Skip to content
This repository was archived by the owner on Nov 17, 2023. It is now read-only.

Commit 6b24da8

Browse files
author
Anirudh Acharya
committed
fix tutorial
1 parent 9602b5f commit 6b24da8

File tree

1 file changed

+55
-53
lines changed

1 file changed

+55
-53
lines changed

docs/tutorials/r/fiveMinutesNeuralNetwork.md

Lines changed: 55 additions & 53 deletions
Original file line numberDiff line numberDiff line change
@@ -235,7 +235,8 @@ Currently, we have four predefined metrics: "accuracy", "rmse", "mae", and "rmsl
235235

236236
```r
237237
demo.metric.mae <- mx.metric.custom("mae", function(label, pred) {
238-
res <- mean(abs(label-pred))
238+
pred <- mx.nd.reshape(pred, shape = 0)
239+
res <- mx.nd.mean(mx.nd.abs(label-pred))
239240
return(res)
240241
})
241242
```
@@ -251,58 +252,59 @@ This is an example of the mean absolute error metric. Simply plug it into the tr
251252
```
252253

253254
```
254-
## Auto detect layout of input matrix, use rowmajor.
255-
## Start training with 1 devices
256-
## [1] Train-mae=13.1889538083225
257-
## [2] Train-mae=9.81431959337658
258-
## [3] Train-mae=9.21576419870059
259-
## [4] Train-mae=8.38071537613869
260-
## [5] Train-mae=7.45462437611487
261-
## [6] Train-mae=6.93423301743136
262-
## [7] Train-mae=6.91432357016537
263-
## [8] Train-mae=7.02742733055105
264-
## [9] Train-mae=7.00618194618469
265-
## [10] Train-mae=6.92541576984028
266-
## [11] Train-mae=6.87530243690643
267-
## [12] Train-mae=6.84757369098564
268-
## [13] Train-mae=6.82966501611388
269-
## [14] Train-mae=6.81151759574811
270-
## [15] Train-mae=6.78394182841811
271-
## [16] Train-mae=6.75914719419347
272-
## [17] Train-mae=6.74180388773481
273-
## [18] Train-mae=6.725853071279
274-
## [19] Train-mae=6.70932178215848
275-
## [20] Train-mae=6.6928868798746
276-
## [21] Train-mae=6.6769521329138
277-
## [22] Train-mae=6.66184809505939
278-
## [23] Train-mae=6.64754504809777
279-
## [24] Train-mae=6.63358514060577
280-
## [25] Train-mae=6.62027640889088
281-
## [26] Train-mae=6.60738245232238
282-
## [27] Train-mae=6.59505546771818
283-
## [28] Train-mae=6.58346195800437
284-
## [29] Train-mae=6.57285477783945
285-
## [30] Train-mae=6.56259003960424
286-
## [31] Train-mae=6.5527790788975
287-
## [32] Train-mae=6.54353428422991
288-
## [33] Train-mae=6.5344172368447
289-
## [34] Train-mae=6.52557652526432
290-
## [35] Train-mae=6.51697905850079
291-
## [36] Train-mae=6.50847898812758
292-
## [37] Train-mae=6.50014844106303
293-
## [38] Train-mae=6.49207674844397
294-
## [39] Train-mae=6.48412070125341
295-
## [40] Train-mae=6.47650500999557
296-
## [41] Train-mae=6.46893867486053
297-
## [42] Train-mae=6.46142131653097
298-
## [43] Train-mae=6.45395035048326
299-
## [44] Train-mae=6.44652914123403
300-
## [45] Train-mae=6.43916216409869
301-
## [46] Train-mae=6.43183777381976
302-
## [47] Train-mae=6.42455544223388
303-
## [48] Train-mae=6.41731406417158
304-
## [49] Train-mae=6.41011292926139
305-
## [50] Train-mae=6.40312503493494
255+
## Warning message in mx.model.select.layout.train(X, y):
256+
## “Auto detect layout of input matrix, use rowmajor.
257+
## ”Start training with 1 devices
258+
## [1] Train-mae=14.953625731998
259+
## [2] Train-mae=11.4802955521478
260+
## [3] Train-mae=8.50700579749213
261+
## [4] Train-mae=7.30591265360514
262+
## [5] Train-mae=7.38049803839789
263+
## [6] Train-mae=7.36036252975464
264+
## [7] Train-mae=7.06519222259521
265+
## [8] Train-mae=6.9962231847975
266+
## [9] Train-mae=6.96296903822157
267+
## [10] Train-mae=6.9046172036065
268+
## [11] Train-mae=6.87867620256212
269+
## [12] Train-mae=6.85872554779053
270+
## [13] Train-mae=6.81936407089233
271+
## [14] Train-mae=6.79135354359945
272+
## [15] Train-mae=6.77438741260105
273+
## [16] Train-mae=6.75365140702989
274+
## [17] Train-mae=6.73369296391805
275+
## [18] Train-mae=6.71600982877943
276+
## [19] Train-mae=6.69932826360067
277+
## [20] Train-mae=6.6852519777086
278+
## [21] Train-mae=6.67343420452542
279+
## [22] Train-mae=6.66315894656711
280+
## [23] Train-mae=6.65314838621351
281+
## [24] Train-mae=6.64388704299927
282+
## [25] Train-mae=6.63480265935262
283+
## [26] Train-mae=6.62583245171441
284+
## [27] Train-mae=6.61697626113892
285+
## [28] Train-mae=6.60842116673787
286+
## [29] Train-mae=6.60040124257406
287+
## [30] Train-mae=6.59264140658908
288+
## [31] Train-mae=6.58551020092434
289+
## [32] Train-mae=6.57864215638902
290+
## [33] Train-mae=6.57178926467896
291+
## [34] Train-mae=6.56495311525133
292+
## [35] Train-mae=6.55813185373942
293+
## [36] Train-mae=6.5513252152337
294+
## [37] Train-mae=6.54453214009603
295+
## [38] Train-mae=6.53775374094645
296+
## [39] Train-mae=6.53098879920112
297+
## [40] Train-mae=6.52423816257053
298+
## [41] Train-mae=6.51764053768582
299+
## [42] Train-mae=6.51121346155802
300+
## [43] Train-mae=6.5047902001275
301+
## [44] Train-mae=6.49837123023139
302+
## [45] Train-mae=6.49216641320123
303+
## [46] Train-mae=6.48598252402412
304+
## [47] Train-mae=6.4798010720147
305+
## [48] Train-mae=6.47362396452162
306+
## [49] Train-mae=6.46745183732775
307+
## [50] Train-mae=6.46128723356459
306308
```
307309

308310
Congratulations! You've learned the basics for using MXNet in R. To learn how to use MXNet's advanced features, see the other tutorials.

0 commit comments

Comments
 (0)