diff --git a/tests/python/relay/test_any.py b/tests/python/relay/test_any.py index 497177d241f0..d2e275a6a335 100644 --- a/tests/python/relay/test_any.py +++ b/tests/python/relay/test_any.py @@ -419,30 +419,6 @@ def test_any_reduce( check_result([data_np], mod, ref_out_shape, assert_shape=True, targets=[(target, dev)]) -def verify_any_reduce( - reduce_op, data_shape, axis, exclude, keepdims, static_data_shape, ref_out_shape -): - mod = tvm.IRModule() - dtype = "bool" if reduce_op == relay.all else "float32" - data = relay.var("data", shape=data_shape, dtype=dtype) - y = reduce_op(data, axis, keepdims, exclude) - mod["main"] = relay.Function([data], y) - data_np = np.random.uniform(size=static_data_shape).astype(dtype) - check_result([data_np], mod, ref_out_shape, assert_shape=True) - - -@tvm.testing.uses_gpu -def test_any_reduce(): - verify_any_reduce(relay.argmax, any_dims(3), None, False, False, (3, 4, 5), ()) - verify_any_reduce(relay.argmin, any_dims(4), 1, False, True, (3, 4, 5, 6), (3, 1, 5, 6)) - verify_any_reduce(relay.all, any_dims(3), (1, 2), True, False, (3, 4, 5), (4, 5)) - verify_any_reduce(relay.max, any_dims(4), -1, True, True, (3, 4, 5, 6), (1, 1, 1, 6)) - verify_any_reduce(relay.min, any_dims(3), (0, 1), False, False, (4, 5, 6), (6,)) - verify_any_reduce(relay.prod, any_dims(4), 2, True, True, (3, 4, 5, 6), (1, 1, 5, 1)) - verify_any_reduce(relay.mean, any_dims(2), 0, False, False, (1, 2), (2,)) - verify_any_reduce(relay.variance, any_dims(5), (2, 4), False, False, (3, 4, 5, 6, 7), (3, 4, 6)) - - def verify_any_layout_transform( data_shape, src_layout, dst_layout, static_data_shape, ref_out_shape ): diff --git a/tests/python/relay/test_op_level2.py b/tests/python/relay/test_op_level2.py index 19c12c612ee5..8117539e611a 100644 --- a/tests/python/relay/test_op_level2.py +++ b/tests/python/relay/test_op_level2.py @@ -357,121 +357,6 @@ def test_run( tvm.testing.assert_allclose(op_res1.numpy(), ref_res, rtol=1e-4, atol=1e-4) -def test_conv2d_run(target, dev): - def run_test_conv2d( - dtype, - out_dtype, - scale, - dshape, - kshape, - padding=(1, 1), - fref=None, - groups=1, - dilation=(1, 1), - channels=32, - kernel_size=(3, 3), - ): - x = relay.var("x", shape=dshape, dtype=dtype) - w = relay.var("w", shape=kshape, dtype=dtype) - y = relay.nn.conv2d( - x, - w, - padding=padding, - dilation=dilation, - groups=groups, - channels=channels, - kernel_size=kernel_size, - ) - func = relay.Function([x, w], y) - data = np.random.uniform(-scale, scale, size=dshape).astype(dtype) - kernel = np.random.uniform(-scale, scale, size=kshape).astype(dtype) - dkernel = tvm.topi.testing.dilate_python(kernel, (1, 1) + dilation) - ref_res = tvm.topi.testing.conv2d_nchw_python( - data.astype(out_dtype), dkernel.astype(out_dtype), 1, padding, groups=groups - ) - - op_res1 = relay.create_executor("graph", device=dev, target=target).evaluate(func)( - data, kernel - ) - tvm.testing.assert_allclose(op_res1.numpy(), ref_res, rtol=1e-4, atol=1e-4) - - # group conv2d - run_test_conv2d( - dtype="float32", - out_dtype="float32", - scale=1, - dshape=(1, 32, 18, 18), - kshape=(32, 4, 3, 3), - padding=(1, 1), - channels=32, - groups=8, - kernel_size=(3, 3), - dilation=(1, 1), - ) - # also group conv2d - run_test_conv2d( - dtype="float32", - out_dtype="float32", - scale=1, - dshape=(1, 32, 18, 18), - kshape=(64, 1, 3, 3), - padding=(1, 1), - channels=64, - groups=32, - kernel_size=(3, 3), - dilation=(1, 1), - ) - - # normal conv2d - run_test_conv2d( - dtype="float32", - out_dtype="float32", - scale=1, - dshape=(1, 3, 224, 224), - kshape=(10, 3, 3, 3), - padding=(1, 1), - channels=10, - kernel_size=(3, 3), - dilation=(1, 1), - ) - # mixed precision - run_test_conv2d( - dtype="int8", - out_dtype="int32", - scale=1, - dshape=(1, 3, 224, 224), - kshape=(10, 3, 3, 3), - padding=(1, 1), - channels=10, - kernel_size=(3, 3), - dilation=(1, 1), - ) - # mixed precision. - run_test_conv2d( - dtype="int8", - out_dtype="int32", - scale=1, - dshape=(1, 3, 224, 224), - kshape=(10, 3, 1, 3), - padding=(0, 1), - channels=10, - kernel_size=(1, 3), - dilation=(1, 1), - ) - # dilated conv2d - run_test_conv2d( - dtype="float32", - out_dtype="float32", - scale=1, - dshape=(1, 3, 18, 18), - kshape=(10, 3, 3, 3), - padding=(1, 1), - channels=10, - kernel_size=(3, 3), - dilation=(3, 3), - ) - - def test_compile_depthwise_conv2d_arm_cpu(): dtype = "float32" out_dtype = "float32"