|
| 1 | +/* |
| 2 | + * Licensed to the Apache Software Foundation (ASF) under one |
| 3 | + * or more contributor license agreements. See the NOTICE file |
| 4 | + * distributed with this work for additional information |
| 5 | + * regarding copyright ownership. The ASF licenses this file |
| 6 | + * to you under the Apache License, Version 2.0 (the |
| 7 | + * "License"); you may not use this file except in compliance |
| 8 | + * with the License. You may obtain a copy of the License at |
| 9 | + * |
| 10 | + * http://www.apache.org/licenses/LICENSE-2.0 |
| 11 | + * |
| 12 | + * Unless required by applicable law or agreed to in writing, |
| 13 | + * software distributed under the License is distributed on an |
| 14 | + * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| 15 | + * KIND, either express or implied. See the License for the |
| 16 | + * specific language governing permissions and limitations |
| 17 | + * under the License. |
| 18 | + */ |
| 19 | + |
| 20 | +/*! |
| 21 | + * \file tvm/relax/attrs/nn.h |
| 22 | + * \brief Attributes for neural network operators. |
| 23 | + */ |
| 24 | +#ifndef TVM_RELAX_ATTRS_NN_H_ |
| 25 | +#define TVM_RELAX_ATTRS_NN_H_ |
| 26 | + |
| 27 | +#include <tvm/relax/expr.h> |
| 28 | + |
| 29 | +namespace tvm { |
| 30 | +namespace relax { |
| 31 | + |
| 32 | +/*! \brief Attributes used in Conv2d operator */ |
| 33 | +struct Conv2DAttrs : public tvm::AttrsNode<Conv2DAttrs> { |
| 34 | + Array<IntImm> strides; |
| 35 | + Array<IntImm> padding; |
| 36 | + Array<IntImm> dilation; |
| 37 | + int groups; |
| 38 | + String data_layout; |
| 39 | + String kernel_layout; |
| 40 | + String out_layout; |
| 41 | + DataType out_dtype; |
| 42 | + |
| 43 | + TVM_DECLARE_ATTRS(Conv2DAttrs, "relax.attrs.Conv2DAttrs") { |
| 44 | + TVM_ATTR_FIELD(strides).describe("Specifies the strides of the convolution."); |
| 45 | + TVM_ATTR_FIELD(padding).describe( |
| 46 | + "If padding is non-zero, then the input is implicitly zero-padded" |
| 47 | + "Padding support both symmetric and asymmetric as" |
| 48 | + "one int : same padding used on all sides" |
| 49 | + "two int : bottom, right will use same padding as top, left" |
| 50 | + "four int : padding width in the order of (top, left, bottom, right)"); |
| 51 | + TVM_ATTR_FIELD(dilation).describe( |
| 52 | + "Specifies the dilation rate to use for dilated convolution."); |
| 53 | + TVM_ATTR_FIELD(groups).describe( |
| 54 | + "Number of groups to split the input into for grouped convolution. The number of input and " |
| 55 | + "output channels should be divisible by the number of groups."); |
| 56 | + TVM_ATTR_FIELD(data_layout) |
| 57 | + .describe( |
| 58 | + "Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc." |
| 59 | + "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" |
| 60 | + "dimensions respectively. Convolution is applied on the 'H' and" |
| 61 | + "'W' dimensions."); |
| 62 | + TVM_ATTR_FIELD(kernel_layout) |
| 63 | + .describe( |
| 64 | + "Dimension ordering of weight. Can be 'OIHW', 'OIHW16o16i', etc." |
| 65 | + "'O', 'I', 'H', 'W' stands for num_filter, input_channel, height, and width" |
| 66 | + "dimensions respectively."); |
| 67 | + TVM_ATTR_FIELD(out_layout) |
| 68 | + .describe( |
| 69 | + "Dimension ordering of output. Can be 'NCHW', 'NHWC', etc." |
| 70 | + "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" |
| 71 | + "dimensions respectively. Default to be same as input layout."); |
| 72 | + TVM_ATTR_FIELD(out_dtype).describe( |
| 73 | + "Output data type, set to explicit type under mixed precision setting"); |
| 74 | + } |
| 75 | +}; // struct Conv2dAttrs |
| 76 | + |
| 77 | +/*! \brief Attributes used in max_pool2d operator */ |
| 78 | +struct MaxPool2DAttrs : public tvm::AttrsNode<MaxPool2DAttrs> { |
| 79 | + Array<IntImm> pool_size; |
| 80 | + Array<IntImm> strides; |
| 81 | + Array<IntImm> padding; |
| 82 | + Array<IntImm> dilation; |
| 83 | + bool ceil_mode; |
| 84 | + String layout; |
| 85 | + String out_layout; |
| 86 | + |
| 87 | + TVM_DECLARE_ATTRS(MaxPool2DAttrs, "relax.attrs.MaxPool2DAttrs") { |
| 88 | + TVM_ATTR_FIELD(pool_size).describe("Size of the pooling windows."); |
| 89 | + TVM_ATTR_FIELD(strides).describe("Specifies the strides of the convolution."); |
| 90 | + TVM_ATTR_FIELD(dilation).describe("Specifies the dilation of the convolution."); |
| 91 | + TVM_ATTR_FIELD(padding).describe( |
| 92 | + "If padding is non-zero, then the input is implicitly zero-padded" |
| 93 | + "Padding support both symmetric and asymmetric as" |
| 94 | + "one int : same padding used on all sides" |
| 95 | + "two int : bottom, right will use same padding as top, left" |
| 96 | + "four int : padding width in the order of (top, left, bottom, right)"); |
| 97 | + TVM_ATTR_FIELD(ceil_mode).describe( |
| 98 | + "A boolean indicating if use ceil or floor to compute the output shape. By using ceil, " |
| 99 | + "every element in the input tensor will be covered by a sliding window."); |
| 100 | + TVM_ATTR_FIELD(layout).describe( |
| 101 | + "Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc." |
| 102 | + "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" |
| 103 | + "dimensions respectively. Pooling is applied on the 'H' and" |
| 104 | + "'W' dimensions."); |
| 105 | + TVM_ATTR_FIELD(out_layout) |
| 106 | + .describe( |
| 107 | + "Dimension ordering of output data. Can be 'NCHW', 'NHWC', etc." |
| 108 | + "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" |
| 109 | + "dimensions respectively. Pooling is applied on the 'H' and" |
| 110 | + "'W' dimensions."); |
| 111 | + } |
| 112 | +}; // struct MaxPool2dAttrs |
| 113 | + |
| 114 | +/*! \brief Attributes for 2d adaptive pool operator */ |
| 115 | +struct AdaptivePool2DAttrs : public tvm::AttrsNode<AdaptivePool2DAttrs> { |
| 116 | + Optional<Array<IntImm>> output_size; |
| 117 | + String layout; |
| 118 | + String out_layout; |
| 119 | + |
| 120 | + TVM_DECLARE_ATTRS(AdaptivePool2DAttrs, "relax.attrs.AdaptivePool2DAttrs") { |
| 121 | + TVM_ATTR_FIELD(output_size).describe("Output height and width."); |
| 122 | + TVM_ATTR_FIELD(layout).describe( |
| 123 | + "Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc." |
| 124 | + "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" |
| 125 | + "dimensions respectively. Pooling is applied on the 'H' and" |
| 126 | + "'W' dimensions."); |
| 127 | + TVM_ATTR_FIELD(out_layout) |
| 128 | + .describe( |
| 129 | + "Dimension ordering of output data. Can be 'NCHW', 'NHWC', etc." |
| 130 | + "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" |
| 131 | + "dimensions respectively. Pooling is applied on the 'H' and" |
| 132 | + "'W' dimensions."); |
| 133 | + } |
| 134 | +}; // struct AdaptivePool2DAttrs |
| 135 | + |
| 136 | +/*! \brief Attributes used in softmax operators */ |
| 137 | +struct SoftmaxAttrs : public tvm::AttrsNode<SoftmaxAttrs> { |
| 138 | + int axis; |
| 139 | + |
| 140 | + TVM_DECLARE_ATTRS(SoftmaxAttrs, "relax.attrs.SoftmaxAttrs") { |
| 141 | + TVM_ATTR_FIELD(axis).describe("The axis to sum over when computing softmax."); |
| 142 | + } |
| 143 | +}; |
| 144 | + |
| 145 | +/*! \brief Attributes used in batch_norm operator */ |
| 146 | +struct BatchNormAttrs : public tvm::AttrsNode<BatchNormAttrs> { |
| 147 | + int axis; |
| 148 | + double epsilon; |
| 149 | + bool center; |
| 150 | + bool scale; |
| 151 | + |
| 152 | + TVM_DECLARE_ATTRS(BatchNormAttrs, "relax.attrs.BatchNormAttrs") { |
| 153 | + TVM_ATTR_FIELD(axis).describe("The axis along which the normalization is applied."); |
| 154 | + TVM_ATTR_FIELD(epsilon).describe("Small float added to variance to avoid dividing by zero"); |
| 155 | + TVM_ATTR_FIELD(center).describe( |
| 156 | + "Indicating if the beta offset will be added to the normalized tensor."); |
| 157 | + TVM_ATTR_FIELD(scale).describe("Indicating if the gamma scale will be multiplied."); |
| 158 | + } |
| 159 | +}; // struct BatchNormAttrs |
| 160 | + |
| 161 | +/*! \brief Attributes used in layer_norm operator */ |
| 162 | +struct LayerNormAttrs : public tvm::AttrsNode<LayerNormAttrs> { |
| 163 | + Array<Integer> axes; |
| 164 | + double epsilon; |
| 165 | + bool center; |
| 166 | + bool scale; |
| 167 | + |
| 168 | + TVM_DECLARE_ATTRS(LayerNormAttrs, "relax.attrs.LayerNormAttrs") { |
| 169 | + TVM_ATTR_FIELD(axes).describe("The axes that along which the normalization is applied."); |
| 170 | + TVM_ATTR_FIELD(epsilon).describe("Small float added to variance to avoid dividing by zero"); |
| 171 | + TVM_ATTR_FIELD(center).describe( |
| 172 | + "Indicating if the beta offset will be added to the normalized tensor."); |
| 173 | + TVM_ATTR_FIELD(scale).describe("Indicating if the gamma scale will be multiplied."); |
| 174 | + } |
| 175 | +}; // struct LayerNormAttrs |
| 176 | + |
| 177 | +/*! \brief Attributes used in dropout operator */ |
| 178 | +struct DropoutAttrs : public tvm::AttrsNode<DropoutAttrs> { |
| 179 | + double rate; |
| 180 | + |
| 181 | + TVM_DECLARE_ATTRS(DropoutAttrs, "relax.attrs.DropoutAttrs") { |
| 182 | + TVM_ATTR_FIELD(rate).describe( |
| 183 | + "Fraction of the input that gets dropped out during training time"); |
| 184 | + } |
| 185 | +}; // struct DropoutAttrs |
| 186 | + |
| 187 | +} // namespace relax |
| 188 | +} // namespace tvm |
| 189 | + |
| 190 | +#endif // TVM_RELAX_ATTRS_NN_H_ |
0 commit comments