hoMGj2VdURvv0JHp1SMfjEVSVlxds5NG5a1i/qxBwkpkubVNon55EotdDoteD1yMEVAmo00oVCGjVaw3eXvVaCQScbVq1T6moZ78GnSf4dUWgxrmD9kPtfxAqAhV4Pd46f0k39I946F/CxhhjKlfhkWrbJMS2ynJBW0Me+2O5yt/nNa+x4u4TF6rq6Ppia5EtLK29SyiUBI8woFPGfttFhLPH9ODMUd1ZuimPz9fu4ttt+WzNK2bT3mLKKwKUB5TyQACvCB4RRMAjgtcjiAge97VHqPHaKev1CImeyteC191frayn8tgft0nQeZ0y+59bkFp+QJyvGzZs5KCDelTfX+3nQ6qVD94tdZSr1nkW5g9jXXHWWGur3uvXF+d3331Hv359a5yvrjhDlAtxreCN4bxP9ZUL8buq7jjrudbKFSs5eNDB1d7PA4mTOsvVfo2G1rUxcQafb/GixYwYMaL+OKXmPqh5REPrWlucNa9Za30a+LMSHOeXX3zJ2HFjIx/nAfxMU6PcgbyfhHyf4NNPP+Xwww9vcJyEWS7sOEOdOIrmzp1Lbm7uftvl7vCOb3EJC7SeSeMiyesRRvTIZESPzFiHElFz524nN/fgWIfR5OYGfiD3iD6xDqPJtd27mtwR3WIdRpMr3eDl0L4dYh1Gk9vg89A32xfrMJpcaoKQkWJ/xxoqnLWEmp3WfJeQMcYYY/YX1YRFRCaJyCoRWSMiN4XYnywiL7n7vxCRXuGct7XOw2KMMcaY0KKWsIiIF3gUOBFnltzzRGRQjWKXA3tUtR/wV+C+cM5tXULGGGNMfIlmC8tYYI272nMp8CJweo0ypwNPu89fAY6RMEYBdctMjWigxhhjjGneonZbs4icBUxS1Z+5ry8CxqnqtUFllrllNrqvv3PL7KxxrqnAVIB2HbuM+vdLz0cl5ubM7/fj88Xf4DSrd3yxescXq3d8qa3eEydObD23NavqNGAaQE5Ojoa6Laq1q+12sNbO6h1frN7xxeodXw603tHsEtoE9Ah63d3dFrKMiCQAbYFdUYzJGGOMMS1QNBOWr4D+ItJbRJKAc4FZNcrMAi5xn58FfKgtbepdY4wxxkRd1LqEVLVcRK4F3gW8wHRVXS4idwELVHUW8H/AsyKyBtiNk9QYY4wxxlTT4tYSEpF8YFWs44iBLGBnvaVaH6t3fLF6xxerd3yprd49VTW7voNbxKDbGlaFM5q4tRGRBVbv+GH1ji9W7/hi9W6cFjk1vzHGGGPiiyUsxhhjjGn2WmLCMi3WAcSI1Tu+WL3ji9U7vli9G6HFDbo1xhhjTPxpiS0sxhhjjIkzlrAYY4wxptlrUQmLiEwSkVUiskZEbop1PNEiIj1EZI6IrBCR5SLyC3f7HSKySUQWuY+TYh1rpInIOhFZ6tZvgbutvYi8LyKr3a/tYh1nJIlITtBnukhE9onIL1vj5y0i00Vku7vwaeW2kJ+vOB52f96XiMghsYv8wNRS77+IyDdu3V4TkUx3ey8RKQr63B+PWeAHqJZ61/p9LSI3u5/3KhE5ITZRH7ha6v1SUJ3Xicgid3tr+rxr+9sVmZ9xVW0RD5zZcr8D+gBJwGJgUKzjilJduwCHuM8zgG+BQcAdwG9iHV+U674OyKqx7c/ATe7zm4D7Yh1nFOvvBbYCPVvj5w0cCRwCLKvv8wVOAt4GBBgPfBHr+CNc7+OBBPf5fUH17hVcriU/aql3yO9r93fcYiAZ6O3+vvfGug6RqneN/Q8At7XCz7u2v10R+RlvSS0sY4E1qrpWVUuBF4HTYxxTVKjqFlX92n2eD6wEusU2qpg6HXjaff408JPYhRJ1xwDfqer6WAcSDar6Mc4yHMFq+3xPB55Rx+dApoh0aZJAIyxUvVX1PVUtd19+jrNAbKtSy+ddm9OBF1W1RFW/B9bg/N5vceqqt4gIcDbwQpMG1QTq+NsVkZ/xlpSwdAM2BL3eSBz8EReRXsBI4At307Vu09n01tY14lLgPRFZKCJT3W2dVHWL+3wr0Ck2oTWJc6n+i6y1f95Q++cbTz/zl+H8p1mpt4j8T0Q+EpEjYhVUFIX6vo6Xz/sIYJuqrg7a1uo+7xp/uyLyM96SEpa4IyI+4FXgl6q6D/gH0BcYAWzBaVZsbQ5X1UOAE4FrROTI4J3qtCO2ynvxxVnV/DTgZXdTPHze1bTmz7c2InILUA7McDdtAQ5S1ZHADcDzItImVvFFQdx9X9dwHtX/KWl1n3eIv11VDuRnvCUlLJuAHkGvu7vbWiURScT5wGeo6r8BVHWbqlaoagB4ghbaXFoXVd3kft0OvIZTx22VzYTu1+2xizCqTgS+VtVtEB+ft6u2z7fV/8yLyBTgFOAC9xc5bpfILvf5QpyxHANiFmSE1fF9HQ+fdwJwBvBS5bbW9nmH+ttFhH7GW1LC8hXQX0R6u/+JngvMinFMUeH2cf4fsFJVHwzaHty391NgWc1jWzIRSReRjMrnOIMSl+F8zpe4xS4B/hubCKOu2n9erf3zDlLb5zsLuNi9k2A8kBfUrNziicgk4LfAaapaGLQ9W0S87vM+QH9gbWyijLw6vq9nAeeKSLKI9Map95dNHV+UHQt8o6obKze0ps+7tr9dROpnPNajihs4AvkknFHH3wG3xDqeKNbzcJwmsyXAIvdxEvAssNTdPgvoEutYI1zvPjh3CSwGlld+xkAHYDawGvgAaB/rWKNQ93RgF9A2aFur+7xxErItQBlOf/XltX2+OHcOPOr+vC8FRsc6/gjXew1O/33lz/jjbtkz3e//RcDXwKmxjj/C9a71+xq4xf28VwEnxjr+SNbb3f4UcGWNsq3p867tb1dEfsZtan5jjDHGNHstqUvIGGOMMXHKEhZjjDHGNHuWsBhjjDGm2bOExRhjjDHNniUsxhhjjGn2LGExxkSEiHQIWnF2a9CKvH4ReSxK1/yliFxcx/5TROSuaFzbGNO07LZmY0zEicgdgF9V74/iNRJw5q04RH9cRLBmGXHLTNCgydmMMS2PtbAYY6JKRHJF5A33+R0i8rSIfCIi60XkDBH5s4gsFZF33Gm9EZFR7kJwC0Xk3VpWcD0aZymDcveY60Vkhbuo3otQtW7JXJzp740xLZglLMaYptYXJ9k4DXgOmKOqQ4Ei4GQ3afk7cJaqjgKmA/eGOM8EYGHQ65uAkao6DLgyaPsCnBVyjTEtWEKsAzDGxJ23VbVMRJYCXuAdd/tSoBeQAwwB3nd6dPDiTHNeUxdgZdDrJcAMEfkP8J+g7duBrpEL3xgTC5awGGOaWgmAqgZEpEx/HEgXwPmdJMByVT20nvMUASlBr08GjgROBW4RkaFud1GKW9YY04JZl5AxprlZBWSLyKHgLFcvIoNDlFsJ9HPLeIAeqjoH+B3QFvC55QbQele6NiZuWMJijGlWVLUUOAu4T0QW46z4eliIom/jtKiA0230nNvN9D/gYVXd6+6bCLwZzZiNMdFntzUbY1osEXkN+K2qrq5lfyfgeVU9pmkjM8ZEmiUsxpgWS0RygE6q+nEt+8cAZaq6qEkDM8ZEnCUsxhhjjGn2bAyLMcYYY5o9S1iMMcYY0+xZwmKMMcaYZs8SFmOMMcY0e5awGGOMMabZs4TFGGOMMc2eJSzGGGOMafYsYTHGGGNMs2cJizHGGGOaPUtYjDHGGNPsWcJijDHGmGbPEhZjWiARURHp1wTXmSIin0b7Ok1BRJaLSG6s4zDGNI4lLMZEkIj4gx4BESkKen1BLcfkisjGpo71QIlILzdxqqzfNhF5Q0SOi3VsoajqYFWd25BjQtRxnYjcFKUQjTF1sITFmAhSVV/lA/gBODVo24xYxxclmW59hwPvA6+JyJTYhhRxlXU8D7hNRCbVLCAiCU0fVrXri4jY73TTatk3tzFNQESSReRvIrLZffzN3ZYOvA10DfovvquIjBWR+SKyV0S2iMgjIpIU5rUuFZGVIpIvImtF5IqgfbkislFEfi0i291zXxq0v4OIzBKRfSLyJdA33Dqq6lZVfQi4A7hPRDwicqOIvFojvodF5CH3+VwRuVtE5rnxviciWUFlXxaRrSKSJyIfi8jgoH1PichjIvK2+77NE5HO7nu7R0S+EZGRQeXXicix7nOviPxeRL5zr7tQRHqEUcf5wHJgSNB7+TsR2Qr8y63zTe55d4nITBFp714zRUSec7fvFZGvRKSTu2+K+1nli8j3la1xInKHiDwXVIfKFp+EoPfvXhGZBxQCfURkoIi8LyK7RWSViJwd7mdoTHNmCYsxTeMWYDwwAqclYixwq6oWACcCm4NaYjYDFcCvgCzgUOAY4Oowr7UdOAVoA1wK/FVEDgna3xloC3QDLgceFZF27r5HgWKgC3CZ+2iofwMdgRzgOWCSiGRCVSvEucAzQeXPd+PsCCQBvwna9zbQ3933NVCzleps4Fac96kEmO+WywJeAR6sJcYbcFpLTsJ5ny7D+YNfK7cFYwIwGPifu7kz0B7oCUwFrgN+AhwFdAX24LynAJfgvO89gA7AlUCRm7Q+DJyoqhnAYcCiumKp4SL32hnADpxWrudx3rNzgcdEZFADzmdMs9QiExYRme7+d7gsjLJTRGSHiCxyHz9rihiNqeEC4C5V3a6qO4A7cf7QhKSqC1X1c1UtV9V1wD9x/gjWS1XfVNXv1PER8B5wRFCRMjeWMlV9C/ADOSLiBc4EblPVAlVdBjzdiLpudr+2V9UtwMfAZHfbJGCnqi4MKv8vVf1WVYuAmThJXWVdpqtqvqqW4LTcDBeRtkHHvua+V8XAa0Cxqj6jqhXAS8BIQvsZTsK4yn2fFqvqrjrqtBPYDTwJ3KSqs93tAeB2VS1x478SuEVVNwbFfJabqJXhJCr9VLXCjXtf0HmGiEiqqm5R1eV1xFLTU6q6XFXLcd7fdar6L/d753/Aq/z4/hvTYrXIhAV4CucHM1wvqeoI9/FklGIypi5dgfVBr9e720ISkQHiDGDdKiL7gP+H02pQLxE5UUQ+d7sE9uK0IgQfu8v941apEPAB2UACsKFGnA3Vzf262/36NHCh+/xC4Nka5beGiKWy2+ZPbvfKPmCdWya4LtuCnheFeO2rJcYewHd1V6OaLFVtp6oHq+rDQdt3uMlSpZ44Y3j2uu/9SpzWsk449X4XeFGcbsE/i0ii28p2Dk6ys0VE3hSRgQ2ILfjz6gmMq7y+G8MFOC1BxrRoLTJhUdWP+fGXIQAi0ldE3nH7oj9p4A+8MdG2GeePSaWD+LElQkOU/wfwDdBfVdsAvwekvouISDLOf9T3A51UNRN4K5xjcboTynH+mAfH2VA/xemWWuW+/g8wTESG4HRVhTv4+HzgdOBYnK6UXu72cOpSnw00YHxOHWp+dhtwunYygx4pqrrJbdG6U1UH4XT7nAJcDKCq76rqcThdcd8AT7jnKwDSgs4fKvEIjmED8FGN6/tU9aoDr6oxsdUiE5ZaTAOuU9VROH3gjwXtO1NElojIK+EMrDMmCl4AbhWRbHdQ6W044zvAaRXoUKOrIwPYB/jd5DvcPzhJQDJu8iEiJwLHh3Og243yb+AOEUlzxz1cEuZ1EZFOInItcDtws6oG3PMW44wneR74UlV/CPOUGTjjUnbh/NH+f+HGEoYngbtFpL87NmWYiHSIwHkfB+4VkZ4A7ud9uvt8oogMdbve9uF0EQXc9+10dyxLCU4XXcA93yLgSBE5yP3+uLme678BDBCRi0Qk0X2MEZGDI1A3Y2KqVSQsIuLD+Y/lZRFZhNPf38Xd/TrQS1WH4QxGa0yfvDEH6h5gAbAEWIozMPQeAFX9BiehWes243fFSbrPB/Jx/tt+KZyLqGo+cD3OWJA97jlmNSDOa3G6UbbidL3+K4xj9opIAU69TgImq+r0GmWeBoayf3dQXZ7B6ZLaBKwAPm/AsfV5EOc9eg8nefg/IDUC530I5/1+T0TycWIe5+7rjJO47cPpKvoI5/3w4AwC3ozTcnwUboKqqu/jfPZLgIU4CUmt3M//eJzBtptxPsf7cJJYY1o0UQ3VGt38iUgv4A1VHSIibYBVqtqlnmO8wG5VbVtXOWNMZInIQThdHZ2DBpoaY0zYWkULi/sL8HsRmQxVtx8Od58HJzGn4fxnY4xpIuJMZnYD8KIlK8aYxorpzIyNJSIvALlAljhTmt+OMxL+HyJyK5AIvAgsBq4XkdNwBhPuBqbEImZj4pE7LmMbTtdOQ+7sM8aYalpsl5Axxhhj4ker6BIyxhhjTOvW4rqEMjMztV+/frEOo8kVFBSQnp4e6zCanNU7vli944vVO77UVu+FCxfuVNXs+o5vcQlLp06dWLBgQazDaHJz584lNzc31mE0Oat3fLF6xxerd3yprd4iEtaM2tYlZIwxxphmzxIWY4wxxjR7rS9hCVTEOgJjjDHGRFiLG8NSp6+fhXduhgtfgYPGxzoaYw5YWVkZGzdupLi4uP7CrUDbtm1ZuTL+5nYMrndKSgrdu3cnMTExxlEZ07y0roRlyUtQmg9z/wgX/zfW0RhzwDZu3EhGRga9evVCJBKLFDdv+fn5ZGRkxDqMJldZb1Vl165dbNy4kd69e8c6LGOaldbVJbRnnfN17Ufg3x7TUIyJhOLiYjp06BAXyYoBEaFDhw5x06JmTEO0noSlvATyNkLOyYDCt+/EOiJjIsKSlfhin7cxobWehGXvBkDh4FMhowt892GsIzLGGGNMhLSehGXP987X9r2hz0RYO9fuGDImArxeLyNGjGDw4MEMHz6cBx54gEAgEJNYFixYwPXXXx92+dzcXHJychg+fDgTJkxg1apVUYzOGBNNrSdh2e0mLO16Qd+JULQHtiyOaUjGtAapqaksWrSI5cuX8/777/P2229z5513xiSW0aNH8/DDDzfomBkzZrB48WIuueQSbrzxxv32V1Q0zT82qhqzRM+Y1qD1JCx710NCCvg6QZ9cZ9vaOTENyZjWpmPHjkybNo1HHnkEVeXII49k0aJFVfsPP/xwFi9ezB133MFll11Gbm4uffr0qZZk/OQnP2HUqFEMHjyYadOmVW33+XzceuutDB48mGOPPZYvv/yy6vhZs2YBztTep5xyCgB+v59LL72UoUOHMmzYMF599dU6Yz/yyCNZs2ZN1bV+/etfM3z4cObPn89zzz3H2LFjGTFiBFdccQUVFRVUVFQwZcoUhgwZwtChQ/nrX/8KwMMPP8ygQYMYNmwY5557LgB33HEH999/f9W1hgwZwrp161i3bh05OTlcfPHFDBkyhA0bNvCXv/yFMWPGMGzYMG6//fYD+DSMiS+t57bmvesh8yAQAV9H6DQEvpsDR/w61pEZExF3vr6cFZv3RfScg7q24fZTBzfomD59+lBRUcH27du5/PLLeeqpp/jb3/7Gt99+S3FxMcOHD+e1117jm2++Yc6cOeTn55OTk8NVV11FYmIi06dPp3379hQVFTFmzBjOPPNMOnToQEFBAUceeSQPPfQQP/3pT7n11lt5//33WbFiBZdccgmnnXZatTjuvvtu2rZty9KlSwHYs2dPnXG//vrrDB06FHAWYRs3bhwPPPAAK1eu5L777mPevHkkJiZy9dVXM2PGDAYPHsymTZtYtmwZAHv37gXgT3/6E99//z3JyclV2+qyevVqnn76acaPH897773H6tWr+fLLL1FVTjvtND7++GNGjhzZoM/AmHjUilpYfnASlkp9cmHDF1BaGLOQjGntJk+ezBtvvEFZWRnTp09nypQpVftOPvlkkpOTycrKomPHjmzbtg1wWiiGDx/O+PHj2bBhA6tXrwYgKSmJ4447DoChQ4dy1FFHkZiYyNChQ1m3bt1+1/7ggw+45pprql63a9cuZIwXXHABI0aMYN68eVWtIF6vlzPPPBOA2bNns3DhQsaMGcOIESOYPXs2a9eupU+fPqxdu5brrruOd955hzZt2gAwbNgwLrjgAp577jkSEur/n69nz56MH+9MZPnee+/x3nvvMXLkSA455BC++eabqvobY+rWelpY9qyHbqN/fN13Isx/BNZ/Bv2PjV1cxkRIQ1tComXt2rV4vV46duyIiHDcccfx3//+l5kzZ7Jw4cKqcsnJyVXPvV4v5eXlzJ07lw8++ID58+eTlpZGbm5u1ZwjiYmJVbf0ejyequM9Hg/l5eWNjnfGjBmMHj262raUlBS8Xi/gjC255JJL+OMf/7jfsYsXL+bdd9/l8ccfZ+bMmUyfPp0333yTjz/+mNdff517772XpUuXkpCQUG18SvA8Kunp6VXPVZWbb76ZK664otp18vPzG10/Y+JF62hhKc6D4r3VW1gOOgy8STaOxZgI2rFjB1deeSXXXnttVXLxs5/9jOuvv54xY8bU2spRKS8vj3bt2pGWlsY333zD559/3uhYjjvuOB599NGq1/V1CdXmmGOO4ZVXXmH7dmeyyd27d7N+/Xp27txJIBDgzDPP5J577uHrr78mEAiwYcMGJk6cyH333UdeXh5+v59evXrx9ddfA/D111/z/fffh7zWCSecwPTp0/H7/QBs2rSp6rrGmLq1jhaWvT84X9v1/HFbUpqzntB3lrAYcyCKiooYMWIEZWVlJCQkcNFFF3HDDTdU7R81ahRt2rTh0ksvrfdckyZN4vHHH+fggw8mJyenqqukMW699VauueYahgwZgtfr5fbbb+eMM85o8HkGDRrEPffcw/HHH08gECAxMZFHH32U1NRULr300qqWkz/+8Y9UVFRw4YUXkpeXh6py/fXXk5mZyZlnnskzzzzD4MGDGTduHAMGDAh5reOPP56VK1dy6KGHAs7g3+eee47U1NRGvw/GxA1VbVGPAQMG6H5WvK56exvVjQuqb//kQWf73o37H9PCzJkzJ9YhxES813vFihWxDSQMmzZt0v79+2tFRcUBn2vfvn0RiKjlqVnvlvC5R0K8/3zHm9rqDSzQMP7+t44uocoWlsxe1bfnnOx8/eaNJg3HmHjxzDPPMG7cOO699148ntbx68QY0zy1jt8we9dDYjqkta++PXsAZA+Ela/HJi5jWrmLL76YDRs2MHny5FiHYoxp5VpHwrJnvTN+JdSiYQefCuvnQcHOpo/LGGOMMRHROhKW3d9B+z6h9x18GmjAuoWMMcaYFqzlJywV5c46Qh36hd7feaizvtCKWU0aljHGGGMip+UnLHk/QKCs9oRFBAaf4azenL+1SUMzxhhjTGS0/IRlp7OYGVn9ay8z4nzQClgys2liMqaV2LVrFyNGjGDEiBF07tyZbt26Vb0uLS2tVvZvf/sbhYX1L4WRm5vLggULQm4/5JBDGD58OBMmTGDVqlURq4cxpuVr+QnLLjdhqa2FBZxkpvsYWPwCqDZNXMa0Ah06dGDRokUsWrSIK6+8kl/96ldVr5OSkqqVDTdhqcuTTz7J4sWLueSSS7jxxhv3219RUXFA5w+Xqlabat8YE3tRS1hEZLqIbBeRZbXsFxF5WETWiMgSETmkURfatQZS2kJah7rLDT8Ptq+ALYsbdRljjGP27NmMHDmSoUOHctlll1FSUsLDDz/M5s2bmThxIhMnTgTgqquuYvTo0QwePJjbb7+9Qdc48sgjWbPG+WfE5/Px61//muHDhzN//nyee+45xo4dy4gRI7jiiiuoqKigoqKCKVOmMGTIEIYOHcpf//pXwFlocdCgQQwbNoxzzz0XgDvuuKNqEUSAIUOGsG7dOtatW0dOTg4XX3wxQ4YMYcOGDfzlL39hzJgxDBs2rMF1MMZEVjSn5n8KeAR4ppb9JwL93cc44B/u14bZtRo69A99S3OwIWfAOzfD/56DriMafBljYu7tm2Dr0sies/NQOPFPYRcvLi5mypQpzJ49mwEDBnDxxRfzj3/8g1/+8pc8+OCDzJkzh6ysLADuvfde2rdvT0VFBccccwxLlixh2LBhYV3n9ddfZ+jQoQAUFBQwbtw4HnjgAVauXMl9993HvHnzSExM5Oqrr2bGjBkMHjyYTZs2sWyZ8//R3r17AfjTn/7E999/T3JyctW2uqxevZqnn36a8ePH895777F69Wq+/PJLVJXTTjuNjz/+mCOPPDLs98sYEzlhtbCISEcR+amIXCMil4nIWBGp81hV/RjYXUeR04Fn3Jl5PwcyRaRL+KG7dqyCrNDrdlST2g4GnQ6LX4QSWxnVmMaoqKigd+/eVWvlXHLJJXz88cchy86cOZNDDjmEkSNHsnz5clasWFHv+X/2s58xYsQI5s2bV9UK4vV6OfPMMwGndWfhwoWMGTOGESNGMHv2bNauXUufPn1Yu3Yt1113He+88w5t2rQBYNiwYVxwwQU899xzJCTU//9Zz549q9Y3eu+993jvvfcYOXIkhxxyCN988w2rV6+u/00yxkRFnT/BIjIRuAloD/wP2A6kAD8B+orIK8ADqrqvEdfuBmwIer3R3bYlRBxTgakA2dnZzJ07F4DE0r1M8G9jjT+Fje62umQkjmZU6Uy+feVuNnc7qREhx47f76+qdzyJ93q3bduW/Hw3wT78luhcLD+8BL6kpAQRoaKioiqmwsJCysvLyc/PR1Xx+/0kJyezbt06/vznPzN37lzatWvHlVdeyd69e8nPz6eiooKCgoIf6+WqqKhg2rRpjB49Oii0fFJSUqrGxhQVFXHeeedxxx137Bffp59+yuzZs3nkkUeYMWMGjz32GC+++CLz5s3j7bff5u677+bzzz+noqKCoqKianWoXD05NTW1antJSQm/+tWvuOyyy2q8XZH/hyf4PQWnJSsevu/j/ec73hxovev7l+Mk4Oeq+kPNHSKSAJwCHAe82ugIwqCq04BpADk5OZqbm+vs+O5D+Az6TfgJ/focFcaJjoKtLzBgz1wGnH9f/d1IzcjcuXOpqnccifd6r1y5koyMjFiHA0BycjIJCQls2LCBbdu20a9fP1599VWOOeYYMjIyaNOmDapKRkYGgUCAjIwMunfvzo4dO/jggw847rjjyMjIwOv1kp6evl+9vF4vHo8nZH0rt5188smcfvrp/O53v6Njx47s3r2b/Px80tPTSU9P58ILL2TEiBFceOGFpKen88MPP3DyySdz/PHH07NnT0SEnJwc3njjDTIyMvj6669Zv349Pp8PoNr1Tz31VP7whz9w+eWX4/P52LRpE4mJiXTs2DHi721+fn61eqekpDBy5MiIX6e5ifef73hzoPWuM2FR1f2H6f+4rxz4T6OvDJuAHkGvu7vbwrfVHc/beWh45UVg7BXwnyudeVn6TmzQ5YyJdykpKfzrX/9i8uTJlJeXM2bMGK688koApk6dyqRJk+jatStz5sxh5MiRDBw4kB49ejBhwoSIXH/QoEHcc889HH/88QQCARITE3n00UdJTU3l0ksvrbqz549//CMVFRVceOGF5OXloapcf/31ZGZmcuaZZ/LMM88wePBgxo0bV9W9VdPxxx/PypUrOfTQQwFn8O9zzz0XlYTFGFM/0TBv8xWRk4HBOF1CAKjqXfUc0wt4Q1WH1HK+a3FaccYBD6vq2PriyMnJ0ar5GV79ubNO0A31941XKSuGvw2FToPh4v+Ef1yMWUYeX4JbWA4++OBYh9NkarY0xIua9Y6Xzz3ef77jTW31FpGFqjp6/yOqC3fQ7ePAOcB1gACTgZ71HPMCMB/IEZGNInK5iFwpIle6Rd4C1gJrgCeAq8OJpZpNC6HL8IYdk5gCh10La+fAxoUNvqQxxhhjml64tzUfpqrDRGSJqt4pIg8Ab9d1gKqeV89+Ba4J8/r7y9/mLHo4akrDjx19GXz6V/jkfjjvhUaHYIwxxpimEe7EccXu10IR6QqUAQ2/BTmSfpjvfO15WMOPTc6AcVfBqrciP6+FMcYYYyIu3ITldRHJBP4CfA2sA56PUkzhWfcJJKZB5/AmotrPuKnODLkf3BnZuIwxxhgTcfUmLCIyAlgJdFHVV3HGrgxU1duiHFvtAgFY+Qb0PRoSkuovH0pqOzjyRljzvnN7tDHGGGOarToTFhG5DZgJnAm8KSI/V9USVc1rkuhq88Nn4N/qzFx7IMZOhcyD4L0/QKBpFlUzxhhjTMPV18JyDjDCHUA7Bne22Zj79K+Q2h4Gnnxg50lIhmPvgG3LYOG/IhKaMa3Nvffey+DBgxk2bBgjRozgiy++AMJfnblmuZNOOimsdX0AnnrqKbKzsxkxYgSDBg3iiSeeaFQdjDEtX313CZWoaiGAqu6qb/2gplBYvInnt/k5ePQUhniTSDzQEw4+AxY+BR/cBQNPgYzOEYjSmNZh/vz5vPHGG3z99dckJyezc+dOSktLAScRufDCC0lLS6vzHDXLvfXWWw2K4ZxzzuGRRx5h+/btDB48mNNOO41OnTpV7S8vLw9rnaBIaMprGdOiBSqgZB9atJfCgu3kF26naPtnLPpsAfuKduEvzsNfmkd+mT/sU9b3k9dHRGa5zwVn/aDK16jqaQ2vxYHZ6angj1ntYeMs2r/yKWfnnM2UwVNIT0xv3AlF4OS/wj8Oc1ZznmwtLcZU2rJlC1lZWSQnJwNUrcT88MMPs3nzZiZOnEhWVhZz5szhqquu4quvvqKoqIizzjqLO++8M2S5Xr16sWDBArKysnjmmWe4//77ERGGDRvGY489VmssHTt2pG/fvqxfv57f/e53pKSk8L///Y8JEyZwzTXXcM0117Bjxw7S0tJ44oknGDhwIC+//DJ33nknXq+Xtm3b8vHHH7N8+XIuvfRSSktLCQQCvPrqqyQmJnLKKadUrfZ8//334/f7ueOOO8jNzWXEiBF8+umnnHfeeeTm5nLDDTfg9/vJysriqaeeokuX2N40aUxEBQJQmo8W5VFctBO/fxv5hdvJL9qFv2g3+SV78ZfkkV/qJ7+8AH95Ef6KEvIDpeRrOX6twC+Q7xH8Hg+B4GVwDmD90PoSlpqDRO5v/KUi46CkHsyePJvFOxYz67tZPL74cf797b+547A7OKL7EY07aVY/OPI3MOdeGDoZBrashRFNfLjvy/v4Zvc3ET3nwPYD+d3Y39W6//jjj+euu+5iwIABHHvssZxzzjkcddRRXH/99Tz44IPMmTOnKom59957ad++PRUVFRxzzDEsWbIkZLlKy5cv55577uGzzz4jKyuL3bvrWtwd1q5dy9q1a+nXrx8AGzdu5LPPPsPr9XLMMcfw+OOP079/f7744guuvvpqPvzwQ+666y7effddunXrVtUN9fjjj/OLX/yCCy64gNLSUioqKti2bVud1y4tLWXBggWUlZVx1FFH8d///pfs7GxeeuklbrnlFqZPn17fW21M01CF0gIo2UdJwQ7yC7bhL9yBv3An+UW7yS/Zg79kH/ll+fhLC/CXF7KvogR/oBS/lpGvFeQL+N1ko7yeNfc8Cj6EDI8XnzeRDI+PLgkpZCSk4UtMJyMpg4yktvhSMtm+JY8RQ8biS+uIL70TGant8SX5SJtSdyttpfrWEvoo/HepqQgd0zpyXM/jOK7ncSzZsYQ759/JNbOv4arhV3HF8CvwNKbnasIvYeUsmHUtdJsPGZ3qPcSY1s7n87Fw4UI++eQT5syZwznnnMOf/vQnpkyZsl/ZmTNnMm3aNMrLy9myZQsrVqxg2LDapx348MMPmTx5clUi0759+5ArIb/00kt8+umnJCcn889//pP27dsDMHnyZLxeL36/n88++4zJkydXHVNSUgLAhAkTmDJlCmeffTZnnHEGAIceeij33nsvGzdu5IwzzqB///71vg/nnHMOAKtWrWLZsmUcd9xxgLPKsrWumIhRhfJiKM6jrHA3/oJt+Au2s69wB/7i3fiL95Bfug9/ST75ZX7yywvxVxTjD5SQHygnXyvwizotG+Kh1FP/Ar8+BZ948SUm0saTRrY3md4JaWS4yYYvqQ0ZKZn4UjuQkZpFRnpHJ+FI60CbpDakJqQiYS4kPHfuXA4bmNvot6fOhEVEXsdZJfkdVS2rsa8PMAVYp6ox+/diWPYwZpw0g7s/v5vHFj/G2ry13D3hblISUuo/OFhCEpzxJEw7yklazp/ZolZzNq1fXS0h0eT1esnNzSU3N5ehQ4fy9NNP75ewfP/999x///189dVXtGvXjilTplBcXBz6hA1UOYalpvR0pxs4EAiQmZnJokWL9ivz+OOP88UXX/Dmm28yatQoFi5cyPnnn8+4ceN48803Oemkk/jnP//JgAEDqhZOBPaLvfJaqsrgwYOZP39+ROpmWpnykqBulK3kF2zHX7QTf9Ee/JUtG6X72LpnK19s9OKvKKagooT8QBl+KvCj+EXwe4RiT/3/eKcqZODF500gIzGFTG8KPRJSnZaNRB8ZyW3wpbTDl9KeNqkd8KVl40vvSEZaNhnJbUhPTG/cP/gxUl+X0M+BG4C/ichuYAfO4oe9gO+AR1T1v1GNMAwpCSncM+Ee+mX2468L/8rmgs08PPFhOqR2aNiJOg6E4+6Ct38Lnz8GhzZ+5QBjWoNVq1bh8XiqWiEWLVpEz57OMmIZGRnk5+eTlZXFvn37SE9Pp23btmzbto233367apGz4HLBjj76aH76059yww030KFDB3bv3k1iYsOH0bdp04bevXvz8ssvM3nyZFSVJUuWMHz4cL777jvGjRvHuHHjePvtt9mwYQN5eXn06dOH66+/nh9++IElS5ZwxBFHsH37dnbt2oXP5+ONN95g0qRJ+10rJyeHHTt2MH/+fA499FDKysr49ttvGTx4cIPjNs2I241SUbyHgoId+P3b8BftwF+0y2nVKM6joHQf+aV+/OUF5JcVUhAoxl/hjNko0AryJYBfhIIwulFIhLRy8OHB503Al5hOW28K3bwp+BLT8SX68CW3ISO5Lb6U9mSkdiDDTTZ8aR2dRCTJR4InvgaA19cltBX4LfBbd+XlLkAR8G3l3UPNhYhw6ZBL6ZHRg5s/uZkL3rqAR45+hH7t+jXsRGOnwvcfO3OzdB4KvY+MTsDGtAB+v5/rrruOvXv3kpCQQL9+/Zg2bRoAU6dOZdKkSXTt2pU5c+YwcuRIBg4cSI8ePZgwYULVOWqWqzR48GBuueUWjjrqKLxeLyNHjuTvf/97o+KcMWMGV111Fffccw9lZWWce+65DB8+nBtvvJHVq1ejqhxzzDEMHz6c++67j2effZbExEQ6d+7M73//exITE7ntttsYO3Ys3bp1Y+DAgSGvk5SUxCuvvML1119PXl4e5eXl/PKXv7SEJZYqyqFkH6WFu/AXbsdfsJ38wp1OsuEODnXGbBRQUF5IvjtA1K+l+AMV+KkgX5QCj4eCMFo1vKr4EHxuy4bPk05nbwp93WQjI8mHL6kNvspkI60D6akdnDEb6Z3wpbRlwbwFHD3x6CZ4c1oXcdYgbDlycnJ01apVdZZZvnM51354LcXlxTyQ+wCHdW3gekMl+fDEMVC4E6bOdSaXizFbjjy+VNZ75cqVHHzwwbEOp8nk5+eTkZER6zCaXM16x8XnrsrHH77HEWOGU1S4nXz/dvxFzp0oBUV73DtR9lFQ6ozX8JcXkV9RTEGgBH+g3LkbBcXvIezxGikK6YjTjeJJxOdJwudNwed2o/iSfPiS2pKRnIkvtb37yMLn60RGWifSkzMaNGajNvH+e60mEVmoqqPrO75VticNzhrMCye/wDWzr+HqD67m9+N+z9k5Z4d/guQMOPd5eOJoeP4cmPImpLWPXsDGGNOSuLe9lhfuoaBgG/kF2yko2uXc9lq8m/wSpwvFX+oMDC1wkw3nTpTK216VfPFQsEGq3/YagqiSjjhdKJ4EfAmptPck0zMh1U02fPiSMvAltyUjJZP0lPZOF0paFr70TvhSO+BLyiDRe8Azd5kYapUJC0Dn9M48c+Iz3PjRjdz9+d2s37eeX436Vfh9fln94JxnYcZZ8PzZcNF/INkX1ZiNMSbqykvQ4n2UFO7AX+B0ofiLdpFfvJuC4r3kl+zDX+YkG373LpT8ihIKAmX4tYJ8AvhF8Xs8FIXRhZKgkFGZbHgT8XlT6eZJISMhlYqicrp26OaMyUjOxFd5N0paNulpWWSkd8aXkklaYlqLGhxqoiPshEVEUoGDVLXu/phmJD0xnYePfpi/fPUXnlnxDIt3LOb/Hf7/OKhNmF08fY6Cs/4FMy+Cly6A816ExNToBm1MDap6wE3QpuWotZs+UAEl+QSK8yh0k438wp0UFO8iv2iPO5FXHgWlBeSXOfNr+N2BoVWtGgTwe4T8cAaGUnkXipDuSSDDm4LPm0Rnb3CrhjM41JfcjoyU9vjS3DtR0jo6d6MkZ5DkSar1+zdeu0ZM44SVsIjIqTiTxiUBvd0VnO+KxUy3DZXgSeDmcTczPHs493xxD2e9fha/Gf0bJg+YHN4fgYNPgdMfhf9cDTMmw3kvOF1GxjSBlJQUdu3aRYcOHSxpaalUQQOgFQQCFQQqyghoORWBcgKBciq0gtLSEkrLd1ARKGffviJ+2LGEf82/iHwtcxMNZ+ZQv8dDgQha72Re+w8MzfYm09ubSkZiGr7EDKcLJaWtk2yktndaNNwJvXyp7UhPTI+7u1BM8xbud+MdwFhgLoCqLhKR3lGKKSpO6nMSozqN4rbPbuPuz+/mg/UfcMv4W+jZpmf9B484HzyJ8NoV8MzpcMErNqbFNInu3buzceNGduzYEetQmkRxcTEpKQ2cQymaNACqqAZQrSCgFWggQEADKAFUAwTc/QEUVUVRAjgtJQFAgYA4X+u7xUFRNhVtYOb6JxFvAJ84rRodvCn4EtLISEwjPdHn3O6anEl6SjsyUjvgS8siI72Tk3Qkt43IwFBjmptwE5YyVc2r8QPQsm4vAjqld+LxYx/npVUv8dDXD/HT//6Uy4dezuVDLq9/orlhkyEpHV6eAk8e63QPZQ9okrhN/EpMTKR37xb1v8EBmTt3LiNHjjzwE7njNIoKt+P3O5N3FbhzahQUO7e6FpTm4y/zU1Be5MwWWl5MgZbhD5RTQAUFKAXu9ORlYfzx97p3oPjES7ok4PMkke5Ndu5CSUx370Jp44zTcO9CyUjNwpeezfJl33PMkcfjS/SR5E3iEi498PfAmFYm3IRluYicD3hFpD9wPfBZ9MKKHhHh3IHncsxBx3D/gvt5fPHjzFozi6tHXM0pfU7B6/HWfvDAk+Di/8JLFzpJy1nTof+xTRe8Ma1ZIIC3vJCyPeudMRqFO/EX7aCwaI+TaJTk4S/NdxONQvzlhRS4d544A0KdCbz8AgUeCavrBCA5ONHwJuDzpNHFm4zPm0p6Ypo7VqMN6clOspGe2h5fagfS3bEa6SltSU9MJ8Wb0uhWje3fFtE+xVptjalLuAnLdcAtQAnwPPAucE+0gmoK2WnZ3HfkfZzZ/0weWPgAt867laeWP8V1I69jYo+Jtf/i6XkoTJ0DL5zv3EF0xA2QezPY7XImXpWXOnedFO3EX7iTgsId+It2U1C8G3/xXgqqWjOcibv85UVBiYYzGLRAAvhxEo3iTfXfDVJ5m2s6HtLx4ktIJN2TTidvMukJqfgS0khPysCX6CPdHaeRntIOX1oH0t0Bob7U9qQlppHosZ9dY1qCehMWEfECb6rqRJykpVUZ22UsL578Iu+vf5+//+/v/GLOLxjUYRCXDbmMYw86NnSLS+ZBcPm7zhT+nzwA382BM5+EDn2bvgLGNIY7FXmgOI/Cgh34C3dQULQTf/FuCor34C/Oo6A0z7m11U00CiqKKagodRINLcevAQpE3RaN8O46SXAHg6bjxefxkp6QRgdPEj29KaQnplLmL6N7x+5ui0ZmtRYNX3o26WnOTKGpCal2m6sxcabehEVVK0QkICJtVTWvKYJqaiLC8b2O5+iDjmbWd7OYvmw6v/noNxyUcRCXDL6EU/qcQlpijeWvk9Kdu4f6HQuv/wL+MQGO/A0cdh0kJMemIqb1qyiDknzKinY7a54UVo7N2E1B1TTk+RSUVSYazviMgkAp/kAZhZW3tjZgKnJwbm9Nd+86SU9wuk26e5zWjPSEVHxJPtITM/AltyE9JdNZcC21A+nuGI301Cx89dziCnabqzGmduF2CfmBpSLyPlBQuVFVr49KVDGS4EngjP5ncHrf0/lww4dMXzqduz+/mwcXPsikXpM4o/8ZDM0aWv0X7uCfQvex8M5N8OHdsPhFOO5OyDnJVns2DlUoK3IHge6koHA7BYU7KShylov3l+b9OD7DnT9jp38P76zzOIlG5dgMlAIPFIhQEkaiIVWtGR6nNcObQoY3mc7uVOTpCWmkJzkzhKYnt3VaM1Lc8Rnp2fhSO5Kemmm3txpjmoVwfwv9233EBa/Hy3E9j+PYg45l0Y5FvPrtq7z1/Vu8uvpV+mX24+Q+J3NCzxPo0aaHc0Dbbs6suKvfd7qJXjwfuoyAibdA/+MscWmJVKG8BEr97gquOyko3Im/2FnnxF+8h4JSZ50Tf6mfgvKCH8dmVDitGQVajp/KbhMPBZ76pyAHZ2ZQXwJVc2ike3x09CbT25uCLzGN9MR0fIkZpCdXJhrtnMXVqhKNbHzJbezWVmNMqxJWwqKqT0c7kOZIRBjZcSQjO47kprE38fa6t/nP6v/w0NcP8dDXD3Fw+4OrupJ6t+mN9D8O+nzptLJ8/Gd4fjJkHwxjfw7Dz3W6kUz0BCUZWpxHcdFuCgp3Uli0u2psRvU7TZwuEyfJKKlxp4lS4E7UFc704+B0m/jwkO7x4vMmke7x0cGb4nSZuPNnVK53kp6cSXpKppNouMvGp6e2q7qt1bpGjDGmunBnuv2eEPOuqGqfiEfUTPmSfEweMJnJAyaz2b+Z99e/z3vr3qtKXrqkd+GwrocxodsExgw6lcxh58DSmfDFP+HNG+CDO2Hw6TDkTOh1BNR1+3Q8qdGSUViwi4KiXRS64zJ2bFzG7PdmUeCOyygISjIKKkoodJOMQq2ggIB7O6uHQo9QEUbrgqdybIbHQ7o3EZ8nlbaeZLoluN0miT7nTpNkZ7l4Z3xGe9JTs0h3pyFPT84gPSG97lvijTHGHJBwu4SCl31OASYDcTtpQFdfVy4ZfAmXDL6ELf4tfLLpEz7b/BnvrHuHV1e/CsBBGQcxNHsoQ4+8kmEBD31XzSZt2b/h62fA1wn6Hw99J0LvXEjvENP6NJh7hwmlfkoL91BQtIOCwl1OC4bbilFQuo/C0nwKSgvwl/spLC+uusukIFBKgVZQQAWFKAUiFHik9paMLdVfehXSqpKMBNI8qaR7kujotmakJ6aTnphOWlJG1dwZacnt3HVOspxkIymD9MR06zYxxpgWItwuoV01Nv1NRBYCt0U+pJali68LZ+eczdk5Z1MWKGPJjiX8b/v/WLpjKV9u+ZI3174JgCB0HTCEfgkZ9CnYQ+91b9Nl5Uy6lAfo3K4vyV1GQNcR0HkotOsNGV0gzK6IeqlCeTGU+Ckr3kNh4S6KinZTVLyHQnfmz8rxGIWV4zHKiiiscJOMQBkFWuYmGQEKoWoG0HBuZQVIcZOMdI+XdG8iaZ50sj3JpCekkBY0ADTdnaArPdm5nXXt2s2MH5NLemoWaUk+0hPTSfYmW5JhjDFxJtwuoUOCXnpwWlzstoEaEj2JjOo0ilGdRgHOWiLbCrexdOdS1uxdw9q9a1mzdw3zArspz0yDzMpbpQvpkDeP9rvmkrkoQGYgQBuFNgnpJCemkpiQQmlxBZu2tsMLlKtSphWUaTllgQpKAuUUUU5RoJxCLadIKyhSp/WiCKVIlELxUOSRsBMMUUgH0vC4s3+mkuZJor03mXRvKmmJqfgS0klPyqhqyahMMtJTOzhf07KrkozG3mUS2DGXgZ1HNepYY4wxrUe4f0UeCHpeDqwDzo54NK2MiNA5vTOd0ztzXM/jqraXBcrYVrCNLQVb2OzfzOaCzWwt2Moe/1byCrawtiSPvLIC9gVKKaUQtBCSgZLQ0+Akuq0XqeIhzeMlVVJI9SSQ7Uki1ZtEqjeZNG8KqYlppCX6SE3ykZqUQVpyW9LcJCMttQPpaVlO4mFdJcYYY5qZcLuEJkY7kHiS6Emke0Z3umd0r7esqlKu5Xw490PGTxhPWaCMRE9i1SPBk2CJhTHGmFYvrEESIvILEWkjjidF5GsROT6M4yaJyCoRWSMiN4XYP0VEdojIIvfxs8ZUojUTERI9iSR7kmmb3Jas1CzaJrd11kDxJlqyYowxJi6EO6rzMlXdBxwPdAAuAv5U1wHuGkSPAicCg4DzRGRQiKIvqeoI9/Fk+KEbY4wxJl6Em7BU/ht/EvCMqi4P2labscAaVV2rqqXAi8DpjQvTGGOMMfEs3IRloYi8h5OwvCsiGUCgnmO6ARuCXm90t9V0pogsEZFXRKRHmPEYY4wxJo6I6n4T2O5fSMQDjADWqupeEWkPdFfVJXUccxYwSVV/5r6+CBinqtcGlekA+FW1RESuAM5R1aNDnGsqMBUgOzt71MyZMxtSx1bB7/fj8/liHUaTs3rHF6t3fLF6x5fa6j1x4sSFqjo6xCHVhHtb86HAIlUtEJELgUOAh+o5ZhMQ3GLS3d1WpcaEdE8Cfw51IlWdBkwDyMnJ0XhcYyVe15axescXq3d8sXrHlwOtd7hdQv8ACkVkOPBr4DvgmXqO+QroLyK9RSQJOBeYFVxARLoEvTwNWBlmPOb/t3ffcVJV9//HX5+d7YWlLL13RRAEFBULtgR7YovGmlgTE/X7jT+jMcWY5KvGxBITk6gx9hI7thgs2JUmvYP0ssACy7Kw9fP7Yy5kxV12Ye/s7My+n4/HfeydO7d8Dnd35sM5554jIiLSgjQ0Yan0aNvR6cCf3f0vQN6eDnD3SuBHwFtEE5F/uftsM7vVzE4LdrvGzGab2XTgGuCSfSmEiIiIJLeGNgltNbObiD7OfGTQpyWtvoPc/Q3gjd22/bLG+k3ATQ0PV0RERFqihtawfAcoIzoey1qi/VHujFlUIiIiIjU0KGEJkpQXiM5oA7ABeClWQe2rqmpn6vJNVFbV98S1iIiIJJKGDs1/OfA88PdgU1fg5RjFtM8e/HAJZ9z/Cdc88wUNeVxbREREEkNDm4SuBkYDxQDuvhDoEKug9tXEL4sAeGPmWt6bXxjnaERERCQsDU1YyoLh9QEws1Sg2VVhLCosYewBneiSn8lDH34Z73BEREQkJA1NWN43s58BWWZ2AvAc8Grswtp7OyqqWLGplIGd8rjo8F58sngjs1dviXdYIiIiEoKGJiw/BdYDM4EriT6q/PNYBbUvlqzfhjv065DLeQf3ICc9wl8nLI53WCIiIhKCesdhMbMIMNvd9wMejH1I+2bR+hIgmrDkZ6dx4WG9+PsHi/nf9SX0ad/y5mwQERFJJvXWsLh7FTDfzHo0QTz7bFFhCSkGvQtyALj0iN6kR1JUyyIiIpIEGtok1AaYbWbvmNm4nUssA9tbiwtL6N42m8y0CADt8zI475AevPjFKhYHtS8iIiKSmBo6NP8vYhpFCBYVltBvt6afHx3bj+enrOT2N+fx4EX1zlwtIiIizdQea1jMLNPMrgPOBvYDPnb393cuTRFgQ1RWVfPlhm306/DVhKUgN4MfjOnL+Dnr+GzJxjhFJyIiIo1VX5PQo8BIok8HnQj8MeYR7YMVm7ZTXlVN3w5f71z7/dG96ZyfyW9em6Mh+0VERBJUfQnLIHe/wN3/DpwFHNkEMe21RYX/fUJod1npEX5+8iBmry7mnx8vbeLIREREJAz1JSwVO1fcvTLGseyzPSUsACcN6cTx+3fkj+Pns3xjaVOGJiIiIiGoL2EZambFwbIVOHDnupkVN0WADbGosIQOeRm0ykyr9X0z4zffOoDUlBR++sIMqqqb3awCIiIisgd7TFjcPeLurYIlz91Ta6y3aqog67NofQn9O+55cLjO+Vn88tRBfLpkI/e/t6iJIhMREZEwNHQclmbL3VlcyyPNtTl7RDe+fVBX7n57gZ4aEhERSSAJn7CsLd5BSVllnf1Xaoo2DQ2mV7scrn5yqvqziIiIJIiET1h2drit7ZHm2uRmpPLQxSOprHa+98hEtpRW1H+QiIiIxFXSJCz9O+Q1+Jg+7XP5+4UjWF5UymWPTWJbWbN9AEpERERIgoRlYWEJ+VlpFOSm79Vxh/Zpx93fGcaUZZu49NFJbC+vilGEIiIi0lgJn7AsKiyhX4dczGyvjz3lwC7c/Z1hTPyyiIv/qeYhERGR5iqhExZ3Z1FhCf0b2H+lNqcP68o95x7EF8s3cdbfPmHlJnXEFRERaW4SOmFZW7yDom3lDOrSuCFhThvahce+P4q1xTv41l8+4dPFeuRZRESkOUnohGXWquhguwc0MmEBOKxvO178weG0ykrl/Ic+48/vLqRaI+KKiIg0CwmdsMxevQUz2K9TOIPu9u+Yx7gfHcEpB3bhD/9ZwDl//3TXU0giIiISPwmesBTTuyCHnIzU0M6Zm5HKvecO465zhrJofQkn3fsh972zkB0VeopIREQkXhI6YZm1agsHdMkP/bxmxhnDuzH+f47m+EEd+OP4BRz7hwm89MVKNROJiIjEQcImLCs3lbJmyw5G9Ggds2u0z8vg/vNH8NRlo2ibm87/PDudE+/9kJe/WEVlVXXMrisiIiJflbAJy8QviwA4pHe7mF/r8H4FjLv6CO49dxiOc92z0zj6zgk88MFiNpSUxfz6IiIiLV14nT+a2OdLimiVmcp+nRo+JH9jpKQYpw/ryqkHduHdeYU88MES/u+Nefz+3/M5YVBHTh/WlaMHtCcrPdIk8YiIiLQkCZmwVFc7780vZHS/AlJS9n6E28ZISTGOH9SR4wd1ZFHhVp6dtIIXpq7izVlryUqLMGZge04Y1JHD+xbQKT+zSWMTERFJVjFNWMxsLHAvEAEecvfbd3s/A3gMGAFsBL7j7kvrO++U5Zso3FrG2MGdwg96L/TrkMfNJw/ihrH7MfHLIt6ctYa3Zq/jzVlrAehTkMNhfdtxUI82DOmaT9/2OaRGErYVTkREJG5ilrCYWQT4C3ACsBKYZGbj3H1Ojd0uBTa5ez8zOxe4A/hOfed+9JOl5GWkctz+HWMR+l5Li6Qwul8Bo/sVcOtpg5mzpphPF2/k0yUbeWXaap78fDkAmWkp7N+5Ff075NKrIIfe7XLoVZBD1zZZ5GWk7tN8SCIiIi1BLGtYDgEWufsSADN7BjgdqJmwnA7cEqw/D/zZzMzd63x2uLjceW3GGn4wpi+5IY6/EpaUFGNw13wGd83n8qP6UFXtfLmhhJmrtjBrVTGzVm3h3Xnr2VCy8ivHZaSm0D4vg/Z5GbTLySA3I0JWeio56RGyM1JZvbyc2b4IiM6htPNfKBIxUlOMSEoKqSlGavA6WZKf+SsrKJy8It5hNDmVu2VRuVsWlXvfxPIbvytQM7KVwKi69nH3SjPbArQDNtR10qIdzondW3Ptcf1DDjc2IilGvw559OuQx7cP+u/2rTsqWLaxlKUbt7F2yw7Wby1j/dYyCreWsXJTKdsrqthWVkVpeSWl5cGgdQvnx6cQ8TZrRrwjiA+Vu2VRuVsWlXuvNb8qilqY2RXAFQBtO3Tix/uX89nHH8Y5qnDkAv2AftlANrCrlcuI3p5Uqt3ZXLyN3NwczKLv7FTtUOU1flb7rtfJUMlSuq2U7JzseIfR5FTulkXlbllU7q86+46GHR/LhGUV0L3G627Bttr2WWlmqUA+0c63X+HuDwAPAAwcONCPO/aYmATcnE2YMIExY8bEO4wmp3K3LCp3y6JytyyNLXcsH1mZBPQ3s95mlg6cC4zbbZ9xwMXB+lnAu3vqvyIiIiItU8xqWII+KT8C3iL6WPPD7j7bzG4FJrv7OOAfwONmtggoIprUiIiIiHxFTPuwuPsbwBu7bftljfUdwNmxjEFEREQSnyVaC4yZbQVa4uMyBezh6akkpnK3LCp3y6Jytyx1lbunu7ev7+CEeEpoN/PdfWS8g2hqZjZZ5W45VO6WReVuWVTufaNx4kVERKTZU8IiIiIizV4iJiwPxDuAOFG5WxaVu2VRuVsWlXsfJFynWxEREWl5ErGGRURERFoYJSwiIiLS7CVUwmJmY81svpktMrMb4x1PrJhZdzN7z8zmmNlsM7s22H6Lma0ys2nBclK8Yw2bmS01s5lB+SYH29qa2XgzWxj8bBPvOMNkZgNr3NNpZlZsZtcl4/02s4fNrNDMZtXYVuv9tag/BX/vM8xsePwib5w6yn2nmc0LyvaSmbUOtvcys+017vvf4hZ4I9VR7jp/r83spuB+zzezb8Yn6saro9zP1ijzUjObFmxPpvtd13dXOH/j7p4QC9Hh/RcDfYB0YDowKN5xxaisnYHhwXoesAAYBNwCXB/v+GJc9qVAwW7bfg/cGKzfCNwR7zhjWP4IsBbomYz3GzgKGA7Mqu/+AicBbxKdoPxQ4PN4xx9yub8BpAbrd9Qod6+a+yXyUke5a/29Dj7jpgMZQO/g8z4S7zKEVe7d3v8j8MskvN91fXeF8jeeSDUshwCL3H2Ju5cDzwCnxzmmmHD3Ne4+NVjfCswFusY3qrg6HXg0WH8U+Fb8Qom544DF7r4s3oHEgrt/QHTesJrqur+nA4951GdAazPr3CSBhqy2crv7f9y9Mnj5GdEZ7ZNKHfe7LqcDz7h7mbt/CSwi+rmfcPZUbjMz4Bzg6SYNqgns4bsrlL/xREpYugIrarxeSQv4EjezXsBBwOfBph8FVWcPJ1vTSMCB/5jZFDO7ItjW0d3XBOtrgY7xCa1JnMtXP8iS/X5D3fe3Jf3Nf5/o/zR36m1mX5jZ+2Z2ZLyCiqHafq9byv0+Eljn7gtrbEu6+73bd1cof+OJlLC0OGaWC7wAXOfuxcBfgb7AMGAN0WrFZHOEuw8HTgSuNrOjar7p0XrEpHwW38zSgdOA54JNLeF+f0Uy39+6mNnNQCXwZLBpDdDD3Q8C/hd4ysxaxSu+GGhxv9e7OY+v/qck6e53Ld9duzTmbzyREpZVQPcar7sF25KSmaURveFPuvuLAO6+zt2r3L0aeJAErS7dE3dfFfwsBF4iWsZ1O6sJg5+F8Yswpk4Eprr7OmgZ9ztQ1/1N+r95M7sEOAU4P/ggJ2gS2RisTyHal2NA3IIM2R5+r1vC/U4FzgCe3bkt2e53bd9dhPQ3nkgJyySgv5n1Dv4nei4wLs4xxUTQxvkPYK6731Vje822vW8Ds3Y/NpGZWY6Z5e1cJ9opcRbR+3xxsNvFwCvxiTDmvvI/r2S/3zXUdX/HARcFTxIcCmypUa2c8MxsLHADcJq7l9bY3t7MIsF6H6A/sCQ+UYZvD7/X44BzzSzDzHoTLffEpo4vxo4H5rn7yp0bkul+1/XdRVh/4/HuVbyXPZBPItrreDFwc7zjiWE5jyBaZTYDmBYsJwGPAzOD7eOAzvGONeRy9yH6lMB0YPbOewy0A94BFgJvA23jHWsMyp4DbATya2xLuvtNNCFbA1QQba++tK77S/TJgb8Ef+8zgZHxjj/kci8i2n6/82/8b8G+Zwa//9OAqcCp8Y4/5HLX+XsN3Bzc7/nAifGOP8xyB9sfAa7abd9kut91fXeF8jeuoflFRESk2UukJiERERFpoZSwiIiISLOnhEVERESaPSUsIiIi0uwpYREREZFmTwmLiITCzNrVmHF2bY0ZeUvM7P4YXfM6M7toD++fYma3xuLaItK09FiziITOzG4BStz9DzG8RirRcSuG+38nEdx9Hwv2Ge01BmcTkcSjGhYRiSkzG2NmrwXrt5jZo2b2oZktM7MzzOz3ZjbTzP4dDOuNmY0IJoKbYmZv1TGD67FEpzKoDI65xszmBJPqPQO75i2ZQHT4exFJYEpYRKSp9SWabJwGPAG85+5DgO3AyUHSch9wlruPAB4GflfLeUYDU2q8vhE4yN0PBK6qsX0y0RlyRSSBpcY7ABFpcd509wozmwlEgH8H22cCvYCBwGBgfLRFhwjRYc531xmYW+P1DOBJM3sZeLnG9kKgS3jhi0g8KGERkaZWBuDu1WZW4f/tSFdN9DPJgNnuflg959kOZNZ4fTJwFHAqcLOZDQmaizKDfUUkgalJSESam/lAezM7DKLT1ZvZAbXsNxfoF+yTAnR39/eAnwL5QG6w3wCSd6ZrkRZDCYuINCvuXg6cBdxhZtOJzvh6eC27vkm0RgWizUZPBM1MXwB/cvfNwXvHAK/HMmYRiT091iwiCcvMXgJucPeFdbzfEXjK3Y9r2shEJGxKWEQkYZnZQKCju39Qx/sHAxXuPq1JAxOR0ClhERERkWZPfVhERESk2VPCIiIiIs2eEhYRERFp9pSwiIiISLOnhEVERESaPSUsIiIi0uwpYREREZFmTwmLiIiINHtKWERERKTZU8IiIiIizZ4SFhEREWn2lLCISKOY2SVm9lEMzmtm9k8z22RmE8M+f2OZ2VIzOz7ecYi0FEpYRFoQM5sQJAAZ8Y6lAY4ATgC6ufshde1kZmPMzM3sp7tt/1oiZWaPmNlvYxOuiMSSEhaRFsLMegFHAg6cFt9oGqQnsNTdt9Wz38VAEXBR7EMSkXhRwiLSclwEfAY8QvRLfpeg5uEvZva6mW01s8/NrG+N979hZvPNbIuZ3W9m75vZZbVdxMz2M7PxZlYUHHNOXQGZWRczGxfsu8jMLg+2Xwo8BBxmZiVm9us6js8BzgKuBvqb2chg+/7A32ocv9nMrgDOB24Itr0a7HujmS0Oyj3HzL692zUuN7O5Nd4fXksc+5vZl2Z2Xl1lFZHGUcIi0nJcBDwZLN80s467vX8u8GugDbAI+B2AmRUAzwM3Ae2A+cDhtV0gSCDGA08BHYJz3m9mg+qI6RlgJdCFaOLxf2Z2rLv/A7gK+NTdc939V3UcfwZQAjwHvEWQiLn73N2Ob+3uDwRl/32w7dTgHIuJ1jzlB+V/wsw6B+U5G7gl+LdrRbRmauNuZR4eXPvH7v50HXGKSCMpYRFpAczsCKJNLP9y9ylEv6S/u9tuL7n7RHevJPrFPizYfhIw291fDN77E7C2jkudQrQZ55/uXunuXwAvAGfXElN3YDTwU3ff4e7TiNaq7E3TzsXAs+5eRTRJOtfM0vbieNz9OXdf7e7V7v4ssBDY2WfmMqIJziSPWuTuy2ocfiQwDrjI3V/bm+uKyN5RwiLSMlwM/MfdNwSvn2K3ZiG+moSUArnBehdgxc433N2J1orUpicwKmiC2Wxmm4k2w3SqZd8uQJG7b62xbRnQtf7i7Ep4jiGaXAG8AmQCJzfk+BrnucjMptWIdzBQELzdnWhyV5ergE/cfcLeXFNE9l5qvAMQkdgysyzgHCBiZjuTkgygtZkNdffp9ZxiDdCtxvms5uvdrADed/cTGhDaaqCtmeXVSFp6AKsacCzAhUT/0/VqNCQgmrBcDLxMtHPx7r6yzcx6Ag8CxxFtPqoys2nAzhOuAPpSt6uAn5rZ3e7+Pw2MW0T2gWpYRJLft4AqYBDRZp5hwP7AhzSs+eV1YIiZfcvMUol2cK2txgTgNWCAmV1oZmnBcnDQCfYr3H0F8Alwm5llmtmBwKXAEw0s18VE+5wMq7GcCZxkZu2AdUA3M0uvccw6oE+N1zlEk5j1AGb2PaI1LDs9BFxvZiOCcWH6BUnOTluBscBRZnZ7A+MWkX2ghEUk+V0M/NPdl7v72p0L8Gfg/CAJqVPQjHQ28HuiHU4HAZOBslr23Qp8g2hn29VEm5nuIFqjU5vzgF7Bvi8Bv3L3t+srkJkdSrT56S81y+Tu44h2GD4PeBeYDaw1s51NYf8ABgXNPy+7+xzgj8CnRJOZIcDHNcrzHNHOx08RTU5eBtruVubNRMeLOdHMflNf7CKybyzaHC0i0jBmlkK0D8v57v5evOMRkZZBNSwiUi8z+6aZtQ5GyP0Z0T4en8U5LBFpQZSwiEhDHEb0aZkNwKnAt9x9e3xDEpGWRE1CIiIi0uyphkVERESavYQbhyWSne+DB/YlLbJvuda2bdvIyckJOarmSWVNTipr8mkp5QSVNVk1pqxTpkzZ4O7t69sv4RKW1PwOXHHXv7j6mH77dPyECRMYM2ZMuEE1UyprclJZk09LKSeorMmqMWU1s2X175WATUI56RFe+mIV6nsjIiLSciRcwtI6O51FhSXMXLUl3qGIiIhIE0m4hCU/K4301BRenNrQ6UZEREQk0SVcwhJJMY7fvwOvTl9NRVV1vMMRERGRJpBwCQvAGQd1Y+O2ct6fvz7eoYiIiEgTSMiE5eiB7Wmfl8Ezk5bHOxQRERFpAgmZsKRFUvjOyO68O6+QVZs1OriIiEiyS8iEBeDcQ7rjwLMTVcsiIiKS7BI2YenWJpsxA9rzzKQV6nwrIiKS5BI2YQH47qieFG4t4525hfEORURERGIooROWYwa2p3N+Jo9/tjTeoYiIiEgMJXTCkhpJ4ZLDe/Hxoo1MXloU73BEREQkRhI6YQG48LCeFOSmc/fbC+IdioiIiMRIaLM1m9lI4EigC7AdmAWMd/dNYV2jNtnpqVx1dF9++/pcPl+ykVF92sXyciIiIhIHja5hMbPvmdlU4CYgC5gPFAJHAG+b2aNm1qOx19mTCw7tSfu8DNWyiIiIJKkwaliygdHuXusIbmY2DOgPxGzAlMy0CD8c05dfvzqHTxZv4PC+BbG6lIiIiMRBo2tY3P0vdSUrwfvT3P2dxl6nPucd0oOOrTK4e/wC3D3WlxMREZEmFEaTULaZXRksOWEEtS8y0yL86Jh+TFq6iY8WbYhXGCIiIhIDYTwl9CSwElgBPBXC+fbZOQd3p0t+JneplkVERCSphJGwtAKWBEvrEM63zzJSI/zo2P58sXwzExasj2coIiIiEqIwEpYLgIuA7wEXhnC+RjlrRDe6tcniHtWyiIiIJI0wOt2ucfeb3P2n7h73qZPTU1O45tj+TF+5hXfnaY4hERGRZBBGp9sLzKzO85hZXzM7orHX2RvfHt6VHm2z1ZdFREQkSYQxDks74AszmwJMAdYDmUA/4GhgA3BjCNdpsLRICtcc15/rn5vOf+as45sHdGrKy4uIiEjIwmgSuhcYDjwNtAeOC16vAi509zPdfWFjr7O3vjWsC70Lcrh7/AKqq1XLIiIikshCmUvI3auA8cHSLKRGUrj2uP5c9+w03pq9lhOHdI53SCIiIrKPEn625j05dWgX+rbP4e63VcsiIiKSyJI6YYmkGNcdP4AF60p4feaaeIcjIiIi+yi0hMXMMmrZ1jas8++rk4d0ZkDHXO55ewFVqmURERFJSGHWsLxoZmk7X5hZZ5pBn5aUoJZl8fptvDp9dbzDERERkX0QZsLyMvAvM4uYWS/gLeCmEM+/z8Ye0In9OuVx7zsLVcsiIiKSgEJLWNz9QeBtoonLq8BV7v6f+o4zs+5m9p6ZzTGz2WZ2bVgx7ZSSYvzPCQP4csM2PltTGfbpRUREJMYa/Vizmf1vzZdAD2AacKiZHerud9VzikrgJ+4+1czygClmNt7d5zQ2tpq+MagjB3RpxSuLt3JDVTVpkaTubywiIpJUwvjWzqux5AIvAotqbNujYC6iqcH6VmAu0DWEuL7CzPjfEwZQWOq8OHVl2KcXERGRGLLmNNdO0PflA2CwuxfX2H4FcAVAx44dRzzzzDP7dH5359efbKOoLIXbjswiJ81CiLr5KikpITc3N95hNAmVNTm1lLK2lHKCypqsGlPWY445Zoq7j6xvv1BGugUws/HA2e6+OXjdBnjG3b/ZwONzgReA62omKwDu/gDwAMDIkSN9zJgx+xznsuJ3+PVnO5i0vQO3nHDAPp8nEUyYMIHG/FslEpU1ObWUsraUcoLKmqyaoqxhduRovzNZAXD3TUCHhhwYPA79AvCku78YYkxf0ys/wgWjevLYp0uZvXpLLC8lIiIiIQkzYakysx47X5hZT6De9iYzM+AfwNwGdNANxfXfGEib7HR++cpsDdkvIiKSAMJMWG4GPjKzx83sCaJ9URoyDsto4ELgWDObFiwnhRjX1+Rnp3HjifsxZdkmnlcHXBERkWYvtD4s7v5vMxsOHBpsus7dNzTguI+IPg7dpM4c3o1nJ63g9jfn8Y1BHWmdnd7UIYiIiEgDhT0YSRVQCBQDg8zsqJDPH5qUFOPW0wezZXsFt785L97hiIiIyB6EOfnhZUSbgd4Cfh38vCWs88fCoC6tuOzI3jwzaQWfLt4Y73BERESkDmHWsFwLHAwsc/djgIOAzSGePyauO24APdpm87OXZrKjoire4YiIiEgtwkxYdrj7DgAzy3D3ecDAEM8fE1npEf7v20P4csM27nt3YbzDERERkVqEmbCsNLPWRCc/HG9mrwDLQjx/zBzRv4Azh3fj7+8vYe6a4voPEBERkSYV5mzN33b3ze5+C/ALomOrnB7W+WPt5yfvT35WGje+OJMqjc0iIiLSrITZ6fbxnevu/r67jwMeDuv8sdYmJ51fnjqI6Ss28+gnS+MdjoiIiNQQZpPQVybmMbMIMCLE88fcaUO7MGZge/7wn/ms3FQa73BEREQk0OiExcxuMrOtwIFmVhwsW4mOxzKu0RE2ITPjt98aDMBNL86kOc1kLSIi0pI1OmFx99vcPQ+4091bBUueu7dz9xtDiLFJdWuTzU0n7seHCzfwr8kr4h2OiIiIEG6T0CG7bzCzd0I8f5M5f1RPDu3Tlt++Npc1W7bHOxwREZEWL4wmoUwzawcUmFkbM2sbLL2Aro2OMA5SUow7zjyQymrnZ2oaEhERibswaliuBCYD+wFTaiyvAH8O4fxx0bNdDjeMHch789fzwtRV8Q5HRESkRQujD8u97t4buN7d+7h772AZCjzX+BDj5+LDenFwrzbc+ups1hXviHc4IiIiLVaYA8fdB2Bmrc3s0qD/yhdhnT8eUlKM3581lLLKam5+SU1DIiIi8RJKwmJmWWZ2rpmNA2YCfwR+A3QL4/zx1Lsgh//3zYG8PbeQV6atjnc4IiIiLVIYnW6fAhYAJwD3Ab2ATe4+wd2rG3v+5uB7o3szvEdrbnl1NoVb1TQkIiLS1MKoYRkEbALmAnPdvQpIqraTSNA0VFpexS9enqWmIRERkSYWRqfbYcA5QB7wtpl9BOSZWcfGnrs56dchl/89YQBvzV7HazPWxDscERGRFiWUPizuPs/df+Xu+wHXAo8Ck8zskzDO31xcdkRvhnbL51fjZrOhpCze4YiIiLQYYY50C4C7T3H364GeQMINzb8nqZEU7jx7KCU7KvnVuNnxDkdERKTFCD1h2cmjPojV+eNlQMc8rj2+P6/PWMObM9U0JCIi0hRilrAksyuO6sPgrq34xSuzKNpWHu9wREREkl4YjzVfG/wc3fhwEkNaJIU7zxrKlu0V/PpVNQ2JiIjEWhg1LN8Lft4XwrkSxv6dW3H1Mf14Zdpqxs9ZF+9wREREkloYCctcM1sIDDSzGTWWmWY2I4TzN1s/HNOP/Trl8bOXZrK5VE1DIiIisRLGOCznAUcCi4BTayynBD+TVnpqCn84eyhF28q59bU58Q5HREQkaYU1DsvaYHbmNUQHkMsDVrv7sjDO35wN7prPD47uy4tTV/HuPDUNiYiIxEJoTwmZ2dHAQuAvwP3AAjM7KqzzN2c/Pq4fAzrm8rMXZ1G8oyLe4YiIiCSdMB9rvgv4hrsf7e5HAd8E7g7x/M1WRmqEO88aSuHWHfzutbnxDkdERCTphJmwpLn7/J0v3H0BkBbi+Zu1od1bc8VRfXl28go+WLA+3uGIiIgklTATlslm9pCZjQmWB4HJIZ6/2bvu+P70bZ/DjS/MYKuahkREREITZsLyA2AOcE2wzAm27ZGZPWxmhWY2K8RY4iIzLcLvzxrKmuId3PbmvHiHIyIikjRCS1jcvczd73L3M4LlbndvyJTGjwBjw4oj3kb0bMOlo3vz1OfL+WTRhniHIyIikhTiPpdQMEFiUbzjCNNPvjGQ3gU53PDCDLaVVcY7HBERkYRn7h7vGDCzXsBr7j64jvevAK4A6Nix44hnnnlmn69VUlJCbm7uPh/fUAs2VXHb5zs4tkcqFw7KiPn1atNUZW0OVNbk1FLK2lLKCSprsmpMWY855pgp7j6yvv1S9+nse2Bm2e5eGuY53f0B4AGAkSNH+pgxY/b5XBMmTKAxxzfUGGB1ZDaPfLKUy8eO5NA+7WJ+zd01VVmbA5U1ObWUsraUcoLKmqyaoqxhDhx3uJnNAeYFr4ea2f1hnT8R3TB2ID3aZnPjCzPYUVEV73BEREQSVph9WO4mOljcRgB3nw60iJFu65KdnsptZwxh6cZS7nl7YbzDERERSVihdrp19xW7baq3WsHMngY+JTrb80ozuzTMmOJtdL8CzhnZjQc/XMKsVVviHY6IiEhCCjNhWWFmhwNuZmlmdj1Q7zj17n6eu3d29zR37+bu/wgxpmbh5pMG0TYnnZ++MIPKqup4hyMiIpJwwkxYrgKuBroCq4BhwesWLz87jVtPO4DZq4t58MMv4x2OiIhIwgntKSF33wCcH9b5ks2JQzrzzQM6cs/bCxg7uBO9C3LiHZKIiEjCaHTCYmb3AXUO5uLu1zT2Gsni1tMHc/xd73PjCzN4+vJDSUmxeIckIiKSEMKoYWlRExw2RsdWmdx80v7c+OJMnpm0gu+O6hHvkERERBJCoxMWd380jEBaiu8c3J2Xp63itjfmctz+HejYKjPeIYmIiDR7YQ4c96qZjdttedzMrjUzfSsHzIzbzziQ8qpqfvHyLJrD1AgiIiLNXZhPCS0BSoAHg6UY2AoMCF5LoFdBDv9zwgD+M2cdb85aG+9wREREmr0w5xI63N0PrvH6VTOb5O4Hm9nsEK+TFC47ojevzVjNL1+ZzeF929E6Oz3eIYmIiDRbYdaw5JrZrl6kwfrOqRvLQ7xOUkiNpHDHmQeyqbSc371e7/h6IiIiLVqYCctPgI/M7D0zmwB8CFxvZjmAOubW4oAu+VxxVB+em7KSjxZuiHc4IiIizVZoCYu7vwH0B64DrgUGuvvr7r7N3e8J6zrJ5trj+tO7IIebXppBaXllvMMRERFplkKd/BAYARwADAXOMbOLQj5/0slMi3D7GUNYUbSdu/6zIN7hiIiINEuhdbo1s8eBvsA0/jtLswOPhXWNZDWqTzu+O6oHD3/8JacO7cLQ7q3jHZKIiEizEuZTQiOBQa6BRfbJjSfuxztz1/HTF2Yw7kdHkJ4aduVXuLaVVbJlewWd8zMx0xQDIiISW2EmLLOATsCaEM/ZYrTKTOO33xrC5Y9N5u/vL+bHx/WPd0gAlJRVsqiwhAXrtrJw3VYWFpawcF0JqzZvB6Br6yyO7F/Akf3bM7qfHs8WEZHYCDNhKQDmmNlEoGznRnc/LcRrJLUTBnXk5AM7c9+7izhxSGf6dcit/6AYWbV5O//3xlxen/Hf/DM9NYW+7XMZ2asN53XoTk5GKp8u3sjrM9bwzKQVmMGQrvkc2b+AY/frwIiebeMWv4iIJJcwE5ZbQjxXi3XLqQfw0cIN3PTiDJ694rAmn9F5R0UVD36whL9MWIQ7XHlUH4b3bMOAjnn0aJtNZLd4vje6N5VV1UxfuZkPF27go4Ub+Nv7S/jLe4s55cDO/Pq0A2iXm9GkZRARkeQTWsLi7u/XfG1mRwDnAe/XfoTUpn1eBr84ZRDXPzedJz9fxoWH9WqS67o74+es4zevz2FF0XZOHNyJm0/en25tsus9NjWSwoiebRnRsy3XHT+A4h0VPPLxUu57dyGfLt7IracP5uQDOzdBKUREJFmF2rPTzA4yszvNbCnwG0BDuO6DM4d35cj+Bdz+5jxWB31FYmnx+hIu/uckrnh8ChmpEZ68bBR/vWBEg5KV2rTKTOOa4/rz6o+PoEvrLK5+aio/eGIK67eW1X+wiIhILRqdsJjZADP7lZnNA+4DlgPm7se4+58bHWELZGb837eHUO3w8xjP6PzIx18y9p4P+GLZJn5xyiDevPZIRvcrCOXc+3VqxUs/PJwbxg7knbmFnHD3+7z8xSrNUC0iInstjBqWecCxwCnufoS738d/x2GRfdS9bTY/+cYA3p1XyLjpq0M/v7tz3zsLueXVORw9oAPvXj+GS4/oTVok3MepUyMp/HBMP9649gh6F+Rw3bPTuOLxKWzdURHqdUREJLmF8e10BtFHmd8zswfN7DhAA3OE4HujezO0e2t+/eociraFN3+ku3P7v+fxx/ELOOOgrvztguG0z4ttx9h+HfJ4/qrDufmk/XlvXiHnPfgZG0vURCQiIg3T6ITF3V9293OB/YD3iM4l1MHM/mpm32js+VuySIpxx5lDKN5ewa2vzg7lnNXVzi9emcXf31/CBYf24A9nDyU15FqVukRSjMuP6sODF41k4boSzv77p03SR0dERBJfmJMfbnP3p9z9VKAb8AXw07DO31Lt16kVVx/Tj5enreat2Wsbda7Kqmquf346T3y2nCuP7sNvTh/c5I9NAxyzXwcev3QU64vLOOuvn7B4fUmTxyAiIoklzHFYdnH3TcADwSKNdPUx/Xh77jp+9uJMRvRsQ8E+jGtSVlnFtU9P49+z1/KTEwbwo2P7xXVI/UN6t+XpKw7l4ocncs7fPuXR7x/C4K75MbteSVklny/ZyIcLNzBvbTE7KqrZUVFFeWU1nfIzGdI1n8Fd8xnWvTXd2+7b01EiIhI7MUlYJFzpqSncdc4wTr3vI37+0iz+esHwvUo2tpdXcdUTU3h/wXp+ccogLj2idwyjbbjBXfN57qrDuPAfEznvgc946OKRjOrTLrTzuzsfLNzA399fzMQvi6isdjJSUxjcNZ9WWWm0z8sgPZLC8qJS/vnxUsqrqgEY1bst5x/ak7EHdGr2czqJiLQUSlgSxMBOefzkGwO47c15vDxtFd8+qFuDjiuvrObKJ6bw4cL13H7GEM49pEeMI907fdrnBknL51z08ET+esFwjt2vY6PO6e68N7+Qe99ZxPQVm+mSn8nlR/XhyH4FDO/Zhsy0yNeOKa+sZsG6rXywcD1PT1zONU9/QUFuOpcc3ovLjuxT6zEiItJ0lLAkkMuO7MP4Oev45SuzObRPOzrnZ+1x/2p3rn9uOh8sWM8dZw7hOwc3r2Rlpy6ts/jXlYdxyT8nccVjU/jzd4czdnCnfTrXqs3b+X/PTeeTxRvp1iaL284YwpnDu9VbU5Ie1LwM7prPVUf15cNFG3j0k6X84T8LeHbyCn5x8iBOGNRRM1OLiMSJ6rsTSCTF+MPZQ6mscm54fsYeB2Bzd56eV8646au5YezAZpus7NQuN4OnLh/FkG75/Pjpqbw9Z91eHe/uvPTFSsbe8wHTV2zmN6cfwHvXj+G8Q3rsdbNOSopx9ID2PHzJwTx52SgyUyNc8fgULnp4IosKw+0gXFEVrdmZsqyICfMLeW1GtHP1kvUlVFVrgD0RkZ1Uw5JgehXk8LOT9+cXL8/i3ncWct3xA2rd7/4Jixm/rJLvj+7ND47u28RR7pu8zDQe/f4hXPjQ5/zwyan8/cIRHLNfh3qP27qjgvunlzFp7XRG9mzDXecMo0e7cDrOju5XwBvXHsnjny7j7rcXcNKfPuRnJ+7HxYf32ufalpWbSnlnbiEfLtzAZ0s2UlJWWet+O2fHHtW7LacP68Kw7q1VwyMiLZYSlgR0wageTFu+mXveXkhaJIWrj+n3lfefnbScO9+az2GdI/z85P0T6kuuVWYaj106ivMf+owrn5jCgxeN5OgB7evcf+WmUi59ZDILC6u4YexArjyq79dmlG6stEgK3z+iN6cO7cJPX5jBLa/OYcKC9dx51tC9GnBv+orNPPDhEt6cuYZqh+5tszhtWBcO6dWWNjnp5GakkpeZyvbyKhas28qiwhLmrd3KUxOX88gnS+nVLpvThnWlV9A5OAzuTlll9ImpsspqcjNSycnQx4KIND/6ZEpAZsbvzzqQqupq7nxrPqkpxpVBLcp/Zq/lphdnctSA9lzUa1tcxllprPysNJ64dBTfffBzrnhsMg9fcnCt8xt9sXwTlz82mbLKan4yIpMfjulXy9nC0z4vg39cPJLHP1vG716fy9h7PuDOsw+st5PwtBWbue2NuXz+ZRF5GalcflQfzju4B70Kcuo8Zmj31rvWi3dU8O9Za3n5i1Xc9+5CUoBJpTO48qi+ezzH7tydhYUlTF66ianLo8uS9du+tl+7nHR6tMtmv06tOLxvOw7v2452+/AovYhImJSwJKid/VmqHG57cx6RFGNI13x+/PQXHNitNX+7YDgTP/ko3mHus9bZ6Txx2Si+++BnXProJP55ySEc1jf6yHN5ZTXPTVnBra/OoUOrDJ654lBWzpnSJHGZGRcd1otD+7Tjmqe/4PuPTObiw3py00n7f+1JoqJt5fz+3/N4dvIKCnIz+PnJ+/Odg7uTl5m2V9dslZnGOSO7c87I7qwoKuVXT3/IC1NX8eykFXzroK787wkD9jiz9vqtZbz8xSqem7KCBeuifXDa5qQzvEdrThrcmeyMCBmpETJSUyjeUcGKolKWbSzltemreXricgCGdsvn2wd15bRhXWmbk97g2EvKKpm+YjMrikrZuK2cTdvK2bK9gpyMVPKz0midnUbHVpkM7pJP97ZZCVUbKCJNq1kkLGY2FrgXiAAPufvtcQ4pIaRGUrj7nKFUVVfz29fnkpmWQrc2WfzzkoPJTm8Wt7ZR2uZEk5bzHviM7z8yifvPH86CdVv558dLWVu8g0N6t+Wv5w+nXW4GK+c0bWwDOubx8tWjufOt+fzjoy/5dMlG7j33IHq0zWbKsk18umQjT32+nJKySi4d3Ztrj++/14lKbbq3zeaiAzK4/cJDeeCDJTz22TJem76GCw7tyVVH96FDq8xd+y4q3Mr97y1m3PTVVFY7w7q35jffGsyR/Qro2S673uSgsqqamau28PGiDbwxcy23vDqH370xl2MGduDMEd04ZmCHr3VoLqus4qOFG5gwfz1Tlm1i3tpiavYdzkqLkJ+VxrbySrbu+GrfnVaZqQzums/Bvdpy1IAChnZrXWds7s6XG7axqLCEpRu38eWGbazevIOyyuhggOVV1WSlRSjIzaB9XgYd8jLo3zGPQZ1b0a1NwxOj6mqnpLwy2mRWUU1ZZTVZ6RHyMlPJTU9NyBrMpuburC3ewaLCEoq2lTN5eQVLP/4SgOz0VFplpdIpP4vubbJom5OupFXqZHt60qRJAjCLAAuAE4CVwCTgPHev9Sto5MiRPnny5H2+3oQJExgzZsw+H98cVVRVc92z05ixcjPPXHEYXVtHH3dOlrIWbt3BuQ98tqv54vC+7bjy6L4c1b9g14dbPMv6/oL1XP/cdDaXluMOldVOaooxul8BN5+8PwM65oV6vZplXb15O/e8vYDnp6yk2qF3QQ4jerZhW1kl/569lszUCOce0p3vHtKD/o2MY+6aYl6YspKXp61mQ0kZbbLTOLJ/e/IyU8lMi1C4tYz35hVSUlZJbkYqB/VozUE92jCiZxv6ts+hXU4GWen/rYWqrKqmeEclK4pKmb26mFmrtzBj5WZmry7GHfIyU+nXyjmofw86tsqgY6tMNpeWM3FpERO/LGJDyX8nBG2Xk07XNllkpkVIj6SQFjFKy6vYUFLGhpJorc5OrTJTGdSlFYM653NAl1bs37kVldXVrCjazopNpawoKmXFpu2sLCpl5abtuwYU3J1ZtPmyW5ssurfJpnvbbLq3yYr+bJtNp1aZFG4tY9nGbSwvKmXV5u1sLClnQ0kZpWVVVLlT7U61Q/GWYtq3a03roNapdXY67XLS6dAqgw55mXTIiyZe5ZXVbN5ewaZt5WwqrWBzaTmbt1dQVlFNRVU1FdXVGEZGagoZaSlkpUVolZlGq6w08rPSaJUVrdnKz0rDPdrcuHVHJcXbg587Kigpq2T3B9Sy0iJkp0eXnIxUstMjZKVFyEiL1sxlpKaQYkbRtnIWFm5l4boSFhaWsChY6upYvruc9Miuf79e7bLpVZBDQW4G2ekRIinG1h2VwRKNt6yyCoCIGTlB/6t2Oel0zM+kU6tM2mSns2V7BUXbyinaVs7GbWU11sspKimnqDT6etO28l1/u5EUIzcjdde/287awPystODfM3XXv2urzDSy0lMAwyw686+ZYcDEiZ9z6KhDqZmDmUXfd3dKyr5anuIa61t3VLC9vBqv8XtS7Y4DmanRe5EV3Iev/UyLkJGWsqvmdOd6WuSryWBtX/9lldWUVUb7tEWT9GC9spqyihrrldEkvryqmhSD5cuX07tXLwxIMSPFok9cpkWM1JQU0lJTSEsxUoO/z9SUFFIjRnokhWP37zjF3UfW9/vRHBKWw4Bb3P2bweubANz9ttr2V8JSt6pq/0qH02Qqa2HxDh75ZCknDu7MkG5fH8I/3mXdWFLGfe8uIjs9wqF92jGiZ5uYdV6trayLCkt4e+46Ji/dxJRlRVRWORcf3ovvje4Vev+TyqpqPly4geenrmTa8s2UVVaxvbyKrPRUjt+/AycO6cxhfdrt8yjBm0vL+XjRRj5YsJ73566kuCKF0vKqXe93bZ3FqN5tOaR3W/bv3IpeBTnkZ+259qq0vJL5a7cyZ00xs1cXM2d18a4pGnbXOjstSECiiUj7vAwy0iJkpqaQnppCWUU1xTsqKN5ewcZt5azcFE10Vm7aTnll3R2i0yMpFOSm0y43g5yM6Bdw9IPd2FRURFZePlu2V7C5tIJNpeWU7eFctUmxaK0rTp1JVlNqn5dB/w659O+QS78OufTtkEvHVpnMnDqRo484Aid6X7Zsr2DN5h0sLyrdlTAuLypl6cbSPf57Ars+7/Z2CAAzaJOdTtuc6NIuJ502OemkR1KorK6mssrZWhZN5LbUWIq3V3wtmYuFtIiRl5lGVlqElBQwggTADAfKKqrYHiy1/Q43pbSI4R7cA6s9CarPsjtOSZiE5SxgrLtfFry+EBjl7j+qsc8VwBXBy4HA/EZcsgDY0IjjE4nKmpxU1uTTUsoJKmuyakxZe7p73Y+DBhKio4O7hzaRoplNbkgmlwxU1uSksiafllJOUFmTVVOUtTmMdLsK6F7jdbdgm4iIiAjQPBKWSUB/M+ttZunAucC4OMckIiIizUjcm4TcvdLMfgS8RfSx5ofdfXYMLxlK01KCUFmTk8qafFpKOUFlTVYxL2vcO92KiIiI1Kc5NAmJiIiI7JESFhEREWn2kjZhMbOxZjbfzBaZ2Y21vH+Jma03s2nBclk84mwsM3vYzArNbFYd75uZ/Sn4d5hhZsObOsawNKCsY8xsS417+sumjjEsZtbdzN4zszlmNtvMrq1ln4S/tw0sZ1LcVzPLNLOJZjY9KOuva9knw8yeDe7p52bWKw6hNloDy5oUn8E7mVnEzL4ws9dqeS8p7ivUW86Y3tO4d7qNhWC4/79QY7h/MxtXy3D/z9YcoC5BPQL8GXisjvdPBPoHyyjgr8HPRPQIey4rwIfufkrThBNTlcBP3H2qmeUBU8xs/G6/w8lwbxtSTkiO+1oGHOvuJWaWBnxkZm+6+2c19rkU2OTu/czsXOAO4DvxCLaRGlJWSI7P4J2uBeYCrWp5L1nuK+y5nBDDe5qsNSyHAIvcfYm7lwPPAKfHOaaYcPcPgKI97HI68JhHfQa0NrPOTRNduBpQ1qTh7mvcfWqwvpXoB0TX3XZL+HvbwHImheA+lQQv04Jl96ceTgceDdafB44zS7zZABtY1qRhZt2Ak4GH6tglKe5rA8oZU8masHQFVtR4vZLaPwTPDKrSnzez7rW8nwwa+m+RLA4LqqHfNLMD4h1MGILq44OAz3d7K6nu7R7KCUlyX4Pq9GlAITDe3eu8p+5eCWwB2jVpkCFpQFkheT6D7wFuAOqa2CdZ7us97LmcEMN7mqwJS0O8CvRy9wOB8fw3+5XENZXonBRDgfuAl+MbTuOZWS7wAnCduxfHO55YqaecSXNf3b3K3YcRHdH7EDMbHOeQYqYBZU2Kz2AzOwUodPcp8Y4llhpYzpje02RNWOod7t/dN7p7WfDyIWBEE8XW1FrM1AfuXryzGtrd3wDSzKwgzmHts6Dt/wXgSXd/sZZdkuLe1lfOZLuvAO6+GXgPGLvbW7vuqZmlAvnAxiYNLmR1lTWJPoNHA6eZ2VKi3Q+ONbMndtsnGe5rveWM9T1N1oSl3uH+d2vrP41o23kyGgdcFDxRciiwxd3XxDuoWDCzTjvbhc3sEKK/34n2oQBEnwAC/gHMdfe76tgt4e9tQ8qZLPfVzNqbWetgPYvoQwHzdtttHHBxsH4W8K4n4OieDSlrsnwGu/tN7t7N3XsR/a55190v2G23hL+vDSlnrO9pUj4lVNdw/2Z2KzDZ3ccB15jZaUSfUigCLolbwI1gZk8DY4ACM1sJ/IpoBzfc/W/AG8BJwCKgFPhefCJtvAaU9SzgB2ZWCWwHzk20D4UaRgMXAjODfgAAPwN6QFLd24aUM1nua2fg0eApxhTgX+7+2m6fS/8AHjezRUQ/l86NX7iN0pCyJsVncF2S9L5+TVPeUw3NLyIiIs1esjYJiYiISBJRwiIiIiLNnhIWERERafaUsIiIiEizp4RFREREmj0lLCISCjNrV2OW1rVmtipYLzGz+2N0zevM7KI9vH9K8NiliCQ4PdYsIqEzs1uAEnf/QwyvkUp02P7hwfwste1jwT6j3b00VrGISOyphkVEYsrMxpjZa8H6LWb2qJl9aGbLzOwMM/u9mc00s38Hw/RjZiPM7H0zm2Jmb1nts1AfC0zdmayY2TVmNieYeO0ZiM4aDEwATmmSwopIzChhEZGm1pdosnEa8ATwnrsPITqK7clB0nIfcJa7jwAeBn5Xy3lGAzUnYrsROCiYeO2qGtsnA0eGXgoRaVJJOTS/iDRrb7p7hZnNJDp1xr+D7TOBXsBAYDAwPphCKALUNkdSZ746V8kM4Ekze5mvzuhcCHQJL3wRiQclLCLS1MoA3L3azCpqzAtUTfQzyYDZ7n5YPefZDmTWeH0ycBRwKnCzmQ0Jmosyg31FJIGpSUhEmpv5QHszOwzAzNLM7IBa9psL9Av2SQG6u/t7wE+BfCA32G8AMCvmUYtITClhEZFmxd3Lic7QfIeZTQemAYfXsuubRGtUINps9ETQzPQF8Cd33xy8dwzweixjFpHY02PNIpKwzOwl4AZ3X1jH+x2Bp9z9uKaNTETCpoRFRBKWmQ0EOrr7B3W8fzBQ4e7TmjQwEQmdEhYRERFp9tSHRURERJo9JSwiIiLS7ClhERERkWZPCYuIiIg0e0pYREREpNn7//rSyQ7bREXJAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\n", - "Trajectory Stability and Control Plots\n", - "\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGDCAYAAAAI1UtPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABhXUlEQVR4nO3deWBcZb3/8fd3JkmTNm26JaEb3TdaoJRCi2DpgogI6BVUXEC8eCt6Rbzuij8Fr171ulxxuSCKF0EsICJWARELAcraFlpKm26Ulm40Tbqm2We+vz/OSToNSWZaOplJ8nnhOHPOec4533NOmvnmPM95HnN3RERERLJZJNMBiIiIiCSjhEVERESynhIWERERyXpKWERERCTrKWERERGRrKeERURERLKeEhYRSSsz+4iZ/SPTcaTKzL5uZr/JdBwiciQlLCI9nJmdY2bPmNl+M9tjZk+b2RnhsqvMbMlRbGuUmbmZ5TTPc/e73P38Y4jr9nBb72k1/3/C+Vcd7TZT4e7/5e6fSMe2ReTYKWER6cHMrB/wN+DnwEBgGHAjUJ/JuBKsB65snggToQ8Arx7LxhITKRHpWpSwiPRsEwDcfaG7x9y91t3/4e4vm9lk4BbgLDOrNrN9AGb2bjN7ycwOmNlWM7shYXtPhu/7wnXOan2XxsymmNmj4d2cXWb29Q7i+ytwjpkNCKcvAF4G3kjY3lgze8zMqsys0szuMrP+Ccs3m9lXzOxl4JCZ5ZjZlWa2JVzn/4VlzgvL32Bmvw8/N98x+piZvR5u//pjOM8i8hYpYRHp2dYDMTP7nZm9KyExwN3LgWuAZ9290N37h4sOEdz16A+8G/iUmb03XDY7fO8frvNs4s7MrC/wT+DvwFBgHLC4g/jqgL8Al4fTVwJ3tCpjwPfC7U0GRgA3tCrzoTDW/gRJ2v8CHwGGAEUEd5Y6cg4wEZgPfDNM5kSkEylhEenB3P0AwZexA78GdpvZIjMr7WCdMndf5e5xd38ZWAicm+IuLwLecPcfu3udux909+eTrHMHcGV41+Rc4IFW8Wx090fdvd7ddwM/aSOen7n7VnevBS4D/uruS9y9AfhmePwduTG8+7QSWAmcmsKxishxpIRFpIdz93J3v8rdhwNTCe5U/LS98mY208weN7PdZraf4C7M4BR3N4KjbH/i7kuAYuB64G9h0pEYT6mZ3W1m283sAPD7NuLZmvB5aOK0u9cAVUnCeCPhcw1QeDTHICJvnRIWEWnh7muB2wkSF2j7zsMfgEXACHcvImjnYh2UT7QVGHMMof0e+AJvrg4C+K9wvye7ez/gownxNEuMaycwvHnCzAqAQccQk4h0IiUsIj2YmU0ysy+Y2fBwegRBe4/nwiK7gOFmlpewWl9gj7vXmdmZwIcTlu0G4rSflPwNGGJmnzOzXmbW18xmphDqz4B3cLhRb6K+QDWw38yGAV9Ksq37gIvN7G3hcd3AmxMcEckySlhEeraDwEzgeTM7RJCovEJwNwPgMWA18IaZVYbzPg1828wOErT/uLd5Y2H1yneBp81sn5nNStyZux8kSDwuJqhm2QDMTRaku+9x98Xu3tYdnBuB6cB+4EHg/iTbWg1cC9xNcLelGqggex7lFpE2WNv//kVEegYzKwT2AePd/bUMhyMi7dAdFhHpcczsYjPrbWZ9gB8Bq4DNmY1KRDqihEVEeqL3ADvC13jg8naqm0QkS6hKSERERLKe7rCIiIhI1lPCIiIiIlmvy41c2r9/fx83blymw8ioQ4cO0adPn0yHkTE6/p59/KBz0NOPH3QOutPxL1++vNLdi5OV63IJS2lpKcuWLct0GBlVVlbGnDlzMh1Gxuj4e/bxg85BTz9+0DnoTsdvZltSKacqIREREcl6SlhEREQk63W5KiERERHpetydhlic+qY49Y1x6pti1DfFU15fCYuIiEgP4O40xT1MGIJkIXjFqGt887wgqTicWCQmGYnL6xpjHZQ7crtvhRIWERGRDIjHnYN1TeyrbeBAbdPhxKGNpKD1501b6nm48uUjEoMjEod2ko34W+wrNjdq9MqJ0isnErxyEz7nRCnslcOgPlF65R6eF5SLtLvee3+Q2r6VsIiIiBwH8bizp6aBXQfqqDhQz64DdVRW17O3ppG9NQ3sD9/31TSyr7aRfTUNR51ARAzyc6NEPEbhvt1vSgzycyMUFeQekUT0yo2Q3yqx6DihCNdpVS4vJ0I0Yuk5eSlQwiIiInKU9tc2snrHftbsOMDqHQd4Zft+Xqs8RFMbGUjvvCgDeudRVJDLgD65DOlfQP+CXAb0zqN/71z6986jX34OBXnRpHckciKGmXWrx5pTpYRFRESkAxUH61i94wCrt+8PkpMd+9m6p7Zl+Qn98pk6rB/nnVTKCf3yKe3Xi+K+wfvgwl7k50YzGH33oYRFRESEoFHqtr21rN6xv+WuyeodB6g4WN9SZtSg3pwyrD8fOvNEpgwtYsrQfgwu7JXBqHsOJSwiItLjxOLOa5XVRyQmq3ccYH9tIwDRiDGuuJBzxg9mytAipg7tx+Sh/eiXn5vhyHuutCUsZpYPPAn0Cvdzn7t/q1WZXsAdwOlAFfBBd9+crphERKTnaWiKs6HiIKu3B9U5r2zfT/nOg9Q2xgDIy4kw+YS+XHjyEKYO68eUoUVMOqGvqnKyTDrvsNQD89y92sxygSVm9rC7P5dQ5mpgr7uPM7PLgR8AH0xjTCIi0o3VNcYo33mAV8I2J6/s2M/6N6ppiAV9gPTJizJlaBGXnzkiuHMyrB9jiwvJjarj92yXtoTF3R2oDidzw1fr5tPvAW4IP98H/MLMLFxXRESkXQfrGg8/pbNjP6u3H2Dj7mpi4ZM6/XvnMnVoER8/ZxRThxYxdVgRIwf2JpLBR3Pl2KW1DYuZRYHlwDjgl+7+fKsiw4CtAO7eZGb7gUFAZTrjEhGRrueN/XU8traCZ16tZOnGGnb9/R8ty0r69mLqsCLeOaWUKcOCxrDD+hdgpuSku7DOuJlhZv2BPwPXuvsrCfNfAS5w923h9KvATHevbLX+AmABQHFx8en33ntv2mPOZtXV1RQWFmY6jIzR8ffs4wedg55y/HF3Nu2Ls3J3jJW7Y7x+MKjWGZhvjOgTZ+zAPEb2izCyb4T++T2rSqc7/QzMnTt3ubvPSFauU54Scvd9ZvY4cAHwSsKi7cAIYJuZ5QBFBI1vW69/K3ArwMSJE72ndZbTWk/sMCiRjr9nHz/oHHTn499f28iT63fz+NoKytbvZs+hBqIR4/SRA/jwOSXMn1TCuJJCnnjiiW57DlLRnX8G2pPOp4SKgcYwWSkA3kHQqDbRIuBjwLPAZcBjar8iItJzuDsbK6p5bG0Fi9dWsHzLXmJxZ0DvXOZMLGHepBJmjy+mqLceJ+7p0nmHZQjwu7AdSwS4193/ZmbfBpa5+yLgNuBOM9sI7AEuT2M8IiKSBeoaYzy3qYrH1lbw2NoKtu0Neo2dPKQf15w7hnmTSpk2on9Gx62R7JPOp4ReBk5rY/43Ez7XAe9PVwwiIpIddu6v5bG1FTy+toKnN1ZR2xijIDfK2eMG8ek545g7qZghRQWZDlOymHq6FRGR4y4Wd1Zs3RveRdlN+c4DAAwfUMAHZgxn7qQSZo0ZpM7ZJGVKWERE5LjYX9PIExvCBrPrKthb00g0YswYOYCvvWsS88IGs3rUWI6FEhYRETkm7s6ru6tZXB60RVmW0GB27sQS5qrBrBxHSlhERCRl9U0xXnhtT0uS8vqeGiBoMPupc8cyd1KJGsxKWihhERGRDlUcrKNs7W4Wr93Fkg2VHGqI0SsnwtnjBrNg9hjmTSphaH81mJX0SpqwmNkM4O3AUKCWoOO3R919b5pjExGRDIjHndU7DoQNZnexctt+AIYU5fPe04Yxf3IJZ40ZTEGeGsxK52k3YTGzjwPXAq8RjAe0DsgHzgG+Enar///c/fXOCFRERNLnUH0TT2+sbOkbpeJgPWZw2oj+fOmdE5k7sYTJQ/qqwaxkTEd3WHoDZ7t7bVsLzWwaMB5QwiIi0gVt3VPT0sPsc69W0RCL07dXDrMnFDNvUglzJhYzqLBXpsMUATpIWNz9lx2t6O4rjns0IiKSNk2xOC++vq+lqmf9rmoAxgzuw5VnjWTe5BLOGDWQ3GjPGkhQuoZU2rD8DrjO3feF0wOAH7v7v6Y5NhEReYv21TTwxPrdPLa2grJ1u9lf20hOxJg5ZiAfPONE5k0qYfTgPpkOUySpVJ4SOqU5WQFw971m9qYu90VEJPOaBxNcvLaCx8orWP560DfKoD55nDe5lPmTSzhn/GD65atvFOlaUklYImY2oPmpIDMbmOJ6IiLSCeqbYjy/aU/YHmUXW/cETQ9PGtKPT88Zy7xJJZw6vD8R9Y0iXVgqicePgWfN7I/h9PuB76YvJBERSabiQB2Pr6tgcXkFSzZWUtMQIz83wjnjBnPNuUGSosEEpTtJmrC4+x1mtgyYF856n7uvSW9YIiKSKB53Xtmxn8XlFfxlaS2b/74YgKFF+bxv+jDmTyrlrLEaTFC6r476YSl092qAMEF5U5KSWKaNZSOAO4BSwIFb3f2mVmWKgN8DJ4ax/Mjd/+8Yj0VEpFs5VN/EUxsqeXxtBY+tq2B32DfK2KIIX3rnROZPLmFiqfpGkZ6hozssfzGzFcBfgOXufgjAzMYAc4EPAL8G7mtn/SbgC+7+opn1BZab2aOt7s78O7DG3S82s2JgnZnd5e4Nb+2wRES6pteranhs7S4Wr63g+U17gr5R8nM4t6VvlBJeXvoMc+aMy3SoIp2qo35Y5pvZhcAngbPDxraNBD3ePgh8zN3f6GD9ncDO8PNBMysHhnHknRoH+lrw50EhsIcg0RER6RGaYnGWb9nb0sPshoqwb5TiPnzsbSOZN6mUGaMGqG8U6fE6bMPi7g8BD73VnZjZKOA04PlWi34BLAJ2AH2BD7p7/K3uT0QkmzX3jbK4vIKydRUcqGsiN2rMHD2ID50Z9I0ySn2jiBzB3D29OzArBJ4Avuvu97dadhlwNvB5YCzwKHCqux9oVW4BsACguLj49HvvvTetMWe76upqCgsLMx1Gxuj4e/bxQ9c7B+7Ojmpnxe4mVu6OsWFvHAf65cGpxTmcUhxl6uAoBTmptUXpasefDj39HHSn4587d+5yd5+RrFxaExYzywX+Bjzi7j9pY/mDwPfd/alw+jHgq+7+QnvbnDhxoq9bty5dIXcJZWVlzJkzJ9NhZIyOv2cfP3SNc1DXGOO5TVUtVT3b9gZ9o0wZ2o/5k0qYN7mUU4YVHVPfKF3h+NOtp5+D7nT8ZpZSwpK2DuDCdim3AeVtJSuh14H5wFNmVgpMBDalKyYRkXTadaCOx8PBBJdsqKS2sblvlGL+fe445k4s4YSi/EyHKdIlpZSwmFmU4PHklvLunmyU5rOBK4BV4dNGAF8neIQZd78F+E/gdjNbBRjwFXevPJoDEBHJlMS+URav3cUr24Pa7GH9C3j/jOHMnVTCWWPUN4rI8ZDK4IfXAt8CdgHNDWIdOKWj9dx9CUES0lGZHcD5KUUqIpIFahtiLNlYGTx6XF5BxcF6IgannTiAL18wkfmTSplQWqi+UUSOs1TusFwHTHT3qnQHIyKSjXbur2VxedAW5emNldQ3xSnsdbhvlLmTShjYJy/TYYp0a6kkLFuB/ekOREQkW8Tjzqrt+1lcHnTgtnpHUNVz4sDefHjmicyfVMqZoweSl6O+UUQ6SyoJyyagLHyip755ZgcNaUVEupyahiaWbKgM7qSE3eBHDE4fOYCvvmsS8yeVMK5EVT0imZJKwvJ6+MoLXyIi3cKOfbUsXlvB4vJdPPNqFQ1Ncfr2ymH2xGLOm1zCuRNU1SOSLVIZrfnGzghERCTd4nHn5eaqnvIK1uwMqnpGDurNR2eOZP7kEs4YpaoekWzU0WjNP3X3z5nZXwmeCjqCu1+S1shERI6DmoZgxOPF5bt4bO1uKquDqp4ZIwfytXdNYv7kEsYWq6pHJNt1dIflzvD9R50RiIjI8bJ9Xy2Ple/in+UVPLsprOoJRzw+b3Ip504oZoCqekS6lI5Ga14evj/ReeGIiBy9eNxZuW0fi8sr+Gf5Lta+cRCAUYN6c8Wsw1U9GvFYpOtKpeO4Vby5Smg/sAz4jvpnEZFMOFR/uKrn8XUVVFY3EI0Yp48cwNcvnMT8yaWMGdxHVT0i3UQqTwk9DMSAP4TTlwO9gTeA24GL0xKZiEgr2/bW8NjaCu5dVsf6Rx+lIRZU9cyZWBI+1VNM/96q6hHpjlJJWM5z9+kJ06vM7EV3n25mH01XYCIisZaqnuCpnuaqntLexpVnjWL+5FJmjBqgqh6RHiCVhCVqZme6+wsAZnYG0DySV1PaIhORHqm6voklG3bzz/IKHl9bQdWhoKpnxsgBXH/hZOZPLuH11cuYM+ekTIcqIp0olYTlauD/zKwwnD4IXG1mfYDvpS0yEekxtu4Jqnr+Wb6L5zftoSEWp19Y1TN/cglzJpRQ1Du3pXyyoeJFpPvpMGExsyjwdnc/2cyKANw9cVyhe9MZnIh0T7G4s2LrXhaXV7C4vIJ1u4KqnjGD+/Cxt40MqnpGDiBHVT0iEuowYXH3mJl9CPifVolKUmY2ArgDKCV4yuhWd7+pjXJzgJ8CuUClu597NPsRka7hYF0jSzZU8s/yCsrWHa7qOWPUAL7x7snMm1TCmOLC5BsSkR4plSqhp83sF8A9wKHmme7+YpL1moAvuPuLZtYXWG5mj7r7muYCZtYf+F/gAnd/3cxKjvoIRCRrbd1T0zLi8XObqmiMOUUFucyZWMz8sAO3ooLc5BsSkR4vlYRlWvj+7YR5DszraCV33wnsDD8fNLNyYBiwJqHYh4H73f31sFxFamGLSDaKxZ2XXt/bMqDg+l3VAIwt7sPHzx7N/EklnK6qHhE5Bub+pmGCjv9OzEYBTwJT3f1AwvyfElQFTQH6Aje5+x1trL8AWABQXFx8+r339uymM9XV1RQW9txb5zr+7Dr+2iZnVWWMlRUxXt7dxMFGiBpMGBBhWkkO04qjlPY5vglKtp2DztbTjx90DrrT8c+dO3e5u89IVi6VOyyY2bsJkor85nnu/u321zhi3ULgT8DnEpOVhP2fDswHCoBnzew5d1+fWMjdbwVuBZg4caLPmTMnlV13W2VlZfTkc6Djz/zxv15Vwz/Ld/HY2gqef+1wVc/8KUOZP7mU2Wmu6smGc5BJPf34QeegJx5/Kl3z30LQs+1c4DfAZcALqWzczHIJkpW73P3+NopsA6rc/RBwyMyeBE4F1rdRVkQyJBZ3Xny9+ameXWyoOFzV869nj2b+5FKmn9hfVT0ikjap3GF5m7ufYmYvu/uNZvZjgu76O2TBAB63AeXu/pN2iv0F+IWZ5QB5wEzgf1KMXUTS6EBdI0+u381j5RU8vq6CvTWN5ESMmWMGcvmZJzJ/UgmjBvfJdJgi0kOkkrDUhu81ZjYUqAKGpLDe2cAVBF35rwjnfR04EcDdb3H3cjP7O/AyEAd+4+6vHEX8InIcbak6xD/LK3hsbdCBW1PcGdA7l7kTS5g3uYTZE4rpl6+nekSk86WSsPwtfPz4h8CLBE8I/SbZSu6+BEg6TKq7/zDctoh0sqZYnBdf39fy6PHGsKpnfEkhV799NOdNLmX6iQOIRjTisYhkVtKExd3/M/z4JzP7G5B/tJ3IiUj2OFDXyBPrdrO4fBdl63ezr6aR3Kgxc/QgPnzmicyfXMLIQarqEZHs0m7CYmbv62AZ7TSiFZEstGl3NY+tDbrBX7r5cFXPvEklzJ9UyuwJg+mrqh4RyWId3WG5D1gRvuDI6h0HlLCIZKmGpjhLN+9hcdgeZXNVDQATS/vyibeP4bzJJZymqh4R6UI6SljeB1wOnELwNM9Cd9/YKVGJyFGrrK7n8bUVPLa2gqc2VFJd30ReToS3jR3E1eeMZu6kEoYP6J3pMEVEjkm7CYu7PwA8YGZ9gPcAPzazQcD17v5EJ8UnIu1wd1bvOMDjaytYvLaCldv24Q6l/Xpx8alDmTephLPHDaJ3Xkr9Q4qIZLVUfpPVAfuBA8BIEnq7FZHOVdsQ46WKJh65fxWPr63gjQN1mMEpw/vzH+dNYN6kEqYM7UfQDZKISPfRUaPbeQRVQmcC/yQY52dZZwUmIoFte2ta7qI882oVDU1x+uRtZ/aEYuZNKmHOxBKK+/bKdJgiImnV0R2WfxJ06LYE6AVcaWZXNi9098+mOTaRHilxxOPH11aw9o2DAIwc1JuPzhzJ4IadfOI9c8nLUTf4ItJzdJSwfLzTohDp4fbXht3gr62gLKEb/DNGDeT6Cyczb3IJYwb3wcwoK6tQsiIiPU5HjW5/15mBiPQk7s6ruw/x2NpdLC6vYNmWvcRadYP/9vHpHfFYRKQr0eMDIp2kvinGC681941Swet7gr5RJp3Ql2vOHcO8SaVMG9FffaOIiLRBCYtIGlUcrKNs7e6wb5TdHGqI0SsnwtnjBrNg9hjmTiphWP+CTIcpIpL1lLCIHEfNfaM09zC7clsw7NaQonzee9ow5k0q4W1jB1OQF81wpCIiXUvShMXMfgdc5+77wukBwI/d/V/THJtIl1DT0MSSDZU8FvYyW3GwHjOYNqI/Xzx/AvMmlTJ5SF/1jSIi8hakcofllOZkBcDd95rZaclWMrMRwB1AKcHYQ7e6+03tlD0DeBa43N3vSyVwkUzauqcmGExwbQXPbQr6RunbKyehb5RiBhWqbxQRkeMllYQlYmYD3H0vgJkNTHG9JuAL7v6imfUFlpvZo+6+JrGQmUWBHwD/OMrYRTpNUyzOi6/vC++i7GL9rmoAxgzuw5WzRjJvUgkzRg3U48YiImmSSuLxY+BZM/sjwYjNlwHfTbaSu+8EdoafD5pZOTAMWNOq6LXAn4AzjiJukbTbV9PAEy19o+xmf23QN8rMMQP5wIwRzJtUwpjiwkyHKSLSI5i7Jy9kdhIwL5x8rPVdkhTWHwU8CUx19wMJ84cBfwDmAr8F/tZWlZCZLQAWABQXF59+7733Hs3uu53q6moKC3vuF2W6jt/d2XHIWVnRxIrdMTbuixN36JsHpwzOYVpJlCmDovTOzWxblJ5+/UHnoKcfP+gcdKfjnzt37nJ3n5GsXLsJi5n1c/cDYRXQm7j7nlQCMbNC4Angu+5+f6tlfyRowPucmd1OOwlLookTJ/q6detS2XW3VVZWxpw5czIdRsYcz+Ova4zx/Gt7eKx8F4+tq2DrnloAThrSj/mTS5g7qYRTh2dX3yg9/fqDzkFPP37QOehOx29mKSUsHVUJ/QG4CFhO0Gi2Zdvh9JgUgsglqO65q3WyEpoB3B0+PTEYuNDMmtz9gWTbFjlWFQfqeHxdBYvLK1iysZKahhj5uRHOGTeYa84dy7xJJQwpUt8oIiLZpKOu+S8K30cfy4YtyEJuA8rd/Sft7GN0QvnbCe6wPHAs+xNpTzzuvLJjf0sPs6u2B32jDC3K533ThzF/UilnjR1Efq76RhERyVap9MOy2N3nJ5vXhrOBK4BVZrYinPd14EQAd7/l6MMVSU11fXPfKLt4fN1udod9o0w/cQBfeudE5k8uYWKp+kYREekq2k1YzCwf6A0MDjuLa/7N3o/gaZ8OufuShHWScverUi0r0pbXq2pYvHYXj62t4PlNe2iIxembn8O5LX2jlDCwT16mwxQRkWPQ0R2WTwKfA4YStGNpTj4OAL9Ib1giydU1xli6eQ9Prt/N4+t2s7Ei6BtlbHEfPva2kcybVMqMUQPIjapvFBGRrq6jNiw3ATeZ2bXu/vNOjEmkTe7Oq7ureWRzI//32xd4/rUq6hrj5EUjnDF6AB8+80TmTSph1OA+mQ5VRESOs6RtWNz952Y2FTgJyE+Yf0c6AxMB2F/TyNOvVvLk+t08uX43O/bXATBmcA2Xn3EisycMZtaYQfTO0zieIiLdWSqNbr8FzCFIWB4C3gUsIRgnSOS4isWdldv2tSQoK7buCzpv65XD2eMG85l5xeRWbeT9F87JdKgiItKJUvmz9DLgVOAld/+4mZUCv09vWNKT7NxfGyYolSzZWMn+2kbM4JTh/fnM3HHMnlDMtBH9yQnbopSVbcpwxCIi0tlSSVhq3T1uZk1m1g+oAEakOS7pxpp7l22+i7IhbCxb2q8X559UyuwJxZwzbjAD9ESPiIiEUklYlplZf+DXBE8LVQPPpjMo6V7cnfW7qoMEZcNuXnhtD/VNcfJyIswcHQwkOHtCMRNKC9UvioiItCmVRrefDj/eYmZ/B/q5+8vpDUu6ur2HGliyMWgs+9SGSt44EDSWHVdSyEdmjmT2hMHMHD2Igjz1LisiIskdVU+37r659TwRgKZYnBVbg8ayT2yo5OVt+3CHfvk5nDN+MLPHFzN7QjFD+2uMHhEROXpp6+lWur9te2t4cn1wF+XpVys5WNdExODUEf357LzxzJ5QzKnDi1oay4qIiBwr9XQrKatpaOL5TXt4ImyLsmn3ISAYRPDdJw9h9oRizh47mKLeuRmOVEREuhv1dCvtcnfWvnGwpbHs0tf20hCL0ysnwqwxg/jIzJGcO2EwY4vVWFZERNKroyqhM4CtzcmKmV0JXApsAW5w9z2dE6J0pj2HGnhqQ9AnylMbdlNxsB6AiaV9+djbRjJ7QjFnjBpIfq4ay4qISOfpqEroV8B5AGY2G/g+cC0wDbiVoEM56eIaY3Fe3LKXJzcET/Os2r4fd+jfO5dzxg1m9oRiZo8v5oSi/OQbExERSZOOEpZowl2UDwK3uvufgD+Z2YpkGzazEQTd95cCHq5/U6syHwG+QtA+5iDwKXdfedRHIUfl9aoantgQdNr27KtVVNc3EY0Yp43oz3+cN4HZE4o5eVgR0YiqeUREJDt0mLCYWY67NwHzgQUprtesCfiCu79oZn2B5Wb2qLuvSSjzGnCuu+81s3cR3LmZeZTHIEkcqm/i2VereDJMUjZX1QAwrH8BF586lHMnDOassYMpKlBjWRERyU4dJR4LgSfMrBKoBZ4CMLNxwP5kG3b3ncDO8PNBMysneBx6TUKZZxJWeQ4YfrQHIG8Wjztrdh5oSVCWb9lLY8wpyI0ya8xAPva2UcyeUMyYwX3UWFZERLoEc/f2F5rNAoYA/3D3Q+G8CUChu7+Y8k7MRgFPAlPd/UA7Zb4ITHL3T7SxbAHhHZ7i4uLT77333lR33S1VV1dTWFh4xLwD9c4rVTFWVTaxujLGgYZg/oi+EU4eHGXq4CjjB0TI7QbVPG0df0/S048fdA56+vGDzkF3Ov65c+cud/cZycp1mLAcD2ZWCDwBfNfd72+nzFzgf4Fz3L2qo+1NnDjR161bd/wD7ULKysqY+ba3s3zLXp5+Nei4bfWOIA8c2CePt4c9y759/GBK+nW/xrJlZWXMmTMn02FkTE8/ftA56OnHDzoH3en4zSylhCWVtihvJYhc4E/AXR0kK6cAvwHelSxZ6cnqGmO8uGUvz26q4pGXannt0UdojDk5EWP6yAF86Z0TmT2+mClD+xHpBndRREREEqUtYbGgccRtQLm7/6SdMicC9wNXuPv6dMXSFdU1xnjp9X08u6mK516tYsXWfTTE4kQMRvWL8K/njOasMYOYMWoghb3SmneKiIhkXDq/6c4GrgBWJTwG/XXgRAB3vwX4JjAI+N+w8WdTKreFuqP6piBBeW5TFc++WsVLW/fR0BQkKFOHFfHxs0cxa8wgZowawPLnnmbOnMmZDllERKTTpC1hcfclHB5/qL0ynwDe1Mi2J6hvirFy6/6WBOXF1/dS3xTHDKYM7cfHzhrJrDGDOGP0QPrl63FjERHp2VSX0EkamuK8vC28g7KpiuVb9lLXGCQok0/ox0dnBQnKmaMHqj8UERGRVpSwpEljLM7L24I7KM9tqmLZ5r3UNsYAmHRCXz505onMGjOImaMH0r93XoajFRERyW5KWI6TplicVdv3B41kN+1h2eY91DQECcrE0r588IwRzBozkJmjBzGgjxIUERGRo6GE5Rg1xeKs3nEgTFCqWPraHg6FCcqE0kIuO314yx2UQYW9MhytiIhI16aEJUWxuLNmxwGe3VTJc5v2sPS1PRysbwJgXEkh/zJ9GGeNGczMMQMZrARFRETkuFLC0g53Z2NFNU9vrGTJxiqef62Kg3VBgjKmuA8XTxvKWWMGMXPMQEr6dr/eZEVERLKJEpYE2/fV8vTGSp7ZWMkzr1ZRcbAegBMH9ubdJw/hrLGDmDVmEKXdsLt7ERGRbNajE5Y9hxp49tUqnn41SFI2V9UAMLgwj7eNHczZ4wbxtrGDGTGwd4YjFRER6dl6VMJS09DEC6/t4emNlTy9sYryNw7gDoW9cpg5eiBXnDWKc8YNZkJpIWHPuyIiIpIFum3C0tAUZ+f+WrbuqWXZlj08s7GKl7bupTHm5EUjTB/Zn8+fN4G3jRvMqcOLyIlGMh2yiIiItKPLJSxVdc7X7l9FPO7E3InHnabwcyzm7K6uZ9veGioO1uMerGMGJw8r4upzxnD2uEHMGDmQgrxoZg9EREREUtblEpZDjc6ja3YRjUDUjGjUiJoRiQTvgwt78fbxxQwfUMCw/gUMG1DAlCFFFPVWd/ciIiJdVZdLWE7sG2HZN87LdBgiIiLSidRwQ0RERLJe2hIWMxthZo+b2RozW21m17VRxszsZ2a20cxeNrPp6YpHREREuq50Vgk1AV9w9xfNrC+w3Mwedfc1CWXeBYwPXzOBm8N3ERERkRZpu8Pi7jvd/cXw80GgHBjWqth7gDs88BzQ38yGpCsmERER6Zo6pdGtmY0CTgOeb7VoGLA1YXpbOG9nq/UXAAvCyXozeyU9kXYZg4HKTAeRQTr+nn38oHPQ048fdA660/GPTKVQ2hMWMysE/gR8zt0PHMs23P1W4NZwe8vcfcZxDLHL6ennQMffs48fdA56+vGDzkFPPP60PiVkZrkEycpd7n5/G0W2AyMSpoeH80RERERapPMpIQNuA8rd/SftFFsEXBk+LTQL2O/uO9spKyIiIj1UOquEzgauAFaZ2Ypw3teBEwHc/RbgIeBCYCNQA3w8he3eetwj7Xp6+jnQ8UtPPwc9/fhB56DHHb9584A7IiIiIllKPd2KiIhI1lPCIiIiIlkvaxMWM7vAzNaF3fZ/tY3lvczsnnD582FfL91GCsd/lZntNrMV4esTmYgzXczst2ZW0V6fO919WIcUjn+Ome1PuP7f7OwY062nD++R4vF3258DM8s3sxfMbGV4/De2Uaa7fw+kcg669XfBEdw9615AFHgVGAPkASuBk1qV+TRwS/j5cuCeTMfdycd/FfCLTMeaxnMwG5gOvNLO8guBhwEDZgHPZzrmTj7+OcDfMh1nms/BEGB6+LkvsL6Nfwfd9ucgxePvtj8H4TUtDD/nEnQ8OqtVmW77PXAU56BbfxckvrL1DsuZwEZ33+TuDcDdBN34J3oP8Lvw833A/PBR6u4glePv1tz9SWBPB0W69bAOKRx/t+c9fHiPFI+/2wqvaXU4mRu+Wj8l0p2/B1I9Bz1GtiYs7XXZ32YZd28C9gODOiW69Evl+AEuDW+D32dmI9pY3p2leo66s7PCW8UPm9mUTAeTTscwvEe30sHxQzf+OTCzaNgtRgXwqLu3e/274fcAkNI5gB7yXZCtCYsk91dglLufAjzK4b8ypGd4ERjp7qcCPwceyGw46XM8hvfoypIcf7f+OXD3mLtPI+gF/Uwzm5rhkDpdCuegx3wXZGvCkkqX/S1lzCwHKAKqOiW69Et6/O5e5e714eRvgNM7KbZs0aOHdXD3A823it39ISDXzAZnOKzjrqcP75Hs+HvKz4G77wMeBy5otag7fw8cob1z0JO+C7I1YVkKjDez0WaWR9CYalGrMouAj4WfLwMe87AFUjeQ9Phb1dNfQlC/3ZP06GEdzOyE5rp6MzuT4N9yt/pFHR5fjx3eI5Xj784/B2ZWbGb9w88FwDuAta2KdefvgZTOQU/6Lkj7aM3Hwt2bzOwzwCMET8z81t1Xm9m3gWXuvojgH/KdZraRoHHi5ZmL+PhK8fg/a2aXAE0Ex39VxgJOAzNbSPAExGAz2wZ8i6DBGX7swzp0GSkc/2XAp8ysCagFLu9Ov6hD6Rreo6tI5fi788/BEOB3ZhYlSMTudfe/9ZTvgVAq56BbfxckUtf8IiIikvWytUpIREREpIUSFhEREcl6SlhEREQk6ylhERERkaynhEVERESynhIWETkuzGxQwoixb5jZ9vBztZn9b5r2+Tkzu7KD5ReFj4CKSBenx5pF5LgzsxuAanf/URr3kUPQNf30cByZtspYWOZsd69JVywikn66wyIiaWVmc8zsb+HnG8zsd2b2lJltMbP3mdl/m9kqM/t72BU9Zna6mT1hZsvN7JF2RmCeB7zYnKyY2WfNbE04CNzdEIx2C5QBF3XKwYpI2ihhEZHONpYg2bgE+D3wuLufTNBT67vDpOXnwGXufjrwW+C7bWznbGB5wvRXgdPCQeCuSZi/DHj7cT8KEelUWdk1v4h0aw+7e6OZrSIYeuLv4fxVwChgIjAVeDQcJicKtDU+0BCOHDflZeAuM3uAI0ctrgCGHr/wRSQTlLCISGerB3D3uJk1Jox9Eyf4nWTAanc/K8l2aoH8hOl3A7OBi4HrzezksLooPywrIl2YqoREJNusA4rN7CwAM8s1syltlCsHxoVlIsAId38c+ApQBBSG5SYAr6Q9ahFJKyUsIpJV3L2BYBTiH5jZSmAF8LY2ij5McEcFgmqj34fVTC8BP3P3feGyucCD6YxZRNJPjzWLSJdlZn8GvuzuG9pZXgr8wd3nd25kInK8KWERkS7LzCYCpe7+ZDvLzwAa3X1FpwYmIsedEhYRERHJemrDIiIiIllPCYuIiIhkPSUsIiIikvWUsIiIiEjWU8IiIiIiWU8Ji4iIiGQ9JSwiIiKS9ZSwiIiISNZTwiIiIiJZTwmLiIiIZD0lLCIiIpL1lLCIiIhI1lPCIiIiIllPCYuIiIhkPSUsIiIikvWUsIiIiEjWy2lvgZm9r6MV3f3+4x+OiIiIyJu1m7AAF4fvJcDbgMfC6bnAM4ASFhEREekU7VYJufvH3f3jQC5wkrtf6u6XAlPCeSLSicxss5nVmll1wmtopuPqTGY2ysw84fg3m9lXMx2XiKRfR3dYmo1w950J07uAE9MUj4h07GJ3/2d7C80sx92bOjOgDOnv7k1mNgN4wsyWu/ujmQ5KRNInlUa3i83sETO7ysyuAh4E2v2FKSKdK7zj8O9mtgHYEM67yMxWmNk+M3vGzE5JKH+amb1oZgfN7B4zu9vMvhMuu8rMlrSx/XHh515m9iMze93MdpnZLWZWEC6bY2bbzOwLZlZhZjvN7OMJ2ykwsx+b2RYz229mS8J5D5rZta32+bKZ/UuyY3f3ZcBqYFrCuv9qZuVmtjf83TUynG9m9j9hbAfMbJWZTQ2X3R4ey6PheXmieb1w+dvMbGkY91Ize1vCsjIz+08zezpc9x9mNjhclm9mvzezqvBaLDWz0nBZkZndFp6n7Wb2HTOLJjtmkZ4qacLi7p8BbgFODV+3uvu1Ha8lIp3svcBM4CQzOw34LfBJYBDwK2BRmGzkAQ8AdwIDgT8Clx7Ffr4PTCBIEMYBw4BvJiw/ASgK518N/NLMBoTLfgScTtAmbiDwZSAO/A74aPMGzOzUcP0HkwVjZrOAqcDGcPo9wNeB9wHFwFPAwrD4+cDsMP4i4ANAVcLmPgL8JzAYWAHcFW5zYBjLzwjO50+AB81sUMK6HwY+TtDmLw/4Yjj/Y+G+RoTrXgPUhstuB5oIzuNpYXyfSHbMIj2Wuyd9ASOB88LPvYG+qaynl156Hb8XsBmoBvaFrwfC+Q7MSyh3M/CfrdZdB5xL8IW9A7CEZc8A3wk/XwUsabWuE3ypGnAIGJuw7CzgtfDzHIIv45yE5RXALII/jmqBU9s4rnxgLzA+nP4R8L/tnINRYTz7wu15WN7C5Q8DVyeUjwA14e+wecD65nhabfd24O6E6UIgRpBoXAG80Kr8s8BV4ecy4BsJyz4N/D38/K/h+T2l1fqlQD1QkDDvQ8Djmf4500uvbH0lvcNiZv8G3EfwVxoEf/k8kGw9EUmL97p7//D13oT5WxM+jwS+EFZB7DOzfQRfvEPD13Z394TyW1LcdzHBHyzLE7b793B+syo/sg1NDcGX/2CCxOTV1ht19zrgHuCjZhYh+OK+M0ksg8PtfoEgUWp+EGAkcFNCfHsIEq1h7v4Y8Avgl0CFmd1qZv0SttlyDt29Oly3+Zy1PkdbCH4XNnujjWMmPI5HgLvNbIeZ/beZ5YZx5gI7E2L9FcEdGhFpQyptWP4dOBs4AODuG9A/KpFsk5iAbAW+m5DY9Hf33u6+ENgJDDMzSyif2Ij+EEFSAoCZnZCwrJLgrsaUhO0WuXshyVUCdcDYdpb/jqBKZj5Q4+7PJtugu8fc/Sfhdj8dzt4KfLLVsRe4+zPhOj9z99OBkwiqhr6UsMkRCcddSFBttSN8jeRIJwLbU4ix0d1vdPeTCKrCLgKuDOOsBwYnxNnP3ack26ZIT5VKwlLv7g3NE2aWw5G/HEUku/wauMbMZoYNTfuY2bvNrC9BVUYT8Fkzy7Wgg8gzE9ZdCUwxs2lmlg/c0LzA3ePhtv/HzEoAzGyYmb0zWUDhur8FfmJmQ80samZnmVmvcPmzBO1ZfkzyuyutfR/4chjvLcDXzGxKGF+Rmb0//HxGeE5yCRKzunCfzS40s3PCdj7/CTzn7luBh4AJZvZhM8sxsw8SJDx/SxaYmc01s5PDxrQHgEYg7sGTl/8Afmxm/cwsYmZjzezcozx2kR4jlYTlCTP7OlBgZu8gaKT31/SGJSLHyoMnZ/6NoPpjL0GD1KvCZQ0EDVKvIqjy+CAJnUC6+3rg2wRPAm4AjnhiCPhKuL3nzOxAWG5iiqF9EVgFLA33/QOO/B10B3Ay8PsUt9fsQYLj/Dd3/3O43bvD+F4B3hWW60eQcO0lqNKpAn6YsJ0/AN8KYzudsCGwu1cR3Bn5QrjOl4GL3L0yhdhOIKhSPwCUA09wOCG7kqCB7powpvuAIUd36CI9R3NDtfYLBHXKVxO0YDfgEXf/dSfEJiKdwMxuB7a5+zcyHMeVwAJ3PycD+76dLDgHItK+VDqO+whB6/mWJMXMLnL3pLdDRURSYWa9Cdqh/G+mYxGR7JRKldDPgafMbHLCvG+nKR4R6WHCNjC7CXrR/kOGwxGRLJVKldBLBFVCdwI3uPsfzewldz+tMwIUERERSaVKyN39xbD1+kIzmwmo+2gRERHpNKkkLDsB3L0yvHX7A4KusDOif//+Pm7cuEztXtpw6NAh+vTpk+kwJKTrkX10TbKLrkd2Wb58eaW7Fycrl7RKKNtMnDjR161bl+kwJEFZWRlz5szJdBgS0vXIProm2UXXI7tYMNr6jGTl2r3DYmY/dffPmdlfaaOjOHe/5C3GKCIiIpKSjqqEmjs3+tGxbNjMfkvQ2VKFu7+pCinsGvwm4EKCsTeucvcXj2VfIiIi0r21m7C4+/Lw/Ylj3PbtBD1t3tHO8ncB48PXTIIRZmce475ERESkG+uoSmgVHYwZ5O6ndLRhd3/SzEZ1UOQ9wB3hqLHPmVl/MxsSjrHRrkP1e9m6cwMjhozvqJiIiPQQjY2NbNu2jbq6upTKFxUVUV5enuaopLX8/HyGDx9Obm5u8sJt6KhK6KJjCyllw0gYzh3YFs57U8JiZguABQD5o/K5btGlfHbiz9IcnqSqurqasrKyTIchIV2P7KNrkl6FhYWUlpYybNgwjhyIvG2xWIxoVL1zdCZ3Z//+/axcuZLq6upj2kZHVUJbjjmy48zdbwVuBSgYXeCv9YqrhXcWUYv77KLrkX10TdKrvLyc4cOHp5SsABw8eJC+ffumOSpprW/fvlRXVzNjRtIHgtqUtGt+M5tlZkvNrNrMGswsFo6C+lZtB0YkTA8P5yXVlOIPpYiI9AypJiuSOW/1GqUyltAvgA8RDDVfAHwC+OVb2mtgEXClBWYB+5O1XxEREZGeKZWEBXffCETdPebu/wdckGwdM1sIPAtMNLNtZna1mV1jZteERR4CNgEbgV8TjNQqIiLSJT3wwAOYGWvXrm2Zt2LFCh566KGW6bKyMp555pmW6VtuuYU77ggepr399tvZsWPHUe931KhRVFZWHtU6lZWV5Obmcssttxz1/hJt3ryZqVM7p/P7VBKWGjPLA1aY2X+b2X+ksp67f8jdh7h7rrsPd/fb3P0Wd78lXO7u/u/uPtbdT3b3ZW/xWERERDJm4cKFnHPOOSxcuLBlXrKE5ZprruHKK68Ejj1hORZ//OMfmTVr1hGxZrtUEpYrCAY7/AxwiKDdyaXpDEpERKQrqa6uZsmSJdx2223cfffdADQ0NPDNb36Te+65h2nTpvGDH/yAW265hf/5n/9h2rRpPPXUU9xwww386Ec/4r777mPZsmV85CMfYdq0adTW1h5x52TZsmUtDberqqo4//zzmTJlCp/4xCdIHGLn97//PWeeeSbTpk3jk5/8JLFYrM14Fy5cyI9//GO2b9/Otm3bWuYXFhZy/fXXc+qppzJr1ix27doFwKuvvsqsWbM4+eST+cY3vkFhYeGbthmLxfjSl77EGWecwSmnnMKvfvWr43JumyUd/DDhaaFa4MbjuncREZHj6Ma/rmbNjo6fCznax5pPGtqPb108pcMyf/nLX7jggguYMGECgwYNYvny5Zx++ul8+9vfZtmyZfziF78AoLa2lsLCQr74xS8CsHjxYgAuu+wyfvGLX/CjH/0o6VM0N954I+eccw7f/OY3efDBB7ntttuA4Gmpe+65h6effprc3Fw+/elPc9ddd7XcwWm2detWdu7cyZlnnskHPvAB7rnnHr7whS8AwcCQs2bN4rvf/S5f/vKX+fWvf803vvENrrvuOq677jo+9KEPtVuNdNttt1FUVMTSpUupr6/n7LPP5vzzz2f06NFJznBqUnlK6CIze8nM9pjZATM7eJyeEnpLYk0NmQ5BREQECO5YXH755QBcfvnlaa1qefLJJ/noRz8KwLvf/W4GDBgABMnP8uXLOeOMM5g2bRqLFy9m06ZNb1r/nnvu4QMf+ECbsebl5XHRRUE3bKeffjqbN28G4Nlnn+X9738/AB/+8IfbjOsf//gHd9xxB9OmTWPmzJlUVVWxYcOG43PQpHCHBfgp8D5glWfR0M41tVX07Tsk02GIiEgWSXYnBI5/Pyx79uzhscceY9WqVZgZsVgMM+OHP/zhW9puTk4O8XgcIKVefN2dj33sY3zve9/rsNzChQt54403uOuuuwDYsWMHGzZsYPz48eTm5rY8fhyNRmlqako5Xnfn5z//Oe985ztTXudopNKGZSvwSjYlKwAHqo+uRbSIiEg63HfffVxxxRVs2bKFzZs3s3XrVkaPHs1TTz1F3759OXjwYEvZ1tOJWi8bNWoUy5cvB+BPf/pTy/zZs2fzhz/8AYCHH36YvXv3AjB//nzuu+8+KioqgCCR2rLlyD5g169fT3V1Ndu3b2fz5s1s3ryZr33ta0nvCM2aNaslhuY2Oq29853v5Oabb6axsbFlX4cOHepwu0cjlYTly8BDZvY1M/t88+u4RXCMlLCIiEg2WLhwIf/yL/9yxLxLL72UhQsXMnfuXNasWcO0adO45557uPjii/nzn//c0ug20VVXXcU111zT0uj2W9/6Ftdddx0zZsw4os3Nt771LZ588kmmTJnC/fffz4knngjASSedxHe+8x3OP/98TjnlFN7xjnewc+eR3Zt1FGtHfvrTn/KTn/yEU045hY0bN1JUVPSmMp/4xCc46aSTmD59OlOnTuWTn/zkUd2hScaS3Tgxs38A1cAqIN48390z0gC3YHSBj7thHL8+9QZmTdPDStlA3Y5nF12P7KNrkl7l5eVMnjw55fLqmv/o1dTUUFBQgJlx9913s3DhQv7yl78c9XbaulZmttzdk/bXn0oblqHu3jm9whyF6to9mQ5BRESkR1i+fDmf+cxncHf69+/Pb3/7206PIZWE5SEzO9/d/5H2aI7Cwdp9mQ5BRESkR3j729/OypUrMxpDKm1YPgX83cxqs+mx5ur6thstiYiISPfT4R0WM4sAF7j7050UT8pq6zOeM4mIiEgn6fAOi7vHCUZrzjo1jdWZDkFEREQ6SSpVQovN7FJr7kkmS9Q11mY6BBEREekkqSQsnwT+CDRkUxuWhnh9pkMQERGRTpLK4IdZ+bB6Q0wJi4iISE+Ryh0WzOwSM/tR+Loo1Y2b2QVmts7MNprZV9tYfqKZPR4OrviymV2Y6rYb4o2pFhUREUm7RYsWcemlR3ZoevPNN3PttddmKKLuJekdFjP7PnAGcFc46zozO9vdv5ZkvSjwS+AdwDZgqZktcvc1CcW+Adzr7jeb2UnAQ8CoVAJvdCUsIiLSysNfhTdWdVikINYE0VS6IQudcDK86/tJi11//fVv6uJ+7NixR4wDJMculTssFwLvcPffuvtvgQuAd6ew3pnARnff5O4NwN3Ae1qVcaBf+LkI2JFa2NCoOywiIpIlVq5cSTweZ+rUqWzZsoWbb74ZgMbGRsyMTZs2cfXVV3PZZZdlONKuK9UUsz/Q3Bf+m0c8atswgpGem20DZrYqcwPwDzO7FugDnNfWhsxsAbAAIH9UPgC1TfWUlZWlGIqkU3V1ta5FFtH1yD66JulVVFR0eJTjc65PWj4Wix0xmGBK2hlhudmzzz7LKaecwsGDB/nrX//K2rVrOXjwIC+99BKTJ0+muLiYn/70p1xxxRXtjtbcE9TV1R3zv4VUEpbvAS+Z2eOAAbOBN7VHOUYfAm539x+b2VnAnWY2Nez/pYW73wrcCsHghwAeRYOJZQkN7JZddD2yj65JepWXlx/VYIbpGPywV69e1NfX07t3bx566CGGDRtGTk4OCxcu5M4772zZX05OTo8eeDE/P5/TTjvtmNZNWiXk7guBWcD9wJ+As9z9nhS2vR0YkTA9PJyX6Grg3nA/zwL5wOAUtk0TsVSKiYiIpN2FF17Ipk2bmDZtGtdccw2rV69mxowZLFiwgOnTp2c6vG6h3TssZnZiq1krwvc8MzvR3V9Psu2lwHgzG02QqFwOfLhVmdeB+cDtZjaZIGHZnUrgDUpYREQkS5SWlrJixYqW6UsuueSI5VVVVVx//fW89NJLfO973+NrX+vwuRVpQ0dVQg8SNIpN7OHWgWKgBOiwAtDdm8zsM8AjYdnfuvtqM/s2sMzdFwFfAH5tZv8Rbvsqd/dUAm8inryQiIhIFhg0aBC33HJLpsPo0tpNWNz95MRpMxsFfIWgYex/pbJxd3+I4FHlxHnfTPi8Bjg79XAPa1TCIiIi0mMkbcNiZuPN7HbgYWA5cJK7/zzdgXUkx50GS+lGjIiIiHQDHbVhmQpcD0wB/hu42t2zouFIL3cas2ssRhEREUmjjtqwrCToR+VBgk7gzkwcsNndP5ve0NqXF0d3WERERHqQjhKWf+20KI5SnkN1SqMgiYiISHfQUaPb33VmIEcj140G1QiJiIj0GF3yPkWuG41mxJoaMh2KiIiIdIIumrAEYTc0VGc4EhEREekMXTJhyWlJWA5kOBIREZHAokWLuPTSS4+Yd/PNN3PttddmKKLuJZV+WCaY2WIzeyWcPsXMvpH+0NqX40Enu/X1usMiIiLZ4frrr+fGG288Yt7YsWMpLy/PUETdSyqjNf8a+BLwKwB3f9nM/gB8J52BdSQnHBWgvmF/pkIQEZEs9IMXfsDaPWs7LBOLxYhGOxxd5giTBk7iK2d+pcMyK1euJB6PM3XqVLZs2cJDDz3Epz71KRobGzEzHnjgAR588EEOHDjA1Vdfzfnnn5/y/iWQSsLS291fsCM7amtKUzwpyfFcAOobDmUyDBEREQBWrFjB6aefDsCjjz7Khg0bAFizZg2nnnoq733ve3nve9/L3r17+eIXv6iE5RikkrBUmtlYgsEJMbPLgJ1pjSqJHAvCrqk/mMkwREQkyyS7EwJw8OBB+vbte1z3G4/Hqa6uJhaLcf/99zNs2DBqa2u5/fbbufPOO1vKfec73+Hf//3fj+u+e4pUGt3+O0F10CQz2w58DvhUOoNKJoc8AGrVhkVERLLAhRdeyKZNm5g2bRrXXHMNq1evZsaMGSxYsIDp06fj7nzlK1/hXe96F9OnT890uF1S0jss7r4JOM/M+gARd8/4bY2oBQnLoTolLCIiknmlpaWsWLGiZfqSSy45YvnPf/5z/vnPf7J//342btzINddc08kRdn0dDX74+XbmA+DuP0m2cTO7ALgJiAK/cffvt1HmA8ANBFVOK939w0mDtl4A1DaqDYuIiGS/z372s3z2sxkbgq9b6OgOS3MF30TgDGBROH0x8EKyDZtZFPgl8A5gG7DUzBa5+5qEMuOBrwFnu/teMytJJejcSHCHpa6+JpXiIiIi0sV1NJbQjQBm9iQwvbkqyMxuIBjBOZkzgY1hlRJmdjfwHmBNQpl/A37p7nvDfVakEnQ0kg9AbaMSFhERkZ4glUa3pUDioD0N4bxkhgFbE6a3hfMSTQAmmNnTZvZcWIWUVG6kAIC6xtpUiouIiEgXl8pjzXcAL5jZn8Pp9wLHayTnHGA8MAcYDjxpZie7+77EQma2AFgAkD8qn9qaGBTCrsqdlJWVHadQ5FhVV1frOmQRXY/so2uSXkVFRRw8mPrzILFY7KjKy/FTV1d3zP8WUnlK6Ltm9jDw9nDWx939pRS2vR0YkTA9PJyXaBvwvLs3Aq+Z2XqCBGZpqxhuBW4FKBhd4IMGlkID9O5bwJw5c1IIRdKprKxM1yGL6HpkH12T9CovLz+qflXS0Q+LpCY/P5/TTjvtmNZNZSyhE4FK4M/hqyqcl8xSYLyZjTazPOByDjfcbfYAwd0VzGwwQRXRpmQbzo0GVUINsYYkJUVERKQ7SKVK6EHCXm6BAmA0sA6Y0tFK7t5kZp8BHiF4rPm37r7azL4NLHP3ReGy881sDRADvuTuVckCysvNx2qchrgSFhERkZ4glSqhkxOnzWw68OlUNu7uDwEPtZr3zYTPDnw+fKUsJxIhz6Eh1ng0q4mIiEgXlcpTQkdw9xeBmWmIJWU5OTnkutPoSlhERER6glTasHw+4fVFM/sDsKMTYmtXXjRCrkNjXAmLiIhkh0WLFnHppZceMe/mm2/m2muvzVBE3UsqbVgSm1I3EbRp+VN6wklNbjQnSFi8KZNhiIhIlnnjv/6L+vK1HZZpisXYE42mvM1ekydxwte/nrTc9ddfz8KFC4+YN3bsWP70p4x+ZXYbqSQsa9z9j4kzzOz9wB/bKZ92udEIOW40eixTIYiIiLRYuXIl8XicqVOnsmXLFh566CE+9alP0djYiJlRXl7OTTfdRGVlJfPnz+dTn/pUpkPuclJJWL7Gm5OTtuZ1muaEpUl3WEREJEEqd0LS0Q/LihUrOP300wF49NFH2bBhAwBr1qzh1FNPZfLkydxyyy3E43GuvPJKJSzHoKPRmt8FXAgMM7OfJSzqR1A1lDE50Sg5Dg3oDouIiGRePB6nurqaWCzG/fffz7Bhw6itreX222/nzjvvBII2LjfffDNXXHFFhqPtmjpqdLsDWAbUAcsTXouAd6Y/tPZFI1GiHqGJeCbDEBERAeDCCy9k06ZNTJs2jWuuuYbVq1czY8YMFixYwPTp0wG45JJLePjhh7nrrrsyHG3X1NFozSuBlWZ2l3t21b2YGVE3JSwiIpIVSktLWbFiRcv0JZdccsTysrIy7r//furr67nwwgs7ObruoaMqoXvd/QPAS2bmrZe7+ylpjawDhhElQkNma6ZERERSMmfOHI0n9RZ11Oj2uvD9os4I5GiYRYh6lEbUD4uIiEhP0FGV0M7wfUvnhZMaswhRojTyphs/IiIi0g2l0tPt+8xsg5ntN7MDZnbQzA50RnDtiVhQJdT45poqERER6YZS6Yflv4GL3b083cGkKhKJEvEcGizTkYiIiEhnSGXww13ZlKxAWCVkOTQqYREREcBdd9yz3Vu9RqncYVlmZvcADwD1CTu+/y3t+S2ImBEhh0aUsYiI9HT5+flUVVUxaNAgzPS9kI3cnaqqKvLz8495G6kkLP2AGuD8xH0DSRMWM7sAuAmIAr9x9++3U+5S4D7gDHdflny7EaLk0BAxPBbDjmIQKxER6V6GDx/Otm3b2L17d0rl6+rq3tIXpxyb/Px8hg8ffszrJ01Y3P3jx7JhM4sCvwTeAWwDlprZIndf06pcX4JHqJ9PfeMRopYHQGPjIfKi/Y4lRBER6QZyc3MZPXp0yuXLyso47bTT0hiRpEPShKXVOELN9gPL3P0vHax6JrDR3TeF27kbeA+wplW5/wR+AHwppYgJnxKyXAAaGqvJy1fCIiIi0p2lUiWUD0zi8OjMlwKvAaea2Vx3/1w76w0DtiZMbwNmJhYws+nACHd/0MzaTVjMbAGwACB/VD7r16+nscGhAJYseZz8gmEpHIakS3V1NWVlZZkOQ0K6HtlH1yS76Hp0TakkLKcAZ7t7DMDMbgaeAs4BVh3rjs0sAvwEuCpZWXe/FbgVoGB0gU+aNJnyfSsAmDZtMicMmX6sYchxUFZWpi6ns4iuR/bRNckuuh5dUyqPNQ8AChOm+wADwwSmvu1VANgOjEiYHh7Oa9YXmAqUmdlmYBawyMxmJA86QjTSC4CGxpoUDkFERES6slQ7jlthZmWAAbOB/zKzPsA/O1hvKTDezEYTJCqXAx9uXuju+4HBzdPh9r+Y0lNCESMaDROWhuoUDkFERES6slSeErrNzB4iaEQL8HV33xF+brfdibs3mdlngEcIHmv+rbuvNrNvEzTYXXSsQRtRciL54FDfeOhYNyMiIiJdRCp3WADqgJ0EDXDHmdk4d38y2Uru/hDwUKt532yn7JwUYyFiRk60AJqgsak21dVERESki0rlseZPEPSTMhxYQdDW5FlgXloj60AkGiUnmg9NUN+gNiwiIiLdXSqNbq8DzgC2uPtc4DRgXzqDSiZiEXJzCgCoU6NbERGRbi+VhKXO3esAzKyXu68FJqY3rCQsQl5ubwBqdYdFRESk20ulDcs2M+tPMPjho2a2F9iSzqCSiZiRm9MHgLrGukyGIiIiIp0glaeE/iX8eIOZPQ4UAX9Pa1RJmEXJDe+w1KnRrYiISLfXbsJiZgPbmN3cs20hsCctEaUgYkZeXtCXne6wiIiIdH8d3WGpJBj/pymctoRlDoxJV1DJRCxCr7ygSqihSQmLiIhId9dRwvIzYC7wNLAQWOLu3ilRJWERI79XXwDqYw0ZjkZERETSrd2nhMJRmKcRjNJ8BfCSmf132NV+hkXI7xVUCTU0dTSckYiIiHQHHT7W7IHHgS8DtwAfB87rjMA6ElQJ9cbcaYjrDouIiEh311Gj2z7Ae4APAsXA/cDp7v56J8XWrogZvXKi5Dk0qEpIRESk2+uoDUsFsAG4O3x3YIaZzQBw9/vTH17bLBIlLydCrjuN8cZMhSEiIiKdpKOE5Y8EScpE3tyzrRPcccmIiEXChAUavCn5CiIiItKltZuwuPtVnRjHUYlEcugViZDj6A6LiIhID5DKWEJZxyIR8qJRctxo9FimwxEREZE0S2vCYmYXmNk6M9toZl9tY/nnzWyNmb1sZovNbGQq2w3GErIwYVGVkIiISHeXtoTFzKLAL4F3AScBHzKzk1oVewmY4e6nAPcB/53KtiMWIS8aCROWOADr967XE0MiIiLdVNKExcx6m9n/M7Nfh9PjzeyiFLZ9JrDR3Te5ewPB00bvSSzg7o+7e004+RwwPJWgzSL0yo0SdaORGJv2beLSRZfys+d/kMrqIiIi0sUkHa0Z+D9gOXBWOL2d4AmivyVZbxiwNWF6GzCzg/JXAw+3tcDMFgALAPJH5bP0hRfI79WfiBv18SZuWnQjAE+u/TMzGt6eJCw53qqrqykrK8t0GBLS9cg+uibZRdeja0olYRnr7h80sw8BuHuNmVmylY6GmX0UmAGc29Zyd78VuBWgYHSBn3XWWQwsKuXXayM0ReJsO7AR+sKuSCPnnnsuxzk8SaKsrIw5c+ZkOgwJ6XpkH12T7KLr0TWl0oalwcwKCPpewczGAqkM4LMdGJEwPTycdwQzOw+4HrjE3VMaGChiUcyMCBEacBpzagGoMThQty+VTYiIiEgXkkrC8i3g78AIM7sLWEwwtlAyS4HxZjbazPKAy4FFiQXM7DTgVwTJSkWqQVskuIMS9SiNONU5jeTFg4Gk36hcnepmREREpItImrC4+6PA+4CrgIUET/WUpbBeE/AZ4BGgHLjX3Veb2bfN7JKw2A+BQuCPZrbCzBa1s7kjmEXC4KM0mLMv6kyuD/pjeWP3mlQ2ISIiIl1IR4MfTm81a2f4fqKZnejuLybbuLs/BDzUat43Ez4f08jPkTBhiZLD3qjRZMag+iIoOMQb+149lk2KiIhIFuuo0e2Pw/d8ggaxKwEDTgGWcfipoU4XsSgQJCxNYQPbPnknAuXsOfRGpsISERGRNGm3Ssjd57r7XII7K9PdfYa7nw6cRhuNZztTNNqcsOS1zOvXZyj9YnH2qNGtiIhIt5NKo9uJ7r6qecLdXwEmpy+k5FrusNjhhKVv78H0i0FV/X4AKmsr2VG9IyPxiYiIyPGVSj8sL5vZb4Dfh9MfAV5OX0jJRSJhGxbr1TJvYGEJvSsjVDXVsL9+P3PvnUu/3ELKLn+S3EhupkIVERGR4yCVOywfB1YD14WvNeG8jGlpdJuQsBT3P4H8WC574/Usf/0JAA40VvPizhcyEqOIiIgcP0nvsLh7HfA/4SsrRMI2LDnRgpZ5QwaNICeWxz6q+eNz97XMX7F+ETOHnd3pMYqIiMjxkzRhMbPXCHu5TeTuY9IS0VHIiRxOWIaVnEgk1psDkWp2HNjImLxGaiPGpkr1yyIiItLVpdKGZUbC53zg/cDA9ISTXOIoQTk5vVs+9+83EIsXErPd7O9VzYjGXAZZnE21uwD42fKbWLV7Jb98xy3kRfMQERGRriOVnm6rEl7b3f2nwLvTH1pyBbmFhyfMyI0EeVRVrjPICuld35vN8Vo27d3Ar1/5Dc/tWsoDq+/MULQiIiJyrJImLGY2PeE1w8yuIbU7M2k3YWjpEdO9cotbPg/rXQz1xdQZ/Offvtcy/6m1QfuWqtoq1u1Z1zmBioiIyFuSSuLx44TPTcBrwAfSE87ROWlIKWw5PF1QMLTl8+iBo1izpQ7YyqqmZZwQa+L0hhzKfDs1jTV8+P53s6PpEL+Z8zNmjpzb+cGLiIhIylJ5rPnq5l5v3f0d7r4AaEh3YKkoyC8CIOpBm+DigaNalo0tnURtdAoA9RFnVFMeddWjOGTO5+7+PDuaDgHwu+eCuy9/X/6//O8/rqWhqb4Tj0BERERSkUrCcl+K8zpdr7y+ABSEzzB99Nx5LcuGlZzMgBOmUxCPAzCx9xAqDgUJzLPxp+kbi3NxdR7P1O7gh3/9FV965WZu3lnGr//+KeIe5+anv833F3+Ogw0HAXB33N/0sJSIiIh0go5Ga54ETAGKzOx9CYv6ETwtlBGWkDNEe/UDoCAneLz5hIFFLcsGl57CFec2smRJkJOdM/wMnt09k36xRRyIRpnh/XijchqxwiXcWfUL8j3O5Abj97tfYMX/fZ7noosB2PO317nstG/yjSX/Ro5F+MX5tzGmZCqbKtfQp1cRpX2HddKRi4iI9FwdtWGZCFwE9AcuTph/EPi3VDZuZhcANwFR4Dfu/v1Wy3sBdwCnA1XAB919c4qxU9x/NO8e+U6umHJVy7w7bDirK1cRyS/ibWPhkoerWdS3kDOmXcU3xg3klw87z0fh8nEX8js/i4GxJ9gTjXJO02A2V5xG9YmLeY7FTK5rYmptL/7IBh5+8goK4nEMuO5vVzGgaTQv9VpLnjufHXYV9Y0FPF5xO2N6l3D1uTeze+dylm26m+lDZ3HWzM9x8MBWXt3yBJPGvov8PoNpijdRU1NJv8ITUj1UERGRHs2SVXOY2Vnu/uxRb9gsCqwH3gFsA5YCH3L3NQllPg2c4u7XmNnlwL+4+wc72m6fUQV+aHNt+wWaGqCxBgr6B5Ov/ImGzU/S+6KbANi95n52bH6SUy/4MXUxuOeBD1O2fzX/dcFvWLJzKH9b+V5W5TTw3eFXc+fqscTzv8K6XlE+cOgMdu4/wOPD1gNw5sEIe3Ob2JAf3MEZEItzMGIUxJ3aiNFkQY8xJ9U523KdA9EIg5riTK4fzJr8PeyJwtimKEP9RF63reyNNDHVB5Mb6Uu5v04vIkzpNYbeVkBVwzbyozlMKpxCrhu7azdxQp9hDBk0k6qDr7L30KsM7zOMIcXTieXkEYs0MaB3f/rmFLFr14tELc7okbPpPXACVbtXUV9/gN59SinI70881kButBe9+g4hXruHA7teoW/BIKIDRkKvoMoNdzAL3htrICcfIkFvw3GP8+QTTzJnzpyj+OmQdCorK9P1yDK6JtlF1yO7mNlyd5+RtFx7CYuZfdnd/9vMfk7bPd1+NkkAZwE3uPs7w+mvhet9L6HMI2GZZ80sB3gDKPYOsqikCcvRCtu4EA6oWFddQc2hXQwsPRmAmp0rOLT3VYpPupStlQcpf/ar7G2o5IyzbuL5jet5ftM3KMrrw7Qx/8WGjQ+ytO6PDIn0Jy/v81QfWsjKvNWMburDoKbpvB59hk29YpxcG6V3zWD299nB2vwoE+viFDX2Yl3vemoixrQaiFmc1flGfSTCkMYYNRFjfzSVJkdtM3ciQMyszeV9Y3HqzWiIGDnuFMdiHLIIMYO+8Th94s7+SISDEaOPO7ke4UAEaiNG73icPnGos+BWWoFHyHOoMyfHnUI38t2IATkOvYjQRJw6ixPFiLT8B70c8j1KzCLEMfLIxS2PeovRQCzsONCIW5xcj5BHLrnkYsQwnLhFaCJCk0GUHPKIghlxIGYRGs2otxhNxMkhSg655FguUcsjGulFDr3CZCxYz8yACERygBwMwyIR3HIhkgcWBSJYxDByMIuE0xHiHqfJmoh5E2BB0meGYYT/C17uGHEiOObBOx7HaQKPkWMRct3ICfZAnhlRd5w4hC9zx4mBx6ncXcHgwYOI4ORahFyiwXoY4DR5E43eQFO8kUZvIkYsTEoJroZFiViEiEUwIkTNiDhEgjOMexzHcTPcorhFIBLFLAoWwSwHi0SJWG7wHskjYjlEojmY5RKJhO/RXCKWSyRct/lcxw2azGkieCwxRvyIX0CJvx7MwDAi4bkMfp4M83hLrHgc9xiE5xUPfo6CcsFt5kh4PaJ+eDtRwMyJepCYQ5w4BhYJftrMgulIhDjg1vxuxM0IrqrhBus3bGD8uHEt5zU4txZ+jhK1aMJ0sKz5n6rR6t+sBe3p3Cy4DuH5OPzZSfz/lk9hOQPMLPz5i4TnHSJmLdPNSxM/RyychxEJNoIRxEBiDOF0857b/o3TfP2OXGot8w9/OHz8xhFTEWs1h5Z4m/+NhUGBNZ+F4H3FSyuYdtq0lvValrmH/0qO/ApKDPOI/WEJx2Btln9z5K2OtuVcvnkfZkbidiNv+v3dxlabNxuOuZd4jtv61PZ2D4/Z9yYdX9CUiyYaMaD0LScsF7v7X83sY20td/ffdbhhs8uAC9z9E+H0FcBMd/9MQplXwjLbwulXwzKV7W13XL8CX/ye9yc5rOwU/NKIE7FI+G/IiTfVE8nJx4F4rBE8hkd60RiL4021GBCL5NMUi9PUtB+ASE4/GhuraWo6EIynFC2ksamGeKwaczA3gq/kOBHLxzFisUNAjIjlAhHcY+EXngW//GjCiYDl4cSIe2PLl0D4q59Iy1dD8CUQ/lol5o4f8fshHv6isuC4AE9ofBQPl1n4iyRYx8NlELfmtkrBdp2gdXgk4UfVEsrGE+Y1v7csb2NZFIi4Ew8TmZZyqf7rEhGR4+b9j65NKWFptw2Lu/81fO8wMekMZrYAWAAwvjCfffv2ZTag464uyXQ1ADnkBpMNtfQiSq/ogGA61kQvy4OcDkZMyO13XCJtSywWIxoOSJm9HPPDf3Eenhe8E/4F7R4/XMabSzZPH/4bzVr+qvSEMs1/aCb8JUvio3h+eNctKWtY0kj4WzRxvpEYdfBXO0es17xO83s87kTCO4bxN/2dbUf8B5Ggtq8lczzy/PgR74n7SZxqPq7wvCSu1cY5b4nIW0odcc6aownuPgVnw8KzcuTf65awZvhutBNr2+sdsW7iux053fpvU4OWuwpH/n3dKkJP3PLhv6hbn+G2Ymhb83aa9/PmLNs63kCbW3zzplrfY0go663LHrmhzsj72z5E72BZoNVNFzon2uY9tj3X2l3amZEcXYlM6egpob/SQeTufkmSbW8HRiRMDw/ntVVmW1glVETQ+Lb1vm4FbgWYOHGin/rXRUl2LZ1J9cHZRdcj++iaZJeysjLO1fXIHu00VWito6eEfvQWQ1gKjDez0QSJyeXAh1uVWQR8DHgWuAx4rKP2KyIiItIzdVQl9ETzZzPLAyYR3HFZ5+5Je7p19yYz+wzwCEGzgd+6+2oz+zawzN0XAbcBd5rZRmAPQVIjIiIicoSkYwmZ2buBW4BXCarbRpvZJ9394WTruvtDwEOt5n0z4XMd0DVb0IqIiEinSXXww7nuvhHAzMYCDwJJExYRERGR4yGVhOVgc7IS2kTQ221GrF+/vtrM1mVq/9KmwUC7j6JLp9P1yD66JtlF1yO7TEylUCoJyzIzewi4l6ANy/uBpc3jC7n7/ccc4rFZl8rz2tJ5zGyZrkn20PXIProm2UXXI7uY2bJUyqWSsOQDu4Bzw+ndQAHB+EIOdHbCIiIiIj1M0oTF3T/eGYGIiIiItCeVp4RGA9cCoxLLp9BxXLrcmqH9Svt0TbKLrkf20TXJLroe2SWl65HKaM0rCfpLWcXhoVmO6KdFREREJJ1SSVied/eZnRSPiIiIyJu0M370EW4ys2+Z2VlmNr35lfbI2mBmF5jZOjPbaGZfzUQMcpiZ/dbMKsJRtyXDzGyEmT1uZmvMbLWZXZfpmHoyM8s3sxfMbGV4PW7MdEwCZhY1s5fM7G+ZjkXAzDab2SozW5HsaaFU7rB8D7iCoKfb5iohd/d5xyXaFJlZFFgPvAPYRjBW0YfcfU1nxiGHmdlsgqGk73D3qZmOp6czsyHAEHd/0cz6AsuB9+rfSGaYmQF93L3azHKBJcB17v5chkPr0czs88AMoJ+7X5TpeHo6M9sMzHD3pP3ipPJY8/uBMamMH5RmZwIb3X0TgJndDbwH0C/jDHH3J81sVKbjkIC77wR2hp8Pmlk5MAz9G8mIcCDX6nAyN3xpcNcMMrPhwLuB7wKfz3A4cpRSqRJ6Beif5jhSMQzYmjC9LZwnIq2EieRpwPMZDqVHC6sfVgAVwKPuruuRWT8FvkzCAySScQ78w8yWm9mCjgqmcoelP7DWzJYC9S17yNxjzSLSATMrBP4EfM7dD2Q6np7M3WPANDPrD/zZzKa6u9p8ZYCZXQRUuPtyM5uT4XDksHPcfbuZlQCPmtlad3+yrYKpJCzfOr6xHbPtwIiE6eHhPBEJhW0l/gTclYFhM6Qd7r7PzB4HLiC4ay2d72zgEjO7kKAH935m9nt3/2iG4+rR3H17+F5hZn8maP7RZsKStErI3Z9IfAEx4APHM+AULQXGm9loM8sDLgcWZSAOkawUNvK8DSh3959kOp6ezsyKwzsrmFkBwQMDazMaVA/m7l9z9+HuPorg++MxJSuZZWZ9wgcEMLM+wPl0kNCn0oYFMzvNzH4Ytub9T6D8OMR6VNy9CfgM8Ei4/3vdfXVnxyGHmdlC4FlgopltM7OrMx1TD3c2wRN988JHBFeEf01KZgwBHjezlwn+4HrU3fUorchhpcCSsIPaF4AH3f3v7RVu97FmM5sAfCh8VQL3AF9095HHPWQRERGRDnSUsMSBp4Cr3X1jOG+Tu4/pxPhEREREOqwSeh9Bnw6Pm9mvzWw+YJ0TloiIiMhhqfR024egg7YPAfOAO4A/u/s/0h+eiIiISAoJyxGFzQYQ9Hz7QXefn7aoRERERBIcVcIiIiIikgkpPdYsIt2fmcUSHode0Z3GiQq7Zrgt/HyVmf2i1fIyM5vRwfp3m9n4dMcpIu1LpadbEekZat19WlsLwk7pzN276hgsXwe+8xbWv5lgDJp/Oz7hiMjR0h0WEWmTmY0ys3VmdgdB75MjzOxLZrbUzF42sxsTyl5vZuvNbImZLTSzL4bzW+5cmNngsPPJ5kEBf5iwrU+G8+eE69xnZmvN7K4wWcLMzjCzZ8xspZm9YGZ9zexJM5uWEMcSMzu11XH0BU5x95UpHPMlCXeY1pnZa+Gip4DzzEx/5IlkiP7xiUizgnBkYYDXgP8AxgMfc/fnzOz8cPpMgi4OFpnZbOAQQVfn0wh+p7wILE+yr6uB/e5+hpn1Ap42s+YnD08DpgA7gKeBs83sBYLOKz/o7kvNrB9QSzAUwVXA58LOLvPbSExm8Obuvj9oZuckTI8DcPdFhEN+mNm9wBPh/LiZbQROTeHYRCQNlLCISLMjqoTCNixb3P25cNb54eulcLqQIIHpS9DVQU24XipjfJ0PnGJml4XTReG2GoAX3H1buK0VwChgP7DT3ZcCNI9CbWZ/BP6fmX0J+Ffg9jb2NQTY3WrePe7+mYRjLUtcaGZfJjgfv0yYXQEMRQmLSEYoYRGRjhxK+GzA99z9V4kFzOxzHazfxOGq5/xW27rW3R9pta05QH3CrBgd/J5y9xoze5Sgr6gPAKe3Uay21b47ZGbnEXTfMLvVovxwWyKSAWrDIiKpegT4VzMrBDCzYWZWQjAU/HvNrCBsL3JxwjqbOZxEXNZqW58ys9xwWxPCTirbsw4YYmZnhOX7JrQn+Q3wM2Cpu+9tY91ywiqfZMxsJPBL4P3u3jo5mUAHI8mKSHrpDouIpMTd/2Fmk4Fnw3aw1cBH3f1FM7sHWElQbbI0YbUfAfea2QLgwYT5vyGo6nkxbFS7G3hvB/tuMLMPAj83swKCOx3nAdXuvtzMDgD/1866a82syMz6uvvBJId5FTAIeCA8xh3ufqGZlRJUEb2RZH0RSRN1HCcix5WZ3UCQSPyok/Y3FCgDJrX32LWZ/Qdw0N1/c4z7+A/ggLvfdsyBishboiohEemyzOxK4Hng+iR9xNzMkW1jjtY+4HdvYX0ReYt0h0VERESynu6wiIiISNZTwiIiIiJZTwmLiIiIZD0lLCIiIpL1lLCIiIhI1lPCIiIiIlnv/wPVq3FxaYSTFgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "TestFlight.allInfo()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Using Simulation for Design\n", - "\n", - "Here, we go through a couple of examples which make use of RocketPy in cool ways to help us design our rocket." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Dynamic Stability Analysis" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Ever wondered how static stability translates into dynamic stability? Different static margins result in different dynamic behavior, which also depends on the rocket's rotational inertial.\n", - "\n", - "Let's make use of RocketPy's helper class called Function to explore how the dynamic stability of Calisto varies if we change the fins span by a certain factor." - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Simulating Rocket with Static Margin of -1.444->-0.405 c\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Current Simulation Time: 0.0050 s\r\n", - "Current Simulation Time: 0.0100 s\r\n", - "Current Simulation Time: 0.0200 s\r\n", - "Current Simulation Time: 0.0300 s\r\n", - "Current Simulation Time: 0.0400 s\r\n", - "Current Simulation Time: 0.0500 s\r\n", - "Current Simulation Time: 0.0516 s\r\n", - "Current Simulation Time: 0.0532 s\r\n", - "Current Simulation Time: 0.0565 s\r\n", - "Current Simulation Time: 0.0571 s\r\n", - "Current Simulation Time: 0.0578 s\r\n", - "Current Simulation Time: 0.0591 s\r\n", - "Current Simulation Time: 0.0603 s\r\n", - "Current Simulation Time: 0.0616 s\r\n", - "Current Simulation Time: 0.0716 s\r\n", - "Current Simulation Time: 0.0816 s\r\n", - "Current Simulation Time: 0.0916 s\r\n", - "Current Simulation Time: 0.0936 s\r\n", - "Current Simulation Time: 0.0956 s\r\n", - "Current Simulation Time: 0.0976 s\r\n", - "Current Simulation Time: 0.1004 s\r\n", - "Current Simulation Time: 0.1024 s\r\n", - "Current Simulation Time: 0.1044 s\r\n", - "Current Simulation Time: 0.1063 s\r\n", - "Current Simulation Time: 0.1103 s\r\n", - "Current Simulation Time: 0.1142 s\r\n", - "Current Simulation Time: 0.1182 s\r\n", - "Current Simulation Time: 0.1221 s\r\n", - "Current Simulation Time: 0.1321 s\r\n", - "Current Simulation Time: 0.1421 s\r\n", - "Current Simulation Time: 0.1521 s\r\n", - "Current Simulation Time: 0.1596 s\r\n", - "Current Simulation Time: 0.1657 s\r\n", - "Current Simulation Time: 0.1718 s\r\n", - "Current Simulation Time: 0.1779 s\r\n", - "Current Simulation Time: 0.1840 s\r\n", - "Current Simulation Time: 0.1940 s\r\n", - "Current Simulation Time: 0.2040 s\r\n", - "Current Simulation Time: 0.2140 s\r\n", - "Current Simulation Time: 0.2221 s\r\n", - "Current Simulation Time: 0.2303 s\r\n", - "Current Simulation Time: 0.2384 s\r\n", - "Current Simulation Time: 0.2465 s\r\n", - "Current Simulation Time: 0.2565 s\r\n", - "Current Simulation Time: 0.2665 s\r\n", - "Current Simulation Time: 0.2765 s\r\n", - "Current Simulation Time: 0.2865 s\r\n", - "Current Simulation Time: 0.2965 s\r\n", - "Current Simulation Time: 0.3065 s\r\n", - "Current Simulation Time: 0.3165 s\r\n", - "Current Simulation Time: 0.3265 s\r\n", - "Current Simulation Time: 0.3365 s\r\n", - "Current Simulation Time: 0.3465 s\r\n", - "Current Simulation Time: 0.3565 s\r\n", - "Current Simulation Time: 0.3665 s\r\n", - "Current Simulation Time: 0.3679 s\r\n", - "Current Simulation Time: 0.3725 s\r\n", - "Current Simulation Time: 0.3825 s\r\n", - "Current Simulation Time: 0.3925 s\r\n", - "Current Simulation Time: 0.4025 s\r\n", - "Current Simulation Time: 0.4125 s\r\n", - "Current Simulation Time: 0.4225 s\r\n", - "Current Simulation Time: 0.4325 s\r\n", - "Current Simulation Time: 0.4425 s\r\n", - "Current Simulation Time: 0.4525 s\r\n", - "Current Simulation Time: 0.4625 s\r\n", - "Current Simulation Time: 0.4725 s\r\n", - "Current Simulation Time: 0.4825 s\r\n", - "Current Simulation Time: 0.4925 s\r\n", - "Current Simulation Time: 0.5025 s\r\n", - "Current Simulation Time: 0.5125 s\r\n", - "Current Simulation Time: 0.5225 s\r\n", - "Current Simulation Time: 0.5325 s\r\n", - "Current Simulation Time: 0.5425 s\r\n", - "Current Simulation Time: 0.5525 s\r\n", - "Current Simulation Time: 0.5625 s\r\n", - "Current Simulation Time: 0.5725 s\r\n", - "Current Simulation Time: 0.5825 s\r\n", - "Current Simulation Time: 0.5925 s\r\n", - "Current Simulation Time: 0.6025 s\r\n", - "Current Simulation Time: 0.6125 s\r\n", - "Current Simulation Time: 0.6225 s\r\n", - "Current Simulation Time: 0.6325 s\r\n", - "Current Simulation Time: 0.6425 s\r\n", - "Current Simulation Time: 0.6525 s\r\n", - "Current Simulation Time: 0.6625 s\r\n", - "Current Simulation Time: 0.6725 s\r\n", - "Current Simulation Time: 0.6825 s\r\n", - "Current Simulation Time: 0.6925 s\r\n", - "Current Simulation Time: 0.7025 s\r\n", - "Current Simulation Time: 0.7125 s\r\n", - "Current Simulation Time: 0.7225 s\r\n", - "Current Simulation Time: 0.7325 s\r\n", - "Current Simulation Time: 0.7425 s\r\n", - "Current Simulation Time: 0.7525 s\r\n", - "Current Simulation Time: 0.7625 s\r\n", - "Current Simulation Time: 0.7725 s\r\n", - "Current Simulation Time: 0.7825 s\r\n", - "Current Simulation Time: 0.7925 s\r\n", - "Current Simulation Time: 0.8025 s\r\n", - "Current Simulation Time: 0.8125 s\r\n", - "Current Simulation Time: 0.8225 s\r\n", - "Current Simulation Time: 0.8325 s\r\n", - "Current Simulation Time: 0.8425 s\r\n", - "Current Simulation Time: 0.8525 s\r\n", - "Current Simulation Time: 0.8625 s\r\n", - "Current Simulation Time: 0.8725 s\r\n", - "Current Simulation Time: 0.8825 s\r\n", - "Current Simulation Time: 0.8925 s\r\n", - "Current Simulation Time: 0.9025 s\r\n", - "Current Simulation Time: 0.9125 s\r\n", - "Current Simulation Time: 0.9225 s\r\n", - "Current Simulation Time: 0.9325 s\r\n", - "Current Simulation Time: 0.9425 s\r\n", - "Current Simulation Time: 0.9525 s\r\n", - "Current Simulation Time: 0.9625 s\r\n", - "Current Simulation Time: 0.9725 s\r\n", - "Current Simulation Time: 0.9825 s\r\n", - "Current Simulation Time: 0.9925 s\r\n", - "Current Simulation Time: 1.0025 s\r\n", - "Current Simulation Time: 1.0125 s\r\n", - "Current Simulation Time: 1.0225 s\r\n", - "Current Simulation Time: 1.0325 s\r\n", - "Current Simulation Time: 1.0425 s\r\n", - "Current Simulation Time: 1.0525 s\r\n", - "Current Simulation Time: 1.0625 s\r\n", - "Current Simulation Time: 1.0725 s\r\n", - "Current Simulation Time: 1.0825 s\r\n", - "Current Simulation Time: 1.0925 s\r\n", - "Current Simulation Time: 1.1025 s\r\n", - "Current Simulation Time: 1.1125 s\r\n", - "Current Simulation Time: 1.1225 s\r\n", - "Current Simulation Time: 1.1325 s\r\n", - "Current Simulation Time: 1.1425 s\r\n", - "Current Simulation Time: 1.1525 s\r\n", - "Current Simulation Time: 1.1625 s\r\n", - "Current Simulation Time: 1.1725 s\r\n", - "Current Simulation Time: 1.1825 s\r\n", - "Current Simulation Time: 1.1925 s\r\n", - "Current Simulation Time: 1.2025 s\r\n", - "Current Simulation Time: 1.2125 s\r\n", - "Current Simulation Time: 1.2225 s\r\n", - "Current Simulation Time: 1.2325 s\r\n", - "Current Simulation Time: 1.2425 s\r\n", - "Current Simulation Time: 1.2525 s\r\n", - "Current Simulation Time: 1.2625 s\r\n", - "Current Simulation Time: 1.2725 s\r\n", - "Current Simulation Time: 1.2825 s\r\n", - "Current Simulation Time: 1.2925 s\r\n", - "Current Simulation Time: 1.3025 s\r\n", - "Current Simulation Time: 1.3125 s\r\n", - "Current Simulation Time: 1.3225 s\r\n", - "Current Simulation Time: 1.3325 s\r\n", - "Current Simulation Time: 1.3425 s\r\n", - "Current Simulation Time: 1.3525 s\r\n", - "Current Simulation Time: 1.3625 s\r\n", - "Current Simulation Time: 1.3725 s\r\n", - "Current Simulation Time: 1.3825 s\r\n", - "Current Simulation Time: 1.3925 s\r\n", - "Current Simulation Time: 1.4025 s\r\n", - "Current Simulation Time: 1.4125 s\r\n", - "Current Simulation Time: 1.4225 s\r\n", - "Current Simulation Time: 1.4325 s\r\n", - "Current Simulation Time: 1.4425 s\r\n", - "Current Simulation Time: 1.4525 s\r\n", - "Current Simulation Time: 1.4625 s\r\n", - "Current Simulation Time: 1.4725 s\r\n", - "Current Simulation Time: 1.4825 s\r\n", - "Current Simulation Time: 1.4925 s\r\n", - "Current Simulation Time: 1.5025 s\r\n", - "Current Simulation Time: 1.5125 s\r\n", - "Current Simulation Time: 1.5225 s\r\n", - "Current Simulation Time: 1.5325 s\r\n", - "Current Simulation Time: 1.5425 s\r\n", - "Current Simulation Time: 1.5525 s\r\n", - "Current Simulation Time: 1.5625 s\r\n", - "Current Simulation Time: 1.5725 s\r\n", - "Current Simulation Time: 1.5825 s\r\n", - "Current Simulation Time: 1.5925 s\r\n", - "Current Simulation Time: 1.6025 s\r\n", - "Current Simulation Time: 1.6125 s\r\n", - "Current Simulation Time: 1.6225 s\r\n", - "Current Simulation Time: 1.6325 s\r\n", - "Current Simulation Time: 1.6425 s\r\n", - "Current Simulation Time: 1.6525 s\r\n", - "Current Simulation Time: 1.6625 s\r\n", - "Current Simulation Time: 1.6725 s\r\n", - "Current Simulation Time: 1.6825 s\r\n", - "Current Simulation Time: 1.6925 s\r\n", - "Current Simulation Time: 1.7025 s\r\n", - "Current Simulation Time: 1.7125 s\r\n", - "Current Simulation Time: 1.7225 s\r\n", - "Current Simulation Time: 1.7325 s\r\n", - "Current Simulation Time: 1.7425 s\r\n", - "Current Simulation Time: 1.7525 s\r\n", - "Current Simulation Time: 1.7625 s\r\n", - "Current Simulation Time: 1.7725 s\r\n", - "Current Simulation Time: 1.7825 s\r\n", - "Current Simulation Time: 1.7925 s\r\n", - "Current Simulation Time: 1.8025 s\r\n", - "Current Simulation Time: 1.8125 s\r\n", - "Current Simulation Time: 1.8225 s\r\n", - "Current Simulation Time: 1.8325 s\r\n", - "Current Simulation Time: 1.8425 s\r\n", - "Current Simulation Time: 1.8525 s\r\n", - "Current Simulation Time: 1.8625 s\r\n", - "Current Simulation Time: 1.8725 s\r\n", - "Current Simulation Time: 1.8825 s\r\n", - "Current Simulation Time: 1.8925 s\r\n", - "Current Simulation Time: 1.9025 s\r\n", - "Current Simulation Time: 1.9125 s\r\n", - "Current Simulation Time: 1.9225 s\r\n", - "Current Simulation Time: 1.9325 s\r\n", - "Current Simulation Time: 1.9425 s\r\n", - "Current Simulation Time: 1.9525 s\r\n", - "Current Simulation Time: 1.9625 s\r\n", - "Current Simulation Time: 1.9725 s\r\n", - "Current Simulation Time: 1.9825 s\r\n", - "Current Simulation Time: 1.9925 s\r\n", - "Current Simulation Time: 2.0025 s\r\n", - "Current Simulation Time: 2.0125 s\r\n", - "Current Simulation Time: 2.0225 s\r\n", - "Current Simulation Time: 2.0325 s\r\n", - "Current Simulation Time: 2.0425 s\r\n", - "Current Simulation Time: 2.0525 s\r\n", - "Current Simulation Time: 2.0625 s\r\n", - "Current Simulation Time: 2.0725 s\r\n", - "Current Simulation Time: 2.0825 s\r\n", - "Current Simulation Time: 2.0925 s\r\n", - "Current Simulation Time: 2.1025 s\r\n", - "Current Simulation Time: 2.1125 s\r\n", - "Current Simulation Time: 2.1225 s\r\n", - "Current Simulation Time: 2.1325 s\r\n", - "Current Simulation Time: 2.1425 s\r\n", - "Current Simulation Time: 2.1525 s\r\n", - "Current Simulation Time: 2.1625 s\r\n", - "Current Simulation Time: 2.1725 s\r\n", - "Current Simulation Time: 2.1825 s\r\n", - "Current Simulation Time: 2.1925 s\r\n", - "Current Simulation Time: 2.2025 s\r\n", - "Current Simulation Time: 2.2125 s\r\n", - "Current Simulation Time: 2.2225 s\r\n", - "Current Simulation Time: 2.2325 s\r\n", - "Current Simulation Time: 2.2425 s\r\n", - "Current Simulation Time: 2.2525 s\r\n", - "Current Simulation Time: 2.2625 s\r\n", - "Current Simulation Time: 2.2725 s\r\n", - "Current Simulation Time: 2.2825 s\r\n", - "Current Simulation Time: 2.2925 s\r\n", - "Current Simulation Time: 2.3025 s\r\n", - "Current Simulation Time: 2.3125 s\r\n", - "Current Simulation Time: 2.3225 s\r\n", - "Current Simulation Time: 2.3325 s\r\n", - "Current Simulation Time: 2.3425 s\r\n", - "Current Simulation Time: 2.3525 s\r\n", - "Current Simulation Time: 2.3625 s\r\n", - "Current Simulation Time: 2.3725 s\r\n", - "Current Simulation Time: 2.3825 s\r\n", - "Current Simulation Time: 2.3925 s\r\n", - "Current Simulation Time: 2.4025 s\r\n", - "Current Simulation Time: 2.4125 s\r\n", - "Current Simulation Time: 2.4225 s\r\n", - "Current Simulation Time: 2.4325 s\r\n", - "Current Simulation Time: 2.4425 s\r\n", - "Current Simulation Time: 2.4525 s\r\n", - "Current Simulation Time: 2.4625 s\r\n", - "Current Simulation Time: 2.4725 s\r\n", - "Current Simulation Time: 2.4825 s\r\n", - "Current Simulation Time: 2.4925 s\r\n", - "Current Simulation Time: 2.5025 s\r\n", - "Current Simulation Time: 2.5125 s\r\n", - "Current Simulation Time: 2.5225 s\r\n", - "Current Simulation Time: 2.5325 s\r\n", - "Current Simulation Time: 2.5425 s\r\n", - "Current Simulation Time: 2.5525 s\r\n", - "Current Simulation Time: 2.5625 s\r\n", - "Current Simulation Time: 2.5725 s\r\n", - "Current Simulation Time: 2.5825 s\r\n", - "Current Simulation Time: 2.5925 s\r\n", - "Current Simulation Time: 2.6025 s\r\n", - "Current Simulation Time: 2.6125 s\r\n", - "Current Simulation Time: 2.6225 s\r\n", - "Current Simulation Time: 2.6325 s\r\n", - "Current Simulation Time: 2.6425 s\r\n", - "Current Simulation Time: 2.6525 s\r\n", - "Current Simulation Time: 2.6625 s\r\n", - "Current Simulation Time: 2.6725 s\r\n", - "Current Simulation Time: 2.6825 s\r\n", - "Current Simulation Time: 2.6925 s\r\n", - "Current Simulation Time: 2.7025 s\r\n", - "Current Simulation Time: 2.7125 s\r\n", - "Current Simulation Time: 2.7225 s\r\n", - "Current Simulation Time: 2.7325 s\r\n", - "Current Simulation Time: 2.7425 s\r\n", - "Current Simulation Time: 2.7525 s\r\n", - "Current Simulation Time: 2.7625 s\r\n", - "Current Simulation Time: 2.7725 s\r\n", - "Current Simulation Time: 2.7825 s\r\n", - "Current Simulation Time: 2.7925 s\r\n", - "Current Simulation Time: 2.8025 s\r\n", - "Current Simulation Time: 2.8125 s\r\n", - "Current Simulation Time: 2.8225 s\r\n", - "Current Simulation Time: 2.8325 s\r\n", - "Current Simulation Time: 2.8425 s\r\n", - "Current Simulation Time: 2.8525 s\r\n", - "Current Simulation Time: 2.8625 s\r\n", - "Current Simulation Time: 2.8725 s\r\n", - "Current Simulation Time: 2.8825 s\r\n", - "Current Simulation Time: 2.8925 s\r\n", - "Current Simulation Time: 2.9025 s\r\n", - "Current Simulation Time: 2.9125 s\r\n", - "Current Simulation Time: 2.9225 s\r\n", - "Current Simulation Time: 2.9325 s\r\n", - "Current Simulation Time: 2.9425 s\r\n", - "Current Simulation Time: 2.9525 s\r\n", - "Current Simulation Time: 2.9625 s\r\n", - "Current Simulation Time: 2.9725 s\r\n", - "Current Simulation Time: 2.9825 s\r\n", - "Current Simulation Time: 2.9925 s\r\n", - "Current Simulation Time: 3.0025 s\r\n", - "Current Simulation Time: 3.0125 s\r\n", - "Current Simulation Time: 3.0203 s\r\n", - "Current Simulation Time: 3.0281 s\r\n", - "Current Simulation Time: 3.0359 s\r\n", - "Current Simulation Time: 3.0436 s\r\n", - "Current Simulation Time: 3.0514 s\r\n", - "Current Simulation Time: 3.0614 s\r\n", - "Current Simulation Time: 3.0714 s\r\n", - "Current Simulation Time: 3.0814 s\r\n", - "Current Simulation Time: 3.0914 s\r\n", - "Current Simulation Time: 3.1014 s\r\n", - "Current Simulation Time: 3.1114 s\r\n", - "Current Simulation Time: 3.1214 s\r\n", - "Current Simulation Time: 3.1314 s\r\n", - "Current Simulation Time: 3.1414 s\r\n", - "Current Simulation Time: 3.1514 s\r\n", - "Current Simulation Time: 3.1614 s\r\n", - "Current Simulation Time: 3.1714 s\r\n", - "Current Simulation Time: 3.1814 s\r\n", - "Current Simulation Time: 3.1914 s\r\n", - "Current Simulation Time: 3.2014 s\r\n", - "Current Simulation Time: 3.2114 s\r\n", - "Current Simulation Time: 3.2214 s\r\n", - "Current Simulation Time: 3.2314 s\r\n", - "Current Simulation Time: 3.2414 s\r\n", - "Current Simulation Time: 3.2514 s\r\n", - "Current Simulation Time: 3.2614 s\r\n", - "Current Simulation Time: 3.2714 s\r\n", - "Current Simulation Time: 3.2814 s\r\n", - "Current Simulation Time: 3.2914 s\r\n", - "Current Simulation Time: 3.3014 s\r\n", - "Current Simulation Time: 3.3114 s\r\n", - "Current Simulation Time: 3.3200 s\r\n", - "Current Simulation Time: 3.3285 s\r\n", - "Current Simulation Time: 3.3370 s\r\n", - "Current Simulation Time: 3.3456 s\r\n", - "Current Simulation Time: 3.3541 s\r\n", - "Current Simulation Time: 3.3641 s\r\n", - "Current Simulation Time: 3.3741 s\r\n", - "Current Simulation Time: 3.3841 s\r\n", - "Current Simulation Time: 3.3941 s\r\n", - "Current Simulation Time: 3.4041 s\r\n", - "Current Simulation Time: 3.4141 s\r\n", - "Current Simulation Time: 3.4241 s\r\n", - "Current Simulation Time: 3.4341 s\r\n", - "Current Simulation Time: 3.4441 s\r\n", - "Current Simulation Time: 3.4541 s\r\n", - "Current Simulation Time: 3.4641 s\r\n", - "Current Simulation Time: 3.4741 s\r\n", - "Current Simulation Time: 3.4841 s\r\n", - "Current Simulation Time: 3.4941 s\r\n", - "Current Simulation Time: 3.5041 s\r\n", - "Current Simulation Time: 3.5141 s\r\n", - "Current Simulation Time: 3.5241 s\r\n", - "Current Simulation Time: 3.5341 s\r\n", - "Current Simulation Time: 3.5441 s\r\n", - "Current Simulation Time: 3.5541 s\r\n", - "Current Simulation Time: 3.5641 s\r\n", - "Current Simulation Time: 3.5741 s\r\n", - "Current Simulation Time: 3.5841 s\r\n", - "Current Simulation Time: 3.5941 s\r\n", - "Current Simulation Time: 3.6041 s\r\n", - "Current Simulation Time: 3.6141 s\r\n", - "Current Simulation Time: 3.6241 s\r\n", - "Current Simulation Time: 3.6341 s\r\n", - "Current Simulation Time: 3.6441 s\r\n", - "Current Simulation Time: 3.6541 s\r\n", - "Current Simulation Time: 3.6641 s\r\n", - "Current Simulation Time: 3.6741 s\r\n", - "Current Simulation Time: 3.6841 s\r\n", - "Current Simulation Time: 3.6941 s\r\n", - "Current Simulation Time: 3.7041 s\r\n", - "Current Simulation Time: 3.7141 s\r\n", - "Current Simulation Time: 3.7241 s\r\n", - "Current Simulation Time: 3.7341 s\r\n", - "Current Simulation Time: 3.7441 s\r\n", - "Current Simulation Time: 3.7541 s\r\n", - "Current Simulation Time: 3.7641 s\r\n", - "Current Simulation Time: 3.7741 s\r\n", - "Current Simulation Time: 3.7841 s\r\n", - "Current Simulation Time: 3.7941 s\r\n", - "Current Simulation Time: 3.8041 s\r\n", - "Current Simulation Time: 3.8141 s\r\n", - "Current Simulation Time: 3.8241 s\r\n", - "Current Simulation Time: 3.8341 s\r\n", - "Current Simulation Time: 3.8441 s\r\n", - "Current Simulation Time: 3.8541 s\r\n", - "Current Simulation Time: 3.8641 s\r\n", - "Current Simulation Time: 3.8741 s\r\n", - "Current Simulation Time: 3.8841 s\r\n", - "Current Simulation Time: 3.8941 s\r\n", - "Current Simulation Time: 3.9041 s\r\n", - "Current Simulation Time: 3.9141 s\r\n", - "Current Simulation Time: 3.9241 s\r\n", - "Current Simulation Time: 3.9341 s\r\n", - "Current Simulation Time: 3.9441 s\r\n", - "Current Simulation Time: 3.9541 s\r\n", - "Current Simulation Time: 3.9641 s\r\n", - "Current Simulation Time: 3.9741 s\r\n", - "Current Simulation Time: 3.9841 s\r\n", - "Current Simulation Time: 3.9941 s\r\n", - "Current Simulation Time: 4.0041 s\r\n", - "Current Simulation Time: 4.0141 s\r\n", - "Current Simulation Time: 4.0241 s\r\n", - "Current Simulation Time: 4.0341 s\r\n", - "Current Simulation Time: 4.0441 s\r\n", - "Current Simulation Time: 4.0541 s\r\n", - "Current Simulation Time: 4.0641 s\r\n", - "Current Simulation Time: 4.0741 s\r\n", - "Current Simulation Time: 4.0841 s\r\n", - "Current Simulation Time: 4.0941 s\r\n", - "Current Simulation Time: 4.1041 s\r\n", - "Current Simulation Time: 4.1141 s\r\n", - "Current Simulation Time: 4.1241 s\r\n", - "Current Simulation Time: 4.1341 s\r\n", - "Current Simulation Time: 4.1441 s\r\n", - "Current Simulation Time: 4.1541 s\r\n", - "Current Simulation Time: 4.1641 s\r\n", - "Current Simulation Time: 4.1741 s\r\n", - "Current Simulation Time: 4.1841 s\r\n", - "Current Simulation Time: 4.1941 s\r\n", - "Current Simulation Time: 4.2041 s\r\n", - "Current Simulation Time: 4.2141 s\r\n", - "Current Simulation Time: 4.2241 s\r\n", - "Current Simulation Time: 4.2341 s\r\n", - "Current Simulation Time: 4.2441 s\r\n", - "Current Simulation Time: 4.2541 s\r\n", - "Current Simulation Time: 4.2641 s\r\n", - "Current Simulation Time: 4.2741 s\r\n", - "Current Simulation Time: 4.2841 s\r\n", - "Current Simulation Time: 4.2941 s\r\n", - "Current Simulation Time: 4.3041 s\r\n", - "Current Simulation Time: 4.3141 s\r\n", - "Current Simulation Time: 4.3241 s\r\n", - "Current Simulation Time: 4.3341 s\r\n", - "Current Simulation Time: 4.3441 s\r\n", - "Current Simulation Time: 4.3541 s\r\n", - "Current Simulation Time: 4.3641 s\r\n", - "Current Simulation Time: 4.3741 s\r\n", - "Current Simulation Time: 4.3841 s\r\n", - "Current Simulation Time: 4.3941 s\r\n", - "Current Simulation Time: 4.4041 s\r\n", - "Current Simulation Time: 4.4141 s\r\n", - "Current Simulation Time: 4.4241 s\r\n", - "Current Simulation Time: 4.4341 s\r\n", - "Current Simulation Time: 4.4441 s\r\n", - "Current Simulation Time: 4.4541 s\r\n", - "Current Simulation Time: 4.4641 s\r\n", - "Current Simulation Time: 4.4741 s\r\n", - "Current Simulation Time: 4.4841 s\r\n", - "Current Simulation Time: 4.4941 s\r\n", - "Current Simulation Time: 4.5041 s\r\n", - "Current Simulation Time: 4.5141 s\r\n", - "Current Simulation Time: 4.5241 s\r\n", - "Current Simulation Time: 4.5341 s\r\n", - "Current Simulation Time: 4.5441 s\r\n", - "Current Simulation Time: 4.5541 s\r\n", - "Current Simulation Time: 4.5641 s\r\n", - "Current Simulation Time: 4.5741 s\r\n", - "Current Simulation Time: 4.5841 s\r\n", - "Current Simulation Time: 4.5941 s\r\n", - "Current Simulation Time: 4.6041 s\r\n", - "Current Simulation Time: 4.6141 s\r\n", - "Current Simulation Time: 4.6241 s\r\n", - "Current Simulation Time: 4.6341 s\r\n", - "Current Simulation Time: 4.6441 s\r\n", - "Current Simulation Time: 4.6541 s\r\n", - "Current Simulation Time: 4.6641 s\r\n", - "Current Simulation Time: 4.6741 s\r\n", - "Current Simulation Time: 4.6841 s\r\n", - "Current Simulation Time: 4.6941 s\r\n", - "Current Simulation Time: 4.7041 s\r\n", - "Current Simulation Time: 4.7141 s\r\n", - "Current Simulation Time: 4.7241 s\r\n", - "Current Simulation Time: 4.7341 s\r\n", - "Current Simulation Time: 4.7441 s\r\n", - "Current Simulation Time: 4.7541 s\r\n", - "Current Simulation Time: 4.7641 s\r\n", - "Current Simulation Time: 4.7741 s\r\n", - "Current Simulation Time: 4.7841 s\r\n", - "Current Simulation Time: 4.7941 s\r\n", - "Current Simulation Time: 4.8041 s\r\n", - "Current Simulation Time: 4.8141 s\r\n", - "Current Simulation Time: 4.8241 s\r\n", - "Current Simulation Time: 4.8341 s\r\n", - "Current Simulation Time: 4.8441 s\r\n", - "Current Simulation Time: 4.8541 s\r\n", - "Current Simulation Time: 4.8641 s\r\n", - "Current Simulation Time: 4.8741 s\r\n", - "Current Simulation Time: 4.8841 s\r\n", - "Current Simulation Time: 4.8941 s\r\n", - "Current Simulation Time: 4.9041 s\r\n", - "Current Simulation Time: 4.9141 s\r\n", - "Current Simulation Time: 4.9241 s\r\n", - "Current Simulation Time: 4.9341 s\r\n", - "Current Simulation Time: 4.9441 s\r\n", - "Current Simulation Time: 4.9541 s\r\n", - "Current Simulation Time: 4.9641 s\r\n", - "Current Simulation Time: 4.9741 s\r\n", - "Current Simulation Time: 4.9841 s\r\n", - "Current Simulation Time: 4.9941 s\r\n", - "Current Simulation Time: 5.0000 s\r\n", - "Simulation Completed at Time: 5.0000 s\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Simulating Rocket with Static Margin of -0.046->0.993 c\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Current Simulation Time: 0.0050 s\r\n", - "Current Simulation Time: 0.0100 s\r\n", - "Current Simulation Time: 0.0200 s\r\n", - "Current Simulation Time: 0.0300 s\r\n", - "Current Simulation Time: 0.0400 s\r\n", - "Current Simulation Time: 0.0500 s\r\n", - "Current Simulation Time: 0.0516 s\r\n", - "Current Simulation Time: 0.0532 s\r\n", - "Current Simulation Time: 0.0565 s\r\n", - "Current Simulation Time: 0.0571 s\r\n", - "Current Simulation Time: 0.0578 s\r\n", - "Current Simulation Time: 0.0591 s\r\n", - "Current Simulation Time: 0.0603 s\r\n", - "Current Simulation Time: 0.0616 s\r\n", - "Current Simulation Time: 0.0716 s\r\n", - "Current Simulation Time: 0.0816 s\r\n", - "Current Simulation Time: 0.0916 s\r\n", - "Current Simulation Time: 0.0936 s\r\n", - "Current Simulation Time: 0.0956 s\r\n", - "Current Simulation Time: 0.0976 s\r\n", - "Current Simulation Time: 0.1004 s\r\n", - "Current Simulation Time: 0.1024 s\r\n", - "Current Simulation Time: 0.1044 s\r\n", - "Current Simulation Time: 0.1063 s\r\n", - "Current Simulation Time: 0.1103 s\r\n", - "Current Simulation Time: 0.1142 s\r\n", - "Current Simulation Time: 0.1182 s\r\n", - "Current Simulation Time: 0.1221 s\r\n", - "Current Simulation Time: 0.1321 s\r\n", - "Current Simulation Time: 0.1421 s\r\n", - "Current Simulation Time: 0.1521 s\r\n", - "Current Simulation Time: 0.1596 s\r\n", - "Current Simulation Time: 0.1657 s\r\n", - "Current Simulation Time: 0.1718 s\r\n", - "Current Simulation Time: 0.1779 s\r\n", - "Current Simulation Time: 0.1840 s\r\n", - "Current Simulation Time: 0.1940 s\r\n", - "Current Simulation Time: 0.2040 s\r\n", - "Current Simulation Time: 0.2140 s\r\n", - "Current Simulation Time: 0.2221 s\r\n", - "Current Simulation Time: 0.2303 s\r\n", - "Current Simulation Time: 0.2384 s\r\n", - "Current Simulation Time: 0.2465 s\r\n", - "Current Simulation Time: 0.2565 s\r\n", - "Current Simulation Time: 0.2665 s\r\n", - "Current Simulation Time: 0.2765 s\r\n", - "Current Simulation Time: 0.2865 s\r\n", - "Current Simulation Time: 0.2965 s\r\n", - "Current Simulation Time: 0.3065 s\r\n", - "Current Simulation Time: 0.3165 s\r\n", - "Current Simulation Time: 0.3265 s\r\n", - "Current Simulation Time: 0.3365 s\r\n", - "Current Simulation Time: 0.3465 s\r\n", - "Current Simulation Time: 0.3565 s\r\n", - "Current Simulation Time: 0.3665 s\r\n", - "Current Simulation Time: 0.3664 s\r\n", - "Current Simulation Time: 0.3695 s\r\n", - "Current Simulation Time: 0.3756 s\r\n", - "Current Simulation Time: 0.3818 s\r\n", - "Current Simulation Time: 0.3880 s\r\n", - "Current Simulation Time: 0.3980 s\r\n", - "Current Simulation Time: 0.4080 s\r\n", - "Current Simulation Time: 0.4180 s\r\n", - "Current Simulation Time: 0.4280 s\r\n", - "Current Simulation Time: 0.4380 s\r\n", - "Current Simulation Time: 0.4480 s\r\n", - "Current Simulation Time: 0.4580 s\r\n", - "Current Simulation Time: 0.4680 s\r\n", - "Current Simulation Time: 0.4780 s\r\n", - "Current Simulation Time: 0.4880 s\r\n", - "Current Simulation Time: 0.4980 s\r\n", - "Current Simulation Time: 0.5080 s\r\n", - "Current Simulation Time: 0.5180 s\r\n", - "Current Simulation Time: 0.5280 s\r\n", - "Current Simulation Time: 0.5380 s\r\n", - "Current Simulation Time: 0.5480 s\r\n", - "Current Simulation Time: 0.5580 s\r\n", - "Current Simulation Time: 0.5680 s\r\n", - "Current Simulation Time: 0.5780 s\r\n", - "Current Simulation Time: 0.5880 s\r\n", - "Current Simulation Time: 0.5980 s\r\n", - "Current Simulation Time: 0.6080 s\r\n", - "Current Simulation Time: 0.6180 s\r\n", - "Current Simulation Time: 0.6280 s\r\n", - "Current Simulation Time: 0.6380 s\r\n", - "Current Simulation Time: 0.6480 s\r\n", - "Current Simulation Time: 0.6580 s\r\n", - "Current Simulation Time: 0.6680 s\r\n", - "Current Simulation Time: 0.6780 s\r\n", - "Current Simulation Time: 0.6880 s\r\n", - "Current Simulation Time: 0.6980 s\r\n", - "Current Simulation Time: 0.7080 s\r\n", - "Current Simulation Time: 0.7180 s\r\n", - "Current Simulation Time: 0.7280 s\r\n", - "Current Simulation Time: 0.7380 s\r\n", - "Current Simulation Time: 0.7480 s\r\n", - "Current Simulation Time: 0.7580 s\r\n", - "Current Simulation Time: 0.7680 s\r\n", - "Current Simulation Time: 0.7780 s\r\n", - "Current Simulation Time: 0.7880 s\r\n", - "Current Simulation Time: 0.7980 s\r\n", - "Current Simulation Time: 0.8080 s\r\n", - "Current Simulation Time: 0.8180 s\r\n", - "Current Simulation Time: 0.8280 s\r\n", - "Current Simulation Time: 0.8380 s\r\n", - "Current Simulation Time: 0.8480 s\r\n", - "Current Simulation Time: 0.8580 s\r\n", - "Current Simulation Time: 0.8680 s\r\n", - "Current Simulation Time: 0.8780 s\r\n", - "Current Simulation Time: 0.8880 s\r\n", - "Current Simulation Time: 0.8980 s\r\n", - "Current Simulation Time: 0.9080 s\r\n", - "Current Simulation Time: 0.9180 s\r\n", - "Current Simulation Time: 0.9280 s\r\n", - "Current Simulation Time: 0.9380 s\r\n", - "Current Simulation Time: 0.9480 s\r\n", - "Current Simulation Time: 0.9580 s\r\n", - "Current Simulation Time: 0.9680 s\r\n", - "Current Simulation Time: 0.9780 s\r\n", - "Current Simulation Time: 0.9880 s\r\n", - "Current Simulation Time: 0.9980 s\r\n", - "Current Simulation Time: 1.0080 s\r\n", - "Current Simulation Time: 1.0180 s\r\n", - "Current Simulation Time: 1.0280 s\r\n", - "Current Simulation Time: 1.0380 s\r\n", - "Current Simulation Time: 1.0480 s\r\n", - "Current Simulation Time: 1.0580 s\r\n", - "Current Simulation Time: 1.0680 s\r\n", - "Current Simulation Time: 1.0780 s\r\n", - "Current Simulation Time: 1.0880 s\r\n", - "Current Simulation Time: 1.0980 s\r\n", - "Current Simulation Time: 1.1080 s\r\n", - "Current Simulation Time: 1.1180 s\r\n", - "Current Simulation Time: 1.1280 s\r\n", - "Current Simulation Time: 1.1380 s\r\n", - "Current Simulation Time: 1.1480 s\r\n", - "Current Simulation Time: 1.1580 s\r\n", - "Current Simulation Time: 1.1680 s\r\n", - "Current Simulation Time: 1.1780 s\r\n", - "Current Simulation Time: 1.1880 s\r\n", - "Current Simulation Time: 1.1980 s\r\n", - "Current Simulation Time: 1.2080 s\r\n", - "Current Simulation Time: 1.2180 s\r\n", - "Current Simulation Time: 1.2280 s\r\n", - "Current Simulation Time: 1.2380 s\r\n", - "Current Simulation Time: 1.2480 s\r\n", - "Current Simulation Time: 1.2580 s\r\n", - "Current Simulation Time: 1.2680 s\r\n", - "Current Simulation Time: 1.2780 s\r\n", - "Current Simulation Time: 1.2880 s\r\n", - "Current Simulation Time: 1.2980 s\r\n", - "Current Simulation Time: 1.3080 s\r\n", - "Current Simulation Time: 1.3180 s\r\n", - "Current Simulation Time: 1.3280 s\r\n", - "Current Simulation Time: 1.3380 s\r\n", - "Current Simulation Time: 1.3480 s\r\n", - "Current Simulation Time: 1.3580 s\r\n", - "Current Simulation Time: 1.3680 s\r\n", - "Current Simulation Time: 1.3780 s\r\n", - "Current Simulation Time: 1.3880 s\r\n", - "Current Simulation Time: 1.3980 s\r\n", - "Current Simulation Time: 1.4080 s\r\n", - "Current Simulation Time: 1.4180 s\r\n", - "Current Simulation Time: 1.4280 s\r\n", - "Current Simulation Time: 1.4380 s\r\n", - "Current Simulation Time: 1.4480 s\r\n", - "Current Simulation Time: 1.4580 s\r\n", - "Current Simulation Time: 1.4680 s\r\n", - "Current Simulation Time: 1.4780 s\r\n", - "Current Simulation Time: 1.4880 s\r\n", - "Current Simulation Time: 1.4980 s\r\n", - "Current Simulation Time: 1.5080 s\r\n", - "Current Simulation Time: 1.5180 s\r\n", - "Current Simulation Time: 1.5280 s\r\n", - "Current Simulation Time: 1.5380 s\r\n", - "Current Simulation Time: 1.5480 s\r\n", - "Current Simulation Time: 1.5580 s\r\n", - "Current Simulation Time: 1.5680 s\r\n", - "Current Simulation Time: 1.5780 s\r\n", - "Current Simulation Time: 1.5880 s\r\n", - "Current Simulation Time: 1.5980 s\r\n", - "Current Simulation Time: 1.6080 s\r\n", - "Current Simulation Time: 1.6180 s\r\n", - "Current Simulation Time: 1.6280 s\r\n", - "Current Simulation Time: 1.6380 s\r\n", - "Current Simulation Time: 1.6480 s\r\n", - "Current Simulation Time: 1.6580 s\r\n", - "Current Simulation Time: 1.6680 s\r\n", - "Current Simulation Time: 1.6780 s\r\n", - "Current Simulation Time: 1.6880 s\r\n", - "Current Simulation Time: 1.6980 s\r\n", - "Current Simulation Time: 1.7080 s\r\n", - "Current Simulation Time: 1.7180 s\r\n", - "Current Simulation Time: 1.7280 s\r\n", - "Current Simulation Time: 1.7380 s\r\n", - "Current Simulation Time: 1.7480 s\r\n", - "Current Simulation Time: 1.7580 s\r\n", - "Current Simulation Time: 1.7680 s\r\n", - "Current Simulation Time: 1.7780 s\r\n", - "Current Simulation Time: 1.7880 s\r\n", - "Current Simulation Time: 1.7980 s\r\n", - "Current Simulation Time: 1.8080 s\r\n", - "Current Simulation Time: 1.8180 s\r\n", - "Current Simulation Time: 1.8280 s\r\n", - "Current Simulation Time: 1.8380 s\r\n", - "Current Simulation Time: 1.8480 s\r\n", - "Current Simulation Time: 1.8580 s\r\n", - "Current Simulation Time: 1.8680 s\r\n", - "Current Simulation Time: 1.8780 s\r\n", - "Current Simulation Time: 1.8880 s\r\n", - "Current Simulation Time: 1.8980 s\r\n", - "Current Simulation Time: 1.9080 s\r\n", - "Current Simulation Time: 1.9180 s\r\n", - "Current Simulation Time: 1.9280 s\r\n", - "Current Simulation Time: 1.9380 s\r\n", - "Current Simulation Time: 1.9480 s\r\n", - "Current Simulation Time: 1.9580 s\r\n", - "Current Simulation Time: 1.9680 s\r\n", - "Current Simulation Time: 1.9780 s\r\n", - "Current Simulation Time: 1.9880 s\r\n", - "Current Simulation Time: 1.9980 s\r\n", - "Current Simulation Time: 2.0080 s\r\n", - "Current Simulation Time: 2.0180 s\r\n", - "Current Simulation Time: 2.0280 s\r\n", - "Current Simulation Time: 2.0380 s\r\n", - "Current Simulation Time: 2.0480 s\r\n", - "Current Simulation Time: 2.0580 s\r\n", - "Current Simulation Time: 2.0680 s\r\n", - "Current Simulation Time: 2.0780 s\r\n", - "Current Simulation Time: 2.0880 s\r\n", - "Current Simulation Time: 2.0980 s\r\n", - "Current Simulation Time: 2.1080 s\r\n", - "Current Simulation Time: 2.1180 s\r\n", - "Current Simulation Time: 2.1280 s\r\n", - "Current Simulation Time: 2.1380 s\r\n", - "Current Simulation Time: 2.1480 s\r\n", - "Current Simulation Time: 2.1580 s\r\n", - "Current Simulation Time: 2.1680 s\r\n", - "Current Simulation Time: 2.1780 s\r\n", - "Current Simulation Time: 2.1880 s\r\n", - "Current Simulation Time: 2.1980 s\r\n", - "Current Simulation Time: 2.2080 s\r\n", - "Current Simulation Time: 2.2180 s\r\n", - "Current Simulation Time: 2.2280 s\r\n", - "Current Simulation Time: 2.2380 s\r\n", - "Current Simulation Time: 2.2480 s\r\n", - "Current Simulation Time: 2.2580 s\r\n", - "Current Simulation Time: 2.2680 s\r\n", - "Current Simulation Time: 2.2780 s\r\n", - "Current Simulation Time: 2.2880 s\r\n", - "Current Simulation Time: 2.2980 s\r\n", - "Current Simulation Time: 2.3080 s\r\n", - "Current Simulation Time: 2.3180 s\r\n", - "Current Simulation Time: 2.3280 s\r\n", - "Current Simulation Time: 2.3380 s\r\n", - "Current Simulation Time: 2.3480 s\r\n", - "Current Simulation Time: 2.3580 s\r\n", - "Current Simulation Time: 2.3680 s\r\n", - "Current Simulation Time: 2.3780 s\r\n", - "Current Simulation Time: 2.3880 s\r\n", - "Current Simulation Time: 2.3980 s\r\n", - "Current Simulation Time: 2.4080 s\r\n", - "Current Simulation Time: 2.4180 s\r\n", - "Current Simulation Time: 2.4280 s\r\n", - "Current Simulation Time: 2.4380 s\r\n", - "Current Simulation Time: 2.4480 s\r\n", - "Current Simulation Time: 2.4580 s\r\n", - "Current Simulation Time: 2.4680 s\r\n", - "Current Simulation Time: 2.4780 s\r\n", - "Current Simulation Time: 2.4880 s\r\n", - "Current Simulation Time: 2.4980 s\r\n", - "Current Simulation Time: 2.5080 s\r\n", - "Current Simulation Time: 2.5180 s\r\n", - "Current Simulation Time: 2.5280 s\r\n", - "Current Simulation Time: 2.5380 s\r\n", - "Current Simulation Time: 2.5480 s\r\n", - "Current Simulation Time: 2.5580 s\r\n", - "Current Simulation Time: 2.5680 s\r\n", - "Current Simulation Time: 2.5780 s\r\n", - "Current Simulation Time: 2.5880 s\r\n", - "Current Simulation Time: 2.5980 s\r\n", - "Current Simulation Time: 2.6080 s\r\n", - "Current Simulation Time: 2.6180 s\r\n", - "Current Simulation Time: 2.6280 s\r\n", - "Current Simulation Time: 2.6380 s\r\n", - "Current Simulation Time: 2.6480 s\r\n", - "Current Simulation Time: 2.6580 s\r\n", - "Current Simulation Time: 2.6680 s\r\n", - "Current Simulation Time: 2.6780 s\r\n", - "Current Simulation Time: 2.6880 s\r\n", - "Current Simulation Time: 2.6980 s\r\n", - "Current Simulation Time: 2.7080 s\r\n", - "Current Simulation Time: 2.7180 s\r\n", - "Current Simulation Time: 2.7280 s\r\n", - "Current Simulation Time: 2.7380 s\r\n", - "Current Simulation Time: 2.7480 s\r\n", - "Current Simulation Time: 2.7580 s\r\n", - "Current Simulation Time: 2.7680 s\r\n", - "Current Simulation Time: 2.7780 s\r\n", - "Current Simulation Time: 2.7880 s\r\n", - "Current Simulation Time: 2.7980 s\r\n", - "Current Simulation Time: 2.8080 s\r\n", - "Current Simulation Time: 2.8180 s\r\n", - "Current Simulation Time: 2.8280 s\r\n", - "Current Simulation Time: 2.8380 s\r\n", - "Current Simulation Time: 2.8480 s\r\n", - "Current Simulation Time: 2.8580 s\r\n", - "Current Simulation Time: 2.8680 s\r\n", - "Current Simulation Time: 2.8780 s\r\n", - "Current Simulation Time: 2.8880 s\r\n", - "Current Simulation Time: 2.8980 s\r\n", - "Current Simulation Time: 2.9080 s\r\n", - "Current Simulation Time: 2.9180 s\r\n", - "Current Simulation Time: 2.9280 s\r\n", - "Current Simulation Time: 2.9380 s\r\n", - "Current Simulation Time: 2.9480 s\r\n", - "Current Simulation Time: 2.9580 s\r\n", - "Current Simulation Time: 2.9680 s\r\n", - "Current Simulation Time: 2.9780 s\r\n", - "Current Simulation Time: 2.9880 s\r\n", - "Current Simulation Time: 2.9980 s\r\n", - "Current Simulation Time: 3.0080 s\r\n", - "Current Simulation Time: 3.0158 s\r\n", - "Current Simulation Time: 3.0237 s\r\n", - "Current Simulation Time: 3.0316 s\r\n", - "Current Simulation Time: 3.0394 s\r\n", - "Current Simulation Time: 3.0473 s\r\n", - "Current Simulation Time: 3.0552 s\r\n", - "Current Simulation Time: 3.0647 s\r\n", - "Current Simulation Time: 3.0743 s\r\n", - "Current Simulation Time: 3.0839 s\r\n", - "Current Simulation Time: 3.0935 s\r\n", - "Current Simulation Time: 3.1030 s\r\n", - "Current Simulation Time: 3.1130 s\r\n", - "Current Simulation Time: 3.1230 s\r\n", - "Current Simulation Time: 3.1330 s\r\n", - "Current Simulation Time: 3.1430 s\r\n", - "Current Simulation Time: 3.1530 s\r\n", - "Current Simulation Time: 3.1630 s\r\n", - "Current Simulation Time: 3.1730 s\r\n", - "Current Simulation Time: 3.1830 s\r\n", - "Current Simulation Time: 3.1930 s\r\n", - "Current Simulation Time: 3.2030 s\r\n", - "Current Simulation Time: 3.2130 s\r\n", - "Current Simulation Time: 3.2230 s\r\n", - "Current Simulation Time: 3.2330 s\r\n", - "Current Simulation Time: 3.2430 s\r\n", - "Current Simulation Time: 3.2530 s\r\n", - "Current Simulation Time: 3.2630 s\r\n", - "Current Simulation Time: 3.2730 s\r\n", - "Current Simulation Time: 3.2830 s\r\n", - "Current Simulation Time: 3.2930 s\r\n", - "Current Simulation Time: 3.3030 s\r\n", - "Current Simulation Time: 3.3130 s\r\n", - "Current Simulation Time: 3.3230 s\r\n", - "Current Simulation Time: 3.3330 s\r\n", - "Current Simulation Time: 3.3430 s\r\n", - "Current Simulation Time: 3.3530 s\r\n", - "Current Simulation Time: 3.3630 s\r\n", - "Current Simulation Time: 3.3730 s\r\n", - "Current Simulation Time: 3.3830 s\r\n", - "Current Simulation Time: 3.3930 s\r\n", - "Current Simulation Time: 3.4030 s\r\n", - "Current Simulation Time: 3.4130 s\r\n", - "Current Simulation Time: 3.4230 s\r\n", - "Current Simulation Time: 3.4330 s\r\n", - "Current Simulation Time: 3.4430 s\r\n", - "Current Simulation Time: 3.4530 s\r\n", - "Current Simulation Time: 3.4630 s\r\n", - "Current Simulation Time: 3.4730 s\r\n", - "Current Simulation Time: 3.4830 s\r\n", - "Current Simulation Time: 3.4930 s\r\n", - "Current Simulation Time: 3.5030 s\r\n", - "Current Simulation Time: 3.5130 s\r\n", - "Current Simulation Time: 3.5230 s\r\n", - "Current Simulation Time: 3.5330 s\r\n", - "Current Simulation Time: 3.5430 s\r\n", - "Current Simulation Time: 3.5530 s\r\n", - "Current Simulation Time: 3.5630 s\r\n", - "Current Simulation Time: 3.5730 s\r\n", - "Current Simulation Time: 3.5830 s\r\n", - "Current Simulation Time: 3.5930 s\r\n", - "Current Simulation Time: 3.6030 s\r\n", - "Current Simulation Time: 3.6130 s\r\n", - "Current Simulation Time: 3.6230 s\r\n", - "Current Simulation Time: 3.6330 s\r\n", - "Current Simulation Time: 3.6430 s\r\n", - "Current Simulation Time: 3.6530 s\r\n", - "Current Simulation Time: 3.6630 s\r\n", - "Current Simulation Time: 3.6730 s\r\n", - "Current Simulation Time: 3.6830 s\r\n", - "Current Simulation Time: 3.6930 s\r\n", - "Current Simulation Time: 3.7030 s\r\n", - "Current Simulation Time: 3.7130 s\r\n", - "Current Simulation Time: 3.7230 s\r\n", - "Current Simulation Time: 3.7330 s\r\n", - "Current Simulation Time: 3.7430 s\r\n", - "Current Simulation Time: 3.7530 s\r\n", - "Current Simulation Time: 3.7630 s\r\n", - "Current Simulation Time: 3.7730 s\r\n", - "Current Simulation Time: 3.7830 s\r\n", - "Current Simulation Time: 3.7930 s\r\n", - "Current Simulation Time: 3.8030 s\r\n", - "Current Simulation Time: 3.8130 s\r\n", - "Current Simulation Time: 3.8230 s\r\n", - "Current Simulation Time: 3.8330 s\r\n", - "Current Simulation Time: 3.8430 s\r\n", - "Current Simulation Time: 3.8530 s\r\n", - "Current Simulation Time: 3.8630 s\r\n", - "Current Simulation Time: 3.8730 s\r\n", - "Current Simulation Time: 3.8830 s\r\n", - "Current Simulation Time: 3.8930 s\r\n", - "Current Simulation Time: 3.9030 s\r\n", - "Current Simulation Time: 3.9130 s\r\n", - "Current Simulation Time: 3.9230 s\r\n", - "Current Simulation Time: 3.9330 s\r\n", - "Current Simulation Time: 3.9430 s\r\n", - "Current Simulation Time: 3.9530 s\r\n", - "Current Simulation Time: 3.9630 s\r\n", - "Current Simulation Time: 3.9730 s\r\n", - "Current Simulation Time: 3.9830 s\r\n", - "Current Simulation Time: 3.9930 s\r\n", - "Current Simulation Time: 4.0030 s\r\n", - "Current Simulation Time: 4.0130 s\r\n", - "Current Simulation Time: 4.0230 s\r\n", - "Current Simulation Time: 4.0330 s\r\n", - "Current Simulation Time: 4.0430 s\r\n", - "Current Simulation Time: 4.0530 s\r\n", - "Current Simulation Time: 4.0630 s\r\n", - "Current Simulation Time: 4.0730 s\r\n", - "Current Simulation Time: 4.0830 s\r\n", - "Current Simulation Time: 4.0930 s\r\n", - "Current Simulation Time: 4.1030 s\r\n", - "Current Simulation Time: 4.1130 s\r\n", - "Current Simulation Time: 4.1230 s\r\n", - "Current Simulation Time: 4.1330 s\r\n", - "Current Simulation Time: 4.1430 s\r\n", - "Current Simulation Time: 4.1530 s\r\n", - "Current Simulation Time: 4.1630 s\r\n", - "Current Simulation Time: 4.1730 s\r\n", - "Current Simulation Time: 4.1830 s\r\n", - "Current Simulation Time: 4.1930 s\r\n", - "Current Simulation Time: 4.2030 s\r\n", - "Current Simulation Time: 4.2130 s\r\n", - "Current Simulation Time: 4.2230 s\r\n", - "Current Simulation Time: 4.2330 s\r\n", - "Current Simulation Time: 4.2430 s\r\n", - "Current Simulation Time: 4.2530 s\r\n", - "Current Simulation Time: 4.2630 s\r\n", - "Current Simulation Time: 4.2730 s\r\n", - "Current Simulation Time: 4.2830 s\r\n", - "Current Simulation Time: 4.2930 s\r\n", - "Current Simulation Time: 4.3030 s\r\n", - "Current Simulation Time: 4.3130 s\r\n", - "Current Simulation Time: 4.3230 s\r\n", - "Current Simulation Time: 4.3330 s\r\n", - "Current Simulation Time: 4.3430 s\r\n", - "Current Simulation Time: 4.3530 s\r\n", - "Current Simulation Time: 4.3630 s\r\n", - "Current Simulation Time: 4.3730 s\r\n", - "Current Simulation Time: 4.3830 s\r\n", - "Current Simulation Time: 4.3930 s\r\n", - "Current Simulation Time: 4.4030 s\r\n", - "Current Simulation Time: 4.4130 s\r\n", - "Current Simulation Time: 4.4230 s\r\n", - "Current Simulation Time: 4.4330 s\r\n", - "Current Simulation Time: 4.4430 s\r\n", - "Current Simulation Time: 4.4530 s\r\n", - "Current Simulation Time: 4.4630 s\r\n", - "Current Simulation Time: 4.4730 s\r\n", - "Current Simulation Time: 4.4830 s\r\n", - "Current Simulation Time: 4.4930 s\r\n", - "Current Simulation Time: 4.5030 s\r\n", - "Current Simulation Time: 4.5130 s\r\n", - "Current Simulation Time: 4.5230 s\r\n", - "Current Simulation Time: 4.5330 s\r\n", - "Current Simulation Time: 4.5430 s\r\n", - "Current Simulation Time: 4.5530 s\r\n", - "Current Simulation Time: 4.5630 s\r\n", - "Current Simulation Time: 4.5730 s\r\n", - "Current Simulation Time: 4.5830 s\r\n", - "Current Simulation Time: 4.5930 s\r\n", - "Current Simulation Time: 4.6030 s\r\n", - "Current Simulation Time: 4.6130 s\r\n", - "Current Simulation Time: 4.6230 s\r\n", - "Current Simulation Time: 4.6330 s\r\n", - "Current Simulation Time: 4.6430 s\r\n", - "Current Simulation Time: 4.6530 s\r\n", - "Current Simulation Time: 4.6630 s\r\n", - "Current Simulation Time: 4.6730 s\r\n", - "Current Simulation Time: 4.6830 s\r\n", - "Current Simulation Time: 4.6930 s\r\n", - "Current Simulation Time: 4.7030 s\r\n", - "Current Simulation Time: 4.7130 s\r\n", - "Current Simulation Time: 4.7230 s\r\n", - "Current Simulation Time: 4.7330 s\r\n", - "Current Simulation Time: 4.7430 s\r\n", - "Current Simulation Time: 4.7530 s\r\n", - "Current Simulation Time: 4.7630 s\r\n", - "Current Simulation Time: 4.7730 s\r\n", - "Current Simulation Time: 4.7830 s\r\n", - "Current Simulation Time: 4.7930 s\r\n", - "Current Simulation Time: 4.8030 s\r\n", - "Current Simulation Time: 4.8130 s\r\n", - "Current Simulation Time: 4.8230 s\r\n", - "Current Simulation Time: 4.8330 s\r\n", - "Current Simulation Time: 4.8430 s\r\n", - "Current Simulation Time: 4.8530 s\r\n", - "Current Simulation Time: 4.8630 s\r\n", - "Current Simulation Time: 4.8730 s\r\n", - "Current Simulation Time: 4.8830 s\r\n", - "Current Simulation Time: 4.8930 s\r\n", - "Current Simulation Time: 4.9030 s\r\n", - "Current Simulation Time: 4.9130 s\r\n", - "Current Simulation Time: 4.9230 s\r\n", - "Current Simulation Time: 4.9330 s\r\n", - "Current Simulation Time: 4.9430 s\r\n", - "Current Simulation Time: 4.9530 s\r\n", - "Current Simulation Time: 4.9630 s\r\n", - "Current Simulation Time: 4.9730 s\r\n", - "Current Simulation Time: 4.9830 s\r\n", - "Current Simulation Time: 4.9930 s\r\n", - "Current Simulation Time: 5.0000 s\r\n", - "Simulation Completed at Time: 5.0000 s\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Simulating Rocket with Static Margin of 1.352->2.391 c\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Current Simulation Time: 0.0050 s\r\n", - "Current Simulation Time: 0.0100 s\r\n", - "Current Simulation Time: 0.0200 s\r\n", - "Current Simulation Time: 0.0300 s\r\n", - "Current Simulation Time: 0.0400 s\r\n", - "Current Simulation Time: 0.0500 s\r\n", - "Current Simulation Time: 0.0516 s\r\n", - "Current Simulation Time: 0.0532 s\r\n", - "Current Simulation Time: 0.0565 s\r\n", - "Current Simulation Time: 0.0571 s\r\n", - "Current Simulation Time: 0.0578 s\r\n", - "Current Simulation Time: 0.0591 s\r\n", - "Current Simulation Time: 0.0603 s\r\n", - "Current Simulation Time: 0.0616 s\r\n", - "Current Simulation Time: 0.0716 s\r\n", - "Current Simulation Time: 0.0816 s\r\n", - "Current Simulation Time: 0.0916 s\r\n", - "Current Simulation Time: 0.0936 s\r\n", - "Current Simulation Time: 0.0956 s\r\n", - "Current Simulation Time: 0.0976 s\r\n", - "Current Simulation Time: 0.1004 s\r\n", - "Current Simulation Time: 0.1024 s\r\n", - "Current Simulation Time: 0.1044 s\r\n", - "Current Simulation Time: 0.1063 s\r\n", - "Current Simulation Time: 0.1103 s\r\n", - "Current Simulation Time: 0.1142 s\r\n", - "Current Simulation Time: 0.1182 s\r\n", - "Current Simulation Time: 0.1221 s\r\n", - "Current Simulation Time: 0.1321 s\r\n", - "Current Simulation Time: 0.1421 s\r\n", - "Current Simulation Time: 0.1521 s\r\n", - "Current Simulation Time: 0.1596 s\r\n", - "Current Simulation Time: 0.1657 s\r\n", - "Current Simulation Time: 0.1718 s\r\n", - "Current Simulation Time: 0.1779 s\r\n", - "Current Simulation Time: 0.1840 s\r\n", - "Current Simulation Time: 0.1940 s\r\n", - "Current Simulation Time: 0.2040 s\r\n", - "Current Simulation Time: 0.2140 s\r\n", - "Current Simulation Time: 0.2221 s\r\n", - "Current Simulation Time: 0.2303 s\r\n", - "Current Simulation Time: 0.2384 s\r\n", - "Current Simulation Time: 0.2465 s\r\n", - "Current Simulation Time: 0.2565 s\r\n", - "Current Simulation Time: 0.2665 s\r\n", - "Current Simulation Time: 0.2765 s\r\n", - "Current Simulation Time: 0.2865 s\r\n", - "Current Simulation Time: 0.2965 s\r\n", - "Current Simulation Time: 0.3065 s\r\n", - "Current Simulation Time: 0.3165 s\r\n", - "Current Simulation Time: 0.3265 s\r\n", - "Current Simulation Time: 0.3365 s\r\n", - "Current Simulation Time: 0.3465 s\r\n", - "Current Simulation Time: 0.3565 s\r\n", - "Current Simulation Time: 0.3665 s\r\n", - "Current Simulation Time: 0.3659 s\r\n", - "Current Simulation Time: 0.3684 s\r\n", - "Current Simulation Time: 0.3735 s\r\n", - "Current Simulation Time: 0.3786 s\r\n", - "Current Simulation Time: 0.3837 s\r\n", - "Current Simulation Time: 0.3937 s\r\n", - "Current Simulation Time: 0.4037 s\r\n", - "Current Simulation Time: 0.4137 s\r\n", - "Current Simulation Time: 0.4237 s\r\n", - "Current Simulation Time: 0.4337 s\r\n", - "Current Simulation Time: 0.4437 s\r\n", - "Current Simulation Time: 0.4537 s\r\n", - "Current Simulation Time: 0.4637 s\r\n", - "Current Simulation Time: 0.4737 s\r\n", - "Current Simulation Time: 0.4837 s\r\n", - "Current Simulation Time: 0.4937 s\r\n", - "Current Simulation Time: 0.5037 s\r\n", - "Current Simulation Time: 0.5137 s\r\n", - "Current Simulation Time: 0.5237 s\r\n", - "Current Simulation Time: 0.5337 s\r\n", - "Current Simulation Time: 0.5437 s\r\n", - "Current Simulation Time: 0.5537 s\r\n", - "Current Simulation Time: 0.5637 s\r\n", - "Current Simulation Time: 0.5737 s\r\n", - "Current Simulation Time: 0.5837 s\r\n", - "Current Simulation Time: 0.5937 s\r\n", - "Current Simulation Time: 0.6037 s\r\n", - "Current Simulation Time: 0.6137 s\r\n", - "Current Simulation Time: 0.6237 s\r\n", - "Current Simulation Time: 0.6337 s\r\n", - "Current Simulation Time: 0.6437 s\r\n", - "Current Simulation Time: 0.6537 s\r\n", - "Current Simulation Time: 0.6637 s\r\n", - "Current Simulation Time: 0.6737 s\r\n", - "Current Simulation Time: 0.6837 s\r\n", - "Current Simulation Time: 0.6937 s\r\n", - "Current Simulation Time: 0.7037 s\r\n", - "Current Simulation Time: 0.7137 s\r\n", - "Current Simulation Time: 0.7237 s\r\n", - "Current Simulation Time: 0.7337 s\r\n", - "Current Simulation Time: 0.7437 s\r\n", - "Current Simulation Time: 0.7537 s\r\n", - "Current Simulation Time: 0.7637 s\r\n", - "Current Simulation Time: 0.7737 s\r\n", - "Current Simulation Time: 0.7837 s\r\n", - "Current Simulation Time: 0.7937 s\r\n", - "Current Simulation Time: 0.8037 s\r\n", - "Current Simulation Time: 0.8137 s\r\n", - "Current Simulation Time: 0.8237 s\r\n", - "Current Simulation Time: 0.8337 s\r\n", - "Current Simulation Time: 0.8437 s\r\n", - "Current Simulation Time: 0.8537 s\r\n", - "Current Simulation Time: 0.8637 s\r\n", - "Current Simulation Time: 0.8737 s\r\n", - "Current Simulation Time: 0.8837 s\r\n", - "Current Simulation Time: 0.8937 s\r\n", - "Current Simulation Time: 0.9037 s\r\n", - "Current Simulation Time: 0.9137 s\r\n", - "Current Simulation Time: 0.9237 s\r\n", - "Current Simulation Time: 0.9337 s\r\n", - "Current Simulation Time: 0.9437 s\r\n", - "Current Simulation Time: 0.9537 s\r\n", - "Current Simulation Time: 0.9637 s\r\n", - "Current Simulation Time: 0.9737 s\r\n", - "Current Simulation Time: 0.9837 s\r\n", - "Current Simulation Time: 0.9937 s\r\n", - "Current Simulation Time: 1.0037 s\r\n", - "Current Simulation Time: 1.0137 s\r\n", - "Current Simulation Time: 1.0237 s\r\n", - "Current Simulation Time: 1.0337 s\r\n", - "Current Simulation Time: 1.0437 s\r\n", - "Current Simulation Time: 1.0537 s\r\n", - "Current Simulation Time: 1.0637 s\r\n", - "Current Simulation Time: 1.0737 s\r\n", - "Current Simulation Time: 1.0837 s\r\n", - "Current Simulation Time: 1.0937 s\r\n", - "Current Simulation Time: 1.1037 s\r\n", - "Current Simulation Time: 1.1137 s\r\n", - "Current Simulation Time: 1.1237 s\r\n", - "Current Simulation Time: 1.1337 s\r\n", - "Current Simulation Time: 1.1437 s\r\n", - "Current Simulation Time: 1.1537 s\r\n", - "Current Simulation Time: 1.1637 s\r\n", - "Current Simulation Time: 1.1737 s\r\n", - "Current Simulation Time: 1.1837 s\r\n", - "Current Simulation Time: 1.1937 s\r\n", - "Current Simulation Time: 1.2037 s\r\n", - "Current Simulation Time: 1.2137 s\r\n", - "Current Simulation Time: 1.2237 s\r\n", - "Current Simulation Time: 1.2337 s\r\n", - "Current Simulation Time: 1.2437 s\r\n", - "Current Simulation Time: 1.2537 s\r\n", - "Current Simulation Time: 1.2637 s\r\n", - "Current Simulation Time: 1.2737 s\r\n", - "Current Simulation Time: 1.2837 s\r\n", - "Current Simulation Time: 1.2937 s\r\n", - "Current Simulation Time: 1.3037 s\r\n", - "Current Simulation Time: 1.3137 s\r\n", - "Current Simulation Time: 1.3237 s\r\n", - "Current Simulation Time: 1.3337 s\r\n", - "Current Simulation Time: 1.3437 s\r\n", - "Current Simulation Time: 1.3537 s\r\n", - "Current Simulation Time: 1.3637 s\r\n", - "Current Simulation Time: 1.3737 s\r\n", - "Current Simulation Time: 1.3837 s\r\n", - "Current Simulation Time: 1.3937 s\r\n", - "Current Simulation Time: 1.4037 s\r\n", - "Current Simulation Time: 1.4137 s\r\n", - "Current Simulation Time: 1.4237 s\r\n", - "Current Simulation Time: 1.4337 s\r\n", - "Current Simulation Time: 1.4437 s\r\n", - "Current Simulation Time: 1.4537 s\r\n", - "Current Simulation Time: 1.4637 s\r\n", - "Current Simulation Time: 1.4737 s\r\n", - "Current Simulation Time: 1.4837 s\r\n", - "Current Simulation Time: 1.4937 s\r\n", - "Current Simulation Time: 1.5037 s\r\n", - "Current Simulation Time: 1.5137 s\r\n", - "Current Simulation Time: 1.5237 s\r\n", - "Current Simulation Time: 1.5337 s\r\n", - "Current Simulation Time: 1.5437 s\r\n", - "Current Simulation Time: 1.5537 s\r\n", - "Current Simulation Time: 1.5637 s\r\n", - "Current Simulation Time: 1.5737 s\r\n", - "Current Simulation Time: 1.5837 s\r\n", - "Current Simulation Time: 1.5937 s\r\n", - "Current Simulation Time: 1.6037 s\r\n", - "Current Simulation Time: 1.6137 s\r\n", - "Current Simulation Time: 1.6237 s\r\n", - "Current Simulation Time: 1.6337 s\r\n", - "Current Simulation Time: 1.6437 s\r\n", - "Current Simulation Time: 1.6537 s\r\n", - "Current Simulation Time: 1.6637 s\r\n", - "Current Simulation Time: 1.6737 s\r\n", - "Current Simulation Time: 1.6837 s\r\n", - "Current Simulation Time: 1.6937 s\r\n", - "Current Simulation Time: 1.7037 s\r\n", - "Current Simulation Time: 1.7137 s\r\n", - "Current Simulation Time: 1.7237 s\r\n", - "Current Simulation Time: 1.7337 s\r\n", - "Current Simulation Time: 1.7437 s\r\n", - "Current Simulation Time: 1.7537 s\r\n", - "Current Simulation Time: 1.7637 s\r\n", - "Current Simulation Time: 1.7737 s\r\n", - "Current Simulation Time: 1.7837 s\r\n", - "Current Simulation Time: 1.7937 s\r\n", - "Current Simulation Time: 1.8037 s\r\n", - "Current Simulation Time: 1.8137 s\r\n", - "Current Simulation Time: 1.8237 s\r\n", - "Current Simulation Time: 1.8337 s\r\n", - "Current Simulation Time: 1.8437 s\r\n", - "Current Simulation Time: 1.8537 s\r\n", - "Current Simulation Time: 1.8637 s\r\n", - "Current Simulation Time: 1.8737 s\r\n", - "Current Simulation Time: 1.8837 s\r\n", - "Current Simulation Time: 1.8937 s\r\n", - "Current Simulation Time: 1.9037 s\r\n", - "Current Simulation Time: 1.9137 s\r\n", - "Current Simulation Time: 1.9237 s\r\n", - "Current Simulation Time: 1.9337 s\r\n", - "Current Simulation Time: 1.9437 s\r\n", - "Current Simulation Time: 1.9537 s\r\n", - "Current Simulation Time: 1.9637 s\r\n", - "Current Simulation Time: 1.9737 s\r\n", - "Current Simulation Time: 1.9837 s\r\n", - "Current Simulation Time: 1.9937 s\r\n", - "Current Simulation Time: 2.0037 s\r\n", - "Current Simulation Time: 2.0137 s\r\n", - "Current Simulation Time: 2.0237 s\r\n", - "Current Simulation Time: 2.0337 s\r\n", - "Current Simulation Time: 2.0437 s\r\n", - "Current Simulation Time: 2.0537 s\r\n", - "Current Simulation Time: 2.0637 s\r\n", - "Current Simulation Time: 2.0737 s\r\n", - "Current Simulation Time: 2.0837 s\r\n", - "Current Simulation Time: 2.0937 s\r\n", - "Current Simulation Time: 2.1037 s\r\n", - "Current Simulation Time: 2.1137 s\r\n", - "Current Simulation Time: 2.1237 s\r\n", - "Current Simulation Time: 2.1337 s\r\n", - "Current Simulation Time: 2.1437 s\r\n", - "Current Simulation Time: 2.1537 s\r\n", - "Current Simulation Time: 2.1637 s\r\n", - "Current Simulation Time: 2.1737 s\r\n", - "Current Simulation Time: 2.1837 s\r\n", - "Current Simulation Time: 2.1937 s\r\n", - "Current Simulation Time: 2.2037 s\r\n", - "Current Simulation Time: 2.2137 s\r\n", - "Current Simulation Time: 2.2237 s\r\n", - "Current Simulation Time: 2.2337 s\r\n", - "Current Simulation Time: 2.2437 s\r\n", - "Current Simulation Time: 2.2537 s\r\n", - "Current Simulation Time: 2.2637 s\r\n", - "Current Simulation Time: 2.2737 s\r\n", - "Current Simulation Time: 2.2837 s\r\n", - "Current Simulation Time: 2.2937 s\r\n", - "Current Simulation Time: 2.3037 s\r\n", - "Current Simulation Time: 2.3137 s\r\n", - "Current Simulation Time: 2.3237 s\r\n", - "Current Simulation Time: 2.3337 s\r\n", - "Current Simulation Time: 2.3437 s\r\n", - "Current Simulation Time: 2.3537 s\r\n", - "Current Simulation Time: 2.3637 s\r\n", - "Current Simulation Time: 2.3737 s\r\n", - "Current Simulation Time: 2.3837 s\r\n", - "Current Simulation Time: 2.3937 s\r\n", - "Current Simulation Time: 2.4037 s\r\n", - "Current Simulation Time: 2.4137 s\r\n", - "Current Simulation Time: 2.4237 s\r\n", - "Current Simulation Time: 2.4337 s\r\n", - "Current Simulation Time: 2.4437 s\r\n", - "Current Simulation Time: 2.4537 s\r\n", - "Current Simulation Time: 2.4637 s\r\n", - "Current Simulation Time: 2.4737 s\r\n", - "Current Simulation Time: 2.4837 s\r\n", - "Current Simulation Time: 2.4937 s\r\n", - "Current Simulation Time: 2.5037 s\r\n", - "Current Simulation Time: 2.5137 s\r\n", - "Current Simulation Time: 2.5237 s\r\n", - "Current Simulation Time: 2.5337 s\r\n", - "Current Simulation Time: 2.5437 s\r\n", - "Current Simulation Time: 2.5537 s\r\n", - "Current Simulation Time: 2.5637 s\r\n", - "Current Simulation Time: 2.5737 s\r\n", - "Current Simulation Time: 2.5837 s\r\n", - "Current Simulation Time: 2.5937 s\r\n", - "Current Simulation Time: 2.6037 s\r\n", - "Current Simulation Time: 2.6137 s\r\n", - "Current Simulation Time: 2.6237 s\r\n", - "Current Simulation Time: 2.6337 s\r\n", - "Current Simulation Time: 2.6437 s\r\n", - "Current Simulation Time: 2.6537 s\r\n", - "Current Simulation Time: 2.6637 s\r\n", - "Current Simulation Time: 2.6737 s\r\n", - "Current Simulation Time: 2.6837 s\r\n", - "Current Simulation Time: 2.6937 s\r\n", - "Current Simulation Time: 2.7037 s\r\n", - "Current Simulation Time: 2.7137 s\r\n", - "Current Simulation Time: 2.7237 s\r\n", - "Current Simulation Time: 2.7337 s\r\n", - "Current Simulation Time: 2.7437 s\r\n", - "Current Simulation Time: 2.7537 s\r\n", - "Current Simulation Time: 2.7637 s\r\n", - "Current Simulation Time: 2.7737 s\r\n", - "Current Simulation Time: 2.7837 s\r\n", - "Current Simulation Time: 2.7937 s\r\n", - "Current Simulation Time: 2.8037 s\r\n", - "Current Simulation Time: 2.8137 s\r\n", - "Current Simulation Time: 2.8237 s\r\n", - "Current Simulation Time: 2.8337 s\r\n", - "Current Simulation Time: 2.8437 s\r\n", - "Current Simulation Time: 2.8537 s\r\n", - "Current Simulation Time: 2.8637 s\r\n", - "Current Simulation Time: 2.8737 s\r\n", - "Current Simulation Time: 2.8837 s\r\n", - "Current Simulation Time: 2.8937 s\r\n", - "Current Simulation Time: 2.9037 s\r\n", - "Current Simulation Time: 2.9137 s\r\n", - "Current Simulation Time: 2.9237 s\r\n", - "Current Simulation Time: 2.9337 s\r\n", - "Current Simulation Time: 2.9437 s\r\n", - "Current Simulation Time: 2.9537 s\r\n", - "Current Simulation Time: 2.9637 s\r\n", - "Current Simulation Time: 2.9737 s\r\n", - "Current Simulation Time: 2.9837 s\r\n", - "Current Simulation Time: 2.9937 s\r\n", - "Current Simulation Time: 3.0037 s\r\n", - "Current Simulation Time: 3.0137 s\r\n", - "Current Simulation Time: 3.0216 s\r\n", - "Current Simulation Time: 3.0295 s\r\n", - "Current Simulation Time: 3.0374 s\r\n", - "Current Simulation Time: 3.0453 s\r\n", - "Current Simulation Time: 3.0532 s\r\n", - "Current Simulation Time: 3.0632 s\r\n", - "Current Simulation Time: 3.0732 s\r\n", - "Current Simulation Time: 3.0832 s\r\n", - "Current Simulation Time: 3.0932 s\r\n", - "Current Simulation Time: 3.1032 s\r\n", - "Current Simulation Time: 3.1132 s\r\n", - "Current Simulation Time: 3.1232 s\r\n", - "Current Simulation Time: 3.1332 s\r\n", - "Current Simulation Time: 3.1432 s\r\n", - "Current Simulation Time: 3.1532 s\r\n", - "Current Simulation Time: 3.1632 s\r\n", - "Current Simulation Time: 3.1732 s\r\n", - "Current Simulation Time: 3.1832 s\r\n", - "Current Simulation Time: 3.1932 s\r\n", - "Current Simulation Time: 3.2032 s\r\n", - "Current Simulation Time: 3.2132 s\r\n", - "Current Simulation Time: 3.2232 s\r\n", - "Current Simulation Time: 3.2332 s\r\n", - "Current Simulation Time: 3.2432 s\r\n", - "Current Simulation Time: 3.2532 s\r\n", - "Current Simulation Time: 3.2632 s\r\n", - "Current Simulation Time: 3.2732 s\r\n", - "Current Simulation Time: 3.2832 s\r\n", - "Current Simulation Time: 3.2932 s\r\n", - "Current Simulation Time: 3.3032 s\r\n", - "Current Simulation Time: 3.3132 s\r\n", - "Current Simulation Time: 3.3232 s\r\n", - "Current Simulation Time: 3.3332 s\r\n", - "Current Simulation Time: 3.3432 s\r\n", - "Current Simulation Time: 3.3532 s\r\n", - "Current Simulation Time: 3.3632 s\r\n", - "Current Simulation Time: 3.3732 s\r\n", - "Current Simulation Time: 3.3832 s\r\n", - "Current Simulation Time: 3.3932 s\r\n", - "Current Simulation Time: 3.4032 s\r\n", - "Current Simulation Time: 3.4132 s\r\n", - "Current Simulation Time: 3.4232 s\r\n", - "Current Simulation Time: 3.4332 s\r\n", - "Current Simulation Time: 3.4432 s\r\n", - "Current Simulation Time: 3.4532 s\r\n", - "Current Simulation Time: 3.4632 s\r\n", - "Current Simulation Time: 3.4732 s\r\n", - "Current Simulation Time: 3.4832 s\r\n", - "Current Simulation Time: 3.4932 s\r\n", - "Current Simulation Time: 3.5032 s\r\n", - "Current Simulation Time: 3.5132 s\r\n", - "Current Simulation Time: 3.5232 s\r\n", - "Current Simulation Time: 3.5332 s\r\n", - "Current Simulation Time: 3.5432 s\r\n", - "Current Simulation Time: 3.5532 s\r\n", - "Current Simulation Time: 3.5632 s\r\n", - "Current Simulation Time: 3.5732 s\r\n", - "Current Simulation Time: 3.5832 s\r\n", - "Current Simulation Time: 3.5932 s\r\n", - "Current Simulation Time: 3.6032 s\r\n", - "Current Simulation Time: 3.6132 s\r\n", - "Current Simulation Time: 3.6232 s\r\n", - "Current Simulation Time: 3.6332 s\r\n", - "Current Simulation Time: 3.6432 s\r\n", - "Current Simulation Time: 3.6532 s\r\n", - "Current Simulation Time: 3.6632 s\r\n", - "Current Simulation Time: 3.6732 s\r\n", - "Current Simulation Time: 3.6832 s\r\n", - "Current Simulation Time: 3.6932 s\r\n", - "Current Simulation Time: 3.7032 s\r\n", - "Current Simulation Time: 3.7132 s\r\n", - "Current Simulation Time: 3.7232 s\r\n", - "Current Simulation Time: 3.7332 s\r\n", - "Current Simulation Time: 3.7432 s\r\n", - "Current Simulation Time: 3.7532 s\r\n", - "Current Simulation Time: 3.7632 s\r\n", - "Current Simulation Time: 3.7732 s\r\n", - "Current Simulation Time: 3.7832 s\r\n", - "Current Simulation Time: 3.7932 s\r\n", - "Current Simulation Time: 3.8032 s\r\n", - "Current Simulation Time: 3.8132 s\r\n", - "Current Simulation Time: 3.8232 s\r\n", - "Current Simulation Time: 3.8332 s\r\n", - "Current Simulation Time: 3.8432 s\r\n", - "Current Simulation Time: 3.8532 s\r\n", - "Current Simulation Time: 3.8632 s\r\n", - "Current Simulation Time: 3.8732 s\r\n", - "Current Simulation Time: 3.8832 s\r\n", - "Current Simulation Time: 3.8932 s\r\n", - "Current Simulation Time: 3.9032 s\r\n", - "Current Simulation Time: 3.9132 s\r\n", - "Current Simulation Time: 3.9232 s\r\n", - "Current Simulation Time: 3.9332 s\r\n", - "Current Simulation Time: 3.9432 s\r\n", - "Current Simulation Time: 3.9532 s\r\n", - "Current Simulation Time: 3.9632 s\r\n", - "Current Simulation Time: 3.9732 s\r\n", - "Current Simulation Time: 3.9832 s\r\n", - "Current Simulation Time: 3.9932 s\r\n", - "Current Simulation Time: 4.0032 s\r\n", - "Current Simulation Time: 4.0132 s\r\n", - "Current Simulation Time: 4.0232 s\r\n", - "Current Simulation Time: 4.0332 s\r\n", - "Current Simulation Time: 4.0432 s\r\n", - "Current Simulation Time: 4.0532 s\r\n", - "Current Simulation Time: 4.0632 s\r\n", - "Current Simulation Time: 4.0732 s\r\n", - "Current Simulation Time: 4.0832 s\r\n", - "Current Simulation Time: 4.0932 s\r\n", - "Current Simulation Time: 4.1032 s\r\n", - "Current Simulation Time: 4.1132 s\r\n", - "Current Simulation Time: 4.1232 s\r\n", - "Current Simulation Time: 4.1332 s\r\n", - "Current Simulation Time: 4.1432 s\r\n", - "Current Simulation Time: 4.1532 s\r\n", - "Current Simulation Time: 4.1632 s\r\n", - "Current Simulation Time: 4.1732 s\r\n", - "Current Simulation Time: 4.1832 s\r\n", - "Current Simulation Time: 4.1932 s\r\n", - "Current Simulation Time: 4.2032 s\r\n", - "Current Simulation Time: 4.2132 s\r\n", - "Current Simulation Time: 4.2232 s\r\n", - "Current Simulation Time: 4.2332 s\r\n", - "Current Simulation Time: 4.2432 s\r\n", - "Current Simulation Time: 4.2532 s\r\n", - "Current Simulation Time: 4.2632 s\r\n", - "Current Simulation Time: 4.2732 s\r\n", - "Current Simulation Time: 4.2832 s\r\n", - "Current Simulation Time: 4.2932 s\r\n", - "Current Simulation Time: 4.3032 s\r\n", - "Current Simulation Time: 4.3132 s\r\n", - "Current Simulation Time: 4.3232 s\r\n", - "Current Simulation Time: 4.3332 s\r\n", - "Current Simulation Time: 4.3432 s\r\n", - "Current Simulation Time: 4.3532 s\r\n", - "Current Simulation Time: 4.3632 s\r\n", - "Current Simulation Time: 4.3732 s\r\n", - "Current Simulation Time: 4.3832 s\r\n", - "Current Simulation Time: 4.3932 s\r\n", - "Current Simulation Time: 4.4032 s\r\n", - "Current Simulation Time: 4.4132 s\r\n", - "Current Simulation Time: 4.4232 s\r\n", - "Current Simulation Time: 4.4332 s\r\n", - "Current Simulation Time: 4.4432 s\r\n", - "Current Simulation Time: 4.4532 s\r\n", - "Current Simulation Time: 4.4632 s\r\n", - "Current Simulation Time: 4.4732 s\r\n", - "Current Simulation Time: 4.4832 s\r\n", - "Current Simulation Time: 4.4932 s\r\n", - "Current Simulation Time: 4.5032 s\r\n", - "Current Simulation Time: 4.5132 s\r\n", - "Current Simulation Time: 4.5232 s\r\n", - "Current Simulation Time: 4.5332 s\r\n", - "Current Simulation Time: 4.5432 s\r\n", - "Current Simulation Time: 4.5532 s\r\n", - "Current Simulation Time: 4.5632 s\r\n", - "Current Simulation Time: 4.5732 s\r\n", - "Current Simulation Time: 4.5832 s\r\n", - "Current Simulation Time: 4.5932 s\r\n", - "Current Simulation Time: 4.6032 s\r\n", - "Current Simulation Time: 4.6132 s\r\n", - "Current Simulation Time: 4.6232 s\r\n", - "Current Simulation Time: 4.6332 s\r\n", - "Current Simulation Time: 4.6432 s\r\n", - "Current Simulation Time: 4.6532 s\r\n", - "Current Simulation Time: 4.6632 s\r\n", - "Current Simulation Time: 4.6732 s\r\n", - "Current Simulation Time: 4.6832 s\r\n", - "Current Simulation Time: 4.6932 s\r\n", - "Current Simulation Time: 4.7032 s\r\n", - "Current Simulation Time: 4.7132 s\r\n", - "Current Simulation Time: 4.7232 s\r\n", - "Current Simulation Time: 4.7332 s\r\n", - "Current Simulation Time: 4.7432 s\r\n", - "Current Simulation Time: 4.7532 s\r\n", - "Current Simulation Time: 4.7632 s\r\n", - "Current Simulation Time: 4.7732 s\r\n", - "Current Simulation Time: 4.7832 s\r\n", - "Current Simulation Time: 4.7932 s\r\n", - "Current Simulation Time: 4.8032 s\r\n", - "Current Simulation Time: 4.8132 s\r\n", - "Current Simulation Time: 4.8232 s\r\n", - "Current Simulation Time: 4.8332 s\r\n", - "Current Simulation Time: 4.8432 s\r\n", - "Current Simulation Time: 4.8532 s\r\n", - "Current Simulation Time: 4.8632 s\r\n", - "Current Simulation Time: 4.8732 s\r\n", - "Current Simulation Time: 4.8832 s\r\n", - "Current Simulation Time: 4.8932 s\r\n", - "Current Simulation Time: 4.9032 s\r\n", - "Current Simulation Time: 4.9132 s\r\n", - "Current Simulation Time: 4.9232 s\r\n", - "Current Simulation Time: 4.9332 s\r\n", - "Current Simulation Time: 4.9432 s\r\n", - "Current Simulation Time: 4.9532 s\r\n", - "Current Simulation Time: 4.9632 s\r\n", - "Current Simulation Time: 4.9732 s\r\n", - "Current Simulation Time: 4.9832 s\r\n", - "Current Simulation Time: 4.9932 s\r\n", - "Current Simulation Time: 5.0000 s\r\n", - "Simulation Completed at Time: 5.0000 s\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Simulating Rocket with Static Margin of 2.750->3.789 c\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Current Simulation Time: 0.0050 s\r\n", - "Current Simulation Time: 0.0100 s\r\n", - "Current Simulation Time: 0.0200 s\r\n", - "Current Simulation Time: 0.0300 s\r\n", - "Current Simulation Time: 0.0400 s\r\n", - "Current Simulation Time: 0.0500 s\r\n", - "Current Simulation Time: 0.0516 s\r\n", - "Current Simulation Time: 0.0532 s\r\n", - "Current Simulation Time: 0.0565 s\r\n", - "Current Simulation Time: 0.0571 s\r\n", - "Current Simulation Time: 0.0578 s\r\n", - "Current Simulation Time: 0.0591 s\r\n", - "Current Simulation Time: 0.0603 s\r\n", - "Current Simulation Time: 0.0616 s\r\n", - "Current Simulation Time: 0.0716 s\r\n", - "Current Simulation Time: 0.0816 s\r\n", - "Current Simulation Time: 0.0916 s\r\n", - "Current Simulation Time: 0.0936 s\r\n", - "Current Simulation Time: 0.0956 s\r\n", - "Current Simulation Time: 0.0976 s\r\n", - "Current Simulation Time: 0.1004 s\r\n", - "Current Simulation Time: 0.1024 s\r\n", - "Current Simulation Time: 0.1044 s\r\n", - "Current Simulation Time: 0.1063 s\r\n", - "Current Simulation Time: 0.1103 s\r\n", - "Current Simulation Time: 0.1142 s\r\n", - "Current Simulation Time: 0.1182 s\r\n", - "Current Simulation Time: 0.1221 s\r\n", - "Current Simulation Time: 0.1321 s\r\n", - "Current Simulation Time: 0.1421 s\r\n", - "Current Simulation Time: 0.1521 s\r\n", - "Current Simulation Time: 0.1596 s\r\n", - "Current Simulation Time: 0.1657 s\r\n", - "Current Simulation Time: 0.1718 s\r\n", - "Current Simulation Time: 0.1779 s\r\n", - "Current Simulation Time: 0.1840 s\r\n", - "Current Simulation Time: 0.1940 s\r\n", - "Current Simulation Time: 0.2040 s\r\n", - "Current Simulation Time: 0.2140 s\r\n", - "Current Simulation Time: 0.2221 s\r\n", - "Current Simulation Time: 0.2303 s\r\n", - "Current Simulation Time: 0.2384 s\r\n", - "Current Simulation Time: 0.2465 s\r\n", - "Current Simulation Time: 0.2565 s\r\n", - "Current Simulation Time: 0.2665 s\r\n", - "Current Simulation Time: 0.2765 s\r\n", - "Current Simulation Time: 0.2865 s\r\n", - "Current Simulation Time: 0.2965 s\r\n", - "Current Simulation Time: 0.3065 s\r\n", - "Current Simulation Time: 0.3165 s\r\n", - "Current Simulation Time: 0.3265 s\r\n", - "Current Simulation Time: 0.3365 s\r\n", - "Current Simulation Time: 0.3465 s\r\n", - "Current Simulation Time: 0.3565 s\r\n", - "Current Simulation Time: 0.3665 s\r\n", - "Current Simulation Time: 0.3656 s\r\n", - "Current Simulation Time: 0.3678 s\r\n", - "Current Simulation Time: 0.3722 s\r\n", - "Current Simulation Time: 0.3767 s\r\n", - "Current Simulation Time: 0.3811 s\r\n", - "Current Simulation Time: 0.3911 s\r\n", - "Current Simulation Time: 0.4011 s\r\n", - "Current Simulation Time: 0.4111 s\r\n", - "Current Simulation Time: 0.4211 s\r\n", - "Current Simulation Time: 0.4311 s\r\n", - "Current Simulation Time: 0.4411 s\r\n", - "Current Simulation Time: 0.4511 s\r\n", - "Current Simulation Time: 0.4611 s\r\n", - "Current Simulation Time: 0.4711 s\r\n", - "Current Simulation Time: 0.4811 s\r\n", - "Current Simulation Time: 0.4911 s\r\n", - "Current Simulation Time: 0.5011 s\r\n", - "Current Simulation Time: 0.5111 s\r\n", - "Current Simulation Time: 0.5211 s\r\n", - "Current Simulation Time: 0.5311 s\r\n", - "Current Simulation Time: 0.5411 s\r\n", - "Current Simulation Time: 0.5511 s\r\n", - "Current Simulation Time: 0.5611 s\r\n", - "Current Simulation Time: 0.5711 s\r\n", - "Current Simulation Time: 0.5811 s\r\n", - "Current Simulation Time: 0.5911 s\r\n", - "Current Simulation Time: 0.6011 s\r\n", - "Current Simulation Time: 0.6111 s\r\n", - "Current Simulation Time: 0.6211 s\r\n", - "Current Simulation Time: 0.6311 s\r\n", - "Current Simulation Time: 0.6411 s\r\n", - "Current Simulation Time: 0.6511 s\r\n", - "Current Simulation Time: 0.6611 s\r\n", - "Current Simulation Time: 0.6711 s\r\n", - "Current Simulation Time: 0.6811 s\r\n", - "Current Simulation Time: 0.6911 s\r\n", - "Current Simulation Time: 0.7011 s\r\n", - "Current Simulation Time: 0.7111 s\r\n", - "Current Simulation Time: 0.7211 s\r\n", - "Current Simulation Time: 0.7311 s\r\n", - "Current Simulation Time: 0.7411 s\r\n", - "Current Simulation Time: 0.7511 s\r\n", - "Current Simulation Time: 0.7611 s\r\n", - "Current Simulation Time: 0.7711 s\r\n", - "Current Simulation Time: 0.7811 s\r\n", - "Current Simulation Time: 0.7911 s\r\n", - "Current Simulation Time: 0.8011 s\r\n", - "Current Simulation Time: 0.8111 s\r\n", - "Current Simulation Time: 0.8211 s\r\n", - "Current Simulation Time: 0.8311 s\r\n", - "Current Simulation Time: 0.8411 s\r\n", - "Current Simulation Time: 0.8511 s\r\n", - "Current Simulation Time: 0.8611 s\r\n", - "Current Simulation Time: 0.8711 s\r\n", - "Current Simulation Time: 0.8811 s\r\n", - "Current Simulation Time: 0.8911 s\r\n", - "Current Simulation Time: 0.9011 s\r\n", - "Current Simulation Time: 0.9111 s\r\n", - "Current Simulation Time: 0.9211 s\r\n", - "Current Simulation Time: 0.9311 s\r\n", - "Current Simulation Time: 0.9411 s\r\n", - "Current Simulation Time: 0.9511 s\r\n", - "Current Simulation Time: 0.9611 s\r\n", - "Current Simulation Time: 0.9711 s\r\n", - "Current Simulation Time: 0.9811 s\r\n", - "Current Simulation Time: 0.9911 s\r\n", - "Current Simulation Time: 1.0011 s\r\n", - "Current Simulation Time: 1.0111 s\r\n", - "Current Simulation Time: 1.0211 s\r\n", - "Current Simulation Time: 1.0311 s\r\n", - "Current Simulation Time: 1.0411 s\r\n", - "Current Simulation Time: 1.0511 s\r\n", - "Current Simulation Time: 1.0611 s\r\n", - "Current Simulation Time: 1.0711 s\r\n", - "Current Simulation Time: 1.0811 s\r\n", - "Current Simulation Time: 1.0911 s\r\n", - "Current Simulation Time: 1.1011 s\r\n", - "Current Simulation Time: 1.1111 s\r\n", - "Current Simulation Time: 1.1211 s\r\n", - "Current Simulation Time: 1.1311 s\r\n", - "Current Simulation Time: 1.1411 s\r\n", - "Current Simulation Time: 1.1511 s\r\n", - "Current Simulation Time: 1.1611 s\r\n", - "Current Simulation Time: 1.1711 s\r\n", - "Current Simulation Time: 1.1811 s\r\n", - "Current Simulation Time: 1.1911 s\r\n", - "Current Simulation Time: 1.2011 s\r\n", - "Current Simulation Time: 1.2111 s\r\n", - "Current Simulation Time: 1.2211 s\r\n", - "Current Simulation Time: 1.2311 s\r\n", - "Current Simulation Time: 1.2411 s\r\n", - "Current Simulation Time: 1.2511 s\r\n", - "Current Simulation Time: 1.2611 s\r\n", - "Current Simulation Time: 1.2711 s\r\n", - "Current Simulation Time: 1.2811 s\r\n", - "Current Simulation Time: 1.2911 s\r\n", - "Current Simulation Time: 1.3011 s\r\n", - "Current Simulation Time: 1.3111 s\r\n", - "Current Simulation Time: 1.3211 s\r\n", - "Current Simulation Time: 1.3311 s\r\n", - "Current Simulation Time: 1.3411 s\r\n", - "Current Simulation Time: 1.3511 s\r\n", - "Current Simulation Time: 1.3611 s\r\n", - "Current Simulation Time: 1.3711 s\r\n", - "Current Simulation Time: 1.3811 s\r\n", - "Current Simulation Time: 1.3911 s\r\n", - "Current Simulation Time: 1.4011 s\r\n", - "Current Simulation Time: 1.4111 s\r\n", - "Current Simulation Time: 1.4211 s\r\n", - "Current Simulation Time: 1.4311 s\r\n", - "Current Simulation Time: 1.4411 s\r\n", - "Current Simulation Time: 1.4511 s\r\n", - "Current Simulation Time: 1.4611 s\r\n", - "Current Simulation Time: 1.4711 s\r\n", - "Current Simulation Time: 1.4811 s\r\n", - "Current Simulation Time: 1.4911 s\r\n", - "Current Simulation Time: 1.5011 s\r\n", - "Current Simulation Time: 1.5111 s\r\n", - "Current Simulation Time: 1.5211 s\r\n", - "Current Simulation Time: 1.5311 s\r\n", - "Current Simulation Time: 1.5411 s\r\n", - "Current Simulation Time: 1.5511 s\r\n", - "Current Simulation Time: 1.5611 s\r\n", - "Current Simulation Time: 1.5711 s\r\n", - "Current Simulation Time: 1.5811 s\r\n", - "Current Simulation Time: 1.5911 s\r\n", - "Current Simulation Time: 1.6011 s\r\n", - "Current Simulation Time: 1.6111 s\r\n", - "Current Simulation Time: 1.6211 s\r\n", - "Current Simulation Time: 1.6311 s\r\n", - "Current Simulation Time: 1.6411 s\r\n", - "Current Simulation Time: 1.6511 s\r\n", - "Current Simulation Time: 1.6611 s\r\n", - "Current Simulation Time: 1.6711 s\r\n", - "Current Simulation Time: 1.6811 s\r\n", - "Current Simulation Time: 1.6911 s\r\n", - "Current Simulation Time: 1.7011 s\r\n", - "Current Simulation Time: 1.7111 s\r\n", - "Current Simulation Time: 1.7211 s\r\n", - "Current Simulation Time: 1.7311 s\r\n", - "Current Simulation Time: 1.7411 s\r\n", - "Current Simulation Time: 1.7511 s\r\n", - "Current Simulation Time: 1.7611 s\r\n", - "Current Simulation Time: 1.7711 s\r\n", - "Current Simulation Time: 1.7811 s\r\n", - "Current Simulation Time: 1.7911 s\r\n", - "Current Simulation Time: 1.8011 s\r\n", - "Current Simulation Time: 1.8111 s\r\n", - "Current Simulation Time: 1.8211 s\r\n", - "Current Simulation Time: 1.8311 s\r\n", - "Current Simulation Time: 1.8411 s\r\n", - "Current Simulation Time: 1.8511 s\r\n", - "Current Simulation Time: 1.8611 s\r\n", - "Current Simulation Time: 1.8711 s\r\n", - "Current Simulation Time: 1.8811 s\r\n", - "Current Simulation Time: 1.8911 s\r\n", - "Current Simulation Time: 1.9011 s\r\n", - "Current Simulation Time: 1.9111 s\r\n", - "Current Simulation Time: 1.9211 s\r\n", - "Current Simulation Time: 1.9311 s\r\n", - "Current Simulation Time: 1.9411 s\r\n", - "Current Simulation Time: 1.9511 s\r\n", - "Current Simulation Time: 1.9611 s\r\n", - "Current Simulation Time: 1.9711 s\r\n", - "Current Simulation Time: 1.9811 s\r\n", - "Current Simulation Time: 1.9911 s\r\n", - "Current Simulation Time: 2.0011 s\r\n", - "Current Simulation Time: 2.0111 s\r\n", - "Current Simulation Time: 2.0211 s\r\n", - "Current Simulation Time: 2.0311 s\r\n", - "Current Simulation Time: 2.0411 s\r\n", - "Current Simulation Time: 2.0511 s\r\n", - "Current Simulation Time: 2.0611 s\r\n", - "Current Simulation Time: 2.0711 s\r\n", - "Current Simulation Time: 2.0811 s\r\n", - "Current Simulation Time: 2.0911 s\r\n", - "Current Simulation Time: 2.1011 s\r\n", - "Current Simulation Time: 2.1111 s\r\n", - "Current Simulation Time: 2.1211 s\r\n", - "Current Simulation Time: 2.1311 s\r\n", - "Current Simulation Time: 2.1411 s\r\n", - "Current Simulation Time: 2.1511 s\r\n", - "Current Simulation Time: 2.1611 s\r\n", - "Current Simulation Time: 2.1711 s\r\n", - "Current Simulation Time: 2.1811 s\r\n", - "Current Simulation Time: 2.1911 s\r\n", - "Current Simulation Time: 2.2011 s\r\n", - "Current Simulation Time: 2.2111 s\r\n", - "Current Simulation Time: 2.2211 s\r\n", - "Current Simulation Time: 2.2311 s\r\n", - "Current Simulation Time: 2.2411 s\r\n", - "Current Simulation Time: 2.2511 s\r\n", - "Current Simulation Time: 2.2611 s\r\n", - "Current Simulation Time: 2.2711 s\r\n", - "Current Simulation Time: 2.2811 s\r\n", - "Current Simulation Time: 2.2911 s\r\n", - "Current Simulation Time: 2.3011 s\r\n", - "Current Simulation Time: 2.3111 s\r\n", - "Current Simulation Time: 2.3211 s\r\n", - "Current Simulation Time: 2.3311 s\r\n", - "Current Simulation Time: 2.3411 s\r\n", - "Current Simulation Time: 2.3511 s\r\n", - "Current Simulation Time: 2.3611 s\r\n", - "Current Simulation Time: 2.3711 s\r\n", - "Current Simulation Time: 2.3811 s\r\n", - "Current Simulation Time: 2.3911 s\r\n", - "Current Simulation Time: 2.4011 s\r\n", - "Current Simulation Time: 2.4111 s\r\n", - "Current Simulation Time: 2.4211 s\r\n", - "Current Simulation Time: 2.4311 s\r\n", - "Current Simulation Time: 2.4411 s\r\n", - "Current Simulation Time: 2.4511 s\r\n", - "Current Simulation Time: 2.4611 s\r\n", - "Current Simulation Time: 2.4711 s\r\n", - "Current Simulation Time: 2.4811 s\r\n", - "Current Simulation Time: 2.4911 s\r\n", - "Current Simulation Time: 2.5011 s\r\n", - "Current Simulation Time: 2.5111 s\r\n", - "Current Simulation Time: 2.5211 s\r\n", - "Current Simulation Time: 2.5311 s\r\n", - "Current Simulation Time: 2.5411 s\r\n", - "Current Simulation Time: 2.5511 s\r\n", - "Current Simulation Time: 2.5611 s\r\n", - "Current Simulation Time: 2.5711 s\r\n", - "Current Simulation Time: 2.5811 s\r\n", - "Current Simulation Time: 2.5911 s\r\n", - "Current Simulation Time: 2.6011 s\r\n", - "Current Simulation Time: 2.6111 s\r\n", - "Current Simulation Time: 2.6211 s\r\n", - "Current Simulation Time: 2.6311 s\r\n", - "Current Simulation Time: 2.6411 s\r\n", - "Current Simulation Time: 2.6511 s\r\n", - "Current Simulation Time: 2.6611 s\r\n", - "Current Simulation Time: 2.6711 s\r\n", - "Current Simulation Time: 2.6811 s\r\n", - "Current Simulation Time: 2.6911 s\r\n", - "Current Simulation Time: 2.7011 s\r\n", - "Current Simulation Time: 2.7111 s\r\n", - "Current Simulation Time: 2.7211 s\r\n", - "Current Simulation Time: 2.7311 s\r\n", - "Current Simulation Time: 2.7411 s\r\n", - "Current Simulation Time: 2.7511 s\r\n", - "Current Simulation Time: 2.7611 s\r\n", - "Current Simulation Time: 2.7711 s\r\n", - "Current Simulation Time: 2.7811 s\r\n", - "Current Simulation Time: 2.7911 s\r\n", - "Current Simulation Time: 2.8011 s\r\n", - "Current Simulation Time: 2.8111 s\r\n", - "Current Simulation Time: 2.8211 s\r\n", - "Current Simulation Time: 2.8311 s\r\n", - "Current Simulation Time: 2.8411 s\r\n", - "Current Simulation Time: 2.8511 s\r\n", - "Current Simulation Time: 2.8611 s\r\n", - "Current Simulation Time: 2.8711 s\r\n", - "Current Simulation Time: 2.8811 s\r\n", - "Current Simulation Time: 2.8911 s\r\n", - "Current Simulation Time: 2.9011 s\r\n", - "Current Simulation Time: 2.9111 s\r\n", - "Current Simulation Time: 2.9211 s\r\n", - "Current Simulation Time: 2.9311 s\r\n", - "Current Simulation Time: 2.9411 s\r\n", - "Current Simulation Time: 2.9511 s\r\n", - "Current Simulation Time: 2.9611 s\r\n", - "Current Simulation Time: 2.9711 s\r\n", - "Current Simulation Time: 2.9811 s\r\n", - "Current Simulation Time: 2.9911 s\r\n", - "Current Simulation Time: 3.0011 s\r\n", - "Current Simulation Time: 3.0031 s\r\n", - "Current Simulation Time: 3.0051 s\r\n", - "Current Simulation Time: 3.0071 s\r\n", - "Current Simulation Time: 3.0111 s\r\n", - "Current Simulation Time: 3.0151 s\r\n", - "Current Simulation Time: 3.0191 s\r\n", - "Current Simulation Time: 3.0291 s\r\n", - "Current Simulation Time: 3.0391 s\r\n", - "Current Simulation Time: 3.0491 s\r\n", - "Current Simulation Time: 3.0591 s\r\n", - "Current Simulation Time: 3.0691 s\r\n", - "Current Simulation Time: 3.0791 s\r\n", - "Current Simulation Time: 3.0891 s\r\n", - "Current Simulation Time: 3.0991 s\r\n", - "Current Simulation Time: 3.1091 s\r\n", - "Current Simulation Time: 3.1191 s\r\n", - "Current Simulation Time: 3.1291 s\r\n", - "Current Simulation Time: 3.1391 s\r\n", - "Current Simulation Time: 3.1491 s\r\n", - "Current Simulation Time: 3.1591 s\r\n", - "Current Simulation Time: 3.1691 s\r\n", - "Current Simulation Time: 3.1791 s\r\n", - "Current Simulation Time: 3.1891 s\r\n", - "Current Simulation Time: 3.1991 s\r\n", - "Current Simulation Time: 3.2091 s\r\n", - "Current Simulation Time: 3.2191 s\r\n", - "Current Simulation Time: 3.2291 s\r\n", - "Current Simulation Time: 3.2391 s\r\n", - "Current Simulation Time: 3.2491 s\r\n", - "Current Simulation Time: 3.2591 s\r\n", - "Current Simulation Time: 3.2691 s\r\n", - "Current Simulation Time: 3.2791 s\r\n", - "Current Simulation Time: 3.2891 s\r\n", - "Current Simulation Time: 3.2991 s\r\n", - "Current Simulation Time: 3.3091 s\r\n", - "Current Simulation Time: 3.3191 s\r\n", - "Current Simulation Time: 3.3291 s\r\n", - "Current Simulation Time: 3.3391 s\r\n", - "Current Simulation Time: 3.3491 s\r\n", - "Current Simulation Time: 3.3591 s\r\n", - "Current Simulation Time: 3.3691 s\r\n", - "Current Simulation Time: 3.3791 s\r\n", - "Current Simulation Time: 3.3891 s\r\n", - "Current Simulation Time: 3.3991 s\r\n", - "Current Simulation Time: 3.4091 s\r\n", - "Current Simulation Time: 3.4191 s\r\n", - "Current Simulation Time: 3.4291 s\r\n", - "Current Simulation Time: 3.4391 s\r\n", - "Current Simulation Time: 3.4491 s\r\n", - "Current Simulation Time: 3.4591 s\r\n", - "Current Simulation Time: 3.4691 s\r\n", - "Current Simulation Time: 3.4791 s\r\n", - "Current Simulation Time: 3.4891 s\r\n", - "Current Simulation Time: 3.4991 s\r\n", - "Current Simulation Time: 3.5091 s\r\n", - "Current Simulation Time: 3.5191 s\r\n", - "Current Simulation Time: 3.5291 s\r\n", - "Current Simulation Time: 3.5391 s\r\n", - "Current Simulation Time: 3.5491 s\r\n", - "Current Simulation Time: 3.5591 s\r\n", - "Current Simulation Time: 3.5691 s\r\n", - "Current Simulation Time: 3.5791 s\r\n", - "Current Simulation Time: 3.5891 s\r\n", - "Current Simulation Time: 3.5991 s\r\n", - "Current Simulation Time: 3.6091 s\r\n", - "Current Simulation Time: 3.6191 s\r\n", - "Current Simulation Time: 3.6291 s\r\n", - "Current Simulation Time: 3.6391 s\r\n", - "Current Simulation Time: 3.6491 s\r\n", - "Current Simulation Time: 3.6591 s\r\n", - "Current Simulation Time: 3.6691 s\r\n", - "Current Simulation Time: 3.6791 s\r\n", - "Current Simulation Time: 3.6891 s\r\n", - "Current Simulation Time: 3.6991 s\r\n", - "Current Simulation Time: 3.7091 s\r\n", - "Current Simulation Time: 3.7191 s\r\n", - "Current Simulation Time: 3.7291 s\r\n", - "Current Simulation Time: 3.7391 s\r\n", - "Current Simulation Time: 3.7491 s\r\n", - "Current Simulation Time: 3.7591 s\r\n", - "Current Simulation Time: 3.7691 s\r\n", - "Current Simulation Time: 3.7791 s\r\n", - "Current Simulation Time: 3.7891 s\r\n", - "Current Simulation Time: 3.7991 s\r\n", - "Current Simulation Time: 3.8091 s\r\n", - "Current Simulation Time: 3.8191 s\r\n", - "Current Simulation Time: 3.8291 s\r\n", - "Current Simulation Time: 3.8391 s\r\n", - "Current Simulation Time: 3.8491 s\r\n", - "Current Simulation Time: 3.8591 s\r\n", - "Current Simulation Time: 3.8691 s\r\n", - "Current Simulation Time: 3.8791 s\r\n", - "Current Simulation Time: 3.8891 s\r\n", - "Current Simulation Time: 3.8991 s\r\n", - "Current Simulation Time: 3.9091 s\r\n", - "Current Simulation Time: 3.9191 s\r\n", - "Current Simulation Time: 3.9291 s\r\n", - "Current Simulation Time: 3.9391 s\r\n", - "Current Simulation Time: 3.9491 s\r\n", - "Current Simulation Time: 3.9591 s\r\n", - "Current Simulation Time: 3.9691 s\r\n", - "Current Simulation Time: 3.9791 s\r\n", - "Current Simulation Time: 3.9891 s\r\n", - "Current Simulation Time: 3.9991 s\r\n", - "Current Simulation Time: 4.0091 s\r\n", - "Current Simulation Time: 4.0191 s\r\n", - "Current Simulation Time: 4.0291 s\r\n", - "Current Simulation Time: 4.0391 s\r\n", - "Current Simulation Time: 4.0491 s\r\n", - "Current Simulation Time: 4.0591 s\r\n", - "Current Simulation Time: 4.0691 s\r\n", - "Current Simulation Time: 4.0791 s\r\n", - "Current Simulation Time: 4.0891 s\r\n", - "Current Simulation Time: 4.0991 s\r\n", - "Current Simulation Time: 4.1091 s\r\n", - "Current Simulation Time: 4.1191 s\r\n", - "Current Simulation Time: 4.1291 s\r\n", - "Current Simulation Time: 4.1391 s\r\n", - "Current Simulation Time: 4.1491 s\r\n", - "Current Simulation Time: 4.1591 s\r\n", - "Current Simulation Time: 4.1691 s\r\n", - "Current Simulation Time: 4.1791 s\r\n", - "Current Simulation Time: 4.1891 s\r\n", - "Current Simulation Time: 4.1991 s\r\n", - "Current Simulation Time: 4.2091 s\r\n", - "Current Simulation Time: 4.2191 s\r\n", - "Current Simulation Time: 4.2291 s\r\n", - "Current Simulation Time: 4.2391 s\r\n", - "Current Simulation Time: 4.2491 s\r\n", - "Current Simulation Time: 4.2591 s\r\n", - "Current Simulation Time: 4.2691 s\r\n", - "Current Simulation Time: 4.2791 s\r\n", - "Current Simulation Time: 4.2891 s\r\n", - "Current Simulation Time: 4.2991 s\r\n", - "Current Simulation Time: 4.3091 s\r\n", - "Current Simulation Time: 4.3191 s\r\n", - "Current Simulation Time: 4.3291 s\r\n", - "Current Simulation Time: 4.3391 s\r\n", - "Current Simulation Time: 4.3491 s\r\n", - "Current Simulation Time: 4.3591 s\r\n", - "Current Simulation Time: 4.3691 s\r\n", - "Current Simulation Time: 4.3791 s\r\n", - "Current Simulation Time: 4.3891 s\r\n", - "Current Simulation Time: 4.3991 s\r\n", - "Current Simulation Time: 4.4091 s\r\n", - "Current Simulation Time: 4.4191 s\r\n", - "Current Simulation Time: 4.4291 s\r\n", - "Current Simulation Time: 4.4391 s\r\n", - "Current Simulation Time: 4.4491 s\r\n", - "Current Simulation Time: 4.4591 s\r\n", - "Current Simulation Time: 4.4691 s\r\n", - "Current Simulation Time: 4.4791 s\r\n", - "Current Simulation Time: 4.4891 s\r\n", - "Current Simulation Time: 4.4991 s\r\n", - "Current Simulation Time: 4.5091 s\r\n", - "Current Simulation Time: 4.5191 s\r\n", - "Current Simulation Time: 4.5291 s\r\n", - "Current Simulation Time: 4.5391 s\r\n", - "Current Simulation Time: 4.5491 s\r\n", - "Current Simulation Time: 4.5591 s\r\n", - "Current Simulation Time: 4.5691 s\r\n", - "Current Simulation Time: 4.5791 s\r\n", - "Current Simulation Time: 4.5891 s\r\n", - "Current Simulation Time: 4.5991 s\r\n", - "Current Simulation Time: 4.6091 s\r\n", - "Current Simulation Time: 4.6191 s\r\n", - "Current Simulation Time: 4.6291 s\r\n", - "Current Simulation Time: 4.6391 s\r\n", - "Current Simulation Time: 4.6491 s\r\n", - "Current Simulation Time: 4.6591 s\r\n", - "Current Simulation Time: 4.6691 s\r\n", - "Current Simulation Time: 4.6791 s\r\n", - "Current Simulation Time: 4.6891 s\r\n", - "Current Simulation Time: 4.6991 s\r\n", - "Current Simulation Time: 4.7091 s\r\n", - "Current Simulation Time: 4.7191 s\r\n", - "Current Simulation Time: 4.7291 s\r\n", - "Current Simulation Time: 4.7391 s\r\n", - "Current Simulation Time: 4.7491 s\r\n", - "Current Simulation Time: 4.7591 s\r\n", - "Current Simulation Time: 4.7691 s\r\n", - "Current Simulation Time: 4.7791 s\r\n", - "Current Simulation Time: 4.7891 s\r\n", - "Current Simulation Time: 4.7991 s\r\n", - "Current Simulation Time: 4.8091 s\r\n", - "Current Simulation Time: 4.8191 s\r\n", - "Current Simulation Time: 4.8291 s\r" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Simulation Completed at Time: 5.0000 s\n", - "Simulating Rocket with Static Margin of 4.147->5.186 c\n", - "Simulation Completed at Time: 5.0000 s\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAACCVUlEQVR4nO2dd3hURReH39lseicNSIDQW0gCCV16LyJVUJQiTaSDFEXAgiIfiKIgSFGKCIhIkSa91wRC7yRAQktCQkgvO98fGyIhbVM2WeC+z3Nh9065v3uTnJ2dOXOOkFKioKCgoPD6oCpqAQoKCgoKhYti+BUUFBReMxTDr6CgoPCaoRh+BQUFhdcMxfArKCgovGaoi1qALjg6Okp3d/c8tY2JicHS0rJgBRUwhq7R0PWB4Ws0dH2gaCwIDE2fv79/mJTSKUOBlNLgDx8fH5lX9u3bl+e2hYWhazR0fVIavkZD1yelorEgMDR9gJ/MxKYqUz0KCgoKrxmK4VdQUFB4zVAMv4KCgsJrhmL4FRQUFF4zFMOvoKCg8JqhV8MvhBglhLgghLgohBideq6YEGKXEOJ66v/2+tSgoKCgoJAevRl+IYQHMAioA3gBHYUQFYBJwB4pZUVgT+p7BQUFBYVCQp8buKoCJ6SUsQBCiANAV+AtoGlqneXAfmCiPgSs+HgyiRFw6/c92hNCl1ZZhKkWL9YRz73Wvn2+ihQZarxweQlCeyYlOZnAtTt1uG4OiIyvBenvKF13mfQthESaJKCykhg5WmHmVoqIKIHlhRKY2zljZWaClZkaO3Nj1EbKTKGCwsuIkHqKxy+EqApsAuoDcWhH937A+1JKu9Q6Aoh49v6F9oOBwQAuLi4+a9asybWGm7+eI968WmqHipHKC8aJTzGJD0ZylxTj68QWu0mCgxpj6URyUinuG5cl1KQMKWbFsDVT4WQucLJQ4WwhKGYmUKty88mVd6Kjo7GysiqUa+UFQ9cHisaCwND0NWvWzF9K6fvieb0ZfgAhxADgIyAGuAgkAP2eN/RCiAgpZbbz/L6+vtLPzy9PGvbv30/Tpk0zLZNSkpKcrH2NBpmifRZSo0GT+ly05zVIJEiQkmf/oNE8Oy+R8r/XmhRNalsJmtRraSQy9Y2UGqTUpGnw8zuNT61aaFJSnilDI581lGlaADTJmrQ6aT+75/uD5+5D8my8L5FIzX/X1OqRaf2k1UqWxIXFEBUSSvSjGGIjVMTH2ZBk5IJUqRGaFGyibqKOO80d+zM8LhtJGZt4POMFMs4Vf01l/DWVOK2pSJzKkpJ2ZpRztKJKcWsqpx4VnK0wVRvl4qeYM9n9nA0BQ9cHisaCwND0CSEyNfx6jdUjpVwKLE0V8A0QDDwUQpSQUt4XQpQAHulTQ3YIIVAbG/93wjjruvrEJigE13IVi+biOrB//37eaNCIe1fCCDx0naCrbjxJrISlfJvSFy5j+/gAh90uc9IzmvJmh+gfs4PFsfFEWlTknJkPOx97sfKmG7Ep2m9dRipBOUdLvErZUau0PTVL21HJxRqjQvp2oKDwuqNXwy+EcJZSPhJClEY7v18PKAv0Bb5N/X+TPjUoFAxqEyNKe7pQ2tOFJkB4SDRXD93m8jEId6iOU9wjPty6lzijk6ypZcaUaqY0l0Z0e7CR/8Wv5n9WNkS7NeGqQwsOU4tzjxLZe+URf/kHA2BpYoRXKTvqlXOgYQUHPN3sMFbWEBQU9IK+o3OuF0I4AEnAMCllpBDiW+DP1Gmg28DbetagoAccXK1o0Ks6dbtX5daZUAL+teCaeS/MktvR4+QWBhw5xyafBPrXcKSCbUl6SCs63j6B781/8DWxgsrtkW93406xNzgTHM2ZOxH43Y7g+93XmLMLrEzV1C1bjAYVHGlW2YlyToYzb6qg8LKj76meRpmcCwda6PO6CoWHkVpFxdouVPB15u7lx5zcfIur6t5Yp7Sjw4kVvO33gK1Nk5he4Ro/lSrBe8W70ysyEpsr2xDn/6SMjStlar5P56bvg60HETGJHLsVzpEbYRy9Gc6eK4/4aguUd7KkVbXitKrmQs1SdqiUaSEFhTzzUsTjVzB8hBCUruZAqarFCAwI4/Bf1znjPZoSiTfpsHkRb5VwYUtHJ35K2MKvxpa823I0/U3dsA5YDQdmwsH/QcU22DcYQXuPBrSvUQKA4IhY9lx+xM5LD1hy6BYLD9zEydqUNtVd6Oztik8Ze4RQPgQUFHKDYvgVChQhBOVqOlG6ejHO7LqD33ZBRPNvqXJ3E51+3kWnZvVZ3caCxRd/ZZ2pHUN8htCz/UyMA1aD/zJY1h5cfaHhKKjSATd7C/o2cKdvA3eexCax76r2Q+Av/2B+P34HN3tz3vIuSckkTY7aFBQUtCiGX0EvqE2MqN2hLOVqOrFn2WUCEjpTpnJz3HfMoPeJZHp91J85xS8y89RMVlm5ManOJJo0+hjO/gFHf4I/3weHitDsE6jWBVQqbC2M6VzTlc41XYlOSObfCw/YGBDCgv030Uj48/YRetcpTUevEliYKL/aCgpZobhNKOgVh5JWdJvoQ+2OZbnzxJaz7WeT7N0YMXsxU/8y4pea32JqZMrwvcMZfeRTHlTrCCNOQ49lYGQCf30AvzSGqztS909osTJV083HjZUD6nL80xa8U8WE2IRkJqw/R92v9zB10wWuPIgquhtXUDBgFMOvoHeMjFTU6ViWt0Z5k5AIh607Ez9kOrGnTuE4eDrLLD9iVK1RHAk5QqeNnfjj6lo01d6CDw9Dt6WQFAOre8KvbSDEP0P/ztZmtHE3ZueYxqz7sD4tqjqz5tRd2v5wiF6LjrHn8kM0Gv1tVFRQeNlQDL9CoeFa2Z6ek+vg5GbF0av2PB67BHXJktwfMYpOu56y4c311HKpxYyTMxiyawgP4h5Bje4w7CR0/AEeB8LiFrBpGERn3PcnhKC2ezF+6FWTE5+04NP2VbgTHsuA5X60+v4Aq0/eIT4pJaMwBYXXDMXwKxQqlnamvDW2JlUalODM0Sfc7PA5Nt3fJnzRIjRjPuenWt8wtf5Uzoaepeumrmy5tQWMjMG3P4zwhwbD4exa+MkHjv0MmswNub2lCYMbl+fAhGbM7eWNuYkRn/x9nobf7mXB/pvEJCQX8p0rKBgOiuFXKHSMjFQ0f78Kdd4sy7VToZxy6Izj518R6+fP7e496CS8Wf/mesrbleeTQ58w5cgU4pPjwcwGWk+Hj45BqTrw7yewpCU8vJjltYyNVLzl7co/w99g9aB6eLjaMnPHFd6YqXwAKLy+KIZfoUgQQlC7Q1la9KvK/euRHLjtTvFfV6JJSiTo3d4Uu3SPZW2XMcRzCBtvbOS9be9xJ+qOtrFjRej9l3b+P/IO/NIY98A/IDkh2+vVL+/A8g/qsOGjBniVskv3ARCXqEwBKbw+KIZfoUipUq8EbQZ7EHrnKTt3JlDi11WoXZy5M2gQ0Vu2MrzmcOa3mM/9mPv03NKTvXf2ahsK8d/8v0c33G+vhUVNsx39P6NmaXuW9U//AdB09j7+PHWXFGURWOE1QDH8CkVOOW8n2n1Yg8f3Yti65j4ui5djUasW9yZMJPy3ZTR2a8yfb/5JGZsyjNo3iqXnl/4XktrSAbou4lyNKRATBouawfEFoMl5Q9ezD4B1H9anpJ05E9afo/3cQ+y7+gh9hitXUChqFMOvYBC413CkwzBPIh/Fse23WxT/8Wes27Th0cyZhC1ciKuVK8vaLqOte1t+OP0D045OIyklKa39Ywdf7dx/+eawYxKs6g5PH+p07druxfh7aAN+7l2L+OQU+v92iveWnuDaw6f6ul0FhSJFMfwKBkOpqsVoO9iD8OBoti25gsuMmdh0epPQH+by6PsfMDUyZWbjmQzxHMKGGxv4cPeHPEl48l8Hlo7wzmro8B3cPgILG0LgIZ2uLYSgfY0S7BrThM/frMbFe1G0n3uI6Vsu8TQ+KecOFBReIhTDr2BQuNdwpGX/aty7Ecm/v13B5etvsOvRnfBffuHR7NkIBMNrDuebN77hzKMz9NvRj9DY0P86EAJqD4TB+8HMDla8BUd+TLfrNztM1Cr6NSzL3nFN6eHrxtIjgbT47gCbAkKU6R+FVwbF8CsYHBVru9DkncrcPh/OwTXXcfn8c+ze6cXjpb8StmABAG+Wf5MFLRcQEh1Cn+19CEsKS9+Jc1UYtBeqdIBdU+DPPpCg+9RNMUsTZnT1ZMNHDSlua8aoNQG8s/g4gWExBXmrCgpFgmL4FQwSj8au+LQrw+Uj9wnYHUzxKVOwfestwn78icfLlwNQt0RdlrZeytOkp3z/8HuuR1xP34mZDby9Quv7f2WrduE3/GaudHiXsmPDRw35uosHF+9F0faHg/xy4CbJKUo0UIWXF8XwKxgsdd8sRwVfZ45tuMmts2GU+Ho61q1b83DGt0SsWwdADacaLG+7HIGg345+XAx/wZ1TCGgwAvpsgrjHsKQFBB3OlQ4jlaB33TLsHtuExpWcmLH9Cl0XHOXyfSUInMLLiV4NvxBijBDiohDighBitRDCTAjRXAhxOvXcciGEEj9XIVOEStCiT1Vcytqw+9dLPAqOpeTsWVg2asSDaZ/zdO8+AMrblWe0y2isTawZvHMwl8MvZ+ysbCMYuBssnWBFZwj4I9d6XGzMWPS+D/PerUlIRBxv/nSYObuukZisjP4VXi70ZviFEK7ASMBXSukBGAHvAsuBXqnnbqNNuK6gkClqEyPaD/XE3MaEHb+cJz4e3Ob+gFm1aoSMG0fc+QsAOBo7srTNUiyNLRm0axBXH1/N2FmxcjBgF5RpABuHwp4vdfL3fx4hBB09S7J7bBPe9CrJj3uu023BUW48ii6I21VQKBT0PdWjBsxTR/UWQAyQKKW8llq+C+imZw0KLzkWNia0G1KDuOgkdi69AKZmlFq4AHWxYtwdOpTE4BAAXK1cWdpmKeZqcwbuHJi58Te3g/fWg08/OPQdbBgCKbl317S3NOH7nt4sfK8WdyNi6fjTIVYev614/ii8FAh9/qIKIUYBXwNxwE7gPSAI6Cal9BNCzAWaSylrZNJ2MDAYwMXFxWfNmjV50hAdHY2VlVXebqCQMHSNhqIvMlASckLiWBVcvFQY3b9PsVmz0NjYcvejoVg4OwMQmhTKjw9/JFkmM6b4GJyNnTN2JiWl7/xFucDfCS/mw8XqE9EYmeZJV0S8hqXnE7kQnoKnkxEDPEyxNU2fB9hQnmF2KBrzj6Hpa9asmb+U0jdDgZRSLwdgD+wFnABjYCNaw18fOAScBKYDATn15ePjI/PKvn378ty2sDB0jYakb9+qK3LekD3y5ulHUkopY06elJc8asgzXbpITXJyWr1bkbdko9WNZJu/2siHMQ+z7vDUr1J+biflklZSxj7Os66UFI387fAtWXHyNlnry51y35X01zSkZ5gVisb8Y2j6AD+ZiU3V51RPSyBQShkqpUwC/gYaSCmPSSkbSSnrAAeBa9n2oqDwHI16VMTZ3Ybdyy/xJDQOi9q1KT51CqaXLhP6/fdp9cralmVBywVExEfw4e4PiUrMwgPHt782zeO9M/Bbe4i6nyddKpWgX8OybBnxBk7WpvT77RSz/r2iuH0qGCT6NPx3gHpCCAshhABaAJeFEM4AQghTYCKwUI8aFF4xjIxVtBlUHSEEu369SEqKBvsePYht3JjwJUt5snVrWt3qjtX5odkPBD4JZMSeEdqY/plR7S3ovU4b4vm3dvAkOM/6KrlYs+GjhvT0LcX8fTfpveQED6OyuK6CQhGhN8MvpTwB/AWcBs6nXmsRMF4IcRk4B/wjpdyrLw0KryY2DuY07V2Zh4FRnNoSCMDTt3tg7uPD/cmfEX/5P3fO+iXrM6PRDM48OsOEgxNIySJjF+WawvsbITZcO/KPvJNnfeYmRszs7sl3Pbw4F/yEDj8e4lK4Eu9fwXDQq1ePlHKalLKKlNJDSvm+lDJBSjleSllVSllZSvmDPq+v8OpS0deFqg1K4L/jNiHXIkCtxm3uDxjZ2hI8bDgpkZFpddu6t2VSnUnsu7uPOf5zsu60VG3osxHiI2FZB4i4nS+N3Xzc2DS8IXYWJsw6Fc+8vdcVrx8Fg0DZuavw0vLG2xWxdTJn92+XSE6QqB0dcfvpR5JCQ7n36eR0Rvbdqu/ybpV3WXFpBeuurcu6U1cf7S7f+Cit8X8cmC+NlVys2TSsIXVLGDF75zWG/XFaSfeoUOQohl/hpcXETE3rAdWJfZLIg9NaI2/u6YnzuLFE791LxIoV6eqPrz2eN1zf4OvjX3Ps3rGsOy5ZE/puhsRoWNYxX9M+AJamaoZ4mvJp+yrsuPCAbguOcic8Nl99KijkB8XwK7zUOJexwae9O09uw60AbXjmYn37YtW8OQ9nf0fcuXNpddUqNbMaz6KsbVnG7R/HrchbWXdcwgv6bIbEp9rQzjomdckKIQSDG5fnt/51uBcZR6f5hzl8PSznhgoKekAx/AovPT7tymBmB/v/uEp8dBJCCEp+8zVqJ0dCxowlJeo/V04rEyvmt5iPsZExI/aOyNrNE6CEpzap+9OHsLIzxD7Ot9YmlZzYPPwNnK1N6fPrCZYeDlTm/RUKHcXwK7z0GBmpcK0rSIhJ4uBa7bYQIzs73ObMIenhQ+5PmZrOuJa0KskPzX7gXvQ9Pj30KRqZja99qTrwzh/acM6/d9PO/ecTd0dL/v6oIa2qufDVlkt8tvGC4u+vUKgohl/hlcDMXuDb3p3rpx5y64x2ysfc2xunkSN5+u+/RG3enK5+TeeaTKgzgQPBB/jl7C/Zd16uKby9HB6cg9W9IDH/8/NWpmoW9PZhaNPyrDpxhwHL/ZQUjwqFhmL4FV4ZarUtg1Npa/b/cYX4GK0RdRjwAeY+Pjz4ajpJISHp6veq3ItO5Tvx89mfOXD3QPadV24HXX6B20dh/QBIyb9njkolmNi2Ct92rcHhG2H0WHiMe5Fx+e5XQSEnFMOv8MpgZKSieZ8qxMckc2yDNtOWMDKi5MxvQaPh3qRPkM+FYRZCMKXeFKoWq8onhz7hdlQOfvs1ukP7WXB1G2z7WOc8vjnRq05plvWvTUhEHJ3nH+F88JOcGyko5APF8Cu8Uji6WePV3I1Lh+9x/0YkACZubrhMnkzsqVM8XrY8XX0ztRnfN/selUrF6H2jiUvOYcRdZxC8MQb8f4NDswtMd6OKTqz/qAHGRire/uUYey7nz4tIQSE7FMOv8MpRu2NZrIqZsv+Pq6SkLpradu2CVcsWhH7/PfFX08cFdLVy5X+N/sfNyJvMPDkz5wu0mAaePWHvdDizqsB0V3KxZsOwBlRwtmLwSn/W+d0tsL4VFJ5HMfwKrxwmZmoa96rM43sxnN2tNZ5CCEp8+SUqW1vufTIJmZR+IbWBawMG1BjA+uvr2XZrW/YXEAI6zdMu+m4eAdd3F5h2Z2szVg+uR/1yDoz/6xwLD9xU3D0VChzF8Cu8kpT1dKSctxOntgQSFaadvlEXK0bxqVNIuHSZ8F9/y9BmmPcwajrX5ItjX+Q83682gbdXgks1+LMPPLhQYNqtTNX82q82HT1L8O32K3y99TIajWL8FQoOxfArvLI06lkRoRJpvv0ANq1bY92mDWHz55NwK/3OXbVKzcxGM1Gr1Iw/MJ7ElMTsL2BmA++uAzNbrZtn9KMC026iVvFjr5r0a+DOksOBjFt3liTF11+hgFAMv8Iri5W9GbU7lOX2+XBuXwhPO1/8s8kIc3PufzYlnZcPQAmrEkxvOJ3Ljy9nH8nzGTYl4J3VEBMGa96FpIKLva9SCaa9WY2PW1diw5kQBi73IzZRCfCmkH8Uw6/wSuPZ3A07FwsOr7tOSrLWyKudnHD5ZBJxp08TseqPDG2alW7Ge1XfY9XlVey/uz/ni5T0hq6LIPgUbB5eYG6eoF2bGN68IjO61uDQ9VD6/npS2eilkG8Uw6/wSmOkVtGwewUiH8Zybt9/mbVs33oLy0aNePT99yQGh2RoN8ZnDJXtKzPt6DTC48IzlGegWidoPgXOrytQN89nvFOnNHN71eTMnUjeW3KCyNgcpqEUFLJBMfwKrzzuNRwp4+HAqa2BxDxJAFK9fL74HAE8+PKLDJ4zJkYmzGg0g+jEaD4/9rlunjWNxv3n5nlxY4Hfx5teJVn4ng+X7z+l16LjhEUnFPg1FF4P9Gr4hRBjhBAXhRAXhBCrhRBmQogWQojTQogAIcRhIUQFfWpQUAB4o0dFUpI0HN/034KuccmSOI0eRczBQzzduStDm4r2FRlVaxT77+5nw40NOV9ECHjzRyhVFzZ8WKCePs9oWc2Fpf18CQqPoecvx3jwRMnnq5B79Gb4hRCuwEjAV0rpARgBvYAFQG8ppTfwB/CZvjQoKDzDzsUCr+aluHL0Pg+D/ouwaf/uu5hWrcrDb74hJTomQ7v3qr1HneJ1+Pbkt9yN0mFDlbGZ1s3T3A7W9i6QUM4v0qiiEys+qMvDqATe/uUYdx8rSV0Ucke2hl8I4SaE+FgIsUkIcUoIcVAI8bMQooMQQpcPDTVgLoRQAxbAPUACNqnltqnnFBT0jm97d8xtTDiy7r/ct0KtpsS0qSQ/ekTYvHkZ2qiEiq/f+Bq1UPPp4U+zTtb+PNYu8PYKeBICfw8CXdrkkjpli/H7wLpExiby9i/HCAzL+KGloJAVIqu5SyHEb4ArsAXwAx4BZkAloBngA0ySUh7MsnMhRgFfA3HATillbyFEI2Bj6rkooJ6UMkOQcyHEYGAwgIuLi8+aNWvydIPR0dFYWVnlqW1hYegaDV0f6K7x8Q3JfT9JqTcENm4i7bz1qlWYHznK408/IdnNLUM7vxg/loctp6NdR9rYttFJU4l7O6h8bQG3S/fgvHNnvTzDO1EpzDoVj1olmFTHDBfLvH+Jf5V+zkWFoelr1qyZv5TSN0OBlDLTA/DIqiy13ASokE25PbAXcAKM0Rr794C/gbqpdcYDS7K7jpQSHx8fmVf27duX57aFhaFrNHR9UuquMSU5Ra6adkz+PvWYTE5OSTufHBEhr9arLwN79pKalJQM7TQajRy3f5z0XuEtrz6+qpsojUbKjcOknGYjz/85Q7c2eeDy/Sey5pc7Zd2vd8vA0Og89/Mq/ZyLCkPTB/jJTGxqlsMDKWW2K1NSykQp5Y1sqrQEAqWUoVLKpFSD3xDwklKeSK2zFmiQ3XUUFAoSlZGK+l3KE/kwlstH7qedN7Kzw3n8eOICAnjy998Z2gkhmFx3MjYmNkw9MpVkjQ4bqYSA9rOhZC2qXPkBQq/l2CQvVCluw6qBdUlITuGdxce5Ha5M+yhkT47fC4UQ54UQ5144DgkhvhdCOGTT9A5QTwhhIYQQQAvgEmArhKiUWqcVcDnfd6GgkAvcPR0pUcGWk//cIjH+PwNu26Uz5r4+PJr9HSlPMsbEtzez59O6n3Ix/CIrLq3Q7WLGZtBzJRqViXZnb8LTgrqNdFQtYcMfg+oRn5TCO4uOcydcWfBVyBpdJgS3A1uB3qnHP2jn/B8Ay7JqlDqq/ws4DZxPvdYiYBCwXghxFngf7XSPgkKhIYSgQbcKxD1NImDXnXTni0+eTEpUFKHz52fatnWZ1rQs3ZL5Z+Zz68mtTOtkwNaNi9UnwOOb8M+oAt3Z+zxVS9iwamA94pJS6LXomGL8FbJEF8PfUkr5iZTyfOoxGWgipZwJuGfXUEo5TUpZRUrpIaV8X0qZIKXcIKWsIaX0klI2lVLq+NejoFBwFC9rS/lazpzZfTdtUxeAWdWq2PXoQcSqP0i4kXEmUwjB5HqTMTc2Z+qRqbp5+QBP7Dyg2WS4sB78fi2w+3iRaiW1xj82STvto7h6KmSGLobfSAhR59kbIURttD75AErEKIWXlnqdy6FJ0nByS2C6806jRqKysODhjG8z3bHraO7IxNoTORt6lj+uZIz1kyVvjIUKLWHHJ3D/bH7lZ4nW+NclJjGZXouOExyhGH+F9Ohi+AcCS4UQgUKIQGApMEgIYQnM0Ks6BQU9YudsQfXGrlw+cp/IR/8ZR3WxYjgNH0bMkSNE79ufaduO5TrS2K0xP57+UbeNXQAqFXRZBJaO8GdfiNdfbt3qJW35fUBdnsYn8d6SEzyKUnb4KvxHjoZfSnlKSlkD8Aa8pZSeUsqTUsoYKeWfeleooKBHfNqVwchIcGpr+lG//bvvYlKuHA9nfosmMWNAtGeJ2tUqNdOOTdM9S5alA3T/FSLvaLN36TG7loerLcs+qEPo0wR6LznB4xglsJuCFl28elyEEEuBNVLKJ0KIakKIAYWgTUFB71jamlKjmRvXTj4k/F502nlhbIzLJ5+QdPsOEStXZtq2uGVxxvqO5dSDU2y+uVn3i5auBy2nwaVNcHJRfm8hW2qVtmdJ39rceRzL+0tP8CROCemsoNtUzzLgX6Bk6vtrwGg96VFQKHRqtS6DsakRp/5JP+q3avQGVk2bEvbzApJDQzNt261iN7ydvJntN5uI+AjdL1p/BFRqC/9OhhD//MjP+VLlHfjlfR+uPXxK/99OEpOgLM297uhi+B1Tp3Q0AFLKZKDgg48oKBQRZlbGeLUoxc0zoYTeSe9n7zxxAprEREJ//CnTtiqhYmr9qUQnRvOd33e6X1Slgs4LwLo4/PUBxGeIWlKgNK3szE/v1OJs8BMGLvcjPkn5E36d0cXwx6Ru1JIAQoh6gP5WpRQUigDvlqUxtVBz4p/03sWmZcti36sXkevXZ+reCdrwzf08+rHp5iZOPTil+0UtikG3Jdr5/m36387S1qM4s3t4cjwwnKG/+5OYrOTwfV3RxfCPBTYD5YUQR4AVwAi9qlJQKGRMzdXUbF2a2+fDeXAr/bjG8aOhqCwseDQ76xH9YM/BuFm58eWxL3NO0v48petBk4lwbg2c07+vRJeabnzduQb7roYyas0ZkpUE7q8lunj1nAaaoI2pMwSoLqU8p29hCgqFjWezUphbG3Nic/pRv9reHofBg4nev5+YEyczbWuuNuezep8RFBXE0vNLc3fhRh9DqXqwZSw8Dsy5fj55t25ppnSsxvYLD5iw/hwajf48ixQMkywNvxCi67MD6ARURhuS+c3UcwoKrxTGpkb4tHUn+EoEwVfTL9QW6/M+6hIleDRrFlKT+Si5oWtD2pVtx+Lziwl8kgsDbqSGbotBqGD9QEjRv+fNgDfKMqZlJf4+HcL0rZd1d0dVeCXIbsT/ZuoxAO2mrWexepYAH+hfmoJC4VO9cUksbU049cJuXpWZGU6jRhJ/4QJR27Zn2X5C7QmYqc346vhXuTOmdqWh01wI8YP9hbMvcmSLCvRr4M6vRwKZvy+7QLsKrxrZhWXuL6XsjzaWfjUpZTcpZTegeuo5BYVXDrWxETXblOHe9UjuXU8/6rd9801Mq1Qh9PvvM93UBdpwDqNrjebUg1NsD8z6AyJTqneBmu/DoTkQmGV+owJDCMHUjtXoUtOV2TuvsfeO4uP/uqDL4m4pKeX9594/BErrSY+CQpFT/Y2SmNuYcGprULrzwsgI5/EfkxQSQsSqrGP0dKvYjWoO1fjO7ztiknIZG7/dTHAoD38P0Uu+3hdRqQT/6+5JiyrOrLyUyD9nlUyorwO6GP49Qoh/hRD9hBD90IZo3q1fWQoKRYfaxIiarUoTfCWC+zfTe/hYNWyI5RtvELZwISmRkZm2N1IZMbnuZB7FPWLh2YW5u7iJJXRbCjGheg/p8AxjIxXze9eior2KsX8GcOBa5pvVFF4ddPHqGQ4sBLxSj0VSSsWdU+GVxqOxK2ZWxvhty7hI6zz+YzRRUYQvzdp7x9PJk64Vu/L7pd+5GXkzdxcv6Q0tpsKVLXB2dS6V5w0zYyNG1TKjgrM1H670x/92LnYhK7x0ZOfVk5aJOjWG/pjUY0NmdRQUXiWMTbWj/jsXH/MwKP2uWrPKlbHp2JHHK38n6dGjLPsYVWsU5sbmzDgxI/deM/WHQZk3YNsEiLidl1vINZbGghUf1MHFxpQPlp3i6gP9ZAtTKHqyG/HvE0KMEEKkm88XQpgIIZoLIZYDfbPrXAgxRghxUQhxQQixWghhlpq2MSD1uCeE2FgA96GgUOB4NHHF1FKN37agDGVOI4Yjk5MJX/hLlu2LmRVjZM2RnHhwgjOxZ3J3cZURdFmgfb3hQ9Ax4Ut+cbI2ZeWAupgZq3h/6QklkcsrSnaGvy3amDyrUw30pdR4/NeBd4AfpJTLsmoshHAFRgK+UkoPtMlbekkpG0kpvaWU3sAxtEnYFRQMDhMzNd4tShF0LixDDB+T0qWx696NiHXrSAwOzrKPHpV6ULVYVTZEbCA2KZdG1K40tP8f3DkKx+bl5RbyRKliFqz4oC4JyRreW3qC0KcJOTdSeKnIzp0zXkr5s5SyIVAGbbL0mlLKMlLKQVJKXYYwasBcCKEGLIA0lwEhhA3QHNiYnxtQUNAnNZqVwsRcjd/2oAxljkOHIlQqwn7K2igbqYz4tO6nRKZE8su5rL8dZInXO1D1TdjzFTw4n/v2eaRycWt+7VebR1EJ9Pn1pBLO+RVD6HPHnhBiFPA1EAfslFL2fq6sD9BJStk9i7aDgcEALi4uPmvWrMmThujoaKysrPLUtrAwdI2Grg/0q/HReQ2hF6F8W4GZXfplLav167HYvYfwKZ+RUrJkFj3AsgfLCEgI4JOSn+Bi7JKr6xsnRlH71AgSTWw5XWs2GiOTPN1HTmT2DC+EJfO9fwLl7VR87GuGiVHRLusZ+u+ioelr1qyZv5TSN0OBlFIvB2AP7AWc0G742gi891z5dqCbLn35+PjIvLJv3748ty0sDF2joeuTUr8a46IT5S8j98udSy9kKEt6/FheqeUj7w4fnm0fm3dvlvVX1ZeDdw6WGo0m9yKu/ivlNBsp/52c+7Y6ktUz3BwQIt0nbZEDlp2USckperu+Lhj676Kh6QP8ZCY2VRc//rzSEgiUUoZKKZPQzuU3ABBCOAJ10O4JUFAwaMwsjaneqCTX/R4RFRaXrkxtb0+xD/rzdNdu4s5nPRVjbWTNUO+hHL13lIPBediVW6k1+H4AR+dB0OHct88Hb3qV5Mu3PNh9+RET159Xgrq9Auhk+IUQZYQQLVNfmwshrHVodgeoJ4SwSHX7bAFcTi3rDmyRUioZoBVeCrxalEYIOLPrToayYn37YWRvT+j332fbR68qvShrW5ZZfrNIyksgttbToVhZrZePHhO1Z8b79cowpmUl1p8O5pttSlC3lx1dcu4OAv4Cnq1MuaHDgqyU8kRqu9PA+dRrPUsw2gsonJ0pCgoFgJW9KVXqFefy0fvERqWP02NkZYnDkMHEHD1GzPHjWfZhrDJmvO94bkfd5o8rWYd8yBITS+iyCKJCYPvE3LfPJyNbVKBv/TIsORzIggO53JSmYFDoMuIfBjQEogCklNcBZ106l1JOk1JWkVJ6SCnfl1ImpJ5vKqXckVfRCgpFQc3WZUhJ1nBu790MZfbvvIO6eHFCv/8h29FwI7dGvOH6BgvPLiQ8Ljz3IkrV1sbvP7sarhTuTKkQgmlvVqeTV0n+t+Mqa05m/Paj8HKgi+FPkFKmDXFSXTOV73kKrx12LhaUr+nE+QMhJMalT1iuMjXFcehQ4s6eJeZw9nPw42uPJz45nnkBefTNbzweiteAf0ZBTB4+PPKBSiWY3cOLJpWc+HTDeXZcuJ9zIwWDQxfDf0AI8Slaf/xWwDrgH/3KUlAwTGq1KUNiXDIXDoVkKLPr0hnjkiUJ/fGnbEf95WzL0atKL9ZfW8+Vx1dyL0JtAl1+gbhI2DYu9+3ziYlaxYL3auFdyo6RqwM4eiOs0DUo5A9dDP8kIBTtPP0QYBvwmT5FKSgYKs5lbHCrYs/Z3XdJTkofRkGYmOD40VDiz58n+sCBbPv50OtDbE1tmXlyZt4WSl2qQ9NJcHEDXCj8ze8WJmp+7Vcbd0cLBq3w43xw4S42K+QPXaJzaqSUi6WUPaSU3VNfK1M9Cq8ttdqWITYqkavHH2Qos33rLYxLlSLsp3nZGnRbU1tG1ByB30M/dt/JY5TzhqOhZC3YOg6isw4Wpy/sLExY8UFd7CxM6PvbSW6GRhe6BoW8kV10zvNCiHNZHYUpUkHBkHCrbI9zGWtO77yTwaddGBvjOHQo8RcvEr1vX7b9dK3YlYr2FfnO7zsSUvIQD8dIDV0WQmIM/DO6UGL3v0hxWzN+H1gXAfRZepL7T+JybKNQ9GQ34u/If3l3MzsUFF5LhBDUalOGqNA4bp7OONK27fQmxmVKE5rDqF+tUjOx9kRCokNYcXFF3sQ4VYbmn8HVrXBubd76yCdlHS1Z/kEdnsQl0WfpSSJiMk9LqWA4ZBek7XZ2R2GKVFAwNMp5O2HnYsHpf29nMO5CrcZx6FASLl/m6e7sp3HqlqhLi9ItWHx+MY9i8zhdU38YlKqnjd0fVTSpEz1cbVncx5fbj2Ppv+wUMQnJOTdSKDJ02cD1VAgR9cJxVwixQQhRrjBEKigYGkIlqNm6NGF3owm+nDFblW3Hjpi4uxM2bz5So8m2r3G+40jWJDP39Ny8iVEZQeefISWx0NI1Zkb98g789E5NzgVH8uHv/iQmZ3/fCkWHLl49PwDjAVe0u3Y/Bv4A1gC/6k2ZgoKBU7lOcSxsTAjYnXEjk1CrcRz2EQlXr/J0565s+yllXYr3q73P5pubuRh2MW9iHMpDqy/gxm44ncdpowKgTfXizOhag0PXwxi37qwS18dA0cXwd5JS/iKlfCqljJJSLgLaSCnXoo3AqaDwWmJkrMKzuRt3Lj0mLDijR4tN+/aYlCtH2Px5kMOof1CNQRQzK8b/Tv0v73Fwag8C90bw72SILLpdtT1rl2ZSuyr8c/Yen/9zUYnrY4DoYvhjhRBvCyFUqcfbwLPgaspPVOG1pnojV9SmRpmP+o2MtKP+6zcwPX06236sTKwYWXMkpx+dZuftnXkTo1LBW/MBCZuG5fhho08+bFKewY3LseLYbebuuV5kOhQyRxfD3xt4H3gEPEx9/Z4QwhwYrkdtCgoGj5mlMdUalOD6yYdER2QMNmvTti2mFStgtWUrMiX7vLmdK3Smsn1l5vjNyZt7J4B9GW0Uz8CD4Lc0b30UEJ+0q0J3Hzd+2H2d5UeDilSLQnp02cB1S0r5ppTSUUrplPr6hpQyTkpZuIHBFRQMEK8WpZBScm5fxty72lH/MNQPHhC1bXu2/RipjJhQewL3Yu6x8tLKvAvy6QflW8CuqfD4Vt77ySdCCL7tWoOWVV34/J+LbArIGOZCoWjQxavHSQjxqRBikRDi12dHYYhTUHgZsHE0p3wtZy4ezBi8DcC6dWuSXF0J+/nnHEf9dUrUoXmp5iw+t5iwuDzGwBECOv0EKmPYWLRTPmojFfPerUlt92KM+/Ms+68W/g5jhYzoMtWzCbAFdqPNmPXsUFBQSMW7VWkS41O4dCSjH71QqYjp0J7EwMAcR/2gde9M1CTy05mf8i7I1hXafQt3jsKJBXnvpwAwMzZiSV9fKrlYM/T30/jfzuj+qlC46GL4LaSUE6WUf0op1z879K5MQeElwsXdhpIV7Ti79y4pKRlH2Ane3phWqqTTqL+0TWl6V+nNhusbuBx+Odu62eL1DlRqB3u+hNBree+nALAxM2b5B3VwtjHlg2WnuPbwaZHqed3RxfBvEUK017sSBYWXHO9WpYl+nJBpGAdUKhyHDdN51D/YazB2pnb5c+8UAt6cC8bmsPFDSCna3bRO1qb8PqAupmoVfZaeJDgitkj1vM7oYvhHoTX+cam7dp8KIaJ06VwIMUYIcVEIcUEIsVoIYSa0fC2EuCaEuCyEGJm/W1BQMAzcPRywL25BwK67mRpr61YtdR7125jYMLzmcPwe+rH3zt68i7J2gQ5zIMQfjvyQ934KiFLFLFgxoA6xicn0WXqSsOg8ei8p5AtdvHqspZQqKaW5lNIm9b1NTu2EEK7ASMBXSukBGKHNtdsPKAVUkVJWRbsDWEHhpUeoBN4tSxN65ykh1yIzKc/dqL9rxa5UsKvAbL/ZJKbkI/CZR1eo3hX2fwsPzue9nwKiSnEbfu1Xm3tP4nhvyQklqFsRoMuIPw0hRHkhxGdCCF33lavRZu5SAxbAPWAo8KWUUgMgpVSW+RVeGSrVdcHc2piAXZnvnM3NqF+tUjO+9niCo4NZdXlV/oR1+A7M7WHDh5Bc9KNsX/diLOlTm1thMbz/6wmexCUVtaTXCpHT/KEQoiTakfo7QA1gBvC3lDLHoYMQYhTwNRAH7JRS9hZChANzgC5oM3uNTE3g/mLbwcBgABcXF581a/L2xSA6OhorK6s8tS0sDF2joesDw9IYelHy6LykfDuBma0A0uszPX0au0WLefJBf+Lr1Mmxv18e/cKN+BtMdZ2KtZF1nnU5hJ2ixoXp3C7dncBy72coL4pneDY0mR9PJ1DGRsX42maYq0W29Q3p55wZhqavWbNm/lJK3wwFUspMD7RGdx9wDZgOeAKBWdXPpL09sBdwAoyBjcB7QDQwLrVOV+BQTn35+PjIvLJv3748ty0sDF2joeuT0rA0xj1NlAuH75N7ll9KO/e8Pk1Kirz5Zid5o207qUlOzrG/W5G3pPdyb/nF0S/yL27jR1J+bifl3VMZiorqGf574b4s/8lW2X3BERmTkJRtXUP6OWeGoekD/GQmNjW7qZ55aKeC3pVSfialPEfuYvO0TP2gCJVSJgF/Aw2A4NTXABtSP1AUFF4ZzKyMqdqgBFdPPiDmScZplfRz/dty7K+sbVltcvbr67n6+Gr+xLWZATausGEIJBqGV03r6sWZ26sm/rcjGLjcj/ik7KfAFPJPdoa/BLAa+E4IcVUI8RXakbuu3AHqCSEshBACaAFcRjvyb5ZapwnabxQKCq8UXi1LoUnJPIwDpM71V65M2Pyc5/pBm5zd2sSaWX6z8hft0swG3poH4Tdg71d576eA6eBZgu/e9uLYrXAGr/QnIVkx/vokuwxc4VLKhVLKJmiNdiTwMNUF85ucOpZSngD+Ak4D51OvtQj4FugmhDiPdr1gYL7vQkHBwLB1sqC8t5M2jEN8Rv957aj/IxKDgnQa9dua2vKR10ecuH+CA8EH8ieuXFOoMxiO/wyBh/LXVwHSpaYbM7t6cvBaKMNWnVYSuegRnbx6pJTBUsrvpHaR4C3+C8ucU7tpUsoqUkoPKeX7UsoEKWWklLKDlLKGlLK+lPJsfm5AQcFQ8W5VmoTYZK4cu59puXXL3I36e1TuQVnbssz2m01SSj69YFp+DsXKwaaPIMFwdtG+XbsUX3X2YPflR3y06rQy8tcTuXLnBJBSXpNSfqkPMQoKrxLFy9lSorwtZ/fcRWaSiSq3o35jlTHjfcdzO+o2q6+szp84E0vovBCeBGsTtxgQ79crw1dvVWf35YcMWemvzPnrgVwbfgUFBd3xblmaqLB4orKISJzbUX8jt0Y0dG3IwnMLiYjPZ7Cz0nWhwUg4vRyuZ58esrB5v74733atwYFroQxa4UdcomL8CxLF8Cso6BF3L0dsncwJvywzXZTN7agfYLzveGKTYvk54Of8C2z2KThVhU3DUScZzpQPQK86pZnV3YvDN8Lov+wkMQlFG2voVUKXePxCCPGeEGJq6vvSQoicd50oKCigUgm8W5Yi7jHcv/kk0zq5HfWXtytPj0o9WHdtHTcibuRPoNoUuiyE2DAqXl+cv770QHcfN37o6c3JwMf0++0kcclKtteCQJcR/89AfbQ7dwGeAvP1pkhB4RWjcv0SGJmQZRiHvIz6P/L+CAtjC2b7zc6/wJLe0HgCLo8OwKVN+e+vgHnL25Wf3qnF6TuRzD4Vz5NYJbxDftHF8NeVUg4j1ZNHShkBmOhVlYLCK4SxiRHFKkLguTAiH2a+aSq3o357M3uGeg3lyL0jHAouAJfMRmN5alUetoyBaMMLn9XBswTz363F7SgNPRcd42GUTo6FClmgi+FPEkIYkbprVwjhBCgOtgoKuaBYRYGRkYqAPXczLRcqFY7Dh2lH/Vt1S3DXq3IvytiUYZbfLJI0+RwFGxlzuepoSIiGzSMgP5vE9ERbj+KM8THjzuNYui04SlBYTFFLemnRxfD/iDa0grMQ4mvgMJDjBi4FBYX/UJsJKtcrzpVj94l7mnkYYusWLTCtUoWwnxcgk3NeyDQ2MuZj348JfBLIn1f/zLfGWMvS0OoLuLYD/AwzrXZ1RyNWD6pHbGIK3Rce5UJI5usmCtmjSzz+VcAEtLts7wOdpZTr9C1MQeFVw7tlKVKSNFw4mLlvZ17m+pu4NaFeiXosOLuAJwkFYATrDIHyzbW+/UWcrjErvErZ8eeQ+pgYqXhn0XGO3wovakkvHVkafiFEsWcH8Aht3J4/0IZtKFZYAhUUXhXsi1viXsOB8/uDSc7CLz23o34hBONrj+dp4lMWnl2Yf5EqFXReoE3XuH4AJBtmkpQKzlas/6gBLrZm9Pn1JNvOZ747WiFzshvx+wN+qf+Hog2mdj31tb/+pSkovHp4typN3NMkrp54kGl5Xkb9lewr0a1iN9ZcWcOtJ7fyL9K6uDaQ24NzsG96/vvTEyVszVk3pD41XG35aNVpFuy/mb8Adq8R2QVpKyulLAfsBt6UUjpKKR2AjsDOwhKooPAqUbKiHU6lrQnYnXkYB8j9qB9gmPcwzNRmfOf3XcEIrdIBfPrBkR8h8GDB9KkH7C1NWDWwLm96lWTmjitMWn+epBTF9yQndFncrSelTBt6SCm3o42rr6CgkEuEENRsVZrIh7EEXch8bjovo34HcweGeA7hYPBBjoYcLRixbb4Bh/LadI1x+QwPoUfMjI2Y29ObEc0rsNbvLv1+O6mkcswBtQ517gkhPgN+T33fG23u3CIlMTGRmzdvEhubfTIJa2tr/P0Ne2bK0DUauj4oHI0WFhaUL18eE5P8bWMpX8sJqw2mBOy6Q1lPx0zrPD/qt2nfHqHO+U/13arv8ue1P5nlN4t1JdahVuny550NJpbQdTEsbQX/jIYey0BknxqxqFCpBONaV6aMgyWf/H2Orj8fYVEfX8o7GU4aRENCl9+Md4BpaF06AQ7y3y7eIuPmzZvY2dlRuXJlVCol5JCCftFoNDx8+JDr169TpUoVjIyM8tyXykiFd4vSHF53nYdBUbi422SoI1QqnIYPI3j4CKK2bcO2U6cc+zUxMmGczzhG7x/N+mvr6VmlZ541puFaSxvPZ8+XcHY1eL+b/z71SHcfN9zszRm26jRvzTvCnLe9aF29eFHLMjh0ced8LKUcJaWsmXqMklI+Lgxx2REbG4uLi4ti9BUKBZVKhYuLC3FxcWzcuJGEhIwpFXND1YYlMDFXE7A78zAOAFYtWmBatWqu5vqbl25O7eK1mR8wn6jEqHxpTKPhaCjTELZ+DGH5jA1UCNQr58A/I96gnJMlg1f6893Oq6RksZ7yuqJLkLZ9Qoi9Lx6FIS4nFKOvUJioVCqEENy5c4czZ87kqy8TMzXVG5Xkpv8josLiMq0jhMDp2Vy/jrt5hRBMqD2ByIRIFp1dlC+NaaiMoOsiUJvAun6QZPjhEkramfPnkPq87evGT3tvMGD5KSJiDNM1tSjQxXJ+DIxPPaYAAWjdPHNECDFGCHFRCHFBCLFaCGEmhFgmhAgUQgSkHt55Fa+gUBSYm5vz+HH+v/R6NiuFEIKzezMP4wB5G/VXKVaFLhW7sOrKKm5H3c63TgBs3aDLL/DwPPz7acH0qWfMjI2Y2c2T6Z09OHojnHZzD3HsprLZC3Sb6vF/7jgipRwLNM2pnRDCFRgJ+EopPQAjoFdq8XgppXfqEZB3+QoKRYNGk3+XQSt7UyrWduHSkfvEx2TuhZI26r99W+dRP8CImiMwUZkUnHsnQKU20GAE+C2FC38XXL96RAjBe/XK8PdHDbAwMeLdJcf5budVkl9zl09dpnqKPXc4CiHaALY69q8GzIUQasACA/AG0hdXrlyhfv36mJqaMnt2zqFyR44ciZVVRo+D9evXI4TAz0+nL1UZ2L9/P/369cuxnq56BwwYgJeXF56ennTv3p3o6Oi0sj///JNq1apRvXp13n03b4t+QUFBNG3aVKe6M2bMoEKFClSuXJl///0327ovPt+EhAR69uxJhQoVqFu3LkFBQXnSW9B4typFckIKlw5n/aeRl1G/o7kjgzwHse/uPk7cP1FQcqHFNHCrDZtHwuMC2CxWSHi42vLPiDfoXks79fP2L8cINMAgb5qYGKIPHCB0/nyCR4zgVpeuJD0s+Gipunj1+KONzCmAZCAQGJBTIylliBBiNnAHiAN2Sil3CiHeBb5OTeyyB5gkpcywUiaEGAwMBnBxcWH//v3pyq2trXWQXngUK1aMH3/8kY0bN+ZY18/Pj4iIjH7RT58+Ze7cudStW1cPCtOjq97vv/8eGxut18nYsWOZN28ekyZN4vr168yYMYMjR45gb2/Po0f6DeV76dIl1qxZw8WLF7l37x4tW7bk2rVrmXrXZPZ8ly5dir29PTdu3GDNmjVMnDiRtWvX5klLSEgI8fHxGX4nsyM6OjrL+pYucGr7TSLVt1AZZe4uadqkMXYLf+HE7O+Ir6fb70cZWYZiRsWYum8qE0tMRCWyH+dlp/F5zFwH4fNgDPG/dud0rZlIlbFOegoCXTVmRQcncPA0ZcWlSFrP2U/Xiia0cVejKiA31TzpS0nB9OxZzI6fwPTSJURyMlIIEpwduGubyK0Du1A7uxaIvmfoYvirSinTreYIIUxzaiSEsAfeAsoCkcA6IcR7wCfAA7Qx/RcBE4EMydullItSy/H19ZUvjgqf99n+4p+LXLpXQB4MqVQracO0N6vrXN/Z2RlnZ2e25vB1PCUlhfHjx/PHH3+wYcOGdGVTpkxh4sSJzJo1K8v2M2fO5Pfff0elUtGuXTu+/fZbnTXmRe8zoy+lJC4uDpH6B7J48WKGDRuGvb19Wn+ZsWLFCmbPno0QAk9PT1auXJknvZs2baJXr16YmppStmxZKlSowMmTJ6lfv366elk9302bNvH5558D0L17d4YPH46UMu1+nqHL83V1dcXNzU3nbyqg/SaWVf07zuH88+NZSlpUoUr9EpnWkU2aEHjgIE779lHu43E6+fUDaII0fHzgYx67PqZ7pe551pgBd0uM1/amSfwuaP8/3doUALnSmAVNgf5R8UzecJ61lx9xLc6CWd09qeCc/8FkbvRpEhOJXLOG8N+WkXz/PurixbF+9x2smzfnvFMcY058iqmROYtb1aGifcV8a3seXRZ3M9sGeEyHdi2BQCllqJQyCfgbaCClvC+1JAC/Aa9VGsd58+bRqVMnSpRI/wd++vRp7t69S4cOHbJsu337djZt2sSJEyc4e/YsEyZM0LdcAPr370/x4sW5cuUKI0aMAODatWtcu3aNhg0bUq9ePXbs2JGh3cWLF5k+fTp79+7l7NmzzJ07N88aQkJCKFWqVNp7Nzc3QkIyRrnM6vk+316tVmNra0t4ePqFvqJ6vqWqFsPB1ZKA3XeyjDWT17n+1mVaU8u5Fj+d+YnoxOicG+hK1Y5Qdyic/AUurC+4fgsJFxszFvfxZW4vbwLDYmg/9zAzd1wplLy+UkqebN3KrbbtePjNDEzc3HCbP48Ke3ZT/NNP2eP0iKFHxlLcsjirO6wucKMP2Yz4hRDFAVe0c/Q10U71ANigna/PiTtAPSGEBdqpnhaAnxCihJTyvtAOtToDF/KhHyBXI/Oi5N69e6xbty7DV0GNRsPYsWNZtmxZtu13795N//79sbDQPv5ixQonSOpvv/1GSkoKI0aMYO3atfTv35/k5GSuX7/O/v37CQ4OpnHjxpw/fx47O7u0dnv37qVHjx44OjoWit6snq+uFNXzFULg3bI0e5Zf5u7lx5Su5pBpvefn+m06dNBp1P/MvbPX1l4sPr+YMT5jCk54qy/h3mnYNEKbsN2lWsH1XQgIIXjL25UG5R35dvsVFuy/yd+ng/m0fVU6eZXM8G2wIEi6f58Hn39B9IEDmFarSqmvvsSqYUNA+4Gw6NwifjrzE3WL12VOsznYmGTc3FcQZDfibwPMBtyAOcB3qcdYIEd/LinlCeAv4DRwPvVai4BVQojzqeccAcMN/5cN8+fPx9vbG29vb+7d023N+syZM9y4cYMKFSrg7u5ObGwsFSpU4OnTp1y4cIGmTZvi7u7O8ePH6dSpU54XeAtK7/MYGRnRq1cv1q/Xju7c3Nzo1KkTxsbGlC1blkqVKnH9+vUC07thw4Y0vX5+fri6unL37n9uj8HBwbi6pp/3zOr5AunaJycn8+TJExwcMjewRUHF2i5Y2ppkmZcXUkf9w4fletRf3bE6ncp3YuWlldx9mrXraK5Rm0CP5WBqBWt7Q1xkwfVdiDhZm/Ld216sH9oAZ2szRq0JoOuCoxy9EVag14nato0bHd8i+uQpXD79hLLr1qUz+t+f/p6fzvxEx3IdWdBygd6MftoFszuAbjnV0ffh4+MjX8TPzy/DOUNg2rRpctasWTrVtbS0zPR8kyZN5KlTpzKc3759u6xfv76MiYmRUkoZHh6eoc6+fftk3759C0SvRqOR169fT3s9btw4OW7cuDQtffr0kVJKGRoaKt3c3GRYWFi69hcuXJAVK1ZMO5+Z3sDAQNmkSZMcdV64cEF6enrK+Ph4eevWLVm2bFmZnJycbZvnn++8efPkkCFDpJRSrl69Wvbo0SNDfV2er5+fn1ywYIH8559/ctT8PPv27cuxjt/2QDlvyB4ZejcqyzoajUbe7NxF3mjdRmqSknS+/sOYh7LO73Xk0F1DpUajybPGTAk6KuUXxaRc9baUKSl560NH8qxRR5JTNHLNyduy3je7ZZmJW+Q7i45Jv6CMvwdZ8by+iAcx8vTO23LbggC57KMtcsGArXLekD1y3pA9cuGIffKPL47L7b+cl2f33pEz//1eeizzkF8d+0qmaAruGQJ+MhObmt1Uz3tSyt8BdyHE2Ew+MObo7+Po5ePBgwf4+voSFRWFSqXihx9+4NKlS9jY2NC+fXuWLFlCyZIl83WNtm3bEhAQgK+vLyYmJrRv355vvslbFkxd9BYvXpy+ffsSFRWFlBIvLy8WLFgAQJs2bdi5cyfVqlXDyMiIWbNmZRhBV69encmTJ9OkSROMjIyoWbNmjtNZWVG9enXefvttqlWrhlqtZv78+WkePbo83wEDBvD+++9ToUIFihUrxpo1azLUKcjnmxeqN3LFb/ttAnbdpWX/zKdNno36g4cN58mWLdh17qxT384WzgzzHsYsv1nsubOHlmVaFpzwMvWhzQzYPh4OzoKmEwuu70LGSCXoWbs0b3m78seJO/y8/wbdFhyjXrliDHyjHM2rOKNSZT0FlJIkuXAgmPMHQnh8T+suapHyBMvHtyhRoST2b1RGIkiMSyEqPI6HQU+4efoRlngyyOEbGrt5kZygwcRMv1EJhMx6MWmIlPIXIcS0TIqllDKDJ46+8PX1lS9Oe/j7++Pj41NYEl4a9u/fz7Jly/JsYAuboKAg+vXrly8XvcLE39+fU6dO4ebmRseOHXVup6u3x6E/r3Fhfwjvf10fK3uzTOtIKQns2g1NbAzlt27V2cMnWZNMry29iEiIYHPnzVgaW+ZJYxaiYONQOLsG3l2r3eylBwrCqyc3xCYms+r4HX47Esi9J/GUdbSkT/0yvOXtSjHL/6K0JielcH5fCCe23CAlEZzLWFOhkgnqJV9hfO8GJWfOxKZt+meikRq+PPYlO8/vo5f5IIqHVCb09lNMLdR4NnPDu2VpTMzzF2FVCOEvpfR98XyWvUopf0l9uVtKeeSFzhrmS42CgkKmeDUvxfl9wZzdc5eG3TP35sjrqF+tUjO1/lTe2/Ye8wPmM6F2AXotCQEdv4eHF+GvATBg50u32JsZFiZqBjUuR7+G7uy48IAlhwP54p9LfLPtMs0qO9O1lhsVUow4+ud1nobHY1UCWr/ng+3TQII//BCEwG3Zb1jUrJmuXykls07NYv319QyuM5jh3r0RQvAwKAr/7UGc2hrEhUP3qN+5HFXqlUBk8y0jL+jyfeInHc8pGADu7u501tEQGAJ2dnY67TR+XbBxNKdibRcuHLqXZRgHAKvmzbUePgt0380L4OnkSY9KPVh1eRWXwy8XhOT/MDaHd9Zo4/iv7gnRoQXbfxFibKTiTa+SbBrWkB2jG9GvgTvngiJZv+gc/y44z6OYRCxbl8DUF2ye3OTugIGorK1xX7M6g9EHmBcwj98v/857Vd9juPfwNA8iF3cb2g/1pMcnvtg6mrF3xRUe3X5a4PeTXbL1+kKIcYCTEGLsc8fnaOPuKBggiuF/+anVpgzJCSmc2xecZZ1no/6k23d4smVLrvofWWskdqZ2fHnsS1I0mSd9zzO2rvDOaq3RX9v7pYjkmVuqFLfhI58yjEixxDtRTWxZC7YU1/D5yVus3HCRq30+IMzUmt1DvuTfSGMu3YviaXxS2h6NXy/8yqJzi+hWsRsTak9IM/oajeRhVDz+tyM4HB7FteoWXK5igqlL5lN++SG7CSQTwCq1zvNb2qKA7LcAKigo5BkHVyvcPR05t+8u3i1LYWKW+Z+pVfPmmFarSti8+di2b4/QMTOYrakt42uP55NDn/DXtb8KJmHL87jWgi4LYV1f2DxCG9LZQDN35YWg82HsWnoRlVrFW2Nq4lbZno+l5PqugySMW8JTeydmtRrBWf9wpN9/mwRN1CpsnE6SYPcXFom+nD7dnDf9DxOTkMLT+GSexCWSlPLfmmtT9UW+MlnOk/vrsCtfsNNm2c3xHwAOCCHipJTp9mQLIXoABee0raCgkA6ftmVY/78wLh2+h3fL0pnWEULgPGYsdwcNImLNWor1eV/n/juU7cDGGxuZe3ouLcq0wNE88xSQeaZ6ZwifAnu/AseK0KRwdkHrmwsHQziw+iqObla0H+qJdTHtaDzh8mXkpx+DQzHq/LWGjY6OxCelEBgWw63QGEIiYzkTfpDDUeuxx5sKJoPRqI0QQFlHY6xM1diaG+Nqb46bnTlVnhyk+M5ZCIeK4Fzw+010WTLuBbwYjOMTYF2Bq1FQUACgeDlbXCvbc2bXHWo0ccPIOPNZWcs3GmJRvx5hCxZg27ULRplEfM0MIQSf1f2Mrpu78u3Jb5ndJOeIsrmm0TgIvwH7vgbrElBL9w8mQ0NKyel/b3N84y3cazjQepAHxibaGe/EoCDuDBqMysaaiBEjUKfuVDczNqJqCRuqlrDhzKMz/PLvPLycPFnSejFm6mymb86uhR1DoWRN6L0OLAp+B3l2c/zthBA/Aa5CiB+fO5ahjdKp8BxSSkaOHEmFChXw9PTk9OnTmdbz9/enRo0aVKhQgZEjR6bN+33++ee4urqm7Vbdtm1bnnRkF5Z5x44dVK5cmQoVKmQZ3C2n8MV37tzByspKp9DTWeHu7p7p+cDAQOrWrUuFChXo2bMniYkZMyYlJibSv39/atSogZeXVzo30LVr1+Lp6Un16tWZOPHl9SV/hk+7MsQ+SeTK8ftZ1hFC4Dx2HCkREYQvXZqr/t1t3fnQ60P+DfqXPbf35FduZuLgzR+hfHP4ZyRcydvvdFEjpeTYhpsc33iLSnVcaPthjTSjn/TwIXc+GABSUnrpUjSpQQuf59aTW4zYO4KSViX5qflP2Rv9k4thw2Bwbwh9NurF6EP2Xj330GbaikcbmvnZsRlorRc1LzHbt2/n+vXrXL9+nUWLFjF06NBM6w0dOpTFixen1X0+uNmYMWMICAggICCA9u3bF6i+lJQUhg0bxvbt27l06RKrV6/m0qVLGeo9H754zJgxGQzo2LFjadeuXYFqe8bEiRMZM2YMN27cwN7enqWZGLLFixcDcP78eXbt2sW4cePQaDSEh4czfvx49uzZw8WLF3nw4AF79ujBmBUibpXtcS5jzel/b6PJJnGIeQ0PbNq34/Gy5STlMjx2f4/+VClWheknphObEptfyRlRm8DbK6GEN/zVH25nFvPRsDmx+RZndt7Bo4krLftVw8hIazZToqO5O2gwKU+eUGrRIkzLls3QNiwujI92f4SRMOLnlj9jb5bxgyGNQ3Ng28dQqR28uw5M9Rd6Prs5/rPAWSHEH1IbXRMAIUQj4GtgmN5U5Zbtk+DB+YLts3gNaKd7yONNmzbRp08fhBDUq1ePyMhI7t+/ny5K5P3794mKiqJevXoA9OnTh40bN+bKkOY1LPPJkyepUKEC5cqVA6BXr15s2rSJatXSLxplF75448aNlC1bFktLyxe7T2PHjh18+umnpKSk4OjoqLPxlVKyd+9e/vjjDwD69u3L559/nuED9NKlSzRv3hzQhoK2s7PDz88PIQQVK1bEyckJgJYtW7J+/XpatGiRrn10dDQjRoxIazNt2jS6deumk8bCRgiBTzt3ti88zw3/R1SqUzzLuk6jRxO1cxdh83+mxBef63wNY5UxXzb4kne2vsPfEX/TnoIdcADaWD6918GvbeCPXtB/GxT3KPjr6AH/HUH4b79NtYYlaNyrUpoHjkxOJmTsWBJu3aL0ol8w98gYKDI2KZaPdn/E4/jH/NbmN0pZl8pQR9uZhD1fwOHvoUYP6LwAjPSb40CX1ItJQoiaQohZQoggtLHzr+hV1UuILmGDQ0JCcHNzy7LOvHnz8PT05IMPPsg0UUt+wgbrGtY4q/DF0dHRzJw5k2nTMtvIrSU0NJRBgwaxfv16zp49y7p1ui8DhYeHY2dnhzp1F2pW+ry8vNi8eTPJyckEBgbi7+/P3bt3qVChAlevXiUoKIjk5GQ2btyYLqjbM7766itsbW05f/48586dS/sQMVTKejpiX8IS/x23kZrMd9kDmJQujX3PnkT+9RcJtwJzdY2qDlX5wOMDTsSc4HDI4fxKzhxLR3h/A5hYwO9dIczwfUPO7w/m+MZbVKztQpPeVdJF63z47UxiDh6i+NQpWDZokKFtkiaJsQfGci3iGrObzKa6YxYRhFOSYNNwrdH3/QC6LNK70YfswzJXAt5JPcKAtWhDPDTTu6rckouRuaEydOhQpkyZghCCKVOmMG7cOH799dd0dYoqbDBo1yDGjBmTabrIZxw/fpzGjRtTNvUrrz70ffDBB1y+fBlfX1/KlClDgwYNMDIywt7engULFtCzZ09UKhUNGjTg5s2bGdrv3r07XZwe+0zmZA0JoRL4tC3D7t8uEXQhnLKeWXvfOH40lCcbNhD6/fe4/fRjrq7zodeH/HPlH7449gUbOm3AykS3ReJcYVca3t8IyzvCso7Qbys4Vij46xQAgWdDObj2Gu6ejrTsVzVdfJ7Hv68i4vffKda/P/Zvv52hrZSS6cencyTkCNPqT6OxW+PML5IQDev6wY1d0GQSNJ1UaG6v2Y34rwDNgY5SyjeklD8BBbzb4+XlxTDHuoQNdnV1JTg4ONM6Li4uGBkZoVKpGDRoECdPnixQvbroe7He8+GLT5w4wYQJE3B3d+eHH37gm2++Yd68eQWmz8HBgcjISJJTd6FmpU+tVvP9998TEBDApk2biIyMpFKlSgC8+eabnDhxgmPHjlG5cuW08y87FX2dsXYww397UJaJWgDUDg4UG/ABT3ftIvbMmVxdw8TIhHcd3uVhzEPm+Osx/qJzFeizGTTJ2g+A8IwfzkXNo9tR7Fx6EefS1rQeUB2V0X9mMvrQIR5+8w1WzZvj/PG4TNsvPLeQv6//zWDPwVlnPYsO1d7/zT3w5lxo9kmh7nXIzvB3Be4D+4QQi4UQLfgvGctrz7Bhw9IWYkuWLEmnTp1YsWIFUkqOHz+Ora1thixQJUqUwMbGhuPHjyOlZMWKFbz11luAdv7/GRs2bMDDI+McaKtWrfjtt9+IjdUuwj1+/FhnvbVr1+b69esEBgaSmJjImjVr6NSpU4Z6nTp1Yvny5QD89ddfNG/eHCEEhw4dIigoiKCgIEaPHs2nn37K8OHD07WtV68eBw8eJDAwMNf6hBA0a9aMv/76C4Dly5enPZvniY2NJSZGG/Vw165dqNXqtHWKZ3l/IyIi+Pnnnxk4cGCG9q1atWL+/Plp7zObUjM0VEYqarUpw8PAKO5eyv6ZOvTrh5GjI49m/i/bD4nMKGtalj7V+rDu2joOBR/Kj+TscakGfTdDSqJ25G9Axv/p43i2zj+HuZUJ7T/yxNj0vyAFiUFBhIwdh2nlyrjO+h8ik3zPx6OP83PAz3Qq34nh3sMzlAPa+13aCh5dgV6rwaefnu4ma7I0/FLKjVLKXkAVYB8wGnAWQiwQQihePS/Qvn17ypUrR4UKFRg0aBA///xzWpm3t3fa62cGqUKFCpQvXz5tYXfChAnUqFEDT09P9u3bx/fff5/hGm3btqVTp074+vri7e2dK5dKtVrNvHnzaNOmDVWrVuXtt9+menXtvOPUqVPZvHkzoA1fHB4eToUKFZgzZ06ucvo6OTmxaNEiunbtipeXFz175m5H6MyZM5kzZw4VKlQgPDycAQMGALB582amTp0KaI17rVq1qFq1KjNnzkyXw3fUqFFUq1aNhg0bMmnSpExH/J999hkRERF4eHjg5eXFvn37cqWxqKjaoARWxUw5uSUwW4OusrTEefQo4gICiNqae/fJEbVGUNG+IlOPTuVxvO4f3LnGpbp25J8cD7+2LXjnjDyQGJ/M1vlnSU5MocNwTyxt/0stromJIXjESISREaXm/YQqEweHIyFHWB2+mvol6vN5/c8zz+AVeBCWtID4J9BvC1Ruq89byprMgvRndQD2wGBgT27a5fd4mRKxFDW5TcRSFJQpU6aoJeQZfSZiyYkLB4PlvCF7ZND5sGzraZKT5c0uXeS1Jk1lSmyszv0/03gl/IqsuaKmHLlnZJZJWwqMR1ek/K6qlN+4SRl4WGeNBY1Go5E7Fp2X8z/cI29fDMtQFjxmjLxUtZp8ejhzjZfCLsk6v9eRbVa1kU8TnmZ+kZNLtAlrfqotZdiNgr6FTCGLRCy5ivYvpYyQUi6SUrbIuTYIIcYIIS4KIS4IIVYLIcyeK/tRCFGA2Z8VFF5tqtQvgXUxsxxH/cLIiOKffkrygweEL/01y3pZUblYZUbWHMneu3vZeGNjPhTrgFNl+OBfsC6u9fa5ontKyYIkYNddbvg/ol7n8hlyHj9evpyobdtxGj06LVXi89yPvs+wPcOwNrHmQ+cPMy6MpyTB1o9h61jtZraBu8ChvD5vJ0f0luZFCOEKjAR8pZQeaCN69kot80X77UGhgHkZonOOHj26qCW8lBipVfi2d+dRUBS3L4RnW9fC1xfrtm0JX7KEpPtZ7/zNij7V+1C7eG1mnJzB3agCzNObGXaloP8O7fTPmt5w5Eetb3shEXzlMcc23KB8LSdqtk4fFynmxEkezZqNdauWOAzKuGYUlRjFR3s+Ii45jgUtF2Cntktf4ekDWNEZTi2GBiO0YavNbPV3Mzqi3/xeWndRcyGEGrAA7gkhjIBZwKsRtcnAUAz/q03l+sWxdjDjVA6jfgDnjz8GjYZH3+XeS0clVHzd8GvUQs2kQ5NISsk6N0CBYOkAff+Bap1g1xRtNq9CCOn89HE8/y65iF1xS5r3qZpuXj7pwQNCxo7FpEwZSsyYkWHOPjElkTH7xhAUFcQPzX6gov0LiXNu7YeFb8C901r//NbTQWUYEe2zTL1YIJ0LMQrtLt84YKeUsnfqOZWU8nshRLSUMlOHYSHEYLTrCbi4uPi8mCPV2tpaSb2oUOj4+/uzceNGHBwc0i3a50R0dHS2eyByQ8RNyb1TktKNBNau2TvaWW7ahNX2HTyeMJ6k1F3budF4OuY0v4X9RjPrZnQt1jXf2nNESsrc/pOyQX/wxKYyl6pNIMHsv70LBfkcNSmSwD2SxKdQrpXA1Oa5Z5mUhP2cOajv3efxpImkvOChJ6VkRfgK/GL86OPQh9pWtf/TZ2mOe9CflLm9llgLNy5Wn0CsZeYRVvVNs2bNMk29qLcFWbRTOXsBJ8AY2Aj0AQ4D6tQ60br0pSzuKhgKRbm4+4zk5BS5YvIRufbrkzkuvqZER8trbzSSt7p1l5rk5DxpnH5suvRY5iF3B+3Oq+Tcc2mzlF+XlPLbMlJe3pJ2uiCf46G11+S8IXvkzTOPMpTdmzpNXqpcRT7Z8W+mbef6z5UeyzzkorOL0p0/vnWllItbSDnNRsq/h0iZEF1gevMCBbG4m0taAoFSylCpjfXzN/AFUAG4kRr+wUIIcUOPGhQUXjmMjLRz/aF3nhJ0LizbuipLS5wnjCf+wgUi//wzT9cbX3s81RyqMeXIFO4+1fN8/zOqvglDDmp3+655V7s4mlhwQeQCz4Vxdu9dajRzo5y3U7qyyPXriVy7FodBA7Fpk9Fzfd21dSw+v5huFbsxsEbqvL9GA8fm4+s3RhuOousSbTIak6zjWhUl+jT8d4B6QggLoZ0cawHMkVIWl1K6SyndgVgppWHu2VZQMGAq1y2OrbM5xzfdQpNNDB8Am44dsahXj0dzvic5LPsPiswwMTLhuybfAfDxgY9JTMkYLlsvOJSHAbug/nDt4uiC+tg/Dsh3t9ER8exZfgnHUlY07Jre/MSdv8CDL77Eon49nEaNytB29+3dTD8+nUaujfis3mfaef97Z+DX1vDvp0TYe8GwE+DZI9869YneDL+U8gTwF3AaOJ96rUX6ul5R8MEHH+Ds7JzpLttnbNq0CU9PT7y9vfH19eXw4f+CYBkZGaWFfchsF62uNG3aNEPcfICDBw9Sq1Yt1Gp12o7Y7OjUqVO6e5kyZUqa9tatW3Pv3r086Vu2bFlaxM/nCQgIoH79+lSvXh1PT0/Wrl2bafuFCxdSo0YNvL29eeONN9LCSWcXm/9VR2Wkot5b5Xl8L4ZrJx9kW1cIQfGpU5Hx8Tz834s5lXTDzdqN6W9M51L4Jb458U2udwXnGbUptPka+m4BYYTXuWmw4UOIzl346WdoUjTsXHqRlGRJm4Ee6RLcJEdEEDxqJEaODrh+9x1CnT6U2fH7x5lwcAI1HGswu8ls1HFP4J/RsKgZRARBl1+44DFZ65pq4OjVq0dKOU1KWUVK6SGlfF9KmfBCuR4iQRUe/fr1SxdPPzNatGjB2bNnCQgI4Ndff00XRsDc3Dwt7MOznbMFSenSpVm2bBnvvvtujnX//vvvDItm48eP59y5cwQEBNCxY0e+/PLLAtVnYWHBihUruHjxIjt27GD06NFERkZmqPfuu+9y/vx5AgICmDBhAmPHjgWyjs3/ulC+lhPOZaw5sfkWyUnZh9EyLVeWYgMHELX5H2KOn8jT9ZqXbs6gGoNYf309f1z5I0995JmyjWDoUW6X7gHn18Fcb9g3AxKe5qobv21B3L/xhKbvVMLOxSLtvExO5t64caSEheM290fULwQYvBB2gVF7R1HGpgzzG3yNxaE5MNcLTq+Aeh/BCH/w6vXS5BbWJfWiwTPz5EyuPC7YSNFVilVhYp3sszg1btw405H28zxvTGNiYjLfxp0NN27c4MMPPyQ0NBQjIyPWrVtH+fK6bf54lulKpcr+8z06Opo5c+awaNEi3n4u2qCNjU2O2lNSUpg4cSI7duxICzA3YsQInfQ9H1KhZMmSODs7Exoaip2dXbp6WenIKjZ/nTp10rU/deoUo0aNIiYmBlNTU/bs2YO1tf6SXBQWQgjqdynPph8CuHAgJMvcvM9wHDKEqC1befDFF5TdtBGVjsnZn2d4zeHciLzB/079j7K2ZWlQMmNIYr1hbEZgufco89Yn2vj1B76FU0ugzmCoPVDrEpoNIVcj8NsWRJV6xalcL72XTujcucQcPUaJ6V9hXiP9N/hbkbcYunso9iY2LDKviu2CNyAhCqq9BU0/1Qaee8nQtx+/Atqga1WqVKFDhw7pQi3Hx8fj6+tLvXr12LhxY6Zte/fuzbBhwzh79ixHjx7NEPitIHgWBvpZuOfnmTx5MqVKlWLVqlWZjvgXLVpEUFAQAQEBnDt3jt69e+dJw8mTJ0lMTMzyQ23+/PmUL1+eCRMm8OOP2pDDWcXmf57ExER69uzJ3LlzOXv2LLt378bc3DxPGg0RtyrFKFWtGH7bg0iIzd7XXmVmRvGpU0gMDCQ89dtSblEJFTMazaCcbTk+PvAxQU+C8tRPvnAoD2+vgIF7tHlp938D31eHzSO0Gb4y+dYX9zSRXb9exNbZgka90sdwivp3J+GLl2DXsyd23dNH07wXeZvB2/tglBDN4msBOB39Gco1gQ+PaDW8hEYf0J87Z0EehuzOGRgYKKtXr65T3QMHDsgWLVqkvQ8ODpZSSnnz5k1ZpkwZeeNG+vgdUVFR0tXVNcd+mzRpIgMDA7Ms79u3r1y3bl2mZWfOnJFvvvmmlDL7e/nmm2/k1KlTM5zv2rWr3LlzZ7b6fvvtNzlt2rQsy+/duycrVaokjx07lm0/Ukq5atUq2adPHymllElJSXL06NHSy8tLdurUSbZr105u2LAhXf1z587JBg0a5NivrhiCO+eLPLodJecN2SOPbtAt/kvwmLHykkcNGXflarrzudF4N+qubLS6kezwdwcZHheeG7n5IlONDy9LuXGYlNOLa90o51SXcttEKa9slzI+Smo0GvnPTwFywbB98tGdqHRN42/ckFdq1pK33n5bpiQkaE9GBkt5dq28t76/bLOkmqy/tJq8MruslP9+JuXjwNzrK0LIwp3zlZjqeVlo3Lgxt27dIiwsDEdHx7R48+XKlaNp06acOXNG52mcguLYsWP4+fnh7u5OcnIyjx49omnTphkWSnv37k379u354osvCvT6UVFRdOjQga+//jotJWV29OrVKy0d47PY/M9o0KDBKxODPzc4lbamYm0Xzu25i2dTNyztTLOt7zLlM2KOH+f+p5/ivnZNhkVMXXCzdmNu87kM2jmIYbuHsbTNUiyMM35jLBScq8Bb86Dtt3B1G5z7E/x/gxMLQBhxVvbj9oOONK55E6eQKxDpCCojUmITCJ44D6GWuHUtierPdyH0Cjy5ywMjIz4oWZwotQmLagyjsmcf7ULzK4Iy1aNnbty4keYBcfr0aRISEnBwcCAiIoKEBO1ad1hYGEeOHMmQ/9ba2ho3N7e0aaCEhIS0WPwFxdChQ7l37x5BQUEcPnyYSpUqpRn969f/S4+3adMmqlTJ+LW2VatW/PLLL2kJVHITgz8xMZEuXbrQp08funfPImHFCzq2bt1KxYrarfHZxeZ/RuXKlbl//z6nTp0C4OnTp2laXyXqdiqHRiM5vvlWjnXV9vYUnzqF+IsXCf/1tzxfs6ZzTWY3mc3lx5cZs3+M/sM65ISpFXi+De/9BRNvQ99/eOQxjWMP21HW6hwe9yfCjomwfgDyz37c/2QSiffDcPW9i/H1P7RxdUrV4UHzT+lfuSaR5rb80n4lHrUGvVJGHxTDny/eeecd6tevz9WrV3Fzc2Pp0qWA1v1w4cKFAKxfvx4PDw+8vb0ZNmwYa9euRQiRlj7Qy8uLZs2aMWnSpAxGC2DlypX8+OOPeHp60qBBAx48yN5173lOnTqFm5sb69atY8iQIWnx9wGdwg1MmjQJDw8PPD092blzJ3Pnzs1QZ+DAgZQuXRpPT0+8vLzSkqXrwp9//snBgwdZtmxZmltrQEAAkD5HwLx586hevTre3t7MmTMnLVFMdrH5n2FiYsLatWsZMWIEXl5etGrVivh4/ceAKWxsnczxbF6KK8fu8+h2VI71bdq2xbpNG8J++omEG3nfQ9m0VFOm1p/K0XtHmXxkMikaA0nSZ2xGYvEG/BtQBws7C5p/MQwxNQzG34Rhpwi3ncDTYHNcRg7Bcs5NmPwAhh4mpO1XfBB2gMjkWH5p9Qs1nGoU9Z3oh8zmfwztMOQ5fkMgpzn+oianOf6XCUOc439GfGySXPrxQfnXzFM6xdFPCguTV+vWk7e695CaxMR8aVxybon0WOYhJx2cJJNTsg8NkR901ajRaOS/Sy7I+R/ukSHXI9KVPT10WF6qWk0Gjx2X7jldf3xdNl/bXNb/o74MeBSgV32FBUUQskFBQaEQMTVXU69zeR7ciuL6qYc51lc7OFD882nEnz9P6HPpKPPCgBoDGFlzJFtubTGIkf+VYw+4fuohtTuWpWQFu7TzCYGBhIwdi2mFCpT46ss01+CARwH03dEXiWRZ22V4OXkVkfLCQTH8rwD9+vXL4PtuSHh7e9O0adOilvFaUKV+CZxKW3P075skJeRsfG3atsW2W1fCf1mE8bVr+br2IM9BjKo1iq23tvLJoU+KbM4/4kEMB9dcxbWSHT7t3NPOpzx5QvDQjxBGRrj9/DOqVPflA3cPMHjXYOxM7VjRbgWV7F99BwHF8L8CKIZf4RkqleCNtysSE5nA6X9v69Sm+KefYlK6NLa/LSPlyZN8XX9gjYGM8RnD9qDtfLTnI6ITCzfJXkqSNiSD2tiIlv2ro1JpR/QyKYmQMWNIDAnBbd5PmLi5IqXktwu/MWLvCMralmV5u+W4WbsVqt6iQjH8CgqvGCUr2FGxtgund94m8mHOXmAqS0tKzp6N6skT7k+Zmu84PB94fMD0htPxe+BH3x19eRiT87RTQXH07xuE3Y2med+qWNn/54nzcMa32p25X3yBhY8PiSmJfHbkM+b4z6FVmVYsa7sMR3PHbHp+tVAMv4LCK0jD7hVQGxux/48rOhly8xoeRHd+i6c7d/J42fJ8X/+tCm8xv8V8gp8G03NLT/we+OW7z5wIPBvKuX3BeDZzo6znf0b88apVRPzxB8U++AC7rl24HXWb97a9x+abm/nI+yNmN5mNufrV2c2tC4rhV1B4BbG0NaV+l/KEXI3k6gndXIBjW7XCulUrHs2enedAbs/TwLUBv7f/HWsTawbuHMiyC8v0FtUzOiKePSsu41jKigbPhVqO2rWLh9O/xqpZM5zHjWXrra28/c/b3Iu5x4/NfmSo19Bcx896FVAMfx65e/cuzZo1o1q1alSvXj1TH3eAWbNmpfmoe3h4YGRklLbJyd3dPS3csK9vxuxoutKvX79MQxKvWrUKT09PatSoQYMGDTh79mym7ffs2UOtWrXSwh7fSPXrzioccm7Zv38//fr1y3A+Pj6eOnXq4OXlRfXq1Zk2bVqm7ceMGZP2DCtVqpRuPWPixIl4eHjg4eGRZVjn15Xqb5TEpawNR9bdIC5ahxj6QlBixjeYlClDyNixeUrS/iIV7SuyusNqmpduznf+3/Hh7g+5H53/fp8nJUXDv4u1oZZbD6ieFmo51t+fe+M+xtzTE5PpkxhzcByTDk2iSrEq/PXmXzQr3axAdbxUZObjaWiHIfrx37t3T/r7+0sptTF1KlasKC9evJhtm82bN8tmzZqlvS9TpowMDQ3Nt5a+fftm6j985MgR+fjxYymllNu2bZN16tTJtH3FihXlpUuXpJRSzp8/X/bt21dKKeWTJ0/S6mzatEm2adMmT/r27duX1ufzaDQa+fTpUymllImJibJOnTo5xuv58ccfZf/+/aWUUm7ZskW2bNlSJiUlyejoaOnr65tOsz4wZD/+zAgLfip/HrpX7l6W/e+mlP9pjL95U16p5SNvde8hU2JjC0SHRqORqy+vlrV/ry3rrqor11xekyd//8ye47MUitdOPUg7F3/tmrxSu4683qatXHdiqay3qp70WekjF59bLJNSkvJzK7nWV5TwKsfqefDNNyRcLtiwzKZVq1D800+zLC9RokRapExra2uqVq1KSEhIprtvn7F69WreeeedXOl4+PAhH374IbduabfiL1iwgAYNdAuF+3y9evXqERwcnGk9IQRRUdrdnk+ePKFkyZKAbmGZAWbOnMnvv/+OSqWiXbt2fPvttzrpE0Kkha1OSkoiKSkpx6/dq1evTosXdOnSJRo3boxarUatVuPp6cmOHTvShZaG/IW2ftlxcLXCu3VpTu+4TflazrjXyHkB07RcOUrO/JbgESO5N2ECrj/8gDAyypcOIQS9qvTiDdc3+Pzo50w/MZ2119bysc/H1C9ZP8/TLTf8H6WlUKzo6wJAYnAwdwYNJkkN37wNpy9/T53idZhWfxqlbYom6bmhodepHiHEGCHERSHEBSHEaiGEmRBiqRDirBDinBDiLyHES52MBSAoKIgzZ85Qt27dLOvExsayY8cOunXrlnZOCEHr1q3x8fFh0aLMk5ONHDmSJk2acPbsWU6fPp0u7EJuWLp0Ke3atcu0bMmSJbRv3x43NzdWrlzJpEmT0soyC4f8PNu3b2fTpk2cOHGCs2fPMmHChFzpSklJwdvbG2dnZ1q1apXtM7x9+zaBgYFpMfi9vLzYsWMHsbGxhIWFsW/fvgxhmaFwQlsbMnU6lMXB1ZJ9K68QH62bb711y5a4TJrI0127eZTHrF2Z4WbtxuLWi5nTdA5xSXEM2T2E97a/x67bu3K96SviQQx7V1zGpawNDbtp5/Vj7t7myrs9iHryiEmdY3hsr+aHZj+wpPUSxeg/h95G/EIIV2AkUE1KGSeE+BPoBYyRUkal1pkDDAd0GyJmQXYjc30THR1Nt27d+OGHH9KNkF/kn3/+oWHDhhR7LrPP4cOHcXV15dGjR7Rq1YoqVarQuHHjdO327t3LihUrAG2qRltb21xr3LdvH0uXLk2X9vF5vv/+e7Zt20bdunWZNWsWY8eOZcmSJQAMGzaMYcOG8ccffzB9+vS0ODnP2L17N/3790+L5V/shcxFOWFkZERAQACRkZF06dKFCxcuZJnKcs2aNXTv3h2j1NFn69atOXXqFA0aNMDJyYn69eunlT3j6dOnhISE0KVLFwDMzMxype9VwMhYRYt+1fjrWz8OrLlKm4FZpwp9nmJ9+5IYEsLj5StQFy+BQ/9+BaJHCEGrMq1o4taEv6//zfKLyxm7fyzOFs60dW9LW/e2VHOohpEq628ZSQkp7Fh0ASNjFc0HVOLEo+McOr2Rel9vxTJWw7Ih7gxsPYSO5TqiVr0SExsFir6fiBowF0IkARbAveeMvgDMgUJK3lnwJCUl0a1bN3r37k3Xrl2zrbtmzZoM0zzPwjI7OzvTpUsXTp48mcHw55dz584xcOBAtm/fjoNDxgxFoaGhnD17Nm2k3bNnT9q2bZuh3vPhkPWBnZ0dzZo1Y8eOHdka/vkvhBaYPHkykydPBrQpGl/HsMy64FTKmtodynJi8y3KeT9MmxbJCZeJE0l+8JBHM2eiMjfDvlevAtNkYmRCryq96FGpB3vv7mXzjc38ceUPVlxagbWxNd7O3lSwq0Bpm9LYm9pjYWzBpbhLJAYlEfRXIon3zbhabxfzt4/CJiKRaWskdnEqEuZ8wk/Ne7+W3jq6ojfDL6UMEULMBu4AccBOKeVOACHEb0B74BIwLrP2QojBwGAAFxeXDF4rRZ06T0rJgAEDqFq1aloO2Kx48uQJBw4c4Pfff087FxMTg0ajwdrampiYGHbu3MnUqVMztG3RogULFixg9OjRpKSkEB0drfOo/86dO3Tt2pWVK1dmaRDt7e158uQJ165do1KlSuzatYuqVasC2nDIz0IgPx8O+XlatWrFl19+Se/evbGwsODx48c6j/pDQ0MxNjbGzs6OuLg4du3axcSJmae7vHLlChEREdSvXz/tXEpKCpGRkTg4OHDu3DnOnTtH69at07V7PrR1586dSUhIICUlJdNsY7oSEhJCfHx8rpK7R0dHF3kyeGkmMXeAPSsuEvjwEiaW6Q1jlho7vYndg/s8+PwLrt24QdwbbxS4NmOM6WbUjbYl23Ip7hI3Em5w49ENjoUcI5n0YbR9/dviG9yOk+7/EGFyg05RtXjrjwBMEjREjhhGkpEbBw4cKHCNumAIP2edyGzFtyAOwB7YCzgBxsBG4L3nyo2An4H+OfVliF49hw4dkoCsUaOG9PLykl5eXnLr1q1SSikXLFggFyxYkFb3t99+kz179kzX/ubNm9LT01N6enrKatWqyenTp2d6nQcPHshOnTpJDw8P6eXlJY8ePZqhTlZePQMGDJB2dnZp+p5/ju3atZMhISFSSin//vtv6eHhIT09PWWTJk3kzZs3pZRSjhw5UlarVk16eXnJpk2bygsXLmSqccaMGbJq1arSy8tLfvLJJxnKs/LqOXv2rPT29pY1atSQ1atXl1988UVa2ZQpU+SmTZvS3k+bNk1OnDgxXfu4uDhZtWpVWbVqVVm3bl155syZTPVdu3ZNNmvWTNaoUUPWqlUr7f7ywsvm1fMikY9i5KJR++WfM07J5KSUdGXZaUxJSJC3Bw2Sl6pUlY9Xr9Gzyv9ITkmWIU9D5OXwy9LvgZ9ctHSNnDdkj9yy9LRMSUmRsefOyat168mrDd+QcZcvF5qurDCUn/MzyMKrR5+Gvwew9Ln3fYCfX6jTGNiSU1+GaPgNiawMv6GQleF/GXnZDb+UUt7wfyjnDdkjD67NXerFlPh4eWfwEHmpchX5aO6POoV+Lkge3Y6S8z/aI/+a6SeTE1Pkk61b5WUvb3m9RUuZcPt2oWrJCkP6OUuZteHXp1fPHaCeEMIidT6/BXBZCFEB0ub4OwEF64epoKCQLeVrOePZ3I1ze4O54f9I53YqU1Pc5s/DtltXwn7+mfuTP0OTmkVO30SFxbFl3lnUptB2cHXCf5pLyNhxmFWvjvua1ZiUVjx2coM+5/hPCCH+Ak4DycAZYBGwVwhhAwjgLKC/FcPXhM6dO+Pu7l7UMrLE3d2dzp07F7UMhedo0LUCDwOj2LP8ErZO5jiV1m3NTKjVlJg+HWOX4oT9/DMJV6/iOncuJm6uetMa9zSRzT8GkJKswb1mNOFjhxFz9Ch2PXpQfMpnCBMTvV37VUWvfvxSymlSyipSSg8p5ftSygQpZUMpZY3Uc71lqpePQt5RDL9CbjFSq2j3YQ3MLI3Z+vM5YiJ1H7kLIXAaOQK3+fNIvHOHwG7diNq2TS9xeBLjk9ky7ywxEQk09YnD9YcviT1zhuJffkHxL79QjH4eUWL1KCi8pljamtJhmBeJccls/fkcmuTcGW7rFi0o+9c6TEqVImTsOII/GkZSLnJC50RSYgrbF54n9M5TasbvJ+mr0aQ4OlL27/XYv/224q6ZDxTDr6DwGuPoZkXrgdUJu/uUO4clKUmaXLU3KVMG9zWrcZ4wgZhjx7jZth2PvvuOlMjIfOlKSkxhy/enCL7ymKpXf8f2zFZcPpnE4wnjMS1bNl99KyiGX0Hhtce9hiPN3q9CzAPYsfgCKSm5M/5Crcbhg/6U2/IP1q1aEb5kKdebt+D+tM+Jv3QpV1NAUqMh8sAR/h7zN/duRVPt6u9UaehK+e3bKNa3L+QzZpCCFmUvs4KCAlUblOTyxasE+Yexa8lFWn3wX3hjXTFxc8N11v9wGDiQx8uW8WTjRiLXrsW4ZEksmzTG3MMD00qVUTs6oLK2geQkNDExJAaHkHDzBnH+p4k4EcCZ0u8QZV2G2g43qfn7dIxd9bdw/LqijPjzSUpKCjVr1qRjx46Zlh88eJBatWqhVqv566+/0pUZGRmlxZnv1KlTnjU0bdqUoKCgLMvXr1+PEAI/v4xZkLLLKzBlyhQ8PT3x9vamdevW3Lt3L0/6li1bxueff55pmS7PILtnqMTjLziKVRS80aMiN8+EsmX+WRLjknNulAlmlStRcsY3VNi/j+JffIFp5co82bSZ+5M/I6hHD240a841X1+u1avPjRYtudO3Lw+//IrQM9fx8xxFjJ07bQZUo843QxSjryeUEX8+mTt3LlWrVk0La/wipUuXZtmyZcyePTtDmbm5OQEBAXrV9/TpU+bOnZtl1Eu1Ws13331HrVq1ePr0KT4+PrRq1Ypq1aoxfvx4vvrqKwB+/PFHvvzySxYuXFig+nR5Blk9w61bt3L69GkCAgJISEigadOmtGvXLttgeQrZ49WiFKaWavauuMKGOafp8JFXuty1uUFtb499z7ex7/k2UqMh6c4dEm7cIDkiAk1UFMLYGJWFBeriJXiocebIpvsIBJ2HeVK8XO6DESrozith+A/9eY2wu9EF2qdjKSsavZ19wK/g4GC2bt3K5MmTmTNnTqZ1nrlZqlR5+3KV31jyU6ZMYeLEicyaNSvT8uzyCugSjz8lJYWJEyeyY8cOVCoVgwYNYsSIEbm8y+zJ6hkq8fj1Q5V6JTC3MmHH4gv8+c1JWg2oTqkquYu6+iJCpcLE3R2TF9yONSkaTm0Nwm9bEA6uVrQd4oGdc97jKCnohjLVkw9Gjx7N//73vzwb9fj4eHx9falXrx4bN27MtE5+YsmfPn2au3fv0qFDB53qZ5ZXYPLkyZQqVYpVq1bx5ZdfZmizaNEigoKCCAgI4Ny5c/Tu3VtnfaDbM8gKJR6//ijj4UCPSb6YWRrzz9wAjm24QXJi7uLl50RY8FPW/88fv21BVG1Ygu4TfRSjX0i8EiP+nEbm+mDLli04Ozvj4+OT52h8t2/fxtXVlVu3btG8eXNq1KiRbiSan1jyGo2GsWPHsmzZMp3qZ5VX4Ouvv+brr79mxowZzJs3Ly371TN2797Nhx9+iFqt/VXKbTz+nJ5Bdijx+PVLsRKWdJ/ky+F11zn97x1ungnljR4VKePhkC8f+rinifhtD+LC/hBMLdW0Hlhd5zDRCgWDMuLPI0eOHGHz5s24u7vTq1cv9u7dy3vvvZerPp7F4y9XrhxNmzblzJkzBabv6dOnXLhwgaZNm+Lu7s7x48fp1KlTpgu8uuQV6N27N+vXry8wfc/I7zOYPHkyAQEB7Nq1CymlEo+/gDExU9P8/ap0Gu2NlLB1/jn+nuVP4LkwNLl0+3wSGsvR9TdY+dkxzu8Lpkr94rw7rZ5i9IsAxfDnkRkzZhAcHExQUBBr1qyhefPm6eLt50RERAQJqQGuwsLCOHLkSIZ8vc/HkgdISEggNjZWp/5tbW0JCwsjKCiIoKAg6tWrx+bNm/H19U1XT2aTV+D69etprzdt2kSVKlUyXKdVq1b88ssvJCdrPUAeP36skz7Q7RlkR0pKCuHh4QA6xeOH3D1Dhf8oVaUY706rS9PelYmOSGDbz+dY/ulRDv15jaBzYcRGJWbw109OTOFhUBRndt1hw3en+X3KcQL23KWMhwPvTKtLs/erYmZlXER39HrzSkz1GBpTp07F19eXTp06cerUKbp06UJERAT//PMP06ZN4+LFi1y+fJkhQ4agUqnQaDRMmjQpU6O3cuVKhgwZwtSpUzE2NmbdunWUK1cuX/ru3bvHwIED2bZtG0eOHGHlypXUqFEDb29vAL755hvat2/PpEmTuHr1KiqVijJlymTq0TNw4ECuXbuGp6cnxsbGDBo0iOHDh+ukI7tnoMszTEpKolGjRoA2Mfzvv/+eNuX0PPp4hq8jRmoV1Ru5UqVBCW6fD+fy0ftcPHSPc3uDATA2M8LUQo2RkYqEuGQSYpJ49lng4GpJ7Y5lqdawZJ69hBQKDqGPwEoFja+vr3xxisLf3x8fH58iUmRYNG3alGXLlhlsoLZly5YRFBSUpS//y4S/vz+nTp3Czc0ty70bmbF//36aNm2qP2EFQF40Jiel8PBWFOH3ool8FEdSXDIpyRpMLIyxsDbGwc0K5zI2WBcrmLUVQ3+OhqZPCOEvpfR98bwy4ldQUMgzamMjXCvb41rZvqilKOQCxfC/AvTr1w87O7uilpEl3t7eBvttREHhdeSlNvwajSbPPvSvEv369StqCdnybO3gZUejyZ0Xi4KCofLSWk0LCwsePHig/DEqFAoajYYHDx6QlJQEoMSCV3ip0euIXwgxBhgISOA80B9YCvgCScBJYIiUMim3fZcvX54LFy5w79495Y9QoVBISkrizp07xMfHG/TUmoJCTujN8AshXIGRQDUpZZwQ4k+gF7AKeLbT6Q+0HwwLctu/iYkJVatWZcOGDYSGhmZp/B88eEDx4sXzdA+FhaFrNHR9ULgaHR0dqVmzZqFcS0FBH+h7jl8NmAshkgAL4J6UcuezQiHEScAtr52bm5vTo0cPwsPD0zYQvcjJkyepU6dOXi9RKBi6RkPXB4WnUa1WU6xYMUyUXK8KLzF69eMXQowCvgbigJ1Syt7PlRkDJ4BRUspDmbQdDAwGcHFx8VmzZk2eNERHR2NlZZWntoWFoWs0dH1g+BoNXR8oGgsCQ9PXrFmzTP34kVLq5QDsgb2AE2AMbATee658MfCDLn35+PjIvLJv3748ty0sDF2joeuT0vA1Gro+KRWNBYGh6QP8ZCY2VZ9TPS2BQCllKIAQ4m+gAfC7EGJa6gfCEF068vf3DxNC3M6jDkcgLI9tCwtD12jo+sDwNRq6PlA0FgSGpq9MZif1afjvAPWEEBZop3paAH5CiIFAG6CFlFInX0wppVNeRQgh/GRmX3UMCEPXaOj6wPA1Gro+UDQWBIau7xl6M/xSyhNCiL+A00AycAZYBMQAt4FjqZ44f0spM2b4UFBQUFDQC3r16pFSTgOmFeY1FRQUFBSy56XduZsLFhW1AB0wdI2Grg8MX6Oh6wNFY0Fg6PqAlyQss4KCgoJCwfE6jPgVFBQUFJ5DMfwKCgoKrxmvjOEXQrQVQlwVQtwQQkzKpNxUCLE2tfyEEMLdwPSNFUJcEkKcE0LsEUJk6n9blBqfq9dNCCGFEIXqtqaLPiHE26nP8aIQ4o/C1KeLRiFEaSHEPiHEmdSfdftC1verEOKREOJCFuVCCPFjqv5zQohahalPR429U7WdF0IcFUJ4GZK+5+rVFkIkCyG6F5Y2nclsV9fLdgBGwE2gHGACnEUbHO75Oh8BC1Nf9wLWGpi+ZoBF6uuhhalPV42p9ayBg8BxwNeQ9AEV0boN26e+dza0Z4h28W9o6utqQFAha2wM1AIuZFHeHtgOCKAecKIw9emoscFzP+N2ha0xJ33P/S7sBbYB3Qv7GeZ0vCoj/jrADSnlLSllIrAGeOuFOm8By1Nf/wW0EIUXzzlHfVLKfVLK2NS3x8lH8Dp9aUzlK2AmEF+Y4tBN3yBgvpQyAkBK+cgANUrAJvW1LXCvEPUhpTwIPM6mylvACqnlOGAnhChROOq05KRRSnn02c+YIvhb0eEZAowA1gOF/TuoE6+K4XcF7j73Pjj1XKZ1pJTJwBPAoVDU6abveQagHXUVJjlqTP3aX0pKubUwhaWiyzOsBFQSQhwRQhwXQrQtNHVadNH4OfCeECIY7WhwROFI05nc/q4WNUXxt5ItqSHpu5CHcPOFhbKZysAQQryHNlFNk6LW8jxCCBUwB+hXxFKyQ412uqcp2lHgQSFEDSllZFGKeoF3gGVSyu+EEPWBlUIID6lj+BKF/xBCNENr+N8oai0v8AMwUUqpMdQkUa+K4Q8BSj333i31XGZ1goUQarRfs8MLR55O+hBCtAQmA02klAmFpO0ZOWm0BjyA/am/zMWBzUKITlJKPwPQB9rR6QmpzegWKIS4hvaD4FQh6APdNA4A2gJIKY8JIczQBvYylCkBnX5XixohhCewBGgnpSysv2Nd8QXWpP6dOALthRDJUsqNRarqeYp6kaEgDrQfYLeAsvy3qFb9hTrDSL+4+6eB6auJdmGwoqE+wxfq76dwF3d1eYZtgeWprx3RTlk4GJjG7UC/1NdV0c7xi0L+WbuT9cJpB9Iv7p4sot/H7DSWBm4ADYpCW076Xqi3DANc3H0lRvxSymQhxHDgX7Sr6b9KKS8KIb5EG496M9pcvyuFEDfQLsz0MjB9swArYF3qSOGOlLKTgWksMnTU9y/QWghxCUgBxstCHA3qqHEcsFho81FLtB8ChbZ9XgixGu1UmGPqOsM0tPkykFIuRLvu0B6tYY1Fmye7UNFB41S063M/p/6tJMtCjIipgz6DRwnZoKCgoPCa8ap49SgoKCgo6Ihi+BUUFBReMxTDr6CgoPCaoRh+BQUFhdcMxfArKCgovGYohl/htUII4SCECEg9HgghQlJfRwshftbTNUcLIfpkU94x1eVTQaFQUNw5FV5bhBCfA9FSytl6vIYaOA3UktoYUZnVEal1Gsr/AvUpKOgNZcSvoAAIIZoKIbakvv5cCLFcCHFICHFbCNFVCPG/1PjvO4QQxqn1fIQQB4QQ/kKIf7OIYtkcOP3M6AshRor/8i6sAUjdwLUf6FgoN6vw2qMYfgWFzCmP1mh3An4H9kkpawBxQIdU4/8T2u34PsCvwNeZ9NMQ8H/u/SSgppTSE/jwufN+QKMCvwsFhUx4JUI2KCjoge1SyiQhxHm04Rd2pJ4/jzZOS2W0Qet2pYYNMALuZ9JPCeDyc+/PAauEEBuBjc+dfwSULDj5CgpZoxh+BYXMSQCQ2tC6Sc/F09Gg/bsRwEUpZf0c+okDzJ573wFtBqc3gcmpYaOTU+vEFeQNKChkhTLVo6CQN64CTqkx9RFCGAshqmdS7zJQIbWOCm0im33ARLShwa1S61UCss3hqqBQUCiGX0EhD0htasXuwEwhxFkgAG0u2BfZjnaED9rpoN9Tp4/OAD/K/5LENAOKIrOZwmuI4s6poKBnhBAbgAlSyutZlLsAf0gpWxSuMoXXFcXwKyjoGSFEZcBFapN0Z1ZeG0iSUgYUqjCF1xbF8CsoKCi8Zihz/AoKCgqvGYrhV1BQUHjNUAy/goKCwmuGYvgVFBQUXjMUw6+goKDwmvF/IcRwpf4SgbsAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# Helper class\n", - "from rocketpy import Function\n", - "\n", - "# Prepare Rocket Class\n", - "Calisto = Rocket(\n", - " motor=Pro75M1670,\n", - " radius=127 / 2000,\n", - " mass=19.197 - 2.956,\n", - " inertiaI=6.60,\n", - " inertiaZ=0.0351,\n", - " distanceRocketNozzle=-1.255,\n", - " distanceRocketPropellant=-0.85704,\n", - " powerOffDrag=\"../../data/calisto/powerOffDragCurve.csv\",\n", - " powerOnDrag=\"../../data/calisto/powerOnDragCurve.csv\",\n", - ")\n", - "Calisto.setRailButtons([0.2, -0.5])\n", - "Nose = Calisto.addNose(length=0.55829, kind=\"vonKarman\", distanceToCM=0.71971)\n", - "FinSet = Calisto.addFins(\n", - " 4, span=0.1, rootChord=0.120, tipChord=0.040, distanceToCM=-1.04956\n", - ")\n", - "Tail = Calisto.addTail(\n", - " topRadius=0.0635, bottomRadius=0.0435, length=0.060, distanceToCM=-1.194656\n", - ")\n", - "\n", - "# Prepare Environment Class\n", - "Env = Environment(5.2, 9.8)\n", - "Env.setAtmosphericModel(type=\"CustomAtmosphere\", wind_v=-5)\n", - "\n", - "# Simulate Different Static Margins by Varying Fin Position\n", - "simulation_results = []\n", - "\n", - "for factor in [0.5, 0.7, 0.9, 1.1, 1.3]:\n", - " # Modify rocket fin set by removing previous one and adding new one\n", - " Calisto.aerodynamicSurfaces.remove(FinSet)\n", - " FinSet = Calisto.addFins(\n", - " 4, span=0.1, rootChord=0.120, tipChord=0.040, distanceToCM=-1.04956 * factor\n", - " )\n", - " # Simulate\n", - " print(\n", - " \"Simulating Rocket with Static Margin of {:1.3f}->{:1.3f} c\".format(\n", - " Calisto.staticMargin(0), Calisto.staticMargin(Calisto.motor.burnOutTime)\n", - " )\n", - " )\n", - " TestFlight = Flight(\n", - " rocket=Calisto,\n", - " environment=Env,\n", - " inclination=90,\n", - " heading=0,\n", - " maxTimeStep=0.01,\n", - " maxTime=5,\n", - " terminateOnApogee=True,\n", - " verbose=True,\n", - " )\n", - " # Post process flight data\n", - " TestFlight.postProcess()\n", - " # Store Results\n", - " staticMarginAtIgnition = Calisto.staticMargin(0)\n", - " staticMarginAtOutOfRail = Calisto.staticMargin(TestFlight.outOfRailTime)\n", - " staticMarginAtSteadyState = Calisto.staticMargin(TestFlight.tFinal)\n", - " simulation_results += [\n", - " (\n", - " TestFlight.attitudeAngle,\n", - " \"{:1.2f} c | {:1.2f} c | {:1.2f} c\".format(\n", - " staticMarginAtIgnition,\n", - " staticMarginAtOutOfRail,\n", - " staticMarginAtSteadyState,\n", - " ),\n", - " )\n", - " ]\n", - "\n", - "Function.comparePlots(\n", - " simulation_results,\n", - " lower=0,\n", - " upper=1.5,\n", - " xlabel=\"Time (s)\",\n", - " ylabel=\"Attitude Angle (deg)\",\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Characteristic Frequency Calculation\n", - "\n", - "Here we analyse the characteristic frequency of oscillation of our rocket just as it leaves the launch rail. Note that when we ran TestFlight.allInfo(), one of the plots already showed us the frequency spectrum of our flight. Here, however, we have more control of what we are plotting." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEGCAYAAABPdROvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAA0tUlEQVR4nO3dd3xV9f348dc7NztkJ0AgYcgKCA5AFAeCguKeddRVZ4faWltXf22/fjtsv922ta2z1WpFWxeOigMXCrJB9g6bJEDIADLfvz8+NyRCxk1yb85N7vv5eJzHvffcc8595zzgvu9ni6pijDHGtFeU1wEYY4zp2iyRGGOM6RBLJMYYYzrEEokxxpgOsURijDGmQ6K9DqAzZGVl6YABA7wOwxhjupQFCxYUq2p2a8dFRCIZMGAA8+fP9zoMY4zpUkSkIJDjrGrLGGNMh0REicSEv8LSg7y7chdJsdGcdXQvEmPtn6YxXYX9bzWe+2hNEbc/t5DyyhoA+mcm8vSN4xiQleRxZMaYQFjVlvHU2l1lfOOfC8jLSGTGXRP4583jKD1QzQ1/n3sosRhjwpslEuMZVeXel5aSEOvj6ZtOYFjvZE4bks1j149ly579/PrtVV6HaIwJgCUS45n/LtvJos0lPHBOPj2T4w/tP2FABleN68e/5m5m6979HkZojAmEJRLjmUc/3sBRWUlcOjr3iPfumDQYQfjzzHUeRGaMaQtLJMYTS7eWsGRLCdeP748vSo54v09aAlePy+M/C7ZSWHbQgwiNMYGyRGI88czsAhJjfVw65sjSSL3rxg+gpk55eeG2TozMGNNWlkhMp9tfVcMbS7dz0XF9SYmPafa4wT17MG5ABi/M24ItwGZM+LJEYjrdzFWFHKyu48Jj+7R67JUn5LGxuIK5G/d0QmTGmPawRGI63Vtf7CCrRxzjBma0euw5o3qTEOPjjaU7OiEyY0x7WCIxnWp/VQ0zVxUydWSvJhvZD5cYG82k/GzeXr6T2jqr3jImHFkiMZ1q1tpiDlbXce7InIDPOWdkDkVllSwo2BvCyIwx7WWJxHSqj9YUkRTrY+yA1qu16k3K70lcdBRvfWHVW8aEI0skptOoKh+tKeLkwVnERgf+T69HXDSnDs5i5qpC671lTBiyRGI6zYbiCrbuPcDpQ1tdcO0IE/N7snnPfjYWV4QgMmNMR1giMZ3mo9VFAO1LJP5zPvBfwxgTPiyRmE7z2frd9M9MJC8jsc3n5mUkMrhnDz5cXRiCyIwxHWGJxHSKujpl3qY9nDQws93XmDQsm8837GF/la1TYkw4sURiOsXqXWXsO1Ad0CDE5kwc1pOq2jo+W7c7iJEZYzrKEonpFPVTnHQkkYwdkE5SrI8P11j1ljHhpEsmEhF5SkQKRWSZ17GYwMzduIe+aQntah+pFxftY/ygLD5eUxzEyIwxHdUlEwnwD2Cq10GYwKgqn2/c3aHSSL0JQ7PYvGc/BbutG7Ax4aJLJhJV/Riw6WC7iA3FFRSXV3FiEBLJaUNcN+CP11qpxJhw0SUTielagtE+Um9AZiK56Ql8sqbzxpPsr6rhYHVtp32eMV1NtNcBhIqI3AbcBtCvXz+Po4ls8zbuIatHHAOzkjp8LRFhwtBspi/eTnVtHTG+0P0W2rp3Pz9+bTkfri5ERDgzvyf/e9HR5KQmhOwzjemKum2JRFUfU9Wxqjo2O7vtI6lN8CzaUsLofmmItD5tfCAmDMmivLKGxVtKgnK9pmwsruDiRz5j3sY9fOP0Qdxy2kA+XVfMRX/+lC179ofsc43pirptIjHhYW9FFRuLKzi+X3rQrjl+UBZRQsiqtypravn6P+dTp8ort5/MvVPzeeCc4bz0rZM5WF3Lrc/Mp6LSBkUaU69LJhIReR6YDQwTka0icrPXMZmm1Zcaju+XFrRrpibEcFxeWsga3B9+by1rdpXz2yuOZXDP5EP783un8KevjmbNrjIeemtlSD7bmK7Ik0QiImUiUtrEViYipa2dr6pXq2qOqsaoaq6qPtkZcZu2W7R5L1ECx+SmBvW6pw3JZunWEkr2VwX1uusKy3n04w1cMTaXScN6HvH+6UOz+drJA/nX3M0s2mwLbRkDHiUSVU1W1ZQmtmRVTfEiJhMai7aUkN87hcTY4PbrmDA0izqFT4M8Xcrv31tDXHQU903Nb/aYu88aSs/kOH782nJbH8UYwqRqS0R6iki/+s3reExw1NUpizeXBLVaq96xuWkkx0XzydrgtZOs2F7Km0t3cNMpA8nsEdfscT3iornn7Hy+2LaPGct3Be3zjemqPE0kInKhiKwFNgIfAZuA/3oZkwme9UXllFXWBLWhvV60L4qTB2fyydrioJUKnpy1kaRYH7eedlSrx158XB+Oyk7id++uprbOSiUmsnldIvkpcBKwRlUHAmcCc7wNqfs6WF3L9pIDnfZ5izaXAMFtaG/stCHZbCs5wIYgrJq4u7yS15du59LRuaQmxrR6fLQviu9OHsqaXeW8sXR7hz/fmK7M60RSraq7gSgRiVLVD4CxHsfUbd3w1FzufH5Rp33ews17SU2IYWBmxwciNqV+pcVgdAN+Yf4WqmrquH58/4DPOW9UDvm9k3n4vbVBL5XU1qmVdEyX4XUiKRGRHsDHwHMi8jBgs/GFyNBeyazZWdZpDcSLNpdwXF4aUVHBGYh4uLyMRAZkJna4G3BtnfLcnM2cPCiTIb2SWz/BLypKuGvyEDYUV/D6kuCUSj5aU8QVf5vN0B/+l+E/eptrn/ichdY7zIQ5rxPJRcAB4LvA28B64AJPI+rGhvbqQVllDTv2HQz5Z5UdrGZNYVnIqrXqnTYkm9nrd1NZ0/65sN5fuYttJQfaVBqpd9aI3uT3TuaPMztWKqmpreN/XlvGDU/NZVvJAW6bcBTXj+/P2sIyLv3LZ/zyv6uosxKKCVOeJhJVrVDVWlWtUdWnVfWP/qouEwJD/b+21+wqC/lnLd26D1U4Li8tpJ9z2pAsDlTXsqCg/b/an5ldQE5qPJOH92rzuVFRwrfPHMKGoop2t5WoKne/uISnZxdwy6kDmfn907lvaj4/PH8E739vIleP68ffPlrP3S8utuouE5a87rV1qYisFZF9bRmQaNqnMxPJoRHtecHvsdXYyYOziPVF8d6K9q2auK6wnFnrirn2pP5Et3MCyKlH92ZYr2T+NHNdu77oH/lgHdOXbOees4fxw/NHEBftO/Rej7hoHrpkJPecPYxXF2/nx68ts7ErJux4XbX1K+BCVU21AYmhl54US8/kOFbvLA/5Zy3avJejspIC6gHVET3iojl1SBYzlu9s1xfss3MKiPVFceUJee2OISpKuPPMwawrbHsPrhnLd/Kbd9ZwyfF9+dbEQU0eIyLcPmkw3zh9EM99vpmH31/b7liNCQWvp5Hfpao2aVEnGtY7OeQlElVl8ZYSJgztnFmXzz66FzNXFbJ8eykj+wY+FUt5ZQ3/WbCV847JIauFAYiBOHdkDvm91/HrGas5++jexMf4Wj1n5Y5SvvvCYo7NS+MXl45qdXbk+6YOo6iskj+8t5bs5DiuObHtbToHqmr5aE0hK7aXUl5ZS256AqcPy2ZQdo82X8uYel4nkvki8gLwKlBZv1NVX/Ysom5uSM9k/jW3gLo6DVlvqq17D1BcXsXxIW4fqTd5eC+i5AveWb6zTYnk5YVbKa+s4bp2NLIfLipK+PH5I/jqE5/z5KyN3D5pcIvH7y6v5Jan55McH83j140JKPGICL+8bBR7Kir50avLyEyKZerInIDiq66t4+nPNvHwe2spq6whSiAu2seB6lp4A04cmMG9U/MZ0z+0VZGme/K6aisF2A+cheutdQFwvqcRdXPDevfgYHUdW/aGbk2N+vaR40LcPlIvs0ccJw7M5PWlOwKu3qqrU/7+6SaOzUsLWsI7eXAWZ43oxZ9mrmV9UfPVh1U1dXzz2YUUl1fy+PVj6ZkSH/BnxPiieOSa0Rybl8a3py3ms/Wtd33+fMNuzv/jLH725kpG90/nX7ecyOqfncOKn5zN7AfO4Afn5rO+qILL/voZ33txCcXlla1e05jGvO61dWMT201extTd1Te4r94ZuuqtxVtKiIuOIj8n8DEZHXXJ6L5sLK5goX80fWs+WF3IxuIKbj51YNAW3AL46cUjiY/xcde0xU12Sa6tU7774mLmbtrDry4/hmNy09r8GYmx0Tx1wwn0z0jka0/N47XF25o8rrDsIN99YTFXPjaH8soaHr1uDP+48QROHpxFjC8KESEnNYHbJgzio3sm8q2Jg5i+ZBtn/OZDnp1T0OaOA+WVNWwrOcCu0oPWVTnCeFq1JSJ/bGL3PmC+qr7W2fFEgiGNem6ddXTvkHzGos17GdU3NaTL4B7u3FE5/M9ry3lp4daAqmeenLWRnNR4zhkZ3HvQKyWeX156DN94dgHffHYhf7129KFeWPurarjvpS94c+kOfnBuPhcd17fdn5OeFMuLXx/Pbf+cz3emLeb1JTu4fnx/jspOYue+g7z1xU6en7uZ2jrljkmDuX3SYBJim68+S4qL5t6p+Vw6ui8/enU5P3x1Gf9esJWfXTSSUc0sAVBcXslHq4uYta6Y2et3s7O0YXxSbHQUo/ulcUZ+T84ZmUNeRmK7/1YT/rxuI4kH8oF/+19fhpvA8VgRmaSqd3kVWHfVIy6a3PQEVu8KTc+tqpo6lm0v5fqTOt7u0BY94qKZOrI3ry/Zzg/PG97itPUrd5Ty2frd3Dc1PyTJburI3vz8kpH8v1eWcdlfP+P6kwZQWVvHPz7dyIbiCu6bms9tE5ruodUW6UmxPHfLSTw5ayN/nrmW91Y2zETsixIuOrYPd545hIFZgU9RM7hnMv+69USmL9nOT99YyUWPzOKUwVlMGJJNn7QEKmtqWVdYzuwNu1m8pQRVyEyKZfygTEb0SSErKY7K2jo2FVfw6bpiHnprFQ+9tYoTB2Zw2ehczhnVm+T40PbkM53P60RyDHCKqtYCiMhfgU+AU4EvvAysOxvWK5nVO0MzXGfVzlKqauo4LsQj2pty7Un9eGXRNl6Yt4UbTxnY7HEPv7eWpFgfV49rf5ff1lxzYn8yk2L56RsrufelpQAMyk7i6RvHBbU3W2x0FN+cOIgbTxnA7PW7KSqvJCU+hpOOyiAtMbZd1xQRLjquL5Pye/L4xxt4bfF2fr62oXNldJRwdJ8Uvjt5KGfk92RETkqzHTe27NnPa4u38fLCbdz70lJ+9Noyzjq6N5eO7suJAzOOSPhVNXUUlh1kV2klhaUHKT1YTZ1CfEwUvVMSGJiVRO/UwNuUTOfwOpGkAz1w1VkASUCGqtaKiLX4hcjRfVL4YHUhB6pqW6zuaI+GpXU7v/fPmP4ZnDAgncc/3sC1J/VvsrSxeEsJby/fyV2Th7T7izZQU0fmMGVEbwp2VxAdFUVeRkJQ22Mai4/xMSn/yBUdOyIlPobvnTWM7501jL0VVewqO0hctI8+afFfGjTZkryMRO44Ywi3TxrM4i0lvLxwG68v3X5obrKc1Hh6xEWjwN6KKnZXtL7iZZ/UeEb3T+fEgRmMH5TFoOykkN1XExivE8mvgMUi8iEgwATgIRFJAt7zMrDubESfVOrUlR6C/YW/eHMJ2clx9PHoV+M3Jw7ipn/M59/zt/LVE7+8RlptnfKzN1aQmRTLLQGsORIMvijhqG4wRiM9KZb0pPYnXhHh+H7pHN8vnR+eP5xZa4tZsb2UjcUVHKypRRXSEmPpnRJPr5Q4eqXG0ys5ntTEGKIE9lfVsnPfQVbvLGPh5r0sKNjLG0t3ANArJY6TB2Vx0lEZjMhJ5ajsJJLivP5qiyye3m1VfVJE3gLG+Xf9QFXrhwbf41FY3d7Ivm7ygGXbg59IFm1xM/569Qtx0rCenDAgnV/PWMXk4T2/1LX2bx+tZ37BXn53xbH0sC8az8RF+zhzeC/ObOPcZoOye3DK4CxuYiCqyuY9+/ls/W4+W7+bT9YW8cqiht5rcdFRpCTEkBTrI8YXRbQvihifEB0ljZ67x+zkOAZl92BQdg+G9k6mT2q8lXDayJP/TSKSr6qrRGS0f9cW/2NvEemtqgu9iCtS9E1LIDUhhhXb97V+cBuU7K9iY3EFl4/JDep120JEeOiSUVzw51l8/dkF/ONr40hNjOH1Jdv53btruODYPlxyfPt7S5nwICL0z0yif2YSV4/rh6qyobiCtbvK2Fi8n5L9VZQerKa8spaa2jqqa5Waujpq65Tq2joqq+sor6uluqaORZtL2F2x5dC1k+OjGd47hfycZPJ7pzCsdzLDeifbj48WeHVn7gZuA37rf314p/MzOjecyCIijOybwrJtwW1wb2gfSQvqddtqSK9k/nDl8dzxr4VM/M0H9ElLYPn2Usb0T+ehS0bar81uSEQOlSraY29FFeuKylm1s4zVO0tZtaOMlxduo7yy4NAxeRkJ9EqOd9V8iTGkJsSQHB9Dcnx0o8doUuJjSE9y1XS+EM0eEW68SiRP+EsekwBE5AZc199NwIMexRRRRvZJ5e+fbqK6ti5oXWAXbylBhHYNsgu2qSN78+rtp/DYxxsoLq/kgXPy+dopAwJuJDaRJT0plhOSMjhhQMahfarK1r0HWLWzjFU7SllTWM7u8kq27NnP0q1V7DtQzcHqumavGeMTctMT6edfgG1gVhJHZfdgYFYSfdMSQjZFkRe8SiR/AyYDiMgE4BfAncBxwGPA5R7FFTFG9EmhqraOtbvKGdEnOBMuLyjYy7Be4VMFMLJvKn+8+nivwzBdlIiQl5FIXkYiU0Y03Z5TVVNHeWUNZQerKTtYQ+mBakoP1rCnoorNe/azZc9+CvZUsKBgL+WVNYfOi4uO8ieWJI7K6kH/zER6psSTmRRLdnIcGUmxnTqgt6O8+h/vU9U9/udXAo+p6kvASyKy2KOYIkr95IbLt+8LSiKpqa1jYcFeLh3tXfuIMZ0tNjqKjOhYMlrp0aaqFJVXsqGogo3FFWwoKmdDUQUrd5QxY/muJqejSUuMIbtHHNnJcWQd9pibnkD/zER6JceHRcnGs0QiItGqWgOciWsvCTgmEZkKPAz4gCdU9ZehCbP7GpiZRGKsj+XbS/lKEK63amcZFVW1nDAwo/WDjYkwIkLP5Hh6Jsdz0lGZX3qvuraO7SUHKC6vpKisiuLySnaXu0e3r5IlW0soLK10szU3EhcdRb+MRH/Hg0T6Z7qqtH4ZieSmJxIb3TmlGq8SyfPARyJSjFuz/RMAERlMw+DEJomID3gEmAJsBeaJyHRVXRHakLuXqChhRE4Ky7YFp+fW3I2ugHnCAJuG3Ji2iPFFHeqB1pqKyhoKyyrZunc/m3bvZ/PuCjbt3k/B7go+WVtEZU1Dm40I9ElNIC8jgX4ZifRJSyAnNZ7eqfWP8aQEaboaTxKJqv5cRN4HcoB3tGHu7yhcW0lLxgHrVHUDgIhMAy4CLJG00bF5aTw7p4CqmroO/3KZX7CH3PQEclITghSdMeZwSXHRDIyLZmBWEqcN+fJ7dXWu+mzznv1s3r2fAn8bzeY9+/lgdRHF5ZUcvspCj7hoeqfGu8SSEk9OWkOSyWnDoGLPWkVVdU4T+9YEcGpfGsadgCuVnHj4QSJyG/4qs379+h3+tgFG90vnyVkbWbmjlGM7sCaHqjJ3415OG5IVvOCMMW0SFSX0SomnV0r8l3qf1aufx2zHPrft3HfAPS85yI7Sg6zZVURh2ZHJJhDh0b0mBFT1MVwPMMaOHWuLIzRhdP80ABZu3tuhRFKwez/F5ZVN/uM1xoSH2OgoctNd20lzqmvrKCyrZOe+A2wvOciF/xfYtbtO/7IG24DG07bm+veZNsrx15UGuhhUc+ZusvYRY7qDGF8UfdMSGNM/gwuO7RPweV0xkcwDhojIQBGJBa4CpnscU5c1ul86Cwv2dugaczfuIT0xpt2jio0xXVuXSyT+LsN3ADOAlcCLqrrc26i6ruP7pR1aHrU9VJXP1hUzflBmWPRnN8Z0vi6XSABU9S1VHaqqg1T1517H05WdOND1aZ+zYXe7zt9QXMH2fQc5ZbA1tBsTqbpkIjHBM6JPCinx0cxe375E8um6YgBOtURiTMSyRBLhfFHCiUdl8lk7E8mstcXkprsBT8aYyGSJxDD+qEw279nP1r3723RedW0ds9fv5tTBWTY1uzERzBKJ4eTBrp2kraWSuRv3UFZZE/S1wo0xXYslEsPQnsn0TI7jw9WFbTrv3RW7iIuOshHtxkQ4SySGqCjhzOG9+Gh1EZU1ta2fgOv2+97KXZw6OIvE2G47QYIxJgCWSAwAU0b0pKKqljkb9rR+MG7a+K17DzC5mQV/jDGRwxKJAeDkQVkkxPh4d8XOgI6fvmQ7vihh8nBLJMZEOkskBoD4GB8Th2Xz9rJdVNc2vw41QG2d8srCbZw+NJvs5LhOitAYE64skZhDLhudS3F5JTNXtdzoPnv9bnaWHuTS0X07KTJjTDizRGIOmTgsm57Jcbw4b0uLxz0/bzPJ8dFWrWWMASyRmEaifVFcPiaXD1YXNjs4cWNxBf/9YgdfPbEf8TG+To7QGBOOLJGYL7n2pP5E+6L4w3trm3z/bx+uJ8YXxS2nHtXJkRljwpUlEvMlfdISuGF8f15euJXVO8u+9N6qnaW8tHArV56QZ43sxphDLJGYI3xr4mB6xEXz/X8v4UCVG6BYXlnDXdMWk5IQw12Th3ocoTEmnFgiMUdIT4rlt1ccx/Lt+7ji0dk88ckGLv/rZ6wtLOf3Vx5HRlKs1yEaY8KIJRLTpCkjevGXa8awq/QgP3tzJaUHqnnihrGcPjTb69CMMWHGJkkyzZo6sjdTRvRid3klmT3i8NlSusaYJlgiMS3yRQk9U+K9DsMYE8asassYY0yHiKp6HUPIiUgZsNrrOMJEFlDsdRBhwu5FA7sXDexeNBimqsmtHRQpVVurVXWs10GEAxGZb/fCsXvRwO5FA7sXDURkfiDHWdWWMcaYDrFEYowxpkMiJZE85nUAYcTuRQO7Fw3sXjSwe9EgoHsREY3txhhjQidSSiTGGGNCxBKJMcaYDun2iUREporIahFZJyL3ex2PV0TkKREpFJFlXsfiNRHJE5EPRGSFiCwXke94HZNXRCReROaKyBL/vfhfr2Pykoj4RGSRiLzhdSxeE5FNIvKFiCxurRtwt24jEREfsAaYAmwF5gFXq+oKTwPzgIhMAMqBZ1R1pNfxeElEcoAcVV0oIsnAAuDiCP13IUCSqpaLSAwwC/iOqs7xODRPiMjdwFggRVXP9zoeL4nIJmCsqrY6OLO7l0jGAetUdYOqVgHTgIs8jskTqvoxsMfrOMKBqu5Q1YX+52XASqCvt1F5Q51y/8sY/9Z9f122QERygfOAJ7yOpavp7omkL7Cl0eutROgXhmmaiAwAjgc+9zgUz/ircxYDhcC7qhqp9+IPwL1AncdxhAsF3hGRBSJyW0sHdvdEYkyzRKQH8BJwl6qWeh2PV1S1VlWPA3KBcSIScVWfInI+UKiqC7yOJYycqqqjgXOA2/3V403q7olkG5DX6HWuf5+JcP72gJeA51T1Za/jCQeqWgJ8AEz1OBQvnAJc6G8XmAacISLPehuSt1R1m/+xEHgF11TQpO6eSOYBQ0RkoIjEAlcB0z2OyXjM38D8JLBSVX/ndTxeEpFsEUnzP0/AdUxZ5WlQHlDVB1Q1V1UH4L4nZqrqtR6H5RkRSfJ3REFEkoCzgGZ7fHbrRKKqNcAdwAxcg+qLqrrc26i8ISLPA7OBYSKyVURu9jomD50CXIf71bnYv53rdVAeyQE+EJGluB9e76pqxHd9NfQCZonIEmAu8Kaqvt3cwd26+68xxpjQ69YlEmOMMaFnicQYY0yHWCIxxhjTIZZIjDHGdIglEmOMMR1iicSYIBKRzEZdineKyDb/83IR+YvX8RkTCtb915gQEZEHgXJV/Y3XsRgTSlYiMaYTiMjE+jUuRORBEXlaRD4RkQIRuVREfuVf++Ft//QtiMgYEfnIP2neDP/098aEHUskxnhjEHAGcCHwLPCBqo4CDgDn+ZPJn4DLVXUM8BTwc6+CNaYl0V4HYEyE+q+qVovIF4APqJ9+4gtgADAMGAm866YGwwfs8CBOY1plicQYb1QCqGqdiFRrQ2NlHe7/pQDLVXW8VwEaEyir2jImPK0GskVkPLhp70XkaI9jMqZJlkiMCUP+paEvB/7PPwPrYuBkT4MyphnW/dcYY0yHWInEGGNMh1giMcYY0yGWSIwxxnSIJRJjjDEdYonEGGNMh1giMcYY0yGWSIwxxnSIJRJjjDEdYonEGGNMh1giMcYY0yEhTSQiMlVEVovIOhG5v4n340TkBf/7n4vIgEbvPeDfv1pEzj7sPJ+ILKpfKMgYY4x3QpZIRMQHPAKcA4wArhaREYcddjOwV1UHA78H/s9/7gjgKuBoYCrwF//16n0HWBmq2I0xxgQulCWSccA6Vd3gn8l0GnDRYcdcBDztf/4f4Exxq/hcBExT1UpV3Qis818PEckFzgOeCGHsxhhjAhTKha36Alsavd4KnNjcMapaIyL7gEz//jmHndvX//wPwL1AcksfLiK3AbcBJCUljcnPz2/XH2GMMZFqwYIFxaqa3dpxXWqFRBE5HyhU1QUiMrGlY1X1MeAxgLFjx+r8+fNDH6AxxnQjIlIQyHGhrNraBuQ1ep3r39fkMSISDaQCu1s49xTgQhHZhKsqO0NEng1F8MYYYwITykQyDxgiIgNFJBbXeD79sGOmAzf4n18OzPSvXT0duMrfq2sgMASYq6oPqGquqg7wX2+mql7baiSLF8Odd0JZWTD+LmOMMY2ELJGoag1wBzAD18PqRVVdLiI/EZEL/Yc9CWSKyDrgbuB+/7nLgReBFcDbwO2qWtvuYGpr4S9/gcmToby83ZcxxhhzpIhYanesiM5/5RW47DK45hp45hmvQzLGmLAnIgtUdWxrx0XOyPaLL4Yf/hD++U94/32vozHGmG4jckokqnDwIAwfDikpsGgRREVOHjXGmLayEklT4uPhZz+DpUvhrbe8jsYYY7qFyEokAFdcAXl58Nvfeh2JMcZ0C5GRSEQansfEwLe/DR9+6EomxhhjOiQyEsnhbrzRJZSnn279WGOMMS2KzESSmQnnnw/PPQc1NV5HY4wxXVpkJhKA66+HXbvgnXe8jsQYY7q0yE0k554L6ekwbZrXkRhjTJcWuYkkNhYuuADeeAOqq72OxhhjuqzITSTgRrvv3QuffOJ1JMYY02VFdiI56yw3SPHVV72OxBhjuqzITiRJSS6ZvPoqRMBUMcYYEwqRkUgaD0g83IUXwpYtsGxZ58VjjDHdSGQkkpacfbZ7nDHD2ziMMaaLskSSmwsjRlgiMcaYdrJEAq5U8sknsH+/15EYY0yXY4kEXCKprISPP/Y6EmOM6XIskQBMmOC6AVv1ljHGtJklEoCEBJdMLJEYY0ybWSKpd9ZZsHIlbNvmdSTGGNOlRLd2gIhMCPBam1R1cwfj8c7kye7xvffghhu8jcUYY7qQVhMJcGOA13oFCM9E0tKAxHqjRkHPnpZIjDGmjVpNJKoaaCLp2qKi4MwzXSJRDSz5GGOMCbyNRESiROR4ETlPRM4QkZ6hDMwTU6bAzp2wfLnXkRhjTJcRSBvJIOA+YDKwFigC4oGhIrIfeBR4WlXrQhlop6hvJ3n3XRg50ttYjDGmiwikRPIz4FlgkKqerarXqurlqnoMcCGQClwXyiA7TV4eDBvmqreMMcYEJJA2kqtbeK8Q+EMwA/Lc5Mnwj39AVZVbRdEYY0yLAum1BYCIXNrS+6r6csfDCQNTpsAjj8CcOW6QojHGmBYFnEiAm4GTgZn+15OAz3BtJgp0j0QycaLrwfXuu5ZIjDEmAG0Z2R4DjFDVy1T1MuBoIEZVb1TVm0ITngdSU2HcOGsnMcaYALUlkeSp6o5Gr3cB/YIcT3iYMgXmzoWSEq8jMcaYsNeWRPK+iMwQka+JyNeAN4EWf7aLyFQRWS0i60Tk/ibejxORF/zvfy4iAxq994B//2oROdu/L09EPhCRFSKyXES+E1DkbR1cOHky1NXBhx+27TxjjIlAAScSVb0D+BtwrH97TFXvbO54EfEBjwDnACOAq0VkxGGH3QzsVdXBwO+B//OfOwK4Cld9NhX4i/96NcD3VHUEcBJwexPX7LiTToKkJNdOYowxpkVtnf13IfCmqn4XmCEiyS0cOw5Yp6obVLUKmAZcdNgxFwFP+5//BzhTRMS/f5qqVqrqRmAdME5Vd6jqQgBVLQNWAn3b+De0LjYWTj/d2kmMMSYAbZki5Vbcl/2j/l19gVdbOKUvsKXR660c+aV/6BhVrQH2AZmBnOuvBjse+DzQv6FNpkyBNWtgc3jOQ2mMMeGiLSWS24FTgFIAVV0LeDLfloj0AF4C7lLV0maOuU1E5ovI/Lq6dsze0nhaeWOMMc1qSyKp9FdRASAi0bjxI83ZBuQ1ep3r39fkMf7rpQK7WzpXRGJwSeS5lgZBqupjqjpWVcdGRbVj/a6jj4bevS2RGGNMK9ryDfuRiPwASBCRKcC/gddbOH4eMEREBopILK7xfPphx0wH6hf/uByYqarq33+Vv1fXQGAIMNfffvIksFJVf9eG2NtOxJVK3nvP9eAyxhjTpLYkkvtwo9i/AL4OvAX8sLmD/W0edwAzcI3iL6rqchH5iYhc6D/sSSBTRNYBdwP3+89dDrwIrADeBm5X1Vpc1dp1wBkisti/nduGv6FtJk+GoiL44ouQfYQxxnR14goArRzkut4uV9X80IcUfGNjYnR+dXXbT9y2DXJz4de/hu9/P/iBGWNMGBORBao6trXjAiqR+EsDq0Wka45kb+9qh337wvDh1k5ijDEtaMukjenAchGZC1TU71TVC5s/pRuYMgUefxwOHoT4eK+jMcaYsBPIColxqloJ/KgT4gk/kyfDH/8Is2fDpEleR2OMMWEnkBLJbGA0cIuqdo+VENti4kTw+eCddyyRGGNMEwJJJLEi8lXg5KYWt+o2C1o1JznZJZN//xseeqj97S3GGNNNBdLY/g3gNCANuOCw7fyQRRZOrrkG1q+HefO8jsQYY8JOIGu2zwJmich8VX2yE2IKP5deCt/8Jjz3nFv0yhhjzCGtlkhE5FSA5pKIiKSIyMhgBxZWUlPhvPNg2jSorPQ6GmOMCSuBVG1dJiKficiPReQ8ERknIhNE5CYR+SfwBpAQ4ji99/WvQ2GhSybGGGMOCXRkewZwGW6KkhzgAG7akzf9VV9hbWxcnM7vaElCFUaNguhoWLTIGt2NMd1eoCPbAxlHMkBVNwGP+7fIJOKmSbnxRteD64orvI7IGGPCQiBVW++JyP3+ad4j23XXwfHHw913w969XkdjjDFhIZDkcDzwE2CBiNyhqp+EOKbw5fPBo4/CqafCxRfDq69CevqXjykthQ0bICoKjjoKevTwItLwUFvrppY5fKusPPJ1dTWkpLj7mZ0N/fq5akRjTNgLqI0EQETGAO/jlr2tAwRQVT0mdOEFR1DaSBqbNg2uv9598U2Z4r4wt2yBdeuguLjhOJ8PTjsNbrsNvvKV7vPFWFjoptZftgyWL4cdO9x0+0VFUF4OBw64BNGeGZfrRUfDwIGQnw9jx8IJJ7gtKyt4f4cxpkWBtpEE2th+BvAwbm2RR3CJBABVLehAnJ0i6IkEYMEC+NWvYP5896WXmwuDBjVsqq5R/j//gbVrYcgQ+P3vXTfirkDVJcWVK922YkVD8igqajguM9P97dnZbktJgYQEN8Hl4Y/1W1zckc99Plea27sXdu1ySXntWve5K1e6eMDdxzPOcNukSe4zjTEhEbREIiLTcEvdflNVu+QKTyFJJIGqq4PXXoMHHoDVq+Hcc+G3v3W/tL1QWAiLF8OmTS4hFBfD7t2wZ4/7Eq/f9uyBqqqG85KS3PLDo0bByJFuGzUKevYMfQ+2sjKXuOfOhU8+gY8+cvvAxTB1KlxyCZx4oqtSNMYERTATyS3Au7S8PjtAiaqWBh5i5/E0kdSrqoI//xkefBD274dbb4Uf/ADy8lo+T9V9qRcUuMfkZDdAMjvbtSc098VZW+umdVmyxCWO+m379i8f16OHK1VkZLjrpac3PO/d263HMny4izNcvqRralximTkT3n/fJZaaGsjJcW1XN97oqsOsi7YxHRLMRPIBLom09L9SgX+o6jNtirKThEUiqVdYCD/9Kfztb660cuaZrh0lN9e9Lipy7S0FBa7UUFDg2h2a4vO5NoP6aqW0NPdLfdcuWLOmYRS+zwcjRsBxxzVsQ4e6c7vDGislJfDmm/DKK/DWW66N5thjXbL+2tdcacoY02ZBbSPp6sIqkdTbtAmefBJeesm1ATSWlgb9+8OAAW6rf56Z6ZJKSUlD43ZRkUtORUWuSio11SWIYcNcVdQxx7gk0h0SRiD27YPnn4cnnnCllsxM+Pa34Y47XEnLGBMwSySNjI2P1/kHD3odRvPKylwiiIpySSCSuwwH0+zZ8ItfwOuvu3t6zz3wve9ZCcWYAAV1zXYTYsnJbszJgAGWRIJp/HiYPh2WLoWzzoL/+R/X6+uJJ1wbkjEmKCyRmO5v1ChXhThrlkvWt97qGuPnzPE6MmO6BUskJnKccgp8+im88IKrShw/3g0W3b3b68iM6dIskZjIIuIm3Fy50rWXPPWU65jw5JOu15wxps0skZjIlJwMv/mNm31g+HC45RbXDfuLLjnm1hhPWSIxkW3UKPj4Y/j7393Ym9Gj4b77oKLC68iM6TIskRgj4gYurlrlHn/1Kzf25vXXvY7MmC7BEokx9TIz4fHH3Xxeyclw4YVw6aVupgFjTLMiY0BiQoLOP3DA6zBMV1Jd7WZrfvBBN1D0Jz9xI+RDtRRAaambG23jRjenWlmZm+ImIQESE928ZwMGuPFGNqDSdBIb2d6IJRLTbps2uelV3nzTzd/16KNuluGOUHXVaDNmuNH3c+bA5s2BnSviqt3GjXPT6J9zjq3RYkLGEkkjlkhMh6i61TDvvNPNnvz1r8NDDx25OmZrliyBp592o+3Xr3f7+vWDk05ySzgPHuxKHNnZboaDuDi3QFhFhfvcTZtcApo7Fz7/3I1/EXHjYa6+2m2ZmcH+600Es0TSiCUSExRlZW6alYcfdqWA3//efXm3NF19aWnDJJLz50NsrJvx+YIL3CJn/fq1L5a6Oli40JWUXn7ZTQMTEwPnnw833eTWaGlPNVx1tUt4K1e6xLVjR8NSyMnJLlHl5LjZo/PzoU8fm66/G7NE0oglEhNUixbBN77hSgZnngl/+pMbi1JP1TXY//3v8OKLbv2ZUaPc1CzXXBOaWYjrSzvPPedmg+7b1yWUm292s0e3pKDATcE/fbqrZmv8fyUz07XT+Hwuke7d27BaJbjkMmKEW+js6KPdNnKkSzZtSTC1ta70deBAw1Zd7T63fouOdo8xMS4h128+nyWzEAmLRCIiU3FL9PqAJ1T1l4e9Hwc8A4wBdgNXquom/3sPADcDtcC3VXVGINdsiiUSE3S1tfDYY27ly3374NRTYcwY9/zDD92v+eRkV2K55ZbOW2irutp1W378cdcGA27Cyltvdb3QYmLcvi1bYNo0N13MggVu38iRLjGefLJrD+rf/8jlB+rqXCll9WpXzbZyJSxffuQSzGlpLpnUL71cU+Niq67+crJonDTaS8QllLi4LyeYw7foaHdsa1tUVMN2+OvDt5beD/S9YD9v/He09ryp9+o3nw8591xvE4mI+IA1wBRgKzAPuFpVVzQ65lvAMar6DRG5CrhEVa8UkRHA88A4oA/wHjDUf1qL12yKJRITMrt2uelV/vMft8Z8UpJrCP/KV1zXYS97WBUUuClgnnoKtm51yyKfcQasW+eq2QBOOAEuv9zFOnhwxz6vqKghqaxY4V6XlroSWUxMw5aQ8OUtPv7IfQkJ7tja2iO3mhq34mhlpXs8fGtuf3W1K00FstXVNWyHvz58a+/7jffXPw8zAp4nkvHAg6p6tv/1AwCq+otGx8zwHzNbRKKBnUA2cH/jY+uP85/W4jWbYonERLTaWlc6eeIJ15bSty9MmQJXXdXx5GGCq3EiayrRNLWvqeeNjw/k+eGP/qQt48cHlEhC1CkegL5A45FcW4HD+00eOkZVa0RkH5Dp3z/nsHP7+p+3dk0AROQ24DaA4amp7fsLjOkOfD4491y3mfDWuIqpC+la0baBqj6mqmNVdWyi/eoyxpiQCWUi2QbkNXqd69/X5DH+qq1UXKN7c+cGck1jjDGdKJSJZB4wREQGikgscBUw/bBjpgM3+J9fDsxU12gzHbhKROJEZCAwBJgb4DWNMcZ0opC1kfjbPO4AZuC66j6lqstF5CfAfFWdDjwJ/FNE1gF7cIkB/3EvAiuAGuB2Va0FaOqarcWyYMGCchFZHfy/skvKAoq9DiJM2L1oYPeigd2LBsMCOSgiBiSKyPxAeh5EArsXDexeNLB70cDuRYNA70W3bWw3xhjTOSyRGGOM6ZBISSSPeR1AGLF70cDuRQO7Fw3sXjQI6F5ERBuJMcaY0ImUEokxxpgQsURijDGmQ7p9IhGRqSKyWkTWicj9XsfjFRF5SkQKRWSZ17F4TUTyROQDEVkhIstF5Dtex+QVEYkXkbkissR/L/7X65i8JCI+EVkkIm94HYvXRGSTiHwhIotFZH6Lx3bnNpJAprKPFCIyASgHnlHVkV7H4yURyQFyVHWhiCQDC4CLI/TfhQBJqlouIjHALOA7qjqnlVO7JRG5GxgLpKjq+V7H4yUR2QSMVdVWB2d29xLJOGCdqm5Q1SpgGnCRxzF5QlU/xs0eEPFUdYeqLvQ/LwNW0jC7dERRp9z/Msa/dd9fly0QkVzgPOAJr2Pparp7ImlqKvuI/MIwTRORAcDxwOceh+IZf3XOYqAQeFdVI/Ve/AG4Fwi/Faa8ocA7IrLAvyxHs7p7IjGmWSLSA3gJuEtVS72OxyuqWquqx+Fm0x4nIhFX9Ski5wOFqrrA61jCyKmqOho4B7jdXz3epO6eSGzaedMkf3vAS8Bzqvqy1/GEA1UtAT4ApnocihdOAS70twtMA84QkWe9DclbqrrN/1gIvIJrKmhSd08kNu28OYK/gflJYKWq/s7reLwkItkikuZ/noDrmLLK06A8oKoPqGquqg7AfU/MVNVrPQ7LMyKS5O+IgogkAWcBzfb47NaJRFVrgPpp51cCLwYy7Xx3JCLPA7OBYSKyVURu9jomD50CXIf71bnYv0XqOrQ5wAcishT3w+tdVY34rq+GXsAsEVmCWwvqTVV9u7mDu3X3X2OMMaHXrUskxhhjQs8SiTHGmA6xRGKMMaZDLJEYY4zpEEskxhhjOsQSiTEBEpHaRt2FF/unVwn2Z9wlItf7n/9DRC4/7P3yps8EEYkVkY9FJDrYcRnTEvsHZ0zgDvinEjmCf5CjqGq752nyJ4CbgNHtOV9Vq0TkfeBK4Ln2xmFMW1mJxJh2EpEB/rVunsGN+s0TkXtEZJ6ILG28toeI/D8RWSMis0TkeRH5fhOXPANY6B9I29pn/6RRyWibiPzd/9arwDVB+POMCZglEmMCl9Doy/sV/74hwF9U9WhgmP/1OOA4YIyITBCRMbhpN44DzgVOaOb6p+DWRmns142r0+p3quqP/aWjibjlAf7sf2tZC9c3JiSsasuYwH2pasvfRlLQaBGos/zbIv/rHrjEkgy8oqr7/ec1N99bDm4qn8buUdX/NPrM8kbPBXgW+F39rLWqWisiVSKS7F9rxZiQs0RiTMdUNHouwC9U9dHGB4jIXQFe6wAQ34bPfhDYqqp/P2x/HHCwDdcxpkOsasuY4JkB3ORf5wQR6SsiPYGPgYtFJME/o+oFzZy/EhgcyAeJyAXAZODbh+3PBIpVtbqdf4MxbWYlEmOCRFXfEZHhwGxX60Q5cK1/bfgXgCW4VQjnNXOJ/wL/DPDj7sat9jnX/1nTVfXHwCTgzfb/Fca0nc3+a0wnE5EHgXJV/U0T770C3Kuqa9t57ZeB+1V1TceiNCZwVrVlTHi5H9fo3mb+xdtetSRiOpuVSIwxxnSIlUiMMcZ0iCUSY4wxHWKJxBhjTIdYIjHGGNMhlkiMMcZ0yP8HVyzU7k+ke9YAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "\n", - "Env = Environment(\n", - " railLength=5.2, latitude=32.990254, longitude=-106.974998, elevation=1400\n", - ")\n", - "\n", - "Env.setAtmosphericModel(type=\"CustomAtmosphere\", wind_v=-5)\n", - "\n", - "# Prepare Motor\n", - "Pro75M1670 = SolidMotor(\n", - " thrustSource=\"../../data/motors/Cesaroni_M1670.eng\",\n", - " burnOut=3.9,\n", - " grainNumber=5,\n", - " grainSeparation=5 / 1000,\n", - " grainDensity=1815,\n", - " grainOuterRadius=33 / 1000,\n", - " grainInitialInnerRadius=15 / 1000,\n", - " grainInitialHeight=120 / 1000,\n", - " nozzleRadius=33 / 1000,\n", - " throatRadius=11 / 1000,\n", - " interpolationMethod=\"linear\",\n", - ")\n", - "\n", - "# Prepare Rocket\n", - "Calisto = Rocket(\n", - " motor=Pro75M1670,\n", - " radius=127 / 2000,\n", - " mass=19.197 - 2.956,\n", - " inertiaI=6.60,\n", - " inertiaZ=0.0351,\n", - " distanceRocketNozzle=-1.255,\n", - " distanceRocketPropellant=-0.85704,\n", - " powerOffDrag=\"../../data/calisto/powerOffDragCurve.csv\",\n", - " powerOnDrag=\"../../data/calisto/powerOnDragCurve.csv\",\n", - ")\n", - "\n", - "Calisto.setRailButtons([0.2, -0.5])\n", - "\n", - "Nose = Calisto.addNose(length=0.55829, kind=\"vonKarman\", distanceToCM=0.71971)\n", - "FinSet = Calisto.addFins(\n", - " 4, span=0.1, rootChord=0.120, tipChord=0.040, distanceToCM=-1.04956\n", - ")\n", - "Tail = Calisto.addTail(\n", - " topRadius=0.0635, bottomRadius=0.0435, length=0.060, distanceToCM=-1.194656\n", - ")\n", - "\n", - "# Simulate first 5 seconds of Flight\n", - "TestFlight = Flight(\n", - " rocket=Calisto,\n", - " environment=Env,\n", - " inclination=90,\n", - " heading=0,\n", - " maxTimeStep=0.01,\n", - " maxTime=5,\n", - ")\n", - "TestFlight.postProcess()\n", - "\n", - "# Perform a Fourier Analysis\n", - "Fs = 100.0\n", - "# sampling rate\n", - "Ts = 1.0 / Fs\n", - "# sampling interval\n", - "t = np.arange(1, 400, Ts) # time vector\n", - "ff = 5\n", - "# frequency of the signal\n", - "y = TestFlight.attitudeAngle(t) - np.mean(TestFlight.attitudeAngle(t))\n", - "n = len(y) # length of the signal\n", - "k = np.arange(n)\n", - "T = n / Fs\n", - "frq = k / T # two sides frequency range\n", - "frq = frq[range(n // 2)] # one side frequency range\n", - "Y = np.fft.fft(y) / n # fft computing and normalization\n", - "Y = Y[range(n // 2)]\n", - "fig, ax = plt.subplots(2, 1)\n", - "ax[0].plot(t, y)\n", - "ax[0].set_xlabel(\"Time\")\n", - "ax[0].set_ylabel(\"Signal\")\n", - "ax[0].set_xlim((0, 5))\n", - "ax[1].plot(frq, abs(Y), \"r\") # plotting the spectrum\n", - "ax[1].set_xlabel(\"Freq (Hz)\")\n", - "ax[1].set_ylabel(\"|Y(freq)|\")\n", - "ax[1].set_xlim((0, 5))\n", - "plt.subplots_adjust(hspace=0.5)\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Apogee as a Function of Mass\n", - "\n", - "This one is a classic one! We always need to know how much our rocket's apogee will change when our payload gets heavier." - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAA+Q0lEQVR4nO3dd3xUVfr48c+TRhok1FBCbwpKSyBBUcCCuqJYVkUFURFsu7prW1lX/a6ra9vfWlZdRUBRQEAUYQVEVKKi0juCGopCAAGpoZfn98c9wSGmDEkmM5k879drXrn33PacJDPP3HPuPVdUFWOMMaYoEcEOwBhjTOizZGGMMaZYliyMMcYUy5KFMcaYYlmyMMYYUyxLFsYYY4plycIUSUTOEpHvgh1HQUSkh4hsCHYcgSYiF4jIByXY7j0RuSgAIQWdiDwpIn8qo33NFZG2ZbGvcGbJIkyJyDoR2S8iuT6vl/zYTkWkRd68qn6pqq0DFOObIvJ4IPbtcwwRkTUi8m0gjxNgTwBP5c24v9EWEYnyKYt2Zb43Tj0NlMnv1yVmFZGJ+crbu/KssjiOn7HUBm4AXvOJbYPP8hgReV9EvhKRan7s8l/AY4GJNnxYsghvl6hqos/rD8EOKAjOBuoAzUSkc7CDOVku5iRVnZ1v0Q7A96zhIld2nKrOBaqJSHoZhbMV6CoiNX3KBgDfl9H+/XUjMFVV9+dfICJVgPeBZKCXqu72Y3+TgZ4iUrcsgww3liwqIRFpISKfi8guEdkmIuNc+RdulSXuTOSaAr61rROR+0VkqYjsFZHhIpIiItNEZI+IfCIi1X3Wf1dENrtjfZF3ui8ig4HrgQfcsf7nyuu75pOtIrJWRO7y2VecOxvZ4c4U/PnwHwBMAqa6ad/fQ5ZrzpgrIrtFZJKI1PBZfqmIrBCRnW7dU32WdRKRRa7O74rION+zJBHpLSKL3bZfi0g7n2WF1rEAFwGfF1D+Nt636zw3AG8VsF4WcHFBOxaRv4jInLwzFBG53dU3tpBYDgEfAH3d+pHANcDofPt9QUTWu9/pAhE5y2dZFxGZ75b9LCL/duWxIjJKRH5xv7N5IpJSSBwF/k5EJB74HxAFXKyqe115nIiMdP83K0XkAd//aVU9ACwALijkeAZAVe0Vhi9gHXBeIcveAR7C+7IQC3TzWaZAC5/5HsCGfPudDaQADYAtwEKgo9vXZ8CjPuvfDFQFqgDPA4t9lr0JPO4zH4H3pn0EiAGaAWuAC9zyp4AvgRpAQ2C5b2wF1DMe2A38DrgS2AbE+CzPAnKA04AE4D1glFvWCtgLnA9EAw8A2S6uGOBH4G637Aq8D9LH3bYd3e8lA4jES1Lr3O+gyDoWUId3gfvzlamL+We8b9DV3fRp3lv6hHXvAd4vZN8RwBfA/wEt8c5MOhaybg9gA3AGMMeV/Q6YDtwCZPms2w+oifehfS+wGYh1y74B+rvpRCDTTd+K90Ef735naUC1QmLZCnTOF9tWvAQyGaiSb/2n3LLqQCqwNP//DfAi8O9gv29D+WVnFuHtA/ctLe81yJUfBhoD9VX1gKrOOsn9/kdVf1bVHLwP7zmquki9b2gT8T4sAVDVEaq6R1UP4n0otReRpEL22xmoraqPqeohVV0DvI77JgtcDTyhqttVdT3eG7woVwAHgY+BKXgf7Pm/Zb+tqsvV+xb6MHC1zzfmKao6Q1UP47Vrx+F9WGbifRC+qKqHVfV9YK7PPgcDr6nqHFU9qqojXRyZftQxv2RgTwHlB/A+XK9xr8muLL89bh+/oarH8M5I7nLbP6OqiwqJI2+br4EaItKaQs5mVHWUqv6iqkdU9f/hJcm8fq/DQAsRqaWqufpr89phvATTwv3OFmjhTUjJ/PZ3UhXoCox0/2u+rgb+qao7VHUDBf/fFPp7Mh5LFuHtMlVN9nm97sofAASY65odbj7J/f7sM72/gPlE8JopROQpEVktIrvxvl0D1Cpkv42B+r4JDvgr3lkMQH1gvc/6PxYT5wBgvPvQOoB35jAg3zr59xft4qvvu3/3wboe72yqPpCj7itpAftpDNybrx4N3XbF1TG/HXgfhAV5C+8Du7AmKNy2OwtZhqquA2YCTYCXC1svn7eBPwA98b4cnEBE7nPNPbtc/ZL49W8+EO+sbZVraurts8/pwFgR2Sgiz4hIdCHHL+h3sg0v4Y4UkfzNSfn/b9bzW0X+noz37chUMqq6GRgEICLdgE9E5AtVzS7jQ10H9AHOw0sUSXhvdMkLJd/664G1qtqykP1twvvQXeHmGxV2YBFJBc4BuojIla44Hoh132q3ubKGPps1wvuGuw3YCJzusz9x6+a4uBuIiPgkjIbAap96PKGqTxQQV9di6pjfUrwP14J8CdRz8cwCmhewzqnAksJ2LiIX430j/xR4Fq85qDhv4zXJvaWq+7xfzfH9nYX3ZeRcYIWqHhOR439zVf0BuFZEIvDO/CaISE13Zvd34O8i0gSvj+k7YHgBx8/7nczzLVTV98Xr4J4gIpeq6ky3aBNe81PeFXG+f/M8pwKj/Kh7pWVnFpWQiFzlPkzB+/BW4Jib/xmvHb0sVMVrfvkF74P6n/mW5z/WXGCP63iNc2cmp8mvVzGNB4aISHUX/x+LOHZ/vKt0WgMd3KsVXrv7tT7r9RORNq5z9DFggqoedce6WETOdd9w73V1+Rqv3f0o8AcRiRKRPkAXn32+DtwmIhniSRCRi0Wkqh91zG8q0L2gBS5RXQJcmu8sx1d3YFpBC0SkFjAMr89hAHCJiPyukP34Hnet2+9DBSyuChzB60OIEpFHgOOXr4pIPxGp7c7UdrriYyLSU0ROd02Au/GS9jEKVtTv5B28s55JInKmK/b9v2nglh/nOvTTgBlF17xys2QR3v4nJ95nkddk0BmYIyK5eG3Vd7u2c/D6FUa6JpKrS3n8t/CacnLwvtXlv/xzONDGHesD9yHdG++DfS3eN/xheGck4H3z/NEt+xjvG25hBgCvqOpm3xfwKic2Rb2N19G+Ga+D/i4AVf0Or6P2Py6OS/AuRT6kqofwvhUPxPvA6wd8iJdMUNX5eGduL+El42y8yz3xo44nUNWFwC4RyShk+QpVXVHQMpeActW7hLYgQ4FJqjpVVX9x9RkmJ14aWyBVnaWqGwtYNB34CC9R/4jXj+Lb7HMhsML9770A9FXvEti6wAS8RLESr0O6sL/vW8DvRCSukNhG4iX3KSLSBe9LwAa83/cn7ji+/RqX4HXQF1Qf40jhX0iMCW/i3Ug2SlWHlcG+5gCvquobpQ7st/vuBdyhqped5HbvAcNVdWpZxxRsIvJPYIuqPl+CbW/HS1Ld3fwcYKCqLi/bKMOLJQtTaZUmWYhId7w29W1494u8CjRT1U1lGqQpNRGph9fc+Q3eJcJTgJdKkmgqM+vgNqZkWuO1hSfg3Sfxe0sUISsGb2iQpnjNhmOBV4IZUEUU0DMLEVmHd/3yUeCIqqb7LLsX79r12qq6zV1t8gLejT77gBtdey0iMgD4m9v0cdcmaYwxppyUx5lFT5/LFAEQkYZAL+Ann+KL8E4RW+Ld+fpfIEO84RceBdLxrtpZICKTVfWEcXCMMcYETrCaoZ7DuxZ7kk9ZH7zrthWYLSLJrq2xBzBDVbcDiMgMvCsq3ils57Vq1dImTZqUOLi9e/eSkJBQ4u1DRbjUA6wuoSpc6hIu9YDS1WXBggXbVLV2QcsCnSwU+Fi8YZNfU9Wh7pr0HFVd4nszD96dsb6X2G1wZYWVF6pJkybMnz+/xEFnZWXRo0ePEm8fKsKlHmB1CVXhUpdwqQeUri4iUuioCIFOFt1UNUdE6gAzRGQV3tAGvcr6QOKNYjoYICUlhaysrBLvKzc3t1Tbh4pwqQdYXUJVuNQlXOoBgatLQJOFG2gOVd3ibgjrjndFQt5ZRSqw0N04k8OJt+GnurIcvKYo3/KsAo41FO8mI9LT07U03xLC5VtGuNQDrC6hKlzqEi71gMDVJWB3cLshDqrmTeOdTcxT1Tqq2kRVm+A1KXVyd9ZOBm5wwyNkArvcpYjTgV7uVv3qbj/TAxW3McaY3wrkmUUKMNGdQUQBY1T1oyLWn4p32Ww23qWzNwGo6nYR+Qe/Dhr2WF5ntzHGmPIRsGThxhpqX8w6TXymFbizkPVGACPKMj5jjDH+s4EEjTHGFMuShTHGmGLZ2FA+jh5TnvloFYd+OUz82u00q51AzYQY8t0PYowxlY4lCx9b9hzgja/XcejIMd5Y8Q0A1WKjaF4nkWa1EmlWO4HmtRNoXjuRRjXjqRIVGeSIjTGmfFiy8FEvKY6Vj13I+x/NpHbz01i9dS9rtuayZuteZmVv5b2FG46vGyHQsEY8zWsn0qxWAs1q5yWTRGol2tmIMSa8WLLIJzJCqB0fQY/WdejR+sRlew4cZu22vaxxSWT11r2s3prLV9nbOHjk1ydA1q5ahfapSZzeIJl2DZNon5pMjYSYcq6JMcaUHUsWJ6FqbDTtUpNpl5p8QvmxY8rGXftZvXUv2VtyWZGzi6U5u/h01RbyRoBvkBxH+4ZJbvskTmuQRLXY6PKvhDHGlIAlizIQESGkVo8ntXo83Vv9OmDjngOHWZ6zm6UbdrI0ZxdLN+xk6rLNx5c3q51A+9RkTm+QRPuGSbSpl0RcjPWDGGNCjyWLAKoaG03X5jXp2rzm8bLtew+xLGcXS9fvZMmGXXy9ehsTF+UAXhNYyzqJZDStwZktapHZvKadfRhjQoIli3JWIyGG7q1qn3AG8vPuAyxZv5NlObtYvH4n4+dvYOQ3PxIh0C41mW4tanFmi1p0apxsV2AZY4LCkkUISKkWS6+2denVti4AB48cZdFPO/k6exuzsrfx389X89LMbGKjI+jcpMbx5NGmXjUiIuyqK2NM4FmyCEFVoiLJbFaTzGY1uadXa/YcOMycNduZlb2Nr7K38eS0VQBUj/eauc5sUYtuLWrRqEa8XbJrjAkISxYVQNXYaM5rk8J5bVIAr9nq69XbmPXDL3y9etvxTvMGyXF0a1GLnqfUOaGZyxhjSsuSRQWUUi2WyzumcnnHVFSVNdv2Hm+ymrp8E+Pmryc2OoI21YVfqm7g3FPrkBxv93kYY0rOkkUFJyI0r51I89qJ9O/ahMNHjzF37Xamr9jM/xb+xL3vLiEyQshsVoML2talV5u61E2KDXbYxpgKxpJFmImOjOBM1wHeo9pWarToyPQVm5m+YjOPTFrBI5NW0L5hMhe0TeGCtnVpXjsx2CEbYyoASxZhLEKEDg2T6dAwmb9ceArZW/YwfcXPTF+xmWc++o5nPvqOFnUSjyeO0xskWQe5MaZAliwqkRZ1qtKiTlXu7NmCjTv38/GKzUxf8TOvfr6Gl2eupn6Sdwlv73b1SGtc3RKHMeY4SxaVVP3kOG48syk3ntmUHXsP8cnKn5m+4mfemfsTb369joY14ujTvgGXdWxAizrWVGVMZWfJwlA9IYar0htyVXpDcg8e4eMVm5m4KIdXsrJ5aWY2pzdI4rKODbikfT3qVLXOcWMqo4AmCxFZB+wBjgJHVDVdRJ4FLgEOAauBm1R1p1t/CDDQrX+Xqk535RcCLwCRwDBVfSqQcVdmiVWiuKJTKld0SmXLngP8b8kmPliUwz8+/JYnpnzLmS1qcXnHBlzQti4JVey7hjGVRXm823uq6jaf+RnAEFU9IiJPA0OAv4hIG6Av0BaoD3wiIq3cNi8D5wMbgHkiMllVvy2H2Cu1OlVjGditKQO7NSV7Sy6TFucwcVEO94xfQlz0cs5vk8LlHRvQrWUtoiPtce7GhLNy/2qoqh/7zM4Gfu+m+wBjVfUgsFZEsoEublm2qq4BEJGxbl1LFuWoRZ1E7u3VmnvOb8WCH3cwcVEOU5ZtYvKSjdRMiOGS9vXp06E+HRomW8e4MWFINO/pPIHYuchaYAegwGuqOjTf8v8B41R1lIi8BMxW1VFu2XBgmlv1QlW9xZX3BzJU9Q/59jUYGAyQkpKSNnbs2BLHnZubS2Jixe/UDXQ9jhxTlm07ytcbj7Boy1GOHIOUeOHMBlGc1SCK6rFld7YRLn8TsLqEonCpB5SuLj179lygqukFLQv0mUU3Vc0RkTrADBFZpapfAIjIQ8ARYHRZHMgloqEA6enp2qNHjxLvKysri9JsHyrKox7nAX8Gdh84zEfLNzNxYQ7v//ALH2Qf5pxT6tC3cyN6tK5NVCmbqcLlbwJWl1AULvWAwNUloMlCVXPczy0iMhGvWekLEbkR6A2cq7+e2uQADX02T3VlFFFuQkS12GiuTm/I1ekNWbdtL+Pnr+fdBRv4ZOV8UqpV4aq0hlzTuSENa8QHO1RjTAkErFdSRBJEpGreNNALWO6ubHoAuFRV9/lsMhnoKyJVRKQp0BKYC8wDWopIUxGJwesEnxyouE3pNamVwAMXnsLXD57D0P5ptK2fxCtZ2Zz1zEz6DZvDh0s3cvDI0WCHaYw5CYE8s0gBJrrOzihgjKp+5Dquq+A1S4HXT3Gbqq4QkfF4HddHgDtV9SiAiPwBmI536ewIVV0RwLhNGYmOjDj+UKdNu/bz7vwNjJu3nj+MWUSNhBiu6NiAvl0a0qJO1WCHaowpRsCShbt6qX0B5S2K2OYJ4IkCyqcCU8s0QFOu6iXFcde5LbmzZwu+yt7G2Hk/MfKbdQybtZb0xtXp26URF59ej7gYe2ysMaHI7qoy5SoyQji7VW3OblWbbbkHeX/hBsbOXc997y7h75NX0Kdjfa7t0oi29ZOCHaoxxoclCxM0tRKrMPjs5gw6qxnz1u1g7NyfeHf+BkbN/omOjZLpl9GYi9vVIzbazjaMCTZLFiboRIQuTWvQpWkNHr2kLRMWbmD0nB+5990l/GPKt1yVlkoLjgU7TGMqNUsWJqQkxUczsFtTbj6zCd+s/oVRc37kja/WceSY8uHmOVyf0ZjzTq1T6vs2jDEnx5KFCUkiwhktanFGi1ps2X2AJ8d/wewtudw2agF1q8XSt0tDru3SiJRqNgquMeXBvp6ZkFenWix9WsTw5QM9Gdo/jVZ1q/L8Jz9wxlOfcfuoBXyVvY1ADltjjLEzC1OBRPnct/HjL3sZM+cnxs9fz7Tlm2lWK4HrMhrx+7RUkuNjgh2qMWHHzixMhdS4ZgJDfncq3ww5l39f3Z7k+Ggen7KSjH9+yj3jFvPN6l/sbMOYMmRnFqZCi42OPP6wpm837mb0nB+ZvHgj7y/KoXHNeK5KS+XKtFTqJcUFO1RjKjQ7szBho039ajxx+enMfeg8nrumPfWSYvnXx99z5lOfceMbc5m6bBOHjtgluMaUhJ1ZmLATFxPJ5R1TubxjKj/+spcJCzYwYcEG7hi9kBoJMVzWoQFXd07llLrVgh2qMRWGJQsT1hrXTODeXq3503mt+PKHrbw7fwNvz17HiK/W0i41iavTG3JJ+/okxUUHO1RjQpolC1MpREYIPVrXoUfrOmzfe4gPFuUwfv56/vbBcv7x4bf87vR6XJWeSmbTmkRE2GNhjcnPkoWpdGokxHBzt6bcdGYTluXsYvz89UxavJGJi3JoVCOeG7o25vqMxjYCrjE+LFmYSktEaJeaTLvUZP52cRumr9jM6Dk/8fiUlbz2xRpu696c6zMa2UCGxmBXQxkDeJfg9unQgPG3dmXc4Exa1knkHx9+y1nPzGTErLUcOGxP9jOVmyULY/LJaFaTMYMyGTs4kxa1E3nMkoYxliyMKUxms5q8MziTdwZl0qxWAo99+C1nPzOTN76ypGEqH0sWxhSja/OajLu1K+8MyqRJrQT+/r9v6f7sTN60pGEqkYAmCxFZJyLLRGSxiMx3ZTVEZIaI/OB+VnflIiIviki2iCwVkU4++xng1v9BRAYEMmZjCtO1eU3G39qVMYMyaFwjgf9zSWPk1+ssaZiwV2SyEJGuIvKy+/DeKiI/ichUEblTRPx9SHJPVe2gqulu/kHgU1VtCXzq5gEuAlq612Dgvy6GGsCjQAbQBXg0L8EYEwxnNK/FuFszGXNLBo1qxPPo5BX0eDaLt75Zx8EjljRMeCo0WYjINOAWYDpwIVAPaAP8DYgFJonIpSU4Zh9gpJseCVzmU/6WemYDySJSD7gAmKGq21V1BzDDxWNM0OQ9nGn8rV0ZfUsGqdXjeGSSlzQmLNhgI96asCOF/VOLSC1V3VbkxsWsIyJrgR2AAq+p6lAR2amqyW65ADtUNVlEPgSeUtVZbtmnwF+AHkCsqj7uyh8G9qvqv/IdazDeGQkpKSlpY8eOLbbyhcnNzSUxMbHE24eKcKkHhH5dVJWV248x4ftDrNl1jLY1IxjQtgp14n/7fSzU63IywqUu4VIPKF1devbsucCnFegEhd6UV1yi8HOdbqqaIyJ1gBkisirf9ioiZfIVTFWHAkMB0tPTtUePHiXeV1ZWFqXZPlSESz2gYtSlJ3DbMWXM3J94atoqHvnmIH86rxW3dGt6wjPDK0Jd/BUudQmXekDg6lJUM9QeEdnt89rj+9Ofnatqjvu5BZiI1+fws2tewv3c4lbPARr6bJ7qygorNybkREQI/TIb88k93Tm7ZW2emraKPi9/xbINu4IdmjGlUlQH96fAt8DjwGmqWlVVq+X9LG7HIpIgIlXzpoFewHJgMpB3RdMAYJKbngzc4K6KygR2qeomvD6TXiJS3XVs93JlxoSsukmxDL0hnVf7dWLLnoP0eXkWT0z5ln2HjgQ7NGNKpKhmqMvcFU9XAK+LSCwwDhirqtv92HcKMNHrliAKGKOqH4nIPGC8iAwEfgSudutPBX4HZAP7gJtcHNtF5B/APLfeY34e35igu/C0enRtXounpq3i9S/X8tGKzVzT7Bg9gh2YMSepyIEEVXUX8IaIjAT6Ai/iXQn17+J2rKprgPYFlP8CnFtAuQJ3FrKvEcCI4o5pTChKiovmyStO57IO9RkycRn/mr+fNUcX87febaiREBPs8IzxS3H3WZwhIv8BFgJnAJerarGJwhjzWxnNajL1rrO4pHk0k5ds5Lx/f87ERXaZrakYiurgXge8gteZPBjvm/1eEenke3e1McZ/sdGRXNkyhil3nUXjmvH8edwSBrwxj/Xb9wU7NGOKVFQz1Dq8+yMuwOtU9n18mALnBC4sY8Jb67pVmXDbGYya/SPPfLSKXs99wb29WnHjGU1OuMzWmFBRVAd3j3KMw5hKJzJCGHBGE85vk8LDHyzn8SkrmbR4I89e1Y5T6hZ7waEx5aqoZqhuRW0oItVE5LSyD8mYyqV+chzDBqTz0nUd2bRrP5e9/BUTF20IdljGnKCoZqgrReQZ4CNgAbAV70qoFng3qzYG7g14hMZUAiJC73b16dK0Bn8Ys4g/j1vC4p928tDFbYiJsmYpE3xFNUP92Y34eiVwFd5AgvuBlXjjPM0qnxCNqTzqVI1l9C0ZPD1tFcNmrWX5xt28cn0nUqrFBjs0U8kVd5/FduB19zLGlIPoyAj+1rsNHRol88CEpVz84ixeuq4jmc1qBjs0U4nZ+a0xIap3u/pMuvNMqsVFcf2wOQz7co3dk2GCxpKFMSGsZUpVJt15JuefmsLjU1byh3cWsfegjS9lyp8lC2NCXNXYaP7brxMPXnQK05Ztos/LX7F6a26wwzKVTLHJQkTiReRhEXndzbcUkd6BD80Yk0dEuK17c0YNzGD73kP0eekrPlq+KdhhmUrEnzOLN4CDQFc3n4M3bLkxppyd0aIWH/6xG83rJHLbqIU8NW0VR44eC3ZYphLwJ1k0V9VngMMAqrqPE4f+MMaUo/rJcYy/NZPrMhrx6ueruWHEXLblHgx2WCbM+ZMsDolIHN54UIhIc7wzDWNMkFSJiuSfl5/Os79vx4Ifd3DJf2ax6KcdwQ7LhDF/ksWjeHdxNxSR0XhP0HsgoFEZY/xyVXpD3rv9DCIjhGtem83oOT/a5bUmIIpNFqo6A+9peTcC7wDpqpoV2LCMMf46rUESH/6xG12b1+Shict5eNJyjh2zhGHKlj9XQwlwEZCmqh8C8SLSJeCRGWP8lhwfw4gbO3Nr92aMmv0T9727xDq+TZkqcrgP5xXgGN7zKx4D9gDvAZ0DGJcx5iRFRghDLjqVarHRPDv9O/YdOsqL13a0gQhNmfDnvyhDVe8EDgCo6g7A7wcHi0ikiCwSkQ/d/LkislBEFovILBFp4cqriMg4EckWkTki0sRnH0Nc+XcicsHJVNCYyubOni14pHcbPlqxmcFvz+fA4aPBDsmEAX+SxWERieTXq6Fq451p+OtuvJFq8/wXuF5VOwBjgL+58oHADlVtATwHPO2O1wboC7QFLgRecfEYYwpxc7emPHXF6Xz+/VZufGMuuTZEiCklf5LFi8BEoI6IPAHMAv7pz85FJBW4GBjmU6xA3mPAkoCNbroPMNJNTwDOdf0lfYCxqnpQVdcC2YD1mRhTjL5dGvH8NR2Yt24H/YbNYde+w8EOyVRg4s9ldiJyCnAu3s14n6rqymI2ydtuAvAkUBW4T1V7i8hZwAd4z8bYDWSq6m4RWQ5cqKob3LargQzg/4DZqjrKlQ8HpqnqhHzHGgwMBkhJSUkbO3asPyEWKDc3l8TExBJvHyrCpR5gdSmNhT8f4ZXFB6mXGMH96bFUq1J299SGy98lXOoBpatLz549F6hqeoELVbXIF1CjgFe0H9v1Bl5x0z2AD930+3j9IAD3A8Pc9HIg1Wf71UAt4CWgn0/5cOD3RR07LS1NS2PmzJml2j5UhEs9VK0upfX5d1u09d+m6jn/mqmbdu4vs/2Gy98lXOqhWrq6APO1kM9Vf5qhFuI9UvV74Ac3vc51UqcVsd2ZwKUisg4YC5wjIlOA9qo6x60zDjjDTecADQFEJAqvieoX33In1ZUZY/x0dqvavHVzBj/vPshVr33N+u37gh2SqWD8SRYzgN+pai1VrYl3z8WHwB14l9UWSFWHqGqqqjbB66D+DK//IUlEWrnVzufXzu/JwAA3/XvgM5fpJgN93dVSTYGWwNyTqKMxBujStAajbslg9/4jXPXqNzbMuTkp/iSLTFWdnjejqh8DXVV1NlDlZA6mqkeAQcB7IrIE6I/XFAVe81JNEckG7gEedNusAMYD3+INO3Knqtq1gMaUQIeGyYwdnMmRY8e45rVvWLlpd7BDMhWEP8lik4j8RUQau9cDwM/u8lW/LqFV1SxV7e2mJ6rq6araXlV7qOoaV35AVa9S1Raq2iWv3C17QlWbq2prVZ1WgnoaY5xT61Vj3K1diYqIoO/Q2SxevzPYIZkKwJ9kcR1eP8EH7tXIlUUCVwcqMGNM4DSvnci7t3UlKS6afsPmMGfNL8EOyYQ4fwYS3KaqfwTOBs5S1T+o6lZVPaSq2YEP0RgTCA1rxDP+1q6kVKvCgDfm8vn3W4Mdkglh/gwkeLqILMK7tHWFiCwQkdMCH5oxJtDqJsUy7tauNKuVyKCR85m+YnOwQzIhyp9mqNeAe1S1sao2Bu4FhgY2LGNMeamVWIV3BmXSpn417hi9kEmL7cp081v+JIsEVZ2ZN6PesywSAhaRMabcJcVHM+qWDNIbV+fP4xbzwSJLGOZE/iSLNSLysIg0ca+/AWuK3coYU6EkVonijZs6k9G0JveMX8z7CzcEOyQTQvxJFjcDtfGG6XjfTd8cyKCMMcERHxPFiBs7k9msJve+u4QJCyxhGE+xDz9S7/kVd4lIEnBMVfcEPixjTLDExUQyfEBnBr01n/snLEFVuSq9YfEbmrDmz9VQnUVkGbAEWCYiS4oZE8oYU8HFxUQybEA63VrU4oH3ljJ+3vpgh2SCzJ9mqOHAHaraxI3zdCfwRkCjMsYEXWx0JK/fkM5ZLWvzwHtLGTv3p2CHZILIn2RxVFW/zJtR1VmAPXbLmEogNjqSof3T6N6qNg++v4wxcyxhVFb+JIvPReQ1EekhIt1F5BUgS0Q6iUinQAdojAmu2OhIXuufRs/WtfnrxGWMnvNjsEMyQVBsBzfQ3v18NF95R7xHpJ5TphEZY0JObHQkr/ZP4/ZRC3lo4nKOKfTPbBzssEw58udqqJ75y0QkRVV/DkxIxphQVCUqkv/268Sdoxfy8AfLUVUaBTsoU278aYYCQESSRWSgiHwKLApgTMaYEFUlKpJXrk/j/DYpPDJpBTN+PBzskEw5KTJZiEiciPQVkcnAMuD/Af/AG7LcGFMJxURF8PJ1nejVJoXRKw8xYtbaYIdkykGhyUJExuA9d/t84D9AE2CHe5CRXw89MsaEp5ioCF6+vhNpKZE89uG3DPvSRgAKd0X1WbQBduA9I3ulqh4VES2fsIwxoS46MoLb21fhvY3VeHzKSgBuOatZkKMygVLomYWqdsB7El5V4BMRmQVUFZGUcorNGBPioiKEF6/tyMWn1+PxKSsZ+sXqYIdkAqTIq6FUdRXeJbOPuiE+rgXmicgGVT2jPAI0xoS26MgIXujbARH459RVqMKt3ZsHOyxTxvy+GkpVF6jqfUBj4EF/txORSBFZJCIfunkRkSdE5HsRWSkid/mUvygi2SKy1PeGPxEZICI/uNcA/6tnjCkPUZERPH9NBy5pX58np62yPoww5M9NeSdQVQW+OIlN7sbr96jm5m8EGgKnqOoxEanjyi8CWrpXBvBfIENEauCd3aTj3QS4QEQmu9FwjTEhIioygueubs/RY8d4fMpKYqIiuKFrk2CHZcqI32cWJSEiqcDFwDCf4tuBx/KuqFLVLa68D/CWemYDySJSD7gAmKGq212CmAFcGMi4jTElExUZwQt9Ox6/D8PGkgofJ31mcZKeBx7A6yTP0xy4RkQuB7YCd6nqD0ADwHcc5A2urLDyE4jIYGAwQEpKCllZWSUOOjc3t1Tbh4pwqQdYXUJVYXW5OlXZsjWSv05cRvYP33F2anT5B3cSKsPfpLQKTRYick9RG6rqv4taLiK9gS2qukBEevgsqgIcUNV0EbkCGAGc5XfEhcczFBgKkJ6erj169Ch6gyJkZWVRmu1DRbjUA6wuoaqoupx11lEGv72AN1Zspe2pp3JlWujey1tZ/ialUVQzVFX3SsdrOsr7ln8b4M9os2cCl4rIOmAscI6IjMI7M3jfrTMRaOemc/D6MvKkurLCyo0xISxvePMzmtfk/glLmLTY3rYVWVH3WfxdVf+O9+HcSVXvVdV7gTQofvwwVR2iqqnugUl9gc9UtR/wAZA3OGF3vLvEASYDN7irojKBXaq6CZgO9BKR6iJSHejlyowxIS42OpJhN3Smc5Ma3DN+CVOWbgp2SKaE/OngTgEO+cwfcmUl9RRwpXtU65PALa58KrAGyAZeB+4AUNXteONRzXOvx1yZMaYCiIuJZMSNnenUKJm7xy5i+orNwQ7JlIA/HdxvAXNFZKKbvwwYeTIHUdUsIMtN78S7Qir/Oor3yNaCth+B17dhjKmAEqpE8cZNXeg/fA5/GLOQV/ulce6pNhhERVLsmYWqPgHchDdO1A7gJlX9Z6ADM8aEl8QqUYy8uQun1qvG7aMWkvXdluI3MiHD3/ss4oHdqvoCsEFEmgYwJmNMmKoWG83bN2fQMiWRwW8vYNYP24IdkvFTsclCRB4F/gIMcUXRwKhABmWMCV9J8dGMGphBs1oJ3PLWPL5Z/UuwQzJ+8OfM4nLgUmAvgKpu5MSb7Iwx5qRUT4hh9C0ZNKwez81vzmPuWrtmJdT5kywOuc5nBRCRhMCGZIypDGomVmH0oAzqJcdy0xtzWfCjDfcWyvxJFuNF5DW8sZoGAZ9w4lhPxhhTInWqxvLOoEzqVIvlxhFzWbx+Z7BDMoXw52qofwETgPeA1sAjqvpioAMzxlQOKdViGTMog+oJMdwwfA7LNuwKdkimAP50cD+tqjNU9X5VvU9VZ4jI0+URnDGmcqiXFMeYQRlUjY2m3/A5rNhoCSPU+NMMdX4BZReVdSDGmMottXo87wzKJCEmkn7D5rBq8+5gh2R8FJosROR2NyRHa/fkurzXWmBp+YVojKksGtWMZ8ygTKpERXL963P4/uc9wQ7JOEWdWYwBLsEb4O8Sn1eaGxDQGGPKXJNaCYwZlEFkhHDd67PJ3mIJIxQUNersLlVdp6rXquqPwH68y2cTRaTYUWeNMaakmtVOZMygTEC49vU5rN6aG+yQKj1/OrgvEZEfgLXA58A6YFqA4zLGVHIt6iTyzqAMjh1Trnt9Nuu27Q12SJWaPx3cjwOZwPeq2hQ4F5gd0KiMMQZomVKVMYMyOXxUufb12fz0y75gh1Rp+ZMsDqvqL0CEiESo6ky8p+cZY0zAta5blVEDM9h/+CjXvj6b9dstYQSDP8lip4gkAl8Ao0XkBdw4UcYYUx7a1K/GqIEZ7DlwmGtfn03Ozv3BDqnS8SdZ9MHr3P4z8BGwGu+qKGOMKTenNUhi1C0Z7Np/mGuHzmbTLksY5cmf4T72qupRvGda/A9veHINdGDGGJNfu9Rk3h6YwY69h7h26Gx+3n0g2CFVGv5cDXWriGzGuxFvPrDA/TTGmHLXoWEyb97cha17DnLt0NlssYRRLvxphroPOE1Vm6hqM1VtqqrN/D2AiESKyCIR+TBf+YsikuszX0VExolItojMEZEmPsuGuPLvROQCf49tjAlPaY2r8+bNXdi8+wDXDZvD1j0Hgx1S2PMnWawGSnP5wd3ASt8CEUkHqudbbyCwQ1VbAM8BT7t12wB9gbbAhcArIhJZiniMMWGgc5MavHFjZ3J27Of6YbP5JdcSRiD5kyyGAF+LyGvubOBFEfFriHIRSQUuxuf5F+6D/lnggXyr9wFGuukJwLkiIq58rKoeVNW1QDbQxZ/jG2PCW0azmgy/MZ2ftu/j+mFz2L73ULBDClviPQSviBVE5gKzgGXAsbxyVR1Z6Ea/bjsBeBLvMaz3qWpvEbkbiFDV50QkV1UT3brLgQtVdYObXw1kAP8HzFbVUa58ODBNVSfkO9ZgYDBASkpK2tixY/2ofsFyc3NJTEws8fahIlzqAVaXUBUqdVmx7SjPLzxAvYQIHugcS2KMnNT2oVKPslCauvTs2XOBqhZ4H12UH9tHq+o9J3tQEekNbFHVBSLSw5XVB64Cepzs/oqjqkOBoQDp6enao0fJD5GVlUVptg8V4VIPsLqEqlCpSw/gtHZbGTRyPq99F83oQRlUi432e/tQqUdZCFRd/GmGmiYig0WknojUyHv5sd2ZwKUisg4YC5wDrABaANmuPF5Est36OUBDABGJApKAX3zLnVRXZowxx3VvVZtX+3di5abd3PzGPPYdOhLskMKKP8niWly/Bd5ls35dOquqQ1Q1VVWb4HVQf6aq1VW1rruyqgmwz3VogzcU+gA3/Xu3vrryvu5qqaZAS2Cu3zU0xlQa55ySwgt9O7Lwpx0MfmsBBw4fDXZIYaPYZig3eGB5GA687c40tuMlGFR1hYiMB74FjgB3upsEjTHmNy5uV48Dh9tz77tLuHP0Ql7tn0Z0pD/fi01RCk0WInKOqn4mIlcUtFxV3/f3IKqaBWQVUJ7oM30Arz+joO2fAJ7w93jGmMrtyrRU9h0+ysMfLOdP4xbzYt+OREacXKe3OVFRZxbdgc8oeBwoBfxOFsYYU976ZzbmwKGjPDF1JbFRkTz7+3ZEWMIosUKThao+6iYfc/c3HOf6DowxJqQNOrsZew8d4flPfiA+JpLH+rTFu33LnCx/Lp19D+iUr2wCkFb24RhjTNm6+9yW7D90lNe+WEN8TCQPXnSKJYwSKKrP4hS8ITaS8vVbVANiAx2YMcaUBRHhwYtOYd/xhBHF3ee1DHZYFU5RZxatgd5AMif2W+wBBgUwJmOMKVMiwt8vbcv+w0d57pPviY+JZNDZfo+Haii6z2ISMElEuqrqN+UYkzHGlLmICOHpK9ux/7Dr9I6JpH9m42CHVWH4c/Hx5SJSTUSiReRTEdkqIv0CHpkxxpSxyAjh+Ws6cN6pdXj4g+VMWLAh2CFVGP4ki16quhuvSWod3nAd9wcyKGOMCZToyAheuq4T3VrU4oEJS5iydFOwQ6oQ/EkWeaNxXQy8q6q7AhiPMcYEXGx0JENvSKNTo+rcPXYRi7fYOFLF8SdZ/E9EVuFdKvupiNQG7DmGxpgKLT4mihE3daZN/Wq8tPggX2VvC3ZIIa3YZKGqDwJnAOmqehjvqXl9Ah2YMcYEWrXYaEbe1IW68cItI+czf932YIcUsgpNFiLi+yS7c/MG71PVvcBdgQ7MGGPKQ/WEGO7vHEe9pFhuemMeSzfsDHZIIamoM4u+PtND8i27MACxGGNMUCRVEUbdkkFSfDT9h89leY51zeZXVLKQQqYLmjfGmAqtfnIc7wzKJLFKFNcPm2MJI5+ikoUWMl3QvDHGVHgNa8QzdrAljIIUlSzai8huEdkDtHPTefOnl1N8xhhTrixhFKzQZKGqkapaTVWrqmqUm86b9/9J6MYYU8FYwvgte9agMcYUIC9hVI2N4rrXZ7NsQ+VOGJYsjDGmEA1rxPPOoEyqxUVz/bDKnTACnixEJFJEFonIh25+tIh8JyLLRWSEiES7chGRF0UkW0SWikgnn30MEJEf3GtAoGM2xpg8eWcYeQmjst6HUR5nFncDK33mRwOn4HWSxwG3uPKLgJbuNRj4L4CI1AAeBTKALsCjIlK9HOI2xhgAUqv/mjD6DZtTKRNGQJOFiKTiDUA4LK9MVaeqA8wFUt2iPsBbbtFsIFlE6gEXADNUdbuq7gBmYDcFGmPKWWVPGOJ9Zgdo5yITgCeBqsB9qtrbZ1k0MAe4W1W/dM1UT6nqLLf8U+AvQA8gVlUfd+UPA/tV9V/5jjUY74yElJSUtLFjx5Y47tzcXBITE0u8fagIl3qA1SVUhUtdTqYe2/Yf4+m5B9h7WLm/cyxNkyIDHN3JKc3fpGfPngtUNb2gZUU9VrVURKQ3sEVVF4hIjwJWeQX4QlW/LIvjqepQYChAenq69uhR0CH9k5WVRWm2DxXhUg+wuoSqcKnLydYjM3Mf174+m38vOszoW9Jol5ocsNhOVqD+JoFshjoTuFRE1gFjgXNEZBSAiDwK1Abu8Vk/B2joM5/qygorN8aYoPCapLqSHB/N9ZWkSSpgyUJVh6hqqqo2wRuU8DNV7Scit+D1Q1yrqsd8NpkM3OCuisoEdqnqJmA60EtEqruO7V6uzBhjgqZBctwJCWPJ+p3BDimggnGfxatACvCNiCwWkUdc+VRgDZANvA7cAaCq24F/APPc6zFXZowxQZWXMKrHx9BveHgnjID1WfhS1Swgy00XeEx3ddSdhSwbAYwIUHjGGFNiDZLjeGdwJtcOnU2/4XN4e2AGHRomBzusMmd3cBtjTCl5ZxiZVI+Pof+wOSz4cUewQypzliyMMaYM1E+OY9ytmdSqWoX+w+cwe80vwQ6pTFmyMMaYMlIvKY5xgzOpnxzHjW/MZdYP24IdUpmxZGGMMWWoTrVYxg7OpEnNBG4eOY+Zq7YEO6QyYcnCGGPKWK3EKrwzKJNWKYkMfns+H6/YHOyQSs2ShTHGBED1hBhG35JJ2/pJ3DF6IVOWbgp2SKViycIYYwIkKS6atwd2oWOjZP74zkImLtoQ7JBKzJKFMcYEUNXYaEbe3IWMpjW5Z/wSxs9bH+yQSsSShTHGBFh8TBRv3NSZs1rW5oH3ljJq9o/BDumkWbIwxphyEBsdydD+aZx7Sh3+9sFyRsxaG+yQToolC2OMKSex0ZH8t18aF7aty2Mffsurn68Odkh+s2RhjDHlKCYqgv9c15FL2tfnqWmreOGTHwjkQ+jKSrkMJGiMMeZX0ZERPH9NB6Ijhec++Z5DR49yX6/WiEiwQyuUJQtjjAmCyAjhX79vT0xkBC/PXM2hI8f46+9ODdmEYcnCGGOCJCJC+OflpxMTFcHrX67l0JFjPHpJWyIiQi9hWLIwxpggiogQ/n5pW2IiIxg2ay0HjxzjictPJzLEEoYlC2OMCTIR4aGLTyU2OpKXZmaz5+ARnru6AzFRoXMNkiULY4wJASLCfRe0pmpsFE9OW0XugSO82i+NuJjIYIcG2KWzxhgTUm7t3pynrjidL37YSv/hc9i1/3CwQwLKIVmISKSILBKRD918UxGZIyLZIjJORGJceRU3n+2WN/HZxxBX/p2IXBDomI0xJpj6dmnES9d2YsmGnfQdOputew4GO6RyObO4G1jpM/808JyqtgB2AANd+UBghyt/zq2HiLQB+gJtgQuBV0QkNM7LjDEmQC5uV49hAzqzdlsuV7/2DRt27AtqPAFNFiKSClwMDHPzApwDTHCrjAQuc9N93Dxu+blu/T7AWFU9qKprgWygSyDjNsaYUNC9VW1GDcxgW+5Brnr1G7K35AYtlkCfWTwPPAAcc/M1gZ2qesTNbwAauOkGwHoAt3yXW/94eQHbGGNMWEtvUoNxg7ty+Ogxrn7tG5Zt2BWUOAJ2NZSI9Aa2qOoCEekRqOP4HG8wMBggJSWFrKysEu8rNze3VNuHinCpB1hdQlW41KUi1OO+jpE8O+8AV/13Fn9Oi6V1jYJb4wNWF1UNyAt4Eu8sYB2wGdgHjAa2AVFuna7AdDc9HejqpqPcegIMAYb47Pf4eoW90tLStDRmzpxZqu1DRbjUQ9XqEqrCpS4VpR4bd+7Tc/41U1s9NFU/Xbm5wHVKUxdgvhbyuRqwZihVHaKqqaraBK+D+jNVvR6YCfzerTYAmOSmJ7t53PLPXPCTgb7uaqmmQEtgbqDiNsaYUFUvKY7xt3alVUpVBr+1gEmLc8rt2MG4z+IvwD0iko3XJzHclQ8Harrye4AHAVR1BTAe+Bb4CLhTVY+We9TGGBMCaiZWYcygDNIaV+dP4xbzdjk9da9c7uBW1Swgy02voYCrmVT1AHBVIds/ATwRuAiNMabiyHuu952jF/LwB8vZvf8wd/RoHtARa+0ObmOMqYBioyN5tX8al3Woz7PTv+PJaasC+hAlGxvKGGMqqOjICP59dQeqxUUz9Is17N5/mF41ApMwLFkYY0wFljfEebXYaF6amc3qupF0765lPsS5JQtjjKng8kasTYqLZul32QF5FoYlC2OMCRODzm5G1rGfArJv6+A2xhhTLEsWxhhjimXJwhhjTLEsWRhjjCmWJQtjjDHFsmRhjDGmWJYsjDHGFMuShTHGmGJJIAeeChYR2QqUZtzeWngPX6rowqUeYHUJVeFSl3CpB5SuLo1VtXZBC8IyWZSWiMxX1fRgx1Fa4VIPsLqEqnCpS7jUAwJXF2uGMsYYUyxLFsYYY4plyaJgQ4MdQBkJl3qA1SVUhUtdwqUeEKC6WJ+FMcaYYtmZhTHGmGJZsjDGGFMsSxY+ROTPIrJCRJaLyDsiEhvsmPwlIiNEZIuILPcpqyEiM0TkB/ezejBj9FchdXlWRFaJyFIRmSgiyUEM0W8F1cVn2b0ioiJSKxixnYzC6iEif3R/lxUi8kyw4jsZhfx/dRCR2SKyWETmi0iXYMboDxFpKCIzReRb9/u/25UH5H1vycIRkQbAXUC6qp4GRAJ9gxvVSXkTuDBf2YPAp6raEvjUzVcEb/LbuswATlPVdsD3wJDyDqqE3uS3dUFEGgK9gMA81qzsvUm+eohIT6AP0F5V2wL/CkJcJfEmv/2bPAP8XVU7AI+4+VB3BLhXVdsAmcCdItKGAL3vLVmcKAqIE5EoIB7YGOR4/KaqXwDb8xX3AUa66ZHAZeUZU0kVVBdV/VhVj7jZ2UBquQdWAoX8XQCeAx4AKsQVJoXU43bgKVU96NbZUu6BlUAhdVGgmptOogK891V1k6oudNN7gJVAAwL0vrdk4ahqDt43o5+ATcAuVf04uFGVWoqqbnLTm4GUYAZThm4GpgU7iJISkT5AjqouCXYspdQKOEtE5ojI5yLSOdgBlcKfgGdFZD3e50BFOXMFQESaAB2BOQTofW/JwnHten2ApkB9IEFE+gU3qrKj3jXSFeJbbFFE5CG80+/RwY6lJEQkHvgrXlNHRRcF1MBrArkfGC8iEtyQSux24M+q2hD4MzA8yPH4TUQSgfeAP6nqbt9lZfm+t2Txq/OAtaq6VVUPA+8DZwQ5ptL6WUTqAbifFaKZoDAiciPQG7heK+4NQs3xvpAsEZF1eM1pC0WkblCjKpkNwPvqmQscwxvEriIagPeeB3gXCPkObgARicZLFKNVNS/+gLzvLVn86icgU0Ti3bejc/HaACuyyXhvAtzPSUGMpVRE5EK8Nv5LVXVfsOMpKVVdpqp1VLWJqjbB+8DtpKqbgxxaSXwA9AQQkVZADBV35NaNQHc3fQ7wQxBj8Yv7nBoOrFTVf/ssCsz7XlXt5V7A34FVwHLgbaBKsGM6idjfwetrOYz3ATQQqIl3NcQPwCdAjWDHWYq6ZAPrgcXu9Wqw4yxpXfItXwfUCnacJfybxACj3PtlIXBOsOMsRV26AQuAJXjt/mnBjtOPenTDa2Ja6vO++F2g3vc23IcxxphiWTOUMcaYYlmyMMYYUyxLFsYYY4plycIYY0yxLFkYY4wpliULY/JxI8GO8pmPEpGtIvJhAI/5vIic7aazRCTdTTd1o4deUMz2n1SUUYVNxWTJwpjf2gucJiJxbv58ICdQBxORmkCmegPc+ZanAh/hjSw6vZjdvA3cEaAQjbFkYUwhpgIXu+lr8W7kAkBEuojINyKySES+FpHWrrytiMx1z0RYKiItRSRBRKaIyBL3nJRrCjjWlXhJwVc94GPgIVWd7PYfLyLj3fMLJroB/NLd+pNdnMYEhCULYwo2FujrHoDVDu+u3jyrgLNUtSPegID/dOW3AS+o90yEdLy7gy8ENqpqe/Wek5I/KQCciXf3sK+RwEuqOsGn7A5gh3rPL3gYSMtboKo7gCruLMWYMmfJwpgCqOpSoAnet/Wp+RYnAe+6J609B7R15d8AfxWRvwCNVXU/sAw4X0SeFpGzVHVXAYerB2zNV/YJ0M+NUpunG14SQ1WX4w3z4GsL3ojJxpQ5SxbGFG4y3rMN3slX/g9gpjtTuASIBVDVMcClwH5gqoico6rfA53wksbjIlLQ0OT78/bh4xlgHl5SivIz3li3L2PKnCULYwo3Au9Rm8vylSfxa4f3jXmFItIMWKOqL+KN9NlOROoD+1R1FPAsXuLIbyXQooDyPwG7geFuhNGvgKvdsdoAp/scW4C6eAMTGlPmLFkYUwhV3eA++PN7BnhSRBbhPQAoz9XAchFZDJwGvIX3gT7XlT0KPF7A/qYAPQo4vuINMV3PHfMVoLaIfOv2swLIa9ZKA2brr4+eNaZM2aizxoQAEZkF9FbVnUWsEwlEq+oBEWmO16/RWlUPicgLwGRV/bR8IjaVjb9tocaYwLoXaATsLGKdeGCmezqaAHeo6iG3bLklChNIdmZhjDGmWNZnYYwxpliWLIwxxhTLkoUxxphiWbIwxhhTLEsWxhhjivX/AdiGB/Vp7nyBAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "def apogee(mass):\n", - " # Prepare Environment\n", - " Env = Environment(\n", - " railLength=5.2,\n", - " latitude=32.990254,\n", - " longitude=-106.974998,\n", - " elevation=1400,\n", - " date=(2018, 6, 20, 18),\n", - " )\n", - "\n", - " Env.setAtmosphericModel(type=\"CustomAtmosphere\", wind_v=-5)\n", - "\n", - " # Prepare Motor\n", - " Pro75M1670 = SolidMotor(\n", - " thrustSource=\"../../data/motors/Cesaroni_M1670.eng\",\n", - " burnOut=3.9,\n", - " grainNumber=5,\n", - " grainSeparation=5 / 1000,\n", - " grainDensity=1815,\n", - " grainOuterRadius=33 / 1000,\n", - " grainInitialInnerRadius=15 / 1000,\n", - " grainInitialHeight=120 / 1000,\n", - " nozzleRadius=33 / 1000,\n", - " throatRadius=11 / 1000,\n", - " interpolationMethod=\"linear\",\n", - " )\n", - "\n", - " # Prepare Rocket\n", - " Calisto = Rocket(\n", - " motor=Pro75M1670,\n", - " radius=127 / 2000,\n", - " mass=mass,\n", - " inertiaI=6.60,\n", - " inertiaZ=0.0351,\n", - " distanceRocketNozzle=-1.255,\n", - " distanceRocketPropellant=-0.85704,\n", - " powerOffDrag=\"../../data/calisto/powerOffDragCurve.csv\",\n", - " powerOnDrag=\"../../data/calisto/powerOnDragCurve.csv\",\n", - " )\n", - "\n", - " Calisto.setRailButtons([0.2, -0.5])\n", - " Nose = Calisto.addNose(length=0.55829, kind=\"vonKarman\", distanceToCM=0.71971)\n", - " FinSet = Calisto.addFins(\n", - " 4, span=0.1, rootChord=0.120, tipChord=0.040, distanceToCM=-1.04956\n", - " )\n", - " Tail = Calisto.addTail(\n", - " topRadius=0.0635, bottomRadius=0.0435, length=0.060, distanceToCM=-1.194656\n", - " )\n", - "\n", - " # Simulate Flight until Apogee\n", - " TestFlight = Flight(\n", - " rocket=Calisto,\n", - " environment=Env,\n", - " inclination=85,\n", - " heading=0,\n", - " terminateOnApogee=True,\n", - " )\n", - " return TestFlight.apogee\n", - "\n", - "\n", - "apogeebymass = Function(apogee, inputs=\"Mass (kg)\", outputs=\"Estimated Apogee (m)\")\n", - "apogeebymass.plot(8, 20, 20)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Out of Rail Speed as a Function of Mass\n", - "\n", - "To finish off, lets make a really important plot. Out of rail speed is the speed our rocket has when it is leaving the launch rail. This is crucial to make sure it can fly safely after leaving the rail. A common rule of thumb is that our rocket's out of rail speed should be 4 times the wind speed so that it does not stall and become unstable." - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAA4n0lEQVR4nO3dd3gU5fbA8e9JIQFCDwQEJPReAwgCQhAVKzasqFhA0Z+iotiu9XotF0VBsVwFBUWRoqIoNpr0EqSDSq+KIi30kPP7YybXvSHZ1M1sds/nefbJ7szOzHl3s2feeeedd0RVMcYYEz4ivA7AGGNM0bLEb4wxYcYSvzHGhBlL/MYYE2Ys8RtjTJixxG+MMWHGEr/JkYg0FJFlInJQRO4p5HV3EZGffV5vFpEehbmNwiYiT4nIh37mx4jIGhGpFuA4FolI00Buwysi8rGIXFoI64kRkXUiUrkQwgoZlviDmIj0FZGVInJYRH4TkTdFpHwels8xiYpIeXe9v7nbWSkiN2d622BghqqWUdXhWaxjpogcFZFUEflTRD7NbdJT1dmq2jCX5akhIpPcbewXkVUi0jc3yxax/sCPqroLQETeFxEVkV6+bxKRV9zpfTNNf1tE+otICRF5WUS2u5/tZhF51eetLwHPFEbA7v+aisgrmab3cqe/XxjbyWUsLYCWwGSf2Ob4zC8rInPd/4US/talqseAUcDDgYy5uLHEH6REZBDwIvAgUA7oANQCvs/pnz0P2ygB/OCut6O7nQeBF0Tkfp+31gJW57C6/1PVOKAeEIeTlArbB8A2N55KwA3A7wHYTkHdgROrr1+AGzNeiEgUcBWwIYvlzwe+Bh4B2gLtgTJAN2Cpz/u+AJJFpGohxb0BuMqNLcNNbuxF6XZgrGZxdamIVACmAVuAq1X1eC7W9xFwk4jEFG6YxZcl/iAkImWBp4G7VfUbVT2hqptxEkUi0Md93/si8qzPct1EZLv7/APgdOBLt7Y4OItN3eC+p7eqbnK38w1wD/CMW7OaDiQDr7vraeAvdlXdB3wOtPKJ62YRWes2FW0UkduzijkX2gHvq+ohVU1T1Z9Udaq7nkS3ZtpfRHaKyC4RecBnOxEi8rCIbBCRPSIyXkQq+szvICLzRGSfiCwXkW4+82qLyCw3/u+B+OwCFJHTgTrAwkyzvgQ6u4kLoCewAvgt0/ItgH2qut0t72equlMdm1V1TMZ7VfUokAKcl00sb4rIJJ/XL4rINBGRbML/DViZsT738zkTZwfju94J7hHifhH5UXyam0TkAnGauQ6KyI6M70BE4kVkivv5/iUis0Uku/xzPjAri/JUBmYAq4A+qprmTq8kIl+KyAERWSwiz/oeIbif5V6cypPBEn+wOhOIBT71naiqqTg1wXNyWoGq3gBsBS5W1ThV/XcWbzsHmKqqhzJNn+Ruv6Oqdgdm49boVdVv7U9EKgGXA+t9Ju8GLgLKAjcDr4hIm5zKkIUFwAgRucZNsFlJBuoD5wIPyd9NXXcDlwJdgdNwEsEIN+bqwFfAs0BF4AFgkvzdLvwRToKNB/6JUwvOTnNgY0ZS8nEUp+niGvf1jcAYTnWBG0tGee8XkTtFpHk2CXstTrNIVgYBzd2mki7ArcBNWdWkfYzh7yOTa9yYj2V6z1Scz7gKzhHIWJ95I4HbVbUM0AyY7hPLdqAykAA8CmRVoy8N1AZ+zjSrIjATmA/coqrpPvNGAIeAqjjfTVbfj7/PKexY4g9O8cCfWSQPgF34qXHmYzu7Mk90t/tnHrczXET2+yx3t8/6vlLVDW6tdRbwHdAlH/H2xtkJPQ5sEueEc7tM73naPSJYCbwHXOtOvwN4TFW3u+2+TwFXus0afYCvVfVrVU1X1e+BJcAF7g6mHfC4qh5T1R9xau/ZKQ8czGbeGOBGcc7TdMU5MsrsQpydO8DzOM1917vx7BCRzEntoLvNU6jqYZyjuqHAhzhHkDkdXX0GdBORcmSzc1LVUap60OdzbOm+H+AE0EREyqrqXlVd6jO9GlDLPbKcnc0OKKMsmT/DmkADnCO+/y4nIpHAFcCTqnpYVdcAo7NYb7afUziyxB+c/gTiM7W1Zqjmzi+s7ZxyEtbdbnwet3OPqpYDWgAVgBo+6ztfRBa4h/j7cGq1ed55uYnkYVVtilNrXAZ8nqkmvM3n+Rac2j045wU+c5sa9uHUAE+666kF9M6Y587vjPPZnAbszXRUtMVPmHtx2uOzin8OTo33MWCKqh7xne/uEBoB89z3n1TVEaraCSdp/QsYJSKNfRYrA+zLLhhVXQhsBAQY7yfujPcfwTni+AdQSVXnZooxUkRecJvMDgCb3VkZ3+cVON/vFrd5rKM7fQjOUeB3bnNfdidbM8qS+TNcjnMkNlVEWvtMrwxE8b/fu+/zDH4/p3BjiT84zcc5vL7cd6KIxOG0f05zJx0CSvm8JfNJvpyGXv0BON89vPZ1hbv9BXmI2dmgU9N+FqdJRsQ5oTYJ52RvgqqWx6nRZtfOnNvt/Omu8zScZoAMNX2enw7sdJ9vA85X1fI+j1hV3eHO+yDTvNKq+gLOEVGFTJ9Rds1M4LTb185mpw1OzXsQWTfznAdMV9WTWZT3iKqOwNmxNPGZ1RgnKWZJRO4CYnA+h6zO82RljBtjVl1WrwN6AT1wOgMkZmzKjXOxqvbCaQb6HHdn4x4hDFLVOsAlOE1YZ2dRzkM4J5lPOZekqsOAF3A6ODRzJ/8BpOFT0eB//wcy+P2cwo0l/iCkqvtxTu6+JiI9RSRaRBJxfkTb+bvHyDKc5oiK4vTsuDfTqn7HOdGYnQ/c9U1wT45Gi8h5wHDgKTeO/BiNU5O+BCiBk3j+ANJE5Hyc9vc8c09ONhORKBEpAwwA1qvqHp+3PS4ipdwTjjcDn7jT3wL+JSK13HVVlr+7V34IXCwi57k12lhxTjrXUNUtOM0sT4vTvbIzcHF2MbpNKetxeuJkZTjOuZUfs5jn276PiNzrxlHSLfNNODXXn9z5sUAS8H02n1cDnJ1wH5wmn8Ei0iq72H3McmN8LYt5ZXAqBXtwKh3P+WyvhIhcLyLlVPUEcABId+ddJCL13KOz/ThHW+mnrN3xNU5T2Cncc1XDgB9EpKG7k/wUeMr93hvh03vK3XZ1nMpBnisyocoSf5By/8EfxanVHsDpJbINONttWwUncS/HOdz+jr+TXIbngX+4zRcPZJqX0ce5h7vehe52huK0hQ8pQOzHcX6cj6vqQZxeQuNxaqvXkamXSB6UwmmD3ofTfFELZ+fiaxZO4p0GvKSq37nTh7nb/U5EDuIkgTPceLfh1GIfxdlBbcPp1prx+7jOfe9fwJNkXVv39TZOoj2Fqv6lqtMyt2+7CfE84BufyYeBl3F62/wJ3AVcoaob3fkXAzNVdSeZuEccHwIvqupyVf3VLd8HkkO3RvdczDRV/SuL2WNwmrp2AGs4NZneAGx2m4HuwDk/Ac7J4B+AVJwj2jdUdUY2IfwHuD6bk9mo6j+Bd4FpIlIX+D+co4/fcH4TH/O/J6SvA0b7/G7Cnvg/wW9M8eAeEW0CorM5KV6UscTg1MrPVvcirlws0x54XVWzO1LIapmFwK2quip/kQYvEfkIGK+qn+dj2ReBqqqa0Xd/OXCWqu4u5DCLLUv8JiQEU+LPDzfxV1L3ugSTe27zTgmcaxDa4TQV3ZafnUa4yO4ElDGmCKnqIq9jKMbK4DTvnIZzXutl3OEeTNasxm+MMWHGTu4aY0yYKRZNPfHx8ZqYmJivZQ8dOkTp0pm7qRdPVpbgEyrlACtLsCpIWVJSUv5U1VOGpC4WiT8xMZElS5bka9mZM2fSrVu3wg3II1aW4BMq5QArS7AqSFlEJMurzK2pxxhjwowlfmOMCTOW+I0xJsxY4jfGmDBjid8YY8KMJX5jjAkzlviNMSbMhHTi/2nrXr7eeNzrMIwxJqiEdOL/7KcdjP/lBGMX+rtTnjHGhJeQTvxPXNSElpUjefzzVXy7+jevwzHGmKAQ0ok/KjKCO1vG0KJGee75+CeWbM7qhkLGGBNeQjrxA8RECaP6tqN6+ZLcOnoJv/5+0OuQjDHGUyGf+AEqli7B6FvaUyIqgptGLeK3/Ue9DskYYzwTFokfoGbFUrzXtx0HjqbR971F7D9ywuuQjDHGE2GT+AGaVS/HW32S2PBHKrd/sIRjaSe9DskYY4pcWCV+gM7143mpd0sWbPyL+8cvJz3dbj1pjAkvxeJGLIWtV6vq/H7gKM99vY4qZWJ44qImiIjXYRljTJEIy8QP0K9LHX7bf4xRczdRtWwst3et63VIxhhTJMI28YsI/7iwMbsPHuX5qeuoUjaGy1rX8DosY4wJuLBN/AAREcLLV7VkT+pxHpywgvi4GLrUP+W+xMYYE1LC7uRuZjFRkbx9YxL1qsRxxwcprNqx3+uQjDEmoMI+8QOUjY1m9C3tKV+qBH3fW8zWPYe9DskYYwLGEr8roWwso29px4mT6dz03iL2pB7zOiRjjAmIgCV+EYkVkUUislxEVovI05nmDxeR1EBtPz/qVSnDqL5t2bnvCLeMXsLh42leh2SMMYUukDX+Y0B3VW0JtAJ6ikgHABFpC1QI4LbzLalWRV67tjUrt+/j/z76ibST6V6HZIwxhSpgiV8dGTX6aPehIhIJDAEGB2rbBXVu06r889JmTF+3m0c+XWlX9xpjQkpAu3O6ST4FqAeMUNWFIjIQ+EJVdwXz1bLXn1GL3QeOMWzar8RGR/JMr6Z2da8xJiSIauBrsyJSHvgMeBJ4Duimqmkikqqqcdks0x/oD5CQkJA0bty4fG07NTWVuLgsN5EjVWX8LyeYuukE59SK4rpGJTxN/gUpS7AJlbKESjnAyhKsClKW5OTkFFVte8oMVS2SB/AETuL/DdjsPtKB9Tktm5SUpPk1Y8aMfC+rqpqenq7PfLlaaz00RZ+dslrT09MLtL6CKGhZgkmolCVUyqFqZQlWBSkLsESzyKkBa+oRkcrACVXdJyIlgXOAF1W1qs97UlW1XqBiKAwZQzucTFfemb2JyIgIHurZ0Jp9jDHFViDb+KsBo912/ghgvKpOCeD2AkZEePLiJqSlp/PWrA1ERwqDzm3odVjGGJMvAUv8qroCaJ3De4pNI5yI8MwlzUg7qbw2fT1REREM7FHf67CMMSbPwnqQtryKiBCeu6w5aenKKz/8QlSkcFdyULdUGWPMKSzx51FEhPDiFS04ma4M+fZnIiOEO2wsf2NMMWKJPx8iI4SXerckLV15Yeo6oiKE27rU8TosY4zJFUv8+RQZIbxyVUvS05Vnv1pLZIRwc6faXodljDE5ssRfAFGREbx6TSvS0tN5+ss1REUIN3RM9DosY4zxy4ZlLqDoyAheu7YNPRpX4fHJq/lo4VavQzLGGL8s8ReCElERjLi+DckNK/PoZysZv3ib1yEZY0y2LPEXkpioSN7sk0SX+vE89OkKJqVs9zokY4zJkiX+QhQbHck7N7alY51KPDhxOZOX7fA6JGOMOYUl/kIWGx3JyJva0S6xIvd9sowvl+/0OiRjjPkflvgDoGSJSEb1bUdSrQoMHPcTE5ZYm78xJnhY4g+Q0jFRvH9ze86sG8+DE1fw7uyNXodkjDGAJf6AKh0Txci+bbmgeVWe/WotQ75dl3FvAmOM8YxdwBVgMVGRvHZtG8rGrmTEjA3sPXyCf/ZqRmSEjedvjPGGJf4iEBkhPH95c8qXKsFbszZw4MgJhl7VihJRdsBljCl6lviLiIjw8PmNqFAqmuenruPA0TTe6tOGUiXsKzDGFC2rchax27vW5cUrmjPn1z/o8+5C9h0+7nVIxpgwY4nfA1e3O503rm/Dqh0HuPrtBew+cNTrkIwxYcQSv0d6NqvGqL7t2Lb3MFe8NY8tew55HZIxJkz4TfwiEisiV4rIMBGZICJjRGSwiDQtqgBDWef68XzUrwMHj6Zx5VvzWbvrgNchGWPCQLaJX0SeBuYCHYGFwNvAeCANeEFEvheRFkUSZQhrVbM8E27vSKQIV709nyWb//I6JGNMiPNX41+kqkmqOkhVP1LVH1R1iqoOVdWLgeuBEkUUZ0irn1CGiQM6Eh8XQ5+RC5nx826vQzLGhLBsE7+qfpV5mohUEBFx5+9W1SWBDC6c1KhQivG3d6ROfBz9Ri+xkT2NMQHjr6nnCRFp5D6PEZEZwAbgdxHpUVQBhpPKZWIYd3sH2tSqwL2fLOODBVu8DskYE4L8NfVcDfzsPr/J/VsZ6Ao8F8igwlnZ2GjG3NKe7g2r8Pjnqxg+7Vcb38cYU6j8Jf7j+nfGOQ8Yp6onVXUtubji1+0RtEhElovIavdkMSIyVkR+FpFVIjJKRKILXozQEhsdyVs3JHF56+oM/f4XBk9cwfG0dK/DMsaECH8J/JiINAN+B5KBB3zmlcrFuo8B3VU11U3uc0RkKjAW6OO+5yPgNuDNPEce4qIjI3ipd0tqVCjJ8Onr2bb3MH0SreZvjCk4f4l/IDARp3nnFVXdBCAiFwA/5bRi92gh1X0Z7T5UVb/OeI+ILAJq5C/00BcRIdx/bkNqVy7NQxNXsuk3pWmbQ9SOL+11aMaYYkyyaz8WkY7AAi1AA7OIRAIpQD1ghKo+5DMvGuf6gIGqOjuLZfsD/QESEhKSxo0bl68YUlNTiYuLy9eyweSXvScZlnIERLi7dSyNKkZ6HVKBhMr3EirlACtLsCpIWZKTk1NUte0pM1Q1ywdO88tSYBzQF6ia3XtzegDlgRlAM59p7wCv5mb5pKQkza8ZM2bke9lg88lX07T7SzO03qNf6YQl27wOp0BC5XsJlXKoWlmCVUHKAizRLHKqv378A1S1DfAUUAF4X0Tmi8hzInKWW5vPFVXd5yb+ngAi8iROE9L9uV2HgSqlIvh0QCfaJVbkgQnLGfLtOtLTrd3fGJM3OQ7SpqrrVPUVVe0JdAfmAL1xmmmyJSKVRaS8+7wkcA6wTkRuw+kldK2qWleVPCpXKprRt7Tn2vY1GTFjA//38VKOnjjpdVjGmGIk25O7IlIxm1kLcNr+cxpUphow2j0yiADGq+oUEUkDtgDz3YuAP1XVZ/IeeviKjozgucuaUyc+juemrmXHvgW8c2MSVcrEeh2aMaYY8Ner509gO86gbAC+N4lVoI6/FavqCqB1FtPtllOFQETod1YdTq9UinvHLeOyEfMY2bctjaqW9To0Y0yQ89fUMxzYC3yDc+VuHVWt7T78Jn1TdM5rWpUJd3QkLT2dK9+cbwO8GWNy5O/k7r1AK2ACcAPwk4j8W0RqF01oJreaVS/H5Ls6U6tSKW59fzGj5232OiRjTBDze3I3ozcRMBh4C7gZsAHaglDVcrGMv70j3Rsl8OQXq3ly8irSTtq5c2PMqfyNzllaRK4TkcnA10AckKSq7xRZdCZPSsdE8fYNSfTrUpvR87dw25glHDx6wuuwjDFBxl+NfzdOTX8+8DKwEWgrIpeLyOVFEZzJu8gI4bELm/DcZc2Z/euf9H5rPjv2HfE6LGNMEPHXw2YCTu+dhu7DlwKfBiooU3DXnXE6NSuW5M6xS7l0xFxG3tSWFjXKex2WMSYIZJv4VbVvEcZhAqBL/cp8OuBMbn5/MVe9PZ9Xr25Nz2ZVvQ7LGOMxf238fUTE3/y6ItI5MGGZwlI/oQyf3dmJRlXLMmBsCv/5cYPd2MWYMOevqacSThfOFJwRNv8AYnFG2uyKc4HXwwGP0BRY5TIxjOvfgUHjl/Pc1+vYvOcwT1/SlOjIHEfsMMaEIH9NPcNE5HWc8Xk6AS2AI8Ba4AZV3Vo0IZrCEBsdyWvXtqZWpVK8MXMD2/46zIjr21A21m6AZky48Tt8gqqeBL53H6aYi4gQBvdsRGKl0jz62UqufHMeI29qR82KubmhmjEmVNixfhi6ql1NRt/Snl37j3LZG3NZtm2f1yEZY4qQJf4w1alePJ/deSYlS0Ry9dvzmbpyl9chGWOKiCX+MFavitPjp+lpZRkwdilvzbIeP8aEA3/j8fu9O5aqDi38cExRi4+L4aN+HXhgwnJemLqOzX8e4p+XNrMeP8aEMH8nd8u4fxsC7YAv3NcXA4sCGZQpWrHRkQy/pjWJlUrz+oz1bN97hBHXt6FcSevxY0wo8jcs89Oq+jRQA2ijqoNUdRCQBJxeVAGaohERITxwXkOGXNmChZv2cOWb89j212GvwzLGBEBujucTgOM+r4+700wI6t22JmNuOYPfDxzl0hFzWbp1r9chGWMKWW4S/xhgkYg8JSJP4dxkfXRAozKe6li3Ep/d1YnSMVFc8/YCRs/bbCd9jQkhOSZ+Vf0Xzg1Y9rqPm1X1uUAHZrxVt3Icn9/Vic7143nyi9X0/yCFvYeO57ygMSbo5bbrRinggKoOA7bb7RfDQ8XSJRh5U1sev6gJM3/ezQXDZ7Nw4x6vwzLGFFCOiV9EngQeAh5xJ0UDHwYyKBM8RIRbO9fmszs7ERsdybXvLOCV73+x2zoaU4zlpsZ/GXAJcAhAVXfyd1dPEyaaVS/Hl3d35tJW1Rk27Veue2chO+3OXsYUS7lJ/MfVObOn4NyLN7AhmWAVFxPF0KtbMfSqlqzauZ8Lhs/mu9W/eR2WMSaPcpP4x4vI20B5EekH/ADYDdfD2OVtavDVPV2oUaEk/T9I4cnJqzh64qTXYRljcik3vXpeAiYCk3Cu4n1CVV/LaTkRiRWRRSKyXERWi8jT7vTaIrJQRNaLyCciUqKghTBFr3Z8aSYNOJNbOtVm9PwtXPbGPNbvTvU6LGNMLuS2V88vwLeq+gAwV0Ry08Z/DOiuqi2BVkBPEekAvAi8oqr1cLqH3pr3sE0wiImK5ImLmzCqb1t+P3CUi1+bw/jF26zPvzFBLje9evrh1PjfdidVBz7PaTl1ZFQBo92H4tzRa6I7fTRwaZ4iNkGne6MEpg7sQqua5Rk8aQX3jFvGgaMnvA7LGJMNyal2JiLLgPbAQlVt7U5bqarNc1y5SCTO/XrrASOAIcACt7aPiNQEpqpqsyyW7Q/0B0hISEgaN25cHor1t9TUVOLi4vK1bLAJ9rKkqzJl4wk+X3+CSrHCgJYx1CkfmeV7g70suRUq5QArS7AqSFmSk5NTVLXtKTNU1e8DJ+ED/OT+jQJW5LRcpnWUB2YAnYH1PtNrAqtyWj4pKUnza8aMGfleNtgUl7Is3rRHz3x+mtZ95Ct9c+Z6PXky/ZT3FJey5CRUyqFqZQlWBSkLsESzyKm5aeOfJSKPAiVF5BxgAvBlXvY6qrrPTfwdcXoHZQwHXQPYkZd1meDXNrEiX9/ThR6NE3hh6jpuGLWQ3/Yf9TosY4wrN4n/YeAPYCVwO/A18I+cFhKRyiJS3n1eEjgHWIuzA7jSfdtNwOQ8R22CXrlS0bzZpw3PX96cpVv20XPYj3yzym7vaEww8HcjFgBUNV1ERuOMyqnAz+4hRE6qAaPddv4IYLyqThGRNcA4EXkW+AkYmf/wTTATEa5tfzpn1K7IwHHLuOPDpVzdtiZPXNzE69CMCWs5Jn4RuRB4C9gACFBbRG5X1an+llPVFUDrLKZvxDlZbMJEncpxTBpwJq/+8AtvztrAwk17uLFBOt28DsyYMJWbpp6XgWRV7aaqXYFk4JXAhmVCTYmoCAb3bMTH/TpwPC2dfy04yogZ6zmZbn3+jSlquUn8B1V1vc/rjcDBAMVjQlyHOpWYOvAskhIiGfLtz1z7nwVs32u3eDSmKOUm8S8Rka9FpK+I3ITTo2exiFwuIpcHOD4TgsqVimZAyxhe7t2S1Tv3c/6w2UxeZp27jCkquUn8scDvQFegG04Pn5LAxcBFAYvMhDQR4YqkGnw9sAv1qsQxcNwy7vvErvg1pijkplfPzUURiAlPtSqVZsLtHXlt+npem/4rizf/xatXt6JtYkWvQzMmZGVb4xeRfiJS330uIjJKRPaLyAoROaW3jjH5FRUZwX3nNGDCHR0BuOrt+Qy1u3wZEzD+mnoGApvd59cCLYE6wP3A8MCGZcJRUq2KTB3YhUtbVWf4tF/p/fZ8tuw55HVYxoQcf4k/TVUzGlwvAsao6h5V/QGwu3CZgCgTG83Qq1sx/NrWrN+dygXDZvPJ4q021LMxhchf4k8XkWoiEgucjXPnrQwlAxuWCXeXtDyNb+49i+Y1yvHQpJX0G5PCn6nHvA7LmJDgL/E/ASzBae75QlVXA4hIV5y+/MYEVPXyJfnotg7848LG/PjrH5z3yo92j19jCkG2iV9VpwC1gMaq2s9n1hLg6kAHZgxARIRwW5c6fPl/nalSNpb+H6QweOJyDlq3T2PyzW8/flVNU9W9maYd0r/vrGVMkWhYtQyT7+rEnd3qMjFlO+cPm82iTX95HZYxxVJu77lrjOcyxvsZf3tHIkS4+j/zeX7qWo6lnfQ6NGOKFUv8pthpm+h0+7ymXU3enrWRXq/PZe2uA16HZUyxke2VuyLSxt+Cqrq08MMxJndKx0Tx/OUt6NE4gYcmraTX63MZdG4DbutSh8gI8To8Y4KavyEbXvYzT4HuhRyLMXl2duMEvr23PI9+tpLnp65j2trdvHxVS2pWLOV1aMYErWwTv6omF2UgxuRXpbgY3uqTxKSlO3jqi9WcP2w2T1zchN5JNRCx2r8xmflr6umuqtOzG3pZVT8NXFjG5I2IcGVSDc6oXZEHJixn8MQVfL/md56/vDnxcTFeh2dMUPF3crer+/fiLB42HLMJSjUrluLjfh147ILGzPrZuehr8rIdNuSDMT78NfU86f61YZlNsRIRIfQ7qw5nNajM4InLGThuGZOW7uBflzaztn9jyMV4/PDfG643xbkpCwCq+kyggjKmMDSsWoZP7+zEmPmbeenbnznnlVnc16MBt3auTVSk9WQ24SvH/34ReQtniIa7AQF64wzlYEzQi4wQbu5Um+/v70rnepV5fuo6Lnl9Lsu37fM6NGM8k5tqz5mqeiOwV1WfBjoCDQIbljGF67TyJXnnxiTe6tOGPYeOcdkbc3nqi9WkHkvzOjRjilxuEv8R9+9hETkNOAFUC1xIxgSGiNCzWTW+v78rfTrUYvT8zZwzdBbfr/nd69CMKVK5SfxTRKQ8MARYijNM88c5LSQiNUVkhoisEZHVIjLQnd5KRBaIyDIRWSIi7QsQvzF5VjY2mmd6NWPSgDMpGxtNvzFLGPBhCr8fOOp1aMYUiRwTv6r+U1X3qeoknLb9RsALuVh3GjBIVZsAHYC7RKQJ8G/gaVVthTPm/7/zG7wxBdHm9ApMuaczg3s2ZPq63fR4eRYfzN9Merp1/TShzW/iF5HqItJWREq4k8oBDwG/5rRiVd2VMZ6Pqh4E1gLVcYZ7KOuzvp35jN2YAouOjODObvX47r6zaFmzPI9PXs0Vb81j3W826JsJXdkmfhG5F1gGvAYsEJHbcJJ3SSApLxsRkUSgNbAQuBcYIiLbgJeAR/IetjGFq1al0nxwa3teubolW/Yc5qLhc/j3N+s4esKGfDahR7K7olFE1gCdVfUvETkd+AXopKopedqASBwwC/iXqn4qIsOBWao6SUSuAvqrao8slusP9AdISEhIGjduXJ4KliE1NZW4uLh8LRtsrCxF4+Bx5ZOfjzNnRxpVSgnXNy5By8pZX/ISzOXIKytLcCpIWZKTk1NUte0pM1Q1ywewNNPr5dm91886ooFvgft9pu3n7x2OAAdyWk9SUpLm14wZM/K9bLCxshStub/+ockvzdBaD03RW99frFv3HDrlPcWhHLllZQlOBSkLsESzyKn+rtyt4dbOM1Tzfa2q9/jb04gzLOJIYK2qDvWZtRNnHKCZOEM753i+wBgvnFkvnm8GnsWouZsYPu1XegydxYBudbmja11ioyO9Ds+YfPOX+B/M9DpPTTxAJ+AGYKWILHOnPQr0A4aJSBRwFLc5x5hgVCIqgju61qVXq9N49qu1vPrDr0xaup0nL2pKjyYJXodnTL74G6RtdEFWrKpzcJpyspKnk8PGeK1auZKMuK4N17X/kye/WM1tY5bQvVEVelZJ9zo0Y/LMRqoyJg861Ytn6sAuPHZBYxZu3MOjc44w9LufOXLcev+Y4sMSvzF5FB0ZQb+z6jD9gW60TYhk+PT19Bg6i29X/2bj/ptiwV8//hfdv72LLhxjio+EsrHc0TKWcf07EBcTxe0fpND3vcVs+vOQ16EZ45e/Gv8Fbs8cu8DKGD861KnElHs68/hFTUjZspfzXvmRId+u4/BxG/nTBCd/if8bYC/QQkQOiMhB379FFJ8xxUJ0ZAS3dq7N9Ae6clGLaoyYsYEeL8/i65W7rPnHBJ1sE7+qPqiq5YGvVLWsqpbx/Vt0IRpTfFQpE8vQq1sx4Y6OlC0ZzZ1jl3L12wtYsX2f16EZ81+5Obl7r4hc5D5qBzwiY0JAu8SKTLm7M89e2owNf6RyyetzuXfcT+zYdyTnhY0JsGz78YtIWeBdnD73y93JrUQkBbhVVa25xxg/oiIj6NOhFr1ancabMzcwcs4mpq76jVs712ZAt7qUiY32OkQTpvzV+IcDa4D6qnq5ql4O1AVWAq8XRXDGhIIysdEM7tmI6Q904/xmVXlj5gaSX5rJhwu2kHbSLgAzRc9f4u+kqk+p6n//M91xf57Bue+uMSYPqpcvyavXtGbyXZ2oEx/HPz5fxfnDZjNj3W47AWyKVH4v4MpuKAZjTA5a1izPJ7d34K0+SZw4mc7N7y/mhpGLWLPTWk9N0fCX+OeJyBNuX/7/EpHHgfmBDcuY0Obc+L0q393XlScuasKqnfu58LXZDJ643O79awLO3+icd+MMq7zeZ3TNVsBPwK2BDcuY8FAiKoJbOtfmijY1eG36r4yev5kvl+/i9q516H9WHUqV8PcTNSZ//I3OeQDoLSJ1gSbu5DWquqFIIjMmjJQrFc0/LmrCDR1r8eI363j1h1/5eNFWBp3bkCva1CAywlpXTeHJsY1fVTeo6pfuw5K+MQFUq1Jp3rg+iYl3dKRauZIMnriCC4bNZvq63+0EsCk0NjqnMUGobWJFPrvzTEZc14ZjaSe55f0lXPOfBfy0da/XoZkQYInfmCAlIlzYohrf39+Vf/ZqyoY/UrnsjXkM+DCFDX+keh2eKcZyTPwi8kFuphljAiM6MoIbOiYy68Fk7u1Rnx9/+YNzX/mRxz5byW7rAWTyITc1/qa+L0QkErt1ojFFrnRMFPf2aMDMB5Ppc8bpfLJ4G12HzOTl737m4NETXodnihF/N2J5REQO8vewzAfc17uByUUWoTHmf1QuE8PTvZrxw/1dObtxFV6bvp6uQ2by3txNHE+zISBMzvwNy/y8qpYBhrjDMWcMyVxJVe3mLMZ4LDG+NK9f14Yv/q8TjaqW4ekv13D20JlMXraD9HTrAWSyl5umnqkiclbmR8AjM8bkSosa5Rl72xmMvqU9cTHRDBy3jItfn8PsX//wOjQTpHJzWeCDPs9jgfZACtA9IBEZY/JMROjaoDJd6sUzefkOXvr2F24YuYjO9eK5/9wGtDm9gtchmiCSY+JX1Yt9X4tITeDVQAVkjMm/iAjhstY1uKB5NT5csJURM9Zz+Rvz6NqgMvf2qE9r2wEY8tePfzvQuLADMcYUnpioSG7tXJvZg5N5qGcjVmzfx2VvzKPve4tYtm2f1+EZj+VY4xeR14CMM0UROAO1Lc3FcjWBMUCCu/x/VHWYO+9u4C7gJM49fQfnJ3hjjH+lY6IY0K0uN3SsxZj5m3nnx41cOmIuyQ0rc2+PBrSsWd7rEI0HctPGv8TneRrwsarOzcVyacAgVV0qImWAFBH5HmdH0AtoqarHRKRKnqM2xuRJXEwUd3arx40dExk9bzPvzN5IrxFz6d6oCvf2qE+LGuW9DtEUodwk/k+Aeu7z9aqaq0sFVXUXsMt9flBE1gLVgX7AC6p6zJ23O89RG2PyJS4miruS63HTmX/vAC55fS5nN6pClwonvQ7PFBHJbsQ/EYkCngNuAbbg3HWrJvAe8Jiq5vpSQRFJBH4Emrl/JwM9gaPAA6q6OItl+gP9ARISEpLGjRuX60L5Sk1NJS4uLl/LBhsrS/Ap7uU4kqZ8v+UE324+waET0KpyJJfWiyaxXKTXoRVIcf9efBWkLMnJySmq2vaUGaqa5QN4BXgXKOMzrSzwH2BYdstlsZ44nO6fl7uvVwGv4exI2gObcHdA2T2SkpI0v2bMmJHvZYONlSX4hEo5Dhw5rve9+622eOpbrfXQFL31/cW6cvs+r8PKt1D5XlQLVhZgiWaRU/316rkI6KeqB312EgeAAcAFudnbiEg0MAkYq6qfupO3A5+6cS0C0oH43KzPGBMYZWKjuaRuCWY/lMygcxqwaNMeLnptDv3GLGHVjv1eh2cKmb/En7HHyDzxJH/38smWe6/ekcBaVR3qM+tzINl9TwOgBPBnHmI2xgRI2dho7j67PnMe7s795zRg4UbbAYQif4l/jYjcmHmiiPQB1uVi3Z2AG4DuIrLMfVwAjALqiMgqYBxwU1Y7GGOMd8rGRnPP2fWZ/VB37uthO4BQ469Xz13ApyJyC04bPUBboCRwWU4rVtU5OO34WemTlyCNMd4oVzKagT3q07dTIu/P3czIORu5aM3vnNMkgYFn16dZ9XJeh2jywd/N1ncAZ4hId/4ek/9rVZ1WJJEZY4KG7QBCS27G6pkOTC+CWIwxQc52AKEhNxdwGWPM/7AdQPFmid8Yk2+2AyieLPEbYwosux1Aj8YJ3NG1Dkm1KuD08DbBwBK/MabQZN4BjJq7iR/W/k7LGuW4tUsdzm9WlejI/IwGbwqTJX5jTKHL2AH0O6s2k1K2M2ruZu75+CeqlYul75mJXNP+dMqVjPY6zLBlu15jTMCUKhHFDR0TmXZ/V969sS2JlUrz/NR1dHx+Gk99sZotew55HWJYshq/MSbgIiKEHk0S6NEkgdU79zNyzibGLtzC6PmbOadxArd1qUO7RDsPUFQs8RtjilTT08ox9KpWPNSzER/M38KHC7fw3ZrfaV69HLd1qc0FzavZeYAAs0/XGOOJhLKxPHBeQ+Y/fDb/uqwZh46nMXDcMrq8OIM3Z25g/+Fc3/LD5JElfmOMp0qWiOT6M2rxw31dea9vO+pWKc2L36yjw/PTeGLyKjb/aecBCps19RhjgkJEhJDcqArJjaqwdtcBRs3ZxLhF2/hgwRbOaZxA/7PseoDCYonfGBN0Glcry5DeLXmwZ0PGzPv7PECrmuXp16UO5zVNIMrOA+SbfXLGmKBVpYxzHmDew935Z6+m7Dt8nLs+Wkq3l2Yyas4mUo+leR1isWSJ3xgT9P57PcCgbrx9QxJVy8byzJQ1dHx+Gi9MXcdv+496HWKxYk09xphiIzJCOK9pVc5rWpWftu7l3dmb+M+PG3h39kYuaXkat3WpQ5PTynodZtCzxG+MKZZan16BEddXYNtfhxk5ZxPjl2zj05920KleJc4ol0ZXVTsRnA1r6jHGFGs1K5biqUuaMv/hs3moZyPW705laMoxznv1R8Yv3sbREye9DjHoWOI3xoSEcqWiGdCtLrMHd6df8xJEiDB40go6Pj+NF79Zx459R7wOMWhY4jfGhJQSURF0qh7N1IFd+Oi2M2iXWJG3Z22gy4vTueODFOZv2IOqeh2mp6yN3xgTkkSEM+vFc2a9eLb9dZgPF27hk8Xb+Gb1bzSqWoYbOyZyaevTKFUi/NKg1fiNMSGvZsVSPHJ+YxY8cjYvXtEcEeHRz1bS4blp/OurNWz767DXIRap8NvVGWPCVmx0JFe3O52r2tZk8ea9jJ63mVFzN/PunE2c3agKN52ZSOd68SHfG8gSvzEm7IgI7WtXpH3tiuzaf4SxC7by8aKt/LB2EXUrl+amMxO5vE0N4mJCM0UGrKlHRGqKyAwRWSMiq0VkYKb5g0RERSQ+UDEYY0xOqpUryQPnNWTuw915uXdLSsdE8cTk1XR8zrlL2IY/Ur0OsdAFcneWBgxS1aUiUgZIEZHvVXWNiNQEzgW2BnD7xhiTa7HRkVyRVIPL21Tnp237GDNvM2MXbuH9eZvpXC+ePh1q0aNxlZAYHC5giV9VdwG73OcHRWQtUB1YA7wCDAYmB2r7xhiTHyJCm9Mr0Ob0Cjx2YRPGL9nG2AVbuOPDFKqWjeW6M07nmnY1qVI21utQ802Koj+riCQCPwLNgGSgu6oOFJHNQFtV/TOLZfoD/QESEhKSxo0bl69tp6amEhcXl8/Ig4uVJfiESjnAyuLPyXRlxZ8nmbY1jVV/niRSICkhku6nR9OwQkRATwYXpCzJyckpqtr2lBmqGtAHEAekAJcDpYCFQDl33mYgPqd1JCUlaX7NmDEj38sGGytL8AmVcqhaWXJr4x+p+uyU1driqW+11kNTtMfLM3X0vE164MjxgGyvIGUBlmgWOTWgjVUiEg1MAsaq6qdAXaA2sNyt7dcAlopI1UDGYYwxhaV2fGkeu7AJCx89myFXtqBkiUiemLyaM56bxmOfrWTtrgNeh5ijgLXxi3PsMxJYq6pDAVR1JVDF5z2byaapxxhjgllsdCS929akd9uaLN+2jw8XbGFiynbGLtxKu8QK9OlQi57NqhITFel1qKcIZK+eTsANwEoRWeZOe1RVvw7gNo0xpsi1rFmeljXL89iFjZmYsp0PF2xh4LhlxMeV4LLW1bkyqSYNq5bxOsz/CmSvnjmA3zMeqpoYqO0bY0xRK1+qBLd1qcMtnWozZ/2fjF24hffmbuad2ZtoUaMcVybV4JKWp1G+VAlP4wzNy9KMMcZDERHCWQ0qc1aDyuxJPcbkZTuZkLKdJyav5tkpazmnSQJXtq1Bl3rxnlwXYInfGGMCqFJcDLd0rs0tnWuzeud+JqZsZ/KynXy1chdVysRwWZvq9E6qQb0qRdcUZInfGGOKSNPTytH0tHI8cn5jpq/bzcSU7bw7exNvz9pIq5rl6d22Bhe1OI1yJaMDGoclfmOMKWIloiLo2awqPZtV5Y+Dx5i8bAcTlmznsc9W8cyXazivaVWuTKpBp3qBGcrMEr8xxniocpkYbutSh1s712bVjgNMSNnG5GU7+WL5TqqVi+XGBtCtkLdpid8YY4KAiNC8Rjma1yjHYxc2Ztra3UxYso3KpQp/dNDiP8ycMcaEmJioSC5oXo33bm5PfMnCT9OW+I0xJsxY4jfGmDBjid8YY8KMJX5jjAkzlviNMSbMWOI3xpgwY4nfGGPCjCV+Y4wJM0Vys/WCEpE/gC35XDweCJU7fFlZgk+olAOsLMGqIGWppaqVM08sFom/IERkiWZ1l/liyMoSfEKlHGBlCVaBKIs19RhjTJixxG+MMWEmHBL/f7wOoBBZWYJPqJQDrCzBqtDLEvJt/MYYY/5XONT4jTHG+LDEb4wxYSakE7+I3Cciq0VklYh8LCKxXseUWyIySkR2i8gqn2kVReR7EfnV/VvByxhzI5tyDBGRdSKyQkQ+E5HyHoaYa1mVxWfeIBFREQnMTVILWXZlEZG73e9mtYj826v48iKb/7FWIrJARJaJyBIRae9ljLkhIjVFZIaIrHE//4Hu9EL/3Yds4heR6sA9QFtVbQZEAtd4G1WevA/0zDTtYWCaqtYHprmvg937nFqO74FmqtoC+AV4pKiDyqf3ObUsiEhN4Fxga1EHVADvk6ksIpIM9AJaqmpT4CUP4sqP9zn1e/k38LSqtgKecF8HuzRgkKo2AToAd4lIEwLwuw/ZxO+KAkqKSBRQCtjpcTy5pqo/An9lmtwLGO0+Hw1cWpQx5UdW5VDV71Q1zX25AKhR5IHlQzbfCcArwGCg2PSUyKYsA4AXVPWY+57dRR5YPmRTFgXKus/LUQx++6q6S1WXus8PAmuB6gTgdx+yiV9Vd+DUWLYCu4D9qvqdt1EVWIKq7nKf/wYkeBlMIbkFmOp1EPklIr2AHaq63OtYCkEDoIuILBSRWSLSzuuACuBeYIiIbMPJA8XlqBIAEUkEWgMLCcDvPmQTv9sO1guoDZwGlBaRPt5GVXjU6YdbbGqYWRGRx3AOb8d6HUt+iEgp4FGcpoRQEAVUxGlmeBAYLyLibUj5NgC4T1VrAvcBIz2OJ9dEJA6YBNyrqgd85xXW7z5kEz/QA9ikqn+o6gngU+BMj2MqqN9FpBqA+7dYHIpnRUT6AhcB12vxvZikLk7FYrmIbMZpsloqIlU9jSr/tgOfqmMRkI4zQFhxdBPObx5gAhD0J3cBRCQaJ+mPVdWM+Av9dx/KiX8r0EFESrm1lrNx2syKsy9w/qFx/072MJZ8E5GeOG3il6jqYa/jyS9VXamqVVQ1UVUTcRJnG1X9zePQ8utzIBlARBoAJSi+I1zuBLq6z7sDv3oYS664eWoksFZVh/rMKvzfvaqG7AN4GlgHrAI+AGK8jikPsX+Mc27iBE5CuRWohHNW/1fgB6Ci13HmsxzrgW3AMvfxltdx5rcsmeZvBuK9jrMA30sJ4EP397IU6O51nAUoS2cgBViO006e5HWcuShHZ5xmnBU+v40LAvG7tyEbjDEmzIRyU48xxpgsWOI3xpgwY4nfGGPCjCV+Y4wJM5b4jTEmzFjiNyHPHTXzQ5/XUSLyh4hMCeA2XxWRs9znM0Wkrfu8tjvK4nk5LP9DcRh91RRPlvhNODgENBORku7rc4AdgdqYiFQCOqgzeJjv9BrANzgjMH6bw2o+AO4MUIgmzFniN+Hia+BC9/m1OBf9ACAi7UVkvoj8JCLzRKShO72piCxyx3RfISL1RaS0iHwlIsvd+zxcncW2rsBJ8L6qAd8Bj6nqF+76S4nIeHf89c/cwdHauu//wo3TmEJnid+Ei3HANe7NeFrgXM2ZYR3QRVVb4wy49pw7/Q5gmDpjurfFuSq0J7BTVVuqc5+HzAkeoBPOVaO+RgOvq+pEn2l3AnvVGX/9cSApY4aq7gVi3KMHYwqVJX4TFlR1BZCIU4v+OtPscsAE9w5OrwBN3enzgUdF5CGglqoeAVYC54jIiyLSRVX3Z7G5asAfmab9APRxR/TM0Blnh4SqrsK5VN/XbpyRZY0pVJb4TTj5Amds9o8zTf8nMMOtwV8MxAKo6kfAJcAR4GsR6a6qvwBtcHYAz4pIVkMyH8lYh49/A4txdjBRuYw31l2XMYXKEr8JJ6Nwbse3MtP0cvx9srdvxkQRqQNsVNXhOCMithCR04DDqvohMARnJ5DZWqBeFtPvBQ4AI92RGOcCV7nbagI099m2AFVxBn4zplBZ4jdhQ1W3u0k8s38Dz4vITzg3I8lwFbBKRJYBzYAxOMl5kTvtSeDZLNb3FdAti+0rzrC61dxtvgFUFpE17npWAxlNR0nAAv37FpXGFBobndOYABCROcBFqrrPz3sigWhVPSoidXHOAzRU1eMiMgz4QlWnFU3EJpzktq3RGJM3g4DTgX1+3lMKmOHedUmAO1X1uDtvlSV9EyhW4zfGmDBjbfzGGBNmLPEbY0yYscRvjDFhxhK/McaEGUv8xhgTZv4fOb/Ak9Zef/kAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "def speed(mass):\n", - " # Prepare Environment\n", - " Env = Environment(\n", - " railLength=5.2,\n", - " latitude=32.990254,\n", - " longitude=-106.974998,\n", - " elevation=1400,\n", - " date=(2018, 6, 20, 18),\n", - " )\n", - "\n", - " Env.setAtmosphericModel(type=\"CustomAtmosphere\", wind_v=-5)\n", - "\n", - " # Prepare Motor\n", - " Pro75M1670 = SolidMotor(\n", - " thrustSource=\"../../data/motors/Cesaroni_M1670.eng\",\n", - " burnOut=3.9,\n", - " grainNumber=5,\n", - " grainSeparation=5 / 1000,\n", - " grainDensity=1815,\n", - " grainOuterRadius=33 / 1000,\n", - " grainInitialInnerRadius=15 / 1000,\n", - " grainInitialHeight=120 / 1000,\n", - " nozzleRadius=33 / 1000,\n", - " throatRadius=11 / 1000,\n", - " interpolationMethod=\"linear\",\n", - " )\n", - "\n", - " # Prepare Rocket\n", - " Calisto = Rocket(\n", - " motor=Pro75M1670,\n", - " radius=127 / 2000,\n", - " mass=mass,\n", - " inertiaI=6.60,\n", - " inertiaZ=0.0351,\n", - " distanceRocketNozzle=-1.255,\n", - " distanceRocketPropellant=-0.85704,\n", - " powerOffDrag=\"../../data/calisto/powerOffDragCurve.csv\",\n", - " powerOnDrag=\"../../data/calisto/powerOnDragCurve.csv\",\n", - " )\n", - "\n", - " Calisto.setRailButtons([0.2, -0.5])\n", - " Nose = Calisto.addNose(length=0.55829, kind=\"vonKarman\", distanceToCM=0.71971)\n", - " FinSet = Calisto.addFins(\n", - " 4, span=0.1, rootChord=0.120, tipChord=0.040, distanceToCM=-1.04956\n", - " )\n", - " Tail = Calisto.addTail(\n", - " topRadius=0.0635, bottomRadius=0.0435, length=0.060, distanceToCM=-1.194656\n", - " )\n", - "\n", - " # Simulate Flight until Apogee\n", - " TestFlight = Flight(\n", - " rocket=Calisto,\n", - " environment=Env,\n", - " inclination=85,\n", - " heading=0,\n", - " terminateOnApogee=True,\n", - " )\n", - " return TestFlight.outOfRailVelocity\n", - "\n", - "\n", - "speedbymass = Function(speed, inputs=\"Mass (kg)\", outputs=\"Out of Rail Speed (m/s)\")\n", - "speedbymass.plot(8, 20, 20)" - ] - } - ], - "metadata": { - "hide_input": false, - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/docs/notebooks/getting_started_colab.ipynb b/docs/notebooks/getting_started_colab.ipynb index 801e43907..bd38cad34 100644 --- a/docs/notebooks/getting_started_colab.ipynb +++ b/docs/notebooks/getting_started_colab.ipynb @@ -246,6 +246,7 @@ "Pro75M1670 = SolidMotor(\n", " thrustSource=\"../../data/motors/Cesaroni_M1670.eng\",\n", " burnOut=3.9,\n", + " distanceNozzleMotorReference=0.40396,\n", " grainNumber=5,\n", " grainSeparation=5 / 1000,\n", " grainDensity=1815,\n", @@ -320,7 +321,6 @@ " inertiaI=6.60,\n", " inertiaZ=0.0351,\n", " distanceRocketNozzle=-1.255,\n", - " distanceRocketPropellant=-0.85704,\n", " powerOffDrag=\"../../data/calisto/powerOffDragCurve.csv\",\n", " powerOnDrag=\"../../data/calisto/powerOnDragCurve.csv\",\n", ")\n", @@ -559,7 +559,6 @@ " inertiaI=6.60,\n", " inertiaZ=0.0351,\n", " distanceRocketNozzle=-1.255,\n", - " distanceRocketPropellant=-0.85704,\n", " powerOffDrag=\"../../data/calisto/powerOffDragCurve.csv\",\n", " powerOnDrag=\"../../data/calisto/powerOnDragCurve.csv\",\n", ")\n", @@ -663,6 +662,7 @@ " thrustSource=\"../../data/motors/Cesaroni_M1670.eng\",\n", " burnOut=3.9,\n", " grainNumber=5,\n", + " distanceNozzleMotorReference=0.40396,\n", " grainSeparation=5 / 1000,\n", " grainDensity=1815,\n", " grainOuterRadius=33 / 1000,\n", @@ -681,7 +681,6 @@ " inertiaI=6.60,\n", " inertiaZ=0.0351,\n", " distanceRocketNozzle=-1.255,\n", - " distanceRocketPropellant=-0.85704,\n", " powerOffDrag=\"../../data/calisto/powerOffDragCurve.csv\",\n", " powerOnDrag=\"../../data/calisto/powerOnDragCurve.csv\",\n", ")\n", @@ -775,6 +774,7 @@ " thrustSource=\"../../data/motors/Cesaroni_M1670.eng\",\n", " burnOut=3.9,\n", " grainNumber=5,\n", + " distanceNozzleMotorReference=0.40396,\n", " grainSeparation=5 / 1000,\n", " grainDensity=1815,\n", " grainOuterRadius=33 / 1000,\n", @@ -793,7 +793,6 @@ " inertiaI=6.60,\n", " inertiaZ=0.0351,\n", " distanceRocketNozzle=-1.255,\n", - " distanceRocketPropellant=-0.85704,\n", " powerOffDrag=\"../../data/calisto/powerOffDragCurve.csv\",\n", " powerOnDrag=\"../../data/calisto/powerOnDragCurve.csv\",\n", " )\n", @@ -861,6 +860,7 @@ " thrustSource=\"../../data/motors/Cesaroni_M1670.eng\",\n", " burnOut=3.9,\n", " grainNumber=5,\n", + " distanceNozzleMotorReference=0.40396,\n", " grainSeparation=5 / 1000,\n", " grainDensity=1815,\n", " grainOuterRadius=33 / 1000,\n", @@ -879,7 +879,6 @@ " inertiaI=6.60,\n", " inertiaZ=0.0351,\n", " distanceRocketNozzle=-1.255,\n", - " distanceRocketPropellant=-0.85704,\n", " powerOffDrag=\"../../data/calisto/powerOffDragCurve.csv\",\n", " powerOnDrag=\"../../data/calisto/powerOnDragCurve.csv\",\n", " )\n", diff --git a/docs/notebooks/solid_motor_class_usage.ipynb b/docs/notebooks/solid_motor_class_usage.ipynb index 352ba2f11..ac2237225 100644 --- a/docs/notebooks/solid_motor_class_usage.ipynb +++ b/docs/notebooks/solid_motor_class_usage.ipynb @@ -83,6 +83,7 @@ "MOTOR = SolidMotor(\n", " thrustSource=1500,\n", " burnOut=5.3,\n", + " distanceNozzleMotorReference=0.40396,\n", " reshapeThrustCurve=False,\n", " grainNumber=6,\n", " grainSeparation=6 / 1000,\n", @@ -527,6 +528,7 @@ "MOTOR = SolidMotor(\n", " thrustSource=r\"../../data/keron/thrustCurve.csv\",\n", " burnOut=5.274,\n", + " distanceNozzleMotorReference=0.40396,\n", " reshapeThrustCurve=False,\n", " grainNumber=6,\n", " grainSeparation=6 / 1000,\n", @@ -616,6 +618,7 @@ "MOTOR = SolidMotor(\n", " thrustSource=r\"../../data/motors/Cesaroni_7450M2505-P.eng\",\n", " burnOut=3.0,\n", + " distanceNozzleMotorReference=0.40396,\n", " grainNumber=6,\n", " grainSeparation=6 / 1000,\n", " grainOuterRadius=21.40 / 1000,\n", @@ -651,6 +654,7 @@ "MOTOR = SolidMotor(\n", " thrustSource=lambda x: 1 / (x + 1),\n", " burnOut=5.274,\n", + " distanceNozzleMotorReference=0.40396,\n", " reshapeThrustCurve=False,\n", " grainNumber=6,\n", " grainSeparation=6 / 1000,\n", @@ -1028,6 +1032,7 @@ "MOTOR = SolidMotor(\n", " thrustSource=r\"../../data/keron/thrustCurve.csv\",\n", " burnOut=5.274,\n", + " distanceNozzleMotorReference=0.40396,\n", " reshapeThrustCurve=[10, 6000],\n", " grainNumber=6,\n", " grainSeparation=6 / 1000,\n", diff --git a/rocketpy/Flight.py b/rocketpy/Flight.py index 2145daa46..d420e0a75 100644 --- a/rocketpy/Flight.py +++ b/rocketpy/Flight.py @@ -1347,7 +1347,7 @@ def uDot(self, t, u, postProcessing=False): M = Mt + Mr mu = (Mt * Mr) / (Mt + Mr) # Geometry - b = -self.rocket.distanceRocketPropellant + b = -self.rocket.distanceRocketMotorReference c = -self.rocket.distanceRocketNozzle a = b * Mt / M rN = self.rocket.motor.nozzleRadius @@ -1905,7 +1905,7 @@ def postProcess(self, interpolation="spline", extrapolation="natural"): self.aerodynamicSpinMoment = self.M3 self.aerodynamicSpinMoment.setOutputs("Aerodynamic Spin Moment (N m)") # Energy - b = -self.rocket.distanceRocketPropellant + b = -self.rocket.distanceRocketMotorReference totalMass = self.rocket.totalMass mu = self.rocket.reducedMass Rz = self.rocket.inertiaZ diff --git a/rocketpy/Motor.py b/rocketpy/Motor.py index 628d7c291..6b566c047 100644 --- a/rocketpy/Motor.py +++ b/rocketpy/Motor.py @@ -115,6 +115,7 @@ def __init__( self, thrustSource, burnOut, + distanceNozzleMotorReference, nozzleRadius=0.0335, throatRadius=0.0114, reshapeThrustCurve=False, @@ -137,6 +138,12 @@ def __init__( Function. See help(Function). Thrust units are Newtons. burnOut : int, float Motor burn out time in seconds. + distanceNozzleMotorReference : int, float + Distance from nozzle outlet to the motor reference point, which + for Solids and Hybrids is the center of mass of the solid propellant, + in meters. Generally positive, meaning a positive position in the + z axis which has an origin in the rocket's center of mass (without + propellant) and points towards the nose cone. nozzleRadius : int, float, optional Motor's nozzle outlet radius in meters. Used to calculate Kn curve. Optional if the Kn curve is not interesting. Its value does not impact @@ -166,6 +173,9 @@ def __init__( self.interpolate = interpolationMethod self.burnOutTime = burnOut + # Geometric parameters + self.distanceNozzleMotorReference = distanceNozzleMotorReference + # Check if thrustSource is csv, eng, function or other if isinstance(thrustSource, str): # Determine if csv or eng @@ -544,6 +554,11 @@ def info(self): + "{:.3f}".format(self.propellantInitialMass) + " kg" ) + print( + "Distance Nozzle - Motor reference point: " + + str(self.distanceNozzleMotorReference) + + " m" + ) print( "Propellant Exhaust Velocity: " + "{:.3f}".format(self.exhaustVelocity) @@ -580,6 +595,11 @@ def allInfo(self): print("Nozzle Details") print("Nozzle Radius: " + str(self.nozzleRadius) + " m") print("Nozzle Throat Radius: " + str(self.throatRadius) + " m") + print( + "Distance Nozzle - Motor reference point: " + + str(self.distanceNozzleMotorReference) + + " m" + ) # Print grain details print("\nGrain Details") @@ -724,6 +744,7 @@ def __init__( self, thrustSource, burnOut, + distanceNozzleMotorReference, grainNumber, grainDensity, grainOuterRadius, @@ -793,6 +814,9 @@ def __init__( self.interpolate = interpolationMethod self.burnOutTime = burnOut + # Geometric parameters + self.distanceNozzleMotorReference = distanceNozzleMotorReference + # Check if thrustSource is csv, eng, function or other if isinstance(thrustSource, str): # Determine if csv or eng @@ -1208,6 +1232,11 @@ def info(self): + "{:.3f}".format(self.propellantInitialMass) + " kg" ) + print( + "Distance Nozzle - Motor reference point: " + + str(self.distanceNozzleMotorReference) + + " m" + ) print( "Propellant Exhaust Velocity: " + "{:.3f}".format(self.exhaustVelocity) @@ -1244,6 +1273,11 @@ def allInfo(self): print("Nozzle Details") print("Nozzle Radius: " + str(self.nozzleRadius) + " m") print("Nozzle Throat Radius: " + str(self.throatRadius) + " m") + print( + "Distance Nozzle - Motor reference point: " + + str(self.distanceNozzleMotorReference) + + " m" + ) # Print grain details print("\nGrain Details") @@ -1388,6 +1422,7 @@ def __init__( self, thrustSource, burnOut, + distanceNozzleMotorReference, grainNumber, grainDensity, grainOuterRadius, @@ -1395,7 +1430,7 @@ def __init__( grainInitialHeight, oxidizerTankRadius, oxidizerTankHeight, - oxidizerInitialPresure, + oxidizerInitialPressure, oxidizerDensity, oxidizerMolarMass, oxidizerInitialVolume, @@ -1438,10 +1473,10 @@ def __init__( Oxidizer Tank inner radius. oxidizerTankHeight : Oxidizer Tank Height. - oxidizerInitialPresure : - Initial presure of the oxidizer tank, could be equal to the pressure of the source cylinder in atm. + oxidizerInitialPressure : + Initial pressure of the oxidizer tank, could be equal to the pressure of the source cylinder in atm. oxidizerDensity : - Oxidizer theoretical density in liquit state, for N2O is equal to 1.98 (Kg/m^3). + Oxidizer theoretical density in liquid state, for N2O is equal to 1.98 (Kg/m^3). oxidizerMolarMass : Oxidizer molar mass, for the N2O is equal to 44.01 (g/mol). oxidizerInitialVolume : @@ -1481,6 +1516,9 @@ def __init__( self.interpolate = interpolationMethod self.burnOutTime = burnOut + # Geometric parameters + self.distanceNozzleMotorReference = distanceNozzleMotorReference + # Check if thrustSource is csv, eng, function or other if isinstance(thrustSource, str): # Determine if csv or eng @@ -1519,6 +1557,7 @@ def __init__( # Grain and nozzle parameters self.nozzleRadius = nozzleRadius self.throatRadius = throatRadius + # Propellant parameters self.grainNumber = grainNumber self.grainSeparation = grainSeparation self.grainDensity = grainDensity @@ -1527,7 +1566,7 @@ def __init__( self.grainInitialHeight = grainInitialHeight self.oxidizerTankRadius = oxidizerTankRadius self.oxidizerTankHeight = oxidizerTankHeight - self.oxidizerInitialPresure = oxidizerInitialPresure + self.oxidizerInitialPressure = oxidizerInitialPressure self.oxidizerDensity = oxidizerDensity self.oxidizerMolarMass = oxidizerMolarMass self.oxidizerInitialVolume = oxidizerInitialVolume @@ -1910,6 +1949,11 @@ def info(self): + "{:.3f}".format(self.propellantInitialMass) + " kg" ) + print( + "Distance Nozzle - Motor reference point: " + + str(self.distanceNozzleMotorReference) + + " m" + ) print( "Propellant Exhaust Velocity: " + "{:.3f}".format(self.exhaustVelocity) diff --git a/rocketpy/Rocket.py b/rocketpy/Rocket.py index 9b11c10cc..5c4491db0 100644 --- a/rocketpy/Rocket.py +++ b/rocketpy/Rocket.py @@ -40,10 +40,11 @@ class Rocket: Rocket.distanceRocketNozzle : float Distance between rocket's center of mass, without propellant, to the exit face of the nozzle, in meters. Always positive. - Rocket.distanceRocketPropellant : float + Rocket.distanceRocketMotorReference : float Distance between rocket's center of mass, without propellant, - to the motor reference point, which for solid and hybrid motors - is the center of mass of solid propellant, in meters. Always positive. + to the motor reference point, for solid and hybrid motor + the reference point is the center of mass of solid propellant, + in meters. Always positive. Mass and Inertia attributes: Rocket.mass : float @@ -113,7 +114,6 @@ def __init__( inertiaZ, radius, distanceRocketNozzle, - distanceRocketPropellant, powerOffDrag, powerOnDrag, ): @@ -125,12 +125,12 @@ def __init__( motor : Motor Motor used in the rocket. See Motor class for more information. mass : int, float - Unloaded rocket total mass (without propelant) in kg. + Unloaded rocket total mass (without propellant) in kg. inertiaI : int, float Unloaded rocket lateral (perpendicular to axis of symmetry) - moment of inertia (without propelant) in kg m^2. + moment of inertia (without propellant) in kg m^2. inertiaZ : int, float - Unloaded rocket axial moment of inertia (without propelant) + Unloaded rocket axial moment of inertia (without propellant) in kg m^2. radius : int, float Rocket biggest outer radius in meters. @@ -139,12 +139,12 @@ def __init__( in meters. Generally negative, meaning a negative position in the z axis which has an origin in the rocket's center of mass (without propellant) and points towards the nose cone. - distanceRocketPropellant : int, float + distanceRocketMotorReference : int, float Distance from rocket's unloaded center of mass to the motor reference - point, which for solid and hybrid motor the is the center of mass of - solid propellant, in meters. Generally negative, meaning a negative - position in the z axis which has an origin in the rocket's center of - mass (with out propellant) and points towards the nose cone. + point, for solid and hybrid motor the reference point is the center + of mass of solid propellant, in meters. Generally negative, meaning a negative + position in the z axis which has an origin in the rocket's center + of mass (with out propellant) and points towards the nose cone. powerOffDrag : int, float, callable, string, array Rocket's drag coefficient when the motor is off. Can be given as an entry to the Function class. See help(Function) for more @@ -162,22 +162,30 @@ def __init__( ------- None """ + # Define motor to be used + self.motor = motor + + # Center of mass distance to points of interest + self.distanceRocketNozzle = distanceRocketNozzle + self.distanceRocketMotorReference = ( + self.distanceRocketNozzle + self.motor.distanceNozzleMotorReference + ) + # Define rocket inertia attributes in SI units self.mass = mass self.inertiaI = inertiaI self.inertiaZ = inertiaZ + self.centerOfMass = ( - (distanceRocketPropellant - motor.yCM) * motor.mass / (mass + motor.mass) + (self.distanceRocketMotorReference - self.motor.yCM) + * motor.mass + / (mass + motor.mass) ) # Define rocket geometrical parameters in SI units self.radius = radius self.area = np.pi * self.radius**2 - # Center of mass distance to points of interest - self.distanceRocketNozzle = distanceRocketNozzle - self.distanceRocketPropellant = distanceRocketPropellant - # Eccentricity data initialization self.cpEccentricityX = 0 self.cpEccentricityY = 0 @@ -213,9 +221,6 @@ def __init__( "constant", ) - # Define motor to be used - self.motor = motor - # Important dynamic inertial quantities self.reducedMass = None self.totalMass = None @@ -963,7 +968,7 @@ def allInfo(self): ) print( "Rocket Center of Mass - Motor reference point: " - + str(self.distanceRocketPropellant) + + str(self.distanceRocketMotorReference) + " m" ) print( diff --git a/tests/acceptance/test_bella_lui_rocket.py b/tests/acceptance/test_bella_lui_rocket.py index 602e4cea0..c95023961 100644 --- a/tests/acceptance/test_bella_lui_rocket.py +++ b/tests/acceptance/test_bella_lui_rocket.py @@ -18,6 +18,7 @@ def test_bella_lui_rocket_data_asserts_acceptance(): # Propulsion Details "impulse": (2157, 0.03 * 2157), "burnOut": (2.43, 0.1), + "distanceNozzleMotorReference": (0.1356, 0.100), "nozzleRadius": (44.45 / 1000, 0.001), "throatRadius": (21.4376 / 1000, 0.001), "grainSeparation": (3 / 1000, 1 / 1000), @@ -30,7 +31,6 @@ def test_bella_lui_rocket_data_asserts_acceptance(): "inertiaZ": (0.064244, 0.03 * 0.064244), "radius": (156 / 2000, 0.001), "distanceRocketNozzle": (-1.1356, 0.100), - "distanceRocketPropellant": (-1, 0.100), "powerOffDrag": (1, 0.05), "powerOnDrag": (1, 0.05), "noseLength": (0.242, 0.001), @@ -75,6 +75,7 @@ def test_bella_lui_rocket_data_asserts_acceptance(): thrustSource="tests/fixtures/acceptance/EPFL_Bella_Lui/bella_lui_motor_AeroTech_K828FJ.eng", burnOut=parameters.get("burnOut")[0], grainNumber=3, + distanceNozzleMotorReference=parameters.get("distanceNozzleMotorReference")[0], grainSeparation=parameters.get("grainSeparation")[0], grainDensity=parameters.get("grainDensity")[0], grainOuterRadius=parameters.get("grainOuterRadius")[0], @@ -93,7 +94,6 @@ def test_bella_lui_rocket_data_asserts_acceptance(): inertiaI=parameters.get("inertiaI")[0], inertiaZ=parameters.get("inertiaZ")[0], distanceRocketNozzle=parameters.get("distanceRocketNozzle")[0], - distanceRocketPropellant=parameters.get("distanceRocketPropellant")[0], powerOffDrag=0.43, powerOnDrag=0.43, ) @@ -176,7 +176,7 @@ def drogueTrigger(p, y): ) TestFlight.postProcess() - # Comparision with Real Data + # Comparison with Real Data flightData = np.loadtxt( "tests/fixtures/acceptance/EPFL_Bella_Lui/bella_lui_flight_data_filtered.csv", skiprows=1, diff --git a/tests/acceptance/test_ndrt_2020_rocket.py b/tests/acceptance/test_ndrt_2020_rocket.py index 6edcd88b7..841ae360f 100644 --- a/tests/acceptance/test_ndrt_2020_rocket.py +++ b/tests/acceptance/test_ndrt_2020_rocket.py @@ -28,6 +28,7 @@ def test_ndrt_2020_rocket_data_asserts_acceptance(): # Propulsion Details "impulse": (4895.050, 0.033 * 4895.050), "burnOut": (3.51, 0.1), + "distanceNozzleMotorReference": (1.255 - 0.85704, 0.001), "nozzleRadius": (49.5 / 2000, 0.001), "throatRadius": (21.5 / 2000, 0.001), "grainSeparation": (3 / 1000, 0.001), @@ -41,7 +42,7 @@ def test_ndrt_2020_rocket_data_asserts_acceptance(): "inertiaZ": (0.15982, 0.3 * 0.15982), "radius": (203 / 2000, 0.001), "distanceRocketNozzle": (-1.255, 0.100), - "distanceRocketPropellant": (-0.85704, 0.100), + # "distanceRocketPropellant": (-0.85704, 0.100), "powerOffDrag": (1, 0.033), "powerOnDrag": (1, 0.033), "noseLength": (0.610, 0.001), @@ -87,6 +88,7 @@ def test_ndrt_2020_rocket_data_asserts_acceptance(): thrustSource="tests/fixtures/acceptance/NDRT_2020/ndrt_2020_motor_Cesaroni_4895L1395-P.eng", burnOut=parameters.get("burnOut")[0], grainNumber=5, + distanceNozzleMotorReference=parameters.get("distanceNozzleMotorReference")[0], grainSeparation=parameters.get("grainSeparation")[0], grainDensity=parameters.get("grainDensity")[0], grainOuterRadius=parameters.get("grainOuterRadius")[0], @@ -105,7 +107,6 @@ def test_ndrt_2020_rocket_data_asserts_acceptance(): inertiaI=parameters.get("inertiaI")[0], inertiaZ=parameters.get("inertiaZ")[0], distanceRocketNozzle=parameters.get("distanceRocketNozzle")[0], - distanceRocketPropellant=parameters.get("distanceRocketPropellant")[0], powerOffDrag=parameters.get("dragCoefficient")[0], powerOnDrag=parameters.get("dragCoefficient")[0], ) diff --git a/tests/conftest.py b/tests/conftest.py index b08ad8752..be55dfa10 100644 --- a/tests/conftest.py +++ b/tests/conftest.py @@ -20,6 +20,7 @@ def solid_motor(): thrustSource="data/motors/Cesaroni_M1670.eng", burnOut=3.9, grainNumber=5, + distanceNozzleMotorReference=0.39796, grainSeparation=5 / 1000, grainDensity=1815, grainOuterRadius=33 / 1000, @@ -41,7 +42,6 @@ def rocket(solid_motor): inertiaI=6.60, inertiaZ=0.0351, distanceRocketNozzle=-1.255, - distanceRocketPropellant=-0.85704, powerOffDrag="data/calisto/powerOffDragCurve.csv", powerOnDrag="data/calisto/powerOnDragCurve.csv", ) @@ -64,6 +64,7 @@ def dimensionless_solid_motor(kg, m): thrustSource="data/motors/Cesaroni_M1670.eng", burnOut=3.9, grainNumber=5, + distanceNozzleMotorReference=0.39796 * m, grainSeparation=5 / 1000 * m, grainDensity=1815 * (kg / m**3), grainOuterRadius=33 / 1000 * m, @@ -85,7 +86,6 @@ def dimensionless_rocket(kg, m, dimensionless_solid_motor): inertiaI=6.60 * (kg * m**2), inertiaZ=0.0351 * (kg * m**2), distanceRocketNozzle=-1.255 * m, - distanceRocketPropellant=-0.85704 * m, powerOffDrag="data/calisto/powerOffDragCurve.csv", powerOnDrag="data/calisto/powerOnDragCurve.csv", ) diff --git a/tests/fixtures/acceptance/EPFL_Bella_Lui/bella_lui_flight_sim.py b/tests/fixtures/acceptance/EPFL_Bella_Lui/bella_lui_flight_sim.py index 827b3a770..2cac00eb0 100644 --- a/tests/fixtures/acceptance/EPFL_Bella_Lui/bella_lui_flight_sim.py +++ b/tests/fixtures/acceptance/EPFL_Bella_Lui/bella_lui_flight_sim.py @@ -2,6 +2,7 @@ # Permission to use flight data given by Antoine Scardigli, 2020 # Importing libraries +from scipy.signal import savgol_filter from rocketpy import Environment, SolidMotor, Rocket, Flight, Function import numpy as np import matplotlib.pyplot as plt @@ -16,6 +17,7 @@ "nozzleRadius": (44.45 / 1000, 0.001), "throatRadius": (21.4376 / 1000, 0.001), "grainSeparation": (3 / 1000, 1 / 1000), + "distanceNozzleMotorReference": (1.1356 - 1, 0.001), "grainDensity": (782.4, 30), "grainOuterRadius": (85.598 / 2000, 0.001), "grainInitialInnerRadius": (33.147 / 1000, 0.002), @@ -25,7 +27,7 @@ "inertiaZ": (0.064244, 0.03 * 0.064244), "radius": (156 / 2000, 0.001), "distanceRocketNozzle": (-1.1356, 0.100), - "distanceRocketPropellant": (-1, 0.100), + # "distanceRocketPropellant": (-1, 0.100), "powerOffDrag": (1, 0.05), "powerOnDrag": (1, 0.05), "noseLength": (0.242, 0.001), @@ -70,6 +72,7 @@ thrustSource="tests/fixtures/acceptance/EPFL_Bella_Lui/bella_lui_motor_AeroTech_K828FJ.eng", burnOut=parameters.get("burnOut")[0], grainNumber=3, + distanceNozzleMotorReference=parameters.get("distanceNozzleMotorReference")[0], grainSeparation=parameters.get("grainSeparation")[0], grainDensity=parameters.get("grainDensity")[0], grainOuterRadius=parameters.get("grainOuterRadius")[0], @@ -88,7 +91,6 @@ inertiaI=parameters.get("inertiaI")[0], inertiaZ=parameters.get("inertiaZ")[0], distanceRocketNozzle=parameters.get("distanceRocketNozzle")[0], - distanceRocketPropellant=parameters.get("distanceRocketPropellant")[0], powerOffDrag=0.43, powerOnDrag=0.43, ) @@ -113,6 +115,8 @@ ) # Parachute set-up + + def drogueTrigger(p, y): # p = pressure # y = [x, y, z, vx, vy, vz, e0, e1, e2, e3, w1, w2, w3] @@ -202,7 +206,6 @@ def drogueTrigger(p, y): acceleration_rcp.append(TestFlight.az(TestFlight.tFinal)) # Acceleration comparison (will not be used in our publication) -from scipy.signal import savgol_filter # Calculate the acceleration as a velocity derivative acceleration_Kalt = [0] diff --git a/tests/fixtures/acceptance/NDRT_2020/ndrt_2020_flight_sim.py b/tests/fixtures/acceptance/NDRT_2020/ndrt_2020_flight_sim.py index 4864aa42d..1bf655927 100644 --- a/tests/fixtures/acceptance/NDRT_2020/ndrt_2020_flight_sim.py +++ b/tests/fixtures/acceptance/NDRT_2020/ndrt_2020_flight_sim.py @@ -24,6 +24,7 @@ "nozzleRadius": (49.5 / 2000, 0.001), "throatRadius": (21.5 / 2000, 0.001), "grainSeparation": (3 / 1000, 0.001), + "distanceNozzleMotorReference": (1.255 - 0.85704, 0.001), "grainDensity": (1519.708, 30), "grainOuterRadius": (33 / 1000, 0.001), "grainInitialInnerRadius": (15 / 1000, 0.002), @@ -34,7 +35,7 @@ "inertiaZ": (0.15982, 0.3 * 0.15982), "radius": (203 / 2000, 0.001), "distanceRocketNozzle": (-1.255, 0.100), - "distanceRocketPropellant": (-0.85704, 0.100), + # "distanceRocketPropellant": (-0.85704, 0.100), "powerOffDrag": (1, 0.033), "powerOnDrag": (1, 0.033), "noseLength": (0.610, 0.001), @@ -80,6 +81,7 @@ thrustSource="tests/fixtures/acceptance/NDRT_2020/ndrt_2020_motor_Cesaroni_4895L1395-P.eng", burnOut=parameters.get("burnOut")[0], grainNumber=5, + distanceNozzleMotorReference=parameters.get("distanceNozzleMotorReference")[0], grainSeparation=parameters.get("grainSeparation")[0], grainDensity=parameters.get("grainDensity")[0], grainOuterRadius=parameters.get("grainOuterRadius")[0], @@ -98,7 +100,6 @@ inertiaI=parameters.get("inertiaI")[0], inertiaZ=parameters.get("inertiaZ")[0], distanceRocketNozzle=parameters.get("distanceRocketNozzle")[0], - distanceRocketPropellant=parameters.get("distanceRocketPropellant")[0], powerOffDrag=parameters.get("dragCoefficient")[0], powerOnDrag=parameters.get("dragCoefficient")[0], ) @@ -123,6 +124,8 @@ ) # Parachute set-up + + def drogueTrigger(p, y): # p = pressure # y = [x, y, z, vx, vy, vz, e0, e1, e2, e3, w1, w2, w3] diff --git a/tests/fixtures/acceptance/PJ_Valetudo/valetudo_flight_sim.py b/tests/fixtures/acceptance/PJ_Valetudo/valetudo_flight_sim.py index 1f1d97bfe..db2f16df4 100644 --- a/tests/fixtures/acceptance/PJ_Valetudo/valetudo_flight_sim.py +++ b/tests/fixtures/acceptance/PJ_Valetudo/valetudo_flight_sim.py @@ -24,6 +24,7 @@ "nozzleRadius": (21.642 / 1000, 0.5 / 1000), "throatRadius": (8 / 1000, 0.5 / 1000), "grainSeparation": (6 / 1000, 1 / 1000), + "distanceNozzleMotorReference": (1.024 - 0.571, 1 / 1000), "grainDensity": (1707, 50), "grainOuterRadius": (21.4 / 1000, 0.375 / 1000), "grainInitialInnerRadius": (9.65 / 1000, 0.375 / 1000), @@ -33,7 +34,7 @@ "inertiaZ": (0.007, 0.00007), "radius": (40.45 / 1000, 0.001), "distanceRocketNozzle": (-1.024, 0.001), - "distanceRocketPropellant": (-0.571, 0.001), + # "distanceRocketPropellant": (-0.571, 0.001), "powerOffDrag": (0.9081 / 1.05, 0.033), "powerOnDrag": (0.9081 / 1.05, 0.033), "noseLength": (0.274, 0.001), @@ -77,6 +78,9 @@ Keron = SolidMotor( thrustSource="tests/fixtures/acceptance/PJ_Valetudo/valetudo_motor_Keron.csv", burnOut=5.274, + distanceNozzleMotorReference=analysis_parameters.get( + "distanceNozzleMotorReference" + )[0], reshapeThrustCurve=( analysis_parameters.get("burnOut")[0], analysis_parameters.get("impulse")[0], @@ -100,7 +104,6 @@ inertiaI=analysis_parameters.get("inertiaI")[0], inertiaZ=analysis_parameters.get("inertiaZ")[0], distanceRocketNozzle=analysis_parameters.get("distanceRocketNozzle")[0], - distanceRocketPropellant=analysis_parameters.get("distanceRocketPropellant")[0], powerOffDrag="tests/fixtures/acceptance/PJ_Valetudo/valetudo_drag_power_off.csv", powerOnDrag="tests/fixtures/acceptance/PJ_Valetudo/valetudo_drag_power_on.csv", ) diff --git a/tests/test_environment.py b/tests/test_environment.py index c648d7100..8ebed8722 100644 --- a/tests/test_environment.py +++ b/tests/test_environment.py @@ -3,7 +3,7 @@ import pytest import pytz -from rocketpy import Environment, Flight, Rocket, SolidMotor +from rocketpy import Environment @pytest.fixture diff --git a/tests/test_flight.py b/tests/test_flight.py index b8a229fa4..22dfce579 100644 --- a/tests/test_flight.py +++ b/tests/test_flight.py @@ -11,6 +11,8 @@ plt.rcParams.update({"figure.max_open_warning": 0}) # Helper functions + + def setup_rocket_with_given_static_margin(rocket, static_margin): """Takes any rocket, removes its aerodynamic surfaces and adds a set of nose, fins and tail specially designed to have a given static margin. @@ -76,6 +78,7 @@ def test_flight(mock_show): burnOut=3.9, grainNumber=5, grainSeparation=5 / 1000, + distanceNozzleMotorReference=0.39796, grainDensity=1815, grainOuterRadius=33 / 1000, grainInitialInnerRadius=15 / 1000, @@ -92,7 +95,6 @@ def test_flight(mock_show): inertiaI=6.60, inertiaZ=0.0351, distanceRocketNozzle=-1.255, - distanceRocketPropellant=-0.85704, powerOffDrag="data/calisto/powerOffDragCurve.csv", powerOnDrag="data/calisto/powerOnDragCurve.csv", ) @@ -165,6 +167,7 @@ def test_initial_solution(mock_show): burnOut=3.9, grainNumber=5, grainSeparation=5 / 1000, + distanceNozzleMotorReference=0.39796, grainDensity=1815, grainOuterRadius=33 / 1000, grainInitialInnerRadius=15 / 1000, @@ -181,7 +184,6 @@ def test_initial_solution(mock_show): inertiaI=6.60, inertiaZ=0.0351, distanceRocketNozzle=-1.255, - distanceRocketPropellant=-0.85704, powerOffDrag="data/calisto/powerOffDragCurve.csv", powerOnDrag="data/calisto/powerOnDragCurve.csv", ) @@ -288,6 +290,7 @@ def test_stability_static_margins(wind_u, wind_v, static_margin, max_time): thrustSource=1e-300, burnOut=1e-10, grainNumber=5, + distanceNozzleMotorReference=0.39796, grainSeparation=5 / 1000, grainDensity=1e-300, grainOuterRadius=33 / 1000, @@ -305,7 +308,6 @@ def test_stability_static_margins(wind_u, wind_v, static_margin, max_time): inertiaI=1, inertiaZ=0.0351, distanceRocketNozzle=-1.255, - distanceRocketPropellant=-0.85704, powerOffDrag=0, powerOnDrag=0, ) @@ -362,6 +364,7 @@ def test_rolling_flight(mock_show): thrustSource="data/motors/Cesaroni_M1670.eng", burnOut=3.9, grainNumber=5, + distanceNozzleMotorReference=0.39796, grainSeparation=5 / 1000, grainDensity=1815, grainOuterRadius=33 / 1000, @@ -379,7 +382,6 @@ def test_rolling_flight(mock_show): inertiaI=6.60, inertiaZ=0.0351, distanceRocketNozzle=-1.255, - distanceRocketPropellant=-0.85704, powerOffDrag="data/calisto/powerOffDragCurve.csv", powerOnDrag="data/calisto/powerOnDragCurve.csv", ) @@ -453,6 +455,7 @@ def test_export_data(): thrustSource=1000, burnOut=3.9, grainNumber=5, + distanceNozzleMotorReference=0.39796, grainSeparation=5 / 1000, grainDensity=1815, grainOuterRadius=33 / 1000, @@ -470,7 +473,6 @@ def test_export_data(): inertiaI=6.60, inertiaZ=0.0351, distanceRocketNozzle=-1.255, - distanceRocketPropellant=-0.85704, powerOffDrag=0.5, powerOnDrag=0.5, ) @@ -544,6 +546,7 @@ def test_latlon_convertions(mock_show): thrustSource=1545.218, burnOut=3.9, grainNumber=5, + distanceNozzleMotorReference=0.39796, grainSeparation=5 / 1000, grainDensity=1815, grainOuterRadius=33 / 1000, @@ -558,7 +561,6 @@ def test_latlon_convertions(mock_show): inertiaI=6.60, inertiaZ=0.0351, distanceRocketNozzle=-1.255, - distanceRocketPropellant=-0.85704, powerOffDrag=0.5, powerOnDrag=0.5, ) @@ -619,11 +621,12 @@ def mainTrigger(p, y): @patch("matplotlib.pyplot.show") def test_latlon_convertions2(mock_show): - "additional tests to capture incorrect behaviours during lat/lon conversions" + "additional tests to capture incorrect behaviors during lat/lon conversions" test_motor = SolidMotor( thrustSource=1000, burnOut=3, grainNumber=5, + distanceNozzleMotorReference=0.39796, grainSeparation=5 / 1000, grainDensity=1815, grainOuterRadius=33 / 1000, @@ -638,7 +641,6 @@ def test_latlon_convertions2(mock_show): inertiaI=6.60, inertiaZ=0.0351, distanceRocketNozzle=-1.255, - distanceRocketPropellant=-0.85704, powerOffDrag=0.5, powerOnDrag=0.5, ) diff --git a/tests/test_rocket.py b/tests/test_rocket.py index e46ae7246..5a3383e01 100644 --- a/tests/test_rocket.py +++ b/tests/test_rocket.py @@ -3,7 +3,7 @@ import pytest import numpy as np -from rocketpy import Environment, SolidMotor, Rocket, Flight, Parachute +from rocketpy import SolidMotor, Rocket @patch("matplotlib.pyplot.show") @@ -12,6 +12,7 @@ def test_rocket(mock_show): thrustSource="data/motors/Cesaroni_M1670.eng", burnOut=3.9, grainNumber=5, + distanceNozzleMotorReference=0.39796, grainSeparation=5 / 1000, grainDensity=1815, grainOuterRadius=33 / 1000, @@ -29,7 +30,6 @@ def test_rocket(mock_show): inertiaI=6.60, inertiaZ=0.0351, distanceRocketNozzle=-1.255, - distanceRocketPropellant=-0.85704, powerOffDrag="data/calisto/powerOffDragCurve.csv", powerOnDrag="data/calisto/powerOnDragCurve.csv", ) @@ -87,6 +87,7 @@ def test_airfoil(mock_show): thrustSource="data/motors/Cesaroni_M1670.eng", burnOut=3.9, grainNumber=5, + distanceNozzleMotorReference=0.39796, grainSeparation=5 / 1000, grainDensity=1815, grainOuterRadius=33 / 1000, @@ -104,7 +105,6 @@ def test_airfoil(mock_show): inertiaI=6.60, inertiaZ=0.0351, distanceRocketNozzle=-1.255, - distanceRocketPropellant=-0.85704, powerOffDrag="data/calisto/powerOffDragCurve.csv", powerOnDrag="data/calisto/powerOnDragCurve.csv", ) diff --git a/tests/test_solidmotor.py b/tests/test_solidmotor.py index da8b6411d..73975de92 100644 --- a/tests/test_solidmotor.py +++ b/tests/test_solidmotor.py @@ -24,6 +24,7 @@ def test_motor(mock_show): burnOut=3.9, grainNumber=5, grainSeparation=5 / 1000, + distanceNozzleMotorReference=0.39796, grainDensity=1815, grainOuterRadius=33 / 1000, grainInitialInnerRadius=15 / 1000, @@ -217,6 +218,7 @@ def test_reshape_thrust_curve_asserts_resultant_thrust_curve_correct(): burnOut=3.9, grainNumber=5, grainSeparation=5 / 1000, + distanceNozzleMotorReference=0.39796, grainDensity=1815, grainOuterRadius=33 / 1000, grainInitialInnerRadius=15 / 1000,