diff --git a/packages/web/src/content/docs/providers.mdx b/packages/web/src/content/docs/providers.mdx index e7befcf026cf..d549728d1333 100644 --- a/packages/web/src/content/docs/providers.mdx +++ b/packages/web/src/content/docs/providers.mdx @@ -1478,6 +1478,94 @@ SAP AI Core provides access to 40+ models from OpenAI, Anthropic, Google, Amazon --- +### STACKIT + +STACKIT AI Model Serving provides fully managed hosting environment for AI models, focusing on large language models (LLMs) like Llama, Mistral, and Qwen, with maximum data sovereignty on European infrastructure. + +1. Head over to [STACKIT Portal](https://portal.stackit.cloud), navigate to **AI Model Serving**, and create an auth token for your project. + + :::tip + You need a STACKIT customer account, user account, and project before creating auth tokens. + ::: + +2. Run the `/connect` command and search for **STACKIT**. + + ```txt + /connect + ``` + +3. Enter your STACKIT AI Model Serving auth token. + + ```txt + ┌ API key + │ + │ + └ enter + ``` + +4. Run the `/models` command to select from available models like _Qwen3-VL 235B_ or _Llama 3.3 70B_. + + ```txt + /models + ``` + +#### Available Models + +**Text Models:** + +- **Qwen3-VL 235B** - Vision-language model with 218K context, multimodal input +- **Llama 3.3 70B** - General purpose LLM with 128K context, tool calling enabled +- **GPT-OSS 120B** - Strong reasoning model with 131K context, tool calling enabled +- **Gemma 3 27B** - Multimodal model with 37K context, 140+ languages +- **Mistral-Nemo** - Multilingual LLM with 128K context, optimized for commercial use +- **Llama 3.1 8B** - Efficient model with 128K context, tool calling enabled + +**Embedding Models:** + +- **E5 Mistral 7B** - Text embedding model (4096 dimensions) +- **Qwen3 Vision-Language Embedding** - Multimodal embedding model for text and images + +:::note +All models use OpenAI-compatible API endpoints. Rate limits apply: 200,000 TPM and 30-80 RPM for chat models, 600 RPM for embedding models. +::: + +#### Custom Configuration + +You can also configure STACKIT manually in your `opencode.json`: + +```json title="opencode.json" "stackit" {5, 6, 8, 10-14} +{ + "$schema": "https://opencode.ai/config.json", + "provider": { + "stackit": { + "npm": "@ai-sdk/openai-compatible", + "name": "STACKIT AI Model Serving", + "options": { + "baseURL": "https://api.openai-compat.model-serving.eu01.onstackit.cloud/v1" + }, + "models": { + "qwen3-vl-235b": { + "name": "Qwen3-VL 235B", + "limit": { + "context": 218000, + "output": 65536 + } + }, + "llama-33-70b": { + "name": "Llama 3.3 70B", + "limit": { + "context": 128000, + "output": 65536 + } + } + } + } + } +} +``` + +--- + ### OVHcloud AI Endpoints 1. Head over to the [OVHcloud panel](https://ovh.com/manager). Navigate to the `Public Cloud` section, `AI & Machine Learning` > `AI Endpoints` and in `API Keys` tab, click **Create a new API key**.