diff --git a/core/src/main/resources/error/error-classes.json b/core/src/main/resources/error/error-classes.json index cd1d8c3a8129d..f4eadd4a3680f 100644 --- a/core/src/main/resources/error/error-classes.json +++ b/core/src/main/resources/error/error-classes.json @@ -4,7 +4,7 @@ "sqlState" : "42000" }, "ARITHMETIC_OVERFLOW" : { - "message" : [ ". If necessary set to false (except for ANSI interval type) to bypass this error." ], + "message" : [ ". If necessary set to \"false\" (except for ANSI interval type) to bypass this error." ], "sqlState" : "22003" }, "CANNOT_CAST_DATATYPE" : { @@ -12,7 +12,7 @@ "sqlState" : "22005" }, "CANNOT_CHANGE_DECIMAL_PRECISION" : { - "message" : [ " cannot be represented as Decimal(, ). If necessary set to false to bypass this error.
" ], + "message" : [ " cannot be represented as Decimal(, ). If necessary set to \"false\" to bypass this error.
" ], "sqlState" : "22005" }, "CANNOT_PARSE_DECIMAL" : { @@ -23,11 +23,11 @@ "message" : [ "Cannot up cast from to .\n
" ] }, "CAST_INVALID_INPUT" : { - "message" : [ "The value of the type cannot be cast to because it is malformed. To return NULL instead, use `try_cast`. If necessary set to false to bypass this error.
" ], + "message" : [ "The value of the type cannot be cast to because it is malformed. To return NULL instead, use `try_cast`. If necessary set to \"false\" to bypass this error.
" ], "sqlState" : "42000" }, "CAST_OVERFLOW" : { - "message" : [ "The value of the type cannot be cast to due to an overflow. To return NULL instead, use `try_cast`. If necessary set to false to bypass this error." ], + "message" : [ "The value of the type cannot be cast to due to an overflow. To return NULL instead, use `try_cast`. If necessary set to \"false\" to bypass this error." ], "sqlState" : "22005" }, "CONCURRENT_QUERY" : { @@ -38,7 +38,7 @@ "sqlState" : "22008" }, "DIVIDE_BY_ZERO" : { - "message" : [ "Division by zero. To return NULL instead, use `try_divide`. If necessary set to false (except for ANSI interval type) to bypass this error.
" ], + "message" : [ "Division by zero. To return NULL instead, use `try_divide`. If necessary set to \"false\" (except for ANSI interval type) to bypass this error.
" ], "sqlState" : "22012" }, "DUPLICATE_KEY" : { @@ -86,19 +86,19 @@ "message" : [ "You may get a different result due to the upgrading to" ], "subClass" : { "DATETIME_PATTERN_RECOGNITION" : { - "message" : [ " Spark >= 3.0: \nFail to recognize pattern in the DateTimeFormatter. 1) You can set to 'LEGACY' to restore the behavior before Spark 3.0. 2) You can form a valid datetime pattern with the guide from https://spark.apache.org/docs/latest/sql-ref-datetime-pattern.html" ] + "message" : [ " Spark >= 3.0: \nFail to recognize pattern in the DateTimeFormatter. 1) You can set to \"LEGACY\" to restore the behavior before Spark 3.0. 2) You can form a valid datetime pattern with the guide from https://spark.apache.org/docs/latest/sql-ref-datetime-pattern.html" ] }, "FORMAT_DATETIME_BY_NEW_PARSER" : { - "message" : [ " Spark >= 3.0: \nFail to format it to in the new formatter. You can set\n to 'LEGACY' to restore the behavior before\nSpark 3.0, or set to 'CORRECTED' and treat it as an invalid datetime string.\n" ] + "message" : [ " Spark >= 3.0: \nFail to format it to in the new formatter. You can set\n to \"LEGACY\" to restore the behavior before\nSpark 3.0, or set to \"CORRECTED\" and treat it as an invalid datetime string.\n" ] }, "PARSE_DATETIME_BY_NEW_PARSER" : { - "message" : [ " Spark >= 3.0: \nFail to parse in the new parser. You can set to 'LEGACY' to restore the behavior before Spark 3.0, or set to 'CORRECTED' and treat it as an invalid datetime string." ] + "message" : [ " Spark >= 3.0: \nFail to parse in the new parser. You can set to \"LEGACY\" to restore the behavior before Spark 3.0, or set to \"CORRECTED\" and treat it as an invalid datetime string." ] }, "READ_ANCIENT_DATETIME" : { - "message" : [ " Spark >= 3.0: \nreading dates before 1582-10-15 or timestamps before 1900-01-01T00:00:00Z\nfrom files can be ambiguous, as the files may be written by\nSpark 2.x or legacy versions of Hive, which uses a legacy hybrid calendar\nthat is different from Spark 3.0+'s Proleptic Gregorian calendar.\nSee more details in SPARK-31404. You can set the SQL config or\nthe datasource option '