@@ -235,7 +235,8 @@ Currently, we have four predefined metrics: "accuracy", "rmse", "mae", and "rmsl
235235
236236 ``` r
237237 demo.metric.mae <- mx.metric.custom(" mae" , function (label , pred ) {
238- res <- mean(abs(label - pred ))
238+ pred <- mx.nd.reshape(pred , shape = 0 )
239+ res <- mx.nd.mean(mx.nd.abs(label - pred ))
239240 return (res )
240241 })
241242 ```
@@ -251,58 +252,59 @@ This is an example of the mean absolute error metric. Simply plug it into the tr
251252 ```
252253
253254 ```
254- ## Auto detect layout of input matrix, use rowmajor.
255- ## Start training with 1 devices
256- ## [1] Train-mae=13.1889538083225
257- ## [2] Train-mae=9.81431959337658
258- ## [3] Train-mae=9.21576419870059
259- ## [4] Train-mae=8.38071537613869
260- ## [5] Train-mae=7.45462437611487
261- ## [6] Train-mae=6.93423301743136
262- ## [7] Train-mae=6.91432357016537
263- ## [8] Train-mae=7.02742733055105
264- ## [9] Train-mae=7.00618194618469
265- ## [10] Train-mae=6.92541576984028
266- ## [11] Train-mae=6.87530243690643
267- ## [12] Train-mae=6.84757369098564
268- ## [13] Train-mae=6.82966501611388
269- ## [14] Train-mae=6.81151759574811
270- ## [15] Train-mae=6.78394182841811
271- ## [16] Train-mae=6.75914719419347
272- ## [17] Train-mae=6.74180388773481
273- ## [18] Train-mae=6.725853071279
274- ## [19] Train-mae=6.70932178215848
275- ## [20] Train-mae=6.6928868798746
276- ## [21] Train-mae=6.6769521329138
277- ## [22] Train-mae=6.66184809505939
278- ## [23] Train-mae=6.64754504809777
279- ## [24] Train-mae=6.63358514060577
280- ## [25] Train-mae=6.62027640889088
281- ## [26] Train-mae=6.60738245232238
282- ## [27] Train-mae=6.59505546771818
283- ## [28] Train-mae=6.58346195800437
284- ## [29] Train-mae=6.57285477783945
285- ## [30] Train-mae=6.56259003960424
286- ## [31] Train-mae=6.5527790788975
287- ## [32] Train-mae=6.54353428422991
288- ## [33] Train-mae=6.5344172368447
289- ## [34] Train-mae=6.52557652526432
290- ## [35] Train-mae=6.51697905850079
291- ## [36] Train-mae=6.50847898812758
292- ## [37] Train-mae=6.50014844106303
293- ## [38] Train-mae=6.49207674844397
294- ## [39] Train-mae=6.48412070125341
295- ## [40] Train-mae=6.47650500999557
296- ## [41] Train-mae=6.46893867486053
297- ## [42] Train-mae=6.46142131653097
298- ## [43] Train-mae=6.45395035048326
299- ## [44] Train-mae=6.44652914123403
300- ## [45] Train-mae=6.43916216409869
301- ## [46] Train-mae=6.43183777381976
302- ## [47] Train-mae=6.42455544223388
303- ## [48] Train-mae=6.41731406417158
304- ## [49] Train-mae=6.41011292926139
305- ## [50] Train-mae=6.40312503493494
255+ ## Warning message in mx.model.select.layout.train(X, y):
256+ ## “Auto detect layout of input matrix, use rowmajor.
257+ ## ”Start training with 1 devices
258+ ## [1] Train-mae=14.953625731998
259+ ## [2] Train-mae=11.4802955521478
260+ ## [3] Train-mae=8.50700579749213
261+ ## [4] Train-mae=7.30591265360514
262+ ## [5] Train-mae=7.38049803839789
263+ ## [6] Train-mae=7.36036252975464
264+ ## [7] Train-mae=7.06519222259521
265+ ## [8] Train-mae=6.9962231847975
266+ ## [9] Train-mae=6.96296903822157
267+ ## [10] Train-mae=6.9046172036065
268+ ## [11] Train-mae=6.87867620256212
269+ ## [12] Train-mae=6.85872554779053
270+ ## [13] Train-mae=6.81936407089233
271+ ## [14] Train-mae=6.79135354359945
272+ ## [15] Train-mae=6.77438741260105
273+ ## [16] Train-mae=6.75365140702989
274+ ## [17] Train-mae=6.73369296391805
275+ ## [18] Train-mae=6.71600982877943
276+ ## [19] Train-mae=6.69932826360067
277+ ## [20] Train-mae=6.6852519777086
278+ ## [21] Train-mae=6.67343420452542
279+ ## [22] Train-mae=6.66315894656711
280+ ## [23] Train-mae=6.65314838621351
281+ ## [24] Train-mae=6.64388704299927
282+ ## [25] Train-mae=6.63480265935262
283+ ## [26] Train-mae=6.62583245171441
284+ ## [27] Train-mae=6.61697626113892
285+ ## [28] Train-mae=6.60842116673787
286+ ## [29] Train-mae=6.60040124257406
287+ ## [30] Train-mae=6.59264140658908
288+ ## [31] Train-mae=6.58551020092434
289+ ## [32] Train-mae=6.57864215638902
290+ ## [33] Train-mae=6.57178926467896
291+ ## [34] Train-mae=6.56495311525133
292+ ## [35] Train-mae=6.55813185373942
293+ ## [36] Train-mae=6.5513252152337
294+ ## [37] Train-mae=6.54453214009603
295+ ## [38] Train-mae=6.53775374094645
296+ ## [39] Train-mae=6.53098879920112
297+ ## [40] Train-mae=6.52423816257053
298+ ## [41] Train-mae=6.51764053768582
299+ ## [42] Train-mae=6.51121346155802
300+ ## [43] Train-mae=6.5047902001275
301+ ## [44] Train-mae=6.49837123023139
302+ ## [45] Train-mae=6.49216641320123
303+ ## [46] Train-mae=6.48598252402412
304+ ## [47] Train-mae=6.4798010720147
305+ ## [48] Train-mae=6.47362396452162
306+ ## [49] Train-mae=6.46745183732775
307+ ## [50] Train-mae=6.46128723356459
306308 ```
307309
308310Congratulations! You've learned the basics for using MXNet in R. To learn how to use MXNet's advanced features, see the other tutorials.
0 commit comments