diff --git a/.gitignore b/.gitignore index 0aa8633..4c32c99 100644 --- a/.gitignore +++ b/.gitignore @@ -84,6 +84,13 @@ target/ profile_default/ ipython_config.py +# Ignore Mac DS_Store files +.DS_Store + +#data files +*.gz +*.csv + # pyenv # For a library or package, you might want to ignore these files since the code is # intended to run in multiple environments; otherwise, check them in: diff --git a/binder/environment.yml b/binder/environment.yml index f1fd42b..f6b0854 100644 --- a/binder/environment.yml +++ b/binder/environment.yml @@ -7,4 +7,9 @@ dependencies: # JupyterLab extensions - jupyterlab>=3 - dask-labextension - - ipywidgets \ No newline at end of file + - ipywidgets + - graphviz + - python-graphviz + - scikit-learn + - dask-ml + - coiled \ No newline at end of file diff --git a/data/.gitkeep b/data/.gitkeep new file mode 100644 index 0000000..e69de29 diff --git a/notebooks/0_Dask_what_and_when.ipynb b/notebooks/0_Dask_what_and_when.ipynb new file mode 100644 index 0000000..a7d2ff5 --- /dev/null +++ b/notebooks/0_Dask_what_and_when.ipynb @@ -0,0 +1,164 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "fa397203", + "metadata": {}, + "source": [ + "\"Dask\n", + "\n", + "\n", + "# What is it and when to use it? \n", + "\n", + "\n", + "If you ever heard of Dask you might have some form of these questions. If you have never heard of Dask but you want to know what it is and when/if you should use it, then you are in the right place. \n", + "\n", + "Before we give a short overview and attempt to answer these questions, we strongly recommend you to check the amazing documentation that the Dask community has in place. \n", + "\n", + "- Documentation: https://docs.dask.org\n", + "\n", + "Contribute to the project:\n", + "\n", + "- Github: https://github.com/dask/dask\n", + "\n", + "Engage with the community:\n", + "\n", + "- Slack: https://dask.slack.com/" + ] + }, + { + "cell_type": "markdown", + "id": "5c317728", + "metadata": {}, + "source": [ + "### What is Dask? \n", + "\n", + "Dask is a flexible library for parallel computing in Python, that follows the syntax of the PyData ecosystem. If you are familiar with Numpy, pandas and scikit-learn then think of Dask as their faster cousin. For example:\n", + "\n", + "```python\n", + "import pandas as pd import dask.dataframe as dd\n", + "df = pd.read_csv('2015-01-01.csv') df = dd.read_csv('2015-*-*.csv')\n", + "df.groupby(df.user_id).value.mean() df.groupby(df.user_id).value.mean().compute()\n", + "```\n", + "\n", + " Since they are all family, Dask allows you to scale your existing workflows with a small amount of changes. Dask enables you to accelerate computations and perform those that don't fit in memory. It works in your laptop but it also scales out to large clusters while providing a dashboard with great diagnostic tools. " + ] + }, + { + "cell_type": "markdown", + "id": "c70d4db3", + "metadata": {}, + "source": [ + "\"Dask" + ] + }, + { + "cell_type": "markdown", + "id": "3a8359e2", + "metadata": {}, + "source": [ + "### Dask jurgon: Client, Scheduler and Workers \n", + "\n", + "- Client: The user-facing entry point for cluster users. In other words, the client lives where your python code lives, and it communicates to the scheduler, passing along the tasks to be executed.\n", + "- Scheduler: The task manager, it sends the tasks to the workers.\n", + "- Workers: The ones that compute the tasks.\n", + "\n", + "Note: The Scheduler and the Workers are on the same network, they could live in your laptop or on a separate cluster\n", + "\n", + "\"Dask" + ] + }, + { + "cell_type": "markdown", + "id": "d78d7794", + "metadata": { + "tags": [] + }, + "source": [ + "## When to use Dask?\n", + "\n", + "Before trying to use Dask, there are some questions to determine if Dask might be suitable for you. \n", + "\n", + "- Does your data fit in memory? \n", + " - Yes: Use pandas or numpy. \n", + " - No : Dask might be able to help. \n", + "- Do your computations take for ever?\n", + " - Yes: Dask might be able to help. \n", + " - No : Awesome.\n", + "- Do you have embarrassingly parallelizable code?\n", + " - Yes: Dask might be able to help.\n", + " - No?: If you are not sure here are some [examples](https://examples.dask.org/applications/embarrassingly-parallel.html) \n", + " - No: I'm sorry, although Dask might have some hope for you.\n", + " \n", + " \n", + "**Bottom Left:** You don't need Dask. \n", + "**Elsewhere:** Dask fair game.\n", + "\n", + "\n", + "\"Dask\n", + "\n", + "\n", + "**Disclaimers:**\n", + "\n", + "1. When we say \"Dask might be able to help\" it is because you should try first to accelerate your code with Numpy and or Numba, checking types used on your Dataframes, and then maybe consider Dask. Now even when using Dask, we can't guarantee that things will be faster, it depends on what is the code behind. \n", + "\n", + "2. Even when you have large datasets, at some point you want to double check if you have reduced things to a manageable level where going back to pandas or Numpy might be the best call.\n", + "\n", + "**Best practices:**\n", + "\n", + "The learning curve to use Dask can be a bit intimidating, that's why we want to point you out to some best practices links that will make the process smoother. We will go over some of these topics but we want to leave here these links for future reference\n", + "\n", + "- Are you working with arrays? Check this [array best practices](https://docs.dask.org/en/latest/array-best-practices.html)\n", + "- Dealing with DataFrames? Check this [DataFrames best practices](https://docs.dask.org/en/latest/dataframe-best-practices.html)\n", + "- Are you trying to accelerate your code using `delayed`? Check this [delayed best practices](https://docs.dask.org/en/latest/delayed-best-practices.html)\n", + "- For overall good practices check [Dask good practices](https://docs.dask.org/en/latest/best-practices.html)" + ] + }, + { + "cell_type": "markdown", + "id": "ea50907f", + "metadata": {}, + "source": [ + "## Why Dask? \n", + "\n", + "If you are interested in knowing why Dask might be a good option for you we recommend you to check the Dask documentation [Why Dask?](https://docs.dask.org/en/latest/why.html)\n", + "\n", + "But if you are already convinced that Dask is right for you and/or want to learn more about it. The topics that we will cover on this mini-tutorial are:\n", + "\n", + "1. Dask Delayed: How to parallelize existing Python code and your custom algorithms. \n", + "2. Schedulers: Single Machine vs Distributed, and the Dashboard. \n", + "3. From pandas to Dask: How to manipulate bigger-than-memory DataFrames using Dask. \n", + "4. Dask-ML: Scalable machine learning using Dask. " + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/notebooks/1_Delayed.ipynb b/notebooks/1_Delayed.ipynb new file mode 100644 index 0000000..6bdcceb --- /dev/null +++ b/notebooks/1_Delayed.ipynb @@ -0,0 +1,742 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "be4dd2fc", + "metadata": {}, + "source": [ + "\"Dask\n", + "\n", + "This notebook was inspired in the materials from: \n", + "\n", + "- https://github.com/coiled/pydata-global-dask/\n", + "- https://github.com/dask/dask-tutorial/\n", + "\n", + "# Dask Delayed\n", + "\n", + "Sometimes we have problems that are parallelizable. Dask delayed is an interface that can be use to parallelize existing Python code and custom algorithms. \n", + "\n", + "A first step to determine if we can use `dask.delayed` is to identify if there is some level of parallelism that we haven't exploit and hopefully `dask.delayed` will take care of it. We will start showing a simple example inspired on the main [Dask tutorial](https://tutorial.dask.org/), and we will it parallelize using `dask.delayed`.\n", + "\n", + "The following two functions will perform simple computations, where we use the `sleep` to simulate work. " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "c7cbb4e5", + "metadata": {}, + "outputs": [], + "source": [ + "from time import sleep\n", + "\n", + "def inc(x):\n", + " \"\"\"Increments x by one\"\"\"\n", + " sleep(1)\n", + " return x + 1\n", + "\n", + "def add(x, y):\n", + " \"\"\"Adds x and y\"\"\"\n", + " sleep(1)\n", + " return x + y" + ] + }, + { + "cell_type": "markdown", + "id": "700f0a97", + "metadata": {}, + "source": [ + "Let's do some operations and time these functions using the `%%time` magic at the beginning of the cell. " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "1c0053fb", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 933 µs, sys: 1.62 ms, total: 2.55 ms\n", + "Wall time: 3.01 s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "x = inc(1)\n", + "y = inc(2)\n", + "z = add(x, y)" + ] + }, + { + "cell_type": "markdown", + "id": "a99dd0ec", + "metadata": {}, + "source": [ + "The execution of the cell above took three seconds, this happens because we are calling each function sequentially. The computations above can be represented by the following graph:\n", + "\n", + "\"Dask\n", + "\n", + "\n", + "Where the circles are function calls, squares represent objects that are created by one task as output and can be inputs into other tasks, and arrows represent the dependencies between the tasks. From looking at the task graph, the opportunity for parallelization is more evident since the the two calls to the `inc` function are completely independent of one-another. Let's explore how `dask.delayed` can help us with this.\n", + "\n", + "\n", + "### `dask.delayed` \n", + "\n", + "Using the `dask.delayed` decorator we'll transform the `inc` and `add` functions. " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "31abdfa5", + "metadata": {}, + "outputs": [], + "source": [ + "from dask import delayed" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "03aed361", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 119 µs, sys: 24 µs, total: 143 µs\n", + "Wall time: 132 µs\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "a = delayed(inc)(1)\n", + "b = delayed(inc)(2)\n", + "c = delayed(add)(a, b)" + ] + }, + { + "cell_type": "markdown", + "id": "f5546859", + "metadata": {}, + "source": [ + "When we call the `delayed` version of the functions by passing the arguments, the original function is isn't actually called yet, that's why the execution finishes very quickly. When we called the `delayed` version of the functions, a `delayed` object is made, which keeps track of the functions to call and what arguments to pass to it. \n", + "\n", + "If we inspect `c`, we will notice that it instead of having the value five, we have what is called a `delayed` object." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "33c59a9b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Delayed('add-9b51a77b-5b91-4b92-88d8-48db94783550')\n" + ] + } + ], + "source": [ + "print(c)" + ] + }, + { + "cell_type": "markdown", + "id": "4ae1bfee", + "metadata": {}, + "source": [ + "We can visualize this objects by doing:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "ba3c6980", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAALMAAAF7CAYAAACZ2LqeAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3dd3BU5foH8O+mkbKQopCEwM9IQggQpYgQgaElqNSRJkUDCBeVJk3BuVev3LEil6bAFVGEhHJJMPROCiIEEYEAARIIEHpPW9K2PL8/vGSIKWSTs/vuvuf5zGQclpNzvnn8stk9++5ZDRERGLN/cQ6iEzCmFC4zkwaXmUnDSXQApV27dg2HDh0SHcPmvf7666IjKE4j2xPA2NhYDB06VHQMmyfZ/3ZA5ieARMRfFXytX79e9P8ai5G2zEx9uMxMGlxmJg0uM5MGl5lJg8vMpMFlZtLgMjNpcJmZNLjMTBpcZiYNLjOTBpeZSYPLzKTBZWbS4DIzaXCZmTS4zEwaXGYmDS4zkwaXmUmDy8ykwWVm0uAyM2lwmZk0uMxMGlxmJg0uM5MGl5lJg8vMpMFlZtLgMjNpcJmZNLjMTBpcZiYNLjOTBpeZSYPLzKTBZWbS4DIzaXCZmTS4zEwaXGYmDS4zkwaX2QpMJpPoCKrgJDqApcTGxoqOAAAgIuzatQu9evUSHQUAkJKSIjqCxUhb5qFDh4qOUMbKlStFR5CedA8zXn/9dRCRzXyNHz8eAJCYmCg8y+NfMpKuzLZEr9dj7dq1AFD6X2Y5XGYL2rNnD3JzcwEA69evR3FxseBEcuMyW9DatWvh7OwMANDpdNi9e7fgRHLjMltIQUEBNm7cCL1eDwBwdHTEmjVrBKeSG5fZQrZu3YqioqLSPxsMBmzevBk6nU5gKrlxmS1kzZo1cHR0LHObXq/Hli1bBCWSH5fZAnJycrBr1y4YDIYyt2s0GsTExAhKJT8uswVs2LChwpewjUYj9u7di3v37glIJT8uswU86d73559/tlISdeEyK+zmzZv49ddfYTQaK/x7IkJ0dLSVU6kDl1lh69evh4ND5WM1mUxISUlBVlaWFVOpA5dZYTExMeWe+P0VESEuLs5KidRD2lVzIty4cQPZ2dkICAgovc1gMKCoqAharbbMtjIvxRRFQ7IuobIRsbGxGDp0qLQr1WxIHD/MYNLgMjNpcJmZNLjMTBpcZiYNLjOTBpeZSYPLzKTBZWbS4DIzaXCZmTS4zEwaXGYmDS4zkwaXmUmDy8ykwWVm0uAyM2lwmZk0uMxMGlxmJg0uM5MGl5lJg8vMpMFlZtLgMjNpcJmZNLjMTBpcZiYNLjOTBpeZSYMvNq4wIsL169dx+/ZtPHz4ECdOnAAA7Nu3D1qtFh4eHmjUqBG8vb0FJ5UPX2y8FogIaWlpSExMxKFDh5CRkYH09HQUFBQ88XsbNGiA0NBQtGzZEl26dEH37t3h6+trhdTSiuMym8lkMiEpKQkxMTHYuXMn7ty5A29vb3Tu3BktWrRASEgIQkJC4O/vDw8Pj9J745ycHOh0Ouh0OmRlZSE9PR3p6elITU3FkSNHYDQa0bJlSwwaNAhRUVEICgoS/aPamzgQq5Y7d+7Qxx9/TI0bNyYA1L59e5o7dy798ccfZDQaa7Xv/Px82rFjB02dOpX8/f1Jo9FQp06daPXq1aTX6xX6CaQXy2V+gmvXrtGUKVPI3d2dGjRoQP/4xz/o7NmzFjuewWCgnTt30rBhw8jJyYmCgoLo+++/p+LiYosdUxJc5sqUlJTQwoULSavVkq+vL3311Vf08OFDq2a4dOkSvffee+Tq6krBwcG0a9cuqx7fznCZK7J//34KDQ0ld3d3+uKLL4TfK16+fJlee+01AkDDhg2j27dvC81jo7jMjzMYDDR79mxydHSkfv360eXLl0VHKmPbtm0UGBhI/v7+lJiYKDqOreEyP3L79m3q3r07ubq60pIlS0THqVROTg4NGjSIHB0d6V//+heZTCbRkWwFl5mIKDMzk4KDgykoKIiOHTsmOk61fPvtt+Ts7EwjR46kkpIS0XFsQazqzzOnpaXhlVdegZ+fH3bs2IEGDRqIjlRtCQkJGDBgADp06ID4+HjUrVtXdCSR1P0JrWlpaejSpQtCQ0ORlJRkV0UGgIiICOzbtw8nTpzAoEGDUFJSIjqSUKq9Z7527Ro6deqEhg0bIiEhAe7u7qIj1dipU6fQpUsXvPrqq1izZg0cHFR5H6XOe+bc3Fz07NkTXl5e2Llzp10XGQCee+45/Pzzz9i4cSNmzpwpOo4wqizz3/72N+Tk5GDnzp3w8vISHUcRPXr0wIoVKzB//nzEx8eLjiOG2Ceg1rd48WJycHCgPXv2iI5iEW+//TZ5eXnRxYsXRUexNnWdzUhPT0fr1q0xa9YszJ49W3QciygqKkJ4eDi0Wi0OHDgAjUYjOpK1qGsJaGRkJO7cuYNjx47ByUne9yWcOnUKbdu2xbJlyzBmzBjRcaxFPU8A161bh6SkJCxbtkzqIgN/PiGcMGECZs6ciXv37omOYzWquGcuKSlBcHAwXnnlFSxfvlx0HKvIzc1FaGgoRowYgXnz5omOYw3quGeOjo7GrVu38NFHH4mOYjWenp6YOXMmvvvuO9y9e1d0HKuQvsxGoxFz587FqFGj8Mwzz4iOY1XvvPMOtFotFi1aJDqKVUhf5q1bt+LChQuYNWuW6ChW5+7ujqlTp2LJkiUoKioSHcfipC9zdHQ0IiIiEBwcLDqKEGPHjoVOp8OWLVtER7E4qcv84MED7NixA1FRUaKjCNOgQQNERkYiJiZGdBSLk7rMGzZsgJOTEwYMGCA6ilAjR47E7t278eDBA9FRLErqMu/duxfdu3eHVqsVHUWoXr16wWQyITk5WXQUi5K2zESE5ORkdO/eXXSUUidPnsSiRYuQnZ2tyHbV5eXlhTZt2iApKUmR/dkqact86tQp3Lt3z6bK/Ouvv2Lq1Km4deuWItuZo0ePHkhMTFRsf7ZI2jIfP34cbm5uaNWqlegoNiE8PBznzp1DYWGh6CgWI22Zz507h6ZNm6r1XRflNGvWDCaTCefPnxcdxWKk/T+dnp6OZs2aKbrP5ORkTJw4ESEhIWjcuDGGDx+O7777Dkajsdy2v//+O4YMGYImTZogMjISixcvRkXLYKq7XW0FBwfDyckJ586dU3zftkLa5WMXL15E7969FdtfUlISevbsCU9PT4wYMQJPP/009u7di/Hjx+PixYv4+uuvS7dNTk5Gnz594OrqioEDB8LBwQEff/xxuXe1VHc7Jbi4uKBx48a4ePGi4vu2GcLeF2BhgYGBNGfOHMX2N27cOKpTpw5lZ2eX3lZYWEj+/v4UGhpaZttWrVqRt7c3Xbp0qfS2jIwMcnd3JwB05swZs7ZTSps2bejDDz9UdJ82JFbahxn5+fmKXkdi+vTp+P3338vca5aUlMDLywt5eXmltx0+fBipqamYMGECAgMDS29v2rRpmVciq7udkurWrYv8/HyL7NsWSPswQ+kyh4aG4v79+5g3bx5SUlJw+fJlnD9/Hnl5eWjYsGHpdo8ek7Zu3brcPlq2bGn2dkqqV6+e1GWW9p5Zo9Eo+kRq7ty5aNSoET799FPo9XpERkZi5cqV6NSpU5ntHr1k7OjoWG4frq6uZm+nJCXnYYukLbNWq4VOp1NkX3fv3sWHH34IT09PXL16FZs3b8ZXX32FAQMGlFta+eyzzwIA9u/fX24/ly9fNns7JSn928rWSFtmJR8fZmVlwWQyYeDAgWXKcPXq1dJPk3qkXbt2cHZ2Lvdqm8FgwNq1a83eTklcZjvl5eWl2NqGZs2aQavVYv369di6dSvOnz+PlStXomPHjqhXrx50Oh3S09MBAI0bN8bEiRNx6tQpjB07FseOHcPx48cxePBg5Obmlu6zutspKScnB56enhbZt00QfT7FUgYOHEhDhgxRbH+xsbGk1WoJAAEgHx8fWrVqFW3YsIE8PDzIycmpdNuioiIaN25c6bYAKCIigmJiYsqccqvudkooLi4mJycnio2NVWyfNkbei8D8/e9/x/bt25GamqrYPu/fv4/jx4/D398fLVq0KL3Ayv3795GdnV3u3SxXr17FqVOn0Lx589LHyBWp7na1kZaWhrCwMKSmpuL555+3yDEEk/ciMKtWrcL48eORn59f4RkDtYmPj8eQIUOg0+ng5uYmOo4lyHupgbZt26KwsFDRe2Z7dvjwYTRv3lzWIgOQ+AlgWFgYfH19pV+QXl2JiYno0aOH6BgWJW2ZNRoNunTpwmXGn2cxTpw4YVNvVLAEacsMAD179kRSUpLUL+FWx/bt2+Hg4IBu3bqJjmJRUpd58ODBMBqN6r349v/ExMSgV69e8Pb2Fh3FoqQus7e3N/r06aOKa0ZU5vbt20hISFDFtUOkLjMAjBo1CklJSVK/Xagqy5cvR926ddG3b1/RUSxO+jL36dMHTZs2xVdffSU6itU9fPgQ33zzDSZNmmSxlXi2RPoyOzo6YtasWYiJiUFWVpboOFb1n//8BwUFBZg8ebLoKFYh7SuAj9Pr9WjatGnpJzKpQU5ODpo1a4aRI0di7ty5ouNYg7yvAD7O2dkZX3/9NVauXFnh+mEZffTRRzAajfjwww9FR7EaVdwzP9KnTx9cuXIFx44dg7Ozs+g4FnPs2DG0b98eP/74I0aNGiU6jrXIu9CoIufPn0erVq0wY8YMfPrpp6LjWERhYSE6dOgALy8v7N+/X1UfnaaKhxmPNG3aFAsWLMAXX3yBPXv2iI5jEZMnT8a1a9ewatUqNRX5T6JWUos0bNgw8vX1patXr4qOoqhVq1aRRqOhTZs2iY4igryL86uSl5eHl156CRqNBr/88gt8fHxER6q1ffv2oU+fPpg2bZoqz6lDbY+ZH3f9+nV06tQJfn5+SEhIgIeHh+hINXby5El06dKl9KV7lV4sUl2PmR8XEBCAvXv34tKlS+jTp4/F3kRqaUeOHEFkZCTatWuHn376Sa1FBqCCVwCr0rRpUyQmJiIzMxOdO3fG9evXRUcyy969exEZGYnw8HBs2bIFLi4uoiMJpeoyA39eCuvAgQPQ6/Xo3Lkzfv/9d9GRnoiIsGDBAvTu3RtDhgxBfHw83N3dRccST+jzTxty9+5devnll8nFxYUWLlxIJpNJdKQK3b9/n/r3709OTk705Zdf2mxOAWK5zI8xGo30+eefk5OTE7366qt04cIF0ZHKiI+Pp8aNG1OjRo3ol19+ER3H1nCZK3Lw4EEKCwsjV1dX+uSTT6igoEBonvPnz1Pv3r1Jo9FQVFQU3b17V2geG6XO88zVYTAYsGTJEvzzn/9EnTp1MGHCBPj5+WHkyJFWeXy6fft2uLi4YNu2bVi2bBmeeeYZLF68GD179rT4se1UHN8zP8GtW7fogw8+IFdXV9JoNDRz5kw6deqUxY5XUlJCW7dupc6dOxMAatKkCa1cuZL0er3FjikJea+crxRfX1+0b98eJSUl8PT0RGxsLJ577jm0bdsWX375JX777TcYDIZaHSM3NxdbtmzBpEmTEBAQgP79+6OgoAAAUFxcjIiICDg5SXtdeMXww4wn2LJlCwYOHAij0Yjw8HAcOnQIBw4cQExMDLZv346bN2+iXr166NSpE1q0aIGQkBA0a9YMvr6+0Gq1pV/5+fnIycmBTqdDVlYW0tPTkZ6ejhMnTuDYsWMgIjz//PMYNGgQoqKiUKdOHfj7+0Oj0SAwMBAHDx6Ev7+/6HHYMvW+nF0de/fuRZ8+fWA0GkFEGDJkCNavX19mm3PnziExMREpKSk4d+4c0tPTq3WdjoYNGyI0NBQtW7ZE165d0a1bNzz11FOlf28ymeDi4gKj0QhnZ2c0btwYBw8ehJ+fn+I/pyS4zJX59ddf0bNnT+j1ehiNRri4uGDChAlYsGDBE7/35s2buHv3LnQ6XelXvXr14OXlBa1Wi4CAgGpd9Pvpp5/G/fv3Afz5bpng4GAcOHCgTOlZqTh+IFaBlJQUvPzyy6VFBv683Fd17xX9/f0VeUjg6+tbWma9Xo8LFy6ga9euOHDggPQXdKkJfgL4F8ePH8crr7yCkpKSMp+8ajAYrP4rvnHjxmX+rNfrkZGRgZdffln1lxyrCJf5MampqejWrRsKCgrKfYSw0Wi0+hOwRo0alTuLodfrkZqaip49eyr2AUSy4DL/T3p6Onr06FFhkR+x9j2zn59fhRdK1+v1+OOPP9C/f/9yn3alZlxm/PlG186dOyMvL6/Kc8bWvmf29/eHyWSq8O8MBgMOHDiAfv36obi42Kq5bJXqy/xoLXN2dnaVRXZ0dLT6WQQ/Pz/o9fpK/95gMCAhIQFDhw6t9Qs3MlB9ma9fv44mTZqUns+tjI+Pj9XfxfGk3wTOzs5wdHSEj49P6VkPNVN9mbt06YKUlBQcPXoUQ4YMgYODQ4WlFvFiRWXHdHR0hJubG8aPH49Lly5hxYoV8PX1tXI628Pnmf/nhRdewJo1a9ChQwe8//77cHJygkajKf0136hRI6tnevyeWaPRQKPRwMPDAwaDAefPn0dAQIDVM9ky1d8z/9W6devQv39/ZGVlYdq0aaXv2hZRHDc3t9LjBwUFYfny5cjMzISLiwvWrVtn9Tw2T9yKPduTmJhIAOjQoUOlt+Xm5tKcOXNo8eLFQjKNHj2aNm/eTEajsfS26dOnU0BAABUXFwvJZKN4cf7jevfujYKCAiQnJ4uOUqVr164hKCgIy5Ytw+jRo0XHsRW80OiRU6dOoVWrVti2bRt69+4tOs4TjRo1CkeOHEFaWpqqr5XxGC7zI1FRUThx4gROnjxpFxccPHv2LMLCwrBp0yb069dPdBxbwGUG/vy13aRJE/zwww8YOXKk6DjV1rdvX+Tl5eGXX34RHcUWqPfyXI+bN28efH19MWzYMNFRzPLBBx/gwIEDOHTokOgoNkH1Zc7OzsYPP/yAadOm2d3lrbp27YqXXnoJ//73v0VHsQmqL/OSJUvg6OiIsWPHio5SIzNmzMCmTZtw5swZ0VGEU3WZi4uLsWTJEkycOBGenp6i49TIgAEDEBoaWq23c8lO1WX+6aefkJ2djUmTJomOUmMODg6YMmUKYmJicOPGDdFxhFJtmY1GI+bPn4/Ro0fb/Vv4R48eDR8fH3z77beiowil2jLHx8cjMzMTU6ZMER2l1urUqYNJkyZh6dKldnvRdCWotszz58/HgAED0Lx5c9FRFDFx4kRoNBosX75cdBRhVFnmpKQkHD58GDNmzBAdRTGenp4YO3YsFi5ciJKSEtFxhFDlK4C9evVCYWGhzS8oMtejBUjfffcd3nrrLdFxrE19L2fb24Iic6l4AZL6yhwVFYU//vgDaWlpdrGgyFwqXoCkrjLb64Iic6l0AZK6FhrZ64Iic6l1AZJqymzPC4rM9WgB0ty5c0VHsSrVlNneFxSZa8aMGdi8ebOqFiCposxFRUV2v6DIXGpcgKSKMsuwoMhcDg4OmDp1qqoWIElfZqPRiAULFkixoMhco0aNUtUCJOnLLNOCInOpbQGS9GWWbUGRudS0AEnqMsu4oMhcalqAJPUrgLIuKDKXShYgyftytuwLisylggVI8pZZ9gVF5lLBAiQ5y6yWBUXmknwBkpwLjdSyoMhcsi9Akq7MDx48UM2CInPJvgBJujKrbUGRuWRegCRVmYuKirB06VJVLSgyl8wLkCp8AljZBynaumXLlmH69OnIzMy0+KdDWfL0lqXnv3z5ckyZMgWZmZl2u16lgvnHlftMk/Xr1xMA/nrCl6Xw/Gs8/9hKPzotLi6usr9StZSUFMyfP9/ix+H5V6yq+Vda5sGDB1sskD2z1kMwnn/Fqpq/VE8AmbpxmZk0uMxMGlxmJg0uM5MGl5lJg8vMpMFlZtLgMjNpcJmZNLjMTBpcZiYNLjOTBpeZSYPLzKTBZWbS4DIzaXCZmTS4zEwaXGYmDS4zkwaXmUmDy8ykwWVm0uAyM2lwmZk0uMxMGlxmJg0uM5MGl5lJg8vMpMFlZtLgMjNpcJmZNLjMTBpcZiYNLjOTBpeZSYPLzKTBZWbS4DIzaXCZmTS4zEwadlFma31eNauYvcy/0g+Ct5UfwGQyYdGiRZg2bZroKAAAIrLKcXj+Fatq/pWW2dHR0SJhaur9998XHcGqeP7mK1fmjh07Ii4uTkSWCn3//ffYu3cvPvnkE4SFhYmOY3E8/1ogG1ZSUkKenp4EgMaOHSs6jurY2fxjbfoJ4O7du5GbmwsAiI2NRXFxseBE6mJv87fpMq9duxbOzs4AAJ1Oh127dglOpC72Nn+bLXNBQQE2bdoEvV4P4M8nRGvWrBGcSj3scf42W+YtW7agqKio9M8GgwFbtmyBTqcTmEo97HH+Nlvm1atXw8GhbDy9Xo/NmzcLSqQu9jh/myxzdnY29uzZA6PRWOZ2jUaDmJgYQanUw17nb5Nl3rBhQ7lBAoDRaMS+fftw584dAanUw17nb5Nlrupfv0ajQXx8vBXTqI+9zt/mynzz5k0cPHiw0rUJJpMJ0dHRVk6lHvY8f5sr83//+99yTzweZzKZcPjwYWRlZVkxlXrY8/xtrswxMTEwGAxVbkNEiI2NtVIidbHn+Ve6ak6EGzduIDs7GwEBAaW3lZSUQKfTwcfHp8y2KSkp1o4nPXufv4bISgt0ayg2NhZDhw612jpiVpYdzT/O5h5mMFZTXGYmDS4zkwaXmUmDy8ykwWVm0uAyM2lwmZk0uMxMGlxmJg0uM5MGl5lJg8vMpMFlZtLgMjNpcJmZNLjMTBpcZiYNLjOTBpeZSYPLzKTBZWbS4DIzaXCZmTS4zEwaXGYmDS4zkwaXmUmDy8ykwWVm0uAyM2nYdJnz8vKQnZ0NALh37x4KCwsFJ1IXe5u/TVxs/Pbt20hOTkZKSgrOnj2LjIwMXLlypcIPiXF1dUVISAhCQkIQFhaGrl27Ijw8HK6urgKSy0GS+ccJK/OVK1cQExOD9evX4/Tp03B0dESbNm3QsmVLNGvWDIGBgfD29oaHhwfc3NyQm5uLhw8f4v79+8jIyEBGRgaOHz+Oixcvws3NDd26dcObb76JAQMGwM3NTcSPZFcknH8cyMoSEhKoZ8+e5ODgQPXr16fJkyfT9u3bKT8/v0b7u3z5Mq1YsYL69etHzs7OVK9ePZo8eTJlZWUpnFwOEs8/1mplTkpKovDwcAJAERERtHnzZiopKVH0GHfu3KH58+fT//3f/5GLiwuNHTuWbty4oegx7JUK5m/5Mt+8eZPeeOMN0mg01Lt3bzp8+LClD0klJSX0448/UmBgIHl6etKiRYvIYDBY/Li2SEXzt2yZt2zZQk899RQFBATQqlWrLHmoChUUFNAnn3xCderUoRdffJEuXrxo9QwiqWz+limzXq+n6dOnk0ajoTFjxpBOp7PEYart9OnT1LJlS3rqqado+/btQrNYg0rnr3yZCwoKqH///uTh4UExMTFK777GHj58SKNGjSJHR0f6/vvvRcexGBXPX9ky5+bmUpcuXcjHx4dSUlKU3LVi/vWvf5FGo6HPP/9cdBTFqXz+ypW5sLCQunfvTv7+/nT69GmldmsRS5cuJY1GQwsXLhQdRTE8f4XKbDAYaODAgeTt7U0nT55UYpcWN3fuXHJwcKC1a9eKjlJrPH8iUqrMs2fPJldXVzpw4IASu7OaGTNmkKurK504cUJ0lFrh+ROREmVOTk4mR0dHWrp0qRKBrMpoNFJkZCQFBwdTbm6u6Dg1wvMvVbsy5+bmUkBAAA0ZMqS2QYS5fv06NWjQgMaNGyc6itl4/mXUrsxTp04lHx8funv3bm2DCLVu3TpycHCgQ4cOiY5iFp5/GTUvc2pqKjk5OdHy5ctrE8BmREREUJs2bchoNIqOUi08/3JqXubBgwdT27Zt7eZ//pOkpaWRg4MDxcXFiY5SLTz/cmpW5rNnz5KDgwNt2LChpge2SYMHD6bWrVuTyWQSHaVKPP8K1azM48aNo+bNm0tzr/DI8ePHCQDt3btXdJQq8fwrFGv2ewCLiooQFxeHt99+Gw4ONv0WQrO1bt0a4eHhiI6OFh2lUjz/ypk9jY0bN0Kn02HYsGE1OqCti4qKQnx8PPLz80VHqRDPv3Jmlzk+Ph6RkZHw8/Mz+2CP27x5M2JjY2u1D0sYOnQoioqKsHv3btFRKsTzr4I5D0pMJhM9/fTTNG/evJo8pimjXbt29Oyzz9Z6P5bQvn17mjBhgugY5fD8qxTrZE7xT548iXv37qFHjx7m/6v5i0mTJtnsdRh69OiBTZs2iY5RDs//Ccyp/g8//EBardamnkWbTCbFT6Vt3bqVANjceg2ef5XMO5tx7tw5hISEKPIs+r333sNbb71V+udx48Zh0qRJuHHjBkaMGIFnnnkGQUFBGDNmDB4+fFju+1NTUxEZGQkvLy+4u7ujQ4cO2LlzZ61zAUBoaCgAICMjQ5H9KYXn/wTmVL9fv340fPhw8/6ZVeKvj9natWtHgYGBFBAQQJ07d6aZM2dS165dCQANHDiwzPcmJSWRq6srBQQE0LRp02jMmDHk6elJTk5OdPDgwVpnMxgM5OLiQmvWrKn1vpTE86+SeS+avPDCCzRz5kzzklWiomECoFmzZpX+2jIajdS2bVvy9PQs3c5oNFKrVq3I09OTzp8/X3r72bNnSaPR0BtvvKFIvsDAQJozZ44i+1IKz79K5j3MyM/PR926dc276zeDm5sbZs+eDY1GAwBwcHBAp06dkJubi2vXrgEAjh8/jtTUVLz22msIDg4u/d7Q0FB88803aN++vSJZ6tatC51Op8i+lMLzr5pZZzMsPcwGDRqUuwCft7c3AJT+YBcuXAAAPPfcc+W+f9KkSYplqVu3LvLy8hTbnxJ4/lUz657ZZDJZ9CXUqi64R/+7vuPdu3cBAAEBARbLAQBOTk4wGo0WPYa5eP5VM2syWq22wme21hQYGAgA+O2338r9XXR0NFauXKnIcfLy8ix6L1gTPP+qmV1m0WsWXnzxRbi5uSExMbHM7WfOnMHo0aOxf/9+RY5j6V/pNcHzr5pZZW7QoAFu3bpl1vDQ6PEAAATnSURBVAGU5uvri6lTp+LkyZN49913cfToUURHR2P48OFwcnLCu+++W+tjEBFu376N+vXrK5BYOTz/qpn1BDAkJASpqalmHcASPv30UxAR5s6di2XLlgEA/P39sWbNGnTo0KHW+79x4wZ0Oh2aNWtW630pief/BOacyPvmm2+ofv365nyLRel0Ojp06BCdPn2aiouLFdtvYmIiAaBbt24ptk8l8PyrZN5Co1atWuHu3bu4dOkSnn32WfP+1ViAh4cHXnrpJcX3e+TIEfj5+cHX11fxfdcGz79qZj1mDg8Ph7u7O5KSksw6iL1JSEhQZGWa0nj+VTOrzC4uLujYsSMSEhLMPpC9KCoqwsGDB22yzDz/qpl9Br5fv37Ytm0bCgoKzD6YPdi+fTuKi4vRq1cv0VEqxPOvnNllHj58OAoLC21y8boSoqOjERERgYYNG4qOUiGef+XMLnP9+vXx6quv4scffzT7YLbuxo0b2LVrF6KiokRHqRTPvwo1OXWyb98+AmB312Z7kmnTppGfnx8VFhaKjlIlnn+Fan55rg4dOlD//v1r+u02586dO+Th4UHz588XHaVaeP7l1LzM27dvJ41GQ0lJSTXdhU155513yM/PT/gnM1UXz7+c2l3Stm/fvtSiRQvFP+nT2o4ePUqOjo60evVq0VHMwvMvo3ZlzszMJDc3N5o9e3ZtdiNUUVERtW7dmrp162bzF0z8K55/GbX/GIhvv/2WHB0d7fbX3YQJE8jT05MuXLggOkqN8PxLKfMBPYMGDaKGDRvStWvXlNid1axZs4Y0Go3dXJO5Mjx/IlKqzNnZ2dSiRQsKCwujBw8eKLFLi9u3bx/VqVOHZsyYITpKrfH8iUjJD7W8evUqNW7cmDp27Eh5eXlK7dYifvvtN6pXrx6NGDHCpq4OVBs8f4U/bvjMmTPk5+dHbdu2pdu3byu5a8Xs3r2btFot9e3bV9E1uLZA5fNX/oPgMzMzKTg4mIKDgyktLU3p3dfK8uXLycXFhUaOHGn3p7Mqo+L5K19mIqJbt25Rp06dyN3dnVasWGGJQ5glPz+f3nzzTdJoNPTRRx/Z3Sk4c6l0/pYpMxGRXq+nWbNmkUajoddee42ysrIsdagq7dixg4KCgqh+/fq0c+dOIRlEUOH8LVfmR/bt20chISHk4eFBn332mdWenJw9e5YGDBhAAGjIkCF0/fp1qxzX1qho/pYvM9Gfr/J89tlnVLduXfLx8aHZs2fTnTt3LHKso0eP0uuvv04ODg7UokUL2r17t0WOY09UMn/rlPmRBw8e0OzZs8nHx4ecnZ2pX79+tH79esrOzq7VfjMyMmjOnDkUFhZGAKh169YUFxcnzWk3pUg+/1gN0f8uImZFhYWF2LhxI1avXo09e/YAANq2bYsuXbqgRYsWaNasGYKCgqDVaqHVah+tu0ZOTg6ys7ORkZGB9PR0HD9+HElJSbhy5Qp8fHwwdOhQvPnmm+jYsaO1fyS7Iun844SU+XEPHjxAcnIyEhMTcejQIaSnp5d7f5uHh0e5a6w1aNAAYWFh6Nq1KyIiItC+fXs4OztbM7oUJJq/+DL/FRHh6tWruHz5MnQ6HXQ6HR4+fAitVgtvb294enqiadOm8PLyEh1VSnY8f9srM2M1FCfX59UyVeMyM2k4AcgWHYIxBTz8f0BtYAlbB9dFAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "c.visualize()" + ] + }, + { + "cell_type": "markdown", + "id": "2714579a", + "metadata": {}, + "source": [ + "Up to this point the object `c` holds all the information we need to compute the result. We can evaluate the result with `.compute()`." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "3cfea4e1", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 1.41 ms, sys: 1.33 ms, total: 2.73 ms\n", + "Wall time: 2.01 s\n" + ] + }, + { + "data": { + "text/plain": [ + "5" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%%time\n", + "\n", + "c.compute()" + ] + }, + { + "cell_type": "markdown", + "id": "b69fe21d", + "metadata": {}, + "source": [ + "Notice that now the computation took 2s instead of 3s, this is because the two `inc` computations are run in parallel. " + ] + }, + { + "cell_type": "markdown", + "id": "833397dd", + "metadata": {}, + "source": [ + "## Parallelizing a `for`-loop\n", + "\n", + "When we perform the same group of operation multiple times in the form of `for-loop`, there is a chance that we can perform this computations in parallel. For example, the following serial code, can be parallelized using `delayed`: " + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "c79c75b0", + "metadata": {}, + "outputs": [], + "source": [ + "data = list(range(8))" + ] + }, + { + "cell_type": "markdown", + "id": "5926bbf6", + "metadata": {}, + "source": [ + "#### Sequential code" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "8153b1b6", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 1.31 ms, sys: 1.35 ms, total: 2.67 ms\n", + "Wall time: 8.02 s\n" + ] + } + ], + "source": [ + "%%time\n", + "results = []\n", + "for i in data:\n", + " y = inc(i) #this can be done in parallel\n", + " results.append(y)\n", + " \n", + "total = sum(results) #this can be done in parallel" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "a18b54f1", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "total = 36\n" + ] + } + ], + "source": [ + "print(f'{total = }')" + ] + }, + { + "cell_type": "markdown", + "id": "5d269dee", + "metadata": {}, + "source": [ + "### Exercise: \n", + "\n", + "Notice that both the `inc` and `sum` operations can be done in parallel, use `delayed` to parallelize the sequential code above, compute the `total` and time it using `%%time` " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "d6905529", + "metadata": {}, + "outputs": [], + "source": [ + "results = []\n", + "for i in data:\n", + " y = delayed(inc)(i) \n", + " results.append(y)\n", + " \n", + "total = delayed(sum)(results) " + ] + }, + { + "cell_type": "markdown", + "id": "fd452def", + "metadata": {}, + "source": [ + "Notice that we can apply delayed to built-in functions, as we did in the case of `sum` in the code above. " + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "6f52a461", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Delayed('sum-c14bce50-fd0f-4eae-a781-b94226956e95')" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "total" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "bd0270ec", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvMAAAGACAYAAAAgW+0lAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdeVjU5f4+8Hs2QDYBARH3FTTNhdx3xTTDytxKJW2jU3nwtIll3zMdOxX9rhYqW0hNMUPFUsPSEpVyKxXFXcF9RxNEZJPt/fujL/MFxX2YZz7D/bourithmLnnwfCezzyLTkQERERERESkNYv1qhMQEREREdGdYZknIiIiItIolnkiIiIiIo0yqg5AROQoTp06hU2bNqmOYfdGjx6tOgIRkcPQcQEsEZF1JCQkYMyYMapj2D3+s0NEZDVcAEtEZG0iwo8qPhYtWqT6R0NE5HBY5omIiIiINIplnoiIiIhIo1jmiYiIiIg0imWeiIiIiEijWOaJiIiIiDSKZZ6IiIiISKNY5omIiIiINIplnoiIiIhIo1jmiYiIiIg0imWeiIiIiEijWOaJiIiIiDSKZZ6IiIiISKNY5omIiIiINIplnoiIiIhIo1jmiYiIiIg0imWeiIiIiEijWOaJiIiIiDSKZZ6IiIiISKNY5omIiIiINIplnoiIiIhIo1jmiYiIiIg0imWeiIiIiEijWOaJiIiIiDSKZZ6IiIiISKNY5omIiIiINIplnoiIiIhIo1jmiYiIiIg0imWeiIiIiEijWOaJiIiIiDSKZZ6IiIiISKNY5omIiIiINIplnoiIiIhIo1jmiYiIiIg0imWeiIiIiEijWOaJiIiIiDSKZZ6IiIiISKNY5omIiIiINIplnoiIiIhIo1jmiYiIiIg0imWeiIiIiEijWOaJiIiIiDSKZZ6IiIiISKNY5omIiIiINIplnoiIiIhIo1jmiYgcWH5+vuoIRERUjYyqAxAROZqEhATVEQAAJSUlWLBgAcLDw1VHAQD88ccfqiMQETkclnkiIisbM2aM6giV/PTTT6ojEBFRNeE0GyIiKxk9ejRExG4+Ro4cCQD4/vvvlWep+EFERNbDMk9E5IByc3OxfPlyAMB3332nOA0REVUXlnkiIge0bNkyFBcXA/h7ms2lS5cUJyIiourAMk9E5IDmz58PnU4HACgtLcWyZcsUJyIiourAMk9E5GAuXLiA1atXo7S0FACg0+nw7bffKk5FRETVgWWeiMjBLF68uNKfS0tLkZycjHPnzilKRERE1YVlnojIwXz77bfX7Bqj1+uvKflERKR9LPNERA7k5MmT+PPPP1FWVlbp86WlpZg3b56iVEREVF1Y5omIHMiCBQtgMBiu+byIICUlBUePHlWQioiIqgvLPBGRA5k3b55l4evVjEYjFi5caONERERUnXTC4/iIiBzCgQMH0Lp16xvepmXLlkhPT7dRIiIiqmaLeWWeiMhBxMfHw2Qy3fA2Bw8exJ49e2yUiIiIqhvLPBGRg5g3b57l1NcbWbBggQ3SEBGRLRhVByAiort39uxZdOnSBV26dLF8LjMzE+np6ejevXul2xYVFdk6HhERVRPOmSciclAJCQkYM2bMNXvOExGRw+CceSIiIiIirWKZJyIiIiLSKJZ5IiIiIiKNYpknIiIiItIolnkiIiIiIo1imSciIiIi0iiWeSIiIiIijWKZJyIiIiLSKJZ5IiIiIiKNYpknIiIiItIolnkiIiIiIo1imSciIiIi0iiWeSIiIiIijWKZJyIiIiLSKJZ5IiIiIiKNYpknIiIiItIolnkiIiIiIo1imSciIiIi0iiWeSIiIiIijWKZJyIiIiLSKJZ5IiIiIiKNYpknIiIiItIolnkiIiIiIo1imSciIiIi0iiWeSIiIiIijWKZJyIiIiLSKJZ5IiIiIiKNYpknIiIiItIolnkiIiIiIo1imSciIiIi0iiWeSIiIiIijTKqDkBERNaTk5ODCxcuIC8vDwcPHgQAbNu2DW5ubnBzc4Ofnx9cXFwUpyQiImvRiYioDkFERLenrKwMO3fuRHJyMvbs2YMDBw4gLS0NWVlZN/w+vV6PRo0aoVWrVggODkbnzp0xYMAABAYG2ig5ERFZ0WKWeSIijcjLy8PSpUuxZMkS/P7778jKyoKfnx86duyIoKAgBAcHo2nTpvD397dciXdzc0N2djZyc3ORl5eHs2fPIj09HWlpadi/fz9SU1NRVFSEoKAghIaG4rHHHkPPnj2h0+lUP10iIro5lnkiInu3fv16zJ49Gz/88AOKioowaNAgDBo0CP3790e7du3uqnjn5+dj48aNSE5Oxs8//4xdu3ahefPmCA8Px9NPP40GDRpY8ZkQEZGVscwTEdkjEcHKlSvx7rvvYuPGjejcuTOeeOIJPPbYY/D19a22x925cyfmzZuH+Ph4ZGVlYcKECYiKikLz5s2r7TGJiOiOLeZuNkREdmbDhg3o3LkzwsLC4OXlhY0bN2LLli2YNGlStRZ5AGjfvj0+/PBDHD9+HJ9//jnWrl2L4OBgPP300zh//ny1PjYREd0+lnkiIjvx119/4amnnkKfPn3g6+uL7du346effkKPHj1snsXJyQnPPPMMDhw4gDlz5mDVqlUIDg7Gl19+ibKyMpvnISKiqrHMExHZgaVLlyI4OBhJSUlISEjAL7/8gg4dOqiOBaPRiPHjx2P//v145plnMHnyZPTq1QvHjx9XHY2IiMAyT0SkVFFRESZPnowRI0Zg5MiR2L9/P0aOHKk61jXc3d3x//7f/8P27duRm5uLjh074scff1Qdi4ioxmOZJyJS5Ny5c+jVqxfmzJmD7777DrGxsXB3d1cd64batm2LzZs3Y8SIERg+fDhef/11cB8FIiJ1eAIsEZECR44cweDBg6HT6ZCSkoJWrVqpjnTLatWqhZkzZ6JXr16IiIjAmTNnMGvWLJhMJtXRiIhqHJZ5IiIb27VrF4YMGYLAwECsWLEC/v7+qiPdkQkTJiAgIAAjR47EhQsXsHjxYri6uqqORURUo3CaDRGRDR08eBCDBg1CcHAwkpOTNVvkyw0ePBhr1qzB5s2bMWbMGJSUlKiORERUo/DQKCIiGzlz5gx69eoFX19frF271u7nx9+OrVu3YsCAAXj44Yfx7bff3tWptEREdMt4aBQRkS3k5eXhgQcegIuLC1asWOFQRR4AOnfujISEBCQkJOB//ud/VMchIqoxWOaJiGzghRdewJkzZ/DLL79U+ymuqjzwwAP48ssv8e6772LFihWq4xAR1QhcAEtEVM3mzJmDb7/9FsuWLUOjRo1Ux6lWTz/9NNavX4/w8HBs374djRs3Vh2JiMihcc48EVE1OnjwIDp06IB//vOfiI6OVh3HJvLy8tC5c2f4+/sjOTmZ8+eJiKrPYpZ5IqJqNHjwYGRkZGDbtm0wGmvOm6Hbt29Hly5dMGvWLEycOFF1HCIiR8UFsERE1SUhIQFJSUn49NNPa1SRB4BOnTrh+eefx6uvvooLFy6ojkNE5LB4ZZ6IqBoUFBSgVatWGDRoEL755hvVcZS4dOkSgoODMWLECMyYMUN1HCIiR8Qr80RE1WHWrFnIzMzEe++9pzqKMrVr18Z//vMfzJo1C6dPn1Ydh4jIIbHMExFZWXFxMT788EM8++yzqFu3ruo4Sj355JOoW7cuPvjgA9VRiIgcEss8EZGVffvttzh79ixeffVV1VGUM5lMeOWVV/D111/jr7/+Uh2HiMjhsMwTEVnZV199hcceewwNGzZUHcUuPPPMM3BycsK8efNURyEicjgs80REVpSeno6tW7diwoQJqqPYDVdXV4waNQrz589XHYWIyOGwzBMRWdHcuXNRv3599O3bV3UUuxIeHo4dO3Zg165dqqMQETkUlnkiIitauHAhwsPDYTAYVEexK7169UKTJk2waNEi1VGIiBwKyzwRkZUcOXIER48exQMPPKA6it3R6XQYMmQI1qxZozoKEZFDYZknIrKS5ORkuLq6omvXrqqj2KUBAwYgJSUF2dnZqqMQETkMlnkiIitJTk5Gz5494ezsrDqKXerfvz9EBOvXr1cdhYjIYbDMExFZybZt29C9e3fVMeyWr68vWrVqhW3btqmOQkTkMFjmiYisoKSkBIcPH0ZwcLDqKHatVatWSEtLUx2DiMhhsMwTEVnBkSNHUFxcjKCgINVR7FpQUBDLPBGRFbHMExFZQXp6OgCgZcuWVrvPwsJCmM1mNG/eHM7OzmjZsiWee+45XL58udLtnnjiCYwfP/6a74+Ojkbv3r1RUlICAHj22WcxYcIEHDp0CM888wwaNmyIAQMGWA5z+uijjxASEgJ/f3888MADOHjwoNWeS7mgoCDLWBER0d0zqg5AROQILly4AFdXV3h4eFjtPl944QXMmzcP4eHh6NixIw4fPoyZM2di9+7d2LRpk+V227ZtQ1lZ2TXff/DgQWzYsMHytR07duDUqVNYvXo1vLy80L9/fyxatAi//fYb4uPjkZSUhKFDh6Jx48b4+eefERoaiqNHj0Kvt951H39/f+Tl5aGwsBAuLi5Wu18iopqKZZ6IyAouX75s1SJ/5coVzJ8/Hw8++CDmzJlj+Xzz5s0xefJkpKeno1WrVrd9vxkZGfjvf/+LadOmAQAef/xxDB06FL/99hv27t1ruc+JEyciLi4Ohw4duqPHuZ7yMbp8+TLLPBGRFXCaDRGRFeTm5sLd3d1q91daWgoA+O2335Cammr5/KRJk5Cbm4vmzZvf0f0aDAa89tprlj+3b98ewN97wFcs7f369QMA7Nu3744e53o8PT0BADk5OVa9XyKimoplnojICvLz8+Hm5ma1+3N1dYXZbEZOTg46deqENm3a4MUXX8TKlSvh7OwMg8FwR/cbGBgIJycny5/Lr44HBgZWul35/RcVFd3hM6ha+Rjl5eVZ9X6JiGoqlnkiIitwdnZGYWGhVe9z2rRpOHToEP7nf/4Hrq6u+OqrrxAWFoZ77rkHGRkZN/3+rKysaz53vRcc1pwXfyMFBQUAgFq1atnk8YiIHB3LPBGRFXh4eFyzy8zdKCoqQnZ2Npo0aYLp06cjJSUFp0+fxqRJk5Ceno7PPvvMcludTlflAlh73AKyfIysub6AiKgmY5knIrICDw8P5ObmWu3+1q5dC29vbyxYsMDyuYCAAMt894sXL1o+36RJExw7dgzFxcWWz+3duxeHDh2yWh5rYZknIrIulnkiIivw9vZGbm4urly5YpX769mzJ/z9/TF9+nT89ttvuHTpErZt24Z//etfAIAHH3zQctuuXbuiqKgIEydOxG+//YZZs2bhkUceQe3ata2SxZoyMzPh5OQEV1dX1VGIiBwCt6YkIrKCFi1aQERw6NAh3HPPPXd9fx4eHvjuu+8wYcIE9O/f3/J5FxcXvPPOO5XK/CuvvII//vgD8fHxiI+PR/369REeHg7g74Oj7El6ejpatGgBnU6nOgoRkUPQiYioDkFEpHWFhYVwd3dHQkICHn30Uavdb35+Pnbt2oUTJ07A19cXbdu2hb+/f5W3/euvv3D69Gm0b9/ebsvy6NGjUVJSgiVLlqiOQkTkCBbzyjwRkRW4uLigUaNGVl906urqim7duqFbt243va2fnx/8/Pys+vjWlp6ejiFDhqiOQUTkMFjmiYiu8v333yM9PR2BgYHw9/dHYGAg6tatC39//xvu796+fXts3brVhkm1JTc3F/v27UNUVNQNb1dQUICMjAycPXsW58+fx+nTp3H+/HmMGzfOqqfREhE5ApZ5IqKrZGZmYtq0adDr9ZW2fNTpdPD29oafnx8aNWqEwMBABAQEoF69evD390fDhg0xd+5cZGVlwcfHR+EzsD9lZWVITExESUkJRARxcXE4e/YsMjIycO7cORw/ftzy3/n5+ZW+V6/XQ0QQGRmpKD0Rkf3inHkioqukpaUhODj4prczGAwwGo0QERQXF6P81+nzzz+PTz75BCaTqbqjasbp06fRt29fHD58GEDlsSspKalyn/yKgoODsX//fltEJSLSksXcmpKI6CqtWrVCnTp1bnq70tJSXLlyBUVFRdDpdOjUqRN8fHzQqFEjFvmr1K9fH+7u7rj//vvh5eUFvV5vGbubFXknJycMGjTIRkmJiLSFZZ6I6Co6nQ4DBw6E0XjzmYgmkwlOTk549913sWXLFowePRrz58+3QUpt2bdvH3bu3Ilp06YhLS0No0ePBvD3FJqbKS4uRr9+/ao5IRGRNrHMExH9r7y8PKxatQqvv/46tm7dipvNQtTr9ejUqRN27dqFqKgoGAwGhIeHY+/evUhNTbVRam2Ii4tD48aN0atXL/j7+2P+/PlYvnw5fH19b/ouhoggNjYWH3/8MXbs2HHTK/lERDUJyzwR1VgFBQVYu3Yt/v3vf6N3797w9vbG4MGDsXTpUnTu3BmlpaVVfp/JZIKzszPeffddbNq0CUFBQZavde/eHS1atMC8efNs9TTsXmlpKeLj4zF+/PhKV+LDwsKQlpaGCRMmQKfTXfcqff369eHm5oZ33nkHHTt2hL+/Px599FF89tln2LNnz01fdBEROTIugCWiGqOkpAQ7d+7E6tWrsXr1amzYsAGFhYWoV68eevXqhdDQUAwePBiNGzeGiMDX1xdZWVmV7kOn02HAgAH45ptv0KhRI8vnc3NzcfHiRWRlZeHzzz/Hd999h+joaIwdO/aW5t87qpSUFHzzzTeIjY3FggUL0K5dO3h7e8PHxwdOTk6W2/3666946qmncP78eZSUlFg+bzKZEBERgRkzZgAAjhw5Yvn5rVmzBllZWfDz80PXrl0tP8NOnTrZ7aFZRERWtphlnogcVmlpKXbs2GEp7uvWrUNOTk6l8j5o0CA0bdq0yu8fMmQIkpKSUFZWBoPBAL1ej5CQEPj4+OCvv/5CZmYmsrOzkZOTU6mAlnv00Ufxww8/VPfTtGuFhYUICAjApUuXrvlarVq14OnpCW9vb/j6+sLHxwfHjh3D7t27odPpUFZWBp1Oh/nz52Ps2LHXfH9paSkOHDiAjRs3YvXq1UhKSkJ2djbq1q2LPn36IDQ0FD179sQ999xji6dKRKQCyzwROY7y8r5hwwZs3LjxrsvdG2+8gffeew/A3/PjDQYDysrKrjv9Bvj7yr3RaMTw4cOxZs0aHDt2DO7u7lZ5flq0dOlSjBgx4pZf2BiNRuh0Ost+9ABw9uxZBAQE3PR7r/fiLSAgAL17977pizciIg1imScibas47WL16tW4ePEi/P390bdvX/Ts2RO9evW642kXe/bsQadOnVBaWnpLiy4NBgOcnJyQmJiIjh07olmzZpg8eTKmT59+J09N84qKitChQwe0adMG33//PaKjo/H666/f8vfrdDoEBATgzJkzd/T4tzOtiohIo1jmiUhb0tPTsWbNGqxZswbJycnIysqCr68v+vbti379+qF///5Wm1ZRflLpk08+edPbGo1GeHp6YvXq1ejYsSMA4OOPP8bUqVOxa9euSotka4r3338f//nPf7Bnzx40a9YMADBjxgzLSa43++fH1dUVe/bssdqV9MLCQvz5559ITk7G2rVrsWXLFhQVFSEoKAgDBw7EwIED0a9fP57eS0RawjJPRPbt7NmzlvK+Zs0anDx5Eh4eHujbty8GDhyIAQMGoG3btre0X/mdKC0tRZMmTXDq1Knr3sZkMsHf3x/Jyclo2bJlpe+977774Ofnh1WrVlVLPnt18uRJtGnTBlOnTsW0adMqfS0+Ph5PPPEEROS673iYTCb885//xIcfflhtGfPz87Fx40asXbsWa9aswfbt2wEAHTt2tJT7Xr16oVatWtWWgYjoLrHME5F9ycvLwx9//GGZGrF9+3YYDAa0b98eoaGhCA0NRZ8+fSrthFJdiouLsWTJEvz73//G4cOHq5wrbzKZ0LRpU6xduxb169e/5usbN25Enz598OWXXyIiIqLaM9uDsrIy3H///Th16hR27twJZ2fna26zevVqDBs2DMXFxVWOq06nw/DhwzFt2jR06tTJFrGRm5uLP//80y7+7hER3SKWeSJS6+p5zevWrUNRURGaNWtmKVCDBw+Gp6enzTJduHABX3/9Nb744gtkZGRg6NChWLVqFa5cuVLpdkajEe3bt8evv/56w+0n33zzTXz44Yf45ptv0L59e7Rp06a6n4Iya9aswcqVKzFjxgxs2rTphkV8y5YtuP/++5Gfn4/i4mLL541GIzp27IgrV65g165d6NWrFyIjIzF8+PBbOpXXWs6dO4d169Zh9erV+OWXX3DixAm4ubmhe/fulr+b3AaTiBRjmSci2yorK0Nqaqplx5lff/0VOTk5lvLes2dPhIaGIjAw0ObZ0tLS8MUXX2DWrFkwGo2YOHEiXnrpJTRp0gTPPvss4uLiLKXTYDBg0KBB+OGHH+Dq6lrl/RUXF+P333/HsmXLMHPmTAB/Tz/x9/e32XOytU8//RSTJ09Gw4YN8cILL+Chhx664YuXffv2YcCAAcjKyqpU6JOSkhAaGooNGzbg008/xdKlS+Hn54eIiAhMmjQJvr6+tng6ldxosTUX0xKRIizzRFT9KpagtWvXIjMzE35+fujXr5/y7QLLysrw888/49NPP8WaNWvQokULvPjii3jmmWfg5uZmud3u3btx7733Avh7m8qxY8dizpw511wpzsnJwS+//IJly5Zh+fLlyM3NhU6ng06ng5eXF0JCQvDTTz855FSNvXv3ok+fPvD398eBAweg0+kgImjcuDFGjx6Nhx56CD169LhmfcPRo0cxYMAAnD59GiUlJWjRogXS0tIqXfE+evQoYmNjMXPmTOTl5WH06NF49dVXLT8TW6u4DWbFnXIqvqM0YMCAGn1gGBHZxGIIEZGVnTt3ThISEiQiIkKaNGkiAMTNzU1CQ0MlOjpaUlJSpKysTGnGS5cuSUxMjDRp0kT0er2EhoZKYmLiDXP17t1bAMhLL71U6Xbnz5+XuLg4eeCBB8RkMolOpxOTySQABIAYjUZ54403ZNeuXeLl5SWPPPKIlJSU2OJp2sypU6ekUaNG0q1bN8nKypLg4GAxGo2WMSgfD09PTxk/frwkJCTI5cuXLd+fkZEh7dq1EwDy5ZdfXvdxCgoKJC4uTtq2bSsApGfPnpKQkCDFxcW2eJrXlZ+fL+vXr5fo6GgJDQ0Vk8kker1eQkJCJDIyUhISEiQnJ0dpRiJySAm8Mk9Edy0/Px/r1q3DqlWrsGrVKuzduxdOTk7o1q2bZVeQrl272nS+8/UcPHgQM2bMwOzZs6HX6/H444/jX//6F1q3bn3T7122bBkOHDiAqVOn4siRI1i+fDni4+OxdetWy9XmqxdzGo1GNG3aFLt27YKLiwvWrl2LoUOHYsKECfjyyy+rbRceWzpz5gxCQ0NhNBqxbt06eHl5ITU1FZ07d77uouGSkhKYTCYMHDgQjzzyCB566CG4urpi4sSJ+Pbbbyu9K3I95VNwlixZgkaNGuG5557Ds88+axdbS168eBG//fYb1qxZg9WrVyMtLQ3Ozs7o1asXBg0ahPvvvx8dOnTgfHsiulu8Mk9Et6+srEy2b98u77//vgwcOFCcnZ0FgLRr105efvllWblypeTm5qqOaVFaWipJSUkSFhYmOp1OmjdvLtHR0ZKVlXXb97Vy5UrLuw3lV+Hxv1efq/owGAySmppa6T6WLVsmzs7OMmrUKCksLLTW01Ri//790rhxY2nTpo2cPn260tfMZrMYDIabjo9erxe9Xi99+/aVzMzM285w6NAhiYqKEi8vL3FxcZHw8HDZs2ePtZ6iVZw8eVLmzp0rY8eOFX9/fwEg/v7+Mm7cOJk7d66cOXNGdUQi0qYElnkiuiUVp87Ur19fAIivr6+MGjVKYmNj5cSJE6ojXiMnJ0diY2OldevWlaZk3M0Ul9zcXGnZsuVNS2p5UZ0+fXqV95OcnCy1a9eWAQMGSHZ29h3nUWnTpk3i6+sr3bt3r7KEFxUVyb333ltpytH1PnQ6nbz22mt3lac6ft7V5fDhwxITEyOhoaHi4uIiAKRZs2YSERHBKTlEdDs4zYaIqlZQUICNGzdWued2WFgYhg0bho4dO9rlNJHDhw9j5syZ+Prrr1FQUIBRo0ZhypQpaNu2rVXuf+/evQgJCblmq8qKjEYjWrdujW3btsFkMlV5mx07dmDo0KFwdXXFokWLEBISYpV81U1E8Omnn2LKlCm4//77sWjRouvu6LN//360b9++0k41VzOZTGjXrh3++OMPqywMLisrw9q1a/HJJ5/g559/RrNmzfDss8/iueeeg5eX113fv7VV9f9a+ZQcboFJRDfBaTZE9H8OHz4ssbGxMmrUKHF3d7/mauGlS5dUR7yh9evXy6hRo8RgMEhgYKCYzWa5cOFCtTxWbGzsDafYmEymW5rqkZGRIaGhoeLs7Cyffvqp8oXBN5OVlSXDhw8Xg8Egb7/9tpSWlt70e95//33R6/XXvSLv7u4uR44cqZa8aWlpEhkZKW5ubuLh4SERERGyb9++anksa8nIyLC8CxYYGCgAxM/Pz/Iu2MmTJ1VHJCL7wWk2RDXZ+fPnLaWhQYMG10ydOX78uOqIN6Vqd5OLFy9KixYtKu3YUv6h1+vlww8/vOX7Kisrk5iYGDGZTNK7d2/ZtWtXNSa/cwkJCVK3bl2pW7eurFq16pa/r7S0VHr06HHd6TbPPPNMtb+Iyc7Ovu3di+zFnj17LLvklK9PKX+RnZiYKAUFBaojEpE6LPNENUlxcbGsX79eoqKiJCQkRHQ6nRiNRgkJCZGoqChZv379LV1ptQenT58Ws9ksderUEWdnZwkPD5cdO3bY5LE3b94sTZs2lYCAAKlfv/41WzB27dr1juZpp6SkSJcuXcRkMsmrr756Rwt0q0Nqaqr06dNH9Hq9PP/883eU6/Dhw5a54eUfRqNRevToIQaDQYYPH26T51taWiqJiYkSGhoqAKRVq1YSExNjVwu2byQvL0+SkpIq/T9cq1Ytu9r2lYhsimWeyNFVnDrj4eFxzdQZrS2+LJ9KYzQaJSAgQMxms/z11182ecQbw1wAACAASURBVOzyK+hOTk4ycOBAOXv2rKSkpFS64uzi4iIHDx6848coLS2VL7/8Unx8fMTT01OmTp0q27dvl1OnTlnxmdzc5s2b5Y8//pBhw4aJTqeTLl26yNatW+/qPj/77DPLdBuTySTBwcGSn58vv//+u9SvX18aNmwoGzZssNIzuLnU1FSJiIgQV1dXqV27tkRGRsrRo0dt9vjWUHFKTr169Sy75JS/u2brvzdEZHMs80SOJjs7WxYvXixPP/20Zb5tnTp1ZMyYMTJr1iy73HXmZgoLCyUuLk7at28vACQkJETi4uKkqKjIZhn++usvefDBB8VoNIrZbK70DkZMTIxle8UvvvjCKo+Xk5Mj7733nvj6+oper5fHH39cfv/992q/6nr58mWJi4uTFi1aCADp1q2bLF++3CqPW1ZWJn369LFcTU5LS7N87UbjW93Onz8v0dHR0rBhQ9Hr9RIWFiZJSUk2e3xrKS0tlS1btsg777wjffv2rXRw1bRp02TDhg12ubMPEd0VlnkirSsrK5PU1FR57733pE+fPmI0GsVgMEiPHj3kv//9r2zZskUzU2eudvbsWTGbzeLr6ytOTk4yatQo2bhxo81z3OzKcVlZmYSFhUn//v2tWrYzMzMlODhYAEiHDh0EgDRp0kSmTp0qa9assdpc6bNnz0p8fLyMGzdO3NzcxMnJSe677z4BIP/617+s8hjljh07Jh4eHvLtt99e87Wq3vmwpaKiIklISLBMwenQoYPExsZKfn6+TXNYy+XLlyUxMVFeeOEFadasmQAQHx8fGTNmjMyZM0cyMjJURySiu8cyT6RFubm5kpiYKBEREdKwYcNKu13ExcXd0cE79mTz5s0yduxYMZlMUrduXTGbzTYvdiKVF6Y+/PDDNxzXzMxMq+4ykpOTI506dRIA4uHhISIiu3fvlilTpliumru4uMiAAQPktddek1mzZsm6devk7Nmz133HIjc3Vw4dOiQrVqyQjz76SJ577jm55557LNNe+vTpI1988YVkZmZKUlKSZerQv//9b6s9LxGRnTt33vDrW7dulebNm4u/v7/8+uuvVn3sW/Xnn3/K448/bvk7+NZbb2m+/JZPuQsLC7OsX2jTpo1ERUVJUlKSTd/pIiKrYZkn0oqKh8w4OTmJwWDQ5MLV67l6YaLqq6Lnzp2TwYMHi7Ozs8TExNh0UWF+fr706tXLsrC2adOm19zmxIkTMnfuXHniiSekU6dO4ubmVmlxqbOzs/j4+EijRo3E29v7mm00AwICpF+/fvLaa6/JihUr5PLly5Xuf+fOnZVuHx0dbaunLyIily5dkscee0x0Op1ERkYqK5pVvTv0xx9/KMliTfn5+ZaFtOWHbLm7u0tYWBi3vyTSFh4aRWSv8vLysHbtWvz0009YsWIFTp06BT8/P/Tr1w9hYWEICwuDj4+P6ph37dKlS5g7dy4+/vhjnDx5EkOHDsXkyZMxcOBAZYfkrFmzBuHh4XB2dsbChQvRtWtXmz12UVERHn74YaxevRolJSUAgB49emDjxo03/d6TJ0/iyJEjuHjxInJzc5Gbm4u8vDx4eHjAy8sL7u7u8PX1RVBQEGrXrn3D+8rIyEC9evUsf9bpdPj888/x/PPP390TvE3z5s3D888/j86dO+O7775D/fr1bfr45a5cuYJFixbhgw8+wO7duxESEoLIyEiMHTsWRqNRSSZrOnLkiOXQqpUrVyI3Nxdt2rTBsGHDEBoair59+1738DMiUoqHRhHZE0e/+l5Renr6NYf5HDhwQGmm4uJiMZvNotfrZcSIEXLx4kWbPn5JSYmMHDmy0laXOp1ORo4cadMc5Vmuvpqv0+lk1qxZNs+yd+9eadu2rfj6+spPP/1k88e/WsXDyZo2bSrR0dGan9pWEa/aE2kKp9kQqVRx7nv5oU2ONPf9amVlZZKUlCRhYWGi0+mkefPmEh0dbfPSXJUTJ05Iz549xcXFRWJiYmz++GVlZfLkk0+KwWC45iTZF1980eZ5RERq165d5YFYixYtsnmW/Px8efbZZy3Tbq5cuWLzDFc7dOiQREVFiZeXl7i7u0tERITs3btXdSyrq+pk6Ipz7e3hZ0FUg7HME9laxdMcHf3qe7nyU1rLF1uWn9JqL9vk/fjjj+Lj4yPBwcE3XZxZHcrKyuQf//iHZQ92XDX3/a233rJ5JhGR5s2bX5On/KAxVVfI4+LixN3dXe677z45dOiQkgxXy8nJkdjYWAkKCtLc6bK3q6qr9m5ubrxqT6QOyzxRdbt48aIkJCTIk08+aTnUJSAgQCZOnCiLFi2ym1M+q8OZM2euOaV1165dqmNZFBYWSmRkpOh0OgkPD1d2CmhUVNQ1U1oqXpm31t71t6tnz55VZtLr9eLk5CTJyclKch04cEDat28vnp6esnDhQiUZqlJxEbdOp7OcLpuXl6c6WrVJS0uTjz/+WAYPHiwuLi6i0+mkY8eO8vrrr8u6deukuLhYdUQiR8cyT1QdKm4BV1OuvleUkpIi4eHhSk5pvVVHjx6Vbt26iYeHh8yfP19ZjunTp1dZmCt+/PDDD0qyjRo16rovMvR6vbi6usqWLVuUZCsoKJDIyEgBIOHh4XZXmMtPl61Vq5bldFktHth2O6q6au/t7W2ZNujIFy6IFGKZJ7KG4uJiSU5OlldeeUVatWplOZxl7NixsmDBghrxj9iVK1ckISFBunfvLgCkU6dONj+l9VZ9//334uXlJZ06dZL09HRlOT7++OObFnkAsm7dOiX5Jk2aJE5OTtfNZTAYxNPTU+m7LUuWLBFvb2+55557ZM+ePcpyXM+5c+ckOjpaGjRoIAaDQcLCwqo8eMwRpaWlyYcffij9+/cXo9EoRqNR+vfvLx988EGl03+J6K6wzBPdqaysLElISJDw8HDx9vYWANKsWTOJjIysUQewnD9/XqKjo6Vhw4ai1+slLCxMkpKSVMeqUsWruREREVJYWKgsy549e8TV1bXKefJXf6ja5Wf69Oni7Ox83Vzl2bt166Z0OsWxY8eke/fu4u7uXuXJsvag/MVut27dBICEhITY7Yvd6lBxsX/dunWv+X3JRbREd4xlnuh2VNw60mQyicFgkJ49e0p0dLTs27dPdTybOnDggERGRoqrq6tlGsGxY8dUx7qu/fv3y7333iu1a9dWshtLVbKzsyUmJkb8/f1Fr9dft9ir2u3nq6++EpPJVOU8fgDSrl07iYuLs4t50RW3FVW5/uFWVJyGVq9ePTGbzXLhwgXVsWympKREUlJSxGw2S0hIyDWLaLV+0i6RjbHME91ISUmJrF+/XqKioqRNmzaW6TPlc0DtYUtFWyotLa20tWTLli0lJibGrouTyN87oLi5uUnnzp3l8OHDquNc48qVKzJ79mzx8PAQAJX2mTcajcp2RVmyZMk1Jb78526v774kJiZKnTp1JDg4WHbs2KE6zg2dPn1azGaz+Pj4WBaI7969W3Usmzty5EiVa4zMZrOkpKSojkdk71jmia6WmZlpmT7j5eVVY6fPVFS+9V7r1q1Fp9NpZuu9nJwcGTdunGVvcnv+2c2dO1dMJpPExcVJv379LNNY/Pz8lGXasGGDZW68s7Oz/OMf/5A333xTXF1d7W5Bc0UnT56U3r17Kzsz4HZdvnxZYmNjLRcM7G3rVluqOB0nICDA8vs3IiJCEhMTOR2H6Fos80QinD5zPYcPH5aoqCjx9vYWFxcXCQ8Pt8tFhlXZtm2btGzZUvz8/GTFihWq49xUhw4dZNy4cZY/p6amytixY6Vz587KMh08eFD8/f3l7bfftkwDycvLkzp16sjbb7+tLNetKCkpEbPZLAaDQR599FFNLEK/+p2vFi1aaOKdr+rC6ThEt4RlnmqmitNnyrdQq1OnTo2dPnO18uPqtTqnNy4uTmrVqiX9+vWT06dPq45zU6tWrRIAVW7zePnyZQWJ/lZUVFTlIuGpU6eKv7+/FBQUKEh1e9auXSv16tWTxo0by6ZNm1THuWVpaWmWNSmenp4SGRkpR48eVR1LKU7HIaoSyzzVHJw+c2Plu2107dq10m4b9rC48VZlZ2fL6NGjxWAwiNls1sw0hcGDB0v//v1Vx7hlp0+fFicnJ5k9e7bqKLfk/PnzMmTIEDEajWI2mzV1zkP5IulGjRrZ/W5RtlTVdJymTZtyOg7VRCzz5NjS09Pl/fffl969e4vBYBAnJycZNGiQfPLJJ3a5EFKF8+fPy/Tp0yUgIEBMJpOMGzdOtm7dqjrWbduyZYs0a9ZM6tatK6tWrVId55bt3r1bdDqd/PTTT6qj3JYJEyZIcHCwZopxWVmZxMTEiMlkkmHDhmnqnSaRv98liY+Pl86dOwsA6dq1qyxcuFBTL7arS1UbFXh5ecmYMWPku+++k+zsbNURiaoTyzw5nm3btsmbb74pbdu2FQDi6+srEyZMkMWLF8ulS5dUx7Mb6enp12wtqcUTKstLmpOTk4SGhsrZs2dVR7otEydOlKCgIM2U4nLlL0K0sB6hos2bN0vTpk2lQYMGyg7jultVbW2ZmZmpOpbduHoNlJOTkwwePFi++uorzf1+ILoFLPOkfaWlpZarMi1bthQA0rBhQ8vbrTV9+szV1q9f7zAL7M6fPy9Dhw7V5PQJEZGMjAxxcXGRmTNnqo5yRwYNGiQDBw5UHeO2ZWdny8iRIzX796bckSNHLAvU3d3dJSIiokYv2K/KxYsXLdMrPTw8RK/XW+bZqzqMjcjKWOZJmwoLCyUpKUkiIyOlXr16lea/r1+/3u63TLS1wsJCiYuLs7xb4Qhb3yUnJ0tgYKA0atRINm7cqDrOHXnjjTfE399f8vPzVUe5I7/88osAkO3bt6uOctsqvqPTv39/OXPmjOpId6x869igoCDR6/Wa2TrW1goKCq45hbZNmzYSFRXFfzdIy1jmSTvy8vIkMTFRwsPDxdPT0/KL2Gw2y969e1XHs0sZGRliNpvF19dXnJycJDw8XHbu3Kk61l2puOXgI488ooktB6tSvsXjf/7zH9VR7kr79u1l/PjxqmPcsZSUFGnRooX4+fnJypUrVce5K6WlpZKYmCihoaECQDp06CCxsbGa2HXI1srn2UdGRkqDBg0EgDRu3NiyIQLXIpCGsMyTfbtw4YLExcVJWFiYODs7W/Z/j4mJkZMnT6qOZ7dSU1MlIiJCXFxcxN/fX6KiouTUqVOqY921jIwMGTRokDg7O2viMKAb+eyzz6RWrVp2ffjSrZgzZ46YTCZNrrcol5OTI48//rgmDhe7Vdu2bZPw8HAxmUxSt25dMZvNmv+7Vp327NkjZrPZsoC2Tp06Eh4eLomJiVVuz0pkR1jmyf4cO3bMsnjJaDSKi4sLDwm5BVcfONOqVSuJiYnR7BSOqyUlJUlAQIC0atVKUlNTVce5K6WlpdKiRQv5xz/+oTrKXbty5YrUq1dPpkyZojrKXYuLixNXV1fp0qWLHDlyRHUcqzh79qyYzWapU6eOODs7S3h4uOzevVt1LLtWvoC2Z8+eotPpxNXVVcLCwiQuLo6bKJA9Ypkn+7Bnzx6Jjo62/PL08vKyHOCUk5OjOp5dKz8KvnXr1qLT6RxuvmxxcbGYzWbR6/USHh6u9BAla/n+++9Fp9M5zGLFd955Rzw9PR1iC8B9+/ZJu3btpHbt2rJ48WLVcaymoKBA4uLiLFeee/bs6VC/J6rLiRMnLAdVmUwmcXFxkdDQUImJieHOOGQvWOZJnfK3NYODgy1bSJa/rckDP27uzJkzYjabxcfHx3LFbc+ePapjWdXx48elR48eUqtWLc1Pq6moe/fu8vDDD6uOYTVZWVni7u4uH3/8seooVpGfny+RkZGWaTeO9Pvoeu/g5eXlqY5m9zIzMyUuLk5GjRol7u7uotfrpWfPnhIdHS3p6emq41HNxTJPtlNxwVH9+vUtJ/aV70Cj1e3hbK18j2mTySQBAQEOOxd26dKl4uPjI61bt5Zdu3apjmM1W7ZsEQCa3eP8eiZNmiSNGzd2qIWD8+bNE3d3dwkJCZGDBw+qjmN1O3bskIiICKlVq5b4+fk5zNoaW8jPz7dsyFB+onj5hgwpKSmq41HNwjJP1SsvL09++OEHGT9+vHh7ewsA6dixo0yfPp3zNm/D1btUdOzY0WF3qSgsLLRcFQ0PD3e4K4YjRoyQ++67T3UMqzty5IgYDAZZtGiR6ihWlZaWJh06dBBPT0+Jj49XHadanDt3TqKjoyUwMFCcnJxk1KhRsnnzZtWxNOPKlSuycuXKSlteBgUFydSpU2Xz5s2cykTVjWWerK/iFYvyQzrK34pMS0tTHU9TcnJyJCYmRpo0aSJ6vV7CwsIkKSlJdaxq4+jFqbzwLly4UHWUauGoL1TKX2ACcMgXmOXKz6No166dw5xHYWulpaWSkpIiZrNZgoKCLIcY8gwUqkYs82Qdly9floULF8qIESPE1dVVDAaDDBw4UL766is5d+6c6niaU36yo5eXl+Vkx/3796uOVa0WL14stWvXdtgpDSKOORWlIkedQlRu6dKl4u3tLW3atHH4dxYrnhTdvHlzTZ8UrVJqaqpMmzZNWrVqZSn2L730kmzcuJHFnqyFZZ7uXMUr8O7u7pX2gOcq/ztTPh/eaDRKvXr1xGw2S2ZmpupY1cqRFxtW5GiLRK/H0Rb3Xs1RF2VfT3p6ukRGRoqrq6t4enpKZGSkHD9+XHUsTSrf9KF169YCQBo0aGA5pIrvftBdYJmn21PxFFY3N7dKBZ57wN+ZoqIiSUhIkG7dugkACQkJkbi4OIe9eluRo24DWBVH2r7xRhxt282qOOJ2qTeTnZ0tMTEx0qBBAzEYDBIWFiYbN25UHUuzrj6kquJubjXhdz9ZFcs83RwLfPUo/8exYcOGlvnwGzZsUB3LZhzxgJ7rKSoqkgYNGjjEwUo340gHYt2MIx1kdquuXLlSYy8+VBcWe7pLLPNUtcuXL0t8fLw89NBD4uzsLCaTSYYMGSKzZ892+Gkf1S09PV2ef/55cXV1FS8vL5kyZYqcOHFCdSybycnJkccff9wyraaoqEh1pGo3Z84cMZlMNebn/Nlnn0mtWrUccsvUq2VkZMigQYPE2dm5Rky7qSg5OVkefvhh0ev10qxZM/nkk09qxLsU1enqYl+vXj355z//KRs2bOAce7oelnn6PwUFBbJkyRIZPXq0uLq6itFolCFDhsg333zDAm8F69evl0ceeUT0er00b95cPvvssxr3D19KSoq0aNFC/Pz8ZOXKlarj2Ez79u1l/PjxqmPYTF5entSpU0emT5+uOopNlJSUiNlsFoPBII888ohkZWWpjmRTBw8elBdffFHc3NzEy8uL+9Vbyd69e+Wtt96yzLFv1KiRvPbaa7Jt2zbV0ci+sMzXdOUHOUVEREjt2rUt20hyCo11lO8P36NHjxr9lnRZWZnExMSIk5OT9O/fX86cOaM6ks388ssvAkC2b9+uOopNvfHGG+Lv7y/5+fmqo9hMcnKyBAYGSqNGjWrkfPJLly5Z5tWbTCbuV29F5VfsW7ZsKQCkcePGEhkZyWJPIizzNVNpaanlJFZ/f3/LyXXR0dFy+vRp1fEcwuXLlyU2NlZatWpVI+fDV5SdnS0jR44Ug8EgZrO5xu3aMGjQIBk4cKDqGDaXkZEhLi4uMnPmTNVRbOr8+fMydOhQMRqNYjaba+TJ1leuXLlmv/rExEROE7GS8mLfrFmzSifP8hyXGotlvibZs2ePREVFSb169Sr9AnDUPb1VOHv2rJjNZvHx8bHsD3/gwAHVsZTZvHmzNG3aVBo0aOCwe4/fyO7du0Wn08mKFStUR1Fi4sSJEhQUVOMKbcV3okJDQ2v0Vr0V96tv2bKlxMTE1Kh3a6pTxQtzAQEBlf5dP3z4sOp4ZDss845u+/btMmXKFGncuLEAkNatW8tbb71VowtmddixY4dERESIi4uL1K1bV8xms1y4cEF1LGXKy4zJZJJhw4bV2LGYMGFCjSyz5cpfzPz000+qoyixZcsWadasmdStW1dWrVqlOo5SO3futPyO9Pf3F7PZXCMWSNtKcXGx/Prrr/LUU0+Jt7e36PV66d27t8yYMYMHNzo+lnlHdOLECYmJiZGOHTtaFs2UHyVN1lXxqtO9994rsbGxUlBQoDqWUufPn5chQ4bU6GkGIiKnT58WJycnmTVrluooSg0ePFj69++vOoYy2dnZMnr06Bo7zexqGRkZYjabpU6dOuLs7Czh4eEOfSaBCiUlJZKUlCTh4eHi4eFh2U46NjZWcnJyVMcj62OZdxQXLlyQL774Qnr27Ck6nU78/Pxk0qRJsmnTJtXRHE75fNB77rmH80GvsnbtWqlXr540bty4xv/dmzp1qvj7+9f4F3erVq0SADV+oV5cXJzUqlVL+vXrx7VJ8vfuaXFxcRIcHGxZV5SUlKQ6lsPJy8uTBQsWSFhYmJhMJnFzc5Nx48bJihUratxGDA6MZV7LCgoKJDExUUaNGiVOTk7i4uIiYWFhkpCQUCP27ra1v/76S6Kjo6V+/fri5OQk4eHhsmvXLtWx7ELFrfmGDx9e47bmu1r51oxvv/226ih2oUOHDjJu3DjVMZTbtm2btGzZUvz8/GrsOoqrle/4FRoaKgCkU6dONXLHL1vIysqSuLg4CQ0NFZ1OJz4+PhIRESHr16/nxShtY5nXmvIFLxEREeLp6cm3z2zg0KFDEhkZKa6urlK7dm2JjIyUkydPqo5lN06ePCm9e/cWFxeXGndozvV88skn4urqyjnB/2vu3LliMpnk+PHjqqMol5OTI+PGjatRh6bdqpSUFAkPDxej0ShNmjSR6OhouXjxoupYDql8Om6HDh0s03GjoqK4nk6bWOa1oqqdaKKjo2v0LgnVbf369TJq1CgxGAzSrFkziYmJkdzcXNWx7MqqVaukbt26EhQUJDt27FAdxy6UlJRI8+bN5YUXXlAdxW4UFRVJgwYN5NVXX1UdxW7ExcWJm5ubdO7cmTuPXOXIkSMSFRUltWvXFg8PD4mMjOQLwWpUvtVlkyZN2C+0iWXenh07dkzefvttCQ4OFgDSqlUreeutt7iVZDUqf8u3e/fulQ55qumL1q5WXFwsZrNZ9Hq9hIeH17iTbG9k8eLFotfrZf/+/aqj2JX33ntPPD09JTs7W3UUu7F//3659957pXbt2rJo0SLVcexO+SFUDRs2tBxC9eeff6qO5bDKF85OnDjR8s7/kCFDZP78+ZKXl6c6Hl0fy7y9uXz5ssydO1f69+8ver1e/P39JTIykqfoVbOcnByJiYmRxo0bWxZj1cQTHG/FsWPHpHv37lKrVi35+uuvVcexO927d5dHHnlEdQy7k5WVJe7u7vLRRx+pjmJXCgoKJDIyUgBIRESEFBYWqo5kd65cuSIJCQnSuXNny6YDCQkJvMhSjfLz8yUhIUEeeughMZlM4unpKU899ZT8/vvvnF9vf1jm7UHFefAeHh7i5OTEhaw2Un7Ik7e3Nw95ugVLliwRb29vadOmjezevVt1HLuzYcMGAcBtYK8jMjJSGjRowN9rVfj+++/Fy8tLOnXqJOnp6arj2K2K2wG3aNGCh1DZQFZWlsTGxkrPnj0FgDRs2FCioqI4S8B+sMyrdPz4cYmOjq50JHN0dLScP39edTSHl5qaKuHh4WIymSQgIEDMZrNkZmaqjmW3Kl49DA8P51uu1zF8+HDp3Lmz6hh26+jRo2I0GmXBggWqo9ilo0ePSrdu3cTDw0Pmz5+vOo5dS09Pl8jISKlVq5b4+flJVFSUnDlzRnUsh7dv3z4xm82WgyhDQkIkJiamxh4MaCdY5m0tOzu70tZQgYGBEhkZKampqaqjObyysjJJSkqyXNVp3749D3m6BQcOHJD27duLp6cnS9gNHDlyRAwGgyQkJKiOYtdGjhwpISEhqmPYrcLCQomMjBSdTifh4eFcdH8T586dE7PZLL6+vpZDqPbu3as6lsMrLS21HEzl6uoqLi4uMmrUKElMTOS2orbHMm8LFf/Su7m58S+9jRUWFvKQpzsUFxcn7u7uct9998mhQ4dUx7FrL774ojRp0oT/T9/Eli1bBID89ttvqqPYtR9//FF8fHwkODhYdu7cqTqO3Sv/Pd+6dWvR6/USGhoqiYmJqmPVCLxIqVyCTkQEFSQlJWHKlCmgG0tNTb3pbQ4dOoTZs2cjLi4OGRkZ6NmzJyZMmIBRo0ahdu3aVX4Px//W3Mr4Z2Zm4osvvsCMGTNw6dIljB8/Hi+99BLuueee634Px///lJWVIT09HZ6enqhXrx50Op3la7cy/ndCy+N/+fJllJWVXff/bWvS+vifP38eXl5ecHJyqvbHqg62Gv+ioiIcP34cbm5uCAwMrJbH1KIbjX9ZWRl+/PFHfPTRR9iwYQPuu+8+vPbaaxgxYgQMBsMN71fLv39s6Ubjn56ejnnz5mHevHk4efIkunTpgmeeeQaPPfYYPDw8bni/HP9bU8X4LzZe/ZmLFy9ix44dmDp1qm1SacyBAwewbNmy6379ypUrWLp0KWbOnInk5GQEBgbi6aefxoQJE9CiRYub3j/H/8ZuNv4AcOzYMXz88ceYPXs2nJ2d8fzzz2PSpEkICAi46f1z/CsbNGgQTCaT5c+3Mv53g+N/Yxx/tVSMf1lZGUTkpkW0JriV8dfr9Rg+fDiGDx+OzZs344MPPsDjjz+Opk2b4uWXX8aTTz6JWrVqVfm9/Pt/Y7cy/q1atcJ///tfTJ8+HcnJyZgzZw4iIyPx8ssv47HHHsOzzz6LLl26VPm9HP8bu+H4X32tftGiRVLFp+l/XW98Dh48KC+//LL4+vqKwWCQYcOGSWJi4m1vncXxv7Ebjc/OnTstpwfWq1dPzGbzbe9pzfG/seoeH47/jXH81eL4q3Wn43PkyBHLKd6+vr5iNpuroReRCQAAF0pJREFUXLDJ8b+xOx2fzMxMiYmJkbZt2woAad++vXz++efXnFrP8b+xG4xPgr5aX0Y4uLKyMqxcuRIPPvgggoKC8MMPP2Dy5Mk4fvw4EhMTMWzYMF5NsYENGzZg2LBh6NChA3bu3InZs2fj+PHjeOutt2wy5YGIiOxX06ZN8cknn+DYsWN48cUXMWPGDNSvXx9PPPEE0tPTVcdzeD4+Ppg8eTJ2796NTZs2oVOnTnj11VfRoEEDTJ48mT8DK2CZv0Nff/012rVrh6FDh+LSpUtYuHAhDh06hDfffBP169dXHc/hlZWVYfny5ejWrRt69+6Nixcv4scff8SOHTvwxBNPVJoaQkRE5Ofnh7feegvHjx/Hp59+ij///BOtW7fGsGHDsGXLFtXxaoTu3bvjm2++wdmzZzF9+nQsX74cwcHBGDRoEP7880/V8TSLZf4OvfLKK+jVqxd27dqFDRs2YNSoUTAar1mCQNWkRYsWGD58OBo3boytW7dars5XXKRJRER0NTc3N0RERGDv3r2WhZpdu3bFO++8ozpajVG7dm1MnjwZhw4dwqpVq+Di4oJvvvlGdSzNYpm/Q6dPn0ZsbCzatWunOkqNNGTIEKSlpWHRokW47777VMchIiKNMZlMGDduHFJTU/HLL7+grKxMdaQaR6/XIzQ0FMuXL0dMTIzqOJrFS8l3yNPTU3WEGu2LL75QHYGIiByATqfD4MGDcenSJYwZM0Z1nBrL1dVVdQTN4pV5IiIiIiKNYpknIiIiItIolnkiIiIiIo1imSciIiIi0iiWeSIiIiIijWKZJyIiIiLSKJZ5IiIiIiKNYpknIiIiItIolnkiIiIiIo1imSciIiIi0iiWeSIiIiIijWKZJyIiIiLSKJZ5IiIiIiKNYpknIiIiItIolnkiIiIiIo1imSciIiIi0iiWeSIiIiIijWKZJyIiIiLSKJZ5IiIiIiKNYpknIiIiItIolnkiIiIiIo1imSciIiIi0iiWeSIiIiIijWKZJyIiIiLSKJZ5IiIiIiKNYpknIiIiItIolnkiIiIiIo1imSciIiIi0iiWeSIiIiIijWKZJyIiIiLSKJZ5IiIiIiKNYpknIiIiItIolnkiIiIiIo1imSciIiIi0iiWeSIiIiIijWKZJyIiIiLSKJZ5IiIiIiKNYpknIiIiItIolnkiIiIiIo3SRJlftmyZ6gg1GsdfLY6/Whx/tTj+anH81eL4q6WV8Tde7wsdO3a0ZY7rKiwsxLFjxxAcHKw6CgAgOzvbJo/D8a8ax18tjr9aHH+1OP5qcfzV4virdaPxv6bMt27dGlOnTq3WQLfj999/x4EDB9CxY0fUrVtXdZxqx/FXi+OvFsdfLY6/Whx/tTj+anH874LYsbKyMmnQoIEAkClTpqiOU+Nw/NXi+KvF8VeL468Wx18tjr9aGhv/BJ2IiLqXEjf2xx9/oEePHgCAgIAAnDlzBjqdTnGqmoPjrxbHXy2Ov1ocf7U4/mpx/NXS2PgvtusFsPHx8XBycgIAZGRkYMOGDYoT1Swcf7U4/mpx/NXi+KvF8VeL46+W1sbfbst8aWkp4uPjUVRUBAAwmUxYsGCB4lQ1B8dfLY6/Whx/tTj+anH81eL4q6XF8bfbMr9mzRpkZWVZ/lxcXIz4+HgUFxcrTFVzcPzV4virxfFXi+OvFsdfLY6/Wlocf7st8/Hx8TCZTJU+d+nSJSQlJSlKVLNw/NXi+KvF8VeL468Wx18tjr9aWhx/uyzzhYWF+P777695FWQymfDdd98pSlVz/P/27jQ2yrKLw/jpYks7dNNYFVARSguuAbGAoigSKSCJmvhBqVExuEFcYuISxWBAJGiCMSZGE3eWgLjFIFGhWhHFSNyiAgUUiCiIINCWAp3peT9BXuwiT/tM//O01+8bhbnvw0U/nNLODP216K9Ffy36a9Ffi/5aUe2fksv8smXL7MCBA80+3tjYaO+8847V19cLpuo+6K9Ffy36a9Ffi/5a9NeKav+UXOYXLFhgGRkZLf7eoUOHbNmyZZ08UfdCfy36a9Ffi/5a9Neiv1ZU+6fcMr9//35btmyZxePxFn8/IyPD5s+f38lTdR/016K/Fv216K9Ffy36a0W5f8ot8++8806rIc3M4vG4LV++/JhnGiM89Neivxb9teivRX8t+mtFuX/KLfPH81VPPB63d999txOm6X7or0V/Lfpr0V+L/lr014py/5Ra5v/66y+rrq62pqam//yzqf4C/lFEfy36a9Ffi/5a9Neiv1bU+6e5u6uHOCIej1ttbe0xH3vvvfds8uTJzb6tkZaWZoWFhZ05XpdHfy36a9Ffi/5a9Neiv1bE+7+VqZ7g/2VmZlpRUdExH4vFYmZmzT6O8NFfi/5a9Neivxb9teivFfX+KfVjNgAAAACOH8s8AAAAEFEs8wAAAEBEscwDAAAAEcUyDwAAAEQUyzwAAAAQUSzzAAAAQESxzAMAAAARxTIPAAAARBTLPAAAABBRLPMAAABARLHMAwAAABHFMg8AAABEFMs8AAAAEFEs8wAAAEBEscwDAAAAEcUyDwAAAEQUyzwAAAAQUSzzAAAAQESxzAMAAAARxTIPAAAARBTLPAAAABBRLPMAAABARLHMAwAAABHFMg8AAABEFMs8AAAAEFEs8wAAAEBEscwDAAAAEcUyDwAAAEQUyzwAAAAQUSzzAAAAQESluburhzAz27x5s3311Ve2bt06q6mpsa1bt9q+ffts3759Vltba8XFxRaLxaywsNDKysqstLTUzjnnHLv00kutoKBAPX7k0V+L/lr016K/Fv216K/VBfq/JVvmE4mErVixwhYvXmwrV660bdu2WXZ2tg0YMMDKysqsb9++VlRUZLFYzHJzc23v3r1WX19vu3fvtpqaGqupqbFt27ZZenq6DRkyxCoqKmzSpElWVlam+OtEDv216K9Ffy36a9Ffi/5aXbD/W+adbMeOHf7II494r1693Mx8xIgR/sQTT/iqVav88OHDgc76+++/fenSpT516lTv3bu3m5kPHz7cX3/99cBndRf016K/Fv216K9Ffy36a3Xh/ks6bZnfvn27T5061XNycvzUU0/16dOne01NTWjnJxIJ//jjj33SpEl+wgkneN++ff2FF17wxsbG0O6IMvpr0V+L/lr016K/Fv21ukH/5C/zjY2NPm/ePM/Pz/czzzzTn3/+eW9oaEjqnb/99pvffffdnp2d7eeff76vWrUqqfelMvpr0V+L/lr016K/Fv21ulH/5C7zGzZs8CFDhnh2drZPnz7dDxw4kMzrmqmpqfGxY8d6WlqaT506Nen/iKmG/lr016K/Fv216K9Ff61u1j95y/zChQs9Ly/PL7roIt+wYUOyrjkuixYt8oKCAh88eHCo31pJZfTXor8W/bXor0V/LfprdcP+yVnm58yZ42bmt99+ux86dCgZVwS2ZcsWHz58uBcVFXX5bzvRX4v+WvTXor8W/bXor9VN+4e7zCcSCb/rrrs8IyPDX3755TCPDkVDQ4Nfc801npub6x988IF6nNDRX4v+WvTXor8W/bXor9XN+4e7zN91113eo0cPf/fdd8M8NlTxeNxvu+02z8rK8o8++kg9Tqjor0V/Lfpr0V+L/lr01+rm/cNb5h9//HHPyMjwpUuXhnVk0jQ1Nfmtt97qubm5vnr1avU4oaC/Fv216K9Ffy36a9Ffi/4hLfMLFy70tLS0lPzWRmsOHz7s48eP91NPPdX//PNP9TgdQn8t+mvRX4v+WvTXor8W/d09jGV+48aNnp+f7/fee28YA3Wq2tpaLysr88svv9zj8bh6nHahvxb9teivRX8t+mvRX4v+R3VsmW9sbPQhQ4b40KFDU+ZZw0F9++23np2d7U899ZR6lMDor0V/Lfpr0V+L/lr016L/MTq2zM+bN8+zs7N9/fr1HR1Eas6cOZ6Tk+O//vqrepRA6K9Ffy36a9Ffi/5a9Nei/zHav8xv377d8/Pz/bHHHuvIACnh0KFDPmjQIJ84caJ6lONGfy36a9Ffi/5a9Neivxb9m2n/Mj9t2jQ/44wzOv0tcpPlk08+cTPzL774Qj3KcaG/Fv216K9Ffy36a9Ffi/7NtG+Z37lzp+fk5Pjzzz/f3otT0siRI338+PHqMf4T/bXor0V/Lfpr0V+L/lr0b1H7lvlHH33UTznllC7zVdERy5cvdzPz77//Xj1Km+ivRX8t+mvRX4v+WvTXon+LlqRbQIlEwl577TWbMmWK5eTkBH14SquoqLDS0lJ79dVX1aO0iv5a9Neivxb9teivRX8t+rcu8DK/cuVK2759u1VWVrbrwlRXWVlpixYtssbGRvUoLaK/Fv216K9Ffy36a9Ffi/6tC7zML1682IYNG2ZlZWWBL/t/77//vi1ZsqRDZyRDZWWl/fXXX/bpp5+qR2kR/bXor0V/Lfpr0V+L/lr0b13gZb6qqsrGjRsX+KJ/mzVrlj388MMdPidsZ511lg0cONCqqqrUo7SI/lr016K/Fv216K9Ffy36ty4zyB/+9ddfbcuWLTZ69OjAF/3btGnTrKGhocPnJMOVV16Zkp/M9Neivxb9teivRX8t+mvR/z8Eebrs/PnzPTs7O6XeOrepqcmbmppCPXPx4sWekZHhDQ0NoZ7bUfTXor8W/bXor0V/Lfpr0b9NwV7NZv369da/f3/LysoK/lXDv9xzzz126623Hv31lClTbNq0afbHH3/YjTfeaGeeeab179/fJk+ebPX19c0e/8MPP9iYMWOssLDQcnNzbdiwYbZ8+fIOz2VmdvbZZ1sikbBNmzaFcl5Y6K9Ffy36a9Ffi/5a9Nei/38Isvpff/31fu211wb7MqMVQ4cO9bPOOuuYX/ft29d79+7tI0eO9AcffNBHjRrlZubXXXfdMY/99NNPvUePHt67d2+///77ffLkyV5QUOCZmZm+evXqDs928OBBz8jI8KVLl3b4rDDRX4v+WvTXor8W/bXor0X/NgV706jy8nJ/4IEHgk3WipZimpk/9NBDR79tkUgkfMiQIV5QUHD0zyUSCb/gggu8oKDAN27cePTj69at87S0NJ80aVIo8/Xp08efeeaZUM4KC/216K9Ffy36a9Ffi/5a9G9TsB+z2b9/v+Xn5wf7r/8AcnJybMaMGZaWlmZmZunp6XbJJZfYvn377Pfffzczs++++85++OEHu+aaa6ykpOToYwcOHGjPPfeclZeXhzJLfn6+1dbWhnJWWOivRX8t+mvRX4v+WvTXon/bAr2aTV1dnfXs2TPQBUEUFxdbjx49jvlYUVHR0bvN7OjPEZ133nnNHj9t2rTQZsnLy0u5T2b6a9Ffi/5a9Neivxb9tejftkD/M3/o0CHLzs4OdEEQbb09r7ubmdmuXbvMzKx3795Jm8PMrEePHnbw4MGk3hEU/bXor0V/Lfpr0V+L/lr0b1ugZT4Wi7X4zN7O1LdvXzMz+/rrr5v93htvvGGvvfZaKPfU1dVZXl5eKGeFhf5a9Neivxb9teivRX8t+rct0DKfl5d39NsNKhdddJHl5OQ0e1H9X375xW655Rarrq4O5Z79+/en3Ccz/bXor0V/Lfpr0V+L/lr0b1ugZf7EE0+0v//+O9AFYTvllFPsvvvusx9//NHuvPNOW7t2rb3xxht2ww03WGZmpt15552h3LN79+6jPy+VKuivRX8t+mvRX4v+WvTXon/bAj0BtqSkxGpqagJdkAwzZ840d7enn37aXnzxRTMzO+2002zBggU2bNiwDp+/Z88e27Nnjw0YMKDDZ4WJ/lr016K/Fv216K9Ffy36/4cgL2Q5d+5c79OnT5CHJFVdXZ1/+eWX/tNPP4X6Fr+rV692M/OtW7eGdmYY6K9Ffy36a9Ffi/5a9Neif5uWBPqf+XPPPde2b99uu3btspNPPjnYVw1JEIvFbMSIEaGf+/3331t+fr716dMn9LM7gv5a9Neivxb9teivRX8t+rct0M/Mjxw50jIyMuyzzz4LdEnUVFVV2ahRoyw9PVCepKO/Fv216K9Ffy36a9Ffi/5tC/xqNhdeeGGzZ/J2JU1NTfbZZ5/ZFVdcoR6lGfpr0V+L/lr016K/Fv216N+2wF96VVRU2Pvvv2+JRCLwZVFQXV1tu3fvtnHjxqlHaRH9teivRX8t+mvRX4v+WvRvXeBlvrKy0nbs2GErVqwIfFkUvPnmmzZ06FAbOHCgepQW0V+L/lr016K/Fv216K9F/9YFXuZLSkrs4osvDu2drlJJXV2dvf3221ZZWakepVX016K/Fv216K9Ffy36a9G/De156Zz58+d7Zmamb968uT0PT1lz5871vLw83717t3qUNtFfi/5a9Neivxb9teivRf8WLWnXMh+Px33AgAF+xx13tOfhKamhocFPO+00f+ihh9Sj/Cf6a9Ffi/5a9Neivxb9tejfovYt8+7uL730kmdlZfn69evbe0RKmT17tufm5vqOHTvUoxwX+mvRX4v+WvTXor8W/bXo30z7l/l4PO6DBw/2MWPGtPeIlLFt2zaPxWI+e/Zs9SjHjf5a9Neivxb9teivRX8t+jfT/mXe3f3LL7/09PR0f/PNNztyjFRTU5NfffXVXlZWFupb8nYG+mvRX4v+WvTXor8W/bXof4yOLfPu7vfcc4/n5+d7TU1NR4+SePbZZz0zM9M///xz9SjtQn8t+mvRX4v+WvTXor8W/Y/q+DJ/8OBBv/DCC33w4MF+4MCBjh7XqdasWeNZWVn+5JNPqkdpN/pr0V+L/lr016K/Fv216H9Ux5d5d/dNmzb5SSed5BMnTvTGxsYwjky6jRs3enFxsU+YMMETiYR6nA6hvxb9teivRX8t+mvRX4v+7h7WMu/u/tVXX3ksFvNbbrkl5T85/vjjD+/Xr5+Xl5d7bW2tepxQ0F+L/lr016K/Fv216K9F/xCXeXf3Dz/80LOzs/2GG25I2SdTbNy40fv16+eDBg3yXbt2qccJFf216K9Ffy36a9Ffi/5a3bx/uMu8u/uKFSs8Ly/Px44d63v37g37+A5Zs2aNFxcXe3l5eZf7RD6C/lr016K/Fv216K9Ff61u3D/8Zd7dfe3atd6rVy/v16+ff/PNN8m4IpCmpiafN2+eZ2Vl+YQJE7rMt5ZaQ38t+mvRX4v+WvTXor9WN+2fnGXe3X3nzp1+1VVXeVZWls+cOdMPHjyYrKva9Ntvv/mECRM8MzPTZ8+enfI/TxUW+mvRX4v+WvTXor8W/bW6Yf/kLfPu7olEwufOneuxWMxLS0t9+fLlybzuGPX19T5r1izPzc31gQMH+qpVqzrt7lRBfy36a9Ffi/5a9Neiv1Y365/cZf6IrVu3+rXXXutm5sOHD/cPPvjAm5qaknLX/v37fc6cOV5cXOyxWMyfeuqplH0yRGehvxb9teivRX8t+mvRX6ub9O+cZf6INWvW+MSJEz0tLc379+/vM2bM8E2bNnX43Hg87itWrPCbb77Z8/LyPD8/3x9++GHfuXNnCFN3HfTXor8W/bXor0V/LfprdfH+S9Lc3a2T/fzzz/bKK6/YokWL7M8//7TS0lIbPXq0XXbZZTZo0CArKyuznJycVh+/a9cu27Bhg3333XdWVVVl1dXV9s8//1h5ebnddNNNNmnSJCsqKurEv1G00F+L/lr016K/Fv216K/VRfu/JVnmj0gkElZdXW0rV660qqoqW7t2rcXjcUtLS7NevXpZz549rWfPnhaLxayurs727t1re/bssb1795qZWWFhoY0aNcpGjx5tFRUVVlpaqvqrRBL9teivRX8t+mvRX4v+Wl2sv3aZ/7fDhw/b5s2bbf369bZlyxarq6uzuro6q6+vt549e1pRUZEVFhZaSUmJlZaW2umnn64euUuhvxb9teivRX8t+mvRXyvi/VNrmQcAAABw3N5KV08AAAAAoH1Y5gEAAICIYpkHAAAAIup/6FbdD7WKy2IAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "total.visualize()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "ab0269d9", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 1.83 ms, sys: 1.35 ms, total: 3.18 ms\n", + "Wall time: 1.01 s\n" + ] + }, + { + "data": { + "text/plain": [ + "36" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%%time\n", + "total.compute()" + ] + }, + { + "cell_type": "markdown", + "id": "ba56c847", + "metadata": {}, + "source": [ + "**Note:**\n", + "\n", + "When we used `dask.delayed` without having a distributed scheduler (will see this later). We are relying on a single-machine scheduler, and dask will use the threadpool executor, which by default will use the resources available on your machine. This can cause that you see different time values for the parallel version, since it'll depend on the resources you have available.\n", + "\n", + "You can check this by doing:" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "fc6aab81", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "8" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import os\n", + "os.cpu_count()" + ] + }, + { + "cell_type": "markdown", + "id": "38659821", + "metadata": {}, + "source": [ + "### The `@delayed` syntax \n", + "\n", + "The `delayed` decorator can be also used by \"decorating\" with `@delayed` the function you want to parallelize." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "294b1737", + "metadata": {}, + "outputs": [], + "source": [ + "@delayed \n", + "def double(x):\n", + " \"\"\"Decrease x by one\"\"\"\n", + " sleep(1)\n", + " return 2*x " + ] + }, + { + "cell_type": "markdown", + "id": "acf79fa0", + "metadata": {}, + "source": [ + "Then when we call this new `dec` function we obtain a delayed object:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "dd9c01f2", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Delayed('double-ea458133-3bf3-4e8d-8111-531e9158f458')\n" + ] + } + ], + "source": [ + "d = double(4)\n", + "print(d)" + ] + }, + { + "cell_type": "markdown", + "id": "abdb64b5", + "metadata": {}, + "source": [ + "### Exercise\n", + "\n", + "Using the `delayed` decorator create the parallel versions of `inc` and `add`" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "57f47d98", + "metadata": {}, + "outputs": [], + "source": [ + "#solution\n", + "\n", + "@delayed\n", + "def inc(x):\n", + " \"\"\"Increments x by one\"\"\"\n", + " sleep(1)\n", + " return x + 1\n", + "\n", + "@delayed\n", + "def add(x, y):\n", + " \"\"\"Adds x and y\"\"\"\n", + " sleep(1)\n", + " return x + y" + ] + }, + { + "cell_type": "markdown", + "id": "b3866d3d", + "metadata": {}, + "source": [ + "``Delayed`` objects support several standard Python operations, each of which creates another ``Delayed`` object representing the result:\n", + "\n", + "- Arithmetic operators, e.g. `*`, `-`, `+`\n", + "- Item access and slicing, e.g. `x[0]`, `x[1:3]`\n", + "- Attribute access, e.g. `x.size`\n", + "- Method calls, e.g. `x.index(0)`\n", + "\n", + "For example you can do:" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "bfa8a187", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXMAAAJPCAYAAACO6jTZAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deVxU9eI+8GeAYZEdTVzTXIBCU8vrkisormnuS2VaVjfNSnMrb90W+5Xp1bLU8lqmoiBg7oaGggruiisqigYumRuy7zOf3x9+5UaiMTBnPmfOPO/Xy9d9XRznPD7R03Bm5oxOCCFARETWLMpOdgIiIqo6jjkRkQZwzImINMBBdgDSlitXrmDv3r2yY6jesGHDZEcgjdHxCVAyp8jISAwfPlx2DNXjv3ZkZnwClJQhhOCvcn5FRETI/kdDGsUxJyLSAI45EZEGcMyJiDSAY05EpAEccyIiDeCYExFpAMeciEgDOOZERBrAMSci0gCOORGRBnDMiYg0gGNORKQBHHMiIg3gmBMRaQDHnIhIAzjmREQawDEnItIAjjkRkQZwzImINIBjTkSkARxzIiIN4JgTEWkAx5yISAM45kREGsAxJyLSAI45EZEGcMyJiDSAY05EpAEccyIiDeCYExFpAMeciEgDOOZERBrAMSci0gCOORGRBnDMiYg0gGNORKQBHHMiIg3gmBMRaQDHnIhIAzjmREQawDEnItIAjjkRkQZwzImINIBjTkSkARxz0jyj0Sg7ApHiHGQHIG2KjIyUHQEAIITA1q1b0bt3b9lRAAD79u2THYE0imNOihg+fLjsCGUsW7ZMdgQiRfE0C5nVsGHDIIRQza9x48YBAGJjY6Vn+fMvInPjmJNmFRcXIywsDABK/5dIqzjmpFm//vorMjMzAQAREREoLCyUnIhIORxz0qywsDDo9XoAQE5ODrZt2yY5EZFyOOakSXl5eVi3bh2Ki4sBAPb29li1apXkVETK4ZiTJm3atAkFBQWl/7+kpAQbNmxATk6OxFREyuGYkyatWrUK9vb2Zb5WXFyMjRs3SkpEpCyOOWlORkYGtm7dipKSkjJf1+l0CA0NlZSKSFkcc9KcNWvWlPsWfoPBgJiYGNy6dUtCKiJlccxJc/7u0ffPP/9soSRElsMxJ025du0aEhISYDAYyv19IQRWrFhh4VREyuOYk6ZERETAzu7B39ZGoxH79u1DWlqaBVMRKY9jTpoSGhp63xOffyWEQFRUlIUSEVkGr5pImvH777/jzp07qFu3bunXSkpKUFBQADc3tzK35aVoSWt0gpdwIw2LjIzE8OHDeaVC0roonmYhItIAjjkRkQZwzImINIBjTkSkARxzIiIN4JgTEWkAx5yISAM45kREGsAxJyLSAI45EZEGcMyJiDSAY05EpAEccyIiDeCYExFpAMeciEgDOOZERBrAMSci0gCOORGRBnDMiYg0gGNORKQBHHMiIg3gmBMRaQDHnIhIAzjmREQawDEnItIAjjkRkQZwzImINIBjTkSkARxzIiIN4JgTEWkAx5yISAMcZAcgMichBK5evYrr168jNzcXx44dAwBs374dbm5ucHV1Rb169eDt7S05KZF56YQQQnYIosoQQiApKQmxsbHYu3cvzp07h+TkZOTl5f3tn61ZsyYCAgIQGBiIzp07IygoCL6+vhZITaSIKI45WRWj0Yi4uDiEhoYiOjoaN27cgLe3Nzp27IgnnngCfn5+8PPzQ+3ateHq6lr6aDwjIwM5OTnIyclBWloakpOTkZycjOPHj+PgwYMwGAwIDAzE4MGDMWrUKDRu3Fj2X5XIFBxzsg43b97Et99+i2XLluHy5cto06YNhg4diuDgYLRs2RJ2dpV/+icnJwfx8fH49ddfERERgT/++APPPPMMxo0bh+HDh8PBgWcjSfU45qRuV69exZw5c7BkyRK4ubnhtddew4svvoiAgABFjmcwGBATE4Ply5djzZo1aNCgAaZPn47Ro0fD0dFRkWMSmQHHnNSpuLgYixYtwgcffABXV1dMmjQJb731FqpVq2axDKmpqfjqq6/w3//+F/Xq1cOCBQvQs2dPix2fyAQcc1Kf3bt345///CcuXbqEDz74AJMnT5b6qDgtLQ0TJ07E+vXrMWLECMyfPx81a9aUloeoHFF8nTmphsFgwCeffILg4GA0bdoUp0+fxvvvvy/99EaDBg2wbt06bN68Gfv370fLli0RFxcnNRPRX3HMSRVu3LiBkJAQzJo1C9988w02btyIBg0ayI5VRt++fXHs2DE888wzCAkJwaeffgr+YEtqwafpSbqLFy+iZ8+eEEJg7969aNWqlexID+Tp6Yk1a9ZgwYIFePfdd3HhwgX88MMP0Ov1sqORjeM5c5IqKSkJPXv2RK1atfDLL79Y1bnoHTt2YODAgWjbti3Wrl0Ld3d32ZHIdvGcOcmTlJSEzp07IyAgAHFxcVY15ADQrVs3bN++HceOHcPgwYNRVFQkOxLZMD4yJymuXLmCDh06oE6dOtixY4dFX3JobidPnkTnzp3Rq1cvrFq1qkpvYCKqJD4yJ8vLzMxESEgIvLy8EB0dbdVDDgDNmzfHzz//jHXr1mHatGmy45CN4piTxb366qvIyMhAdHQ0vLy8ZMcxi+DgYCxduhTz5s3D2rVrZcchG8RXs5BFLVy4EGvXrsXWrVtRp04d2XHM6vnnn8euXbswduxYtGrVCo899pjsSGRDeM6cLCY5ORktW7bE9OnT8fHHH8uOo4iCggK0a9cObm5uiI+Ph06nkx2JbAPfzk+W0717d9y4cQOJiYmavhLhyZMn8dRTT2Hx4sV45ZVXZMch28AnQMkywsPDERcXh8WLF2t6yIG7T4iOHz8e06ZNw61bt2THIRvBR+akuKKiIjRp0gQ9e/bEkiVLZMexiMzMTAQEBOD555/H3LlzZcch7eMjc1LeihUr8Mcff+CDDz6QHcViPD09MW3aNHz//fe4efOm7DhkAzjmpCiDwYA5c+Zg9OjRqrtwltL++c9/ws3NDfPnz5cdhWwAx5wUtWnTJqSkpGD69Omyo1hctWrVMHHiRCxcuBAFBQWy45DGccxJUStWrEC3bt3QpEkT2VGkGDt2LHJycrBx40bZUUjjOOakmPT0dPzyyy8YNWqU7CjS1KxZE927d0doaKjsKKRxHHNSzJo1a+Dg4ICBAwfKjiLVSy+9hG3btiE9PV12FNIwjjkpJiYmBkFBQXBzc5MdRarevXvDaDRi586dsqOQhnHMSRFCCOzcuRNBQUGyo5Q6ceIE5s+fjzt37pjldhXl5eWFVq1a8XNDSVEcc1LEyZMncevWLVWNeUJCAiZOnIg//vjDLLczRXBwMGJjY812f0R/xTEnRRw9ehQuLi5o0aKF7Ciq0K5dO5w9exb5+fmyo5BGccxJEWfPnkXTpk35qTv/x9/fH0ajEefPn5cdhTSK/6aRIpKTk+Hv72/W+9y5cyfefPNN+Pn5oX79+hg5ciS+//57GAyG+2576NAhDB06FI0aNUL37t2xYMEClHcZoorerqqaNGkCBwcHnD171uz3TQTwwylIIRcvXkSfPn3Mdn9xcXEICQmBp6cnnn/+edSoUQMxMTEYN24cLl68iNmzZ5fedufOnejbty+cnZ0xaNAg2NnZ4cMPP7zvU40qejtzcHR0RP369XHx4kWz3zcRwDEnhWRmZpp1FMPDw+Hg4IALFy6U3u/06dPRqFEjbNq0qcyYT5w4EU5OTjhy5AgaNmwIAJgyZQpatmxZ5j4rejtz8fLyQmZmpiL3TcTTLKSI7OxsuLu7m+3+3n33XRw6dKjMfyCKiorg5eWFrKys0q/t378fx48fx/jx40sHGgCaNm1a5p2oFb2dObm7uyM7O1uR+ybiI3NShLnHPCAgALdv38bcuXOxb98+pKam4vz588jKyirzWaL3zkmX9+g6MDDQ5NuZk4eHB8ecFMNH5qQInU5n1icS58yZg3r16mHmzJkoLi5G9+7dsWzZMnTo0KHM7e69Zd7e3v6++3B2djb5dubEz4EhJXHMSRFubm7Iyckxy33dvHkT7733Hjw9PXH58mVs2LABs2bNwsCBA++7tOxjjz0GANi1a9d995Oammry7czJ3D+tEP0Zx5wUYc7zw2lpaTAajRg0aFCZMbx8+TKOHTtW5ratW7eGXq+/792WJSUlCAsLM/l25sQxJyVxzEkRXl5eZru2ib+/P9zc3BAREYFNmzbh/PnzWLZsGZ555hl4eHggJycHycnJAID69evjzTffxMmTJzF27FgkJibi6NGjGDJkSJlXklT0duaUkZEBT09PRe6bCIJIAYMGDRJDhw412/1FRkYKNzc3AUAAED4+PmL58uVizZo1wtXVVTg4OJTetqCgQLz22multwUgunXrJkJDQwUAcfr0aZNuZw6FhYXCwcFBREZGmu0+if4kUicEn5Uh85sxYwa2bNmC48ePm+0+b9++jaNHj6J27dp44oknoNPpSr9+586d+z7N6PLlyzh58iQef/zx0nPk5ano7aoiKSkJzZo1w/Hjx/Hkk08qcgyyaVEcc1LE8uXLMW7cOGRnZ5f7ihFbs3btWgwdOhQ5OTlwcXGRHYe0J4rnzEkRTz31FPLz8836yNya7d+/H48//jiHnBTDMSdFNGvWDL6+vvxAhv8TGxuL4OBg2TFIwzjmpAidTofOnTtzzHH3VSzHjh1T1Qd1kPZwzEkxISEhiIuLs/m3sG/ZsgV2dnbo2rWr7CikYRxzUsyQIUNgMBiwdu1a2VGkCg0NRe/eveHt7S07CmkYx5wU4+3tjb59+yI0NFR2FGmuX7+OHTt2KHYlRqJ7OOakqNGjRyMuLs5mPy5tyZIlcHd3x7PPPis7Cmkcx5wU1bdvXzRt2hSzZs2SHcXicnNz8c0332DChAmKXYmR6B6OOSnK3t4e06dPR2hoKNLS0mTHsajvvvsOeXl5eOutt2RHIRvAd4CS4oqLi9G0aVMEBwdj6dKlsuNYREZGBvz9/fHSSy9hzpw5suOQ9vEdoKQ8vV6P2bNnY9myZeVeP1yLPvjgAxgMBrz33nuyo5CN4CNzspi+ffvi0qVLSExMhF6vlx1HMYmJiWjTpg1+/PFHjB49WnYcsg280BZZzvnz59GiRQtMnjwZM2fOlB1HEfn5+Wjbti28vLywa9eu0is7EimMp1nIcpo2bYqvvvoKn3/+OX799VfZcRTx1ltv4cqVK1i+fDmHnCyKj8zJ4kaOHIm4uDgcPnwY9erVkx3HbFasWIExY8Zg3bp1eO6552THIdvC0yxkeVlZWWjfvj10Oh12794NHx8f2ZGqbPv27ejbty8mTZpkk6+pJ+k45iTH1atX0aFDB9SqVQs7duyAq6ur7EiVduLECXTu3Ln00gV2djx7SRbHc+YkR926dRETE4PffvsNffv2VexDlJV28OBBdO/eHa1bt8ZPP/3EISdp+J1H0jRt2hSxsbG4cOECOnbsiKtXr8qOZJKYmBh0794d7dq1w8aNG+Ho6Cg7EtkwjjlJFRgYiPj4eBQXF6Njx444dOiQ7Eh/SwiBr776Cn369MHQoUOxdu1aVKtWTXYssnEcc5KuYcOGSEhIgJ+fHzp27Ij58+dDrU/lpKenY8CAAZg2bRpmzpyJH374AQ4ODrJjEXHMSR1q1KiB6OhofPTRR5gyZQr69OmDCxcuyI5Vxrp169CyZUskJiYiNjYW7733Hl9LTqrBMSfVsLOzw4wZM7Br1y5cuXIFzZo1w8cff4z8/HypuVJSUtC3b18MHjwYXbt2xdGjR9GpUyepmYj+ii9NJFUqKSnBwoUL8e9//xtOTk4YP348atWqhZdeeski56e3bNkCR0dHbN68GYsXL0aDBg2wYMEChISEKH5sokrg68xJ3a5fv465c+fi22+/RWFhIaZOnYpRo0ahWbNmihyvuLgY27Ztw5dffomEhAQ0atQI//73v/HCCy/w3DipGV9nTurm6+uLNm3aoKioCJ6enoiMjETz5s3x1FNP4YsvvsCBAwdQUlJSpWNkZmZi48aNmDBhAurWrYv+/fsjLy8PAFBYWIhu3bpxyEn1+MicVG3jxo0YNGgQDAYD2rVrh7179yI+Ph6hoaHYsmULrl27Bg8PD3To0AFPPPEE/Pz84O/vD19fX7i5uZX+ys7ORkZGBnJycpCWlobk5GQkJyfj2LFjSExMhBACTz75JAYPHoxRo0bByckJtWvXhk6nQ8OGDbFnzx7Url1bdh1ED8LTLKReMTEx6Nu3LwwGA4QQGDp0KCIiIsrc5uzZs4iNjcW+fftw9uxZJCcnIzs7+2/vu06dOggICEBgYCC6dOmCrl27onr16qW/bzQa4ejoCIPBAL1ej/r162PPnj2oVauW2f+eRGbAMSd1SkhIQEhICIqLi2EwGODo6Ijx48fjq6+++ts/e+3aNdy8eRM5OTmlvzw8PODl5QU3NzfUrVsX7u7uf3s/NWrUwO3btwHc/bSkJk2aID4+vszoE6lEFE8Ekurs27cPPXr0KB1yANDpdBV+VFy7dm2znBLx9fUtHfPi4mKkpKSgS5cuiI+Ph7e3d5Xvn8ic+AQoqcrRo0fRs2dPFBUVlQ45cPelipY+xVG/fv0y/7+4uBjnzp1Djx49KnQqh8iSOOakGsePH0fXrl2Rl5dXZsgBwGAwWPwJyHr16t33Kpbi4mIcP34cISEhyMnJsWgeoofhmJMqJCcnIzg4uNwhv8fSj8xr1aoFe3v7+75eXFyMI0eOoH///igoKLBoJqIH4ZiTdOfPn0fHjh2RlZX10NeMW/qRee3atWE0Gsv9vZKSEsTHx6Nfv34oLCy0aC6i8nDMSap71zK/c+fOQ4fc3t7e4q8iqVWrFoqLix/4+yUlJdixYweGDx9e5TcuEVUVx5ykunr1Kho1alT6eu4H8fHxsfin+PzdTwJ6vR729vbw8fEpfdULkSwcc5Kqc+fO2LdvHw4fPoyhQ4fCzs6u3FGX8WadBx3T3t4eLi4uGDduHH777TcsXboUvr6+Fk5HVBZfZ06q8PTTT2PVqlVo27YtpkyZAgcHB+h0utLTHPXq1bN4pj8/MtfpdNDpdHB1dUVJSQnOnz+PunXrWjwT0YPwkTmpSnh4OPr374+0tDRMmjQJrq6uACBlOF1cXEqP37hxYyxZsgQXLlyAo6MjwsPDLZ6H6GH4dn5Sjbi4OAQHB2Pv3r1o3749ACArKwvff/89XF1d8eabb1o808svv4yBAwfi2WefLT1nP3nyZERERODixYv8EGdSC16bhdSjT58+yMvLw86dO2VHeagrV66gcePGWLx4McaMGSM7DhHAMSe1OHnyJFq0aIHNmzejT58+suP8rdGjR+PgwYNISkqy+KtsiMrBMSd1GDVqFI4dO4YTJ05YxYcknzlzBs2aNcP69evRr18/2XGIOOYk35UrV9CoUSP88MMPeOmll2THqbBnn30WWVlZ2L17t+woRPzYOJJv7ty58PX1xYgRI2RHMcnUqVMRHx+PvXv3yo5CxJcmklx37tzBDz/8gEmTJlndK0O6dOmC9u3b4z//+Y/sKEQcc5Jr4cKFsLe3x9ixY2VHqZTJkydj/fr1OH36tOwoZOM45iRNYWEhFi5ciDfffBOenp6y41TKwIEDERAQUKGPsyNSEsecpPnpp59w584dTJgwQXaUSrOzs8M777yD0NBQ/P7777LjkA3jmJMUBoMB8+bNw5gxYyx+nXJzGzNmDHx8fPDtt9/KjkI2jGNOUqxduxYXLlzAO++8IztKlTk5OWHChAlYtGgRMjMzZcchG8UxJynmzZuHgQMH4vHHH5cdxSzefPNN6HQ6LFmyRHYUslEcc7K4uLg47N+/H5MnT5YdxWw8PT0xduxYfP311ygqKpIdh2wQ3wFKFte7d2/k5+er/oJaprp3Aa7vv/8eL7/8suw4ZFv4dn6yLGu7oJapeAEukoRjTpY1atQoHDlyBElJSVZxQS1T8QJcJAnHnCzHWi+oZSpegIsk4IW2yHKs9YJapuIFuEgGjjlZhDVfUMtU9y7ANWfOHNlRyIZwzMkirP2CWqaaPHkyNmzYwAtwkcVwzElxBQUFVn9BLVPxAlxkaRxzUpwWLqhlKjs7O0ycOJEX4CKL4ZiTogwGA7766itNXFDLVKNHj+YFuMhiOOakKC1dUMtUvAAXWRLHnBSltQtqmYoX4CJL4ZiTYrR4QS1T8QJcZCl8BygpRqsX1DIVL8BFFsC385MytH5BLVPxAlykMI45KUPrF9QyFS/ARQrjmJP52coFtUzFC3CRgnihLTI/W7mglql4AS5SEseczCo9Pd1mLqhlKl6Ai5TEMSezsrULapmKF+AipXDMyWwKCgqwaNEim7qglql4AS5SCp8AVSGj0Sg7QqUsXrwY7777Li5cuIBatWopeiwlX96ndP9LlizBO++8gwsXLljt9Wr48krV4atZ1CYyMhLDhw+XHUP1lPq2Zf8Vw9lQnSgH2QmofFFRUbIjqNK+ffswb948xY/D/stnqf7JdBxzlRoyZIjsCKpkqVNQ7L981noK0BbwxBcRkQZwzImINIBjTkSkARxzIiIN4JgTEWkAx5yISAM45kREGsAxJyLSAI45EZEGcMyJiDSAY05EpAEccyIiDeCYExFpAMeciEgDOOZERBrAMSci0gCOORGRBnDMiYg0gGNORKQBHHMiIg3gmBMRaQDHnIhIAzjmREQawDEnItIAjjkRkQZwzImINIBjTkSkARxzIiIN4JgTEWkAx5yISAM45kREGsAxJyLSAI45EZEGcMyJiDSAY05EpAEccyIiDeCYExFpAMeciEgDOOZERBrAMSci0gCOORGRBnDMiYg0gGNORKQBHHMiIg1wkB2Aymc0GmVHKJWYmIinnnpKdgwAgBDCIsdh/+WzVP9kOo65Stnb28uOYNPYP1kbjrnKPPPMM4iKipIdo9TGjRuxcuVKLFy4EI888ojsOIpj/2StdII/N9FDNG/eHKdOncIXX3yB9957T3Ycm8P+qYKiOOb0QMnJyQgICAAABAQE4MyZM5IT2Rb2TyaI4qtZ6IHCwsKg1+sBAGfPnsWpU6ckJ7It7J9MwTGnBwoNDUVxcTEAwNHREatXr5acyLawfzIFT7NQuQ4dOoQ2bdqU+Vq9evVw6dIl6HQ6SalsB/snE/E0C5UvPDy89Ef8e65cuYIDBw5ISmRb2D+ZimNO9zEajVi1alXpj/j3ODo6Ijw8XFIq28H+qTI45nSfXbt24caNG/d9vaioCKGhoSgpKZGQynawf6oMjjnd58+vovirO3fuIC4uzsKJbAv7p8rgmFMZxcXFiIyMvO9H/Hv0ej3CwsIsnMp2sH+qLI45lREdHY2srKwH/v69scnPz7dgKtvB/qmyOOZURlhYGBwcHn7Jnry8PGzdutVCiWwL+6fK4phTqdzcXGzcuLFCT7DxVRXmx/6pKnjVRCpVUlKCjRs3lvnarl278NlnnyEmJqbM152cnCwZzSawf6oKjjmV8vT0RPfu3ct8LT09HQDu+zqZH/unquBpFiIiDeCYExFpAMeciEgDOOZERBrAMSci0gCOORGRBnDMiYg0gGNORKQBHHMiIg3gmBMRaQDHnIhIAzjmREQawDEnItIAjjkRkQZwzImINIBjTkSkARxzIiIN4JgTEWkAx5yISAM45kREGsAxJyLSAI45EZEGcMyJiDSAY05EpAEccyIiDeCYExFpAMeciEgDOOZERBrAMSci0gCOORGRBnDMiYg0QCeEELJDkHyXL1/G2bNnkZycjOTkZFy/fh3Z2dm4efMm/vjjD/j7+8PNzQ2urq5o2LAh/Pz8EBAQgMDAQLi7u8uOb/XYP1VRFMfcRt25cwdbtmxBbGws4uLikJqaCgCoUaMG/P39UadOndLxcHV1RUZGBnJycpCbm4uLFy/i3LlzKCgogIODA55++mkEBQWhe/fu6Nq1K+zt7eX+5awA+ycz45jbkpKSEkRHRyM0NBSbNm2C0WhEu3btEBQUhKCgIDRv3hw+Pj4Vui+j0YhLly7h0KFDiIuLQ1xcHM6ePYs6derghRdewOjRoxEYGKjw38i6sH9SUBQEaV5hYaFYvny58PPzEwDE008/Lb7++mtx+/Ztsx4nLS1NzJo1SzRp0kQAEB06dBA7duww6zGsEfsnC4jkmGuY0WgUy5YtE/Xq1RNOTk7i9ddfFykpKRY5bnR0tOjYsaMAIIKDg8WJEycUP67asH+yII65Vp04cUJ06tRJ2Nvbi/Hjx4srV65IybFz507Rrl074eDgIN59912RlZUlJYelsX+yMI651hiNRjF79myh1+tF27ZtxZEjR2RHEgaDQfz3v/8V1atXFw0aNBD79u2THUkx7J8k4Zhryc2bN0Xfvn2FXq8Xs2fPFgaDQXakMm7cuCF69+4t9Hq9+M9//iOMRqPsSGbF/kkijrlWXLx4UTRt2lTUr19fJCQkyI7zQEajUXz99ddCr9eLF154QRQVFcmOZBbsnyTjmGtBYmKiqFWrlmjdurW4ceOG7DgVsm3bNuHm5iZ69eolcnJyZMepEvZPKhDJt/NbucTERAQFBaFZs2aIjY3FI488IjtShfTo0QOxsbE4cuQIevXqhfz8fNmRKoX9k1rwTUNWLCUlBR06dECrVq2wceNGODo6yo5kstOnT6Nz58545plnsHbtWjg4OMiOVGHsn1Qkio/MrdT169fRo0cPNGzYEGvWrLHKIQGAJ554Aps3b0ZsbCzeeOMN2XEqjP2T2nDMrZDRaMSLL74IOzs7bNmyBW5ubrIjVUm7du0QERGBn376CUuWLJEd52+xf1Il2WftyXSffvqpcHJyEocPH5YdxaxmzJghnJ2dRWJiouwoD8X+SYUiec7cyhw4cAAdOnTA119/jQkTJsiOY1YlJSXo1q0bbt26haNHj6ry1AX7J5XiVROticFgQJs2beDl5YUdO3bIjqOI1NRUBAYG4sMPP8R7770nO04Z7J9UjE+AWpNFixbh1KlTWLBggewoimnYsCFmzJiBmTNnll7jWy3YP6kZH5lbiezsbDRs2BCvv/46vvjiC9lxFI0fzLQAACAASURBVFVYWIgnn3wSbdu2xYoVK2THAcD+SfX4yNxafPfddygpKcG0adNkR1Gck5MTPvjgA4SFheH8+fOy4wBg/6R+HHMrUFBQgK+//hrjx4+Ht7e37DgW8fzzz6NRo0b4z3/+IzsK+yerwDG3AqtXr0Z6ejomTpwoO4rF2NvbY/LkyVi+fDnu3LkjNQv7l9s/VQzH3AosX74c/fv3h6+vr+woFjVy5EjY29sjMjJSag72L7d/qhiOucqlpaVh9+7dGDVqlOwoFufh4YEBAwYgNDRUWgb2L7d/qjiOucqtWbMG3t7e6NWrl+woUrz44ovYu3cvrly5IuX47F9u/1RxHHOV27FjB7p16wa9Xi87SoX98ssvWL16tVnuKygoCE5OToiNjTXL/ZmK/cvtnyqOY65iJSUl2LNnD4KCgmRHMcns2bMxdepUs9yXs7Mz2rVrh7i4OLPcnynYv9z+yTQccxVLTExEVlaW1Y2JuQUFBWHXrl0WPy77v0tW/2QajrmKJSUlwcXFBU2bNpUdRaoWLVogNTUVOTk5Fj0u+79LVv9kGo65iiUnJ8PPzw92dub5x/Taa69h9OjRSElJwauvvor69esjODgYK1euBADMmzcPTz/9NGrWrInevXvf9+6/l156CS+++OJ99ztr1ix06tQJJSUlZsn5V/7+/hBCICUlRZH7fxD2f5es/sk0/IwoFUtOToa/v7/Z7u/YsWO4cuUKtm/fDi8vLwQFBSEiIgI7d+5EWFgYYmJi0KdPHzRo0ABbtmxB9+7d8dtvv5WO2ZEjR2A0Gu+73/PnzyMhIaHc3zOHxo0bw8HBAWfPnkXLli0VOUZ52P9dsvon0/CRuYr98ccfqFevntnvc/z48UhKSsKKFSuwfv16CCGwc+dOJCUlYcOGDVi7di1GjhyJS5cuqeLRmF6vh6+vL65du2bR47L/u2T1T6bhmKtYVlYW3N3dzXqf9vb2ZV7p0KJFCwBAcHAw/Pz8Sr/etWtXAHc/8FcN3N3dkZ2dbdFjsv//kdE/mYZjrmLZ2dlmH5M6deqU+QQZZ2fn0q//mb29PQCgqKjIrMevLBljwv7/h2OufhxzFSsoKCj9l91cXF1dy/16VZ7kS09Pr/Sfrahq1aohLy9P8eP8Gfv/Hxn9k2k45irm4uKC/Px82TFK6XS6cp9kS05OVvzYubm5DxxCpbD//5HRP5mGY65iavvRtmHDhkhNTUVxcXHp15KSkizyJJ0Spzz+Dvv/Hxn9k2k45irm4eGBrKws2TFKtW3bFkVFRRgzZgx27tyJH374AQMGDICnp6fix5YxJuz/fzjm6sfXmatYnTp1cPnyZdkxSk2ePBn79u1DWFgYwsLCULdu3dJLw86aNUux4xYWFuL69etmf5ng32H/d8nqn0zDD3RWsQ8++AAbNmzAyZMnZUcp4+bNm7h69SpatGgBnU6n+PGSkpLQrFkznDhxAs2bN1f8ePew/7tk9U8mieIjcxXz9/fH+fPnYTAYSl+qpgaPPPIIHnnkEYsdLzk5GXZ2dha/Rgr7v0tW/2QanjNXsWbNmqGwsFA1bxyRJTExEU2aNDH7ywT/Dvu/S1b/ZBqOuYq1aNEC3t7eNn8t6djYWCmXoWX/d8nqn0zDMVcxOzs7dOnSxabHJDs7G4cPH5YyJuxfbv9kGo65ynXr1g1xcXGqevOKJcXExMBgMJReq8TS2L/c/qniOOYqN3ToUOTm5mLTpk2yo0ixcuVKBAcHw9fXV8rx2b/c/qniOOYq5+vri5CQEISGhsqOYnHp6en45ZdfSl9LLQP7l9s/VRzH3AqMHj0aW7duxaVLl2RHsajly5dDr9dj0KBBUnOwf7n9U8VwzK3AoEGDUK9ePcyZM0d2FIspLCzE3Llz8frrr8PNzU1qFvYvt3+qGI65FdDr9Zg6dSp++OEH/P7777LjWMTSpUtx69YtvPvuu7KjsH+yCnw7v5UoKChA48aN8dxzz2HRokWy4ygqJycHjz/+OPr374+FCxfKjgOA/ZPqRfGRuZVwdnbGrFmzsHjxYhw4cEB2HEV9+umnyM3NxUcffSQ7Sin2T2rHR+ZWRAiBoKAg5OXlYd++faq6Xoi5JCUloVWrVpg/fz7GjRsnO04Z7J9ULIpjbmWSkpLQunVrvPfee5p75FRQUID27dvDyckJe/furdJHqSmF/ZNKRUGQ1VmwYIGws7MTv/76q+woZvXGG28ILy8vceHCBdlRHor9kwpFcsyt1JAhQ0StWrVEamqq7ChmsXz5cqHT6cSaNWtkR6kQ9k8qE8nTLFYqMzMTnTt3RlFREeLj41GjRg3ZkSpt69at6N+/P6ZMmYLPP/9cdpwKYf+kMjxnbs1+//13dOjQATVr1sT27dut8jMa9+/fj+7du2Po0KFYunSpRT45x1zYP6kIX5pozerUqYNt27bh0qVLCAoKwtGjR2EwGGTHqrBff/0VISEh6NatG5YsWWJ1Q/LX/m/cuCE7UoVdu3YNmzdvtur+qSyOuZXz8/PD+vXrkZKSgk6dOiEtLU12pApZtWoV+vXrh4EDB2LNmjVwcLDOTzD08/NDQkICMjIy0LFjR1y8eFF2pApZv349+vfvj2bNmmH16tVW2z/9idxz9lQVd+7cEf/617+Es7OzACAaN24sfHx8xIYNG2RHe6DCwkLxzjvvCJ1OJ6ZMmSKMRqPsSGbxxx9/iFatWllV/82bNxcARMOGDUV4eLgwGAyy41Hl8dUs1ig3N1fMmjVLeHh4CL1eLwCIJk2aiJycHPHKK68InU4nJk2aJPLz82VHLeP8+fPiH//4h3B3dxerVq2SHcfscnNzrar/kydPCp1OV/orMDBQbNmyRXZMqhyOuTUpKioSixcvFjVr1hQODg4CgAAg7O3txeLFi0tvFxoaKtzd3UWTJk1EdHS0xMR35efni48//lg4OzuLli1birNnz8qOpChr6j8oKKj0e8ne3l4AEE8//bSIjY2VmJgqgWNuDQwGg4iMjBQNGjQQdnZ2QqfTlQ45AOHh4SFycnLK/JnLly+LoUOHCgBiwIAB4vjx4xbPXVJSIsLCwkSTJk2Em5ubmD17tigqKrJ4Dhmspf9NmzaV+V7686h37dpVHDlyxOK5qVI45moXExMjmjVrVvqj8F//xdPr9WLGjBkP/PPbtm0TLVq0EDqdTvTv31/s2bNH8cz5+fli6dKlws/PT9jb24sXXnhBXL58WfHjqpHa+zcajaJRo0blfm85ODgInU4nBg0aJJKTkxXPTVXCMVerPXv2iPbt2wsAws7O7r5/0f78KOrvhtJoNIpNmzaJdu3aCQAiICBAfPbZZ+K3334zW96SkhKxe/du8eqrrwovLy+h1+vFK6+8Is6dO2e2Y1grtfe/YMGC0kfj5f3S6/VCp9OJIUOGiIsXL5otM5kVx1yN3n///TI/7j7sX7Lhw4ebdN+HDh0Sb731lnjkkUcEAOHn5yf++c9/ivDwcJGUlCQKCwvv+zMpKSn3fS09PV3s379ffPPNN2LAgAHC29tbABAtW7YU8+bNE9euXav031/L1Nh/dna2cHNze+j32r0HFU5OThb56YJMxrfzq1F2djaeffZZ7N27FyUlJQ+97YEDB9CmTRuTj1FcXIxdu3YhLi4OcXFxOHToEEpKSmBvb4+GDRuidu3acHNzg6OjIxITE9GuXTtkZGQgMzMTqampuHnzJgDAy8sLXbp0QXBwMEJCQvD4449X6u9sa9TW/9SpUzF//nwUFxc/9HazZs3C9OnTK3UMUhTfzq9WhYWFGDlyJDZu3Fjuuzrt7OzQunVrs31QQkFBAc6dO4fk5GScO3cO169fR05ODo4fP46jR4+iX79+qFWrFtzd3fHoo4/C398ffn5+aNCgAS+Vagay+7906RIee+wxGI3Gcn/fzs4O3333HV5//fUqH4sUwUvgqllJSYkYMWJEuefMdTqdiIyMVDzDvfO83377reLHovtZsv/BgweXvm/hz99n9vb2Ijw8XPHjU5VE8iGVimVlZeH06dPw8/O777oZtWrVwsCBAxU9/uXLl0sf+a9YsULRY9H9LN3/pEmTypxmsbOzg16vh6urKw4dOqT48alqOOYqlZeXh/79+yM9PR1bt27FRx99VDroDg4OmDRpkuLX0wgPDy/9aLTDhw/jt99+U/R4VJal++/QoQNatmwJOzs72Nvbo1q1aoiNjcVPP/2E+fPn47PPPlP0+FRFsn82oPsVFhaK3r17ixo1aojTp0+Xfn3+/PlCp9MJZ2dnkZ6erniOwMDA0tcf6/V68fnnnyt+TPofGf2vWrVKABA+Pj7i2LFjpV//7rvvBADx1VdfKZ6BKoUvTVSbkpISMWzYMOHh4SEOHz583++vXLlSTJw4UfEcZ86cue88fdOmTRU/Lt0lq/+ioiLRoUOHct8k9PnnnwudTieWLl2qeA4yGcdcTYxGo3jttdeEi4uL2Llz5wNvV1JSoniWDz/88L4nwwCIkydPKn5sktv/w76/pk2bJvR6vdi0aZPiOcgkfAJUTaZPn45ly5YhKioKXbp0eeDt7p1HVdKKFSvue82xo6MjwsPDFT82ye3/Yd9fs2bNwpgxYzBs2DDs2rVL8SxkAtn/OaG7/t//+39Cp9OJn376SXYUceDAgQe+C7BOnTqauQa5Wqm9/787FUhS8JG5Gnz//ff417/+hXnz5mHMmDGy4yA8PBx6vb7c3/v999+xf/9+CyeyLWrv397eHqGhoejQoQN69eqFM2fOSM1Dd3HMJVu7di0mTJiAzz77DBMnTpQdB0ajEatWrXrg27p5qkVZ1tK/o6Mj1qxZg4CAAPTo0QOpqamyI9k8vp1fopiYGPTr1w+vv/46vvnmG9lxAACxsbHo1q3bQ2/j5eWFmzdv8nMjFWBt/WdmZiIoKAjZ2dlISEiAr6+v7Ei2KoqPzCXZv38/Bg4ciGHDhmH+/Pmy45QKCwt74I/492RkZCA2NtZCiWyLtfXv6emJrVu3wt7eHj169MCdO3dkR7JZHHMJTpw4gT59+qB79+5YunTpfW/Vl6WoqAhRUVEwGAzQ6/XQ6/VwcHCAg4ND6f+/NzRq+FFfa6y1/5o1ayImJgYZGRno27cvcnNzZUeySfJ/TrMxKSkp6NmzJ1q1aoXVq1er4kfle7KysjBnzpwyXzt8+DCWLFmCxYsXl/m6h4eHJaPZBGvuv379+vjll1/QpUsXDBw4EJs3b4ajo6PsWDaF58wt6OrVq+jYsSNq1qyJHTt2wM3NTXakvxUZGYnhw4eD3yZyWFv/Bw8eRPfu3dGvXz+Ehoby8siWw3PmlnLr1i306NEDrq6u+OWXX6xiyIlM1aZNG6xfv770VVpkOer5GV/DsrKy0Lt3bxQUFCA+Ph7Vq1eXHYlIMcHBwYiIiMDgwYNRvXp1zJw5U3Ykm8AxV1hRURGGDBmCS5cuIT4+HnXq1JEdiUhx/fv3x9KlSzFmzBh4enpiypQpsiNpHsdcQQaDAc8//zwOHjyInTt3ws/PT3YkIosZNWoUMjMz8fbbb8PLywuvvvqq7EiaxjFXiBACr7/+OqKjo7Ft2za0bNlSdiQii5swYQJu3LiBN954A56enhg6dKjsSJrFMVfIlClTsHLlSqxfvx4dO3aUHYdImk8//RQ5OTl48cUX4e7ujl69esmOpEkccwV89NFHmD9/PsLCwtC7d2/ZcYikmzt3LjIyMjB48GD8+uuv6NChg+xImsOXJprZwoULMXPmTHz33XcYNmyY7DhEqqDT6bBkyRL06tULzz77LI4dOyY7kuZwzM1o5cqVePvtt/Hll1/itddekx2HSFXs7e2xcuVKtGjRAj179sS5c+dkR9IUjrmZbNy4ES+//DLef/99TJ06VXYcIlVycXHBxo0bUb9+ffTu3RvXrl2THUkzOOZmEBcXh+HDh+PVV1/FZ599JjsOkap5eHhg69atcHJyQo8ePZCeni47kiZwzKvo0KFDeO6559CnTx8sWLBAdhwiq1CjRg3ExMQgJycHvXv3Rk5OjuxIVo9jXgXnzp3Ds88+i3bt2iEsLMwiH7RMpBV169ZFTEwMLl26hOeeew6FhYWyI1k1jnklXb58GSEhIWjcuDHWrVsHJycn2ZGIrE6TJk2wbds2HD16FCNGjEBJSYnsSFaLY14JN2/eREhICLy8vLBlyxa4urrKjkRktZ588kls2bIFMTExGDt2rNVc7ldtOOYmyszMRM+ePWEwGLBt2zZ4e3vLjkRk9dq3b49169YhIiIC77zzjuw4VonvADVBXl4e+vXrhxs3biAhIQG1atWSHYlIM0JCQhAWFoZhw4ahVq1amDFjhuxIVoVjXkHFxcUYMmQIzpw5g927d6Nhw4ayIxFpzqBBg/Dtt99i/PjxqFatGiZOnCg7ktXgmFeA0WjEqFGjsGfPHuzYsQOPP/647EhEmjVu3Dikp6dj8uTJ8PX1xciRI2VHsgoc878hhMC4ceOwYcMGREdHo3Xr1rIjEWnev/71L2RmZmL06NHw8PBA3759ZUdSPY7533j//ffx448/IiIiAl27dpUdh8hmfPnll7hz5w6GDh2KrVu3onPnzrIjqRpfzfIQs2bNwuzZs7FkyRIMHjxYdhwim6LT6fD999+jX79+6NevH44cOSI7kqpxzB9g+fLlmDFjBubOnYuXX35Zdhwim2Rvb4/Q0FA888wz6N27N86ePSs7kmpxzMuxbt06jB07Fp988gkmTZokOw6RTXN0dMTPP/8Mf39/hISEIC0tTXYkVeKY/8X27dsxcuRIjBs3Dh9++KHsOEQEoFq1ati8eTNq1KiBkJAQXL9+XXYk1eGY/8n+/fsxcOBADB06FPPnz5cdh4j+xNPTE9u2bYNOp0PPnj2RkZEhO5KqcMz/z8mTJ9G3b18EBwfjp59+gp0dqyFSm5o1ayI6Oho3b95E3759kZubKzuSanCxAFy4cAE9e/ZEixYtEBERAQcHvmKTSK0aNWqEbdu24ezZsxgxYgSKi4tlR1IFmx/zq1evIiQkBPXq1cOGDRvg7OwsOxIR/Y1mzZohOjoaO3fuxMsvvwyj0Sg7knQ2Pea3b99Gjx49oNfrsXnzZri7u8uOREQV1KZNG2zYsAE///wz3nrrLdlxpLPZ8wl5eXno378/srOzkZCQgJo1a8qOREQmCg4OxurVqzFkyBDUqFEDn3zyiexI0tw35hcuXMC2bdtkZLGo8PBwnDp1Cu+++y42b95s8p8fP368AqnU139iYiIAYNGiRZKTlMX+5VJb/yNGjMDMmTORkZEBf39/BZKpS3n968RfPtYjMjISw4cPR/Xq1S0WTAYhBIxGo8mf21lUVITs7GzFPg1Fjf0LIaDT6WTHAMD+ZVNz/yUlJZp/8cJD+o964N/81q1byqayUve+2ZTG/svH/uVi/3I9rH+bfgKUiEgrOOZERBrAMSci0gCOORGRBnDMiYg0gGNORKQBHHMiIg3gmBMRaQDHnIhIAzjmREQawDEnItIAjjkRkQZwzImINIBjTkSkARxzIiIN4JgTEWkAx5yISAM45kREGsAxJyLSAI45EZEGcMyJiDSAY05EpAEccyIiDeCYExFpAMeciEgDOOZERBrAMSci0gCOORGRBnDMiYg0gGNORKQBHHMiIg3gmBMRaQDHnIhIAzjmREQawDEnItIAjjkRkQZwzImINIBjTkSkARxzIiIN4JgTEWkAx5yISAM45kREGsAxJyLSAI45EZEGWMWYX716VXYEm8b+5WL/cllL/w4P+o1FixZZMscD5efnY9WqVXj11VdlRwEAJCYmWuQ47L987F8u9i/Xw/rXCSHEn7+wYcMGjB07VvFQFVVYWIicnBz4+PhAp9PJjlPq1q1bitwv+68Y9i8X+5ernP6jIFSuS5cuAoBYvHix7Cg2if3Lxf7lsqL+I1V9zvzatWuIj48HAKxYsUJyGtvD/uVi/3JZW/+qHvOIiAjY2d2NuHfvXly5ckVyItvC/uVi/3JZW/+qHvMVK1bAaDQCABwcHBARESE5kW1h/3Kxf7msrf/7ngBViwsXLqBp06a4F0+n06F58+Y4fvy45GS2gf3Lxf7lssL+o1T7yDwsLAwODv975aQQAidOnMCZM2ckprId7F8u9i+XNfav2jEPDQ1FcXFxma85Ojqq/kcdrWD/crF/uayxf1WeZjl27BhatWpV7u81aNAAqamplg1kY9i/XOxfLivtX52nWcLDw6HX68v9vbS0NBw5csTCiWwL+5eL/ctlrf2rbsyFEFi5cuV9P+Lc4+joiPDwcAunsh3sXy72L5c196+60ywJCQno1KnTQ2/zyCOP4Nq1a7C3t7dQKtvB/uVi/3JZcf/qO83ysB9x7rl582bpO7PIvNi/XOxfLmvuX1VjXlJSgtWrV8NoNMLJyan0l6OjY5n/D0C1P+pYM/YvF/uXy9r7f+AlcGVIT0/HtGnTynztxIkTCAsLw6xZs8p83dvb25LRbAL7l4v9y2Xt/avunPlfRUZGYvjw4VB5TM1i/3Kxf7msqH/1nTMnIiLTccyJiDSAY05EpAEccyIiDeCYExFpAMeciEgDOOZERBrAMSci0gCOORGRBnDMiYg0gGNORKQBHHMiIg3gmBMRaQDHnIhIAzjmREQawDEnItIAjjkRkQZwzImINIBjTkSkARxzIiIN4JgTEWkAx5yISAM45kREGsAxJyLSAI45EZEGcMyJiDSAY05EpAEccyIiDeCYExFpAMeciEgDOOZERBrgIDvAnxmNRly6dAnnzp1DWloaMjIycPLkSdSqVQuff/45XF1d4eXlBT8/P/j7+8PHx0d2ZE1h/3Kxf7msvX+dEELIOrjRaMSBAwewfft2xMXF4cCBA8jLywMAeHh4wMfHB9WqVYOLiwuysrKQm5uL9PR0FBQUAABq166NLl26ICgoCD179kSDBg1k/VWsEvuXi/3LpbH+o6SMeUpKCpYvX47Q0FCkpaWhfv36CAoKQufOnREYGAg/P78H/ldPCIG0tDScO3cOx44dQ1xcHOLj45GXl4dOnTph9OjRGDZsGNzc3Cz8t7Ie7F8u9i+XRvuPgrCgo0ePimHDhgk7OztRt25dMW3aNHHy5Mkq329RUZHYtGmTGDZsmHB2dhbVq1cXH3/8sbh9+7YZUmsH+5eL/cul8f4jLTLmV69eFSNGjBA6nU60bNlSREZGipKSEkWOdfv2bfHxxx8LHx8f4eHhIebNmyeKi4sVOZa1YP9ysX+5bKR/ZcfcaDSKb7/9Vnh4eIjHHntMrF+/XhiNRiUPWSorK0t8+OGHwsnJSTz55JPi4MGDFjmumrB/udi/XDbWv3Jjfvv2bdGvXz/h4OAgPvjgA5GXl6fUoR7q3Llzonv37sLR0VHMmzfPYv8wZWP/crF/uWywf2XG/MSJE+LRRx8V9evXFwkJCUocwiRGo1F88cUXwsHBQQwaNEjaP1hLYf9ysX+5bLR/8495QkKC8Pb2Fl27dhW3bt0y991Xye7du4WPj4/o2LGjSE9Plx1HEexfLvYvlw33b94xj42NFdWqVRMDBw4U+fn55rxrs0lKShL16tUTLVq00Nw3NPuXi/3LZeP9m2/Mjxw5Ijw8PMSIESMUe6bYXFJTU0X9+vVFx44dNfMjJ/uXi/3Lxf7NNOapqamiZs2aomfPnqKwsNAcd6m4pKQkUb16dTFgwACrf1KI/cvF/uVi/0IIc4x5UVGRaNeunWjevLnIyckxRyiLiY+PF3q9XsyZM0d2lEpj/3Kxf7nYf6mqj/mUKVOEq6urOH36tDkCWdzs2bOFXq8X+/btkx2lUti/XOxfLvZfqmpjfvDgQWFnZyd+/PHHqgaRxmg0ip49e4rAwEBRVFQkO45J2L9c7F8u9l9G5cfcYDCItm3bik6dOmninFu1atXE7NmzZUepMPYvF/uXi/3fp/Jj/uOPPwq9Xi9OnTpVlQCq8cknnwg3Nzdx48YN2VEqhP3Lxf7lYv/3qdyYl5SUCD8/P/Hqq69W9sCqk5ubK2rWrClmzJghO8rfYv9ysX+52H+5Kjfmq1evFvb29uLcuXOVPbAqff7558LT01PcuXNHdpSHYv9ysX+52H+5KjfmnTt3FkOGDKnMH1W1zMxM4ebmJr799lvZUR6K/cvF/uVi/+WKNPkDnVNTUxEfH4+XX35ZiU/LkMrDwwODBg3CypUrZUd5IPYvF/uXi/0/mMljHhoaCl9fX/To0aNSB1S7UaNG4cCBAzh37pzsKOVi/3Kxf7nY/4OZPObR0dHo378/HBwcTD7Yn23YsAGRkZFVug8lBAUFwdvbG9HR0bKjlIv9y8X+5WL/D2HKSZns7Gyh1+vF6tWrK3NOp4zWrVuLxx57rMr3o4SBAweK5557TnaM+7B/udi/XOz/oSJN+s/bnj17UFJSgq5du5r+X42/mDBhAvLz86t8P0oIDg7Ghx9+CCEEdDqd7Dil2L9c7F8u9v9wJo35yZMnUadOHfj6+poc8K9Gjx5d5fsAACEEAJj1m65Vq1bIyMjA1atXUa9ePbPdb1Wxf7nYv1zs/+FMOmeenJwMf39/k8OV5+233y7zjPRrr72GCRMm4Pfff8fzzz+PBg0aoHHjxnjllVeQm5t7358/fvw4unfvDi8vL1SrVg1t27Y123k+Pz8/AHf/vmrC/uVi/3Kx/79hykmZLl26iDfeeMPUcznl+us5q9atW4uGDRuKunXrio4dO4pp06aJLl26CABi0KBBZf5sXFyccHZ2FnXr1hWTJk0Sr7zyivD09BQODg5iz549Zsnn7e0tFi1aZJb7Mhf2Lxf7l4v9P5Rpbxpq3ry5+PDDD01L9QDllQlATJ8+vfTCOQaDQTz11FPC09Oz9HYGg0G0aNFCeHp6ivPnz5d+/cyZM0Kn04kXXnjBLPmaNm0qPvvsM7Pcl7mw7pLM4wAABuhJREFUf7nYv1zs/6FMe9NQTk4O3NzcTHvobwIXFxd8/PHHpeef7Ozs0KFDB2RmZuLKlSsAgKNHj+L48eMYMGAAmjRpUvpnAwIC8M0336BNmzZmyeLu7o7s7Gyz3Je5sH+52L9c7P/hTHoCNDc3F66uriYdwBQ1a9aEs7Nzma95e3sDuPsPEgBSUlIAAM2bN7/vz0+YMMFsWdzd3UuPqRbsXy72Lxf7fziTHpnr9XoUFRWZdABTuLi4PPD3xP89a3zz5k0AQN26dRXLAQCFhYVwcnJS9BimYv9ysX+52P/DmTTmavjRq2HDhgCAAwcO3Pd7K1aswLJly8xynOzsbLi7u5vlvsyF/cvF/uVi/w9n8phnZWWZdABz+8c//gEXFxfExsaW+frp06cxZswY7Nq1yyzHycrKUuU3M/uXh/3Lxf4fzqQxf/TRR5GammrSAczN19cXEydOxIkTJ/DGG2/g8OHDWLFiBUaOHAkHBwe88cYbVT5GYWEhfv/9dzRo0MAMic2H/cvF/uVi/w9n0hOgAQEB2LBhg0kHUMLMmTMhhMCcOXOwePFiAEDt2rWxatUqtG3btsr3n5KSAoPBYLY3KJgL+5eL/cvF/v+GKS9kDA0NFc7Ozqr5FO+cnByxd+9ecerUKVFYWGi2+42KihJ2dnYiLy/PbPdpDuxfLvYvF/t/KNNeZ96uXTsUFBTg4MGDpv0XQyGurq5o3749AgMD4ejoaLb73b17N1q1avXQZ7dlYP9ysX+52P/DmTTmTZo0QYMGDe47+a81O3bsQHBwsOwY92H/crF/udj/w5n84RRBQUHYunWryQeyFpcuXcKZM2fQrVs32VHKxf7lYv9ysf8HM3nMhw0bhr1796r2Y6WqauXKlfDx8UFQUJDsKOVi/3Kxf7nY/4OZPOY9evRA7dq1ERYWZvLBrEFYWBhGjhxp1nNg5sT+5WL/crH/h6jMs63Tp08XderUEQUFBZX546oVExMjAIjDhw/LjvJQ7F8u9i8X+y+XaZfAvefatWvCxcVFfP/995X546rVpUsX0aNHD9kx/hb7l4v9y8X+y1W5MRdCiHHjxomGDRuK/Pz8yt6FqsTFxQkAYufOnbKjVAj7l4v9y8X+71P5Mb98+bJwc3MTn3zySWXvQjWKi4tF8+bNRa9evWRHqTD2Lxf7l4v936fyYy6EEHPmzBHOzs4iJSWlKncj3dy5c4Wzs3OZTw6xBuxfLvYvF/svo2pjXlRUJJ588knRvn171bzF1lQnTpwQLi4uVvlfePYvF/uXi/2XUbUxF0KI5ORk4e7uLqZOnVrVu7K4nJwc8fjjj4tOnTqJ4uJi2XEqhf3Lxf7lYv+lqj7mQgixbNkyodPpRGhoqDnuziJKSkrEgAEDxCOPPCKuXLkiO06VsH+52L9c7F8IYa4xF0KIadOmCb1eL7Zs2WKuu1TUhAkThIuLi4iPj5cdxSzYv1zsXy72b8YxNxqNYsyYMaJatWoiOjraXHdrdgaDQbz99tvCwcFBbNy4UXYcs2H/crF/udi/GcdciLsvsRk9erTQ6/Vi5cqV5rxrsygsLBQjRowQTk5OIioqSnYcs2P/crF/uWy8f/OOuRB3/ws5depUodPpxPTp01XzxEpaWpp45plnhIeHh4iNjZUdRzHsXy72L5cN92/+Mb9n6dKlolq1aqJDhw7i4sWLSh2mQtauXSt8fHxEYGCgSEpKkprFUti/XOxfLhvsX7kxF0KIU6dOiWbNmolq1aqJzz77zOIXxvntt99E//79BQDxyiuviNzcXIseXzb2Lxf7l8vG+ld2zIW4e57oiy++EK6urqJx48bixx9/NOvn5ZXn6tWrYtKkScLFxUUEBASI7du3K3o8NWP/crF/uWyof+XH/J60tDQxduxY4ejoKB599FHxxRdfiEuXLpnt/o1Go0hISBCvvfaacHZ2FnXr1hVfffWV4v/grAX7l4v9y2UD/VtuzO+5dOmSmDhxoqhevbqws7MTQUFBYvbs2eLw4cPCYDCYdF/Z2dliy5YtYvLkyaJRo0YCgHjyySfFd999p7lrHZsL+5eL/cul4f4jdUIIUfXPxzBdUVERoqOjERERgR07duDGjRvw8PCAv78//P390bhxY7i5ucHDwwNOTk7Iy8tDVlYWbt26hfPnzyM5ORkpKSkwGAwIDAxEr1698OKLL6JFixYy/jpWh/3Lxf7l0mD/UdLG/M+EEDh16lTpZ/udPXsWqampyMnJQXZ2NvLz8+Hq6gpPT0/4+PigcePG8Pf3R7NmzdC5c2f4+vrK/itYNfYvF/uXSyP9q2PMiYioSqJM/kBnIiJSH445EZEGcMyJiDTAAcCXskMQEVGVnPz/KIQySWe+aSIAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "result = (inc(5) * inc(7)) + (inc(3) * inc(2))\n", + "result.visualize()" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "93cee5c9", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 1.54 ms, sys: 1.39 ms, total: 2.93 ms\n", + "Wall time: 1.01 s\n" + ] + }, + { + "data": { + "text/plain": [ + "60" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%%time\n", + "result.compute()" + ] + }, + { + "cell_type": "markdown", + "id": "96e389ce", + "metadata": {}, + "source": [ + "## Another for-loop example " + ] + }, + { + "cell_type": "markdown", + "id": "42b613af", + "metadata": {}, + "source": [ + "Let's say we want to perform some operations like `inc`, `double` and `add` on a list of data, and finally aggregate all the results. We can use our `delayed` decorated functions to perform this computations faster. \n", + "The serial version of the code below would take approximately 24 seconds, let's see how long does the parallel version takes:" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "30bd6dd0", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Delayed('sum-a62d3acc-bb1b-447b-b529-44a620f2dceb')" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = list(range(8))\n", + "\n", + "output = []\n", + "for x in data:\n", + " a = inc(x) #parallel version\n", + " b = double(x) #parallel version\n", + " c = add(a, b) #parallel version\n", + " output.append(c)\n", + "\n", + "total = delayed(sum)(output)\n", + "total" + ] + }, + { + "cell_type": "markdown", + "id": "1fac75f5", + "metadata": {}, + "source": [ + "Noticed that `inc`, `double` and `add` in the code above are already the parallel versions, since we decorated with `@delayed`" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "53649a76", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABncAAAKBCAYAAACF2P7kAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzde1yUdf7+8QtmAEXBQx4qNxVEVEBB1MU0UwxNc7Dayna3dcuttvp2Mq3UzDQ3XTusq9nWN3NzU9Nv2cnAPI2nLNFVBBUQxCQ1Ec8gZxhmfn/0Y2JCzRS4GXw9H48e6BzuuQYB877uz/vj4XA4HAIAAAAAAAAAAIBb8DQ6AAAAAAAAAAAAAC4d5Q4AAAAAAAAAAIAbodwBAAAAAAAAAABwI2ajAwAAAABwb1999ZUKCgqMjlGvhYeHq0uXLkbHAAAAANBAeDgcDofRIQAAAAC4r4CAAH3//fdGx6jXZs2apQkTJhgdAwAAAEADwVg2AAAAAFds1qxZcjgc/Hee/zp27Gj0Hw8AAACABoZyBwAAAAAAAAAAwI1Q7gAAAAAAAAAAALgRyh0AAAAAAAAAAAA3QrkDAAAAAAAAAADgRih3AAAAAAAAAAAA3AjlDgAAAAAAAAAAgBuh3AEAAAAAAAAAAHAjlDsAAAAAAAAAAABuhHIHAAAAAAAAAADAjVDuAAAAAAAAAAAAuBHKHQAAAAAAAAAAADdCuQMAAAAAAAAAAOBGKHcAAAAAAAAAAADcCOUOAAAAAAAAAACAG6HcAQAAAAAAAAAAcCOUOwAAAAAAAAAAAG6EcgcAAAAAAAAAAMCNUO4AAAAAAAAAAAC4EcodAAAAAAAAAAAAN0K5AwAAAAAAAAAA4EYodwAAAAAAAAAAANwI5Q4AAAAAAAAAAIAbodwBAAAAAAAAAABwI5Q7AAAAAAAAAAAAboRyBwAAAAAAAAAAwI1Q7gAAAAAAAAAAALgRyh0AAAAAAAAAAAA3QrkDAAAAAAAAAADgRih3AAAAAAAAAAAA3AjlDgAAAAAAAAAAgBuh3AEAAAAAAAAAAHAjlDsAAAAAAAAAAABuhHIHAAAAAAAAAADAjVDuAAAAAAAAAAAAuBHKHQAAAAAAAAAAADdCuQMAAAAAAAAAAOBGKHcAAAAAAAAAAADcCOUOAAAAAAAAAACAG6HcAQAAAAAAAAAAcCOUOwAAAAAAAAAAAG6EcgcAAAAAAAAAAMCNUO4AAAAAAAAAAAC4EcodAAAAAAAAAAAAN0K5AwAAAAAAAAAA4EYodwAAAAA0KEVFRUZHAAAAAIBaZTY6AAAAAAD3t2fPHn388cdGx5Akffrpp4qOjlbLli2NjiJJKiwsNDoCAAAAgAaGcgcAAADAFVu6dKmWLl1qdAyn+lI0AQAAAEBt8HA4HA6jQwAAAABATUhMTFTv3r0VERGhpKQko+MAAAAAQK1gzx0AAAAADcb//d//ycPDQ7t379Z3331ndBwAAAAAqBWUOwAAAAAaBLvdrsWLF8vhcMhsNmvZsmVGRwIAAACAWkG5AwAAAKBB2LJli44fPy5JKi8v18KFCw1OBAAAAAC1g3IHAAAAQIOwbNkyeXt7O39/8OBB7d6928BEAAAAAFA7KHcAAAAAuL3y8nItW7ZMZWVlztu8vLwYzQYAAACgQaLcAQAAAOD21qxZo3PnzrncVl5erg8++EB2u92gVAAAAABQOyh3AAAAALi9Dz/8UF5eXtVuz8nJ0datWw1IBAAAAAC1h3IHAAAAgFsrKirSF198ofLy8mr3MZoNAAAAQENEuQMAAADAra1YsUKlpaXnva+8vFwffvjheYsfAAAAAHBXlDsAAAAA3NqSJUvk6Xnhf9rk5eXJarXWYSIAAAAAqF2UOwAAAADc1tmzZ7V27VpVVFRc8DFeXl5aunRpHaYCAAAAgNpFuQMAAADAbX3yySey2WwXfUx5ebk+/fRTFRcX11EqAAAAAKhdZqMDAAAAAMDlys3N1T333ONyW1JSktq2bavrr7/e5fb9+/crPDy8LuMBAAAAQK3wcDgcDqNDAAAAAEBNCQwM1COPPKIJEyYYHQUAAAAAagVj2QAAAAAAAAAAANwI5Q4AAAAAAAAAAIAbodwBAAAAAAAAAABwI5Q7AAAAAAAAAAAAboRyBwAAAAAAAAAAwI1Q7gAAAAAAAAAAALgRyh0AAAAAAAAAAAA3QrkDAAAAAAAAAADgRih3AAAAAAAAAAAA3AjlDgAAAAAAAAAAgBuh3AEAAAAAAAAAAHAjlDsAAAAAAAAAAABuhHIHAAAAAAAAAADAjVDuAAAAAAAAAAAAuBHKHQAAAAAAAAAAADdCuQMAAAAAAAAAAOBGKHcAAAAAAAAAAADcCOUOAAAAAAAAAACAG6HcAQAAAAAAAAAAcCOUOwAAAAAAAAAAAG6EcgcAAAAAAAAAAMCNUO4AAAAAAAAAAAC4EcodAAAAAAAAAAAAN0K5AwAAAAAAAAAA4EYodwAAAAAAAAAAANwI5Q4AAAAAAAAAAIAbodwBAAAAAAAAAABwI5Q7AAAAAAAAAAAAboRyBwAAAAAAAAAAwI1Q7gAAAAAAAAAAALgRyh0AAAAAAAAAAAA3YjY6AAAAAABcibKyMp06dUoFBQXKz89XcXGxDh06pOTkZPn7+6t58+Zq2bKl0TEBAAAAoMZ4OBwOh9EhAAAAAOBSnDp1Sps2bdK2bduUnp6ujIwMff/997LZbBd9nr+/v4KDg9WlSxeFhYVp4MCB6tOnj8xmrncDAAAA4H4odwAAAADUa0lJSfrwww+1bt067d27V56engoPD1e3bt3UtWtXBQcHq127dmrSpIn8/f3l7++v0tJSFRYWKj8/X2fOnFFWVpYyMjKUkZGh5ORkHT16VH5+fhowYIBGjhypUaNGqUWLFka/VQAAAAC4JJQ7AAAAAOqd06dP6/3339eiRYuUkpKioKAgxcbGKjo6WgMHDpS/v/8VHT8jI0MbN27U+vXrtXLlStntdsXGxmrMmDEaPny4PDw8auidAAAAAEDNo9wBAAAAUG8cO3ZM//jHP/Tuu+/Ky8tL9957r0aPHq1+/frV2mueO3dOn376qRYtWqTNmzere/fumjRpku655x6ZTKZae10AAAAAuFyUOwAAAAAMl5+fr2nTpuntt99Wy5YtNX78eP31r39V06ZN6zRHSkqKZs6cqY8//lidOnXSG2+8odjY2DrNAAAAAAC/xNPoAAAAAACubh999JG6du2qDz74QG+88YYOHjyocePG1XmxI0lhYWFaunSp9u3bp8jISI0cOVK33367vv/++zrPAgAAAAAXQrkDAAAAwBCnTp2SxWLRH//4R912223KyMjQ448/Lh8fH6OjqXPnzlq2bJnWr1+v/fv3KzQ0VPPnzzc6FgAAAABIYiwbAAAAAANs2bJFf/zjH2UymfThhx+qf//+Rke6oLKyMk2fPl1///vfNWrUKM2fP19+fn5GxwIAAABwFWPlDgAAAIA6NXfuXA0ePFi9evVSUlJSvS52JMnb21uvvPKK1qxZo40bN6p3797KzMw0OhYAAACAqxjlDgAAAIA64XA4NGnSJD3zzDN65ZVX9Pnnn6tFixZGx7pkMTExSkpKUvPmzXXTTTcpMTHR6EgAAAAArlKMZQMAAABQ6yoqKvTII49o0aJFWrBggf785z8bHemyFRQU6O6779bWrVv1+eef65ZbbjE6EgAAAICrDOUOAAAAgFr36KOPatGiRVq+fLlGjBhhdJwrVlZWpvvvv19ffvmlrFarbrzxRqMjAQAAALiKUO4AAAAAqFVTpkzR3//+d3388cf63e9+Z3ScGlNRUaFRo0Zp/fr1+vrrr9WjRw+jIwEAAAC4SlDuAAAAAKg17777rh577DH9+9//1pgxY4yOU+OKi4s1ZMgQHT58WP/973917bXXGh0JAAAAwFWAcgcAAABArUhMTFT//v01ceJETZs2zeg4tebs2bPq06ePOnbsqLVr18rT09PoSAAAAAAaOModAAAAADWuoKBAvXv31vXXX69169bJZDIZHalW7dmzR3379tXEiRP10ksvGR0HAAAAQAPHJWUAAAAAatyjjz6qvLw8LVu2rMEXO5LUo0cPvfbaa5o+fbq2bt1qdBwAAAAADRwrdwAAAADUKKvVqiFDhiguLk4Wi8XoOHVq2LBhys7O1q5du2Q2m42OAwAAAKCBotwBAAAAUGPKysoUHh6url276vPPPzc6Tp07cOCAunfvrhkzZmjcuHFGxwEAAADQQDGWDQAAAECN+ec//6nDhw9rzpw5RkcxRFBQkJ5//nlNmzZNOTk5RscBAAAA0EBR7gAAAACoEYWFhXrjjTf0zDPPqEOHDkbHMczEiRPVpEkTzZ492+goAAAAABooyh0AAAAANeLdd99VcXGxnn76aaOjGKpx48YaN26c3n77bZ06dcroOAAAAAAaIModAAAAAFestLRUs2fP1iOPPKLWrVsbHcdwjz32mBo1aqS33nrL6CgAAAAAGiDKHQAAAABXLC4uTjk5ORo3bpzRUeqFpk2b6rHHHtN7772niooKo+MAAAAAaGA8HA6Hw+gQAAAAANzbyJEjVV5erlWrVhkdpd44cOCAgoODtXr1ag0dOtToOAAAAAAaEFbuAAAAALgiJ0+e1OrVqzV69Gijo9QrQUFBioqK0uLFi42OAgAAAKCBodwBAAAAcEU+/fRT+fj46I477jA6Sr0zevRoff755yotLTU6CgAAAIAGhHIHAAAAwBVZv369Bg0aJF9fX6Oj1DsjRoxQYWGhtm3bZnQUAAAAAA0I5Q4AAACAy+ZwOLRp0yZFR0cbHaVe6tChgwICArRx40ajowAAAABoQCh3AAAAAFy2vXv36tSpU5Q7FzF48GCtX7/e6BgAAAAAGhDKHQAAAACXbefOnWrSpInCw8ONjlJv9evXT7t27ZLD4TA6CgAAAIAGgnIHAAAAwGXLyMhQ586d5enJPy0upEuXLioqKtIPP/xgdBQAAAAADQT/AgMAAABw2TIyMtSlSxejY9RrlZ+fjIwMg5MAAAAAaCgodwAAAABctszMTAUHB9foMUtKSjR16lR16tRJPj4+6ty5sx555BHl5+c7H/PnP/9Zf/rTn6o9d9asWRowYIBsNpvztocfflj333+/Dhw4oIceekg33HCDBg8erCVLlkiSZs+erV69eqlNmzYaPny4MjMza/T9tGrVStdccw3lDgAAAIAaYzY6AAAAAAD3dfLkSbVt27ZGj/k///M/WrRokUaPHq2ePXvqu+++03vvvae9e/dq69atkqTExETZ7fZqz83MzNQ333zjcl9ycrJ++OEHWa1WNW/eXNHR0froo4+0adMmLV26VOvWrdNtt92mDh06aOXKlYqJiVFWVlaNjppr3bq1Tp8+XWPHAwAAAHB1o9wBAAAAcNkKCgrUtGnTGjteaWmplixZohEjRmjhwoXO2zt16qSnn35a+/fvv6yVQjk5OXrllVc0efJkSdIf/vAH3Xbbbdq0aZNSU1Odx3zggQf0wQcf6MCBAzW6Isnf399l5REAAAAAXAnGsgEAAAC4LDabTcXFxfLz86uxY1ZUVEiSNm3apKSkJOftTzzxhAoKCtSpU6fLOq7JZNJzzz3n/H14eLgkafDgwS4lzqBBgyRJaWlpl/U6F+Ln50e5AwAAAKDGUO4AAAAAuCxFRUWSJF9f3xo7pq+vr6ZOnapz584pMjJSISEhevzxx7Vq1Sr5+PjIZDJd1nGvv/56eXt7O3/fqFEj5+1VVR6/rKzsMt/B+TVp0kQFBQU1ekwAAAAAVy/KHQAAAACXpbIgKSkpqdHjTp48WQcOHNCUKVPk6+ur//3f/5XFYlFoaKhycnIu+twzZ86c9/YmTZqc9/aa3FfnYoqLi9W4ceM6eS0AAAAADR/lDgAAAIDL4u3tLW9v7xpdkVJWVqbc3Fx17NhR06dP186dO3X06FE98cQT2r9/v+bNmydJ8vDwkN1ur/b8jIyMGstSk/Lz82t0fB0AAACAqxvlDgAAAIDLVtN7yWzYsEEtWrTQsmXLnLdde+21zv1yzp49K0nq2LGjvv/+e5WXlzsfl5qaqgMHDtRYlppEuQMAAACgJlHuAAAAALhsLVq00OnTp2vseP3791ebNm00ffp0bdq0SXl5eUpMTNTYsWMlSSNGjJAkRUVFqaysTA888IA2bdqkBQsW6I477lCzZs1qLEtNOnPmjFq0aGF0DAAAAAANhNnoAAAAAACMN2HCBG3ZskXh4eEKCwtTSEiIwsLC1Lp164s+LygoSJmZmTWWw8/PTx9++KHuv/9+RUdHO29v1KiRZsyY4Sx3xo8fr4SEBC1dulRLly5Vu3btNHr0aEnSrFmzaixPTcjPz1dOTo6CgoJ+1fPOnTunjIwMBQcH19vSCgAAAIAxPBwOh8PoEAAAAACMNXfuXI0dO1Zm84/Xf9lsNklSs2bNFBYWpoiICIWFhSk0NFShoaFq2bKlJGns2LHavn27EhISajRPUVGR9uzZo8OHD6tVq1YKCwtTmzZtqj3u5MmTOnr0qMLDw+Xh4VGjGWrKzp071adPH2VmZp634Dl8+LAyMjKUnp6u9PR0paamKi0tTSdPnpQknTp1Stdcc01dxwYAAABQj1HuAAAAAND69esVExNzwfvNZrMcDocqKiokSS1btlRYWJhMJpO2b9+uDRs2KCoqqq7iupWlS5dqzJgx2rZtmw4cOKD09HTt27dPKSkpyszMVElJiSTJy8tLJpPJ+XtJatu2rXJycoyKDgAAAKCeYiwbAAAAAIWGhl70/sqVPJXOnDmjr7/+2vn7ylUmcHXkyBFNmjRJZWVlioyMlIeHh7y9vWWz2ZxFWaXy8nKVl5c7f+/h4aGePXvWdWQAAAAAbsDT6AAAAAAAjNe6dWv5+fld0mM9PDzk6empoKAgLVu2TH5+fsrOzq7lhO7phhtukL+/vwYMGCBfX1+ZzWaVlpZWK3bOx9vbW5GRkXWQEgAAAIC7odwBAAAArjLZ2dmyWq2aO3euHnnkEd10003y9/evtjrnfMxms1q1aqV33nlH6enp+v3vf6/+/ftr48aNdZDc/Zw4cUKpqamaOHGiDh8+rEcffVSenp7y8vL6xeeWlZVpx44d2rx5s3Jzc+sgLQAAAAB3wZ47AAAAQAOVnZ2t1NRU7d27V2lpac6PBQUFkqQOHTooJCRE3bt3V2hoqP72t7/pwIED5z2Wh4eHPDw8FBoaqn79+qlly5Zq1qyZ/P399fXXX+urr77SJ598osGDB8tkMtXl26y3bDabHn74YS1atEhjxoxRUVGRTp8+rezsbH333XcqLi7+xWM0btzY+bgOHTooPDxcPXr0UHh4uCIiIhQYGChPT67ZAwAAAK42lDsAAACAm8vNzVVKSorS0tKUmprqLHKOHz8uSWrRooVCQkIUGhrq/BgeHq7WrVu7HOd//ud/9M4771z0tUwmk0wmkzw8PCT9uE+M3W6XJM2YMUMvvPBCLbxD9xUdHa09e/bozJkzl/X8Xbt2qW3bts4/28TERCUmJiojI0MVFRXy9vZWUFCQevXq5fwvIiJCTZs2reF3AgAAAKA+odwBAAAA3MS5c+eUmZnpLHAqPx48eFCS1KxZMwUFBbkUOX369NG11157Scdft26dhg4d+qsyeXh46JZbblFeXp6CgoK0dOnSX/2+GqoTJ06oXbt2Wrx4sY4fP65nn31Wki5p/J304wi8srIyZ5FWVVlZmTIzM51lT1pampKTk3Xq1ClJ0nXXXecseyq/FkJCQs57LAAAAADuh3IHAAAAqGcqT9xXLXBSU1OVnp4uu93uslqj6mqcgICAKzp5f+bMGV1zzTWX9FgvLy95eHjotdde01NPPaX33ntPY8eO1bFjx9SsWbPLztCQzJkzR1OnTlVOTo4aN26svXv3atSoUTpw4MAlFTxdunRRenr6r3rN7OxsZ9lTudKn8uvG39/fOYIvJCREvXr1UmRkpHx9fS/3LQIAAAAwCOUOAAAAYBCbzabDhw87T8JXnpCvHLnl5eWlzp07uxQ4ISEh6tatW63ss3Lu3DkFBQXp9OnTzlFr52M2mxUYGKjly5erR48ekqS8vDy1b99eL7zwgiZMmFDj2dyNzWZTly5ddOutt+rtt9923l5SUqIJEyZo3rx58vDwuOjnuWPHjpo8ebKGDRum3/zmN5edJT8/X/v373cZ65acnKzCwkKZTCbn3ktVV/oEBgZe9usBAAAAqH2UOwAAAEAd+PmKisqPJSUlMpvNat++fbV9ccLCwuTj41OrudLT07Vy5Up99dVX2rJli+x2uyoqKs77WA8PDzkcDj355JN6/fXXq2WbOHGi/vOf/ygrK0uNGzeu1dz13QcffKCHH35YGRkZCggIqHb/2rVrNXr0aJ09e1bl5eXV7vfw8FBUVJT27NmjoqIide/eXcOGDdPw4cPVv39/eXt7X3HGyq/Jql+X+/btk8PhUPPmzRUaGuqyOqx3795q1KjRFb8uAAAAgCtHuQMAAADUoOzs7GoFTuUqCenHvVCqjsWq/HVdlSE2m03btm1TfHy8vvzyS+3bt08tW7bULbfcopiYGI0cOVI333yzMjMzXZ7n5eUlPz8/LVq0SCNGjDjvsU+cOKGAgADNmjVLTz75ZF28nXrJbrerR48e6tOnjxYuXHjBx508eVIPPvig4uLinMWZ9FOxk5CQoJKSEn3zzTeyWq2yWq1KTEyUr6+v+vXrJ4vFottvv10dO3assex5eXnau3evy1i3Xbt2qbi4WGazWcHBwS5fv79mTycAAAAANYdyBwAAALgMZ8+edSlwEhMTtWfPHuXn50uSWrRoUa3AiYiIUNOmTes864kTJ7R69WrFx8drzZo1OnfunAIDA2WxWBQbG6uBAwfKy8vL+fgJEyZozpw5KisrkyR5enoqOjpaixcv1nXXXXfR13rmmWe0bNkypaenq3nz5rX6vuqjoqIivfTSS5o7d65SUlLUpUuXX3zOokWL9Oijj6q8vFw2m03e3t6aOnWqXnjhhWqPzcrK0rp162S1WrV27Vrl5eUpMDBQMTExslgsGjJkSI2vrrHZbMrIyHD5Wk9MTNSxY8ckuX6tV369d+/evUZWFwEAAAA4P8odAAAA4CJyc3P13XffueyLs3fvXh0/flzSTye2q45TCw8PV+vWrQ3LbLfblZSUpLi4OMXHx2vXrl1q1KiR+vfvL4vFojvvvFPt27e/4PM3b96sQYMGyWQyydPTU7Nnz9bjjz8uDw+Pi75uaWmptm/frpEjR6pDhw6aMWOGLBZLTb+9eu3MmTO64YYbVFRUJH9/f3Xr1k09evRQ165dFRISoq5du6pDhw7VPpeZmZn6wx/+oKSkJNntdiUmJioyMvKir1V1FZbVanX5c46JiVFsbKxCQkJq7b1WFpxVR7ulpKSotLTUuV9U1cLH6O8LAAAAoCGh3AEAAADkuul81bFqWVlZcjgcatasmYKCglyKnN69e//iSpa6cubMGa1fv15Wq1VffvmlcnJy1LFjRw0dOlQxMTEaPnz4Ja8astlsatmypa6//np98sknCgsLO+/rJSUlaffu3UpOTtaOHTuUmZnp3K/Hw8NDCQkJioqKqtH3Wd899NBDWrlypW677Ta9//77kiSz2SwPDw/n3jo+Pj7q1KmTwsPDFRoaqq5du6pbt27q2LGjXn31VS1YsEA//PDDL5ZpP3f8+HGtWbNG8fHxWrdunXJzc52remJiYjRs2DD5+fnV+Huuqry8XPv373fZx+e///2vTpw4IenHsYRVV7P16tVL3bp1k6enZ63mAgAAABoayh0AAABcVSpPPv98X5z09HTZ7XZ5e3srKCjI5QR0aGioAgICfvXJ9tp28OBB5+qczZs3y263KyIiwjlurVevXpd97OXLlys2NlY+Pj7KyspyFjm7du1SYmKicnJyJEne3t5yOBzO4sLT01O//e1vZTablZeXp+3bt9fZfkJGW7lypWJjY/XRRx/prrvu0qhRo7RixQrZbLbzPt5kMslsNqusrEwOh0Mmk0kdO3bUvHnzNHz48CvKUlFRoeTkZJfVWz4+PrrpppucZc+VfH38WlX3oqpc6ZORkaGKigr5+fkpODjYZbSbUSMMAQAAAHdBuQMAAIAGyWaz6fDhw9X2xak8oVw5NqpqgRMSElKvVxEUFxfr22+/VVxcnL744gsdPnxYrVq1UnR0tCwWi0aOHFmj+9yMGzdO8+fPV2FhoTw8POTl5aXy8nJd6J8QXl5eateunXbu3KmioiL17NlTd955p957770ay1Rf/fDDD+rZs6eGDBmipUuXSvpxTN3QoUOVkJDgLL8uxsPDQ926ddPevXtr/GvwxIkT2rx5s7PsOXv2rAICAjRkyBDFxMTo1ltvlb+/f42+5i8pKytTZmamy1i3pKQknT59WtJPq3yqFq0hISH1rmQFAAAAjEC5AwAAALeXnZ3tMgYqLS1NaWlpKi4ultlsVvv27avtixMWFiYfHx+jo/+i77//XmvXrpXVatWqVatUUFCgkJAQxcbGymKxqF+/frVWRm3fvl033njjBcucqkwmk5o2baodO3aoc+fOkqQVK1bozjvv1KJFi/SnP/2pVjLWB+Xl5YqOjtaZM2e0Y8cONWnSxHlffn6+BgwYoLS0tEsqeFatWqVhw4bVZlznqh6r1aq4uDglJCTI09NTUVFRio2NVUxMjCIjIw0rUX7+/ZyYmOhcWdesWTOFhYW5jHWLjIyUr6+vIVkBAAAAo1DuAAAAwG1UHe1U+TE5OVmFhYWSfrzSv+pJ38pfu9NYsJ+P00pMTJSvr68GDx6s2NhYjRgxQu3atauzPPfdd5+WL1/+i8WE2WzW2rVrFR0d7XL7+PHj9fbbb2v16tUaOHBgbUY1hMPh0P3336/PP/9cCQkJ592f6NSpU4qKitKRI0cu+Hk0m82KiorSN998U9uRqzl16pQ2btzoLHuOHTumtm3baujQoYqNjdWQIUNqdEXY5Th37pwyMzNdxrpVfu9XLXCrrvQJDAw0NDMAAABQmyh3AAAAUO+cPXvWpU9HKjIAACAASURBVMBJS0tTcnKyTp06JUlq0aJFtQLHnffoqDy5HhcXp7i4OOXm5iowMFAxMTGyWCwaOnSoYauMjh49qqCgIJWUlFzwMR4eHhdcnWO32/X73/9ea9as0aZNm9SzZ8/ajFvnnnvuOc2dO1dffvnlRVfcZGVlKSoqSmfPnr3gHjwfffSRRo0aVVtRL4ndbldSUpKsVqusVqs2bdokh8PhspeTkat6qqqoqNChQ4dcCp+0tDRlZWXJ4XCc9+dE79691ahRI6OjAwAAAFeMcgcAAACGyc3N1Xfffec8OZuWlqaUlBTl5ORI+qnEqTpOrUePHmrTpo3Bya9camqq4uPjnSfQJTnHYsXGxiokJMTYgP+fw+HQqFGj9Pnnn6uioqLa/Z6ennrllVc0adKkCx6jtLRUt912m/bt2yer1Vpv3tuVmjlzpqZMmaLFixfrj3/84y8+PiUlRf369VNhYaHsdrvzdi8vL7Vs2VKnT5/Wgw8+qKlTp+q6666rzeiX7PTp09qwYYOsVqtWrlypo0ePqk2bNho4cKCz7GnRooXRMV3k5uYqJSXFZbTbrl27VFxc7Nxrq2rh89vf/lZt27Y1OjYAAADwq1DuAAAAoNaVlpbqwIED1fbFqbzCvlmzZgoKCnIpcnr37l1vTnDXhKKiIq1fv17x8fH66quv9MMPP6hNmza69dZbFRsba8iG9r9k+/btGjt2rHbs2CF/f3/l5eW5lBImk0mjR4/WwoULf/FY586dcxY88fHxuvHGG2szeq2y2+0aP3683nzzTb311lt67LHHLvm5CQkJio6OVnl5ufNzaTKZlJqaqj179mjChAk6fvy4nnzySU2aNEnNmjWrrbdxWaqWkps3b5bdbldERIRzlVlt7gF1JWw2mzIyMlz28dm5c6ezSP75SMdevXqpa9euMplMBicHAAAAzo9yBwAAADWmvLxc+/fvr7YvTuVm6N7e3goKCqq2L05AQEC9GPNU0w4ePOjcx2TdunUqLy9Xz549nSfC+/fvXy/fd3Z2tl5++WUtWLBAAwYM0Jw5c7R//37de++9zsd4eXkpKipK69evl7e39yUdt7i4WPfee6/Wr1+vjz76SBaLpbbeQq0pLS3VmDFj9Nlnn2nRokWXNUbtiy++0F133SW73S4vLy899NBDevvttyVJZWVl+s9//qMXX3xRdrtdzz33nJ5++ul6OUqsoKBAGzduVHx8vFatWqUjR46oVatWio6OVkxMjGJjY+t9QVs5ArLqWLeUlBSVlpY6f15V3ccnIiJCrVq1Mjo2AAAAQLkDAACAX89ms+nw4cMuBU5iYqIyMjJUUVHhHH1UdZxaSEiIunXrVi+v6q8pNptN27ZtU3x8vOLi4pSWlqamTZtq0KBBznFr9flkd1lZmd555x1NmTJFzZs31yuvvKLRo0fLw8NDDodD/fv3144dO+Th4aHAwEBt3779V68ssdlsevTRR7Vw4UJNmjRJ06ZNk9lsrqV3VLMOHDigUaNG6bvvvtNnn32mW2655bKPtWDBAv31r39Vo0aNlJWVVW0s2NmzZ/Xqq6/qzTffVOvWrTV58mQ9+OCD9XolycGDBxUXF6f4+Hh9/fXXstlszjIzJiZGgwYNcos/68qSuupKw+3bt+vkyZOSflzlU3WsW69evRr8zzYAAADUP5Q7AAAAuKjs7GyXAictLU1paWkqLi6W2WxW+/btq+2LExYWJh8fH6Oj14kTJ05o9erVio+P19q1a5WXl6fAwEDnfiQDBw6Ul5eX0TF/UVxcnJ5++mkdP35czz33nCZOnFhttciuXbvUu3dvXXPNNdq5c6c6dOhw2a83f/58jR07Vn369NHSpUvVrl27K30Lteqjjz7SX//6VwUFBemjjz5SUFDQFR9z5syZKi8v19SpUy/4mKNHj2r69Ol6//331aVLF02dOlX33HPPFb92bSssLFRCQoLi4uK0YsUKHTp0SNdcc40GDx6smJgYjRgxot7/mf/cz38WJiYmOlcl+vn5KTg42GWsW8+ePdWkSROjYwMAAKCBotwBAACAJNcTl5Ufk5OTVVhYKMl1T4rKj5GRkfL19TU4ed2y2+1KSkpyjlvbunWrGjVqpP79+8tiseiOO+64otKjriUlJWns2LHasmWL7r77br3xxhtq3779BR//xBNPaPTo0YqKirri105LS9O9996rrKwsTZkyRePHj693KzuOHj2qSZMmafHixRo9erTeffddNW7cuMaOX1ZWdklj7dLT0/XSSy9p+fLluuWWW/Tqq6+qV69eNZajtv18RGFpaalCQkIUGxurmJgYtylBf66srEyZmZnOsicxMVG7d+9WQUGBpJ9W+VRd6RMSElIvxzECAADAvVDuAAAAXGUq95ioWuTs3r3bOXKoRYsWLvvhhISEKCIiQk2bNjU4uXEKCwu1YcMG57i1Y8eOqUOHDrr11lsVExOjYcOGyc/Pz+iYv8rp06c1ffp0/etf/1JkZKTmzJmjfv361XmOoqIizZw5U2+88Ya6deumuXPn6uabb67zHOfLNWfOHM2YMUPt27fXW2+9dUVj2GrKtm3bNGHCBGcZN3PmzBpZRVSXioqKtHXrVlmtVq1YsULp6eku4wtvu+02/eY3vzE65hXJzs522ccnNTVV+/btk8PhULNmzRQWFuYy1q1Xr141WhoCAACg4aPcAQAAaKDy8vJ04MCBavviHDt2TNJPJU7V1Tg9evRQmzZtDE5eP/x8/5CKigpFREQ4x61FRka65dX35eXlevvttzV16lQ1bdpUM2fOdO6rY6SMjAw9+eSTWrdunQYOHKjJkyfLz89Pffv2rbMMxcXF2rVrl7Zs2aLZs2erqKhIkydP1vjx4y9pdU1dslqtGjdunNLT0zVmzBi9/PLLuvbaa42OdVkqV/VYrVatWrVKBQUFLqMNb7755nr3+b8c586d0549e1x+HiclJamoqEhms1nBwcEuhU/v3r3r9R5dAAAAMBblDgAAgJurOhao6mqcrKwsORwO+fv7q3PnztWKnMDAQKOj1yvFxcX69ttvZbVa9cUXXygjI8O5R0jlSeYWLVoYHfOKWK1WPf3008rKytJTTz3lLFDqk82bN2vGjBlat26d2rZtq6lTp+ree+9Vy5Yta/V1ExMTtXjxYs2bN0++vr566qmnNHbsWLVu3bpWX/dK2O12LVmyRJMmTVJeXp6eeOIJvfDCC/L39zc62mWr+n1otVqVmJioJk2a6MYbb5TFYtGdd9550bGB7qaiokKHDh1y2ccnLS1NBw8elOS6krJyNeXVtKcZAAAALoxyBwAAwE2Ul5dr//791fbFqdzQ29vbW0FBQS5XfoeGhiogIMDwVRn11aFDh7RmzRpZrVatXr1a+fn5LvuADBo0qN7tAXM50tPTNX78eH311VeyWCyaN2+eOnbsaHSsC5o3b56eeuopRUREKDMzU+Xl5RoxYoRGjhyp6OjoGtnTyGazafv27bJarfr444+Vlpam4OBgHTt2TI0bN9a2bdsUEBBQA++m9hUVFWnevHmaNWuWzGaznn32WY0dO7ZBFABVV/WsWbNG586dU2BgoGJiYmSxWDR06NAG8T5/Ljc3VykpKS6lfWJiokpKSuTl5aXOnTu7jM6Miopi1SUAAMBVhnIHAACgnrHZbDp8+HC1fXFSUlJUWloqLy8v3XDDDdX2xenatatMJpPR8eu1iooKJScnO8et7dq1S40bN1a/fv1ksVh01113uf1eH1WdOXNGL7/8st5++2316NFDc+bM0YABA4yOdVHvv/++HnroITkcDs2fP19/+MMf9Nlnn2np0qX6+uuvVVxcrE6dOunmm29Wt27dFBwcrK5du+r6668/7yqkiooKnT59WllZWUpPT9f+/fuVnJysr7/+WgUFBbrhhhs0cuRIjR49WlFRUQoLC1NqaqpuuOEGJSQkqF27dgZ8Fi7PmTNn9Nprr2nu3Llq27atpk+fXi9G7tUUm82mbdu2KT4+3rmqx9fXV/369VNMTIxuv/12de3a1eiYtcZmsykjI8Ol7Nm5c6dycnIkSdddd121fXz4ewEAAKDhotwBAAAwUHZ2tsuJurS0NKWlpam4uFgmk0kdOnSoNk4tNDRUjRo1Mjq62zh9+rQ2bNjgLHTOnj3b4K/8t9lsev/99/Xiiy/K4XDoxRdf1BNPPFHvT/J+9tlnuueee2S32yVJK1as0MiRI533l5SUKCEhQRs2bFBCQoL279+vI0eOuByjefPmatKkicrKylRQUKDi4mLnfT4+PurSpYtCQkI0aNAgDR48WJ07d3Z5/tChQ7Vu3Tp5eXnpN7/5jRISEtS2bdtafNc178iRI3rllVf073//W5GRkZo1a5YGDx5sdKwal5OTo7Vr1yo+Pl5r165VXl6e83s7JiZGw4cPV9OmTY2OWevOnj1bbazb3r17VVZW5lzRWXWsW8+ePXXNNdcYHRsAAABXiHIHAACgDlQ9+VZZ5uzevVsFBQWSXK+4rvwYGRkpX19fg5O7p9TUVOfV/Zs2bZIkRUVFOcet9erVy9iAtWj9+vUaO3asMjIy9Nhjj+lvf/ubW+zBsnbtWo0YMUIVFRWq/CdKQkKC+vbte9HnFRYWKiMjQydOnFB+fr5yc3NVUFAgHx8fNW3aVE2bNlWLFi3UsWNHdejQQZ6enhc93gMPPKAlS5aooqJCXl5eCgoK0jfffFPre/7UhtTUVL388stavny5YmJi9Nprr6lnz55Gx6oVNptNu3fvdlmV16hRI/Xv399Z9jTk7/ufqxzjWbXw2b17t06ePCnpx79zqq787NWrl7p16/aL3x8AAACoPyh3AAAAalBliVN1nFrVE2qVm2NXPaEWHh5e7za1dzdFRUXaunWr4uLi9Nlnn+mHH35Q69atNWzYMMXGxmro0KFq1qyZ0TFrVWZmpiZPnqzly5fLYrFozpw56tSpk9GxLsmGDRs0bNgw2Ww2Vf3nyXfffafAwMA6zfL888/rzTffVGlpqSTJy8tL4eHh2rhxo9uuAvn22281YcIEJSQk6K677tKsWbPq/PNa144fP641a9YoPj5e69atU25ursuqnmHDhl2VP3ezs7Or7eNTuW+bv7+/Onfu7DLWrWfPnmrSpInRsQEAAHAelDsAAACXIS8vTwcOHHApchITE3Xs2DFJP46GqhyhVlnmdO/e3e3GO9VnlRutx8XFad26dSovL1fPnj2d49b69+/fYPYauZjc3FzNmjVLc+bMUWBgoGbPnq1hw4YZHeuSbd++XYMHD1ZJSYlzHFul/Pz8Oi9UXn/9dU2ZMsVZ7kg/Fjw33nij1qxZ47YjER0Ohz755BNNnjxZhw4d0gMPPKC//e1vatOmjdHRat359toymUxXzWq+X5Kfn6/9+/e7jHarXFladTxo1dFuAQEBV8XPVwAAgPqMcgcAAOAiysrKlJmZWW1fnKysLDkcDpcrnasWOQ39qngjVFRUKCEhwWUz9SZNmig6OlqxsbGyWCy6/vrrjY5ZZ+x2u5YsWaLnnntONptNL730klvsq1PVnj17NGDAABUWFqqiosLlPh8fH5WUlNR5pg8++EB/+ctfqhVNZrNZgwYNUnx8vFvv0VReXq6FCxdq6tSpKigo0OOPP67JkydfVatYTp48qU2bNikuLk4rV67UmTNn1LFjRw0dOlQxMTFXxUq/S1G5yqfqSp99+/bJ4XA4L2D4+Wi3xo0bGx0bAADgqkG5AwAAoJ/2J6g6Ti01NdU5rqZyU+qf74vDHgW1q+pJ2C+//NK5YbrFYlFsbKxuvvlmeXt7Gx2zzm3cuFHPPPOM0tLSNGbMGM2YMUOtWrUyOtavsn//fvXr1095eXmy2WzV7r/uuuuUnZ1d57lWrVql22677bz3mUwmxcbGavny5TKbzXWcrGYVFhbqrbfe0syZM+Xn56eXXnpJf/nLX9z+ff1alat6KlcBJiQkyNPT02VVT2RkJKtU/r+8vDzt3bvX5YKHpKQkFRUVyWw2Kzg42KXs6dOnj6699lqjYwMAADRIlDsAAOCqYrPZdPjw4Wr74qSkpKi0tFRms1nt27d3npiqPEnVtWtXt1oR4a7sdruSkpJcTrR6e3vrpptuUkxMjG6//XZ17drV6JiGOXLkiCZPnqzFixcrJiZGc+bMUWhoqNGxfrXDhw+rb9++Onny5HmLHUmKiIhQUlJSHSeTdu3addERXSaTSffdd58WLlzYIIrdU6dO6Y033tCcOXMUEBCg6dOn6+67775qy4xTp05p48aNzp9Bx44dU9u2bTV06FDFxsZqyJAhat68udEx65Wqf69WXelz8OBBST/tNVd1rFtYWJhbr4ADAACoDyh3AABAg5WdnV1tJU7lFcbSjysDqhY4lXvkuOueGu6qsLBQGzZsUHx8vOLj45Wdne1yMvVq3fi8qsLCQr3++ut69dVX1b59e/3jH/+QxWIxOtZlOXr0qPr27avjx4+rvLz8go8bNmyYVq1aVYfJfvTDDz/ohhtuuOhjPD099cQTT2ju3Ll1lKr2HTp0SDNnztSCBQvUp08fvfrqqxo4cKDRsQxVtWy2Wq3avHmz7Ha7IiIinKsHWdVzYWfPnnUZZ1r565KSEnl5ealz584ufwf37dtXrVu3Njo2AACA26DcAQAAbu98J5AqN4OWfixxfj5OrWfPnmrSpInBya9eBw8edG5u/vXXX6uiooITpufhcDi0ePFiTZgwQaWlpZowYYKeeeYZtx5FN2rUKC1fvlwmk6naPjuVzGazRo8erffff7+O00mlpaVq3LixLvbPJJPJJA8PD61cuVJDhw6tw3S1b+fOnZowYYI2bNigmJgY/eMf/1CPHj2MjlUvnDlzRuvXr5fVatXKlSt19OhRtW7dWoMGDZLFYpHFYlHLli2NjlmvVY5Arfr39Y4dO3T8+HFJrn9fV670YfwpAADA+VHuAAAAt1FZ4lRdjbNnzx6dOHFC0k+jX6qeGAoPD7/qV33UByUlJfrmm29ktVq1YsUKpaen65prrtHgwYOd49batm1rdMx65b///a/Gjh2r7du367777tMbb7yhNm3aGB2rRnzzzTeaMWOG1qxZI5PJVG00m4+Pj8aNG6eZM2caks/Pz89ZDldlMpnk7e2thx9+WOPHj1f79u0NSFc3rFarnn/+ee3evVt33XWXXnvtNXXs2NHoWPVKamqq4uPjZbVaXUrqmJgYWSwW9evXj1LiElVdaVs52i0jI0MVFRXOPe8qy55evXopIiJCTZs2NTo2AACAoSh3AABAvXPu3DllZmZWK3Iq5/c3b95cnTp1ctkXJywsjE2b65njx49rzZo1io+P1+rVq5Wfn6+QkBDnJuUDBw6Ul5eX0THrnaNHj2rSpElasmSJoqOj9c9//rPBrpzYs2ePHn/8cecm9pVj2ry9vTVr1iw988wzhuTq2LGjDh06JOnHEWwOh0NeXl56+umn9cILL1w1e644HA598sknmjhxoo4dO6annnpKEydOvGre/69RdbzkqlWrdOTIEbVq1UrR0dGKiYlRbGysrrvuOqNjupWysjJlZma67OOTnJysU6dOSfpptGrV0W4hISGs+gQAAFcNyh0AAGCYyhM3Va/WTUtLU1ZWlhwOh/z8/BQcHOyyGic0NFQBAQGcvKmHKioqlJyc7By3tmvXLjVq1Ej9+/eXxWLR7373u1/cy+RqVlRUpHnz5umVV17Rtddeq5kzZ+qee+4xOlatKi8vV1BQkIYNG6aWLVvqX//6l4qKimS327V48WLdd999huSKiorSjh075HA41KNHD40bN07PPvusnnjiCU2dOtWQTEYqKyvTf/7zH02ZMkU2m03PP/+8nn76afYnu4iqoye3bNmi8vJy9ezZUzExMZTbVyg7O7vaPj7p6emy2+3y9/dX9+7dXVbwRkZGytfX1+jYAAAANY5yBwAA1Lry8nIdOXKk2r44lSNXKjdW/vm+OMzZr/+q7kHx5ZdfKicnRwEBARoyZIgsFouGDBnCCeBfULk64vnnn9fJkyf17LPPatKkSfLx8TE6Wq1bsmSJHnjgAWVmZiogIEAFBQVauHChZs+erfnz52vIkCGG5Lr77rtVUlKi5557TgMHDpQkvfjii5o/f74OHTqkxo0bG5LLaAUFBfrXv/6lGTNmqHnz5nrxxRf14IMPymQyGR2tXisqKtLWrVsVFxenFStW6NChQy5jKUeMGKF27doZHdOt5efna//+/S5j3ZKTk1VYWCiTyaQOHTq47OMTGhqqwMBAo2MDAABcEcodAABQYyoqKnTo0KFq49RSU1NVUlIis9ms9u3bV9sXp2vXrpwcdCNVr0jfvHmz7Ha7+vbt6xy31qtXL6Mjuo3ExESNHTtWW7du1X333afXXnvtqhovGBkZqS5dumjZsmUut1dUVKisrMywEqWgoKDafh4nTpxQhw4d9Oabb+rhhx82JFd9kZ2drZdfflnvv/++goODNW3atAa/yqwmHTx4UFarVXFxcbJarSopKXEZWXnzzTfL29vb6JgNQuUqn6oXluzbt08Oh0PNmzdXaGioy1i33r17c0ECAABwG5Q7AADgslTd/LjyY1JSkoqKiiT9NAv/56txrtYr3t1ZcXGxvv32W8XFxenzzz/XkSNH1Lp1aw0aNEgWi0UjR45kD45f6dixY5o2bZoWLFigPn36aM6cOerbt6/RserUhg0bdMstt2jbtm2KiooyOs4l+ctf/qKtW7cqLS2NVYWSMjIyNGXKFH3yySe68cYb9eqrr+qmm24yOpZbqfz5Wrn6cd++fWrSpImio6MVGxur4cOHM86yhuXl5Wnv3r0uY9127dql4uJimc1mBQcHu1yA0qdPn6uqdAcAAO6DcgcAAFzU2bNnXQqcxMRE7dmzR/n5+ZJ+LHF+XuD07NlTTZo0MTg5rkRWVpbWrVt33ivLLRaL+vXrx8nty1BWVqZ33nlHL730kvz9/TVjxgyNHj36qtxDasSIESosLNSmTZuMjnLJUlJS1KNHD3355ZeyWCxGx6k3tm/frgkTJmjz5s2yWCyaPXu2OnfubHQst1S5qsdqtWr16tXKz89XYGCgLBaLYmNjNWDAgKtiZGNds9lsysjIcPl/ncTERB07dkyS1KJFi2pj3bp3784KKwAAYCjKHQAAIEnKzc1VSkqKy2qcvXv36vjx45J+OrFRtciJiIhQq1atDE6OmlBRUaGEhATFx8fLarUqMTHR5epx9oS4cnFxcRo7dqxycnL03HPPacKECVftSraMjAyFhIToiy++UGxsrNFxfpXhw4erpKREGzduNDpKvWO1WvXss88qLS1NY8aM0bRp03TdddcZHcttVV3VU/lz2dfXV/369ZPFYtEdd9yhDh06GB2zQau8wKXqaLeUlBSVlpY69wusWviEh4erdevWRscGAABXCcodAACuMufOnVNmZma1fXEOHjwoSWrWrJmCgoKcV6iGhoYqLCyMkSQN0KlTp7Rx40bFxcUpLi5Oubm5CgwMVExMjCwWi2699VauSq4B+/bt0zPPPKO1a9fq7rvv1uuvv37Vn5B96KGHtGXLFu3bt8/tVoBZrVYNGTJE27dv129/+1uj49Q7/4+9Ow+LsmzbAH4CAyKLSK5pgiCiDJYg5YYp6uCCjBYu+aqZS2qGqeSGZmoiKWq5lLmWadrmVs244YhLuZSiaIIiCeKCuGIICMz2/dHHxISaKXDPcv6Oo4PegeBkXuaZ53mu+7punU6HLVu2YPLkybh58ybGjBmDqVOnws3NTXQ0s1fSUalSqbB7927k5uYaHbO7dOnCrp5KoFarcf78eaN9fH777TfcuHEDQNmxtEFBQfDz8zO7Yx0RERGZPhZ3iIiILFRxcTHS0tLK7Itz7tw56HQ6VKlSBY0aNSqzL46Xl5dVjoiyFsnJyVAqlVAoFDhy5AgcHBzQrl07yGQy9OzZE35+fqIjWozbt29j9uzZWLZsGQIDA7F48WIEBweLjiXcjRs34OnpicWLF2PUqFGi4zyRwMBASKVSbNy4UXQUk1UygnDWrFmws7PDpEmTMH78eBYfyolGo8HRo0cN3ZYnTpxA1apV0bZtWx7PBSm9F2FJp09qaiq0Wi1cXV3h6+trNNotICAALi4uomMTERGRGWNxh4iIyMxpNBpcunTJcDOh5MZCyQ2FkrEh/9wXh6tIrUN+fj4SEhKgVCqxfft2XL16FbVr10bXrl0hl8vRtWtXVKtWTXRMi6JWq/HZZ59h5syZcHZ2xsyZM/Hmm2/y9fb/3n//faxcuRKZmZlmO5Zu/fr1GD58OC5cuAAPDw/RcUzanTt3MH/+fCxduhS1atXCe++9x9dDBcjOzkZ8fDyUSiXi4+Px559/Grp6ZDIZunXrBldXV9ExrU7JQpvSY91OnjyJ27dvA/i7y6f0QhupVMpFNkRERPRYWNwhIiIyI1lZWUYFnJKPhYWFkEgk8PDwMCrgBAUFoWnTprCzsxMdnSpRyYbcCoUC8fHx0Gg0CAwMNGzI3aJFC944qiAqlQrjxo1DRkYGxo4di/fee483VEspKCiAp6cnIiMjMWvWLNFxnpharUajRo3Qr18/LFy4UHQcs3DlyhXExMTg888/h5+fH+bOnYvw8HDRsSySVqtFUlISFAoFlEolTpw4AUdHRwQHBxuKPUFBQaJjWrV/ns8lJiYaOqvd3NzQrFkzo3O5Fi1awMnJSXRsIiIiMjEs7hAREZmg0qM9Sj6ePHkSBQUFAP5a6Vn6or/k3811FTw9ndLjeX766SecPXsWzzzzDDp37mwYz8M9kypWamoq3n33XezYsQPh4eFYunQpvLy8RMcyOcuXL0dUVBQuXrxo9n+TcXFxiI2NxeXLl7mfzH9w9uxZzJw5E5s2bYJMJkNcXBxatGghOpZFu3HjBg4cOGAoT8dB+QAAIABJREFU9uTk5MDLywuhoaGQyWTs4DQRubm5OH36tFHBJykpCfn5+UYLeEp3+nh7e4uOTURERAKxuENERCRQTk6OUQEnMTERp0+fxr179wAYF3FKPgYGBsLZ2VlwchLtxo0b2LVrF5RKpdHG2iXdOR06dIC9vb3omBYvJycHcXFxWLRoEZo1a4ZFixahffv2omOZJJ1OB39/f7Rv3x4rV64UHeep5ebmokGDBpgxYwYmTJggOo7ZOXLkCKZMmYJffvkFffr0wdy5c9GoUSPRsSxeSVdPSXfnkSNHYGtri1atWkEul0Mmk7G704RotVpkZmYa7eOTkpKCjIwM6PV6uLu7lyn4+Pv7w9HRUXR0IiIiqgQs7hAREVWCu3fv4sKFC0b74vz++++4fv06ABguzksXcpo3b45atWoJTk6mQqfT4eTJkw8csxMeHo5XX32Ve39UIo1Ggy+++ALTp0+HTqfD+++/jzFjxnAE4iP88MMPiIiIQHJyssVs9D5+/Hhs2bIF6enpLKY+IZVKhaioKKSmpmLo0KGYPXs26tSpIzqW1bh58yb2798PlUqFn376CdnZ2ahbty5CQ0Mhl8vRpUsXdqaZoLt37+LMmTNGo91OnDiB+/fvG/ZaLN3Z3bJlS76uiIiILBCLO0REROUoNzcXaWlpRt04KSkpSE9PBwC4ubnBx8fHqJDz4osv4tlnnxWcnEzRnTt3sHfvXqObbg0bNkSXLl0gk8nQvXt3uLi4iI5pdfbu3YuoqCicO3cOo0ePxuzZs3nz8zG8/PLLqF69OhQKhego5ebixYto3Lgx1q9fj//973+i45itkmLprFmzcO/ePURGRnK/KgFKFhGoVCqoVCrs378fer0eAQEB3LPNDGg0GqSmphp1gx8/fhzZ2dkAyo705b6MRERE5o/FHSIioidQXFyMtLS0MvvilGyG6+DgAB8fH6NVk/7+/vDy8uJNEXqk9PR0Q3fOgQMHoNPpjG6scRNscdLS0vDee+9h06ZNCA8Px+LFizlG6jEdP34cL730Evbt24eQkBDRccpVv379kJ6ejuPHj4uOYvYKCgrwySefYO7cuXBwcMCECRMQFRUFBwcH0dGs0u3bt5GQkACVSgWlUomsrCzUrl0bHTp0MLwnubu7i45J/6JkBHDpsW5nzpxBUVGR0flqyTlrQEAAatasKTo2ERERPQYWd4iIiB5Bo9Hg0qVLZfbFSU1NhVarNYy++Oe+OH5+frC1tRUdn8zA/fv3cejQISgUCvzwww+4dOkSatasiY4dOyI8PBw9e/ZE9erVRce0anl5eVi4cCHmzZsHLy8vfPzxx+jevbvoWGbltddew4ULFyyyAHLs2DG0bNnSIgtXoty+fRsLFizAkiVL4OHhgTlz5qBPnz5cHCFYcnIylEolVCqV0eIDmUyG8PBwtG3bluc+ZkKtVuP8+fNGY91+/fVX3Lx5E8BfXT6lFygFBQXx3JaIiMgEsbhDRET0/7Kysowucks+FhYWQiKRwMPDo8y+OM2aNUOVKlVERyczc/HiRcTHx0OlUmHnzp3Iy8uDVCqFXC7nDTITotPpsGHDBkyePBlqtRozZsxAZGQkJBKJ6GhmxRpGl1niyDlTcOnSJcTGxuLzzz9HUFAQ5s2bh44dO4qORfir6L1v3z4olUrs2LEDV65cQa1atRASEgKZTIaePXuibt26omPSf5SVlWW0mCkxMdHQle7q6gpfX1+jsW6BgYFwdnYWHZuIiMhqsbhDRERWp/SFa8nHpKQk5OfnAyg7k7zk36tWrSo4OZkrrVaLpKQkw7i1xMREODk5oVOnTpDL5ejRowfq168vOiaVsn//fkRFReHMmTMYNmwYYmNjOabmCY0fPx5btmxBeno67O3tRcepED/88AMiIiKQnJwMPz8/0XEsTnJyMqKjo6FUKiGTybBgwQIEBASIjkWllB4pevDgQWg0GgQGBkImk0EmkyEkJISFcTOVl5eH1NRUo4LPqVOnkJeXB+DvLp/S58xSqZSddkRERJWAxR0iIrJYJTPGSxdykpKScOvWLQCAu7t7mQJOQEAAN6incnHr1i3s27cPCoUCCoUCd+/ehbe3t2F8TZcuXdj1ZYIuX76M9957Dxs2bEDnzp2xaNEiNGvWTHQss5Wbm4sGDRpgxowZmDBhgug4FUan08Hf3x/t27fHypUrRcexWCqVClOmTEFSUhJ69+6NuLg4eHl5iY5F/5Cfn4+EhAQolUrs2rULly5dQo0aNdCpUyfDe2C9evVEx6SnVNLxXrrr/ezZs9Dr9XBzc0OzZs3KjHbjQikiIqLyxeIOERGZvbt37+LChQuGFYUlG8VmZ2cD+LuIU3qc2gsvvIDatWsLTk6WpvR+BPv37wcAtGrVCnK5HHK5HFKpVGxAeqj8/HwsWLAAcXFxhj0++vbtKzqW2YuLi0NsbCwuX74MNzc30XEq1PLlyxEVFYWLFy9yHFUF0uv12Lx5M6ZNm4ZLly5hyJAhmDNnDmrVqiU6Gj1E6a6en3/+GUVFRYZRpDKZDB06dLDYrj5rk5ubi9OnTxuNdjt58iQKCgogkUjg6+trVOx58cUX8eyzz4qOTUREZLZY3CEiIrNRVFSEP/74o8y+OBkZGYZVgj4+PkaFHF40UkUqKCjA3r17jfYcqF27Nrp27Qq5XI6uXbuiWrVqomPSI5TcKJ44cSJyc3MRHR2N8ePHs6uqHKjVajRq1Aj9+vXDwoULRcepcAUFBfD09ERkZCRmzZolOo7FU6vVWLt2LWbMmIHi4mJMmTIFY8eOZWeAiSsoKMDhw4ehUCjw008/4eLFi3jmmWfQuXNnyGQyhIWF4bnnnhMdk8qRVqtFZmam0Vi3lJQUpKenAzDupC/p9OGelkRERI+HxR0iIjI5arUa58+fL7MvTsmGrg4ODvDx8SmzL46Xlxfne1OFS09Ph0qlgkKhwJ49e6BWqw37CoSHhyM4OJh/h2bi2LFjGD9+PI4ePYqBAwdi4cKF7OgrR1999RWGDRuGCxcuwMPDQ3ScSvH+++9j5cqVyMzMZJGhkuTn5+PTTz/Fhx9+CFdXV8yYMQPDhw+HnZ2d6Gj0GEq/p6pUKhQWFhp19bRv3x4ODg6iY1IFuHv3Ls6cOWO0aCsxMRGFhYWwt7dH48aNjca6tWrViu/RRERE/8DiDhERCaPRaHDp0iWjAk5iYiJSU1Oh1WoNF3alx6lJpVL4+fnB1tZWdHyyEhqNBkePHoVSqYRCoUBKSgpcXFwQEhJiGLfG7jDzcvXqVUydOhUbNmxASEgIFi9ejBdeeEF0LIvTokUL+Pn5YePGjaKjVJobN27A09MTixcvxqhRo0THsSq3bt3CwoULsWjRIjRq1AgffPABRyuamfv37+PQoUOGYk9KSgqcnZ3RsWNHyOVydOvWzWoKxdZKo9EgNTXV6Lrg2LFjuH79OgDg2WefNVrcFRQUhKZNm7KYS0REVovFHSIiqhRZWVlGF2opKSlISUnB/fv3IZFI4OHhUWZfHI5kIFFu3LiBXbt2QalUYvfu3cjNzYW3tzfCw8Mhl8u5P4CZun//PpYuXYrY2Fi4u7sjJiYGgwcPFh3LIqlUKoSGhuLXX39Fy5YtRcepVG+++SZ+/vlnnD17lgsRBDh//jymT5+OzZs3o1WrVoiLi0P79u1Fx6InUNLVo1KpsGvXLty7d8/ovfjll1/meaKVyMnJMRrrVnoxWElHf+mxboGBgahRo4bo2ERERBWOxR0iIipXpYs4JR+TkpKQn58PwHjFXcnHFi1awMnJSXBysmY6nQ4nT540rBY+fPgwHB0dERwcjPDwcLzyyivw9PQUHZOegkKhwNixY3Hz5k1MnDgR0dHRcHR0FB3LYnXv3h2FhYXYt2+f6CiVLjU1FVKpFD/88APkcrnoOFbr2LFjmDJlCvbt2weZTIaPP/4Yzz//vOhY9IQKCwvxyy+/GIo9iYmJcHJyQtu2bfk+baVKxjiX3scnKSkJt27dAvDXNUfpsW5BQUHs/iciIovD4g4RET2RkhV0pQs5p06dws2bNwEYb45aclEVEBAAFxcXwcmJ/pKfn4+EhATDuLVr167B09MTXbt2hUwmQ/fu3fn3agFOnDiB8ePH45dffsGgQYMwf/581K1bV3Qsi3bmzBm88MIL+OmnnxAeHi46jhBhYWEoKCjA/v37RUexeiqVCpMmTcLp06cxcOBAzJs3D/Xq1RMdi55SRkYG9uzZA5VKZdRhW7L/XWhoKAv4ViorK6vMPj4l+3ZWq1YNzz//vFHBJzAwEM7OzqJjExERPREWd4iI6JH+/PNP/PHHH0aFnOPHjyM7OxvA30Wc0t04L7zwAjc8JZOUnp4OhUIBpVKJgwcPQqvVIiAgwDDipUWLFrCxsREdk8rBtWvXMGvWLHz++ecICgrCkiVL0Lp1a9GxrMKwYcNw+PBhpKSkWO0K6b1790Imk+Ho0aNo1aqV6DhWT6fTYcuWLYiOjkZ2djbeeecdREdHo3r16qKjUTkovTeeSqXCiRMnDN23MpkMcrkcUqlUdEwS6N69ezh//rzRaLdTp04hLy8PdnZ28PT0NNrHx9/fH15eXjwnJCIik8fiDhERAQCKi4uRlpZmtNItJSUFGRkZ0Ov1qFatGho3blymkOPt7S06OtFDlWzOrFAo8OOPPyIzMxM1atRAp06dDAUdd3d30TGpHBUXF2P58uWYMWMGqlWrhtjYWLz++uu8QVNJbty4AU9PTyxduhQjRowQHUeoFi1aoEmTJvjmm29ER6H/V1xcjC+//BLvv/8+NBoNJk+ejHHjxrHDw8Jcv34du3fvhlKpxJ49e3D37l1DV49MJkO3bt3g6uoqOiaZgJIun9LXP2fPnoVer0f16tXh7+9fZrRb1apVRccmIiIyYHGHiMjKlMyn/ue+OCXjCko2JS19EcPVa2ROMjMzsXv3bqMNmKVSKeRyOWQyGUJCQiCRSETHpAqgUCgwfvx4w8r86dOnc7ReJZs+fTpWrVqFzMxMq78BtmHDBgwZMgRpaWnw8vISHYdKycvLw8KFCzF//nzUrFkT06dPx/Dhw2FnZyc6GpUzrVaLpKQkQ9fuiRMnUKVKFbRr185Q7AkKChIdk0zIn3/+id9//91orNvJkydRUFAAiUQCX19fo+ukl156ieNeiYhIGBZ3iIgslEajwaVLl8rsi3PmzBkUFRXB3t4eDRo0KLMvTtOmTXlzg8zKg27cVK1a1bDJcu/evfHcc8+JjkkV6OzZs3j33Xexe/du9OnTBwsWLODG2gIUFBTA09MTY8aMwcyZM0XHEU6tVsPHxwd9+vTBRx99JDoOPcDVq1cxe/ZsfPHFF2jSpAlmzpyJvn37io5FFejGjRs4cOCA4ZwhJycHXl5eCA0NhUwmQ9euXVGtWjXRMcnElL6uKt3pk56eDsB4r9GS66pmzZqhSpUqgpMTEZGlY3GHiMgCZGVlGa0uS0lJQUpKCu7fv280R7r0ODV/f3+OISGzdfv2bSQkJBjdnCm9kXKXLl14QW0F7ty5gw8++ADLli1DQEAAFi9ejHbt2omOZbWWLVuGiRMn4uLFi6hTp47oOCZhwYIFiImJwaVLl7i/iwk7d+4cZsyYgc2bN6Nt27aIi4tDcHCw6FhUwUoWh6hUKigUChw5cgS2trZo1aqVoduXe/HRo+Tk5JQp+CQnJ6OwsBD29vZo3Lix0SK61q1bo1atWqJjExGRBWFxh4jIjJS+gCi5eCjZDBQAnn32WaMCjlQqRYsWLeDk5CQ4OdHTS05ONmyWvH//fgAwugHDsSrWQ61W47PPPsOsWbPg5OSEmTNn4s0334Stra3oaFZLp9OhSZMm6Ny5M1asWCE6jsnIzc2Fh4cHpk+fjokTJ4qOQ//i6NGjmDJlCn7++Wf06dMHsbGxaNy4sehYVElu3bqFffv2GYo9165dQ506ddClSxfI5XKEhoaySEv/qmQEdunrtWPHjuH69esAjK/XSjp9/Pz8eA5DRERPhMUdIiITVFLEKT1O7dSpU7h58yaAv1v/S18YNG/enJvDkkUpKCjA4cOHoVAosHXrVly5cgW1atVCt27dIJfL0aVLF7i5uYmOSZVMpVJh/PjxSEtLw1tvvYWYmBiO0DEB27ZtQ+/evZGcnAw/Pz/RcUxKVFQUNm3ahIyMDNjb24uOQ49BpVJhwoQJOHv2LIYOHYoPPviAe2pYGZ1Oh5MnT0KlUhkWlej1egQEBCA8PBxyuZxdPfSf/HPSQmJiIlJTU6HVauHi4oImTZoYFXwCAgK4byAREf0rFneIiAT6888/8ccffxgVchITE3Ht2jUAQPXq1Q0j1EqKOc8//zzH3ZDFSk9PN6yY3bNnD9RqNQIDAw3j1oKDg3kjxUqdP38e7777LrZv347w8HAsXbqUm9SbkHbt2qFGjRr48ccfRUcxOZmZmfDx8cGXX36JgQMHio5Dj0mn02HLli2YNGkSbt26hTFjxmDatGksJlupknGwKpUK27dvx9WrV1G7dm106NDBUOxxd3cXHZPMTHFxMdLS0ozGuiUlJeHWrVsA/uryKb2Pj1QqhVQq5bkwEREZsLhDRFQJSk7c/7kvTkZGBvR6PapVq4bGjRuX2RfH29tbdHSiCqXVanHkyBHDuLXExEQ4OzujY8eOkMvlCA8PR7169UTHJIFycnIQFxeHRYsWwd/fH4sXL0b79u1Fx6JSjh07hpYtW+LAgQP8/+Yh+vfvj7NnzyIpKYk35cxMQUEBPvnkE8ybNw8SiQQTJ07E+PHjua+blSs9KvbAgQPQ6XQICAgwLEZp27Ytx2zRE8vKyjIa65aYmIhz585Bp9OhWrVqeP75540mOHAMNxGR9WJxh4ioHJXMWC49Ti05OdlwMu7g4AAfH58y++JwzjJZk5s3b2Lnzp1QKpWIj4/Hn3/+CW9vb8PK1/bt28PBwUF0TBJMp9Nhw4YNmDRpErRaLd5//32MGTMGdnZ2oqPRP/Tt2xcZGRk4fvy46Cgm6/jx43jppZeQkJCAjh07io5DT+DOnTuYP38+lixZgjp16mDatGnc64sAAHl5edi3bx+USiV27tyJy5cvo2bNmujYsSNkMhnkcjmeffZZ0THJzN27dw/nz583GuuWlJSE/Px82NnZwdPT02isGxcKEhFZBxZ3iIiegEajwaVLl8rsi3PmzBkUFRVBIpHAw8PDcIJdUsRp2rQpb0yS1Sk9t16hUODw4cOoUqUK2rVrB5lMhldeeQVNmjQRHZNMSEJCAqKionD27FmMHj0as2fP5v5KJiojIwO+vr746quv0L9/f9FxTFqHDh3g6uoKpVIpOgo9hcuXL2POnDn4/PPPERgYiLi4OHTq1El0LDIh6enpUCgUUCqVOHjwIDQajWHErEwmQ0hICCQSieiYZCFKunxKd/qcPXsWer3eMOK79PXoiy++CEdHR9GxiYionLC4QyYnPDwcV69eFR3DpI0bNw5DhgwRHcNqlN78suTjyZMnUVBQAODvWcilu3H8/f150lwOeDz4d6Z6PMjPz0dCQgKUSiWUSiWysrJQp04ddOnSBXK5HN26dYOrq6vomJUiJSWF+2w8hu3bt6OgoADTpk3Dpk2bIJPJsGTJEkilUtHRKoW5Hu80Gg1u376N2rVrV/i4sYo83lXG85+XlweNRoPq1atX6M+pKKb6fiNKSkoKZs2aZThezZ8/H4GBgYbPL1myBF9++aW4gGbA398fGzZsEB2jQuXn5+PIkSNQKBT44YcfcOnSJdSoUQOdOnWCTCZDjx49UL9+fdExH8lc358qk6kdH//880/8/vvvRgWfEydO4P79+5BIJPD19TUa69ayZUvu6VpO+Hr5d6b2eiEyd1wuQiYnOTkZDRs2ROvWrUVHMUnLly/H9evXRcewSDk5OUb74SQnJ+PUqVPIy8sD8FcRp2Tl0+DBgyGVShEYGAhnZ2fByS0XjwePZmrHg3+uVNVqtQgICMCIESMgl8vRokULq9xrIj8/H0lJSRg9ejS7Tx7g2rVrWLduHebPn48VK1agYcOG2L59O8LCwkRHq1Q83j1aRR/v+Pw/mqm935gCqVSK77//HocPH8bkyZMRFBSEPn36YN68efD29sbVq1eRnZ3NG1gPsW/fPpw7d050jArn7Oxs6NhZsmQJ0tPTDZ3MY8eOxahRoyCVSiGXyyGTydChQwfY29uLjm2Ex8dHM8Xjo5ubG9q1a4d27doZHtNoNEhNTTXax2fVqlW4du0aAMDd3d1orFtQUBCnTjwBvl4ezRRfL0TmjsUdMkndunXDlClTRMcwSd9++63oCGavpIhTuhvn9OnTuHHjBoC/T2z9/f3Rt29fBAUFoXnz5lbTZWBqeDx4ONHHg8LCQvzyyy9QqVT48ccfce7cOcNq1E8++QS9evXiKsBSJk2aBC8vL9ExTM6xY8ewbt06rF+/Hh999BFGjRplteNqeLx7uMo43vH5fzjR7zemrG3btvj555+xefNmvPfee/Dz88OQIUNgb2+P+vXrY+7cuaIjmqTJkycjISFBdIxK5+3tjZEjR2LkyJEoKCjA4cOHDedRcXFxcHFxQUhICORyOcLCwvDcc8+JjgyAx8dHMZfjo0QiMUyY6Nu3r+Hx0gscExMTcejQIaxcuRJFRUWwt7dH48aNjfbxCQgIQM2aNQX+JqaPr5eHM5fXC5E5sc4rZyKyCrm5uUhLSytTyElPTwcAVK9eHY0aNYJUKkV4eDj8/f3x/PPP82Y00SNcv34du3fvhlKpxK5du3Dv3j1IpVL06tULn3zyiUmuOCXzsHfvXqORRkRE5sLGxgZ9+/bFK6+8glWrViEmJgZ//vkn95OjR3JycjJ09cybN8/Q1aNSqTBhwgSMGjUK3t7eCA8Ph1wuR/v27eHg4CA6NlkYd3f3Ml0+arUa58+fN5po8eGHHxoWQ/5zLHlQUBD8/Pxga2sr6tcgIrJaLO4QkdkrLi5GWlqaUYt5SkoKMjIyoNfr4erqCl9fX0ilUowcOdLQlePt7S06OpHJ02q1SEpKMoxbO3HiBKpWrYq2bdsiJiYGERERaNCggeiYZAHMdR8SIqIS9vb2iIyMxBtvvIGBAwdy3wX6T0p39dy/fx+HDh0yFHuWLl0KZ2dntGnTBuHh4Xj11Vfh4eEhOjJZKHt7e0OXT2ml96JNTEyEQqHAwoULodVqja65Szp9AgIC4OLiIui3ICKyDizuEJHZUKvVuHz5cpl9cVJTU6HVauHg4AAfHx/4+/vj9ddfN6wk4ioiov/m9u3bSEhIMIwJuX79Ory8vBAaGoqZM2eiS5cuqFKliuiYREREJsnFxQVNmjRhcYeeWNWqVQ1dPQCMunpmzJiB8ePHw9vbGzKZDOHh4Tw3o0pRr1491KtXz/B3Cfy90LJkrFtKSgpiYmJw+/ZtAH93+ZTu9JFKpVa5DycRUUVgcYeITI5Wq0VmZmaZcWrJyckoLCyERCKBh4eHYfPRKVOmcMNHoqeUnJwMpVIJlUqFAwcOQKfToXXr1oiKioJMJkNQUJDoiERERERWqXRXj0ajwdGjRw3nbatWrYKTkxPatm0LmUyGXr16oWnTpqIjk5VwcHAwdPkMHjzY8HhWVpbRgsxNmzZh9uzZ0Ov1cHNzQ7NmzYzGurVo0QJOTk4CfxMiIvPE4g4RCVW6tbvk48mTJ1FQUADg75U+MpkMY8eONZwAVq1aVXByIvNWMu5DoVBg27ZtuHz5MmrVqoWQkBCsWbMGPXv25JgsIiIiIhMjkUiM9kjJzs5GfHw8lEol5s6di+joaENXj0wmQ/fu3TkaiypdSZePXC43PJabm4vTp08bjXbbsGEDCgoKjBZwlu704Sh1IqJHY3GHiCpFTk6OUQEnMTERp06dQl5eHoC/ijj+/v4ICgrC4MGDIZVKERgYCGdnZ8HJiSxHRkYG9uzZA4VCAZVKhcLCQkilUgwYMADh4eFo27YtRxgSERERmZG6deti8ODBGDx4cJmuntWrV8PR0RHBwcGGYg+7sUmUatWqGRUmAeOpHSWj3b766it88MEHAAB3d/cyBR9/f384OjqK+jWIiEwKiztEVK7+WcRJSUnB77//juvXrwP4++TM398fffv2hb+/PwICAlCzZk3ByYksj1arxZEjRwwX+ImJiXB2dkbHjh2xZMkShIeHo169eqJjEhEREVE5+GdXz/Xr17F7924olUrMmzevTFdPt27d4OrqKjg1WTM7Ozt4e3vD29vbqMvn7t27OHPmjGG0W2JiIlatWoXCwkLY29ujcePGRvv4tGzZEnXq1BH4mxARicHiDhE9kdzcXKSlpZUp5KSnpwMAqlevjkaNGkEqlSI8PBz+/v5o1qwZ6tatKzg5kWW7desW9u3bB4VCAYVCgbt37xou4mfOnImuXbvCwcFBdEwiIiIiqmB16tQxdPVotVokJSVBoVBAqVRi9erVqFKlCtq1a8euHjI51atXL9Plo9FokJqaajQNZPHixcjOzgbw9zSQ0p0+3JeXiCwdiztE9EjFxcVIS0srsy/O2bNnodfrUaVKFTRq1AhBQUEYOXKkoSvHy8sLNjY2ouMTWYXk5GQolUooFAocOXIEDg4OaNeuHaKjo7mpLhERERHBzs7OcMN71qxZuHnzJvbv3w+FQoH58+cjOjoaDRs2RJcuXSCTydClSxe4ubmJjk1kIJFIDGPZ+vbta3i8ZHpIyVi3Q4cOYeXKlSgqKoKDgwN8fHyMxrpxcggRWRIWd4gIAKBWq3H58mXDSVFJESc1NRVardbQ+lx6nJpUKoWfnx/36CASRKfTITY2FtHR0WjQoAHCwsIwefJkyGQyODk5iY5HRERERCaqVq1a6Nu3L/r27QutVotff/0VO3fuxK5du7BmzRrDiLd79+6Jjkr0SO7u7mW6fNRqNc6fP290byM2NhY3b94g9ZdLAAAgAElEQVQE8FeXT+mxbkFBQby3QURmicUdIiuUlZVldJJT8rGwsBASiQQeHh6QSqWQy+WYMmUK25mJTJStrS26dOmC999/H82bNxcdh4iIiIjMkJ2dHdq2bYu2bdsiJiYGN27cQHx8PHbu3InffvtNdDyi/8ze3t7Q5VNaVlaW0Vg3hUKBBQsWQKfTwdXVFb6+vkZj3QIDA+Hs7CzotyAi+ncs7hBZsNInLiUfT548iYKCAgB/z6QNDg7G2LFjDatWqlatKjg5ET2ul156iYUdIiIiIio3tWvXxqBBgzBo0CB4eXmJjkNUburVq4d69epBJpMZHsvLy0NqaqrRaLdt27YhLy8PwN9dPqU7faRSKcfQE5FJYHGHyAKUzJgtvQLl9OnThhb6kiJOUFAQBg8eDKlUyhUoRERERERERGTVXFxcDMWbwYMHGx4vmXhSMvVk06ZNmD17NvR6Pdzc3NCsWbMyo92IiCobiztEZkav1+PIkSMYPXo0UlJScObMGdy5cwcAUKdOHcMJxhtvvIFmzZpBKpVyI0wiIiIiIiIiosdU0uUjl8sNj+Xk5ODUqVM4ffo0Tp06hUOHDmHVqlUoLCyEvb09F9ASUaVjcYfIzNjY2OCXX36BVCqFv78/+vXrB39/fzRr1gw1a9YUHY+IiIiIiIiIyOK4u7sjJCQEISEhhsc0Gg1SU1Nx+vRpTJgwQVw4IrJKLO4QmaFJkyZhypQpomMQEREREREREVktiUQCf39/+Pv7Y9q0aaLjEJGVsRUdgIiIiIiIiIiIiIiIiB4fiztERERERERERERERERmhMUdIiIiIiIiIiIiIiIiM8LiDhERERERERERERERkRlhcYeIiIiIiIiIiIiIiMiMsLhDRERERERERERERERkRljcISIiIiIiIiIiIiIiMiMs7hAREREREREREREREZkRFneIiIiIiIiIiIiIiIjMCIs7REREREREREREREREZoTFHSIiIiIiIiIiIiIiIjPC4g4REREREREREREREZEZYXGHiIiIiIiIiIiIiIjIjLC4Q0REREREREREREREZEZY3CEiIiIiIiIiIiIiIjIjLO4QERERERERERERERGZERZ3iIiIiIiIiIiIiIiIzAiLO0RERERERERERERERGaExR0iIiIiIiIiIiIiIiIzwuIOERERERERERERERGRGWFxh4iIiIiIiIiIiIiIyIywuENERERERERERERERGRGWNwhIiIiIiIiIiIiIiIyIyzuEBERERERERERERERmREWd4iIiIiIiIiIiIiIiMwIiztERERERERERERERERmhMUdIiIiIiIiIiIiIiIiM8LiDhERERERERERERERkRlhcYesWmFhIX777TfRMYiogmg0Gpw7d050DKIKo9PpcP/+fdExyAJlZGSIjmDV+PyTSEePHsXly5dFxyCqMKdPn0ZhYaHoGERmLS0tTXQEIgIgER2A6EGWLl2Kb7/9tsJ/TmZmJlxdXfHMM89U+M8qL1lZWaIjEFWqJz0e5ObmIisrC8899xxcXFwqIJl4PB6Yl/DwcDg4OJTb99PpdMjMzISHhwfs7OzK7ftWtoKCAtERTEZlnf88jsuXL6NmzZqoWrWq6CgAKud4x+f/4fh+82RSUlIQGBgoOsZ/lp+fj8zMTPj4+JTr+1ZpWVlZaNCgQYV8byp/pnR8LA/5+fm4fPkyGjRoAGdn56f6Xjw+0j9Z2uvlYa5du4aCggLUrl0brq6uj/Xf8PVCVP5Y3CGT8/bbb+POnTsV/nP279+PnJwctG/fHn5+fhX+88pLt27d0KZNG9ExiCrFkxwPrl27hr179+LKlSt45pln0KdPnwpKJx6PB+ahXr16iI6OLtfveefOHWzatAkSiQQ9evQo1+8tSvXq1UVHEKqyzn8eh06nw9KlS9G4cWOEhISIjgOg4o93fP4fje83/12nTp3MtvCel5eHTz/9FJmZmRg0aBDc3d0r5Oc899xzFfJ9qXyZ0vGxvOj1enz66adIS0tDYGAgQkJCUKVKlSf6Xjw+UmmW+Hp5mPv37+Ozzz7DhQsXULNmTbRp0wZ+fn6wtX34kCi+XojKn41er9eLDkFU2VauXIm33noLAKBQKBAeHi44ERE9rYyMDERHR2PTpk2ws7ODRqPBJ598gjFjxoiORlSudu/ejb59++LevXsYPnw41qxZIzoSWZjt27cjPDwcdevWRVZWFmxsbERHsip8/kk0vV4PR0dHqNVq1KhRAwcPHjSrxXBEjyMqKgpLliyBnZ0dnnnmGaxevRo9e/YUHYvIrEyfPh2xsbGGc5W6deti8uTJePPNNy12egaRqeGeO2R1du3ahbffftvwv5+2DZuIxMrJyUF0dDSaNGmCbdu2Qa/XQ6PRoGrVqhg8eLDoeETlasGCBQgLC0N+fj5sbW3RqlUr0ZHIAn3zzTews7NDdnY2Dh06JDqO1eHzT6LZ2NigXr160Ov1uHv3LoKDg3Hq1CnRsYjKVb9+/QzXDbdu3UKvXr3Qo0cPXL16VXQ0IrMxceJEuLi4QK/XQ6/X49q1a5g4cSLq1KmDcePG8fVEVAlY3CGrcubMmTIjmljcITJPxcXFWLVqFby9vfHRRx9BrVZDrVYDAOzt7TFkyBBUq1ZNcEqi8lFYWIg33ngDU6ZMgU6nM/zTunVr0dHIwhQUFGDr1q3QarWwt7fHN998IzqSVeHzT6bCx8cHAKDRaJCbm4uXX34Zv/32m+BUROWndevWqFevHoC/xmECwJ49e9C0aVOsWrUKHHJD9O+qV6+OqKgoSCR/7/qh1WpRUFCA5cuXo2HDhnj99deRkpIiMCWRZWNxh6xGVlYWQkNDUVRUZDh5AwAnJyeBqYjov9Lr9di0aRN8fHzw9ttv4+7du9BoNEZfo1arMXr0aEEJicrX1atXERwcjG+++cboRkPVqlUhlUoFJiNL9NNPP6GwsBDAX8fSr7/+2lA4p4rH559MhY+PD+zt7QH8faOuU6dOOHLkiOBkROXDxsYGAwYMgIODg+ExtVqNvLw8vPXWW2jXrh1SU1MFJiQyDxMmTEDVqlXLPK5Wq6HRaPDdd9+hWbNmCAsLg0qlEpCQyLKxuENW4d69ewgNDcXt27fL3ARm5w6R+Th8+DBatWqF1157DVeuXIFWqy3zNXZ2dggODsbzzz8vICFR+Tp8+DCaN2+O33//vcwN3pYtW5rtZt1kujZu3Gj0d3X37l3s3btXYCLrwuefTEXDhg2N9nvSarUoLCxEp06dkJCQIDAZUfl57bXXUFxcXOZxvV6PY8eO4YUXXsCsWbNYZCd6BDc3N0yYMMGoe6c0tVoNvV4PlUqF0NBQtG7dGunp6ZWckshysbhDFk+tVuOVV15BWlraA0/KWNwhMn1FRUXo2bMngoODceLECcNM3wfR6XQYO3ZsJSckKn+rV69Ghw4dcPfu3TLvXw4ODmjXrp2gZGSpcnJysHv3bqOFMPb29vj6668FprIefP7JlHh5eZV579FqtSguLkZYWBj27NkjKBlR+XnxxRfh4eHxwM+p1WoUFxcjJiYGAQEBOH78eCWnIzIf48ePf2D3TmlqtRq2trbw8/ODl5dXJSUjsnws7pDFGzt2LA4cOPDQ1TYcy0Zk+qpUqYIhQ4YYxoM8So0aNfDqq69WQiqiiqHRaBAdHY2RI0dCo9E8sEOtuLgYrVq1EpCOLNnmzZvL/L2p1Wps3rwZ9+/fF5TKevD5J1Pi5eX1wIU0Op0OarUaPXr0wE8//SQgGVH5GjhwoNFotn/S6XQ4d+4cWrdujW3btlViMiLz4ebmhkmTJj20ewf4a8LGK6+8gjVr1hh1hhLR02FxhyzanDlzsHLlygfeGAP+mrP7b6sLiMg0RERE4ODBg3B1dX3oSaO9vT0iIyMfqwhEZIpu3ryJjh074qOPPvrXr23ZsmUlJCJr8tVXXz3w8cLCQiiVykpOY334/JMpedSqap1OB41Gg969e/NmN5m9fv36PXA0WwlbW1vo9XpMnz4dvXr1qsRkROYlKioKLi4uD/ycRCJBWFgYvvvuO46VJipnLO6Qxfruu+8wY8aMh45uAv66Ecw3FiLz0bp1axw6dAg1a9Z8YAFHp9NhxIgRApIRlY958+bhl19+gU6ne+TX1a9fH3Xq1KmkVGQNrl27hkOHDj3wb8/Ozg4bNmwQkMp68PknU1OzZs1HLoLT6/XQarXo168ftmzZUonJiMpXQEAAGjVq9MDPSSQSODo6YuvWrZg1axZsbXkLjehhXFxcHti9I5FIYGtriwEDBjyys4eIngzfmcgiHTx4EK+//vojCzsA4OjoWEmJiKi8uLm5wdHREc8++6xRgUcikaBXr16oX7++wHRET+ejjz7C3r174enp+dDFB3Z2dmjfvn0lJyNL98033zz0ppVGo8HOnTtx9+7dSk5lPfj8kylq0KDBQz9XskhuxIgR7CQlszdgwIAyC8ckEgnq1KmD06dP45VXXhGUjMi8jB071qh7x97eHm3btsXIkSMxaNAgrFu3TmA6IsvE4g5ZpAYNGmDixImoUaMGbGxsHjqiifvtEJmX3Nxc9OjRA05OTkhISECLFi0Mq380Gg3GjBkjOCHR0+vUqROSk5Mxffp0SCSSMu9htra2aN26taB0ZKnWr1//0DG2wF+dkVu3bq3ERNaFzz+ZosaNG5fZF8He3h4SiQSvvfYaUlNT8dlnnz2yCERkDgYMGGC0R6+NjQ06d+6MGzduYPPmzQKTEZkXFxcXREdHG65hgoKCsGPHDnzyySeYNm0ahg4dimXLlomOSWRRWNwhi+Tl5YUPP/wQ169fR3x8PHr06AEbG5syGyWyuENkPoqLixEREYFbt25hx44daNSoEfbt24ewsDAAf92ACAkJERuSqJxUrVoVI0eOhKOjIzw8PGBjY2O4waZWq1ncoXJ14cIFnD59+l87nh+2Jww9HT7/ZKoaNWpkWERTUtQpeX/66quv4O3tLTghUflo2rQpfH19YWNjA4lEgmXLlmHXrl2YP38+pk2bht27d4uOSGQ2xowZA1dXVzRr1gy7d++Gs7MzAGD27NmYO3cu3nnnHSxevFhwSiLLweIOWTQ7OzvIZDL06dMHdnZ2ePvttw17FNjY2LC4Q2QmdDodBg4ciOPHj2P79u3w9PQE8NcN8K1bt2LUqFEYN25cmdWlROYsKioKNWrUQFJSEtatWwd3d3dDN2rz5s1FxyML8vXXX0Ov1xtWWT7oH71ej4MHDyI7O1t0XIvD559MlZeXF9RqNezt7TF8+HCkp6dj2rRpWLduHW7evCk6HlG5GjRoEOrWrYuff/4Zo0ePBgCMHz8egwYNwoABA3Dx4kWxAYnMhLOzM9asWYO9e/eiWrVqRp+bMmUK4uLiEBUVhZiYGEEJiSyLjf7flogRWYCQkBC4u7tj27Zt0Gq12L59O1asWIGCggLs379fdDwi+hfjxo3DqlWrEB8fj5dffvmBX1Ny84HIEsTHx6Nr165QKpXo0aMHACAnJwfR0dE4ffo0jhw5IjghWZLt27fj6tWrRo/NmTMHbdq0QefOnY0eDw0NhZeXV2XGs3h8/slU7dy5EwqFAlOnTjWMXsvPz4e3tzeGDx+ODz/8UHBCovJz9epV2Nvbo3bt2kaP5+fno3Xr1nBycsLBgwdRpUoVQQmJLMeKFSsQGRmJSZMmYd68eaLjEJk1FnfI4p0/fx5NmzaFUqk0jG8qkZeXZ7TZGxGZntjYWMyYMQPfffcd+vTpIzoOUYUrKipC8+bN8cILL+D7778v8/k7d+7gmWeeEZCMrIm3tzdGjRqFKVOmiI5ilfj8kymLi4tDTEwMMjIyUKtWLdFxiCpcWloaXnrpJfTv3x8rVqwQHYfIIqxZswajRo3ChAkTMH/+fNFxiMwWx7KRxVu9ejWee+45dO3atcznWNghMm0bNmzA+++/j0WLFrGwQ1bjww8/RFZWFhYtWvTAz7OwQ0REIo0ZMwbOzs4PfZ8isjSNGzfG+vXrsWrVKnzxxRei4xBZhDfffBMbN27EokWLMHr0aOh0OtGRiMwSiztk0YqLi7F+/Xq8+eabsLOzEx2HiP6DHTt2YOjQoXjvvfcwduxY0XGIKkVaWhrmz5+P2bNno379+qLjEBERleHs7Ix3330XS5cu5d47ZDV69uyJ6OhoREZGIjExUXQcIovQv39/bN26FWvXrsWoUaNY4CF6AizukEXbunUrbt++jSFDhoiOQkT/wbFjx/Daa6+hf//+mD17tug4RJXm7bffhq+vL8aMGSM6ChER0UOxe4es0Zw5c9ChQwf07t0bt27dEh2HyCLI5XJs3boVGzZswMCBA6HRaERHIjIrLO6QRVu9ejXCwsLg4eEhOgoRPaYLFy4gPDwcHTp0wNq1a2FjYyM6ElGl2LhxIxISErBixQpIJBLRcYiIiB6K3TtkjWxtbfH111/D1tYW//vf/6DVakVHIrIIYWFh2LlzJ5RKJSIiIlBUVCQ6EpHZYHGHLFZ6ejr279+PESNGiI5CRI/p5s2b6N69Ozw9PfHdd9/xBjdZjdzcXEyePBmjRo1CmzZtRMchIiL6V+zeIWv0zDPPYMuWLTh06BAnDBCVo5CQEOzcuRMHDhxAREQECgsLRUciMgss7pDFWrVqFerVq4ewsDDRUYjoMdy7dw9du3aFXq+HUqmEs7Oz6EhElWbq1KnQarWIjY0VHYWIiOixsHuHrFVgYCAWL16MmJgYbNu2TXQcIovRrl07JCQk4Ndff0X37t2Rl5cnOhKRyWNxhyySWq3G+vXrMWzYMNjZ2YmOQ0T/Qq1Wo0+fPsjOzsaePXtQu3Zt0ZGIKs3x48excuVKLFy4EO7u7qLjEBERPTZ275C1GjlyJIYNG4Zhw4bhwoULouMQWYygoCCoVCokJycjLCwMubm5oiMRmTQWd8gi/fjjj7h+/TqGDRsmOgoR/Qu9Xo/hw4fj6NGj2L59Oxo2bCg6ElGl0el0iIyMRHBwMAYOHCg6DhER0X/C7h2yZp9++il8fHwQERGBgoIC0XGILEZAQAAOHDiACxcuoHPnzrh9+7boSEQmi8UdskirV69Gt27d4OnpKToKEf2LiRMn4rvvvsPmzZsRGBgoOg5Rpfr000+RlJSEFStWwMbGRnQcIiKi/4zdO2StHB0dsWXLFmRlZXGvX6Jy5ufnh3379uH69esIDQ3lAgKih2BxhyxORkYGVCoVT66IzMCCBQuwaNEirFmzBqGhoaLjEFWq7OxszJw5E5MnT4afn5/oOERERE+E3TtkzTw8PPDNN9/gu+++w7Jly0THIbIovr6++Pnnn5Gbm4sOHTogKytLdCQik8PiDlmcNWvWoHbt2ujRo4foKET0CN988w2io6Px0Ucf4fXXXxcdh6jSjRs3Dm5uboiOjhYdhYiI6Kmwe4esmUwmw8yZMxEVFYVffvlFdBwii+Lp6Ymff/4Ztra26NixI65cuSI6EpFJYXGHLIpGo8GXX36J4cOHw97eXnQcInqIhIQEDB06FBMnTkRUVJToOESVLj4+Ht9//z2WLVsGZ2dn0XGIiIieCrt3yNpNnz4d4eHh6Nu3L65duyY6DpFFefbZZ7F37144OjqiXbt2uHDhguhIRCaDxR2yKAqFAteuXcPQoUNFRyGihzh9+jQiIiIQERGBuXPnio5DVOmKioowduxY9O3bl12mRERkMdi9Q9bMxsYGX3zxBVxcXDBgwABoNBrRkYgsSp06dbB//37UqVMHL7/8MlJSUkRHIjIJLO6QRVm9ejW6dOmCRo0aiY5CRA+Qnp6Orl27IigoCGvXroWtLd+GyPrExsYiKyuLN7+IiMiisHuHrF316tWxdetW/Pbbb5g6daroOEQWx93dHfHx8WjYsCE6deqE33//XXQkIuF4V40sxuXLlxEfH48RI0aIjkJED3Dr1i2EhYWhfv36+OGHH1ClShXRkYgqXVpaGhYsWICYmBjUr19fdBwiIqJyxe4dsnbPP/88Vq9ejY8++gjff/+96DhEFsfNzQ179uyBv78/OnTogN9++010JCKhWNwhi7F69WrUrFkTPXv2FB2FiP6hoKAAPXv2hFqthlKphKurq+hIREKMHj0avr6+iIyMFB2FiIio3LF7hwgYMGAAIiMjMXz4cCQnJ4uOQ2RxnJ2doVAo8NJLL6Fr1644cuSI6EhEwrC4QxZBq9Vi3bp1GDp0KOzt7UXHIaJS1Go1evfujbS0NOzcuRN169YVHYlIiI0bN2Lfvn1YsWIFJBKJ6DhEREQVgt07RMDHH3+MwMBAREREIDc3V3QcIovj5OQEhUKBkJAQhIaGIiEhQXQkIiFY3CGLsH37dly+fBnDhg0THYWIStHr9Rg1ahQOHjwIhUIBX19f0ZGIhMjNzcXkyZMxatQotGnTRnQcIiKiCsPuHSLA3t4e33//Pe7du4fBgwdDr9eLjkRkcRwcHPD999+je/fukMvliI+PFx2JqNKxuEMWYfXq1ejUqRMaN24sOgoRlTJ16lRs2LABW7ZsQevWrUXHIRJm6tSp0Gq1iI2NFR2FiIiowrF7hwioW7cuNm/ejB07dmDhwoWi4xBZJHt7e3z77bfo168f5HI5fvjhB9GRiCoViztk9q5cuYKdO3dixIgRoqMQUSnLly/H/PnzsWrVKnTr1k10HCJhjh8/jpUrV2LhwoVwd3cXHYeIiKjCsXuH6C9t27bF3LlzMXXqVOzZs0d0HCKLZGdnhy+++AIjR45Ev379sHnzZtGRiCoNiztk9j7//HO4u7vjlVdeER2FiP7fjz/+iHfeeQfz5s3DkCFDRMchEkan0yEyMhLBwcEYOHCg6DhERESVht07RH+ZMGECevfujUGDBuHKlSui4xBZJBsbGyxduhSRkZHo378/1q1bJzoSUaVgcYfMmk6nw9q1azF06FBUqVJFdBwiAnDgwAH0798fI0eOxOTJk0XHIRLq008/RVJSElasWAEbGxvRcYiIiCoNu3eI/vb555+jVq1a6NOnD4qKikTHIbJINjY2WLRoEaZNm4ahQ4di2bJloiMRVTgWd8is7dy5E5mZmRg6dKjoKEQE4MyZM3j11VfRs2dPfPrpp6LjEAmVnZ2NmTNnYvLkyfDz8xMdh4iIqNKxe4foLy4uLti6dSvOnTuHd999V3QcIos2e/ZszJ07F++88w4WL14sOg5RhWJxh8za6tWrERISwptmRCbgypUrCAsLQ/PmzbF+/XrY2vIthqzbuHHj4ObmhujoaNFRiIiIhGD3DtHffH19sW7dOixfvhxr164VHYfIok2ZMgVxcXGIiopCTEyM6DhEFYZ33shsZWdnY8eOHRgxYoToKERW7/bt2wgNDYWbmxu2bdvGMYlk9eLj4/H9999j2bJlcHZ2Fh2HiIhIGHbvEP2tV69emDRpEt5++22cOHFCdBwiizZp0iQsX74cs2bN4oI7slgs7pDZWrNmDapVq4aIiAjRUYis2v3799GrVy/k5eVhx44dqF69uuhIREIVFRVh7Nix6Nu3L3r06CE6DhERkVDs3iEy9uGHH6J9+/aIiIjA7du3RcchsmhvvfUWVq5ciQULFnBPYLJILO6QWdLr9fjyyy8xePBgODo6io5DZLW0Wi0GDhyIc+fOYc+ePWjQoIHoSETCxcbGIisriyuUiYiI/h+7d4j+Zmdnh6+//ho2Njb43//+B61WKzoSkUV78803sXHjRixatAijR4+GTqcTHYmo3LC4Q2YpPj4eFy5cwPDhw0VHIbJq48aNw65du/Djjz+iadOmouMQCZeWloYFCxYgJiYG9evXFx2HiIjIJLB7h8hYjRo18O233+LgwYOYM2eO6DhEFq9///7YunUr1q5di1GjRrHAQxaDxR0yS6tXr8bLL78Mf39/0VGIrNaMGTOwYsUKbNy4EcHBwaLjEJmE0aNHw9fXF5GRkaKjEBERmRR27xAZa9WqFRYtWoTZs2djx44douMQWTy5XI6tW7diw4YNGDhwIDQajehIRE+NxR0yO9evX8dPP/2EESNGiI5CZLVWrVqFOXPmYOXKlXj11VdFxyEyCRs3bsS+ffuwYsUKSCQS0XGIiIhMCrt3iMoaPXo03njjDQwaNAjp6emi4xBZvLCwMOzcuRNKpRIREREoKioSHYnoqbC4Q2Zn7dq1cHZ2Ru/evUVHIbJKCoUCkZGRmD17NkcjEv2/3NxcTJ48GaNGjUKbNm1ExyEiIjJJ7N4hKuuzzz6Dt7c3IiIiUFBQIDoOkcULCQnBzp07ceDAAURERKCwsFB0JKInZqPX6/WiQ5Blu3r1Ks6dO4fU1FScP38eWVlZyM/PR35+PvLy8uDq6gpnZ2e4uLigXr16aNKkCXx9feHv74/atWsbfS+9Xo8mTZqge/fuWLJkiaDfiKjylOfrpzz8+uuv6NSpEwYNGoSVK1eW+/cnKk+V+fqJjIzEli1bcPbsWbi7u1fQb0RUvu7du4ezZ88aXieZmZmG18fJkydRo0YNNGzYEG5ubnB3d4ePjw+aNm2KJk2awMfHB7a2XCf2NPj8k7WKi4tDTEwMMjIyUKtWrYd+nVarxfnz5w2vkT/++AO5ubnIyclBfn4+NBoN3NzcDO/nXl5ehteIn58fnJycKvG3Ino6mZmZCAoKQvfu3f+PvTuPi6rs3wd+zbCIrKJoqY9pbuC+ZimZgYC4a2kuhFZSampliz4+T6ll5dKiX1NbzQVzJXFBUVBwyyzXJ03ElNxzyYV9n8/vD39SBCKMw9znMNf79fKPZqZzrrlfczH3nHvmHISHh9/39tgfons7ePAgunXrhhYtWmDjxo1wdXUt932WNP+7desWHB0d4erqyvkflRoXd8jirl+/jujoaMTHxyM+Ph6///47AKBq1apo3Lgx/vWvf8HFxQUuLi5wc3NDSkpKwfqx94UAACAASURBVMG2c+fO4eTJk0hOTgYAeHt7w8/PD35+fggODsbPP/+MwMBAHDlyBK1atVL5NInKRXn2x93d/b6yHT9+HJ07d4avry/Wrl3L006R5qjqz4EDB/DYY49h8eLFePbZZ63yXInMkZeXh/j4eMTFxSE+Ph4HDx5EXl4eKlWqhEaNGqFBgwYFC55VqlRBdnY20tPTkZycjOvXr+PkyZO4cOECgNsXgu7SpQv8/PzQvXt3NGjQQPGz0z6OP9Ft6enpqF+/PkaMGIEPP/yw0H2//vorYmJiEBcXh127diElJQUGgwEPPfQQGjdujCpVqqBKlSpwcXGBvb09UlJSCt7Pf/vtNyQlJSEnJweOjo7o0KED/P390bVrVzz++OM8IEaaFxsbi+7du2PevHkYNWpUmf9/9oeo7I4cOYKgoCD4+PggKirqvo+b/BPnf1TeuLhDFpGdnY1NmzZh6dKliI6OBnD74oD+/v7o0qULWrRoAS8vr1Jv7/Lly/jll1+wY8cOxMfH48CBA3BwcECdOnVgNBpx9OhRHlimCsNa/enbty9CQ0MRFBRU5v5cunQJnTp1Qs2aNbF9+3Z+k4s0Q3V/8vPz0aFDB7i5uSE+Ph4Gg8Hiz5Hofh08eBDh4eFYsWIFrl69Ch8fH/j5+cHf3x9t27ZF3bp1YWdnV6ptpaWl4cSJE/jhhx8QFxeHnTt3Ijk5GR07dkRoaCgGDRqEqlWrlvMz0heOP1FRf//1Tn5+PlasWIGlS5fiyJEj8PLywpNPPgk/Pz906tQJ3t7eqFy5cqm2m5eXh99//x379+8vOJCWlJSEf/3rXwgJCUFoaCiaNWtWzs+OyHxTp07Fhx9+iPj4ePj6+t7z8ZcvX2Z/iO7TiRMn0LVrV9SqVQtbtmxBtWrV7nubnP+R1QjRfUhNTZWPP/5YatasKXZ2dhIYGChLly6V1NRUi+7n5s2b8tVXX0nnzp3FYDBIvXr1ZMGCBZKZmWnR/RBZk176c+vWLWnVqpU0bdpUrl+/btFsRObSSn/mzJkjjo6Ocvz4cYvul+h+mUwmiYqKkk6dOgkAady4sUybNk1+//13i+4nLy9Ptm7dKs8++6y4uLhI5cqVZdy4cXLu3DmL7kdvOP5EJUtLS5OqVatKu3btxNHRUTw8PCQsLEx27dol+fn5Ft3XiRMn5O2335a6desKAAkMDJT4+HiL7oPIUvLz86VHjx5Sp04duXr16l0fd/LkSRkxYgT7Q2QhiYmJUqdOHWnTpk2J3SsJ53+kAhd3yCzZ2dkyffp0qVatmri5uclbb70lFy5csMq+T506JS+//LI4OTlJzZo1Zd68eZKXl2eVfRNZgp76k52dLV27dpXatWvLmTNnrJKRqCRa6s+MGTPE3d1d3n77bavsn6i0tm7dKq1btxaDwSC9evWS3bt3W2W/qamp8tlnn8lDDz0kjo6O8uKLL8qVK1essm8t4fgTlezcuXMydOhQMRqN0qhRI1m4cKFVvrRnMpkkJiZG/Pz8BIB06tRJfvjhh3LfL1FZ3bhxQxo0aCB+fn6Sm5tb6L47/bGzs5PGjRuzP0QWdObMGWnQoIE0adJELl68WKb/l/M/UoWLO1Rm27dvFx8fH3FxcZHJkycr+yb/pUuX5PXXXxdHR0dp27at7Nu3T0kOorLQU3/y8/NlwIAB4uHhIUeOHFGQkqgwLfanfv36snPnTiU5iP7pwoUL8swzzwgA6devn7K/3dnZ2bJw4UKpU6eOeHp6yoIFCyz+TWIt4vgTlSwnJ0dmzpwpLi4u0rhxY1m5cqWyL+n98MMP0rVrVzEYDDJixAi5du2akhxEd/O///1PnJ2dZeLEiSLC/hBZy6VLl6RZs2bSuHFjOX/+/D0fz/kfqcbFHSq19PR0eeGFFwSA9O3bVzPf4k9ISBA/Pz8xGo0yfvx4yc7OVh2JqAg99ueVV14RJycn2bVrl8KERPrsD5G1LV68WNzc3KRBgwYSHR2tOo6I3P4m4ZtvvikODg7SsWNHi5+SQks4/kQl+/XXX6VFixZSuXJlmTZtmmRlZamOJCIiK1eulFq1akm1atVk3bp1quMQFbJs2TIxGAwye/Zs9ofIii5fviwtW7aUunXryqlTp+76OM7/SAu4uEOlcuzYMWnatKlUq1ZNIiMjVccp1uLFi8XV1VU6dOggSUlJquMQFdBjf6ZNmyZGo1EiIiJURyMbp8f+EFlTWlqaDB8+XAwGg7z55puavB7h0aNHpUWLFuLp6Slr165VHceiOP5E97Zo0SJxdnaWTp06yenTp1XHKSIlJUVGjBghBoNBXnvtNX5ZgzSlX79+4uTkxP4QWdmNGzekQ4cOUrNmTfn1118L3cf5H2kJF3fontauXSvOzs7i6+ur+YtznThxQlq2bClVqlSRuLg41XGIdNkfNzc3MRgMsmDBAtWRyMbpsT98/yFrOnfunDRv3ly8vLwkKipKdZwSZWRkyIsvvigGg0EmTZokJpNJdaT7xvEnKlleXp6MHDlSDAaDTJgwoci1Q7Rm2bJl4urqKo899hhPM0XKsT9E6t26dUs6duwoDzzwgPzyyy8iwvkfaQ8Xd6hEX3/9tdjZ2cno0aM1P5m4IyMjQ5555hmpVKkSf3VASum5Pw4ODuwPKaXn/vD9h6zh+PHjUqdOHWnevLnmFz//7ttvvxV7e3t54YUXdNPt4nD8iUqWmZkp/fv3F2dnZ12drikhIUHq1asnPj4+cvbsWdVxyEaxP0TakZaWJv7+/uLp6SmrVq3i/I80h4s7dFezZs0Sg8EgU6dOVR2lzPLz82Xs2LFiZ2cn33zzjeo4ZIPYHyLzsT9EJTt48KBUq1ZNfH195caNG6rjlFlUVJQ4OztL3759JScnR3WcMuP4E5UsPT1dnnzySfH09JQ9e/aojlNmFy9elJYtW0rt2rUlMTFRdRyyMewPkfakp6dLx44dxdXVlfM/0hwu7lCxvvzySzEYDDJ37lzVUe7LO++8I3Z2dvL999+rjkI2hP0hMh/7Q1SyxMREqVGjhgQFBUlGRobqOGb74YcfxNXVVZ599lldnSKC409UspycHOnRo4dUr15djh49qjqO2W7evCmPPvqo1KtXTy5evKg6DtkI9odImzj/Iy3j4g4VsW7dOrG3t5f33ntPdRSLeO2118TR0VFiYmJURyEbwP4QmY/9ISrZxYsXpV69evLII49Iamqq6jj3bfv27VKpUiUZM2aM6iilwvEnKpnJZJLnnntOnJ2dZe/evarj3Lc///xTmjRpIs2bN9flt7RJX9gfIm3i/I+0ziAiAqL/75dffsGjjz6KESNGYN68earjWITJZMKQIUMQGxuLw4cPo27duqojUQXF/hCZj/0hKllOTg46d+6MlJQU7N69G15eXqojWcTKlSsREhKCr7/+Gi+88ILqOHfF8Se6tw8++ADvvfceNm7ciKCgINVxLOLcuXPw9fVFixYtsGnTJhgMBtWRqIJif4i0h/M/0gMu7lCB9PR0PPLII6hevTq2b98Oe3t71ZEsJisrCx07doSjoyN2794NR0dH1ZGogmF/iMzH/hDd2/jx4/H1119j//79aNKkieo4FjVp0iTMmTMH+/btQ6tWrVTHKRbHn6hku3fvhr+/Pz7++GO8+uqrquNY1M8//4zOnTvjvffew8SJE1XHoQqI/SHSJs7/SA+4uEMFhg0bhi1btuDw4cOoXbu26jgWl5CQgEceeQSjR4/GRx99pDoOVTDsD5H52B+ikm3cuBF9+/bF0qVL8eyzz6qOY3F5eXnw8/PD9evXceDAATg7O6uOVAjHn6hk169fR+vWrdGuXTtERkZWyG/nf/rpp5g4cSJ27tyJTp06qY5DFQj7Q6RNnP+RXnBxhwAA0dHR6NGjB6KiotCzZ0/VccrNt99+i5deegn79u1D+/btVcehCoL9ITIf+0NUspSUFDRp0gQBAQFYsmSJ6jjl5sKFC2jRogVGjRqF6dOnq45TgONPdG8vvPACYmJicPToUXh6eqqOUy5EBD179sSZM2dw5MgR/hKXLIb9IdIezv9IT7i4Q8jOzkbLli3RunVrrFq1SnWcciUi6Nq1K1JSUvDTTz/Bzs5OdSTSOfaHyHzsD9G9jR8/HkuXLsWJEydQvXp11XHK1WeffYY333wTR44c0cypLzj+RCX74Ycf0LlzZ6xatQoDBw5UHadcnTt3Dk2bNsU777zD00uRRbA/RNrE+R/pCRd3CO+++y4++eQTJCQkVMjT4fzTsWPH0LZtW3z22WcYOXKk6jikc+wPkfnYH6KSHT16FG3btsXnn3+OsLAw1XHKXX5+Pjp06ABPT09s27ZNdRyOP9E95Ofno23btnjwwQexdetW1XGs4oMPPsD06dORkJCAOnXqqI5DOsb+sD+kTZz/kd5wccfG3bp1C3Xr1sXEiRPxn//8R3Ucq3nllVcQGRmJ06dP8yfBZDb2h/0h87E/7A/d28CBA3H69GkcOHAARqNRdRyr2L17N5544gns2LEDXbp0UZqF4692/En7Vq1ahZCQEBw7dgw+Pj6q41hFdnY2vL290atXL8ybN091HNIx9of9IW3i/I/zP73h4o6NmzZtGj755BOcPXsWHh4equNYzYULF9CwYUPMmzfPJlbiqXywP+wPmY/9YX+oZCdOnECzZs2wevVqPP3006rjWJWfnx8cHBwQExOjLAPHX+34kz60a9cOjRs3xooVK1RHsar58+fjzTffxOnTp1GrVi3VcUin2B/2h7SH8z/O//SIizs2LCMjA3Xr1sXo0aPx3nvvqY5jdSNHjsT27duRmJjIax9QmbE/7A+Zj/1hf+jennvuOfz88884duyYzXxr8I7t27cjICAAP/30Ezp06KAkA8df7fiT9m3atAm9e/fGkSNH0LJlS9VxrCorKwv169fHs88+i1mzZqmOQzrE/rA/pE2c/3H+p0e29UqlQtauXYuUlBSMGzdOdRQl3njjDSQlJWH79u2qo5AOsT/sD5mP/WF/qGTJyclYvXo1xo8fb3MfLAGga9euaNOmDb766isl++f4qx1/0oevvvoKgYGBNndgGgCcnJwwduxYLFq0CLm5uarjkA6xP+wPaQ/nf5z/6ZXtvVqpwNKlS9GjRw9Ur15ddRQlGjdujEcffRTLli1THYV0iP1hf8h87A/7QyVbs2YNRAQDBw5UHUWZ0NBQrFmzBpmZmVbfN8df7fiT9l2/fh1btmzBsGHDVEdRZvjw4bhx4waio6NVRyGdYX/YH9Imzv84/9MrLu7YqEuXLiEuLg6hoaGqoygVGhqKtWvXIi0tTXUU0hH25zb2h8zB/tzG/lBJwsPD0bdvX1SpUkV1FGVCQkKQkZGBjRs3Wn3fHH+140/at3z5cjg4OKBv376qoyhTu3ZtPPHEEwgPD1cdhXSG/WF/SJs4/+P8T6+4uGOjNm7cCGdnZ/Ts2VN1FKWeeeYZZGZmIjY2VnUU0hH25zb2h8zB/tzG/tDdXL9+HXv27MHgwYNVR1GqRo0aePLJJ7Fu3Tqr7pfjf5uq8Sd9WL9+Pfr16wdXV1fVUZQaMmQINm/ejJycHNVRSEfYn9vYH9ISzv9u4/xPn7i4Y6Pi4uLQuXNnVKpUSXUUAMAvv/yC//u//8PNmzct8rjS8vLyQuvWrbFjxw6LbI9sA/tzG/tD5mB/bmN/6G7i4+NhMBjw5JNPqo4CoGyvfUv3pGvXroiLi4OIWGR7pcHx/4uK8Sfty87Oxt69e9G1a1fVUQqoei/v2rUrMjIy8NNPP1lke1TxsT9/YX9ISzj/+wvnf/rDxR0bJCLYuXMn/Pz8VEcpsGfPHrz22mu4fPmyRR5XFv7+/oiLi7PY9qhiY38KY3+oLNifwtgfKk58fDzatWunmVNClOW1b+me+Pv748qVK0hISLDI9kqD4/8XFeNP2vfjjz8iMzOT7+UAGjRogHr16vG9nEqN/fkL+0NawvnfXzj/0x8u7tigxMREXLlyRTMr0qr5+fnh119/xY0bN1RHIR1gfwpjf6gs2J/C2B8qzp49e9ClSxfVMTShXbt2cHd3x+7du622T47/X1SMP2nfnj17UK9ePdSrV091FE148skn2REqNfanMPaHtILzv79w/qc/XNyxQQkJCTAajWjatKnqKJrQvHlziAhOnDihOgrpAPtTGPtDZcH+FMb+0D+ZTCacPHkSLVq0UB1FE+zs7NC0aVOrfXOQ41+Ytcef9OH48eNo2bKl6hia0bx5c3aESo39KYz9IS3g/K8wzv/0h4s7NujEiRN46KGH4OzsbLFt7tixA2PGjEHjxo1Rp04dDBkyBF988QXy8/OLPHb//v0YOHAg6tevj4CAAMybN6/YczmW9nH3q06dOnB1deXBNSoV9qcw9ofKgv0pjP2hf/r999+RlZUFHx8fi263tD0py2vfWj3x9vZGYmKixbdbHI5/UdYcf9KHxMREeHt7W3Sben4v9/HxwaVLl5CSkmLxbVPFw/4Uxv6QFnD+VxTnf/pirzoAWd/JkyfRuHFji20vPj4egYGB8PDwwNChQ+Hl5YXY2FiMHj0aSUlJmDVrVsFjd+zYgZ49e8LJyQlPPfUUjEYj3nnnnSLntSzt4yzBYDCgYcOG/MNFpcL+FMb+UFmwP4WxP/RPd14LjRo1stg2S9uTsrz2rdkTb29v7Ny50+LbLQ7Hvyhrjj9pn4jg5MmTGD16tMW2qff38jsH6hMTE/HII49YfPtUcbA/RbE/pAWc/xXF+Z/OCNmc4OBgef755y22vRdffFEqVaokN2/eLLgtMzNTatasKT4+PoUe26pVK/H09JTff/+94LaTJ0+Ks7OzAJDjx4+X6XGW0qtXLxk2bJhFt0kVE/tTFPtDpcX+FMX+0N99++234urqatFtlrYnZXntW7MnS5YsEScnJ4ttryQc/6KsOf6kfampqQJANm/ebLFt6v29PCMjQwDIhg0bLLZNqpjYn6LYH9ICzv+K4vxPX3haNhuUmpoKd3d3i23v9ddfx/79+wutFufk5KBKlSqFfl67b98+/O9//8PLL79c6AKCjRo1QmhoaJkfZ0murq5ITU0tl21TxcL+FMX+UGmxP0WxP/R3qampcHNzs+g2S9OTsrz2rd0TNzc3ZGVlITc31+Lb/ieOf1HWHH/SvjvvV5bsid7fyytXrgx7e3ukpaVZfNtUsbA/RbE/pAWc/xXF+Z++8LRsNig1NRWurq4W256Pjw+uX7+OTz75BD/++CPOnDmD3377DSkpKahVq1bB4+5cU6B169ZFttGsWbMyP86S3N3dkZSUVC7bpoqF/SmK/aHSYn+KYn/o7yzdEaB0PSnLa9/aPbnzYTs1NRVVq1a1+Pb/juNflDXHn7SvPA5OV4T3cjc3N14zhO6J/Ske+0Oqcf5XFOd/+sJf7tigzMxMVK5c2WLb++ijj/Cvf/0L06ZNQ25uLgICArB48WL4+voWetyNGzcAAHZ2dkW24eTkVObHWZKzszPS09PLZdtUsbA/RbE/VFrsT1HsD/1dZmYmnJ2dLbrN0vSkLK99a/fExcUFAKzSE45/UdYcf9K+jIwMAOB7+T+4uLgUjA3R3bA/xWN/SDXO/4ri/E9fuLhjgypXroysrCyLbOvatWv497//DQ8PD5w/fx7r16/HjBkz0L9//yL7ePjhhwGg2ItynTlzpsyPs6SMjAyL/zGnion9KYr9odJif4pif+jvnJyckJmZabHtlbYnZXntW7sndw743PmQWZ44/kVZc/xJ++4clLZUTyrKe3l6ejrfy+me2J/isT+kGud/RXH+py9c3LFBljy//9mzZ2EymfDUU08V+nnx+fPnceTIkUKPbd++PRwcHBAXF1fo9ry8PCxfvrzMj7Ok8jjHJlVM7E9R7A+VFvtTFPtDf+fm5mbRazCVtidlee1buyd3xsPSp8soDse/KGuOP2nfndexpa6PUVHey9PS0vheTvfE/hSP/SHVOP8rivM/feHijg2y5B8ub29vuLq6YtWqVdi4cSN+++03LF68GJ06dYK7uzvS0tKQmJgIAKhTpw7GjBmDo0ePYsSIETh06BAOHz6MAQMGIDk5uWCbpX2cJVn6It9UcbE/RbE/VFrsT1HsD/2dpT9clrYnZXntW7snKSkpcHJygqOjo8W3/U8c/6KsOf6kfX8/B78lVIT38szMTOTm5vLgNN0T+1MU+0NawPlfUZz/6YyQzRk2bJgEBwdbbHurV68WV1dXASAApGrVqrJkyRKJiIgQFxcXsbe3L3hsVlaWvPjiiwWPBSBdu3aV8PBwASDHjx8v0+MspW3btvLmm29adJtUMbE/RbE/VFrsT1HsD/1dVFSUAJDk5GSLbbO0PSnLa9+aPZkxY4bUrVvXYtsrCce/KGuOP2mfyWQSFxcXWbhwocW2qff38lOnTgkA+emnnyy2TaqY2J+i2B/SAs7/iuL8T18MIiJlWg0i3fvwww/xzTffICkpyWLbvH79Og4fPoyaNWuiadOmMBgMBbffvHkTDRs2LPT48+fP4+jRo2jSpEnBuSOLU9rH3Q8Rgbu7O+bMmYMRI0aUyz6o4mB/CmN/qCzYn8LYH/qnU6dOoVGjRti/fz/at29vse2WpSdlee1boyfPP/88Ll26hK1bt5bL9v+O41+UNcef9KFNmzYICgrCzJkzLbZNPb+Xb968GT179sTNmzdRpUqVctkHVRzsT2HsD2kB539Fcf6nL1zcsUHff/89nnnmGaSnp8PJyUl1HOUuXLiAOnXqYPfu3Xj88cdVxyGNY38KY3+oLNifwtgf+qf8/Hy4uLhg4cKFCAkJUR1HEzp16oT27dtj7ty55b4vjn9R1hx/0ofBgwcjKysL69atUx1FE2bPno1Zs2bhjz/+UB2FdID9KYz9IS3g/K8ozv/0hdfcsUFNmzaFyWTC8ePHVUfRhGPHjgEAfHx8FCchPWB/CmN/qCzYn8LYH/onOzs7NGrUCEePHlUdRRNMJhMSEhLQpEkTq+yP41+Ytcef9KFp06YF7190+72cHaHSYn8KY39ICzj/K4zzP/3h4o4N8vHxgZeXF3bs2KE6iibs2LEDTZo0gZeXl+oopAPsT2HsD5UF+1MY+0PFefzxx7Fz507VMTTh8OHDuHXrllV/2cbx/4uK8Sft8/X1xenTp3H27FnVUTRhx44d6Ny5s+oYpBPsT2HsD2kF539/4fxPf7i4Y4MMBgOefPJJxMfHq46iCXFxcfD391cdg3SC/SmM/aGyYH8KY3+oOH5+fjhw4ABSUlJUR1EuLi4ONWrUQPPmza22T47/X1SMP2mfr68vnJyceBAMwLlz55CUlAQ/Pz/VUUgn2J+/sD+kJZz//YXzP/3h4o6N8vPzw65du5CTk6M6ilI3b97EoUOHOKGgMmF/bmN/yBzsz23sD92Nn58f8vPzeeAHwPbt2/Hkk08WXIDWGjj+f1Ex/qR9Tk5O6NixI7Zt26Y6inKxsbGoXLkyOnbsqDoK6QT78xf2h7SE87+/cP6nP1zcsVF9+/ZFeno6oqOjVUdRas2aNXB0dERAQIDqKKQj7M9t7A+Zg/25jf2hu6levTo6duyIVatWqY6i1LVr1xAXF4d+/fpZdb8c/9tUjT/pQ58+fbB+/XpkZGSojqLUypUrERwcjEqVKqmOQjrC/tzG/pCWcP53G+d/+sTFHRtVu3ZtdOnSBeHh4aqjKBUeHo5+/frBw8NDdRTSEfbnNvaHzMH+3Mb+UElCQ0MRGRmJ1NRU1VGUWbFiBSpVqoQ+ffpYfd8cf7XjT9o3dOhQZGZmYuPGjaqjKHPp0iXEx8cjNDRUdRTSGfaH/SFt4vyP8z+94uKODQsNDUVUVBRu3LihOooSp0+fxg8//IBnn31WdRTSIfaH/SHzsT/sD5Vs0KBByM/PR0REhOooyoSHh2PAgAFwcXGx+r45/mrHn7SvRo0aCAoKwpIlS1RHUWbZsmXw8PBAjx49VEchnWF/2B/SJs7/OP/TKy7u2LABAwbA2dkZ8+fPVx1FidmzZ+Ohhx5CUFCQ6iikQ+wP+0PmY3/YHyqZp6cnBgwYgNmzZ0NEVMexup07d+LAgQMICwtTsn+Ov9rxJ3148cUXsXXrVhw/flx1FKvLycnBZ599hmHDhvGUUmQW9of9Ie3h/I/zP70yiC2+YqnAlClTMG/ePJw5cwZubm6q41jN5cuXUb9+fXz88cd4+eWXVcchnWJ/2B8yH/vD/lDJjh8/jhYtWiAyMtLmTo0QFBSE3NxcxMfHK8vA8Vc7/qR9IoKWLVuidevWNneq1a+++gpjx47FqVOn8NBDD6mOQzrE/rA/pE2c/3H+p0dc3LFxN27cQN26dTFlyhS8+eabquNYzeuvv46VK1ciKSkJTk5OquOQTrE/7A+Zj/1hf+je+vfvj0uXLmHfvn0wGAyq41jFvn370LFjR8TGxiIgIEBpFo6/2vEn7fvuu+/w3HPPISEhAQ0bNlQdxypyc3Ph4+ODgIAAfPnll6rjkI6xP+wPaRPnf5z/6Q0Xdwhvv/025s+fj4SEBDz44IOq45S7xMREtGzZEp988gnGjh2rOg7pHPtDZD72h6hkhw8fxiOPPIJvv/0Ww4YNUx2n3JlMJnTq1AmVKlXCzp07Vcfh+BPdQ15eHlq1aoX69evbzMXhZ82ahalTp+L48eOoV6+e6jikY+xPPdVxiIrF+R/pDRd3CJmZmWjWrBl8fX1t4ifB3bt3x8WLF3Ho0CHY29urjkM6x/4QmY/9Ibq3sWPHYs2aNThx4gQ8PT1VxylXX331FcaMGYMDBw6gVatWquMA4PgT3cvu3bvRpUsXREZGom/fvqrjlKsLFy6gSZMmmDBhAt555x3VcagCYH+ItInzP9ITLu4QAGDDhg3o168ftm7disDAQNVxys13332HYcOGYc+ePejYsaPqOFRBsD9E5mN/txurcQAAIABJREFUiEp269Yt+Pj4oE+fPvjqq69Uxyk3ly9fRvPmzTF8+HB88sknquMU4PgT3VtoaCh2796NX375Be7u7qrjlJv+/fvj119/xdGjR3kheLIY9odIezj/Iz3h4g4VGDRoEHbt2oUjR47ggQceUB3H4k6dOoV27dph+PDhmDt3ruo4VMGwP0TmY3+ISvb9999j4MCBWLVqFQYOHKg6jsXl5+cjKCgI586dw6FDh+Dm5qY6UiEcf6KSXb16Fa1atcITTzyBVatWqY5TLubPn49XX30V27Ztw5NPPqk6DlUg7A+RNnH+R3rBxR0qkJqaivbt26N27dqIjY2FnZ2d6kgWk52djU6dOiEvLw/79u1D5cqVVUeiCob9ITIf+0N0by+//DKWLVuG/fv3w9vbW3Uci5o6dSpmzJiBvXv3om3btqrjFIvjT1SyHTt2ICAgAJ999hlGjx6tOo5F/fLLL3jsscfw73//G5MnT1Ydhyog9odImzj/Iz3g4g4VcvDgQfj6+mLMmDEV5id5IoLhw4djw4YNOHjwIBo0aKA6ElVQ7A+R+dgfopJlZWUVLBTu2rULVapUUR3JIiIjIzFw4EDNH9Di+BPd25QpUzBr1ixs2bIFXbp0UR3HIi5dugRfX180aNAAMTExMBqNqiNRBcX+EGkP53+kB/zLSoW0a9cOixcvxpw5c/DRRx+pjmMREyZMwMqVK7Fq1SoeWKNyxf4QmY/9ISqZk5MTNmzYgOTkZHTv3h3p6emqI923Xbt2YejQoXjxxRc1/8GS4090b1OmTEGfPn3Qp08fHD58WHWc+5aSkoKePXvCwcEBy5cv54FpKlfsD5H2cP5HuiBExZgzZ44YDAb5+uuvRUQkLy9PcSLzzJgxQ4xGo3z33Xeqo5ANYX+IzMf+EJXs2LFjUrVqVendu7dkZWWpjmO2gwcPSpUqVWTAgAGSn5+vOk6pcfyJSpaVlSX+/v5Ss2ZNOXHihOo4ZsnLy5PU1FR54oknpHbt2nL27FnVkchGsD9E2qT3+Z/JZJL8/HzO/yooLu7QXU2ZMkUMBoO0a9dOrl27pjpOmZhMJpkwYYIYDAb57LPPVMchG8T+EJmP/SEq2Q8//CAeHh7SuXNn+eKLL1THKbNt27aJu7u7dOvWTZcfkO+Mv7+/vyQnJ6uOUyYxMTHy5Zdf6nr8SfuSk5Plsccek+rVq8vPP/+sOk6ZffTRR1KzZk2pXr26HD16VHUcsjHsD5E26Xn+JyISHBwslStXlqCgIM7/Khj+LpKKdejQIezfvx8igkOHDmH69OnIz89XHatUsrOz8dxzz2H27NlYunQpxo4dqzoS2Rj2h8h87A/RvTVr1gzPPPMM9uzZgxkzZuCPP/5QHanUVqxYgR49eqBXr17YsGEDKlWqpDpSmXXq1Ak7d+5EQkIC/Pz8dDX+J0+exMiRI+Hp6YnZs2frcvxJ+9zd3bFt2za0b98e/v7+2LJli+pIpXb69Gl88cUXuHLlCjIyMhAZGYmUlBTVsciGsD9E2qTn+d+KFSuwbds2ZGZm4uzZs9i0aRNERHUsshS1a0ukNUeOHJE+ffqIwWAQg8EgRqNRZs+eLU5OTuLv7y9//PGH6oglOn36tLRv317c3NwkOjpadRyyMewPkfnYH6J7S09PlxkzZoi7u7sAEE9PT2nUqJE88MADEhsbqzpeibKysmTcuHECQMaPH18hTgWRlJQkjRs31t34N27cWACInZ2djBo1Si5duqQ6HlVQOTk5Mnz4cLGzs5PJkydr/lSrERER4uHhIe3atZOXX35ZAIjRaBQ3Nzf54IMPJCUlRXVEsiHsD5E26XX+99prr8lDDz0kAMRgMEizZs1k3bp1YjKZVMek+8TFHRKR2+ePDAkJEYPBIA4ODgJAHBwcpH///iIicujQoYKDB1u2bFGctnirVq0SDw8PadWqlSQmJqqOQzaE/SEyH/tDdG/Z2dkyb948qV69utjb2xccMHn//fclOTlZBg0aJEajUd5++23Jzs5WHbeIxMTEgsXP5cuXq45jUXoc/7179wqAgr+3lSpVkkmTJsnNmzdVR6UKasGCBeLk5CR+fn5y7tw51XGKSE9Pl7FjxwoAGTlypGRmZsqFCxcK/t4CEHt7e3F3d5cpU6bo8nQ8pF/sD5H26HH+JyIyf/58sbOzK/gsYTAYxMfHR1avXs1FHh3j4o6NO378uISEhIjRaCw4qPb3fz/++GPBY5OTk2XIkCECQAYNGiQXL15UmPwvp06dkh49eojBYJBRo0ZJZmam6khkI9gfIvOxP0T3lp+fL6tXr5aHHnqo4APYnY44OjoWuibV559/Ls7OztKkSROJi4tTmPovGRkZ8s4770ilSpWkbdu2cvLkSdWRyo3exr9NmzYFH+7vLPK4ubnJjBkzJCMjQ2FqqqgOHz4s3t7e4urqKh999JHk5OSojiQiIuvWrZN69eqJh4eHrFy5stB9w4YNKzJHsbOzEw8PDx6kJqtif4i0SW/zv/T0dPH09CzUS6PRKACkSZMmXOTRKS7u2KjTp09LWFiYGI1GcXR0LHJQzc7OTjp16lTs/xsVFSX169cv+Hmtqjfla9euyaRJk8TJyUmaNWsmO3fuVJKDbA/7Q2Q+9ofo3kwmk2zYsEGaNGlSZFHnzoH4l156qcj/l5SUJL179y5YCD1+/LiC9CJ5eXmybNkyefjhh8Xd3V0+/fRTyc3NVZLFmvQ0/suWLSvyurrz7eoaNWrInDlzNPktVNK3zMxMeffddwvePyMjI5UdRDp48GDBFzRCQkKKPf3r8ePHi+3Jna5UqVJFZsyYIenp6QqeAdka9odIm/Q0/xMRmTJlSqFf1v39czgAadeunWzYsEHBMyBzcXHHxiQlJUlYWJjY2dkVe1Dt7/+ioqLuup2MjAyZOnWquLu7S5UqVWTy5Mly9epVqzyHixcvyhtvvCGurq7i5eUlH3/8sWa+uUIVG/tDZD72h6h0YmNjpXXr1oU+ZP3zn8FgKPGD4/r166Vp06ZiNBplwIABcvDgQatkz8zMlIULF0rDhg3F3t5ehg0bpplf2lmTHsY/JydHatSocde/w0ajUWrXri1ffvllhbg+EmnLqVOn5KmnnhKDwSAtWrSQ5cuXW+39dPfu3dKjR4+CA1jx8fElPr5bt27F/sL47wepPT09+as3shr2h0ib9DD/ExG5fv26ODk5ldhLANK+fXsu8ugEF3dsyNy5c8XOzq7YFdp/fphr1KhRqb4FkpKSInPmzJEHH3xQ7OzsJCAgQJYsWWLxb19kZmbK6tWrpVevXgXfKORPecma2B8i87E/RPe2e/du6dixY6EPVXf7wBUQEHDP7d359c8jjzwiAKRp06YyZcoUOXPmjMWzHzhwQF555RXx8vISBwcHCQ0NtfnrT+lh/N99990SX2t3fjXWsmVL2bp1q8VzEx07dkxCQ0MLDvC+9NJLsnv3bov/GuH8+fMyZ84cadWqlQAQX19f2bBhQ6n2Ex8fX+Lc5e+L7rVr19bkNVGoYmJ/iLRHD/M/EZHRo0eXuPD69y+ZDRgwgKdq0zgu7tiQ1NRU6dy5c6kOri1cuLBM205LS5Pw8HAJCgoSOzs7cXFxkW7dusnMmTNl3759kpqaWuz/d7dvW9+6dUv27Nkj06ZNEz8/P3FychIHBwfp06ePrFmzRrKyssr8/InuB/tDZD72h6hk+fn5EhISUqoDIABky5Ytpd62yWSSXbt2yYsvvihVqlQRo9Eobdq0kddff12ioqKKPZWKyN07kpOTI7/++qt8+eWXMmjQoIJff7Rq1Uo+/vhjuXTpklljUFFpefyvXLlyzw/2d/41bNjQar+SJNtz5swZef/998Xb21sASO3atSU0NFQWLVokiYmJxZ5WxmQyFbru2N+dP39eIiMjZdy4cdKsWTMBINWrV5dx48bJzz//XOZ8rVu3vusvKf9+cPrrr78u87aJ7hf7Q6Q9Wp7/idz+BeCda+2U9IWyGjVqSEJCQpmfP1mXQUQEZDOys7Px9NNPY+vWrcjLyyv2MVWrVsXFixfh5ORk1j4uXbqETZs2IT4+HvHx8bh8+TIAoE6dOmjcuDFq1qwJV1dXeHh4YMOGDejTpw9u3bqFtLQ0XLx4ESdOnCj0//j5+cHf3x89e/aEl5eXeU+cyALYHyLzsT9EJRMRjB8/HnPnzsXdpucGgwENGzZEYmIiDAZDmfeRlZWFmJgYbN++HfHx8Th27BhEBB4eHvD29kbdunXh6ekJd3d37N27Fy1atICjoyNSU1Nx7do1nDx5Er///jvy8vLg6uqKzp07w8/PD8HBwWjRosX9DkGFp8XxHz58OFasWIHc3Nxi73dwcED9+vURFxeHWrVq3c/TJyqVAwcOYOvWrYiPj8fevXuRmZkJR0dHNGjQAI0aNYKXlxdcXV2RnJyM8+fPo3Xr1khLS8Off/6Js2fPIjExEWlpaTAajWjTpg38/PwQEBAAf39/ODg4mJVp9erVGDx48F3/NhuNRnz77bcYPnz4/Tx1ovvG/hBpjxbnfwDw9NNPY+PGjcXOAe3t7VG9enXs2rULDRs2vJ+nT1bAxR0blJOTg6effhrR0dHIz88vdJ+9vT3ef/99TJw40WL7++2335CQkIDExEScPHkSV65cQVpaGi5duoTExEQ0a9YMDzzwANzc3PDAAw/A29sbTZo0QZMmTVCvXj2L5SCyBPaHyHzsD9G9zZgxA5MmTSr2Pjs7O3zxxRcICwuzyL7+/PNPHD16FCdPnkRiYiLOnTuH5ORkpKSk4NChQ/Dy8kKjRo3g6uqKatWqoVGjRvD29oa3tzeaNWtm9oEeuk0L43/48GG0bdu22Pvs7e3xyCOPIDo6Gh4eHve9L6KyysrKwq+//orExEScOHECp0+fxvXr15GWlobExESkpqaidevWcHNzg6enJ+rWrVvQkRYtWqBKlSoWyZGfn48GDRrg3LlzhQ5QGwwGGI1GrFy5EgMGDLDIvogshf0h0iYtzP8AYP/+/ejQoUOR2x0cHFCtWjXs3bsXDz/8sEX2ReWLizs2KCsrCz179sT+/fuRnp4Ok8lUcF/lypVx6dIli72Rl2TMmDFYsGABJk+ejHfffbfc90dkCewPkfnYH6LSeeaZZ7BmzZoit1epUgWXLl1C5cqVy3X/O3bsgJ+fH+rXr4/Tp0+X676oKGuPf6dOnfDzzz8XWnS3t7dHo0aN8PPPP8PV1bXcMxCVhclkwgMPPFBwgKx58+blvs/58+fj1VdfLeiJ0WiEwWCAyWTC4sWLMWzYsHLPQGQJ7A+RNqmYfz/++OPYt29fQTcdHBxQuXJlODs7Y8+ePWjQoIFVctD9MaoOQNaVm5uLgQMH4tChQ4iLi8Pw4cNhNN5+GTg4OODll1+2yoG1vLw8LF++HACwZMmSct8fkSWwP0TmY3+ISufDDz/E999/j1deeaXg4Adwuyfjxo0r94UdAFi5ciWMRiOSkpJw+PDhct8fFWbt8X/jjTcKLbbb2dkhICAAZ86cwRtvvHHXU+kQqRIXF4c///wTdnZ2WLFihVX2+fzzzxcsdBqNRjg4OCA6OhqTJk3CCy+8gJUrV1olB9H9Yn+ItEnF/HvSpEmFFnYaN26Mw4cPF5yi/MyZM1bJQffJ+pf5IVXy8vJk0KBB4u7uLj/99JOI3L6A76hRowSA2NnZyblz56ySZfPmzYUu1LV//36r7JfIXOwPkfnYH6LSmT9/vgCQTz/9VEREVq1aJfb29mIwGMTe3r7MF0s1R05Ojri7uwsAcXR0lAkTJpT7PukvKsY/NzdXatWqVXBR61dffVVMJpNs3LhR7O3tZdKkSeWegagsnnvuOXF0dBQAUqtWLTGZTFbZ7+TJkwWAODs7y65duwpuf+utt8TBwUHWr19vlRxE94P9IdIeVfNvk8kkjRo1EgDStm1buXHjhoiI3Lx5U9q0aSMNGzaUixcvWiULmY+LOzYiPz9fQkJCxNnZWXbs2FHoPpPJJOPHj5eQkBCr5Xn22WfFwcFBAIiDg4O8/vrrVts3UVmxP0TmY3+ISmfZsmViNBrlgw8+KHT75s2bpVKlShIaGmqVHBs2bCi0APrggw9Kfn6+VfZN6sZ/5syZAkDef//9QrffeV1+9NFH5Z6BqDSysrLE1dW1UE/27t1rlX1fvXpVatasWfBFlTtMJpOMHj1aHB0dZdOmTVbJQmQO9odIm1TOv7/99lt5/PHHJTk5udDtV69elaZNm4q3t7dcvnzZKlnIPFzcsQEmk0leeuklcXR0lOjo6Ls+7s4KbXnLzMwUFxeXQn+4vLy8JC8vzyr7JyoL9ofIfOwPUels2LBBHBwc5JVXXin2/t27d8v//vc/q2QZNGhQwQLonX9//4YtlS9V43/9+nX5+uuvi71v3rx5YjAY5Jtvvin3HET3snbtWjEYDAX9cHR0lHHjxllt/3ebs5hMJgkLC5PKlStLfHy81fIQlQX7Q6RNKuff2dnZkp6eXux9Fy5ckAYNGkjLli3l+vXrVslDZcdr7tiAt956C4sWLcL333+P4ODguz7O09PTKnk2btyIjIyMQrf9+eef2LVrl1X2T1QW7A+R+dgfonuLj4/HM888g6FDh2LOnDnFPubxxx9Hy5Ytyz1LRkYG1q9fj9zc3ILbHBwcrHZOfluncvyrVq2KsLCwYu8bM2YM/vOf/2DkyJGIiIgo9yxEJfnuu+9gb29f8N85OTlYtmwZ8vLyrLL/u81ZDAYDvvjiC/Tt2xe9evXC7t27rZKHqCzYHyLtUT3/dnR0hLOzc7H31a5dG/Hx8UhJSUGPHj2QmppqlUxUNlzcqeAmTZqEOXPmIDw8HL169VIdBwCwbNky2NnZFbrNwcGh4ALXRFrB/hCZj/0hurf9+/ejb9++6N69OxYuXAiDwaA0z7p165CdnV3ottzcXCxfvrzQB04qH1oe//fffx9jx45FSEgIYmNjlWYh25WamoqNGzcW6cPNmzcRFxenKNVf7OzssHTpUnTt2hW9e/fGgQMHVEciKsD+EGmTlud/AFCnTh3Exsbi/PnzCA4ORlpamupI9A9c3KnApk6dilmzZmHJkiUYNGiQ6jgAgJSUFERHRxf5Zkhubi5WrVpV5A8akSrsD5H52B+ie/v111/RvXt3PPbYY1ixYkWRhUcVli1bBqOx6MeD5ORkHtC3Aq2P/6effor+/ftjwIABOHjwoOo4ZIMiIyOL/YWBg4MDvvvuOwWJinJwcMCaNWvg6+uL7t2749ixY6ojEQFgf4i0SuvzPwBo2LAh4uLicPr0afTv3x9ZWVmqI9HfcHGngpozZw7ee+89LFiwACEhIarjFIiIiIDJZCr2vrS0NGzdutXKiYiKYn+IzMf+EN1bUlISgoKC0LhxY0RGRqJSpUqqI+HmzZuIjY1Ffn5+kfu0dOCnotLD+BuNRoSHh8PX1xfBwcE4ceKE6khkY8LDw4v9hWNubi4iIiKQmZmpIFVRjo6OiIiIQPPmzdG1a1ckJCSojkTE/hBpkB7mf3d4e3tj69atOHToEPr168cvR2oIF3cqoHnz5mH8+PH46KOPMHLkSNVxCgkPD7/rfXZ2dpr6w0W2if0hMh/7Q3RvV69eRffu3eHl5YVNmzbBxcVFdSQAwJo1ayAixd6Xm5uLtWvXIj093cqpbIdext/BwQERERHw8fFBYGAgzp49qzoS2Yhr164hPj6+2ANgAJCZmYno6Ggrp7q7ypUrIyoqCt7e3ggKCkJSUpLqSGTD2B8ibdLL/O+OVq1aYfPmzdi7dy+GDh1qtet1Ucm4uFPBLF68GK+++iqmT5+ON954Q3WcQq5evYpdu3bddUKRl5eH9evX8/yNpAz7Q2Q+9ofo3m7duoVu3bpBRBATE3PXCwurEB4eftcPlwCQnZ2NTZs2WTGRbdHT+Ds7OyMqKgrVqlVDYGAgrl69qjoS2YDVq1eXeL+dnR2WLVtmpTSl4+Ligo0bN+LBBx+En58fF0NJGfaHSJv0NP+749FHH8WWLVsQExOD559//q5nxyDr4eJOBbJmzRqEhYVh8uTJ+Pe//606ThErVqwo9jySf5ebm4sNGzZYKRHRX9gfIvOxP0T3lpGRgZ49e+LPP/9EbGwsHnjgAdWRCly6dAl79+4t8cOZFg/8VBR6HH8PDw9s3rwZeXl56NWrF1JTU1VHogpu6dKlJR4Ay8vLQ1RUFJKTk62Y6t48PDwQHR0Nd3d3BAYG4o8//lAdiWwQ+0OkPXqc/93RqVMnREZGIiIiAmFhYSX+faHyx8WdCiIyMhJDhw7FuHHjMGXKFNVxirV8+XKYTCZUqlTprv9EhKfGIatjf4jMx/4Q3VtOTg6eeuop/Pbbb4iNjUXdunVVRypk5cqVMJlMcHR0LLEjW7Zswa1bt1THrXD0Ov61atVCbGwszp8/z3OvU7k6d+4c9u/fD6PReNeOODo6Ijc3F+vWrVMdtwgvLy9s374d9vb26NatG65fv646EtkQ9odIm/Q6/7sjICAA69atw/Lly/Hqq6+qjmPT7FUHoPsXExODIUOGYNSoUZg9e7bqOMXKzs6Gv78//Pz8Cm77448/sHTpUowaNQoeHh4Ftzs4OMBkMt3zW9ZElsD+EJmP/SG6t/z8fAwdOhT79u1DXFwcfHx8VEcqwtPTExMnTix02xdffIHWrVvjscceK3T7H3/8gSpVqlgzXoWn5/Fv0KABYmJi0KVLFwwePBhr1qyBvT0/YpJlXb16FRMmTCh0244dO3D27FkMHz680O1OTk7WjFZqNWrUKOhKQEAAtm/fjqpVq6qORTaA/SHSJj3P/+7o1q0bli9fjkGDBsHe3h6ffvqp6kg2ySD87ZSubd++Hb169cLgwYOxcOFCXR2Q2r9/Pzp06ICkpCQ8/PDDquOQDWJ/iMzH/hDdm4hgxIgRWLVqFbZs2YLOnTurjlRq9evXx8iRI4t86CTr0Nv4//jjjwgMDMSAAQOwaNEiGAwG1ZGogps4cSLi4uKwf/9+1VHK5Ny5c3jiiSdQs2ZNxMTEwM3NTXUkskHsD5E26W3+d0d4eDiee+45TJ06Fe+8847qODZHP0diqIi9e/eiX79+6N27N7755htdHVgjUo39ITIf+0NUOm+88Qa+++47RERE6Gphh6isOnbsiJUrV+K7777Df//7X9VxiDTroYceQmxsLM6ePYvu3bsjPT1ddSQi3WB/iLQpNDQU33zzDaZMmYKZM2eqjmNzeDRGpw4fPoyePXsiMDAQy5cvh52dnepIRLrB/hCZj/0hKp3//ve/mDt3LsLDw9G9e3fVcYjKXa9evbB48WLMnDkTH3/8seo4RJrVqFEjbN26FSdOnED//v2RlZWlOhKRbrA/RNr0/PPP4//+7/8wadIkLFiwQHUcm8LFHR365ZdfEBAQgA4dOmDFihU8rzVRGbA/ROZjf4hKZ+7cuZg+fTq++OILPPPMM6rjEFlNSEgI5s6diwkTJmDhwoWq4xBpVosWLbBt2zYcOHAAgwcPRm5urupIRLrB/hBp07hx4/DJJ59g7Nix+Oqrr1THsRlc3NGZkydPolu3bmjTpg3Wr1+PSpUqqY5EpBvsD5H52B+i0lmyZAlee+01zJo1C2FhYarjEFndmDFj8J///AcjR45ERESE6jhEmtW6dWts3rwZcXFxGDJkCPLy8lRHItIN9odIm8aPH4+3334bo0ePxvLly1XHsQlc3NGRU6dOwc/PDw8//DDWrVsHJycn1ZGIdIP9ITIf+0NUOpGRkRgxYgQmT56MN998U3UcImXef/99jB07FiEhIYiNjVUdh0izHnvsMURHR2PLli0YMWIETCaT6khEusH+EGnTe++9h7feegvDhg3D6tWrVcep8Hg+FZ04f/48AgMD8cADD2DTpk1wdXVVHYlIN9gfIvOxP0SlExsbiyFDhmDUqFGYOnWq6jhEyn366ae4fPkyBgwYgLi4OLRr1051JCJN8vX1RWRkJPr06QN7e3t88803MBgMqmMR6QL7Q6RN06dPR2pqKkJDQ+Hi4oKePXuqjlRh8Zc7OnDlyhUEBgbC3d0dsbGx8PT0VB2JSDfYHyLzsT9EpfPjjz+if//+GDhwIObOnas6DpEmGI1GhIeHw9fXF8HBwThx4oTqSESaFRgYiJUrVyI8PByvvfaa6jhEusL+EGmPwWDAvHnz8Nxzz2HgwIGIi4tTHanC4uKOxl27dg3+/v4QEWzduhXVqlVTHYlIN9gfIvOxP0Sl88svv6Bnz54ICAjAokWLYDRyek10h4ODAyIiIuDj44PAwECcPXtWdSQizerbty9WrFiBBQsW4J133lEdh0hX2B8i7TEYDPj888/Rv39/9O7dG7t27VIdqULip08Nu3XrFoKDg5GTk4P4+Hg8+OCDqiMR6Qb7Q2Q+9oeodH777TcEBQWhTZs2WLlyJeztecZjon9ydnZGVFQUqlWrhsDAQFy9elV1JCLNevrpp7Fw4UJ8+OGH+PDDD1XHIdIV9odIe4xGI5YuXYpevXqhd+/e2L9/v+pIFQ4/gWpUSkoKgoKCcO3aNezatQu1atVSHYlIN9gfIvOxP0Slc+HCBQQGBqJevXpYv349nJycVEci0iwPDw9s3rwZjz/+OHr16oXt27fDzc1NdSwiTRo2bBjy8vIQFhYGe3t7TJgwQXUkIt1gf4i0x87ODuHh4XjqqacQFBSE7du3o23btqpjVRhc3NGgjIwM9O7dG+fOncPOnTtRr1491ZGIdIP9ITIf+0NUOteuXSu4HtXmzZvh6uqqOhKR5tWqVQuxsbF4/PHH0a9fP2zevBmVKlVSHYtIk1544QWkpaXhtddeg5ubG0aPHq06EpFusD9E2uPo6Ig1a9agZ8+eCA4Oxo4dO9C0aVPVsSoELu5oTE5ODp5++mkkJCRgx44d8Pb2Vh0a2OW5AAAgAElEQVSJSDfYHyLzsT9EpZOcnIzg4GDk5uYiLi4OVatWVR2JSDcaNGiAmJgYdOnSBYMHD8aaNWt4OkOiu3jllVeQkpKCMWPGwMHBAWFhYaojEekG+0OkPZUrV0ZUVBS6d++OoKAg7Ny5Ew0aNFAdS/c4k9aQOwfW9u3bh+3bt3MFk6gM2B8i87E/RKVz59dtV65cwe7du1GzZk3VkYh0p0WLFti0aRMCAwMRFhaGRYsWwWAwqI5FpElvv/02MjMzMWrUKLi4uGDIkCGqIxHpBvtDpD3Ozs7YuHEjAgIC4Ofnh127dvGMIfeJizsakZ+fj9DQUOzatQvbtm3juQeJyoD9ITIf+0NUOjk5ORgwYAASEhKwc+dOPPzww6ojEelWx44dsXLlSvTv3x+1atXiha+JSvDBBx8gNzcXw4cPh4uLC/r06aM6EpFusD9E2uPu7o6YmBh07doVgYGB2LlzJ6/1ex+MqgMQYDKZMHz4cERFRWHjxo145JFHVEci0g32h8h87A9R6dxZBP3hhx8QHR3NX7cRWUCvXr2wePFizJw5Ex9//LHqOESaNnPmTISFhWHgwIHYtGmT6jhEusL+EGlPlSpVsGXLFjg6OsLf3x9XrlxRHUm3+MsdxUQEo0ePxpo1a7B+/Xo88cQTqiMR6Qb7Q2Q+9oeodEQEo0aNwsaNGxEdHY327durjkRUYYSEhODWrVsYN24cPD09MWLECNWRiDTJYDBg/vz5yM3NLThA7efnpzoWkS6wP0TaVL169YJrMQYFBSE+Pp7XMzUDf7mj2FtvvYVFixbh+++/R3BwsOo4RLrC/hCZj/0hKp0JEyZgyZIlWLNmDbp06aI6DlGFM2bMGPz3v//FyJEjERERoToOkWYZDAZ88cUX6NevH3r16oXdu3erjkSkG+wPkTbVrl0b8fHxSElJQY8ePZCamqo6ku5wcUehSZMmYc6cOQgPD0evXr1UxyHSFfaHyHzsD1HpvPvuu/j000+xdOlS9OzZU3Ucogpr2rRpGDt2LEJCQhAbG6s6DpFm2dnZYcmSJQgICEDv3r1x4MAB1ZGIdIP9IdKmOnXqIDY2FufPn0dwcDDS0tJUR9IVLu4oMmXKFMyaNQtLlizBoEGDVMch0hX2h8h87A9R6cyfPx/vvvsuFixYgMGDB6uOQ1Thffrpp+jfvz8GDBiAgwcPqo5DpFkODg5Ys2YNfH19ERgYiMOHD6uORKQb7A+RNjVs2BBxcXE4ffo0+vfvj6ysLNWRdIOLOwrMnj0b06ZNw+eff46QkBDVcYh0hf0hMh/7Q1Q6y5YtwyuvvILp06dj5MiRquMQ2QSj0Yjw8HD4+voiODgYJ06cUB2JSLMcHR0RERGBNm3aIDg4GAkJCaojEekG+0OkTd7e3oiJicGhQ4fQr18/ZGdnq46kC1zcsbJ58+bh9ddfx0cffYSXXnpJdRwiXWF/iMzH/hCVzvr16/H8889j4sSJmDhxouo4RDbFwcEBERER8PHxQWBgIM6ePas6EpFmVa5cGVFRUfD29kZgYCCSkpJURyLSDfaHSJtatmyJzZs3Y+/evRgyZAjy8vJUR9I8Lu5Y0eLFi/Hqq69i+vTpeOONN1THIdIV9ofIfOwPUenExcVh8ODBePHFF/Hhhx+qjkNkk5ydnREVFYVq1aohMDAQV69eVR2JSLOcnZ2xceNG1KxZE35+flwQJSoD9odImx599FFs2bIFsbGxeP7552EymVRH0jQu7ljJmjVrEBYWhsmTJ+Pf//636jhEusL+EJmP/SEqnZ9++gl9+/bFU089hXnz5qmOQ2TTPDw8sHnzZuTl5aFXr15ITU1VHYlIszw8PBAdHQ13d3cEBgbijz/+UB2JSDfYHyJt6tSpEyIjIxEREYGwsDCIiOpImsXFHSuIjIzE0KFDMW7cOEyZMkV1HCJdYX+IzMf+EJXO0aNH0aNHD3Tq1AmLFi2C0cgpMpFqtWrVQmxsLM6fP8/zrhPdg5eXF7Zv3w57e3v4+fnhypUrqiMR6Qb7Q6RNAQEBWLduHZYvX45XX31VdRzN4ifXcrZ161YMGTIEo0aNwuzZs1XHIdIV9ofIfOwPUemcPn0a3bp1g4+PD9auXQtHR0fVkYjo/2vQoAFiYmJw+PBhDB48mOddJypBjRo1EPP/2Lvv8KjKtA3g90wmjZBCRykCAgFsgIhSlAWlWgFROiJiA7GtgG3dVVRcGyCwsCBigNBDbxtIRImIoYOQ0Jv0kgpJZjLP9wdfIiVtJjPnfWfm/l3XXtcahnlv5nAfZs5zzpn//Q9WqxUdO3bExYsXVUci8hjsD5GeOnbsiOjoaPznP//BW2+9pTqOljjccaN169bhqaeeQq9evTB27FjVcYg8CvtD5Dz2h6hk/vzzT7Rv3x5VqlTBihUrEBISojoSEd3grrvuwooVKxAbG8vbchAVo3r16oiPj0dKSgoeffRR3tKQyAHsD5GeunXrhh9++AFjx47Fxx9/rDqOdjjccZNff/0VTz31FB5//HFMnTqVt/cgcgD7Q+Q89oeoZM6fP48OHTrA398fq1evRkREhOpIRFSIFi1aYM6cOZg1axbef/991XGItFazZk3Exsbi6NGj6Ny5MzIzM1VHIvIY7A+Rnvr27YupU6fin//8J7744gvVcbTCIz5usG3bNjz66KNo3749oqOj4efnpzoSkcdgf4icx/4QlUxaWho6d+6M9PR0xMbGokqVKqojEVExHnvsMUyfPh1ffPEFvvrqK9VxiLRWr149xMfH48CBA3jqqaeQlZWlOhKRx2B/iPQ0cOBAjB07Fu+++y4mTpyoOo42LKoDeJudO3fikUceQfPmzTF79mxYLHyJiUqK/SFyHvtDVDJXrlzBE088gWPHjuHnn39GzZo1VUciohLq06cPUlJS8Nprr6FcuXIYNGiQ6khE2oqMjMSaNWvQrl07dO3aFYsXL0ZgYKDqWEQegf0h0tNrr70Gm82GoUOHwmKx4MUXX1QdSTleueNC+/btQ8eOHdGkSRMsWbKEO34iB7A/RM5jf4hKxmq1okePHtixYwfWrFmDyMhI1ZGIyEFDhgzB+++/j5deegkLFixQHYdIa/fccw9WrFiBhIQE9O7dGzabTXUkIo/B/hDp6c0338QHH3yAV155BdHR0arjKMfhjoscOHAAbdu2RZ06dbB48WIEBQWpjkTkMdgfIuexP0QlY7fb0b9/f8THx2P58uVo3Lix6khE5KRPPvkEQ4cORZ8+fRAbG6s6DpHWHnjgAaxatQpr1qzBoEGDYLfbVUci8hjsD5GePv74Y7zzzjvo378/5s2bpzqOUiYREXc9+alTpzBt2jR3Pb1W/ve//+HQoUMYOHCgw2dMDx06FOHh4W5K9hfdtsfZs2exYMEC9OvXD6Ghoarj5DNqexRHt+3lTuyP49ifoum2vdyJ/XEc+3M93baPu5w5cwZTp05Fz549cfvttzv8+929fSZMmICUlBS3Pb+jZs6ciTvuuANNmjRRHSVfu3bt0KJFC7c8N1//4un2+osI5s2bh9zcXPTu3dstuXTizte/JOLi4rBx40Zl699o48aN+PPPP/H000+rjpLvlltuwfPPP2/IWs5sj/3792PevHkYPHgwKleu7KZk+jByexSH/Ske+6MXnfrjTnz/Vzwj3384uj1EBMuXL8fJkyfx4osvwmQyuTGdHgraHm4d7iQmJqJ58+aoVauWT9z73263w2wu+cVQ2dnZOH78OA4dOoTatWu7MdlVvrY9HGX09iiOr20v9sezsT9qsT+eTXV/fGn7ONoVwLjtU7t2baSnp6NcuXJuW8OTHTlyBKNGjcKIESPc8vx8/Yum6+uf91HW2z/Mu/v1L4nhw4dj3LhxqFGjhrIMOrtw4QLq1KmDzZs3G7Kes9vDmX8HPZHR26M47E/R2B+96NYfd+L7v6IZ/f7D2e3hK90sbHsY8gk+Li5Oi4N9usk7mGI0bo+CqdoexeH2Khj7oxf2x7OwP3rRpT/cPgUzcvu88847Sg/e6syIv5t8/QvH118tXfbNd955p08c7HPG8OHDERcXZ+ia3B6FU7E9isPtVTj2Ry869sed+P6jcCref3B7FK6w7eH9Yy0iIiIiIiIiIiIiIiIvwuEOERERERERERERERGRB+Fwh4iIiIiIiIiIiIiIyINwuENERERERERERERERORBONwhIiIiIiIiIiIiIiLyIBzuEBEREREREREREREReRAOd4iIiIiIiIiIiIiIiDwIhztEREREREREREREREQehMMdIiIiIiIiIiIiIiIiD8LhDhERERERERERERERkQfhcIeIiIiIiIiIiIiIiMiDcLhDRERERERERERERETkQTjcISIiIiIiIiIiIiIi8iAc7hAREREREREREREREXkQDneIiIiIiIiIiIiIiIg8CIc7REREREREREREREREHoTDHSIiIiIiIiIiIiIiIg/C4Q4REREREREREREREZEH4XCHiIiIiIiIiIiIiIjIg3C4Q0RERERERERERERE5EE43CEiIiIiIiIiIiIiIvIgHO4QERERERERERERERF5EA53iIiIiIiIiIiIiIiIPAiHO0RERERERERERERERB6Ewx0iIiIiIiIiIiIiIiIPwuEOERERERERERERERGRB+Fwh4iIiIiIiIiIiIiIyINwuENERERERERERERERORBONwhIiIiIiIiIiIiIiLyIBzuEBEREREREREREREReRAOd4iIiIiIiIiIiIiIiDwIhztEREREREREREREREQehMMdIiIiIiIiIiIiIiIiD8LhDhERERERERERERERkQfhcIeIiIiIiIiIiIiIiMiDcLhDRERERERERERERETkQTjcISIiIiIiIiIiIiIi8iAc7hAREREREREREREREXkQDneIiIiIiIiIiIiIiIg8CIc7REREREREREREREREHoTDHSIiIiIiIiIiIiIiIg/C4Q4REREREREREREREZEH4XCHiIiIiIiIiIiIiIjIg3C4Q0RERERERERERERE5EF8arize/du1RHoBps2bVIdgUqI/dEP++M52B/9sD96++OPP1RHIACHDx/G2bNnVcfwOdw/qXfp0iWcPHlSdQwqQlZWFnbs2KE6Bl1j7969yM3NVR2DSoD90Q/7QwCwZ88eiIjqGHSN3377TXWEYlmMWGTChAkoV66cEUsVaebMmejUqRMqVqyoOgoA4M8//1Syri7bw2q1Yvz48Xj99ddhNqufM6raHsXRZXuxP1fpsj3Yn5LRZXuxP1fpsj3Yn4Lpsn1yc3MxadIkvPrqqzCZTKrjGLp94uPjYbPZDFuvOBs3bkROTg7atGmjOgpSU1PdvoYOr7+IYOzYsXjllVcQGBioNMu1fOX1z7NlyxZcuXIFrVu3Vh0FgDGvf0mcPn0an376qeoYAK6eBHD48GE89thjqqMAUHPwR6ftAQArV65EvXr1UK9ePdVRtDwYp9P2Yn/02h4A+6OSTu8/YmJi0Lx5c1SvXl11FABq3n/otD3y3pcPGTIE/v7+quMUuj3cOtwJCgpC3bp1sWTJEncuUyI2mw1HjhzBuXPntDhwkadu3bqG/QXRaXsAQEZGBi5cuIDJkycjODhYdRwAxm6P4ui0vdgfvbYHwP4UR6ftxf7otT0A9udGum2fzMxMnDp1CpMnT0ZQUJDqOACM2T61a9fGwYMHcfDgQbeu44iTJ08iJycHhw8fVh0FFSpUQPny5d32/Lq8/pmZmTh//jymTp2KkJAQpVmu5Suvf56TJ0/CZrPhwIEDqqMAcP/rXxIVK1ZEcHAwpk+frjRHntOnT+PKlSs4d+6cFicCAMBdd91l2Fq6bQ8AOHLkCHbu3ImqVauqjgLA2O1RHN22F/uj1/YA2B9VdHr/ISI4fPgwDh06pM1JoUa//9BpewBXr3I8f/48Jk2ahNDQUNVxCt8e4iM+//xzASD33Xef6ij0/x5//HEBIIMGDVIdhYrB/uiH/fEc7I9+2B+99ejRQwDIkCFDVEfxaZcvX5aAgAABIEuXLlUdx2d06NBBAMhLL72kOorPOn/+vPj5+QkA2bFjh+o4VIDU1NT8/dPq1atVxyER2b59uwAQi8UiZ8+eVR2HisD+6If9IRGRBQsWCACpUKGC2Gw21XFIRN5++20BIC1atFAdpUjq70ViABHB5MmTAQCbN2/G6dOnFSeilJQUrF69GgAwb948ZGdnK05EhWF/9MP+eA72Rz/sj94yMjKwdOlSAEB0dLQ2l+T7onXr1iEnJwdmsxnfffed6jg+4dChQ4iNjQUALF68WHEa37Vo0SIAgL+/P2bMmKE4DRVk0aJFsNlssFgsiI6OVh2HACxZsiT/Clf2Rm/sj37YHwKufvYxm824cOEC4uPjVcchAPPnzwdw9VaF+/btU5ymcD4x3Pn5559x5MgRAIDZbM4/aEDqLFiwAHa7HcDVAzl5B9pIP+yPftgfz8H+6If90dvixYthtVoBXP1C83Xr1ilO5LtWrlyJgIAA2O12rF27Fvv371cdyetNnjwZFsvVu2afOXMGu3btUpzIN82aNQvA1e9n+/HHH/kF1xqKioqCyWSCzWbD/PnzceXKFdWRfN68efNgtVphs9kwceJE1XGoCOyPftgfSktLw/Lly2G32+Hv74/Zs2erjuTzdu3ahWPHjgEALBYLpk2bpjhR4XxiuDN16tT8KbiIYOHChYoT0bVnI/j5+eV/iCL9sD/6YX88B/ujH/ZHbzNnzsy/97u/vz/PKFVoyZIlyMnJAXD1A83UqVMVJ/Ju2dnZmDJlSv5w09/fHytXrlScyvecO3cOv/zyS/5A59y5czx7VjPnzp3D+vXr87dRdnY2VqxYoTiVbzt69Cj27NmT/98HDx70uS9k9xTsj37YHwKAmJiY/DsWWK1WzJkzB1lZWYpT+bbFixfnH8uxWq3XvU/XjdcPd1JTUzF//vz8DWC32xEfH4+0tDTFyXzXqVOnsGHDhvw3FDabDUuWLOE20RD7ox/2x3OwP/phf/R28eJFrFu3Ln/7WK1WnlGqyB9//IGTJ0/m/7fVasXkyZP5IdON5s6di5SUlPz/ttlsvNpTgQULFlz33/7+/oiKilKUhgoyd+7c674A3mw2Y+bMmQoT0aJFi+Dn55f/3/7+/jwhQFPsj37YHwKunoB4bTevXLnCO0wodu2xHODqXSVWrVqlMFHhvH64M3v27Jvu126z2VgShebOnQuz+fq/evwAqyf2Rz/sj+dgf/TD/uht7ty5EJHrfsYzStVYuXJl/plqedLT0zFv3jxFibzfd999d93+SUSwadOm6wY+5H7R0dHX7YfyhswZGRkKU9G1oqKirrtVns1mw8qVK9kVha695S1wtTfR0dFIT09XmIoKwv7oh/2hG6+oA3iHCdVOnDiB3bt3X/czPz8//Pe//1WUqGheP9yZNGnSTQcK/Pz8EBMToygR3fiGAgBMJhPPGNEQ+6Mf9sdzsD/6YX/0NmPGjJs6wzNK1Vi2bNlNw2kAGDdunII03m/79u3YvHnzTfsnu92O2NhYRal8z+nTp/Hrr79ed5ANAHJycrBkyRJFqehaR48exebNm2/6t8Jut2PRokWKUvm2Cxcu4LfffrupN9nZ2flfRE16YH/0w/4QAMyZM+e6q3aAv05A5B0m1IiJibnuijrgrxN1r727gS68eriza9cu7Nix46Ydpc1mw/Lly/PvI07GOXjwILZv337TG4rc3FysXbsWZ8+eVZSMbsT+6If98Rzsj37YH70dP368wA+3PKPUeGlpadi4cWOBB3+2bNmCLVu2KErmvcaPH3/TlVLA1e864vfuGGfBggU3HVwBrp4EMH36dOMD0U2io6NhsVgK/LVrv1OPjLN06dKb/r3IM2nSJIPTUFHYH/2wPwQUfAIi8NctxMl4CxcuvOlzKXD1xEMdb9fr1cOdKVOmFPhBCQAyMzP55ZgKFPWGwmQy8cvGNcL+6If98Rzsj37YH73NmTPnprOj8vCMUmPFxsYW+AETuHof+P/85z8GJ/JuqampmDVrVoFf0Gq1WrFs2bJCD/yQa914S7Y8ubm5iIuLw+nTpxWkomtFRUUV2JXc3FysX7+e20iBmJiYAoeidrsdiYmJ131RPKnF/uiH/aGjR49iy5YtBb7/4B0m1Lh48SISEhIKHO5YrVZMnDhRu/fmXjvcycnJKfQfL+Dqh1NOQI03Y8aMQreJ3W7XcgLqi9gfPbE/noH90RP7o7fCzljLwzNKjbNy5cpCB6FWqxUzZ87EpUuXDE7lvaZPn17ovgm4esuWrVu3GpjIN506darAqwfzmM1mzJ492+BUdK29e/ciKSmp0F83m828jZHBLl++XOwJAT/88IPBqagg7I9+2B8Cij4BMTc3F+vWreMdJgy2fPnyIoc3x48fxy+//GJgouJ57XAnJiamyHsTWq3Wm764jNxr+/bt2L9/f6G/brfbsWnTJhw5csS4UFQg9kc/7I/nYH/0w/7oLSkpCbt37y70TTTPKDWOiGDZsmVFDhtyc3M5DHWhiRMnFvnvQUBAAG/NZoC5c+fCbC78o3Fubi6+//57AxPRjWbOnFnoVdEA900qrFmzpshbDVutVnz//fdF/ptCxmB/9MP+EFD4FXV5eIcJ48XExBT5ntDf3x9TpkwxMFHxvHa4M3ny5AIvb7zWuXPnkJiYaFAimjNnTqET6Tw8Y0QP7I9+2B/Pwf7oh/3R2+zZs4s84ABc3T7z5s0zKJHv2r59O86dO1fkY2w2G8aNG6fd7Qg8UVxcHPbt21fka2m1Wnm1pwFmz55d5JBNRPDHH39g9+7dBqaiPCJS5BW4eY/ZsmULDh8+bGAy37Z48eJi319dunQJy5YtMygRFYT90RP7Q3v27CnyijqAg1ejXblyBWvWrIHNZiv0MVarFfPnz0dqaqqByYrmlcOdI0eO4Oeffy70Dbq/v3/+TnTx4sVGRvNZIoLo6OgiCwJc3XFFR0cblIoKwv7oh/3xHOyPftgf/UVHRxd7VqLNZuP2McCqVasAoNiDDWfPnsXGjRuNiOTVoqOjixxsms1mmEwmbNu2DefPnzcwmW85fvw4EhMTSzSw5L3v1di0aROOHz9e7ONEhLfPM4jNZsPSpUuRm5sLf3//Qr83DwCvelOM/dEP+0MAMGvWrGIfIyLYtGkTjh07ZkAiio2NRVZWVrGPy87O1mp/WfQnNw9VsWJF7N27F+np6bDZbEhPT8eCBQswb948TJw4EWlpacjNzUVaWhqqV6+uOq5PyMnJwbRp0677WXJyMoYOHYoZM2agatWq1/2a3W4v8jI4ch/2Rz/sj+dgf/TD/ugtOzsbn3322XU/O3jwIN59912MHz8elStXzv+5yWTi9nGz22+/HV9//TVCQ0MRERGB8PBwvPrqq+jQoQNGjhyJ0NBQlCtXTnVMrzF16lRMnToV2dnZSE9PR1paGu69914899xzaNeuHdLS0pCeno7U1FRcvHgRFStWVB3ZK+Xk5GDSpEmIiIjIv/J2yZIliI2Nxfjx46/7Ox8REaEqpk+79dZbERsbe93Ppk6dim3btmHChAnX/Zw9MUZKSgpGjhwJi8WC0NBQWCwWJCUl4csvv8SqVasQGBiIsLAw+Pn5sTeKsT/6YX8IANq3b4/GjRtf97OhQ4eiffv2ePLJJ6/7eXF3BiHXuOWWWzBt2jSULVs2v5+jR4+GzWbD2LFj8/saGhqKwMBA1XHzmcRH7qkwevRoTJkyBQcPHlQdhf5fYmIimjdvjkOHDqF27dqq41AR2B/9sD+eg/3RD/ujN24fvbRu3Rr33Xcfvv32W9VRfEJgYCCmTZuGPn36qI7i07766it89913OHr0qOooVIgRI0YgLi6Ot7nVyOrVq9G5c2ekpqYiLCxMdRwqAvujH/aHAKBOnTp46aWXMGLECNVR6P+98MILOHHiBFavXq06SqF85tTHrKwsBAUFqY5B5JHYHyLnsT9E5MnCwsKQlpamOoZPyMrKQk5ODg/qaMDPzw+5ubmqYxB5lODgYABXv7OAiBzD/hDpKSgoSPte+sxw58qVK/k7SyJyDPtD5Dz2h4g8GYc7xsl7nTncUY/DHSLH5Z3MVJLvKyCi67E/RHoKDg7Wvpc+M9zhmdNEzmN/iJzH/hCRJ+Nwxzgc7uiDwx0ix/HKAyLnsT9EeuKVOxrhmdNEzmN/iJzH/hCRJwsLC0NqaqrqGD4hb7gTHh6uOAmZzWbY7XbVMYg8Cq88IHIe+0Okp6CgIO176TPDHZ45TeQ89ofIeewPEXkyXrljnLwhGq/cUY9X7hA5jlceEDmP/SHSU3BwsPa99JnhDs+cJnIe+0PkPPaHiDwZhzvG4W3Z9MHhDpHjeOUBkfPYHyI98codjfDMaSLnsT9EzmN/iMiTcbhjnLS0NAQFBSEgIEB1FJ/H4Q6R43jlAZHz2B8iPfHKHY3wzGki57E/RM5jf4jIk4WFhSEjI4MHug2QlpbGq3Y0weEOkePy3u/qfoYzkY7YHyI98codjfDMaSLnsT9EzmN/iMiThYWFQUSQkZGhOorX43BHHxzuEDnOz88PFotF+zOciXTE/hDpKTg4GLm5ubBaraqjFMpnhjs8c5rIeewPkfPYHyLyZOHh4QDAW7MZgMMdfZjNZtjtdtUxiDxOcHCw9mc4E+mK/SHST96JujoPXn1muMMzp4mcx/4QOY/9ISJPljdsSE1NVZzE+6WlpeUP00gtPz8/2O12iIjqKEQeJSgoSOsDYEQ6Y3+I9OMJt0zkcIeIisX+EDmP/SEiT5Y33OGVO+7HK3f04efnBwC8eofIQbzygMh57A+RfnjljkZ4Wxwi57E/RM5jf4jIk3G4YxwOd/SRN9zh9+4QOSY4OFjrA2BEOmN/iPTDK3c0wjOniZzH/hA5jwcliJwAACAASURBVP0hIk9WtmxZ+Pn5cbhjAA539MHhDpFzgoKCtD4ARqQz9odIP7xyRyM8c5rIeewPkfPYHyLyZCaTCWXLluVwxwAc7uiDwx0i5/C2UkTOY3+I9MMrdzQhIsjOzuaZ00ROYH+InMf+EJE3CAsL43DHAKmpqRzuaMJsvvoxmcMdIsfwC+GJnMf+EOmHV+5oIjs7GyLCM6eJnMD+EDmP/SEibxAeHs7hjgF45Y4+8q7csdvtipMQeRZeeUDkPPaHSD+8ckcTedM1njlN5Dj2h8h57A8ReQNeuWMMDnf0wduyETmHVx4QOY/9IdJP3nBH5276xHAnb7rGg2tEjmN/iJzH/hCRN+Bwx/2ys7ORnZ3N4Y4mONwhck5wcLDWB8CIdMb+EOnHz88PFouFV+6olrdz5G1xiBzH/hA5j/0hIm/A4Y775b2+HO7ogcMdIucEBQVpfQCMSGfsD5GedB+8+sRwh2dOEzmP/SFyHvtDRN6Awx33y3t9w8PDFSchgMMdImfpfgCMSGfsD5GedB+8+sRwh2dOEzmP/SFyHvtDRN4gPDwcqampqmN4NV65oxez+erHZA53iByj+wEwIp2xP0R60n3w6hPDHZ45TeQ89ofIeewPEXmD0NBQXrnjZnnDMw539JB35Y7dblechMiz6H4AjEhn7A+RnnQfvPrEcIdnThM5j/0hch77Q0TegLdlcz9euaMX3paNyDm6HwAj0hn7Q6Qn3QevPjHc4ZnTRM5jf4icx/4QkTfgcMf90tLSEBgYiMDAQNVRCBzuEDkrKChI6wNgRDpjf4j0pPvg1SeGO3k7Rx5cI3Ic+0PkPPaHiLxBWFgY0tPTeYsqN0pLS+NVOxrhcIfIOcHBwVofACPSGftDpCdeuaOBrKwsBAYG5n8xJhGVHPtD5Dz2h4i8QXh4OEQEGRkZqqN4LQ539MLhDpFzeOUBkfPYHyI98codDVy5coVnTRM5if0hch77Q0TeIG/okJqaqjiJ90pLS0N4eLjqGPT/8k7K4HCHyDG88oDIeewPkZ545Y4GsrKy+GXWRE5if4icx/4QkTfIG+7we3fch1fu6CXvyh3eipDIMUFBQcjNzYXValUdhcjjsD9EeuKVOxrgmdNEzmN/iJzH/hCRN+Bwx/043NELb8tG5Jy8k5p0PsOZSFfsD5GeeOWOBnjmNJHz2B8i57E/ROQNONxxPw539MLhDpFz8k5q0vkMZyJdsT9EetL9yh2L6gCulJWVhczMTKSmpiI9PR2ZmZm4fPkyTpw4gTJlyuDQoUOIiIhA2bJlERAQoDoukVbYHyLnsT9EzruxP3/88QfKli2L7du3Iz09HWXLlmV/FAsNDYXZbOZwx43S0tJQrVo11TF8Wnp6OjIyMpCZmYlDhw4hNDQUmzdvRkBAAEJCQhASEpK/PzKZTKrjEmklrz8pKSkICwvDTz/9hPLly6NcuXLsD1Ex2B/fZLfbrzt+kJGRAbPZjBMnTmDLli03bX9SR/crdzxyuHPmzBkkJiYiOTkZycnJ2LdvH/bu3YuzZ88W+ftuv/32/P9/6623okGDBqhfvz4iIyPRoEEDNG/eHOXLl3d3fCKl2B8i57E/RM5ztD/dunW76Wfsjxomkwlly5blcMeNUlNTeeWOAUQEe/bswa5du5CUlHTd/igzM/Omxw8bNuymn/n7+6N27dpo2LBh/r6oUaNGaNasGfz9/Y34YxAp4Uh/nn322QKfg/0hX8X++K6srCwkJiZi79692LdvX/72P3z4cIFXCI8fPx7jx4+/7mehoaGIjIxE/fr187d/48aNUb9+faP+GD6NV+64wMWLF7F+/XrEx8cjLi4Oe/bsgYigWrVqiIyMRMOGDfHUU0+hTp06CAkJyT+7M2/CmXcGVmZmJi5duoSMjAwcPHgQycnJ2Lt3LxYtWoQzZ87AbDbjnnvuQdu2bdG2bVs89NBD/JBFHo/9IXIe+0PkPPbHu4SHhyM1NVV1DK/F27K5z759+xAfH5//v7Nnz8Lf3x916tRBgwYN0L59ewwZMgTVqlXL3//k7Y8sFgtSUlKu2x+dOXMG+/fvR3JyMtatW4eJEyciMzMTISEhaN26df6+6N57782/vRuRp2J/iJzH/vgmq9WKTZs25W/3jRs3IisrC2FhYflDuQEDBqBu3bqoWLEiQkNDr9v+OTk5+Z9/8rb98ePH8wdDP/74I44cOQKbzYZq1aqhbdu2aNeuHdq2bYtatWqp/uN7paCgIF6544yMjAwsXLgQUVFR+Omnn2AymdC4cWN07twZX375JVq1alXiD0DlypUr9jEXL17Ehg0bEBcXh9jYWHz77bfw8/NDx44d0a9fPzz55JP8UmzyGOwPkfPYHyLnsT/eKywsjFfuuBGHO651+PBhzJgxAzNmzMCBAwdQtmxZPPjgg/j73/+Odu3a4e677y7xWc4luTJw//79WL9+PeLi4jBmzBiMHDkS5cuXR8+ePdGvXz888MADpf0jERmG/SFyHvvjm0QEP//8M3788UcsXLgQaWlpqFGjBtq2bYsBAwbgb3/7G2677TaXrZeTk4MtW7bkn0Q3ZMgQXLlyBXfccQf69++PPn368Ha/LhQcHKz1lTsQzaxdu1b69u0rISEhEhgYKN26dZMFCxbIxYsXDc1x9uxZmTVrlnTp0kUsFouEh4fLCy+8IAkJCYbm8Ga///67AJBDhw6pjuI12B/fwf64HvvjO9gf12N/vF+LFi3krbfeUh3DawUFBUlUVJTqGB4tIyNDpkyZIg8++KCYTCapUqWKvPnmm5KQkCBWq9XQLH/88YeMHj1aGjVqJACkfv368sknn8iJEycMzeHNhg8fLs2aNVMdw2uwP76F/XEt9sd3HTx4UD744AO57bbbBIA0bdpUxowZI/v37zc0R1ZWlsTHx8srr7wi5cuXF7PZLO3bt5eoqCjJysoyNIs3Gj9+vFSsWFF1jEJpMdzJzc2VpUuXSvPmzQWA3HvvvTJmzBg5e/as6mgiInLhwgWZPHmytGrVSgBIq1atZOnSpWK321VH82g8uOYa7I9vYn9cg/3xTeyPa7A/vqVjx47ywgsvqI7hlbKzswWALF68WHUUj5SWliZjxoyRqlWrSmBgoDz22GMyb948ycnJUR1NRER2794tI0aMkCpVqkhAQID069dPkpOTVcfyeDw47Rrsj29if1yD/fFdu3fvln79+onFYpFbb71Vhg0bJlu3blUdS0Suvq9cunSp9OjRQwICAqRy5cry0UcfSWpqqupoHuv777+XsmXLqo5RKKXDHavVKlFRUdKoUSMxm83y9NNPa1OGwmzYsEE6d+6cfxBj4cKFkpubqzqWR+LBtdJhf3wb+1M67I9vY39Kh/3xTT169JBnnnlGdQyvdO7cOQEgcXFxqqN4lLNnz8p7770n4eHhEhERIR9++KGcP39edaxCZWdny5QpU6Ru3bpisVikT58+snv3btWxPBYPTpcO++Pb2J/SYX98V2JionTt2lXMZrPceeedMmvWLLHZbKpjFerkyZPy1ltvSUhIiFSsWFFGjRolKSkpqmN5nFmzZomfn5/qGIVSNtz55Zdf5O677xaz2Sw9evSQPXv2qIrilB07dki/fv3Ez89P7r33Xvn9999VR/I4PLjmPPaH2B/nsT/E/jiP/fFdgwYNko4dO6qO4ZUOHjwoAGTLli2qo3iE3NxcmTx5soSHh0ulSpXko48+kkuXLqmOVWJ5Vz02bdpUzGaz9OvXT+uDgrriwWnnsD8kwv44i/3xXRcuXJAXX3xRTCaTNG7cWH788UePOlHs/Pnz8tFHH0m5cuWkfPnyMmbMGI/Kr1pMTIwA0OaqvBsZPtw5e/asPPfcc2IymaRTp06yb98+oyO41LZt26Rly5ZisVjk9ddf52VuDuDBNcexP5SH/XEc+0N52B/HsT/01ltvSYsWLVTH8Epbt24VAIbfn90Tbdy4URo3biyBgYHy/vvvS2ZmpupITsvNzZXp06dL5cqVpUqVKjJjxgzeNtIBPDjtOPaH8rA/jmN/fJPNZpMJEyZIRESE1KxZU2JiYlRHKpVLly7Ja6+9Jn5+ftK6dWvZuXOn6kgeYeXKlQJA0tLSVEcpkBkG+uGHH9CgQQOsXbsW8+bNw6pVq1CvXj0jI7hc48aNsWHDBkyePBmzZs1Cw4YNsXjxYtWxyAuxP0TOY3+InMf+EACEhoYiLS1NdQyvlPe6hoWFKU6ir4yMDLz00kto1aoVKlasiB07dmDUqFEoU6aM6mhOM5vNGDBgAJKSktC9e3cMGDAA7dq1w+HDh1VHIy/D/hA5j/3xXbt27cL999+PN954Ay+99BL27NmDrl27qo5VKhERERg3bhwSExNhs9nQtGlTDB8+HDk5OaqjaS04OBgAcOXKFcVJCmbIcCcjIwN9+/bFCy+8gOeeew579+7F008/bcTShjCZTHj++eeRnJyMzp07o1u3bnj99deRnZ2tOhp5AfaHyHnsD5Hz2B+6VlhYGIc7bsLhTtF27tyJ++67D4sWLcKsWbMQGxuLyMhI1bFcply5cpgwYQI2bdqES5cuoWnTpoiJiVEdi7wE+0PkPPbHd02dOhX3338/goKCsGPHDowePRohISGqY7lMkyZNkJCQgIkTJ2Ly5Mlo1aoVDh06pDqWtoKCggAAWVlZipMUzO3DnT179uCBBx7AmjVrsHz5cnz99dcoW7asu5dVonz58pg6dSoWLlyIqKgotGzZEgcOHFAdizwY+8P+kPPYH/aHnMf+sD834nDHfdLS0hAQEJD/wZH+EhUVhRYtWqBy5crYtm0bevbsqTqS2zRr1gybNm1C//790b17d/Tv31/bM0TJM7A/7A85j/3xzf7kndz24osvYvDgwYiPj0fDhg1Vx3ILs9mMwYMHY8eOHTCbzWjSpAnmzJmjOpaWfPrKnaioKDRr1gwVKlTA9u3b0blzZ3cup42uXbvi999/h4igWbNmWLZsmepI5IHYH/aHnMf+sD/kPPaH/SlIWFgY0tPTYbfbVUfxOmlpabxq5wbZ2dno27cvBg4ciDfeeAPr1q1DtWrVVMdyu8DAQIwdOxZz5szBkiVL0Lp1a5w4cUJ1LPIw7A/7Q85jf3y3P8nJyWjWrBn+97//YdWqVRg7diz8/f1Vx3K7WrVqYf369ejTpw969eqF119/Hbm5uapjacVnr9z54osv8Nxzz+G1117zmZ3hterVq4dff/0V3bt3R7du3fD999+rjkQehP1hf8h57A/7Q85jf9ifwoSHh8NutyMzM1N1FK/D4c710tLS0KVLFyxfvhwrV67Ep59+CovFojqWoZ599lls3rwZWVlZaNWqFfbu3as6EnkI9of9IeexP77bn8TERDz44IOIiIjAtm3b0LFjR9WRDBUUFISJEydi9uzZmDJlCp555hltBxkq+NyVOyKCESNG4N1338WXX36JL774wud2hnmCgoLw/fffY9SoURg8eDD++c9/qo5EmmN//sL+kKPYn7+wP+Qo9ucv7E/B8oYPqampipN4n7S0NISHh6uOoYUzZ86gbdu22LNnD+Lj433u4Mq16tWrhw0bNqBmzZpo1aoVEhISVEcizbE/f2F/yFHsz198rT9xcXF45JFHcM899yA2NtbnTm67Vs+ePREXF4f169ejU6dOfN///3S/cseln9ptNhuef/55zJ07F9HR0V59T0pHjBgxAmXLlsWwYcNw6dIljBkzBiaTSXUs0gz7UzD2h0qC/SkY+0Mlwf4UjP25Xt5wh9+743q8cueqw4cPo0OHDgCAhIQE1KlTR3Ei9cqVK4c1a9bg2WefRceOHbFgwQJ06tRJdSzSEPtzM/aHSor9uZmv9Gfu3Lno378/nnnmGUybNs0nbsNWnAceeADx8fHo1KkT2rRpg9WrV6Nq1aqqYynlM1fuiAgGDx6MmJgYLF++nAcGbjBkyBDMnj0bkyZNwjvvvKM6DmmG/Ska+0NFYX+Kxv5QUdiforE/f+Fwx3043AFOnz6NRx55BKGhoTywdoMyZcpg0aJF6N69O7p27Yr169erjkSaYX8Kx/5Qcdifwnl7f5YuXYq+fftiyJAhiIqK4mDnGnfddRcSEhJw+fJldOzYESkpKaojKeUzV+4MHz4cs2bNwpIlS9C+fXtXPa1XeeaZZ2C329GnTx9UqVLF5w8S0F/Yn+KxP1QY9qd47A8Vhv0pHvtzFYc77uPrw5287zgwm81YtWoVKleurDqSdiwWC3744QdcuXIFTzzxBH766Sc0adJEdSzSAPtTPPaHCsP+FM9b+/Pbb7+hV69eGDRoEL755hvVcbRUq1YtxMXFoVWrVujcuTPWrVuHMmXKqI6lhL+/PywWi7ZX7rhkuDN+/Hh8/fXX+OGHH9C5c2dXPKXX6tmzJy5evIihQ4eiYsWKGDhwoOpIpBj7U3LsD92I/Sk59oduxP6UHPsDhIaGwmw2c7jjBmlpabjllltUx1AiJycH3bt3x5kzZ5CQkIAqVaqojqQts9mMmTNn4vHHH0enTp2wYcMG1KtXT3UsUoj9KTn2h27E/pSct/Vn9+7d6NKlC9q3b48JEyaojqO16tWrY+XKlXjooYfQs2dPxMTE+PT3sup65U6pb8s2Z84cDBs2DN9++y0GDBjgikxe79VXX8Xw4cPx0ksvITY2VnUcUoj9cRz7Q3nYH8exP5SH/XGcr/fHbDYjJCSEwx03SE1N9ckrd0QEffr0wZYtW7BmzRrUqlVLdSTtBQQEYP78+ahWrRoeffRRXLp0SXUkUoT9cRz7Q3nYH8d5S3/+/PNPdOzYEY0bN8bcuXPh5+enOpL27rjjDixduhRr167FsGHDVMdRJigoSNsrd0o13ElKSsLgwYPx+uuv4/XXX3dVJp/w+eefo3v37ujbty9OnjypOg4pwP44j/0h9sd57A+xP87z9f6Eh4cjNTVVdQyv46u3ZRs7diwWL16MRYsW4c4771Qdx2OEhYVh5cqVyMzMxKBBgyAiqiORAuyPc9gfAtgfZ3l6f2w2G3r37o2wsDAsXrwYgYGBqiN5jFatWmHGjBmYNGkSoqOjVcdRIjg42Puu3MnKykKvXr3QqFEjfPHFF67M5BNMJhOmTJmC8uXLo1evXsjNzVUdiQzE/pQO++Pb2J/SYX98G/tTOr7en7CwMF654wa+ONxJTEzEiBEj8Mknn6BNmzaq43icqlWrYvbs2Vi2bBm+++471XHIYOxP6bA/vo39KR1P7s9HH32E33//HbNnz/a5912u0L17dwwbNgwvvfQSkpKSVMcxnM5X7pjEyVHriy++iPnz52Pr1q2oXbu2q3P5jF27duGBBx7A22+/jY8//lh1HLc4duwYEhISsGfPHiQnJ+Po0aO4ePEi0tPTkZaWhvDwcISGhqJ8+fKoU6cOIiMj0ahRIzz44IOoWrWq6vhuwf64BvvD/rA/zmN/2B/2x3m+2p+jR48iNzcXubm5CA4ORkhIiE/1xxm5ubnYvn07EhMTkZycjKSkJJw6dQrp6elITU2F3W6H2WxGREQEatSogfr166N+/fpo0qQJWrRogeDgYNV/BJdLSUlB06ZNERkZiRUrVsBsLvWdwn3Wp59+in/9619Yv349WrRooTqOyxXVn/PnzyM3NxeVKlVCSEgIKlWqxP6QQ9gf9of9cZ6n9ScuLg4dOnTA5MmTMWjQINVxPJbVakWbNm2QkZGBTZs2eeV+IiMjAxs2bMCuXbuQnJyMffv24cKFCzhz5gysVisCAwMRGhqK8PBwVKtWDZGRkYiMjMT999+Pu+66CyaTyfDMTg13FixYgGeeeQaLFi3Ck08+6Y5cPmXKlCl4+eWXERcX5xVnDogIfvnlF0RHR2Pt2rU4ePAgAgICULduXURGRqJ27dqoWLEiypQpg+DgYFy+fBmZmZm4cOECDh48iKSkJBw+fBhWqxWNGjVC+/bt0adPH9x3332q/2guwf64FvvD/pDz2B/2h5zH/vhWfxyRmZmJmJgYLFy4EOvXr0dKSgoiIiJQv359NGjQANWrV0dYWBjCwsLg5+eHlJQUXL58GadPn8a+ffuQnJyMkydPIjAwEA888AAef/xx9O7dG7fccovqP5pLPPvss0hISMC2bdtQqVIl1XE8mt1uR5cuXbB//37s3LkTISEhqiOVGvtTNPbHddgf9oec50n9OXfuHO688060b98eM2fOVB3H4x0+fBhNmzZFv379MG7cONVxXOLIkSOYOXMmVq5cicTERNhsNtSsWTN/6F25cmWEhIQgLCwMNpst/ySto0eP5u8709PTUalSJfztb39Djx498PjjjyMoKMiYP4A4KDU1VW699VYZPHiwo7+VivDEE09Iw4YNJTs7W3UUp126dElGjRoltWvXFgDSuHFj+eCDDyQuLk6uXLni0HNlZGTIqlWrZPjw4dKgQQMBIA0bNpRvv/1WMjIy3PQncD/2xz3Yn+uxP+QI9ud67A85gv25nrf2p6R27dolzz33nJQtW1YCAgLksccek7Fjx8quXbvEbrc79FwnTpyQqKgoGTBggERERIifn5906tRJVq5c6ab0xli5cqUAkP/973+qo3iN06dPS7ly5WTEiBGqo5QK+1M89sf12J+bsT9UUp7Sn4EDB0r16tUlLS1NdRSvMWPGDDGbzZKYmKg6itNyc3NlwYIF0qZNGzGZTFK5cmV58cUXZc6cOXL69GmHn2vr1q3y1VdfSfv27cXPz0/KlSsnr7zyihw4cMBNf4K/ODzcef3116VChQpy7tw5d+TxWUePHpWQkBD5/PPPVUdx2MWLF2XkyJESFhYmERER8vbbb8vOnTtdusamTZtkyJAhEhISIhUrVpRPPvnEIw8SsD/uwf4Ujf2horA/RWN/qCjsT9G8pT/F2bZtmzz55JNiMpnkzjvvlO+++86lXbty5YrMnz9fOnXqJCaTSZo2bSqLFi1y2fMbJSsrS+rXry/PPvus6iheZ8KECRIQECB79uxRHcVh7E/JsD/uw/4Ujv2h4ujenw0bNojJZJIFCxaojuJ12rVrJ/fee6/YbDbVURxit9tlxowZ0rBhQzGbzdK1a1dZtmyZ5OTkuGyNkydPyldffSV169YVPz8/6d27tyQlJbns+W/k0HBn586dYrFY5Pvvv3dXHp/26aefSpkyZeTQoUOqo5SI3W6X6dOnS+XKlaVy5coyevRoSU1Ndeua586dkw8++EDCw8OlZs2aEhMT49b1XIn9cS/2p3jsDxWG/Ske+0OFYX+K58n9KUpKSoq89tpr4ufnJ/fdd58sXrzY4TOkHbV161bp3r27mEwm6dChg+zbt8+t67nSP/7xDwkNDZUTJ06ojuJ1cnNzpXnz5vLQQw+5/e+gq7A/jmF/3If9KRn2hwqic3+sVqvcc8890qFDB9VRvNIff/wh/v7+MnHiRNVRSmz79u3SsmVLsVgsMmDAANm7d69b17PZbDJr1iy54447JCAgQN577z3JzMx0+TolHu7Y7XZp0aKFtGzZUrvCeovs7Gxp0KCBdO3aVXWUYp08eVLatWsnfn5+MnToUElJSTF0/dOnT0v//v3FZDLJU089JRcvXjR0fUexP+7H/pQc+0M3Yn9Kjv2hG7E/Jedp/SlKbGys3HLLLVK5cmWZPn264f3asGGD3H333RIYGChff/219v3ev3+/BAUFyddff606itf6/fffxWw2S3R0tOooxWJ/HMP+uB/7U3LsD91I1/588803EhQUJPv371cdxWsNHz5cypUrJ2fPnlUdpUg2m00+/PBDsVgs0rJlS9m+fbvh648bN07Cw8Oldu3asnHjRpc+f4mHOytWrBCTySSbN292aQC6Xt59QHV+ndesWSOVK1eW+vXrK7+/Ynx8vFSvXl1uu+02l5fDldgfY7A/jmF/6Frsj2PYH7oW++MYT+lPQWw2m3zwwQdiNpulZ8+eSgdUVqtVPvvsM7FYLPLEE0/IhQsXlGUpznPPPSeRkZFitVpVR/FqAwcOlHr16ml7ixT2xznsjzHYn5Jjf+hGuvUnMzNTKleurP33AXm6jIwMqVKliowcOVJ1lEL9+eef0qZNGwkKCpIJEyYoHUifOnVKunTpIv7+/i4djpd4uNO6dWt59NFHXbIoFe2+++6Tbt26qY5RoB9++EEsFot0795dLl26pDqOiIicP39eHn30UQkICJA5c+aojlMg9sc47I9j2B+6FvvjGPaHrsX+OMYT+nOjrKwsefrppyUoKEjGjBmjOk6+TZs2Se3ataVOnTqGfGmro44dOyYBAQEyffp01VG83oEDB8Riscjs2bNVR7kJ++Mc9sc47I/j2B/Ko1t/xowZI2XKlJEzZ86ojuL1Ro8eLWFhYVpekb9nzx6pUaOG1K9fX7Zt26Y6johcvbPGmDFjxN/fX/r16+eS7/op0XAnPj5eAMiGDRtKvSAVLyYmRkwmk+zatUt1lOuMGjVKTCaTfPzxx6qj3CQ3N1eGDRsmZrNZu/s9sj/GYn8cx/5QHvbHcewP5WF/HKdzf26UkpIibdq0kfLly8uvv/6qOs5NTp06JY0bN5Zbb71Vu7+Dr776qtSsWVOys7NVR/EJvXr1kkaNGklubq7qKPnYH+exP8ZifxzH/lAeXfqTk5MjNWvWlDfeeENpDl+Rnp4uFSpU0O6zxsaNG6V8+fLy0EMPaXNy27VWrVolISEh8thjj5X6e3hKNNx55JFHpG3btqVaiErObrfLXXfdJX379lUdJd/nn38uZrNZ/vOf/6iOUqS8AxhTpkxRHSUf+2Ms9sd57A+xP85jf4j9cZ6O/bnW5cuXpXXr1lKtWjXZvXu36jiFyjsAWLlyZW2+6Pr06dMSHBys/fDOm/zxxx9iNptl8eLFqqOICPtTGuyP8dgf57A/JKJPf/773/+Kv7+/HD16VGkOX/LRRx9J+fLl7biiVAAAIABJREFUJS0tTXUUERHZunWrhIWFyRNPPCGXL19WHadQeQOoLl26lOoKnmKHOzt37hQAEhsb6/Qi5LhZs2aJxWKREydOqI4iP/74o5hMJq0u/y3KRx99JH5+frJgwQLVUdgfRdgf57E/xP44j/0h9sd5OvXnWjabTbp27SoVKlSQPXv2qI5TrMzMTGnZsqXUqFFDjh07pjqOfPjhh1K1alW5cuWK6ig+5amnnpKHHnpIdQz2p5TYHzXYH+ewPySiR38aNmwogwcPVprB11y4cEHKli0r3333neoocuDAAalataq0a9dOsrKyVMcp1u+//y5ly5aV3r17O33VW7HDnb///e9Sq1YtpV845Iuys7OlQoUK8u9//1tpjvXr14vFYpGPPvpIaQ5HvfLKK1KmTBnZuXOn0hzsjxrsT+mwP76N/Skd9se3sT+lo0t/rvXGG29ISEiI/Pbbb6qjlNi5c+ekQYMGcv/997vkPt7OstvtUqdOHX6ZsQIrVqwQk8kkBw8eVJqD/XEe+6MO++M89odU92fTpk0CQBITE5Ws78sGDBggzZs3V5ohPT1dIiMjpXnz5pKenq40iyPWrFkj/v7+8tlnnzn1+4sc7uTm5kq1atU87oOht3j55ZfljjvuULb+hQsXpGbNmvLYY4953MEhm80m7dq1k3r16im7LJD9UYv9cR77Q+yP89gfYn+cp0N/rrVs2TIxmUwSFRWlOorD9u3bJ6GhofL2228ry/DTTz8JAK2Gdb7CarVK1apV5V//+peyDOxP6bA/6rA/pcP++DbV/Rk6dKg0bNhQydq+bu3atQJA9u7dqyxDv379pFKlSlrcRcFR33zzjVgsFvn5558d/r1FDndWrVolACQ5OdnpcOS8hIQEASBbt25Vsv7jjz8utWrVkosXLypZv7ROnDghlSpVkhdeeEHJ+uyPWuxP6bA/vo39KR32x7exP6Wjuj95Tp48KeXKlVOeozRmzJghJpNJVq9erWT9QYMGSdOmTZWsTSJvvvmm1K1bV8mQl/0pPfZHLfandNgf36aqPzk5OVKxYkX5/PPPDV2XrsrNzZUaNWrIe++9p2T9qKgoMZvNyvY7pWW32+XJJ5+UGjVqSGpqqkO/t8jhTu/evaVVq1alCkelU79+fXnzzTcNXzcmJkZMJpP89NNPhq/tSvPmzROTySQbNmwwfG32Rz32p3TYH9/G/pQO++Pb2J/SUdmfPL1795ZatWpJZmamsgyu0KNHD6lbt67h3zlw5coViYiIkG+//dbQdekvW7duFQDy66+/Gr42+1M67I967E/psT++S1V/Fi1aJGazWYvvfPJVI0eOlGrVqjn93THOunjxolSqVEmGDh1q6Lqudv78ealQoYK88cYbDv2+Qoc7VqtVwsPDZdy4caUOR857//33pU6dOoaumZGRITVr1pR+/foZuq67dOzYUe6++26xWq2Grcn+6IH9KT32x3exP6XH/vgu9qf0VPQnz7p16wSALFmyxPC1Xe348eNStmxZ+ec//2nounn33D958qSh69L1IiMjDf/OCfan9NgfPbA/pcP++DYV/Rk4cKA8+OCDhq5J19u+fbsAkM2bNxu67ssvvyxVq1aVS5cuGbquO0yZMkUsFovs2LGjxL/HjEJs3boVqampeOSRRwp7CBng4YcfxqFDh3DkyBHD1pw0aRIuXryIL7/80rA13WncuHHYs2cPZs+ebdia7I8e2J/SY398F/tTeuyP72J/Sk9Ff/K899576NKlC5544gnD13a16tWr44MPPsBXX32FCxcuGLZufHw87rjjDtxyyy2GrUk3e/jhhxEfH2/omuxP6bE/emB/Sof98W0q+hMfH4+HH37Y0DXpenfffTeqVKli6LY/dOgQpk6ditGjRyMiIsKwdd3l+eefR5MmTfDBBx+U+PcUOtyJi4tDlSpV0KBBA5eEI+e0bNkSwcHBhhUjOzsb33zzDV5++WVUqVLFkDXdrX79+ujVqxc+++wz2O12Q9Zkf/TA/pQe++O72J/SY398F/tTeir6AwDr1q3Dpk2b8P777xu2prsNHToUwcHBGDt2rGFrxsfHo23btoatRwVr27YttmzZgpSUFEPWY39cg/3RA/tTeuyP7zK6P3knVbVr186Q9ahgJpMJbdq0MXS48+9//xs1a9ZEnz59DFvTncxmMz788EMsX74cW7duLdnvKewX8iaeJpPJZQHJcYGBgWjZsqVhxZgxYwYuXryIt956y5D1jPLuu+9i3759WLJkiSHrsT96YH9cg/3xTeyPa7A/von9cQ2j+wNc/YD48MMPo2XLloat6W4hISEYNmwYvvvuO2RmZrp9vZSUFGzfvp0H1zTQtm1biAh++eUXQ9Zjf0qP/dEH+1N67I/vMro/8fHxKFOmDJo3b27IelS4tm3b4ueff4bVanX7WmfOnMH06dMxYsQIWCwWt69nlMceewx33303vv766xI9vsDhTk5ODhISErhD1ETbtm0NOzgwbdo0PP300153CWvDhg3Rvn17/PDDD25fi/3RC/tTeuyP72J/So/98V3sT+kZ2R8AOHbsGNauXYthw4YZsp6RXn75ZVy+fBmLFi1y+1rr16+HiKBNmzZuX4uKVqFCBdx9992Ii4tz+1rsj2uwP/pgf1yD/fFNRvYHuDrcadWqFQIDAw1ZjwrXrl07ZGRkYPPmzW5fa9asWQgODkb//v3dvpaRTCYTXnvtNcTExJTo6rcChzvJycnIzMzEAw884PKA5LgWLVrgxIkTOHPmjFvX2b9/P3777TevK0Wefv36YdWqVW5/HdkfvbA/rsH++Cb2xzXYH9/E/riGUf0Brl4BVa5cOXTq1MntaxmtYsWK6NSpE2bMmOH2tbZu3YrIyEiUL1/e7WtR8Vq0aFHi23qUBvvjGuyPXtif0mN/fJdR/QGubvsWLVoYshYVrX79+qhQoYIh2z4qKgrPPPMMgoKC3L6W0Xr06AGTyYT58+cX+9hChzt+fn6oW7euy8MVZefOnRg7diwuXbrktjX++9//YuXKlcU+buXKlZgzZ47bcjgiMjISALBv3z63rjNnzhzccsstpb5H5ZIlSzBv3jwXpXKdrl27IigoCIsXL3brOuwP+1Ma7A/7w/44j/1hf9gf5/l6fwBg3rx56NWrFwICAkr1PLq+lv369cO6detw/vx5t66TlJRk+Pd+GbEfAjxzX1S/fn0kJye7fR32xzXYH/anNNgf9scX+2Oz2XDw4MH8995G0ekzEKDXto+MjHT7tk9KSsKOHTvQt2/fUj+XjvvOsLAwPP7445g7d27xD5YCjBo1Sm6//faCfsmtJkyYIABkz549blujQoUK8vTTTxf7uDZt2kj16tXdlsNRYWFhMmXKFLeu0aZNG3nuuedK/TzNmjWT2rVruyCR63Xp0kWeeeYZt67B/rA/pcH+sD/sj/PYH/aH/XGer/fnzJkzYjKZZMWKFaV+Ll1fy5SUFPHz85P58+e7dZ177rlHRo4c6dY1bmTEfkjEM/dFq1atEgBy6dIlt63B/rgO+8P+lAb7w/74Wn9ERPbt2ycAZMuWLW5d50Y6fQYS0WvbDxw4UDp06ODWNcaPHy/h4eFis9lK/Vy67junTZsmQUFBcvny5SIfV+iVO0ZPPKlo9erVc+vUMysrC5s2bXLJffqHDh2K4cOHuyCV67Vr1w7r1q2D3W532xrsj37YH9dgf3wT++Ma7I9vYn9cw4j+/PTTT/Dz80Pr1q1L/Vy6vpbh4eG499573fpdUHa7Hfv37+e+SCN528Kd+yL2xzXYH/2wP67B/vgmI/oDXL2Cw2QyoV69em5dh0rOiCt34uPj8dBDD8HPz6/Uz6XrvvPhhx9GVlYWfvvttyIfV+BwJykpScsdojs/0OkuMjISSUlJbnv+rVu3IisrCw899FCpn2vAgAF4+eWXS/08IgIRKfXzXKtNmza4cOECDhw44NLnvRb7ox/2xzXYH9/E/rgG++Ob2B/XMKI/GzduRJMmTRAWFlbq59L9tUxISHDpc17r+PHjuHz5MvdFGrntttsQFBTk1oMs7I9rsD/6YX9ch/3xPUb0B7g6PLr11lsRGhrq1nWc4avbPjIyEseOHcPly5fdtsbGjRvx4IMPuuS5XLHvdMd+s2bNmqhVqxZ+/fXXIh9X4HDn5MmTqFGjhksD3SgxMRE9evRAnTp18Mgjj2D8+PEFvgh79+5Fly5dUKlSJYSEhOC+++7DwoULb3pc//79C7zP3ujRo/Hggw/CZrNd9/M1a9agVatWCAkJQcOGDfHxxx/f9JgbpaSk4NVXX8Wdd96JqlWrolu3biW+92Fp1axZE3/++afbnn/v3r0ICQnBbbfdVurnGjZsGAYOHHjdzwYPHoyhQ4fi5MmT6N27N2677TbcfvvteP7555GZmXndY3fs2IFHHnkEERERKFOmDO6//36sWrWq1LkAoGHDhjCZTG79x4X9KRj7UzLsD/tTEPanZNgf9qcg7E/J+Hp/kpKS0KhRI5c8142vpSOvI+D+13Lfvn1uO9iQ9/fdnfuiku6HgJLtixzdDwGetS8ym82oXr06Tpw44bY12B/XYH8Kx/6UDPvD/hTEm/sDXP0MVLNmTbeuoXrbO7PdAXXbvmbNmhARnDx50i3Pn5aWhlOnTuGOO+5wyfOVZt/pzv0mADRq1Kj4z0AF3astLCxMpk6dWprbwhUpPj5eypQpI+XLl5cXXnhBXnzxRYmIiJBatWpdd7/CX375RUJCQqRWrVry/vvvy6hRo+T+++8XAPLxxx9f95yNGjWSBg0a3LTW888/LwAkOztbRK7er7Bq1ari7+8vPXv2lH/84x/SsmVLASDPPvts/u+78V6Fx48fl1q1aklISIi88sorMnLkSGnSpImYzWb59ttv3fEyXefTTz+VunXruu3533nnHWnSpIlLnqugexU2a9ZMatWqJdWqVZPWrVvL8OHDpU2bNgJAunXrlv+4+Ph4CQoKkmrVqsmbb74pzz//vISHh4vFYpGEhASX5KtWrZp8+eWXLnmugrA/7E9psD/sD/vjPPaH/WF/nOfr/alVq5Z89tlnLnmuG1/Lkr6OIu5/LRMSEgSAHD16tNTPVZDVq1cLAElNTXXL85d0PyRS8n1RSfdDIp67L2rcuLG8++67bnt+9sc12J+r2B/nsT/sj6/1R0TkhRdecOv3u6jc9iXd7iJ6bfu870Hatm2bW57/999/FwBy4MABlzyfs/tOIz4DvfHGG9K8efMiH3PTcMdut8v/tXfnYU3d+R7HPyEJ+64CbohWlmotLsWNqhBF67hhrbVVGZfWcalLe63VThfr4/TWttp67ajVW1u3akfH/bbWjUVxQ0fUihrcLYooWyEsYcn3/uEDVUFITs7JScj39TzzRyGc35cc3mcMP5IolUr66aefRBmiNuHh4eTj40M3btyo/lh6ejq5urpWh2EwGKhz587k6+tLd+7cqb5dWVkZaTQacnR0JK1WW/1xU8IA8NgbuVVUVFC/fv0IAB0/fpyIakYxZswYAkAnTpyo/pher6+eJScnx/w7pg7Lli0jf39/yY4/atSoGv/nLtTTfjkAgObOnUsGg4GIiCorK6lz587k5eVV/d/h4eHk5eVFV65cqf7aS5cukUKhoDFjxogyX69evWj69OmiHOtJ3A/3Yy7uh/vhfoTjfrgf7kc47kdJmzdvFuV4tT1ArO9+rPqY1Pfl3bt3CQAlJSWZfaza/Pvf/yaFQiHKm9vWxpjrEBGZdC0y9Zdrtngt4n64HyLuRyjuh/sh4n6EkrKfKqNGjaIRI0ZIdnw5z72x553Ius59ZmYmAaDDhw9LcvytW7eSQqGg8vJyUY4n5NppqcdAxjyerPGybMXFxaisrJTstQpPnDiBc+fOYdq0aQgKCqr+eHBwMOLi4qr/+8yZMzhz5gw0Gg2aNWtW/XG1Wo3x48ejrKwMBw4cEDRDp06d8Morr1T/t1KpxKuvvgoAOHToUI3b5+bmYtOmTYiIiEC3bt2qP+7o6IhJkyahrKwM27dvFzSLsTw8PFBYWCjZ8QsKCuDl5SXZ8QHAxcUFn3zyCRQKBYCHT9GMjIzEH3/8gYyMDKSmpuLcuXOIjY1F27Ztq78uLCwMy5YtQ9euXUWZw9PTEwUFBaIc60ncD/cjFe7HfNyPMNwP9wNwP0JxP7bVjxjvd/A09d2PACxyX1b9vEj1c1lYWAgXFxdR3tz2ScZehwC+Fj1JymsR9yMe7of7kQL3Yz7uRzip/y0MPDz37u7ukhzbGs69qecdkP/cVz0mlbJ3Nzc3qFQqSY4P2NZjoBr3QtUdL9UvB6reVLZjx441Pvfoa+VduXIFwMM3XXtS586dAQDp6emCZnj22WdrfEyj0QAAbty4UeNzWq0WRASdTodRo0Y99rmqO/jatWuCZjGWh4cHiouLUVFRIckPb2Fh4WM/jFLw8/ODs7PzYx/z8fEBAOh0uuo3ye3QoUONr50+fbpoc0j5fy7cD/cjFe7HfNyPMNwP9wNwP0JxP9xPlfruRwAWuS9dXV2hUqkkvS/lvg4BfC16EvfD/XA/wnE/3A/3I5wlNnd0Oh3atGkjybGt4dybet4B+c+9q6srlEqlpL1LtaFXxZoeA5WUlNT5eLLGR8vKygA83M2TQm5uLgDUupv+6J2WnZ0NAI/tjFbR6/VPPcbT1ntUbW/gVnUH1XZH5eTkAACcnJygVqsf+1yjRo0wZswY0d7E6Wmq7puysjJJfjlQVlYm2Tmv4uLi8tTPEREePHgAAGjevLmkczg7O0v2l5/cD/cjFe7HfNyPMNyPeLgf7kds3I84pO4HqP9+BGCx+9LR0RGlpaWSHFvKn0ljr0OAONei2q5DgO1ei6p+iSs27kc83A/3IwXux3zcj3BS9lNFr9c36HNv6nkH5D/3CoXCZnuvYi2PgZycnAA8/BkyenPHzc0NAFBUVCTJUK1btwYAJCUlYfjw4Y997ubNmzVud+TIEQwePPix2x0/fhwAHtuZVSgUtf7Aa7XaGh+r2nl9VHJyco1jVqn6WHBwMDZu3PjY5yorK1FYWAhXV9caXycmnU4HpVJZ5w+XOdzc3CQ758aqugCePHkSr7322mOfW79+PQwGA8aPH2/2OlLu8HI/3I9cuJ/6cT/CcD/cD8D9CMX9cD+msMR9WVlZiZKSEsn+ulnKn0ljr0OP3taYa5Ep1yHAdq9F3A/3A3A/QnA/3A/3I5yU/VRp6Ofe1PP+6MflOveVlZUoLS2V9NppD9dN4GFDDg4OdZ6vGu+5I/Xr4r3wwgtQq9WIj49/7OMVFRXYtGlT9X936tQJjo6Otb4eYWJiIpRKJQYMGFD9saCgINy8eRPl5eXVH0tLS6t+mtSjLl68iIsXLz72sYSEBCgUCgwcOLDG7du2bYsmTZpg3759jx0fAD777DP4+PggJSWlnu/cPAUFBXB3d69+rT+xeXh4SL6bXp+IiAi4uLjU+Nm4ePEixo8fj6SkJFHWkfLputwP9yMX7qd+3I8w3A/3A3A/QnE/ttFP1QNPqV82pD6WuC91Oh2ISNJrkdzXIcC0a5Ep1yHANq9F3A/3w/0Ix/1wP9yPcFL2U0XKfw9bw7k39bwD8p/7wsJCEJFk7yfm7u5uV4+B6ns8WWNzx9HREY6OjpLdSS1btsRbb72F3377DW+88QbOnDmD1NRUvPLKK/jjjz+qb9esWTNMnz4dqampmDZtGi5cuACtVov58+fj3//+N8aOHYvg4ODq23fr1g1lZWUYP348EhMT8d133yE2NrbWN5lVKBQYPnw41q9fj9OnT2PhwoX4/vvvMWLEiFpfK8/R0RGfffYZCgoKMHbsWJw5cwZXr17FkiVL8I9//AMxMTGIjIyU5P6qIvUF0dfXt/ophHLx9/fH22+/jfPnz2PKlCk4ffo01q9fj9dffx0qlQpTpkwRZZ2cnJzq10kUG/fD/ciF+6kf9yMM98P9ANyPUNyPbfTj5OQENzc3u7gvq75Hqe5Ld3d3lJeXV7/UkJiMvQ4Bpl2LTLkOAbZ5LSooKJDsWsT9iIf74X7kwv3UjfsRTsp+qki5sWcN597U8w7If+6lfj8xX19f6PV6WTfGLfkYyNfXt+4bUS18fX1p5cqVtX1KFKWlpTRp0iQCUP2/vn370oYNGwgAXbx4kYiI9Ho9zZo167HbAaApU6aQXq9/7JhFRUU0cODA6ts0b96c5s2bR/PmzSMA1bdv1KgRTZo0ieLi4kilUlXffuTIkVRcXFx9vD59+lCLFi0eW2PZsmXk7Oxc/TUqlYqmTJlCOTk5kt1XVT755BN69tlnJTv+P/7xD2rTpo0ox3rhhReodevWNT4WFhZW47Yff/zxY+e8oqKC5s2bR0qlsvp+btq0KW3ZskWU2YiIPD09afXq1aId70ncD/djDu6H++F+hON+uB/uRzh77yc8PJzmzp0ryrGevC+NvR+JpL8vf/nlFwJAeXl5ohzvSYcOHSIAlJ2dLcnxjb0OERl/LTL2OkRku9ei9u3b08cffyzZ8bkfcXA/D3E/wnE/3I+99UNENGXKFIqOjpbs+HKee2PPO5F1nfu0tDQCQBcuXJDk+FqtlgDQf/7zH1GOJ/TaaYnHQBMnTqSYmJg6b1Pr5k6bNm3ov//7v0Ub5Glu375NP//8M12/fr3O22VlZdG+ffsoMTGRcnNz67zt/fv3KTU1lQwGQ73r5+fnU2JiIt2/f9/omQsKCigpKYl+/vlnun37ttFfZ663336bunfvLtnxt27dSg4ODlRSUiLZGqbQ6XR07NgxunDhQo1fBJnj7t27BIASExNFO+aTuJ+n434sg/upH/djPO5HHNwP9yMF7kc8r776KsXGxkp2fFNJdV8uXbqU/P39RTvek06fPk0A6MqVK5KtQWT8dYjI+GuRKdchItu6FjVv3pyWLFki2fG5H3FwP3XjfiyD+6kb92MaqfshIpo3bx517NhR0jWI5D/3Qs47kTzn/ujRowRAsvXKy8tJrVbTpk2bJDm+qaS6bhIRRUZG0vTp0+u8Ta2bO/369aOJEyeKOgwzz6BBg2jMmDGSHf/SpUsEgFJSUiRbwxr8/PPPpFAoTL4YmoL7sT7cjzi4H/vE/YiD+7FP3I84LNHPwoULqVWrVpId31qMGzeONBqNZMfPy8sjALR3717J1mCmKSoqIgcHB9q5c6dka3A/4uB+rA/3Ix7ux/5Yoh8iotWrV5OHh4fRm2NMemvXriVnZ2eqqKiQbI0OHTrQnDlzJDu+NSgvLydPT09asWJFnber8Z47ABAaGgqtVlvbp5hMtFotQkNDJTt+aGgoAgICarwRVEMTHx+P9u3bo0mTJpKtwf1YH+5HHNyPfeJ+xMH92CfuRxyW6Kd37964desWrl+/Ltka1iAxMRFRUVGSHd/b2xt+fn58LbIi6enpMBgMkl6LuB9xcD/Wh/sRD/djfyzRD/Dw38OFhYXIzMyUdB1mPK1Wi+DgYCiVSsnW6NOnDxISEiQ7vjU4ffo0CgoKEB0dXefteHPHBpSVleHmzZuSXhAVCgWio6MbfBjx8fHQaDSSrsH9WBfuRzzcj/3hfsTD/dgf7kc8luine/fucHV1bdAbZVeuXMGtW7ckvy/DwsL4WmRFtFotVCoV2rRpI9ka3I94uB/rwv2Ig/uxT5boB0D1v7X53FsPqf/ADQCio6ORmpqKvLw8SdeRU0JCApo1a4awsLA6b1fr5k5YWBiys7ORk5MjyXDMNNeuXUNFRYXkYbz00ktITExEbm6upOvI5fr16zh79iwGDhwo6Trcj3XhfsTB/dgn7kcc3I994n7EYal+HB0dodFosH37dknXkdOOHTvg6+uLrl27SroObzRbF61WizZt2sDR0VGyNbgf8XA/1oX7EQf3Y58s0Q8A+Pv7w8fHh8+9FdFqtfVuSJgrOjoaKpUKu3btknQdOW3fvh0vvfRSvbd76uYOAKSlpYk7FRMkLS0NSqUSwcHBkq4zYsQIqNVq/Otf/5J0Hbls3LgRTZo0Qb9+/SRdh/uxLtyPOLgf+8T9iIP7sU/cjzgs1Q8AjB07FgcOHMC9e/ckX0sOGzduxGuvvQa1Wi3pOmFhYXwdsiJpaWmS/4IF4H7Ewv1YF+5HHNyPfbJUP8DDc3/hwgWLrMXqptfrcfXqVcn/wM3HxweDBw/Ghg0bJF1HLpcuXcLp06cxduzYem9b6+ZOy5Yt0apVKyQlJYk+HDNdUlISOnXqBFdXV0nXcXNzQ2xsLNauXSvpOnIwGAzYsGEDRo8eDZVKJela3I914X7Mx/3YL+7HfNyP/eJ+zGfJfgBg2LBhcHd3x8aNGyVfy9JOnz6N3377zagHiOaKjIxEVlYWLl++LPlarG5EhMOHDyMyMlLytbgfcXA/1oP7EQf3Y58s2Q8A9OzZE4cPH7bIWqxuJ06cgF6vx4svvij5Wn/961+RmJiImzdvSr6Wpa1duxYtW7ZEnz596r1trZs7ABAVFdXgX7/bVljidcarTJs2DSkpKQ3uF0Pbtm3D9evXMXnyZIusx/1YD+7HfNyP/eJ+zMf92C/ux3yW7sfZ2RkTJkzA//zP/0Cv11tkTUv5/PPP0alTJ3Tv3l3ytbp06QJPT88G/f4RtuLixYu4d+9evW/EKwbuRxzcj/XgfsTB/dgnS/YDPHyJrgsXLiArK8si67GnS0hIQKtWrRAUFCT5WgMHDkRgYCAWL14s+VqWlJ+fj1WrVmHKlClwcHjq1k21p94iOjoax44dQ0lJiagDMtNkZWXh0qVLFrsg9ujRA1FRUfj0008tsp4lEBEWLVqEkSNHWuwpodyPdeB+zMf92C/ux3zcj/3ifswnRz8AMGfOHGRnZ2P9+vUWW1Nqly5dwvbt2/HBBx9AoVBIvp5KpUKvXr14o9kKxMfHw8vLC507d7bda24YAAAe4klEQVTIetyP+bgf68H9mI/7sV+W7qd3795QqVQN7g+dbFF8fLxFXk4ZANRqNebMmYM1a9bg7t27FlnTEr755hsAD/+AzxhP3dzRaDTQ6/U4fvy4OJMxQQ4dOgSlUmmxpzICwIcffogDBw7g0KFDFltTSps3b8bZs2fx/vvvW2xN7sc6cD/m437sF/djPu7HfnE/5pOjHwBo2rQpxo8fj4ULF6KoqMiia0vl73//O5599lkMHz7cYmtGR0cjISEBBoPBYmuymhISEhAVFQWlUmmR9bgfcXA/1oH7MR/3Y78s3Y+Hhwe6dOnCG3syKy4uRkpKisX+wA0AJk6cCF9fXyxcuNBia0rp/v37+PrrrzFr1ix4e3sb9TVP3dxp2bIlQkJC8Msvv4g2IDPdr7/+iu7du8PDw8Nia/bt2xfDhg3D1KlTbf4pwYWFhZgzZw7efPNNhIeHW2xd7sc6cD/m4X7sG/djHu7HvnE/5pGrnyoLFiyATqdrEA8S9+3bh507d2Lx4sVGvayDWPr164ecnBycOnXKYmuyx5WWliIhIcFiLw9ZhfsxH/cjP+7HfNyP/ZKrn759+2Lv3r0gIouuy/508OBBlJWVWXRzx9nZGZ9//jlWr16NEydOWGxdqbz33ntwc3PDnDlzjP8iqsNHH31EzZo1o4qKirpuxiSi0+nI3d2d/vnPf1p87Zs3b5KrqystWLDA4muL6a233qLGjRtTdna2xdfmfuTF/ZiP+7Ff3I/5uB/7xf2YT85+qixfvpzUajWdPXtWthnMVVBQQG3atKFRo0bJsn5YWBjNmDFDlrUZ0ZYtW8jBwYEyMjIsvjb3Yz7uR17cj3m4H/smVz8XLlwgAJSUlGTRddmfRo4cSVFRURZf12AwUFRUFHXu3Jn0er3F1xdLQkICKRQK2rp1q0lfV+fmzpUrV0ihUNC+ffvMGo4Js379elKr1fTgwQNZ1l+6dCmpVCo6fPiwLOuba8eOHaRQKGjTpk2yrM/9yIv7MQ/3Y9+4H/NwP/aN+zGP3P1UqaiooN69e1NoaCgVFhbKOotQo0ePJj8/P7p7964s63/66afUqFEjm36QbcuGDBlCAwYMkGVt7sd83I+8uB/zcD/2Tc5+OnXqRG+++aYsa9u7/Px8cnFxoTVr1siyvlarJXd3d3rnnXdkWd9c9+/fp+bNm9PLL79s8tfWublDRNSjRw8aO3asoMGYeWJiYig2Nla29Q0GA8XGxlLz5s0pKytLtjmEuHbtGvn4+NCkSZNknYP7kQ/3Ixz3w7gf4bgfxv0IZy39VMnIyKAmTZrQmDFjyGAwyD2OSVatWkUODg6ybvJmZGSQUqmknTt3yjaDvcrOziZHR0fauHGjbDNwP+bhfuTD/ZiH+7Fvcvfz1VdfkaenJxUVFcmyvj1btWoVOTs7U15enmwzbNy4kRQKBe3YsUO2GYSoqKigAQMGUOvWrQXdf/Vu7qxcuZLc3NyooKBA0IBMmKr/M9q2bZusc+Tm5lLbtm2pS5cuNvMzcP/+fQoJCaHOnTtTcXGxrLNwP/LgfoTjfhj3Ixz3w7gf4aypn0ft27ePVCoVffDBB3KPYrRffvmF1Go1ffzxx3KPQhqNhkaMGCH3GHZn2bJl5OHhIfsvt7gf83A/8uB+hON+mNz93Lt3j1QqFW3evFmW9e1Zr1696LXXXpN7DJo8eTK5urrSsWPH5B7FaJMnTyYXFxdKSUkR9PX1bu7k5uaSu7s7LVmyRNACTJi5c+eSv78/lZaWyj0KXb16lQICAqhv375UUlIi9zh1KigooIiICHrmmWcoMzNT7nG4H5lwP8JwP4yI+xGK+2FE3I9Q1tbPk3744QdSKBS0dOlSuUep1/Hjx8nNzY0mTJhgFX/t/eOPP5JKpaLr16/LPYrdqKiooODgYKt5Bhz3Ixz3Y3ncj3DcD7OWfmJjY6l79+6yzmBvTp06RQDowIEDco9C5eXlNHToUPL19aULFy7IPU69Pv74Y1KpVLRr1y7Bx6h3c4eIaPbs2RQQEGD1DwwbipycHPLw8KAvvvhC7lGqpaamkre3N0VFRVF+fr7c49Tq3r171KVLF2ratClduXJF7nGqcT+Wxf0Iw/0wIu5HKO6HEXE/QllrP0/64osvSKFQ0Keffir3KE+1f/9+8vDwoKFDh1J5ebnc4xDRn7/omTJlityj2I0ff/yRlEolpaenyz1KNe5HGO7H8rgfYbgfRmQ9/Zw8eZIA0KFDh2Sdw57ExsZS586drWJjl4iouLiYevfuTY0aNaITJ07IPU6tDAYDzZ49mxwcHMx+nyKjNncyMzPJxcWFVq5cadZizDjz588nX19fq3sZjfPnz1OzZs2oY8eO9Pvvv8s9zmO0Wi21bduWgoOD6dq1a3KP8xjux7K4H9NxP6wK92M67odV4X5MZ8391Gb58uXk4OBAM2bMsJpfXlVZv349OTo6UlxcHJWVlck9zmNWrVpFTk5OlJGRIfcoDZ7BYKAOHTrQmDFj5B6lBu5HGO7HcrgfYbgfRmR9/fTr1480Go3cY9iFtLQ0cnBwsLr3uCoqKqLBgweTm5sb7dmzR+5xHlNSUkJjx44lR0dH2rRpk9nHM2pzh4ho6tSpFBgYaHUX64amsLCQGjduTAsWLJB7lFrduHGD2rVrR40bN6aff/5Z7nGI6OFfB3h4eFC3bt2s9o2DuR/L4H5Mx/2wKtyP6bgfVoX7MZ0t9FObrVu3kqurK0VGRtLt27flHoeKi4vpb3/7GykUCnrvvfes5i8mH1VWVkaBgYH0zjvvyD1Kg7d9+3ZSKBT022+/yT1Krbgf03E/lsP9mIb7YY+ytn4SEhIIACUnJ8s9SoP3+uuvU7t27aiyslLuUWooLy+nN954gxQKBc2dO9cqNse1Wi2Fh4eTt7c37d+/X5RjGr25c+PGDVKr1fTtt9+KsjCr3fz588nT05Nyc3PlHuWpdDod/fWvfyWFQkHTp0+X7WU+srKyqueYNWsW6fV6WeYwBvdjGdyP8bgf9iTux3jcD3sS92M8W+rnaS5cuEDt2rWjRo0a0bp162T7hdaxY8eoQ4cO5O3tTdu3b5dlBmMtXbqUXF1dreIXkg1VeXk5Pf/88zR8+HC5R6kT92M67kd63I9puB/2KGvtJzIykp+9I7Fz586RUqmkzZs3yz1Knb7//ntydXWl7t2707lz52SZoaKigv75z3+Sh4cHRUREiPp+YEZv7hA9fO12X19fun//vmgDsD9dvXqVnJ2d6csvv5R7FKNs2LCBmjRpQgEBAbR+/XqL7dKWlZXR8uXLycfHh1q0aGHWm05ZEvcjLe7HONwPqw33Yxzuh9WG+zGOrfbzNDqdjt566y1SKpXUu3dvOnv2rMXWzszMrP4rxH79+tnEm0Xr9XoKDQ2lESNGyD1Kg/X111+To6MjXbp0Se5R6sX9mIb7kR73Yxzuh9XGWvtJSUkhBwcHq994sFUGg4H69OlDERERVvmsnSdduHCBunfvTiqVit555x2L/lHe0aNHqXPnzqRWq+n9998X/Y/bTNrcKSgooBYtWtDEiRNFHYI9NGjQIGrfvr1NvXRKTk4OTZ48mRwcHCgsLIzWrVsn2dPcSktLacWKFRQUFERqtZrmzJlDhYWFkqwlBe5HWtxP3bgfVhfup27cD6sL91M3W++nPqdPn6auXbuSQqGgYcOGUUpKimRr/f777zRjxgxycXGh5s2b008//STZWlLYv38/AaD/+7//k3uUBiczM5O8vLzoww8/lHsUk3A/xuN+pMP91I/7YU9j7f1MmjSJAgICZHvGekP2/fffk1KppDNnzsg9itEqKytp9erV1KhRI/L09KR58+ZJ+vLQiYmJ1K9fPwJAGo2GLl68KMk6Jm3uEBFt2bKFFAoFJSYmSjGP3ap6fcr4+Hi5RxHk8uXLNG7cOFKr1RQQEEDvvPOOKIEbDAY6evQoTZ06lXx9fcnZ2ZmmTZtGN2/eFGFqy+N+pMH91I77YcbgfmrH/TBjcD+1a2j91MdgMNCuXbuoa9euBIC6dOlCS5cuFeXBYlFREW3evJkGDRpEKpWKAgMD6ZtvvqHi4mIRJre8kSNH0jPPPEMlJSVyj9KgvP766xQYGEg6nU7uUUzG/RiP+5EG91M77ocZw9r7ycnJoSZNmvD7LoksNzeX/Pz8aObMmXKPIkhBQQEtWrSI/Pz8yMnJiV5++WXauXOnKM+ouX37Ni1atIjat29PACgqKooOHjwowtRPZ/LmDhHRgAED6LnnnuOLokhyc3MpMDCQ4uLi5B7FbDdv3qQFCxZQ27ZtCQA1b96c4uLiaM2aNXTy5EnKy8ur8+uzs7Pp2LFjtHLlSho1ahT5+fkRAHruuefo888/p8zMTAt9J9LhfsTF/fyJ+2Gm4n7+xP0wU3E/f7KHfoyVlJREEyZMIE9PT3JwcKBOnTrR7Nmzafv27XTx4sU6HzRWVlbSjRs3aN++fbRw4UKKjo4mZ2dnUqlUNGjQIPrpp59s8j2KHpWRkUEeHh70/vvvyz1Kg7F3714CQLt375Z7FLNxP3XjfsTH/TzE/TAhbKWf7777jlQqlaTPbrM3EydObBDPiCouLqa1a9eSRqMhBwcHcnNzowEDBtDnn39OBw8erPe9ukpLS+n8+fO0ZcsWmjlzZvWGjq+vL02bNo1Onjxpke9DQUQEE924cQOdO3fGqFGj8O2335r65ewRRIQRI0YgJSUFqampaNKkidwjiSYlJQUHDhxAfHw8jh8/jpKSEgBA48aN4enpCR8fHzg6OkKv1yM/Px95eXnIy8sDALi7u6NXr16Ijo5G//79ER4eLue3IiruRzzcD/fDhON+uB8mHPdjf/2YqqSkBAcOHMChQ4cQHx+PtLQ0EBFUKhUCAgLg7u4Od3d3qFQq6HQ66HQ63Lt3D6WlpQCAFi1aQKPRQKPRYODAgfDz85P5OxLP//7v/2LKlCn49ddfERMTI/c4Nu3u3bvo1KkTYmJisHHjRrnHEQ3383Tcj3i4H+6HCWdL/RARXnrpJVy5cgVnzpyBt7e33CPZtE2bNmHs2LHYuXMnhg4dKvc4osnIyMDevXsRHx+PhIQEZGVlAQBcXFweu3aWlZWhsLCw+tppMBigVCoRHh4OjUaDvn37QqPRwNHR0WKzC9rcAYA9e/Zg2LBhWL9+PcaOHSv2XHZj6dKlePfdd7F//35oNBq5x5FMZWUlbt26Ba1Wi+vXr6OwsBD5+fkoLS2Fi4sLvL294eXlhWeeeQYhISEIDAyEQqGQe2zJcD/i4H64H+5HOO6H++F+hON+7LMfcxQXFyM9PR3p6em4c+dO9YPCioqK6geLAQEBCAkJQUhICHx9feUeWVJxcXHYv38/UlNT0axZM7nHsUkGgwH9+/fH7du3cfr0aXh6eso9kmS4n8dxP+bjfrgf7kc4W+znwYMH6NixI7p06YJdu3bxv1cFunr1Krp06YI33ngDX331ldzjSOrBgwfQarW4evUqsrKyqjfDnZycqq+dLVu2RGhoKIKDg+Hk5CTbrII3dwBg5syZ+OGHH3Dq1CmEhYWJOZddOHXqFF588UXMnz8ff//73+Ueh1kY92Me7se+cT/m4X7sG/djHu6HMfPpdDpERETA398fhw4dglKplHskm/Phhx9iyZIlOHbsGDp16iT3OMyCuB/zcT/2i/sxn632k5SUhL59++Lrr7/GjBkz5B7H5pSWlqJnz55QqVRITk626DNTWN3M2tzR6/WIjIxEWVkZjhw5Ai8vLzFna9AyMzPRs2dPhIaG4pdffoGDg4PcIzEL436E434Y9yMc98O4H+G4H8bEc/bsWfTo0QPTpk3DkiVL5B7HpuzcuRMjRozAt99+i0mTJsk9DpMB9yMc98O4H+FsvZ+FCxfi008/xb59+9CnTx+5x7EZRIRx48Zhz549OHPmDFq3bi33SOwRZm3uAMCtW7cQGRmJtm3b4tdff4Wzs7NYszVYf/zxB/r06QO9Xo/k5GQ0atRI7pGYTLgf03E/rAr3Yzruh1XhfkzH/TAmvh9//BFxcXH44osv8O6778o9jk04cuQIBgwYgPHjx2PFihVyj8NkxP2YjvthVbgf0zWEfgwGA0aNGoUDBw7g8OHDeP755+UeySbMnTsXX3/9Nfbs2YMBAwbIPQ57gtmbOwCQlpaG3r17IzIyEtu3b4dKpRJjtgaprKwMgwcPRlpaGo4ePYqgoCC5R2Iy436Mx/2wJ3E/xuN+2JO4H+NxP4xJZ8WKFZg+fTrWrFmDCRMmyD2OVUtLS0OvXr3Qu3dvbNu2jV9OiHE/JuB+2JO4H+M1pH6q/l1/7tw5JCcnIzg4WO6RrNry5csxY8YM/PDDDxg3bpzc47BaKD/55JNPzD2In58fIiMjsWDBAmRkZGDw4MH85lS1qKysxOjRo5GcnIxDhw4hNDRU7pGYFeB+jMP9sNpwP8bhflhtuB/jcD+MSSsiIgIlJSX44IMP0KVLF/4ly1PcunUL0dHRaNeuHXbu3Mmvdc8AcD/G4n5Ybbgf4zS0fpRKJYYNG4Zt27Zh7dq1GDVqFNzc3OQeyypt2rQJf/vb37B48WJMnTpV7nHY05CIdu3aRWq1miZMmEDl5eViHtrmlZSUUGxsLLm6utLhw4flHodZIe7n6bgfVh/u5+m4H1Yf7ufpuB/GLMNgMNCECRPIycmJtm7dKvc4VictLY1atmxJHTt2pPz8fLnHYVaG+6kb98Pqwv3UrSH3k5mZSW3btqXQ0FC6ceOG3ONYndWrV5NSqaT33ntP7lFYPUTd3CEiOnDgAHl4eNDgwYOpqKhI7MPbpLy8POrduzf5+PjQkSNH5B6HWTHupybuhxmL+6mJ+2HG4n5q4n4YsyyDwUCzZ88mhUJBX331ldzjWI2TJ09S48aNqVu3bpSdnS33OMxKcT+1436YMbif2tlDP5mZmdSpUydq2rQppaamyj2O1Vi0aBEpFAqaO3eu3KMwI4i+uUNElJKSQk2aNKFu3brRgwcPpFjCZty9e5c6duxITZs2pbNnz8o9DrMB3M+fuB9mKu7nT9wPMxX38yfuhzH58C8U/rRnzx5ydXWlIUOGUHFxsdzjMBvA/fyJ+2Gm4n7+ZE/9FBYWUkxMDHl7e9v9M/UNBgP913/9FymVSlq5cqXc4zAjOUjxUm8RERFISkrC3bt3ERkZiXPnzkmxjNU7cuQIIiIioNfrceLECYSHh8s9ErMB3M9D3A8Tgvt5iPthQnA/D3E/jMlr7ty5WL16NRYvXozXX38dhYWFco9kcUSERYsWYfjw4Rg9ejR27NgBFxcXucdiNoD74X6YcNyPffbj7u6O3bt3Q6PRoH///li1apXcI8kiOzsbgwYNwooVK7BlyxZMmTJF7pGYsaTcObpz5w716dOHnJ2d6dtvv5VyKatiMBjos88+I5VKRUOHDqXc3Fy5R2I2iPvhfphw3A/3w4TjfrgfxqzB/v37yc/Pj0JCQuzqpVIePHhAAwcOJLVaTUuWLCGDwSD3SMwGcT/cDxOO+7HPfioqKujDDz8kBwcHeu2116igoEDukSzmyJEj1KJFC2rVqhWdOHFC7nGYiSTd3CF6GMf8+fNJqVTSyy+/THl5eVIvKasHDx7QX/7yF1KpVDR//nyqrKyUeyRmw7gf7ocJx/1wP0w47of7YcwaZGVlUUxMDDk7O9PSpUvlHkdyJ0+epKCgIGrZsiUdPXpU7nGYjeN+GBOO+7Ff8fHx1LRpUwoODm7wm3sGg4GWLl1KarWahgwZQjk5OXKPxASQfHOnSlUczZs3p3Xr1llqWYsxGAy0bt068vf3p8DAQLu/GDJxcT+MCcf9MCYc98MYk9ujm83R0dF08eJFuUcSXX5+Ps2cOZOUSiUNHTqUf7nCRMP9MCYc92O/srKyqH///qRWq2nmzJlUWFgo90iiO3fuHEVGRvIftzUAFtvcISK6d+8excXFkUKhoL/85S909epVSy4vmfPnz1OvXr1IqVTSjBkzKD8/X+6RWAPE/TAmHPfDmHDcD2PMGiQnJ9Pzzz9PTk5O9NFHHzWIN3g2GAy0YcMGCggIID8/P1q7dq3dvQwOswzuhzHhuB/7VFFRQcuWLSMvLy8KCgqiXbt2yT2SKP744w96++23SaVSUc+ePens2bNyj8TMZNHNnSpJSUnUvn17cnZ2po8++shmX9P83r17NGvWLFKpVNStWzf6z3/+I/dIzA5wP4wJx/0wJhz3wxiTW3l5OX311Vfk4eFBbdq0oX/96182+5emx48fpz59+pCDgwNNnTrVZq+pzHZwP4wJx/3Yr8zMTBozZgwBoMGDB9O5c+fkHkmQsrIyWrNmDTVt2pQaN25M3333HW/oNRCybO4QPfyh+vLLL8nHx4c8PDxo3rx5lJWVJdc4Jrl9+zbNmDGDXFxcKCAggFatWmWzF3Vmm7gfxoTjfhgTjvthjFmDO3fu0JgxY8jBwYHCwsJo3bp1VF5eLvdYRklISKB+/foRAOrRowelpKTIPRKzM9wPY8JxP/YrPj6ewsPDSaFQ0NChQ+nkyZNyj2SU0tJSWrFiBQUFBZFarabJkydTdna23GMxEcm2uVOloKCAFi1aRP7+/uTq6kqzZs2iS5cuyT1Wrc6ePUtvvvkmOTo6UmBgIH3zzTcN4umYzHZxP4wJx/0wJhz3wxizBpcvX6Zx48aRWq2m1q1b0/LlyykvL0/usWooKyujHTt2UGRkJAGg6OhoOnjwoNxjMTvH/TAmHPdjnwwGA+3evZu6detGAKh///7066+/UkVFhdyj1XD//n1avHgxNWvWjJydnWnatGl08+ZNucdiEpB9c6dKcXExLVu2jFq1akUAqGvXrvTNN9/QgwcPZJ3rzp079OWXX9Lzzz9PACgkJITWrFlDer1e1rkYexT3w5hw3A9jwnE/jDFrcOPGDZo6dSq5uLiQs7MzjRw5knbv3k1lZWWyznXy5EmaPn06NW7cmBwcHGjQoEF09OhRWWdi7EncD2PCcT/268CBAxQdHU0AqFmzZvTuu+/K/pJtJSUltGXLFhoyZAip1Wry9PSk2bNn0927d2Wdi0lLQUQEK2IwGJCQkIANGzZg27ZtKCsrQ0xMDGJiYqDRaPDcc89BoVBIun5qaioSEhKwb98+JCQkwNPTE6+++iri4uLQs2dPSddnzBzcD2PCcT+MCcf9MMasQUFBAbZt24Z169bhyJEjaNSoEYYNGwaNRoPo6GgEBARIur5Op8ORI0eQkJCAPXv24PLly3j22WcRFxeHsWPHomXLlpKuz5g5uB/GhON+7NfVq1exYcMGbNy4EdevX0d4eDgGDx6M6Oho9OzZEy4uLpKu//vvvyMhIQGHDh3C7t27UVhYiJiYGMTFxSE2Nhaurq6Srs/kZ3WbO48qKirCjh07sG3bNiQlJSEvLw9+fn6IiorCiy++iLCwMISGhqJly5aCHrAbDAbcunULWq0WFy9exJEjRx5bJzo6Gq+88gqGDBkCJycnCb5DxqTD/TAmHPfDmHDcD2PMGty6dQsbN27E3r17kZKSgvLycrRr1w4ajQYvvPACwsLCEBISAh8fH0HHLykpQXp6OtLT03H+/HkkJCQ8tk7//v0xevRoREREiPydMSY97ocx4bgf+0RESE5OxubNm3Hw4EFcuXIFTk5O6NGjB6KiotChQweEhoaibdu2gh+jZGdnQ6vV4vLlyzh16hTi4+Nx5coVODs7o3v37hg8eDBGjx6Npk2bivzdMWtm1Zs7jzIYDDh79izi4+ORkJCAkydPIicnBwDg6uqKkJAQtG7dGp6ennB3d4e7uzt8fHygVqtRVlaG/Px8FBYWQqfToaCgANeuXUN6ejr0ej0AwN/fH927d4dGo4FGo0H79u35LzxZg8H9MCYc98OYcNwPY8wa6HQ6JCcnIz4+HklJSTh//jxKS0sBAE2aNEFYWBgCAgLg7e1dfS1yc3ODWq2GTqeDTqfDH3/8gYKCAuTm5iI9PR23b9+GwWCASqXCM888g969eyM6Otoif6HNmCVxP4wJx/3Yr4yMDMTHxyM+Ph7Jycm4ceMGDAYDlEolgoKCqjf4qh7/uLm5wc3NDeXl5SgsLERRUVH1+c/IyIBWq0Vubi4AwM3NDeHh4dXn3RLPEGLWy2Y2d2qTk5NTvWOp1Wpx69at6l8A6HQ65OfnQ6/Xw9nZ+bELpaenJ4KCgqr/cjQ0NBTe3t5yfzuMWRT3w5hw3A9jwnE/jDG5VT0DMD09vfpalJ2djby8POh0uupfqJSXl1dfg7y9veHh4QEvLy+EhoYiJCQEYWFhaNu2LRwdHeX+lhizGO6HMeG4H/tVWlpa/YwrrVaL9PR0FBQUQKfTVZ9/nU4HJyen6nPv7u4OLy8v+Pv7Vz8GCgkJQWBgoNzfDrMiNr25wxhjjDHGGGOMMcYYY4wxZm8c5B6AMcYYY4wxxhhjjDHGGGOMGY83dxhjjDHGGGOMMcYYY4wxxmwIb+4wxhhjjDHGGGOMMcYYY4zZEBWA/8g9BGOMMcYYY4wxxhhjjDHGGDPO/wNk6H+17lE5FwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "total.visualize()" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "3831cf79", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 4.26 ms, sys: 1.72 ms, total: 5.98 ms\n", + "Wall time: 4.02 s\n" + ] + }, + { + "data": { + "text/plain": [ + "92" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%%time\n", + "total.compute()" + ] + }, + { + "cell_type": "markdown", + "id": "c5c755fb", + "metadata": {}, + "source": [ + "## Extra resources\n", + "\n", + "For more examples on `dask.delayed` check:\n", + "- Main Dask tutorial: [Delayed lesson](https://github.com/dask/dask-tutorial/blob/main/01_dask.delayed.ipynb)\n", + "- More examples on Delayed: [PyData global - Dask tutorial - Delayed](https://github.com/coiled/pydata-global-dask/blob/master/1-delayed.ipynb)\n", + "- Short screencast on Dask delayed: [How to parallelize Python code with Dask Delayed (3min)](https://www.youtube.com/watch?v=-EUlNJI2QYs)\n", + "- [Dask Delayed documentation](https://docs.dask.org/en/latest/delayed.html)\n", + "- [Delayed Best Practices](https://docs.dask.org/en/latest/delayed-best-practices.html)\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/notebooks/2_Schedulers.ipynb b/notebooks/2_Schedulers.ipynb new file mode 100644 index 0000000..d437434 --- /dev/null +++ b/notebooks/2_Schedulers.ipynb @@ -0,0 +1,1033 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "ba6b2bc0", + "metadata": {}, + "source": [ + "\"Dask\n", + " \n", + "This notebook was inspired in the materials from: \n", + "\n", + "- https://github.com/coiled/pydata-global-dask/\n", + "\n", + " \n", + "# Schedulers\n", + "\n", + "So far we have only seen the power of `dask.delayed` and we got familiarized with the idea of task graphs and we learn that these task graphs need to be executed to get the results of our computation. But what does it mean \"to be executed\"? Who takes care of this? Well, as you might have guess from the title of this notebook, this is the job of the Dask task scheduler. \n", + "\n", + "\n", + "\"Grid\n", + "\n", + "\n", + "There are different task schedulers in Dask, and even though they will all compute the same result, but they might have different performances. There are two different classes of schedulers: single-machine and distributed schedulers.\n", + "\n", + "\n", + "## Single Machine Schedulers\n", + "\n", + "Single machine schedulers require no setup, they only use the Python standard library, and they provide basic features on on a local process or threadpool. Dask provides different single machine schedulers:\n", + "\n", + "\n", + "- \"threads\": The threaded scheduler executes computations with a local `concurrent.futures.ThreadPoolExecutor`. The threaded scheduler is the default choice for Dask arrays, Dask DataFrames, and Dask delayed.\n", + "\n", + "- \"processes\": The multiprocessing scheduler executes computations with a local `concurrent.futures.ProcessPoolExecutor`. The multiprocessing scheduler is the default choice for Dask Bag.\n", + "\n", + "- \"single-threaded\": The single-threaded synchronous scheduler executes all computations in the local thread, with no parallelism at all. This is particularly valuable for debugging and profiling, which are more difficult when using threads or processes.\n", + "\n", + "### Single machine schedulers in action\n", + "\n", + "Using the same examples we used in the Delayed lesson, let's see how we can modify the scheduler and how this affects the performance of our computations. " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "e15fbe82", + "metadata": {}, + "outputs": [], + "source": [ + "import dask\n", + "from dask import delayed\n", + "from time import sleep" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "d0b88f61", + "metadata": {}, + "outputs": [], + "source": [ + "@delayed\n", + "def inc(x):\n", + " \"\"\"Increments x by one\"\"\"\n", + " sleep(1)\n", + " return x + 1" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "a73e948a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Delayed('sum-de7db1d6-1e32-477b-aded-a34ba2c60cd9')" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = list(range(8))\n", + "\n", + "results = []\n", + "for i in data:\n", + " y = inc(i) \n", + " results.append(y)\n", + " \n", + "total = delayed(sum)(results)\n", + "total" + ] + }, + { + "cell_type": "markdown", + "id": "4bf0cf9f", + "metadata": {}, + "source": [ + "### The multi-threading scheduler (default)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "0d6e3709", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 2.09 ms, sys: 1.19 ms, total: 3.29 ms\n", + "Wall time: 1.01 s\n" + ] + }, + { + "data": { + "text/plain": [ + "36" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%%time \n", + "dask.config.set(scheduler='threads')\n", + "total.compute()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "1bc1197d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 4.79 ms, sys: 2.42 ms, total: 7.21 ms\n", + "Wall time: 2.01 s\n" + ] + }, + { + "data": { + "text/plain": [ + "36" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%%time \n", + "dask.config.set(scheduler='threads', num_workers=4) #setting num_workers\n", + "total.compute()" + ] + }, + { + "cell_type": "markdown", + "id": "6a294197", + "metadata": {}, + "source": [ + "### The multi-process scheduler \n", + "\n", + "Notice that we can also set the scheduler as a context manager " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "e158bf20", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 10.6 ms, sys: 19 ms, total: 29.7 ms\n", + "Wall time: 6.19 s\n" + ] + } + ], + "source": [ + "%%time\n", + "with dask.config.set(scheduler='processes'): \n", + " total.compute() " + ] + }, + { + "cell_type": "markdown", + "id": "d0403b14", + "metadata": {}, + "source": [ + "### The single-threaded scheduler \n", + "\n", + "Tools like `pdb` do not work well with multi threads or process, but you can work around this by using the single-threaded scheduler when debugging." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "4ecb2d51", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 5.29 ms, sys: 1.45 ms, total: 6.74 ms\n", + "Wall time: 8.04 s\n" + ] + }, + { + "data": { + "text/plain": [ + "36" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%%time\n", + "total.compute(scheduler=\"single-threaded\") " + ] + }, + { + "cell_type": "markdown", + "id": "b88c0692", + "metadata": {}, + "source": [ + "For more information about single-machine schedulers, and which one to choose you can visit the detailed the Dask documentation on [single-machine schedulers](https://docs.dask.org/en/latest/setup/single-machine.html). " + ] + }, + { + "cell_type": "markdown", + "id": "0ffcbd5f", + "metadata": {}, + "source": [ + "## Distributed Scheduler\n", + "\n", + "The Dask distributed scheduler, despite having \"distributed\" on its nama, it also works well on a single machine. We recommend using the distributed scheduler as it offers more features and diagnostics. You can think of the distributed scheduler as an \"advanced scheduler\". \n", + "\n", + "The distributed scheduler can be used in a cluster as well as locally. Deploying a remote Dask cluster involves additional setup that you can read more about on the Dask [setup documentation](https://docs.dask.org/en/latest/setup.html). Alternatively, you can use [Coiled](https://docs.coiled.io/user_guide/index.html#what-is-coiled) which provides a cluster-as-a-service functionality to provision hosted Dask clusters on demand, and you can try it for free. \n", + "\n", + "For now, we will set up the scheduler locally. To set up the distributed scheduler locally we need to create a `Client` object, which will let you interact with the \"cluster\" (local threads or processes on your machine)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "5cd38299", + "metadata": {}, + "outputs": [], + "source": [ + "from dask.distributed import Client" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "0354e700", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "
\n", + "
\n", + "

Client

\n", + "

Client-3142c864-167e-11ec-9fb4-1e00ea0a0276

\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
Connection method: Cluster objectCluster type: distributed.LocalCluster
\n", + " Dashboard: http://127.0.0.1:8787/status\n", + "
\n", + "\n", + " \n", + "
\n", + "

Cluster Info

\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

LocalCluster

\n", + "

a6338b33

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + "
\n", + " Dashboard: http://127.0.0.1:8787/status\n", + " \n", + " Workers: 4\n", + "
\n", + " Total threads: 8\n", + " \n", + " Total memory: 16.00 GiB\n", + "
Status: runningUsing processes: True
\n", + "\n", + "
\n", + " \n", + "

Scheduler Info

\n", + "
\n", + "\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

Scheduler

\n", + "

Scheduler-3d8c0db7-910f-4c72-8c3f-79d76d73f0b5

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + " Comm: tcp://127.0.0.1:57649\n", + " \n", + " Workers: 4\n", + "
\n", + " Dashboard: http://127.0.0.1:8787/status\n", + " \n", + " Total threads: 8\n", + "
\n", + " Started: Just now\n", + " \n", + " Total memory: 16.00 GiB\n", + "
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "

Workers

\n", + "
\n", + "\n", + " \n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "

Worker: 0

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + "
\n", + " Comm: tcp://127.0.0.1:57665\n", + " \n", + " Total threads: 2\n", + "
\n", + " Dashboard: http://127.0.0.1:57666/status\n", + " \n", + " Memory: 4.00 GiB\n", + "
\n", + " Nanny: tcp://127.0.0.1:57652\n", + "
\n", + " Local directory: /Users/ncclementi/Documents/git/dask-mini-tutorial/notebooks/dask-worker-space/worker-dop_ge5z\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "

Worker: 1

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + "
\n", + " Comm: tcp://127.0.0.1:57668\n", + " \n", + " Total threads: 2\n", + "
\n", + " Dashboard: http://127.0.0.1:57669/status\n", + " \n", + " Memory: 4.00 GiB\n", + "
\n", + " Nanny: tcp://127.0.0.1:57654\n", + "
\n", + " Local directory: /Users/ncclementi/Documents/git/dask-mini-tutorial/notebooks/dask-worker-space/worker-1wivjaz7\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "

Worker: 2

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + "
\n", + " Comm: tcp://127.0.0.1:57660\n", + " \n", + " Total threads: 2\n", + "
\n", + " Dashboard: http://127.0.0.1:57662/status\n", + " \n", + " Memory: 4.00 GiB\n", + "
\n", + " Nanny: tcp://127.0.0.1:57651\n", + "
\n", + " Local directory: /Users/ncclementi/Documents/git/dask-mini-tutorial/notebooks/dask-worker-space/worker-l9wsw5bz\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "

Worker: 3

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + "
\n", + " Comm: tcp://127.0.0.1:57659\n", + " \n", + " Total threads: 2\n", + "
\n", + " Dashboard: http://127.0.0.1:57661/status\n", + " \n", + " Memory: 4.00 GiB\n", + "
\n", + " Nanny: tcp://127.0.0.1:57653\n", + "
\n", + " Local directory: /Users/ncclementi/Documents/git/dask-mini-tutorial/notebooks/dask-worker-space/worker-6c3pjpi7\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "\n", + "
\n", + "
\n", + "\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "\n", + "
\n", + "
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "client = Client()\n", + "client" + ] + }, + { + "cell_type": "markdown", + "id": "8dc55a56", + "metadata": {}, + "source": [ + "When we create a distributed scheduler `Client`, by default it registers itself as the default Dask scheduler. From now on, all `.compute()` calls will start using the distributed scheduler unless otherwise is specified. \n", + "\n", + "The distributed scheduler has many features that you can learn more about in the [Dask distributed documentation](https://distributed.dask.org/en/latest/) but a nice feature to explore is diagnostic the Dashboard. We will be taking a look at the dashboard as we perform computations but for a brief overview of the main components of the dashboard you can check the Dask documentation on [diagnosing performance](https://distributed.dask.org/en/latest/diagnosing-performance.html).\n", + "\n", + "If you click on the link of the dashboard on the cell above and run the computation of `total` as we did before you will see now some action happening on the dashboard. " + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "3c9e1199", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "36" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "total.compute()" + ] + }, + { + "cell_type": "markdown", + "id": "f13db1b7", + "metadata": {}, + "source": [ + "### Futures interface\n", + "\n", + "The distributed scheduler enables another Dask Collection -- the Futures Interface. The Dask distributed scheduler implements a superset of Python's [`concurrent.futures`](https://docs.python.org/3/library/concurrent.futures.html) interface that provides finer control and asynchronous computations." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "4b962df9", + "metadata": {}, + "outputs": [], + "source": [ + "import time\n", + "\n", + "def inc(x):\n", + " time.sleep(1)\n", + " return x + 1\n" + ] + }, + { + "cell_type": "markdown", + "id": "97a95f0d", + "metadata": {}, + "source": [ + "We can run this locally as serial code:" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "956522f0", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "inc(1)" + ] + }, + { + "cell_type": "markdown", + "id": "b9463cd3", + "metadata": {}, + "source": [ + "Or we can submit this to the cluster as" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "8d5b27f6", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "Future: inc\n", + " status: \n", + "\n", + "\n", + "pending,\n", + "\n", + "\n", + "\n", + " type: NoneType,\n", + "\n", + "\n", + " key: inc-63421aeb5ab5dd13590f4327d8784c2d" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "future = client.submit(inc, 1)\n", + "future" + ] + }, + { + "cell_type": "markdown", + "id": "6d71290d", + "metadata": {}, + "source": [ + "The `Client.submit` function sends a function and arguments to the distributed scheduler for processing. It returns a `Future` object that refer to remote data on the cluster. The Future returns immediately while the computations run remotely in the background. There is no blocking of the local Python session.\n", + "\n", + "If you wait a moment, and then check on the future again, you'll see that it has finished." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "cf5339a2", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "Future: inc\n", + " status: \n", + "\n", + "\n", + "pending,\n", + "\n", + "\n", + "\n", + " type: NoneType,\n", + "\n", + "\n", + " key: inc-63421aeb5ab5dd13590f4327d8784c2d" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "future" + ] + }, + { + "cell_type": "markdown", + "id": "5b6b3c4c", + "metadata": {}, + "source": [ + "You can retrieve the result of a Future by calling the `.result()` method. If the status of the Future is \"finished\", meaning the task has been successfully run on one of the workers, then calling `.result()` will return almost immediately. Conversely, if the Future is still \"pending\" then calling `.result()` will block the current Python process and wait until the task has been run and then return the result." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "ef85d221", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "future.result()" + ] + }, + { + "cell_type": "markdown", + "id": "1128734c", + "metadata": {}, + "source": [ + "Similar to `Client.submit`, there's also a `Client.map` function for running a function across an iterable of inputs (similar to Python's built in map function)." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "0144f33f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ]" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "futures = client.map(inc, list(range(8)))\n", + "futures" + ] + }, + { + "cell_type": "markdown", + "id": "8a01b863", + "metadata": {}, + "source": [ + "`Client.map` returns a list of `Futures` objects, one per input that was mapped over. To get the results we can use a list comprehension like `[f.result() for f in futures]` or use the `Client.gather` method." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "9e0cb8a9", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[1, 2, 3, 4, 5, 6, 7, 8]" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "results = client.gather(futures)\n", + "results" + ] + }, + { + "cell_type": "markdown", + "id": "7eefc7c9", + "metadata": {}, + "source": [ + "`Futures` obey standard Python garbage collection. The data Futures point to will continue to live on a Dask worker until there are no more references to the Future, at which point they will be deleted from the cluster.\n", + "\n", + "If you want to delete a Future you can always use `del`, for example:" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "77f71e2a", + "metadata": {}, + "outputs": [], + "source": [ + "del futures[1]" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "325b2ede", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "7" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(futures)" + ] + }, + { + "cell_type": "markdown", + "id": "de2632f2", + "metadata": {}, + "source": [ + "### Exercise: parallelize a for-loop\n", + "\n", + "Parallelize the following piece of code using `Client.submit()`" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "7127c250", + "metadata": {}, + "outputs": [], + "source": [ + "def inc(x):\n", + " time.sleep(0.5)\n", + " return x + 1\n", + "\n", + "def double(x):\n", + " time.sleep(0.5)\n", + " return 2 * x\n", + "\n", + "def add(x, y):\n", + " time.sleep(0.5)\n", + " return x + y" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "2388a11a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "145" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "## paralellize me\n", + "output = []\n", + "for x in range(10):\n", + " a = inc(x)\n", + " b = double(x)\n", + " c = add(a, b)\n", + " output.append(c)\n", + "\n", + "total = sum(output)\n", + "total" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "b5fdeb64", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "145" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#solution\n", + "output = []\n", + "for x in range(10):\n", + " a = client.submit(inc, x)\n", + " b = client.submit(double, x)\n", + " c = client.submit(add, a, b)\n", + " output.append(c)\n", + "\n", + "total = client.submit(sum, output)\n", + "total.result()" + ] + }, + { + "cell_type": "markdown", + "id": "ffbd7734", + "metadata": {}, + "source": [ + "## Extra resources\n", + "\n", + "- [Dask documentation on scheduling](https://docs.dask.org/en/latest/scheduling.html)\n", + "- Example Dynamic computations using Futures: [PyData Global Dask tutorial - schedulers](https://github.com/coiled/pydata-global-dask/blob/master/3-schedulers.ipynb)\n", + "- Advance Delayed with distributed scheduler: [Dask tutorial - Advanced delayed](https://github.com/dask/dask-tutorial/blob/main/06_distributed_advanced.ipynb)\n", + "- [Futures Documentation](https://docs.dask.org/en/latest/futures.html)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/notebooks/3_DataFrames.ipynb b/notebooks/3_DataFrames.ipynb new file mode 100644 index 0000000..d3a5833 --- /dev/null +++ b/notebooks/3_DataFrames.ipynb @@ -0,0 +1,1450 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "34e3f87f", + "metadata": {}, + "source": [ + "\"Dask\n", + " \n", + "This notebook was inspired in the materials from: \n", + "\n", + "- https://github.com/coiled/pydata-global-dask/\n", + "\n", + "# Dask DataFrame\n", + "\n", + "As we learned on our Dask Delayed notebook we can parallelize functions using `dask.delayed`, but luckily for us we have multiple Dask collections that already include a parallel version of multiple functions. In this notebook we will learn about the [Dask DataFrame](https://docs.dask.org/en/latest/dataframe.html), a Pandas DataFrame interface that will automatically build parallel computations for tabular data.\n", + "\n", + "## The Dask DataFrame data model\n", + "\n", + "For the most part, a Dask DataFrame feels like a Pandas DataFrame. However, internally a Dask DataFrame is composed of many Pandas DataFrames (see the image below). \n", + "\n", + "\n", + "\n", + "Dask DataFrames are partitioned along their index into different **partitions** where each parition is a normal Pandas DataFrame. These Pandas objects may live on disk or on other machines.\n", + "\n", + "Dask DataFrames implement a well-used portion of the Pandas API which are backed by blocked algorithms that allow for parallel and out-of-core computation. In particular, Dask DataFrames support:\n", + "\n", + "- Element-wise operations: `df.x` + `df.y`, `df * df`\n", + "\n", + "- Row-wise selections: `df[df.x > 0]`\n", + "\n", + "- Loc: `df.loc[4.0:10.5]`\n", + "\n", + "- Common aggregations: `df.x.max()`, `df.max()`\n", + "\n", + "- Is in: `df[df.x.isin([1, 2, 3])]`\n", + "\n", + "- Datetime/string accessors: `df.timestamp.month`\n", + "\n", + "- Froupby-aggregate (with common aggregations): `df.groupby(df.x).y.max()`, `df.groupby('x').max()`\n", + "\n", + "among other operations. For more details about what Pandas operations are implemented in Dask, check the [Dask DataFrame API documentation](http://docs.dask.org/en/latest/dataframe-api.html). \n", + "\n", + "For many purposes Dask DataFrames can serve as drop-in replacements for Pandas DataFrames. Much like the Dask Delayed interface, Dask DataFrames are lazily evaluated. You can use use the DataFrame API to automatically build up a task graph representing complex computations and then call `compute()` to to evaluate the graph in parallel. \n", + "\n", + "## When to use Dask DataFrames\n", + "\n", + "Pandas is great for tabular datasets that fit in memory. If your data fits in memory then you should use Pandas. **Dask becomes useful when the dataset you want to analyze is larger than your machine's RAM** where you would normally run into `MemoryError`s.\n", + "\n", + "```python\n", + " MemoryError: ...\n", + "```\n", + "\n", + "During this tutorial, the example NYC dataset we're working with is only about 200MB so that you can download it in a reasonable time and exercises finish quickly, but Dask Dataframes will scale to datasets much larger than the memory on your local machine. " + ] + }, + { + "cell_type": "markdown", + "id": "e37867c1", + "metadata": {}, + "source": [ + "# Getting started with Dask DataFrames\n", + "\n", + "Let's use Dask DataFrame's to explore our NYC flight dataset. Dask's `read_csv` function will automatically example wildcard characters like `\"*\"` which can, for example, be used to load an entire directory of CSV files." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "50398620", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "data_dir='/Users/ncclementi/Documents/git/dask-mini-tutorial/data'\n" + ] + } + ], + "source": [ + "%run ../prep_data.py -d flights" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "4169babd", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'../data/nycflights/*.csv'" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import os\n", + "\n", + "files = os.path.join('../data', 'nycflights', '*.csv')\n", + "files" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "ce4c4e87", + "metadata": {}, + "outputs": [], + "source": [ + "import dask.dataframe as dd" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "b879a54b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
Dask DataFrame Structure:
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DateDayOfWeekDepTimeCRSDepTimeArrTimeCRSArrTimeUniqueCarrierFlightNumTailNumActualElapsedTimeCRSElapsedTimeAirTimeArrDelayDepDelayOriginDestDistanceTaxiInTaxiOutCancelledDiverted
npartitions=10
datetime64[ns]int64float64int64float64int64objectint64objectfloat64float64float64float64float64objectobjectfloat64float64float64boolint64
...............................................................
..................................................................
...............................................................
...............................................................
\n", + "
\n", + "
Dask Name: read-csv, 10 tasks
" + ], + "text/plain": [ + "Dask DataFrame Structure:\n", + " Date DayOfWeek DepTime CRSDepTime ArrTime CRSArrTime UniqueCarrier FlightNum TailNum ActualElapsedTime CRSElapsedTime AirTime ArrDelay DepDelay Origin Dest Distance TaxiIn TaxiOut Cancelled Diverted\n", + "npartitions=10 \n", + " datetime64[ns] int64 float64 int64 float64 int64 object int64 object float64 float64 float64 float64 float64 object object float64 float64 float64 bool int64\n", + " ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...\n", + "... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...\n", + " ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...\n", + " ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...\n", + "Dask Name: read-csv, 10 tasks" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ddf = dd.read_csv(files,\n", + " parse_dates={'Date': [0, 1, 2]},\n", + " dtype={\"TailNum\": str,\n", + " \"CRSElapsedTime\": float,\n", + " \"Cancelled\": bool})\n", + "ddf" + ] + }, + { + "cell_type": "markdown", + "id": "7f2a3583", + "metadata": {}, + "source": [ + "Notice that the representation of the dataframe object contains no data - Dask has just done enough to read the start of the first file, and infer the column names and dtypes." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "aefc5d79", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Index(['Date', 'DayOfWeek', 'DepTime', 'CRSDepTime', 'ArrTime', 'CRSArrTime',\n", + " 'UniqueCarrier', 'FlightNum', 'TailNum', 'ActualElapsedTime',\n", + " 'CRSElapsedTime', 'AirTime', 'ArrDelay', 'DepDelay', 'Origin', 'Dest',\n", + " 'Distance', 'TaxiIn', 'TaxiOut', 'Cancelled', 'Diverted'],\n", + " dtype='object')" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ddf.columns" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "f4495ebc", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Date datetime64[ns]\n", + "DayOfWeek int64\n", + "DepTime float64\n", + "CRSDepTime int64\n", + "ArrTime float64\n", + "CRSArrTime int64\n", + "UniqueCarrier object\n", + "FlightNum int64\n", + "TailNum object\n", + "ActualElapsedTime float64\n", + "CRSElapsedTime float64\n", + "AirTime float64\n", + "ArrDelay float64\n", + "DepDelay float64\n", + "Origin object\n", + "Dest object\n", + "Distance float64\n", + "TaxiIn float64\n", + "TaxiOut float64\n", + "Cancelled bool\n", + "Diverted int64\n", + "dtype: object" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ddf.dtypes" + ] + }, + { + "cell_type": "markdown", + "id": "eb0b42ec", + "metadata": {}, + "source": [ + "Dask DataFrames have an `.npartitions` attribute which tells you how many Pandas DataFrames make up a Dask DataFrame." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "c685c721", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "10" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ddf.npartitions" + ] + }, + { + "cell_type": "markdown", + "id": "306be7d1", + "metadata": {}, + "source": [ + "Let's look at the task graph for our Dask DataFrame to get a sense for where these partitions are coming from:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "524b8739", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABaAAAADkCAYAAABuUYMVAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdeViU9d7H8c8AAwiKCqKCqKDikiKmkolmZoZLqCfNzMxcynZtO51Oyzme8/Sc0tOmLSfTFhXKcjmmmZpllgbuG24JKiBoLiyyKALDfJ8/eqCIbfC+7/nNMJ/Xdc111UD3/U1+3e/pN8OMSUQERERERERERERERET6KnNTPQERERERERERERERNUzcgCYiIiIiIiIiIiIiQ3ADmoiIiIiIiIiIiIgM4aHipNu3b0dGRoaKUzuNtm3bon///qrHcFgZGRnYvn276jEcmslkwvjx41WP4dCWL1+uegSHFx0djZCQENVjOCz2rG7sWe3Ys7qxZ3Vjz+rGntWOPasbe1Y79qxu7Fnd2LO6sWe1Y8/qpqxnosC4ceMEAG+13MaPH6/iR+M0Pv/8c+U/I2e4Uc3KysqU/3yc4bZixQrVPyqHxp7VfWPPasee2XajmrFntt3Ys9qxZ3Xf2LPasWe23ahm7JltN/asduxZ3TdFPbMoewuO8ePHQ0R4q+Y2btw4VT8Wp6P6Z+Wot88//1z1j8ZprFixQvnPyxFvZWVlqn80ToM9q/nGntlO9c/KUW/sme3Ys+pv7Jnt2LOab+yZ7VT/rBz1xp7Zjj2r/sae2Y49q/mmsmd8D2giIiIiIiIiIiIiMgQ3oImIiIiIiIiIiIjIENyAJiIiIiIiIiIiIiJDcAOaiIiIiIiIiIiIiAzBDWgiIiIiIiIiIiIiMgQ3oImIiIiIiIiIiIjIENyAJiIiIiIiIiIiIiJDcAOaiIiIiIiIiIiIiAzBDWgiIiIiIiIiIiIiMgQ3oImIiIiIiIiIiIjIENyAJiIiIiIiIiIiIiJDcAOaiIiIiIiIiIiIiAzBDWgiIiIiIiIiIiIiMgQ3oP+f1WpVPQIRubjCwkLVI5CTs1gsKCsrUz0GNQAFBQXIzs5WPQYRuSgRQW5uruoxiMiFWSwWFBUVqR6DnJzFYoGIqB7DIbj0BnRycjKeeOIJhIaGIiAgALGxsdi8ebPqschJhYeHY8aMGarHICezb98+DBs2DP7+/mjSpAlat26Nhx56CPn5+apHIyfy6aefIjo6Gk2aNIG3tze6du2Kd999l0+u0jXJzs5G165dcdNNN6kehZyE1WpFZGQkunfvXuV2++23qx6PnEhubi5mzJgBX19f+Pv7w8/PDxMmTEBWVpbq0cjBbd68udpr0O9v9913n+oxyQls2rQJvXv3ho+PD3x9fREWFsbH1VRv69evR+/evdG4cWO0atUKd999N7Zu3ap6LKU8VA+gSlFREUaPHo0zZ87gnnvuQUBAAFatWoVRo0Zh48aNGDRokOoRyYksXrwYJ06cwODBg1WPQk5kz549GDp0KDw8PHDPPffA398fX3zxBRYuXIj9+/djx44dcHNz6ecJyQZLly7F1KlT0aVLFzzxxBMoKirCqlWrMHPmTFy6dAkvvfSS6hHJydx///04e/YsmjZtqnoUchKZmZlISkpCREQE/P39K33tj39PVJOSkhKMHDkSO3fuxPTp09G/f3/s2rULCxcuRGZmJhISElSPSA7MZDLBbDZX+7WrV6/i+PHjCA8Pt/NU5Gw2b96M4cOHo1mzZpg2bRrMZjNWrlyJmTNn4uLFi/jnP/+pekRyAsuWLcOkSZMQGhqKZ599FmfOnMHy5cuxYcMG7Nq1C126dFE9ohIuuwH94osv4vjx41i/fj1GjBgBAHjiiScQGRmJqVOn4tSpU4onJEeXmZmJf/7zn9i9ezcOHjyoehxyQu+++y6Kioqwc+dO9OrVCwDwP//zPxg6dCg2b96MVatWYfz48YqnJEf3xhtvIDw8HDt37oSfnx8A4LnnnkNYWBjee+89bkBTvbz//vvYuHEjNw2pXk6cOAEAiIuLQ2RkpOJpyFktWbIEO3bswOuvv45nnnkGwK9PiJlMJnzwwQfYs2cP+vbtq3hKclRDhgzBgQMHqv3azJkzkZ+fjwULFth5KnI2L7/8MkQEu3fvRseOHQEAr776KkJCQvDGG2/g73//O9zd3RVPSY6spKQEzz77LHx9fbFv3z40a9YMADBnzhyEhITg7rvvxv79+xVPqYbLvrRu8eLF6NmzZ8XmMwC0atUKw4YNQ2pqKnbu3KlwOnIGBQUFSE5ORtOmTREVFaV6HHJCiYmJ6NWrV8Xmc7lp06YBAHbt2qViLHIieXl5OHz4MEaMGFGx+QwAwcHBGDJkCHJyclBaWqpwQnImR44cwTPPPIO5c+ciKChI9TjkRFJSUmAymdC5c2fVo5ATi4+PR8uWLTFz5sxK97/wwgtYunQpAgMDFU1Gzmzjxo34z3/+g/j4eLRu3Vr1OOTgMjIyEBISUrH5DABNmjTBDTfcgNLSUly9elXhdOQMjh49ijNnzmDkyJEVm88A0LJlS8TExODAgQPIy8tTOKE6LrkBnZWVhdzcXAwdOrTK18ofOO/Zs8feY5GT6datG3788Uf8+OOP+Oyzz1SPQ06mtLQUw4YNw+OPP17laxkZGQD4a8tUNw8PD2zduhXPPfdcpfvz8vKQlJSEmJiYGn8dlej3rl69iokTJ+Kmm27CrFmzVI9DTubEiRNo164dCgsLsW7dOnz00UdITEzkh6JSvaSkpGDEiBHw9PTEqVOnsHbtWuzduxfBwcGYPHky2rdvr3pEcjLZ2dmYPn06JkyYgCFDhqgeh5zAHXfcgczMTKxfv77ivuPHj2PLli245ZZb4Ovrq3A6cgZnz54FANxwww1VvlZ+35EjR+w6k6NwybfgOH78OABU++qe8vdiuXDhgl1nIiLXYjab8c4771S5/8KFC3jvvfdgNpsRGxurYDJyJr6+vhgwYEDF38+bNw/p6en4+uuvUVZWhueff17hdORMnn32WZw9exbffPMNTCaT6nHIyZw4cQL5+fkIDQ3FlStXKu7v06cP4uLi0K1bN4XTkTMoLCzEL7/8glatWmHUqFFYt25dxde6du2KTz75BDfeeKPCCckZPfbYY7h06RLmzJmjehRyEjNnzsTmzZsRGxuL6OhoeHt7Y8uWLQgODsa//vUv1eOREyh/9fz3339f8XZS5Y4ePQrg1w3o6Ohou8+mmku+Arr8feqqe3Vh+TPrly5dsutMRETr1q1DREQEzpw5g9dffx0RERGqRyIn8+KLL2LevHlISUlBixYt0KhRI9UjkRNYt24d3n33XSxatIhvvUHX5MSJEygoKMDs2bORnJyMhIQEPPjggzhw4ADGjBmDy5cvqx6RHFz5/5/Nnz8fqampeOedd7B37168/fbbSE9Px5gxY/gCIaqXI0eOYPny5Xj66afRrl071eOQk2jWrBnat29f8T7QO3bsgNVqhYeHBwoKClSPR04gPDwcffv2xebNm/Hhhx+ioKAAeXl5eO+997BixQoAcNnfEHPJDWgvLy8AQE5OTpWvlT9Abt68uV1nIiLXdfLkSYwePRqjRo2Cn58fNm3axF+Bp2ty+fJlJCcn4+OPP0Z2djb69euHc+fOqR6LHNgvv/yCadOm4YEHHsAdd9yhehxyUosXL8b+/fvxl7/8BeHh4YiOjsYHH3yAp59+GikpKfjvf/+rekRycOX/X1ZcXIyVK1fi8ccfR+/evTFz5kw8/fTTuHDhAj7//HPFU5Iz+fe//w1PT088/fTTqkchJ3LTTTdhzZo1+M9//oNz587h4sWLWLVqFfLz83H77bcjLS1N9Yjk4Nzc3PDxxx+jdevWmDFjBlq3bo3WrVvj6aefxowZMwAA3bt3VzylGi65AV3+4QOnTp2q8rXyBz/8kAsisof4+Hj06tULP/zwA/7973/j8OHD1b4/PVF1RARWq7XSfeHh4Zg2bRrmzJmD0tLSSu9hR/RH77//PrKyspCXl4dp06ZV3M6cOYOzZ89i2rRpePXVV1WPSQ6uT58+6NGjR5X7R44cCQA4fPiwvUciJ9OmTRsAwI033oiuXbtW+tqoUaMAAMeOHbP7XOScTp8+jc8++wx/+tOf+JkqZLNjx47h0KFDGDx4MB555BE0b94cjRo1wtixYzF16lRcuXKFT6iSTSIiInDo0CF8+OGHePjhh/Hyyy9j165dFW9J5qob0C75HtCdO3eGyWSqdgP64MGDAIB+/frZeywicjHr1q3Dfffdh/79+2PZsmX89UCqtzlz5uCFF17A119/XbHRU65FixYAfvtQS6LqBAYGolevXkhJSal0f3FxMaxWKw4cOAA3N5d8vQLZKCMjA7t27UJUVFSVjpU/1m7ZsqWK0ciJlK+d0tLSKl8rKioCADRt2tSuM5HzWrhwISwWC+6//37Vo5ATSUpKAgDcfPPNVb5222234c0330Rubq69xyInU1JSgtTUVLRo0aLKNWjOnDkICgpy2SfGXPL/KIKDgzFo0CBs3boVJ0+erLi/tLQUn332Gdq0aYM+ffoonJCIXMELL7yApk2bYuXKldx8pmtS/j7h3377bZWvLVq0CAAQGRlp15nIucycORP79++vcuvWrRs6dOiA/fv346OPPlI9JjmwnJwc3HnnndV+ONMXX3wB4NdfaSaqTaNGjTBkyBDs3bu3yhNiX375JQC45Ac20bXZtGkT/P39ceutt6oehZzIddddBwBYuXJlla8tX74cAPgZPVSnK1euoGvXrpg5c2al+zMzM7Fq1SqMHj1a0WTqueQroIFfN35uv/123HXXXXjxxRfRvHlzzJ07F6dOncK6dev4CfBEZKjc3FwcPnwY119/Pd54441qv2fw4MGIjY2182TkTEaOHImIiAi88847aNasGYYNG4YzZ85gxYoV+OqrrxAVFcU1RESG6tmzJ/r3749FixYhICAAY8eOhdVqRXx8PDZt2oRx48bhhhtuUD0mOYE5c+agX79+uOuuu/DKK6+gbdu2+P777/HBBx9g4MCBLv0/7WS73Nxc7N27F6NGjeJv8FC9dO/eHTExMdi0aROGDx+Oe++9F6GhoVi9ejWWLVuG7t27409/+pPqMcnBNWvWDEOGDMHKlSsxdOhQ3HHHHThx4gQefPBBhISE4LXXXlM9ojIuuwEdExODuLg4PPDAAxg3bhyAXxfKm2++iREjRiiejogauoSEBIgI9u3bh3379lX7PSaTiZuHVCs3Nzd8+eWXuPfee/GPf/wD//jHPyq+NnbsWLz99tvw8HDZ1BORHZhMJnz55Zd44IEH8Oqrr1Z6z/BHHnmkxidZif4oKioKX3/9NaZNm1bpbaVGjx6NTz75ROFk5Ey2bNkCq9WK/v37qx6FnIybmxuWLVuGmTNnYtmyZfjmm28qvjZo0CB8/PHH8PT0VDghOYuPP/4YEydOxP3331/xNhy9e/fGZ599hiZNmiieTh2X/r/Su+++G3feeSf27NkDq9WKfv36wd3dXfVY5IQ6deoEEVE9BjmR2NhYrhnSRYcOHfDTTz8hNTUVP//8Mxo1aoQuXbpUfKAT0bXYu3ev6hHIibRs2RJr165Feno6jh8/jmbNmqFbt24u/T9ZdG1GjBiBjIwMHD58GBcvXkRERASCgoJUj0VOZOzYsXyMTdfM398fn376KebOnYsjR46gqKgIXbt2RZcuXfhb8mSz9u3bIyEhAYcOHcKpU6fQu3dvvuUmXHwDGgA8PDxw4403qh6DiIjomrm5uaFjx47o2LGj6lGIyIW1b98e7du3Vz0GOTmz2Yzrr79e9RhE5MJCQkIQEhKiegxyYiaTCT179kTPnj1Vj+Iw+KZIRERERERERERERGQIbkATERERERERERERkSG4AU1EREREREREREREhuAGNBEREREREREREREZghvQRERERERERERERGQIbkATERERERERERERkSG4AU1EREREREREREREhuAGNBEREREREREREREZghvQRERERERERERERGQIbkATERERERERERERkSG4AU1EREREREREREREhuAGNBEREREREREREREZghvQRERERERERERERGQIbkATERERERERERERkSG4AU1EREREREREREREhuAGNIDi4mKUlJSoHoOcXEFBgeoRyMlxDZFW7Bnpgdci0opriLRiz0gPvBaRVlxDpBV79hsPVSfOzMzE8uXLVZ2+kt27d8PNzQ19+vRRPQqAX/9s2rVrp3oMp+Aoa6i0tBTx8fGYNm2a6lEAADt27FA9gtPYvn07rFar6jEAAIsWLcLUqVNhNptVjwIRUT2C02DPasae2c5R1hB75rzYs+qxZ7Zjz2rGntnOUdYQe+a82LPqsWe2Y89qprJnyjagt2/fju3bt6s6vcPjAxzbTJgwQfUIlWzcuFH1CFRPb775puoRKvnuu+9Uj0D1xJ7Vjj2zDXtGWrFnpBV7Vjv2zDbsGWnFnpFW7FntVPXMJC7+NEpBQQECAwMBAFlZWWjcuLHiicgZjRkzBmvXrsXy5csxfvx41eOQE1q2bBnuuecejBs3DitXrlQ9Djkh9oz0wJ6RVuwZacWekR7YM9KKPSOt2LNKylz+PaDXrFmD0tJSlJaWYu3atarHISeUl5eHDRs2wGQyIT4+XvU45KQ+/fRTmEwmfPXVV3yvMbom7BlpxZ6RHtgz0oo9I63YM9IDe0ZasWeVufwGdFxcHEwmE0wmE+Li4lSPQ05o1apVsFqtEBGsX78eOTk5qkciJ5Obm4tvvvkGIgKLxYLVq1erHomcEHtGWrFnpBV7Rnpgz0gr9oy0Ys9ID+xZZS69AZ2VlYXNmzejrKwMZWVl+Pbbb5Gdna16LHIyv7+QiAi+/PJLhdOQM1qxYkWlD9pgnKi+2DPSA3tGWrFnpBV7Rnpgz0gr9oy0Ys+qcukN6Oo+FXPVqlUKJiFndeHCBWzduhVlZWUAfn2AwzhRff1+zVitVmzZsgXnz59XOBE5G/aMtGLPSA/sGWnFnpFW7BnpgT0jrdizqlx6AzouLg6//wxGEcHSpUsVTkTO5vPPP4eb22//GVmtVvz44484e/aswqnImZw9exaJiYmVnmEHGCeqH/aMtGLPSCv2jPTAnpFW7BlpxZ6RHtizqlx2AzojIwM7d+6sdFGxWq1ITExEZmamwsnImSxdurTi2fVy7u7uWLFihaKJyNn88UEy8Ou1yNXjRLZjz0gP7BlpxZ6RVuwZ6YE9I63YM9KKPauey25Af/bZZ3B3d69yv4eHB7744gsFE5GzOXXqFPbt21fpWS0AKCsrw5IlSxRNRc6mugfJIoJdu3YhLS1NzVDkVNgz0oo9Iz2wZ6QVe0ZasWekB/aMtGLPqueyG9DVXVQAwGKx8JktssmyZcvg4eFR5X4Rwf79+5GSkqJgKnImJ0+exMGDB6s8SAYYJ7Ide0ZasWekFXtGemDPSCv2jLRiz0gP7Fn1XHID+ueff8bRo0ervaiICJKSknD8+HEFk5EziYuLQ2lpabVfM5vNjBPVKT4+HmazudqvlZaW8pUaVCf2jPTAnpFW7BlpxZ6RHtgz0oo9I63Ys5q55Ab0p59+WuNFBQA8PT2xbNkyO05Ezqaui0ZpaSk++eQTO05Ezig+Pr7GB8kAcOzYMRw5csSOE5GzYc9IK/aM9MCekVbsGWnFnpEe2DPSij2rmUtuQNf2zCgAlJSUYPHixfYbiJzOsmXLar2oAL++B9nBgwftNBE5m3379uHEiRO1fo+npyc+//xzO01Ezog9I63YM9KKPSM9sGekFXtGWrFnpAf2rGYutwG9a9cupKen1/l96enp2Lt3rx0mImcjIli6dGmtF5VyrvrMFtXNlgcuJSUlWLJkSbW/vkPEnpFW7BnpgT0jrdgz0oo9Iz2wZ6QVe1a7qu/Q38Clp6dj/Pjxle7bvXs3ACAqKqrS/WlpaejTp4/dZiPnkJmZiQEDBlS678yZM9izZw/GjBlT6X6LxWLP0ciJWCyWStciEcHatWsRFRWF4ODgSt979uxZtGnTxt4jkoNjz0gr9oz0wJ6RVuwZacWekR7YM9KKPaudSfjUDcaPHw83Nzd+KAFdsy+++AITJ06E1WpVPQo5KavVCnd3d6xYsQJ33nmn6nHISbFnpBV7RlqxZ6QH9oy0Ys9IK/aM9MCeVShzubfgICIiIiIiIiIiIiL74AY0ERERERERERERERmCG9BEREREREREREREZAhuQBMRERERERERERGRIbgBTURERERERERERESG4AY0ERERERERERERERmCG9BEREREREREREREZAhuQBMRERERERERERGRIbgBTURERERERERERESG4AY0ERERERERERERERmCG9BEREREREREREREZAhuQBMRERERERERERGRIbgBTURERERERERERESG4AY0ERERERERERERERmCG9BEREREREREREREZAhuQBMRERERERERERGRIbgBTURERERERERERESG4AY0ERERERERERERERmCG9BEREREREREREREZAhuQBMRERERERERERGRIbgBTURERERERERERESG4AY0ERERERERERERERmCG9BEREREREREREREZAhuQBMRERERERERERGRIbgBTURERERERERERESG4AY0ERERERERERERERmCG9BEREREREREREREZAhuQBMRERERERERERGRIbgBTURERERERERERESG4AY0ERERERERERERERmCG9BEREREREREREREZAgP1QPYk4ggOzu74nblyhVYrVZkZmbCZDJh06ZNcHNzg6+vLwICAipuRL9XWFiI7OxsZGVlITc3FwCwa9cuAMC6devg7e0Ns9lcaQ15enqqHJkcTElJSaVrUWlpKYqKigAAO3fuRLNmzQAA/v7+FWuocePGKkcmB8OekR7YM9KKPSOt2DPSA3tGWrFnpBV7VjeTiIjqIfSWn5+PgwcPIikpCUlJSTh58iTS0tKQkZGBkpKSeh3L09MT7dq1Q2hoKDp27IiePXtW3Pz8/Az6NyDVLBYLjh49iqSkJBw6dAg///wz0tLSkJaWhvz8/HofLygoCGFhYQgNDUWPHj0QERGByMhItG3b1oDpyVGcPn264jp0+PDhijX0yy+/1PtYfn5+CA0NRWhoKLp27VpxHerWrRs8PFzquUSXwp6RVuwZ6YE9I63YM9KKPSM9sGekFXt2zcoaxAZ0VlYWNm3ahG3btiEhIQFHjhyB1WpF8+bN0bNnT3Tq1KniwhAcHIyAgAC0aNECPj4+cHNzQ9OmTQEAeXl5sFqtuHz5csUzqGfPnkV6ejrS0tKQkpKCpKQkXLp0Ce7u7ujevTsGDBiAQYMG4bbbbnO5Zy8akpKSEmzbtg0//PADfvrpJ+zevRuXL1+Gp6cnrrvuOnTr1q1iDYWEhFSsIX9/fwBAkyZN4OHhgaKiIly9ehWlpaUVa+jixYsVa+jkyZM4cuQI0tLSAABt2rRBdHQ0BgwYgJiYGHTr1k3hnwJpdeTIEXz77bdISEhAYmIizp49CwAVD2w7dOiAsLAwtG/fHoGBgRXPeprNZnh7e6NRo0awWCwoKCgAAOTk5CArKwvZ2dnIzMxEamoq0tLScOzYMRw7dgwlJSXw9fXFDTfcgIEDB+KWW27BwIEDYTabVf4xkAbsGWnFnpEe2DPSij0jrdgz0gN7RlqxZ7px3g3o06dPIz4+HmvWrMGePXvg4eGBqKgo9O/fHwMGDEDv3r3Rrl07Q86dnp6Offv2VVzE9uzZA6vViqioKIwaNQrjx49HeHi4Iecm/Vy5cgX//e9/sXLlSmzevBmFhYXo0qVLxQOOG264AV27djUkFnl5eTh48CASExMr1lFOTg5CQ0MxcuRI3HnnnRg0aBDc3d11PzfpR0SQkJCATz/9FOvXr8fp06cREBCAAQMGIDo6Gv3790dkZGRFdPRUWlqKY8eOYdeuXUhISEBCQgJSUlLQpEkTDB06FH/6058wZswYQ85N+mLPSCv2jLRiz0gP7BlpxZ6RVuwZ6YE9M0QZxInk5+fLxx9/LIMHDxY3NzcJDAyUBx98UFavXi35+fnK5srLy5NVq1bJjBkzpGXLlgJArr/+ennzzTclKytL2VxUVVlZmWzevFmmTJkiTZo0EbPZLLfffru8//77kpaWpmwui8UiiYmJ8re//U169eolAKRVq1Yyc+ZMOXjwoLK5qHopKSkye/Zs6dChgwCQyMhI+fvf/y47duyQsrIyZXOdOnVK3nvvPbn99tvFy8tLvLy8ZPTo0bJ69WopLS1VNhdVxZ6RVuwZ6YE9I63YM9KKPSM9sGekFXtmOItTbEDv3LlTJk2aJD4+PuLl5SV33nmnrFmzRkpKSlSPVoXFYpHvvvtOZsyYIX5+fuLl5SUTJ06UPXv2qB7NpZ0/f15eeukladu2rQCQqKgoefvtt+XixYuqR6vW8ePH5eWXX5bOnTsLAOnXr5/ExcUxUgqVlJTIkiVLZMCAAWIymSQoKEieeeYZh30AmpubK4sXL5aYmBhxc3OT4OBg+dvf/iYXLlxQPZpLY89IK/aMtGLPSA/sGWnFnpFW7BnpgT2zG8fegP7hhx8kJiZGAEjfvn1lwYIFkpOTo3osmxUWFspHH30kffr0EQAyfPhw2bp1q+qxXEpGRobMmjVLfHx8pFWrVvL888/L0aNHVY9lM6vVKlu2bJGJEyeKh4eHdOjQQT744AO5evWq6tFcxtWrV+X999+XsLAwMZvNcvfdd8uGDRvEYrGoHs1mp06dkpdeeklatmwpvr6+8uSTT0pmZqbqsVwKe0ZasWekFXtGemDPSCv2jLRiz0gP7JndOeYG9LZt2+TWW28VADJgwABZu3at6pE027Ztm8TGxlb6d7JararHarBOnTols2bNEm9vb2ndurXMmTNHLl++rHosTdLS0mTWrFnSqFEjadWqVYP4d3JkhYWFMm/ePAkJCRFPT0+ZPHmyJCcnqx5Lk6tXr8oHH3wgbdu2rfh3On78uOqxGjT2jLRiz0gr9peXDrcAACAASURBVIz0wJ6RVuwZacWekR7YM2UcawP64MGDMnDgQDGZTDJy5Ej56aefVI+ku61bt8rw4cMFgAwaNEgOHz6seqQG5dKlSzJr1izx8PCQTp06yYcffijFxcWqx9JVZmamPPXUU+Lr6ytBQUESHx/viBcXp2W1WmXJkiXSqlUrady4sTzzzDNy9uxZ1WPpqri4WBYuXCgdOnQQDw8Peeqpp5S+r1VDxJ6RVuwZacWekR7YM9KKPSOt2DPSA3umnGNsQOfn58tTTz0lHh4ecuONN8ru3btVj2S4nTt3yg033CBms1n+/Oc/S0FBgeqRnN6nn34qQUFBEhgYKB999JFT/QrOtbhw4YI8/PDD4ubmJrfccotT/eqaozp8+LAMGjRI3N3d5bHHHnO2N/Wvt9LSUlm4cKEEBARIcHCwfP7556pHcnrsGXumB/aMPdOKPWPPtGLP2DM9sGfsmVbsGXumFXvmMD1TvwG9du1aadeunTRv3lzmzZun9BNK7a38mbwWLVpIcHCwLFmyRPVITik5OVliYmLEZDLJ5MmTHfaDK4yyd+9e6devn5jNZpk1axafKb0Gly9fltmzZ4unp6f07t1bduzYoXoku8rJyZFZs2aJm5ubDB48WI4cOaJ6JKfEnrFnWrFn7JlW7Bl7pgf2jD3Tij1jz7Riz9gzPbBnDtUzdRvQWVlZMmrUKDGZTHL//fc3+GeyanPhwgWZOnWqmEwmueOOO5zqjc9Vslqt8tprr4mnp6f06dNHdu7cqXokZSwWi7z33nvSrFkzCQsLc7lAa5GQkCDt27cXf39/WbBggUtF6Y8SExOlV69e4uXlJW+99RZ/ddBG7Nlv2LNrw579hj27duzZb9iza8Oe/YY9uzbs2W/Ys2vHnv2GPbs27NlvHKhnajagExISpF27dtK2bVtH/5RGu9qyZYu0adNGQkNDGag6ZGVlye233y5ms1nmzp3b4H+dy1bnzp2T4cOHi9lsljfeeIOBqoXVapV///vf4uHhIbGxsXLhwgXVIzkEi8Uir7zyinh4eMiYMWMkOztb9UgOjT2rHntmO/aseuyZ7diz6rFn9cOeVY89sx17Vj32zHbsWfXYs/phz6rnAD2z7wa01WqVefPmidlsltjYWJd+FqImFy9elJEjR4qHh4fMnj3bpZ/tq8nOnTslLCxM2rZt2yDfOF6r3/93NmrUKAaqGuUPkPnfWc127twpoaGh/O+sBuxZ3dizurFntWPP6sae1Y09qx17Vjf2rG7sWe3Ys7qxZ3Vjz2rHntVNcc/stwGdk5MjI0eOFLPZLK+//jqf+auF1WqVV199VTw8PGTUqFFy6dIl1SM5jPJnREePHs1w12Hbtm0SEhIi7dq1c+lff/ujxMRECQkJkfbt28v27dtVj+PQLl68KCNGjKh4xQb9ij2zHXtWM/bMduxZ9dgz27Fn1WPPbMee1Yw9sx17Vj32zHbsWfXYM9sp7Jl9NqDPnDkjPXr0kJCQEP7qUj1s27ZNgoODJTIyUs6ePat6HKXKysrkkUceEXd3d/7qUj1cvHhRhg8fLr6+vvL111+rHke5tWvXSqNGjSQ2Npbv5Wcjq9Uqc+bMETc3N5k5c6bLvxqBPbs27Nlv2LNrw55Vxp7VH3tWGXt2bdiz37Bn14Y9q4w9qz/2rDL27Noo6JnxG9AnT56Ujh07Srdu3SQ9Pd3o0zU4aWlp0qVLFwkNDZXjx4+rHkeJ4uJimTBhgnh5ecmKFStUj+N0LBaLzJgxQzw8POTDDz9UPY4yS5cuFbPZLFOmTJHS0lLV4zid1atXi7e3t4wdO1aKiopUj6MEe6YNe8aeacWe/Yo904Y9Y8+0Ys/YM63Ys1+xZ9qwZ+yZVnbumbEb0Lt375aWLVtKVFQU30Beg+zsbOnfv7+0atVK9u7dq3ocuyooKJCYmBhp3LixbNq0SfU4Tstqtcrs2bPFZDLJ3LlzVY9jd/PmzROTySTPPfccX52hwZYtW8TPz0+GDBkieXl5qsexK/ZMH+wZe6YVe8ae6YE9Y8+0Ys/YM63YM/ZMD+wZe6aVHXtm3Ab05s2bpXHjxjJ8+HApLCw06jQuo6CgQG677TZp0qSJbNmyRfU4dpGVlSV9+vSR1q1by/79+1WP0yC8+eabFaF3FX/+85/Fzc1N5s+fr3qUBmHv3r3SqlUr6du3r8u8zx97pi/2jD3TA3tGWrFn7JlW7Bl7pgf2jLRiz9gzrezUM2M2oHft2iWNGzeWCRMmSElJiRGncEnFxcVy5513ip+fX4N/pr2wsFBuvPFGad++vZw8eVL1OA3K0qVLxc3NTf71r3+pHsVw//znP8Xd3V3i4+NVj9KgpKSkSLt27SQ6OlouX76sehxDsWfGYM9ID+wZacWekVbsGemBPSOt2DPSyg49038DOiUlRVq1aiVDhw6V4uJivQ/v8kpKSmT48OESGBgoP//8s+pxDFFSUiIjRoyQFi1ayLFjx1SP0yC9//77YjKZZNGiRapHMcyCBQsEgLz99tuqR2mQkpOTpWXLlnL77bc32PdsY8+MxZ6RHtgz0oo9I63YM9IDe0ZasWeklcE903cD+syZMxIaGio33HCDFBQU6Hlo+p3Lly9L//79JSwsrMF9+rLVapWpU6eKj4+PJCYmqh6nQfv73/8u7u7usnLlStWj6O7LL78Ud3d3efnll1WP0qCVP/s8adKkBvfebeyZfbBnpAf2jLRiz0gr9oz0wJ6RVuwZaWVgz/TbgL506ZL06tVLwsPD5fz583odlmpw8eJF6dq1q0REREhOTo7qcXTz9NNPi6enp2zcuFH1KC5h1qxZ4u3tLT/++KPqUXSzZcsW8fb2lkcffVT1KC7hu+++Ey8vL/nLX/6iehTdsGf2xZ6RHtgz0oo9I63YM9IDe0ZasWeklUE902cD2mq1ysiRI6Vt27Zy+vRpPQ5JNkhNTZXg4GAZM2ZMg3h266OPPhI3Nzf54osvVI/iMiwWi4wdO1ZatGghGRkZqsfRLC0tTfz9/eXuu++WsrIy1eO4jPj4eDGZTBIXF6d6FM3YMzXYM9KKPSM9sGekFXtGWrFnpAf2jLQyoGf6bEDPmTNHzGazJCQk6HE4qoft27eL2WyWt956S/Uomhw+fFh8fHzk+eefVz2KyyksLJTrrrtObrzxRqd+E//S0lIZMGCA9OjRo8F/8IIjevrpp8XX11eOHj2qehRN2DN12DPSij0jPbBnpBV7RlqxZ6QH9oy00rln2jegd+zYIWazWd544w09BqJr8Morr4jZbHba9+RqKIF1ZuUPMF944QXVo1yzZ555pkEE1lmVlJRIdHS0Uz/AZM/UY89IK/aMtGLPSA/sGWnFnpFW7BnpQceeaduAzsnJkdDQUBk5cmSD+BUjZ2W1WmXUqFHSrl07yc7OVj1OvU2ZMkWaN28uaWlpqkdxaYsWLRI3NzenfH+3r7/+WkwmkyxZskT1KC7t9OnTEhAQIDNmzFA9Sr2xZ46BPSM9sGekFXtGWrFnpAf2jLRiz0grHXumbQN61KhR0rZtW8nKytJyGNLBhQsXpE2bNjJ27FjVo9TL0qVLxWQyybp161SPQiIyadIkCQwMdKpP787IyJCAgACZOnWq6lFIRFavXi0mk0mWLVumepR6Yc8cB3tGemDPSCv2jLRiz0gP7BlpxZ6RVjr17No3oD///HNxc3OTrVu3ahmAdPT999+LyWSSVatWqR7FJhcvXhR/f3954oknVI9C/6+goEA6dOggd999t+pRbDZu3DgJDw932l8raogeffRRCQwMdJpX/LBnjoc9I63YM9IDe0ZasWekFXtGemDPSCsdenZtG9D5+fnSpk0beeCBB671xGSQ++67T9q2bSsFBQWqR6nT9OnTJSgoSPLy8lSPQr+zYcMGASDfffed6lHq9M033wgAWb9+vepR6Hfy8vIkODhYHn74YdWj1Ik9c1zsGWnFnpFW7BnpgT0jrdgz0oo9Iz1o7Nm1bUA/9dRT4u/vLxcuXLiWf5wMdP78eWnevLk899xzqkepVUJCgphMJlm+fLnqUagaY8aMkfDwcLl69arqUWp09epV6dy5s9x1112qR6FqxMfHi5ubm2zfvl31KLVizxwXe0Z6YM9IK/aMtGLPSA/sGWnFnpFWGntW/w3oQ4cOidlslkWLFl3LCckO3nvvPfHw8JCkpCTVo1TLYrFIr1695LbbblM9CtUgPT1dfH195ZVXXlE9So1mz54tTZo0kczMTNWjUA2GDBkiffr0EYvFonqUarFnjo89I63YM9IDe0ZasWekFXtGemDPSCsNPav/BvTAgQPlxhtvlLKysvr+o2QnZWVl0rdvXxk8eLDqUao1b9488fLykuTkZNWjUC1eeeUV8fHxkfT0dNWjVHHy5Enx9vaW119/XfUoVIujR4+Kp6en/Oc//1E9SrXYM8fHnpEe2DPSij0jrdgz0gN7RlqxZ6SVhp7VbwN6/fr1YjKZZPfu3fU9EdlZYmKiAJBvv/1W9SiVXL58WVq2bOnwv4JGIsXFxdKhQwd58MEHVY9SxbRp06RLly5SWlqqehSqw1NPPSVBQUFSVFSkepRK2DPnwZ6RVuwZ6YE9I63YM9KKPSM9sGek1TX2zGISEYGNbrrpJvj5+eHrr7+29R8hhWJiYmCxWPD999+rHqXC/Pnz8cILLyA1NRUtW7ZUPQ7VYeHChZg1axZOnjyJNm3aqB4HAJCRkYFOnTph4cKFmDJliupxqA7nzp1Dhw4d8MYbb+CRRx5RPU4F9sy5sGekFXtGWrFnpAf2jLRiz0gr9oz0cA09K7P5FdA//PCDAJBt27bVd3OcFHG0n1lJSYm0a9dOnnzySdWjkI0c8Wf26KOPSrt27aS4uFj1KGQjR/uZOdq1kermaD8zR7w2Uu0c8WfmaNdGqpuj/cwc7dpIdXO0n5kjXhupdo74M3O0ayPVzdF+Zo52baS6XcPPzPZXQMfExKC0tBRbtmyp/9Y4KTNo0CA0adLEIZ5FWrRoER577DGcOHEC7dq1Uz0O2ciRXhVx/vx5hIWFOdyztVS78ldFfPDBB5g6darqcdgzJ8WekVbsGWnFnpEe2DPSij0jrdgz0kM9e2bbK6D37t0rJpPJ4d6viuq2YcMGAaD8fXQsFouEh4fLQw89pHQOqr+ioiIJCgqS559/XvUo8uc//1lat24tV65cUT0K1dO0adOkU6dOyj9xmT1zXuwZacWekR7YM9KKPSOt2DPSA3tGWtWzZ7a9Avree+9FcnIydu3apW17nJTo06cPevTogSVLliib4csvv8S4ceOQkpKCDh06KJuDrs2rr76K1157DWfPnoW3t7eSGYqKitC6dWu89NJLePbZZ5XMQNcuOTkZXbt2xdq1axEbG6tsDvbMubFnpBV7RlqxZ6QH9oy0Ys9IK/aM9FCPnpW51fUd+fn5WL16Ne6//359piO7mz59OlatWoXCwkJlMyxduhRDhgzhgxsnNX36dBQUFGDdunXKZli9ejWuXLmC++67T9kMdO06d+6MQYMGIT4+XtkM7JnzY89IK/aMtGLPSA/sGWnFnpFW7BnpoT49q3MDeuXKlbBYLLjzzjt1GY7sb+LEibBYLFi9erWS8+fk5GD9+vWYPHmykvOTdq1atcKtt96KuLg4ZTPExcVhxIgRaNWqlbIZSJvJkydjzZo1uHTpkpLzs2fOjz0jrdgz0gN7RlqxZ6QVe0Z6YM9Iq/r0rM4N6Li4OIwZMwYBAQG6DEf25+/vj+HDhyuL07Jly+Dh4YGxY8cqOT/pY/LkyVi/fj3Onz9v93OfP38e3333HR8kO7nx48fDZDJh5cqVSs7Pnjk/9oz0wJ6RVuwZacWekR7YM9KKPSOt6tOzWjeg09PTsXXrVl5UGoDJkydj8+bNyMzMtPu54+LiMHbsWDRu3Nju5yb93HHHHWjUqBGWL19u93PHxcXB19dX6XtTkXZ+fn4YPXq0kv/ZYs8aDvaMtGLPSCv2jPTAnpFW7BlpxZ6RHmztWa0b0J9++ikCAgIwfPhwXYcj+4uNjUWzZs2wbNkyu543OTkZO3fu5EWlAfDx8cG4ceOUxCk+Ph533XUXGjVqZPdzk74mT56Mbdu2ITU11a7nZc8aDvaMtGLPSA/sGWnFnpFW7BnpgT0jrWztWa0b0GvWrMEdd9wBs9ms63Bkf15eXhgzZgzWrFlj1/OuXbsWLVq0wJAhQ+x6XjLGXXfdhT179uDs2bN2O2d6ejoOHjyICRMm2O2cZJyYmBg0bdoUX331lV3Py541HOwZ6YE9I63YM9KKPSM9sGekFXtGWtnasxo3oLOysrBnzx6MGDFC9+FIjREjRmDHjh3Iycmx2zk3bNiAYcOGwd3d3W7nJOMMHjwYjRo1wjfffGO3c27YsAG+vr4YOHCg3c5JxjGbzRg6dCg2btxot3OyZw0Pe0ZasWekFXtGemDPSCv2jLRiz0gPtvSsxg3oTZs2wcPDA7feeqshw5H93XbbbTCZTNi8ebNdzldYWIiffvqJv1LRgDRq1Ag333wzNmzYYLdzbty4Ebfeeiu8vLzsdk4y1ogRI/DDDz/g6tWrdjkfe9bwsGekFXtGemDPSCv2jLRiz0gP7BlpZUvPatyA3rp1K6KiotCkSRNDhiP7a9asGXr37o2tW7fa5Xw7duxASUkJbrnlFrucj+zjlltusdsaEhFs27aNYWpghgwZgqKiIuzevdsu52PPGh72jPTAnpFW7BlpxZ6RHtgz0oo9I61s6VmNG9AJCQkYMGCAIYOROgMGDEBCQoJdzpWYmIiwsDC0adPGLucj+xg4cCDOnz+PkydPGn6un3/+GTk5OYiOjjb8XGQ/oaGhCAkJsdu1iD1rmNgz0oo9I63YM9IDe0ZasWekFXtGeqirZ9VuQOfn5+Po0aPo37+/YYORGtHR0UhKSkJhYaHh59qxYwfXUAPUu3dveHt72yVO27dvh4+PDyIjIw0/F9lXdHQ0EhMTDT8Pe9ZwsWekFXtGemDPSCv2jLRiz0gP7BlpVVfPqt2APnDgAKxWK/r27WvocGR/ffr0QVlZGQ4dOmT4ufbt28c11AB5eXmhe/fuOHDggOHn2r9/PyIjI/nJuA1Q7969sX//fsPPw541XOwZacWekR7YM9KKPSOt2DPSA3tGWtXVs2o3oJOSkuDv74+QkBBDhyP7Cw0NhZ+fn+EPcC5cuIDz58+jZ8+ehp6H1IiIiLDLg+SDBw/y2fUGKiIiApmZmYZ/6jt71nCxZ6QH9oy0Ys9IK/aM9MCekVbsGWlVV8+q3YA+dOgQevToYehgpIbJZEL37t0Nj1NSUhKAXy9i1PBERETg8OHDhp/n8OHDvBY1UOXXhiNHjhh6Hvas4WLPSA/sGWnFnpFW7BnpgT0jrdgz0qqunlW7AX3y5El07tzZ0MEcRVJSEubPn4/c3FzVo9hNp06dDP+AghMnTqBp06Zo2bKloedxBK64hsLDw3Hu3DlD36suOzsbubm5vBY1UCEhIfDx8TH8WsSeNWzsmb5ccQ2xZ/pztXXEnunP1dYQwJ7pzRXXEHumP1dbR+yZ/lxtDQG196zaDei0tDSEhoYaOZPD+Omnn/Dkk0/i3Llzqkexm7CwMKSmphp6jvT0dISFhRl6DkfhqmsI+PVaYZTyY/Na1DCZTCa0a9fO8GsRe9awsWf6ctU1BLBnenK1dcSe6c/V1hDAnunNVdcQwJ7pydXWEXumP1dbQ0DtPauyAW21WpGRkeEyC8IVhYWFIT09HSJi2DnS0tLQvn17w45PapU/wDEyTunp6XBzc0O7du0MOwep1aFDB0PXEHvW8LFnpBV7Rnpgz0gr9oy0Ys9ID+wZaVVbz6psQOfk5KCkpARBQUF2Gc5ZiYihDxCMFBQUhKKiIuTn5xt2jvPnzyM4ONiw4zcEzryGfH194efnh/Pnzxt2jnPnzsHf3x9eXl6GncPZOfMaAn69Fl24cMGw47NntnHmdcSeOQZnXkPsmWNw5jUEsGeOwpnXEXvmGJx5DbFnjsGZ1xDAnjkKZ15HtfWsygZ0dnY2AKBFixaGDzZr1izcf//9yMzMxGOPPYbAwMCKr126dAmPPvooevTogdatW2Ps2LFYv359tcf54Ycf8Nhjj6Fz585o27YtJk6ciAULFqCsrKzS9+3evRvjx49Hhw4dMHToULz77rv1/qEePHgQQ4cORbNmzeDj44N+/fphw4YNFV+/evUqZs+ejY4dO8LLywvh4eF46KGHUFBQAACYOXMmbrrpJvzyyy9Vjv3ggw8iJiYGJSUl9Zqpvsp/tuU/ayNkZWUhICDAsOOXq20NAbavI2daQ4BjrKOAgABD11B2drZd1hCgz7XI1jUEaF9Hda0hwDmuRQEBAcjKyjLs+OxZ7dgz27BnNWPPbMOe1Yw9sw17Vjv2zDbsWc3YM9uwZzVjz2zDntWuwfdM/iAxMVEASEZGxh+/pLubb75ZunTpIj179hQA0rt3bxERycjIkNDQUPH19ZVHHnlE/vrXv8r1118vbm5u8tZbb1U6xvfffy/u7u7i7+8vjz/+uPzjH/+QAQMGCAB59tlnK75vy5Yt4uPjI/7+/vLAAw/Igw8+KM2aNZPQ0FABIEePHq1z3i1btoi3t7e0adNGnnrqKZk+fbo0bdpUPDw8JCEhQUREpk2bJu7u7jJ16lSZP3++zJo1Sxo1aiT9+/cXEZF58+YJAHn33XcrHfvMmTPi5uYmEyZM0PRnaovU1FQBILt27TLsHG3atJE333zTsOOXq2kNidi+jpxtDYk4xjqKioqq9OejtyeffFKio6MNO/7vab0W2bqGRLSvI1vWkIhzXIvmzp0roaGhhh2fPasZe2Y79qx67Jnt2LPqsWe2Y89qxp7Zjj2rHntmO/aseuyZ7dizmrlAzyxVNqA3bdokACQ3N9fwwW6++WYBIMOGDZNjx45V3D9p0iQBIDt27Ki4r7i4WIYMGSKenp6SnZ1dcf+MGTPEy8ur0rxFRUUSFBQkXbt2rbgvMjJSmjdvLqmpqRX3JScni4+Pj00LoqysTCIjI6Vp06aSkpJScf+xY8fEZDLJpEmT5OrVq2I2m2X06NGV/tn58+cLADl+/LhcuHBBPDw8ZPDgwZW+56233hIAsnHjxjr+1LS7ePGiAJAtW7YYdo5mzZrJwoULDTt+uZrWkIjt68jZ1pCIOMQ6Gjx4sDz66KOGHX/GjBkSExNj2PF/T+u1yNY1JKJtHdmyhkTEaa5F7733ngQGBhp2fPaseuxZ/bBnVbFn9cOeVcWe1Q97Vj32rH7Ys6rYs/phz6piz+qHPauei/Ss6gb0unXrBIBcvnzZ8MHKF8Tvd8azs7PFZDJJVFRUle9ftmyZAJBFixZV3Hfs2DFJSkqq9H15eXnSrVs3CQ4OFhGR7du3CwB58cUXqxzzoYceqlgQZWVlUlhYWOlmsVhERGTPnj0CQKZMmVLlGO+8847Mnz9fLl++LGazWfz8/GTfvn0VXy8/bvmxRo0aJe7u7nL+/PmK7+nXr5+0adNGysrKbPmj0yQvL8/wxefj4yOLFy827PjlqltDIvVbR3quIRGpcR3puYZE1K+jYcOGyf3332/Y8adMmSKxsbGGHf/3tF6LbFlDItqvRbasIRFxmmvRokWLxM/Pz7Djs2fsmR7YM/ZMK/aMPdOKPWPP9MCesWdasWfsmVbsmUv3zOKBPyh/PxBPT88/fskQgYGBiIqKqvj748ePQ0RQWFiICRMmVPre8jexPnnyZMV9Xbt2RXZ2Nt544w1s374daWlpSElJQX5+fsWHLPz8888AgF69elU5f/fu3Sv+eufOnYiOjq709c8++wwTJ07EiRMnAAARERFVjvH4449X/PXs2bPx0ksvoXfv3ujWrRtuueUWjBw5EsOGDYO7uzsAYMqUKfjqq6+wevVqPPTQQ0hLS8POnTvx/PPPw82tytty6678QwOKi4sNO0dxcbGyNQTUbx3puYaAmtdR+c9WjzUEqF9Hnp6eDWYNAdquRbasIUD7tcjWNeTj4+M01yIj1xB7xp7pgT1jz7Riz9gzrdgz9kwP7Bl7phV7xp5pxZ65ds+MP3sd/vgJquVvVO3l5QWz2VzpFhAQgEmTJlX6Ib722msICQnByy+/jNLSUgwdOhSLFy/GgAEDKr4nJycHACrFoZy3t3fFX7do0QKTJk2qdAsNDQUAXLx4EQDQpk2bWv99XnzxRZw4cQJ/+9vf4OPjgwULFiA2Nhbdu3fHuXPnAACxsbFo3rw5Vq5cCQD44osvAABTp06t889LD/L/b4RuMpkMO4eRx/6j6j6Ftz7rSM81BNS8jvRcQ4D6dQQYv4bK16o9aLkW2bKGAO3XIlvXEOA81yJ7XiuMxp6xZ1qxZ+yZHtgz9kwr9ow904o9Y8/0wJ6xZ1qxZw7Wsz++JtreL4kPCQmpdN+RI0cEgIwfP77K91ssFsnNzZXi4mIR+fV9ltzc3KRVq1aSn59f6Xv79OlT8ZL4//73vwJAnnjiiSrHfOGFF2x6T5avvvpKAMiTTz5Z5WtLliyRTz75RIqLiyU3N7fSr+H88ssv8vjjjwsAeeGFFyruf/jhh8XDw0OysrKkV69ednszf5HfXhL/zTffGHYOe/6K1x/XkIjt68iZ15CI2nUUExMjDzzwgGHHt/eveF3rtcjWNSSifR3ZsoZExGmuRYsWLZKmTZsadnz2rHrsWf2wZ1WxZ/XDnlXFntUPe1Y99qx+2LOq2LP6Yc+qYs/qhz2rnov0zFLlFdDlzxCUvzTe3jp16oTAwEB88803KC0trfS1V199Fc2bN8euXbsAAOnp6bBarRg7diyaNGlS8X0ZGRk4cOBAxd/37dsXZrMZ33//faXjWSwWfPbZZzbNFRUVhUaNGlU5xtGjRzF16lT8+OOP+P7779G8eXMsW7asOtjiYgAAIABJREFU4uutW7fGs88+CwDIzc2tuH/KlCmwWCyYO3cuDhw4gGnTptk0hx7KXwpv5K89eHp6KltDgO3ryJnXEKB2HZWUlFT76ga9NLQ1BGhfR7asIQBOdS0ycg2xZ9Vjz+qnoV2LHHENAeyZkdgz47Fn7JlW7Bl7pgf2jD3Tij1jz7SqtWd/3JJOTEwUAJKRkWH4znhNz45++OGHAkDuuusu2bt3r6SkpMjrr78uXl5ectttt4nVahURkfz8fGncuLH4+/vL2rVrJTk5WT755BMJCQmR5s2bi5+fn/z8888iIvLkk08KAJk+fbrs3btX9u3bJ2PGjJHmzZvb9IyEiMjzzz8vAOShhx6S3bt3y5IlS6Rnz55iNptlx44dkp+fLy1btpTw8HDZsmWLXLp0Sfbs2SN33HGHAJB169ZVOl7nzp3F3d1dfHx8JC8vT4c/UdukpqZW+8EQegoJCZE333zTsOOXq2kNidi2jpx9DYmoW0d9+/aVv/zlL4Yd/6mnnpL+/fsbdvzf03Itqs8aEtG+jupaQyLiNNeiuXPnSlhYmGHHZ89qxp7Zjj2rHntmO/aseuyZ7dizmrFntmPPqsee2Y49qx57Zjv2rGYu0DNLlQ3o5ORkASD79+83fLDa4vT222+Lt7e3ABAA4uHhIQ8//LBkZ2dX+r7ly5dL48aNK77P399flixZIitXrhRfX1/x8PAQEZGrV6/KjBkzKr4PgNx6660SFxdn84KwWCzy17/+Vdzd3SuOERQUJMuXL6/4nm+//VaCg4Mrncfb21v+9a9/VTneyy+/LADk3nvvrc8fm2a7du0SAHLq1CnDzhEZGVntp4DqrbY1JGLbOnLmNSSibh2FhobK3LlzDTv+//7v/0rnzp0NO/7vab0W2bqGRLSvI1vWkIhzXIueffbZaj+BWC/sWc3YM9uxZ9Vjz2zHnlWPPbMde1Yz9sx27Fn12DPbsWfVY89sx57VzAV6ZjGJVH4X+ZycHAQEBODbb7/F0KFDoVJBQQH279+PwsJCREREoG3bttV+X3Z2Nvbv34+goCBcd911FW92nZ2djdzcXHTq1KniezMyMnDo0CF069YNYWFh1zTX5cuXkZSUBD8/P4SHh1d5afmVK1eQlJSE06dPo0WLFujRowdatmx5TecywoYNGzBy5Ejk5+dX+lUCPd16660IDw/HggULDDl+fdiyjriG6q9JkyaYP38+pk+fbsjxFyxYgBdffLHigwJU0nsNAdrXUV1rCHD8dTR9+nT88ssv2LBhgyHHZ8/q5uzXIvaMPdMDe1YZe1Z/7FlVvBbVD3vGnumBPauMPas/9qwqXovqp5aelVXZgLZarWjUqBE++ugj3HvvvfadlOxi8eLFePTRR3H58mXDPuH0nnvuweXLl7FmzRpDjk9qFRYWokmTJvjqq68QGxtryDlWr16NcePG4cqVK1U+yZoahpEjRyIwMBBLliwx5PjsWcPHnpFW7BnpgT0jrdgz0oo9Iz2wZ6RVLT0rq/IhhG5ubmjbti3S0tLsNiDZV2pqKkJDQw17cAMA7du3R3p6umHHJ7XKrw/X+qyeLdq3bw8RwenTpw07B6mVmppq6Bpizxo+9oy0Ys9ID+wZacWekVbsGemBPSOtautZlQ1o4NeLFuPUcBl9UQGA0NBQpKamGnoOUqf8Z9u+fXvDzhEaGgoAjFMDJSJIT083/FrEnjVs7BlpxZ6RVuwZ6YE9I63YM9KKPSM91NazajegO3bsiOPHjxs6FKmTkpKCjh07GnqOTp06IT8/H+fPnzf0PKRGcnIyWrdujcaNGxt2Dn9/f/j7+yM5Odmwc5A6GRkZKCoqMvxaxJ41bOwZacWekVbsGemBPSOt2DPSij0jPdTWs2o3oHv27IlDhw7hD28PTQ2AiODIkSOIiIgw9Dw9e/YEACQlJRl6HlLj0KFDFT9jI0VERODQoUOGn4fs79ChQzCZTOjRo4eh52HPGi72jPTAnpFW7BlpxZ6RHtgz0oo9I63q6lmNG9CXLl1CRkaGocOR/aWmpqKgoMDwOAUGBiIoKIgPcBqoQ4cOGf4gGQAiIyO5hhqoQ4cOoW3btmjWrJmh52HPGi72jPTAnpFW7BlpxZ6RHtgz0oo9I63q6lmNG9Du7u7Yu3evocOR/e3duxceHh7o3r274ee6/vrruYYaoOLiYhw5cgSRkZGGn6tXr15ISkpCaWmp4eci+9q3bx969epl+HnYs4aLPSOt2DPSA3tGWrFnpBV7Rnpgz0irunpW7Qa0n58funfvjsTEREOHI/v76aefEBkZaeh7Q5Xr378/11ADtHv3bhQXF2PgwIGGnys6OhpXrlzB/v37DT8X2ddPP/2EAQMGGH4e9qzhYs9IK/aM9MCekVbsGWnFnpEe2DPSqq6eVbsBDQADBgxAQkKCYYORGgkJCXa5qAC/rqH09HRkZmb+X3t3HhT1ff9x/P1dYEEOQQ4RUXBFidV4ETUeVBrxwNaj3kkUHWNq6sTQjjWmNZPaWCeTpk2lWhszjXE8qvGq8ahnREUkajQ6mGi9wGNUFBDlUO7X749ETX4lcny+7Gd3eT1m/C/yeUmUJ/NZdtcu55F9HD58WFq0aNHg744rIhIdHS0hISGMk4vJzMyUmzdv2vVrEXvmetgzUsWekSr2jMzAnpEq9oxUsWdkhpp69oMX0P3795fjx49LQUFBgwwj+8vPz5dTp05J//797XLes88+K56enpKSkmKX88g+9u/fL3FxcXY5yzAMiY2N5d8hF5OSkiLe3t7yzDPP2OU89sz1sGdkBvaMVLFnpIo9IzOwZ6SKPSNVtenZD15ADx48WKqqqmTfvn0NMo7sb8+ePWIYhsTHx9vlPG9vb/nxj38su3btsst51PAePHggqampkpCQYLczExISJCUlRUpLS+12JjWsnTt3ynPPPSdeXl52OY89cz3sGaliz8gM7BmpYs9IFXtGZmDPSFVtevaDF9CBgYHSs2dP2bFjR4OMI/vbuXOn9OnTp8Hf1fS7hg4dKnv27JHKykq7nUkNJyUlRUpKSmTIkCF2OzMhIUGKi4slNTXVbmdSwykvL5d9+/bZ9Ztk9sz1sGekij0jVewZmYE9I1XsGaliz8gMtenZD15Ai4gMHz5ctm7dyji5gJKSEtmyZYuMHDnSrucOGzZM8vLy5ODBg3Y9lxrGunXrpFevXhIWFma3MyMiIqRr167y73//225nUsPZtWuXFBQUyPDhw+16LnvmOtgzMgN7RqrYM1LFnpEZ2DNSxZ6Rqtr27IkX0BMmTJDbt2/LgQMHzNxGGmzbtk0KCgrk+eeft+u50dHR0q1bN9mwYYNdzyXzFRcXy+bNmyUxMdHuZ48bN042bdokFRUVdj+bzLVq1SqJi4uTyMhIu57LnrkO9oxUsWdkBvaMVLFnpIo9IzOwZ6Sqtj174gV0VFSUdO/eXdatW2fqOLK/1atXy8CBAyU8PNzuZ48fP142bdok5eXldj+bzLN582YpKyuTCRMm2P3s8ePHS05ODuPk5O7evSvbtm2TSZMm2f1s9sx1sGekij0jVewZmYE9I1XsGaliz8gMte3ZEy+gRUQSExNl3bp1UlxcbNo4sq/c3FzZuXOnTJ48Wcv5L774ouTl5cm2bdu0nE/mWLlypQwdOlSCg4Ptfnb79u2ld+/e8vHHH9v9bDLPhg0bxDAMGTt2rJbz2TPnx56RGdgzUsWekSr2jMzAnpEq9oxU1aVnNV5AT548WcrKyviohBNbu3atWK1Wu7++2EORkZEyePBg+eijj7ScT+pu3LghKSkpWp7e9dDLL78smzZtkpycHG0bSM2qVatk5MiR4u/vr+V89sz5sWekij0jM7BnpIo9I1XsGZmBPSNVdelZjRfQQUFBMmrUKPnHP/5hyjiyLwDy8ccfy9ixY8XX11fbjunTp8vu3bvl4sWL2jZQ/S1fvlz8/f1l2LBh2jY8//zz4uXlxUfZndS5c+ckLS1N6zfJ7JlzY8/IDOwZqWLPSBV7RmZgz0gVe0aq6twz1MKXX34JwzCwe/fu2vzn5EC2b98OEcHx48e17qioqEB0dDRefvllrTuo7oqLi9G8eXO8+eabuqdgzpw5CA0Nxf3793VPoTqaMmUKOnTogMrKSq072DPnxZ6RKvaMzMCekSr2jFSxZ2QG9oxU1bFnFQYA1OZmOyEhQR48eCAHDx5UuSAnO4uNjZVmzZo5xOt7LVu2TGbMmCEXLlyw+zusUv0tXLhQ3nrrLcnKypKQkBCtW27duiU2m03+/Oc/y6uvvqp1C9Xe1atXpV27dvLRRx9pe63D72LPnBN7RqrYM1LFnpEZ2DNSxZ6RKvaMzFDHnlXW6iegASA9PR0igtTU1PpejpOd7du3DyKCtLQ03VMAAGVlZYiMjERSUpLuKVRLJSUlCA8Px6xZs3RPeWTmzJlo3bo1SktLdU+hWvrlL38Jm82G8vJy3VMAsGfOiD0jVewZmYE9I1XsGaliz8gM7BmpqkfPav8T0CIi/fv3Fx8fH9m5c2fdr8bJ7uLj48UwDPnss890T3lk8eLFMmfOHMnMzJSwsDDdc6gGS5culV//+tdy6dIlCQ8P1z1HRESuXbsm7dq1k6VLl8rUqVN1z6EaZGdni81mk+TkZHnllVd0z3mEPXMu7BmpYs9IFXtGZmDPSBV7RqrYMzJDPXpW+5+ABoDdu3dDRHD06NG6Xo6TnaWlpUFEsG/fPt1Tvuf+/fsIDQ3F7NmzdU+hGpSUlMBms2HGjBm6p/yPadOmoX379igrK9M9hWqQlJSE8PBwlJSU6J7yPeyZ82DPSBV7RmZgz0gVe0aq2DMyA3tGqurZs4o6XUADQFxcHHr16qX9hcrph1VUVCAmJgbx8fG6p1Rr8eLFsFqt+O9//6t7Cj3BH//4R/j4+ODq1au6p/yPzMxMNGnSBH/60590T6EnOH36NDw8PPDhhx/qnlIt9szxsWdkBvaMVLFnpIo9IzOwZ6SKPSNVCj2r+wX0V199BQ8PDyxdurSuv5XsZNGiRbBarThz5ozuKdWqqKhA9+7dERcXh6qqKt1zqBpXrlyBj4+PQ38DMX/+fHh7eyMrK0v3FKpGVVUVnnvuOfTo0cNhv4Fgzxwfe0aq2DNSxZ6RGdgzUsWekSr2jMyg0LO6X0ADwOzZs9GsWTPcunWrPr+dGlB2djYCAgIwd+5c3VOe6NixY7BYLFi7dq3uKVSN4cOHo2PHjg79FKrS0lI89dRTGDNmjO4pVI0VK1bAYrE4/FOo2DPHxZ6RGdgzUsWekSr2jMzAnpEq9oxUKfasfhfQxcXFiIyMxNSpU+vz26kBTZw4ERERESgqKtI9pUa/+MUv0KJFC9y9e1f3FPqOTz/91CFfn646e/bsgYhg+/btuqfQd9y7dw9hYWF49dVXdU+pEXvmuNgzUsWekSr2jMzAnpEq9oxUsWdkBsWe1e8CGgA2bNgAwzCwf//++n4IMtnevXthGAY+/fRT3VNqJTc3F8HBwZg5c6buKfSte/fuoU2bNpg4caLuKbU2fvx4REVFobCwUPcU+tYrr7yC0NBQ5Ofn655SK+yZ42HPSBV7RmZgz0gVe0aq2DMyA3tGqkzoWf0voAFg1KhRCA8Px+3bt1U+DJkgOzsbYWFhGD9+vO4pdfKvf/3Lqb4pc3UTJkxAaGgosrOzdU+ptevXryMkJASTJk3SPYUAbNy4EYZhYP369bqn1Al75jjYMzIDe0aq2DNSxZ6RGdgzUsWekSqTeqZ2AZ2fnw+bzYahQ4c67IuYNwaVlZUYNGgQoqKinPLpUtOmTUOzZs2QmZmpe0qj9sEHH8BisWDPnj26p9TZzp07YbFYsGzZMt1TGrXLly8jMDAQM2bM0D2lztgzx8CekRnYM1LFnpEq9ozMwJ6RKvaMVJnYM7ULaOCbNyuwWq149913VT8U1dPbb78NT09PHD9+XPeUennw4AG6du2KXr16obS0VPecRikjIwNNmjTB73//e91T6u2NN96Al5cXTp06pXtKo1RWVobevXujc+fOuH//vu459cKe6ceekSr2jFSxZ2QG9oxUsWekij0jM5jYM/ULaAD4y1/+And3dxw6dMiMD0d1cODAAbi5uWHx4sW6pyg5d+4c/Pz8MHv2bN1TGp3CwkJ06NABcXFxqKio0D2n3srLyxEbG4vo6GgUFBTontPovPbaa/D19cXZs2d1T1HCnunDnpEq9ozMwJ6RKvaMVLFnZAb2jFSZ3DNzLqCrqqowfPhwtGzZEllZWWZ8SKqFixcvIjQ0FGPGjNE9xRQrVqyAYRhYtWqV7imNRnl5OUaMGIHmzZvj+vXruucou3r1KoKCgjB69Gin/mbN2SxfvhyGYWDt2rW6pyhjz/Rgz0gVe0ZmYM9IFXtGqtgzMgN7RqoaoGfmXEAD37w7a/fu3dGuXTuneoF8Z3X79m1ER0ejR48eLvVo4uuvvw4PDw/s2LFD9xSXV1VVhWnTpqFJkyZIS0vTPcc0n3/+Oby9vTF9+nTdUxqF7du3w93dHW+99ZbuKaZhz+yLPSNV7BmZgT0jVewZqWLPyAzsGalqoJ6ZdwENuG50HU1BQQFiYmIQFRXlcv/4qqqq8NJLL8Hb29ulouuI5s6dCzc3N2zevFn3FNNt3boV7u7uTv2aac7gyJEj8PHxweTJk1FVVaV7jqnYM/tgz8gM7BmpYs9IFXtGZmDPSBV7RqoasGfmXkAD3/yYdosWLTBgwACUlJSY/eEbvdLSUgwePBjNmzfH+fPndc9pEBUVFRg1ahSCgoJw5swZ3XNc0pIlS2AYhku/K/HKlSthGAaSk5N1T3FJX3/9NQIDAzF8+HCUl5frntMg2LOGxZ6RGdgzUsWekSr2jMzAnpEq9oxUNXDPzL+ABoATJ07Az88PY8eO5bvmmqikpASjR4+Gv78/Tp48qXtOgyouLkbfvn0RERGBCxcu6J7jUpYvXw6LxdIo3kl2wYIFsFgsWLlype4pLuXcuXNo1aoVYmNjnfYdlWuLPWsY7BmZgT0jVewZqWLPyAzsGaliz0iVHXrWMBfQwDfvlujn54dBgwahsLCwoY5pNO7du4f4+Hj4+/sjNTVV9xy7yMvLQ8+ePREaGooTJ07onuMS3nvvPRiGgTfffFP3FLt54403YBgG3n//fd1TXMKxY8cQEhKCZ599Fnfu3NE9xy7YM3OxZ+yZGdgzUsWesWeq2DP2zAzsGaliz9gzVXbqWcNdQANARkYGWrZsiR49euDWrVsNeZRLy87ORkxMDFq0aIEvv/xS9xy7KioqQkJCAnx9fbFr1y7dc5xWVVUV5syZA8Mw8N577+meY3d/+9vfYLFYkJSUhMrKSt1znNa+ffvQtGlTxMfHN7rX3WLPzMGesWeq2DP2zAzsGXumij1jz1SxZ+yZGdgz9kyVHXvWsBfQAJCZmYn27dujbdu2fKpOPTz8/NlsNpd9TbGalJaW4oUXXoDVasUnn3yie47TKS8vx0svvQSr1Yo1a9bonqPN6tWr4eHhgcTERJSVleme43Q2btwIT09PTJw4sdF+/tgzNewZe6aKPfsGe6aGPWPPVLFn7Jkq9uwb7Jka9ow9U2XnnjX8BTQA3Lx5E926dUNYWFijeXqSGfbv34/Q0FA888wzjf4RncrKSiQlJcFiseCdd95xuXd0bSi3bt1CfHw8fH19sWfPHt1ztNuxYwd8fHwwZMgQ5OTk6J7jFCorKzF//nxYLBbMmjWr0f/bY8/qhz17jD2rH/bs+9izumPPvo89qx/27DH2rH7Ys+9jz+qOPfs+9qx+NPTMPhfQAHD37l2MGDEC7u7ueOedd/g0iyd4+AXFzc0No0ePbnRPpXiShQsXwsPDAwkJCbh9+7buOQ5t//79CAsLg81m42u0fcexY8cQGRmJVq1aMVA1yM7OxsCBA+Hp6YnFixfrnuMw2LPaY89+GHtWe+xZ9diz2mPPqsee1R579sPYs9pjz6rHntUee1Y99qz2NPbMfhfQwDevc5ScnAyr1YoBAwbg5s2b9jzeKdy+fRsJCQnw8PDAu+++2+gfzarOF198gbZt2yI0NBR79+7VPcfhPPx35uHhgZEjRzaaNyKoi7t372LcuHFwc3PDvHnzGKhqHDhwAC1btkRkZCQ+//xz3XMcDntWM/asZuzZk7FnNWPPasaePRl7VjP2rGbs2ZOxZzVjz2rGnj0Ze1YzzT2z7wX0Q0ePHkWbNm0QHh6OlJQUHRMc0t69exEWFoaoqCgcP35c9xyHdufOHfz85z+Hu7s7FixYgPLyct2THML169cfPSK6aNEi3XMcWlVVFRYuXAir1YohQ4YwUN8qKyvDH/7wB7i5uWHMmDG4e/eu7kkOjT2rHntWe+xZ9diz2mPPqsee1Q17Vj32rPbYs+qxZ7XHnlWPPasb9qx6DtAzPRfQAJCfn4/Ro0fDMAxMmTKlUb+G1s2bNzFp0iQYhoFx48bxC0otPXyEy9PTE127dsXhw4d1T9KmvLwcycnJaNq0Kdq1a8dvkOvg6NGjaNu2Lfz9/bF48WJUVFTonqRNamoqOnfuDC8vLz6lqw7Ys8fYs/phzx5jz+qPPXuMPasf9uwx9qx+2LPH2LP6Y88eY8/qhz17zIF6pu8C+qGtW7ciMjISAQEBSE5OblRfXCorK7FixQoEBQUhPDwcK1as0D3JKV28eBFDhw6FYRhITExsdF9cvvjiC/Ts2RMeHh5ISkpCYWGh7klO5/79+5g3bx48PT3RrVs3pKen655kV3l5eY/eRGbAgAE4e/as7klOiT1jz1SxZ+yZKvaMPTMDe8aeqWLP2DNV7Bl7Zgb2zKF6pv8CGgCKioowZ84ceHh4oEePHo3i9WzS0tIQExMDq9WKuXPnori4WPckp7d+/XqEh4cjMDAQS5cudfmnfd28eRPTpk2DYRgYNGgQzp07p3uS0zt79iwGDBgAi8WC6dOnu/w3y2VlZViyZAmaNWuG1q1bY9OmTbonOT32jD0zA3vGnqliz9gzVewZe2YG9ow9U8WesWeq2DOH6ZljXEA/9PXXX+MnP/kJRASDBg3CgQMHdE8yXUpKCuLj4yEiiI+P5yNZJissLMRvfvMbeHh4wGaz4YMPPkBJSYnuWaa6evUqZs6ciSZNmqBVq1ZYt26d7kkuZ82aNWjZsiW8vb2RlJSEa9eu6Z5kqgcPHmDJkiWIjIyE1WrFnDlzUFRUpHuWS2HPSBV7RmZgz0gVe0aq2DMyA3tGqtgz7RzrAvqhQ4cOYdiwYRAR9OvXD1u3bnX6dxs+dOgQBgwY8L0/EzWcy5cvIykpCU2aNEHz5s0xb9483Lt3T/csJZmZmUhKSoKXlxciIiKQnJyM+/fv657lskpKSvDhhx+idevWsFqtSExMdPqfYigqKkJycjLCw8Mf/ZkuXryoe5ZLY89IFXtGqtgzMgN7RqrYM1LFnpEZ2DNtHPMC+qG0tDQMHToUIoKYmBj8/e9/R25uru5ZtZaTk4PFixejW7duMAwDP/vZzxrdaxfpdv36dcyaNQs+Pj4ICQnB66+/jtOnT+ueVWtlZWXYunUrxo4dCzc3N7Rv3x7Lli1DWVmZ7mmNRmlpKf75z38iKioK7u7uGDduHLZv3+5UTyHMyMjA7NmzERwcDF9fX8yePZvvKm1n7BmpYs9IFXtGZmDPSBV7RqrYMzIDe2Z3jn0B/dCJEyeQmJgIX19fWK1WjBw5Eps2bXLIp+48ePAAGzZswIgRI+Dh4QE/Pz9MmTIFJ0+e1D2tUcvJycG8efPQpk0biAi6d++Ov/71rw77Rf7YsWN47bXXEBISAovFgri4OKxdu7ZRvWi+oykvL8fq1avRv39/GIaB5s2b41e/+pXDvqP1jRs38P7776Nr164QEbRt2xZvv/22U0XVFbFnpIo9I1XsGZmBPSNV7BmpYs/IDOyZ3TjHBfRDhYWFWLlyJQYNGgSLxYLAwEBMnToV69evR35+vrZdeXl5+OSTTzBlyhQEBATAzc0NQ4YMwerVqx3lxb7pW1VVVTh48CCmTZsGf39/uLu7Y/DgwVi0aBEuXLigbVd5eTkOHDiA3/72t+jQoQNEBB06dMCCBQtw+fJlbbuoellZWZg/fz6io6MhIujYsSN+97vfITU1Vesj7+fOnUNycjIGDRoENzc3BAQEYPr06Th06JDTP63I1bBnpIo9IzOwZ6SKPSNV7BmZgT0jVexZg6swAECc0PXr12XNmjWyZcsWOXLkiBiGITExMdK3b1+JjY2VmJgYadOmjRiGYeq5ACQrK0tOnDghhw8flsOHD8vJkyfFMAzp06ePjBw5Ul544QVp2bKlqeeS+UpKSmTLli2yceNG2bt3r9y7d09sNpvExsZKv379pFevXtKpUyexWq2mn33nzh05deqUpKenS3p6uhw+fFgKCgqkffv28tOf/lRefPFF6dWrl+nnkvmOHDkia9eulf/85z9y6dIl8ff3l379+knfvn2lb9++0rVrVwkMDDT93NLSUjlz5owcOXJE0tPT5dChQ3LlyhVp1qyZDBw4UMaNGyfDhw8XLy8v088mc7FnpIo9IzOwZ6SKPSNV7BmZgT0jVexZg6h02gvo78rPz5fPPvtMUlNT5fDhw5KRkSGVlZXi5+cnnTp1kujoaLHZbGKz2SQ0NFSCg4MlJCREmjZtKiIivr6+IiJSVFQkIiIFBQWSk5Mjubm5kp2dLVlZWZKVlSXnz5+XM2fOSGFhobi7u0uXLl0kNjZW+vfvL/Hx8RIQEKDtc0BqKioqJD09XVJSUiQ9PV2OHDny6P9zdHS0/OhHPxKbzSZt2rSRiIgICQoKevTLzc1NrFar+Pj4SH5+voiIPHjwQPLy8iQvL09u3bolV65ckaysLMnMzJSvvvpKbty4ISIiERERj76hGjx4sLRr107np4EUXbhwQXb3OoJLAAACLklEQVTv3i3p6emSlpYm165dExGR8PBw6dSpk0RFRYnNZpOIiAgJDQ2VoKAgCQ4OFi8vLzEMQwICAqS4uFjKysqksrJS8vLyJDc3V/Ly8uTatWuPvhadPXtWLly4IBUVFeLn5yd9+vSRfv36yYABA6R3797i7u6u+TNB9cWekSr2jMzAnpEq9oxUsWdkBvaMVLFnpnGNC+j/r6ioSE6fPv3o16VLlyQrK0suX74sJSUldfpYXl5ej/4yRUVFydNPPy1dunSRp59++tFfJHI9lZWVcu7cOTl9+rRkZGTI+fPnH31huHPnTp0+lpubm4SHh0ubNm2kbdu20rFjR+nSpYt07tzZWR+5olq6ceOGZGRkSEZGhpw9e1YyMzMlKytLrl+/LlVVVXX6WEFBQY++yX7qqace/R2Kjo4WNze3BvoTkG7sGaliz8gM7BmpYs9IFXtGZmDPSBV7Vm+ueQH9JAUFBZKbmyu5ublSUFAgIiKFhYUiIuLn5yciIk2bNpXg4GAJDg5+9KgF0UMPHz2/c+eO5OXlSWVlpZSWlsr9+/clICBADMOQJk2aSFBQkAQGBj56FJ7ooYePnj/8VVJSIgDk7t274u3tLZ6enuLm5va9n+TgU7Xo/2PPSBV7RqrYMzIDe0aq2DNSxZ6RGdizJ2p8F9BEREREREREREREZBeVFt0LiIiIiIiIiIiIiMg18QKaiIiIiIiIiIiIiBoEL6CJiIiIiIiIiIiIqEH8H2I/nGuscsp2AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ddf.visualize()" + ] + }, + { + "cell_type": "markdown", + "id": "3c23c794", + "metadata": {}, + "source": [ + "Each partition in our Dask DataFrame is the result of calling Pandas' `read_csv` on an input CSV file in our dataset.\n", + "\n", + "We can view the start of the data with `df.head()`" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "fcdf1c52", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DateDayOfWeekDepTimeCRSDepTimeArrTimeCRSArrTimeUniqueCarrierFlightNumTailNumActualElapsedTime...AirTimeArrDelayDepDelayOriginDestDistanceTaxiInTaxiOutCancelledDiverted
01990-01-0111621.015401747.01701US33NaN86.0...NaN46.041.0EWRPIT319.0NaNNaNFalse0
11990-01-0221547.015401700.01701US33NaN73.0...NaN-1.07.0EWRPIT319.0NaNNaNFalse0
21990-01-0331546.015401710.01701US33NaN84.0...NaN9.06.0EWRPIT319.0NaNNaNFalse0
31990-01-0441542.015401710.01701US33NaN88.0...NaN9.02.0EWRPIT319.0NaNNaNFalse0
41990-01-0551549.015401706.01701US33NaN77.0...NaN5.09.0EWRPIT319.0NaNNaNFalse0
\n", + "

5 rows × 21 columns

\n", + "
" + ], + "text/plain": [ + " Date DayOfWeek DepTime CRSDepTime ArrTime CRSArrTime \\\n", + "0 1990-01-01 1 1621.0 1540 1747.0 1701 \n", + "1 1990-01-02 2 1547.0 1540 1700.0 1701 \n", + "2 1990-01-03 3 1546.0 1540 1710.0 1701 \n", + "3 1990-01-04 4 1542.0 1540 1710.0 1701 \n", + "4 1990-01-05 5 1549.0 1540 1706.0 1701 \n", + "\n", + " UniqueCarrier FlightNum TailNum ActualElapsedTime ... AirTime ArrDelay \\\n", + "0 US 33 NaN 86.0 ... NaN 46.0 \n", + "1 US 33 NaN 73.0 ... NaN -1.0 \n", + "2 US 33 NaN 84.0 ... NaN 9.0 \n", + "3 US 33 NaN 88.0 ... NaN 9.0 \n", + "4 US 33 NaN 77.0 ... NaN 5.0 \n", + "\n", + " DepDelay Origin Dest Distance TaxiIn TaxiOut Cancelled Diverted \n", + "0 41.0 EWR PIT 319.0 NaN NaN False 0 \n", + "1 7.0 EWR PIT 319.0 NaN NaN False 0 \n", + "2 6.0 EWR PIT 319.0 NaN NaN False 0 \n", + "3 2.0 EWR PIT 319.0 NaN NaN False 0 \n", + "4 9.0 EWR PIT 319.0 NaN NaN False 0 \n", + "\n", + "[5 rows x 21 columns]" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ddf.head()" + ] + }, + { + "cell_type": "markdown", + "id": "95fb66a7", + "metadata": {}, + "source": [ + "`.head()` triggers a computation to show the first 10 rows of the DataFrame. As you might have noticed we can perform computations on Dask DataFrames using the single machine scheduler, but we recommend you use a distributed cluster so you can see the dashboard in action." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "4e816c86", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "
\n", + "
\n", + "

Client

\n", + "

Client-d7668b3c-1a47-11ec-81ee-1e00ea0a0276

\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
Connection method: Cluster objectCluster type: distributed.LocalCluster
\n", + " Dashboard: http://127.0.0.1:8787/status\n", + "
\n", + "\n", + " \n", + "
\n", + "

Cluster Info

\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

LocalCluster

\n", + "

87aa4218

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + "
\n", + " Dashboard: http://127.0.0.1:8787/status\n", + " \n", + " Workers: 4\n", + "
\n", + " Total threads: 8\n", + " \n", + " Total memory: 16.00 GiB\n", + "
Status: runningUsing processes: True
\n", + "\n", + "
\n", + " \n", + "

Scheduler Info

\n", + "
\n", + "\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

Scheduler

\n", + "

Scheduler-5d1add51-58dc-4ebd-9d19-53c55ad336e8

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + " Comm: tcp://127.0.0.1:59070\n", + " \n", + " Workers: 4\n", + "
\n", + " Dashboard: http://127.0.0.1:8787/status\n", + " \n", + " Total threads: 8\n", + "
\n", + " Started: Just now\n", + " \n", + " Total memory: 16.00 GiB\n", + "
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "

Workers

\n", + "
\n", + "\n", + " \n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "

Worker: 0

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + "
\n", + " Comm: tcp://192.168.0.205:59086\n", + " \n", + " Total threads: 2\n", + "
\n", + " Dashboard: http://192.168.0.205:59089/status\n", + " \n", + " Memory: 4.00 GiB\n", + "
\n", + " Nanny: tcp://127.0.0.1:59074\n", + "
\n", + " Local directory: /Users/ncclementi/Documents/git/dask-mini-tutorial/notebooks/dask-worker-space/worker-bs2rt3dr\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "

Worker: 1

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + "
\n", + " Comm: tcp://192.168.0.205:59087\n", + " \n", + " Total threads: 2\n", + "
\n", + " Dashboard: http://192.168.0.205:59088/status\n", + " \n", + " Memory: 4.00 GiB\n", + "
\n", + " Nanny: tcp://127.0.0.1:59075\n", + "
\n", + " Local directory: /Users/ncclementi/Documents/git/dask-mini-tutorial/notebooks/dask-worker-space/worker-_y3pjg3g\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "

Worker: 2

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + "
\n", + " Comm: tcp://192.168.0.205:59081\n", + " \n", + " Total threads: 2\n", + "
\n", + " Dashboard: http://192.168.0.205:59082/status\n", + " \n", + " Memory: 4.00 GiB\n", + "
\n", + " Nanny: tcp://127.0.0.1:59073\n", + "
\n", + " Local directory: /Users/ncclementi/Documents/git/dask-mini-tutorial/notebooks/dask-worker-space/worker-d0xcrp9k\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "

Worker: 3

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + "
\n", + " Comm: tcp://192.168.0.205:59080\n", + " \n", + " Total threads: 2\n", + "
\n", + " Dashboard: http://192.168.0.205:59083/status\n", + " \n", + " Memory: 4.00 GiB\n", + "
\n", + " Nanny: tcp://127.0.0.1:59072\n", + "
\n", + " Local directory: /Users/ncclementi/Documents/git/dask-mini-tutorial/notebooks/dask-worker-space/worker-mun11dkj\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "\n", + "
\n", + "
\n", + "\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "\n", + "
\n", + "
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from dask.distributed import Client\n", + "\n", + "client = Client(n_workers=4)\n", + "client" + ] + }, + { + "cell_type": "markdown", + "id": "38772f5f", + "metadata": {}, + "source": [ + "# Computations with Dask DataFrames\n", + "\n", + "Since Dask DataFrames implement a Pandas-like API, we can write familiar looking Pandas code using our Dask DataFrames. For example, let's compute the largest flight departure delay.\n", + "\n", + "In Pandas we would do this by iterating over each file to find the individual maximums and then find the final maximum over the individual maximums.\n", + "\n", + "```python\n", + "maxes = []\n", + "for fn in filenames:\n", + " df = pd.read_csv(fn)\n", + " maxes.append(df[\"DepDelay\"].max())\n", + "\n", + "final_max = max(maxes)\n", + "```\n", + "\n", + "We could wrap the `pd.read_csv` with `dask.delayed` so that it runs in parallel. But, we're still dealing with loops, intermediate results (one per file) and the final reduction (max of the intermediate maxes)Thankfully, we have can do this with Dask DataFrames using Pandas-like code by doing:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "6bc85aed", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "dd.Scalar" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "max_delay = ddf[\"DepDelay\"].max()\n", + "max_delay" + ] + }, + { + "cell_type": "markdown", + "id": "c331401e", + "metadata": {}, + "source": [ + "The above cell looks exactly like what we would do using Pandas and constructs a task graph that we can compute in parallel. Let's look at the task graph to get a feel for how Dask's blocked algorithms work:" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "274685a5", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACXsAAASfCAYAAABWELx9AAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzde5xXBYH///cMw0WIiwIqKiFqaiBaIKKQmq6oo2JspKldtERt07Sy2m1rNxeltnxoblqZuqbmZSUveQVCU0QFFJS7IXe0lYxJ5c7MMPP7o5VffNECnZkzn+H5fDzmoX7mfM55DTj/zOM955TV19fXBwAAAAAAAAAAgOZsSnnRBQAAAAAAAAAAAPx9xl4AAAAAAAAAAAAlwNgLAAAAAAAAAACgBFQUHQAAAABAabv//vtTU1NTdEazNnDgwPTu3bvoDAAAAABKXFl9fX190REAAAAAlK5OnTpl9erVRWc0azfeeGNGjhxZdAYAAAAApW2KxzgCAAAA8L7deOONqa+v9/EOHx07diz6rwcAAACAFsLYCwAAAAAAAAAAoAQYewEAAAAAAAAAAJQAYy8AAAAAAAAAAIASYOwFAAAAAAAAAABQAoy9AAAAAAAAAAAASoCxFwAAAAAAAAAAQAkw9gIAAAAAAAAAACgBxl4AAAAAAAAAAAAlwNgLAAAAAAAAAACgBBh7AQAAAAAAAAAAlABjLwAAAAAAAAAAgBJg7AUAAAAAAAAAAFACjL0AAAAAAAAAAABKgLEXAAAAAC1KXV1d0QkAAAAA0CiMvQAAAAAoeS+//HIuueSS7L333unatWtOOeWUPP7440VnAQAAAECDqig6AAAAAADej/Xr1+fUU0/NH/7wh5x11lnp2rVr7r333gwbNizjxo3LUUcdVXQiAAAAADQIYy8AAAAAStp3vvOdzJ8/P48++mgqKyuTJJdcckkOOeSQnHPOOVm8eHHBhQAAAADQMDzGEQAAAICSdsstt+Tggw/ePPRKkt122y0nnHBClixZkqlTpxZYBwAAAAANx9gLAAAAgJK1cuXKvPHGGznuuOO2+tz++++fJJk2bVpTZwEAAABAozD2AgAAAKBkzZ8/P0nSo0ePrT53wAEHJElef/31Jm0CAAAAgMZi7AUAAABAyVq4cGGSZJdddtnqc7169UqSvPnmm03aBAAAAACNxdgLAAAAgJLVtm3bJMmf//znrT63du3aJMnOO+/cpE0AAAAA0FiMvQAAAAAoWbvvvnuSZPHixVt97u0BWPfu3Zu0CQAAAAAai7EXAAAAACVr//33T1lZ2TuOvWbOnJkkGTRoUFNnAQAAAECjMPYCAAAAoGTtscceOeqoo/LUU09l0aJFm1+vqanJnXfemT333DMDBgwosBAAAAAAGo6xFwAAAAAl7V//9V9TU1OT008/Pffdd1+eeOKJDBs2LIsXL86NN96YsrKyohMBAAAAoEFUFB0AAAAAAO/H8ccfn1/96lcZOXJkRowYkSTp0qVLrr766lRWVhZcBwAAAAANx9gLAAAAgJJ3xhln5FOf+lSmTZuWurq6DBo0KK1atSo6CwAAAAAalLEXAAAAAC1CRUVFDj/88KIzAAAAAKDRlBcdAAAAAAAAAAAAwN9n7AUAAAAAAAAAAFACjL0AAAAAAAAAAABKgLEXAAAAAAAAAABACTD2AgAAAAAAAAAAKAHGXgAAAAAAAAAAACXA2AsAAAAAAAAAAKAEGHsBAAAAAAAAAACUAGMvAAAAAAAAAACAEmDsBQAAAAAAAAAAUAKMvQAAAAAAAAAAAEqAsRcAAAAAAAAAAEAJMPYCAAAAAAAAAAAoAcZeAAAAAAAAAAAAJcDYCwAAAAAAAAAAoAQYewEAAADQotTV1RWdAAAAAACNoqLoAAAAAABK37Rp09KpU6eiM5Ikjz76aI4//vhUVDSPH33V1tYWnQAAAABAC1FWX19fX3QEAAAAAKWrU6dOWb16ddEZzdqNN96YkSNHFp0BAAAAQGmb0jx+vREAAACAkrVq1aqiEzabPn16Dj300Jxxxhm56667is4BAAAAgAZVXnQAAAAAADSUtwdeDzzwQNauXVtwDQAAAAA0LGMvAAAAAFqEurq6/OpXv0qSbNy4MQ899FDBRQAAAADQsIy9AAAAAGgRJk6cmNdffz1JUlZWlttvv73gIgAAAABoWMZeAAAAALQId955Z1q3bp0k2bRpU8aNG5eqqqqCqwAAAACg4Rh7AQAAAFDyampqMmbMmNTU1Gzx+n333VdQEQAAAAA0PGMvAAAAAEreuHHjsmrVqi1eq6+vz2233VZQEQAAAAA0PGMvAAAAAEreHXfcsfkRjm+rq6vLM888kz/84Q8FVQEAAABAwzL2AgAAAKCkrVu3Lg888MBWj3BMkoqKitx9990FVAEAAABAwzP2AgAAAKCk/eY3v8nGjRvf8XO1tbW59dZbm7gIAAAAABqHsRcAAAAAJe32229Pefk7/5irvr4+s2bNyssvv9zEVQAAAADQ8Iy9AAAAAChZb7zxRiZMmJBNmza96zFt2rTJXXfd1YRVAAAAANA4jL0AAAAAKFn33HNPamtr/+Yx1dXVue2225qoCAAAAAAaT0XRAQAAAADwXj3zzDPZa6+9Ul9fv/m1N954I+3bt0/btm03v1ZXV5eXX345+++/fxGZAAAAANAgyur/+idhAAAAAFDiOnfunKuuuiojR44sOgUAAAAAGtIUj3EEAAAAAAAAAAAoAcZeAAAAAAAAAAAAJcDYCwAAAAAAAAAAoAQYewEAAAAAAAAAAJQAYy8AAAAAAAAAAIASYOwFAAAAAAAAAABQAoy9AAAAAAAAAAAASoCxFwAAAAAAAAAAQAkw9gIAAAAAAAAAACgBxl4AAAAAAAAAAAAlwNgLAAAAAAAAAACgBBh7AQAAAAAAAAAAlABjLwAAAAAAAAAAgBJg7AUAAAAAAAAAAFACjL0AAAAAAAAAAABKgLEXAAAAAAAAAABACTD2AgAAAAAAAAAAKAHGXgAAAAAAAAAAACXA2AsAAAAAAAAAAKAEGHsBAAAAAAAAAACUAGMvAAAAAAAAAACAEmDsBQAAAAAAAAAAUAKMvQAAAAAAAAAAAEqAsRcAAAAAAAAAAEAJMPYCAAAAAAAAAAAoAcZeAAAAAAAAAAAAJcDYCwAAAAAAAAAAoAQYewEAAAAAAAAAAJQAYy8AAAAAAAAAAIASYOwFAAAAAAAAAABQAoy9AAAAAAAAAAAASkBF0QEAAAAA8F6sXbs2VVVVqa2tzRtvvJEkqampSW1tbV5++eVMnz49SdK+ffu0bds2HTt2TNeuXVNe7vcfAQAAAChNZfX19fVFRwAAAADAX3v99dezYMGCLF26dPPHsmXL8sc//jFVVVWpqqrKhg0b3tO5u3btuvmjZ8+e2XvvvTd/7LPPPtl3331TUeF3JAEAAABodqYYewEAAABQmLq6usybNy/Tp0/P7NmzM3PmzMyaNSuvv/56kqR169b54Ac/uHmMtfvuu6dbt25bDLZat26dLl26JEkqKirSsWPHVFdXZ+3atUmS9evXZ8OGDVm9enVWrlyZP/3pT6mqqsrKlSuzfPnyLF26NEuWLMmbb76ZJGnbtm369OmTfv365eCDD84hhxySww47LJ06dSrmDwkAAAAA/sLYCwAAAICms379+kyZMiVPP/10Jk+enGeffTZvvfVW2rVrl759+6Zfv36bR1b7779/9txzz7Rq1apJ2t58880sXrw4c+bMyezZszNr1qzMnj07r732Wlq1apWDDjooQ4YMyeDBg3PUUUelZ8+eTdIFAAAAAP/H2AsAAACAxrVw4cKMHTs2Y8eOzcSJE7Nu3br06tUrQ4YMyRFHHJGPfexj6devX5ONurbXihUrMnny5Dz99NN59tln88ILL6S6ujp9+vRJZWVlTjzxxBx55JFp27Zt0akAAAAAtGzGXgAAAAA0vBkzZmTMmDG55557smDBgnTu3DlDhw7NiSeemBNOOCF77bVX0Ynv2fr16/PMM89k7NixGTduXObNm5cOHTqksrIyp59+ek4++eS0b9++6EwAAAAAWh5jLwAAAAAaxvz583PHHXdkzJgxmT9/fnr16pXTTjstw4YNy+DBg1NRUVF0YqNYtmxZxo4dm3vuuSdPPvlk2rVrl1NOOSVnnHFGTj755LRu3broRAAAAABaBmMvAAAAAN67DRs25J577smNN96Yp556Kj179synPvWpnH766Rk0aFDKysqKTmxSr7/+eu69996MGTMmTz31VLp3755zzjknI0eOzH777Vd0HgAAAAClzdgLAAAAgO23aNGiXHvttbntttuyZs2anHrqqTnvvPMydOjQlJeXF53XLCxfvjw333xzbr755rz66qs55phjcuGFF2b48OH+jAAAAAB4L4y9AAAAANh2kydPzlVXXZX7778/vXr1ygUXXJBzzjknu+22W9FpzdamTZsybty43HDDDXn44YfTu3fvfO1rX8s555yTDh06FJ0HAAAAQOkw9gIAAADg73vkkUcyevToTJ48OYcddlguvfTSjBgxIq1atSo6raQsWLAgV199dW699da0b98+F154Yb72ta+lS5cuRacBAAAA0PxNcb94AAAAAN7VhAkTcsQRR2TYsGHp1q1bnnrqqUydOjWnn366odd78KEPfSg///nPs3z58lx88cW57rrr0rt371x++eVZvXp10XkAAAAANHPGXgAAAABs5dlnn83RRx+d448/Pl26dMnUqVPz4IMP5sgjjyw6rUXo1q1b/v3f/z2LFy/OV7/61Vx11VXp3bt3fvSjH2XDhg1F5wEAAADQTBl7AQAAALDZ8uXLc+aZZ+ZjH/tYysvL8/TTT2fs2LEZOHBg0WktUufOnfO9730vixcvzgUXXJBRo0alT58+uffee4tOAwAAAKAZMvYCAAAAIOvWrcsPf/jD9O3bN9OmTcvdd9+dJ554IkOGDCk6bYewyy67ZPTo0Xn55ZczdOjQnH766TnmmGMyY8aMotMAAAAAaEaMvQAAAAB2cOPGjUvfvn1z+eWX59JLL82cOXNy2mmnFZ21Q9pjjz3yi1/8IlOnTk1NTU0GDBiQCy64IGvWrCk6DQAAAIBmwNgLAAAAYAe1cuXKfP7zn09lZWUOO+ywLFq0KJdddlnatm1bdNoO79BDD82kSZNyww035Ne//nUOOeSQTJgwoegsAAAAAApm7AUAAACwA7r77rvTp0+fPPHEE3nwwQdz9913Z7fddis6i79SVlaWc889N3Pnzk3//v1z/PHH55xzzslbb71VdBoAAAAABTH2AgAAANiBrFq1Kp///Odz5plnZsSIEZk7d26GDRtWdBZ/Q48ePfLrX/86999/f8aPH59DDjkkkyZNKjoLAAAAgAIYewEAAADsIKZOnZoBAwZk3LhxeeCBB/Lzn/88nTp1KjqLbTR8+PDMmjUrH/nIR/Lxj388l1xySaqrq4vOAgAAAKAJGXsBAAAAtHD19fW54oorMmTIkBxwwAGZPXu2u3mVqO7du+c3v/lNfvrTn+amm27KUUcdlVdeeaXoLAAAAACaiLEXAAAAQAv21ltvZfjw4Rk1alSuvvrqPPTQQ9ltt92KzuJ9+tKXvpRp06ZlzZo1GTBgQB5//PGikwAAAABoAsZeAAAAAC3U/Pnzc8QRR2TKlCkZP358Lr744pSVlRWdRQP58Ic/nClTpuTYY4/NCSeckMsuuyx1dXVFZwEAAADQiIy9AAAAAFqghx56KIceemi6du2aGTNm5Jhjjik6iUbwgQ98IHfddVd++MMfZvTo0TnrrLOyYcOGorMAAAAAaCTGXgAAAAAtzLXXXpt//Md/zJlnnpnf/e536dGjR9FJNKKysrJceumlGTduXMaPH5/jjjsuK1euLDoLAAAAgEZg7AUAAADQQtTX1+eyyy7LJZdcku9+97u54YYb0rp166KzaCL/8A//kOeffz6vv/56Bg0alPnz5xedBAAAAEADK6uvr68vOgIAAACA96e6ujpnnXVWHnnkkdxyyy359Kc/XXQSBfnjH/+YU089NYsXL86jjz6agQMHFp0EAAAAQMOY4s5eAAAAACVu/fr1GT58eB577LH89re/NfTawe2222554okncthhh+W4447LpEmTik4CAAAAoIEYewEAAACUsLVr1+bUU0/NlClTMn78+Bx55JFFJ9EMtG/fPvfff3+OP/74nHjiiRk/fnzRSQAAAAA0AGMvAAAAgBK1atWqDB06NLNnz87EiRMzaNCgopNoRtq0aZO77rorI0aMyCc+8Yk89NBDRScBAAAA8D5VFB0AAAAAwPZbu3ZtTj755CxbtiwTJ07MAQccUHQSzVBFRUVuueWWtGvXLqeddloefPDBHH/88UVnAQAAAPAeGXsBAAAAlJjq6uqcdtpp+f3vf58nn3zS0Iu/qby8PL/4xS9SV1eX4cOHZ+zYsTn66KOLzgIAAADgPTD2AgAAACghNTU1+dSnPpVnn302jz/+ePr27Vt0EiWgrKwsv/jFL7JmzZqceuqpeeyxxzJw4MCiswAAAADYTuVFBwAAAACwberr6zNy5Mg8+eSTGT9+fAYMGFB0EiWkVatWue222zJkyJCcdNJJWbhwYdFJAAAAAGwnYy8AAACAEvEf//EfueOOO3LHHXdk0KBBRedQgtq0aZN77703++23X0444YS8/vrrRScBAAAAsB2MvQAAAABKwP/8z/9k1KhR+clPfpJhw4YVnUMJ22mnnfLggw+mrKwsI0aMyIYNG4pOAgAAAGAbGXsBAAAANHNPPvlkzj777HzrW9/Kl7/85aJzaAG6d++eBx98MHPmzMkXvvCF1NfXF50EAAAAwDYoq/eTHAAAAIBm65VXXsmhhx6aI488MmPGjEl5ud/do+E89thjqayszA9+8IN84xvfKDoHAAAAgL9tirEXAAAAQDNVU1OTY445JitXrsxzzz2XTp06FZ1EC3TllVfm29/+dh599NEcf/zxRecAAAAA8O6MvQAAAACaqwsuuCB33XVXpkyZkj59+hSdQwtVX1+fM844I48//nimTZuWvffeu+gkAAAAAN6ZsRcAAABAc/SrX/0qZ599du6///584hOfKDqHFm7NmjUZNGhQOnXqlEmTJqWioqLoJAAAAAC2NqW86AIAAAAAtrR48eJcdNFF+frXv27oRZP4wAc+kF//+teZOXNmRo0aVXQOAAAAAO/Cnb0AAAAAmpHa2tocddRRWb16dZ5//vm0a9eu6CR2ID/96U9z8cUX53e/+12OPvroonMAAAAA2JLHOAIAAAA0J5dddll++MMf5rnnnku/fv2KzmEHU19fn0984hOZMWNGZs6cmZ133rnoJAAAAAD+fx7jCAAAANBcTJ8+PaNHj86VV15p6EUhysrKctNNN6WmpiaXXnpp0TkAAAAA/D/c2QsAAACgGaitrc2gQYPSsWPHPPHEEykrKys6iR3Yvffem9NOOy3jx4/P0KFDi84BAAAA4C+mVBRdAAAAAEBy5ZVXZu7cuXnxxRcNvSjciBEjMnz48Jx//vmZM2dOOnToUHQSAAAAAEk8xhEAAACgYAsWLMjll1+eyy67LB/+8IeLzoEkyU9/+tO89dZb+Y//+I+iUwAAAAD4Px7jCAAAAFCwoUOHZuXKlXn++edTUeFG7DQfN9xwQy688MK88MIL6devX9E5AAAAADu6KcZeAAAAAAV64IEHMnz48Dz11FM58sgji86BLdTX1+fwww/PBz7wgTz++ONF5wAAAADs6Iy9AAAAAIpSXV2dfv36pX///rnrrruKzoF3NHny5AwZMiT33Xdfhg8fXnQOAAAAwI5sSnnRBQAAAAA7qmuuuSavvPJK/vM//7PoFHhXRxxxRM4444xceuml2bhxY9E5AAAAADs0Yy8AAACAAlRVVeX73/9+vvGNb6RXr15F58Df9MMf/jArVqzIT3/606JTAAAAAHZoxl4AAAAABbjyyivTunXrfPOb3yw6Bf6unj175qKLLsoPfvCDrF69uugcAAAAgB2WsRcAAABAE1u5cmV+9rOf5Z//+Z/TsWPHonNgm3zrW99KdXV1rrvuuqJTAAAAAHZYxl4AAAAATez73/9+OnTokC9/+ctFp8A269q1ay6++OL86Ec/yptvvll0DgAAAMAOydgLAAAAoAmtWLEi119/fb797W+nffv2RefAdrn00kuTJD/5yU8KLgEAAADYMRl7AQAAADSh6667Lh07dsz5559fdApsty5duuQrX/lKrrvuuqxfv77oHAAAAIAdjrEXAAAAQBNZt25drr/++lx00UVp165d0Tnwnlx00UVZs2ZNbr311qJTAAAAAHY4xl4AAAAATeTmm2/O+vXr80//9E9Fp8B7tuuuu+azn/1srr766tTV1RWdAwAAALBDMfYCAAAAaAKbNm3Kf/3Xf+Xss89Ot27dis6B9+XrX/96Fi1alIceeqjoFAAAAIAdSll9fX190REAAAAALd2jjz6aU045JS+99FIOOOCAonPgfTvllFNSXV2d3/72t0WnAAAAAOwoprizFwAAAEATuPHGG/Pxj3/c0IsW47zzzstjjz2WRYsWFZ0CAAAAsMMw9gIAAABoZCtWrMgjjzyS8847r+gUaDAnn3xyevTokVtuuaXoFAAAAIAdhrEXAAAAQCO7+eab06lTp/zjP/5j0SnQYCoqKnLOOefkv//7v1NbW1t0DgAAAMAOwdgLAAAAoJH98pe/zOc+97m0a9eu6BRoUOeee25WrFiR8ePHF50CAAAAsEMw9gIAAABoRM8//3wWLlyYz33uc0WnQIPbZ599csQRR+Tuu+8uOgUAAABgh2DsBQAAANCIxowZk3322Sf9+/cvOgUaxac//en85je/yfr164tOAQAAAGjxjL0AAAAAGkl9fX3uueeenHHGGUWnQKM5/fTTs27dOo9yBAAAAGgCxl4AAAAAjWTq1KlZunRpTjvttKJToNHsvvvu+djHPuZRjgAAAABNwNgLAAAAoJE8+OCD2XffffORj3yk6BRoVCNGjMijjz6ampqaolMAAAAAWjRjLwAAAIBGMnbs2Jx00klFZ0CjO+WUU7Jq1apMnjy56BQAAACAFs3YCwAAAKARrFixIjNnzkxlZWXRKdDoevfunf322y/jxo0rOgUAAACgRTP2AgAAAGgEY8eOTdu2bXP00UcXnQJNorKyMmPHji06AwAAAKBFM/YCAAAAaATjx4/P0Ucfnfbt2xedAk2isrIyM2fOzIoVK4pOAQAAAGixjL0AAAAAGsFTTz2VY489tugMaDJHHXVUWrVqlUmTJhWdAgAAANBiGXsBAAAANLDFixfntddey5AhQ4pOgSbToUOHHHLIIXnmmWeKTgEAAABosYy9AAAAABrYs88+m7Zt22bAgAFFp0CTGjJkiLEXAAAAQCMy9gIAAABoYM8880z69++fdu3aFZ0CTWrIkCGZMWNG1qxZU3QKAAAAQItk7AUAAADQwKZOnZojjjii6AxocoMHD05tbW2mT59edAoAAABAi2TsBQAAANCAamtrM2/evHz0ox8tOgWa3F577ZXu3btn5syZRacAAAAAtEjGXgAAAAAN6KWXXsrGjRtz8MEHF50ChTjooIMye/bsojMAAAAAWiRjLwAAAIAGNGvWrLRu3ToHHnhg0SlQiH79+mXWrFlFZwAAAAC0SMZeAAAAAA1o9uzZOfDAA9OmTZuiU6AQ/fr1y9y5c1NXV1d0CgAAAECLY+wFAAAA0IBeeuml9O3bt+gMKMxBBx2UtWvXZtmyZUWnAAAAALQ4xl4AAAAADWjJkiXZZ599is6Awrz9///SpUuLDQEAAABogYy9AAAAABrQ0qVLs/feexedAYXZdddd06FDhyxZsqToFAAAAIAWx9gLAAAAoIGsXLkyq1evTu/evYtOgUL16tXL2AsAAACgERh7AQAAADSQtx9b585e7Oh69+5t7AUAAADQCIy9AAAAABrIq6++miTp2bNnwSVQrF69em3+fgAAAACg4Rh7AQAAADSQlStXplOnTmnbtm3RKU3mgQceyJgxY4rOoJnp1q1bVq5cWXQGAAAAQItTUXQAAAAAQEuxcuXKdOvWreiMJnXFFVekqqoqp59+etEpNCNdu3ZNVVVV0RkAAAAALY6xFwAAAEADqaqqSteuXYvOaFIXXXRR1q9fX3QGzUy3bt1SVVWV+vr6lJWVFZ0DAAAA0GIYewEAAAA0kKqqqh3uzl5nn3120Qk0Q127dk1NTU1WrVqVzp07F50DAAAA0GKUFx0AAAAA0FI0p2HLhg0b8r3vfS/77rtv2rZtmw996EO54IILsnr16i2Oe/PNN/PlL385Bx10UHbfffd88pOfzKOPPrrV+S6++OKce+65efXVV3PhhReme/fum1//whe+8J7Oua2N7+S8887L2WefnYULF2bkyJHp2bNnjj322Nx+++1JkquvvjoDBgzIrrvumsrKyixYsGCrczz55JO58MILs//++6dnz54588wzc/3112fTpk1JkjvvvDNHHnlkRo0atcX7fve73+WYY47J97///b/buS3XedusWbPyyU9+Mr17984nPvGJ3HrrrXnsscdy2mmnbfFIxG09rkhdunRJkrz11lsFlwAAAAC0LGX19fX1RUcAAAAAtATDhg1L165dc8sttxSdki9+8Yu57bbb8rnPfS4f/ehHs2jRotx44435yEc+kmeffTZJ8uqrr+bII4/Mn/70p3z+859P586dM378+MycOTNXXXVVvvrVr24+38c//vGsWLEibdu2zaxZs9K/f/9Mnz49AwcOTFVVVRYvXrzd59yWxnczcODAvPrqqykvL0+XLl0yYMCA3H333ampqcmJJ56YCRMm5KSTTkqrVq3yyCOPZPfdd8+SJUtSXv6X33184oknMnTo0HTu3DlnnXVWunXrlgkTJuSZZ57JN7/5zfzoRz/Kxo0bM2DAgLz00kuZNGlSBg8enDVr1uSggw7Km2++mVmzZuWDH/zg3+zcluskyVNPPZXKysq0b98+J554Ylq1apV77703e+21V0BHOMIAACAASURBVH7/+99n+fLl6dmz5zYfV7QZM2bkox/9aBYsWJD99tuv6BwAAACAlmKKsRcAAABAAznhhBPSq1ev3HDDDYV2bNy4MR07dkxlZWUeeOCBza//5Cc/ySWXXJL58+dn//33z2c/+9nccccdmTJlSgYNGpQkqa6uTmVlZZ5++um89tpr2WWXXZL8Zew1ceLEnHDCCbnmmmty4IEHJslWY69tPee2Nr6bgQMHZtq0abniiivyne98J0kyduzYnHTSSdlpp50yY8aMze8/55xzcuutt25xzvPPPz+33XZbVqxYsfkuVBs2bMg+++yTzp0756WXXkqSvPDCCzn88MOz7777ZsaMGfn617+en/3sZ7n99tvzmc985u/+XWzLderq6tK/f/8sX748L774Ynr16pUkmT17dg499NBUV1dn+fLl2XPPPbfpuOYw9po3b1769u2bOXPmpG/fvkXnAAAAALQUUzzGEQAAAKCBbNy4MW3atCk6Y/PjAZ988sm8+OKLm1+/6KKLsmbNmuy7777585//nDvvvDMDBw7cPMpKkjZt2uS8885LdXV17rvvvq3Offnll28eev2/tuec29JYV1eXtWvXbvHx148+bNWqVb75zW9u/u9DDjkkSXLsscduMRT7+Mc/nuQvA6S3ff3rX8/zzz+/eYCV/GWU1qVLl6xatWrza/3798+//du/5fe//31GjBiRn//85/n0pz+9eej19xq35TovvvhiZs6cmQsuuGDzgCtJ+vXrl09/+tOb/3tbj2sO3v4+qK6uLrgEAAAAoGWpKDoAAAAAoKWorq5uFmOv9u3b53vf+16++93vpn///vnwhz+cY445JieddFJOOOGEtGrVKvPnz099fX3WrFmz1VDo7RHSokWLtni9e/fuGThw4Lted3vOuS2NkydPzuDBg7c4z5133pkzzzwzSbLHHnts8efdrl27za//tVatWiXZcnh04IEHpqqqKldddVUmT56cpUuXZsGCBVm1atVW7//2t7+dhx9+OI888kj23HPP/PznP9/8ualTp/7Nxm25ztt/JgcccMBWf6Z/fVesbT2uOWjbtm2SvwwgAQAAAGg47uwFAAAA0EDq6upSXt48ftzyne98JwsXLsy//du/pX379rn++utzyimnpG/fvlmxYkWqqqqS/GWU07p16y0+unbtms985jNbDYjeHvC8m+09599r7NatWz7zmc9s8bH33ntvfn+HDh3esWNb/g6uvPLK7LXXXrn88stTU1OT4447LrfcckuGDBnyjsfX19e/4+t/r3FbrvPGG28kSbp27brV+f/6LmHbelxz8PbArra2tuASAAAAgJbFnb0AAAAAGkjr1q1TU1NTdEaqq6uzbt267L333hk1alRGjRqVFStWZPTo0bnuuuty7bXXbn4M4Yc+9KHcfvvtW7x/06ZNWb16ddq3b79d191nn322+Zzb0jh69OitztMQ/vSnP+Vf/uVf0r179yxYsCAdO3bc/LnRo0dvdfzo0aPz/PPPp7KyMmPHjs1FF12UO+64412/1u29ztvjsGeeeSbDhg3b4hx//YjLbT2uOXj7Lmp/byAIAAAAwPZpHr9qCgAAANACtG3bdotHBRbld7/7XXbeeefcddddm1/bfffd881vfjPJX+4Qtd9++6V79+4ZP378VgO1H/zgB9l5553z3HPPbdd1t+ec29LYWJYtW5a6urp88pOf3GKA9corr2TGjBlbHDt9+vRcccUVOeKII/Lwww9n2LBhufPOO/PrX/+6wa5z0EEHpaKiIhMmTNji/YsXL85jjz223cc1B28/vtHYCwAAAKBhGXsBAAAANJA2bdo0i7HXkCFDsuuuu2bUqFF58skn89Zbb2X69On56le/miQ5+eST06ZNm/zgBz/IqlWr8tnPfjYvvPBCFi5cmKuuuipXXHFFhg4d+q6PNHw323PObWlsLAcccEA+8IEP5O67785DDz2UBQsW5JZbbsngwYPTqVOnrFmzJvPnz8+GDRvyuc99LuXl5bnppptSXl6e66+/Pl26dMk//dM/ZcWKFQ1ynT333DOXXHJJXnjhhZxzzjkZO3ZsfvKTn6SysnKL823rcc2BO3sBAAAANA6PcQQAAABoIM1l7NWxY8fccccdOfvss3PMMcdsfr1du3YZPXr05iHVueeem3Xr1uVb3/pWxowZkySpqKjIyJEjM3r06JSVlW33tbf1nNva2Bg6duyYm2++OV/84hdz6qmnJkl22WWX/PjHP06HDh1y9tln56CDDspXvvKVvPTSS7nsssvSp0+fJMkee+yRH//4x/nCF76QkSNH5uGHH37f16mpqcl//ud/pkuXLrnmmmty6623pmvXrvnMZz6TLl26ZNSoUenUqVOSbPNxRXv7+6BNmzYFlwAAAAC0LGX19fX1RUcAAAAAtARnnXVWNmzYkPvuu6/olCTJunXrMmvWrCxfvjzdunXLQQcdlF133XWr41avXp0XX3wxa9asSb9+/dKzZ8/3fe1tPee2NjaGqqqqvPjii+nRo0f69OmzeYhWVVW1+VGXRVznjTfeyM4775wk+cpXvpKHH344S5Ys2eq823pcESZNmpSjjjoqr732WnbfffeicwAAAABaiinGXgAAAAAN5Ctf+UpmzZqViRMnFp1CCVm/fn2OPfbYHH744fnxj3+8+fW1a9fmox/9aPr27Zv7779/m49rDu6///6MGDEiGzZscHcvAAAAgIYzxWMcAQAAABpI165dU1VVVXQGJWannXbKLrvskmuvvTZvvfVWTjnllLzxxhv55S9/mT/84Q+56aabtuu45mDlypXp1KmToRcAAABAAzP2AgAAAGggXbt2zcqVK4vOoATdeeed+f73v58JEybklltuSYcOHdK/f/889NBDOeqoo7b7uKKtXLkyXbt2LToDAAAAoMXxGEcAAACABnLnnXfm7LPPTnV1dcrKyorOoUS99dZb6dixY8rLyxvkuCJ84xvfyKRJkzJ16tSiUwAAAABakinN7ydBAAAAACVqt912S21trUc58r507tx5mwZc23pcEf74xz+me/fuRWcAAAAAtDjN86dBAAAAACWoV69eSZKlS5cWGwIFW7JkSXr37l10BgAAAECLY+wFAAAA0EA++MEPpry83NiLHd6SJUuy9957F50BAAAA0OIYewEAAAA0kDZt2mSPPfbIkiVLik6BwmzYsCErVqxwZy8AAACARlBRdAAAAABAc/Sb3/wmO+20U/r27Zu99tprm9/Xu3dvd/Zih7Zs2bLU1dVt19hr3bp1mTdvXubMmZNTTz01u+yySyMWAgAAAJQuYy8AAACAd/Doo4/mxhtvTJJ07Ngxffv2zUc+8pH069cvffv2Tb9+/d5xkLLffvtl/vz5TZ0LzcbLL7+csrKy7Lvvvlt9rqamJi+//HLmzp2b2bNnZ/bs2XnhhRfy6quvpr6+PuXl5VmzZk0B1QAAAAClwdgLAAAA4B307ds3FRUVqa2tzerVqzNlypRMmzYtSVJbW5sk2WWXXXLwwQenf//+mwdgBxxwQB5++OEi06FQs2bNyt57752qqqpMnDgxc+bMyezZszNjxowsWLAgtbW1KSsrS9u2bVNTU5NNmzZtfu9ee+2VnXbaqcB6AAAAgOatrL6+vr7oCAAAAIDm5rHHHsvQoUO36di2bdumtrY2mzZtSllZWerr63PTTTfl3HPPbeRKaF5ee+21HHroofnjH/+4ecTVpk2bbNq0aYtR1zspKyvLKaeckgcffLApUgEAAABK0ZTyogsAAAAAmqM+ffps87EbN27c/O+DBw9OkvTs2bPBm6C569GjRzp27JjBgwenXbt2ad26daqrq//u0Cv5yyisX79+TVAJAAAAULqMvQAAAAD+z7p16zJ9+vTcdttt+a//+q9UVFT83feUlZWlrKwsvXv3zpgxY/L000+nR48emT17dhMUQ/OycePGLFq0KBdeeGGWL1+eL33pS2nVqtU2fS/V1NRk8uTJueaaazJhwoT84Q9/aIJiAAAAgNLiMY4AAADADmfDhg156aWXMm/evMyZMyfz5s3L3Llzs2TJktTV1aVt27b58Ic/nIULF2bNmjXvep7y8vK0b98+Z555Zr74xS9m3333Tffu3TNs2LC0b98+d999dxN+VVC8yZMnZ/DgwVmwYEH222+/JMnvf//7fOc738l9992XVq1a/c27fB122GFZunRpXn/99SRJly5d0qdPn/Tt23eLf+65555N8vUAAAAANDNTjL0AAACAFqumpiavvPJK5s6dm+nTp28edc2fPz+bNm1K69at07Nnzy1GJAMGDMiBBx6YVq1apbKyMuPGjXvX85eXl6eioiI1NTV5+0cs7dq1S4cOHbJ27dpcc801Of/881NWVtZUXzIU6rLLLsu1116bG264IcuWLcuyZcuyePHiLF68OEuXLs26deve9b1lZWVZu3Ztdtppp7z55ptZtGhR5s6du/n7dt68eVm8eHGSpHPnztlvv/22GoL17t3b9xsAAADQkhl7AQAAAKWvtrY2y5cv32oYMmfOnGzcuDEVFRX54Ac/uNUwpG/fvmnXrt27nnf06NH57ne/u909bdq0SXV1dRYuXJh99933/XxpUDImTJiQ4cOHbx50tWnTJklSXV29Te/feeed8+c///lvHvPGG29k8eLFRmAAAADAjsrYCwAAACgd7zbqmjt3bjZs2PCuo64+ffpkp5122u7rPf744znuuOO26djy8vLU1dWlsrIyP/7xj3PwwQfnl7/8Zc4666ztvi6Uovr6+uy2227p169fJk6cmPLy8tTU1Gzz+z/2sY9l0qRJ7+naRmAAAADADsLYCwAAAGh+Nm3alGXLlm013Jg3b17Wr1+fJOnRo0cGDBjQIKOuv7Z+/fq88MILee655zJx4sQ88MADKSsry9/6EUpFRUV69OiR66+/PieddFKS5PDDD0///v3zs5/97H31QKmYP39+DjzwwEyePDm77LJLzj///Dz11FNJ8je/f972ta99LVdffXWDNhmBAQAAAC2MsRcAAABQrP/93//d6i5dL7744uZHwfXo0WOrQVf//v3Tvn37933turq6vPTSS3nuuefy3HPPZerUqZk9e3Zqa2vTvXv3HHbYYfnzn/+cadOmveMdilq3bp26urp84xvfyGX/H3t3Htb0na4N/BYSEBEQt0o7LqBgCbIZUWRRq4yCTdxK7LROO9PTfe+oo51X1I502mrVOnZsp6frjJ5usVZJFGuxpyoBFCKLhkUsKFhEEQFlz/b+0cNviKB1AX4s9+e6uNpLILnTShLyvfM8r71msxJy1apV+OKLL4RSCVFvt3XrVqxevRqXLl2CVCqF1WrF9u3b8corr6C2tvaGU77uvvtulJeX495774VcLkdERATCw8Mhk8k6pXTFEhgRERERERER9VAsexERERERERFR12iv1JWVlYW6ujoA7Ze6goOD4ezs3GEZzp8/j4yMDOj1euj1eqSkpODy5cuQSqUICAhAeHg45HI55HK5UDJJTk5GZGSkzeW0rGycPn06/vnPf+Lee+9tc11HjhzBtGnTcOrUKXh7e3fYbSDqrubOnQtnZ2eo1WqbP6+qqsKaNWuwbds22NnZwWw223zewcEBjz76KGbOnIm0tDQcPXoUmZmZaG5uxtChQxEaGoopU6Zg6tSpCAkJgaura6fdBpbAiIiIiIiIiKibY9mLiIiIiIiIiDpWe6Wu7Oxs1NbWAmi/1BUUFISBAwd2aI7a2lpkZWUJxS69Xo/c3FwAgJeXl02xKyQkBI6Oju1eTn19PVxdXYWCilQqhbu7O95++208+uij171+s9mM4cOHY+3atXjppZc69LYRdTeNjY0YMmQItm7discff7zdr0lOTsaTTz6JwsJCm8KXnZ0dtm/fjocfflj4M6PRiJycHCQnJ9/w5zciIgLBwcGws7Pr1NtXVVXVpgBmMBhw/vx5AMCgQYMwduxYlsCIiIiIiIiIqLOx7EVEREREREREt+fa8oNer0dOTg6uXr0KAHB3d7cpPsjlcgQGBsLFxaXDs5jNZuTn5wulEJ1Oh6ysLJjNZnh4eAilLrlcjvDwcAwePPiWLt/Pzw95eXmws7PD0qVLsXbt2puaOKZSqVBbW4vExMTbvWlEPcL+/fsRExODkpISjBw58rpfZzQasXnzZqxduxYWi0VY7Xj69GmMHTv2htfRejKfTqdDSkoK6uvrMXDgQAQGBgrlrxkzZmDYsGEdevuuhyUwIiIiIiIiIupiLHsRERERERER0Y21V2bIzs5GRUUFgLalLj8/PwQEBGD48OGdlqmsrMym2NVe6aPlw8/P746vLyQkBLm5uRg5ciRGjBiB/v37w9XVFQMGDICjoyNcXV0hkUgwaNAgSKVSDBw4EE5OTkhNTcXHH38MtVqNmJgYSKXSDrj1RN3P888/L5Qsb8aZM2fw3HPPITExEe7u7rh8+fItX2frkqdOp0NycjLy8vJgtVrh4eGBiIgIYQLYjab3dQaWwIiIiIiIiIiok7DsRURERERERES/aK+ccOLECVy4cAFA+6Uuf39/3HXXXZ2a68qVK8jJyREKHYcPH8aFCxdgb2+P8ePHC6WuiIgIBAUFwd7evsMzfP3113jwwQfb/Lm9vT3s7OxsVshZrVZYrVaYzWZYLBYAwAsvvIB33323w3MRic1iseCf//wnVqxYgYkTJ8LX1xfALz+3ZrMZdXV1qKurg8lkQk1NDQCguroaVqsV9fX1aGxshKenJwwGQ4fkuXLlCo4dOyasf0xJScHly5cxYMAABAcHC/cX06ZNw5gxYzrkOm8FS2BEREREREREdIdY9iIiIiIiIiLqa9orG5w8eRLl5eUAfil1eXl5CasX/fz84OfnBw8Pj07PZjKZUFBQIEzp0ev1yM/Ph8VisVnHGBERgbCwMAwYMKDTMwFAc3MzBg8ejLq6upv+Hnt7e0yYMAHu7u5wdXXFnj17OjEhkXi+/PJLPPTQQwCAfv36QSKR2JQdf41arUZsbGyn5SsqKhLuT3Q6HTIzM23uU1pPAHNycuq0HDdyuyUwLy8vUfISERERERERkWhY9iIiIiIiIiLqraqrq/HTTz+1KRAUFRUB6B7lgbKyMptil16vR2NjI1xdXeHv7y8UMaZNm9bpE8R+zYMPPohdu3bBZDLd8Ovs7OxgsVjw4osvYuPGjfjiiy/w1FNPoby8HO7u7l2UlqjrPPXUU8jIyIBSqUR8fDz69et300UvBwcHXL58Gc7Ozp2c8j9qa2uRlZUllL9+/PFHVFRUQCKRwMfHx6b8JZPJRJ2oxRIYEREREREREV2DZS8iIiIiIiKinq6mpganT5++bqnLzc0N48aNE30tWHV1NTIyMoRiV1paGi5duiQULFpP2PH19bVZjdgdfPTRR3jqqadwo5dSpFIpBgwYgB07dkChUAD45XaPGDECH3zwAf7whz90VVyiLmE0GnH33Xdj+fLlWLlyJQ4ePIgHH3wQV65cgdFovOH32tvbY+7cuUhISOiitNd3bfE0IyMDTU1NGDFiBCZNmiRMFYyMjMSgQYPEjssSGBEREREREVHfxbIXERERERERUU9x5coVFBYWtjngLy4uhtVqhaurK7y9vUUvdQG/FEBycnJsJnbl5eXBarXCw8PDZnLOpEmT0L9//y7Nd7OKioqwZ88eJCQk4MiRI7BardedWGRvb4+goCDs3LkTY8aMsflcbGwsKioqcOjQoS5ITdR1du3ahcWLF6O4uBgjR44EAPz8889QqVQ4duwYzGbzdb/Xzs4Oa9euxZo1a7oq7k2rr6/H8ePHhfuvI0eO4MyZM7C3t8f48eO7bTn119b0sgRGRERERERE1OOx7EVERERERETU3TQ1NeH06dPCYb1er7cpdTk4OGDcuHE2B/UymUy0woHZbEZ+fr5QitDr9UhPT0dzczMGDRqESZMmCcWuqVOnYujQoV2e8VYYDAao1WpotVro9Xq4u7sjKioKCoUCH3/8MZKTk20KX3Z2drBarcLaRqlU2uYy9+/fj5iYGOTm5sLX17crbw5Rp4qJiYGdnR327t1r8+cmkwnx8fE3XOvYr18/WK1WjB49GgsWLMDChQsREREBe3v7rop/S8rKyoTVj8nJyTh+/DgaGhqEtbMt5a+wsDAMGTJE7Lg2WAIjIiIiIiIi6jVY9iIiIiIiIiISS3NzMwoLC9us4crPz4fFYul2pa4WLYWHlg+dToeqqipIpVIEBAQIxS65XA6ZTNblU8VulclkQlpaGtRqNXbt2oVz585h9OjRmDNnDhQKBebMmQMHBwcAwLZt2/Dyyy8L04qkUilcXFzw+eefY86cOde9DovFgrFjxyI2NhZvv/12l9wuos5WWloKT09PqNVqLFy4sN2vOXjwIBYvXoyrV6/arHW0s7PDtGnT8I9//MOmXDl48GDcf//9UCqVmDt3Lpydnbvq5twyk8mEgoICm/WPLRMMvby8bO4Lp0yZ0m4RVGwsgRERERERERH1OCx7EREREREREXW2Xyt1SaVSeHt7tyl13XvvvaJPuKmtrUVWVpZQ7EpOTkZxcbHNKrOWj5CQEDg6Ooqa92ZVVVUhKSkJGo0GCQkJqKmpgUwmg1KphEKhQHh4eLsltdLSUowePRpWqxV2dnaYNWsWduzYgeHDh//qdcbHx2Pr1q04d+5cj/nvRHQja9euxQcffIDS0tIbFpnOnTsHlUqF9PR0oSgpkUjw97//Hc8995zwdUVFRdBoNFCr1UhJSYGTkxNmzpwJlUqF+fPnw83NrdNv050qLy9Henq6zX1mdXU1Bg4ciMDAQGH94/Tp02/qfkMsLIERERERERERdVssexERERERERF1FKPRiFOnTrUpdRUUFMBsNkMqlWLkyJGQyWSQy+XdqtQF/GdKTeuJXZmZmbBYLPDw8LApdkVERMDd3V3syLfk7Nmz+O6776DRaHDgwAGYzWaEhoZCpVJh0aJFGDly5E1dTkBAAHJzc/HGG2/gz3/+801PLvv5558xZswYfPLJJ3jkkUfu5KYQia65uRmenp549NFH8eabb/7q15tMJsTFxWHDhg3Cn5WWluKee+5p9+srKiqQmJgItVqN7777DnZ2doiMjIRCocDixYvh4eHRYbelM7Vec9syAayl6Ovh4SGsfuwphdlfK4G5u7vDy8uLJTAiIiIiIiKizsOyFxEREREREdGtMhqNKC0tbffAu6mpCRKJBKNGjWpz2D1hwoRudZDfeh2jTqdDSkoK6uvrbSbQyOVyREZGwtPTU+y4t8VgMECr1UKj0SAlJQUDBgzAfffdd0eTgj7++GP4+fkhNDT0lr93yZIlOHHiBLKzs7v9ekuiG/n000/x9NNP46effrrpoiQA7Nu3D0uWLIGXlxf0ev1Nfc/ly5eh1Wqh1WqRmJiI+vp6TJ06FUqlEosWLYK3t/ft3gxRXLlyBTk5OUL5KzU1FZWVlW1W4fak+16WwIiIiIiIiIi6DMteRERERERERNdjMplQUlLS5gDbYDCgsbHxuqUuPz8/9O/fX+z4Nq4tFxw7dgwXL16ERCKBj4+PzcSu4OBg2NnZiR35tpjNZqSmpkKtVmPXrl04d+4cRo0ahejoaCgUCsyZMwcODg6i5cvOzkZQUBC+//57REVFiZaD6E4FBQUhMDAQ//rXv275e0tLS5GVlQWlUnnL39vQ0ICkpCSo1WpoNBpUV1dDJpNBpVJBqVRCLpff8mV2B0VFRUhOThYKuMeOHYPRaLSZqtgyBczJyUnsuDeNJTAiIiIiIiKiDseyFxEREREREdH1Sl25ubloaGiAvb09Ro8e3eYwWiaTdctD95Z1ki3FLr1ej7y8PFit1jbFgbCwMAwYMEDsyHekqqoKSUlJ0Gg0SEhIQE1NDWQyGZRKJRQKBcLDw7vVFK2ZM2fC0dERiYmJYkchui2JiYmYO3cuMjMzERQUJFqO1uXOnTt3oqysDJ6enlAqlVCpVN3uZ/9W1NbWIisrS5i8eOjQIZuCbuv1jzKZrMfdTpbAiIiIiIiIiG4by15ERERERETUt5SVlQmHy3q9Hrm5ucjLy0N9fT0AwMPDo02ha+LEid26EFVWVmZT7NLr9WhsbISrqyv8/f2FUsCUKVMwfPhwseN2iJKSEuzfvx8ajQYHDhyA2WxGaGhoj1jrtnfvXiiVSmRmZiIwMFDsOES37L777oNUKsWBAwfEjiKwWCzIzMyERqPBl19+iYKCAgwbNgzR0dFQqVSIjo6GVCoVO+Ydufa+PiMjA01NTXBzc0NISIhQ/oqIiIC7u7vYcW9LeyWwEydO4MKFCwBYAiMiIiIiIiICy15ERERERETUG1ksFpw5cwYGg8HmIy8vD42NjejXrx88PT2Fg+IJEyZAJpPB19e3W07qaq28vBzp6elCqSs1NRWVlZWQSqXw9vbu8dNebsRgMECr1UKj0SAlJQVOTk6YOXMmVCoV5s2bh0GDBokd8aZYrVZMmTIF99xzD7799lux4xDdkiNHjmDatGn48ccfMX36dLHjXFfr+wudTgd3d3dERUVBoVBg0aJFGDhwoNgR75jRaEROTo5Q/kpOTkZxcTHs7e0xfvz4XrOeF7i9EtikSZPg4eEhcnIiIiIiIiKiDseyFxEREREREfVsLQfALVO6DAYDsrOzUVtbC6D9SV1BQUE94qC/rq4OmZmZQrGr5TYCv9yu1sWuSZMmoX///iIn7litV7R9++23KC0txfDhwzFnzhyoVCrMnj0bjo6OYse8LVqtFkqlEkePHsXkyZPFjkN006ZPnw5HR8duNdXr15w5cwZ79uyBWq1GamoqHB0dMWvWrB5XFL0ZZWVlwuOFTqeDTqdDQ0MDXFxcEBAQIDxuTJ06FUOHDhU77h27mRLYntfDqQAAIABJREFUtVPA/Pz8WAIjIiIiIiKinoxlLyIiIiIiIuoZLly4gJMnTwpTulr+vaamBgBw9913w8/PD/7+/pDJZPD394evry9cXFxETn5zzGYz8vPzbYpd6enpaG5uxogRIzBp0iRhSktYWBiGDBkiduROUVdXhx9++AFqtRoajQbV1dWQyWRQKpVQKBQIDw/vNdPKpk6dCnd3d+zbt0/sKEQ3Zf/+/YiJiUFqaipCQ0PFjnNbLl26hH379kGtVtusgFWpVFCpVLj77rvFjtihTCYTCgoKbNY/5uXlwWq1tikNT548GQ4ODmJH7hAsgREREREREVEvxrIXERERERERdS81NTU4ffq0zSGtXq/H+fPnAbR/QOvv74+77rpL5OS3pvX0lZb1W9XV1XB2dkZQUJBQ7JLL5fDz8xM7bqcqKSnB/v37odFobMoXSqUSCxcuhI+Pj9gRO8WBAwcwZ84cJCcnIzw8XOw4RDfUsn50+PDh0Gq1YsfpEFVVVUhKSoJGo8Hu3btRV1eH4OBgKBQKPPTQQxg/frzYETtFTU0N0tPThfKXTqdDVVWVzeNPREQEpk2b1uMeW38NS2BERERERETUC7DsRUREREREROK4evUqTp061ebQtbi4GFarFW5ubhg3blybQ1cvLy+xo9+yq1evIjs7Wyh2HTlyBGfOnIG9vT3Gjx9vU+zqTZNVbsRgMECr1UKj0SAlJQVOTk6YOXMmlEolFixYgOHDh4sdsUvMmjULV69eRVpaGuzs7MSOQ3Rd27dvx2OPPYaMjAwEBQWJHafDNTQ0ICkpCVqtFrt378bFixd77VTBa107WVKn0yEzMxMWiwUeHh5C+Ss8PLxXrgwGWAIjIiIiIiKiHoVlLyIiIiIiIupczc3NKCwstDlANRgMyM/Ph8VigYODA8aNGyccoLZMsvL09OyRB+stK7NaDsyTk5OF29pyaN7yERkZiUGDBokduUuYzWakpqZCq9Xi22+/xalTpzBs2DBER0dDpVJh9uzZcHR0FDtml6qpqUFCQgL++Mc/Yvbs2dixY0evXc9JPVt2djYiIyMhl8vx9ttvQyaTYcCAAWLH6jQt91dqtRrffPMNfv75Z4wZMwbz5s2DUqnEjBkzIJFIxI7ZqVpKyi2PY2lpabh06RKkUikCAgKE1Y+9ffokS2BERERERETUDbHsRURERERERB3DaDSitLRUWLvYcjBaUFAAs9kMqVQKb29vmwNRmUwGX1/fHj3RqGUdY8uB+PHjx9HQ0AAXFxcEBAQIh+HTpk3DmDFjxI7bperr63Hw4EGo1WpoNBpUV1f3mUk5rTU3NyM/Px8nT57EiRMnkJWVhezsbGE1ab9+/eDm5oazZ8/C1dVV5LREbcXFxWHjxo1oamoC8Mvf2d/85jeYOHEi/P394e/vjwkTJsDHx6dXlqAMBgPUajW++uor5OfnY+jQoYiJiYFKpcKcOXP6xDRG4JfHu5bHOr1ej/T0dDQ3N9sUmSMiIhAWFtary4BA+yWwnJwcXLx4EQBLYERERERERNSpWPYiIiIiIiKiW2M2m3H27Nk2h5wGgwGNjY2QSCQYNWpUm0POCRMm9PjJTTU1NThx4oRw2H306FFUVFRAIpHAx8fHZtVVTy+x3a6LFy9i//79UKvV+P7772EymRAaGiqsZxw/frzYETvVmTNncOLECZw8eRI5OTnIyspCYWEhzGYz7Ozs4ODggKamJrR+OWb9+vV488038eyzz+KNN94QMT1RW8XFxfDz88Prr7+On376Ce+9957wuX79+kEikcBkMsFqtUIikWDs2LGQy+VCCczPz69XFV2vXUHr5uaG3/72t1AoFFi4cCFcXFzEjthl6urqkJmZKRSeDx8+jAsXLrT7mCiTyfpEuZclMCIiIiIiIuoCLHsRERERERHR9ZWVlbUpdGVmZqK+vh4AhGke107rcnJyEjn5nTMajcjJyREmmOj1euTl5cFqtQq3u+UQWy6X94rbfLuuLT84OTlh5syZUCqVmD9/Pu666y6xI3a6srIyTJgwAVVVVQAABwcHmM1mmM3m636PnZ0dVqxYgTfffBPvvvsuli1bBr1eD39//66KTfSroqOjUVpaiszMTNjb22PRokXYt28fTCbTdb/H3t4e9vb2aG5uBgCMGzcOJ0+e7PGF32udPXsWu3fvhlarxY8//giJRIKoqCih3Dp8+HCxI3a5a6dd6vV6NDY2ws3NDSEhIcJjZnh4OAYPHix23C5zOyWwCRMmYMSIESInJyIiIiIiom6IZS8iIiIiIiL6zyFk6/WL2dnZqK2tBfBLqevaQldwcDCcnZ1FTt5xioqKbIpdGRkZaGpqgpubGyZMmCAUu0JDQzFs2DCx44rKbDYjNTUVWq0Wu3fvRkFBAYYNG4bo6GioVCrMnj2715U6bsazzz6LDz/88IYFrxYSiQSxsbH4/PPP0a9fP1gsFkRGRsJkMiElJQX29vZdkJjoxrZv344//vGPOHz4MMLDwwEADQ0NmDFjBjIzM2E0Gn/1Mvr164f33nsPzzzzTGfHFVVlZSX27t3bZqqhSqVCbGws7rnnHrEjiqK94nRubi4AwMvLSyh/RUREIDg4uM9NxGQJjIiIiIiIiG4Dy15ERERERER9SXuHitnZ2aioqADQ9lBRLpcjMDCw162lOn/+PDIyMoSD55SUFFy+fBlSqRQBAQHC4bNcLu8zq6d+TX19PQ4ePCgUvC5evAgvLy8oFAqoVCqEhYX1uUP6a1VUVMDT0xN1dXU3/DqpVIopU6YgKSnJphSXn5+PoKAgrF+/Hi+//HJnxyW6ocrKSshkMixevBjvvvtum8+Fhobi7NmzNyx82dvbw9PTE3l5eZBIJJ0dudtoub9Uq9XYs2cPrly5AplMBpVKhQcffBC+vr5iRxRV68dgnU6HlJQU1NfXw8XFBQEBASxXgyUwIiIiIiIiuiGWvYiIiIiIiHqjmpoanD592uagUK/X4/z58wDaPyT09/fvlev2amtrkZWVJRS7rjdVRC6XIyQkpE9OpLqeiooKJCYmtplU07Ke8d577xU7Yrfz1ltvIS4u7rrTvaRSKTw9PXH06FEMGjSozefXrl2LzZs3IycnB56enp0dl+i6Hn74YSQnJ8NgMLRb+D1z5gxCQkJQXV19w5WO+/btQ0xMTGdG7dYaGxuRnJwMjUaDr7/+GuXl5TZF2fDw8D5fKDaZTCgoKLBZ/9h6bXLrlcmTJ0+Gg4OD2JFFwxIYERERERERgWUvIiIiIiKinq2pqQmnT5+2Wb+Ym5uL4uJiWK1WuLq6wtvbu83Bn5eXl9jRO4XZbEZ+fr5NsevYsWMwGo3w8PAQSl1yuRzh4eEYPHiw2JG7naKiImg0GqjVaqSkpKB///6YNWsWlEol5s2bxwPjX3H8+HFERUWhpqYGFovF5nMSiQSDBw9GRkYGRo4c2e73NzU1ISQkBK6urjh06BDXOZIovvjiCyxZsgR79+69YVHrxIkTmDp1KhoaGtr8fZdKpbj77rvxv//7vywu/p/WK3C/+eYbnD59GqNGjcKCBQugVCoxY8aMPjUB7UZqamqQnp4urH9smcDp7OyMoKAg4bF82rRpGDNmjNhxRccSGBERERERUZ/CshcREREREVFP0NzcjMLCQptDPIPBgPz8fFgsFjg4OGDcuHE26xf9/Pzg6enZqyeGlJWVCaWu1qugBg4ciMDAQJtyl5+fn9hxu6XW5YPdu3ejoKAAQ4cORUxMDJRKJebOnQtnZ2exY3Z75eXlWL16NT799FOMGTMGRUVFaP2Si52dHfr374+UlBQEBgbe8LIMBgNCQkLwl7/8BatXr+7s6EQ2SktLERgYiN///vfYunXrr379Dz/8gDlz5rSZ7tWvXz+MGjUK5eXlePHFF7Fq1ap2p9n1ZQaDAWq1Gmq1Grm5uRgyZAjmzp0LlUqF2bNnc9LkNYqKioTyl06nQ2ZmJiwWi1Dmbj0BzMnJSey43cKtru9mCYyIiIiIiKhHYNmLiIiIiIioOzEajSgtLRXWLrYczhUUFMBsNkMqlcLb29vmUE4mk8HX1xd2dnZix+9UV65cQU5OjnDIe/jwYVy4cAH29vYYP368TbFrypQpkEqlYkfuturr63Hw4EFotVrs2bMHFy5csFkrFhYW1uv/PnWUhoYGbN26FW+88QZcXFywZs0aPP744wgLC8Px48eFAoy9vT3279+PqKiom7rcv//971i+fDkOHz6MqVOnduZNIBJYLBbMmjULFy9eREZGxk0XZj7//HP8/ve/FwqOUqkUS5YswYcffohPPvkEa9asgdFoxIoVK/DKK6+wxNSOa6cqOjk5YebMmVCpVFiwYAFcXV3FjtjtXL16FdnZ2cLqx6NHj6KiogISiQQ+Pj425S8Wvm2xBEZERERERNSjsexFREREREQkBrPZjLNnz7Y5aDMYDGhsbIREIsGoUaPaPWjrC4fkJpMJBQUFQrErOTlZmGLWeh1jREQEwsLCMGDAALEjd3sVFRVITEyEVqvFvn370NDQgODgYCgUCjz44IPw9fUVO2KPYrVasXPnTqxYsQIVFRV44YUXEBcXh4EDBwIAdDodIiMjYbVa0a9fP+zYsQMPP/zwLV3+3LlzUVhYiIyMDE5Eoi7x2muvYf369Th69CgCAgJu6Xtff/11rFmzBlarFf3798dPP/2Eu+++GwBQW1uLjRs3Yv369Rg5ciT+9re/ITY2tldPnrwTpaWlSExMhEajwXfffQd7e3tEREQI99cs3FxfWVmZ8LxBr9cjIyMDTU1NGDFiBCZNmiQ8f4iMjOT9ajtupwTm7++Pu+66S+TkREREREREfQrLXkRERERERJ2trKysTaErMzMT9fX1AAAPD4826xdlMlmfWkF07eGsXq9HY2MjXFxcEBAQIBS7pk2bxgPFW9B6UkxqaiocHR0xa9YsKJVKzJs3j4WB25SWloalS5fi6NGjWLJkCTZs2NDuf8sHHngAu3btwvr167FixYpbvp4LFy5g4sSJmDhxIvbs2cNpa9Sp9u3bB6VSiXfffRfPPffcbV3GU089hQ8//BBr167Fa6+91ubzpaWleP311/HRRx9h8uTJ2LRpE8LCwu4wee92+fJlaLVaoajb2NiI0NBQKJVKPPDAAxg3bpzYEbu1+vp6HD9+XHhuceTIEZw5c8ZmKmjLBLC+MCX1drEERkRERERE1K2w7EVERERERNRRWg7CWq9fzM7ORm1tLQDbUlfLP4ODg+Hs7Cxy8q5VU1OD9PR0odiVlpaGS5cuCWuXePB6+8xmM7KysqDRaPDVV18hPz8fQ4cORUxMDJRKJWJiYoTJU3TrCgsLsWrVKqjVakRFRWHjxo0IDAy87tcXFRVh27Zt2LRp021fZ1paGqZPn45Vq1ZhzZo1t305RDdy5swZTJo0CdHR0dixY8dtX47JZMLzzz+PTZs23fC+Jj09HcuXL8eRI0cQGxuL9evXw9PT87avt69oWcGrVquRkJCAmpoayGQyqFQqKJVKyOVysSP2CGVlZTaTQ1sK5q6urvD39xeeg4SFhWHIkCFix+3WWAIjIiIiIiISBcteREREREREt6q9g62cnBxcvHgRQNuDLblcjsDAQLi4uIicvOsZjUbk5OTYTOzKy8uD1WqFh4eHcKDaslapL00z6ygNDQ1ISkqCVqtFQkICysvL4eXlBYVCAaVSiRkzZkAikYgds0erqqrC+vXrsWXLFnh6emLdunVQqVRddv3btm3DSy+9hISEBNx///1ddr3UNzQ0NCAiIgJmsxkpKSlduhZXo9Fg6dKlKCkpwTPPPIN169bBzc2ty66/JzOZTEhLS4NarYZarcb58+eF+36VSoXw8HCuybxJLaujW5e/Wp6reHl5Cc9TIiIiEBQUBHt7e7Ejd3ssgREREREREXUqlr2IiIiIiIiup6amBqdPn7Y5rNLr9Th//jwAHlS1p6ioyKbYlZGRgaamJri5uSEkJEQ4MJ06dSqGDh0qdtwe69KlS9i3bx+0Wi0SExNRX1+P4OBgKBQKLF68GDKZTOyIvYLRaMSnn36KuLg4WCwWrF69Gs8//7wo5bk//OEPSEhIgE6n4/9f6jAWiwW/+93vcPDgQaSnp8PLy6vLM3Snn7OeymKxICUlBVqtFt9++y1OnTqFkSNHIiYmBgqFAtHR0ZBKpWLH7FHKy8uRnp4uPJ9JTk5GdXU1Bg4ciMDAQKH8NX36dAwfPlzsuD0GS2BEREREREQdgmUvIiIiIiKipqYmnD592mb9Ym5uLoqLi2G1WuHq6gpvb+82h09iHIp3Jy1rkFo+UlJScPnyZUilUgQEBNhM7JLJZJwwcoeKioqg0Wig1Wrx448/QiqVIjw8XCh4eXh4iB2xV+luE4caGxsRFRWFn3/+GampqRgxYoRoWaj3WLlyJd555x0kJiZi1qxZomZpPUFvzJgxiI+P79IJer2JwWCAWq2GVquFXq/H4MGDcf/990OpVGLu3Ll9bn10RzCbzcjPz7dZ/5ifnw+LxdJmUmlISAgcHR3FjtyjsARGRERERER0S1j2IiIiIiKivqO5uRmFhYU2B0kGg0E4rHNwcMC4ceNs1i/6+fnB09OzzxeVamtrkZWVZTPhori4GABsVhzxkLPjWCwWZGZmQqPR4Ouvv0ZeXh6GDBmCuXPnQqlUIjo6uk+uBu1sGRkZWLZsGY4cOYLY2FisX78enp6eYscCAFRWViIsLAwuLi44dOgQCxt0Rz7++GM8+eST+Oyzz/Doo4+KHUdQUlKCuLg47NixA/fddx82btyI4OBgsWP1WMXFxUhISIBarUZqaiocHR0xa9YsqFQqzJ8/n2sz78CVK1eQk5MjlL9SU1NRWVnZpvQeGRnZbR5Hepr2SmBZWVm4dOkSAJbAiIiIiIioz2LZi4iIiIiIeh+j0YjS0lJh7WLLAVFBQQHMZjOkUim8vb1tDoZkMhl8fX1hZ2cndnzRmUwmFBQUCMUunU6HzMxMYXpFS6lLLpcjPDwcgwcPFjtyr9HQ0ICkpCRotVpoNBqcP38eXl5eUCgUUCqVmDFjBlebdZJz584hPj4eH330EUJCQrB582aEhYWJHauNwsJChIWFITw8HDt37uTfB7ot+/btw/z58xEXF4e1a9eKHaddx44dw7Jly6DT6RAbG4u3334bo0ePFjtWj1ZRUYHExESo1WocOHAAZrMZoaGhUKlUnBDZQVqvs9bpdMjKyoLZbLZ5/tQyBczJyUnsuD1WSwms9fP8nJwcXL16FQBLYERERERE1Oux7EVERERERD2X2WzG2bNn27zj32AwoLGxERKJBKNGjWpz2DNhwgROnmql9TpGnU6HlJQU1NfXY+DAgQgMDLQ5nOzrqys7Q2VlJfbu3QutVovExETU19cjODhYKHjJ5XKxI/ZqdXV1ePvtt7FhwwYMGzYM8fHxeOSRR7r1NL+UlBT89re/xQMPPIDPPvuMJVW6JYcOHUJMTAweeughfPTRR9367zrwy0rVV155BeXl5XjxxRfx//7f/4Orq6vYsXq8qqoqJCUlQaPR4Ntvv7V57Hn44Yfh4+MjdsReofVkVJ1Oh0OHDuHixYuQSCTw8fGxWf/Ildd3rqysrM3vBL9WAgsICMDw4cNFTk5ERERERHRLWPYiIiIiIqKeob3Dm8zMTNTX1wMAPDw82qxflMlknJpwjWtXDh07dszm0LF1sSs4OJglkk5SVFQEjUYDrVaLH3/8ERKJBBEREVAoFFCpVLj77rvFjtjrWSwW7NixAytXrkRTUxNWrlyJV155pccUQZOSkqBUKvHwww/3iMIOdQ/Hjh1DVFQUfvvb3+Krr77qMZPhmpub8f777+O1116DRCJBXFwcXnjhBdjb24sdrVdomSqpVquh0WhQXV0NmUwGlUrF0nEnKCsrE56H6fV6ZGRkoKmpCW5ubggJCRHKXxEREXB3dxc7bq/AEhgREREREfUyLHsREREREVH30t5aluzsbNTW1gKwLXW1/DM4OBjOzs4iJ+9+jEYjTp06ZXOgmJeXB6vV2madUFhYGAYMGCB25F7LYrEgMzMTGo0GarUaubm5GDJkCGbOnAmFQoGFCxfCxcVF7Jh9RlJSEpYtW4a8vDw89thjeP311zFs2DCxY92yPXv2QKVS4dlnn8Xf//53seNQN3fixAncd999kMvlSEhI6DHFxtYuX76MDRs2YMuWLfDy8sKGDRugUCjEjtWrmM1mpKamQq1WY+fOnSgrK4OnpyeUSiVUKhXCwsJYBO9gRqMROTk5wnO15ORkFBcXw97eHuPHj2cRvxOxBEZERERERD0Uy15ERERERCSOllJX6wOWnJwcXLx4EUDbwxW5XI7AwEAWYm7g2kkRer0ejY2NcHV1hb+/v7AqaMqUKTyk6gKNjY1ITk4WCl7nz58XDsyVSiWmT58OqVQqdsw+JS8vDytWrIBWq0VUVBS2bNkCPz8/sWPdkS+++AKPPPIIXn75ZWzcuJETvqhdx48fR3R0NPz9/aHVanv81MtTp04hLi4OarUaUVFR2LhxIwIDA8WO1eu0Lip/+eWXKCgowLBhwxAdHQ2VSoU5c+bAwcFB7Ji90rUrtnU6HRoaGuDi4oKAgADhOd3UqVMxdOhQseP2OiyBERERERFRN8eyFxERERERda6amhqcPn3a5rBEr9fj/PnzAIBBgwbBz8/P5rDE398fd911l8jJu7fq6mpkZGQIxa7U1FRUVlZCKpXC29tbOASUy+WQyWQsgHSRyspK7N27F1qtFvv378fVq1e5CqsbuHTpEuLj47Ft2zYEBQVh06ZNmD59utixOsxXX32FRx55BI899hjef/99Tn0hG+np6YiOjkZgYCASEhIwcOBAsSN1mLS0NCxbtgxpaWlYsmQJ1q9fDw8PD7Fj9VoGgwFarRYajQYpKSkYNGgQoqKioFAosGjRol71d6u7MZlMKCgoaHdaq5eXl/CcTy6XY/LkySzhdRKWwIiIiIiIqJtg2YuIiIiIiDpGU1MTTp8+bbN+MTc3F8XFxbBarXB1dYW3t3ebAxAvLy+xo3d7dXV1yMzMFCY8tPw3Bn5Za9m62DVp0iT0799f5MR9S3FxMRISEqDVavHjjz9CIpEgIiICCoUCsbGxuOeee8SO2Gc1NDRg69ateOONN+Di4oI1a9bgiSee6JVlqL179yI2NhYLFy7Ev//9b0gkErEjUTdw6NAhYZKgWq3ulY8PVqsVO3fuxMqVK3Hx4kW88MILWLVqFSeBdrKzZ89i9+7dwmOfVCrFrFmzoFQqsWDBApZbukBNTQ3S09OF8pdOp0NVVRWcnZ0RFBQkrH6cNm0a30TRyVgCIyIiIiKiLsayFxERERER3Zrm5mYUFha2OdDIz8+HxWKBg4MDxo0bZ7N+0c/PD56enpwudRPMZjPy8/Ntil3p6elobm7GoEGDMGnSJKHYxdU94mi91kqr1UKv12Pw4MGYNWsWFAoFFixYAFdXV7Fj9mkt5Y8VK1agoqICL7zwAuLi4nr91JkDBw5g4cKFiIqKwueffw5nZ2exI5GI1Go1Hn30USxatAj/+te/en0BsLm5Ge+//z7Wrl0LZ2dnrF27Fo8//jjs7e3FjtbrXbp0Cfv27YNarcaBAwdgNpsRGhoKlUrF0nMXuvY5pE6nQ2ZmJiwWCzw8PITyV3h4ON8c0EVYAiMiIiIiok7CshcREREREbXPZDKhpKREWLvYckBRUFAAs9ksrAtsfTghk8ng6+vbK6fmdJaysjKbYld7UxlaPriOUTyNjY1ITk6GRqPBzp07UVZWhjFjxmDevHnC1BypVCp2TELbtW4bNmzAiBEjxI7VZVJSUjB//nyMGTMGGo2mT912+o8NGzbg1VdfxYsvvoh33nmnTz0uV1ZWYt26dXjvvffg4+ODt99+G3PnzhU7Vp9RV1eHH374AWq1Grt370ZdXR2Cg4OhUCjwu9/9Dvfee6/YEfuUq1evIjs7W1j/mJaWhkuXLkEqlSIgIMBm/aOfn5/YcfuM2ymBBQYGYtiwYSInJyIiIiKiboJlLyIiIiKivs5sNuP06dM4efIkDAYDDAYDTp48icLCQhiNRptS14QJE4R/jh07ttdPCeloLQduLcWuI0eO4MyZM7C3t8f48eNtil2TJ0+Gg4OD2JH7tMuXL+PgwYPQaDTYvXs3rl69CplMBpVKBaVSCblcLnZEaqWwsBCrVq2CWq1GVFQUNm7ciMDAQLFjiaKoqAj3338/rl69Cq1Wi6CgILEjURcxm8146aWX8MEHH2Dz5s146aWXxI4kmoKCAqxevVq4T9i8eTP8/f3FjtWnNDY24vvvv4dWq8WePXtw4cIFyGQyKJVKKBQKhIeHs8QugqKiImH1Y+sJsi3Tv1omgIWFhWHAgAFix+1TWAIjIiIiIqKbxLIXEREREVFf0t4BQmZmJurr6wEAHh4ebdYvymQyODk5iZy85zGZTCgoKBCmdSUnJwurLlsfprUcqLm7u4sdmQAUFxcjISEBWq0Whw4dgr29PSIiIqBQKLiKqpuqqqrC+vXrsWXLFnh6emLdunVQqVRixxJdZWUlFixYgJMnT2LHjh24//77xY5EnayyshIPP/wwdDod/ud//gfz588XO1K38MMPP2D58uU4ceIE/uu//gvr1q3DXXfdJXasPsdsNiM1NRVqtRq7du3CuXPnMHr0aMyfPx9KpRIzZszgmwhEUldXh8zMTOE56+HDh3HhwgVIJBL4+PjYrH/klFlxsARGRERERETXYNmLiIiIiKg3unDhAk6ePClM6zpx4gRyc3Nx5coVAMCoUaMgk8ng7+8vTOtiqevOtKxjbCl2HT9+HA0NDXBxcUFAQIBQ7Jo2bRrGjBkjdlxqxWAwQK1WQ6vVQq/Xw93dHVFRUVAoFFiwYAFcXV3FjkjtMBrEClZuAAAgAElEQVSN+PTTTxEXFweLxYLVq1fj+eefZ1mglcbGRjzzzDPYvn071qxZg9WrV/epdX59yfHjx/HAAw/AYrFg165dnDx4DYvFgm+++QZ//vOfcenSJSxfvhwrV67k8x4RtTz2fv3118jLy8PQoUMRExMDlUqF2bNnw9HRUeyIfdq1z2v1ej0aGxvh5uaGkJAQYf1jeHg4Bg8eLHbcPqu9Elh2djZqa2sBsARGRERERNSLsexFRERERNSTXblyBYWFhTYv8Ov1epw/fx4AX+DvLDU1NThx4oRwAHb06FFUVFS0OwHB19eX5YpuprGxEcnJydBoNPjmm2/w888/Y8yYMZg9ezYUCgWio6MhlUrFjkk3oNFosHTpUpSUlOCZZ57BunXr4ObmJnasbuu///u/8eKLLyIqKgo7duzgJMFeZseOHXj66acxefJkfPnll5xadQP19fV499138cYbb8DV1RWrV6/GE088wcdpkRUVFUGj0UCtViMlJQVOTk6YOXMmVCoVS9fdhNFoRE5Ojs36x9zcXACAl5eXUP6KiIhAcHAwf6ZExhIYEREREVGvx7IXEREREVFP0NzcjMLCQptCV25uLoqLi2G1WuHq6gpvb+82L9p7eXmJHb3HMxqNOHXqlM1kg7y8PFitVmEdY0uxSy6Xc0pIN3X58mUcPHgQGo0Ge/bswZUrVyCTyaBSqaBUKjFx4kSuJeoBMjIysGzZMhw5cgSxsbFYv349PD09xY7VI6SlpUGlUsHBwQE7duzA1KlTxY5Ed6i2thYvvfQSPvvsM7z66quIj4+Hvb292LF6hEuXLiE+Ph7btm1DUFAQNm3ahOnTp4sdiwCUlJRg//790Gg02L9/PyQSibBO+Xe/+x3LjN3I+fPnkZGRIUwAS0lJQX19vTDVtuX5cWhoKEtE3QRLYEREREREvQbLXkRERERE3YnJZEJJSUmbSV0FBQUwm82QSqXw9va2eQFeJpNxelQHKioqsplakJGRgaamJri5uWHChAnCwdWUKVMwfPhwsePSDZw5cwYHDhyARqPBd999B6vViilTpkClUuGBBx7Ab37zG7Ej0k06d+4c4uPj8dFHHyEkJASbN29GWFiY2LF6nIsXL+Kxxx7DgQMHEBcXh1WrVnHtZQ917NgxLFmyBDU1Nfjkk0+gUCjEjtQj5eXlYcWKFdBqtYiKisKWLVvg5+cndiz6P5WVldi7dy/UajW+//57mEwmhIaG8nG8mzKZTCgoKLBZ/9j6DRKt3xwxefJkODg4iB2Z/g9LYEREREREPQ7LXkREREREYmn9onrLpK7c3Fw0NDRAIpFg1KhRbV5UnzBhAhwdHcWO3mu0nkig1+uRmpqKyspKoVTX+lBKJpNx8lMPYDAYoFarodVqodfr4e7ujqioKCgUCsyfP5+r/nqYuro6vP3229iwYQOGDRuG+Ph4PPLII/xZvANWqxXbtm3DihUrEBwcjO3bt3MKZA9iNpvx1ltv4a9//StmzpyJzz77DCNGjBA7Vo+XlJSE5cuXIzc3F4899hji4+NZ6O5m6uvrcfDgQajV6jYTOhcvXgyZTCZ2RGpHTU0N0tPThTdSpKSk4PLly3B2dkZQUBDkcjnkcjmmTZuGMWPGiB2XrnE7JbCgoCAMHTpU5ORERERERL0ey15ERERERJ2tqqrKptB17YvkHh4ebSZ1TZw4EQMGDBA5ee9SV1eHzMxModjV8v8DALy8vIRSl1wuR0hICEt1PYTJZEJaWhrUajV27dqFc+fOYfTo0ZgzZw4UCgXmzJnDyRE9kMViwY4dO7By5Uo0NTVh5cqVeOWVV/hz2YEMBgMefvhh/PTTT4iPj8dLL73EFYDdXFZWFp588kmcOHECb731Fl5++WUWHztQy/3Oq6++iqtXr2LZsmV49dVX0b9/f7Gj0TWamppw5MgRaDQafP311ygvL4eXlxcUCgVUKhXCw8P5s9GNtZ6iq9PpkJmZCYvF0mY9+qRJk/jz103daglMLpcjICAArq6uIicnIiIiIuo1WPYiIiIiIuoo1dXV+Omnn2yKXSdOnMCFCxcAtP+id2BgIFxcXERO3vuYzWbk5+fbFLvS09PR3NwsHCS1fISFhWHIkCFiR6ZbUFVVhaSkJGg0GiQkJKCmpgYymQxKpRIKhYKHvD1cUlISli1bhry8PDz22GN4/fXXuSaokxiNRmzevBlr166Fr68vPvroI8jlcrFj0TUaGxvx1ltv4c0338SkSZPw4YcfcopRJ6qrq8M//vEP/O1vf8OgQYPw+uuvc6JgN2axWJCSkgKtVotdu3ahsLAQo0aNQnR0NBQKBaKjoyGVSsWOSTdw9epVZGdnC6sfjx49ioqKCkgkEvj4+NhM2uWa1e7t10pg7b3Jib8PExERERHdFpa9iIiIiIhuVXNzMwoLC20mdeXm5qK4uBhWqxVubm4YN26czYvYISEhXLPUicrKyoRSl06nQ2pqKurq6tqsiOEhUc919uxZfPfdd9BoNDhw4ADMZjNCQ0OhUqmwaNEijBw5UuyIdIfy8vKwYsUKaLVaREVFYcuWLfx57SK5ubl48sknkZ6ejj/96U+Ii4vjwWs3sW/fPrz88su4ePEi3nrrLTz99NOws7MTO1af8PPPP2PdunX4+OOPMXHiRGzatAmRkZFix6Jfce065yFDhmDu3LlQKpWYO3cunJ2dxY5IN6GsrEwof7V+08aIESMwadIk4Xl9ZGQkBg0aJHZc+hUsgRERERERdTiWvYiIiIiIrsdoNKK0tLTNCsb8/HxYLBY4ODhg3LhxNpO6/Pz84OnpyekPnajl3f8txa7Dhw/jwoULsLe3x/jx422KXZMnT+YKvx7MYDBAq9VCo9EgJSUFAwYMwH333QeVSoX58+fDzc1N7IjUAS5duoT4+Hhs27YNQUFB2LRpE6ZPny52rD7HYrHg/fffx+rVq+Ho6Ii//e1v+OMf/8hikUjy8/OxdOlSJCYm4oEHHsCWLVvwm9/8RuxYfZLBYMCf//xnJCYmQqFQYMuWLRg7dqzYsegmFBUVQaPRQK1WIyUlBU5OTpg5cyafR/RA165jP3LkCM6cOWPz/L9lAphMJuPvYj0ES2BERERERLeNZS8iIiIiIuA/k6GufbG5sbEREokEo0aNsil0yWQy3HvvvbC3txc7eq9mMplQUFAgFLuSk5OFsl3rdYwRERGYOnUqpzX0cGazGampqVCr1di1axfOnTtns4ppzpw5LO/1Ig0NDdi6dSveeOMNuLi4YM2aNXjiiSdYLhJZZWUl1q5diw8++AABAQHYvHkzpk+fjpKSEowaNUrseL1aaWkpnJyc8Prrr+O9996DTCbDli1bMGPGDLGjEX5ZMbt06VLk5+dzxWwPVFpaisTERGg0Gnz33Xews7NDZGQkFAoFFi9eDA8PD7Ej0i1q+f2t9QSwxsZGuLq6YvLkycLqR65s73lYAiMiIiIi+lUsexERERFR39LeC8dZWVmoq6sDYPvCcUuxy8/PD/379xc5ed9w7aHN8ePH0dDQABcXFwQEBAjFrsjISK7F7CWqqqqQlJQEjUaDhIQE1NTUQCaTQalUQqFQIDw8nNMZehmr1YqdO3dixYoVqKiowAsvvIC4uDgMHDhQ7GjUisFgwJ/+9Cd8//338Pb2xrx587Bx40axY/Va1dXVeOaZZ7Br1y64u7sjPj4ejz/+OEvl3YzJZMInn3yCNWvWoLm5GStXrsQrr7wCR0dHsaPRLbh8+TK0Wi20Wi0SExNRX1+PqVOnQqlUYtGiRfD29hY7It2GljeJtC5/5ebmAgC8vLyE8ldERASCg4NZLu+BWAIjIiIiIhKw7EVEREREvVNVVZXNi8C5ubnIzs5GRUUFAMDd3b3NpK6goCCWDbpQTU0N0tPThcOYo0ePoqKiAhKJBD4+PjbrWHx9fXkg04uUlJRg//790Gg0OHDgAMxmM0JDQ3nI2gekpaVh2bJlSEtLw5IlS7BhwwYWN7sxq9WK2NhY7Nq1CwBw//33469//SvkcrnIyXqPK1euYOvWrdi0aROsVitqamoQExODXbt2sWjejdXW1mLjxo3YsGEDhg8fjnXr1uGRRx5hObkHamhoQFJSEtRqtU3pXKVSQalU8v6uhysvL0d6erqw/jE5ORnV1dUYOHAgAgMDhd83pk+fjuHDh4sdl24TS2BERERE1Aex7EVEREREPduVK1dQWFjYpthVVFQEABg0aJAwnavlxd2AgAC+mN/FjEYjcnJyhGKXXq9HXl4erFarsI6xpdgll8vh5OQkdmTqYAaDAVqtFhqNBikpKXBycsLMmTOhUqkwb948DBo0SOyI1IkKCwuxatUq7Ny5E7NmzcLGjRsRGBgodiy6AbPZjCeeeAKfffYZAGD79u149913cezYMYSHh2PlypVQKBQst9ym8vJy/POf/8TWrVthNBrx/PPPY/ny5fDw8IDJZEJ4eDj27t0LNzc3saPSDZw7dw7x8fH46KOPEBISgk2bNiE8PFzsWHSbWq+TVqvVOH/+PDw9PaFUKqFSqThttBcwm83Iz8+3mSTc+neS1r+PhISEcGpfD3crU71ZAiMiIiKiHoZlLyIiIiLqGYxGI06dOtXmxdr8/HxYLBY4Ojpi7NixNpO6/Pz84OXlJXb0PqmoqMim2JWRkYGmpia4ubkhJCREOEQJDQ3FsGHDxI5LnaD1gem3336L0tJSDB8+HHPmzIFKpcLs2bN5gNYHVFVVYf369diyZQs8PT2xbt06qFQqsWPRr2hsbMTixYuxb98+mM1mSKVSNDQ0wM7ODt9//z02btyI77//HhMmTMDSpUvx0EMPcQrVTcrKysI777yDL7/8EkOHDsWLL76Ip59+Gu7u7gCAsWPHoqioCBKJBL6+vkhKSmJBvQfIyMjA8uXLcfjwYcTGxuKtt97ic9AezmKxIDMzExqNBl988QVOnTqFYcOGITo6GiqVCtHR0ZBKpWLHpA5w5coVHDt2TPjdJTU1FZWVlZBKpQgICBB+b4mMjISnp6fYcakDsARGRERERL0Ay15ERERE1L2YTCaUlJTYvPCq1+tRUFAgHDh7e3u3efGVa/7EU1ZWJpS69Ho9UlJScPny5TYHJHK5HDKZjBMRerG6ujr88MMPUKvV0Gg0qK6uhkwmg1KphEKh4ESMPsRoNOLTTz9FXFwcLBYLVq9ejeeffx4SiUTsaPQr6urqMG/ePBw+fBgmkwkAMG7cOBQWFtp8XU5ODrZt24Z///vfcHR0xIMPPohnn30WQUFBYsTu1q5evYpvv/0W27dvR1JSEnx8fPDcc8/h6aefblOSmz9/PjQaDaxWK6RSKUaMGIEffvgB48aNEyk93YqkpCS88sorKCwsxDPPPIO//vWvnFzZS7SeUKrT6eDu7g6FQgGlUomYmBiugu9lWr9xRafTITMzExaLRZhI3HoqMScS9x4sgRERERFRD8KyFxERERGJp70XU48fP46GhgbY29tj9OjRNi+k+vn5YcKECZwGJKLa2lpkZWUJxS6dTieszPTy8rIpdnH1Sd9QUlKC/fv3Q6PR4MCBAzCbzQgNDYVSqcTChQvh4+MjdkTqYhqNBkuXLkVJSQmeeeYZrFu3jqvoeoiqqirMmTMHWVlZMBqNAIB+/fph3rx52L17d7vfU15ejs8++wwff/wxTp8+jdDQUDz22GN44IEHMGTIkK6M361YLBYcPnwYO3bswFdffQWTyYTY2Fg88cQTmDZt2nWLr3/5y1/wzjvvoKmpCQAglUrh6uqKgwcPcvVpD9FSdl29ejVMJhNWrFiBP/3pT3BwcBA7GnWQM2fOYM+ePVCr1UhNTYWjoyNmzZrF1dS9WOvfgXQ6HQ4dOoSLFy9CIpHAx8fHZv0j39zS+7AERkRERETdEMteRET/n707j4r6vtcH/igDigi4oZI0KijbsDuiBDAa5CraGTWJo0ltcpLotbaxjRENRtEkkniLSmJMq+1tUnvPtYsZosaZiAv2WmVTGEFgZFOIaFgEZFEWgRl+f+Q33zJqNgW+zMzzOodzz22sPDaM8P3M83m/iYio7zU0NNw3qSsvLw+3b98G8ODD0alTp2LYsGEiJ7duXV1dKC4uNil2PehWu0wmQ3h4OEaNGiV2ZOonPadbpKenw97eHpGRkVAoFFi8eDFXjlmp7OxsxMTE4Ny5c1iyZAkSEhK47siMVFVVITIyElevXhWKXgAwZMgQrF27Fr/97W+/87/f3d2N//u//8Mnn3yCI0eOoKurC3PmzMHSpUuxePFiYU2hJTMYDEhPT8dnn32GpKQkVFVVISgoCK+++ip+/vOf/6D/Df7yl79gxYoVMBgMwn8mkUhgb2+P5ORkhIeH9+UfgXpRY2Mjfvvb3+Kjjz7ChAkT8N5773GNrQWqq6vDsWPHoFKpTErvSqUSSqUSjz32mNgRqY9UVlYiLS1NmAD2bWvrIyIirOJ7oDViCYyIiIiIRMSyFxERERH1ntu3b0On0yE/Px8FBQUoKChAfn4+amtrAQAuLi7w9/eHn58f/Pz84O/vD6lUCicnJ5GTE2C6jjEtLQ3p6elobW3F8OHDERgYaLKyxN3dXey41I/0ej0yMjKg0Whw+PBhlJSUwMXFBdHR0VAqlZg7dy6nuFmxGzduID4+Hp988glCQkLwwQcfICwsTOxY9COUl5dj9uzZqKqqMil6AYCNjQ3++Mc/YsWKFT/497tz5w7UajUOHjyIEydOwGAwICIiAvPnz0d0dDT8/Px6+48gmoaGBqSkpOD48eNITk5GVVUVpFIpli1bhqVLl8Lb2/tH/X4ZGRkPfP0MHjwYtra2OHz4MObPn99b8akfXL9+HZs3b8aBAwcQGhqKxMREPPnkk2LHoj5g/PtArVbjyJEjaGlpQXBwMORyOV544QV4eXmJHZH6UGdnJ/Ly8oTyV2pqKsrLy2FjYwMvLy+T1Y8+Pj4YPHiw2JGpjzxMCSwoKIjrYImIiIjox2DZi4iIiIh+vM7OTly/fl2Y0mU8wCwqKoLBYICdnR2mTJkCmUxmcojJgtDA0dzcjLy8PKHYdfbsWdTU1Ji8GWF8QyI4OJhvRlih1tZWnD59GiqVCmq1Go2NjZBKpVAoFJDL5QgPD+eKGivX0tKCnTt3YseOHXBxcUF8fDxefPFFfl2YGZ1Oh6effhoNDQ3o6up64K85e/YsZs6c+VC/f1NTEzQaDY4dO4aTJ0+irq4OTzzxBObOnYuIiAiEhYWZ1brX5uZmZGRkIC0tDf/85z+RmZkJAAgNDcX8+fOxaNGiRyqzNTY2fusEmEGDBmHQoEH49NNP8fLLLz/05yBxZGVlISYmBqmpqViyZAl27NiBSZMmiR2L+khbWxtSUlKg0Whw5MgR3Lx5kz9HWaF7L9OkpaWhra0Njo6OCAgIEMpfTz75JMaMGSN2XOpjLIERERERUS9i2YuIiIiIvlvPA8mexa729nZIJBJMmDABUqnUpNjFm8oDi3EdY881I8ZiXs91jMY33bk+03rdvHkTx48fh0qlwqlTp9DV1YXQ0FBhPSMnUhDwzaq6AwcOIDY2Fnfv3kVsbCzWrl3L6W5mKCsrC1FRUWhtbf3WohcAVFdXY9y4cY/8+QwGA7Kzs5GcnIzTp08jOzsbbW1tGDt2LMLCwjBjxgxhAujEiRMf+fM9qjt37ghTSnNzc5GamgqdTge9Xg8PDw/MnDkT0dHRiIqK6tUVXaNGjUJDQ8O3/vNBgwZh165dWLduXa99Tuo/arUab7zxBiorK/Gb3/wGmzZt4pRbC2eckKpSqfD555/j66+/xqRJk7Bw4UIoFArMnj0bEolE7JjUDx70XFZYWIju7m64u7sLqx9lMhmmT58OOzs7sSNTP2AJjIiIiIgeAsteRERERPSNhoYGk8NFrVaLS5cu4c6dOwBMDxiNxS5fX18MHTpU5OR0r8rKSpM3ELRaLdrb2+Hk5AR/f3+h2PXUU0/1ypv3ZN50Oh00Gg3UajXS09Nhb2+PyMhIKBQKLFq0iF8jZCIlJQUxMTEoLCzEK6+8gvfeew8uLi5ix6KHcOLECSxevBgdHR0wGAzf+uscHByEnwV6W0dHB7RaLTIyMnDu3Dnk5OTg2rVrAABnZ2f4+/vD09MTkyZNgpubm/AxduzYXitGNDU14fr16ygvLxc+ysrKUFBQgPLycnR3d8PR0RH+/v4IDQ0VitF9+XdjeHg40tPTv/fXvf3223jnnXf6LAf1nc7OTuzfvx+bN28GAMTFxeG1115j4cdK6HQ6qFQqHDx4EEVFRRgzZgzmz58PpVKJefPmseBjZZqampCVlSU8u6WlpaGhoQEODg4ICgris5sVYwmMiIiIiL4Dy15ERERE1qa5uRmlpaUmB4bZ2dmorq4GAIwcOdLksFAmk/HAcABrbGxEdna28OZAZmYm6urqIJFI4OnpKawGkclknLhGAP49XcK4Vqi4uBguLi6Ijo6GUqnE3LlzOaGJ7lNUVIQNGzZAo9EgKioKu3fvhq+vr9ix6BGkpqZi/fr1OH/+PGxsbKDX6x/46wIDA5Gbm9tvuZqampCfn4/8/Hzk5eXh6tWrKC8vR0VFBTo6OoRfN3LkSIwZMwajR4/GmDFjYG9vj8GDB8PZ2RkAYGdnJ/z69vZ2tLW1wWAwoL6+HnV1daivr0d9fb3J7zl27FihUCaVSuHv74+AgAC4ubn167q1X/ziF9i/fz86Ozvv+2eDBw9Gd3c3/Pz8sGvXLsydO7ffclHvu3XrFnbs2IHdu3fDzc0N27Ztg1KpFDsW9aN7S/fOzs74j//4D8jlcjzzzDNwdHQUOyL1M71ej6KiIqH4lZqaet9UZuMz3rRp03j5ygqxBEZEREREYNmLiIiIyHJ1dnaipKTkvkNA40Gxk5MTPDw8TA4Ap02bBldXV7Gj07doaWlBTk6OMK2r59oPV1dXk2IXD/6pp9bWVpw+fVooeN28eRPu7u6Qy+VQKpUICwtjEZAeqK6uDvHx8di7dy8CAwORmJiIWbNmiR2LepFxWlt+fj4GDRpkMuXLxsYGzz//PA4cOCBiwm8YDAZ8/fXX+Oqrr1BbW4va2lqT0lZbWxu6u7vR2NgIAGhra4O9vT0AYOjQoUIZbPTo0fd9TJgwAW5ubgNmjfEHH3yAt956y6SIBnzz72PcuHF4++23sXLlSv69bUFKS0uxefNmJCUlITIyErt27UJQUJDYsaifXbt2DUeOHIFGo8GZM2cgkUgQFRUlrNMeO3as2BFJJLdv38alS5eE8pfxgo+trS0CAgJM1j+yjG+9WAIjIiIisiosexERERFZgsrKSmi1WpODvYKCAty9exe2trbw8PC471CPU54Gtp43uo0fWVlZ6OjowIgRIzBt2jThUP/JJ5/EmDFjxI5MA0xtbS2Sk5OhUqlw6tQpdHV1ITQ0VFjP6O3tLXZEGsDa2tqwZ88ebN++HY6Ojti6dStWrFgBGxsbsaNRH+ju7sby5ctx6tQp3Lp1C93d3eju7saQIUOwadMmbN26VeyIVuXYsWP46U9/Kvz/EokE9vb28PT0RFpaGqcvWrDz588jJiYGGRkZeO6557Br1y5MmDBB7Fgkgvr6enz55Zf3/RynVCqxZMkSPP7442JHJJGVlZUJ0517Pisap38ZJ4CFhYUNmDIzieNBJbCcnBy0trYCYAmMiIiIyEyx7EVERERkThoaGqDT6UyKXffe1DTe5jUe1Pn6+nLCkxkwFvaMH2lpaWhoaICDgwOCgoKEA3uZTAapVNqv66TIfJSVlUGtVkOlUiE9PR1Dhw7FnDlzoFAosHDhQowfP17siDTAdXd3IykpCW+++SZqa2uxZs0axMXF8c0eC1dZWQkPDw+89957GD58OLZs2YK6ujoYDAb89a9/xQsvvCB2RKtSVlaGyZMnY/DgwbC3t8emTZswc+ZMzJo1C4cPH8aiRYvEjkh9yPj3cGxsLGpqavDrX/8amzdv5jo/K2ac0KpSqfDFF1+gubkZUqkUSqUSy5Ytg4+Pj9gRaQDoOQU6LS0NZ8+eRU1NDSQSCTw9PU3WP/J5kgCWwIiIiIjMHMteRERERANRU1MTrly5YlLsys/PR01NDQBg5MiRkEqlJsUuHrqZD+MaDmOxKzU1FeXl5bCxsYGXl5dJsWv69Omws7MTOzINUHq9HhkZGcJ6xuLiYowZMwbz58+HQqHAggUL4ODgIHZMMhOZmZmIiYlBZmYmli9fjoSEBK72tRKrV69GcnIySkpKMGTIELS3t2Pv3r3Yvn07Tpw4AZlMJnZEq6LX6zF69GisXLkSb731FkaPHg0AUCqVKCgoQH5+PiQSicgpqa91dHRg3759ePvtt+Hg4IC3336bExYJ7e3tSE1NhVqtxsGDB1FTU2Oymjs8PJwlHhIYLxQZ1z9qtVq0t7fD2dkZISEhwqTo8PBwjBo1Suy4NECwBEZERERkFlj2IiIiIhJTZ2cnSkpKhAM0Y7GrvLwc3d3dcHJygoeHh8khWkhICKfzmJGuri4UFxebTOzKycmBwWAwWbFhvGk9cuRIsSPTAGec7qDRaPDFF1/c9yZfWFgYV7TSj1JaWorNmzcjKSkJc+bMwa5duxAYGCh2LOon5eXl8Pb2xh/+8Ae88sorJv+subkZQ4YM4dpAEdTX1wslL6OSkhL4+vriT3/6E15++WVxglG/q6+vx86dO/Hhhx9i8uTJ2Llzp8maT7JextK/SqXCoUOHcOPGDUycOBGLFi2CQqHA7NmzWQwlE52dncjLyzNZ/3j58uX7Lh1FREQgODiYzxRkgiUwIiIiogGFZS8iIiKi/qDX63Ht2jWTQzGtVovi4mLo9XrY2trCw8PjvoMxrlcwP/fenr548SLa2trg6OiIgIAA4QB95syZcHNzEzsumYna2lokJydDo9Hg2LFjaGtrQ3BwMORyOa4hPXAAACAASURBVNf30ENraGhAQkICdu/eDTc3N2zbtg1KpVLsWNTPfvazn0Gr1UKn07EUYAZWrVqFY8eOobS0FPb29mLHoX5UXFyMLVu2QKVSISoqComJiQgICBA7Fg0gOp0OKpUKKpUKly9fxujRo7FgwQIolUrMnTuXxV16oKqqKmRnZwvPsOnp6WhtbRWeX42rH0NDQ+Hi4iJ2XBqAjGcgPYtghYWFLIERERER9S2WvYiIiIh6W0NDg8mUrgfdduy5ftHX1xd+fn48fDdDzc3NyMvLE4pdFy5cwM2bNyGRSODp6cmb0fRIysrKoFaroVKpkJGRgSFDhmDOnDlQKBRYuHAhJ/zRQ+vs7MT+/fsRFxcHg8GALVu24LXXXmPRxwrl5+cjKCgIBw8exJIlS8SOQz9AZWUlPDw8EB8fj3Xr1okdh0Twz3/+Exs2bEBubi6WL1+OHTt28GcCuk/PnyPT09Nhb2+PyMhIKJVKLF68GE5OTmJHpAGq52Rq43NuYWEhuru74erqKpS/ZDIZpk+fDjs7O7Ej0wD0oAuPP6QEFhwcDAcHB5HTExEREZkFlr2IiIiIHlZjYyOuXr1qUuzKy8vDzZs3AQAjR46EVCo1KXbx4Mp8GVduGg+8tVqtyaG3sdRlPPjmtA36sfR6PXJzc6FWq3Hw4EEUFRVhzJgxmD9/PhQKBebPn8/bz/TI1Go11q1bh4qKCqxevRrbtm2Ds7Oz2LFIJAqFAlVVVcjKyuIkUTOyceNGfPrpp7hy5Qpfv1aqu7sbSUlJePPNN1FbW4s1a9YgLi6OPyfQA12/fh3JyclQq9U4ceIEbGxsEBERIUyIZVmQvk9TUxOysrKE5+D09HTcunULDg4OCAoKEi45zZo1CxMnThQ7Lg1gLIERERER9RqWvYiIiIi+T0dHB0pLS03WL16+fBnl5eXo7u6Gs7MzpkyZYlLsCggIwNixY8WOTo+grKxMOMw2frS3t8PJyQn+/v5CsWvGjBn8d00Pra2tDSkpKdBoNDh69Ciqq6vh7u4OuVwOhUKB2bNnc9oS9QqtVouYmBicPXsWS5YsQUJCAlfJWrkLFy4gNDQUx48fx9y5c8WOQz9CY2MjJk+ejF/96leIj48XOw6JqLW1FR9//DG2b98OR0dHbN26FStWrICNjY3Y0WiAunXrFjQajbAavL29HaGhoVAoFHjuuecwZcoUsSOSGdDr9SgqKhKek9PS0pCTkwODwXDfRahp06Zh6NChYkemAa6rqwsVFRUsgRERERH9cCx7ERERERk96HBJq9WiuLgYer0ednZ2mDJlinCoZCx2ubm5cRqGmauqqkJ2drZwWJ2RkYH6+nrY2trCw8PDZGKXVCrlv296JHV1dTh27Bg0Gg2Sk5PR2tqK4OBgyOVyLF26FFKpVOyIZEFu3LiB+Ph4fPLJJwgJCUFiYiLCw8PFjkUDQGRkJLq6unD27Fmxo9BDSEhIQHx8PK5cucKpPIS6ujrEx8dj7969CAgIwK5du/D000+LHYsGuNbWVpw+fRoqlQpHjx5FU1MTpFIplEolfyalH+327du4dOmSMAn7/PnzqK2thUQigaenp8kzta+vr9hxyUywBEZERET0rVj2IiIiIutUWVlpclCk0+mQk5OD1tZW2NjYYOLEiSYHRTKZDN7e3rwlbwFaWlqQk5NjMrHr8uXLAL45JOx5CM1byNRbysrKoFarodFocObMGdja2iI8PFwoeLm6uoodkSxMS0sLdu7ciR07dsDFxQXx8fF48cUXWVYlAMCJEycQHR2NtLQ0hIWFiR2HHkJ7ezs8PT2xcOFC/O53vxM7Dg0QRUVF2Lp1K1QqFaKiovDhhx/Cz89P7FhkBrq6upCZmQmVSgWVSoWqqiph2qxSqUR4eDh/hqAfrbKyUih/abVaZGVloaOjA+PHj8e0adOECWBhYWEYNmyY2HHJjLAERkRERMSyFxEREVm4+vp65OXloaCgAAUFBcjPz4dOp0NzczMAYMKECfD19YW/vz/8/Pzg5+cHqVSKIUOGiJycesO96yV6HjAb10sYP8LCwjB69GixI5OFMBgMyMnJgVqtxmeffYbCwkKMHj0aCxYsgEKhQHR0NBwdHcWOSRbIYDDgwIEDiI2Nxd27dxEbG4u1a9fy+xoJuru7ERoainHjxuHo0aNix6FH8Kc//QmvvfYaLl++zNVrZCIlJQXr16+HTqfDq6++im3btmHcuHFixyIzYTAYkJ6eDo1Gg0OHDqG0tBRPPPEE5s+fD7lcjujoaNja2oodk8zQvRevzp49i2vXrsHGxgZeXl4m6x85UZseBktgREREZEVY9iIiIiLL0NnZiZKSEpP1i5cvX0ZZWRkAYMSIEfD19TU50AkMDISLi4vIyak3VVZWmhS7UlNT0djYCAcHBwQFBZmUu7g6gnpbW1sbUlJSoNFooFarTSYiKBQKzJ49GxKJROyYZMFSUlIQExODwsJCvPLKK4iPj8fYsWPFjkUDjEqlwvPPPw+tVougoCCx49Aj0Ov18Pf3R1BQEP72t7+JHYcGGGP5d+PGjbh9+zZiYmKwceNGTq2lH02n00GlUkGj0UCr1WLUqFH46U9/CoVCgQULFrAgQY/E+AzfcwJYe3s7nJycMH36dGHqNi9n0aP4thLY5cuX0dbWBoAlMCIiIjI7LHsRERGRedHr9SgrKzOZ1pWXl4erV69Cr9fD3t4eUqlUmNTl7+8Pf39/rkizQLdv38alS5eEg+Fz586hurra5Faw8WP69Omws7MTOzJZoPr6enz55ZfQaDRITk5Ga2srgoODhYKXTCYTOyJZgaKiImzYsAEajQZRUVHYvXs3C630QMZyUHBwMP7617+KHYd6QVJSEpYuXYrs7GxMnTpV7Dg0ALW2tuLjjz/G+++/jxEjRiAuLg4rV67E4MGDxY5GZqi8vBxHjx6FSqVCeno6hg4dijlz5kCpVGLRokVwdnYWOyKZua6uLhQXF5uUvy5fvgwAcHd3F8pfERERCA4O5t9l9EhYAiMiIiIzxrIXERERDVwNDQ0mU7p0Oh1yc3PR0tICAMIaPuNhi0wmg7e3N2xsbEROTr3NeODb88ZvUVERDAbDfesYZ86ciREjRogdmSxYWVkZ1Go1NBoNzpw5A4lEgoiICMjlciiVSjz22GNiRyQrUVdXh/j4eOzduxeBgYFITEzErFmzxI5FA9if//xnrF69mmv/LEh3dzfCwsIwYsQIJCcnix2HBrDKykq8++67+PTTTxEcHIzExEQ89dRTYsciM1ZbW4vk5GSoVCqcPHkSer0eoaGhUCqVWLp0KS9cUa+prq5GVlaWMMH73LlzaGpqwvDhwxEYGCiUv2bNmsWpttQrWAIjIiIiM8CyFxEREYmvo6MDpaWlJqWu7OxsVFdXAwBGjhxpcngik8l4gGLh7l3lcPHiRbS1tcHR0REBAQHCYe7MmTMxfvx4seOShTMYDMjJyYFarYZKpcLly5cxevRoREZGQi6X45lnnoGjo6PYMcmKtLW1Yc+ePdi+fTscHR2xdetWrFixgmVn+k4dHR3w9vbGvHnzsG/fPrHjUC/617/+hdmzZ+P06dOIjIwUOw4NcJcvX8aGDRtw7NgxyOVyfPjhhyx/0iNraGhASkoK1Go1Dh8+bDLt9mc/+xk8PT3FjkgWRK/Xo6ioyOTMoLCwEN3d3XB1dUVERIQwASwkJARDhgwROzJZCJbAiIiIaABh2YuIiIj6T89DkZ7FLuOEJjs7O0yZMsVkWte0adN4I9jCNTU1ISsrS1jRcP78edTW1kIikcDT01ModoWHh8PHx4drGqhftLe3IzU1VSh4VVVVwc3NDQqFAgqFArNmzYKtra3YMcnKdHd3IykpCW+++SZqa2uxZs0axMXFYfjw4WJHIzOwe/duvPXWWygtLcVPfvITseNQL5s7dy4aGxtx/vx5DBo0SOw4ZAZSUlIQExODwsJCvPLKK3jvvffg4uIidiyyAG1tbUhJSYFKpYJarUZjYyOkUimUSiXXnFOfaW5uxoULF4RzhYyMDNTX18PW1hYBAQFC+WvmzJlwc3MTOy5ZGJbAiIiISAQsexEREVHfqKysNDng0Ol0wnQmiUSCCRMmCFO6jIccLPJYvs7OTuTl5QkHsFqt1uQGbs9il0wmg729vdiRyYrU19fjyy+/hEajwfHjx3H79m2+MUUDRmZmJmJiYpCZmYnly5cjISGBZWj6we7cuYMpU6bgpZdewo4dO8SOQ33g0qVLmDp1KlQqFZ599lmx45CZMBgMOHDgAGJjY3H37l3Exsbi9ddfx9ChQ8WORhZCr9cjIyMDKpUKSUlJqKysFC5QKJVKhIWF8QyA+kxZWZlw9pCWloacnBwYDAbh7KHn+QPPHqgvPGwJbOrUqRg2bJjI6YmIiGiAY9mLiIiIHk1zczNKS0tNpnXl5eXh5s2bAP69grFnqYuHFtaj5+GqVqtFdnY27t69C2dnZ/j5+QkHq6GhoZwkQKIoLy/H0aNHodFocObMGUgkEkREREAul2PJkiV4/PHHxY5IVq60tBSbN29GUlISIiMjkZiYiMDAQLFjkZmJj49HYmIirl69itGjR4sdh/rI888/j9zcXBQUFEAikYgdh8xIS0sLdu7ciR07dsDFxQXx8fF48cUXOSWOelXP1ej/+Mc/UFxcDBcXF0RHR0OpVGLevHmws7MTOyZZsDt37iA3N1cof/3rX//CzZs3haniPS+eSaVS/h1IfYYlMCIiIuoFLHsRERHRD9PZ2YmSkpL7pnUZpzI5OTnBw8PDpNgVEBCAsWPHih2d+klVVRWys7OFYld6ejpu3bp139oEHpySmHq+yaTRaKDVajFq1CjMmTMHcrkcixcvhpOTk9gxidDQ0ICEhATs3r0bbm5u2LZtG5RKpdixyAw1NDRg8uTJeOONN7Blyxax41AfKi8vh7e3N/bu3YsVK1aIHYfM0Ndff41t27bh008/hUwmQ2JiIiIiIsSORRZKp9NBo9FArVYjPT0dI0aMQFRUFORyOZ599lmuqaZ+UVlZibS0NOGSmvGC2rhx4xASEiKcYcycORMjRowQOy5ZOJbAiIiI6Edg2YuIiIju13MFo3Fal06nQ3t7O2xtbeHh4XHfwQLLO9al541Y48fly5cBAO7u7ibFrpCQEAwZMkTkxGTN2tvbkZqaCrVaLayPmTRpEhYuXAiFQoFZs2bB1tZW7JhEAL4pV+/fvx9xcXEwGAzYsmULXnvtNU7poYf25ptvYv/+/SgrK4Ojo6PYcaiP/fKXv8TRo0dRWlrKN/3ooWm1Wqxfvx5nzpyBXC7HRx99BHd3d7FjkQX76quv8MUXXwjTdm1tbTFnzhwoFAosXryYl8io33R2diIvL08of6WmpqK8vBw2Njbw8vIyWf3o4+PDNaTUL1gCIyIiogdg2YuIiMiaNTY2oqCgwKTYlZeXh9u3bwMwPSgwTuvy9fXF0KFDRU5O/Umv16OoqEgodaWlpSE3Nxd6vR6urq5CqUsmkyE8PByjRo0SOzIRbt26hdOnT0OtVuPIkSO4ffs2pFIplEolFAoFZDKZ2BGJ7qNWq7Fu3TpUVFRg9erV2LZtG5ydncWORWasqqoKU6ZMwfvvv4+1a9eKHYf6QVVVFTw8PPD2229jw4YNYschM5eSkoI33ngDJSUlWL16Nd59911OtqE+V1dXh2PHjkGlUuHkyZPQ6/UIDQ2FUqnkmnUSRWVlpcl5SFpaGtra2uDk5AR/f3+h/BUWFsZ12dSvfmwJzHi26+PjwxIYERGR+WPZi4iIyBrcu4LROIWprKwMADBixAihyGW8ARYUFIQxY8aInJzEcO9BZnp6OlpbWzF8+HAEBgaalLt8fX3FjkskKC8vx9GjR6HRaPCvf/0LNjY2iIiIgFwu5xtDNKBptVrExMTg7NmzWLJkCRISEuDm5iZ2LLIAv/zlL6FWq1FaWgp7e3ux41A/2bx5M/bt24crV66whE+PzDhxcsuWLejq6sKbb76JtWvXcnIv9YvGxkacOnVKuMDR0tKC4OBgyOVyPP/88/D29hY7Ilmhrq4uFBcXm6x/LCwsRHd3932TzqdPnw47OzuxI5OV+b4SmI2NDSZOnGgyBYwlMCIiIrPDshcREZGlMRZ1eha7iouLodfr71vBaCzruLm5cQWjlWpubkZeXp5Q7Dp79ixqampMVhQY1xQEBQXBxsZG7MhEJnQ6HVQqFTQaDbRaLUaOHImoqCjI5XIsXrwYTk5OYkck+lY3btxAfHw8PvnkE4SEhCAxMRHh4eFixyILUV5eDm9vb+zbtw+vvvqq2HGoHzU1NWHy5MlYtWoVtm/fLnYcshB37tzBrl27kJCQgCeeeALvv/8+lEql2LHIirS3t+PUqVPQaDT44osvUFNTA6lUCoVCAblcjvDwcJ5rkGhqampw4cIF4eJcamoqGhsb4eDggKCgIOFc5amnnsK4cePEjktW6ttKYDqdDu3t7SyBERERmReWvYiIiMxVQ0ODyZQunU6H3NxctLS0AICwXq9nscvb25tlHSv2oNunRUVFMBgMJusYIyIiEBYWxoMcGpDa29uRmpoKtVqNzz//HF9//TUmTZqEuXPnQi6XIzo6Gra2tmLHJPpOLS0t2LlzJ3bs2AEXFxfEx8fjxRdf5BuU1KuWL1+O7Oxs6HQ6SCQSseNQP9u1axe2bt2KkpIS/OQnPxE7DlmQ69evY/PmzThw4ABmzJiBxMREhIWFiR2LrIxer0dGRgZUKhUOHTqEGzduYOLEiVi0aBEUCgVmz57N730kKr1ej6KiIuFiXWpq6n3nL8b1j9OmTcPQoUPFjkxW7PtKYBKJBBMmTGAJjIiIaGBh2YuIiGig6+joQGlpqUmpKzs7G9XV1QCAkSNHmjxsy2QyBAcHw8HBQeTkJLbKykqTYpdWq0V7ezucnJzg7+/Pm6VkNm7duoXTp09DrVbjiy++QHNzM6RSKZRKJRQKBaZOncqSDJkFg8GAAwcOIDY2Fnfv3kVsbCxXYVGfKCgoQGBgIP7xj39w8o6Vam9vh5eXFxYsWIB9+/aJHYcsUFZWFtavX49z585xBTGJzjjt97PPPkNhYSHGjBmD+fPnQ6lUYt68eVyjRwOCcbK68ZwmIyMD9fX1sLW1RUBAgMn6R19fX7HjErEERkRENLCx7EVERDRQ9HyA7lnsMt78s7Ozw5QpU0ymdU2bNg2urq5iR6cBoLGxEdnZ2UKxKzMzE3V1dZBIJPD09DS5Nerj44PBgweLHZnoO3311Vc4efIk1Go1Tpw4ge7ubsyYMQNKpRLPPfccp5SQ2UlJSUFMTAwKCwvxyiuvID4+HmPHjhU7FlmohQsXoqKiAhcvXuT3fCv26aefYvXq1cjPz4e3t7fYcchCqdVqrFu3DhUVFVi9ejW2bdsGZ2dnsWORFSsrK4NarYZKpUJ6ejqGDRuGp59+GkqlEs888wwcHR3FjkgkKCsrM7mgl5WVhY6ODk5fpwGNJTAiIqIBgWUvIiIiMTxoBePFixfR1tZm8kDcs9jFgg4ZdXZ2Ii8vz+RAsLCwEN3d3XB1dRVKXTKZjOsAyKwYb+RrNBpotVqMHDkSUVFRkMvlWLRoEd84JLNUVFSEDRs2QKPRICoqCrt37+ZNfepTFy5cQGhoKJKTkzFv3jyx45CI9Ho9AgIC4Ofnh4MHD4odhyxYZ2cn9u/fj7i4OBgMBmzZsgWvvfYa1+iR6CoqKnD8+HGo1WocP34cEokEUVFRUCgUWLRoESdc04DT0tKCnJwcYf3j2bNnUVNTI1zk63neI5VKOeGaBhSWwIiIiPoVy15ERER9qbm5GaWlpSbFrry8PNy8eRPAv1cw9ix1TZ06lQ+4JNDr9SgqKhJKXT1veo4YMQLTpk0TDvqefPJJjBkzRuzIRD9YV1cXMjMzoVKpcOjQIdy4cQMTJ07EvHnzIJfLuXKFzFpdXR3i4+Oxd+9eBAQEIDExEbNnzxY7FlmByMhIdHZ24ty5c2JHoQHg8OHDeO6555CRkYEZM2aIHYcsXENDAxISErB7925MmjQJ8fHxXCVLA0Z9fT2+/PJLqFQqnDp1Cl1dXQgNDeXkYBrwKisrhfKX8dJfe3s7nJ2dERISIpwJRUREYOTIkWLHJbrPw5bApFIp7O3txY5PREQ0ULHsRURE1Bs6OjpQVFSE/Px84aOgoAAVFRUAAGdnZ/j5+cHPz0+4Xe/v789DGLqP8RDP+JGWloaGhgbY2toiICBAOMTjLU4yVw0NDUhJSYFarcbRo0fR1NQEqVQKhUIBuVyO8PBwfl2TWWtra8OePXuwfft2ODo6YuvWrVixYgVsbGzEjkZW4OTJk5g3bx7OnDmDWbNmiR2HBojw8HA4ODjg5MmTYkchK1FRUYG4uDgcOHAATz/9NHbt2oXg4GCxYxEJWltbcfr0aahUKnzxxRdobm6GVCqFUqnEsmXL4OPjI3ZEom/1oGnvly9fho2NDby8vEzWPwYHB3NLAA1YLIERERE9Epa9iIiIfqzKykrhwbPnGkbjQ6inp+d9D6As5dCD3LlzB7m5ucLhXGpqKsrLy+87oJPJZAgJCcGQIUPEjkz0UK5du4YTJ05ArVbj5MmT0Ov1wi36Z599Fk888YTYEYkeWXd3N5KSkvDmm2+itrYWa9asQVxcHIYPHy52NLIS3d3dePLJJ+Hi4gK1Wi12HBpAzp07h6eeegqnTp1CVFSU2HHIipw/fx7r169Heno6nnvuOezcuRMTJ04UOxaRifb2dqSmpkKtVuOzzz5DdXU13N3dIZfLoVQqeRmFzEJVVRWys7OFS4Pp6elobW2Fo6MjAgIChPWPnAhP5qCzsxPXr19nCYyIiOi7sexFRET0bW7fvo2SkpJvXcHo6uoqPEga1zD6+vpi6NChIiengairqwvFxcUmE7tycnJgMBjg6upqUuzi6H2yBDqdDhqNBmq1Gunp6Rg2bBiefvppKJVKLFq0CM7OzmJHJOo1mZmZiImJQWZmJpYvX46EhAS4urqKHYusTFJSEpYuXYqLFy8iKChI7Dg0wMyfPx91dXW4cOECSwvUr4xl6I0bN6K6uhq//vWvsWnTJjg5OYkdjeg+er0eGRkZ0Gg0+Pzzz3HlyhVMmDAB0dHRkMvliI6Ohq2trdgxib6X8Qyq5+rHwsJCdHd3w9XVVSh/yWQyTJ8+HXZ2dmJHJvpeLIERERGZYNmLiIhIr9fj2rVr903qKioqgsFggKOjIzw9PU1KXQEBARg7dqzY0WkAM65jNB6s5eTkoLW1FcOHD0dgYKBQ7Jo5cybc3NzEjkv0yIxvjKhUKhw6dAg3btwweWNk3rx5PEAmi1NaWorNmzcjKSkJkZGRSExMRGBgoNixyArp9XoEBAQgMDAQf/vb38SOQwNQXl4egoOD8Y9//ANKpVLsOGSFOjo6sG/fPrzzzjuQSCSIi4vDmjVruOaYBjSdTgeVSgWNRgOtVovRo0djwYIFUCgUWLBgARwcHMSOSPSDNTU1ISsrSyh/paWloaGhAQ4ODggKChLOqWbNmsUpjGRWWAIjIiIrxbIXERFZl4aGhvtKXcYSjo2NDSZOnGhS6pJKpfDx8cHgwYPFjk4DWHNzM/Ly8oRi14ULF3Dz5k1hrWfPiV3BwcH8eiKL0dDQgJSUFKjVahw9ehRNTU2QSqVQKBSQy+VceUIWq6GhAQkJCdi9ezfc3Nywbds2lidIVPv378eqVatQUFAALy8vsePQALV8+XJkZ2ejoKCAk2lINLdu3cKOHTuwe/duuLu7Y8eOHZDL5WLHIvpeZWVlUKvVUKlUSE9Ph729PSIjI6FUKrF48WJOqyOzo9frUVRU9J0T6I0TwKZNm8ZNBmR2WAIjIiILx7IXERFZps7OTpSUlJiUurRaLaqqqgAAI0eOvK/UNXXqVAwbNkzk5DTQGb+2vm0Ufs9iV1hYGL+myOJUVFTg+PHjUKvVOHnyJPR6PUJDQ6FQKPDss8/Cw8ND7IhEfaazsxP79+9HXFwcDAYDtmzZgtdeew0SiUTsaGTFOjo64O3tjblz5+IPf/iD2HFoAPvqq6/g5eWFjz/+GKtWrRI7Dlm5kpISxMXFQaVSISoqCrt27eJ0TDIb169fR3JyMtRqNU6cOIHBgwdj5syZkMvlWLZsGcaPHy92RKKHcvv2bVy6dEk488rMzERdXZ1wmbHn+kdfX1+x4xI9FJbAiIjIQrDsRURE5s+4Lq9nqau4uBh6vR62trbw8PAwKXVNmzYNrq6uYscmM1FZWWlS7NJqtWhvb4eTkxP8/f2Fg64ZM2ZwtSdZLJ1OB41GA7Vafd8t9oULF2LEiBFiRyTqc2q1GuvWrUNFRQVWr16Nbdu2wdnZWexYRPjoo4+wceNGlJSU4IknnhA7Dg1wa9aswaFDh3DlyhVeSqABITMzE+vWrcP58+exfPlyJCQk8HmdzMqtW7eg0Wig0Whw7NgxtLW14cknn+RlGLIY956LZWVloaOjgxceyeJ8WwmsoKAAd+/eZQmMiIgGGpa9iIjIfDQ1NeHKlSsmaxhzcnJQX18PAMIhg/EhSyaTwdvbGzY2NiInJ3NRXV2NrKwsodSVkZGB+vp6oTTY8wajVCrlejqyWHq9HhkZGVCpVDh8+DCuX7+OsWPHYt68eVAqlZg7dy6GDBkidkyifqHVahETE4OzZ89iyZIlSEhIgJubm9ixiAAALS0tmDx5Ml588UXs3LlT7DhkBmprazF58mRs3rwZsbGxYschAgB0d3cjKSkJsbGxuHnzJtasWYPNmzfD0dFR7GhEP0pbWxtSUlKgUqlM1twrlUooFArIZDKxIxI9spaWFuTk5AhnZ2fPnsW1a9dgY2MDLy8vk/WPPDsjS8ASGBERDVAsexER0cDT1dWFiooKk1KXTqcTVuU5OzvDz8/PpNQVGBjIg2D67H2KqAAAIABJREFUUe49nDJ+rQHfFAd7FrumTZuGoUOHipyYqG+1tLTgn//8J1QqFdRqNRobGyGVSqFQKCCXyxEeHs5DWrIqX3/9NbZt24ZPPvkEISEhSExMRHh4uNixiEy89957SEhIwNWrVzlhlH6wrVu34uOPP8bVq1cxatQoseMQCdra2rBnzx7813/9F4YPH46tW7dixYoVvMBFZqnnBRqVSoWqqiq4ublBoVBAqVTy+YosinHrQs8JYMap+NOnTxfO18LDw/mzB1kMlsCIiEhkLHsREZG4Ghoa7it1Xbx4EW1tbZBIJPD09DQpdfn6+sLNzY0HYvSj6PV6FBUVmRS7jGPnx48fj2nTpgmj58PCwjB69GixIxP1i4qKChw/fhxqtRonT56EXq9HaGgoFAoFnnnmGXh6eoodkajftbS0YOfOndixYwdcXFwQHx+PF198kT970IDT2NgId3d3rF27Flu3bhU7DpmR27dvY8qUKXj55ZeRkJAgdhyi+9TX12Pbtm3Yu3cvPD09sXPnTixYsEDsWEQPzWAwICcnB2q1Gn//+99RUlICFxcXREdHQ6lUIjo6Gra2tmLHJOo1XV1dKC4uNil/GS9Yuru7C+WviIgIBAcHY/DgwSInJuo9LIEREVE/YdmLiIj6R0dHB0pLS01KXVlZWaipqQHwzSSle0tdvr6+nKZED8V4o9D4kZqaisbGRjg4OCAoKEgodhm/1oisiU6ng0ajgVqtRnp6Ouzt7REZGQmFQoHFixdzMgxZLYPBgAMHDiA2NhZ3795FbGwsXn/9df4sQgNWbGws/vznP+Pq1atwcnISOw6ZmQ8//BCbNm1CSUkJnnjiCbHjED1QcXExtmzZApVKhaioKHzwwQfw9/cXOxbRI9PpdFCpVNBoNNBqtRg1ahR++tOfQqFQYP78+Rg+fLjYEYl6XVVVFbKzs4UJYOnp6WhtbcXw4cMRGBgolL9mz54NFxcXseMS9TqWwIiIqJex7EVERL3PWLQxPrRotVoUFRXBYDDAzs4OU6ZMEUo2UqkUM2bMYLmAHtrt27dx6dIl4bDo3LlzqK6uho2NDby8vEyKXdOnT4ednZ3YkYn6lXF9iEajweHDh++7RT537lwMGTJE7JhEokpJSUFMTAwKCwvxyiuvID4+nj+b0IBWVVWFKVOm4P3338fatWvFjkNmqKOjAz4+PpgzZw7++7//W+w4RN/p9OnTWL9+PQoKCvDqq69i27ZtGDdunNixiHpFeXk5jh49CpVKhYyMDAwZMgRz5syBUqnEwoULMWLECLEjEvWJnlP4jRPACgsL0d3dDVdXV0RERAgTwEJCQnhuQRbrYUtgvChPRGT1WPYiIqKHZ1zB2LPUlZubi5aWFgDfTOvqWeqSyWTw8fHhaG56aMYx8D0PgoxFQuPXm/Fj5syZPBQlq9Xa2orTp09DpVJBrVajsbERUqkUCoUCcrkc4eHhXElHBKCoqAgbNmyARqNBVFQUdu/ezYmPZBZ+9atf4ejRoygtLeUtb3pof/nLX7By5Urk5+fDx8dH7DhE38lgMODzzz/Hhg0bUFdXh/Xr1yM2NpZ/B5JFqa2tRXJyMlQqFU6ePAm9Xo/Q0FAolUoolUo89thjYkck6lPNzc24cOGCsPoxPT0dt27dgq2tLQICAoTy18yZM+Hm5iZ2XKI+xRIYERF9D5a9iIjo+3V2dqKkpMSk1HX58mWUlZUBAEaOHGnyUCGTyRAcHAwHBweRk5O5M06JMxa7Ll68iLa2Njg6OiIgIEAodj311FOYNGmS2HGJRHXz5k0cP34cKpUKp06dQldXF0JDQ4X1jF5eXmJHJBow6urqEB8fj7179yIgIACJiYmYPXu22LGIfpCvvvoKXl5e2Lt3L1asWCF2HDJjBoMBU6dOxZQpU5CUlCR2HKIfpLW1FR9//DG2b98OJycnbNmyBStXruSlMrI4DQ0NSElJgVqtxpEjR9DS0oLg4GDI5XK88MILfL4jq1FWViaUv9LS0pCTk2Ny6bPnBDAWgMkasARGRET/H8teRERkqrKy8r5Sl/FBwdbWFh4eHialLl9fX7i7u4sdmyxAU1MT8vPzhWLX+fPnUVtbC4lEAk9PT5MDHE6II/qGTqeDRqOBWq1Geno67O3tERkZCYVCgUWLFnG9DdE92trasGfPHmzfvh2Ojo7YunUrVqxYARsbG7GjEf1gP//5z5GVlQWdTgeJRCJ2HDJzR48exaJFi5CRkYHQ0FCx4xD9YMbi9u9//3sEBQUhMTERs2bNEjsWUZ9oa2tDSkoKNBoNjhw5gps3b5pMbo6IiBA7IlG/uXPnDnJzc4Xy15kzZ0zOD3uWv6RSKaeak9W498K+8f8WFxdDr9ezBEZEZHlY9iIislbNzc0oLS01KXXl5uairq4OwDcrGO8tdfn5+WHIkCEiJydL0NnZiby8POFmnlarRWFhIbq7u3kzj+g76PV6ZGRkCIf8xcXFcHFxQXR0NJRKJebOncu/p4keoLu7G0lJSYiNjcXNmzexZs0axMXFYfjw4WJHI/pRCgoKEBgYiL///e9YunSp2HHIQkREREAikeDMmTNiRyH60QoLC/Hmm29yJTNZDeMzoUqlwueff46vv/4akyZNwsKFC6FUKhEWFsbLcWR1KisrhcujWq0W2dnZuHv3LsaPH49p06YJmwFmzpyJESNGiB2XqF+xBEZEZLFY9iIisnRdXV2oqKgwKXXpdDqhWOPs7IwpU6aYlLqCg4MxevRosaOTBek5cr3noYuzszP8/PyEYldoaChcXFzEjks0oLS2tuL06dMmt7jd3d0hl8t5mE/0A5w/fx7r1q1DZmYmli9fjoSEBLi6uoodi+ihLFq0CF999RVycnL4dz/1mtTUVMycORMnTpzA3LlzxY5D9FBSUlIQExODwsJCvPLKK4iPj8fYsWPFjkXU53Q6HVQqFQ4ePIiioiKMGTMG8+fPh1KpxLx582BnZyd2RKJ+d+8l09TUVJSXl8PGxgZeXl7cHkAElsCIiCwAy15ERJakoaHhvlLXxYsX0dbWZvLDubHUJZVKOc6ael1VVRWys7OFYld6ejpu3boFW1tbBAQECNO6OE6d6NvV1tYiOTkZKpUKp06dQldXF0JDQ4X1jN7e3mJHJBrwrly5gk2bNiEpKQmRkZFITExEYGCg2LGIHtqFCxcQGhqKY8eOITo6Wuw4ZGHkcjlu3LiBixcv8g1PMlsGgwEHDhxAbGws2tvbsXHjRrz++ut8Q5Kshk6ng0ajgVqtRnp6OkaMGIGoqCjI5XI888wzcHR0FDsikWgqKyuF1Y+pqanCmbmTkxP8/f2F8ldYWBgvQZNV+74SmK2tLZ544gmWwIiIxMeyF9GPUVZWhr/97W9ix7BY7u7u+NnPfiZ2DLPQ2toKnU6H3Nxc5OfnIz8/H3l5ebh16xYA4PHHH4e/vz8CAgIQEBAAPz8/+Pj4wM7ODjt37sTdu3dF/hNYrg0bNljVCrU7d+4gNzdXKHYZi4bAN6/pnsWukJAQq/rfpj/w9dy3+vv1XFZWBrVaDZVKhfT0dAwdOhRz5syBQqHAwoULMX78+H7LQv2Pr+feVVtbi9///vcYPXo05s2bhz/96U/8HmQFLP15Ta1Wo6amBitXrhTl8/N5rX+I9f2guroaf/zjH/Gf//mfeOyxx/r98/cXa3tes1YFBQX49a9/jbS0NEyYMAEvv/yy2JEsCr8fmIdr167hyJEj0Gg0OHPmDCQSCaKioqBQKLB48eJ+mXz35ZdfIicnp88/j7WSy+UICgoSO4bZ6urqQnFxscn6R+MmjHvPNGfMmAFbW1uxI/cpvl77liW8XlkCG7j4+u1blvD6JYvFshfRj3HixAlER0dj8uTJvOnay2pqajBjxgycPHlS7CgDTkVFBfLy8pCXl4dLly7h0qVLuHLlCvR6PRwcHODn54eAgAD4+/sLBa9Ro0Z96+/n5OSEYcOGwcnJqR//FJavtbUVX3/9NRobG+Hs7Cx2nD6h1+tRVFRkUuy6cOECOjs74erqKhyAyGQyhIeHf+fXIfUOvp77Rn+9nvV6PTIyMoT1jMXFxcLKDYVCgQULFsDBwaHPPj8NLHw9976WlhYMGjTI4r8/079Zw/OaXq+HjY1Nv39ePq/1HzG/H4j19dUfrOF5jf7N+P1g4sSJMBgMfIOxF/H7gXmqq6vDsWPH7pscrVQqsWTJEjz++ON98nlXrlyJv//97332+1uzq1ev4o9//KNolwAsVXV1NbKysoRzz9TUVDQ2NmL48OEIDAwU1j/OmjXL4lYF8/Xadyz99coSmPj4+u07lv76JbOXKRE7AZE50mq1PBzsZStXrkRFRYXYMURl/KG45wrGCxcu4ObNmwAAV1dX+Pr6Yt68edi0aRNkMhl8fHwe6o2s9957jz+c9DLjYbIlMY43N444T09PR2trq8kBx6pVq4S1oCQOvp57X1++nltbW3H69GloNBp88cUXqKmpgbu7O+RyOT755BOEhYVZbEGBvh9fz73PEr8/0/fj81rv4/Na/+L3g97H7wfW6dKlS/x+0Mv4/cA8jRkzBi+99BJeeukl4ZlUpVJh69atWLt2LaRSKZRKJZ5//nl4e3v36ucODw9nObAP8JJQ3xg/fjwUCgUUCgUA04uvaWlpSElJwe9+9zsYDAbh4qtx/aMlbDTg67VvWPrr1dbWVihvKZVK4T9/UAlMrVZj165dLIH1Ab5++4alv37J/LHsRUQkgsrKSuGHXGO5q6CgAHfv3oWdnR2mTJkCmUyGTZs2wdfXF4GBgXBxcRE7Nlmw5uZm5OXlCYcXZ8+eRU1NDWxsbODl5QWZTIbt27dbzehyot5UW1uL5ORkaDQaHDt2DG1tbQgODsbq1auxbNky+Pj4iB2RiIiIiIiIrMCwYcOEMkt7eztSU1OhVqvxhz/8Ae+++65wGUmpVCI8PByDBg0SOzKRaGxsbITyyUsvvQTg32eoxvWPO3fuxMaNG2Fra4uAgABh/WNERATc3d1F/hMQiYclMCKivseyFxFRH3rQtK6srCzU1NQA+Pe0rvDwcPzmN7+BTCaDt7e3xa7OoIGhq6sLxcXFQrErNTUVRUVFJrfSVq9ejYiICISFhWHYsGFiRyYyO2VlZVCr1VCpVMjIyMCQIUMwZ84cfPDBB1i4cCHGjx8vdkQiIiIiIiKyYkOHDkVUVBSioqLwwQcfICMjAyqVCocOHcKePXswceJELFq0CAqFArNnz4ZEwreTiJycnBAREYGIiAjExsYC+OYMKDU1VdiQsG/fPnR2dgrnrD0ngNnb24v8JyASV2+XwPz8/Mx+qh4R0cPiT+dERL2koaFBmNR177QuW1tbeHh4QCaT4Y033oBUKsWMGTMwduxYsWOTFaisrBRKXcavz/b2djg5OcHf3x9RUVF455138NRTT2HcuHFixyUyS3q9Hrm5uVCr1Th48CCKioowZswYzJ8/H6+//jrmz5+P4cOHix2TiIiIiIiI6D42NjZCgeWjjz6CTqeDSqWCSqXCnj17MHr0aCxYsABKpRJz587lG+tEPbi7u8Pd3V2Y/nXnzh3k5uYKF2337duHd999FxKJBJ6enkLxSyaTQSqVcoIeEb69BNbR0YHS0lKWwIiIHoBlLyKiH+neGwZarRbZ2dmorq4GcP+0Ll9fX/j7+8POzk7k5GQNmpqakJWVJRS7MjMzUVdXJxwmyGQyvPTSSwgPD4ePjw8GDx4sdmQis9XW1oaUlBRoNBocPXoU1dXVwsqLjz/+mDefiYiIiIiIyCwZ33B/5513TCZXL1q0CPb29oiMjIRSqcTixYvh5OQkdlyiAWX48OFCefL1118H8M1l3J5bFv7nf/4Hd+/ehbOzM0JCQkzWP44cOVLkPwHRwGFnZ8cSGBHRt+C7T0RE36G6uhp5eXnIzc1FXl4e8vLyUFRUhM7OTgwdOhS+vr4IDAzExo0bERAQgMDAQIwaNUrs2GQlOjs7kZeXZzKxq7CwEN3d3XB1dUVERATi4uKEceEcE0706Orq6nDs2DFoNBokJyejtbUVwcHB+MUvfoGlS5dCKpWKHZGIiIiIiIio17i7u+P111/H66+/joqKChw/fhxqtRorV67EL37xC0REREAul2PZsmUYP3682HGJBqTHHnsMjz32GBQKBYD7z3X/93//F++++y5sbGzg5eVlsv4xODiYF3aJ7sESGBERy15ERALj7ZqeaxjLysoAACNHjoRUKsXTTz+N9evX84c/EkVZWZlJsSs7O9vkBphSqYRMJsOTTz6JMWPGiB2XyGIYbzFrNBqcOXMGtra2CA8Px3vvvYelS5fC1dVV7IhEREREREREfW7ChAlYtWoVVq1ahVu3bkGj0UCj0WDz5s2IiYlBaGgoFAoFnnvuObGjEg1otra2QqHLqOf7E2lpaXjrrbfQ1tYGR0dHBAQECOsfefZL9O1YAiMia8KyFxFZnZaWFuTn5yM3N1f4yM/PR2trKyQSCby9vREUFIRf/vKXCAoKQlBQEB+eqN/dWz5MS0tDQ0MDbG1tERAQgPDwcKxatQoymQxSqRSDBg0SOzKRxdmyZQuOHz+O0tJSjB07FnK5HJ9//jmioqIwbNgwseMRERERERERiWbUqFF46aWX8NJLL+H27ds4duwYDh8+jPfffx9vvfUWxo0bB39/f7FjEpmNe6d/dXV1obi4WFj9qFarsWPHDpOtDsb1j9OnT4ednZ3IfwKigYslMCKyRCx7EZFFa2hogE6nMynNFBcXQ6/Xw9HREZ6enpBKpXjhhRcgk8kwdepUvoFP/e7OnTvIzc0VvkZTU1NRXl4O4JtR+eHh4Xj77bchk8kQEhLChwiifqJWq7Fw4ULs3bsXs2fPhkTCH52JiIiIiIiI7uXo6Ihly5Zh2bJluHv3LlJSUvD++++LHYvIrEkkEqGcsmrVKgD4f+zdeXhM5+IH8O9MNhGxhJKg9kiCLFdI1Va1lRJqV0WsVTSKcrVRtbRK0ZaqlioVaxv0qmq1WqW2uogkJIREIvYtYskmM5n390d/yRUJMpOZ856ZfD/Pk+c+zsy855v7nG/fOTNvzsHdu3dx9OjR/Ls/zJ49G2lpaXBxcUFAQED+1cJeeOEF1K5dW/JvQKR+XARGRNaM31gRkU3Izc1FSkpKoYVdV69eBQB4eHigcePG6NixI6ZNm4bAwED4+PjwXvekuLy/yHr4il1RUVEwGAzw8PBAYGAghg4disDAQLRq1Qpubm6yIxOVWtHR0ahQoYLsGERERERERERWw8nJCd26dcN//vMfXLhwQXYcIptSoUIFdOzYER07dgTwz/ci8fHxBT5r/uKLLwp81px3BbBmzZqhTJkykn8DIuvARWBEZA242IuIrE56ejrOnDlTYGFXdHQ0MjIyYG9vj4YNG+b/tUveJYyrVasmOzaVUg/fjvHgwYM4dOgQMjMzUa5cOfj7+6NVq1aYMGEC2rRpg7p168qOS0RERERERERERERWwM7OLn9BytChQwEA9+/fR0xMTP7tHxctWoR33nkH9vb2+Z9H510BrHHjxpJ/AyLrYs5FYIGBgfD29oadnZ3E34iIrBkXexGRqhV1G8b4+HgYDAaUL18evr6++W+q8k5QnJ2dZcemUuyPP/5AXFwcjhw5giNHjuDmzZuwt7eHn58fgoKC8Nprr6F58+a8shwRERERERERERERmZWrqytat26N1q1bY9q0aRBC4MyZM/jvf/+Lw4cP46+//sKyZcuQm5uL6tWro0WLFkhNTYWjo6Ps6ERWqySLwDw9PQtcBaxRo0ZcBEZExcLFXkSkGllZWdi4cSOio6Pzf27evAkAqF27Nvz9/dG3b1/4+/sjICAA9erVk5yYqLC+ffvmXyJ73LhxaN26NVq2bImyZcvKjkZEREREREREREREpYhGo4G3tze8vb0REhIC4J+7pxw7dgyHDx/G4cOHcefOHVStWlVyUiLbY8wisM2bN+PDDz/kIjAiKjYu9iIi1bhy5QpCQkLyb8M4btw4BAYG4rnnnuOJBlmNxMRE1K9fX3YMIiIiIiIiIiIiIqJCypUrh3bt2qFdu3YAgFGjRuHChQtyQxGVIo9bBJaZmYnTp0/nLwCLi4vDunXrcP78eRgMBjg5OcHHxwc+Pj5o0qQJfHx8cP/+fYm/CRHJxPtHESnoww8/xKFDh4p8zGAwmH1/So157tw5TJ06tcT7q127NjIyMhAXF4eIiAjMmjULwcHBXOilIk86hgHLHHPmZsljGACqVKlS4jGIlKB0n9PT0806HmD5PhNZCyX7rNfrkZuba7bx8rDPpAZKn68BwP3795Gammq28dil0o3na0TmoeR8IIRAWlqaWccE2CWyDTLem5nT4zKyi2SLlOyrXq9HVlaWWcdkX0ktypYti8DAQAwdOhTz58/HTz/9hHPnziErKwuxsbFYt24devbsCb1ejw0bNqBv3744evRoifapdH+FEGYdk/2l0oyLvYgUsnPnTnz22Wfw9fXN33b27Fm89dZbqFOnDipXrozu3btj9+7dJdqPjDHr1auH3377DStWrCjRfuzt7XlfeBUr6hgGLHPM5fH09MTo0aNLPI5SxzCRtVCqz8ePH8dLL70ENzc3uLq6wt3dHWPGjMG9e/dMHpN9JipIqT5v2LABLVu2hKurK8qUKQNvb2988cUXJfrAhH0mNVHqfO1hqamp8Pb2Rps2bUo0DrtEgDLzgcFggL+/f/5foD/8061bN5Oz8xgmNVFqPkhLS8Po0aPh4uICNzc3lC9fHgMGDMCtW7dMHpNdIlti6S7u3r27yPns4Z+hQ4caPW5xMrKLZGuUmjt37dqFpk2bomzZsnBxcUHdunVL9LkE+0rWJO9KYP369cOsWbMQERGBuLg43Lt3D88//7zJ4yrV319++QVNmzZFuXLlUK1aNQwcOBD79u0zeTz2l+gfXOxFpICcnByEhobirbfegqurKwAgKysLPXr0wOrVq/HSSy9h7NixSEhIQHBwsMkTnKwxNRoNZsyYgbCwMNy4ccOk/ZC6FXUMA5Y55vKsWbMGiYmJJY3OY5joEUr1+dixY2jfvj0iIyMxaNAgzJgxAxUqVMDXX3+Njh07mvRBDPtMVJBSfV67di2GDBmCtLQ0vPXWWxg3bhzS09MRGhqKjz76yKTs7DOpiVLna48aOXIkrly5UqIx2CUClJsPLl26hBMnTsDOzg7PPPNMgR83NzeTsvMYJjVRaj7IycnByy+/jFWrVmHQoEH45ptv8OqrryIiIgI9e/Y0aUx2iWyJEl3UaDRwcHAo8ic3NxenTp0y+g/VipuRXSRbotTcuXv3bnTp0gXnz5/H8OHDMW7cOGRlZSE0NBSzZ882ejz2lWyFi4sLnJ2dTXqtUv3dtGkTunfvjjt37mDq1Kno3r07duzYgeDgYJw5c8bo8dhfoocIIiq2X3/9VQAQd+7cMep1X375pXB0dBTXr1/P3zZp0iQBQPzyyy/5265duyaqVasm6tata1I+mWPq9XpRs2ZNERoaatJ+Ro4cKTp16mTSa8k4rq6uYuXKlUa9pqhjWAjzH3MXL14Uo0aNEv7+/gKAACBGjRpl9DimZCzpMWzqfx+ISkLNfQ4JCRGOjo4iKiqqwPYOHToIACIiIsLoMdlnsmVq7rOfn59o2LChuHv3bv62y5cvC0dHR+Hu7m70eMZkZJ/JGGo/X3t0n05OTsLNzU34+PiYPA7P12yPmueD3bt3CwAiOjra6Nc+DucDsgS1zwdff/21ACAWLVpUYPuYMWMEAHH06FGjx+R8QGpk6vEi473Zw958803h4eEhrl69atTrjMlY0i6a8n6B6EnU3tcXXnhBABCJiYn52+7duyfKly8vXFxchF6vN2o89pVsiZr7++DBA1GjRg1Rrlw5kZaWlr/9+vXrwsHBQQQEBBg9JvtLlO9vLvYiMoKpHxbVrVtX9OjRo8C2SpUqCT8/v0LPHTp0qAAgDh8+bHQ+2WNOnDhRuLi4iHv37hm9H35YpBxT3pwUdQwLYf5j7tSpU6Jt27aibdu2onnz5mZZ7KXUMcwvD0gGNffZ09NTBAUFFdq+fv16AUBMmTLFqPGMzcg+k7VRa5/v3LkjtFqteOuttwo91qVLF+Ho6ChycnKMym1sRvaZikvt52t5YmNjhbOzs1i8eLFo3LhxiRZ78XzN9qh1PhBCiOXLlwuNRiMyMzONet2TcD4gS1D7fNC2bVtRtWpV8eDBgwLbU1JSxNq1a8X58+eNHpPzAamRqceL0u/NHrZz506h1WrF7t27jX6tsRlL0kV++Uzmpva+1qtXT9SsWbPQ9o4dOwpHR0eRnp5u1HjsK9kSNfc3KipKABD9+/cv9Fi3bt1Mes/O/hLl+5u3cSSysLi4OCQnJ6NJkyb5227duoW0tDR07Nix0PMbNmwI4J/bXxlDDWM2atQIGRkZJb53M6lLUccwYJljzsfHB3/99Rf++usvbNy40fTQJmbkMUy2Tqk+63Q6vPTSS3jzzTcLPXbx4kUAMPpWP+wzUUFK9dne3h779u3DtGnTCmy/e/cuTpw4gc6dO8PBwcGo7OwzqYlS52t5srOz8eqrr6JNmzaYMGGCaaFNzMku2SYlz9cSExNRq1YtpKenY8eOHVi1ahUOHTqE3Nxck7LzGCY1UXI+SEhIQNeuXeHo6IikpCRs374dkZGRqF69OoYMGYLatWsbNR67RLZE6fdmD0tNTcWIESMwYMAAtG/f3qjXmpKRXSRrp2Rfe/XqhUuXLuGXX37J33bmzBns2bMHL774IlxcXIo9FvtKpFx/r1y5AgAICgoq9Fjetri4uGKPx/4SFcTFXkQW9vvvvwMAGjRokL8t7x7EHh4ehZ7v5eUFAEbfP1gNY+Zt27Vrl1H7IXUr6hgGLHPMmRuPYaKClOqzg4Pjd0c0AAAgAElEQVQDli5diiFDhhTYfuPGDSxbtgwODg7o3r27UdnZZ6KClOqzi4sLWrVqlT/e4sWLMWnSJDRv3hy5ubl49913jc7OPpOaKHW+lmfq1Km4cuUK1qxZA41GY9IYedglApQ9X0tMTMS9e/dQp04dBAcHY9SoUWjVqhWee+45nD592ujsPIZJTZSaD9LT03H16lVUq1YNwcHBqF+/Pnr27IlmzZrB19cXhw8fNjo7u0S2ROn3Zg8bP3487ty5g/nz5xv9WlMysotk7ZTsa2hoKAICAtC9e3e0bt0aHTt2RKNGjeDh4YG5c+caNRb7SqRcf+vXrw8A+PPPPws9durUKQDGLfZif4kK4mIvIgs7f/48gIITZmJiIoCir2qS99d7d+7cMWo/ahgzb8KMj483aj+kbkUdw4Bljjlz4zFMVJDMPu/YsQO+vr64fPkyFi1aBF9fX6Nezz4TFSSrz9OnT8fixYuRkJCAKlWqwNnZ2egx2GdSE6XO14B/5sIvvvgCK1euLPKDSWOxSwQoOx8kJibi/v37mDlzJs6ePYuDBw/i9ddfR3R0NHr27ImMjAyjxzMmI49hsiSlP79bsmQJkpOTsXTpUkRGRuLzzz9HSkoKevbsadJCTGNyskukZkq+N3tYXFwcIiIiMHnyZNSqVcvo15uSkV0ka6dkXytWrIjatWtDCIGjR4/i8OHDMBgMsLe3x/37940ai30lUq6/np6eaNasGXbv3o1vvvkG9+/fx927d7Fs2TJs3rwZAIy6UjT7S1QQF3sRWdjNmzcBFJwwnZycAAC3b98u9Py8D0crVapk1H7UMGa1atVQsWJFXL9+3aj9kLoVdQwDljnmzI3HMFFBMvp87tw59OjRA8HBwShfvjx27dpl0m2r2GeigmTNzxkZGTh79ixWr16N1NRUPPfcc7h27ZpRY7DPpCZKna9dvXoVw4cPx6hRo9CrVy9T4xbALhGg7HywZs0aREVF4d///jc8PT3RsmVLrFixApMnT0ZCQgJ++OEHo8bjMUxqotR8kDfWgwcPsGXLFrz55pto2rQpQkNDMXnyZNy4cQPfffedUWOyS2RLlOrioxYsWABHR0dMnjzZpNebkpFdJGunZF/btGmDH3/8EV9++SWuXbuGmzdvYuvWrbh37x66deuWv3ClONhXIuX6q9VqsXr1ari7u2P06NFwd3eHu7s7Jk+ejNGjRwMAGjduXOzx2F+igrjYi8jCsrKyAPxzS6s87u7uAICkpKRCz8+boJ555hmj9qOWMcuUKWPUPkj9ijqGAcscc+bGY5ioIKX7vH79egQEBGDv3r1YsGABYmNj0bFjR6PHMTUj+0y2TKk+CyFgMBgKbPP09MTw4cMxf/586HQ6/PLLL0ZlZ59JTZQ6X/vqq69w69Yt3L17F8OHD8//uXz5Mq5cuYLhw4dj3rx5Ro3JLhGg7Pu7wMBANGnSpND2l19+GQAQGxtr1Hg8hklNlJoPatSoAQBo0aIFvL29CzwWHBwMAEbfFpVdIluiVBcfduHCBWzcuBGvvPJKkVcKKQ5TM7KLZM2U6uvp06dx8uRJtGvXDmPHjkWlSpXg7OyM3r17Y9iwYcjMzDTqjw7YVyJl51tfX1+cPHkS33zzDd544w188MEHOHLkCHx8fAAYt9iL/SUqiIu9iCws7wQx7z7CANCwYUNoNJoiJ6OYmBgAwHPPPWfUftQwZkZGBq5duyZ9gQ+ZV1HHMGCZY87ceAwTFaRkn3fs2IGhQ4fCz88PsbGxmDp1av5f3piCfSYqSKk+z58/H3Z2dkUu6KpSpQoA4OLFi8Uez5SM7DNZklLna8888wwCAgKQkJCA6Ojo/J8HDx4gOzsb0dHR+bcjKC52iQDl5oOLFy9i69atuHDhQqHH8vZRtWrVYo9nSkYew2RJSs0HebeH0+l0hR7L+9KtQoUKRo3JLpEtUaqLD/v666+h1+sxcuRIk8cwJSO7SNZOqb6eOHECAPDCCy8UeqxTp04AgLS0tGKPx74SKdffnJwcnDlzBjk5ORg5ciQ++eQTTJkyBf7+/jh8+DA8PDyMWmjN/hIVxMVeRBYWGBgIoOCEWb16dbRt2xb79u3DuXPn8rfrdDps3LgRNWrUyH9dcalhzLzn5P2VItmGoo5hwDLHnLnxGCYqSMk+h4WFoUKFCtiyZUv+FxolwT4TFaRUn319fQEAv//+e6HHVq5cCQDw9/c3Kjv7TGqi1PlaaGgooqKiCv34+PigXr16iIqKwqpVq4wak10iQLn54Pbt2+jbty/mzp1b6LHvv/8ewD+31zEGj2FSE6XmA2dnZ7Rv3x6RkZFISEgo8Ni2bdsAAC1btjRqTHaJbIlSXXzYrl274Obmhg4dOpg8hikZ2UWydkr1tVGjRgCALVu2FHosIiICwP8+uygO9pVIuf5mZmbC29sboaGhBbZfunQJW7duRY8ePYwaj/0lKoiLvYgsLO+vDR794DUsLAw6nQ79+/fHDz/8gD179iA4OBhJSUlYuXIlNBpN/nM/++wz2NvbY86cOU/cV3HHLO54xubMmzBffPHF4v2fQ1bhcccwYJljrrjM3QuAxzDZPqX6nJaWhtjYWNSrVy//r3Ue/dmxY0f+89lnIuMp1eeXX34Zvr6+WLp0KWbPno3Dhw9j69atGDhwIH766Sc0b94c3bt3z38++0zWRsnzteLi+RoZQ6n5wM/PD88//zxWrlyJsLAwHDt2DEeOHMGECROwa9cu9OnTB0FBQfnP53xA1kbJ+WD+/PnQaDTo378/du7cidjYWHz++edYsWIFWrdunf+lF+cDKo1K2kVj35elpaUhMjISbdq0gVZb9NdllpjTAHaRrJ9SfW3cuDE6d+6MuLg4dOnSBevXr8eBAwfw9ttvY9OmTWjcuDFeeeUVo8ZkX6m0U6q/FStWRPv27bFlyxasXr0aaWlpOHr0KIKDg1GzZk0sXLgw/7nsL5Hx7GUHILJ1jRo1goeHR6EJs3Pnzli3bh1GjRqFPn36APhn0vv000/RtWvXAs81GAzIzc2FEOKJ+yrumMUdz9icZ86cgUajKbSdrNvjjmHAMsdccZm7FwCPYbJ9SvX54MGDEELg+PHjOH78eJHP0Wg0+QtE2Gci4ynVZ61Wi23btmHw4MGYNWsWZs2alf9Y79698fnnn8Pe/n+nlewzWRslz9eKi+drZAyl5gONRoNt27Zh1KhRmDdvHubNm5f/2NixY/HJJ58UeD7nA7I2Ss4HzZs3x88//4zhw4fj5Zdfzt/eo0cPfPvtt0aPZ2xOdonUrKRdNPZ92Z49e2AwGPD8888/9jmWmNMAdpGsn1J91Wq12LRpE0JDQ7Fp0yb89ttv+Y+1bdsWq1evhqOjo1Fjsq9U2ik5365evRqvvvoqRo4cmX/L5KZNm2Ljxo1wdXU1ekz2l+h/uNiLSAFvvPEGPvnkE6Snp6NcuXL52wcOHIi+ffvi2LFjMBgMeO6552BnZ1fo9W+//Tays7NRr169p+6rOGMaM54xOb///nv06tWLl8K0QY87hgHLHHMA0KBBgye+qTN3LwAew1Q6KNHn7t27G/WFN/tMZBql5ud69erhwIEDSE5ORnx8PJydneHl5VVkv9hnskZKnq89KjIyssTjsUuk1HxQtWpVbN++HSkpKThz5gwqVqwIHx+fAh/QGztmcTMCPIbJ8pScD7p27YqLFy8iNjYWN2/ehK+vLzw8PEwez5ic7BKpXUm6aGxvevfu/dTPLywxpwHsItkGpfrq5uaGDRs24OOPP0ZcXByysrLg7e0NLy+vAlfxYV+Jik+p/tauXRsHDx7EyZMnkZSUhKZNm6JWrVqFnsf+EplAEFGx/frrrwKAuHPnjlGvS01NFZUrVxZffvmlSftNSEgQ9erVExcuXDDp9ZYeTwghDhw4ILRarYiJiTHp9SNHjhSdOnUyWx56PFdXV7Fy5UqjXqO2Y9gSY5b0GDb1vw9EJcE+F419JmvEPheNfSZj8Hzt8Xi+Zj04HxSN8wEZg/PB43E+ICWZeryUpIvWMKcJUfIumvJ+gehJ2NfHY19J7djfx2N/ycb9XfRNyInIrNzc3LBw4UIsWLAAOp3O6NefO3cOP/30E5599lmz5DH3eAAwd+5cjB07Fn5+fmYbk9RDbcewJcbkMUylBftMZDvYZyLzUFuXeL5GxlLbMWyJMXkMkxLU1iXOB1RalaSL1jCnAewi2Q72lch6sb9E1o+LvYgUMnz4cDz//PPYvXu30a996aWX0KhRI7NlMfd458+fx927d/Hhhx+abUxSHzUdw+Yek8cwlTbsM5HtYJ+JzENNXeL5GplCTcewucfkMUxKUlOXOB9QaWZqF9U+pwHsItke9pXIerG/RNbNXnYAotJk48aNsiNYRJ06dXDw4EHZMUgBPIaJbAf7TGQ72Gci82CXyNrxGCYyD3aJSB3YRSLrwb4SWS/2l8h68cpeREREREREREREREREREREREREVoCLvYiIiIiIiIiIiIiIiIiIiIiIiKwAF3sRERERERERERERERERERERERFZAS72IiIiIiIiIiIiIiIiIiIiIiIisgJc7EVERERERERERERERERERERERGQFuNiLiIiIiIiIiIiIiIiIiIiIiIjICnCxFxERERERERERERERERERERERkRXgYi8iIiIiIiIiIiIiIiIiIiIiIiIrwMVeREREREREREREREREREREREREVoCLvYiIiIiIiIiIiIiIiIiIiIiIiKwAF3sRERERERERERERERERERERERFZAS72IiIiIiIiIiIiIiIiIiIiIiIisgJc7EWkYgaDQXYEIovKycnBhQsXZMcgIjNgn4lsB/tMZBn37t2THYHIonJycpCVlSU7BpHNOXfunOwIRPSQ2NhY2RGIyAg3b96UHYGITHTu3DnodDrZMYhUy152ACJrtGjRIjg5OVl0H5cuXcK5c+fwwgsvWHQ/ahEdHQ03NzfZMUqNn3/+GdeuXZMdA9u3b0fjxo1Rv3592VFKLDExUXYEKqXYZ/Njn0kW9tn82OfSSYnzNVNs3rwZ/fr1kx3DJDxfU5Za5gNj3bhxA6dPn1bl5xicD0ontc4HxtqzZw9cXV3RrFkz2VE4H5DRkpOT8eGHH8qOYVbr169H8+bN4eXlJS1DTk6OtH2T7bLFvgLADz/8gGbNmqFWrVpS9s++khJstb/JycnYu3cvBg0aJOV9PftLasfFXkRGcHFxgaenJ77//nuL7UMIgdu3b+P27dvw8PBASkqKxfalNn5+frIjlAoNGjRAXFwc4uLipOa4c+cObt68iatXr+LgwYNSs5iLp6cn7OzsZMegUoR9thz2mZTGPlsO+1x6KHG+ZqrMzExcvnwZ6enpVns88nxNGWqZD0yRnp6O69ev49y5c7C3V99HjpwPSg81zwemSEtLQ2pqKiIjI+Hs7Cw7DucDKjZ3d3doNBqsXbtWdhSzun79OjZs2IDq1aujbNmyUjLUqlULFSpUkLJvsk222lcAuHXrFqKjo6V1ln0lS7Pl/ur1eiQnJ2PRokWoUaMGtFplb1rH/pLaaYQQQnYIIvpHVFQUXnvtNZw+fRoODg5ITU2Fq6ur7FhEZrdr1y507doVBoMBBw4cQKtWrWRHIiITsc9EtoN9JrIMvV6PJk2a4MyZM9i7d68qr3pEZA7z5s1DWFgYBg8ejHXr1smOQ2QzFi1ahKlTp6JChQqIjIy0iauvElmzsLAwzJs3D05OTti5cydefPFF2ZGI6AmWL1+OsWPHwsHBAd9//z169eolOxIRGaFcuXLIyMiAl5cX/vzzT1SvXl12JCK1OKzs8kciKpJOp8OcOXPQvHlzJCQkQKvVokOHDlzoRTYpPj4evXv3zv+3g4ODxDREVBLsM5HtYJ+JLGf58uX553nx8fGy4xBZzJkzZ6DRaLBhwwYcOXJEdhwim+Hg4AB7e3tkZmaiW7duuH//vuxIRKWah4cH7O3todPp0LVrV+zdu1d2JCJ6ggYNGgD4549w+vXrh4iICMmJiMgYnp6eAICkpCQ0b94cZ8+elZyISD242ItIslOnTiEoKAhz5sxBbm4u9Ho9NBoN+vTpIzsakdndvn0bXbt2RU5ODgwGAwB+mUxkrdhnItvBPhNZTlpaGt577z0YDAbY29vjzJkzsiMRWcyJEycghICdnR3Gjx8P3kyAyDwcHByg0Wig0+mQlJSEPn36IDc3V3YsolKrevXq0Ov1MBgM+Qu+9u3bJzsWET1G3hUxhRDIzc3Fq6++ilWrVklORUTF5efnBzs7O+h0Oty4cQNBQUH473//KzsWkSpwsReRJAaDAUuWLEFAQABiY2MLfEhjMBjQvXt3iemIzE+v16NPnz64dOkSdDpd/nZ+mUxkfdhnItvBPhNZ1owZM5CZmQkAyMnJwalTpyQnIrKcxMREAP/MLZGRkfjuu+8kJyKyDQ4ODvmLJ3U6Hf7880+EhYVJTkVUej18+6iHF3zxqpZE6lSrVi3Y29vn/1sIgdGjR+Ozzz6TmIqIisvLywt2dnYA/jnXTE9Px4svvojff/9dcjIi+bjYi0iCpKQktGnTBpMnT4ZOp4Ner89/TKPRoHnz5nB3d5eYkMj8QkNDsX///gLHO8Avk4msEftMZDvYZyLLOX36NJYvX15gIWVcXJzERESWc/369UK3lps0aRIyMjIkJSKyHQ8v9gKA3NxcLFiwAN98843EVESl18OLvYB/OvngwQO0b98ex44dk5SKiB7Hzs6uQG+FEBBCYPLkyXjnnXckJiOi4vD29i7wuUrevNutWzds3rxZYjIi+bjYi0hBQgh8/fXXaNy4MY4ePZp/m5yH2dvbo2/fvhLSEVnOsmXLsHz58iJvM8Avk4msC/tMZDvYZyLLeuutt6DVFvzY5fLly8jOzpaUiMhy4uPjC/xbCIHU1FQsWrRIUiIi22Fvb1/kbVHHjh3LW8cRSVC9enVoNJoC23Jzc5GdnY0XX3wRx48fl5SMiB7H29u7yO0LFizggi8ilfP29i70XthgMECv12PgwIFYuXKlpGRE8nGxF5FCkpOT0bZtW4wdOxbZ2dkFViE/TKfToWfPngqnI7Kcffv2YeLEiY99nF8mE1kP9pnIdrDPRJb1888/4/fffy903ieEyL/VHZEtOXPmTP6tNfLo9Xp89NFHSElJkZSKyDY4ODgU+QejQgj07NkTSUlJElIRlV4ODg6oUKFCoe15C746duyI2NhYCcmI6HEaNmwIR0fHQtuFEFi4cCHGjh1b5FxLRPI1aNCg0Lkm8E9/DQYDXn/9dcyaNUv5YEQqwMVeRArIyspCcHAwDhw48NQ3jA0aNEDDhg0VSkZkWcnJyejRo8cTj3t+mUxkHdhnItvBPhNZlk6nw4QJE4r8MFKj0eDMmTMSUhFZVlGLvYB/PoDn1RKISuZx78tyc3ORkZGB4OBg3jKVSGHu7u5Fbtfr9bh//z7atm2LU6dOKZyKiB6nfv36j33MYDDg66+/xuDBg6HX6xVMRUTF4ejoiJo1az7xOXPmzMGECRO4aJNKHS72IlKAs7MzDh48iN69exe6xPPDHB0dMWDAAAWTEVnOvXv30KVLF2RkZPDLZCIrxz4T2Q72mcjyvvjiC5w/f/6xt0h99HZ3RLbg1KlTRV7BXKfT4fvvv8eBAwckpCKyDU96X6bT6XD27FkMGjSIX24RKahWrVqPfSxvwVe7du2QkJCgYCoiepwGDRogJyfnsY8bDAZ8//33GDhw4GPvykNE8vj6+j7x+3UhBJYuXYqRI0cWeftzIlvFxV5ECqlQoQK2bt2K5cuXw8HBAfb29oWek5OTw1s4kk3Izc1Fnz59kJSU9NS/himqC0SkHuwzke1gn4ks7/bt25g9e/Zjv3DPzc3llb3IJsXFxT32Q3U7OzuMHz+eC1GITPS0Rfh6vR4//fQT3n//fYUSEdGzzz771HOmmzdv4oMPPlAoERE9yZOu7AX8837VYDAgJSUFiYmJCqUiouLy8fF57HvivCtMt2nTBmPHjn3iojAiW8PFXkQKe/311/Hee+9Bq9UWOiGsWrUqmjVrJikZkfkcPXoUiYmJ0Ov1T/1QklcOIVI39pnIdrDPRJY3ffp0ZGZmPvbx3NxcnDx5UsFERJaXk5ODK1euPPZxvV6P2NhYbNiwQcFURLajOO/bhBD4448/cPPmTYVSEZVu1atXL/L2xQ4ODtBoNOjUqRMOHTqEtWvXSkhHRI+qV69ekQtAtFotNBoNPD09ERERgSNHjsDHx0dCQiJ6Ei8vr0JXT8/rb4MGDRAREYF9+/YhKChIUkIiObjYi0hhCQkJWLRoEcaMGYNXXnkl/w2mg4MD+vTpwxXHZBNatGiB5ORkHDt2DG+88QYqVKgAjUZT5Icgjo6OEhISUXGxz0S2g30msqzY2FisXLnyqbf9OHv2rEKJiJSRkJBQ5G1LHyaEwNSpU5GRkaFQKiLbUdRir7xtVatWxdixYxETE4PDhw/jmWeeUToeUank4eFRYO5zcHCAVqtFUFAQYmNj8csvv+D555+XmJCIHubk5ISqVavm/ztvkUiVKlXw5Zdf4tSpU+jXrx+/nyNSKW9v7wLzrp2dHcqXLw93d3fExMSgX79+EtMRycPFXkQKys7ORv/+/eHt7Y1FixZh8+bN+Oqrr+Dg4ACdTodXXnlFdkQiswoMDMTnn3+O+Ph4uLq64l//+he0Wm2BDyqL+oKZiNSHfSayHewzkWWkp6dj0qRJePHFF1GxYsX87Y6OjgU6lZmZiatXr8qISGQRj96a1N7evsCVzN3d3dGtWzeMGTOGVx0iMkHeezStVgutVgsnJyf4+fnB29sbV69exZIlS+Dn5yc5JVHpUqNGDej1etjb26NMmTJ488038dZbb+H06dN49tlnZccjoiJ4enoCADQaDWrXro3w8HC4uLggJiaGi7yIVC7vinsajQZubm5YsmQJjh49itu3b2PNmjVywxFJ9OSbihORWU2cOBHnz5/H8ePH86+WMGbMGLRp0wavv/462rVrJzcgkYVs374dOp0Ov//+OzIyMrB+/XqsWrUKycnJPJEisjLsM5HtYJ+JzKtFixZo0aJF/r8vX76MVq1aoW7dunjmmWdw5MgRXLhwAUIIxMfHw8PDQ2JaIvOJj48H8M8iLy8vLwQFBWH//v3w8vLCunXrUKlSJckJiaxb3m3hWrRogVGjRqFv3744fvw42rVrh9jYWC70IpLAw8MDlStXxoQJEzB+/HhUrlwZt2/fxsqVK7Fy5UpMnjxZdkQieoS3tzdSUlLwwQcfYPDgwbCzs0N2djbGjx+PqVOnol69erIjEtFjuLm5oV69ehg2bBgmTZqEcuXKAQBef/11zJ49G4MHD4aLi4vklETK0wghhOwQRKXB5s2b0b9/f2zatAkDBw4s9LjBYIBWy4vtkW1q1aoV6tSpgw0bNhTYfvz4cTRt2lRSKiIyBftMZDvYZyLLevDgAVxdXbFu3ToMGDAAAJCRkYGTJ0/C3d0dderUkRuQyEyioqJgZ2cHHx+f/CsQTZw4EYcOHcKRI0ckpyOyfmlpaUhLSyvwJbQQAp6enujVqxcWLlwoMR1R6ZSdnY3c3NxCXyxPmjQJmzdvRlJSUv4fexOROiQmJqJ27doFrmqem5uLRo0aoVWrVli9erXEdET0NFlZWXB2di6w7ebNm2jQoAHeeecdvPvuu5KSEUlzmIu9iBRw7tw5BAYGYsiQIVi6dKnsOESKSkhIgJeXF3799Vd07txZdhwiKgH2mch2sM9ElhcZGYlmzZrh9OnT8Pb2lh2HSFHffvstxo8fj3v37hW4pSMRmc+sWbOwfPlyXLp0iT0jUolLly6hfv36WL58OYYPHy47DhEVw9q1azFixAjExcXBy8tLdhwiMtKsWbOwePFinDt3DpUrV5Ydh0hJh3kZISIL0+l0eO2111C7dm0sWLBAdhwixYWHh8PDwwMdOnSQHYWISoh9JrId7DOR5UVHR8PZ2Rmenp6yoxApLiAgAFlZWTh79qzsKEQ2a9iwYbhx4wZ27dolOwoR/b+aNWti0KBB+Pjjj2EwGGTHIaJieO2119CwYUN88MEHsqMQkQmmTJmCMmXKYP78+bKjECmOi72ILGzKlCmIi4tDREREoctLEtk6IQQ2btyIIUOGwM7OTnYcIioB9pnIdrDPRMqIiYmBn58fe0alUuPGjeHo6IiYmBjZUYhsVp06ddC6dWuEh4fLjkJED5k2bRoSEhLw448/yo5CRMVgZ2eHmTNnYtOmTThx4oTsOERkpHLlyiEsLAxffPEFLly4IDsOkaK42IvIgnbs2IGlS5fiq6++4uVfqVTas2cPkpOTMXjwYNlRiKiE2Gci28E+EykjJiYGAQEBsmMQSeHo6Ahvb28u9iKysJCQEGzfvh1paWmyoxDR//P29kaPHj0wb9482VGIqJj69+8PX19fXt2LyEq98cYbqFGjBmbPni07CpGiuNiLyEIuXryIYcOGYdSoUfwijUqt8PBwNG/eHE2aNJEdhYhKiH0msh3sM5HlCSFw4sQJ+Pv7y45CJI2/vz+io6NlxyCyaf369YNWq0VERITsKET0kHfffRdHjx7Fnj17ZEchomLQaDSYOXMmtm7diqioKNlxiMhIjo6OmDVrFsLDwxEXFyc7DpFiuNiLyAL0ej0GDhwId3d3LF68WHYcIikyMjLwww8/ICQkRHYUIioh9pnIdrDPRMo4f/487ty5w8VeVKr5+/vzyzIiCytfvjx69erFWzkSqUxQUBBeeOEFfPzxx7KjEFExvfLKK2jevDlmzpwpOwoRmWDQoEHw8/PDe++9JzsKkWK42IvIAsLCwhATE4OIiAiULVtWdhwiKbZs2YKcnBwMGDBAdhQiKiH2mch2sM9EyoiOjoZWq4Wfn5/sKETSBPZPNnMAACAASURBVAQE4MaNG7h27ZrsKEQ2LSQkBH///Tfi4+NlRyGih0ybNg2//fYbIiMjZUchomLIu7rXTz/9hP/+97+y4xCRkbRaLT788ENs27YNhw4dkh2HSBEaIYSQHYLIluzcuRPdunXD6tWrMWzYMNlxiKRp37493NzcsGXLFtlRiKiE2Gci28E+Eylj1qxZ2LhxI86ePSs7CpE0qampqFKlCn799Ve89NJLsuMQ2SyDwYA6depgyJAhmDt3ruw4RPSQwMBAeHp64rvvvpMdhYiKqW3btihbtix+/fVX2VGIyATt27eHXq/Hvn37ZEchsrTDvLIXkRldvnwZQ4cOxYABA7jQi0q1lJQU/PXXX7xFFJENYJ+JbAf7TKScmJgY3sKRSr3KlSujRo0aiI6Olh2FyKZptVq89tprCA8PR25uruw4RPSQKVOmYMuWLUhISJAdhYiK6f3338dvv/2Gv/76S3YUIjLB/PnzceDAAfzyyy+yoxBZHBd7EZmJwWDA0KFDUalSJXz99dey4xBJtXbtWlSpUgVdunSRHYWISoh9JrId7DORcqKjo7nYiwj/3MoxJiZGdgwimzd8+HBcvnwZe/fulR2FiB7Sv39/1K1bF59++qnsKERUTB07dkS7du3w3nvvyY5CRCYICgpCz5498c4778BgMMiOQ2RRXOxFZCbvv/8+Dh06hIiICLi6usqOQyTVhg0bMGjQIDg4OMiOQkQlxD4T2Q72mUgZd+7cQUpKCgICAmRHIZIuICCAV/YiUkDDhg0RFBSE8PBw2VGI6CF2dnaYPHkyvv32W1y9elV2HCIqpg8//BAHDhzAn3/+KTsKEZlg/vz5OH36NDZu3Cg7CpFFcbEXkRns2bMH8+fPx+LFi/mBPpV6Bw8exJkzZ3iLKCIbwD4T2Q72mUg5MTExEELw3JAIgL+/P86ePYvMzEzZUYhsXkhICH744Qfcv39fdhQiesiIESPg5uaGzz//XHYUIiqmVq1aoXPnzpgxY4bsKERkAi8vLwwdOhQzZszAgwcPZMchshgu9iIqoRs3buC1115D7969MWbMGNlxiKQLDw9HkyZN+OUWkQ1gn4lsB/tMpJyYmBhUrlwZNWvWlB2FSDp/f3/k5uYiLi5OdhQim/fqq69Cr9djy5YtsqMQ0UOcnJwQGhqKL7/8Enfu3JEdh4iKae7cufj777+xc+dO2VGIyARz5szBjRs3sGLFCtlRiCyGi72ISsBgMGDw4MEoW7YsVq5cKTsOkXTZ2dnYvHkzhg8fLjsKEZUQ+0xkO9hnImXFxMTA399fdgwiVWjQoAHKlSvHWzkSKaBSpUoIDg7mrRyJVGj8+PHQaDRYvny57ChEVEzNmjVDt27dMGPGDAghZMchIiPVqFED48aNwwcffIB79+7JjkNkEVzsRVQCc+fOxd69e7FhwwZUqFBBdhwi6bZt24b09HQMGjRIdhQiKiH2mch2sM9EyoqOjuZV9Ij+n1arha+vL2JiYmRHISoVQkJCsG/fPiQlJcmOQkQPKV++PMaMGYPFixcjKytLdhwiKqaPPvoIUVFR2L59u+woRGSCsLAwGAwGfPrpp7KjEFkEF3sRmWjfvn2YPXs2Fi1ahOeee052HCJVCA8PR5cuXeDu7i47ChGVEPtMZDvYZyLl6PV6nDp1ilf2InqIv78/F3sRKaRLly6oVq0a1q9fLzsKET1i8uTJuHv3LtauXSs7ChEVk6+vL3r16oX33nsPBoNBdhwiMlKlSpUwZcoUfPLJJ7h+/brsOERmx8VeRCa4ffs2hgwZgq5duyI0NFR2HCJVuHLlCn7//XeEhITIjkJEJcQ+E9kO9plIWadPn0Z2djYXexE9JG+xF78gI7I8e3t7vPrqq1izZg1vOUWkMtWqVcPQoUOxYMEC6PV62XGIqJhmz56NU6dOYcuWLbKjEJEJJk6ciIoVK2Lu3LmyoxCZHRd7ERlJCIHhw4dDCIE1a9ZAo9HIjkSkCuvXr0f58uURHBwsOwoRlRD7TGQ72GciZcXExMDR0RE+Pj6yoxCpRkBAAO7fv4/k5GTZUYhKhREjRiA5ORkHDx6UHYWIHjFt2jSkpKRg69atsqMQUTE1btwYAwYMwIwZM7hQk8gKOTs747333sPy5ctx7tw52XGIzIqLvYiMtHDhQvzyyy/47rvvULlyZdlxiFRj/fr1GDhwIJycnGRHIaISYp+JbAf7TKSsmJgYNGrUCI6OjrKjEKmGr68vtFotoqOjZUchKhWaNGmCgIAAhIeHy45CRI+oV68e+vTpg3nz5vHqe0RWZPbs2UhKSsKmTZtkRyEiE4waNQoNGjTAzJkzZUchMisu9iIywpEjRzBjxgx89NFHaNmypew4RKpx7NgxnDx5kreIIrIB7DOR7WCfiZQXHR2NgIAA2TGIVMXFxQWenp6IiYmRHYWo1AgJCUFERAQyMzNlRyGiR4SFheHEiRPYtWuX7ChEVEyenp4YPHgwZs+eDZ1OJzsOERnJzs4Os2fPxqZNmxAVFSU7DpHZcLEXUTHduXMHAwYMQIcOHTBlyhTZcYhUJTw8HA0bNkRQUJDsKERUQuwzke1gn4mUd+LECfj7+8uOQaQ6/v7+XOxFpKBBgwYhKysL27Ztkx2FiB7h7++Pjh074uOPP5YdhYiMMGvWLFy8eBFr166VHYWITNC3b18EBQVh+vTpsqMQmQ0XexEVgxACI0aMgE6nw9q1a6HRaGRHIlKNnJwcfPfddxg2bBi7QWTl2Gci28E+EynvypUruHHjBhd7ERXB39+ft3EkUlDVqlXRpUsX3sqRSKWmTZuGPXv24O+//5YdhYiKqXbt2hg2bBjmzJmDBw8eyI5DREbSaDSYP38+du7ciT///FN2HCKz4GIvomJYsmQJfvzxR6xduxZVqlSRHYdIVX7++Wfcvn0bgwcPlh2FiEqIfSayHewzkfLyFrL4+flJTkKkPgEBAbhw4QJSU1NlRyEqNUJCQvDHH3/g4sWLsqMQ0SM6dOiAFi1aYOHChbKjEJERZs6ciZs3b2LVqlWyoxCRCV544QV06tQJ7777LoQQsuMQlRgXexE9RWRkJN555x3Mnj0b7du3lx2HSHXCw8PRoUMHPPvss7KjEFEJsc9EtoN9JlJedHQ0atWqhcqVK8uOQqQ6AQEBAP651SkRKSM4OBhubm7YuHGj7ChEVIQpU6Zg27ZtOHXqlOwoRFRM1atXx6hRo/Dhhx8iKytLdhwiMsHChQtx7Ngx3u6cbAIXexE9QXp6OgYNGoSWLVvi3XfflR2HSHVSU1Oxc+dOhISEyI5CRCXEPhPZDvaZSI6YmJj8BS1EVFD16tVRtWpVxMTEyI5CVGo4Ojqif//+WL16tewoRFSEXr16wcfHB5988onsKERkhLCwMNy9excrVqyQHYWITODv749+/frh3XffhV6vlx2HqES42IvoCcaMGYM7d+5gw4YNsLOzkx2HSHXWr18PR0dH9OzZU3YUIioh9pnIdrDPRHLExMTA399fdgwi1fLz8+NiLyKFhYSE4OzZszh69KjsKET0CK1Wi8mTJ2PdunW4cOGC7DhEVEzu7u4YN24cPvroI9y/f192HCIywbx585CcnIzw8HDZUYhKhIu9iB7jq6++wnfffYf169fDw8NDdhwiVQoPD0f//v1Rrlw52VGIqITYZyLbwT4TKS8jIwMJCQlc7EX0BAEBAYiOjpYdg6hUCQoKQpMmTfhFFpFKDR06FB4eHliyZInsKERkhGnTpiE7Oxtffvml7ChEZIK6deti5MiReP/995GZmSk7DpHJuNiLqAixsbF4++23MX36dHTq1El2HCJViouLQ1RUFG8RRWQD2Gci28E+E8lx8uRJGAwG3saR6An8/f1x6tQp5OTkyI5CVKoMHjwYmzZtwoMHD2RHIaJHODg4YMKECVixYgVu3bolOw4RFVOVKlUQGhqKhQsX4t69e7LjEJEJZs2ahfv372PZsmWyoxCZjIu9iB6RkZGB/v37o3nz5pg5c6bsOESq9e2336JOnTpo06aN7ChEVELsM5HtYJ+J5IiOjoarqyvq1q0rOwqRavn7+yMnJwenT5+WHYWoVBkyZAju3r2LHTt2yI5CREV44403UKZMGV4hiMjKTJ06FQaDAYsXL5YdhYhMULVqVUyYMAEfffQRbt++LTsOkUm42IvoEePGjcP169exbt062NnZyY5DpEp6vR4bN25ESEgINBqN7DhEVALsM5HtYJ+J5ImJiYG/vz+0Wn7MQvQ4Pj4+KFOmDGJiYmRHISpVqlevjg4dOvBWjkQq5eLigrFjx+Lzzz9Henq67DhEVEwVK1bExIkT8emnn3KhCJGVmjZtGhwdHbFw4ULZUYhMwk8hiR6yevVqrFu3Dt9++y1q1aolOw6Rau3atQvXrl3DkCFDZEchohJin4lsB/tMJE/eYi8iejx7e3s0atSIi72IJAgJCcHOnTtx7do12VGIqAgTJ05EdnY2Vq9eLTsKERlh8uTJcHR0xKeffio7ChGZwNXVFdOmTcOSJUtw6dIl2XGIjKYRQgjZIejxDAYDUlNTC/3odDrcuXMHQgjodLoCf/FRsWJFaDQaODg4oFy5cihTpgwqV66c//PMM8+gYsWKEn8rdTp79iyaNWuGsWPH4uOPP5Ydh2yQLfV5wIABuHbtGv766y/F902kBuwzke1gn4lsh6w+GwwGVKhQAZ9++ilGjx5t6V+TyKqNHDkS58+fx+7du5/4PFuan4nUICsrC9WrV8fMmTMxceJERffNPhMVT2hoKH788UecO3cODg4OsuMUiX0mKmz+/PmYO3cuzp07h6pVq8qOU2zsM9E/cnJy4O3tjU6dOmHFihWy45iEfS61DnOxlwpcv34dJ0+eRHJyMs6fP5//v+fPn8fVq1cLPb9cuXJwcHBApUqVACC/hHnySqvX63H//n1kZWUhOzu7wBj29vaoWbMm6tSpk/9Tt25deHp6onHjxihfvrxlf2mVyc7ORosWLeDk5IT9+/fD0dFRdiSyUqWhz3fv3oWHhwe++OILjBgxwqxjE6kJ+0xkO9hnItuhxj5fu3YNXl5eOHLkCJo3b27Z/wOIrNznn3+OOXPm4NatW6rsc2n7PIxKl9GjR+PYsWOIiooy+9jsM1HJXbx4EfXr18eqVaukXq2ZfSYyTkZGBurXr4+hQ4diwYIFsuMUwD4TFc+aNWswatQonDx5Ej4+PrLjFIl9piJwsZeShBA4ffo0jh49ipMnTyImJgYnTpzAjRs3APxzqcCHi1KnTh3UrFkTzzzzTIGVlE5OTkbvOyMjI38V540bN3Dr1i1cvHixwH8IUlJS8ODBA2g0GtSpUwd+fn75Py1atEDNmjXN/X+JaowaNQpbt25FVFQU6tSpIzsOWYHS3Ofly5dj8uTJuHr1KipUqGDyOERqwT6zz2Q72Gf2mWyHNfW5WrVquHHjBv79738jMDDQ5s+fiYz1cJ937tyJLVu2oFKlSrh16xYAdfW5tH0eRqXLgQMH0KZNG0RHR5t862Frmp/ZZ7JGQ4YMQWRkJGJjY6HVai26L/aZyHw+++wzhIWFITExETVq1FB8/+wzUckYDAY0bdoUnp6e2Lx5s9Qs7DMZgYu9LCkrKwtHjhzBwYMHcejQIfz999+4ffs2ypQpg8aNG8PPzw++vr7w9fWFn5+f9Mt7CiFw/vx5nDx5EidPnsSJEydw4sQJJCQkIDc3F88++yxat26Nli1bolWrVvDz84OdnZ3UzOYQERGBgQMHYuvWrejVq5fsOKRS7PP/PP/886hfvz7Wr19v4d+CyDLY5/9hn8nasc//wz6TtbP2PkdHRyM2Ntbmz5+JiuNJfW7UqFH+B8Fq7XNp+TyMSh8hBDw9PdGjRw98+umnxXqNtc/P7DNZm9OnT6NJkybYtm0bgoODzTo2+0xkOdnZ2fD09ETv3r2xZMkSi++PfSYyv+3bt+OVV17BoUOH0KJFC8X2yz5TCXCxl7klJSXhjz/+wB9//IGdO3ciPT0dHh4eCAwMROvWrdGqVSsEBQVZ1W0CMzMzcfz4cURGRuLgwYP4888/kZqaCjc3N3To0AEdO3bEyy+/bJUrNRMTExEYGIjhw4dj8eLFsuOQyrDPhSUkJMDLywu//fYbOnXqpHB6ItOxz4Wxz2St2OfC2GeyVuwzke1gn4msw5w5c7Bs2TJcunQJDg4ORT6HfSaSq3v37rh16xYOHz5c4rHYZyLlLFu2DG+//TYSEhLw7LPPmn189pnI8lq3bg17e3vs3bvXovthn8lMuNirpHJzc7F//35s3rwZO3fuRHJyMtzc3NCpUyd06dIFHTp0sMikLpPBYMCpU6ewa9cu/Prrr9i3bx9ycnLwr3/9C926dUP//v3RpEkT2TGf6sGDB2jZsiU0Gg0OHjxo0uUMybawz0/v8/Tp0xEeHo6UlBSuxCZVY5/ZZ7Id7DP7TLaDfbbe82eiR7HP7DNZp5SUFNSrVw8//vgjunfvDoB9Zp9Jbfbv34+2bdti3759aNOmjVGvZZ/ZZ5JHp9PBy8sLnTt3xvLly0s8HvvMPpPy8m57/ttvv6Fz585mG5d9Zp8thIu9TGEwGHDw4EFERERgy5YtuHbtGvz9/REcHIyuXbviueeeK1VfsmRkZGDPnj349ddf8eOPP+LSpUto1KgR+vfvjwEDBsDb21t2xCKNHz8ea9euRWRkJBo2bCg7DknCPhf0pD7369cPXbt2xaBBgzBv3jzZUYkKYZ8LYp/JmrHPBbHPZM3Y54Ks9fyZCGCfH8U+k7Vq164dqlSpgrfeeot9/n/sM6lN69atUbFiRezYseOpz+X8XBD7TDJ98803GDduHOLj41GvXj2jX88+F8Q+kwzBwcG4ePEijh8/Dq1Wa/I47HNB7LNFHIagYktKShLTp08XNWvWFABE48aNxezZs0V8fLzsaKqRm5sr9u/fL0JDQ4WHh4cAIAICAsTSpUtFWlqa7Hj5tmzZIgCIDRs2yI5CkrDPT1dUnytWrCimT5+uqj4Tsc9Pxz6TtWCfn459JmvBPj+dtZw/E7HPT8c+k7VISkoSvXv3FuXKlWOfH4N9JjXYvn27ACCioqIe+xzOz0/HPpPS9Hq9aNiwoRg+fLhRr2Ofn459JqWcPHlS2NnZiU2bNpn0evb56dhns/mbi72e4sGDB2Lz5s2ic+fOQqvVCg8PDxEWFiZiY2NlR1O93NxcsXfvXjFixAjh4uIinJ2dxdChQ8X+/ful5kpJSRFubm7ijTfekJqDlMc+m06tfabSi302HftMasM+m459JrVhn03HPpPasM+mY59Jbdhn07HPJIvBYBBNmjQRgwcPLrCdfTYd+0xKCQ8PF3Z2duL06dNPfB77bDr2mSxt6NChom7duuLBgwfFej77bDr2uUS42Otxbty4IWbNmiWqVasm7OzsRLdu3cR//vMfodPpZEezSnfv3hXLly8XgYGB+atYV65cKbKzsxXNkZOTI55//nnRpEkTkZmZqei+SR722bzU0mcqndhn82KfSSb22bzYZ5KJfTYv9plkYp/Ni30mmdhn82KfSWlr164VdnZ2IjExkX02M/aZLEmv1wsfHx8xaNCgIh9nn82LfSZLOH/+vHBychLLli174vPYZ/Nin43GxV6Pio+PF2PGjBHOzs6icuXKYvr06eLChQuyY9mU48ePixEjRggnJydRrVo1MWfOHHHz5k1F9j1p0iTh4uIiTp06pcj+SC722fJk9plKF/bZ8thnUgr7bHnsMymFfbY89pmUwj5bHvtMSmGfLY99JiXodDpRo0YN0aRJE/bZgthnsoTvvvtOaLVaERMTk7+N87Plsc9kThMnThRVq1YV9+7dK/QY+2x57HOxcLFXnsjISNGjRw+h1WpFgwYNxLJly0RGRobsWDbt6tWrIiwsTLi5uYmyZcuKN998U1y+fNli+/v555+FRqMR4eHhFtsHqQP7rDyl+0ylB/usPPaZLIV9Vh77TJbCPiuPfSZLYZ+Vxz6TpbDPymOfyVLy+qzRaEStWrXYZwWwz2ROBoNB+Pv7i759+3J+loB9JnO4efOmKF++vPjggw/yt7HPymOfn4iLvU6ePCl69+4tNBqNaN68ufjhhx9Ebm6u7FilSnp6uli6dKl49tlnhbOzs5g0aZK4fv26Wfdx8eJFUaVKFTFixAizjkvqwj7Lp0SfqXRgn+Vjn8lc2Gf52GcyF/ZZPvaZzIV9lo99JnNhn+Vjn8lc2Gf52GcylyVLlghnZ2f2WSL2mUpqzpw5wtXVVfz111+cnyVjn4tUehd7xcfHi4EDBwqtViv8/f3Fjz/+KAwGg+xYpVp2drZYsmSJcHd3Fy4uLmLatGkiNTW1xOPqdDrRunVr0bBhwyIvtUjWj31WH0v1mWwf+6w+7DOZin1WH/aZTMU+qw/7TKZin9WHfSZTsc/qwz6Tqdhn9WGfyVQP99nPz499VgH2mUx1/Phx4efnx/lZRdjnAkrfYq+0tDQxbdo04eTkJHx8fER4eDhXXqpMdna2WLFihXB3dxeVKlUS8+fPFw8ePDB5vHfeeUeUKVNGREdHmzElqQH7rH7m7jPZLvZZ/dhnKi72Wf3YZyou9ln92GcqLvZZ/dhnKi72Wf3YZyou9ln92GcqLvZZ/dhnKi72Wf3YZyFEaVrslZubK8LDw0XVqlWFm5ubWLx4sdDr9bJj0ROkp6eLmTNnijJlyggvLy+xY8cOo8fYvXu30Gq14ptvvrFAQpKFfbY+5ugz2Sb22fqwz/Q47LP1YZ/pcdhn68M+0+Owz9aHfabHYZ+tD/tM/8fenUZXXZ77///sBBJAmQQEQRSUQVBEAVFARBQH1EodWkSgjhS0tMX6s06tpB5r7aDW6rG2clSoBxBxtpFSxQERRFDBAqWooCJ4xIjMKEnu/wP+SYjJTvbwHa/9fq3lWna7c99Xhnfz5FrfJEPP8UPPSIae44eekQw9x0+O95wby16vvvqqO+qoo1xBQYG79tpr3VdffRX2SEjDmjVr3IgRI5wkd84557i1a9em9HGfffaZa9eunfv+97/v74AIFD3HW6Y9wyZ6jjd6xr7oOd7oGfui53ijZ+yLnuONnrEveo43esa+6Dne6Bn7oud4o2fsi57jLUd7Xpgnw7Zs2aKrrrpKJ598sjp27Kj33ntPf/jDH9S8efOwR0MaunTpoqefflovvviiPvjgAx111FH64x//qLKysqQfU15ertGjR2v//ffXgw8+GOC08As925BJz7CHnm2gZ0j0bAU9Q6JnK+gZEj1bQc+Q6NkKeoZEz1bQMyR6toKeIdGzFTnbc9jrZn55/vnnXceOHV3Lli3dX/7yl7DHgUe++eYbd8cdd7jCwkJ37LHHuqVLl9b6vsmTJ7vCwsKk/x3xQs82pdozbKFnm+g5N9GzTfScm+jZJnrOTfRsEz3nJnq2iZ5zEz3bRM+5iZ5toufcRM825VDP9p7stXnzZo0aNUrnnHOOTj75ZP3nP//RD3/4w7DHgkcaNmyo66+/XkuXLlWjRo00YMAA3XrrrSotLa18z6uvvqrbbrtNd911l/r06RPitMgWPduWSs+wg55to+fcQs+20XNuoWfb6Dm30LNt9Jxb6Nk2es4t9GwbPecWeraNnnMLPduWUz2HvW7mpXnz5rmDDz7YdejQwb3wwgthjwOflZWVuT/+8Y+ucePGbsCAAe7DDz90//d//+fat2/vLrjggrDHQ5boObfU1jPsoOfcQs+20XNuoWfb6Dm30LNt9Jxb6Nk2es4t9GwbPecWeraNnnMLPdtGz7nFeM82nuxVWlqqoqIinXbaaTruuOO0bNkynXnmmWGPBZ/l5eXppz/9qZYuXardu3erd+/eOuWUU1RYWKgpU6aEPR4yRM+5qbae//rXv4Y9FrJEz7mJnm2i59xEzzbRc26iZ5voOTfRs030nJvo2SZ6zk30bBM95yZ6tomec5P5nsNeN8vW+++/7/r06eP2339/N2XKlLDHQUh2797trrnmGpdIJNzpp5/utm7dGvZIyAA9w7nqPV900UX0HFP0DOfo2Qp6hnP0bAU9wzl6toKe4Rw9W0HPcI6eraBnOEfPVtAznKNnK+gZzpnsOd5P9vr73/+u4447TpL09ttv64orrgh5IoSlsLBQd911l/7xj3/o3Xff1QknnKDVq1eHPRbSQM+osG/P8+bNo+cYomdUoOf4o2dUoOf4o2dUoOf4o2dUoOf4o2dUoOf4o2dUoOf4o2dUoOf4o2dUsNhzLJe9nHP67W9/q3PPPVdnn3225s+fr65du4Y9FiLgtNNO09tvv61mzZrpuOOO0+zZs8MeCfWgZyRDz/FDz0iGnuOHnpEMPccPPSMZeo4fekYy9Bw/9Ixk6Dl+6BnJ0HP80DOSoef4oWckY6rnsJ4plqnNmze7s88+2xUUFLj7778/7HEQUbt373bjx493iUTC3XDDDa6srCzskVALekYq6Dke6BmpoOd4oGekgp7jgZ6RCnqOB3pGKug5HugZqaDneKBnpIKe44GekQp6jgd6RioM9Lww4ZxzYS+cpeqjjz7S2Wefrc2bN2v27NkaMGBA2CMh4h566CFdffXVOuuss/Too4+qSZMmYY+E/x89I130HF30jHTRc3TRM9JFz9FFz0gXPUcXPSNd9Bxd9Ix00XN00TPSRc/RRc9IFz1HFz0jXTHueVFslr2WLVumc845Ry1atNDf//53HXLIIWGPhJhYuHChRowYoc6dO+vZZ59V27Ztwx4p59EzMkXP0UPPyBQ9Rw89I1P0HD30jEzRc/TQMzJFz9FDz8gUPUcPPSNT9Bw99IxM0XP00DMyFdOeF+WFPUEq5syZo8GDB6tHjx56/fXXCRNpGTBggBYuXKgtW7ZowIABWrVqVdgj5TR6RjboOVroGdmg52ih9Ft7CwAAIABJREFUZ2SDnqOFnpENeo4WekY26Dla6BnZoOdooWdkg56jhZ6RDXqOFnpGNuLac+SXvR588EGdc845uuiii1RcXKzmzZuHPRJi6PDDD9frr7+ugw46SIMGDdKiRYvCHikn0TO8QM/RQM/wAj1HAz3DC/QcDfQML9BzNNAzvEDP0UDP8AI9RwM9wwv0HA30DC/QczTQM7wQy55dhP3xj390iUTCFRUVhT0KjNi1a5f7zne+45o2bepefvnlsMfJKfQMr9FzeOgZXqPn8NAzvEbP4aFneI2ew0PP8Bo9h4ee4TV6Dg89w2v0HB56htfoOTz0DK/FqOeFkV32uuOOO1wikXB/+MMfwh4FxpSWlrqxY8e6wsJC9/TTT4c9Tk6gZ/iFnoNHz/ALPQePnuEXeg4ePcMv9Bw8eoZf6Dl49Ay/0HPw6Bl+oefg0TP8Qs/Bo2f4JSY9R3PZ66abbnJ5eXnu/vvvD3sUGFVaWuouvfRSV1BQ4GbPnh32OKbRM/xGz8GhZ/iNnoNDz/AbPQeHnuE3eg4OPcNv9Bwceobf6Dk49Ay/0XNw6Bl+o+fg0DP8FoOeo7fs9Ytf/MLl5+e7Rx55JOxRYFx5ebm7+uqrXcOGDaO8kRlr9Iyg0LP/6BlBoWf/0TOCQs/+o2cEhZ79R88ICj37j54RFHr2Hz0jKPTsP3pGUOjZf/SMoES852gte911110ukUi4v/71r2GPghxRXl7uJkyY4AoKClxxcXHY45hCzwgaPfuHnhE0evYPPSNo9OwfekbQ6Nk/9Iyg0bN/6BlBo2f/0DOCRs/+oWcEjZ79Q88IWoR7js6y17333uskuTvvvDPsUZBjysvL3RVXXOGaNGniXnnllbDHMYGeERZ69h49Iyz07D16Rljo2Xv0jLDQs/foGWGhZ+/RM8JCz96jZ4SFnr1HzwgLPXuPnhGWiPYcjWWvKVOmuEQi4X73u9+FPQpy1J49e9wFF1zgmjVr5t56662wx4k1ekbY6Nk79Iyw0bN36Blho2fv0DPCRs/eoWeEjZ69Q88IGz17h54RNnr2Dj0jbPTsHXpG2CLY88KEc84pRMXFxRoxYoRuuukm/epXvwpzFOS4b775RiNGjNA777yjhQsXqnPnzmGPFDv0jKig5+zRM6KCnrNHz4gKes4ePSMq6Dl79IyooOfs0TOigp6zR8+ICnrOHj0jKug5e/SMqIhYz4tCXfb617/+pRNPPFHnn3++HnroobDGACpt375dJ510knbt2qU33nhDLVu2DHuk2KBnRA09Z46eETX0nDl6RtTQc+boGVFDz5mjZ0QNPWeOnhE19Jw5ekbU0HPm6BlRQ8+Zo2dETYR6Dm/Za8OGDTrhhBN02GGHae7cuSooKAhjDKCGjRs36oQTTlCnTp00d+5cFRYWhj1S5NEzooqe00fPiCp6Th89I6roOX30jKii5/TRM6KKntNHz4gqek4fPSOq6Dl99Iyoouf00TOiKiI9h7PstW3bNp144okqKyvT66+/rhYtWgQ9AlCn5cuXa/DgwRoxYoSmTZsW9jiRRs+IOnpOHT0j6ug5dfSMqKPn1NEzoo6eU0fPiDp6Th09I+roOXX0jKij59TRM6KOnlNHz4i6CPS8KL+oqKgoyBudc7r44ou1atUqvfzyy2rXrl2Q1wMpadu2rfr06aMbb7xR+++/vwYMGBD2SJFEz4gDek4NPSMO6Dk19Iw4oOfU0DPigJ5TQ8+IA3pODT0jDug5NfSMOKDn1NAz4oCeU0PPiIMI9Lw+8GWv3/72t3rggQf03HPPqXfv3kFeDaSlS5cuKiws1E033aSTTjpJnTp1CnukyKFnxAU914+eERf0XD96RlzQc/3oGXFBz/WjZ8QFPdePnhEX9Fw/ekZc0HP96BlxQc/1o2fERcg9rw/0zzjOmzdPp59+uv7whz9o0qRJQV0LZMw5p5EjR+rVV1/V0qVLdfDBB4c9UmTQM+KGnpOjZ8QNPSdHz4gbek6OnhE39JwcPSNu6Dk5ekbc0HNy9Iy4oefk6BlxQ8/J0TPiJsSeFwW27PXxxx+rX79+OvXUUzVjxowgrgQ8sW3bNvXv318tW7bUK6+8ooKCgrBHCh09I67ouSZ6RlzRc030jLii55roGXFFzzXRM+KKnmuiZ8QVPddEz4greq6JnhFX9FwTPSOuQuo5mGWvsrIyDRkyRFu2bNGiRYu03377+X0l4KlVq1apf//+mjBhgn7/+9+HPU6o6BlxR89V6BlxR89V6BlxR89V6BlxR89V6BlxR89V6BlxR89V6BlxR89V6BlxR89V6BlxF0LPi/KLioqK/L7ltttu02OPPaY5c+aoY8eOfl8HeK5NmzY66KCDdOONN+rEE0/UYYcdFvZIoaFnxB09V6FnxB09V6FnxB09V6FnxB09V6FnxB09V6FnxB09V6FnxB09V6FnxB09V6FnxF0IPa/3/cleS5Ys0cCBA3XnnXfqxz/+sZ9XAb4bNWqU5s+fr2XLlqlVq1ZhjxM4eoYl9EzPsIOe6Rl20DM9ww56pmfYQc/0DDvomZ5hBz3TM+ygZ3qGHQH27O+fcdyxY4f69OmjTp06ac6cOUokEn5dBQTiq6++0jHHHKM+ffroySefDHucQNEzrKFneoYd9EzPsIOe6Rl20DM9ww56pmfYQc/0DDvomZ5hBz3TM+wIsOdFeX6efs0112jz5s2aOnUqYcKEFi1a6JFHHtEzzzyjqVOnhj1OoOgZ1tAzPcMOeqZn2EHP9Aw76JmeYQc90zPsoGd6hh30TM+wg57pGXYE2bNvT/Z6+eWXdeqpp2rWrFm68MIL/bgCCM0111yjadOmaeXKlWrbtm3Y4/iOnmEZPQN20DNgBz0DdtAzYAc9A3bQM2AHPQN20DNgRwA9+/NnHHft2qWjjz5a3bt31/PPP+/18UDodu7cqV69eql///6aMWNG2OP4ip5hHT0DdtAzYAc9A3bQM2AHPQN20DNgBz0DdtAzYEcAPfvzZxwnT56szz//XA888IAfxwOha9Kkif77v/9bM2fO1DPPPBP2OL6iZ1hHz4Ad9AzYQc+AHfQM2EHPgB30DNhBz4Ad9AzYEUTPnj/Z6+2339bxxx+v++67T+PHj/fyaCByxowZo9dee00rVqxQ06ZNwx7Hc/SMXELPgB30DNhBz4Ad9AzYQc+AHfQM2EHPgB30DNjhY8/e/hlH55xOPPFE5eXl6bXXXlMikfDqaCCSNm3apCOOOELjxo3THXfcEfY4nqJn5Bp6BuygZ8AOegbsoGfADnoG7KBnwA56BuygZ8AOH3v29s84zpgxQ4sWLdLdd99NmMgJbdq00eTJk3X33XdrzZo1YY/jKXpGrqFnwA56BuygZ8AOegbsoGfADnoG7KBnwA56Buzws2fPnuy1a9cu9ejRQ8OGDdOUKVO8OBKIhdLSUh177LHq0qWLnnrqqbDH8QQ9I1fRM2AHPQN20DNgBz0DdtAzYAc9A3bQM2AHPQN2+NSzd0/2+u1vf6svv/xS//Vf/+XVkUAsNGjQQHfffbeefvppzZ07N+xxPEHPyFX0DNhBz4Ad9AzYQc+AHfQM2EHPgB30DNhBz4AdfvXsyZO9NmzYoK5du+qWW27R9ddf78VcQOycc845Wr9+vd5++23l5Xn6F1IDRc8APQOW0DNgBz0DdtAzYAc9A3bQM2AHPQN20DNgh8c9L/Jk2WvixIl65plntGbNGjVq1Cjb44BYWrFihY4++mhNnz5dI0eODHucjNEzQM+AJfQM2EHPgB30DNhBz4Ad9AzYQc+AHfQM2OFxz9kve3388cfq1q2b7rnnHo0fPz7bgYBYGz16tJYsWaIVK1aoQYMGYY+TNnoGqtAzYAc9A3bQM2AHPQN20DNgBz0DdtAzYAc9A3Z42HP2y17jxo3TP//5T/3nP/9RQUFBNkcBsbdmzRr17NlTDz30kMaOHRv2OGmjZ6AKPQN20DNgBz0DdtAzYAc9A3bQM2AHPQN20DNgh4c9Z7fstW7dOnXv3l0PPPCALrvssmwGAcy47LLLNH/+fK1atUoNGzYMe5yU0TNQEz0DdtAzYAc9A3bQM2AHPQN20DNgBz0DdtAzYIdHPWe37HXllVfqtdde08qVK2P5yEDAD2vXrlX37t314IMP6pJLLgl7nJTRM1ATPQN20DNgBz0DdtAzYAc9A3bQM2AHPQN20DNgh0c9Z77s9fnnn+vQQw/Vn/70J40bNy7TAQCTfvCDH+idd97R8uXLlUgkwh6nXvQMJEfPgB30DNhBz4Ad9AzYQc+AHfQM2EHPgB30DNjhQc+L8jK9/N5771XTpk01ZsyYTI8AzLruuuu0YsUKzZ07N+xRUkLPQHL0DNhBz4Ad9AzYQc+AHfQM2EHPgB30DNhBz4AdXvSc0ZO9du7cqUMPPVQTJ07U5MmTM74csOz000+XpMj/wqVnoH70DNhBz4Ad9AzYQc+AHfQM2EHPgB30DNhBz4AdWfac2ZO9HnnkEW3fvl0TJkzI5MOBnHDttdfqn//8p959992wR6kTPQP1o2fADnoG7KBnwA56BuygZ8AOegbsoGfADnoG7Mi254ye7HXkkUdq0KBB+utf/5rRpUAucM7p6KOP1vHHH68pU6aEPU5S9AzUj54BO+gZsIOeATvoGbCDngE76Bmwg54BO+gZsCPLntN/stfrr7+ulStXsoUJ1CORSOiHP/yhZs6cqa1bt4Y9Tq3oGUgNPQN20DNgBz0DdtAzYAc9A3bQM2AHPQN20DNgR7Y9p73s9eCDD6pv377q06dP2pcBuWbs2LFyzmnmzJlhj1IregZSR8+AHfQM2EHPgB30DNhBz4Ad9AzYQc+AHfQM2JFNz2kte23ZskWzZ8/WuHHj0r4IyEUtWrTQ+eefH8nHaNIzkB56BuygZ8AOegbsoGfADnoG7KBnwA56BuygZ8CObHpOa9nrb3/7mxKJhEaNGpX2RUCuGjdunN566y298847YY9SDT0D6aNnwA56BuygZ8AOegbsoGfADnoG7KBnwA56BuzItOe0lr2mTp2q73//+2rWrFlalwC5bPDgwerWrZumTZsW9ijV0DOQPnoG7KBnwA56BuygZ8AOegbsoGfADnoG7KBnwI5Me0552evDDz/U0qVLdfHFF6c9HJDLEomELrroIj322GMqLy8PexxJ9Axkip4BO+gZsIOeATvoGbCDngE76Bmwg54BO+gZsCPTnlNe9po5c6ZatWqlk08+OZP5gJw2atQobdy4UQsWLAh7FEn0DGSDngE76Bmwg54BO+gZsIOeATvoGbCDngE76BmwI5OeU172mjVrli688EI1aNAgo+GAXHbEEUfoyCOP1KxZs8IeRRI9A9mgZ8AOegbsoGfADnoG7KBnwA56BuygZ8AOegbsyKTnlJa9Vq9erWXLlmnkyJEZDwfkupEjR2r27NkqKysLdQ56BrJHz4Ad9AzYQc+AHfQM2EHPgB30DNhBz4Ad9AzYkW7PKS17Pfnkk2rbtq0GDx6c1XBALvve976nzz77TG+88Uaoc9AzkD16BuygZ8AOegbsoGfADnoG7KBnwA56BuygZ8COdHtOadmruLhYw4cPV35+flbDAbnsiCOOUJcuXfTCCy+EOgc9A9mjZ8AOegbsoGfADnoG7KBnwA56BuygZ8AOegbsSLfnepe9tmzZojfffFPDhw/Pejgg15155pmh/rKlZ8A79AzYQc+AHfQM2EHPgB30DNhBz4Ad9AzYQc+AHen0XO+y19y5c1VeXq5hw4ZlPRiQ64YPH65ly5Zpw4YNodxPz4B36Bmwg54BO+gZsIOeATvoGbCDngE76Bmwg54BO9Lpud5lrzlz5uiEE07QAQcc4MlwQC4bOnSoGjVqpLlz54ZyPz0D3qFnwA56BuygZ8AOegbsoGfADnoG7KBnwA56BuxIp+eUnux15plnejIYkOsaN26sk046SXPmzAnlfnoGvEPPgB30DNhBz4Ad9AzYQc+AHfQM2EHPgB30DNiRTs91Lnt9+OGHWr9+vYYOHerZcECuO/nkkzV//vzA76VnwHv0DNhBz4Ad9AzYQc+AHfQM2EHPgB30DNhBz4AdqfZc57LXggULVFhYqL59+3o2GJDrBg0apA0bNmjdunWB3kvPgPfoGbCDngE76Bmwg54BO+gZsIOeATvoGbCDngE7Uu25zmWvN954Q3379lWjRo28nA3Iaf3791dhYaEWLFgQ6L30DHiPngE76Bmwg54BO+gZsIOeATvoGbCDngE76BmwI9We632y18CBAz0dDMh1hYWF6tOnT+C/bOkZ8B49A3bQM2AHPQN20DNgBz0DdtAzYAc9A3bQM2BHqj0nXfbaunWrVq5cSZyADwYNGhToL1t6BvxDz4Ad9AzYQc+AHfQM2EHPgB30DNhBz4Ad9AzYkUrPSZe93nnnHZWVlal///6eDwbkuv79+2vFihXavXt3IPfRM+AfegbsoGfADnoG7KBnwA56BuygZ8AOegbsoGfAjlR6TrrstWzZMrVq1UodOnTwZTggl/Xq1UtlZWVauXJlIPfRM+AfegbsoGfADnoG7KBnwA56BuygZ8AOegbsoGfAjlR6Trrs9d577+noo4/2ZTAg13Xt2lWNGzfW8uXLA7mPngH/0DNgBz0DdtAzYAc9A3bQM2AHPQN20DNgBz0DdqTSc9Jlr+XLlxMn4JP8/Hz17NlT7733XiD30TPgH3oG7KBnwA56BuygZ8AOegbsoGfADnoG7KBnwI5Ueq512au8vFwrVqxQr169fBsOyHW9evUKZLOangH/0TNgBz0DdtAzYAc9A3bQM2AHPQN20DNgBz0DdtTXc63LXuvWrdOOHTt01FFH+TYYkOuOOuoorVixwvd76BnwHz0DdtAzYAc9A3bQM2AHPQN20DNgBz0DdtAzYEd9Pde67PXhhx9Kkg4//HB/pgKgww47TJ999pl27tzp6z30DPiPngE76Bmwg54BO+gZsIOeATvoGbCDngE76Bmwo76ekz7Za7/99lPr1q19HQ7IZZ07d5ZzTh9//LGv99Az4D96BuygZ8AOegbsoGfADnoG7KBnwA56BuygZ8CO+npOuuzVuXNnXwcDcl1FY2vXrvX1HnoG/EfPgB30DNhBz4Ad9AzYQc+AHfQM2EHPgB30DNhRX89Jl706derk21AApObNm6tly5Zat26dr/fQM+A/egbsoGfADnoG7KBnwA56BuygZ8AOegbsoGfAjvp6ZtkLCFHnzp0D2aymZ8B/9AzYQc+AHfQM2EHPgB30DNhBz4Ad9AzYQc+AHXX1XOuy18aNG9W+fXtfhwIgdejQQRs3bvT1DnoGgkHPgB30DNhBz4Ad9AzYQc+AHfQM2EHPgB30DNhRV8+1Lnt98cUXatOmja9DAZBatWqlkpISX++gZyAY9AzYQc+AHfQM2EHPgB30DNhBz4Ad9AzYQc+AHXX1XGPZa8+ePdq2bZtatWrl+2BR9Mwzz2jWrFlhjxFrM2fO1N/+9rdQ7n7iiSdUXFwcyt2ZaN26tb744gvfzqdnes4WPaeOnv1Fz9mj59TRs7/oOXv0nDp69hc9Z4+eU0fP/qLn7NFz6ujZX/ScPXpOHT37i56zR8+po2d/0XP26Dl19Owves4ePaeurp4bfPuFkpISOefUunVr3weLottuu00lJSX6/ve/H/YosXXnnXdq+/btGjt2bOB333LLLWrbtq3OOuuswO/OhN+b1fRMz9mi59TRs7/oOXv0nDp69hc9Z4+eU0fP/qLn7NFz6ujZX/ScPXpOHT37i56zR8+po2d/0XP26Dl19Owves4ePaeOnv1Fz9mj59TV1XONZa+KrbBcjXPixInatWtX2GMgR7Ru3drXX7b0TM8IDj37i54RJHr2Fz0jSPTsL3pGkOjZX/SMINGzv+gZQaJnf9EzgkTP/qJnBIme/UXPCFJdPddY9tq8ebMkqWXLlv5OFVGXXHJJ2CPEhnNOkpRIJEKeJL4OOOAAbd26VaWlpWrQoEaOWaNnek4VPWePnv1Fz6mj5+zRs7/oOXX0nD169hc9p46es0fP/qLn1NFz9ujZX/ScOnrOHj37i55TR8/Zo2d/0XPq6Dl79Owvek4dPWevrp7zvv3mii3Exo0bBzNdinbv3q3Jkyfr8MMPV2Fhobp27arx48dr27ZtNd771Vdf6eqrr9ZRRx2ldu3a6fzzz6/xdzd/8pOf6IorrtD69ev1ox/9SG3atKl8/bLLLkv7vHRn/LZx48bpkksu0fvvv68rr7xSHTt21CmnnKJHH31UknTXXXepb9++OvDAAzV8+HCtWbOmxhmvvPKKfvSjH6lbt27q2LGjRo0apQceeEBlZWWSpOnTp2vw4MG69dZbq33cvHnzNHToUN1+++31zilJy5Yt07Bhw9SiRQs1adJExx9/vF544YUa71uxYoXGjh2rDh066LDDDtOVV15ZY8v1Bz/4gcaMGVPjY++44w4NHjxYpaWllV+fiRMnasOGDbr44ot16KGH6vDDD9fll1+uHTt21Dnv7NmzNXjwYBUVFaX0+QWpcePGcs7p66+/9uV8eqbn+tCzd+iZnumZnlNFz/RcH3r2Dj3TMz3Tc6romZ7rQ8/eoWd6pmd6ThU903N96Nk79EzP9EzPqaJneq4PPXunzp7dtzz33HNOktu5c+e3/1OoLrvsMpefn+8uvfRSd88997if/OQnrnHjxm7AgAHV3vfJJ5+4Tp06uf32289dddVV7oYbbnDHHnusy8vLc3fffXfl+4YMGeK6d+/ujj76aCfJ9enTxznnXL9+/Vznzp3TPi+dGWvTr18/165dO9e+fXvXs2dPN3bsWFdQUOASiYQbPny4a9CggTv33HPdeeed5woKCtwhhxziysrKKj9+3rx5Lj8/3x1wwAFu4sSJrqioyA0aNMhJctddd51zzrndu3e7I4880uXl5bkFCxY455zbtm2bO/TQQ13z5s3dRx99VO+cL7/8smvUqJHr0KGDu+aaa9zll1/umjdv7ho0aFB5Zr9+/VyrVq1cmzZtXNeuXd11113nTjvtNCfJjRw5stp5PXv2dEcccUSNey6//HInyX399deVZ3bq1Ml16NDBnXjiie7nP/+5GzJkiJPkzj///GrnDR06tPJ/z5w50zVo0MCdfvrpkfuZds65F1980UlyJSUlvpxPz/RcF3r2Fj3TMz3Tc6romZ7rQs/eomd6pmd6ThU903Nd6Nlb9EzP9EzPqaJneq4LPXuLnumZnuk5VfRMz3WhZ2/V0fPCGstes2fPdpJcaWlpMNOlYPfu3a5hw4bu3HPPrfb6Pffc4yS51atXV742evRoJ8ktWrSo8rWvv/7anXLKKa6goKDyi1DxjT3jjDPcqlWrKt/77ThTPS+dGWvTr18/J8nddtttla8VFxc7Sa5x48bVPv6SSy6pcea4ceNcYWGh27x5c+Vru3btcgcddFC1H/6lS5e6hg0buiOOOMLt3r3bXX311U6Se/TRR+uczznnysrKXO/evV3z5s3dmjVrKl9ftWqVSyQSbvTo0dU+l6Kiomof379/f9eyZctqr6UTpyR3/fXXu/Ly8sp5+vTp45o3b17tvIo4H330UZefn+/OOusst3v37no/vzDMnz/fSXIbN2705Xx6pudk6Nl79FyFnumZnutGz/ScDD17j56r0DM903Pd6Jmek6Fn79FzFXqmZ3quGz3TczL07D16rkLP9EzPdaNnek6Gnr1XR881l72mT5/uGjRoEMxkKdqxY4dr2LCha9asmXv77bcrXy8rK3Pbt2+v/D+SkpISl0gk3HHHHVfjjBkzZjhJ7sEHH3TOVcW5ePHiau/bN850zktlxop/3/efitn79evn8vPzK38YnXPu008/dZLc2WefXe3uhx9+2ElyTz31VOVrq1atcsuXL6/2vi1btrgePXq49u3bV3v91ltvrTw3kUjU2I5MNueSJUucJHfJJZfU+Hrce++97p577qn8XPLy8moEcdVVVzlJ7pNPPql8LZ04Gzdu7Hbt2lXtfT/+8Y+rnVkR59SpU11eXp4755xzqn1No+bNN990kty6det8OZ+e6Zmeg0PP9EzPVei5bvRMz/QcHHqmZ3quQs91o2d6pufg0DM903MVeq4bPdMzPQeHnumZnqvQc93omZ7pOTh19Lywgb7lm2++UUFBwbdfDlWTJk00efJk/eIXv1CfPn3Uo0cPDR06VGeddZbOOOMM5efnS5JWr14t55y2b9+ukSNHVjtj69atkqQPPvig8rU2bdrouOOOS3pvOuelMuPChQs1cODAaudMnz5do0aNkiS1b9++2te+UaNGla/vq+Lz/eabbypfO+KII1RSUqI777xTCxcu1Lp167RmzRpt3bq1xsffeOONev755/X3v/9dHTp00J///Odq//3NN9+sdc68vDxJUq9evWp8rSZOnFjtf3fo0EGFhYXVXmvRooUkafv27TU+PhUHHnhg5dekQsuWLWuc+e677+qyyy5TeXm5nHOR+3neV8XXyK+/mUzPVei5+pz07D16pmd6rkLPdaPnKvRcfU569h490zM9V6HnutFzFXquPic9e4+e6Zmeq9Bz3ei5Cj1Xn5OevUfP9EzPVei5bvRchZ6rz0nP3qur5xrLXmVlZZXfhCi5+eabddFFF2nq1KkqLi7WAw88oPvvv1/dunXTq6++qnbt2qmkpETS3k+4YcOG1T6+VatWGj16tI488sjK1779w/Nt6Z5X34ytW7fW6NGjq53TqVOnyn/fb7/9ap0jle/H73//e91yyy0qLCzUkCFDNGzYMN1888268847tXbt2hrvd84lPSvZnEuXLpW0N7z6JPtc6ru7wpdfflnjtcaNG6d05ubNmzVmzBjl5eVp2rRpmj59ui6++OJ67wxDxf/RlpaW+nI+PVeh5+oOsD1pAAAgAElEQVRz0rP36Jmea0PP9Fwbeq5Cz9XnpGfv0TM914ae6bk29FyFnqvPSc/eo2d6rg0903Nt6LkKPVefk569R8/0XBt6pufa0HMVeq4+Jz17r86ev/2sr7/97W+usLAw9eeGBeDrr792mzdvrvZ3Xzdu3OgmTpzoJLmbbrrJOefcihUrnCT3ve99r8YZpaWlbvPmzZWPYBsyZIg7+OCDa7xv38fupXNeqjMm069fvxqPnyspKXGS3Pjx46u9Pm3aNCfJPfbYY8455z7//HOXl5fn2rZt67Zu3VrtvX379q3x2L2ioiInyQ0fPtxJchdffHGds1V47rnnnCQ3adKkGv9t6tSp7uGHH076uTjn3I033ugkuZUrV1a+duSRR7pu3brVeG+PHj1qPHavtjNvueWWamf27NnT9e3b15WXl7svvvjCtWrVyrVp08Zt2rQppc8xaBWPMvzggw98OZ+e6TkZevYePe9Fz/TsHD3Xh57pORl69h4970XP9OwcPdeHnuk5GXr2Hj3vRc/07Bw914ee6TkZevYePe9Fz/TsHD3Xh57pORl69l4dPS+sseJXUFCgb775JqVtuaDMmzdPLVu21IwZMypfa9euna677jpJezfvJKlLly5q06aN/vGPf2jPnj3VzvjNb36jli1bavHixSnfm855qc7oh48++kjl5eU6//zz1bRp08rXP/nkE7377rvV3rt06VLddtttGjBggJ5//nl95zvf0fTp0/X444/Xe89xxx2nxo0ba968edVeX7lypS699FK9+uqrac/eqVMnrVu3rtrXd8WKFXr//ffTPqtCs2bNlEgk1KpVK/3+97/Xpk2b9NOf/jTj8/xU8ehEvx4NSM9V6Lk6evYePe9Fz1XouTp6rkLPVei5Onr2Hj3vRc9V6Lk6eq5Cz1XouTp69h4970XPVei5OnquQs9V6Lk6evYePe9Fz1XouTp6rkLPVei5Onr2Xl0911j2KiwslHOuxg9jmAYNGqQDDzxQt956q1555RVt2bJFS5cu1aRJkyRJZ599tqS9n+BvfvMbbd26VWPGjNHbb7+t999/X3feeaduu+02nXbaaRo0aFDK96ZzXqoz+qF79+7af//99dhjj+m5557TmjVr9Mgjj2jgwIFq1qyZtm/frtWrV2v37t0aO3as8vLyNGXKFOXl5emBBx5QixYtdNVVV+mzzz6r8562bdtq0qRJWr58uSZMmKAlS5Zo2rRpGjVqlBo0aKAJEyakPfvxxx+vb775RpdeeqleeeUVTZkyRd/97nfVvHnzTL8c1Vx66aUaPHiwpk+fruLiYk/O9FLF31at7xGQmaLnKvRcHT17j57p+dvoOTl6pucK9FwdPXuPnun52+g5OXqm5wr0XB09e4+e6fnb6Dk5eqbnCvRcHT17j57p+dvoOTl6pucK9FwdPXuvzp6//ayv4uJiJ8lt27bN+2eMZeGf//yna9++vZNU+U+jRo3cr3/96xrv/dOf/uQaNWpU+b4GDRq4CRMmuJKSksr3pPLYvXTOS3fG2u7N9LF7zjk3a9Yst//++1fee8ABB7ipU6e62bNnu/322881aNDAXXPNNU6SKyoqqnbeww8/7CS5s88+u945S0tL3Q033ODy8/Mr7zrooIPcrFmz6vxcnKv9sXs7duyofPyfJNehQwd3ww03uBtuuCHjx+4NHTq02ntWrFjhGjZs6Dp27FjjsYRh+8c//uEkuS1btvhyPj3Tc13o2Vv0TM/0XIWe60bP9FwXevYWPdMzPVeh57rRMz3XhZ69Rc/0TM9V6Llu9EzPdaFnb9EzPdNzFXquGz3Tc13o2Vt19Lww4Vz15+vNmzdPp556qr744gu1atVKUbJz504tX75cH3/8sVq3bq2jjjpKBx54YK3v3bZtm9555x1t375dvXr1UseOHbO6O9Xz0pnRayUlJXrnnXd00EEHqWfPnkokEpWvb968WV26dPHsrh07dmj58uVq1qyZunbtmvVjIDdt2qRPP/1UvXv3rpw7F1Q8+nDXrl1q1KiR5+fTc+3ouTp69gY903My9Bw/9EzPydBz/NAzPSdDz/FDz/ScDD3HDz3TczL0HD/0TM/J0HP80DM9J0PP8UPP9JwMPcdPHT0vqrHstWTJEh133HH68MMP1blz52AnBXLMo48+qiuvvFK7d+/25Xx6BoJDz4Ad9AzYQc+AHfQM2EHPgB30DNhBz4Ad9AzYUUfPi/K+/Urr1q0lSV988UUAowG5ze+NZ3oGgkPPgB30DNhBz4Ad9AzYQc+AHfQM2EHPgB30DNhRV881lr0q3lhSUuLvVABUUlLi6y9begaCQ8+AHfQM2EHPgB30DNhBz4Ad9AzYQc+AHfQM2FFXzzWWvZo2barCwkI2MYEAlJSUVG4/+4GegeDQM2AHPQN20DNgBz0DdtAzYAc9A3bQM2AHPQN21NVzjWUvSTrggAOIEwiA34/RlOgZCAo9A3bQM2AHPQN20DNgBz0DdtAzYAc9A3bQM2BHWn/GUZLatGmjTZs2+ToUAGnTpk2+blZL9AwEhZ4BO+gZsIOeATvoGbCDngE76Bmwg54BO+gZsKOunmtd9jrkkEP08ccf+zoUAGndunU69NBDfb2DnoFg0DNgBz0DdtAzYAc9A3bQM2AHPQN20DNgBz0DdtTVc63LXp06ddLatWt9HQrIdaWlpVq/fr06derk6z30DPiPngE76Bmwg54BO+gZsIOeATvoGbCDngE76Bmwo76eky57rVu3zsexAHzyyScqLS1V586dfb2HngH/0TNgBz0DdtAzYAc9A3bQM2AHPQN20DNgBz0DdtTXc9Jlrw0bNmj37t2+DgfksopfgEH8sqVnwF/0DNhBz4Ad9AzYQc+AHfQM2EHPgB30DNhBz4Ad9fVc67JX586d5Zzj76wCPlq7dq2aNGmiNm3a+HoPPQP+o2fADnoG7KBnwA56BuygZ8AOegbsoGfADnoG7Kiv51qXvbp06aJEIqF///vfvg4H5LJ///vf6tq1qxKJhK/30DPgP3oG7KBnwA56BuygZ8AOegbsoGfADnoG7KBnwI76eq512atZs2bq1KmTli9f7utwQC5bvny5evfu7fs99Az4j54BO+gZsIOeATvoGbCDngE76Bmwg54BO+gZsKO+nmtd9pKko48+Wu+9954vQwGQ3nvvPfXq1SuQu+gZ8Bc9A3bQM2AHPQN20DNgBz0DdtAzYAc9A3bQM2BHfT3XuezFJibgjy+//FIbNmwI9JctPQP+oGfADnoG7KBnwA56BuygZ8AOegbsoGfADnoG7Eil56TLXr169dKaNWu0c+dOX4YDctmyZcsk7f0lGAR6BvxDz4Ad9AzYQc+AHfQM2EHPgB30DNhBz4Ad9AzYkUrPSZe9jjnmGJWVlelf//qX95MBOW7ZsmVq3bq1DjrooEDuo2fAP/QM2EHPgB30DNhBz4Ad9AzYQc+AHfQM2EHPgB2p9Jx02atLly5q06aNFixY4MtwQC57/fXXNXDgwMDuo2fAP/QM2EHPgB30DNhBz4Ad9AzYQc+AHfQM2EHPgB2p9Jx02SuRSGjAgAF64403PB8MyHVvvPGGBg0aFNh99Az4h54BO+gZsIOeATvoGbCDngE76Bmwg54BO+gZsCOVnpMue0nSoEGD9Prrr3s6FJDrPvjgA23cuFEnnnhioPfSM+A9egbsoGfADnoG7KBnwA56BuygZ8AOegbsoGfAjlR7rnPZa+DAgfrss8+0du1aT4cDctmCBQtUWFioPn36BHovPQPeo2fADnoG7KBnwA56BuygZ8AOegbsoGfADnoG7Ei15zqXvfr166fCwkK2MQEPLViwQH379lWjRo0CvZeeAe/RM2AHPQN20DNgBz0DdtAzYAc9A3bQM2AHPQN2pNpznctejRo10sCBAzV37lxPhwNy2Ysvvqhhw4YFfi89A96jZ8AOegbsoGfADnoG7KBnwA56BuygZ8AOegbsSLXnOpe9JOnMM8/UnDlzVF5e7slgQC5btWqVPvzwQ5155pmh3E/PgHfoGbCDngE76Bmwg54BO+gZsIOeATvoGbCDngE70um53mWv4cOH64svvtDbb7/tyXBALnvhhRfUsmVL9e/fP5T76RnwDj0DdtAzYAc9A3bQM2AHPQN20DNgBz0DdtAzYEc6Pde77NWrVy917NhRL7zwgifDAblszpw5OuOMM5Sfnx/K/fQMeIeeATvoGbCDngE76Bmwg54BO+gZsIOeATvoGbAjnZ7rXfaSpDPOOIM4gSzt2LFD8+fP1xlnnBHqHPQMZI+eATvoGbCDngE76Bmwg54BO+gZsIOeATvoGbAj3Z5TWvb6zne+ozfffFOffvppVsMBuay4uFh79uzRWWedFeoc9Axkj54BO+gZsIOeATvoGbCDngE76Bmwg54BO+gZsCPdnlN+slfTpk31+OOPZzUckMsee+wxDR06VAceeGCoc9AzkD16BuygZ8AOegbsoGfADnoG7KBnwA56BuygZ8COdHtOadmrsLBQI0aM0KxZs7IaDshV27dvV3FxsUaOHBn2KPQMZImeATvoGbCDngE76Bmwg54BO+gZsIOeATvoGbAjk55TWvaSpJEjR2rRokVat25dJrMBOe3ZZ59VaWmpzjvvvLBHkUTPQDboGbCDngE76Bmwg54BO+gZsIOeATvoGbCDngE7Muk55WWvYcOGqUWLFpo9e3ZGwwG57PHHH9epp56qVq1ahT2KJHoGskHPgB30DNhBz4Ad9AzYQc+AHfQM2EHPgB30DNiRSc8pL3sVFBTowgsv1NSpUzMaDshVn3/+uYqLizVq1KiwR6lEz0Bm6Bmwg54BO+gZsIOeATvoGbCDngE76Bmwg54BOzLtOeVlL0m68sor9a9//UuLFi1K6xIgl02bNk2NGzfWhRdeGPYo1dAzkD56BuygZ8AOegbsoGfADnoG7KBnwA56BuygZ8COTHtOa9mrf//+OuaYY/Tggw+mdQmQyx566CGNGTNGTZo0CXuUaugZSB89A3bQM2AHPQN20DNgBz0DdtAzYAc9A3bQM2BHpj2ntewlSVdccYUee+wxbd26Nd0PBXLOa6+9plWrVumKK64Ie5Ra0TOQOnoG7KBnwA56BuygZ8AOegbsoGfADnoG7KBnwI5sek572WvMmDEqLy/X9OnT074MyDVTpkxRv379dOyxx4Y9Sq3oGUgdPQN20DNgBz0DdtAzYAc9A3bQM2AHPQN20DNgRzY9p73s1aJFC1100UW699575ZxL+0IgV2zcuFGzZs3S+PHjwx4lKXoGUkPPgB30DNhBz4Ad9AzYQc+AHfQM2EHPgB30DNiRbc9pL3tJ0s9+9jOtWrVKL7zwQkaXArng3nvvVfPmzTVmzJiwR6kTPQP1o2fADnoG7KBnwA56BuygZ8AOegbsoGfADnoG7Mi254TLcJ3yzDPP1J49e/TSSy9ldDFg2Y4dO3TooYdq0qRJ+sUvfhH2OPWiZyA5egbsoGfADnoG7KBnwA56BuygZ8AOegbsoGfADg96XpTRk70k6dprr9W8efP01ltvZXoEYNaUKVO0a9cuTZgwIexRUkLPQHL0DNhBz4Ad9AzYQc+AHfQM2EHPgB30DNhBz4AdXvSc8ZO9JOmYY47RkUceqf/93//NeADAmtLSUnXr1k1nnXWW7rvvvrDHSRk9AzXRM2AHPQN20DNgBz0DdtAzYAc9A3bQM2AHPQN2eNRz5k/2kqTrr79ejz32mP79739ncwxgyrRp07R+/Xr97Gc/C3uUtNAzUBM9A3bQM2AHPQN20DNgBz0DdtAzYAc9A3bQM2CHVz1n9WSv8vJyHXvsserRo4dmzpyZ1SCABXv27FH37t112mmn6S9/+UvY46SFnoHq6Bmwg54BO+gZsIOeATvoGbCDngE76Bmwg54BOzzsObsne+Xl5emXv/ylZs2apWXLlmVzFGDClClT9Omnn+rGG28Me5S00TNQHT0DdtAzYAc9A3bQM2AHPQN20DNgBz0DdtAzYIeXPWf1ZC9Jcs6pb9++6tSpk5588smsBwLiavfu3eratavOO+88/elPfwp7nIzQM7AXPQN20DNgBz0DdtAzYAc9A3bQM2AHPQN20DNgh8c9Z/dkL0lKJBL61a9+paefflqLFy/O9jggtu6//36VlJTEcqu6Aj0De9EzYAc9A3bQM2AHPQN20DNgBz0DdtAzYAc9A3Z43XPWT/aqMGTIEO3Zs0cLFixQIpHw4kggNjZt2qRu3brp6quv1q9//euwx8kaPSOX0TNgBz0DdtAzYAc9A3bQM2AHPQN20DNgBz0DdvjQc/ZP9qpwzz33aPHixZoxY4ZXRwKx8ctf/lKNGjXS9ddfH/YonqBn5DJ6BuygZ8AOegbsoGfADnoG7KBnwA56BuygZ8AOP3r27MleknTllVdqzpw5Wr16tfbbbz+vjgUibcWKFTrmmGP00EMPaezYsWGP4xl6Ri6iZ8AOegbsoGfADnoG7KBnwA56BuygZ8AOegbs8KnnRZ4ue33++efq1q2bJk2apKKiIq+OBSLt9NNP15dffqnFixcrL8+zh+WFjp6Ri+gZsIOeATvoGbCDngE76Bmwg54BO+gZsIOeATt86tm7P+MoSQceeKBuvvlm/e53v9N//vMfL48GImn69Ol66aWXdN9995n6RSvRM3IPPQN20DNgBz0DdtAzYAc9A3bQM2AHPQN20DNgh589e/pkL0kqLS3V8ccfr6ZNm+rll19WIpHw8nggMkpKStSzZ09dcMEFuv/++8Mexxf0jFxBz4Ad9AzYQc+AHfQM2EHPgB30DNhBz4Ad9AzY4XPP3j7ZS5IaNGig//mf/9GCBQs0ZcoUr48HIuNnP/uZ8vPzdfvtt4c9im/oGbmCngE76Bmwg54BO+gZsIOeATvoGbCDngE76Bmww++ePX+yV4X/9//+n6ZMmaIVK1aoQ4cOflwBhObll1/WqaeeqieffFLf/e53wx7Hd/QMy+gZsIOeATvoGbCDngE76Bmwg54BO+gZsIOeATsC6HmRb8teO3fuVK9evdSrVy89/fTTflwBhGLbtm3q3bu3+vbtq8cffzzscQJBz7CKnukZdtAzPcMOeqZn2EHP9Aw76JmeYQc90zPsoGd6hh30TM+wI6CeF+UXFRUV+XFyw4YNdcwxx+jmm29W+/bt1bdvXz+uAQI3fvx4rVy5Us8++6z233//sMcJBD3DKnqmZ9hBz/QMO+iZnmEHPdMz7KBneoYd9EzPsIOe6Rl20DM9w46Ael6f59fJkjRkyBD9/Oc/1zXXXKPVq1f7eRUQiCeeeELTpk3Tgw8+qHbt2oU9TqDoGdbQMz3DDnqmZ9hBz/QMO+iZnmEHPdMz7KBneoYd9EzPsIOe6Rl2BNmzb3/GsUJpaalOPPFE7dmzRwsXLlRBQYGf1wG+Wb9+vXr37q1Ro0bpvvvuC3ucUNAzrKBneoYd9EzPsIOe6Rl20DM9ww56pmfYQc/0DDvomZ5hBz3TM+wIuGf//oxjhby8PA0ePFi33367du7cqWHDhvl5HeCLsrIyjRgxQnl5eZo9e7YaNmwY9kihoGdYQM970TMsoOe96BkW0PNe9AwL6HkveoYF9LwXPcMCet6LnmEBPe9Fz7CAnveiZ1gQQs/rfV/2kqTWrVurbdu2uv7669WnTx91797d7ysBT91000166qmn9MILL+jggw8Oe5xQ0TPijp6r0DPijp6r0DPijp6r0DPijp6r0DPijp6r0DPijp6r0DPijp6r0DPijp6r0DPiLoSe1/v+Zxz3deWVV2rWrFl688031aNHj6CuBbLyzDPP6LzzztOUKVN0+eWXhz1OZNAz4oiea0fPiCN6rh09I47ouXb0jDii59rRM+KInmtHz4gjeq4dPSOO6Ll29Iw4oufa0TPiKKSeFwW67LV7926ddNJJ2rZtmxYvXqymTZsGdTWQkdWrV+v444/XxRdfrPvvvz/scSKFnhE39JwcPSNu6Dk5ekbc0HNy9Iy4oefk6BlxQ8/J0TPihp6To2fEDT0nR8+IG3pOjp4RNyH2HOyylyR99NFH6tevn4YNG6bp06crkUgEeT2Qsm3btun4449Xs2bN9Oqrr6qwsDDskSKHnhEX9Fw/ekZc0HP96BlxQc/1o2fEBT3Xj54RF/RcP3pGXNBz/egZcUHP9aNnxAU914+eERch97wov6ioqCjIG1u0aKFjjz1WN998syRpyJAhQV4PpKS0tFQXXHCBPvzwQ7344os64IADwh4pkugZcUDPqaFnxAE9p4aeEQf0nBp6RhzQc2roGXFAz6mhZ8QBPaeGnhEH9JwaekYc0HNq6BlxEIGe1we+7CVJhx9+uNq3b69rr71WnTt3Vu/evYMeAajTT37yEz311FMqLi7WkUceGfY4kUbPiDp6Th09I+roOXX0jKij59TRM6KOnlNHz4g6ek4dPSPq6Dl19Iyoo+fU0TOijp5TR8+Iugj0HM6ylyT16dNHO3bs0E033aSBAwfqsMMOC2MMoIbf/e53uuOOOzRz5kydfvrpYY8TC/SMqKLn9NEzooqe00fPiCp6Th89I6roOX30jKii5/TRM6KKntNHz4gqek4fPSOq6Dl99IyoikjP6xPOORfW7eXl5brooov04osvasGCBerRo0dYowCSpMcff1wXXXSR7rzzTk2aNCnscWKFnhE19Jw5ekbU0HPm6BlRQ8+Zo2dEDT1njp4RNfScOXpG1NBz5ugZUUPPmaNnRA09Z46eETUR6nlRqMtekrRr1y6ddtpp+uijjzR//nx16tQpzHGQw+bOnatzzz1X48eP1z333BP2OLFEz4gKes4ePSMq6Dl79IyooOfs0TOigp6zR8+ICnrOHj0jKug5e/SMqKDn7NEzooKes0fPiIqI9Rz+spckbdmyRaeeeqo2bdqk+fPn65BDDgl7JOSYhQsX6vTTT9d5552nRx55RHl5eWGPFFv0jLDRs3foGWGjZ+/QM8JGz96hZ4SNnr1DzwgbPXuHnhE2evYOPSNs9OwdekbY6Nk79IywRbDnaCx7SdIXX3yhIUOGqLS0VK+++qratWsX9kjIEe+++65OOeUUDRkyRI8//rgaNGgQ9kixR88ICz17j54RFnr2Hj0jLPTsPXpGWOjZe/SMsNCz9+gZYaFn79EzwkLP3qNnhIWevUfPCEtEe47OspckbdiwQSeddJL2339/vfTSS2rVqlXYI8G45cuX65RTTlH//v319NNPq6CgIOyRzKBnBI2e/UPPCBo9+4eeETR69g89I2j07B96RtDo2T/0jKDRs3/oGUGjZ//QM4JGz/6hZwQtwj0vCv3ZYvtq3769XnzxRX311VcaOnSoPvvss7BHgmFvvfWWhg4dqt69e+uJJ56IUpgm0DOCRM/+omcEiZ79Rc8IEj37i54RJHr2Fz0jSPTsL3pGkOjZX/SMINGzv+gZQaJnf9EzghT1niO17CVJnTp10muvvaavv/5aAwcO1Nq1a8MeCQbNnz9fw4YN0wknnKDnn39ejRs3Dnskk+gZQaDnYNAzgkDPwaBnBIGeg0HPCAI9B4OeEQR6DgY9Iwj0HAx6RhDoORj0jCDQczDoGUGIQ8+RW/aSpEMOOUSvvfaamjZtqpNPPlnvv/9+2CPBkHnz5umss87S0KFD9eSTT0YyTEvoGX6i52DRM/xEz8GiZ/iJnoNFz/ATPQeLnuEneg4WPcNP9Bwseoaf6DlY9Aw/0XOw6Bl+ikvPkVz2kqS2bdtq3rx5OvDAAzVkyBC98847YY8EA2bMmKHhw4frggsu0BNPPKHCwsKwR8oJ9Aw/0HM46Bl+oOdw0DP8QM/hoGf4gZ7DQc/wAz2Hg57hB3oOBz3DD/QcDnqGH+g5HPQMP8Sp58gue0lSq1at9NJLL6lnz5466aSTVFxcHPZIiLHbb79do0eP1sSJE/Xwww8rPz8/7JFyCj3DS/QcLnqGl+g5XPQML9FzuOgZXqLncNEzvETP4aJneImew0XP8BI9h4ue4SV6Dhc9w0ux69nFwJ49e9yECRNcfn6+u/fee8MeBzHDz0+08P1ANvj5iRa+H8gGPz/RwvcD2eDnJ1r4fiAb/PxEC98PZIOfn2jh+4Fs8PMTLXw/kA1+fqKF7weywc9PtPD9QDZi+vOzML+oqKgo7IWz+uTl5emcc85RIpHQ9ddfr23btunUU09VXl6kH0yGCPjqq6/03e9+V8XFxZo9e7bGjBkT9kg5j56RKXqOHnpGpug5eugZmaLn6KFnZIqeo4eekSl6jh56RqboOXroGZmi5+ihZ2SKnqOHnpGpGPe8PuGcc2FPkY5HH31U48aN00knnaTp06erVatWYY+EiFq+fLkuuOAC7dy5U88++6z69u0b9kj4FnpGqug5+ugZqaLn6KNnpIqeo4+ekSp6jj56RqroOfroGami5+ijZ6SKnqOPnpEqeo4+ekaqYt7zotitMo4ZM0ZvvPGG1qxZo2OPPVaLFy8OeyRE0IwZMzRw4EC1a9dOS5YsiVuYOYOekQp6jgd6RiroOR7oGamg53igZ6SCnuOBnpEKeo4HekYq6Dke6BmpoOd4oGekgp7jgZ6RCgs9x27ZS1JllN27d9fJJ5+sqVOnhj0SImLPnj2aNGmSLr74Yo0bN07z5s3TQQcdFPZYqAM9Ixl6jh96RjL0HD/0jGToOX7oGcnQc/zQM5Kh5/ihZyRDz/FDz0iGnuOHnpEMPccPPSMZUz27GCstLXWTJ092eXl57nvf+57bvHlz2CMhRGvXrnWDBg1yjRs3dg8//HDY4yBN9Ix90XO80TP2Rc/xRs/YFz3HGz1jX/Qcb/SMfdFzvNEz9kXP8UbP2Bc9xxs9Y1/0HG/0jH0Z63lhLJ/sVSE/P19FRUWaM2eOXn/9dR1zzDGaP39+2GMhBKMzkVIAACAASURBVNOmTVOvXr20ZcsWvfnmm7r00kvDHglpomdUoOf4o2dUoOf4o2dUoOf4o2dUoOf4o2dUoOf4o2dUoOf4o2dUoOf4o2dUoOf4o2dUsNhzrJe9Kpx22mlatmyZjj76aJ1yyim64YYbtGfPnrDHQgC2bNmi0aNH69JLL9Xll1+uJUuWqFevXmGPhSzQc+6iZ3voOXfRsz30nLvo2R56zl30bA895y56toeecxc920PPuYue7aHn3EXP9tBz7jLdc9jPFvPa1KlTXZMmTVzv3r3dW2+9FfY48NGzzz7rOnbs6Nq2beuKi4vDHgc+oOfcQc/20XPuoGf76Dl30LN99Jw76Nk+es4d9GwfPecOeraPnnMHPdtHz7mDnu2j59xhvOd4/xnH2vzgBz/Q0qVL1bRpUw0YMEA33nijdu3aFfZY8NCGDRt0/vnna8SIERo2bJhWrVql4cOHhz0WfEDP9tFz7qBn++g5d9CzffScO+jZPnrOHfRsHz3nDnq2j55zBz3bR8+5g57to+fcQc/25UzPYa+b+aWsrMzdf//9rlmzZq5r165u3rx5YY+ELJWVlbk///nPrnnz5u7www93L774YtgjISD0bA895y56toeecxc920PPuYue7aHn3EXP9tBz7qJne+g5d9GzPfScu+jZHnrOXfRsT471vPD/Y+/e462u63yPfzZ3BOQmpIigKW6IUPMuaQoxioqZ1mg5qZHh5Jyw83BGO1kz2slOZNnUlJU6molCkjamZooXRlNBvCLeEAQVURMQ5A6bvX/nD8c9MoKsvffa67d+3/18Ph48krV2rLfoqwt+WCvZY6/3vP7669nnPve5LCKycePGZS+99FLek2iGRx55JDvssMOyDh06ZOeee262evXqvCeRAz2nQc9kmZ5ToWeyTM+p0DNZpudU6Jks03Mq9EyW6TkVeibL9JwKPZNlek6FnskyPaeiDfac3sc4/k+77LJL3HTTTXH33XfHokWLYtiwYfGNb3wjVq9enfc0SrBkyZI444wz4tBDD42uXbvG448/Hj/72c+ie/fueU8jB3ouNj3zfnouNj3zfnouNj3zfnouNj3zfnouNj3zfnouNj3zfnouNj3zfnouNj3zfnoutjbdc97nZpW0cePG7LLLLst69eqV7brrrtnVV1+d1dXV5T2LrVixYkX2ne98J9thhx2yvfbaK7vlllvynkSV0XNx6Jnt0XNx6Jnt0XNx6Jnt0XNx6Jnt0XNx6Jnt0XNx6Jnt0XNx6Jnt0XNx6Jnt0XNx6LkNfIzj1rz11lvZ1772taxjx47ZkCFDssmTJ2ebN2/OexZZlq1atSq75JJLst69e2e9e/fOLr300mzDhg15z6KK6bl66Zmm0nP10jNNpefqpWeaSs/VS880lZ6rl55pKj1XLz3TVHquXnqmqfRcvfRMU+m5eum5Uds89nrPSy+9lJ155plZ+/bts2HDhmU33nhjVl9fn/esNmnNmjXZpZdemu20007ZjjvumP3Lv/xLtnLlyrxnUSB6rh56pqX0XD30TEvpuXromZbSc/XQMy2l5+qhZ1pKz9VDz7SUnquHnmkpPVcPPdNSeq4eev6Atn3s9Z6FCxdmZ599dta+fftszz33zH76059ma9euzXtWm/DXv/41u+iii7K+fftm3bp1y84999zsr3/9a96zKDA950fPlJue86Nnyk3P+dEz5abn/OiZctNzfvRMuek5P3qm3PScHz1TbnrOj54pNz3nR8/b5Njr/Z5//vlswoQJWZcuXbJ+/fplF110UfbWW2/lPStJ//Pn+uKLL/ZzTVnpuXL0TGvTc+Xomdam58rRM61Nz5WjZ1qbnitHz7Q2PVeOnmlteq4cPdPa9Fw5eqa16bly9Lxdjr225s0338z++Z//Oevbt2/WpUuX7PTTT8/uv//+rKGhIe9phbZx48Zs2rRp2dFHH521a9cu23vvvbNf//rX2bp16/KeRsL03Dr0TB703Dr0TB703Dr0TB703Dr0TB703Dr0TB703Dr0TB703Dr0TB703Dr0TB703Dr03CSOvT7M2rVrsyuuuCI78MADs4jIamtrsx/96EcuBpvo+eefz/7pn/4p69evX9a+ffts3Lhx2a233urzbKkoPZeHnqkGei4PPVMN9FweeqYa6Lk89Ew10HN56JlqoOfy0DPVQM/loWeqgZ7LQ89UAz2Xh56bZWZNlmVZsF1PPfVUXHXVVXHDDTfE+vXr42/+5m/ilFNOiRNPPDF69uyZ97yq8+qrr8bvf//7mDZtWsyePTsGDx4cZ511VowfPz4GDhyY9zzaOD03jZ6pZnpuGj1TzfTcNHqmmum5afRMNdNz0+iZaqbnptEz1UzPTaNnqpmem0bPVDM9N42eW2yWY68mWrduXfzhD3+IadOmxfTp0yMi4phjjolTTjkljjvuuOjdu3fOC/PzyiuvxC233BLTpk2LmTNnRq9eveKzn/1sfPGLX4xPf/rT0a5du7wnwhb0vG16pmj0vG16pmj0vG16pmj0vG16pmj0vG16pmj0vG16pmj0vG16pmj0vG16pmj0vG16LivHXi2xcuXKuPXWW+P3v/99TJ8+Perr62O//faLMWPGxLhx42LkyJFJ/w25efPmmDVrVtx+++1xzz33xBNPPBFdu3aN448/Pk4//fQ45phjolOnTnnPhJLoWc+kQ896Jh161jPp0LOeSYee9Uw69Kxn0qFnPZMOPeuZdOhZz63IsVe5rFy5Mu6+++648847484774zXX389PvKRj8SoUaNi5MiRcfjhh8c+++wT7du3z3tqs61bty4effTRePDBB+Ohhx6KBx54INauXRsf+9jH4thjj42xY8fGEUccEZ07d857KrSInvVMOvSsZ9KhZz2TDj3rmXToWc+kQ896Jh161jPp0LOeSYee9Vxmjr1aQ5Zl8fTTT8edd94ZDzzwQMycOTNWrFgR3bt3j0MPPTQOPfTQ2GeffWLEiBExZMiQqgx2w4YN8eyzz8bcuXNjzpw5MXPmzHjiiSeirq4udttttzj88MPjqKOOirFjx8agQYPyngutRs+QDj1DOvQM6dAzpEPPkA49Qzr0DOnQM6RDz5SBY69KaGhoiOeffz4efPDBePjhh2P27NmxYMGC2Lx5c3Tp0iWGDx8eH//4x2OvvfaK3XffPfbYY4/YY489YpdddomampqSX+edd96Jnj17lvz1dXV1sXjx4nj55Zdj0aJF8fLLL8e8efNi7ty5MX/+/Kivr4+uXbvG8OHD49BDD228KN1tt92a89MASdAzpEPPkA49Qzr0DOnQM6RDz5AOPUM69Azp0DPN4NgrLxs2bIjnnnsunn766Zg7d27MnTs3Fi1aFK+++mps2rQpIiI6d+4cu+66a/Tr1y/69u0bffv2jZ122in69u0bnTt3jh133DEiInbYYYfo0KFDXHnllXHOOefE2rVrY9OmTZFlWaxcuTI2bNgQy5cvj+XLl8eyZcti6dKlsWzZsnj99dejvr6+8cfYY489YsiQIfHxj3889tlnn9hnn31ir732qspLUagmeoZ06BnSoWdIh54hHXqGdOgZ0qFnSIeeIR16Zjsce1WbhoaGWLJkSeNl5GuvvdYY1vu/1dXVxcqVKyPi3c8+3bhxY+OP0a1bt+jUqVO0a9cuevbsGV26dGmM+73A+/XrFwMHDmy8/Ozfv39ef8qQLD1DOvQM6dAzpEPPkA49Qzr0DOnQM6RDz5AOPfNfHHul4owzzojJkyfHr371q/ja176W9xygBfQM6dAzpEPPkA49Qzr0DOnQM6RDz5AOPUM69Jwcx14p2LBhQ/Tt2zfWrVsXhx12WDz88MN5TwKaSc+QDj1DOvQM6dAzpEPPkA49Qzr0DOnQM6RDz0ma1S7vBbTc7bffHuvXr4+IiFmzZsUrr7yS8yKgufQM6dAzpEPPkA49Qzr0DOnQM6RDz5AOPUM69Jwmx14JuP7666N9+/YREdGhQ4eYNm1azouA5tIzpEPPkA49Qzr0DOnQM6RDz5AOPUM69Azp0HOafIxjwa1atSr69esXmzZtioiImpqaGD58eMydOzfnZUBT6RnSoWdIh54hHXqGdOgZ0qFnSIeeIR16hnToOVk+xrHobr755ti8eXPj97Msi2eeeSaee+65HFcBzaFnSIeeIR16hnToGdKhZ0iHniEdeoZ06BnSoed0OfYquMmTJ0dNTc0Wj3Xs2DFuvPHGnBYBzaVnSIeeIR16hnToGdKhZ0iHniEdeoZ06BnSoed0+RjHAnvrrbdil112iYaGhg88t9tuu8Urr7zygXCB6qRnSIeeIR16hnToGdKhZ0iHniEdeoZ06BnSoeek+RjHIvvd734X7dpt/S/h4sWL47HHHqvwIqC59Azp0DOkQ8+QDj1DOvQM6dAzpEPPkA49Qzr0nDbHXgV23XXXRX19/Vaf69ixY0ydOrXCi4Dm0jOkQ8+QDj1DOvQM6dAzpEPPkA49Qzr0DOnQc9p8jGNBLVy4MPbaa6/4sL98O+20U7z55pvRvn37Ci4DmkrPkA49Qzr0DOnQM6RDz5AOPUM69Azp0DOkQ8/J8zGORTV16tTo0KHDh37NsmXL4v7776/QIqC59Azp0DOkQ8+QDj1DOvQM6dAzpEPPkA49Qzr0nD7HXgU1efLk2Lx5c3Ts2HGb32pqarz1HhSAniEdeoZ06BnSoWdIh54hHXqGdOgZ0qFnSIee0/fhp3xUpZUrV8aRRx4ZRx55ZONjS5cujdmzZ8cxxxyzxYVm796985gIlEjPkA49Qzr0DOnQM6RDz5AOPUM69Azp0DOkQ89tQ032YR/SSWHcddddMXbs2Fi5cmX07Nkz7zlAC+gZ0qFnSIeeIR16hnToGdKhZ0iHniEdeoZ06Dk5s3yMIwAAAAAAAAAAQAE49gIAAAAAAAAAACgAx14AAAAAAAAAAAAF4NgLAAAAAAAAAACgABx7AQAAAAAAAAAAFIBjLwAAAAAAAAAAgAJw7AUAAAAAAAAAAFAAjr0AAAAAAAAAAAAKwLEXAAAAAAAAAABAATj2AgAAAAAAAAAAKADHXgAAAAAAAAAAAAXg2AsAAAAAAAAAAKAAHHsBAAAAAAAAAAAUgGMvAAAAAAAAAACAAnDsBQAAAAAAAAAAUACOvQAAAAAAAAAAAArAsRcAAAAAAAAAAEABOPYCAAAAAAAAAAAoAMdeAAAAAAAAAAAABeDYCwAAAAAAAAAAoAAcewEAAAAAAAAAABSAYy8AAAAAAAAAAIACcOwFAAAAAAAAAABQAI69AAAAAAAAAAAACsCxFwAAAAAAAAAAQAE49gIAAAAAAAAAACgAx14AAAAAAAAAAAAF4NgLAAAAAAAAAACgABx7AQAAAAAAAAAAFIBjLwAAAAAAAAAAgAJw7AUAAAAAAAAAAFAAHfIeUFSvv/563H333XnPaDR37tyIiJg6dWp07do15zX/7bTTTouOHTvmPQM+lJ5Lo2eKQM+l0TNFoOfS6Jki0HNp9EwR6Lk0eqYI9FwaPVMEei6NnikCPZdGzxSBnkuj5+arybIsy3tEEd11110xduzY6NKlS95TIiIiy7LIsizatauON2traGiITZs2xcqVK6Nnz555z4EPpecPp2eKRM8fTs8UiZ4/nJ4pEj1/OD1TJHr+cHqmSPT84fRMkej5w+mZItHzh9MzRaLnD6fnFpvlnb1a6M033/Q331a89x9eUCR63jo9U0R63jo9U0R63jo9U0R63jo9U0R63jo9U0R63jo9U0R63jo9U0R63jo9U0R63jo9t1x1nO0BAAAAAAAAAADwoRx7AQAAAAAAAAAAFIBjLwAAAAAAAAAAgAJw7AUAAAAAAAAAAFAAjr0AAAAAAAAAAAAKwLEXAAAAAAAAAABAATj2AgAAAAAAAAAAKADHXgAAAAAAAAAAAAXg2AsAAAAAAAAAAKAAHHsBAAAAAAAAAAAUgGMvAAAAAAAAAACAAnDsBQAAAAAAAAAAUACOvQAAAAAAAAAAAArAsVdCGhoa8p4AAPwPa9asyXsCUAabN2+O+vr6vGcAZbR69epYvnx53jMAgIjIsixWrFiR9wwA4H02b94c69evz3sGUAabN2+OLMvynkEZOfYquBdffDG+8Y1vxO677x59+/aNcePGxb333pv3LKCFhgwZEhMmTMh7BtBMTzzxRBxzzDHRp0+f6NGjR+y8887x93//97Fq1aq8pwFNdMMNN8TIkSOjR48e0aVLlxg6dGj84he/8BstoOCWL18eQ4cOjSOOOCLvKUATNTQ0xL777hvDhw//wLfjjz8+73lAE61YsSImTJgQ3bp1iz59+sSOO+4Yp556aixbtizvaUCJ7r333q3+9/L7v51xxhl5zwSaYPr06bH//vvHDjvsEN26dYs99tjDr4dBQd1xxx2x//77R/fu3eMjH/lIfOELX4gHHngg71mUQYe8B9B869evj8985jOxZMmSOO2006Jv375x8803xwknnBB33nlnfOpTn8p7ItAM1157bSxYsCCOOuqovKcAzfDYY4/FmDFjokOHDnHaaadFnz594sYbb4wrr7wynnzyyZg1a1a0a+feHorguuuuiy9/+ctRW1sb3/jGN2L9+vVx8803x8SJE2PlypXxne98J++JQDOdddZZ8frrr0fPnj3zngI00WuvvRZPP/10jBgxIvr06bPFc//z+0B127RpUxx33HHxyCOPxFe+8pU47LDDYvbs2XHllVfGa6+9Fg899FDeE4ES1NTURMeOHbf63IYNG2LevHkxZMiQCq8Cmuvee++NsWPHRq9evWL8+PHRsWPHuOmmm2LixImxdOnS+O53v5v3RKBEU6dOjb/7u7+L3XffPc4///xYsmRJTJs2Lf785z/H7Nmzo7a2Nu+JtIBjrwL79re/HfPmzYs77rgjjj322IiI+MY3vhH77rtvfPnLX46FCxfmvBAo1WuvvRbf/e5349FHH405c+bkPQdogV/84hexfv36eOSRR2K//faLiIj/+3//b4wZMybuvffeuPnmm+Nv//Zvc14JlOKyyy6LIUOGxCOPPBI77rhjRER885vfjD322CMuv/xyx15QUL/61a/izjvvdBQCBbVgwYKIiJg8eXLsu+++Oa8BWuK3v/1tzJo1K3784x/HP/7jP0bEuwfZNTU1ccUVV8Rjjz0WBx54YM4rge0ZPXp0PPXUU1t9buLEibFq1ar49a9/XeFVQHN973vfiyzL4tFHH40999wzIiJ+8IMfxMCBA+Oyyy6Lf/mXf4n27dvnvBLYnk2bNsX5558f3bp1iyeeeCJ69eoVERGTJk2KgQMHxhe+8IV48sknc15JS3hbiQK79tprY5999mk89IqI+MhHPhLHHHNMLFq0KB555JEc1wFNsXr16njxxRejZ8+ecdBBB+U9B2iBhx9+OPbbb7/GQ6/3jB8/PiIiZs+enccsoIneeeedeOaZZ+LYY49tPPSKiBgwYECMHj063n777airq8txIdAczz77bPzjP/5j/PCHP4xddtkl7zlAM8yfPz9qampi7733znsK0ELXX3999O/fPyZOnLjF4xdeeGFcd9110a9fv5yWAeVw5513xi9/+cu4/vrrY+edd857DlCixYsXx8CBAxsPvSIievToEQcffHDU1dXFhg0bclwHlOq5556LJUuWxHHHHdd46BUR0b9//zj66KPjqaeeinfeeSfHhbSUY6+CWrZsWaxYsSLGjBnzgefe+8Wuxx57rNKzgGYaNmxY3H///XH//ffHlClT8p4DNFNdXV0cc8wx8fWvf/0Dzy1evDgifLQMFEWHDh3igQceiG9+85tbPP7OO+/E008/HUcfffQ2P6YCqE4bNmyIL37xi3HEEUfEueeem/ccoJkWLFgQgwYNijVr1sTtt98eV199dTz88MNRX1+f9zSgiebPnx/HHntsdOrUKRYuXBi33nprPP744zFgwIA4/fTTY/DgwXlPBJpp+fLl8ZWvfCVOPfXUGD16dN5zgCY46aST4rXXXos77rij8bF58+bFjBkzYtSoUdGtW7cc1wGlev311yMi4uCDD/7Ac+899uyzz1Z0E+XlYxwLat68eRERW/2dyO99tupbb71V0U0A0NZ17Ngxfv7zn3/g8bfeeisuv/zy6NixY4wbNy6HZUBTdevWLT75yU82fv+nP/1pvPLKK/GnP/0p6uvr41vf+laO64DmOP/88+P111+Pu+66K2pqavKeAzTTggULYtWqVbH77rvHunXrGh8/4IADYvLkyTFs2LAc1wGlWrNmTbzxxhvxkY98JE444YS4/fbbG58bOnRo/OY3v4lDDz00x4VAS/yv//W/YuXKlTFp0qS8pwBNNHHixLj33ntj3LhxMXLkyOjSpUvMmDEjBgwYEN///vfzngeU6L1357vvvvsaPzL9Pc8991xEvHvsNXLkyIpvozy8s1dBLViwICK2/u4g7/2Op5UrV1Z0EwDwQbfffnuMGDEilixZEj/+8Y9jxIgReU8CmuHb3/52/PSnP4358+fHTjvtFF27ds17EtAEt99+e/ziF7+Iq666ysc3QsEtWLAgVq9eHRdddFG8+OKL8dBDD8XZZ58dTz31VJx44omxdu3avCcCJXjv17d/9rOfxaJFi+LnP/95PP744/Fv//Zv8corr8SJJ57oNzNDQT377LMxbdq0OO+882LQoEF5zwGaqFevXjF48ODIsiweffTRmDVrVjQ0NESHDh1i9erVec8DSjRkyJA48MAD4957741///d/j9WrV8c777wTl19+efz+97+PiPAO2QXn2KugOnfuHBERb7/99geee+8XtXr37l3RTQDAf3vppZfiM5/5TJxwwgmx4447xvTp031kFBTY2rVr48UXX4xrrrkmli9fHocccki8+eabec8CSvDGG2/E+PHj46tf/WqcdNJJec8BWujaa6+NJ598Mi644IIYMmRIjBw5Mq644oo477zzYv78+fGHP/wh74lACd77de2NGzfGTTfdFF//+tdj//33j4kTJ8Z5550Xb731Vvzud7/LeSXQHJdeeml06tQpzjvvvLynAM1wxBFHxB//+Mf45S9/GW+++WYsXbo0br755li1alUcf/zx8fLLL+c9EShBu3bt4pprromdd945JkyYEDvvvHPsvPPOcd5558WECRMiImL48OE5r6QlHHsV1M477xwREQsXLvzAc+/9H+V+/fpVdBMA8K7rr78+9ttvv/jP//zPuPTSS+OZZ56JMWPG5D0LaIIsy6KhoWGLx4YMGRLjx4+PSZMmRV1dXdxxxx05rQOa4le/+lUsW7Ys3nnnnRg/fnzjtyVLlsTrr78e48ePjx/84Ad5zwRKdMABB8THP/7xDzx+3HHHRUTEM888U+lJQDPsuuuuERFx6KGHxtChQ7d47oQTToiIiOeff77iu4CWefXVV2PKlCnx2c9+dqufTANUt+effz7mzp0bRx11VJxzzjnRu3fv6Nq1a5x88snx5S9/OdatW+c3V0CBjBgxIubOnRv//u//Hl/72tfie9/7XsyePTuGDRsWEY69iq5D3gNonr333jtqamq2euw1Z86ciIg45JBDKj0LANq822+/Pc4444w47LDDYurUqd6uHgpq0qRJceGFF8af/vSnxn94/J6ddtopIiIWL16cxzSgifr16xf77bdfzJ8/f4vHN27cGA0NDfHUU09Fu3Z+LxwUweLFi2P27Nlx0EEHfeB/Z7/3a2T9+/fPYxrQRO81XFdX94Hn1q9fHxERPXv2rOgmoOWuvPLK2Lx5c5x11ll5TwGa4emnn46IiCOPPPIDz/3N3/xN/OQnP4kVK1ZUehbQDJs2bYpFixbFTjvt9IH/Xp40aVLssssuDrMLzq9mFtSAAQPiU5/6VDzwwAPx0ksvNT5eV1cXU6ZMiV133TUOOOCAHBcCQNt04YUXRs+ePeOmm25y6AUFNmLEiIiIuPvuuz/w3FVXXRUREfvuu29FNwHNM3HixHjyySc/8G3YsGHx0Y9+NJ588sm4+uqr854JlODtt9+Oz3/+8/H973//A8/deOONEfHux84A1a9r164xevToePzxxz9wkH3LLbdERMTIkSPzmAa0wPTp06NPnz7x6U9/Ou8pQDN87GMfi4iIm2666QPPTZs2LSL++9fMgOq2bt26GDp0aEycOHGLx1977bW4+eab4zOf+UxOyygX7+xVYBdeeGEcf/zxccopp8S3v/3t6N27d/zwhz+MhQsXxu233x41NTV5TwSANmXFihXxzDPPxCc+8Ym47LLLtvo1Rx11VIwbN67Cy4CmOu6442LEiBHx85//PHr16hXHHHNMLFmyJH7/+9/HbbfdFgcddJCWAaDC9tlnnzjssMPiqquuir59+8bJJ58cDQ0Ncf3118f06dPjc5/7XBx88MF5zwRKNGnSpDjkkEPilFNOif/3//5f7LbbbnHffffFFVdcEYcffrh/AAUFs2LFinj88cfjhBNO8M65UFDDhw+Po48+OqZPnx5jx46NL33pS7H77rvHf/zHf8TUqVNj+PDh8dnPfjbvmUAJevXqFaNHj46bbropxowZEyeddFIsWLAgzj777Bg4cGD86Ec/ynsiLeTYq8COPvromDx5cnz1q1+Nz33ucxHxbrQ/+clP4thjj815HQC0PQ899FBkWRZPPPFEPPHEE1v9mpqaGgciUADt2rWLW265Jb70pS/FxRdfHBdffHHjcyeffHL827/9W3To4P9OAUAl1dTUxC233BJf/epX4wc/+EH84Ac/aHzunHPO2eZvuACq00EHHRR/+tOfYvz48Vt8dPpnPvOZ+M1vfpPjMqA5ZsyYEQ0NDXHYYYflPQVopnbt2sXUqVNj4sSJMXXq1Ljrrrsan/vUpz4V11xzTXTq1CnHhUBTXHPNnmDmJAAAIABJREFUNfHFL34xzjrrrMaPctx///1jypQp0aNHj5zX0VL+6UTBfeELX4jPf/7z8dhjj0VDQ0Mccsgh0b59+7xnAS2w1157RZZlec8AmmHcuHH6hYR89KMfjQcffDAWLVoUL7zwQnTt2jVqa2tj1113zXsaUAaPP/543hOAZujfv3/ceuut8corr8S8efOiV69eMWzYML9QDQV17LHHxuLFi+OZZ56JpUuXxogRI2KXXXbJexbQDCeffLJfF4ME9OnTJ2644Yb44Q9/GM8++2ysX78+hg4dGrW1tT5VCgpm8ODB8dBDD8XcuXNj4cKFsf/++8egQYPynkWZOPZKQIcOHeLQQw/NewYAACSnXbt2seeee8aee+6Z9xQA4H0GDx4cgwcPznsGUAYdO3aMT3ziE3nPAADeZ+DAgTFw4MC8ZwAtVFNTE/vss0/ss88+eU+hzHxoNgAAAAAAAAAAQAE49gIAAAAAAAAAACgAx14AAAAAAAAAAAAF4NgLAAAAAAAAAACgABx7AQAAAAAAAAAAFIBjLwAAAAAAAAAAgAJw7AUAAAAAAAAAAFAAjr0AAAAAAAAAAAAKwLEXAAAAAAAAAABAATj2AgAAAAAAAAAAKADHXgAAAAAAAAAAAAXg2AsAAAAAAAAAAKAAHHsBAAAAAAAAAAAUgGMvAAAAAAAAAACAAnDsBQAAAAAAAAAAUACOvRLywgsv5D0BKBM9Qzr0DOnQM6RDz5AOPUM69Azp0DOkQ8+QDj2npUPeA4pu6tSp0bVr17xnxPr16+Nf//Vf48ILL8x7SkREPPPMM3lPgCbT89bpmSLS89bpmSLS89bpmSLS89bpmSLS89bpmSLS89bpmSLS89bpmSLS89bpmSLS89bpueVqsizL8h5RRPfcc0+ccMIJec9oVF9fH3V1ddG5c+eoqanJe06jv/71r7HjjjvmPQM+lJ5Lo2eKQM+l0TNFoOfS6Jki0HNp9EwR6Lk0eqYI9FwaPVMEei6NnikCPZdGzxSBnkuj52ab5dgrEWPGjIl77703Lrroorj44ovzngO0gJ4hHXqGdOgZ0qFnSIeeIR16hnToGdKhZ0iHnpPj2CsFb731VgwYMCDq6+tj9913j0WLFuU9CWgmPUM69Azp0DOkQ8+QDj1DOvQM6dAzpEPPkA49J2lWu7wX0HLTpk1r/OOXX345Hn/88RzXAC2hZ0iHniEdeoZ06BnSoWdIh54hHXqGdOgZ0qHnNDn2SsB1110XDQ0NERHRqVOnmDp1as6LgObSM6RDz5AOPUM69Azp0DOkQ8+QDj1DOvQM6dBzmnyMY8G9+uqrsfvuu8f7/zL269cv3njjjWjfvn2Oy4Cm0jOkQ8+QDj1DOvQM6dAzpEPPkA49Qzr0DOnQc7J8jGPR3XDDDdGhQ4ctHlu6dGn85S9/yWkR0Fx6hnToGdKhZ0iHniEdeoZ06BnSoWdIh54hHXpOl2Ovgrvuuuuirq5ui8c6duwYU6ZMyWkR0Fx6hnToGdKhZ0iHniEdeoZ06BnSoWdIh54hHXpOl49xLLDnn38+Pvaxj231uR49esSyZcuiU6dOFV4FNIeeIR16hnToGdKhZ0iHniEdeoZ06BnSoWdIh56T5mMci+z666+Pjh07bvW5NWvWxF133VXhRUBz6RnSoWdIh54hHXqGdOgZ0qFnSIeeIR16hnToOW2OvQrs+uuv/8Bb7r2nffv2ccMNN1R4EdBceoZ06BnSoWdIh54hHXqGdOgZ0qFnSIeeIR16TpuPcSyomTNnxsiRIz/0azp37hzLli2L7t27V2gV0Bx6hnToGdKhZ0iHniEdeoZ06BnSoWdIh54hHXpOno9xLKqpU6du9/NT6+rq4rbbbqvQIqC59Azp0DOkQ8+QDj1DOvQM6dAzpEPPkA49Qzr0nD7HXgVUX18fv/vd72LTpk0f+nUNDQ0xderUCq0CmkPPkA49Qzr0DOnQM6RDz5AOPUM69Azp0DOkQ89tQ4e8B9B069ati8svv3yLx+bMmRPf//7349prr40ddtih8fHtXWsC+dIzpEPPkA49Qzr0DOnQM6RDz5AOPUM69Azp0HPbUJNlWZb3CFrurrvuirFjx8bKlSujZ8+eec8BWkDPkA49Qzr0DOnQM6RDz5AOPUM69Azp0DOkQ8/JmeVjHAEAAAAAAAAAAArAsRcAAAAAAAAAAEABOPYCAAAAAAAAAAAoAMdeAAAAAAAAAAAABeDYCwAAAAAAAAAAoAAcewEAAAAAAAAAABSAYy8AAAAAAAAAAIACcOwFAAAAAAAAAABQAI69AAAAAAAAAAAACsCxFwAAAAAAAAAAQAE49gIAAAAAAAAAACgAx14AAAAAAAAAAAAF4NgLAAAAAAAAAACgABx7AQAAAAAAAAAAFIBjLwAAAAAAAAAAgAJw7AUAAAAAAAAAAFAAjr0AAAAAAAAAAAAKwLEXAAAAAAAAAABAATj2AgAAAAAAAAAAKADHXgAAAAAAAAAAAAXg2AsAAAAAAAAAAKAAHHsBAAAAAAAAAAAUgGMvAAAAAAAAAACAAnDsBQAAAAAAAAAAUACOvQAAAAAAAAAAAArAsRcAAAAAAAAAAEABOPYCAAAAAAAAAAAoAMdeAAAAAAAAAAAABeDYCwAAAAAAAAAAoAAcewEAAAAAAAAAABSAYy8AAAAAAAAAAIACcOyViDVr1mzxr0Bx6RnSoWdIh54hHXqGdOgZ0qFnSIeeIR16hnToOT01WZZleY9g2zZt2hQLFy6M559/Pl588cWYN29ezJs3L958881Ys2ZNrF27NtauXfuBf1/Pnj2jW7du0a1btxg0aFDsvffeMXTo0KitrY3a2toYNGhQtGvn1g8qSc+QDj1DOvQM6dAzpEPPkA49Qzr0DOnQM6RDz23WLMdeVWbTpk3xyCOPxH333RczZsyIWbNmxcaNG6OmpqYxstra2hg4cGBjfN27d49evXpFTU1N1NXVxZo1a2LlypWN4b788ssxb968eOGFF2Lp0qUR8W68Rx55ZIwePTpGjRoVI0aMiJqampz/7CEteoZ06BnSoWdIh54hHXqGdOgZ0qFnSIeeIR165r849qoGq1atiptuuiluvPHGePDBB2PdunUxePDgLcKpra2Nrl27tvi1VqxYEfPmzYvHHnssZsyYEf/5n/8Zb7/9duy0004xZsyYOO2002Ls2LHRsWPHMvyZQdujZ0iHniEdeoZ06BnSoWdIh54hHXqGdOgZ0qFntsKxV17q6+tj+vTpMXny5Ljlllsiy7IYN25cjB07NkaNGhUf/ehHK7KjoaEh5syZEzNmzIhbb701HnjggejXr1984QtfiDPOOCMOOOCAiuyAItMzpEPPkA49Qzr0DOnQM6RDz5AOPUM69Azp0DPbMSsyKmr16tXZj370o2zAgAFZTU1Ndvjhh2dXXHFFtmLFirynZVmWZS+//HL2ve99L6utrc0iItt3332zKVOmZJs3b857GlQdPUM69Azp0DOkQ8+QDj1DOvQM6dAzpEPPkA49U6KZjr0q5O23386++93vZn369Ml69OiRXXDBBdlLL72U96wPNWvWrOy0007L2rdvnw0ZMiS7+uqrs02bNuU9C3KnZ0iHniEdeoZ06BnSoWdIh54hHXqGdOgZ0qFnmsixV2tbu3Zt9p3vfCfr0aNH1qdPn+yiiy7Kli9fnvesJpk/f3521llnZZ06dcoGDRqUXXPNNVlDQ0Pes6Di9Azp0DOkQ8+QDj1DOvQM6dAzpEPPkA49Qzr0TDM59mpNf/zjH7PBgwdnPXv2zCZNmpStWrUq70kt8sorr2TnnHNO1r59++yTn/xkNmfOnLwnQcXoGdKhZ0iHniEdeoZ06BnSoWdIh54hHXqGdOiZFnDs1RoWL16cff7zn88iIhs3bly2ePHivCeV1VNPPZWNHDky69ChQ3buuedm77zzTt6ToNXoGdKhZ0iHniEdeoZ06BnSoWdIh54hHXqGdOiZMnDsVW5XXnlltsMOO2TDhg3L7rvvvrzntJr6+vrsqquuyvr27ZsNHDgwe+CBB/KeBGWnZ0iHniEdeoZ06BnSoWdIh54hHXqGdOgZ0qFnysSxV7msWrUqO+2007J27dplF154YbZp06a8J1XE0qVLsxNPPDHr0KFD9v3vfz+rr6/PexK0mJ71TDr0rGfSoWc9kw4965l06FnPpEPPeiYdetYz6dCznkmHnvVcZo69yuHZZ5/Nhg8fnvXr1y+744478p6TiyuuuCLr1KlTNnr06OyNN97Iew40m571TDr0rGfSoWc9kw4965l06FnPpEPPeiYdetYz6dCznkmHnvXcCma2C1rkxhtvjAMOOCD69esXc+bMiWOPPTbvSbk4++yz4y9/+UssXLgwDjzwwJgzZ07ek6DJ9PwuPZMCPb9Lz6RAz+/SMynQ87v0TAr0/C49kwI9v0vPpEDP79IzKdDzu/RMCvT8Lj2Xn2OvFvjFL34Rp512Wpxzzjlxzz33xC677JL3pFwdfPDB8eSTT8bee+8dRx55ZNx///15T4KS6XlLeqbI9LwlPVNket6SnikyPW9JzxSZnrekZ4pMz1vSM0Wm5y3pmSLT85b0TJHpeUt6LrO831usqCZNmpTV1NRkF110Ud5Tqs7GjRuzU089NevcuXM2bdq0vOfAdul52/RM0eh52/RM0eh52/RM0eh52/RM0eh52/RM0eh52/RM0eh52/RM0eh52/RM0eh52/RcFjMdezVRfX19dvbZZ2cdOnTIfvOb3+Q9p2rV19dn55xzTta+ffvsyiuvzHsObJWeS6NnikDPpdEzRaDn0uiZItBzafRMEei5NHqmCPRcGj1TBHoujZ4pAj2XRs8UgZ5Lo+cWm9n+4osvvjjvdxcrkv/9v/93XH311XHzzTfHqaeemvecqlVTUxPHH3981NfXxwUXXBBDhgyJESNG5D0LtqDn0uiZItBzafRMEei5NHqmCPRcGj1TBHoujZ4pAj2XRs8UgZ5Lo2eKQM+l0TNFoOfS6LnFXnPs1QSXXHJJXHrppTFlypQ46aST8p5TCKNGjYrVq1fHt771rTjooINir732ynsSRISem0PPVCs9N52eqVZ6bjo9U6303HR6plrpuen0TLXSc9PpmWql56bTM9VKz02nZ6qVnptOz832mo9xLNGVV16ZRUT2s5/9LO8phdPQ0JCNHz8+22GHHbKHHnoo7zmg5xbQM9VGz82nZ6qNnptPz1QbPTefnqk2em4+PVNt9Nx8eqba6Ln59Ey10XPz6Zlqo+fm03OzzKzJsizL69SsKG677bY46aST4jvf+U54I7TmqaurixNPPDEee+yxmDlzZuy55555T6KN0nPL6ZlqoeeW0zPVQs8tp2eqhZ5bTs9UCz23nJ6pFnpuOT1TLfTccnqmWui55fRMtdBzy+m5yWY59tqORYsWxf777x8nn3xyXH311XnPKbS1a9fGEUccETU1NfHwww9H586d855EG6Pn8tEzedNz+eiZvOm5fPRM3vRcPnomb3ouHz2TNz2Xj57Jm57LR8/kTc/lo2fypufy0XOTOPb6MHV1dXHkkUfG6tWr45FHHokddtgh70mFt2DBgjjwwAPj9NNPj5///Od5z6EN0XP56Zm86Ln89Exe9Fx+eiYvei4/PZMXPZefnsmLnstPz+RFz+WnZ/Ki5/LTM3nRc/npuWSz2l/sfeS26Z/+6Z/iz3/+c9x9990xYMCAvOckoU+fPrHnnnvG+eefH7W1tTFixIi8J9FG6Ln89Exe9Fx+eiYvei4/PZMXPZefnsmLnstPz+RFz+WnZ/Ki5/LTM3nRc/npmbzoufz0XLLXvLPXNtx2221x4oknxnXXXRdf+tKX8p6TnHPOOSd+97vfxRNPPBF77LFH3nNInJ5bl56pJD23Lj1TSXpuXXqmkvTcuvRMJem5demZStJz69IzlaTn1qVnKknPrUvPVJKeW5eet8vHOG7N6tWrY9iwYfHpT386fvvb3+Y9J0kbNmyIgw46KHbbbbe444478p5DwvTc+vRMpei59emZStFz69MzlaLn1qdnKkXPrU/PVIqeW5+eqRQ9tz49Uyl6bn16plL03Pr0vF2z2uW9oBpddNFFsX79+vjxj3+c95RkdenSJX71q1/FnXfeGX/4wx/ynkPC9Nz69Eyl6Ln16ZlK0XPr0zOVoufWp2cqRc+tT89Uip5bn56pFD23Pj1TKXpufXqmUvTc+vS8fd7Z63945plnYv/994/LL788JkyYkPec5J155pkxY8aMeO6556J79+55zyExeq4sPdOa9FxZeqY16bmy9Exr0nNl6ZnWpOfK0jOtSc+VpWdak54rS8+0Jj1Xlp5pTXquLD1vk49xfL8sy2LUqFGxbt26mDVrVrRr543PWttbb70VQ4cOjQkTJsQPf/jDvOeQED1Xnp5pLXquPD3TWvRceXqmtei58vRMa9Fz5emZ1qLnytMzrUXPladnWoueK0/PtBY9V56et8nHOL7ftGnT4sEHH4wrrrhCmBXSv3//uOSSS+Jf//VfY9GiRXnPISF6rjw901r0XHl6prXoufL0TGvRc+Xpmdai58rTM61Fz5WnZ1qLnitPz7QWPVeenmkteq48PW+bd/b6L1mWxX777RfDhw+PKVOm5D2nTamrq4va2toYO3Zs/PKXv8x7DgnQc370TLnpOT96ptz0nB89U256zo+eKTc950fPlJue86Nnyk3P+dEz5abn/OiZctNzfvS8Vd7Z6z233XZbzJ07N771rW/lPaXN6dixY1xwwQVxzTXXxJIlS/KeQwL0nB89U256zo+eKTc950fPlJue86Nnyk3P+dEz5abn/OiZctNzfvRMuek5P3qm3PScHz1vnXf2+i+f/OQno1+/fnHLLbfkPaVN2rhxY+y5555x6qmnxmWXXZb3HApOz/nSM+Wk53zpmXLSc770TDnpOV96ppz0nC89U056zpeeKSc950vPlJOe86VnyknP+dLzB3hnr4iIe+65Jx5++OG48MIL857SZnXu3DnOP//8uOKKK2Lp0qV5z6HA9Jw/PVMues6fnikXPedPz5SLnvOnZ8pFz/nTM+Wi5/zpmXLRc/70TLnoOX96plz0nD89f5Bjr4i4/PLLY9SoUXHwwQfnPaVNmzBhQnTu3DmuvfbavKdQYHquDnqmHPRcHfRMOei5OuiZctBzddAz5aDn6qBnykHP1UHPlIOeq4OeKQc9Vwc9Uw56rg563lKbP/Z6++23489//nOMHz8+7ylt3g477BCnnHJK/Pa3v817CgWl5+qhZ1pKz9VDz7SUnquHnmkpPVcPPdNSeq4eeqal9Fw99ExL6bl66JmW0nP10DMtpefqoecttfljrylTpkSHDh3ipJNOynsKEXH66afHs88+G0899VTeUyggPVcXPdMSeq4ueqYl9Fxd9ExL6Lm66JmW0HN10TMtoefqomdaQs/VRc+0hJ6ri55pCT1XFz3/tzZ/7DV58uT4/Oc/H927d897ChExcuTI2HvvvWPy5Ml5T6GA9Fxd9ExL6Lm66JmW0HN10TMtoefqomdaQs/VRc+0hJ6ri55pCT1XFz3TEnquLnqmJfRcXfT839r0sdcLL7wQs2fPjtNPPz3vKbzPaaedFlOmTInNmzfnPYUC0XN10jPNoefqpGeaQ8/VSc80h56rk55pDj1XJz3THHquTnqmOfRcnfRMc+i5OumZ5tBzddLzu9r0sddtt90W/fv3j1GjRuU9hfc59dRT480334xHH3007ykUiJ6rk55pDj1XJz3THHquTnqmOfRcnfRMc+i5OumZ5tBzddIzzaHn6qRnmkPP1UnPNIeeq5Oe39Wmj71mzJgRo0aNinbt2vRPQ9UZOnRoDBw4MO677768p1Ageq5OeqY59Fyd9Exz6Lk66Znm0HN10jPNoefqpGeaQ8/VSc80h56rk55pDj1XJz3THHquTnp+V5v9u3Lz5s3x4IMPusKsUqNGjYoZM2bkPYOC0HN10zNNoefqpmeaQs/VTc80hZ6rm55pCj1XNz3TFHqubnqmKfRc3fRMU+i5uumZptBzddNzGz72mj17dqxevVqcVWrUqFHx0EMPxYYNG/KeQgHoubrpmabQc3XTM02h5+qmZ5pCz9VNzzSFnqubnmkKPVc3PdMUeq5ueqYp9Fzd9ExT6Lm66bkNH3vNmDEjBgwYEHvvvXfeU9iKT3/607Fhw4aYNWtW3lMoAD1XNz3TFHqubnqmKfRc3fRMU+i5uumZptBzddMzTaHn6qZnmkLP1U3PNIWeq5ueaQo9Vzc9t+Fjr9mzZ8cRRxyR9wy2YdCgQTFo0KA2HSel03N10zNNoefqpmeaQs/VTc80hZ6rm55pCj1XNz3TFHqubnqmKfRc3fRMU+i5uumZptBzddNzGz72euGFF+JjH/tY3jP4EEOHDo0XX3wx7xkUgJ6rn54plZ6rn54plZ6rn54plZ6rn54plZ6rn54plZ6rn54plZ6rn54plZ6rn54plZ6rX1vvuU0ee9XV1cWiRYuitrY27ykt9sc//jGmTZuW94xWUVtbGy+88ELeM6hyei4GPVMKPReDnimFnotBz5RCz8WgZ0qh52LQM6XQczHomVLouRj0TCn0XAx6phR6Loa23nObPPZ66aWXoq6urlBxPvzww3HJJZfEX//61y0ev+SSS+L//J//s92vK6La2tqYN29e3jOocnouBj1TCj0Xg54phZ6LQc+UQs/FoGdKoedi0DOl0HMx6JlS6LkY9Ewp9FwMeqYUei6Gtt5zmzz2mjdvXtTU1MRee+2V95SS/eUvf4l//ud/jjfeeGOLx7/+9a/HBRdcsN2vK6La2tp4++23Y9myZXlPoYrpuRj0TCn0XAx6phR6LgY9Uwo9F4OeKYWei0HPlELPxaBnSqHnYtAzpdBzMeiZUui5GNp6zx3yHpCHBQsWxIABA6J79+55T2mxM888M+8JrWbvvfeOiIj58+fHTjvtlPMaqpWei0HPlELPxaBnSqHnYtAzpdBzMeiZUui5GPRMKfRcDHqmFHouBj1TCj0Xg54phZ6Loa333Cbf2WvlypXRp0+fVn+dp59+Ok4++eTYY4894sQTT4zf/va3cc8998Tf/u3fxvLly7fY8w//8A/x8Y9/PHbeeec4+eST44477mh8/uyzz45f//rXERHxla98Jc4999zG584999wYP378dr9ue68RETFhwoQ488wzY8GCBfHVr341dttttxg9enRcf/31ERHxk5/8JA444IDo379/HHvssTF//vwy/4xtqXfv3hER8c4777Tq61BsetYz6dCznkmHnvVMOvSsZ9KhZz2TDj3rmXToWc+kQ896Jh161nMRtMljrzVr1kSPHj1a9TUeeOCBOOyww+Ivf/lLHH744dG7d+/4+te/HhMnToybbrop1q1bFxERr732WnziE5+I6667Lj71qU/F+PHj4+WXX44TTjghfvrTn0bEuxeJu+yyS+Mfv//tAmfOnBn333//h35dKa8REfHUU0/F9OnT48gjj4yZM2fGqFGj4qGHHoozzjgjjjvuuPjmN78ZAwcOjMMPPzzuu+++GDNmTDQ0NLTaz2G3bt2iXbt2sXr16lZ7DYpPz3omHXrWM+nQs55Jh571TDr0rGfSoWc9kw4965l06FnPpEPPei6ErA0666yzsqOPPrrVfvz6+vps3333zXr37p29/PLLjY8//fTTWadOnbKIyF599dUsy7Ls7/7u77KIyGbNmtX4dRs3bsxGjx6dderUKVu+fHmWZVk2adKkLCKyJ598covXOvDAA7M99tij8ftb+7pSX+PAAw/MIiK75JJLGr/ujjvuyCIi69q1azZv3rzGx88888wsIrZ4rDV07949u/rqq1v1NSg2PeuZdOhZz6RDz3omHXrWM+nQs55Jh571TDr0rGfSoWc9kw4967kAZrbJd/ZavXp1q15iPvnkkzFnzpz4+7//+xg8eHDj4yNGjIhTTz218ftvv/12TJkyJQ466KA45JBDGh/v1KlTTJgwITZt2hR/+MMfWrSlqa/Rvn37OP/88xu/v++++0ZExOjRoxs/8zQi4qijjoqIiOeee65F+7anR48ebfcSk5LoWc+kQ896Jh161jPp0LOeSYee9Uw69Kxn0qFnPZMOPeuZdOhZz0XQIe8BeVizZk3079+/1X78l156KSIiamtrP/Dc8OHDG/943rx5kWVZrFmzZotoIyJWrVq1xY/VXE19jQEDBkSnTp0av9+lS5fGx9+vffv2ERGxadOmFu3bnrYcJ6XR87ZfQ88UjZ63/Rp6pmj0vO3X0DNFo+dtv4aeKRo9b/s19EzR6Hnbr6FnikbP234NPVM0et72a+iZotHztl9Dz9WjTR57ZVnWqj/+ihUr4v+zd+/RXtd1vsffe3MRBARBBJUULwwg4g0UJTXieE+d1CY1tZFJrdYMOUunoWxO2TQdtcmmtOykZYUIXmecJAJU1ApFRfE6CuKVS15A5CJ39vf84cjEYSO//du/vb/f72c/HmuxVu7fju+L6jlN+Ob3i4jo1avXVq9t2rRp8z9eunRpRETssMMO0aFDhy2+r1evXnHuueduEXM1mvqMLl26NPrz1Nfn8yZwdXV1Lf7vF+Wm520/Q8+UjZ63/Qw9UzZ63vYz9EzZ6Hnbz9AzZaPnbT9Dz5SNnrf9DD1TNnre9jP0TNnoedvP0DNlo+dtP0PPxdEmj726desWq1atarGfv3///hERMXPmzDj11FO3eG3OnDmb//E+++wTEREDBgyICRMmbPF9mzZtipUrV8aOO+7YrC2t8YyW1NJvkUj56bm2z2hJemZ79FzbZ7QkPbM9eq7tM1qSntkePdf2GS1Jz2yPnmv7jJakZ7ZHz7V9RkvSM9uj59o+oyXpme3Rc22f0ZL0zPboubbPaElUnxPpAAAgAElEQVRtued8zuty1tJv5XbAAQdE+/bt4957793i66+88krcd999m/96v/32i969e8e0adNiw4YNW3zvlVdeGTvvvHM89thjzdrSGs9oSW05Tiqj59o+oyXpme3Rc22f0ZL0zPboubbPaEl6Znv0XNtntCQ9sz16ru0zWpKe2R491/YZLUnPbI+ea/uMlqRntkfPtX1GS9Iz26Pn2j6jJbXlntvksVfXrl1bNM499tgjLrnkknjyySfjggsuiN/97ndx7bXXxkknnbTF93Xs2DGuvPLKWLFiRZx33nnx5JNPxvz58+Oaa66Jf/mXf4njjjsuPv7xj0dExF577RURETfccEM8/vjj23z2//99TXlG0WRZFu+//36bjZPK6FnPpEPPeiYdetYz6dCznkmHnvVMOvSsZ9KhZz2TDj3rmXToWc+lkLVB//RP/5QdeOCBLfqMDRs2ZN/5zneyXr16ZRGR9erVK/vKV76SffOb38wiInvvvfc2f++1116bderUKYuILCKy9u3bZ1/60peypUuXbv6eJUuWZEcccUQWEdmoUaM2f3348OHZ3nvvvd3vq+QZw4cPzwYNGrTFr2Pp0qVZRGRf/OIXt/j6+PHjs4jIbrvttub/i7UNK1euzCIimzJlSos9g/LTs55Jh571TDr0rGfSoWc9kw4965l06FnPpEPPeiYdetYz6dCznkvgkbosy7LGjsBS9v3vfz9+9KMfxYIFC1rlecuWLYudd945IiLGjh0bkydPjldffXWL71m5cmXMmTMnVq1aFUOHDo2Pfexjjf5cixcvjm7dum33OrGx76v0GUWxYMGC2HPPPWPmzJkxcuTIvOdQUHrWM+nQs55Jh571TDr0rGfSoWc9kw4965l06FnPpEPPeiYdetZzCcxqn/eCPOy7776xePHiWL16dey44441//nXrFkTo0ePjiOOOCL+7d/+bXOY77//fkybNi0OPvjgrf453bp1i2OOOWa7P/fuu+9e0YbGvq/SZxTFSy+9FBEffE4sbIuey0HPVELP5aBnKqHnctAzldBzOeiZSui5HPRMJfRcDnqmEnouBz1TCT2Xg56phJ7Loa333CaPvQYOHBgNDQ0xf/78OPDAA2v+83fu3Dl69uwZ1113XSxfvjxOOeWUWLZsWfzyl7+MRYsWxc9//vOaPzNFc+fOjR49esSuu+6a9xQKTM/loGcqoedy0DOV0HM56JlK6Lkc9Ewl9FwOeqYSei4HPVMJPZeDnqmEnstBz1RCz+XQ1nuuz3tAHvbbb79o3759vPjiiy32jIkTJ8Zll10WTz31VHzmM5+Jv//7v4927drFPffcU6pryDzNnTs3Bg0alPcMCk7P5aBnKqHnctAzldBzOeiZSui5HPRMJfRcDnqmEnouBz1TCT2Xg56phJ7LQc9UQs/l0NZ7bpPv7NWxY8fo379/zJ07t8We0b1797j66qvj6quvjuXLl0e3bt2ivr5N3tZV7cUXX4yBAwfmPYOC03M56JlK6Lkc9Ewl9FwOeqYSei4HPVMJPZeDnqmEnstBz1RCz+WgZyqh53LQM5XQczm09Z7b7H9aBg0aFC+88EKrPKt79+7CrMLcuXPbdJxUTs/Fp2cqpefi0zOV0nPx6ZlK6bn49Eyl9Fx8eqZSei4+PVMpPRefnqmUnotPz1RKz8XX1ntus/+JOeyww+KPf/xj3jPYhkWLFsVrr70Whx9+eN5TKAE9F5ueaQo9F5ueaQo9F5ueaQo9F5ueaQo9F5ueaQo9F5ueaQo9F5ueaQo9F5ueaQo9F5ue2/Cx1+jRo2PBggXx8ssv5z2FRtx3332xww47xMiRI/OeQgnoudj0TFPoudj0TFPoudj0TFPoudj0TFPoudj0TFPoudj0TFPoudj0TFPoudj0TFPoudj03IaPvUaMGBFdunSJGTNm5D2FRjzwwAMxcuTI6Ny5c95TKAE9F5ueaQo9F5ueaQo9F5ueaQo9F5ueaQo9F5ueaQo9F5ueaQo9F5ueaQo9F5ueaQo9F5ue2/CxV4cOHeKoo46KBx54IO8pNOLBBx+MT37yk3nPoCT0XGx6pin0XGx6pin0XGx6pin0XGx6pin0XGx6pin0XGx6pin0XGx6pin0XGx6pin0XGx6bsPHXhEfvPXejBkzoqGhIe8p/Jl58+bF66+/HqNHj857CiWi52LSM9XQczHpmWrouZj0TDX0XEx6php6LiY9Uw09F5OeqYaei0nPVEPPxaRnqqHnYtLzB9r0sdcpp5wSb731Vjz00EN5T+HP3H777bHrrrvGiBEj8p5Ciei5mPRMNfRcTHqmGnouJj1TDT0Xk56php6LSc9UQ8/FpGeqoedi0jPV0HMx6Zlq6LmY9PyBNn3stf/++8ewYcNiwoQJeU/hz0yYMCHOOeecaN++fd5TKBE9F5OeqYaei0nPVEPPxaRnqqHnYtIz1dBzMemZaui5mPRMNfRcTHqmGnouJj1TDT0Xk54/0KaPvSIizj///Ljzzjtj9erVeU8hIh599NGYO3dunH/++XlPoYT0XCx6pjn0XCx6pjn0XCx6pjn0XCx6pjn0XCx6pjn0XCx6pjn0XCx6pjn0XCx6pjn0XCx6/h9t/tjrc5/7XKxZsyb+8z//M+8pRMTNN98cgwcPjmHDhuU9hRLSc7HomebQc7HomebQc7HomebQc7HomebQc7HomebQc7HomebQc7HomebQc7HomebQc7Ho+X+0+WOv3r17x4knnhi/+tWv8p7S5q1duzZuu+02V5hUTc/FoWeaS8/FoWeaS8/FoWeaS8/FoWeaS8/FoWeaS8/FoWeaS8/FoWeaS8/FoWeaS8/Foecttfljr4iIL3/5y3HvvffGnDlz8p7Spv3iF7+I999/P8aMGZP3FEpMz8WgZ2pBz8WgZ2pBz8WgZ2pBz8WgZ2pBz8WgZ2pBz8WgZ2pBz8WgZ2pBz8WgZ2pBz8Wg5y3VZVmW5T2iCA477LDo379/3HHHHXlPaZM2bNgQAwYMiNNOOy2uvfbavOdQcnrOl56pJT3nS8/Ukp7zpWdqSc/50jO1pOd86Zla0nO+9Ewt6TlfeqaW9JwvPVNLes6Xnrcyyzt7/bevfe1rcdddd8Vzzz2X95Q2afz48bF48eK47LLL8p5CAvScLz1TS3rOl56pJT3nS8/Ukp7zpWdqSc/50jO1pOd86Zla0nO+9Ewt6TlfeqaW9JwvPW/NO3v9tyzL4sADD4xDDjkkxo8fn/ecNmXTpk2x//77xyc+8Ym44YYb8p5DAvScHz1Ta3rOj56pNT3nR8/Ump7zo2dqTc/50TO1puf86Jla03N+9Eyt6Tk/eqbW9JwfPTfKO3t9qK6uLr72ta/FpEmT4tlnn817Tpty0003xSuvvBLjxo3LewqJ0HN+9Eyt6Tk/eqbW9JwfPVNres6Pnqk1PedHz9SanvOjZ2pNz/nRM7Wm5/zomVrTc3703Djv7PVnGhoa4qijjor6+vr4wx/+EHV1dXlPSt67774bAwcOjM9//vNxzTXX5D2HhOi59emZlqLn1qdnWoqeW5+eaSl6bn16pqXoufXpmZai59anZ1qKnlufnmkpem59eqal6Ln16XmbvLPXn6uvr48f//jHMWvWLG+910rGjRsX7du3j29+85t5TyExem59eqal6Ln16ZmWoufWp2daip5bn55pKXpufXqmpei59emZlqLn1qdnWoqeW5+eaSl6bn163jbv7NWIsWPHxqRJk2Lu3LnRq1evvOck6/HHH48jjjgiJk6cGGeddVbec0iUnluHnmkNem4deqY16Ll16JnWoOfWoWdag55bh55pDXpuHXqmNei5deiZ1qDn1qFnWoOeW4eeP9Isx16NWL58eQwaNChOOeWUuPHGG/Oek6T169fHiBEjYpdddol777037zkkTM8tT8+0Fj23PD3TWvTc8vRMa9Fzy9MzrUXPLU/PtBY9tzw901r03PL0TGvRc8vTM61Fzy1Pz9s1q90VV1xxRd4riqZTp06x9957x9e//vXYf//9Y8iQIXlPSs5ll10WM2bMiHvuuSd69uyZ9xwSpueWp2dai55bnp5pLXpueXqmtei55emZ1qLnlqdnWoueW56eaS16bnl6prXoueXpmdai55an5+1a6J29PsLf/u3fxvjx42P27NkxcODAvOckY/LkyXHaaafF+PHj47zzzst7Dm2EnluGnsmDnluGnsmDnluGnsmDnluGnsmDnluGnsmDnluGnsmDnluGnsmDnluGnsmDnluGniviYxw/yrp162LkyJGxcePGePTRR6NTp055Tyq9N954Iw499NA488wz42c/+1nec2hD9Fx7eiYveq49PZMXPdeensmLnmtPz+RFz7WnZ/Ki59rTM3nRc+3pmbzoufb0TF70XHt6rphjr+2ZP39+DBs2LM4999y4/vrr855TamvWrIlRo0bF2rVrY9asWdG5c+e8J9HG6Ll29Eze9Fw7eiZveq4dPZM3PdeOnsmbnmtHz+RNz7WjZ/Km59rRM3nTc+3ombzpuXb03CSz2l1xxRVX5L2iyHr27BkDBw6McePGRadOneKoo47Ke1Ipbdq0Kc4666yYM2dOTJs2Lfr27Zv3JNogPdeGnikCPdeGnikCPdeGnikCPdeGnikCPdeGnikCPdeGnikCPdeGnikCPdeGnikCPdeGnptsoWOvCgwePDj69OkTl156afTr1y8OPfTQvCeVziWXXBJ33HFHTJkyJQ455JC859CG6bn59ExR6Ln59ExR6Ln59ExR6Ln59ExR6Ln59ExR6Ln59ExR6Ln59ExR6Ln59ExR6Ln59Nxkjr0qNXz48Ni4cWOMGzcuDjjggBg8eHDek0rjf//v/x3/9m//FrfeemuccMIJec8BPTeDnikaPVdPzxSNnqunZ4pGz9XTM0Wj5+rpmaLRc/X0TNHouXp6pmj0XD09UzR6rp6eq7IwMirW0NCQXXjhhVnnzp2z6dOn5z2nFL73ve9ldXV12U033ZT3FNiCnptOzxSVnptOzxSVnptOzxSVnptOzxSVnptOzxSVnptOzxSVnptOzxSVnptOzxSVnptOz1V7xLFXE23cuDE799xzs44dO2aTJk3Ke05hNTQ0ZP/wD/+Q1dfXZz/60Y/yngON0nNl9EwZ6LkyeqYM9FwZPVMGeq6MnikDPVdGz5SBniujZ8pAz5XRM2Wg58romTLQc2X03GyP+BjHJqqvr4/TTz89Vq1aFZdddll07do1Ro4cmfesQtm4cWN88YtfjBtvvDF+/etfx4UXXpj3JGiUnrdPz5SFnrdPz5SFnrdPz5SFnrdPz5SFnrdPz5SFnrdPz5SFnrdPz5SFnrdPz5SFnrdPzzWx0LFXFerq6uK4446Lzp07x7hx42L9+vUxevToqKury3ta7lauXBlnnnlmTJkyJe6+++749Kc/nfck+Eh63jY9UzZ63jY9UzZ63jY9UzZ63jY9UzZ63jY9UzZ63jY9UzZ63jY9UzZ63jY9UzZ63jY914xjr+b4+Mc/Hv3794+vf/3r8fDDD8cJJ5wQXbp0yXtWbp5++uk47rjj4tVXX41p06bFMccck/ckqJiet6RnykzPW9IzZabnLemZMtPzlvRMmel5S3qmzPS8JT1TZnrekp4pMz1vSc+UmZ63pOeaWlif94Ky++u//uuYOXNmzJs3L4YOHRr33Xdf3pNyMX78+Bg5cmT07ds3nnzyyTjssMPyngRNpucP6JkU6PkDeiYFev6AnkmBnj+gZ1Kg5w/omRTo+QN6JgV6/oCeSYGeP6BnUqDnD+i59hx71cDw4cNj9uzZceSRR8ZJJ50U3/3ud2PTpk15z2oVy5cvj3POOSfGjBkTl156acyYMSP22GOPvGdB1fSsZ9KhZz2TDj3rmXToWc+kQ896Jh161jPp0LOeSYee9Uw69KznFpFRMw0NDdkPf/jDbIcddsgOOeSQ7JFHHsl7UotpaGjIJkyYkO22225Znz59sunTp+c9CWpKz5AOPUM69Azp0DOkQ8+QDj1DOvQM6dAzpEPP1NAj3tmrhurq6uKSSy6J5557LnbdddcYOXJkfP7zn4933nkn72k1NW/evDjxxBPj/PPPj2OPPTaee+65OO644/KeBTWlZ0iHniEdeoZ06BnSoWdIh54hHXqGdOgZ0qFnasmxVwvYb7/9YurUqTFx4sS4//77Y/DgwXHdddfFmjVr8p7WLG+99VZceumlccABB8TSpUtj1qxZMX78+Nhll13yngYtRs+QDj1DOvQM6dAzpEPPkA49Qzr0DOnQM6RDz9RE3u8tlrrly5dn//AP/5DtuOOOWZ8+fbKrr746W7FiRd6zmuSNN97Ixo4dm3Xu3Dnr27dv9pOf/CTbuHFj3rOg1ekZ0qFnSIeeIR16hnToGdKhZ0iHniEdeoZ06JkqPeLYq5W89dZb2bhx47Ju3bplPXv2zK644ops0aJFec/6SM8++2x20UUXZR07dsz23HPP7LrrrstWr16d9yzInZ4hHXqGdOgZ0qFnSIeeIR16hnToGdKhZ0iHnmkix16tbenSpdm3vvWtrFevXlm7du2y448/Prv55puzVatW5T0ty7Is+9Of/pT94Ac/yA455JAsIrIBAwZkP//5z7N169blPQ0KR8+QDj1DOvQM6dAzpEPPkA49Qzr0DOnQM6RDz1Tokbosy7K8PkKyLVu3bl1Mnjw5xo8fH7/73e9ihx12iNNPPz1OPPHEGD16dPTt27fVtrz44ovxwAMPxD333BPTp0+Prl27xl/91V/F+eefH0cffXTU1dW12hYoIz1DOvQM6dAzpEPPkA49Qzr0DOnQM6RDz5AOPbMdsxx7FcCSJUvi1ltvjdtvvz1mzZoVGzZsiP333z9Gjx4do0aNioMOOij69+8f7du3b/az1q5dG/PmzYsnnngiZsyYETNmzIjFixdHt27dYvTo0fG5z30uTjvttOjUqVMNfmXQ9ugZ0qFnSIeeIR16hnToGdKhZ0iHniEdeoZ06JlGOPYqmvfffz/+8Ic/xAMPPBAzZsyIOXPmxKZNm6Jjx46x7777xqBBg2LgwIGx2267RdeuXaNbt27RvXv36Nq1a9x7773xyU9+Mt5///1YtWpVLFu2LFatWhVvvPFGvPjiizFv3rx4/fXXo6GhITp37hwjR46M0aNHx+jRo2P48OE1iR/4H3qGdOgZ0qFnSIeeIR16hnToGdKhZ0iHniEdeua/OfYqupUrV8bcuXNj3rx58cILL8S8efNi7ty58dZbb8WqVati1apV2/zn9ujRI7p27Rp77LHH5qg//DFgwIDo2LFjK/5KAD1DOvQM6dAzpEPPkA49Qzr0DOnQM6RDz5AOPbdZjr1S8N5778W//Mu/xDXXXBO33nprfOpTn4quXbvmPQuogp4hHXqGdOgZ0qFnSIeeIR16hnToGdKhZ0iHnpM0qz7vBTRfjx494u67746IiClTpggTSkzPkA49Qzr0DOnQM6RDz5AOPUM69Azp0DOkQ89p8s5eCXjyySdj2LBhERGx4447xpIlS6Jz5845rwKqoWdIh54hHXqGdOgZ0qFnSIeeIR16hnToGdKh5yR5Z68UTJo0afPnpa5ZsyamTJmS8yKgWnqGdOgZ0qFnSIeeIR16hnToGdKhZ0iHniEdek6TY6+Sy7Isbrnllli/fn1ERLRr1y4mTJiQ8yqgGnqGdOgZ0qFnSIeeIR16hnToGdKhZ0iHniEdek6Xj3EsuYceeihGjRq1xdc6dOgQ77zzTnTv3j2fUUBV9Azp0DOkQ8+QDj1DOvQM6dAzpEPPkA49Qzr0nCwf41h2f/6Wex9qaGiIu+++O6dFQLX0DOnQM6RDz5AOPUM69Azp0DOkQ8+QDj1DOvScLu/sVWIbNmyI3r17x/Lly7f4ert27WLUqFFx33335bQMaCo9Qzr0DOnQM6RDz5AOPUM69Azp0DOkQ8+QDj0nzTt7ldn06dO3CjMiYtOmTfHAAw/EW2+9lcMqoBp6hnToGdKhZ0iHniEdeoZ06BnSoWdIh54hHXpOm2OvEps4cWJ06NCh0dfq6+vjjjvuaOVFQLX0DOnQM6RDz5AOPUM69Azp0DOkQ8+QDj1DOvScNh/jWFKrV6+OXXbZJdasWdPo63V1dTF8+PB47LHHWnkZ0FR6hnToGdKhZ0iHniEdeoZ06BnSoWdIh54hHXpOno9xLKvf/OY3sXbt2m2+nmVZzJ49O1599dVWXAVUQ8+QDj1DOvQM6dAzpEPPkA49Qzr0DOnQM6RDz+lz7FVSt9xyS9TV1W33+2699dZWWAM0h54hHXqGdOgZ0qFnSIeeIR16hnToGdKhZ0iHntPnYxxLaNmyZdG3b99Yv379dr936NCh8cwzz7TCKqAaeoZ06BnSoWdIh54hHXqGdOgZ0qFnSIeeIR16bhN8jGMZ7bzzzrFu3brIsmzzj6lTp0ZExHvvvbfF14UJxaZnSIeeIR16hnToGdKhZ0iHniEdeoZ06BnSoee2wbEXAAAAAAAAAABACTj2AgAAAAAAAAAAKAHHXgAAAAAAAAAAACXg2AsAAAAAAAAAAKAEHHsBAAAAAAAAAACUgGMvAAAAAAAAAACAEnDsBQAAAAAAAAAAUAKOvQAAAAAAAAAAAErAsRcAAAAAAAAAAEAJOPYCAAAAAAAAAAAoAcdeAAAAAAAAAAAAJeDYCwAAAAAAAAAAoAQcewEAAAAAAAAAAJSAYy8AAAAAAAAAAIAScOwFAAAAAAAAAABQAo69AAAAAAAAAAAASsCxFwAAAAAAAAAAQAk49gIAAAAAAAAAACgBx14AAAAAAAAAAAAl4NgLAAAAAAAAAACgBBx7AQAAAAAAAAAAlIBjLwAAAAAAAAAAgBJw7AUAAAAAAAAAAFACjr0AAAAAAAAAAABKwLEXAAAAAAAAAABACTj2AgAAAAAAAAAAKAHHXgAAAAAAAAAAACXg2AsAAAAAAAAAAKAEHHsBAAAAAAAAAACUgGMvAAAAAAAAAACAEnDsBQAAAAAAAAAAUAKOvQAAAAAAAAAAAEqgLsuyLO8RZfTggw/GZz/72bxnbNbQ0BAbN26Mjh075j1lCy+//HJ069Yt7xnwkfRcGT1TBnqujJ4pAz1XRs+UgZ4ro2fKQM+V0TNloOfK6Jky0HNl9EwZ6LkyeqYM9FwZPVdtVvu8F5TVunXr4p133ol//dd/jU6dOuU9p3BeeOGFuP7666OhoSHvKbBdev5oeqZM9PzR9EyZ6Pmj6Zky0fNH0zNlouePpmfKRM8fTc+UiZ4/mp4pEz1/ND1TJnr+aHpuPsdezXTRRRdF9+7d855RONOmTYvrr78+7xnQJHpunJ4pIz03Ts+UkZ4bp2fKSM+N0zNlpOfG6Zky0nPj9EwZ6blxeqaM9Nw4PVNGem6cnpuvPu8BAAAAAAAAAAAAbJ9jLwAAAAAAAAAAgBJw7AUAAAAAAAAAAFACjr0AAAAAAAAAAABKwLEXAAAAAAAAAABACTj2AgAAAAAAAAAAKAHHXgAAAAAAAAAAACXg2AsAAAAAAAAAAKAEHHsBAAAAAAAAAACUgGMvAAAAAAAAAACAEnDsBQAAAAAAAAAAUAKOvQAAAAAAAAAAAErAsRcAAAAAAAAAAEAJOPZKSENDQ94TAID/z6pVq/KeANTAxo0bY9OmTXnPAGpo5cqVsXTp0rxnAAARkWVZLFu2LO8ZAMCf2bhxY6xZsybvGUANbNy4MbIsy3sGNeTYq+TmzZsXl1xySfTv3z969eoVp5xyStx///15zwKaacCAAXHRRRflPQOo0pNPPhknnHBC9OzZM7p16xZ9+/aNL37xi7FixYq8pwFNdMstt8TIkSOjW7du0alTpxg0aFD8+Mc/9gctoOSWLl0agwYNiqOPPjrvKUATNTQ0xEEHHRRDhgzZ6senPvWpvOcBTbRs2bK46KKLokuXLtGzZ8/Yaaed4qyzzoolS5bkPQ2o0P3339/ofy//+Y/Pf/7zec8EmmD69Olx6KGHxo477hhdunSJvffe2++HQUlNmTIlDj300OjatWv06dMnzj777Pj973+f9yxqoH3eA6jemjVr4rTTTotFixbF5z73uejVq1fcddddceqpp8bUqVPjmGOOyXsiUIVf/epXMX/+/Bg1alTeU4AqzJ49O4499tho3759fO5zn4uePXvGbbfdFjfccEPMmTMnZs2aFfX17u2hDMaPHx8XXHBBDBw4MC655JJYs2ZN3HXXXTF27Nh477334p/+6Z/ynghU6Qtf+EIsXrw4unfvnvcUoIkWLlwYzzzzTAwdOjR69uy5xWv//18DxbZ+/fo4+eST49FHH42/+Zu/iSOPPDIee+yxuOGGG2LhwoUxc+bMvCcCFairq4sOHTo0+tratWtj7ty5MWDAgFZeBVTr/vvvjxNPPDF69OgRY8aMiQ4dOsSdd94ZY8eOjXfeeSe+/e1v5z0RqNCkSZPi3HPPjf79+8dXv/rVWLRoUdx+++3xu9/9Lh577LEYOHBg3hNpBsdeJfaNb3wj5s6dG1OmTImTTjopIiIuueSSOOigg+KCCy6IV155JeeFQKUWLlwY3/72t+Pxxx+Pp59+Ou85QDP8+Mc/jjVr1sSjjz4aBx98cERE/PM//3Mce+yxcf/998ddd90Vf/VXf5XzSqAS11xzTQwYMCAeffTR2GmnnSIiYty4cbH33nvHT37yE8deUFI//elPY+rUqY5CoKTmz58fERE333xzHHTQQTmvAZrj17/+dcyaNSu+//3vx2WXXRYRHxxk19XVxc9+9rOYPXt2DB8+POeVwPaMHj06nnrqqUZfGzt2bKxYsSL+7//9v628CqjWd77znciyLB5//PHYd999IyLiyiuvjH79+sU111wT3/zmN6Ndu3Y5rwS2Z/369fHVr341unTpEk8++T+RxfQAACAASURBVGT06NEjIiKuuuqq6NevX5x99tkxZ86cnFfSHN5WosR+9atfxYEHHrj50Csiok+fPnHCCSfEq6++Go8++miO64CmWLlyZcybNy+6d+8ehx12WN5zgGZ4+OGH4+CDD9586PWhMWPGRETEY489lscsoImWL18ezz33XJx00kmbD70iInbfffcYPXp0vPvuu7Fhw4YcFwLVeP755+Oyyy6Lq6++Onbbbbe85wBVeOmll6Kuri7+4i/+Iu8pQDNNmDAhdt111xg7duwWX7/88stj/Pjx0bt375yWAbUwderUuP7662PChAnRt2/fvOcAFVqwYEH069dv86FXRES3bt3i8MMPjw0bNsTatWtzXAdU6r/+679i0aJFcfLJJ28+9IqI2HXXXeP444+Pp556KpYvX57jQprLsVdJLVmyJJYtWxbHHnvsVq99+Jtds2fPbu1ZQJUGDx4cDz30UDz00EMxceLEvOcAVdqwYUOccMIJ8Xd/93dbvbZgwYKI8NEyUBbt27eP3//+9zFu3Lgtvr58+fJ45pln4vjjj9/mx1QAxbR27do455xz4uijj46vfOUrec8BqjR//vzYc889Y9WqVTF58uT4xS9+EQ8//HBs2rQp72lAE7300ktx0kknRceOHeOVV16J3/zmN/HEE0/E7rvvHueff37stddeeU8EqrR06dL4m7/5mzjrrLNi9OjRec8BmuD000+PhQsXxpQpUzZ/be7cufHAAw/EJz/5yejSpUuO64BKLV68OCIiDj/88K1e+/Brzz//fKtuorZ8jGNJzZ07NyKi0T+J/OFnq7799tutugkA2roOHTrEddddt9XX33777fjJT34SHTp0iFNOOSWHZUBTdenSJT7+8Y9v/usf/vCH8frrr8dvf/vb2LRpU3z961/PcR1Qja9+9auxePHimDZtWtTV1eU9B6jS/PnzY8WKFdG/f/9YvXr15q8PGzYsbr755hg8eHCO64BKrVq1Kv70pz9Fnz594tRTT43Jkydvfm3QoEHxy1/+Mo444ogcFwLN8bd/+7fx3nvvxVVXXZX3FKCJxo4dG/fff3+ccsopMXLkyOjUqVM88MADsfvuu8d3v/vdvOcBFfrw3flmzJix+SPTP/Rf//VfEfHBsdfIkSNbfRu14Z29Smr+/PkR0fi7g3z4J57ee++9Vt0EAGxt8uTJMXTo0Fi0aFF8//vfj6FDh+Y9CajCN77xjfjhD38YL730Uuyyyy7RuXPnvCcBTTB58uT48Y9/HDfeeKOPb4SSmz9/fqxcuTK+9a1vxbx582LmzJlx8cUXx1NPPRV/+Zd/Ge+//37eE4EKfPj72z/60Y/i1Vdfjeuuuy6eeOKJuPbaa+P111+Pv/zLv/SHmaGknn/++bj99tvj0ksvjT333DPvOUAT9ejRI/baa6/Isiwef/zxmDVrVjQ0NET79u1j5cqVec8DKjRgwIAYPnx43H///fHzn/88Vq5cGcuXL4+f/OQncccdd0REeIfsknPsVVI77LBDRES8++67W7324W9q7bzzzq26CQD4Hy+//HKcdtppceqpp8ZOO+0U06dP95FRUGLvv/9+zJs3L2666aZYunRpjBgxIt588828ZwEV+NOf/hRjxoyJCy+8ME4//fS85wDN9Ktf/SrmzJkT//iP/xgDBgyIkSNHxs9+9rO49NJL46WXXop///d/z3siUIEPf1973bp1ceedd8bf/d3fxaGHHhpjx46NSy+9NN5+++249dZbc14JVON73/tedOzYMS699NK8pwBVOProo+M///M/4/rrr48333wz3nnnnbjrrrtixYoV8alPfSpee+21vCcCFaivr4+bbrop+vbtGxdddFH07ds3+vbtG5deemlcdNFFERExZMiQnFfSHI69Sqpv374REfHKK69s9dqH/0O5d+/erboJAPjAhAkT4uCDD44HH3wwvve978Vzzz0Xxx57bN6zgCbIsiwaGhq2+NqAAQNizJgxcdVVV8WGDRtiypQpOa0DmuKnP/1pLFmyJJYvXx5jxozZ/GPRokWxePHiGDNmTFx55ZV5zwQqNGzYsDjggAO2+vrJJ58cERHPPfdca08CqrDHHntERMQRRxwRgwYN2uK1U089NSIiXnjhhVbfBTTPG2+8ERMnToxPf/rTjX4yDVBsL7zwQjz77LMxatSo+PKXvxw777xzdO7cOc4444y44IILYvXq1f5wBZTI0KFD49lnn42f//zn8aUvfSm+853vxGOPPRaDBw+OCMdeZdc+7wFU5y/+4i+irq6u0WOvp59+OiIiRowY0dqzAKDNmzx5cnz+85+PI488MiZNmuTt6qGkrrrqqrj88svjt7/97ea/efyhXXbZJSIiFixYkMc0oIl69+4dBx98cLz00ktbfH3dunXR0NAQTz31VNTX+7NwUAYLFiyIxx57LA477LCt/v/sD3+PbNddd81jGtBEHza8YcOGrV5bs2ZNRER07969VTcBzXfDDTfExo0b4wtf+ELeU4AqPPPMMxER8YlPfGKr14477rj4wQ9+EMuWLWvtWUAV1q9fH6+++mrssssuW/338lVXXRW77babw+yS87uZJbX77rvHMcccE7///e/j5Zdf3vz1DRs2xMSJE2OPPfaIYcOG5bgQANqmyy+/PLp37x533nmnQy8osaFDh0ZExL333rvVazfeeGNERBx00EGtugmoztixY2POnDlb/Rg8eHDss88+MWfOnPjFL36R90ygAu+++2585jOfie9+97tbvXbbbbdFxAcfOwMUX+fOnWP06NHxxBNPbHWQfffdd0dExMiRI/OYBjTD9OnTo2fPnvG//tf/ynsKUIX9998/IiLuvPPOrV67/fbbI+J/fs8MKLbVq1fHoEGDYuzYsVt8feHChXHXXXfFaaedltMyasU7e5XY5ZdfHp/61Kfis5/9bHzjG9+InXfeOa6++up45ZVXYvLkyVFXV5f3RABoU5YtWxbPPfdcHHLIIXHNNdc0+j2jRo2KU045pZWXAU118sknx9ChQ+O6666LHj16xAknnBCLFi2KO+64I+6555447LDDtAwArezAAw+MI488Mm688cbo1atXnHHGGdHQ0BATJkyI6dOnx5lnnhmHH3543jOBCl111VUxYsSI+OxnPxv/5//8n/jYxz4WM2bMiJ/97Gdx1FFH+RtQUDLLli2LJ554Ik499VTvnAslNWTIkDj++ONj+vTpceKJJ8Z5550X/fv3j//4j/+ISZMmxZAhQ+LTn/503jOBCvTo0SNGjx4dd955Zxx77LFx+umnx/z58+Piiy+Ofv36xb/+67/mPZFmcuxVYscff3zcfPPNceGFF8aZZ54ZER9E+4Mf/CBOOumknNcBQNszc+bMyLIsnnzyyXjyyScb/Z66ujoHIlAC9fX1cffdd8d5550XV1xxRVxxxRWbXzvjjDPi2muvjfbt/c8pAGhNdXV1cffdd8eFF14YV155ZVx55ZWbX/vyl7+8zT9wARTTYYcdFr/97W9jzJgxW3x0+mmnnRa//OUvc1wGVOOBBx6IhoaGOPLII/OeAlSpvr4+Jk2aFGPHjo1JkybFtGnTNr92zDHHxE033RQdO3bMcSHQFDfddFOcc8458YUvfGHzRzkeeuihMXHixOjWrVvO62guf3ei5M4+++z4zGc+E7Nnz46GhoYYMWJEtGvXLu9ZQDPst99+kWVZ3jOAKpxyyin6hYTss88+8cc//jFeffXVePHFF6Nz584xcODA2GOPPfKeBtTAE088kfcEoAq77rpr/OY3v4nXX3895s6dGz169IjBgwf7jWooqZNOOikWLFgQzz33XLzzzjsxdOjQ2G233fKeBVThjDPO8PtikICePXvGLbfcEldffXU8//zzsWbNmhg0aFAMHDjQp0pByey1114xc+bMePbZZ+OVV16JQw89NPbcc8+8Z1Ejjr0S0L59+zjiiCPyngEAAMmpr6+PfffdN/bdd9+8pwAAf2avvfaKvfbaK+8ZQA106NAhDjnkkLxnAAB/pl+/ftGvX7+8ZwDNVFdXFwceeGAceOCBeU+hxnxoNgAAAAAAAAAAQAk49gIAAAAAAAAAACgBx14AAAAAAAAAAAAl4NgLAAAAAAAAAACgBBx7AQAAAAAAAAAAlIBjLwAAAAAAAAAAgBJw7AUAAAAAAAAAAFACjr0AAAAAAAAAAABKwLEXAAAAAAAAAABACTj2AgAAAAAAAAAAKAHHXgAAAAAAAAAAACXg2AsAAAAAAAAAAKAEHHsBAAAAAAAAAACUgGMvAAAAAAAAAACAEnDsBQAAAAAAAAAAUAKOvRLyH//xH3lPAGpEz5AOPUM69Azp0DOkQ8+QDj1DOvQM6dAzpEPPaWmf94Cy22+//aKuri7vGdHQ0BDLli2LXr165T0lIiLWr1+f9wRoMj03Ts+UkZ4bp2fKSM+N0zNlpOfG6Zky0nPj9EwZ6blxeqaM9Nw4PVNGem6cnikjPTdOz83n2KtK+++/f1x33XV5z9js3nvvjd/85jdxzjnnxIABA/Kes1nnzp3zngDbpefK6Jky0HNl9EwZ6LkyeqYM9FwZPVMGeq6MnikDPVdGz5SBniujZ8pAz5XRM2Wg58rouXp1WZZleY+g+QYPHhwvvvhiXHTRRXHDDTfkPQdoBj1DOvQM6dAzpEPPkA49Qzr0DOnQM6RDz5AOPSdnlmOvBDz//PNxwAEHRETETjvtFO+880507Ngx51VANfQM6dAzpEPPkA49Qzr0DOnQM6RDz5AOPUM69JykWfV5L6D5Jk6cGB06dIiIiJUrV8b06dNzXgRUS8+QDj1DOvQM6dAzpEPPkA49Qzr0DOnQM6RDz2ly7JWACRMmxIYNGyIiol27dnHLLbfkvAiolp4hHXqGdOgZ0qFnSIeeIR16hnToGdKhZ0iHntPkYxxL7pFHHomRI0du8bUddtghlixZEl27ds1pFVANPUM69Azp0DOkQ8+QDj1DOvQM6dAzpEPPkA49J8vHOJbdpEmTtvo81Q0bNsQ999yT0yKgWnqGdOgZ0qFnSIeeIR16hnToGdKhZ0iHniEdek6XY68S27RpU0ycODHWr1+/xdfr6upiwoQJOa0CqqFnSIeeIR16hnToGdKhZ0iHniEdeoZ06BnSoee0OfYqsRkzZsTSpUu3+vqmTZti2rRpjb4GFJOeIR16hnToGdKhZ0iHniEdeoZ06BnSoWdIh57T5tirxCZOnLjVW+79ubvuuqsV1wDNoWdIh54hHXqGdOgZ0qFnSIeeIR16hnToGdKh57TVZVmW5T2Cplu7dm307t07Vq1a1ejr9fX1ceSRR8Yf//jHVl4GNJWeIR16hnToGdKhZ0iHniEdeoZ06BnSoWdIh56TN8s7e5XUlClT4v3339/m6w0NDfHwww/HwoULW3EVUA09Qzr0DOnQM6RDz5AOPUM69Azp0DOkQ8+QDj2nz7FXSU2cODHq6uq2+3233XZbK6wBmkPPkA49Qzr0DOnQM6RDz5AOPUM69Azp0DOkQ8/p8zGOJbRixYro06dPrF27drvfO2zYsJg9e3YrrAKqoWdIh54hHXqGdOgZ0qFnSIeeIR16hnToGdKh5zZhlmOvEtq0aVOsWLFii6/NmDEjPvOZz8Rrr70WO+200xav7bzzzq05D2gCPUM69Azp0DOkQ8+QDj1DOvQM6dAzpEPPkA49twmz2ue9gKZr167dVsF17do1IiJ69OgR3bt3z2MWUAU9Qzr0DOnQM6RDz5AOPUM69Azp0DOkQ8+QDj23DfV5DwAAAAAAAAAAAGD7HHsBAAAAAAAAAACUgGMvAAAAAAAAAACAEnDsBQAAAAAAAAAAUAKOvQAAAAAAAAAAAErAsRcAAAAAAAAAAEAJOPYCAAAAAAAAAAAoAcdeAAAAAAAAAAAAJeDYCwAAAAAAAAAAoAQcewEAAAAAAAAAAJSAYy8AAAAAAAAAAIAScOwFAAAAAAAAAABQAo69AAAAAAAAAAAASsCxFwAAAAAAAAAAQAk49gIAAAAAAAAAACgBx14AAAAAAAAAAAAl4NgLAAAAAAAAAACgBBx7AQAAAAAAAAAAlIBjLwAAAAAAAAAAgBJw7AUAAAAAAAAAAFACjr0AAAAAAAAAAABKwLEXAAAAAAAAAABACTj2AgAAAAAAAAAAKAHHXgAAAAAAAAAAACXg2AsAAAAAAAAAAKAEHHsBAAAAAAAAAACUgGMvAAAAAAAAAACAEnDsBQAAAAAAAAAAUAKOvQAAAAAAAAAAAErAsRcAAAAAAAAAAEAJOPYCAAAAAAAAAAAogbosy7K8R/DRFixYEHPnzo3XXnstXnvttVi4cGEsXbo0li5dGu+++25s2LAhNm7cGO+++2707t076urqonPnztGzZ8/o1atX9O7dO/r16xd777137L333rH//vtHz5498/5lQZukZ0iHniEdeoZ06BnSoWdIh54hHXqGdOgZ0qHnNmmWY6+Cefvtt+Phhx+OmTNnxuzZs+OZZ56Jd999NyIiunbtGv37948999wzevXqFbvsskv06tUr2rdvHxERXbp0iffffz8iItauXRtLly6NJUuWxNtvvx1vvPFGvPHGG7Fu3bqIiOjXr18cdNBBcfjhh8fHP/7xGDFiRHTt2jWfXzQkSs+QDj1DOvQM6dAzpEPPkA49Qzr0DOnQM6RDz/w3x15527RpUzz00EMxderUmDp1ajz77LNRX18fQ4YMiSOOOCIOPPDAGDp0aAwZMiR22WWXZj0ry7JYuHBhPP/88/H000/H008/HY888ki89tpr0b59+xg5cmSceOKJcdJJJ8XBBx9co18htB16hnToGdKhZ0iHniEdeoZ06BnSoWdIh54hHXpmGxx75eXpp5+O8ePHx8SJE+PNN9+MgQMHxsknnxzHHXdcjBw5Mrp3795qWxYvXhy///3vY9q0aTF16tR48803Y7/99ovPfvazcfbZZ8fQoUNbbQuUkZ4hHXqGdOgZ0qFnSIeeIR16hnToGdKhZ0iHntkOx16t6c0334xbbrklxo8fH88880zsu+++cd5558V5550X++23X97zIuKDa83HH3887rjjjrjjjjvi9ddfj8MPPzwuvvjiOPvss6NLly55T4RC0DOkQ8+QDj1DOvQM6dAzpEPPkA49Qzr0DOnQM00wKzJa3Msvv5xdfPHFWceOHbMePXpkF198cfaHP/wha2hoyHvaR2poaMgefPDB7Nxzz806deqU9erVK/v2t7+dvfvuu3lPg9zoGdKhZ0iHniEdeoZ06BnSoWdIh54hHXqGdOiZKjzi2KsFPf/889l5552XtW/fPtt3332zG264IVuzZk3es6qyZMmS7Fvf+lbWs2fPbKeddsq+9rWvZW+99Vbes6DV6BnSoWdIh54hHXqGdOgZ0qFnSIeeIR16hnTomWZw7NUSXnrppezMM8/M6uvrsyFDhmQTJkzINmzYkPesmlixYkV29dVXZ3369Ml23HHH7O///u+zZcuW5T0LWoyeIR16hnToGdKhZ0iHniEdeoZ06BnSoWdIh56pAcdetbR69ersm9/8ZtapU6ds6NCh2b//+79nmzZtyntWi1i9enV27bXXZn369Mn69OmT/frXvy782whCU+hZz6RDz3omHXrWM+nQs55Jh571TDr0rGfSoWc9kw4965l06FnPNeTYq1buu+++bNCgQVmXLl2yb33rW9m6devyntQqli1bln3lK1/J2rVrlx199NHZM888k/ckaDY965l06FnPpEPPeiYdetYz6dCznkmHnvVMOvSsZ9KhZz2TDj3rucYeqQ+a5a233oozzjgjjj322DjooINi3rx5ccUVV0THjh3zntYqevToET/60Y/i0UcfjXXr1sWwYcNi3LhxsW7durynQZPpWc+kQ896Jh161jPp0LOeSYee9Uw69Kxn0qFnPZMOPeuZdOhZzy0m73OzMpsxY0a22267Zfvss09277335j0nd5s2bcp++tOfZt26dcuGDx+evfzyy3lPgorpeUt6psz0vCU9U2Z63pKeKTM9b0nPlJmet6RnykzPW9IzZabnLemZMtPzlvRMmel5S3quKe/sVY0sy+Lqq6+O4447LkaMGBGzZ8+OY489Nu9Zuauvr48vfelL8cQTT8TGjRvjkEMOiVtvvTXvWfCR9Nw4PVNGem6cnikjPTdOz5SRnhunZ8pIz43TM2Wk58bpmTLSc+P0TBnpuXF6poz03Dg911heZ2Zl9dZbb2UnnHBCtsMOO2Q//OEP855TWGvXrs2+8pWvZBGRnX/++dnq1avzngRb0XNl9EwZ6LkyeqYM9FwZPVMGeq6MnikDPVdGz5SBniujZ8pAz5XRM2Wg58romTLQc2X03GyP1GVZluV1aFY2zz77bJx44onRpUuXuO222+KQQw7Je1Lh3X777XHRRRfFkCFDYvLkydGzZ8+8J0FE6Lkaeqao9Nx0eqao9Nx0eqao9Nx0eqao9Nx0eqao9Nx0eqao9Nx0eqao9Nx0eqao9Nx0eq7aLMdeFfrDH/4Qp512Whx88MFx9913R/fu3fOeVBovvvji5v+jNnXq1PjYxz6W9yTaOD1XT88UjZ6rp2eKRs/V0zNFo+fq6Zmi0XP19EzR6Ll6eqZo9Fw9PVM0eq6enikaPVdPz1WZVZ/3gjK455574oQTTohPfOITMWXKFGE20aBBg+KRRx6JDh06xBFHHBHPPPNM3pNow/TcPHqmSPTcPHqmSPTcPHqmSPTcPHqmSPTcPHqmSPTcPHqmSPTcPHqmSPTcPHqmSPTcPHqujmOv7Rg/fnyceeaZcdZZZ8Wdd94ZnTt3zntSKe22227x4IMPxj777BOjRo2KmTNn5j2JNkjPtaFnikDPtaFnikDPtaFnikDPtaFnikDPtaFnikDPtaFnikDPtaFnikDPtaFnikDPtaHnpnPs9RFuuummuOCCC2LcuHHxy1/+Mtq3b5/3pFLr0aNHTJs2LY466qg48cQT4/HHH897Em2InmtLz+RJz7WlZ/Kk59rSM3nSc23pmTzpubb0TJ70XFt6Jk96ri09kyc915aeyZOea0vPTVOXZVmW94giuueee+KMM86Iyy+//P+1d+fRVZcH/sc/WSBhN6yiIosioCRQlUU2qwJWrFZtlXoCItWKrWJtZ6xKnSPoqbZ21FKdMzq24wJVS5mKCwIzFUS2COISEFkFBxAVYmRfTHh+f/RHJjE34Sa53/t8n+d5v87hHLn3y/1+iOfNX8/5Xk2ZMsX2HK98/fXXuuKKK7R8+XItWrRIPXv2tD0JnqPn6NAz0o2eo0PPSDd6jg49I93oOTr0jHSj5+jQM9KNnqNDz0g3eo4OPSPd6Dk69Ix0o+fo0HNSijjslUBRUZEuuugijRkzRk8++aTtOV46ePCgRowYoU8++URLly5Vp06dbE+Cp+g5evSMdKHn6NEz0oWeo0fPSBd6jh49I13oOXr0jHSh5+jRM9KFnqNHz0gXeo4ePSNd6Dl69HxcHPb6ptWrV2vYsGEaNmyYZs6cyaP2IlRSUqJhw4YpIyNDixYtUl5enu1J8Aw9pw89I2r0nD70jKjRc/rQM6JGz+lDz4gaPacPPSNq9Jw+9Iyo0XP60DOiRs/pQ8+IGj2nDz3XisNele3YsUPnnnuuevTooTlz5ignJ8f2JO9t3bpVgwYN0mmnnaa///3v/GOIlKHn9KNnRIWe04+eERV6Tj96RlToOf3oGVGh5/SjZ0SFntOPnhEVek4/ekZU6Dn96BlRoef0o+caFWVNnjx5su0VcVBeXq4rrrhChw8f1vz589WsWTPbk4LQqlUrjRgxQvfdd58OHDig4cOH254ED9CzHfSMKNCzHfSMKNCzHfSMKNCzHfSMKNCzHfSMKNCzHfSMKNCzHfSMKNCzHfSMKNCzHfRco20c9vr/pkyZohdffFFz585Vly5dbM8JSocOHXTiiSfqzjvv1Nlnn60ePXrYngTH0bM99IxUo2d76BmpRs/20DNSjZ7toWekGj3bQ89INXq2h56RavRsDz0j1ejZHnpGqtGzPfSc0Da+xlHSm2++qeHDh+vxxx/XzTffbHtOsK677jrNnTtX7733nk4++WTbc+Aoeo4HekYq0HM80DNSgZ7jgZ6RCvQcD/SMVKDneKBnpAI9xwM9IxXoOR7oGalAz/FAz0gFeo4Heq6iKPjDXl988YX69u2rIUOGaMaMGbbnBG3//v3q16+f2rVrpzfeeIPvW0Wd0XN80DMaip7jg57RUPQcH/SMhqLn+KBnNBQ9xwc9o6HoOT7oGQ1Fz/FBz2goeo4PekZD0XN80HMVRcF/jWNhYaFKS0s1e/Zs5eTk2J4TtMaNG2vo0KG67777lJOTo8GDB9ueBMfQc3zQMxqKnuODntFQ9Bwf9IyGouf4oGc0FD3HBz2joeg5PugZDUXP8UHPaCh6jg96RkPRc3zQcxXbMm0vsGnu3Ll6+eWX9R//8R9q2bKl7TmQVFBQoEmTJmnKlCnasmWL7TlwCD3HDz2jvug5fugZ9UXP8UPPqC96jh96Rn3Rc/zQM+qLnuOHnlFf9Bw/9Iz6ouf4oWfUFz3HDz3/n2C/xvHgwYPq3bu3Bg4cqD//+c+256CSI0eOqKCgQL1799bMmTNtz4ED6Dm+6Bl1Rc/xRc+oK3qOL3pGXdFzfNEz6oqe44ueUVf0HF/0jLqi5/iiZ9QVPccXPaOu6Dm+6FmSVBTsk70eeOAB7dy5U7/73e9sT8E3NG7cWI899pj+67/+S7Nnz7Y9Bw6g5/iiZ9QVPccXPaOu6Dm+6Bl1Rc/xRc+oK3qOL3pGXdFzfNEz6oqe44ueUVf0HF/0jLqi5/ii538I8sleGzZsUEFBgX7zm9/oZz/7me05qME111yjd999V6tXr1Zubq7tOYgpenYDPSMZVUz16gAAIABJREFU9OwGekYy6NkN9Ixk0LMb6BnJoGc30DOSQc9uoGckg57dQM9IBj27gZ6RDHp2Q+A9F2VNnjx5su0V6XbjjTcqKytLf/zjH5WZGezDzWJv0KBB+u1vf6smTZpo8ODBtucgpujZDfSMZNCzG+gZyaBnN9AzkkHPbqBnJIOe3UDPSAY9u4GekQx6dgM9Ixn07AZ6RjLo2Q2B97wtuCd7rVmzRvn5+Zo1a5Yuu+wy23NwHHfeeaeeffZZbd68WU2aNLE9BzFDz26hZ9SGnt1Cz6gNPbuFnlEbenYLPaM29OwWekZt6Nkt9Iza0LNb6Bm1oWe30DNqQ89uCbjnouCOId5///3q1auXLr30UttTkIRf/OIX2rt3r/70pz/ZnoIYome30DNqQ89uoWfUhp7dQs+oDT27hZ5RG3p2Cz2jNvTsFnpGbejZLfSM2tCzW+gZtaFnt4Tcc1BP9tq0aZN69uyp6dOna/To0bbnIEm33XabZs2apY0bN6px48a25yAm6NlN9IxE6NlN9IxE6NlN9IxE6NlN9IxE6NlN9IxE6NlN9IxE6NlN9IxE6NlN9IxE6NlNgfYc1pO9HnjgAXXu3Fk/+MEPbE9BHfzyl7/U559/runTp9ueghihZzfRMxKhZzfRMxKhZzfRMxKhZzfRMxKhZzfRMxKhZzfRMxKhZzfRMxKhZzfRMxKhZzeF2nMwT/b69NNP1bVrVz3xxBMaP3687Tmoo5tuuklvvvmm1q1bp4yMDNtzYBk9u42eURk9u42eURk9u42eURk9u42eURk9u42eURk9u42eURk9u42eURk9u42eURk9uy3AnsN5stf06dPVokULFRYW2p6Cepg4caI2bNigxYsX256CGKBnt9EzKqNnt9EzKqNnt9EzKqNnt9EzKqNnt9EzKqNnt9EzKqNnt9EzKqNnt9EzKqNnt4XYc1CHvX74wx+G9B2dXsnPz1ffvn01bdo021MQA/TsNnpGZfTsNnpGZfTsNnpGZfTsNnpGZfTsNnpGZfTsNnpGZfTsNnpGZfTsNnpGZfTsthB7DuKw18qVK7Vq1SqNHTvW9hQ0wNixY/WXv/xFBw8etD0FFtGzH+gZEj37gp4h0bMv6BkSPfuCniHRsy/oGRI9+4KeIdGzL+gZEj37gp4h0bMvQus5iMNe06ZNU/fu3dW/f3/bU9AAhYWFOnDggF599VXbU2ARPfuBniHRsy/oGRI9+4KeIdGzL+gZEj37gp4h0bMv6BkSPfuCniHRsy/oGRI9+yK0nr0/7FVWVqYXX3xR1113nTIyMmzPQQN06NBBw4cPD+rRe6iKnv1Bz6Bnf9Az6Nkf9Ax69gc9g579Qc+gZ3/QM+jZH/QMevYHPYOe/RFaz94f9lqwYIE+//xzFRYW2p6CFBgzZozmzZun3bt3254CC+jZL/QcNnr2Cz2HjZ79Qs9ho2e/0HPY6Nkv9Bw2evYLPYeNnv1Cz2GjZ7/Qc9jo2S8h9ez9Ya/XX39dvXv3VteuXW1PQQqMGjVKR48e1d///nfbU2ABPfuFnsNGz36h57DRs1/oOWz07Bd6Dhs9+4Wew0bPfqHnsNGzX+g5bPTsF3oOGz37JaSevT/sNWfOHF1yySW2ZyBF8vLy1L9/f82ZM8f2FFhAz36h57DRs1/oOWz07Bd6Dhs9+4Wew0bPfqHnsNGzX+g5bPTsF3oOGz37hZ7DRs9+Calnrw97bd++XevWrdPIkSNtT0EKXXzxxXrjjTdsz0Ca0bOf6DlM9Owneg4TPfuJnsNEz36i5zDRs5/oOUz07Cd6DhM9+4mew0TPfqLnMNGzn0Lp2evDXkuWLFF2drYGDhxoewpSaOjQodqyZYu2bdtmewrSiJ79RM9homc/0XOY6NlP9BwmevYTPYeJnv1Ez2GiZz/Rc5jo2U/0HCZ69hM9h4me/RRKz14f9lq6dKn69Omj5s2b256CFBowYICys7O1dOlS21OQRvTsJ3oOEz37iZ7DRM9+oucw0bOf6DlM9Owneg4TPfuJnsNEz36i5zDRs5/oOUz07KdQevb6sNc777yj/v37256BFGvWrJl69+6td955x/YUpBE9+4mew0TPfqLnMNGzn+g5TPTsJ3oOEz37iZ7DRM9+oucw0bOf6DlM9Owneg4TPfsplJ69PexljNGqVavUp08f21MQgYKCAhUXF9uegTShZ7/Rc1jo2W/0HBZ69hs9h4We/UbPYaFnv9FzWOjZb/QcFnr2Gz2HhZ79Rs9hoWe/hdCzt4e9Nm/erD179qigoMD2FEQgPz9fq1atsj0DaULPfqPnsNCz3+g5LPTsN3oOCz37jZ7DQs9+o+ew0LPf6Dks9Ow3eg4LPfuNnsNCz34LoWdvD3utXbtWknTmmWdaXhK94uJiTZ06VaWlpbanpE2vXr306aefas+ePbanIA3o2W/0HBZ69hs9h4We/UbPYaFnv9FzWOjZb/QcFnr2Gz2HhZ79Rs9hoWe/0XNY6NlvIfTs7WGvLVu2qHXr1mrVqpXtKZFbvHixbr/9dn322We2p6RN165dJf3j/zP8R89+o+ew0LPf6Dks9Ow3eg4LPfuNnsNCz36j57DQs9/oOSz07Dd6Dgs9+42ew0LPfguhZ68Pe3Xp0sX2DESka9euysjI0ObNm21PQRrQs9/oOSz07Dd6Dgs9+42ew0LPfqPnsNCz3+g5LPTsN3oOCz37jZ7DQs9+o+ew0LPfQujZ28Ne27dvV6dOnWzPiDVjjIwxtmfUS5MmTdS2bVtt27bN9hSkAT0fHz3DFfR8fPQMV9Dz8dEzXEHPx0fPcAU9Hx89wxX0fHz0DFfQ8/HRM1xBz8dHz3AFPR8fPcebt4e9du7cqXbt2kV+n9tuu0033HCDtm3bpltuuaXaPb/66iv99Kc/Ve/evXXiiSfqqquu0uuvv17tc958803dcsstOuOMM9SpUydde+21euKJJ1ReXl7luhUrVujqq69Wt27dNHz4cD3++ON1DuyDDz7Q8OHDdcIJJ6hp06YaMGCA5syZU/H+oUOHdO+99+q0005TTk6OunfvrgkTJmjv3r0V10ycOFFDhw7Vjh07qn3+TTfdpJEjR+rIkSN12lVXbdu21a5duyK9B+KBnmtGz3ANPdeMnuEaeq4ZPcM19FwzeoZr6Llm9AzX0HPN6Bmuoeea0TNcQ881o2e4hp5rRs+OMJ46++yzzV133RX5fc4//3zTo0cPU1BQYCSZs88+u+K9rVu3mi5duphmzZqZn/zkJ+auu+4y3/rWt0xmZqZ59NFHK66bP3++ycrKMq1btza33nqrmTx5shk8eLCRZO64446K6xYsWGCaNm1qWrdubW688UZz0003mRNOOMF06dLFSDJr1qw57t4FCxaY3Nxcc/LJJ5uf//zn5kc/+pFp1aqVyc7ONkuWLDHGGDN+/HiTlZVlrr/+ejN16lRz2223mSZNmpjzzjuv4nN+//vfG0nm8ccfr/L527dvN5mZmWb06NH1/pkma+jQoWbixImR3wf20XNi9AwX0XNi9AwX0XNi9AwX0XNi9AwX0XNi9AwX0XNi9AwX0XNi9AwX0XNi9AwX0XNi9OyMZd4e9jr99NPNgw8+GPl9zj//fCPJXHzxxeajjz6q8l5hYaGRZIqKiipeO3z4sLnwwgtN48aNTUlJiTHGmB//+McmJyfHlJaWVlx38OBB07FjR9OzZ8+K1/r06WPy8vLM5s2bK15bv369adq0aVJxlpeXmz59+phWrVqZDRs2VLz+0UcfmYyMDFNYWGgOHTpkGjVqZC6//PIqf3bq1KlGklm3bp0xxpgvvvjCZGdnm29/+9tVrnv00UeNJDN37txat6TCZZddZsaOHRv5fWAfPVdHz3AVPVdHz3AVPVdHz3AVPVdHz3AVPVdHz3AVPVdHz3AVPVdHz3AVPVdHz3AVPVdHz07x97DXKaecYh5++OHI73MszuXLl1d5vaSkxGRkZJh+/fpV+zMvvPCCkWSeeuopY8w/4iguLq5yze7du02vXr3MSSedZIwxZtmyZUaS+dWvflXt8yZMmFAlzvLycrNv374qv8rKysw777xjJJlx48ZV+4zHHnvMTJ061ezfv980atTItGzZ0rz77rsV7x/7zLKysorXLrvsMpOVlWU+//zzitcGDBhgTj75ZFNeXn68H12D/eAHPzDXXHNN5PeBffRMz/AHPdMz/EHP9Ax/0DM9wx/0TM/wBz3TM/xBz/QMf9AzPcMf9EzPjluWLU8dOXJEjRs3Tsu92rVrp379+lV5bd26dTLGaN++fRo9enSV9/bs2SNJ2rRpkySpZ8+eKikp0cMPP6xly5Zpy5Yt2rBhg/bs2aOTTjpJkrR27VpJUt++favd/6yzzqry+7fffluDBg2q8trzzz+vzMxMSVJ+fn61z7j11lsr/vvee+/VPffco7PPPlu9evXSBRdcoFGjRuniiy9WVlZWxXXjxo3Tq6++qpdeekkTJkzQli1b9Pbbb+vuu++uuFeUGjdurP3790d+H9hHz/QMf9AzPcMf9EzP8Ac90zP8Qc/0DH/QMz3DH/RMz/AHPdMz/EHP9Oy66H+ClpSXlys7Oz1n2XJycqq9VlJSUvFeo0aNqvxq06aNCgsLK6L63e9+p1NOOUX333+/vv76aw0fPlzPPPOMBg8eXPF5X375pSRVieOY3NzcKr9v27atCgsLq/zq0qWLdu7cKUk6+eSTa/37/OpXv9LGjRv1L//yL2ratKmeeOIJffe739VZZ52lzz77rOK67373u8rLy9PMmTMlSX/5y18kSddff32tn58qjRo1UllZWVruBbvomZ7hD3qmZ/iDnukZ/qBneoY/6Jme4Q96pmf4g57pGf6gZ3qGP+iZnp1n65liUevQoYP5wx/+EPl9zj//fHPKKadUe/3DDz80kszVV19d7b2ysjJTWlpqDh8+bL744guTmZlpOnToYPbs2VPlunPOOafisXt/+9vfjCTzs5/9rNrnTZo0KanvWH311VeNJHP77bdXe+/ZZ581Tz/9tDl8+LApLS2t8ni9HTt2mFtvvdVIMpMmTary526++WaTnZ1tdu3aZfr27WsGDRpU64ZUuvbaa82VV16ZtvvBHnqujp7hKnqujp7hKnqujp7hKnqujp7hKnqujp7hKnqujp7hKnqujp7hKnqujp7hKnqujp6dsszbJ3vl5OToyJEj1u5/+umnq127dpo3b56+/vrrKu89+OCDysvL0/Lly/XJJ5/o6NGjuuqqq9SiRYuKa7Zu3ar333+/4vfnnnuuGjVqpPnz51f5rLKyMj3//PNJberXr5+aNGlS7TPWrFmj66+/XgsXLtT8+fOVl5enF154oeL9E088UXfccYckqbS0tMqfHTdunMrKyvTb3/5W77//vsaPH5/UllQ4cuRIwlOw8A89V0fPcBU9V0fPcBU9V0fPcBU9V0fPcBU9V0fPcBU9V0fPcBU9V0fPcBU9V0fPcBU9V0fPjrF93CwqZ5xxhvn1r38d+X1qOolpjDF//OMfjSRzzTXXmJUrV5oNGzaYf/3XfzU5OTlmxIgR5ujRo2bPnj2mefPmpnXr1uaVV14x69evN08//bQ55ZRTTF5enmnZsqVZu3atMcaY22+/3UgyP/rRj8zKlSvNu+++a773ve+ZvLy8pE5iGmPM3XffbSSZCRMmmBUrVphnn33WFBQUmEaNGpmioiKzZ88e0759e9O9e3ezYMEC89VXX5l33nnHXHnllUaSee2116p95hlnnGGysrJM06ZNze7duxv2A62DSy+91IwbNy5t94M99JwYPcNF9JwYPcNF9JwYPcNF9JwYPcNF9JwYPcNF9JwYPcNF9JwYPcNF9JwYPcNF9JwYPTtjmbeHvQYMGGD+6Z/+KfL71BanMcb84Q9/MLm5uUaSkWSys7PNzTffbEpKSiqumTFjhmnevHnFNa1btzbPPvusmTlzpmnWrJnJzs42xhhz6NAh8+Mf/7jiOknmoosuMtOmTUs6zrKyMnPXXXeZrKysis/o2LGjmTFjRsU1//M//2NOOumkKvfJzc2t8R+7+++/30gyY8aMSfbHlhIDBw40v/jFL9J6T9hBz4nRM1xEz4nRM1xEz4nRM1xEz4nRM1xEz4nRM1xEz4nRM1xEz4nRM1xEz4nRM1xEz4nRszOWZRhjjDx06aWXql27dnrmmWdsT9HevXv13nvvad++fcrPz1enTp2qXVNSUqL33ntPHTt21JlnnqmMjIyK10tLS3X66adXXLt161atWrVKvXr1UteuXeu1af/+/SouLlbLli3VvXt3NW7cuMr7Bw4cUHFxsf73f/9Xbdu2Ve/evdW+fft63Ssq3bt31/jx4zVp0iTbUxAxeq4dPcMl9Fw7eoZL6Ll29AyX0HPt6Bkuoefa0TNcQs+1o2e4hJ5rR89wCT3Xjp7hEnquHT3HXpG3h73GjRunXbt2afbs2banICJ5eXn6zW9+owkTJtiegojRs//oORz07D96Dgc9+4+ew0HP/qPncNCz/+g5HPTsP3oOBz37j57DQc/+o+dw0LP/PO+5KNP2gqh06tRJW7dutT0DEdm9e7e++uornXrqqbanIA3o2W/0HBZ69hs9h4We/UbPYaFnv9FzWOjZb/QcFnr2Gz2HhZ79Rs9hoWe/0XNY6NlvIfTs7WGvzp07a/PmzbZnICLH/t/W97GDcAs9+42ew0LPfqPnsNCz3+g5LPTsN3oOCz37jZ7DQs9+o+ew0LPf6Dks9Ow3eg4LPfsthJ69PezVrVs37du3T1988YXtKYjA5s2blZGRoc6dO9uegjSgZ7/Rc1jo2W/0HBZ69hs9h4We/UbPYaFnv9FzWOjZb/QcFnr2Gz2HhZ79Rs9hoWe/hdCzt4e9zjzzTEnS6tWrLS9BFFavXq1u3bqpSZMmtqcgDejZb/QcFnr2Gz2HhZ79Rs9hoWe/0XNY6Nlv9BwWevYbPYeFnv1Gz2GhZ7/Rc1jo2W8h9OztYa+OHTuqffv2Ki4utj0FEVi1apXy8/Ntz0Ca0LPf6Dks9Ow3eg4LPfuNnsNCz36j57DQs9/oOSz07Dd6Dgs9+42ew0LPfqPnsNCz30Lo2dvDXpJUUFCgDz74wPYMRKC4uNj7OFEVPfuLnsNDz/6i5/DQs7/oOTz07C96Dg89+4uew0PP/qLn8NCzv+g5PPTsL3oODz37K4SevT7sNWDAAC1btsz2DKTYrl27tH79eg0cOND2FKQRPfuJnsNEz36i5zDRs5/oOUz07Cd6DhM9+4mew0TPfqLnMNGzn+g5TPTsJ3oOEz37KZSevT7sNWjQIK1fv147d+60PQUptHTpUknyPk5URc9+oucw0bOf6DlM9Owneg4TPfuJnsNEz36i5zDRs5/oOUz07Cd6DhM9+4mew0TPfgqlZ68Pe5133nnKyMjQkiVLbE9BCi1atEhnnnmmWrdubXsK0oie/UTPYaJnP9FzmOjZT/QcJnr2Ez2HiZ79RM9homc/0XOY6NlP9BwmevYTPYeJnv0USs9eH/bKy8vTOeeco3nz5tmeghSaO3euRo4caXsG0oye/UTPYaJnP9FzmOjZT/QcJnr2Ez2HiZ79RM9homc/0XOY6NlP9BwmevYTPYeJnv0USs9eH/aSpEsuuUSzZ8+2PQMpsm3bNn344Ye65JJLbE+BBfTsF3oOGz37hZ7DRs9+oeew0bNf6Dls9OwXeg4bPfuFnsNGz36h57DRs1/oOWz07JeQevb+sNeoUaO0detWFRcX256CFHj55ZfVrFkzDR061PYUWEDPfqHnsNGzX+g5bPTsF3oOGz37hZ7DRs9+oeew0bNf6Dls9OwXeg4bPfuFnsNGz34JqWfvD3v1799fnTt31l//+lfbU5AC06ZN05VXXqnc3FzbU2ABPfuFnsNGz36h57DRs1/oOWz07Bd6Dhs9+4Wew0bPfqHnsNGzX+g5bPTsF3oOGz37JaSevT/slZGRoe9///uaMWOG7SlooA0bNmj58uUaO3as7SmwhJ79Qc+gZ3/QM+jZH/QMevYHPYOe/UHPoGd/0DPo2R/0DHr2Bz2Dnv0RWs/eH/aSpNGjR2v9+vV6++23bU9BA0ybNk0dO3bUhRdeaHsKLKJnP9AzJHr2BT1Domdf0DMkevYFPUOiZ1/QMyR69gU9Q6JnX9AzJHr2BT1DomdfhNZzEIe9+vfvr759++qpp56yPQX1ZIzRn//8ZxUWFiorK8v2HFhEz+6jZxxDz+6jZxxDz+6jZxxDz+6jZxxDz+6jZxxDz+6jZxxDz+6jZxxDz+6jZxxDz+4LsecgDntJ0g033KAXX3xRe/bssT0F9bBo0SJ9/PHHwTxyD7WjZ7fRMyqjZ7fRMyqjZ7fRMyqjZ7fRMyqjZ7fRMyqjZ7fRMyqjZ7fRMyqjZ7fRMyqjZ7eF2HMwh73GjBmjrKws/fu//7vtKaiHhx9+WAMHDlR+fr7tKYgBenYbPaMyenYbPaMyenYbPaMyenYbPaMyenYbPaMyenYbPaMyenYbPaMyenYbPaMyenZbiD0Hc9jrhBNO0E9/+lM98sgjOnDggO05qIMPP/xQr732miZNmmR7CmKCnt1Fz/gmenYXPeOb6Nld9Ixvomd30TO+iZ7dRc/4Jnp2Fz3jm+jZXfSMb6Jnd9Ezvome3RVqzxnGGGN7RLrs2rVLXbp00YMPPqiJEyfanoMk/fCHP9TatWv13nvvKSMjw/YcxAQ9u4mekQg9u4mekQg9u4mekQg9u4mekQg9u4mekQg9u4mekQg9u4mekQg9u4mekQg9uynQnouCebKXJLVt21Y33HCDHnroIR05csT2HCRh48aNmjlzpiZNmhRSmEgCPbuHnlETenYPPaMm9OweekZN6Nk99Iya0LN76Bk1oWf30DNqQs/uoWfUhJ7dQ8+oCT27J+SegzrsJUl33HGHdu7cqeeee872FCTh17/+tbp27arvf//7tqcghujZLfSM2tCzW+gZtaFnt9AzakPPbqFn1Iae3ULPqA09u4WeURt6dgs9ozb07BZ6Rm3o2S0h9xzU1zgec/PNN2v27Nn66KOP1Lx5c9tzUIPi4mKdc845+s///E+NHTvW9hzEFD27gZ6RDHp2Az0jGfTsBnpGMujZDfSMZNCzG+gZyaBnN9AzkkHPbqBnJIOe3UDPSAY9uyHwnouCPOxVUlKinj17avz48XrooYdsz0ECxhhdcMEFOnDggIqKipSZGdxD6JAkeo4/ekay6Dn+6BnJouf4o2cki57jj56RLHqOP3pGsug5/ugZyaLn+KNnJIue44+ekSx6jj96VlFwf2NJatOmje6//349+uijKi4utj0HCTz99NNavHixnnzyyRDDRB3Qc/zRM5JFz/FHz0gWPccfPSNZ9Bx/9Ixk0XP80TOSRc/xR89IFj3HHz0jWfQcf/SMZNFz/NFzoF/jKElHjx7V4MGDlZ2drbfeeksZGRm2J+H/Ky0tVY8ePXTttddq6tSptufAAfQcX/SMuqLn+KJn1BU9xxc9o67oOb7oGXVFz/FFz6greo4vekZd0XN80TPqip7ji55RV/QcX/QsKdQne0lSZmamHn/8cS1btkzTpk2zPQeV3H333crKytJ9991newocQc/xRc+oK3qOL3pGXdFzfNEz6oqe44ueUVf0HF/0jLqi5/iiZ9QVPccXPaOu6Dm+6Bl1Rc/xRc//EOxhL0k655xz9JOf/EQ///nP9cknn9ieA0lz5szRU089pUceeUStWrWyPQcOoef4oWfUFz3HDz2jvug5fugZ9UXP8UPPqC96jh96Rn3Rc/zQM+qLnuOHnlFf9Bw/9Iz6ouf4oef/E+zXOB5z6NAhDRw4UDk5OVq0aJEaN25se1Kwtm/frr59+2r48OF64YUXbM+Bg+g5PugZDUXP8UHPaCh6jg96RkPRc3zQMxqKnuODntFQ9Bwf9IyGouf4oGc0FD3HBz2joeg5Pui5iqKsyZMnT7a9wqbs7GxdeOGFeuCBB7R7926NHDnS9qQglZeX66qrrtKRI0f02muvKScnx/YkOIie44GekQr0HA/0jFSg53igZ6QCPccDPSMV6Dke6BmpQM/xQM9IBXqOB3pGKtBzPNAzUoGe44Geq9kW/GEvSWrTpo26dOmif/7nf1bfvn3Vs2dP25OCc8899+ivf/2r5s2bp86dO9ueA4fRs330jFShZ/voGalCz/bRM1KFnu2jZ6QKPdtHz0gVeraPnpEq9GwfPSNV6Nk+ekaq0LN99FzNtuC/xrGy8ePH65VXXtGKFSvUrVs323OCMXv2bF1++eV68skndeONN9qeA0/Qsx30jCjQsx30jCjQsx30jCjQsx30jCjQsx30jCjQsx30jCjQsx30jCjQsx30jCjQsx30nFARh70q2b9/v4YOHap9+/Zp8eLFat++ve1J3lu+fLkuvPBCjR49Wn/6059sz4FH6Dn96BlRoef0o2dEhZ7Tj54RFXpOP3pGVOg5/egZUaHn9KNnRIWe04+eERV6Tj96RlToOf3ouUYc9vqmnTt3asiQIcrNzdXChQt1wgkn2J7krY0bN2rw4MHq16+fZs2apezsbNuT4Bl6Th96RtToOX3oGVGj5/ShZ0SNntOHnhE1ek4fekbU6Dl96BlRo+f0oWdEjZ7Th54RNXpOH3quFYe9Evn44481ePBg9erVS3PmzFFOTo7tSd759NNPNXjwYLVv317z589Xs2bNbE+Cp+g5evSMdKHn6NEz0oWeo0fPSBd6jh49I13oOXr0jHSh5+jRM9KFnqNHz0gXeo4ePSNd6Dl69HxcRZm2F8RRt27d9Prrr2vlypW67rrrVF5ebnuSV0pLS/Wd73xHTZo00euvv06YiBQ9R4uekU70HC16RjrRc7ToGelEz9GiZ6QTPUeLnpFO9BwtekY60XO06BnpRM/Romcg8SoUAAAIPElEQVSkEz1Hi56Tw2GvGnzrW9/SrFmz9Oqrr+qaa67RoUOHbE/ywqeffqrzzz9fX331lebNm6c2bdrYnoQA0HM06Bk20HM06Bk20HM06Bk20HM06Bk20HM06Bk20HM06Bk20HM06Bk20HM06Bk20HM06Dl5HPaqxQUXXKD58+dr4cKF+s53vqPdu3fbnuS0TZs2adiwYSorK9PixYvVqVMn25MQEHpOLXqGTfScWvQMm+g5tegZNtFzatEzbKLn1KJn2ETPqUXPsImeU4ueYRM9pxY9wyZ6Ti16rhsOex3HwIEDtXDhQm3atElDhgzR9u3bbU9y0ooVK3TeeeepdevWWrhwoU499VTbkxAgek4NekYc0HNq0DPigJ5Tg54RB/ScGvSMOKDn1KBnxAE9pwY9Iw7oOTXoGXFAz6lBz4gDek4Neq47Dnsl4ayzztKiRYt05MgRDRs2TOvWrbM9ySmzZ8/WBRdcoH79+mnBggVq166d7UkIGD03DD0jTui5YegZcULPDUPPiBN6bhh6RpzQc8PQM+KEnhuGnhEn9Nww9Iw4oeeGoWfECT03DD3XD4e9ktSlSxctXrxYbdu2Vb9+/fTCCy/YnhR7ZWVluueee3T55Zfr6quv1qxZs9SsWTPbswB6rgd6RlzRc93RM+KKnuuOnhFX9Fx39Iy4oue6o2fEFT3XHT0jrui57ugZcUXPdUfPiCt6rjt6biCDOjly5Ii58847TUZGhhk7dqzZv3+/7Umx9Nlnn5nhw4eb3Nxc8/vf/972HCAhek4OPcMF9JwceoYL6Dk59AwX0HNy6BkuoOfk0DNcQM/JoWe4gJ6TQ89wAT0nh57hAnpODj032LIMY4yxfeDMRS+//LLGjx+vjh07asaMGTrrrLNsT4qN+fPnq7CwUC1bttSMGTPUp08f25OAWtFzzegZrqHnmtEzXEPPNaNnuIaea0bPcA0914ye4Rp6rhk9wzX0XDN6hmvouWb0DNfQc83oOSWK+BrHevre976nlStXqnnz5ho4cKAeeeQRlZWV2Z5lVWlpqW655RaNGDFCF110kVauXEmYcAI9V0fPcBU9V0fPcBU9V0fPcBU9V0fPcBU9V0fPcBU9V0fPcBU9V0fPcBU9V0fPcBU9V0fPKWb72WKuO3z4sLn33ntNbm6uyc/PN2+99ZbtSWl39OhR88wzz5j27dubDh06mOnTp9ueBNQLPdMz/EHP9Ax/0DM9wx/0TM/wBz3TM/xBz/QMf9AzPcMf9EzP8Ac903NElnHYK0U2btxoRo0aVfHdq5999pntSWmxdu1aM3z4cJOZmWnGjh1rdu3aZXsS0GD0TM/wBz3TM/xBz/QMf9AzPcMf9EzP8Ac90zP8Qc/0DH/QMz3DH/RMzym2jK9xTJHTTjtNs2fP1syZM/Xmm2+qZ8+emjx5sr788kvb0yKxceNG3XjjjcrPz9fevXu1YsUKPffcc2rTpo3taUCD0TM9wx/0TM/wBz3TM/xBz/QMf9AzPcMf9EzP8Ac90zP8Qc/0DH/QMz2nnO3jZj7at2+fmTJlimnTpo1p0aKF+eUvf+nNyczVq1ebwsJCk5WVZbp3726efvppU15ebnsWEBl6BvxBz4A/6BnwBz0D/qBnwB/0DPiDngF/0DPgD3pGCvA1jlHau3eveeihh0yHDh1MkyZNzMSJE8369ettz6qXJUuWmKuuuspkZmaa3r17m+eff96UlZXZngWkDT0D/qBnwB/0DPiDngF/0DPgD3oG/EHPgD/oGfAHPaMBOOyVDgcOHDCPPfaYOfXUU40kc95555l/+7d/MyUlJban1WrTpk1mypQp5vTTTzeSTL9+/cxLL71kjh49ansaYA09A/6gZ8Af9Az4g54Bf9Az4A96BvxBz4A/6BnwBz2jHpZlGGNMer84Mlzl5eV64403NG3aNL300kv6+uuvNWrUKI0ZM0YjR45UixYtbE/Ujh079Morr2j69OlasmSJOnTooGuvvVbXXXed+vbta3seEBv0DPiDngF/0DPgD3oG/EHPgD/oGfAHPQP+oGfAH/SMOijisJcl+/bt09/+9jc999xzWrBggbKzszVkyBCNHDlSQ4YM0bnnnqucnJzId+zevVtLly7VW2+9pXnz5un9999Xbm6urrjiCo0dO1YjR45UVlZW5DsAl9Ez4A96BvxBz4A/6BnwBz0D/qBnwB/0DPiDngF/0DOOg8NecbBz507993//t+bMmaP58+drx44dysnJUd++fVVQUKD8/Hz16tVLXbt21amnnqpGjRrV+R4HDx7U5s2btWnTJq1Zs0bFxcUqLi7WmjVrdPToUfXo0UMjRozQJZdcom9/+9tq2rRpBH9TwH/0DPiDngF/0DPgD3oG/EHPgD/oGfAHPQP+oGfAH/SMBDjsFUcff/yxlixZohUrVmj16tX64IMP9OWXX0qSsrKydOKJJ6pt27Zq06aN2rRpI0nKy8uT9I9H++3Zs0dlZWUqKSlRSUmJdu3apc8//7zi8zt16qT8/HwVFBRo4MCBGjRokNq1a5f+vygQAHoG/EHPgD/oGfAHPQP+oGfAH/QM+IOeAX/QM+APeoY47OWOnTt3avPmzdq8ebO2b99eEd6xaEtLSyVJ2dnZatGihbKysiribdOmjTp37qyuXbuqa9eusfguVyBk9Az4g54Bf9Az4A96BvxBz4A/6BnwBz0D/qBnwB/0HBwOewEAAAAAAAAAAAAAAACAA4oybS8AAAAAAAAAAAAAAAAAABwfh70AAAAAAAAAAAAAAAAAwAEc9gIAAAAAAAAAAAAAAAAAB/w/dpkieLszuP8AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "max_delay.visualize()" + ] + }, + { + "cell_type": "markdown", + "id": "383324ac", + "metadata": {}, + "source": [] + }, + { + "cell_type": "markdown", + "id": "f15fa313", + "metadata": {}, + "source": [ + "Some things to note:\n", + "\n", + "1. Up until this point everything is lazy. To evaluate the result for `max_delay`, call its `compute()` method:\n", + "2. Dask will delete intermediate results (like the full pandas DataFrame for each file) as soon as possible.\n", + " - This lets us handle datasets that are larger than memory\n", + " - This means that repeated computations will have to load all of the data in each time " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "2857454e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 105 ms, sys: 71.6 ms, total: 177 ms\n", + "Wall time: 1.39 s\n" + ] + }, + { + "data": { + "text/plain": [ + "1435.0" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%%time \n", + "max_delay.compute()" + ] + }, + { + "cell_type": "markdown", + "id": "e0732977", + "metadata": {}, + "source": [ + "## Pandas' like computations\n", + "\n", + "Let's see couple of examples on how the API for Dask DataFrames is the same than Pandas. If you are comfortable with Pandas, the following operations will look very familiar, except we will need to add the `compute()` to get the results wanted.\n", + "\n", + "### Example 1: Total of non-canelled flights taken\n", + "\n", + "Notice that there is a column in our DataFrame called `\"Cancelled\"` that is a boolean. " + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "c9582579", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2540961" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "(~ddf[\"Cancelled\"]).sum().compute()" + ] + }, + { + "cell_type": "markdown", + "id": "6341c992", + "metadata": {}, + "source": [ + "### Example 2: Total of non-canceled flights taken by airport\n", + "\n", + "We should select the non-canceled flights, use the operation `groupby` on the `\"Origin\"` column and finally use `count` to get the detailed per airport." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "3c4b6b5b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Origin\n", + "EWR 1139451\n", + "JFK 427243\n", + "LGA 974267\n", + "Name: Origin, dtype: int64" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ddf[~ddf[\"Cancelled\"]].groupby(\"Origin\")[\"Origin\"].count().compute()" + ] + }, + { + "cell_type": "markdown", + "id": "b7450550", + "metadata": {}, + "source": [ + "### Exercise 1: What is the average departure delay from each airport?" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "c1e0ae10", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Origin\n", + "EWR 10.295469\n", + "JFK 10.351299\n", + "LGA 7.431142\n", + "Name: DepDelay, dtype: float64" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#soultion\n", + "ddf.groupby(\"Origin\")[\"DepDelay\"].mean().compute()" + ] + }, + { + "cell_type": "markdown", + "id": "7d983dcf", + "metadata": {}, + "source": [ + "### Exercise 2: What day of the week has the worst average departure delay?" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "3495711a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#solution\n", + "ddf.groupby(\"DayOfWeek\")[\"DepDelay\"].mean().idxmax().compute()" + ] + }, + { + "cell_type": "markdown", + "id": "b16175c0", + "metadata": {}, + "source": [ + "## Performance tip: Share intermediate results\n", + "\n", + "\n", + "In the examples and exercises above, we sometimes perform the same operation more than once (e.g. `read_csv`). For most operations, Dask DataFrames hashes the arguments, allowing duplicate computations to be shared, and only computed once.\n", + "\n", + "For example, let's compute the mean and standard deviation for departure delay of all non-canceled flights. Since Dask operations are lazy, those values aren't the final results until we `compute` them. They're just the recipe required to get the result.\n", + "\n", + "If we compute them with two calls to compute, there is no sharing of intermediate computations." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "be0fca5c", + "metadata": {}, + "outputs": [], + "source": [ + "non_cancelled = ddf[~ddf[\"Cancelled\"]]\n", + "mean_delay = non_cancelled[\"DepDelay\"].mean()\n", + "std_delay = non_cancelled[\"DepDelay\"].std()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "d9ad2345", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 122 ms, sys: 23.7 ms, total: 145 ms\n", + "Wall time: 2.18 s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "mean_delay_result = mean_delay.compute()\n", + "std_delay_result = std_delay.compute()" + ] + }, + { + "cell_type": "markdown", + "id": "15616d97", + "metadata": {}, + "source": [ + "Now, let's see how long it takes if we try computing `mean_delay` and `std_delay` with a single `compute()` call." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "9d83eabb", + "metadata": {}, + "outputs": [], + "source": [ + "import dask" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "3151d164", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 73.6 ms, sys: 13.2 ms, total: 86.8 ms\n", + "Wall time: 1.1 s\n" + ] + } + ], + "source": [ + "%%time\n", + "mean_delay_res, std_delay_res = dask.compute(mean_delay, std_delay)" + ] + }, + { + "cell_type": "markdown", + "id": "1b2e74a1", + "metadata": {}, + "source": [ + "Using `dask.compute` takes roughly 1/2 the time. This is because the task graphs for both results are merged when calling `dask.compute`, allowing shared operations (like `read_csv`) to only be done once instead of twice. In particular, using `dask.compute` only does the following once:\n", + "\n", + "- The calls to `read_csv`\n", + "- The filter (`df[~df[\"Cancelled\"]]`)\n", + "- The `\"DepDelay\"` column indexing\n", + "- Some of the necessary reductions (`sum`, `count`)\n", + "\n", + "To see what the merged task graphs between multiple results look like (and what's shared), you can use the `dask.visualize` function:" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "2f82c607", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAGLYAAA0SCAYAAACDn2CyAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdf6zVdeHH8de9XS4TQaCLBFJ6TQKTATbGj7BgTMVgqaAEQq2hga0fzMrhyn5Zk1mr2Y9hP24/TFFgJgVqCJFGhKAMWGCKECL4g5U/QBHlx5F7vv+Uyzz1VVQ+nHMfj+3zx3m/z86eZ+f/86orl8vlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwH+oLzoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAo5NhCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACoybAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBFDUUHAAAAAAAAAAAAAAAAAAAAAAAAAABAtVq4cGEOHjxYdMZRbfDgwTn55JOLzgAAAOAw1ZXL5XLREQAAAAAAAAAAAAAAAAAAAAAAAAAAUI06d+6cPXv2FJ1xVGtpacn06dOLzgAAAOAw1RcdAAAAAAAAAAAAAAAAAAAAAAAAAAAA1aylpSXlctlT4TnuuOOK/nkAAAB4gwxbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUJFhCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACoybAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBFhi0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACoyLAFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFRm2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoCLDFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFRk2AIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICKDFsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQkWELAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKjJsAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEWGLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKjIsAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVGbYAAAAAAAAAAAAAAAAAAAAAAAAAAIAa0draWnQCAAAANcawBQAAAAAAAAAAAAAAAAAAAAAAAAAAVLEtW7bksssuS3Nzc5qamvLhD384d911V9FZAAAA1IiGogMAAAAAAAAAAAAAAAAAAAAAAAAAAIDDs2/fvpx33nl54oknMmXKlDQ1NWXBggU599xzs2TJkowYMaLoRAAAAKqcYQsAAAAAAAAAAAAAAAAAAAAAAAAAAKhSX/7yl7N58+YsXrw4Y8aMSZJcdtllGThwYKZOnZpt27YVXAgAAEC1qy86AAAAAAAAAAAAAAAAAAAAAAAAAAAAODy/+tWvMmDAgJdHLZLkHe94R84555w88sgjue+++wqsAwAAoBYYtgAAAAAAAAAAAAAAAAAAAAAAAAAAgCr09NNPZ/fu3TnrrLNeddenT58kydq1a490FgAAADXGsAUAAAAAAAAAAAAAAAAAAAAAAAAAAFShzZs3J0l69uz5qru+ffsmSZ588skj2gQAAEDtMWwBAAAAAAAAAAAAAAAAAAAAAAAAAABVaOvWrUmSt7/97a+6O+mkk5Ikzz777BFtAgAAoPYYtgAAAAAAAAAAAAAAAAAAAAAAAAAAgCrUvn37JMmuXbtedffCCy8kSbp27XpEmwAAAKg9hi0AAAAAAAAAAAAAAAAAAAAAAAAAAKAK9ejRI0mybdu2V939a+zi+OOPP6JNAAAA1B7DFgAAAAAAAAAAAAAAAAAAAAAAAAAAUIX69OmTurq6isMWGzZsSJIMHTr0SGcBAABQYwxbAAAAAAAAAAAAAAAAAAAAAAAAAABAFTrhhBMyYsSIrFixIg8//PDL56VSKXPnzk2vXr0yaNCgAgsBAACoBYYtAAAAAAAAAAAAAAAAAAAAAAAAAACgSl155ZUplUqZOHFifvOb3+SPf/xjzj333Gzbti0/+9nPUldXV3QiAAAAVa6h6AAAAAAAAAAAAAAAAAAAAAAAAAAAAODwjB49OnPmzMm0adNy4YUXJkm6dOmSa6+9NmPGjCm4DgAAgFpg2AIAAAAAAAAAAAAAAAAAAAAAAAAAAKrYRRddlAkTJmTt2rVpbW3N0KFD87a3va3oLAAAAGqEYQsAAAAAAAAAAAAAAAAAAAAAAAAAAKhyDQ0NGTZsWNEZAAAA1KD6ogMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4Ohm2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoCLDFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFRk2AIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICKDFsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQkWELAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKjJsAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEWGLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKjIsAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVGbYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgIsMWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVGTYAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIoMWwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFCRYQsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqMmwBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABARYYtAAAAAAAAAAAAAAAAAAAAAAAAAACgRjz++ONFJwAAAFBjGooOAAAAAAAAAAAAAAAAAAAAAAAAAACAarZ27dp07ty56IwkyezZszN58uQ0NTUVnZIkKZVKRScAAADwBtWVy+Vy0REAAAAAAAAAAAAAAAAAAAAAAAAAAFCNOnfunD179hSdcVRraWnJ9OnTi84AAADgMBm2AAAAAAAAAAAAAAAAAAAAAAAAAACAGjBv3rxMmTIlAwYMyIYNG4rOAQAAoEbUFx0AAAAAAAAAAAAAAAAAAAAAAAAAAAC8cTfffHPq6uqycePGbNmypegcAAAAaoRhCwAAAAAAAAAAAAAAAAAAAAAAAAAAqHK7d+/O0qVLUy6X09jYmHnz5hWdBAAAQI0wbAEAAAAAAAAAAAAAAAAAAAAAAAAAAFXu17/+dVpbW5MkBw8ezA033FBwEQAAALXCsAUAAAAAAAAAAAAAAAAAAAAAAAAAAFS5OXPmvOL1I488kvXr1xdUAwAAQC0xbAEAAAAAAAAAAAAAAAAAAAAAAAAAAFVs586dWbVqVVpbW18+a2xszLx58wqsAgAAoFYYtgAAAAAAAAAAAAAAAAAAAAAAAAAAgCo2b9681Ne/8m9GDx48mBtuuOEVYxcAAABwOAxbAAAAAAAAAAAAAAAAAAAAAAAAAABAFbvxxhtz6NChV50/9dRT+fOf/1xAEQAAALXEsAUAAAAAAAAAAAAAAAAAAAAAAAAAAFSprVu3ZuPGjSmXy6+6a9euXebOnVtAFQAAALXEsAUAAAAAAAAAAAAAAAAAAAAAAAAAAFSpm2++Oe3atat4VyqVMn/+/Bw8ePAIVwEAAFBLDFsAAAAAAAAAAAAAAAAAAAAAAAAAAECVuummm1Iqlf7r/Z49e7Js2bIjWAQAAECtMWwBAAAAAAAAAAAAAAAAAAAAAAAAAABVaP369dm6dev/fE9DQ0NuvvnmI1QEAABALWooOgAAAAAAAAAAAAAAAAAAAAAAAAAAAHj95s+fnyRp3779y2flcjlJUldXlyR56aWXsmjRorz44ovp0KHDkY8EAACg6hm2AAAAAAAAAAAAAAAAAAAAAAAAAACAKtSvX79861vfesXZVVddlbFjx2bIkCGvOH/66adz4oknHsk8AAAAakRd+V8zigAAAAAAAAAAAAAAAAAAAAAAAAAAQFXr0qVLvvOd72T69OlFpwAAAFAj6osOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4Ohk2AIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICKDFsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQkWELAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKjJsAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEWGLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKjIsAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVGbYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgIsMWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVGTYAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIoMWwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFCRYQsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqMmwBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABARYYtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqMiwBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUZtgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKAiwxYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUZNgCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAigxbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUJFhCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACoybAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBFhi0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACoyLAFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFRm2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoCLDFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFRk2AIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICKDFsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQkWELAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKjJsAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEWGLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKjIsAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVNRQdAAAAAAAAAAAAAAAAAAAAAAAAAAAAvHalUilPPfVUnnnmmZef1tbWHDhwIAcPHszKlSvTpUuXJEnHjh3T1NSUpqamdO/ePZ06dSq4HgAAgGpTVy6Xy0VHAAAAAAAAAAAAAAAAAAAAAAAAAAAAr/T3v/89999/f/7yl7/kwQcfzMMPP5zt27dn586dOXTo0Kve39jYmA4dOqS1tTV79uyp+JmdO3dOc3Nzmpubc+qpp2bAgAEZMGBA+vbtm3bt2r3VXwkAAIAqZNgCAAAAAAAAAAAAAAAAAAAAAAAAAACOAvfff3+WL1+e1atXZ+XKlXnssceSJD179kz//v1zyimnpLm5OSeffHJ69uyZpqamNDU1pVu3bqmvr6/4mXv37s0zzzyTp556Kk8++WQeffTRbN++Pdu3b8+mTZuyadOmlEqlHHPMMRk8eHA+8IEP5IwzzsjIkSNz7LHHHsmvDwAAwFHKsAUAAAAAAAAAAAAAAAAAAAAAAAAAABRg//79Wbp0aX73u9/lzjvvzOOPP56uXbvm/e9//8vPwIED061bt7esoVQqZdOmTVm3bl3uueeerFq1Kg899FAaGxszYsSIjBkzJuPHj09zc/Nb1gAAAMDRzbAFAAAAAAAAAAAAAAAAAAAAAAAAAAAcIYcOHcrSpUszf/78LFq0KHv37s2QIUMyduzYfOhDH8qgQYNSX19faOM//vGPLFmyJEuWLMnvf//77N69O0OGDMmkSZMyefLk9OjRo9A+AAAAjizDFgAAAAAAAAAAAAAAAAAAAAAAAAAA8BZ79NFH84tf/CK//OUv88QTT2T48OGZOHFiJkyYkBNOOKHovP+qVCrlD3/4Q2655ZYsXLgwL7zwQs4999xMnz49o0ePLnyEAwAAgLeeYQsAAAAAAAAAAAAAAAAAAAAAAAAAAHiLrF+/Pt///vczb968NDU1ZerUqZk2bVp69+5ddNrrduDAgdx2221paWnJXXfdlXe/+92ZMWNGpk+fng4dOhSdBwAAwFvEsAUAAAAAAAAAAAAAAAAAAAAAAAAAALzJli9fnq9//etZsWJFBg0alMsvvzwTJkxIu3btik57U2zatCnf+973MmfOnHTs2DFf+MIXMmPGjHTs2LHoNAAAAN5k9UUHAAAAAAAAAAAAAAAAAAAAAAAAAABArbj33ntz5plnZtSoUWlsbMzy5cuzdu3aTJ48uWZGLZLkve99b1paWrJjx4588pOfzDXXXJNTTjkl1157bQ4cOFB0HgAAAG8iwxYAAAAAAAAAAAAAAAAAAAAAAAAAAPAGPfbYY5kyZUqGDx+eUqmUP/3pT1m2bFlGjhxZdNpbqnv37rn66quzbdu2TJ06NV/72tdy2mmnZcGCBUWnAQAA8CYxbAEAAAAAAAAAAAAAAAAAAAAAAAAAAIepVCrl6quvzqmnnpo1a9ZkwYIFWbFiRUaMGFF02hHVrVu3fPvb387mzZszfPjwfOQjH8moUaOyefPmotMAAAB4gwxbAAAAAAAAAAAAAAAAAAAAAAAAAADAYVizZk0GDRqUa665Jl/96lfzwAMPZPz48UVnFapXr16ZM2dOVq1aleeeey6nn356Zs2alVKpVHQaAAAAh8mwBQAAAAAAAAAAAAAAAAAAAAAAAAAAvA6lUilXXnllhg8fnu7du2fjxo354he/mPbt2xeddtQYNmxY1qxZk2984xuZNWtWhg4dmk2bNhWdBQAAwGEwbAEAAAAAAAAAAAAAAAAAAAAAAAAAAK/Rli1bMnz48Pzwhz/Mj370oyxbtiynnHJK0VlHpYaGhlxxxRXZsGFDGhsbM2jQoPz4xz9OuVwuOg0AAIDXwbAFAAAAAAAAAAAAAAAAAAAAAAAAAAC8BosWLcqQIUOSJOvWrcull16aurq6gquOfu95z3uycuXKXHHFFZkxY0bGjRuX5557rugsAAAAXiPDFgAAAAAAAAAAAAAAAAAAAAAAAAAA8D+89NJLmTlzZsaPH5+Pfexjueeee9K3b9+is6pKQ0NDrrrqqixbtiz33ntvhg8fns2bNxedBQAAwGtg2AIAAAAAAAAAAAAAAAAAAAAAAAAAAP6LvXv3Zty4cZk9e3Z+/vOfZ/bs2WlsbCw6q2qNGjUq69evz3HHHZfBgwfnzjvvLDoJAACA/4dhCwAAAAAAAAAAAAAAAAAAAAAAAAAAqGDnzp0ZOXJk1q1blxUrVuSSSy4pOqkm9OrVK8uXL8/555+f8847Lz/96U+LTgIAAOB/aCg6AAAAAAAAAAAAAAAAAAAAAAAAAAAAjjZbtmzJWWedlU6dOmX16tVpbm4uOqmmtG/fPjfeeGNOPPHEfOpTn8quXbvypS99qegsAAAAKjBsAQAAAAAAAAAAAAAAAAAAAAAAAAAA/+avf/1rzj777DQ3N2fx4sXp2rVr0Uk1qa6uLrNmzcoJJ5yQGTNmZO/evZk1a1bRWQAAAPwHwxYAAAAAAAAAAAAAAAAAAAAAAAAAAPBPGzduzJlnnpl+/frl9ttvT6dOnYpOqnmf+cxncuyxx2batGk5cOBAvvvd7xadBAAAwL8xbAEAAAAAAAAAAAAAAAAAAAAAAAAAAEkeeuihnH322enfv3/uuOOOdOjQoeikNmPq1KlpbGzMxz/+8XTo0CHf/OY3i04CAADgnwxbAAAAAAAAAAAAAAAAAAAAAAAAAADQ5j3yyCM566yz0rt379x2221GLQowZcqU7N+/P9OmTUunTp0yc+bMopMAAACIYQsAAAAAAAAAAAAAAAAAAAAAAAAAANq4Xbt2ZezYsenevXsWL16cjh07Fp3UZl1yySV5/vnn8/nPfz7vfOc7M3ny5KKTAAAA2jzDFgAAAAAAAAAAAAAAAAAAAAAAAAAAtFmlUikTJ07Mnj17smzZsnTu3LnopDbvsssuy44dOzJ16tT06NEjo0aNKjoJAACgTasrl8vloiMAAAAAAAAAAAAAAAAAAAAAAAAAAKAIn/jEJ3Lrrbdm5cqV6d+/f9E5/FNra2smTJiQFStWZN26dTnppJOKTgIAAGizDFsAAAAAAAAAAAAAAAAAAAAAAAAAANAm/eQnP8mnP/3p3HrrrbnggguKzuE/7Nu3L2eccUZaW1uzatWqdOjQoegkAACANqm+6AAAAAAAAAAAAAAAAAAAAAAAAAAAADjS1qxZk8997nP5yle+YtTiKHXMMcfklltuyY4dOzJjxoyicwAAANqsunK5XC46AgAAAAAAAAAAAAAAAAAAAAAAAAAAjpTnn38+73vf+9K7d+8sXrw49fX1RSfxP9x+++05//zzM3fu3Fx00UVF5wAAALQ5hi0AAAAAAAAAAAAAAAAAAAAAAAAAAGhTLr744txxxx3ZuHFjevbsWXQOr8FnP/vZ3HTTTdmwYUNOOumkonMAAADaFMMWAAAAAAAAAAAAAAAAAAAAAAAAAAC0Gb/97W9zwQUXZNGiRTnvvPOKzuE12rdvXwYPHpzjjz8+d999d+rq6opOAgAAaDMMWwAAAAAAAAAAAAAAAAAAAAAAAAAA0CY8++yzOe2003LOOefk+uuvLzqH12ndunUZNmxYrrvuulx66aVF5wAAALQZhi0AAAAAAAAAAAAAAAAAAAAAAAAAAGgTpk+fnoULF2bTpk3p1q1b0TkchpkzZ6alpSUPPvhgevXqVXQOAABAm2DYAgAAAAAAAAAAAAAAAAAAAAAAAACAmrd69eqcccYZmTdvXiZNmlR0DofpxRdfTP/+/TN06NDMnTu36BwAAIA2wbAFAAAAAAAAAAAAAAAAAAAAAAAAAAA1rVwuZ9iwYTn22GNz9913F53DG7Ro0aKMGzcuK1asyAc/+MGicwAAAGqeYQsAAAAAAAAAAAAAAAAAAAAAAAAAAGranDlzcvHFF2fdunUZOHBg0Tm8Cc4+++w8++yzue+++1JfX190DgAAQE0zbAEAAAAAAAAAAAAAAAAAAAAAAAAAQM06ePBg+vTpk9GjR6elpaXoHN4k999/f04//fTMnTs3kyZNKjoHAACgphm2AAAAAAAAAAAAAAAAAAAAAAAAAACgZl133XW5/PLL87e//S3vete7is7hTfTRj340a9euzQMPPJCGhoaicwAAAGqWYQsAAAAAAAAAAAAAAAAAAAAAAAAAAGrS/v3707t371x44YX5wQ9+UHQOb7ItW7akX79+uf76/2PvXoO8qg/7j3+W2wJKFUFjonIRVAhKxMRWIDhVExGQqgRJDEKst3S80owancQhitTWlrRWG42KaQiaghMliRCoiqAgiIC4i0YuCgZSUQRRQIGF/f0f9B8mVE1AYA/74/Wa2Sfn9zvn+z47+4QnfH6SCy+8sOgcAACAsmXYAgAAAAAAAAAAAAAAAAAAAAAAAACAsnT//ffn6quvzrJly/LZz3626Bz2gqFDh2b+/Pmprq5ORUVF0TkAAABlybAFAAAAAAAAAAAAAAAAAAAAAAAAAABlp1QqpUuXLunRo0ceeOCBonPYSxYuXJiuXbvm8ccfT9++fYvOAQAAKEuGLQAAAAAAAAAAAAAAAAAAAAAAAAAAKDsTJ05M//79U11dnS5duhSdw1501llnZevWrXnyySeLTgEAAChLhi0AAAAAAAAAAAAAAAAAAAAAAAAAACg7Z599dmpqajJlypSiU9jLJk+enL59++a3v/1tjjvuuKJzAAAAyk6DogMAAAAAAAAAAAAAAAAAAAAAAAAAAGBPWrlyZSZPnpzLL7+86BTqwJlnnpk2bdpk9OjRRacAAACUJcMWAAAAAAAAAAAAAAAAAAAAAAAAAACUldGjR6d169bp379/0SnUgQYNGuTiiy/OT3/602zZsqXoHAAAgLJj2AIAAAAAAAAAAAAAAAAAAAAAAAAAgLIyduzYXHjhhWnSpEnRKdSRiy66KKtXr84TTzxRdAoAAEDZMWwBAAAAAAAAAAAAAAAAAAAAAAAAAEDZmDdvXpYuXZpvfOMbRadQh9q0aZPu3btn3LhxRacAAACUHcMWAAAAAAAAAAAAAAAAAAAAAAAAAACUjfHjx6d9+/b54he/WHQKdWzQoEGZMGFCNm3aVHQKAABAWTFsAQAAAAAAAAAAAAAAAAAAAAAAAABA2fjlL3+ZgQMHpqKiougU6tjXvva1bNiwIdOmTSs6BQAAoKwYtgAAAAAAAAAAAAAAAAAAAAAAAAAAoCwsW7YsixYtSt++fYtOoQBHHnlkTjjhhEyePLnoFAAAgLJi2AIAAAAAAAAAAAAAAAAAAAAAAAAAgLIwadKktGjRIj169Cg6hYL06dMnv/nNb4rOAAAAKCuGLQAAAAAAAAAAAAAAAAAAAAAAAAAAKAtPPfVUTj/99DRp0qToFArSu3fvLF68OL/73e+KTgEAACgbhi0AAAAAAAAAAAAAAAAAAAAAAAAAACgLs2bNSq9evYrOoECnnHJKmjRpkpkzZxadAgAAUDYMWwAAAAAAAAAAAAAAAAAAAAAAAAAAUO8tWbIkq1atSs+ePYtOoUDNmjVLt27dDFsAAADsQYYtAAAAAAAAAAAAAAAAAAAAAAAAAACo92bPnp2mTZumW7duRadQsB49emTWrFlFZwAAAJQNwxYAAAAAAAAAAAAAAAAAAAAAAAAAANR7CxYsSJcuXVJZWVl0CgXr1q1bXn755dTU1BSdAgAAUBYMWwAAAAAAAAAAAAAAAAAAAAAAAAAAUO9VVVWla9euRWewD+jatWs2b96cxYsXF50CAABQFgxbAAAAAAAAAAAAAAAAAAAAAAAAAABQ71VXV+f4448vOoN9QKdOndK4ceNUV1cXnQIAAFAWDFsAAAAAAAAAAAAAAAAAAAAAAAAAAFCvratDlqIAACAASURBVF+/Pm+99VaOO+64olPYB1RWVqZt27ZZsmRJ0SkAAABlwbAFAAAAAAAAAAAAAAAAAAAAAAAAAAD12rJly5Ik7du3L7hkz/rlL3+Z8ePHF52xR1RVVeXOO+/Mu+++WyfntW/fPsuXL6+TswAAAMqdYQsAAAAAAAAAAAAAAAAAAAAAAAAAAOq1PwwYtG3bttiQPey2227LjTfeWHTGx3ruuedy22235a233tqp78+YMSPDhg3LqlWr9nLZ/2rXrp1hCwAAgD3EsAUAAAAAAAAAAAAAAAAAAAAAAAAAAPXa73//+xxyyCE54IADik7Zo6666qrccMMNRWd8rGeffTY333xz3nzzzaJTPlabNm2yYsWKojMAAADKQqOiAwAAAAAAAAAAAAAAAAAAAAAAAAAAYHe88847Oeyww4rO2OO+9a1vFZ1Qb7Vu3Tpr1qwpOgMAAKAsNCg6AAAAAAAAAAAAAAAAAAAAAAAAAAAAdseaNWvSqlWrOjtv06ZNGT58eDp06JDKysocc8wx+fa3v53169fv8L1169bliiuuyPHHH5/DDz88AwYMyKRJkz7yvGuuuSaXXHJJVq5cmSuvvDKHHnro9ut/+7d/+6meubONn+b9Lr/88tx7771JkosvvjjXXHPNDve/8MILOf/883P00UfnK1/5Su6+++6USqU/e+6e1Lp166xbty7btm2r03MBAADKUaOiAwAAAAAAAAAAAAAAAAAAAAAAAAAAYHesXbs2hxxySJ2dd8UVV2TMmDEZMmRIunXrltdeey33339/qqur89xzzyVJVq5cmV69emX16tUZOnRoDjrooEyZMiX9+/fPqFGjMmzYsO3Pq6qqyqpVq9KvX79UVVXlpJNOSpLMmjUra9as2f69XXnmzjR+2vc79thjs3DhwixfvjzHHntsOnbsuP3eadOmpV+/fmnatGkGDBiQBg0a5Oabb87BBx+8R373O+uQQw5JbW1t1q1bV6ejJwAAAOXIsAUAAAAAAAAAAAAAAAAAAAAAAAAAAPXapk2b0qxZszo5a/PmzRk7dmz69euXn/zkJ9uvd+jQIddee20WL16cY489NjfeeGOWL1+e2bNn56/+6q+SJLfcckv69OmT7373uxk6dOgOYxyLFi1K7969M27cuHTq1Oljz97ZZ+5s46d9v+uuuy7btm3LrFmzcuONN+bEE0/c/r1hw4alsrIy8+bNS7t27ZIk11133Q7fqQt/+HvYtGlTnZ4LAABQjhoUHQAAAAAAAAAAAAAAAAAAAAAAAAAAALtj8+bNadKkSZ2ctW3btiTJtGnT8uKLL26/ftVVV2XDhg3p0KFD1q5dm4cffjgnn3zy9gGKJGnSpEkuu+yybNmyJY8++uhHnj1ixIhPHLXYlWfuTGNtbW02bty4w8+2bdt26t5PMnv27Lz00ku54oorto9aJMkxxxyTIUOGfOJ9e0NlZWWS//3bAAAAYPc0KjoAAAAAAAAAAAAAAAAAAAAAAAAAAAB2x5YtW+ps2KJ58+YZPnx4vv/97+ekk05K586dc9ppp6Vv377p3bt3GjZsmEWLFqVUKmXDhg35+te/vsP977//fpLktdde2+H6oYcempNPPvkTz92VZ+5M46xZs9KjR48dnvPwww/nggsu+LP3fpJXX301SXLiiSd+5LMuXbp84n17wx/+HgxbAAAA7L4GRQcAAAAAAAAAAAAAAAAAAAAAAAAAAEB98r3vfS9Lly7NzTffnObNm+fee+/N2WefnS5dumTVqlVZs2ZNkqSysjKNGzfe4adVq1YZPHjwR4YeKisr/+SZu/rMP9fYunXrDB48eIefdu3a7dS9n2Tt2rVJ8rHjF02bNv3zv9g9qKKiIklSW1tbp+cCAACUo0ZFBwAAAAAAAAAAAAAAAAAAAAAAAAAAwO5o3Lhxampq6uSsLVu25IMPPki7du1y66235tZbb82qVasycuTI3H333bnrrrsyePDgJMkxxxyTsWPH7nD/tm3bsn79+jRv3nyXzj366KN3+pk70zhy5MiPPGdX7v047du3T5JMnz4955133g6fLV++fJfed3dt3rw5Sd0PagAAAJSjBkUHAAAAAAAAAAAAAAAAAAAAAAAAAADA7qisrMyWLVvq5KypU6emZcuW+fnPf7792uGHH57rr78+SfLuu++mY8eOOfTQQzNlypSPDG7cfvvtadmyZebMmbNL5+7KM3emcXfe75N86UtfSuPGjTN16tQdrm/dujUPP/zwTr7pnvGHv4fKyso6PRcAAKAcGbYAAAAAAAAAAAAAAAAAAAAAAAAAAKBea9q0aT788MM6Oatnz5457LDDcuutt2batGl57733Mm/evAwbNixJ0q9fvzRp0iS333573n///Vx44YWZP39+li5dmlGjRuW2227LV7/61fTs2XOXzt2VZ+5M4+68X5K0bds2SXLfffflhRdeSJIcddRRufLKK1NdXZ1LLrkk8+fPz4svvpiBAwfmvffe26X33V2bNm1KYtgCAABgT2hUdAAAAAAAAAAAAAAAAAAAAAAAAAAAAOyOli1bZvny5XVyVosWLfLQQw/lW9/6Vk477bTt15s2bZqRI0duH3645JJL8sEHH+SGG27I+PHjkySNGjXKpZdempEjR6aiomKXz97ZZ+5s4+6831e/+tWccsopueeee/Lb3/42Tz/9dJLkH//xH7Nx48bcf//9efDBB5MkZ5xxRv793/89Q4YM2eV3/rTWrFmTioqKtGzZss7OBAAAKFcVpVKpVHQEAAAAAAAAAAAAAAAAAAAAAAAAAAB8WrfcckvGjRuXV155pc7O/OCDD1JVVZXf/e53ad26dY4//vgcdthhH/ne+vXr8+KLL2bDhg054YQTctRRR+322Tv7zJ1t3J17/+d//ictWrRIixYtdri+YsWKVFdXp3Pnzmnfvv2uv+Ru+vGPf5ybbropa9eurfOzAQAAyo1hCwAAAAAAAAAAAAAAAAAAAAAAAAAA6rX/+I//yC233JK333676BT2EbfffntGjx6dpUuXFp0CAABQ7zUoOgAAAAAAAAAAAAAAAAAAAAAAAAAAAHbHZz/72bzzzjvZtGlT0SnsI1asWJEjjjii6AwAAICyYNgCAAAAAAAAAAAAAAAAAAAAAAAAAIB6rX379imVSnnjjTeKTmEfsWzZsrRv377oDAAAgLJg2AIAAAAAAAAAAAAAAAAAAAAAAAAAgHqtXbt2SZLly5cX2sG+Y/ny5dv/LgAAANg9hi0AAAAAAAAAAAAAAAAAAAAAAAAAAKjXWrZsmVatWmXx4sVFp7AP2Lp1a5YtW5YOHToUnQIAAFAWDFsAAAAAAAAAAAAAAAAAAAAAAAAAAFDvnXDCCamuri46g33AokWLsnnz5nTt2rXoFAAAgLJg2AIAAAAAAAAAAAAAAAAAAAAAAAAAgHqva9euqaqqKjqDfUBVVVUaNWqUTp06FZ0CAABQFgxbAAAAAAAAAAAAAAAAAAAAAAAAAABQ73Xt2jULFy7M1q1bi06hYFVVVenUqVMqKyuLTgEAACgLhi0AAAAAAAAAAAAAAAAAAAAAAAAAAKj3unfvno0bN6aqqqroFAo2Y8aMdO/evegMAACAsmHYAgAAAAAAAAAAAAAAAAAAAAAAAACAeq9z58455JBDMnPmzKJTKNDmzZszd+7c9OzZs+gUAACAsmHYAgAAAAAAAAAAAAAAAAAAAAAAAACAeq+ioiLdu3fPjBkzik6hQPPmzcumTZsMWwAAAOxBhi0AAAAAAAAAAAAAAAAAAAAAAAAAACgLp59+ep588sls27at6BQKMmXKlBx11FHp2LFj0SkAAABlw7AFAAAAAAAAAAAAAAAAAAAAAAAAAABloU+fPlm7dm1eeOGFolMoyOTJk9OvX7+iMwAAAMqKYQsAAAAAAAAAAAAAAAAAAAAAAAAAAMpC586d065du0yaNKnoFAqwevXqzJ07N7179y46BQAAoKwYtgAAAAAAAAAAAAAAAAAAAAAAAAAAoGz0798/v/jFL4rOoAATJkxI06ZN85WvfKXoFAAAgLJi2AIAAAAAAAAAAAAAAAAAAAAAAAAAgLLx9a9/Pa+88koWLlxYdAp1bNy4cenXr18OPPDAolMAAADKimELAAAAAAAAAAAAAAAAAAAAAAAAAADKRvfu3XPkkUdm3LhxRadQh95+++1MmzYtgwYNKjoFAACg7Bi2AAAAAAAAAAAAAAAAAAAAAAAAAACgbDRo0CAXXHBBxowZk9ra2qJzqCM/+9nPcuCBB6Zfv35FpwAAAJQdwxYAAAAAAAAAAAAAAAAAAAAAAAAAAJSVSy+9NCtWrMh///d/F51CHXnwwQczePDgNGvWrOgUAACAslNRKpVKRUcAAAAAAAAAAAAAAAAAAAAAAAAAAMCe9Nd//dc55JBD8uijjxadwl727LPP5tRTT828efNy0kknFZ0DAABQdgxbAAAAAAAAAAAAAAAAAAAAAAAAAABQdv7rv/4rF154YZYsWZL27dsXncNeNHDgwKxYsSLPP/980SkAAABlqUHRAQAAAAAAAAAAAAAAAAAAAAAAAAAAsKedf/75adOmTe68886iU9iLXn/99UyYMCHXXXdd0SkAAABly7AFAAAAAAAAAAAAAAAAAAAAAAAAAABlp2HDhrnqqqsyevTovPvuu0XnsJeMGjUqbdq0yYABA4pOAQAAKFuGLQAAAAAAAAAAAAAAAAAAAAAAAAAAKEuXXXZZKisrM2rUqKJT2AtWrFiR0aNH5/rrr0/Dhg2LzgEAAChbhi0AAAAAAAAAAAAAAAAAAAAAAAAAAChLLVq0yHXXXZc777wzb7/9dtE57GEjR47MZz7zmVx88cVFpwAAAJQ1wxYAAAAAAAAAAAAAAAAAAAAAAAAAAJStq6++Os2bN88dd9xRdAp70Ouvv56f/OQn+f73v5/KysqicwAAAMpaRalUKhUdAQAAAAAAAAAAAAAAAAAAAAAAAAAAe8tdd92V66+/Pi+//HI6dOhQdA57wMCBA/Pyyy+nqqoqjRs3LjoHAACgrBm2AAAAAAAAAAAAAAAAAAAAAAAAAACgrG3dujXdunVLx44d89hjjxWdw256+umnc/rpp2fSpEnp06dP0TkAAABlz7AFAAAAAAAAAAAAAAAAAAAAAAAAAABlb8qUKTnrrLMyZcqUnHnmmUXn8CnV1NTkS1/6Uo444ohMmjSp6BwAAID9gmELAAAAAAAAAAAAAAAAAAAAAAAAAAD2CwMHDsz8+fNTXV2dAw44oOgcPoXbb789I0aMyEsvvZRjjjmm6BwAAID9QoOiAwAAAAAAAAAAAAAAAAAAAAAAAAAAoC7cfffdWbduXYYPH150Cp/CkiVLMmLEiAwfPtyoBQAAQB2qKJVKpaIjAAAAAAAAAAAAAAAAAAAAAAAAAACgLowePTrf/va38/TTT6dXr15F57CTtm7dmlNPPTWbNm3KnDlz0qhRo6KTAAAA9huGLQAAAAAAAAAAAAAAAAAAAAAAAAAA2K+cc845efHFF/PSSy+lZcuWReewE4YPH5477rgjzz//fLp27Vp0DgAAwH6lQdEBAAAAAAAAAAAAAAAAAAAAAAAAAABQlx544IHU1NTkiiuuKDqFnfDss89m5MiR+Zd/+RejFgAAAAWoKJVKpaIjAAAAAAAAAAAAAAAAAAAAAAAAAACgLj3xxBM566yz8m//9m+5+uqri87hE6xatSonnXRS/vIv/zKPPfZYKioqik4CAADY7xi2AAAAAAAAAAAAAAAAAAAAAAAAAABgv3Tbbbfl1ltvzZNPPplTTz216Bz+j61bt+aMM87Im2++mTlz5uTggw8uOgkAAGC/ZNgCAAAAAAAAAAAAAAAAAAAAAAAAAID9UqlUyrnnnps5c+Zk9uzZadu2bdFJ/JG/+7u/y9ixYzNr1qyccMIJRecAAADstwxbAAAAAAAAAAAAAAAAAAAAAAAAAACw31q/fn169eqVLVu2ZObMmWnZsmXRSSS54447ctNNN+WRRx7JgAEDis4BAADYrzUoOgAAAAAAAAAAAAAAAAAAAAAAAAAAAIrSokWLPP7443n//fczcODAbN68ueik/d64ceNy0003ZdSoUUYtAAAA9gGGLQAAAAAAAAAAAAAAAAAAAAAAAAAA2K8deeSRmThxYubPn59Bgwalpqam6KT91sSJEzNkyJBce+21GTZsWNE5AAAAJKkolUqloiMAAAAAAAAAAAAAAAAAAAAAAAAAAKBos2bNyplnnpl+/frloYceSsOGDYtO2q9MnTo1/fr1y4UXXpj77rsvFRUVRScBAACQpEHRAQAAAAAAAAAAAAAAAAAAAAAAAAAAsC/o3r17fvWrX+VXv/pVLrjggtTU1BSdtN+YPHly+vfvn/POOy/33nuvUQsAAIB9iGELAAAAAAAAAAAAAAAAAAAAAAAAAAD4/0477bRMmTIlU6ZMybnnnpsPP/yw6KSy9+tf/zrnnXdezjvvvIwZMyYNGzYsOgkAAIA/YtgCAAAAAAAAAAAAAAAAAAAAAAAAAAD+SK9evTJ16tQ8//zzOeOMM7J69eqik8rWAw88kAEDBuSiiy7KmDFj0qhRo6KTAAAA+D8MWwAAAAAAAAAAAAAAAAAAAAAAAAAAwP/xxS9+Mc8880zefPPNdO/ePYsWLSo6qayUSqX84Ac/yOWXX57vfe97ueeee9Kggf8qFQAAYF9UUSqVSkVHAAAAAAAAAAAAAAAAAAAAAAAAAADAvmjVqlXp379/li1blocffjhnnnlm0Un13rp16zJkyJA88cQTefDBB/PNb36z6CQAAAD+BDOEAAAAAAAAAAAAAAAAAAAAAAAAAADwCQ4//PBMnz49vXv3Tt++ffMP//APKZVKRWfVW1VVVTn55JMzf/78TJ061agFAABAPWDYAgAAAAAAAAAAAAAAAAAAAAAAAAAA/oTmzZvnoYceyqhRo/KDH/wg/fr1y1tvvVV0Vr1z7733pnv37vnc5z6X+fPnp0ePHkUnAQAAsBMMWwAAAAAAAAAAAAAAAAAAAAAAAAAAwE649tprM3369CxatChdu3bNxIkTi06qF1avXp1zzjknV111Vb7zne/kqaeeymc+85miswAAANhJhi0AAAAAAAAAAAAAAAAAAAAAAAAAAGAnde/ePQsWLMi5556bs88+O4MGDcrq1auLztpnPfLIIzn++OOzYMGCTJ06NSNGjEijRo2KzgIAAGAXGLYAAAAAAAAAAAAAAAAAAAAAAAAAAIBd0KJFi/z4xz/OhAkT8txzz6VLly752c9+llKpVHTaPuO1115L3759841vfCNf+9rXUlVVlVNPPbXoLAAAAD4FwxYAAAAAAAAAAAAAAAAAAAAAAAAAAPApnHPOOXn55ZczcODAXHTRRenRo0fmzJlTdFah1q9fnxtvvDFdunTJG2+8kenTp+dHP/pRDjrooKLTAAAA+JQMWwAAAAAAAAAAAAAAAAAAAAAAAAAAwKd00EEH5Uc/+lHmzp2bJk2a5JRTTsk3v/nNLFq0qOi0OrV58+bcddddOfbYY3P//ffnjjvuyIIFC/LlL3+56DQAAAB2k2ELAAAAAAAAAAAAAAAAAAAAAAAAAADYTd26dcv06dMzfvz4LFiwIF26dMlFF12UxYsXF522V23atCn33HNPOnbsmO9+97u54IILsnjx4lxzzTVp3Lhx0XkAAADsAYYtAAAAAAAAAAAAAAAAAAAAAAAAAABgDxk4cGCqq6vzn//5n3nuuefSuXPnnHvuuZkxY0bRaXvUmjVrMmLEiLRt2zZ///d/n3POOSdLly7ND3/4w7Rq1aroPAAAAPagilKpVCo6AgAAAAAAAAAAAAAAAAAAAAAAAAAAyk1tbW0mTpyYf/qnf8rMmTPz+c9/PkOHDs2ll15ab8cf5s2bl/vuuy8PPfRQGjZsmIsuuig33HBDjjjiiKLTAAAA2EsMWwAAAAAAAAAAAAAAAAAAAAAAAAAAwF42e/bs3HfffRk/fnxqa2vzN3/zNxk0aFD69OmTZs2aFZ33J1VXV2f8+PEZN25clixZkpNPPjmXXnppBg8enAMOOKDoPAAAAPYywxYAAAAAAAAAAAAAAAAAAAAAAAAAAFBH3n///YwbNy4///nP88wzz6R58+bp3bt3zjrrrPTp0yef+9znik7M5s2bM2PGjEyePDmPP/54Xn311Rx11FE5//zzM3To0HzhC18oOhEAAIA6ZNgCAAAAAAAAAAAAAAAAAAAAAAAAAAAKsGrVqvziF7/IxIkTM23atHz44Yf5/Oc/n549e+bLX/5yTjnllHTs2DENGjTY6WfW1tbu0veT5N13383cuXMzc+bMzJw5M7NmzcrGjRvTuXPn9OnTJwMGDEiPHj1SUVGxq68IAABAGTBsAQAAAAAAAAAAAAAAAAAAAAAAAAAABfvwww/zzDPPZNq0aZkxY0bmzp2bTZs2pXnz5unSpUu6du2ao48+Ou3bt0+7du1yxBFHpFWrVjnggAN2eM4Pf/jDXHnllamsrNx+bevWrVmzZk3WrFmTZcuWZdmyZVm+fHleeeWVVFdXZ+XKlUmSDh06bB/VOPPMM9O2bds6/R0AAACwbzJsAQAAAAAAAAAAAAAAAAAAAAAAAAAA+5jNmzenuro6L730Uqqrq7Nw4cK8/vrrWblyZWpqarZ/r2nTpjn44IPTvHnzJMnvf//7tGrVKk2bNk1tbW3WrVuXdevW7fDsVq1apX379jnuuONywgkn5Atf+EJOPPHEHH744XX6jgAAANQPhi0AAAAAAAAAAAAAAAAAAAAAAAAAAKCe2LZtW1auXJlVq1ZlzZo1WbNmTd57771s3LgxK1euzN13350uXbpkyJAhadSoUf7iL/4irVq12v7Ttm3btGjRoujXAAAAoB4xbAEAAAAAAAAAAAAAAAAAAAAAAAAAAGXgO9/5Tv71X/81lZWVeeedd3LggQcWnQQAAEAZaFB0AAAAAAAAAAAAAAAAAAAAAAAAAAAAsHtqa2szduzYJElNTU0mTJhQcBEAAADlwrAFAAAAAAAAAAAAAAAAAAAAAAAAAADUc08//XRWr16dJKmoqNg+cgEAAAC7y7AFAAAAAAAAAAAAAAAAAAAAAAAAAADUcw8//HAaN26cJNm2bVuefPLJvP322wVXAQAAUA4MWwAAAAAAAAAAAAAAAAAAAAAAAAAAQD22ZcuWPPLII6mpqdl+raKiIo8++miBVQAAAJQLwxYAAAAAAAAAAAAAAAAAAAAAAAAAAFCP/eY3v8mGDRt2uFZbW5sxY8YUVAQAAEA5MWwBAAAAAAAAAAAAAAAAAAAAAAAAAAD12EMPPZRGjRrtcK22tjazZ8/OG2+8UVAVAAAA5cKwBQAAAAAAAAAAAAAAAAAAAAAAAAAA1FMbN27Mr3/969TU1Hzks0aNGmX8+PEFVAEAAFBODFsAAAAAAAAAAAAAAAAAAAAAAAAAAEA99dhjj2XLli0f+9nWrVszZsyYOi4CAACg3Bi2AAAAAAAAAAAAAAAAAAAAAAAAAACAemrs2LGpqKj42M9KpVIWLlyYV155pY6rAAAAKCeGLQAAAAAAAAAAAAAAAAAAAAAAAAAAoB5au3ZtnnrqqWzbtu0Tv9O4ceOMGzeuDqsAAAAoN4YtAAAAAAAAAAAAAAAAAAAAAAAAAACgHho/fny2bt36J79TU1OTn/70p3VUBAAAQDlqVHQAAAAAAAAAAAAAAAAAAAAAAAAAAACw65577rkceeSRKZVK26+99957adasWZo0abL9WkVFRV599dV06tSpiEwAAADquYrSH//LEwAAAAAAAAAAAAAAAAAAAAAAAAAAqLcOPvjg/PM//3Muu+yyolMAAAAoEw2KDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGDfZNgCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAj2XYAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgI9l2AIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICPZdgCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAj2XYAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgI9l2AIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICPZdgCAAAAAAAAAAAAAAAAAAAAAAAAgP/H3t3Gal0Xfhz/nDvgmIu7TKpTeTZFy4ApU8CM0BQ5TdFEbqx03p2NJ0XlWlttbS63Bq27kWuFUxFQMNDQLGAyS0SijqkMFpCeQ95EonigRtI5cK4e/P9/Vn9+lQKeH9fl6/Xw+/3tuj7Xw9+T6w0AAAAAUEjYAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgELCFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQStgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCQsAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACFhC0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoJGwBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAIWELAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACglbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUEjYAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgELCFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQStgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCQsAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACFhC0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoJGwBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAIWELAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACglbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAu/FvVQAAIABJREFUUEjYAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgELCFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQStgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCQsAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACFhC0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoJGwBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAIWELAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACglbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUKiuUqlUyh4BAAAAAAAAAAAAAAAAAAAAAAAAAADVaNSoUfnLX/5S9oxD9u3blwEDBqSpqansKYfMnTs3s2bNKnsGAAAAR6ix7AEAAAAAAAAAAAAAAAAAAAAAAAAAAFCtnn/++UyePDnnnntu2VOOS1//+tfz17/+tewZAAAAHAVhCwAAAAAAAAAAAAAAAAAAAAAAAAAAOAqTJ09Oe3t72TOOS7feemvZEwAAADhK9WUPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4PgkbAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAhYQsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCVsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQSNgCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAQsIWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFBK2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoJCwBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIWELQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgkbAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAhYQsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCVsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQSNgCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAQsIWAAAAAAAAAAAAAAAAAAAAAAAAAABQI/r6+sqeAAAAQI0RtgAAAAAAAAAAAAAAAAAAAAAAAAAAgCq2ffv2zJkzJ6ecckqGDx+eSy+9NGvXri17FgAAADWisewBAAAAAAAAAAAAAAAAAAAAAAAAAADAkXn99dczderUvPTSS/n0pz+d4cOHZ8WKFbnsssuyatWqTJw4seyJAAAAVDlhCwAAAAAAAAAAAAAAAAAAAAAAAAAAqFJf+9rXsm3btvz85z9PW1tbkmTOnDkZM2ZMrrvuunR2dpa8EAAAgGpXX/YAAAAAAAAAAAAAAAAAAAAAAAAAAADgyNx1110ZPXr0oahFkpx88sm55JJL0tXVlY0bN5a4DgAAgFogbAEAAAAAAAAAAAAAAAAAAAAAAAAAAFXo1VdfTXd3dy666KLD7kaOHJkk6ejo6O9ZAAAA1BhhCwAAAAAAAAAAAAAAAAAAAAAAAAAAqELbtm1LkrznPe857O70009PkuzatatfNwEAAFB7hC0AAAAAAAAAAAAAAAAAAAAAAAAAAKAKPfvss0mSYcOGHXb3wQ9+MEmyZ8+eft0EAABA7RG2AAAAAAAAAAAAAAAAAAAAAAAAAACAKjRw4MAkyWuvvXbY3b59+5IkQ4cO7ddNAAAA1B5hCwAAAAAAAAAAAAAAAAAAAAAAAAAAqEIjRoxIknR2dh5293+xi5NOOqlfNwEAAFB7hC0AAAAAAAAAAAAAAAAAAAAAAAAAAKAKjRw5MnV1dYVhi2eeeSZJMm7cuP6eBQAAQI0RtgAAAAAAAAAAAAAAAAAAAAAAAAAAgCr03ve+NxMnTsxjjz2W55577tB5b29v7rnnnrzvfe/L2LFjS1wIAABALRC2AAAAAAAAAAAAAAAAAAAAAAAAAACAKvXVr341vb29mTFjRu6///48+uijueyyy9LZ2ZkFCxakrq6u7IkAAABUucayBwAAAAAAAAAAAAAAAAAAAAAAAAAAAEdm8uTJWbRoUW666aZMmzYtSTJkyJB85zvfSVtbW8nrAAAAqAXCFgAAAAAAAAAAAAAAAAAAAAAAAAAAUMVmzZqVq666Kh0dHenr68u4cePS0NBQ9iwAAABqhLAFAAAAAAAAAAAAAAAAAAAAAAAAAABUucbGxowfP77sGQAAANSg+rIHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcHwStgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCQsAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACFhC0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoJGwBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAIWELAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACglbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUEjYAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgELCFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQStgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCQsAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACFhC0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoJGwBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAIWELAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACglbAAAAAAAAAAAAAAAAAAAAAAAAAABAjahUKmVPAAAAoMYIWwAAAAAAAAAAAAAAAAAAAAAAAAAAQI247bbb0tPTU/YMAAAAakhdRUYRAAAAAAAAAAAAAAAAAAAAAAAAAACOyODBg9PY2JgTTzyx7ClJkp07d2bIkCFpbm4ue0qS5IUXXsiPfvSjtLe3lz0FAACAI9RY9gAAAAAAAAAAAAAAAAAAAAAAAAAAAKhW3/jGN/L3v/+97BlJkj/96U/53ve+l5aWllx99dVlzzlk3LhxZU8AAADgKNRVKpVK2SMAAAAAAAAAAAAAAAAAAAAAAAAAAICj85WvfCXz5s1Lc3NzXn311ZxwwgllTwIAAKAG1Jc9AAAAAAAAAAAAAAAAAAAAAAAAAAAAODqVSiWLFi1Kkuzfvz8PPfRQyYsAAACoFcIWAAAAAAAAAAAAAAAAAAAAAAAAAABQ5datW5edO3cmSerr67N48eKSFwEAAFArhC0AAAAAAAAAAAAAAAAAAAAAAAAAAKDK3XvvvRkwYECS5ODBg1m1alVee+21klcBAABQC4QtAAAAAAAAAAAAAAAAAAAAAAAAAACgih04cCDLli1LT0/PobNKpZL777+/xFUAAADUCmELAAAAAAAAAAAAAAAAAAAAAAAAAACoYqtXr053d/e/nFUqldx9990lLQIAAKCWCFsAAAAAAAAAAAAAAAAAAAAAAAAAAEAVu+eee9LU1PQvZ319fXn88cfz0ksvlbQKAACAWiFsAQAAAAAAAAAAAAAAAAAAAAAAAAAAVepvf/tbHnjggfT29h5219DQkJ/85CclrAIAAKCWCFsAAAAAAAAAAAAAAAAAAAAAAAAAAECVevDBB7N///7Cu4MHD2bhwoX9vAgAAIBaI2wBAAAAAAAAAAAAAAAAAAAAAAAAAABVasmSJWloaCi8q1Qqefrpp/OHP/yhn1cBAABQS4QtAAAAAAAAAAAAAAAAAAAAAAAAAACgCnV3d2f16tU5cODAv31mwIABWbp0aT+uAgAAoNYIWwAAAAAAAAAAAAAAAAAAAAAAAAAAQBVasWJFent7/+MzPT09WbhwYT8tAgAAoBY1lj0AAAAAAAAAAAAAAAAAAAAAAAAAAAB485544om0tLSkUqkcOuvu7s4JJ5yQgQMHHjo7ePBgnn322Zx66qllzAQAAKDK1VX++c0TAAAAAAAAAAAAAAAAAAAAAAAAAACoWkOGDMm3vvWttLe3lz0FAACAGlFf9gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOT8IWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFBK2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoJCwBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIWELQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgkbAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAhYQsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCVsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQSNgCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAQsIWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFBK2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoJCwBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIWELQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgkbAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAhYQsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCVsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQSNgCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAQsIWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFBK2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoJCwBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIWELQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgkbAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAhYQsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCVsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQSNgCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAQsIWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFBK2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoJCwBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIWELQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgkbAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAhYQsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKNZY9AAAAAAAAAAAAAAAAAAAAAAAAAAAAODKVSiV79uxJkuzduzd9fX155ZVXsmvXrjQ1NaW5uTmDBg0qeSUAAADVrK5SqVTKHgEAAAAAAAAAAAAAAAAAAAAAAAAAABxu37592bJlS7Zs2ZKurq7s2LEjXV1deeWVV7J79+7s3r07/+3vRd/xjndk+PDhede73pWWlpa0tramtbU1p512WkaNGpX3v//9/fRrAAAAqEbCFgAAAAAAAAAAAAAAAAAAAAAAAAAAcBw4cOBANm3alPXr12fDhg357W9/m87OzvT19aW5uTmtra055ZRT0trampNPPvlQrGLYsGFJksGDB6e+vj7J/wQxenp68vrrrx8KYLz88st54YUXsmPHjuzYsSN//vOfkyRDhw7NmDFjMmHChJx33nk577zzDn0mAAAACFsAAAAAAAAAAAAAAAAAAAAAAAAAAEBJXnzxxaxatSqrVq3KI488kr1792bo0KGZMGFCzj333IwaNSpjxoxJa2vroWjFsbJnz55s2rQpmzdvzu9+97s88cQT2bp1a5Lk7LPPzpQpU9LW1pbx48enoaHhmH43AAAA1UPYAgAAAAAAAAAAAAAAAAAAAAAAAAAA+tGLL76Y5cuXZ9myZdm4cWOam5szadKkfPKTn8ykSZPyoQ996JhHLN6o3bt3Z/369Vm9enV+8YtfpKurK+9+97szbdq0zJgxIxMnTixtGwAAAOUQtgAAAAAAAAAAAAAAAAAAAAAAAAAAgLdYT09PVq5cmdtvvz2PPPJI3vnOd+byyy/P9OnT84lPfCKDBg0qe2KhrVu3ZsWKFbnvvvuyadOmtLS05IYbbsiNN96YD3zgA2XPAwAAoB8IWwAAAAAAAAAAAAAAAAAAAAAAAAAAwFvk5Zdfzg9+8IP8+Mc/zu7du9PW1pabbropU6ZMycCBA8ue96Zs3bo1d911VxYuXJhdu3alra0tX/rSl3LhhReWPQ0AAIC3kLAFAAAAAAAAAAAAAAAAAAAAAAAAAAAcY9u3b8+8efOyePHiDB48OLNnz057e3taWlrKnnbUent789BDD2X+/Pn55S9/mbPOOitf/vKXM3PmzNTX15c9DwAAgGPMmx4AAAAAAAAAAAAAAAAAAAAAAAAAABwjXV1dueGGG3LmmWfm8ccfz/z58/PHP/4xt9xyS01ELZKkqakpV155ZR599NF0dHTk9NNPzzXXXJPRo0dn+fLlqVQqZU8EAADgGBK2AAAAAAAAAAAAAAAAAAAAAAAAAACAo9Td3Z0vfvGLOeOMM/LYY4/ljjvuyJYtW9Le3p5BgwaVPe8tM3bs2Nx7773ZvHlzPvKRj2TmzJk555xzsm7durKnAQAAcIwIWwAAAAAAAAAAAAAAAAAAAAAAAAAAwBHq6+vLD3/4w4wcOTJLlizJ97///fz+97/PNddck4aGhrLn9ZszzjgjS5cuzVNPPZVhw4bl4x//eGbOnJnnn3++7GkAAAAcJWELAAAAAAAAAAAAAAAAAAAAAAAAAAA4Alu2bMlHP/rRzJkzJ9dee222b9+e2bNnp6mpqexppRk9enTWrFmTn/70p3nqqady5plnZv78+enr6yt7GgAAAEdI2AIAAAAAAAAAAAAAAAAAAAAAAAAAAN6EAwcO5JZbbsnZZ5+dSqWSJ598Mt/+9rczZMiQsqcdN6ZOnZpNmzZlzpw5ufnmm3P++edn27ZtZc8CAADgCAhbAAAAAAAAAAAAAAAAAAAAAAAAAADAG/Tcc8/lYx/7WObOnZu5c+dm/fr1GTVqVNmzjkuDBg3Krbfemo6OjvT09GTs2LFZsGBB2bMAAAB4k4QtAAAAAAAAAAAAAAAAAAAAAAAAAADgDViyZEnOOuus7N+/Px0dHfnCF76QhoaGsmcd90aPHp0NGzbkc5/7XGbPnp0rr7wye/fuLXsWAAAAb5CwBQAAAAAAAAAAAAAAAAAAAAAAAAAA/Ae9vb35/Oc/n89+9rO58cYb8+tf/zof/vCHy55VVZqamvLNb34za9euzcaNG3POOedk8+bNZc8CAADgDRC2AAAAAAAAAAAAAAAAAAAAAAAAAACAf2PXrl254IILcuedd2bp0qX57ne/m4EDB5Y9q2pNmjQpTz75ZEaMGJHx48dn+fLlZU8CAADgvxC2AAAAAAAAAAAAAAAAAAAAAAAAAACAAlu3bs2ECROyc+fObNiwITNnzix7Uk0YMWJE1q5dm+uvvz4zZszIvHnzyp4EAADAf9BY9gAAAAAAAAAAAAAAAAAAAAAAAAAAADjerFu3LldccUVGjhyZBx98MCeddFLZk2pKU1NT5s+fn1NPPTU333xzOjs7c9ttt6WhoaHsaQAAAPw/dZVKpVL2CAAAAAAAAAAAAAAAAAAAAAAAAAAAOF6sWbMmn/rUpzJlypQsXrw4zc3NZU+qaStXrszVV1+dqVOnZtGiRWlqaip7EgAAAP+kvuwBAAAAAAAAAAAAAAAAAAAAAAAAAABwvFi5cmWmTp2aq666Kvfdd5+oRT+4/PLL8/DDD+fhhx/OtGnTsn///rInAQAA8E+ELQAAAAAAAAAAAAAAAAAAAAAAAAAAIMnPfvazTJ8+Pddff33uvPPONDQ0lD3pbeOCCy7ImjVrsm7dukyfPj29vb1lTwIAAOB/1VUqlUrZIwAAAAAAAAAAAAAAAAAAAAAAAAAAoExr167NpZdemlmzZuWOO+5IXV1d2ZPeljZu3JiLL744F198cZYtW5bGxsayJwEAALztCVsAAAAAAAAAAAAAAAAAAAAAAAAAAPC29pvf/CYXXnhhrrjiitx9992pr68ve9Lb2q9+9au0tbXlM5/5TBYsWFD2HAAAgLc9YQsAAAAA+Ad7dx6uZV3gf/zDohAoi4IZmoIsGrIMKBmbgsribqaSpeKKmaDMXE6jl7mMho0WxqRjWu4lgWOa0IQoAiqi4BiyqSib5oQjc5BY5cDh+f3RL66xJgWFc3MeXq/rev65n4fv932fi/8/AAAAAAAAAAAAAAAAAAAAwC5ryZIl6d69ew477LA88cQTqVu3btFJJPnNb36TU089Nf/8z/+ca665pugcAACAXZphCwAAAAAAAAAAAAAAAAAAAAAAAAAAdkkrV65Mjx49Ur9+/Tz33HPZY489ik7if/m3f/u3DBs2LA8//HDOOuusonMAAAB2WSYgAQAAAAAAAAAAAAAAAAAAAAAAAADY5WzevDlnn312Vq1alaefftqoxU7osssuy8KFC3PhhRfmkEMOSZcuXYpOAgAA2CXVKpVKpaIjAAAAAAAAAAAAAAAAAAAAAAAAAACgOt1www25+eabM3ny5PTq1avoHP6GqqqqHH/88VmwYEH+8z//M82aNSs6CQAAYJdj2AIAAAAAAAAAAAAAAAAAAAAAAAAAgF3KxIkTc/zxx+eOO+7IpZdeWnQOn+D999/P4Ycfnk6dOmX8+PGpVatW0UkAAAC7FMMWAAAAAAAAAAAAAAAAAAAAAAAAAADsMpYvX55OnTqlb9++GT16dNE5bKXp06fnqKOOym233ZZhw4YVnQMAALBLMWwBAAAAAAAAAAAAAAAAAAAAAAAAAMAu45RTTsmsWbMye/bsNG3atOgctsENN9yQf/mXf8nMmTPTqVOnonMAAAB2GYYtAAAAAAAAAAAAAAAAAAAAAAAAAADYJdx///25+OKLM2XKlPTu3bvoHLbRpk2bctRRR+XDDz/MjBkzUrdu3aKTAAAAdgm1iw4AAAAAAAAAAAAAAAAAAAAAAAAAAIAd7b//+79z5ZVXZtiwYUYtaqi6devm/vvvz2uvvZYf/ehHRecAAADsMmqVSqVS0REAAAAAAAAAAAAAAAAAAAAAAAAAALAjDRo0KDNnzsy8efPSsGHDonP4DEaMGJERI0Zk7ty5ad26ddE5AAAAZc+wBQAAAAAAAAAAAAAAAAAAAAAAAAAAZe2ZZ57JsccemwkTJmTgwIFF5/AZbdy4MV26dMlBBx2UcePGFZ0DAABQ9gxbAAAAAAAAAAAAAAAAAAAAAAAAAABQtqqqqtKlS5e0atUqTzzxRNE5bCeTJ0/OMcccY6wEAACgGhi2AAAAAAAAAAAAAAAAAAAAAAAAAACgbP3kJz/J8OHDM3fu3LRr167oHLajU045JYsWLcrs2bNTp06donMAAADKlmELAAAAAAAAAAAAAAAAAAAAAAAAAADK0rp169KmTZuceeaZGTVqVNE5bGdvvfVW2rdvn3vuuSeDBw8uOgcAAKBs1S46AAAAAAAAAAAAAAAAAAAAAAAAAAAAdoQ777wzq1atytVXX110CjtA27Ztc+655+aGG25IZWVl0TkAAABly7AFAAAAAAAAAAAAAAAAAAAAAAAAAABlZ+3atbn11lszdOjQfP7zny86hx3k2muvzR/+8Ic8+OCDRacAAACULcMWAAAAAAAAAAAAAAAAAAAAAAAAAACUnfvvvz9r167NlVdeWXQKO1DLli0zePDg/OAHP8jmzZuLzgEAAChLhi0AAAAAAAAAAAAAAAAAAAAAAAAAACgrVVVVGTVqVM4777w0a9as6Bx2sCuvvDKLFi3KuHHjik4BAAAoS7VKpVKp6AgAAAAAAAAAAAAAAAAAAAAAAAAAANheHn/88Zx++ul544030rZt26JzqAannHJKVqxYkeeff77oFAAAgLJj2AIAAAAAAAAAAAAAAAAAAAAAAAAAgLLSv3//1KtXL+PHjy86hWoyefLkHHPMMZk7d246dOhQdA4AAEBZqV10AAAAAAAAAAAAAAAAAAAAAAAAAAAAbC9LlizJM888k4svvrjoFKpR375906ZNm9x7771FpwAAAJQdwxYAAAAAAAAAAAAAAAAAAAAAAAAAAJSNe+65J/vuu2+OP/74olOoRrVq1coFF1yQn//859mwYUPROQAAAGXFsAUAAAAAAAAAAAAAAAAAAAAAAAAAAGWhVCpl9OjROffcc1O3bt2ic6hm5557bj744IM8+eSTRacAAACUFcMWAAAAAAAAAAAAAAAAAAAAAAAAAACUhRkzZmTp0qX5+te/XnQKBdhvv/3Sq1evjB07tugUAACAsmLYAgAAAAAAAAAAAAAAAAAAAAAAAACAsvDII4+kXbt26dy5c9EpFGTQoEEZN25c1q5dW3QKAABA2TBsAQAAAAAAAAAAAAAAAAAAAAAAAABAWXjiiSfyta99regMCnTaaadl/fr1mTx5ctEpAAAAZcOwBQAAAAAAAAAAAAAAAAAAAAAAAAAANd6CBQuyePHinHDCCUWnUKB99903Xbp0yZNPPll0CgAAQNkwbAEAAAAAAAAAAAAAAAAAAAAAAAAAQI03YcKENG3aNEcccUTRKRRs4MCBmTBhQtEZAAAAZcOwBQAAAAAAAAAAAAAAAAAAAAAAAAAANd6kSZNy7LHHpm7dukWnULCBAwdmyZIlWbhwYdEpAAAAZcGwBQAAAAAAAAAAAAAAAAAAAAAAAAAANVqpVMqLL76Y3r17F53CTqBbt26pX79+XnjhhaJTAAAAyoJhCwAAAAAAAAAAAAAAAAAAAAAAAAAAarTXXnstK1asSM+ePYtOYSdQr169HH744YYtAAAAthPDFgAAAAAAAAAAAAAAAAAAAAAAAAAA1GgvvfRSGjZsmE6dOhWdwk6iZ8+emT59etEZAAAAZcGwBQAAAAAAAAAAAAAAAAAAAAAAAAAANdqsWbPSuXPn1K1bt+gUdhJdu3bNG2+8kfXr1xedAgAAUOMZtgAAAAAAAAAAAAAAAAAAAAAAAAAAoEabM2dOOnXqVHQGO5FOnTqlqqoqr7/+etEpAAAANZ5hCwAAAAAAAAAAAAAAAAAAAABGN/9lAAAgAElEQVQAAAAAarR58+alQ4cORWewE2nbtm3q16+fOXPmFJ0CAABQ4xm2AAAAAAAAAAAAAAAAAAAAAAAAAACgxnr//ffzwQcf5Etf+lLRKexE6tSpk7Zt2+bNN98sOgUAAKDGM2wBAAAAAAAAAAAAAAAAAAAAAAAAAECNtWTJkiRJq1atCi7Zvp544ok88sgjRWfUaK1atcrSpUuLzgAAAKjxDFsAAAAAAAAAAAAAAAAAAAAAAAAAAFBjLV26NHXq1Mn+++9fdMp29b3vfS9XXXVV0Rk1WsuWLQ1bAAAAbAd1iw4AAAAAAAAAAAAAAAAAAAAAAAAAAIBP6/e//31atGiR3XbbreiU7Wro0KFZv3590Rk1WsuWLfPoo48WnQEAAFDjGbYAAAAAAAAAAAAAAAAAAAAAAAAAAKDGWr58efbZZ5+iM7a7wYMHF51Q4zVv3jz/8z//U3QGAABAjVe76AAAAAAAAAAAAAAAAAAAAAAAAAAAAPi0Kioq0qxZs2q778MPP8z111+f1q1bp169emnbtm0uueSSrF69+q9+u3Llynz7299Ohw4dsu++++a0007Lb3/724/85vLLL8+FF16Yd999N5dddlmaN2++5fn555+/zedta+P/NmzYsPTu3TvLli37q++GDBmS/v37p7KycsuzqVOn5rLLLku7du3yxS9+MWeddVbuuuuuVFVVfeL7VYe99947lZWVn/jeAAAAfLy6RQcAAAAAAAAAAAAAAAAAAAAAAAAAAMCntWLFiuy1117Vdt+3v/3tPPTQQznnnHPSpUuXLFq0KD/72c8yd+7cTJ8+fcvv3n333fTu3TvLly/Pueeem8aNG2fixIk56aSTMnLkyAwfPjxJMmfOnLz33ns54YQTMmfOnHTt2jVJ8uKLL6aiomKbz9uWxr/Upk2b3HHHHXnsscdy2WWXbXn+hz/8Iffee2/OOOOM7L777kmSKVOmpF+/fmncuHG+8Y1vpFmzZnn66adz6aWXZvHixbn11ls/9v2qw58HTyoqKrLnnntW270AAADlplapVCoVHQEAAAAAAAAAAAAAAAAAAAAAAAAAAJ9G//7906pVq9x99907/K4NGzZkzz33zHHHHZcnnnhiy/Mf//jHueKKK7JgwYK0a9cuSXL22Wfn4YcfzksvvZQjjjgiSVJZWZnjjjsu06ZNy7Jly7LXXnulT58+efbZZzNgwICMGjUqhxxySJKkW7duqaioyOLFi7fpvG1p/EvLly9PixYt0qtXr0yZMmXL81GjRuXv//7v8+STT2bAgAFJkiFDhuShhx7Ke++9lyZNmiRJPvzwwxx00EFp3LhxXn/99ST5m+9XHV5//fW0b98+8+bNy6GHHlpt9wIAAJSb2kUHAAAAAAAAAAAAAAAAAAAAAAAAAADAp7Vhw4bsvvvu1XJXVVVVkmTq1KmZNWvWludDhw7NmjVr0rp16yTJihUrMnr06HTr1m3LCEWS7L777rn44otTWVmZxx577CNn33TTTX9z9GFbztuaxs2bN2ft2rUf+VRVVaV58+Y57rjj8vzzz+f999/f8m/HjBmT/fbbL/369dvy7B/+4R/y8ssvbxm1SP40tNGkSZOsWrXqr97h495vR/nz/4sNGzZU670AAADlpm7RAQAAAAAAAAAAAAAAAAAAAAAAAAAA8GlVVlZW27BFgwYNcv311+e73/1uunbtmi996Uvp27dvjj/++AwYMCB16tRJkixYsCClUilr1qzJoEGDPnLGn0cfFi1atOVZ8+bN061bt79577actzWNL774Ynr06PGRc0aPHp2zzjorgwcPzvjx4/P444/nkksuydKlSzNjxoxcffXVqV279pbfH3LIIamoqMjIkSPz4osvZunSpXnrrbeyatWqtGjR4iNnf9L77Sj16tVLYtgCAADgs6r9yT8BAAAAAAAAAAAAAAAAAAAAAAAAAICdU1VV1ZZBiepwzTXXZOHChbn22mvToEGD3HXXXTnxxBNz6KGH5r333kuSVFRUJPnTsMJuu+32kc/ee++db37zmzn00EO3nPnnAYa/ZVvP+6TGZs2a5Zvf/OZHPi1btkySnHjiiWnatGkeffTRJMnYsWOTJOedd95Hmn7wgx9k//33z0033ZSNGzfm2GOPzQMPPJCePXv+Vf8nvd+OUrdu3STJxo0bC7kfAACgXNQtOgAAAAAAAAAAAAAAAAAAAAAAAAAAAD6t3XbbLZs2baqWuyorK7Nu3bq0bNkyN954Y2688ca89957GTFiRO64447cfvvtGTFiRA466KAkSdu2bfOLX/ziI2dUVVVl9erVadCgwVbfuy3nbW3jX57zZ/Xq1cugQYNyzz33pKKiImPGjEmPHj3Srl27Lb9Zvnx5rrrqqjRv3jxvvfVW9txzzy3fjRgxYqvfa0errKxMUtywBgAAQLmoXXQAAAAAAAAAAAAAAAAAAAAAAAAAAAB8WrvvvvuWAYMdbfLkyWnatGl++ctfbnm277775h//8R+TJB988EGSpE2bNmnevHkmTpyYjRs3fuSM73//+2natGlmzpy51fduy3lb2/hxBg8enE2bNuWWW27Jq6++mvPPP/8j37/99tvZvHlzTjvttI+MWvz+97/Pq6++utXvtaMZtgAAANg+DFsAAAAAAAAAAAAAAAAAAAAAAAAAAFBj1atXLx9++GG13NWzZ8/ss88+ufHGGzN16tT88Y9/zCuvvJLhw4cnSU444YQkfxrb+P73v59Vq1bl7LPPzu9+97ssXLgwI0eOzPe+973069cvPXv23Op7t+W8rW38OF/5ylfSrl273HbbbWnQoEHOPPPMj3x/8MEHZ4899sjYsWMzfvz4vPXWW3nggQfSo0ePNGrUKGvWrMmCBQu2+v12lA0bNiT5098PAACAT69u0QEAAAAAAAAAAAAAAAAAAAAAAAAAAPBpNWrUKKtWraqWu/bcc888/PDDGTx4cPr27bvlef369TNixIiPjEZceOGFWbduXb7zne/kkUceSZLUrVs3F110UUaMGJFatWpt091be962NH6cc845J9dee21OO+20NGrU6K/+Dvfdd18uuOCCnHzyyUmSvfbaKz/60Y/SsGHDDB48OB06dMjGjRu36R23t5UrVyZJmjRpUmgHAABATVerVCqVio4AAAAAAAAAAAAAAAAAAAAAAAAAAIBP49JLL82CBQsyefLkartz3bp1mTNnTt555500a9YsHTp0yD777PN//nb16tWZNWtW1qxZk44dO+aLX/ziZ7p7a8/blsZPq6KiIrNmzcoXvvCFtG/ffsu4RkVFRT744IO0adNmu963rcaNG5dTTjkl69evT/369QttAQAAqMkMWwAAAAAAAAAAAAAAAAAAAAAAAAAAUGNde+21GTduXGbPnl10CjuZ++67L1dccUVWr15ddAoAAECNVrvoAAAAAAAAAAAAAAAAAAAAAAAAAAAA+LSaN2+e9957r+gMdkLvv/9+mjdvXnQGAABAjWfYAgAAAAAAAAAAAAAAAAAAAAAAAACAGuvAAw/M8uXLs27duqJT2MksWbIkLVu2LDoDAACgxjNsAQAAAAAAAAAAAAAAAAAAAAAAAABAjdWyZcuUSqW8/fbbRaewkzFsAQAAsH0YtgAAAAAAAAAAAAAAAAAAAAAAAAAAoMZq1apVkmTx4sUFl7CzWbp06Zb/HwAAAHx6hi0AAAAAAAAAAAAAAAAAAAAAAAAAAKixGjVqlP333z/z588vOoWdyPr167N48eK0b9++6BQAAIAaz7AFAAAAAAAAAAAAAAAAAAAAAAAAAAA1WqdOnTJ37tyiM9iJzJ8/P1VVVenYsWPRKQAAADWeYQsAAAAAAAAAAAAAAAAAAAAAAAAAAGq0jh07Zs6cOUVnsBOZO3duGjRokNatWxedAgAAUOMZtgAAAAAAAAAAAAAAAAAAAAAAAAAAoEbr2rVrXnvttaxdu7boFHYSL7/8cjp37pw6deoUnQIAAFDjGbYAAAAAAAAAAAAAAAAAAAAAAAAAAKBG69WrVzZt2pSZM2cWncJOYtq0aenVq1fRGQAAAGXBsAUAAAAAAAAAAAAAAAAAAAAAAAAAADVaixYtcuCBB+aFF14oOoWdwMqVKzN//vz07Nmz6BQAAICyYNgCAAAAAAAAAAAAAAAAAAAAAAAAAIAar3fv3pk6dWrRGewEnn/++SRJjx49Ci4BAAAoD4YtAAAAAAAAAAAAAAAAAAAAAAAAAACo8fr375/nn38+a9asKTqFgk2YMCFdu3ZN8+bNi04BAAAoC4YtAAAAAAAAAAAAAAAAAAAAAAAAAACo8QYOHJhNmzZl8uTJRadQsIkTJ2bgwIFFZwAAAJQNwxYAAAAAAAAAAAAAAAAAAAAAAAAAANR4zZs3z2GHHZbf/OY3RadQoNdeey2LFy82bAEAALAdGbYAAAAAAAAAAAAAAAAAAAAAAAAAAKAsnHbaaXn88cezadOmolMoyNixY/OFL3whX/nKV4pOAQAAKBuGLQAAAAAAAAAAAAAAAAAAAAAAAAAAKAuDBg1KRUVFJk+eXHQKBfn3f//3DBo0KHXq1Ck6BQAAoGwYtgAAAAAAAAAAAAAAAAAAAAAAAAAAoCy0atUqhx9+eMaMGVN0CgWYPXt2Xn/99ZxxxhlFpwAAAJQVwxYAAAAAAAAAAAAAAAAAAAAAAAAAAJSNc889N4888khWrVpVdArV7N57703r1q3TvXv3olMAAADKimELAAAAAAAAAAAAAAAAAAAAAAAAAADKxjnnnJNSqZQxY8YUnUI1+vDDD/Pwww/n4osvTq1atYrOAQAAKCuGLQAAAAAAAAAAAAAAAAAAAAAAAAAAKBuNGzfO6aefnrvvvrvoFKrRo48+mtWrV2fw4MFFpwAAAJSdWqVSqVR0BAAAAAAAAAAAAAAAAAAAAAAAAAAAbC8zZ87MEUcckalTp+aoo44qOodq0LVr1xx88MH55S9/WXQKAABA2TFsAQAAAAAAAAAAAAAAAAAAAAAAAABA2endu3eaNm2acePGFZ3CDjZp0qT069cvM2bMyJe//OWicwAAAMqOYQsAAAAAAAAAAAAAAAAAAAAAAAAAAMrOr3/963zta1/L3Llz0759+6Jz2IEGDBiQysrKTJkypegUAACAsmTYAgAAAAAAAAAAAAAAAAAAAAAAAACAsrN58+Z07tw57du3z9ixY4vOYQd54YUX0qtXrzz11FPp169f0TkAAABlybAFAAAAAAAAAAAAAAAAAAAAAAAAAABl6Ve/+lXOOOOMzJo1K507dy46hx3g6KOPTmVlZaZNm1Z0CgAAQNkybAEAAAAAAAAAAAAAAAAAAAAAAAAAQFkqlUo57LDDst9++2X8+PFF57CdTZo0Kf369cuzzz6bI488sugcAACAsmXYAgAAAAAAAAAAAAAAAAAAAAAAAACAsvX000+nf//+eeqpp9KvX7+ic9hOqqqq0qVLlxx44IFGSwAAAHYwwxYAAAAAAAAAAAAAAAAAAAAAAAAAAJS1k08+OYsWLcrs2bNTt27donPYDn7yk5/kiiuuyNy5c3PwwQcXnQMAAFDWahcdAAAAAAAAAAAAAAAAAAAAAAAAAAAAO9LIkSOzcOHC3HHHHUWnsB0sX7481113XYYOHWrUAgAAoBrUKpVKpaIjAAAAAAAAAAAAAAAAAAAAAAAAAABgR7ruuusycuTIzJ07NwcddFDROXwGZ599dqZMmZL58+enSZMmRecAAACUPcMWAAAAAAAAAAAAAAAAAAAAAAAAAACUvQ0bNqRr16454IADMmHChKJz+JSefPLJHHfccRk3blxOOumkonMAAAB2CYYtAAAAAAAAAAAAAAAAAAAAAAAAAADYJUyfPj1HHnlk7rzzzgwZMqToHLbRihUr0rlz5/Ts2TNjxowpOgcAAGCXYdgCAAAAAAAAAAAAAAAAAAAAAAAAAIBdxjXXXJNRo0bllVdeySGHHFJ0Dtvg61//eqZNm5bZs2dn7733LjoHAABgl2HYAgAAAAAAAAAAAAAAAAAAAAAAAACAXcbGjRvTs2fPVFVVZfr06alXr17RSWyFn/3sZ/nWt76Vp59+OkcffXTROQAAALuU2kUHAAAAAAAAAAAAAAAAAAAAAAAAAABAddltt90yevToLFq0KMOGDSs6h63wyiuv5PLLL89VV11l1AIAAKAAtUqlUqnoCAAAAAAAAAAAAAAAAAAAAAAAAAAAqE7jx4/PqaeemrvvvjsXXXRR0Tn8DStWrMjhhx+egw46KBMnTkydOnWKTgIAANjl1C46AAAAAAAAAAAAAAAAAAAAAAAAAAAAqttJJ52Uq6++OkOHDs20adOKzuH/UFlZmdNPPz1VVVUZM2aMUQsAAICC1CqVSqWiIwAAAAAAAAAAAAAAAAAAAAAAAAAAoLpt3rw5Z5xxRp599tm88MILOfjgg4tO4v8rlUo5//zz89hjj+W5557L3/3d3xWdBAAAsMsybAEAAAAAAAAAAAAAAAAAAAAAAAAAwC5r3bp1Ofroo1NRUZFp06bl85//fNFJJLn++utz8803Z/z48Rk4cGDROQAAALu02kUHAAAAAAAAAAAAAAAAAAAAAAAAAABAURo0aJBx48alVq1a6d+/f1asWFF00i7vtttuy0033ZS77rrLqAUAAMBOwLAFAAAAAAAAAAAAAAAAAAAAAAAAAAC7tH322SeTJk3KypUrM3DgwKxataropF3WT3/601x55ZW57bbbcuGFFxadAwAAQAxbAAAAAAAAAAAAAAAAAAAAAAAAAABADjjggEyaNCnvvvtu+vXrlw8++KDopF3OnXfemUsvvTQ33nhjhg8fXnQOAAAA/59hCwAAAAAAAAAAAAAAAAAAAAAAAAAASNK2bdu88MILWb58eXr16pVly5YVnbTLuPXWWzN06NBcd911+e53v1t0DgAAAP9LrVKpVCo6AgAAAAAAAAAAAAAAAAAAAAAAAAAAdhZvv/12jj322NSuXTu//e1v07p166KTytbmzZvzT//0Txk5cmR+/OMfZ+jQoUUnAQAA8BdqFx0AAAAAAAAAAAAAAAAAAAAAAAAAAAA7kwMPPDDPP/98GjVqlO7du2f69OlFJ5Wl9evX58wzz8ztt9+eX/ziF0YtAAAAdlKGLQAAAAAAAAAAAAAAAAAAAAAAAAAA4C/su+++mTp1arp3755jjjkmDz30UNFJZeXdd99Nnz59MmXKlDz11FP5xje+UXQSAAAAf4NhCwAAAAAAAAAAAAAAAAAAAAAAAAAA+D80bNgwjz32WC6//PKcd955ueyyy1JZWVl0Vo03efLkdO3aNWvWrMmLL76YI488sugkAAAAPoZhCwAAAAAAAAAAAAAAAAAAAAAAAAAA+Bvq1KmTW265JY888kh+/vOf58gjj8yiRYuKzqqRqqqqctNNN2XAgAHp27dvZsyYkXbt2hWdBQAAwCcwbAEAAAAAAAAAAAAAAAAAAAAAAAAAAJ/g9NNPz8yZM7Nhw4Z06dIlDz74YNFJNcrbb7+dPn365Oabb87IkSMzZsyY7LHHHkVnAQAAsBUMWwAAAAAAAAAAAAAAAAAAAAAAAAAAwFY45JBD8tJLL2XIkCE5//zz89WvfjX/9V//VXTWTq1UKuWuu+5K586ds3LlysycOTOXX355atWqVXQaAAAAW8mwBQAAAAAAAAAAAAAAAAAAAAAAAAAAbKV69erlhz/8YZ555pnMmzcvhx56aO66665s3ry56LSdzuuvv56jjjoqw4YNyyWXXJKXX345HTt2LDoLAACAbWTYAgAAAAAAAAAAAAAAAAAAAAAAAAAAtlHfvn0zZ86cDB8+PFdccUW6deuW5557ruisncLKlStz1VVXpUuXLlm1alWmT5+eW265JfXr1y86DQAAgE/BsAUAAAAAAAAAAAAAAAAAAAAAAAAAAHwKn/vc53LDDTfklVdeyV577ZU+ffpk0KBBefPNN4tOK8SGDRty++23p23btrnvvvsyatSovPLKK+nWrVvRaQAAAHwGhi0AAAAAAAAAAAAAAAAAAAAAAAAAAOAz6NChQ55++un8+te/zpw5c3LooYfmggsuyJIlS4pOqxYbN27MT3/607Rt2zbf+c53Mnjw4Lz55pv51re+lTp16hSdBwAAwGdk2AIAAAAAAAAAAAAAAAAAAAAAAAAAALaDk08+OfPnz8/o0aMzbdq0tGnTJieddFJmzJhRdNoOsXr16vzrv/5r2rRpk6FDh+a4447LwoUL88Mf/jBNmjQpOg8AAIDtpFapVCoVHQEAAAAAAAAAAAAAAAAAAAAAAAAAAOVk48aNGTNmTG677ba8+uqr6du3b4YMGZKvfvWrqVevXtF5n8m8efNyzz335IEHHsjmzZtz0UUXZfjw4TnggAOKTgMAAGAHMGwBAAAAAAAAAAAAAAAAAAAAAAAAAAA70KRJk3LHHXfkP/7jP9K4ceOcffbZOeuss/LlL385tWrVKjpvqyxfvjyPPvpoHnzwwcyYMSNt2rTJxRdfnCFDhqRJkyZF5wEAALADGbYAAAAAAAAAAAAAAAAAAAAAAAAAAIBqsGzZsjzwwAN58MEHs2DBgrRs2TJnnnlmTjzxxHTv3j1169YtOvEj3nnnnUyYMCG/+tWvMnny5NSvXz+nnnpqLrzwwvTp06fGjHIAAADw2Ri2AAAAAAAAAAAAAAAAAAAAAAAAAACAavbqq69m7NixefTRR7Nw4cI0btw4/fr1S58+fdKrV6906NAhderUqdam999/P9OnT89zzz2XiRMn5rXXXkvDhg0zYMCADBo0KCeeeGIaNGhQrU0AAAAUz7AFAAAAAAAAAAAAAAAAAAAAAAAAAAAU6K233sqTTz6ZiRMnZtq0afnjH/+YRo0a5fDDD0+nTp3SoUOHdOzYMa1atUrz5s0/9qznnnsuRx555Mf+ZsOGDVm6dGneeOONzJs3L3PmzMmrr76aN998M7Vr106HDh3Sr1+/DBw4ML179069evW25+sCAABQwxi2AAAAAAAAAAAAAAAAAAAAAAAAAACAncTmzZszb968TJs2Lb/73e8yZ86czJ8/P+vWrUuS7LHHHjnwwAPTokWLNGvWLHvvvXcaNmyYpk2bJknuueeeHH/88WnRokXWrVuXtWvXpqKiYstn6dKlWbZsWUqlUmrVqpVWrVqlY8eO6dy5c7p3754ePXqkUaNGRf4JAAAA2MkYtgAAAAAAAAAAAAAAAAAAAAAAAAAAgJ3Y5s2bs2TJkixdujRLlizJO++8k2XLlm0Zq1i7dm1WrlyZTZs25e23306TJk2y1157pWHDhvnc5z6Xvffee8vngAMOSMuWLdOqVau0adMme+65Z9GvBwAAwE7OsAX/j727C826/v84/r525+3UnE5ESPdTKrc2IUXIZTdQUFAH3dBBR0UIBoZBdBJEJ3aSUEcddFCgu0uCOlmYihjktEASZ0OF1oaaN6nZnFPbpbv+B39+g+Gn/tR+v329vv/HA75s+3y+g9eusx09AQAAAAAAAAAAAAAAAAAAAAAAAADIgQ8++CDefPPNWLhwYZw7dy4qKiqyngQAAEAO+O8SAAAAAAAAAAAAAAAAAAAAAAAAAAByoK2tLQqFQly4cCH279+f9RwAAAByQtgCAAAAAAAAAAAAAAAAAAAAAAAAAADKXH9/fxw5ciRKpVJUV1dHZ2dn1pMAAADICWELAAAAAAAAAAAAAAAAAAAAAAAAAAAocx0dHVFVVRUREcViMbq6umJ0dDTjVQAAAOSBsAUAAAAAAAAAAAAAAAAAAAAAAAAAAJS5tra2KBaL4z9fuXIl9uzZk+EiAAAA8kLYAgAAAAAAAAAAAAAAAAAAAAAAAAAAytgPP/wQP/3004Sz6urq6OjoyGgRAAAAeSJsAQAAAAAAAAAAAAAAAAAAAAAAAAAAZayrqytqamomnBWLxfjyyy9jZGQko1UAAADkhbAFAAAAAAAAAAAAAAAAAAAAAAAAAACUqVKpFB0dHTE6Onrb3R9//BHd3d0ZrAIAACBPhC0AAAAAAAAAAAAAAAAAAAAAAAAAAKBMffvtt3H27NnkXUVFRbS3t0/xIgAAAPJG2AIAAAAAAAAAAAAAAAAAAAAAAAAAAMpUV1dX1NTUJO9u3boVX3/9dfz2229TvAoAAIA8EbYAAAAAAAAAAAAAAAAAAAAAAAAAAIAyVCwWo6urK0ZHR//0nVKpFF988cUUrgIAACBvhC0AAAAAAAAAAAAAAAAAAAAAAAAAAKAM7dmzJ4aGhv7ynVKpFNu3b5+iRQAAAOSRsAUAAAAAAAAAAAAAAAAAAAAAAAAAAJShrq6u//OdsbGxOHDgQJw5c2YKFgEAAJBHhVKpVMp6BAAAAAAAAAAAAAAAAAAAAAAAAAAA8Pf09fXFjRs3Jpw9+uijsXnz5nj22WcnnK9YsSLmzp07lfMAAADIiaqsBwAAAAAAAAAAAAAAAAAAAAAAAAAAAH9fU1PTbWeVlZWxdOnSWL16dQaLAAAAyKOKrAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwZxK2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIEnYAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgCRhCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJKELQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgStgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACBJ2AIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAkYQsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACShC0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIErYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgSdgCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGRB6UkAACAASURBVACAJGELAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkoQtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASBK2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIEnYAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgCRhCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJKELQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgStgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACBJ2AIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAkYQsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACShC0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIErYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgSdgCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAJGELAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkoQtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASBK2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIEnYAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgCRhCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJKELQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgStgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACBJ2AIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICkQqlUKmU9AgAAAAAAAAAAAAAAAAAAAAAAAAAAytFLL70UIyMjWc8Yd+rUqbjrrrti9uzZWU8Zt2nTpnjiiSeyngEAAMA/VJX1AAAAAAAAAAAAAAAAAAAAAAAAAAAAKFdfffVVrFy5MpYvX571lIiIWLlyZdYTJvj888/j6aefznoGAAAAkyBsAQAAAAAAAAAAAAAAAAAAAAAAAAAAk/Dqq6/Ghg0bsp5xR+ru7s56AgAAAJNUkfUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7kzCFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQJWwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAkbAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECSsAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABJwhYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkCVsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQJGwBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAkrAFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAScIWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAlbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkCRsAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJKwBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEnCFgAAAAAAAAAAAAAAAAAAAAAAAAAAUOa2bNkSBw4ciP7+/njrrbdibGws60kAAADkhLAFAAAAAAAAAAAAAAAAAAAAAAAAAACUsZ07d8aHH34Yzc3N8a9//St27doVH3/8cdazAAAAyAlhCwAAAAAAAAAAAAAAAAAAAAAAAAAAKFOjo6Px+uuvx+bNm6O2tjYKhUK888478fbbb8evv/6a9TwAAAByQNgCAAAAAAAAAAAAAAAAAAAAAAAAAADK1CeffBKnTp2KjRs3jp8999xzMXv27NiyZUuGywAAAMgLYQsAAAAAAAAAAAAAAAAAAAAAAAAAAChTW7dujSeffDLq6+vHzyorK+OFF16ITz/9NIaHhzNcBwAAQB4IWwAAAAAAAAAAAAAAAAAAAAAAAAAAQBnq6+uLgYGBuP/++2+7a2xsjJGRkdi7d28GywAAAMgTYQsAAAAAAAAAAAAAAAAAAAAAAAAAAChDe/bsiYiIFStW3HZ37733RkTE7t27p3QTAAAA+SNsAQAAAAAAAAAAAAAAAAAAAAAAAAAAZWhwcDAi/jpscfz48amcBAAAQA4JWwAAAAAAAAAAAAAAAAAAAAAAAAAAQBm6cOFCRKTDFosWLYp58+bF+fPnp3oWAAAAOSNsAQAAAAAAAAAAAAAAAAAAAAAAAAAAZej69esREVFdXZ28nz59+lTOAQAAIKeELQAAAAAAAAAAAAAAAAAAAAAAAAAAoAzNnz8/IiJOnDhx293IyEicO3cuFi5cONWzAAAAyBlhCwAAAAAAAAAAAAAAAAAAAAAAAAAAKEOrV6+OiHTYor+/PyIilixZMqWbAAAAyB9hCwAAAAAAAAAAAAAAAAAAAAAAAAAAKEOPPPJIRPx12OKxxx6b0k0AAADkj7AFAAAAAAAAAAAAAAAAAAAAAAAAAACUocbGxli8eHEybHHixIkoFArx1FNPZbAMAACAPBG2AAAAAAAAAAAAAAAAAAAAAAAAAACAMrVx48bYt29fXL16dcL5jh074tlnn40lS5ZktAwAAIC8ELYAAAAAAAAAAAAAAAAAAAAAAAAAAIAytWnTpqiuro62trbxs56enujt7Y133303w2UAAADkhbAFAAAAAAAAAAAAAAAAAAAAAAAAAACUqfnz58fWrVvj/fffj2KxGBER7733Xrz22mvR0tKS8ToAAADyQNgCAAAAAAAAAAAAAAAAAAAAAAAAAADK2CuvvBIPPvhg7N27NwYHB2NoaCi2bNmS9SwAAAByoirrAQAAAAAAAAAAAAAAAAAAAAAAAAAAwOR0dnaOf9/T05PhEgAAAPKmIusBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3JmELQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgStgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACBJ2AIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAkYQsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACShC0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIErYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgSdgCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAJGELAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkoQtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASBK2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIEnYAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgCRhCwAAAAAAAAAAAAAAAAAAAAAAAAAAyIn+/v6sJwAAAJAzVVkPAAAAAAAAAAAAAAAAAAAAAAAAAACAcvbRRx9Fd3d31jMiIuLQoUPR2NgYM2fOzHpKRERcu3Yt6wkAAABMkrAFAAAAAAAAAAAAAAAAAAAAAAAAAAD8Qy+++OIdE28oFotx/vz5qK+vj8bGxqznRMT/fj4rVqzIegYAAACTUCiVSqWsRwAAAAAAAAAAAAAAAAAAAAAAAAAAAJOzbdu2ePnll+O+++6LY8eOZT0HAACAnKjIegAAAAAAAAAAAAAAAAAAAAAAAAAAADB57e3tUSgU4vjx49HX15f1HAAAAHJC2AIAAAAAAAAAAAAAAAAAAAAAAAAAAMrchQsXYt++fVEqlaKmpia6urqyngQAAEBOCFsAAAAAAAAAAAAAAAAAAAAAAAAAAECZ27Fjx/j3o6OjsW3btiiVShkuAgAAIC+ELQAAAAAAAAAAAAAAAAAAAAAAAAAAoMxt3759Qsji9OnT8f3332e4CAAAgLwQtgAAAAAAAAAAAAAAAAAAAAAAAAAAgDJ28uTJOHToUIyNjY2f1dTURFdXV4arAAAAyAthCwAAAAAAAAAAAAAAAAAAAAAAAAAAKGOdnZ1RVVU14Wx0dDTa2tri5s2bGa0CAAAgL4QtAAAAAAAAAAAAAAAAAAAAAAAAAACgjG3fvj2KxeJt55cvX45vvvlm6gcBAACQK8IWAAAAAAAAAAAAAAAAAAAAAAAAAABQpo4dOxbHjh1L3lVXV0dnZ+cULwIAACBvhC0AAAAAAAAAAAAAAAAAAAAAAAAAAKBMtbe3R3V1dfKuWCzGjh074saNG1O8CgAAgDwRtgAAAAAAAAAAAAAAAAAAAAAAAAAAgDLV3t4exWLxT++vX78eO3funMJFAAAA5I2wBQAAAAAAAAAAAAAAAAAAAAAAAAAAlKHvvvsuTp48+ZfvVFZWRkdHxxQtAgAAII+qsh4AAAAAAAAAAAAAAAAAAAAAAAAAAAD8fZ999llERFRXV4+flUqliIgoFAoREXHr1q3o7u6O4eHhqK2tnfqRAAAAlD1hCwAAAAAAAAAAAAAAAAAAAAAAAAAAKEPr16+PxsbGCWdvvPFGPP/887F+/foJ51euXBG2AAAA4B8plP6dUQQAAAAAAAAAAAAAAAAAAAAAAAAAAMravHnzYuvWrbFhw4aspwAAAJATFVkPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4M4kbAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECSsAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABJwhYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkCVsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQJGwBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAkrAFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAScIWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAlbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkCRsAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJKwBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEnCFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQJWwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAkbAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECSsAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABJwhYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkCVsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQJGwBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAkrAFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAScIWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAlbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkCRsAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJKwBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEnCFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQJWwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAkbAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECSsAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABJwhYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkCVsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQJGwBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAkrAFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASVVZDwAAAAAAAAAAAAAAAAAAAAAAAAAAAP7cpUuXJjy///57XLt2LSIihoeH4+bNmzE2NhZDQ0NRX18fu3fvjtOnT8fMmTMjIqK2tjaqqqqioqIi5s2bF3V1dROe6dOnZ/nnAQAAcIcrlEqlUtYjAAAAAAAAAAAAAAAAAAAAAAAAAADg/5uxsbH45ZdfYnBwMAYGBmJwcHD8OXv27HjIYmxsbMLvzZgxYzxGMWfOnKisrIyKioqYO3fu+Ds3btyI69evR0TE1atXo1gsRkTE5cuXb9sxa9asqKuri0WLFsXdd98dy5YtG38aGhpi2bJlMWvWrP/WxwAAAMAdTtgCAAAAAAAAAAAAAAAAAAAAAAAAAAD+i0qlUgwMDERvb28cPXp0/OvAwECMjo5GRMS0adNi6dKl40GJJUuWRF1dXdTV1cXChQtjwYIF4z/PmDFjUlsuXboUFy9eHA9n/Ps5e/ZsnDx5cjyucfHixfHfq6+vj6ampmhubo7m5uZYtWpVNDU1xcyZMyf9+QAAAHBnE7YAAAAAAAAAAAAAAAAAAAAAAAAAAID/oMHBwdi/f38cPHgwDh8+HD/++GMMDw9HoVCIhoaGaGlpiebm5rjnnnuioaEhGhoaYvHixVEoFLKePsHVq1djYGAgBgcHo7+/P/r6+qK3tzf6+vpiZGQkKioqYvny5bFq1apYu3ZtrFu3LtasWRPTpk3LejoAAAD/QcIWAAAAAAAAAAAAAAAAAAAAAAAAAADwD928eTMOHz4cBw4ciJ6enujp6YkzZ85ETU1NrF69Oh544IFoaWmJlpaWaGpqitra2qwnT9rY2Fj8/PPPceTIkTh69Gj09vbGwYMH49y5czFt2rRYs2ZNtLa2Rmtra6xbty4WLFiQ9WQAAAAmQdgCAAAAAAAAAAAAAAAAAAAAAAAAAAD+hvPnz8euXbuiu7s7du/eHUNDQzFnzpxYu3ZttLa2xkMPPRStra0xY8aMrKdOqTNnzkRPT0/s378/enp64vDhwzE2NhaNjY3xzDPPxOOPPx4PP/xw1NTUZD0VAACAv0HYAgAAAAAAAID/Ye/Ov7Sg6/6Pv68BBIFBJDhHwhIpExdQkUUbOLesQqmDBbijLCqJKRlEKZZLHh23xLBSVBRzQxQQdcYEbcRxSBaVATXRmLLUA5LasDgsc31/uc/33Pfd4gqf67rm8fgLnr++f3m/AAAAAAAAAAAAAAAAAPgP6uvrY8mSJVFRURHl5eXxyiuvRKtWrWLAgAExbNiwOOaYY6Jr166RyWRSp+aUDz74IKqqqqKioiIqKirijTfeiL322isGDRoUw4YNi6FDh0anTp1SZwIAAPAxDFsAAAAAAAAAAAAAAAAAAAAAAAAAAMD/sXPnzqiuro6HHnoo7rvvvnjvvfeiS5cuMWjQoDjuuONiyJAh0bx589SZeeVPf/pTLFq0KBYtWhQVFRVRV1cXBx98cIwcOTJGjx4dXbp0SZ0IAADAv2DYAgAAAAAAAAAAAAAAAAAAAAAAAAAAImLHjh3x9NNPx5w5c2LevHnx/vvvR58+fWLUqFHxne98J/bbb7/UiQVj69atsXjx4njooYdiwYIFUVdXFyUlJTFq1KgYMWJE7LPPPqkTAQAA+G+GLQAAAAAAAAAAAAAAAAAAAAAAAAAAaNTWrFkTM2fOjHvvvTfee++96NWrV4waNSpGjhxpzGI3qK+vj4qKipgzZ04sXLgwtmzZEv3794/x48fH8OHDo3nz5qkTAQAAGjXDFgAAAAAAAAAAAAAAAAAAAAAAAAAANDqbN2+OOXPmxMyZM6O6ujq+9rWvxdixY+Pkk0+OLl26pM5rtLZu3Rrl5eVx9913xxNPPBFt27aN0aNHx/jx4+Oggw5KnQcAANAoGbYAAAAAAAAAAAAAAAAAAAAAAAAAAKDReOmll+LWW2+N++67L+rr6+PEE0+M8ePHx4ABAyKTyaTO4394++23Y9asWXHHHXfEunXrom/fvnH22WfHqFGjokWLFqnzAAAAGg3DFgAAAAAAAAAAAAAAAAAAAAAAAAAAFLRsNhuLFy+O6dOnx+OPPx4HHHBAjB07NsaOHRsdOnRIncfHaGhoiKeffjpmz54dc+fOjeLi4vje974X559/frRv3z51HgAAQMEzbAEAAAAAAAAAAAAAAAAAAAAAAAAAQEHatm1bPPDAA3HttdfGmjVroqSkJKZOnRrHHXdcZDKZ1Hl8BuvXr49f/epXMWPGjNi0aVOMGjUqfvKTn8RBBx2UOg0AAKBgGbYAAAAAAAAAAAAAAAAAAAAAAAAAAKCgvP/++zFjxoy45ZZb4oMPPohTTz01Lrroojj00ENTp/EF2bx5c8yaNStuuummWLduXZxwwgkxderUOOqoo1KnAQAAFBzDFgAAAAAAAAAAAAAAAAAAAAAAAAAAFIS6urq46aab4sYbb4yioqKYMGFCnH/++dGxY8fUaewiO3fujHnz5sUNN9wQS5cujW9961txxRVXxJFHHpk6DQAAoGAUpQ4AAAAAAAAAAAAAAAAAAAAAAAAAAIDPY8uWLTF9+vQ44IAD4tprr41zzz033nzzzbjqqquMWhS4Jk2axIgRI6K6ujqWLFkSmzZtip49e8bgwYNj5cqVqfMAAAAKgmELAAAAAAAAAAAAAAAAAAAAAAAAAADy0kcffRTTp0+PLl26xLRp02LcuHHx5z//Oa655ppo27Zt6jx2s759+0ZlZWU8+uij8d5770WvXr3i5JNPjtdeey11GgAAQF4zbAEAAAAAAAAAAAAAAAAAAAAAAAAAQN5ZuHBhHHLIITF16tQoLS2NtWvXxlVXXRXt2rVLnUZixx9/fKxcuTLmz58fr7/+enTr1i3OPffc2LBhQ+o0AACAvGTYAgAAAAAAAAAAAAAAAAAAAAAAAACAvPHSSy/FMcccE6WlpVFSUhJvvvlm3HrrrbHPPvukTiOHZDKZOP7442P58uXxm9/8JhYsWBBdu3aNGTNmxI4dO1LnAQAA5BXDFgAAAAAAAAAAAAAAAAAAAAAAAAAA5LyNGzfGhRdeGD179ozNmzfHkiVLYvbs2dGpU6fUaeSwoqKiGDduXLz55pvx/e9/P6ZMmRKHHnpoPP7446nTAAAA8oZhCwAAAAAAAAAAAAAAAAAAAAAAAAAAclZDQ0PcfPPN8bWvfS0eeeSRuOuuu+KFF16IkpKS1GnkkVatWsVll10WNTU10bVr1zjuuOOitLQ03nrrrdRpAAAAOc+wBQAAAAAAAAAAAAAAAAAAAAAAAAAAOWn16tVRUlISkydPjvPPPz9ee+21OP300yOTyaROI099/etfj/nz58eiRYvij3/8YxxyyCExY8aMaGhoSJ0GAACQswxbAAAAAAAAAAAAAAAAAAAAAAAAAACQU7Zv3x5lZWXRs2fPqK+vj6VLl8bPf/7zaNWqVeo0CsTAgQOjpqYmLrnkkvjhD38Yffv2jTVr1qTOAgAAyEmGLQAAAAAAAAAAAAAAAAAAAAAAAAAAyBnV1dVx+OGHxxVXXBGXX355LFu2LHr06JE6iwLUrFmzmDp1aixfvjwaGhriiCOOiB//+MdRX1+fOg0AACCnGLYAAAAAAAAAAAAAAAAAAAAAAAAAACC5+vr6mDJlSvTt2ze++tWvxpo1a2Lq1KnRpEmT1GkUuG7dukVVVVVce+21MWPGjOjdu3esXr06dRYAAEDOMGwBAAAAAAAAAAAAAAAAAAAAAAAAAEBSr776ahx11FFx6623xu233x7l5eXRuXPn1Fk0Ik2aNIlJkyZFTU1NFBcXR69eveLmm2+ObDabOg0AACA5wxYAAAAAAAAAAAAAAAAAAAAAAAAAACQze/bs6NWrVzRr1ixWrFgRY8aMSZ1EI7b//vtHZWVlXHbZZTF58uQ49thj4+23306dBQAAkJRhCwAAAAAAAAAAAAAAAAAAAAAAAAAAdrsNGzbECSecEGPHjo3zzz8/qqqq4oADDkidBdGkSZOYOnVqVFVVRW1tbRx++OHx6KOPps4CAABIxrAFAAAAAAAAAAAAAAAAAAAAAAAAAAC71bPPPhvdu3ePmpqaqKysjGuuuSaaNWuWOgv+l169esWKFSvi29/+dgwfPjx+8IMfxI4dO1JnAQAA7HaGLQAAAAAAAAAAAAAAAAAAAAAAAAAA2G1uuummGDhwYBx99NHx8ssvR0lJSeok+LeKi4tj1qxZcc8998TMmTNj4MCB8e6776bOAgAA2K0MWwAAAAAAAAAAAAAAAAAAAAAAAAAAsMtt3bo1xowZE5MnT45LLrkk5s6dG23atEmdBZ/IaaedFsuXL48NGzbEkUceGc8//3zqJAAAgN3GsAUAAAAAAAAAAAAAAAAAAAAAAAAAALvUG2+8EX369ImFCxfGE088EZdddlkUFXmLSX7p2rVrLF26NPr06RP/9V//FWVlZamTAAAAdgsXPAAAAAAAAAAAAAAAAAAAAAAAAAAAu0xFRUX06tUr9thjj1ixYkUMGTIkdRJ8Zm3atIm5c+fGpZdeGhdffHGMGTMmtm3bljoLAABgl8pks9ls6ggAAAAAAAAAAAAAAAAAAAAAAAAAAArPbbfdFhMnToyTTz45Zs6cGS1atEidBF+Yxx9/PE455ZTo2bNnPPzww7H33nunTgIAANglilIHAAAAAAAAAAAAAAAAAAAAAAAAAABQWLLZbFx22WVx7rnnxnnnnRezZ882akHB+fa3vx3PP/98vPnmm9G7d+9Yu3Zt6iQAAIBdIpPNZrOpIwAAAAAAAAAAAAAAAAAAAAAAAAAAKAz19fUxduzYmDt3bsycOTNGjx6dOgl2qXfeeSeOP/74qK2tjQULFkRJSUnqJAAAgC9UUeoAAAAAAAAAAAAAAAAAAAAAAAAAAAAKw8aNG2PgwIHxxBNPREVFhVELGoWOHTvGM888E717944hQ4bE/PnzUycBAAB8oQxbAAAAAAAAAAAAAAAAAAAAAAAAAADwub399tvRr1+/+Nvf/hZVVVXRv3//1Emw2xQXF8ejjz4ao0ePjhEjRsSsWbNSJwEAAHxhmqYOAAAAAAAAAAAAAAAAAAAAAAAAAAAgv/3lL3+JgQMHRtOmTeO5556LTp06pU6C3a5p06bx61//Ojp37hzjxo2LDz/8MCZNmpQ6CwAA4HMzbAEAAAAAAAAAAAAAAAAAAAAAAAAAwGe2bt26GDhwYLRs2TKeeuqp6NixY+okSGrq1KmRyWTiBz/4QXz44Yfxs5/9LHUSAADA52LYAgAAAAAAAAAAAAAAAAAAAAAAAACAz+TVV1+NQYMGxZe//OWoqKiIL33pS6mTICf86Ec/ijZt2sTEiRNj69atcc0116ROAgAA+MwMWwAAvT1dsAAAIABJREFUAAAAAAAAAAAAAAAAAAAAAAAA8KmtXLkyhgwZEoccckg89thjUVxcnDoJcsqECROiefPmcfbZZ0d9fX3ceOONkclkUmcBAAB8aoYtAAAAAAAAAAAAAAAAAAAAAAAAAAD4VGpqamLIkCHRo0ePmD9/frRs2TJ1EuSkMWPGRMuWLeP000+PZs2axbXXXps6CQAA4FMzbAEAAAAAAAAAAAAAAAAAAAAAAAAAwCe2du3aOPbYY6Nr164xb948oxbwMU466aTYvn17nHnmmdG6dev46U9/mjoJAADgUzFsAQAAAAAAAAAAAAAAAAAAAAAAAADAJ/LWW2/F4MGD46tf/WqUl5dHq1atUidBXjj99NNj+/btMW7cuGjRokX86Ec/Sp0EAADwiRm2AAAAAAAAAAAAAAAAAAAAAAAAAADgY/3tb3+L/v37x1577RVPPPFEFBcXp06CvDJmzJioq6uLSZMmRZs2bWLChAmpkwAAAD4RwxYAAAAAAAAAAAAAAAAAAAAAAAAAAPxHGzZsiMGDB0fz5s1j0aJF0a5du9RJkJcuuOCC+Mc//hETJ06M1q1bx+mnn546CQAA4GMZtgAAAAAAAAAAAAAAAAAAAAAAAAAA4N/aunVrlJaWRn19fSxZsiQ6dOiQOgny2rRp06Kuri7Gjh0bHTt2jIEDB6ZOAgAA+I8y2Ww2mzoCAAAAAAAAAAAAAAAAAAAAAAAAAIDck81m47TTTosnn3wynn/++TjwwANTJ0FByGazceaZZ8aCBQtiyZIl0b1799RJAAAA/5ZhCwAAAAAAAAAAAAAAAAAAAAAAAAAA/qUpU6bE9OnTo6KiIgYMGJA6BwrKtm3bYtiwYfHHP/4xli5dGvvuu2/qJAAAgH/JsAUAAAAAAAAAAAAAAAAAAAAAAAAAAP9k5syZce6558bdd98dZ5xxRuocKEh///vf45vf/Ga0atUqKisro3Xr1qmTAAAA/klR6gAAAAAAAAAAAAAAAAAAAAAAAAAAAHJLeXl5nHfeeXHFFVcYtYBdqF27dlFeXh5//etf46STToodO3akTgIAAPgnmWw2m00dAQAAAAAAAAAAAAAAAAAAAAAAAABAbnjttdeid+/e8d3vfjdmzZqVOgcaherq6hgwYEBccMEFUVZWljoHAADgfzFsAQAAAAAAAAAAAAAAAAAAAAAAAABARERs2rQp+vTpE8XFxVFZWRnNmzdPnQSNxm9/+9sYPXp0PPjggzFy5MjUOQAAAP+fYQsAAAAAAAAAAAAAAAAAAAAAAAAAACKbzcZJJ50UlZWVsWLFith3331TJ0Gjc95558U999wTS5cujUMOOSR1DgAAQEQYtgAAAAAAAAAAAAAAAAAAAAAAAAAAICLKyspi2rRp8dRTT8UxxxyTOgcape3bt8eAAQNi/fr18cILL8Ree+2VOgkAACCKUgcAAAAAAAAAAAAAAAAAAAAAAAAAAJDW008/HdOmTYuysjKjFpBQs2bN4qGHHoq6uro488wzI5vNpk4CAACITNZ1AgAAAAAAAAAAAAAAAAAAAAAAAADQaL399ttx+OGHR//+/eOBBx6ITCaTOgkavcrKyhg0aFBcffXVMXny5NQ5AABAI2fYAgAAAAAAAAAAAAAAAAAAAAAAAACgkWpoaIihQ4dGbW1trFy5Mlq3bp06CfhvZWVl8dOf/jSqq6ujR48eqXMAAIBGzLAFAAAAAAAAAAAAAAAAAAAAAAAAAEAjdcMNN8SPf/zjeO6556JPnz6pc4D/oaGhIQYPHhzvvPNOLF++PFq2bJk6CQAAaKSKUgcAAAAAAAAAAAAAAAAAAAAAAAAAALD7rV69OqZNmxaXX365UQvIQUVFRTF79uxYv359TJ48OXUOAADQiGWy2Ww2dQQAAAAAAAAAAAAAAAAAAAAAAAAAALvPRx99FL1794699torfv/730eTJk1SJwH/xiOPPBIjRoyI+fPnxwknnJA6BwAAaIQMWwAAAAAAAAAAAAAAAAAAAAAAAAAANDLf//7345577omXXnopOnfunDoH+Bhjx46Nxx57LF5++eXo2LFj6hwAAKCRMWwBAAAAAAAAAAAAAAAAAAAAAAAAANCILF68OAYPHhz33ntvnHLKKalzgE9g06ZNccQRR8TBBx8cCxYsSJ0DAAA0MoYtAAAAAAAAAAAAAAAAAAAAAAAAAAAaiS1btsRhhx0WXbt2jYULF6bOAT6FysrK6N+/fzz44IMxcuTI1DkAAEAjYtgCAAAAAAAAAAAAAAAAAAAAAAAAAKCRmDJlStx2223xyiuvRKdOnVLnAJ/SOeecEwsXLow1a9ZEu3btUucAAACNRFHqAAAAAAAAAAAAAAAAAAAAAAAAAAAAdr2XX345pk+fHtddd51RC8hT1113XTRp0iSmTJmSOgUAAGhEMtlsNps6AgAAAAAAAAAAAAAAAAAAAAAAAACAXWfHjh3Rp0+fKC4ujmeeeSYymUzqJOAzevjhh2PkyJHx5JNPxuDBg1PnAAAAjYBhCwAAAAAAAAAAAAAAAAAAAAAAAACAAnfNNdfE5ZdfHi+//HJ84xvfSJ0DfE4nnnhi1NTUxKpVq6Jly5apcwAAgAJXlDoAAAAAAAAAAAAAAAAAAAAAAAAAAIBd56233oorr7wyLr30UqMWUCBuueWW2LBhQ5SVlaVOAQAAGoFMNpvNpo4AAAAAAAAAAAAAAAAAAAAAAAAAAGDXOOWUU+KFF16IV155JZo3b546B/iCXHfddfGzn/0sXn311dhvv/1S5wAAAAXMsAUAAAAAAAAAAAAAAAAAAAAAAAAAQIGqrq6OkpKSmDdvXpSWlqbOAb5A27Zti27dukWPHj3i/vvvT50DAAAUMMMWAAAAAAAAAAAAAAAAAAAAAAAAAAAFqKGhIY4++uho3bp1LF68OHUOsAssWLAghg8fHs8++2z069cvdQ4AAFCgDFsAAAAAAAAAAAAAAAAAAAAAAAAAABSgu+66K8aPHx8rV66M7t27p84BdpGhQ4fG+vXrY/ny5VFUVJQ6BwAAKECGLQAAAAAAAAAAAAAAAAAAAAAAAAAACsymTZviwAMPjNLS0vjVr36VOgfYhV555ZU47LDDYubMmXHWWWelzgEAAAqQYQsAAAAAAAAAAAAAAAAAAAAAAAAAgAJz5ZVXxg033BBvvPFGtG/fPnUOsIudd955sXDhwli7dm20aNEidQ4AAFBgilIHAAAAAAAAAAAAAAAAAAAAAAAAAADwxfnggw/iF7/4RVx00UVGLaCRuPTSS+Pvf/973HbbbalTAACAAmTYAgAAAAAAAAAAAAAAAAAAAAAAAACggFx//fVRVFQUkyZNSp0C7CYdO3aMCRMmxNVXXx1btmxJnQMAABQYwxYAAAAAAAAAAAAAAAAAAAAAAAAAAAVi48aNcfPNN8fkyZOjTZs2qXOA3egnP/lJbN68OW655ZbUKQAAQIExbAEAAAAAAAAAAAAAAAAAAAAAAAAAUCDKysqiefPmMXHixNQpwG7Wvn37mDhxYpSVlUVdXV3qHAAAoIAYtgAAAAAAAAAAAAAAAAAAAAAAAAAAKADvvvtu3HLLLXHxxRdHcXFx6hwggalTp8bOnTvj5ptvTp0CAAAUEMMWAAAAAAAAAAAAAAAAAAAAAAAAAAAF4Prrr4+2bdvGhAkTUqcAibRt2zYuuOCCuPHGG2PTpk2pcwAAgAJh2AIAAAAAAAAAAAAAAAAAAAAAAAAAIM/V1dXF7bffHpMmTYo999wzdQ6Q0IUXXhjbtm2LO++8M3UKAABQIAxbAAAAAAAAAAAAAAAAAAAAAAAAAADkuVtvvTUaGhri7LPPTp0CJNauXbs466yz4he/+EXs2LEjdQ4AAFAADFsAAAAAAAAAAAAAAAAAAAAAAAAAAOSxHTt2xC9/+csYP358tG3bNnUOkAMuuuiieOutt+KRRx5JnQIAABSATDabzaaOAAAAAAAAAAAAAAAAAAAAAAAAAADgs7nvvvti9OjR8frrr0eXLl1S5wA5YsSIEfHnP/85li1bljoFAADIc4YtAAAAAAAAAAAAAAAAAAAAAAAAAADyWJ8+faJLly5x//33p04BcsiyZcuid+/e8eyzz0a/fv1S5wAAAHnMsAUAAAAAAAAAAAAAAAAAAAAAAAAAQJ6qrKyMY445Jl544YXo1atX6hwgx/Tt2zc6dOgQ8+bNS50CAADkMcMWAAAAAAAAAAAAAAAAAAAAAAAAAAB56tRTT43a2tp4/vnnU6cAOWjOnDlx2mmnRW1tbXTq1Cl1DgAAkKeKUgcAAAAAAAAAAAAAAAAAAAAAAAAAAPDpbdy4MebNmxdnn3126hQgRw0fPjz23nvvmDVrVuoUAAAgjxm2AAAAAAAAAAAAAAAAAAAAAAAAAADIQ3fffXc0a9YsRo4cmToFyFF77LFHnHHGGXHnnXdGQ0ND6hwAACBPGbYAAAAAAAAAAAAAAAAAAAAAAAAAAMhDd9xxR5x22mnRunXr1ClADjvnnHOitrY2Fi9enDoFAADIU5lsNptNHQEAAAAAAAAAAAAAAAAAAAAAAAAAwCf33HPPRb9+/WLFihXRo0eP1DlAjuvXr1907Ngx5syZkzoFAADIQ0WpAwAAAAAAAAAAAAAAAAAAAAAAAAAA+HRmzpwZRx55pFEL4BMZP358LFiwINavX586BQAAyEOGLQAAAAAAAAAAAAAAAAAAAAAAAAAA8simTZti7ty5MW7cuNQpQJ4YOXJk7LnnnnH//fenTgEAAPKQYQsAAAAAAAAAAAAAAAAAAAAAAAAAgDyycOHC2LZtW4wYMSJ1CpAnWrZsGaWlpfHggw+mTgEAAPKQYQsAAAAAAAAAAAAAAAAAAAAAAAAAgDwyZ86cGDRoUHTo0CF1CpBHRo0aFUuXLo3a2trUKQAAQJ4xbAEAAAAAAAAAAAAAAAAAAAAAAAAAkCfq6uriySefjFGjRqVOAfLMkCFDYu+99465c+emTgEAAPKMYQsAAAAAAAAAAAAAAAAAAAAAAAAAgDwxf/782LFjR5SWlqZOAfJMs2bNYvjw4TFnzpzUKQAAQJ4xbAEAAAAAAAAAAAAAAAAAAAAAAAAAkCfmzJkTQ4YMiXbt2qVOAfLQqFGjYtmyZfHGG2+kTgEAAPKIYQsAAAAAAAAAAAAAAAAAAAAAAAAAgDzwwQcfxFNPPRUjR45MnQLkqYEDB0b79u1j7ty5qVMAAIA8YtgCAAAAAAAAAAAAAAAAAAAAAAAAACAPPPnkk7Fz584oLS1NnQLkqaZNm8YJJ5wQCxcuTJ0CAADkEcMWAAAAAAAAAAAAAAAAAAAAAAAAAAB5oLy8PI4++uho27Zt6hQgjw0bNiz+8Ic/xMaNG1OnAAAAecKwBQAAAAAAAAAAAAAAAAAAAAAAAABAjstms/G73/0uhg0bljoFyHNDhgyJoqKiWLRoUeoUAAAgTxi2AAAAAAAAAAAAAAAAAAAAAAAAAADIcS+++GK88847hi2Az61NmzZx1FFHRUVFReoUAAAgTxi2AAAAAAAAAAAAAAAAAAAAAAAAAADIcRUVFbHPPvvEYYcdljoFKABDhw6NioqKyGazqVMAAIA8YNgCAAAAAAAAAAAAAAAAAAAAAAAAACDHlZeXx9ChQyOTyaROAQrAsGHD4t13342XXnopdQoAAJAHDFsAAAAAAAAAAAAAAAAAAAAAAAAAAOSwDz/8MJYuXRpDhw5NnQIUiMMPPzw6duwY5eXlqVMAAIA8YNgCAAAAAAAAAAAAAAAAAAAAAAAAACCHVVVVxc6dO2PAgAGpU4ACkclkYsCAAfHss8+mTgEAAPKAYQsAAAAAAAAAAAAAAAAAAAAAAAAAgBxWVVUVBx54YHTo0CF1ClBASkpKorq6Onbu3Jk6BQAAyHGGLQAAAAAAAAAAAAAAAAAAAAAAAAAAclhVVVWUlJSkzgAKTElJSfzjH/+I1atXp04BAABynGELAAAAAAAAAAAAAAAAAAAAAAAAAIActX379li2bFl885vfTJ0CFJhDDz002rZtG1VVValTAACAHGfYAgAAAAAAAAAAAAAAAAAAAAAAAAAgR7344ouxZcuWKCkpSZ0CFJiioqI46qijDFsAAAAfy7AFAAAAAAAAAAAAAAAAAAAAAAAAAECOqqqqivbt28c3vvGN1ClAASopKYnnnnsudQYAAJDjDFsAAAAAAAAAAAAAAAAAAAAAAAAAAOSo6urqOProoyOTyaROAQpQSUlJ/OUvf4m//vWvqVMAAIAcZtgCAAAAAAAAAAAAAAAAAAAAAAAAACBHrVy5Mnr16pU6AyhQPXv2jEwmEy+++GLqFAAAIIcZtgAAAAAAAAAAAAAAAAAAAAAAAAAAyEGbN2+OdevWRffu3VOnAAWquLg49ttvv1i1alXqFAAAIIcZtgAAAAAAAAAAAAAAAAAAAAAAAAAAyEGrVq2KhoYGwxbALtW9e/eoqalJnQEAAOQwwxYAAAAAAAAAAAAAAAAAAAAAAAAAADlo1apVUVxcHJ07d06dAhSwbt26xapVq1JnAAAAOcywBQAAAAAAAAAAAAAAAAAAAAAAAABADqqpqYlu3bpFJpNJnQIUsG7dusXrr78eW7duTZ0CAADkKMMWAAAAAAAAAAAAAAAAAAAAAAAAAAA5aNWqVdGtW7fUGUCB6969e+zcuTNeffXV1CkAAECOMmwBAAAAAAAAAAAAAAAAAAAAAAAAAJCDVq9ebdgC2OUOOOCAaNGiRdTU1KROAQAAcpRhCwAAAAAAAAAAAAAAAAAAAAAAAACAHPPee+/F+++/HwceeGDqFKDANW3aNL7+9a/H2rVrU6cAAAA5yrAFAAAAAAAAAAAAAAAAAAAAAAAAAECOWbduXURE7L///olLgMagc+fOUVtbmzoDAADIUYYtAAAAAAAAAAAAAAAAAAAAAAAAAAByzLp166KoqCi+8pWvpE4BGgHDFgAAwH9i2AIAAAAAAAAAAAAAAAAAAAAAAAAAIMfU1tZGp06dYo899kidAjQCnTt3jnXr1qXOAAAAcpRhCwAAAAAAAAAAAAAAAAAAAAAAAACAHFNbWxv7779/6gygkdh///3jnXfeiY8++ih1CgAAkIMMWwAAAAAAAAAA8P/Yu/MoK+v7fuCf2QeUYYaZwQWRxbUq4BJShZhY1ACK2OAxIdFEq8a4RNPaY2ubmvzqRpvGGhN71FYjWpdoop5EjQvmaBSixrKr1BWKYozMLjDM/vsjZ1BGZpg7c7nPnZnX6xzOeZ75fu/9vO/3mXBy9HjfAAAAAAAAAAAAAABAllm3bl2MHz8+6RjAEDF+/Pjo6OiI9evXJx0FAADIQootAAAAAAAAAAAAAAAAAAAAAAAAAACyzLp162LChAlJxwCGiM6/b9auXZtwEgAAIBsptgAAAAAAAAAAAAAAAAAAAAAAAAAAyDLvv/9+jBkzJukYwBBRVlYWu+++e2zYsCHpKAAAQBZSbAEAAAAAAAAAAAAAAAAAAAAAAAAAkEVaWlqioaEhKisrk44CDCHl5eVRXV2ddAwAACALKbYAAAAAAAAAAAAAAAAAAAAAAAAAAMgiVVVV0dHREeXl5UlHAYaQiooKxRYAAMAOKbYAAAAAAAAAAAAAAAAAAAAAAAAAAMginV8sX1FRkXASYCgpLy+PqqqqpGMAAABZSLEFAAAAAAAAAAAAAAAAAAAAAAAAAEAW6fxi+fLy8oSTAENJRUXFtmIdAACAT1JsAQAAAAAAAAAAAAAAAAAAAAAAAACQRaqrqyMnJydGjRqVdBRgCCkvL99WrAMAAPBJii0AAAAAAAAAAAAAAAAAAAAAAAAAALJIdXV1lJaWRn5+ftJRgCGkvLw8qqurk44BAABkIcUWAAAAAAAAAAAAAAAAAAAAAAAAAABZpK6uLsrKypKOQS/97ne/i2uuuSb++Mc/Jh2FXWSoPONRo0ZFbW1t0jEAAIAspNgCAAAAAAAAAAAAAAAAAAAAAAAAACCLbN26NYqLi5OOQS89//zzceWVV8Yf/vCHpKOwiwyVZ1xcXBxNTU1JxwAAALKQYgsAAAAAAAAAAAAAAAAAAAAAAAAAgCzS3NwchYWFScdIVHt7e9IRYMgpLCxUbAEAAOyQYgsAAAAAAAAAAAAAAAAAAAAAAAAAgCzS1NQ0IIstvvnNb8ZZZ50Vb731Vpx33nkxduzYmDFjRtx9990REfHv//7vcdRRR8Xo0aNj9uzZ8eabb273+jVr1sRJJ50UlZWVsdtuu8XUqVPjwQcfTPucurq6uOiii+Kwww6LPffcM+bNmxe//vWvdzjn29/+drz//vvxta99LcaNGxf77bdfnHPOObF58+aIiDj//PPjlltuiYiIc845Jy699NI+nd2zzz4bF198cRx44IExduzY+OpXvxq33HJLtLW1bbdv1apVMW/evJgwYUKceuqpceedd8bTTz8dp59+elRXV6e8L5OZerv30ksvjXPPPTfee++9uPjii6OysnLb63v77FLJtbPPubNnnEqmbFdUVKTYAgAA2KGcjo6OjqRDAAAAAAAAAAAAAAAAAAAAAAAAAADwJ9/5zndi+fLl8dxzzyUdJSVTp06N9957L3Jzc6O0tDSOOuqouP/++6OlpSVmzZoVixYtipNOOiny8vLiscceiz333DPWrl0bubm5sXjx4pg1a1ZUVlbGGWecEcOGDYtHHnkkXnrppbjqqqviyiuvTMuc9957L4499tjYuHFjfOMb34iRI0fGk08+GStXrozrr78+/vqv/3q7OVVVVdHS0hITJkyIadOmxUsvvRS//e1vY968efHggw/GD3/4w3jooYfihRdeiK985Ssxbdq0lMstnnnmmTjxxBNj5MiR8bWvfS0qKipi0aJFsWTJkrj88svjBz/4QUREPPfcczF79uwYPnx4zJo1K/Ly8uLBBx+MffbZJ/73f/831q9fH2PHju31vkxmSmXvcccdFx988EEUFRXFqlWr4sgjj4ylS5em9Ox6O6s3n7OnZ5xKpoHgoYceitNOOy1aW1sjLy8v6TgAAEAWUWwBAAAAAAAAAAAAAAAAAAAAAAAAAJBFLrjggnjrrbfi6aefTjpKSqZOnRr/8z//E9dcc01897vfjYiIxx9/PE466aQYNmxYrFixIg488MCIiDj77LPjzjvvjNdffz0OOOCA+MxnPhPr1q2L1atXx9577x0Rsa2oYvHixbF69eptr+3rnAMPPDDOPPPMuOeee+LFF1+MP//zP4+IiObm5pg9e3YsXrw4/vCHP8SoUaO2m/P3f//3sWDBgsjJyYn29vaYOnVqvP3221FXVxcREf/6r/8aV1xxRSxfvjwOP/zwlM/t/PPPj7vuuis++OCDKC0tjYiIrVu3xsSJE2PkyJGxZs2aaG9vjyOPPDLWr18fy5cvj3HjxkVExOrVq+Mzn/lMNDc3x/r162PMmDG92rezYot0Zho7dmxKe4877rj47W9/GzNnzowf/ehHcfDBB0dE9PrZpTKrN5+zp2ecyu/TQPDYY4/FnDlzYsuWLTFs2LCk4wAAAFkkN+kAAAAAAAAAAAAAAAAAAAAAAAAAAAB8rLm5OQoLC5OO0Sd5eXlx+eWXb7ufMmVKRETMmDFjW9lERMRxxx0XERGvvfZaLFu2LJYtWxYzZszYVmoREVFQUBBnn312NDc3x6JFi/o9p6amJu69996YOnXqthKCiIjCwsL45je/Gc3NzfHQQw9tN2fYsGHx//7f/4ucnJyIiMjNzY3p06dHfX19vPfeeymfz45cdtll8fLLL28rVoj40+9AaWlpNDQ0RETE8uXLY+XKlfGtb31rW1FDRMSkSZPiK1/5yrb73u6LiGhvb4/Nmzdv96etrS3tmVLd2+nqq6/eVmqRyrNLZVZvPmd3+vL7lO06/95pampKOAkAAJBt8pMOAAAAAAAAAAAAAAAAAAAAAAAAAADAx5qbm6OgoCDpGH2y9957b1fKUVxcvO3nn5SXlxcRf/qsb775ZkREfOELX/jU+x155JEREfHGG2/0e87rr78eHR0dsWnTpk8VHHSWGLz99tvb/Xz06NHb3rtTWVlZRERs2rTpU3n74uCDD47q6uq4/vrr44UXXoh169bFm2++GQ0NDds+T2eugw466FOvP/TQQ7dd93ZfRMRLL70U06ZN2+5n9957b3z1q19Na6ZU90ZEVFZWxtSpU7fdp/LsUpnVm8/Znb78PmW7oqKiiIjYunVrwkkAAIBsk5t0AAAAAAAAAAAAAAAAAAAAAAAAAAAAPpabmxsdHR1Jx+iT3XbbbYc/z83t/iswq6qqIiJi/Pjxn1pramqKiI8LKvozp7q6OiL+9OX9BQUF2/0pLy+PM84441PFB8OGDev2/dL1jP7t3/4t9tlnn7j66qujpaUlTjjhhFi4cGFMnz59257a2tqIiCgvL//U69va2lLeFxFRUVERZ5xxxnZ/Op9BOjOlujfi44KFTqk8u1Rm9eZzdqcvv0/ZrvN8uv7vDQAAID/pAAAAAAAAAAAAAAAAAAAAAAAAAAAAfKywsDCam5uTjpExEyZMiIiI559/PubMmbPd2gsvvBARERMnTuz3nM73OOCAA+Luu+/ebq2trS0++uijGD58eL/npGLjxo1xxRVXRGVlZbz55psxYsSIbWvXXnvttuvOwoklS5bEKaecst17LF++POV9ETs+h12RKdW9O5LKs+vtrN5+znRkGig6/97pWiwCAADQfY0kAAAAAAAAAAAAAAAAAAAAAAAAAAAZV1RUNKSKLY444ogoLCyMRYsWfWrt2Wefjby8vJg5c2a/5+y///5RWVkZTz75ZLS0tGy3tmDBgigrK4vf//73/Z6Tiv/7v/+L9vb2mDdv3nbFCu+++26sWLFi2/1hhx0W+fn5nzqjd955J55++umU92UyUzpuXyDfAAAgAElEQVRypfLsejurt58zHZkGiqampohQbAEAAHyaYgsAAAAAAAAAAAAAAAAAAAAAAAAAgF3g5ptvjksuuSSefPLJbV8Y3xuFhYUp7R/o9t577/j2t78dy5cvj4suuiheeeWVeP311+P73/9+/OIXv4gzzzwzDjjggH7PKSwsjAULFkRDQ0OceeaZsWzZsnjrrbfi+uuvj2uuuSZOPPHEmD59esrvO27cuIiI+M///M94+eWXU3rtQQcdFLvvvnvcf//98cgjj8Sbb74ZCxcujGnTpkVJSUls2rQpXn/99RgzZkx85zvfiWXLlsXZZ58djz/+ePz4xz+O2bNnb/d+vd2XyUzpyJXKs+vtrN5+zogdP+Nd9fuUpM5CncLCwoSTAAAA2SY/6QAAAAAAAAAAAAAAAAAAAAAAAAAAAINRQ0ND/Md//EfcdNNNUVxcHF/84hdj7ty5cfLJJ8eee+7Z7esKCwu3fcH8ULFgwYJoa2uLG2+8MW6++eZtP7/gggvixhtvTNucc889N7Zs2RJ/93d/Fw888EBEROTn58d5550X1157beTk5KT8nieeeGIcffTRcfPNN8eaNWvimWee6fVrR4wYET/96U/jnHPOiblz50ZExKhRo+KGG26I3XbbLc4666w47LDDoqWlJf7lX/4lSktL40c/+lHceeedUV5eHmeccUaUlpbGVVddFSUlJRERvd6XyUzpyJXKs+vNrFQ+Z3fPeFf8PiWpqakpCgsLB1xuAABg18vp6OjoSDoEAAAAAAAAAAAAAAAAAAAAAAAAAMBgc9NNN8Xf/u3fbiupyMvLi4iItra2OOCAA2LevHkxZ86cmD59+nZfJP+9730vfvnLX8bKlSsTyZ2kDz/8MFasWBFFRUUxefLkKCsr2yVzPvroo1i+fHls2rQpJk2aFGPHju33e77//vsxYsSIGDFiRMqvra6ujuXLl8dee+0VhxxyyLbfh+rq6qitrY39999/u/21tbXbzuaSSy6JRx99NNauXfup9+3tvkxm6m+uVJ/dzmal8jm7e8a74vcpCXfccUdceuml8dFHHyUdBQAAyDKKLQAAAAAAAAAAAAAAAAAAAAAAAAAAdoE777wzzj333Ghra9vhekFBQbS0tERpaWnMmTMn5s6dGzNnzowf//jHcc8998SaNWsynJh0uOiii3q17+tf/3occ8wxvdrb2NgYM2bMiKOPPjpuuOGGbT/fvHlzHHHEEXHooYfGww8/3Ot96ZDKrGzNxfZuueWW+Kd/+qeoqqpKOgoAAJBl8pMOAAAAAAAAAAAAAAAAAAAAAAAAAAAwGI0YMaLbUouIiJaWloiIqKuri5/97Gdx9913R0FBQUyYMCE2btwY7777bowdOzZTcUmTv/iLv+jVvr322qvX7zls2LAYNWpU/OQnP4n6+vqYM2dO1NbWxh133BEbNmyI2267LaV96ZDKrGzNxfa2bNkSw4cPTzoGAACQhXI6Ojo6kg4BAAAAAAAAAAAAAAAAAAAAAAAAAJAtGhsbo7a2NrZu3brtuut9b9Y++OCDqKmp6fXcvLy8aGtri4qKiqivr4/3338/KioqduEnZSCpr6+P6667LhYtWhQrVqyI3XbbLY488sj4/ve/HzNmzEh5XyYzZXMuPvaP//iP8cQTT8SyZcuSjgIAAGQZxRYAAAAAAAAAAAAAAAAAAAAAAAAAwIDU2toaH330UTQ0NMSWLVti8+bNUVdXF5s3b44tW7ZsW+u871zbvHlzbNq0Kerr67e9rr6+PjZt2hQtLS3dzisqKorhw4dHWVlZDB8+PIYPHx4lJSVRUlKy7b6srCx22223GD58eHz44Yfxgx/8YKefIz8/P9rb22PmzJlx2WWXxdatW+OUU06JzZs3x/Dhw9N5ZAwS9fX1MWLEiMjNzU3LvkxmyuZcQ935558fa9eujUWLFiUdBQAAyDL5SQcAAAAAAAAAAAAAAAAAAAAAAAAAAIaGxsbGqK2tja1bt+7wOtW1urq66Ojo6HZecXFxlJWVxbBhw7Zdd97vtddeccghh+xwbUevGzVqVBQXF6f0eVetWtVtsUV+fn60trbG6NGj46/+6q/i4osvjrFjx0ZExIsvvhgREVVVVbHvvvumNJOhYeTIkWndlw6pzMrWXENddXV1VFRUJB0DAADIQootAAAAAAAAAAAAAAAAAAAAAAAAAIBPaWxs7HPpRLpKKD55PXHixG7XdvS6srKyDJ7Wjo0YMeJTP8vPz4+2trY49thj48ILL4x58+ZFXl7edns6v1i+urpasQWQMVVVVTFp0qSkYwAAAFlIsQUAAAAAAAAAAAAAAAAAAAAAAAAADHD9KaHY0Vp9fX20t7d3Oy/dJRSlpaWRk5OTwRPLjN133z0iInJzc6OjoyNGjx4dF154YZx33nkxZsyYbl9XXl4eEX/6knmATKmurt729w8AAMAnKbYAAAAAAAAAAAAAAAAAAAAAAAAAgAzqWkLRU+lEb0ooGhoaoq2trdt5xcXFOy2WSGVt5MiRkZubm8ETG7hGjBgRubm5ccIJJ8RFF10Uc+bMiby8vJ2+rrS0NPLz86O6ujoDKQH+pKqqSrEFAACwQ4otAAAAAAAAAAAAAAAAAAAAAAAAAKAbqZRQ9GZt48aN0dra2u08JRSDS3Fxcbz99tsxfvz4lF6Xk5MT5eXl8eGHH+6aYABdtLe3R01NTVRUVCQdBQAAyEKKLQAAAAAAAAAAAAAAAAAAAAAAAAAYNLorluhLCUVVVVW0tLR0O6trCUVfCyk670tKSiIvLy+Dp0UmpFpq0Wns2LGxfv369IYB6MaGDRuipaUlxo0bl3QUAAAgCym2AAAAAAAAAAAAAAAAAAAAAAAAACAR/Smd6LqWqRKKzuvRo0dHfr6v9GPXmTBhQqxbty7pGMAQ0fn3TV/LeAAAgMHNPwUDAAAAAAAAAAAAAAAAAAAAAAAAYKd6UzrR2xKK6urqaG5u7nFeT8USZWVlMXHixF6XUFRWVkZBQUGGTgrSY/z48fGb3/wm6RjAELF27dooKiqKvfbaK+koAABAFlJsAQAAAAAAAAAAAAAAAAAAAAAAADDI9KaEordrNTU10dTU1OO8vpRQdFdIUVFREYWFhRk6Kche48ePj3Xr1iUdAxgi1q1bF+PGjYvc3NykowAAAFlIsQUAAAAAAAAAAAAAAAAAAAAAAABAgtJZQtF535OeiiWUUED2GD9+fNTU1ER9fX2MHDky6TjAILdu3boYP3580jEAAIAspdgCAAAAAAAAAAAAAAAAAAAAAAAAoJd2VCbRn0KK2traHuf1poSiu9KJrtfl5eVRVFSUoZMC+qvzC+bXrVsXU6ZMSTYMMOitXbs2DjrooKRjAAAAWUqxBQAAAAAAAAAAAAAAAAAAAAAAADAopbuEoq6uLjo6Orqdl84SilGjRkVxcXEGTwvINuPHj4+cnJx45513FFsAu9zatWtj5syZSccAAACylGILAAAAAAAAAAAAAAAAAAAAAAAAIHGNjY39Kp3oulZfXx/t7e3dzttRmcQnr7uWUOyskKKsrCyDpwUMBcOHD4/x48fHq6++Gl/60peSjgMMYh999FGsX78+DjnkkKSjAAAAWUqxBQAAAAAAAAAAAAAAAAAAAAAAAJCSbCuhSHWttLQ0cnJyMnhiAH0zefLkWL16ddIxgEFu9erV0dHREZMnT046CgAAkKUUWwAAAAAAAAAAAAAAAAAAAAAAAMAg1rWEoq+FFJ33DQ0N0dbW1u284uLifpVOdF0bOXJk5ObmZvDEALLHpEmT4he/+EXSMYBBbtWqVTFixIgYN25c0lEAAIAspdgCAAAAAAAAAAAAAAAAAAAAAAAAskS6Sig6rzdu3Bitra3dzlNCAZDdJk2aFAsWLIjGxsYYNmxY0nGAQWr16tUxefLkyMnJSToKAACQpRRbAAAAAAAAAAAAAAAAAAAAAAAAQB/1pXSiu71VVVXR0tLS7ayuJRR9LaTovC8pKYm8vLwMnhYAqZo8eXK0tbXFa6+9FkcddVTScYBBavXq1TFp0qSkYwAAAFlMsQUAAAAAAAAAAAAAAAAAAAAAAABDQl9KKLpby1QJRef16NGjIz/fV4cBDDUHHHBADB8+PFavXq3YAthlVq9eHfPnz086BgAAkMX802kAAAAAAAAAAAAAAAAAAAAAAACyTm9KJ3pbQlFdXR3Nzc09zuupWKKsrCwmTpzY6xKKysrKKCgoyNBJATCY5eXlxSGHHBKrVq1KOgowSK1fvz7q6upi0qRJSUcBAACymGILAAAAAAAAAAAAAAAAAAAAAAAA+qU3JRS9XaupqYmmpqYe5/WlhKK7QoqKioooLCzM0EkBQOqmTp0aL774YtIxgEHqhRdeiPz8/DjiiCOSjgIAAGQxxRYAAAAAAAAAAAAAAAAAAAAAAABDSDpLKDrve9JTsYQSCgDYuenTp8ftt98ejY2NMWzYsKTjAIPMkiVL4vDDD4/dd9896SgAAEAWU2wBAAAAAAAAAAAAAAAAAAAAAACQpXZUJtGfQora2toe5/WmhKK70omu1+Xl5VFUVJShkwKAwWv69OnR3NwcS5cujc997nNJxwEGmSVLlsTnP//5pGMAAABZTrEFAAAAAAAAAAAAAAAAAAAAAABAGqS7hKKuri46Ojq6nZfOEopRo0ZFcXFxBk8LAOit8ePHxz777BNLlixRbAGk1aZNm2LVqlXxD//wD0lHAQAAspxiCwAAAAAAAAAAAAAAAAAAAAAAYMhpbGzsV+lE17X6+vpob2/vdt6OyiQ+ed21hGJnhRRlZWUZPC0AIGnHHHNMLFmyJOkYwCDz4osvRmtraxxzzDFJRwEAALKcYgsAAAAAAAAAAAAAAAAAAAAAACCrZVsJRaprpaWlkZOTk8ETAwAGm+nTp8dVV10VHR0d/n8FkDZLliyJiRMnxpgxY5KOAgAAZDnFFgAAAAAAAAAAAAAAAAAAAAAAQNp0LaHoayFF531DQ0O0tbV1O6+4uLhfpRNd10aOHBm5ubkZPDEAgJ2bPn161NTUxJo1a+KQQw5JOg4wSCxZsiSmTZuWdAwAAGAAUGwBAAAAAAAAAAAAAAAAAAAAAABDVLpKKDqvN27cGK2trd3OS3cJRUlJSeTl5WXwxAAAknHEEUdEeXl5PPXUU4otgLRobGyMxYsXx80335x0FAAAYADI6ejo6Eg6BAAAAAAAAAAAAAAAAAAAAAAAsHN9KZ3obm9VVVW0tLR0O6trCUVfCymUUAAApMf8+fOjrq4unnjiiaSjAIPAY489Fqecckps2LAh9tprr6TjAAAAWS4/6QAAAAAAAAAAAAAAAAAAAAAAADAY9aWEoru16urqaG5u7nZWukooOq9Hjx4d+fm+oggAIJvMmjUrLrzwwtiyZUsMHz486TjAAPfEE0/E4YcfrtQCAADoFf/WCAAAAAAAAAAAAAAAAAAAAACAIa83pRPpKqGIiB6LJcrKymLixIm9LqGorKyMgoKCDJ0UAABJmTVrVjQ1NcWzzz4bJ510UtJxgAHuiSeeiC9/+ctJxwAAAAYIxRYAAAAAAAAAAAAAAAAAAAAAAAwovSmh6O1aTU1NNDU19TivLyUU3RVSVFRURGFhYYZOCgCAwWTPPfeMKVOmxOOPP67YAuiXN998M956662YNWtW0lEAAIABQrEFAAAAAAAAAAAAAAAAAAAAAAC7TDpLKDrve9JTsURnCUV3pRNKKAAAyHazZ8+On/3sZ/GTn/wk6SjAAPb4449HSUlJHH300UlHAQAABoicjo6OjqRDAAAAAAAAAAAAAAAAAAAAAACQvB2VSfSnkKK2trbHeT2VUKS6Vl5eHkVFRRk6KQAASMbzzz8fn//852PNmjVx8MEHJx0HGKBmzpwZJSUl8fOf/zzpKAAAwACh2AIAAAAAAAAAAAAAAAAAAAAAYABKdwlFXV1d9PR1NDsqk+ipdKKnvaNGjYri4uIMnhYAAAwO7e3tMXbs2PjWt74V3/ve95KOAwxAVVVVsddee8V///d/x/z585OOAwAADBCKLQAAAAAAAAAAAAAAAAAAAAAAdrHGxsZ+lU50Xauvr4/29vZu56VaQrGztbKysgyeFgAA0JNLLrkknn766VizZk3SUYAB6NZbb43LLrss/vjHP8buu++edBwAAGCAUGwBAAAAAAAAAAAAAAAAAAAAAPAJSZRQ9FQskWoJRWlpaeTk5GTwxAAAgEx6/vnn4/Of/3y88sorceihhyYdBxhgjj/++CgvL48HHngg6SgAAMAAkp90AAAAAAAAAAAAAAAAAAAAAACAvupaQtHXQorO+4aGhmhra+t23s5KKFJdGzlyZOTm5mbwxAAAgIHuc5/7XOy7777xwAMPxD//8z8nHQcYQDZu3BjPPfdc3HfffUlHAQAABhjFFgAAAAAAAAAAAAAAAAAAAABARqSrhKLzeuPGjdHa2trtvHSXUJSUlEReXl4GTwwAAODTcnJyYt68eXH//fcrtgBS8sADD0RRUVHMnj076SgAAMAAk9PR0dGRdAgAAAAAAAAAAAAAAAAAAAAAIPv0pXSiu71VVVXR0tLS7ayuJRT9LaTYY489lFAAAACD1gsvvBDTpk2LlStXxuTJk5OOAwwQX/jCF2LMmDFx7733Jh0FAAAYYBRbAAAAAAAAAAAAAAAAAAAAAMAg0JcSiu7Wqquro7m5udtZ6S6hGD16dOTn52fwtAAAAAa2jo6OmDhxYpx22mnxwx/+MOk4wACwbt262G+//eLhhx+OuXPnJh0HAAAYYBRbAAAAAAAAAAAAAAAAAAAAAECG9aZ0Il0lFBHRr9KJrmuVlZVRUFCQoZMCAACgO1dffXXceOONsWHDhigqKko6DpDlrrzyyrjtttti/fr1/tkOAACQMsUWAAAAAAAAAAAAAAAAAAAAANCD3pRQ9HatpqYmmpqaepyXzhKKioqKKCwszNBJAQAAkEkbNmyIcePGxb333htf/vKXk44DZLG2traYMGFCnHnmmXHdddclHQcAABiAFFsAAAAAAAAAAAAAAAAAAAAAMGiks4Si874n/SmdUEIBAABAf51yyimxdevWWLRoUdJRgCz26KOPxty5c+ONN96I/fffP+k4AADAAKTYAgAAAAAAAAAAAAAAAAAAAIBE7KhMoj+FFLW1tT3O628JxSevy8vLo6ioKEMnBQAAADv2q1/9Kv7yL//Sl9UDPTr11FNj06ZN8Zvf/CbpKAAAwACl2AIAAAAAAAAAAAAAAAAAAACAnUp3CUVdXV309LUXOyqT6Kl0oqe9o0aNiuLi4gyeFgAAAGRGa2trjB8/Ps4666y49tprk44DZKEPPvgg9t1337jrrrti/vz5SccBAAAGKMUWAAAAAAAAAAAAAAAAAAAAAINMY2Njv0onuq7V19dHe3t7t/NSLaHY2VpZWVkGTwsAAAAGtiuvvDJuv/32WLduXRQWFiYdB8gy1157bdxwww3x3nvvKX8FAAD6TLEFAAAAAAAAAAAAAAAAAAAAQILSXULR0NAQbW1t3c4rLi7usVgi1RKK0tLSyMnJyeCJAQAAAJ+0YcOGmDhxYvzXf/1XfOMb30g6DpBFmpqaYsKECXHWWWfFggULko4DAAAMYIotAAAAAAAAAAAAAAAAAAAAAHqpawlFXwsp0lVCkerayJEjIzc3N4MnBgAAAGTC17/+9Vi5cmWsXLlSASWwze233x4XXnhhvPPOO7HPPvskHQcAABjAFFsAAAAAAAAAAAAAAAAAAAAAg1K6Sig6rzdu3Bitra3dzkt3CUVJSUnk5eVl8MQAAACAgWrVqlVx+OGHx5NPPhknnnhi0nGALNDR0RGTJk2KqVOnxh133JF0HAAAYIBTbAEAAAAAAAAAAAAAAAAAAABkhb6UTnS3t6qqKlpaWrqd1bWEor+FFHvssYcSCgAAACBRxx9/fBQUFMQTTzyRdBQgCzz22GMxZ86cWLFiRUyZMiXpOAAAwACn2AIAAAAAAAAAAAAAAAAAAABIWV9KKLpbq66ujubm5m5npbuEYvTo0ZGfn5/B0wIAAADY9X7961/HySef7EvsgYiImDFjRhQVFcXjjz+edBQAAGAQUGwBAAAAAAAAAAAAAAAAAAAAg1x/SidSLaGIiH6VTnRdq6ysjIKCggydFAAAAMDA1dHREYcddlhMnTo1Fi5cmHQcIEHLli2Lo446Kp566qk48cQTk44DAAAMAootAAAAAAAAAAAAAAAAAAAAIIv0t4Tik9c1NTXR1NTU47x0llBUVFREYWFhhk4KAAAAgK4WLlwY559/fqxZsyb222+/pOMACfnSl74U69evj6VLlyYdBQAAGCQUWwAAAAAAAAAAAAAAAAAAAEAf7ahMoqfSid7s7Ul/Sie63peXl0dRUVGGTgoAAACATGhra4tDDz00jj766Fi4cGHScYAELF26NKZOnRq/+tWvYs6cOUnHAQAABgnFFgAAAAAAAAAAAAAAAAAAAAwJqZZQ7Gyttra2x3n9LaH45LUSCgAAAAB665577omzzjorVq9eHX/2Z3+WdBwgw0466aTYuHFj/P73v4+cnJyk4wAAAIOEYgsAAAAAAAAAAAAAAAAAAACyTmNjY4/FEqmWUNTV1UVP/3n9jsokeiqd6GnvqFGjori4OIOnBQAAAAAfa29vj8MPPzwOPfTQuO+++5KOA2TQCy+8ENOmTYunnnoqTjzxxKTjAAAAg4hiCwAAAAAAAAAAAAAAAAAAAPplZyUUqa7V19dHe3t7t/NSLaHY2VpZWVkGTwsAAAAAdr2f//znMX/+/Fi2bFlMmTIl6ThAhpxwwgmxdevWWLx4cdJRAACAQUaxBQAAAAAAAAAAAAAAAAAAwBCS7hKKhoaGaGtr63ZecXFxj8USqZZQlJaWRk5OTgZPDAAAAAAGno6OjjjyyCNj4sSJ8eCDDyYdB8iAxYsXx7HHHhvPPPNMHHfccUnHAQAABhnFFgAAAAAAAAAAAAAAAAAAAFmqawlFfwspPvzww36VUKS6NnLkyMjNzc3giQEAAAAAnR555JE49dRTY/HixTFt2rSk4wC7UEdHRxxzzDExYsSIWLRoUdJxAACAQUixBQAAAAAAAAAAAAAAAAAAQBqku4Ri48aN0dra2u28dJdQlJSURF5eXgZPDAAAAADY1WbOnBlVVVXx8ssvK6GFQeyuu+6Kc845J5YuXRpTpkxJOg4AADAIKbYAAAAAAAAAAAAAAAAAAACGpP6UTnRdq6qqipaWlm5ndS2h6G8hxR577KGEAgAAAADYqddeey2mTJkSt912W5x11llJxwF2gU2bNsVBBx0Uc+fOjZtvvjnpOAAAwCCl2AIAAAAAAAAAAAAAAAAAAMh66SyhqK6ujubm5m5npbuEYvTo0ZGfn5/B0wIAAAAA+NiFF14YDz/8cLzxxhtRUlKSdBwgzb773e/GTTfdFG+88UbsscceSccBAAAGKcUWAAAAAAAAAAAAAAAAAABAWvWndCLVEoqI6FfpRNe1ysrKKCgoyNBJAQAAAADsejU1NXHAAQfEBRdcENdee23ScYA0evfdd+Pggw+Oa665Jv7mb/4m6TgAAMAgptgCAAAAAAAAAAAAAAAAAACGsP6WUHzyuqamJpqamnqcl84SioqKiigsLMzQSQEAAAAADFw33HBDXHHFFfHqq6/G/vvvn3QcIE1OP/30WLFiRbzyyitRVFSUdBwAAGAQU2wBAAAAAAAAAAAAAAAAAAADxI7KJHoqnejN3p70p3Si6315ebkvVAIAAAAASEhLS0tMnjw59ttvv3j00UeTjgOkwZNPPhmzZs2KRx99NE4++eSk4wAAAIOcYgsAAAAAAAAAAAAAAAAAANgFUi2h2NlabW1tj/P6W0LxyWslFAAAAAAAg89zzz0Xxx13XNx7770xf/78pOMA/bBly5aYNGlSHHXUUfHAAw8kHQcAABgCFFsAAAAAAAAAAAAAAAAAADDkNTY29lgskWoJRV1dXfT0n/HuqEyip9KJnvaOGjUqiouLM3haAAAAAAAMVBdccEE8+OCD8dprr0VlZWXScYA+uuyyy+KnP/1pvPrqqzFmzJik4wAAAEOAYgsAAAAAAAAAAAAAAAAAAAaUnZVQpLpWX18f7e3t3c5LtYRiZ2tlZWUZPC0AAAAAAPhYQ0NDHHrooXH88cfHwoULk44D9MHLL78cxxxzTNx6661x7rnnJh0HAAAYIhRbAAAAAAAAAAAAAAAAAACwy6S7hKKhoSHa2tq6nVdcXNxjsUSqJRSlpaWRk5OTwRMDAAAAAIBd69FHH41TTjklnnzyyfjiF7+YdBwgBa2trfHZz342SkpK4plnnvHvsQAAgIxRbAEAAAAAAAAAAAAAAAAAQER8uoSiv4UUH374Yb9KKFJdGzlyZOTm5mbwxAAAAAAAYGA6/fTTY+nSpbF69erYbbfdko4D9NKCBQvi6quvjlWrVsX++++fdBwAAGAIUWwBAAAAAAAAAAAAAAAAADAApbuEYuPGjdHa2trtvHSXUJSUlEReXl4GTwwAAAAAAOj0wQcfxGGHHRannXZa3HrrrUnHAXph+fLlccwxx8TVV18dl19+edJxAACAIUaxBQAAAAAAAAAAAAAAAABABvSndKLrWlVVVbS0tHQ7q2sJRX8LKUaPHh35+fkZPC0AAAAAAGBXe/jhh2PevHnxwAMPxOmnn550HKAHW7dujc9+9rNRWloazzzzjAJ5AAAg4xRbAAAAAAAAAAAAAAAAAAB0kc4Siurq6mhubu52lhIKAAAAAAAgKeedd1788pe/jJUrV8bee++ddBygGxdddFHcd999sWLFihg3blzScQAAgCFIsQUAAAAAAAAAAAAAAAAAMKD1p3Si631NTU00NTX1OK8/pRNd1yorK6OgoCBDJwUAAAAAAMYYN94AACAASURBVLC9zZs3x1FHHRX77rtvPPHEE5Gbm5t0JKCLxx9/PE4++eS49957Y/78+UnHAQAAhijFFgAAAAAAAAAAAAAAAABAxvS3hOKT15kuoaioqIjCwsIMnRQAAAAAAEBmLF26NKZNmxYLFiyIyy67LOk4wCd8+OGHMXny5Jg9e3bccccdSccBAACGMMUWAAAAAAAAAAAAAAAAAMAO7ahMoqfSid7s7Ul/Sie63peXl0dRUVGGTgoAAAAAAGBgu+666+Kqq66K3/3ud3HkkUcmHQeIiPb29pg9e3a8/fbb/5+9ew+uu67zP/7OteGWNs2lZQcVqmyhRaaW1CJllpuyIIKmVeyFXmiT4CgOysqw0i6Kg6wNLiw2LeJtVrkUkqa4IEJFB6EtGGrHUqh3ubmrjrk0qUCay0l+f/ymHcw2IU3S883l8Zhh5px8k35efEb+cJrkGb/4xS/iuOOOS3oSAAAwjglbAAAAAAAAAAAAAAAAAMAYcLgRird6tnfv3n7PG2qE4s2vRSgAAAAAAACSlUql4p//+Z/jD3/4Q/z85z+PwsLCpCfBuLdmzZr46le/Glu3bo05c+YkPQcAABjnhC0AAAAAAAAAAAAAAAAAIM3a2tr6DUscboSipaUl+vtxwUPFJAYbpJg8eXLk5eWl8bYAAAAAAABIh+bm5igtLY1p06bFli1bIisrK+lJMG49/PDD8eEPfzi+8Y1vRHl5edJzAAAAhC0AAAAAAAAAAAAAAAAAoD9vFaE43Getra3R3d3d53nDGaE46qijoqCgII23BQAAAAAAwGi2a9euOOuss+Kzn/1sfPnLX056DoxLv/vd72LOnDlx2WWXxfe+972k5wAAAESEsAUAAAAAAAAAAAAAAAAAY8hwRyj27dsXqVSqz/Py8vIGHZ041OdOmjQpMjIy0nhjAAAAAAAA8PfuvvvuWL58edTW1saCBQuSngPjyvbt26OioiImTJgQTz/9dBx11FFJTwIAAIgIYQsAAAAAAAAAAAAAAAAAEtI7QjHUIMVf//rXIxahONSziRMnRmZmZhpvDAAAAAAAANKjoqIiamtro76+PqZPn570HBgXenp64oMf/GBs2bIlzjvvvKisrIxLL700jj766KSnAQAACFsAAAAAAAAAAAAAAAAA8NaGO0LR0NAQXV1dfZ7XO0LRX3RiIBGK/Pz8yMrKSuONAQAAAAAAwOjV3t4e//RP/xR79+6Np59+OoqKipKeBGPeF7/4xfjyl78cH/vYx2Ljxo0R8f//7nz+/PmxZMmSuPDCCyM7OzvhlQAAwHglbAEAAAAAAAAAAAAAAAAwBg0lOtH7WWNjY3R2dvZ51uFEKAbyrKSkxC/jAAAAAAAAgIQ1NDTEWWedFZMnT44nnngijj766KQnwZh1//33x+LFi6O6ujquvPLKOPXUU+OPf/xjdHd3R3Z2dnR1dcXEiRNjyZIlsWjRopg3b15kZGQkPRsAABhHhC0AAAAAAAAAAAAAAAAAEjacEYqmpqbo6Ojo97y+whIiFAAAAAAAAMCb/epXv4p58+bF+9///rj//vsjMzMz6Ukw5jz11FNx4YUXxmc/+9n493//94iI+OlPfxrnn39+9P61sbm5udHR0RHFxcWxaNGi+NjHPhZnn312ErMBAIBxRtgCAAAAAAAAAAAAAAAA4DAMJTrR+31zc3O0t7f3e95QohO9nxUXF0dOTk6abgoAAAAAAAAYCw780v1rr702brnllqTnwJjSXzxmyZIlUVtbG52dnYf82gORi3e9612xZMmSWLJkSZx88snpmg4AAIwzwhYAAAAAAAAAAAAAAADAmDXUCMWbX6c7QlFUVBS5ublpuikAAAAAAACAvm3cuDGWLFkS1dXV8clPfjLpOTAmNDY2xvve976YPHlyPPHEE3H00Uf/3fO//vWvcfLJJ8ff/va3GMivj33HO94Rzz//fBx33HFHajIAADCOZSc9AAAAAAAAAAAAAAAAACDi0BGK/qITA/nc/vQXligoKIhp06YNOEhRWFgYEyZMSNNNAQAAAAAAAKTXokWL4je/+U1cc801MXXq1Jg/f37Sk2BUa2lpiQ984AORkZERjzzyyP+JWkRElJSUxG233RYVFRVv+efl5ubG5s2bRS0AAIAjJqNnIMk9AAAAAAAAAAAAAAAAgDc53AjFWz3bu3dvv+f1F6E43GeTJ0+OvLy8NN0UAAAAAAAAwNjxL//yL1FdXR2bN2+OSy65JOk5MCq98cYbcdFFF8VLL70UTz31VJx00kl9fm5PT0+ce+658cwzz0RnZ2efn/ed73wnrrzyyiMxFwAAICKELQAAAAAAAAAAAAAAAGDMa2tr6zcscbgRipaWlujvx5IOFZMYbJBChAIAAAAAAABg5Ojp6YnKysq4995745FHHonzzjsv6UkwqrS1tcUll1wSL7zwQjz55JNx6qmnvuXX/Pa3v43TTjvtkGGLrKys+PSnPx233377kZgLAABwkLAFAAAAAAAAAAAAAAAAjCBvFaE43Getra3R3d3d53nDGaE46qijYtKkSZGRkZHGGwMAAAAAAAAgnVKpVFxxxRXx0EMPxZYtW+Lss89OehKMCp2dnTF//vzYtm1b/OQnP4nZs2cP+GtvvPHGuOWWWyKVSh38WE5OTpx88slRXFwcNTU1UVJSciRmAwAARISwBQAAAAAAAAAAAAAAAAzacEco9u3b93e/gKC3vLy8QUcnRCgAAAAAAAAAGC4HfkH/1q1b4yc/+UmcccYZSU+CEe1AEObhhx+OLVu2xLx58w7r69vb22PmzJnx8ssvRyqViuzs7CguLo577rknVq1aFalUKh588EH/LQIAAEeMsAUAAAAAAAAAAAAAAADjQu8IxVCDFA0NDdHV1dXneUOJUBzq2cSJEyMzMzONNwYAAAAAAAAAfdu/f3986EMfil27dsWWLVv8Qn3oQ2dnZyxZsiR+8IMfxKOPPhrnnHPOoP6cJ554Ii644ILo6emJ3NzceOaZZ2L27NnR2NgYCxcujO3bt8ddd90Vy5YtG+Z/AwAAAGELAAAAAAAAAAAAAAAARqCkIxT9RScGEqHIz8+PrKysNN4YAAAAAAAAAKTfG2+8EQsWLIht27bFQw89FOedd17Sk2BEaW9vj4ULF8bjjz8e3//+9+P973//kP68ZcuWxd133x133313XHHFFQc/3tXVFWvWrIm1a9dGZWVlrF+/PrKzs4c6HwAA4CBhCwAAAAAAAAAAAAAAAIZsKNGJ3s8aGxujs7Ozz7MOJ0IxkGclJSV+kB8AAAAAAAAABqmjoyMWL14cjz76aDz44INx4YUXJj0JRoTXX389ysrKYseOHfHDH/4w3ve+9w35z2xsbIw777wz/u3f/u2Qz++7776oqKiIOXPmRE1NTZSUlAz5TAAAgAhhCwAAAAAAAAAAAAAAgHFnOCMUTU1N0dHR0e95fYUlRCgAAAAAAAAAYGxIpVKxatWq2LhxY9x///1RVlaW9CRIVEtLS1xyySXx+9//PrZs2RKzZs1K29m7du2KsrKySKVSsXnz5igtLU3b2QAAwNglbAEAAAAAAAAAAAAAADCCDSU60ft9c3NztLe393veUKITvZ8VFxdHTk5Omm4KAAAAAAAAAEhSd3d3fOITn4j/+q//irvvvjs+/vGPJz0JEvHXv/41LrroomhoaIjHH388TjnllLRvaGxsjIULF8b27dvjrrvuimXLlqV9AwAAMLZkJz0AAAAAAAAAAAAAAABgrBhqhOLNr4caoSgoKIhp06YNOEJRVFQUubm5abopAAAAAAAAAGCsyczMjLvuuiuOPfbYWLx4cbz66qtx3XXXJT0L0urXv/51XHLJJZGRkRFPPfVUnHTSSYnsKCoqisceeyzWrFkTy5cvj+3bt8f69esjO9uvogUAAAYno6enpyfpEQAAAAAAAAAAAAAAAOl2qJjEYIMUB973563CEofzrLCwMCZMmJCmmwIAAAAAAAAAODx33HFHXHvttXHllVfGnXfeGTk5OUlPgiPu6aefjg9/+MPxzne+Mx566KEoKSlJelJERGzcuDHKy8tjzpw5UVNTM2J2AQAAo4uwBQAAAAAAAAAAAAAAMOINZ4Ri//79sXfv3n7PG84IxeTJkyMvLy9NNwUAAAAAAAAAMDJ8//vfjyVLlsS8efNi06ZNkZ+fn/QkOGJqa2tj2bJlcfHFF8c999wTRx99dNKT/s6uXbuirKwsUqlUbN68OUpLS5OeBAAAjDLCFgAAAAAAAAAAAAAAwLBqa2sbdHTiUJ/b0tIS/f34w6FiEoMNUohQAAAAAAAAAAAMn2effTYuu+yyKCkpiUceeSTe9ra3JT0Jht0dd9wR1157bVx99dVx++23R2ZmZtKTDqmpqSk+/vGPx/bt2+PrX/96LF++POlJAADAKCJsAQAAAAAAAAAAAAAA49hQIhSHetba2hrd3d19njecEYqjjjoqJk2aFBkZGWm8MQAAAAAAAAAADsdLL70UH/zgB+O1116LTZs2xdy5c5OeBMPijTfeiKuuuio2btwYX/va1+KTn/xk0pPeUldXV6xZsybWrl0blZWVUV1dHTk5OUnPAgAARgFhCwAAAAAAAAAAAAAAGCV6Ryj6i04MJEKxb9++SKVSfZ6Xl5c36OiECAUAAAAAAAAAAAfs3bs3Fi9eHE888UR87Wtfi8rKyqQnwZC8+OKLsWDBgnj11Vfj3nvvjYsuuijpSYdl48aNUV5eHnPmzImampooKSlJehIAADDCCVsAAAAAAAAAAAAAAMARcDgRioE8a2hoiK6urj7PG0qE4lDPJk6cGJmZmWm8MQAAAAAAAAAAxrKenp6oqqqKG264IRYvXhx33XVXHH300UnPgsP26KOPxhVXXBFvf/vbo66uLqZNm5b0pEHZtWtXzJ8/P7q6umLz5s1RWlqa9CQAAGAEE7YAAAAAAAAAAAAAAICIPsMS6YhQ9BedGEiEIj8/P7KystJ4WwAAAAAAAAAAMDiPPPJILF26NE488cSoq6uLk046KelJMCBvjrMsWrQovvGNb4z6OEtTU1MsXLgwtm3bFl//+tdj+fLlSU8CAABGKGELAAAAAAAAAAAAAABGnaFEJ3o/a2xsjM7Ozj7POpwIxUCelZSURHZ2dhpvCwAAAAAAAAAARpbf/e53sWDBgvjzn/8c3/ve9+Liiy9OehL0q7GxMVasWBGPP/543HbbbfGpT30q6UnDJpVKxerVq2Pt2rVRWVkZ1dXVkZOTk/QsAABghBG2AAAAAAAAAAAAAADgiBrOCEVTU1N0dHT0e15fYYnBRCiKi4v9gC4AAAAAAAAAABwBr7/+enziE5+Ie++9N66++upYu3ZtHHXUUUnPgv/jRz/6UaxYsSJycnJi48aNcdZZZyU96YjYuHFjlJeXR2lpadTW1kZJSUnSkwAAgBFE2AIAAAAAAAAAAAAAgIOGEp3o/bq5uTna29v7PW8o0Ynez0QoAAAAAAAAAABg9KmtrY2rrroqpk6dGvfdd1/MmjUr6UkQERHt7e3xhS98IW699daYP39+3HXXXTF58uSkZx1Ru3btivnz50dXV1fU1dXFnDlzkp4EAACMEMIWAAAAAAAAAAAAAACj1HBGKA68789wRiiKiooiNzc3TTcFAAAAAAAAAACMZK+++mosXbo06uvr46abborrrrsuMjMzk57FOParX/0qFi9eHH/4wx/iq1/9alRWViY9KW2amppi4cKFsW3btrjzzjtjxYoVSU8CAABGAGELAAAAAAAAAAAAAIA0OFRMYrBBisOJUAwmOtH7dWFhYUyYMCFNNwUAAAAAAAAAAIxHqVQqvvKVr8RNN90U5557bnzzm9+Md7zjHUnPYpxJpVKxbt26uOGGG2LWrFlxzz33xLRp05KelXapVCpWr14da9eujcrKyqiuro6cnJykZwEAAAkStgAAAAAAAAAAAAAA6GU4IxT79++PlpaW6O9bt4czQjF58uTIy8tL420BAAAAAAAAAAAMn2effTZWrFgRf/zjH+PLX/5yXH311ZGZmZn0LMaB559/PsrLy2PXrl2xevXquOGGGyI7OzvpWYnauHFjlJeXR2lpadTW1kZJSUnSkwAAgIQIWwAAAAAAAAAAAAAAo1pbW9ugoxPDFaEYbJBChAIAAAAAAAAAAOD/6uzsjNtuuy2+8IUvxIwZM+Jb3/pWzJ49O+lZjFEH/vd24403xmmnnRbf+ta34j3veU/Ss0aMXbt2xfz586Orqyvq6upizpw5SU8CAAASIGwBAAAAAAAAAAAAAKTNUCIUh3rW2toa3d3dfZ43nBGKo446KiZNmhQZGRlpvDEAAAAAAAAAAIDx64UXXoiKiorYuXNnXHvttfHFL34x8vLykp7FGLJt27aorKyMV155JW688cb43Oc+F1lZWUnPGnGamppi4cKFsW3btrjzzjtjxYoVSU8CAADSTNgCAAAAAAAAAAAAADik3hGK/qITA4lQ7Nu3L1KpVJ/n5eXlDTo6IUIBAAAAAAAAAAAwNnV3d0d1dXWsXr06/uEf/iFuu+22uOSSS5KexSj35z//OW644Yb47ne/Gx/84Adjw4YN8fa3vz3pWSNaKpWK1atXx9q1a6OysjKqq6sjJycn6VkAAECaCFsAAAAAAAAAAAAAwBhwOBGKgTxraGiIrq6uPs8bSoTiUM8mTpwYmZmZabwxAAAAAAAAAAAARpNXXnklPve5z8WmTZvioosuittuuy1OPfXUpGcxyrS3t8ftt98et9xySxQUFMStt94al19+edKzRpX7778/Vq1aFaWlpVFTUxNTpkxJehIAAJAGwhYAAAAAAAAAAAAAkIC+whLpiFD0F50YSIQiPz8/srKy0nhbAAAAAAAAAAAA8P/V19fHNddcEzt37oyVK1fGzTffHMXFxUnPYhR4+OGH4zOf+Uz85S9/iU9/+tOxZs2aOPbYY5OeNSo999xzUVZWFp2dnbF58+aYM2dO0pMAAIAjTNgCAAAAAAAAAAAAAN7CUKITvZ81NjZGZ2dnn2cdToRiIM9KSkoiOzs7jbcFAAAAAAAAAAAAR1Z3d3d8+9vfjjVr1kQqlYovfvGLUVlZGbm5uUlPYwTauXNnXHfddfHTn/40Fi9eHF/5ylfihBNOSHrWqNfU1BSLFi2KrVu3xp133hkrVqxIehIAAHAECVsAAAAAAAAAAAAAMKYMZ4SiqakpOjo6+j2vr7DEYCIUxcXFkZOTk6abAgAAAAAAAAAAgNGttbU1br755li3bl1MnTo11qxZE8uXL/e9eERExPPPPx9f+MIX4vvf/37MnTs3br/99jjzzDOTnjWmpFKpWL16daxduzYqKyujurraf38AADBGCVsAAAAAAAAAAAAAkJihRCd6v25ubo729vZ+zxtKdKL3MxEKAAAAAAAAAAAAGBn+53/+J2699da46667YurUqXHDDTfEypUrIzs7O+lpJODXv/513HLLLXHffffFqaeeGjfeeGN89KMfjYyMjKSnjVn3339/rFq1KkpLS6OmpiamTJmS9CQAAGCYCVsAAAAAAAAAAAAAMCDDGaE48L4/wxmhKCoqitzc3DTdFAAAAAAAAAAAAJCEl19+Ob70pS/F3XffHe9617vixhtvjMsvvzyysrKSnkYa/Pa3v42bb7457rvvvjjllFPipptuivnz5wtapMlzzz0XZWVl0dnZGZs3b445c+YkPQkAABhGwhYAAAAAAAAAAAAAY9ChYhKDDVIcToRiMNGJ3q8LCwtjwoQJabopAAAAAAAAAAAAYKz53e9+FzfddFNs3LgxTjzxxPjMZz4TK1eujGOOOSbpaRwB27dvj//4j/+I//7v/46TTz45brzxxli4cGFkZmYmPW3caWpqikWLFsXWrVvjzjvvjBUrViQ9CQAAGCbCFgAAAAAAAAAAAAAJG84Ixf79+6OlpSX6+xbR4YxQTJ48OfLy8tJ4WwAAAAAAAAAAAAAD8+KLL8Ydd9wR3/72tyMrKytWrFgR1113XZxwwglJT2OIuru745FHHom1a9fG9u3bY/bs2XHNNdfE4sWLIzs7O+l541oqlYrVq1dHVVVVVFRURHV1deTk5CQ9CwAAGCJhCwAAAAAAAAAAAIDD0NbWNujoxHBFKIYSpCgoKEjjbQEAAAAAAAAAAAAkr6mpKTZs2BDr16+PlpaWWLJkSXz605+OWbNmJT2Nw9Ta2hr33HNP/Od//me8+OKLcdlll8XnPve5mDdvXtLT6OX++++P8vLymD17dtTW1saUKVOSngQAAAyBsAUAAAAAAAAAAAAwZg0lQnGoZ62trdHd3d3necMdoZg0aVJkZGSk8cYAAAAAAAAAAAAAxq79+/fHPffcE7fffnv88pe/jNLS0igvL49FixZFfn5+0vPox/bt2+Nb3/pW1NTURETEsmXL4tprr42TTz454WX057nnnouysrLo7OyMzZs3x5w5c5KeBAAADJKwBQAAAAAAAAAAADAi9I5Q9BedGEiEYt++fZFKpfo8Ly8vb0jRid7PJk6cGJmZmWm8MQAAAAAAAAAAAAAGa+fOnfGNb3wj7r333kilUnHppZdGZWVlXHDBBZGRkZH0PCKipaUlampqYv369bF79+6YMWNGLFu2LMrLy6OwsDDpeQxQU1NTLFq0KLZu3RobNmyIK6+8MulJAADAIAhbAAAAAAAAAAAAAIftcCIUA3nW0NAQXV1dfZ4nQgEAAAAAAAAAAADAkdDS0hL33ntvfPOb34znnnsuZsyYEQsXLozLL788pk+fnvS8cef111+Phx9+OGpqauKHP/xhTJgwIRYvXhzl5eVxxhlnJD2PQUqlUrF69eqoqqqKioqKqK6ujpycnKRnAQAAh0HYAgAAAAAAAAAAAMaBvsISg4lQNDY2RmdnZ59n9Y5QDDZIceB9fn5+ZGVlpfG2AAAAAAAAAAAAABiPduzYEd/73vdi06ZN8Ze//CVmzZoVl19+eVx++eXxzne+M+l5Y1ZbW1v88Ic/jAceeCAeeeSR6OjoiPPPPz8WLVoUH/vYx+KYY45JeiLD5IEHHohVq1bF7Nmzo7a2NqZMmZL0JAAAYICELQAAAAAAAAAAAGCEGUp0ovezdEUoDrwuKSmJ7OzsNN4WAAAAAAAAAAAAAAyvVCoVTz31VNTU1ERdXV00NDREaWlpzJ8/Py666KKYNWtWZGRkJD1zVGtsbIwf/ehH8YMf/CAefvjhaGtri3POOScuv/zyWLBgQRQVFSU9kSNk9+7dUVZWFh0dHVFXVxfvfe97k54EAAAMgLAFAAAAAAAAAAAADMFwRiiampqio6Oj3/MGE53o63OLi4sjJycnTTcFAAAAAAAAAAAAAKNPV1dXPPHEE1FTUxM/+MEP4i9/+UtMnTo1Lrroorj44ovjAx/4QBQUFCQ9c8Tr7u6OHTt2xGOPPRaPPvpo7NixI7KysuLss8+OBQsWxEc/+tGYMmVK0jNJk+bm5li4cGFs3bo1NmzYEFdeeWXSkwAAgLcgbAEAAAAAAAAAAMC4MZToRO/Xzc3N0d7e3u95g4lQ9PVMhAIAAAAAAAAAAAAAktXT0xO/+MUv4rHHHovHHnssnnnmmejp6Ym5c+fG+eefH2eddVacddZZMXHixKSnJq67uzteeOGF2LZtW2zbti0ef/zxaGxsjLe97W0HoyAXXHBB5OfnJz2VhKRSqVi9enVUVVVFRUVFVFdX+555AAAYwYQtAAAAAAAAAAAAGJGGM0Jx4H1/BhKdGGiEoqioKHJzc9N0UwAAAAAAAAAAAABAElpaWuLHP/5xPPbYY7F169b47W9/G5mZmTFz5sw4++yzY968eTFv3rw48cQTk556xL3++uvx7LPPxrZt2+Lpp5+OZ555JlpbWyM/Pz/OOuusuOCCC+Liiy+OmTNnJj2VEeaBBx6IVatWxezZs6O2tjamTJmS9CQAAOAQhC0AAAAAAAAAAAAYskPFJAYbpBiuCMVAnxUWFsaECRPSdFMAAAAAAAAAAAAAwFjV2toaO3bsiG3btsX27dtj27ZtsX///pg4cWKcdtppMXPmzJgxY0acccYZMWvWrDj22GOTnjwof/rTn2Lnzp3xy1/+Mvbs2RM7d+6M3/zmN5FKpeL4448/GPU444wzYu7cuZGTk5P0ZEa43bt3R1lZWXR0dERdXV28973vTXoSAADQi7AFAAAAAAAAAADAODOcEYr9+/dHS0tL9PetaMMZoZg8eXLk5eWl8bYAAAAAAAAAAAAAAAanra0tdu7cGbt27Yrdu3fH7t27Y8+ePfHaa69FZmZmnHTSSTF9+vQ46aST4sQTT4wTTzzx4OvCwsJBn9vV1RXZ2dmD/vqOjo545ZVX4qWXXoqXX345Xn755XjppZfixRdfjF/+8pd/t//000+Pd7/73XH66afH3Llz44QTThj0uYxvzc3NsWjRonjyySdjw4YNsXLlyqQnAQAAbyJsAQAAAAAAAAAAMIK1tbUNOjoxXBGKoQQpCgoK0nhbAAAAAAAAAAAAAAAjW3d3d7z00kvx3HPPxQsvvBC///3vDwYk/vSnP0V3d3dERBx33HFxwgknRGFh4cF/ioqKori4OAoLC+PYY489+P3aubm5ccwxxxz8um9/+9uxfPny6OzsjK6urkilUrFv376IiHjjjTfi9ddfj8bGxmhqajr4T2NjYzQ0NERDQ0P8+c9/PrgjPz//YHRj2rRpMWPGjDj99NNj5syZceyxxyZwg4xlqVQqVq9eHVVVVVFRURHV1dWRk5OT9CwAACCELQAAAAAAAAAAAIbNUCIUh3rW2tp68IeBDmW4IxSTJk2KjIyMNN4YAAAAAAAAAAAAAAAHdHR0xCuvvBIvv/zywdBF7/jEgSDFa6+9NuhzsrOz/y6YceCf4uLiKCkpibe/aIuyDAAAIABJREFU/e0HYxaFhYXD+G8IA/PAAw/EqlWrYvbs2VFTUxNTp05NehIAAIx7whYAAAAAAAAAAMC41DtC0V90YiARin379kUqlerzvLy8vCFFJ3o/mzhxYmRmZqbxxgAAAAAAAAAAAAAAGElaW1uju7s7Ojo64vXXX4+IiO3bt8eyZcvivPPOi69//euRnZ0d2dnZcdxxx0VExDHHHBO5ublJzoYB2b17d5SVlUV7e3ts3rw53vve9yY9CQAAxjVhCwAAAAAAAAAAYMQ7nAjFQJ41NDREV1dXn+eJUAAAAAAAAAAAAAAAMBpdc8018bWvfS1yc3OjoaEh8vPzk54Eg9bc3ByLFi2KJ598MjZs2BArV65MehIAAIxbwhYAAAAAAAAAAMCw6yssMZgIRWNjY3R2dvZ5Vu8IxWCDFAfe5+fnR1ZWVhpvCwAAAAAAAAAAAAAAhi6VSsWUKVOiqakpMjMz4zvf+U4sX7486VkwJKlUKlavXh1VVVVRUVER1dXVkZOTk/QsAAAYd4QtAAAAAAAAAABgnBtKdKL3s3RFKA68Likpiezs7DTeFgAAAAAAAAAAAAAAjEyPP/54XHjhhRERkZmZGeedd178+Mc/TngVDI8HHnggVq1aFe95z3uitrY2pk6dmvQkAAAYV4QtAAAAAAAAAABgFBnOCEVTU1N0dHT0e95gohN9fW5xcXHk5OSk6aYAAAAAAAAAAAAAAGB8ufLKK+O+++47+LMCWVlZ8b//+78xZcqUhJfB8Ni9e3eUlZVFe3t71NXVxdy5c5OeBAAA44awBQAAAAAAAAAAHCFDiU70ft3c3Bzt7e39njeYCEVfz4qKiiI3NzdNNwUAAAAAAAAAAAAAAAzF/v37o7i4OF577bWDH8vKyoo77rgjPvWpTyW4DIZXc3NzLFq0KJ588snYsGFDrFy5MulJAAAwLghbAAAAAAAAAABADG+E4sD7/gwkOiFCAQAAAAAAAAAAAAAADMTmzZvjox/9aLz514xmZGTEnDlzor6+PsFlMPxSqVSsXr06qqqqoqKiIqqrqyMnJyfpWQAAMKYJWwAAAAAAAAAAMOocKiYxlCDF3r17+z1vIBGKgT4rLCyMCRMmpOmmAAAAAAAAAAAAAACA8WDBggXx0EMPRVdX1999PCMjI1588cU48cQTkxkGR1BNTU2sXLky3vOe90RtbW1MnTo16UkAADBmCVsAAAAAAAAAAHBEDXeEoqWlJfr7lpfhjFBMnjw58vLy0nhbAAAAAAAAAAAAAAAAh+dvf/tbFBUVRUdHx/95lpOTE1/60pfiX//1XxNYBkfe888/H2VlZbF///6oq6uLuXPnJj0JAADGJGELAAAAAAAAAAAOamtrG1J0ovez1tbW6O7u7vO8Q8UkhhKkKCgoSONtAQAAAAAAAAAAAAAAJO+73/1urFy5ss+f4TjllFPiV7/6VZpXQfrs27cvli5dGlu2bIn169fHqlWrkp4EAABjjrAFAAAAAAAAAMAoNdojFJMmTYqMjIw03hgAAAAAAAAAAAAAAMDY8/73vz9++tOfRiqV6vNznn/++TjttNPSuArSq6enJ6qqquLzn/98VFRUxLp16yI3NzfpWQAAMGYIWwAAAAAAAAAApEHvCMVggxQH3u/bt6/fHzbIy8sbUnSi97OJEydGZmZmGm8MAAAAAAAAAAAAAACAt9LQ0BDHH398vz9nkpubG9ddd13cfPPNaVwGyXjooYdi6dKlcfrpp0dtbW1MnTo16UkAADAmCFsAAAAAAAAAAPQyXBGKA68bGhqiq6urz/NEKAAAAAAAAAAAAAAAABiM9evXx9VXX/2Wn/e2t70tXnnllcjIyEjDKkjWr3/96ygrK4u//e1vUVdXF3Pnzk16EgAAjHrZSQ8AAAAAAAAAABiqwUQn+vrcxsbG6Ozs7POs3hGKwQYpDrzPz8+PrKysNN4WAAAAAAAAAAAAAAAAY8WePXvi3e9+d/T09Bz82KuvvhoFBQVx3HHHHfxYTk5O/P73v4+TTz45iZmQVqecckrU19fH0qVL45xzzon169fHqlWrkp4FAACjWkbPm/+fJwAAAAAAAADAETaYCEVfz9IVoTjwuqSkJLKzs9N4WwAAAAAAAAAAAAAAAHB4Jk2aFLfeemtUVFQkPQUS1dPTE1VVVfH5z38+KioqYt26dZGbm5v0LAAAGJX8pgUAAAAAAAAAoE8DiU4MNELR1NQUHR0d/Z7XX1iioKAgpk2bNuAIRXFxceTk5KTppgAAAAAAAAAAAAAAAAAYSTIyMuL666+PU089NZYuXRp79uyJTZs2xdSpU5OeBgAAo46wBQAAAAAAAACMEQOJUAz0WXNzc7S3t/d73mAiFH0FKYqKiiI3NzdNNwUAAAAAAAAAAAAAAADAeHHZZZdFfX19lJWVRWlpadTV1cXcuXOTngUAAKOKsAUAAAAAAAAAJGA4IxQH3venv7CECAUAAAAAAAAAAAAAAAAAY9kpp5wS9fX1sWzZsjjnnHOiuro6ysvLk54FAACjhrAFAAAAAAAAALyFQ8UkhhKk2Lt3b7/nDSRC0Vd0ovfrwsLCmDBhQppuCgAAAAAAAAAAAAAAAABGpvz8/HjwwQejqqoqrrrqqtixY0esW7cucnNzk54GAAAjnrAFAAAAAAAAAGPKcEcoWlpaoqenp8/zhjNCMXny5MjLy0vjbQEAAAAAAAAAAAAAAADA+JGRkRHXX399zJgxI6644orYs2dPbNq0KaZOnZr0NAAAGNGELQAAAAAAAABITFtb25CiE72ftba2Rnd3d5/nHSom8ebXvSMUbxWkKCgoSONtAQAAAAAAAAAAAAAAAADD4dJLL41nn302PvKRj0RpaWls2rQpzjzzzKRnAQDAiCVsAQAAAAAAAMCAjLQIxeE+mzRpUmRkZKTxxgAAAAAAAAAAAAAAAACAkWr69OlRX18fy5Yti3PPPTeqq6ujvLw86VkAADAiCVsAAAAAAAAAjEG9IxSDDVIceL9v375IpVJ9npeXlzek6ETvZxMnTozMzMw03hgAAAAAAAAAAAAAAAAAMN7k5+fHgw8+GFVVVXHVVVfFjh07Yt26dZGbm5v0NAAAGFGELQAAAAAAAAASNlwRigOvGxoaoqurq8/zhjtCkZ+fH1lZWWm8MQAAAAAAAAAAAAAAAACA4ZGRkRHXX399zJgxI5YuXRp79uyJ2traOP7445OeBgAAI4awBQAAAAAAAMBhGkx0oq/PbWxsjM7Ozj7P6h2hGGyQQoQCAAAAAAAAAAAAAAAAAKBvl156adTX18dHPvKRKC0tjbq6ujjzzDOTngUAACOCsAUAAAAAAAAwpg0mQtHXs6ampujo6OjzrOGKUBx4XVJSEtnZ/loXAAAAAAAAAAAAAAAAACAdpk+fHvX19bFs2bI499xzo7q6OsrLy5OeBQAAifMbUAAAAAAAAIARYyDRieGKUEREv2GJgoKCmDZt2oAjFMXFxZGTk5OmmwIAAAAAAAAAAAAAAAAA4EjIz8+PBx98MKqqquKqq66KHTt2xLp16yI3NzfpaQAAkBhhCwAAAAAAAGBQBhKhGOiz5ubmaG9v7/e8wUQo+gpSFBUV+eZBAAAAAAAAAAAAAAAAAAAOKSMjI66//vqYMWNGLF26NPbs2RO1tbVx/PHHJz0NAAASIWwBAAAAAAAA48BwRigOvO9Pf2EJEQoAAAAAAAAAAAAAAAAAAEaDSy+9NOrr66OsrCxKS0ujrq4uzjzzzKRnAQBA2glbAAAAAAAAwAhzqJjEUIIUe/fu7fe8gUQo+opO9H5dWFgYEyZMSNNNAQAAAAAAAAAAAAAAAADAkTV9+vT42c9+FsuWLYtzzz03qquro7y8POlZAACQVsIWAAAAAAAAMATDHaFoaWmJnp6ePs8bzgjF5MmTIy8vL423BQAAAAAAAAAAAAAAAAAAo09+fn48+OCDUVVVFVdddVXs2LEj1q1bF7m5uUlPAwCAtBC2AAAAAAAAYNxoa2sbUnSi97PW1tbo7u7u87xDxSTe/Lp3hOKtghQFBQVpvC0AAAAAAAAAAAAAAAAAAOCAjIyMuP7662PmzJlxxRVXxJ49e6K2tjaOP/74pKcBAMARJ2wBAAAAAADAiJREhKK/sER/gYpDPZs0aVJkZGSk8cYAAAAAAAAAAAAAAAAAAIAj7UMf+lDU19dHWVlZlJaWRl1dXZx55plJzwIAgCNK2AIAAAAAAIAh6x2hGGyQ4sD7ffv2RSqV6vO8t4pQHO6ziRMnRmZmZhpvDAAAAAAAAAAAAAAAAAAAGK2mT58eP/vZz2L58uVx7rnnxrp166KioiLpWQAAcMQIWwAAAAAAAIwzwxWhOPC6oaEhurq6+jxvuCMU+fn5kZWVlcYbAwAAAAAAAAAAAAAAAAAA+Hv5+fmxefPmqKqqik984hPx85//PNatWxe5ublJTwMAgGEnbAEAAAAAADDCDSY60dfnNjY2RmdnZ59n9Y5QDDVIMWXKFBEKAAAAAAAAAAAAAAAAAABgTMrIyIjrr78+Zs6cGVdccUW88MILsWnTpjj++OOTngYAAMNK2AIAAAAAAGAYDSZC0dezpqam6Ojo6POs4Y5QlJSURHa2vz4CAAAAAAAAAAAAAAAAAAA4HB/60Ifi2WefjY985CNRWloamzZtive9731JzwIAgGHjNxMBAAAAAADj1kCiE8MVoYiIfsMSBQUFMW3atAEHKYqLiyMnJydNNwUAAAAAAAAAAAAAAAAAAEB//vEf/zHq6+tj2bJlcd5558W6deui4v+xd/dRWpYF/sC/zzAj44gMA/KibYbyYqSRJCa6G4tKcGyBbY8N67pta5tCtFttp+0MWWuTlYexs51OhhvmlqspCuIpa0uD3KwjKYitCAgm5svqprwjLw3DzPz++G1syAwvgnPPy+dzzhzu577uOdeX64858zz3Pdf3qquKjgUAAMeEYgsAAAAAAKBLOJwSisMd27x5cxobGw8637EsoTjppJNy3HHHddBKAQAAAAAAAAAAAAAAAAAAUIQTTzwx99xzT66//vp85CMfyaOPPpobbrjB35sDANDlKbYAAAAAAACOuWNZQvH71wdzsGKJ35dQtFc6oYQCAAAAAAAAAAAAAAAAAACAY6VUKqWuri5nnnlmPvCBD2TVqlW5++67c/LJJxcdDQAAXjfFFgAAAAAA0MO1VSZxNIUUW7ZsOeh8R1tC8YfHAwYMSO/evTtopQAAAAAAAAAAAAAAAAAAAODwTJkyJcuWLcv73ve+jB07NnfffXfOP//8omMBAMDrotgCAAAAAAC6kGNdQrF169a0tra2O19bZRJ/eHwkJRT9+/dPZWVlB64WAAAAAAAAAAAAAAAAAAAAFGfkyJF55JFH8sEPfjATJkzIDTfckBkzZhQdCwAAjphiCwAAAAAAeIPs3r37qEonXju2bdu2tLS0tDvfkZZQHKqQoqampgNXCwAAAAAAAAAAAAAAAAAAALqfE088Mffcc0+uv/76zJo1KytWrMgNN9yQ4447ruhoAABw2BRbAAAAAABAjn0Jxfbt29Pc3NzufJWVlQctljhYQUVbY/369UupVOrAFQMAAAAAAAAAAAAAAAAAAAAOR6lUSl1dXc4888x84AMfyKpVq3L33Xfn5JNPLjoaAAAcFsUWAAAAAAB0Oa8toXi9hRTHqoTiSMeqq6tTVlbWgSsGAAAAAAAAAAAAAAAAAAAAFG3KlClZtmxZ/uIv/iJjx47N3XffnfPPP7/oWAAAcEiKLQAAAAAAeEMdqxKK3x9v2LAhe/fubXe+Y11C0bdv3/Tq1asDVwwAAAAAAAAAAAAAAAAAAADorkaOHJmHH344f/u3f5vx48fnS1/6Uurq6oqOBQAAB6XYAgAAAACA/bye0on2rt24cWOampraneu1JRRHW0gxePBgJRQAAAAAAAAAAAAAAAAAAABAp3biiSdm0aJFuf7663P11Vdn9erVmTdvXo4//viiowEAQJtKra2trUWHAAAAoHNavHhxLrnkkqJjdHqbN29O3759i44BQA/1ekoo2hvbtGlT9uzZ0+5cx7qEYtCgQSkv178MAAAAwLE3YMCAbNu2regYndq8efPy4Q9/uOgYAAAAAAAAAAAAAN1CZ3t+taWlJaVSKaVSqego+3h+lZ7uYPs5tba2prW1NWVlZR2cqvOxnxMAQOdlxzAAAADa1dLSkubm5tx8881avNuwcuXKNDQ0RGckAIfrcEonjlUJRZKDFkvU1NTk9NNPP+xCioEDB6aioqKDVgoAAAAAjs7evXvzoQ99KBdeeGHRUTqlK6+8Mi0tLUXHAAAAAAAAAAAAAOg2PL96cJ5fhUPv59Ta2tqpymg6mv2cAAA6P8UWAAAAHNL73//+VFdXFx2j0xkwYEAaGhqKjgHAG+RwSigOd2zz5s1pbGw86HzHsoTipJNOynHHHddBKwUAAAAAndO73vWuXH755UXH6JRmzZpVdAQAAAAAAAAAAACAbsfzq+3z/Cr8H/s5tc1+TgAAnZ9iCwAAAACgy2urTOJgpROHc+3BHKxY4vclFO2VTrz29YABA9K7d+8OWikAAAAAAAAAAAAAAAAAAAAAAACAI6PYAgAAAADoUEdaQnGosS1bthx0vqMtofjDYyUUAAAAAAAAAAAAAAAAAAAAAAAAQE+j2AIAAAAAaNfu3bsPWixxpCUUW7duTWtra7vztVUm8YfHR1JC0b9//1RWVnbgagEAAAAAAAAAAAAAAAAAAAAAAAB0P4otAAAAAKCbOFQJxZGObdu2LS0tLe3Od6QlFIcqpKipqenA1QIAAAAAAAAAAAAAAAAAAAAAAADgcCi2AAAAAIACHOsSiu3bt6e5ubnd+SorKw9aLHGwgoq2xvr165dSqdSBKwYAAAAAAAAAAAAAAAAAAAAAAABAERRbAAAAAMAhvLaE4mgLKV555ZWjKqE40rHq6uqUlZV14IoBAAAAAAAAAAAAAAAAAAAAAAAA0F0otgAAAACgWznWJRQbNmzI3r17253vWJdQ9O3bN7169erAFQMAAAAAAAAAAAAAAAAAAAAAAACA9im2AAAAAKBQR1M68dqxjRs3pqmpqd25XltCcbSFFIMHD1ZCAQAAAAAAAAAAAAAAAAAAAAAAAEC3ptgCAAAAgMN2LEsoNm3alD179rQ716FKKGpqanL66acfdgnFoEGDUl7u4zAAAAAAAAAAAAAAAAAAAAAAAAAAOBJ28gMAAADopo6mdOJISyiSHLRYor0SivYKKQYOHJiKiooOWikAAAAAAAAAAAAAAAAAAAAAAAAAoD2KLQAAAAA6gaMtofjD482bN6exsfGg8x3LEoqTTjopxx13XAetFAAAAAAAAAAAAAAAAAAAAAAAAADQkRRbAAAAAByhtsokDlY6cTjXHszBiiV+X0LRXunEa18PGDAgvXv37qCVAgAAAAAAAAAAAAAAAAAAAAAAAAC6OsUWAAAAQLd2pCUUhxrbsmXLQec72hKKPzxWQgEAAAAAAAAAAAAAAAAAAAAAAAAAFE2xBQAAAF1KS0tLysrKio7BG2T37t0HLZY40hKKrVu3prW1td352iqT+MPjIymh6N+/fyorKztwtQAAAAAAgK7CPS4AAAAAAAAAAAAAADqbHTt2pE+fPkXHAACgi1BsAQAAQKf31FNPZe7cufn+97+fbdu25Y//+I/zyU9+MhdffHHR0Xq0Q5VQHOnYtm3b0tLS0u58R1pCcahCipqamg5cLQAAAAAAoKdxjwsAAAAAAAAAAACAoowYMSITJkzIt771raKjAJ3MY489ls985jNZvnx5tmzZksGDB+fP//zP85WvfCV9+/YtOh4AAJ2YYgsAAAA6td27d2fatGl58cUXc/nll2fAgAFZtGhRpk6dmvvuuy/jx48vOmKXcKxLKLZv357m5uZ256usrDxoscTBCiraGuvXr19KpVIHrhgAAAAAAMDr5x4XAAAAAAAAAAAAAEW55ZZb8vTTT2fChAlFRwE6mUcffTQTJ05MeXl5Lr/88vTv3z933XVXbrrppvzqV7/Kww8/nLKysqJjAgDQSSm2AAAAoFP77Gc/m3Xr1uVHP/pRLrnkkiTJJz7xibzjHe/IFVdckWeeeabghMfea0sojraQ4pVXXjmqEoojHauurnZzCgAAAAAA6NF64j0uAAAAAAAAAAAAAIrz3//93/nCF76Q5cuX5/HHHy86DtBJfeMb38ju3bvzyCOP5Oyzz06SXHvttZk4cWJ++tOfZtGiRamtrS04JQAAnZViCwAAADq1W265JaNHj9634U+SDB48OJMnT86tt96aRx55JOedd16BCZMNGzZk06ZN2bp1a3bt2pVdu3Zl27ZtefXVV7Nr167s3LkzW7duzc6dO7Nr165s3749r7766r7XW7Zs2fd927dvP+hc1dXVqaqqygknnJDq6ur06dMnVVVV6dOnT04++eRUVVWlqqpq39gJJ5yQE044If369dv3fX379s2JJ5647zUAAAAAAADHVle4xwUAAAAAAAAAAABA9/Hqq6/mqaeeSnV1dc4999wsX7686EhAJ7R06dKcffbZ+0otfu9DH/pQfvrTn2bZsmWKLQAAaJdiCwAAADqtjRs3ZsuWLfnQhz50wNjIkSOTJI8++mjhm/6MGDGizfOVlZU5/vjjU1lZmZqamv2OBw4cmFNPPbXNsde+/v3xoEGDUl7urTwAAAAAAEBn1lXucQEAAAAAAAAAAADQfYwaNSoPPvhgkuTpp59udz8UoOdqamrK5MmT8653veuAsRdeeCFJ0r9//46OBQBAF2I3TAAAADqtdevWJUlOPvnkA8bOOOOMJMkrr7zSoZna8qMf/SiDBg1KTU1NqqqqUlVVlb59+xYdCwAAAAAAgAJ0lXtcAAAAAAAAAAAAAAD0HBUVFbnhhhsOOP/KK69k7ty5qaioyJQpUwpIBgBAV6HYAgAAgE7r6aefTtJ2i/db3vKWJMnWrVs7NFNbLrjgglRXVxcdAwAAAAAAgE6gq9zjAgAAAAAAAAAAAACgZ/vhD3+YD3/4w9mwYUO+9rWv5e1vf3vRkQAA6MTKig4AAAAA7endu3eSZPPmzQeM7dy5M0lSU1PToZkAAAAAAADgYNzjAgAAAAAAAAAAAACgM1u/fn2mTZuWqVOnpm/fvvnJT36Sj3/840XHAgCgkysvOgAAAAC0Z8iQIUmSZ5555oCx328ENHDgwA7NBAAAAAAAAAfjHhcAAAAAAAAAAAAAAJ3Vd7/73cyaNSulUinXX399Pv7xj6d3795FxwIAoAtQbAEAAECnNXLkyJRKpTY3/Xn88ceTJOedd15HxwIAAAAAAIB2uccFAAAAAAAAAAAAAEBn9MMf/jAf/OAHc/7552f+/Pk59dRTi44EAEAXUlZ0AAAAAGjPKaeckvHjx+fnP/951q9fv+98U1NT7rjjjrzpTW/KOeecU2BCAAAAAAAA2J97XAAAAAAAAAAAAAAAdEZXX311qqurc/fddyu1AADgiJUXHQAAAAAO5uqrr86f/dmfZfr06fnsZz+bmpqaNDQ05JlnnskPf/jDlEqloiMCAAAAAADAftzjAgAAAAAAAAAAAACgM9myZUtWrVqVMWPG5F/+5V/avGbChAmZMmVKBycDAKCrUGwBAABApzZp0qTcdtttufLKK3PppZcmSfr165evfvWrueSSSwpOBwAAAAAAAAdyjwsAAAAAAAAAAAAAgM7koYceSmtrax577LE89thjbV5TKpUUWwAA0C7FFgAAAHR6l112Wd7//vfn0UcfTUtLS84777z06tWr6FgAAAAAAADQLve4AAAAAAAAAAAAACjC8OHD09raWnQMoJOZMmWKnw0AABwVxRYAAAB0CeXl5Rk3blzRMQAAAAAAAOCwuccFAAAAAAAAAAAAAAAAAHQHZUUHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHNSbAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECbFFsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQJsUWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtEmxBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG1SbAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECbFFsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQJsUWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtEmxBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG1SbAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECbFFsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQJsUWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtEmxBQAAAG16+eWXs3LlyiTJN7/5zTQ3NxecCAAAAAAAAAAAAAAAAAAAAAAAAAAA6GjlRQcAAACgOE1NTXnmmWeyZs2aPPXUU1m7dm0ef/zxPP3003n11Vf3XXfxxRenV69eBSYFAAAAAAAAAAAAAAAAAAAAAAAAAACKoNgCAACgB9i6dWvWrl2bJ598MuvWrcuTTz6ZVatW5bnnnktzc3OSpHfv3mlubs7evXuTJKVSKccdd1waGxszYsSIIuMDAAAAAAAAAAAAAAAAAAAAAAAAAAAFUWwBAADQA9x33335q7/6q5SVlaWioiJ79uxJa2vrftc0NjbuOy6VSikvL88XvvCFzJ49u6PjAgAAAAAAQLfygx/8IFOmTEmpVCo6CgAAAAAAAAAAAAA9wE9+8pNMmjSp6BgAh9TU1JRNmzYVHQMAgMOg2AIAAKAH+Mu//Mtcd911WbNmzX4FFu0plUqZP39++vTpkyQZMGDAGx2xS3ptOQgAAAAAAACdx0c+8pHMmjWr6BhJkpaWlpRKpU5TbNHc3Fx0BADOQjmQAAAgAElEQVQAAAAAAAAAAIBux/Or7fP8Kvwf+zkdqKWlZd9+TnfddVcuueSSvPnNby44FQAAr1VqtQsnAABAj/CTn/wkkydPPuR1pVIp8+bNy1VXXZXf/va3eeCBBzogXddWW1ubioqKomMAAAAAAADwv+6+++7s2bOn6BhJkg0bNuQf//Ef8573vCdXXHFF0XH2Oe+88zJs2LCiYwAAAAAAAAAAAAB0C53p+dVNmzblE5/4RCZPnpy/+Zu/KTrOPp5fpaezn1P7mpqacs011+T5559PqVRKa2trTjnllFx88cWZMGFCxo8fn+HDhxcdEwCgx1NsAQAA0INMmDAhDz30UPbu3dvmeKlUynXXXZfZs2d3cDIAAAAAAADonr785S/nc5/7XPr165cNGzakvLy86EgAAAAAAAAAAAAAdGPXX3996urqctJJJ+W3v/1tevXqVXQkgEN6/vnn8453vCPbt29PS0tLkux7/n7v3r3p379/Lrzwwrz73e/On/zJn+Sd73xnSqVSkZEBAHqcsqIDAAAA0DF++9vfZuDAge2WWpSVleWjH/2oUgsAAAAAAAA4hm677bYkydatW/PTn/604DQAAAAAAAAAAAAAdHe33nprSqVSNm7cmJ/97GdFxwE4LKeeempuv/32tLa27ju3d+/efXtmbd68Od/73vfyqU99KmPHjk1NTU3e97735etf/3q2bt1aVGwAgB5FsQUAAEA3t23btnzuc5/L8OHD88gjj+T8889PRUXFftf06tUrl112Wb7+9a8XlBIAAAAAAAC6n5UrV2bdunVJkoqKitxxxx0FJwIAAAAAAAAAAACgO1u7dm1Wr16d1tZWz68CXc573/vefO5zn0uvXr3aHG9ubk5zc3OS/7+31r333ptbbrklffr06ciYAAA9lmILAACAbmrPnj256aabcsYZZ+Rf//Vf88///M9Zt25dbrnlln0fzCdJeXl5Jk2alH//939PWZm3iQAAAAAAAHCszJ8/f1/pfFNTUxYuXJjdu3cXnAoAAAAAAAAAAACA7uqOO+7Y7/nVBQsWpLGxseBUAIevvr4+F1100b6fZQdTVlaWf/u3f0t5eXkHJAMAwI6lAAAA3UxLS0sWLlyYUaNG5ZOf/GSuuOKKrF+/PnV1dTn++OMzcuTI/N3f/V0qKipSUVGRsWPHZtGiRT6YBwAAAAAAgGOotbU1t912W5qamvada2xszH/8x38UmAoAAAAAAAAAAACA7uzWW2/d7/nVnTt35r777iswEcCRKSsry5133plBgwalV69e7V5XXl6eq6++OmPGjOnAdAAAPZtiCwAAgG5kyZIleec735nLL788EydOzK9//evMmTMn/fr12++6+vr6lJWVZcSIEfnxj3+c448/vqDEAAAAAAAA0D0tXbo0L7744n7nysrK8t3vfregRAAAAAAAAAAAAAB0Z8uWLctzzz2337levXrl9ttvLygRwOvTv3//3HPPPSkra3vr5F69euWUU07J1Vdf3cHJAAB6NsUWAAAA3cDDDz+cCRMmZNKkSRk5cmRWr16defPm5ZRTTmnz+je96U356le/miVLlhxQegEAAAAAAAAcvfnz56eiomK/c3v37s2PfvSjbN26taBUAAAAAAAAAAAAAHRX7T2/eu+992bHjh0FpQJ4fd71rnflq1/9akql0gFjLS0teemll3LdddelsbGxgHQAAD2TYgsAAIAubM2aNZk+fXrOP//8VFRUZNmyZVmwYEFGjhx5yO/96Ec/mpNPPrkDUgIAAAAAAEDPsnfv3syfPz9NTU0HjLW0tOR73/teAakAAAAAAAAAAAAA6K5aWlpy++23t/n8alNTk+dXgS7pH/7hH/LXf/3XKS8v33euvLw8H//4xzN37tx87Wtfy9vf/vY8+OCDBaYEAOg5FFsAAAB0QS+88EJmzpyZ0aNH58knn8yCBQuyePHijB07tuhoAAAAAAAA0OMtWbIkmzdvbnf8tttu68A0AAAAAAAAAAAAAHR3//mf/5kNGza0OVYqlfLd7363gxMBHBvf/OY3c/rpp6eioiJlZWUZMmRIvvzlL2fGjBlZuXJlTjvttFx00UWZOXNmduzYUXRcAIBuTbEFAABAF7Jp06bMnj07I0eOzP33358bb7wxjz/+eGpra4uOBgAAAAAAAPyvO+64IxUVFW2ONTc352c/+1lefvnlDk4FAAAAAAAAAAAAQHd1xx135LjjjmtzrLm5OUuWLMkrr7zSwakAjt4JJ5yQe++9N+Xl5Wltbc13vvOdnHDCCUmSoUOH5v7778+dd96ZRYsWZfTo0Vm8eHHBiQEAui/FFgAAAF3Azp0709DQkGHDhuXb3/526uvrs27dusyYMSNlZd7aAQAAAAAAQGfxu9/9Lvfcc0+ampravaasrCwLFizowFQAAAAAAAAAAAAAdFd79uzJwoULs2fPnnavKZVKueeeezowFcCxc8YZZ2T+/Pn58Ic/nIkTJx4wXltbm9WrV+ecc87JpEmTMn369GzatKmApAAA3VuptbW1tegQAAAAtK2pqSnf+c538vnPfz47duzI3//93+ezn/1sTjzxxKKjAQAAAAAAAG1YtGhR3v/+9x/0mlKplHPOOSfLly/voFQAAAAAAAAAAAAAdFff//738773ve+g15RKpYwbNy5Lly7toFQAx15TU1MqKioOes0PfvCDzJo1K83NzfnGN76RSy+9tIPSAQB0f2VFBwAAAOBAra2tWbhwYd72trflYx/7WKZNm5b169dnzpw5Si0AAAAAAACgE5s/f/4hr2ltbc2KFSvym9/8pgMSAQAAAAAAAAAAANCdHe7zq4888kheeOGFDkgE8MY4VKlFkkydOjWrVq3KtGnTUltbm6lTp+all17qgHQAAN1fqbW1tbXoEAAAAPyfJUuWpK6uLv/1X/+VSy+9NA0NDTnttNOKjgUAAAAAAAAchm3btqWlpWW/c0OHDs21116bD37wg/ud79Onz2H9YQ0AAAAAAAAAAAAAtOeFF15IU1PTfufOPvvszJ49O5dddtl+54cMGZKqqqqOjAdQmPvvvz8zZ87M9u3bM2fOnMyYMaPoSAAAXVp50QEAAAD4/5YtW5bPfOYzeeCBBzJx4sT86le/yujRo4uOBQAAAAAAAByB6urqA86VSqVUVVWlpqamgEQAAAAAAAAAAAAAdGdvfvObDzhXVlaWgQMH5vTTTy8gEUDnMHny5KxZsybXXnttZs2ale9973v55je/mVNPPbXoaAAAXVJZ0QEAAAB6unXr1mX69OkZN25cdu/enQcffDCLFy9WagEAAAAAAAAAAAAAAAAAAAAAAACvU1VVVebMmZNf/OIXefbZZzNq1Kg0NDSkpaWl6GgAAF2OYgsAAICCvPjii5k5c2bOOuusrF69OnfddVeWLl2a8ePHFx0NAAAAAAAAAAAAAAAAAAAAAAAAuoULLrggjz32WD796U/nmmuuyfjx47N27dqiYwEAdCmKLQAAADrYli1bMnv27IwYMSL33Xdf5s6dm5UrV6a2trboaAAAAAAAAAAAAAAAAAAAAAAAANDtVFZWpr6+PsuXL09jY2PGjBmT+vr6NDU1FR0NAKBLUGwBAADQQXbt2pWGhoYMGzYsN998cz7/+c9n3bp1mTFjRnr16lV0PAAAAAAAAAAAAAAAAAAAAAAAAOjWRo8enV/+8pepr69PQ0NDzj333KxYsaLoWAAAnZ5iCwAAgDdYS0tLbr311owYMSJf/OIXM2PGjKxfvz51dXWprKwsOh4AAAAAAAAAAAAAAAAAAAAAAAD0GOXl5amrq8sTTzyRmpqajBs3LrNnz05jY2PR0QAAOi3FFgAAAG+gJUuW5Oyzz86VV16ZKVOm5Omnn86cOXNSXV1ddDQAAAAAAAAAAAAAAAAAAAAAAADosYYPH54HHnggc+fOzY033pi3v/3tefDBB4uOBQDQKSm2AAAAeAM89NBDefe7351JkyblrW99a5588snMmzcvQ4YMKToaAAAAAAAAAAAAAAAAAAAAAAAAkKRUKmXGjBlZuXJlTjvttFx00UWZOXNmduzYUXQ0AIBORbEFAADAMbRq1apMnz49f/Inf5LKysqsWLEiCxYsyLBhw4qOBgAAAAAAAAAAAAAAAAAAAAAAALRh6NChuf/++3PnnXdm0aJFGT16dBYvXlx0LACATkOxBQAAwDHw3HPPZebMmXnHO96R5557Lg888EAWL16cMWPGFB0NAAAAAAAAAAAAAAAAAAAAAAAAOAy1tbVZvXp1zjnnnEyaNCnTp0/Ppk2bio4FAFA4xRYAAABHYePGjZk9e3bOOOOM/PznP8+dd96Zhx9+OBdeeGHR0QAAAAAAAAAAAAAAAAAAAAAAAIAjNHjw4CxcuDD33ntvli5dmrPOOiuLFi0qOhYAQKEUWwAAALwOO3bsSENDQ4YNG5bbb789X//61/PEE0+ktrY2pVKp6HgAAAAAAAAAAAAAAAAAAAAAAADAUZg6dWpWrVqVadOmpba2NlOnTs1LL71UdCwAgEIotgAAADgCe/bsyU033ZThw4fn+uuvz9VXX52nnnoqM2bMSHl5edHxAAAAAAAAAAAAAAAAAAAAAAAAgGOkX79+mTdvXn784x/niSeeyJlnnpmbbrqp6FgAAB1OsQUAAMBhaGlpycKFCzNq1Kh88pOfzBVXXJH169enrq4uxx9/fNHxAAAAAAAAAAAAAAAAAAAAAAAAgDfI5MmTs2bNmsycOTOzZs3Ke9/73jz//PNFxwIA6DCKLQAAAA5hyZIleec735nLL788EydOzK9//evMmTMn/fr1KzoaAAAAAAAAAAAAAAAAAAAAAAAA0AGqqqoyZ86c/OIXv8izzz6bUaNGpaGhIS0tLUVHAwB4wym2AAAAaMfDDz+cCRMmZNKkSRk5cmRWr16defPm5ZRTTik6GgAAAAAAAAAAAAAAAAAAAAAAAFCACy64II899lg+/elP55prrsn48eOzdu3aomMBALyhFFsAAAC8xpo1azJ9+vScf/75qaioyLJly7JgwYKMHDmy6GgAAAAAAAAAAAAAAAAAAAAAAABAwSorK1NfX5/ly5ensbExY8aMSX19fZqamoqOBgDwhlBsAQAA8L9eeOGFzJw5M6NHj86TTz6ZBQsWZPHixRk7dmzR0QAAAAAAAAAAAAAAAAAAAAAAAIBOZvTo0fnlL3+Z+vr6NDQ05Nxzz82KFSuKjgUAcMwptgAAAHq8TZs2Zfbs2Rk5cmTuv//+3HjjjXn88cdTW1tbdDQAAAAAAAAAAAAAAAAAAAAAAACgEysvL09dXV2eeOKJ1NTUZNy4cZk9e3YaGxuLjgYAcMwotgAAAHqsnTt3pqGhIcOGDcu3v/3t1NfXZ926dZkxY0bKyrxdAgAAAAAAAAAAAAAAAAAAAAAAAA7P8OHD88ADD2Tu3Lm58cYbc9ZZZ+XBBx8sOhYAwDFhp1YAAKDHaWpqyk033ZThw4fnS1/6Uj7ykY9k/fr1qaurS+/evYuOBwAAAAAAAAAAAAAAAAAAAAAAAHRBpVIpM2bMyMqVK3P66afnoosuysyZM7Njx46iowEAHBXFFgAAQI/R2tqahQsX5m1ve1s+9rGPZdq0aVm/fn3mzJmTE088seh4AAAAAAAAAAAAAAAAAAAAAAAAQDcwdOjQ3H///bnzzjuzaNGijB49OosXLy46FgDA66bYAgAA6BGWLFmSsWPH5rLLLsuYMWOydu3azJs3L4MGDSo6GgAAAAAAAAAAAAAAAAAAAAAAANAN1dbWZvXq1TnnnHMyadKkTJ8+PZs2bSo6FgDAEVNsAQAAdGvLli3LxRdfnPe85z3p379/fvWrX2XBggU57bTTio4GAAAAAAAAAAAAAAAAAAAAAAAAdHODBw/OwoULc++992bp0qU566yzsmjRoqJjAQAcEcUWAABAt7Ru3bpMnz4948aNy+7du/Pggw9m8eLFGT16dNHRAAAAAAAAAAAAAAAAAAAAAAAAgB5m6tSpWbVqVaZNm5ba2tpMnTo1L730UtGxAAAOi2ILAACgW3nxxRczc+bMnHXWWVm9enXuuuuuLF26NOPHjy86GgAAAAAAAAAAAAAAAAAAAAAAANCD9evXL/PmzcuPf/zjPPHEEznzzDNz0003FR0LAOCQFFsAAADdwpYtWzJ79uyMGDEi9913X+bOnZuVK1emtra26GgAAAAAAAAAAAAAAAAAAAAAAAAA+0yePDlr1qzJzJkzM2vWrFxyySV5/vnni44FANAuxRYAAECXtmvXrjQ0NGTYsGG5+eab8/nPfz7r1q3LjBkz0qtXr6LjAQAAAAAAAAAAAAAAAAAAAAAAABygqqoqc+bMyS9+8Ys899xzGTVqVBoaGtLS0lJ0NACAAyi2AAAAuqSWlpbceuutGTFiRL74xS9mxowZWb9+ferq6lJZWVl0PAAAAAAAAAAAAAAAAAAAAAAAAIBDuuCCC/LYY4/l05/+dK655pqMHz8+a9euLToWAMB+FFsAAABdzpIlS3L22WfnyiuvzJQpU/L0009nzpw5qa6uLjoaAAAAAAAAAAAAAAAAAAAAAAAAwBGprKxMfX19li9fnsbGxowZMyb19fVpamoqOhoAQBLFFgAAQBfy0EMP5d3vfncmTZqUt771rXnyySczb968DBkypOhoAAAAAAAAAAAAAAAAAAAAAAAAAEdl9OjR+eUvf5n6+vo0NDTk3HPPzYoVK4qOBQCQ8qIDAADdx/bt29Pc3Jzm5uZs3749SdLY2JjevXsnSXr37p2qqqokSZ8+fVJRUVFYVqBrWbVqVa699tosXLgwEydOzIoVKzJmzJiiYwEAAAAAAAAAAAAAAAAAAAAAQKHa2v+rpaUlGzZsyDPPPGP/L4AuqLy8PHV1dbn00ktz1VVXZdy4cfnUpz6VL3zhC/v2dwTeWL/73e+ye/fuJPv/vtXS0pKKioqUSqX069cvyf77rQJ0Z6XW1tbWokMAAJ3P7373uzz77LN59tln8/zzz+eVV17Jpk2bDvjasGFDtm3b9rrn6d27dwYMGLDv66STTsrAgQP3vT7llFMydOjQDB06NIMGDTqG/0OgK3juuedy3XXX5eabb87YsWMzZ86cXHjhhUXHAgAAAAAAADgi/fr1y1e+8pVcddVVRUcBAAAAAAAAAAAAoBOz/xcAr9Xa2ppvfetb+ad/+qcMHjw4N998c/70T/+06FjQpbS0tOSll17Kb37zmzz77LN5+eWXs3HjxmzcuPGA37M2btyY5ubm1zVPWVnZfr9jvfb3rSFDhuQtb3lLhg4dmj/6oz9KeXn5Mf6fAryx/NQCgB5sz549Wb16dZ544omsW7du3wfZv/nNb/I///M/+67r27dvhgwZsu/N0MCBAzNq1Kh9x9XV1UmS6urqlJWVpaysbN+58vLy7N27N0nS2NiYXbt2JUl27tyZPXv2pLGxcd8bt9//u3bt2n2vX3755X1v6KqqqnLaaafltNNOy9ChQ/8fe/ceVXWd73/8tQUVMRVtJstjpoimAip5IyGKFJAUy8smjxZWIpSXSZ0Uykl3WgaZlRpNoJmpmYBkUakEaqigqWhyEy+UZKnlrTFSEYHfH3N+rtPMnDJFP2x4PtZyrf5I9nOxlosv3z9eb7m6usrT01Ndu3blpTdQy5w8eVKvvvqq3njjDbVr106rVq3S8OHDZbFYTKcBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHDV2P8CAPwRFotFERERCgwMVGRkpPz9/TV27FjNmzdPN910k+k8oMaoqqrS4cOHlZubq8LCQn399de/Ohh28eJFSf888NWyZctfHfa6/fbbf3WAwsHBQc7OzmrYsKGkfz6XOTg4yGKxqF69eqqoqFBVVZV++uknSVJ5eblKS0tVWVn5b4cyjh07pvz8fJ04cUI//PCDzp8/L+mfz2utW7e+/IzVrl07de7cWd26dVP79u1Vr149M99IAPgNlqqqqirTEQAA4Po7duyY9uzZo9zcXOXm5l5+mV1eXq4GDRqoY8eOv3pp/P9/qWnbtq1cXFyMdZeXl+vIkSOXX7j/75fvBw8e1I8//ihJatmypbp27fqrPx4eHlwfBOxMaWmp4uLiNGfOHDVt2lTPP/+8nnjiCf4tAwAAAAAAAAAAALBrLi4umjt3rsaOHWs6BQAAAAAAAAAAAAAAAAAAADcQ+18AgOqWnJysp556Sk2bNlV8fLwCAgJMJwE33C+//KKvvvpKeXl52rt3r/Ly8pSXl6ezZ8/KYrHojjvukKur6398xmrVqpUsFoux9uPHj//q2er///fXX3+tb775RhUVFXJ2dpa7u7u6det2+aCYl5fX5SNmAGAKhy0AAKilvv76a23dulVZWVnaunWrCgsLJUm33Xab3N3d1aVLF/Xo0UPu7u7y8PC4fAXQ3pw5c0YFBQXKyclRYWGhCgoKtGfPHp07d07Ozs7y8vKSr6+vfHx85OPjoxYtWphOBvAfXLx4UUuXLtWMGTNUXl6uadOm6S9/+YsaNWpkOg0AAAAAAAAAAAAArhmHLQAAAAAAAAAAAAAAAAAAAOoG9r/Y/wKAG+GHH37QhAkTtHr1almtVv3973/XzTffbDoLuG6OHz+unTt3Xn7G2rVrl8rKytS0aVN16NDhV89Y3bt315/+9CfTyVfl4sWLOnjw4K+esXbt2qXjx49LklxdXeXj43P5Ocvd3d1wMYC6hsMWAADUApWVlcrJyVFaWpqysrKUnZ2ts2fPqmnTprr77rvVt29f+fj4qEePHkavL98oly5d0v79+7Vt27bL348DBw6oXr16cnd3l6+vr/z9/RUQEFAnvh9ATVZZWamUlBRFR0fr+PHjmjhxoqKjo/m3CQAAAAAAAAAAAKBW4bAFAAAAAAAAAAAAAAAAAABA7cP+16+x/wUAN94nn3yip556ShUVFXrzzTc1bNgw00lAtThy5IjWr1+vzMxMZWVl6fDhw3J0dFS3bt3k4+Ojvn37qk+fPmrbtq3p1Bvi6NGj2rFjh7Zu3ars7Gzl5OTo4sWLatWqlXx8fOTn56cBAwbIzc3NdCqAWo7DFgAA2KkTJ07o888/17p16/T555/rxIkTat26te6991717dtXvr6+cnd3l4ODg+nUGuHHH3/Utm3bLl+x3rFjhywWi7y9vRUcHKwBAwbIy8tLFovFdCpQZ2RkZOiZZ55RQUGBnnjiCc2cOVOtWrUynQUAAAAAAAAAAAAA1Y7DFgAAAAAAAAAAAAAAAAAAALUD+19/DPtfAHD9/fTTT4qKitKiRYs0cOBAxcfHs+kGu1NWVqatW7dq/fr1WrdunQoKCtS4cWP5+vrKx8dHPj4+6t27t2666SbTqTXChQsXtGvXLmVlZSkrK0ubN2/WP/7xD7m5uWnAgAEKDg7WfffdJ2dnZ9OpAGoZDlsAAGBH8vPztXr1aq1bt067du2So6OjfH19NWDAAA0YMECenp6mE+3GmTNnlJ6ervXr12v9+vU6duyYWrZsqQEDBmjw4MEKDg5Wo0aNTGcCtdL27dsVHR2tzZs3a/jw4XrxxRfVsWNH01kAAAAAAAAAAAAAcN1w2AIAAAAAAAAAAAAAAAAAAMB+sf9Vfdj/AoDrJy0tTZGRkfrHP/6h2NhYRUREmE4CftOpU6f04Ycf6tNPP9XGjRtVWlqqzp07Xz5+5efnp4YNG5rOtAuXLl1Sdnb25Wesr776Sg0bNpSfn58GDRqkYcOGcfAGQLXgsAUAADVcUVGRkpKSlJiYqMLCQrVu3VoDBw7UgAED1K9fPzVp0sR0ot2rqqrS3r17tX79eq1du1ZZWVlq3LixBg8erNDQUAUFBfHLLFANCgsLZbPZlJycLB8fH8XGxsrHx8d0FgAAAAAAAAAAAABcdxy2AAAAAAAAAAAAAAAAAAAAsC/sf11/7H8BQPU7d+6cZs2apVdffVUBAQGKj49XmzZtTGcBl505c0Zr1qxRUlKSNmzYoPr16yswMFADBgxQcHCw7rjjDtOJtcKxY8cuH7lYv369SktL5evrq9DQUA0fPlwtW7Y0nQjATnHYAgCAGqi4uFirVq1SUlKScnNzddttt2n48OEKDQ1V3759Va9ePdOJtdqxY8e0evVqJSUlKTs7W02aNNFDDz2k0NBQBQQEqH79+qYTAbty5MgRvfjii3rnnXfUuXNnzZgxQ1ar1XQWAAAAAAAAAAAAANwwHLYAAAAAAAAAAAAAAAAAAACo+dj/Mov9LwCoPtnZ2QoPD1dJSYlmzJihqVOn8nMMxpw9e1YfffSRkpKSlJ6ernr16mnAgAEKDQ1VSEiIbrrpJtOJtdqFCxe0fv16JSUl6ZNPPtH58+d17733Xj5ycfPNN5tOBGBHOGwBAEANUVZWptTUVCUkJGjDhg1q3ry5Bg4cKKvVquDgYDk6OppOrJO+//57rV69WsnJycrOzlbLli01evRohYeHy83NzXQeUKOdOnVKc+fO1fz589WyZUs999xzCg8P56UmAAAAAAAAAAAAgDqHwxYAAAAAAAAAAAAAAAAAAAA1E/tfNRP7XwBw7S5cuKCYmBi9/PLL6tWrlxYvXqxOnTqZzkIdkpOTo4SEBK1cuVLnz5+Xv7+/Hn30UT300ENq2rSp6bw66cKFC0pPT1dycrLWrFmjixcv6sEHH9Sjjz6qBx54QA4ODqYTAdRwHLYAAMCwgoICLVq0SMuXL9fZs2cVEhKi8PBwBQUF8UBfwxw+fFhLlizRkiVLdPToUd1///0aO3asHnroITVs2NB0HlBj/PLLL3rzzTf18ssvq0GDBvrrX/+qSZMm8e8EAAAAAAAAAAAAQJ3FYQsAAAAAAAAAAAAAAAAAAICahf0v+8H+FwBcm9zcXI0ZM0b5+fmKiorS9OnTVb9+fee+hGcAACAASURBVNNZqKVOnz6tFStWaNGiRcrPz1e3bt00duxYjRo1Si4uLqbz8L/88ssvSkpK0uLFi5Wdna327dtrzJgxeuyxx3TbbbeZzgNQQ3HYAgAAAy5evKjExES9/fbbPLzboYqKCq1bt06LFi3S2rVr5eLiorCwME2YMEHt2rUznQcYU15ernfffVc2m00///yzxo8fr+nTp6tJkyam0wAAAAAAAAAAAADAKA5bAAAAAAAAAAAAAAAAAAAAmMf+l31j/wsArt6lS5c0b9482Ww23XnnnXrnnXfUo0cP01moRb788kstXLhQKSkpql+/vkaMGKHw8HD17t3bdBquwL8efRs0aJDGjx+v/v37m04DUMPUMx0AAEBd8tNPPyk2Nlaurq4aM2aMbr/9dmVkZOjgwYN69tlnealtJxwcHDRo0CB9/PHHKikp0aRJk5SSkqIOHTro4Ycf1o4dO0wnAjdUVVWVkpOT1aVLF02cOFEhISEqLi5WTEwMRy0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEax/1U7sP8FAFfP0dFRUVFRysvLU/PmzeXt7a3o6GiVlZWZToMdq6ys1Jo1a+Tr6ytvb28VFRVpwYIF+v7775WQkMBRCzvi7u6uN954Q99//73ee+89/fTTTwoICJCXl5eWL1+u8vJy04kAaggOWwAAcAMcPnxY0dHRateunV566SUNGzZMhw4d0qpVq9SvXz9ZLBbTibhKrVq10vTp0/X1119rzZo1+vbbb9WnTx/17NlTy5YtU0VFhelE4LrKyMhQz549NWLECHl5eamoqEjx8fG65ZZbTKcBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOow9r9qL/a/AODquLm5aePGjYqLi9Nbb70lDw8PZWZmms6CnSkrK9OyZcvk4eGh4cOHq1GjRkpNTdWuXbs0duxYNWnSxHQirpKTk5NGjhypTZs26auvvpKnp6fGjBmjNm3ayGaz6fTp06YTARjGYQsAAK6j3NxcPfzww3Jzc9MHH3yg559/Xt99953mz5+vNm3amM5DNapXr55CQkK0bds2ffHFF7rtttv0+OOPq0uXLlq8eDHXBVHr7NixQ/369VNAQIBatGih3bt3KykpSe3atTOdBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACow9j/qjvY/wKAP85isSgiIkK5ublydXWVv7+/IiMjVVpaajoNNdyZM2c0c+ZM/dd//ZeefPJJ3XPPPSosLFR6erpCQkJM56GadevWTcuWLdOhQ4c0atQovf7662rbtq2mTJmi48ePm84DYAiHLQAAuA727dunhx9+WF5eXjpw4ICWL1+u4uJiTZkyRU2bNjWdh+vs3nvv1SeffKKCggL5+flp/Pjx6tSpk9577z0uOMPu7d+/X6GhofL29tb58+eVmZmp9PR0devWzXQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKAOY/+rbmP/CwD+mLZt2yotLU2JiYlKSUmRp6en0tPTTWehBvr55581e/Zsubq6Ki4uThMmTFBJSYni4+N15513ms7DddamTRu9+uqrOnLkiGbMmKHExES1b99e06ZN08mTJ03nAbjBOGwBAEA1Onz4sCIjI9W1a1fl5+fr3XffVU5Ojv77v/9bjo6OpvNwg3Xq1EmLFi3SwYMH1b9/f4WHh6tDhw5KSEjgBTfszvfff6/IyEh5eHiooKBAiYmJys7Olp+fn+k0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAdxv4X/jf2vwDgj7FarSooKFDPnj0VGBio0NBQnTp1ynQWaoBz585p/vz56tChg1555RVFRkbq0KFDstls+vOf/2w6DzdY06ZN9cwzz+ibb77R66+/rhUrVqht27aKjo7WmTNnTOcBuEE4bAEAQDX49ttvL7+0/OKLL/Tee+8pLy9PYWFhqlePH7d1XZs2bRQfH699+/bJx8dH48aNU/fu3bVmzRrTacDvOnPmjKKjo9WhQwetX79ecXFxys3NldVqNZ0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKjD2P/Cb2H/CwCuXMuWLZWcnKzU1FRlZ2fLw8NDKSkpprNgSFlZmd544w25urrqb3/7m8aMGaOSkhLFxMTIxcXFdB4Ma9CggSIiInTw4EH97W9/0+LFi+Xq6qrZs2ertLTUdB6A64zftAEAuAbnzp2TzWZTp06dlJGRobi4OBUUFGjkyJG80Ma/cXNz0/Lly5WXlycvLy9ZrVb16dNH27dvN50G/Jtz584pNjZW7du31+LFizVz5kzt379fERERcnBwMJ0HAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKij2P/CH8H+FwBcuZCQEOXn52vw4MGyWq0KCQnR0aNHTWfhBvrkk0/UpUsXRUdH68EHH9TBgwf10ksvqUWLFqbTUMM0btxY0dHROnz4sKKjo/X666+rY8eOSkhIUEVFhek8ANcJv3EDAHAVqqqqlJycrC5dumjevHmaNm3a5cF3R0dH03mo4Tp37qxly5Zpx44datiwofr27auwsDAdP37cdBqgyspKLVu2TB06dNDs2bMVERGh4uJiRUVFycnJyXQeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCOYv8L14L9LwC4Mi4uLoqPj9e6deuUl5cnd3d3JSQkmM7CdbZv3z4FBwfrwQcfVI8ePbR//37Fx8fr1ltvNZ2GGu6mm25SVFSUDh06JKvVqvHjx6t3797asmWL6TQA1wGHLQAA+IN27dqle+65RyNGjJCfn58OHTokm82mhg0bmk6Dnbnrrru0efNmffzxx9qyZYvc3Nxks9l04cIF02moozIyMtS9e3eFh4dr0KBBOnTokGJiYtSsWTPTaQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAOoz9L1QX9r8A4MoEBQWpsLBQkZGRGjdunIKDg/Xtt9+azkI1O336tJ5++ml5enrqxIkT2rx5s5KSknTHHXeYToOdadGihebPn6+8vDzdeuut8vPzU0hIiA4fPmw6DUA14rAFAABX6MSJEwoLC1Pv3r1Vv3595eTkaNmyZWrZsqXpNNi5kJAQFRQUaOrUqZo7d648PT2VlpZmOgt1SFZWlu655x4FBgaqU6dOKiws5DoqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMA49r9wvbD/BQC/z9nZWTExMdq8ebNKSkrUuXNnxcbGqrKy0nQarlFlZaUWLFggV1dXrV69WkuWLNHOnTvl6+trOg12rlOnTvrss8/00UcfqaioSO7u7po9e7YuXrxoOg1ANeCwBQAAV2DFihXq0qWLNm3apOTkZG3atEndu3c3nYVaxNnZWTNnzlRRUZG8vLw0YMAAhYWF6eTJk6bTUIvl5+crNDRUvr6+cnJyUk5OjpKSkuTm5mY6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQx7H/heuN/S8AuDJ9+/bV7t27NXXqVM2YMUN+fn4qKioynYWrVFBQIB8fHz3zzDMaN26cDhw4oLCwMFksFtNpqEUefPBBFRQUaObMmYqJiVGPHj20fft201kArhGHLQAA+A1Hjx7VkCFDFBYWpqFDh6qgoEDDhg0znYVa7Pbbb1dSUpI+/fRTZWZmqmPHjkpISDCdhVqmpKREkZGR6tatm0pKSrRx40alp6fLy8vLdBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoI5j/ws3GvtfAPD7nJycZLPZtHPnTpWVlcnLy0s2m03l5eWm03CFysvLFRsbqx49eqisrEzbt2/XnDlz1LhxY9NpqKUaNGigadOmKT8/X61atVLfvn0VGRmpn3/+2XQagKvEYQsAAP6DqqoqJSQkqFOnTsrPz9eGDRsUHx+vpk2bmk5DHTFw4EAVFhYqIiJCTz31lB544AGVlJSYzoKdO3nypKKjo3XnnXdq8+bNWrVqlbZv3y5/f3/TaQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAOo79L5jG/hcA/L6uXbtq27Ztstlsio2NVa9evZSTk2M6C79j27Zt8vLy0qxZs/TCCy9o586duuuuu0xnoY5o166d0tLSlJiYqA8//FCdOnXSRx99ZDoLwFXgsAUAAP+iuLhYPj4+mjBhgiZNmqT8/HxG32FE48aNFRMTo8zMTH3zzTfy8PDgejOuSmlpqWJjY9W+fXu9//77WrBggfLy8mS1WmWxWEznAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqOPa/UFOw/wUAv8/R0VFRUVHKy8tT8+bN5e3trejoaJWVlZlOw7+4cOGCpkyZIl9fX7Vu3VoFBQWKioqSg4OD6TTUQVarVQUFBfLz89OQIUM0evRonT171nQWgD+AwxYAAPwvS5culZeXl86fP6+cnBzNmjVLDRs2NJ2FOs7X11dfffWVJkyYoHHjxmnIkCE6efKk6SzYgYsXLyohIUFubm565ZVX9Nxzz+nAgQOKiIiQo6Oj6TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANj/Qo3E/hcA/D43Nzdt3LhRcXFxeuutt+Th4aHMzEzTWfgf+fn56t27t9555x0tWbJE69evV9u2bU1noY675ZZb9MEHHyg1NVVpaWnq3r27srKyTGcBuEIctgAAQNI//vEPjRo1Sk888YQef/xxbd++XZ6enqazgMsaNmyol19+WVu2bFFubq48PDy0du1a01mooSorK5WcnKzOnTtr8uTJeuyxx1RcXKyoqCg1atTIdB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOx/ocZj/wsAfp/FYlFERIRyc3Pl6uoqf39/RUZGqrS01HRanVVVVaWEhAT16dNHzs7OysnJ0ejRo01nAb8SEhKivLw8eXh46N5771V0dLTKy8tNZwH4HRy2AADUeZs2bZKHh4c2bNigzz77TPPnz+dKM2qsu+++W3v27FFAQIAGDRqkyMhInTt3znQWapCMjAzdddddGjlypPr376+DBw8qJiZGLi4uptMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJDE/hfsC/tfAPD72rZtq7S0NCUmJiolJUWenp5KT083nVXn/PjjjwoJCdH48eM1ceJEbdmyRW5ubqazgP/oz3/+s1JTU7VkyRK9+eab8vX11cGDB01nAfgNHLYAANRZFRUVevbZZ9W/f3/16dNHBQUFCg4ONp0F/K6mTZtq+fLlWrp0qVatWqW+ffvqwIEDprNg2Pbt23XfffcpMDBQHTt2VEFBgeLj49WqVSvTaQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASGL/C/aL/S8AuDJWq1UFBQXq1auXAgMDFRoaqlOnTpnOqhPWr18vDw8PFRUVacuWLYqJiVH9+vVNZwG/KywsTDt27FBZWZl69OihlStXmk4C8H/gsAUAoE46ceKEgoKCNH/+fMXHx2v16tW6+eabTWcBf0hYWJj27NmjBg0aqHfv3kpNTTWdBAP27dun0NBQ3X333bp06ZK2bNmipKQkdezY0XQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACXsf+F2oD9LwD4fS1btlRSUpJSU1OVnZ0tDw8PpaSkmM6qtaqqqjR79mwNHDhQQUFB2rNnj7y9vU1nAX9Ily5d9OWXX+qJJ57QqFGj9PTTT6u8vNx0FoB/wWELAECds3v3bvXu3VsHDhxQZmamwsPDTScBV83V1VVbtmzR6NGj9dBDDyk6OloVFRWms3ADHDlyRJGRkfL09NS+ffuUlJSkrVu3ysfHx3QaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC/wv4XahP2vwDgyoSEhCg/P1+DBw+W1WpVSEiIjh49ajqrVjl79qyGDx+uWbNmac6cOVq+fLmaNGliOgu4Kg0bNtQbb7yhDz74QO+88478/f117Ngx01kA/hcOWwAA6pRly5bJ19dXbdu21a5du9SrVy/TScA1a9iwoebPn6+lS5dqwYIF6t+/v3788UfTWbhOTp06pejoaHXs2FFpaWl66623tHfvXlmtVtNpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8G/a/UBux/wUAV8bFxUXx8fFat26d8vLy5O7uroSEBNNZtUJRUZG8vb21detWff7554qKijKdBFSLESNGaNeuXTp9+rS6deumTZs2mU4C8D84bAEAqBPKysoUERGhxx57TJMnT1ZGRoZuueUW01lAtQoLC1NmZqaKi4vVp08f7d6923QSqtEvv/yi2NhYtW/fXkuWLJHNZtP+/fsVERGhevV4rAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1Czsf6EuYP8LAK5MUFCQCgsLFRkZqXHjxik4OFjffvut6Sy7tWrVKvXs2VM333yzvvrqK/n7+5tOAqpVp06dtG3bNnl7eysoKEgLFy40nQRAHLYAANQBp0+fVmBgoBITE/Xhhx/qpZdekoODg+ks4Lro1auXcnJy5OrqKj8/P3388cemk3CNysvLlZCQoA4dOujFF1/Uk08+qeLiYkVFRalhw4am8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+Dfsf6EuYf8LAK6Ms7OzYmJitHnzZpWUlKhz586KjY1VZWWl6TS7UVVVpRdeeEEjR47UmDFjtHHjRt12222ms4DrolmzZvr44481Y8YMTZo0SePGjVNFRYXpLKBO47AFAKBW++abb+Tj46Pi4mJlZmbqoYceMp0EXHd//vOf9fnnn2v06NEaNmyYFixYYDoJV6GqqkrJycnq0qWLJk6cqJCQEBUXFysmJkZNmjQxnQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwH/E/hfqIva/AODK9e3bV7t379bUqVM1Y8YM+fn5qaioyHRWjXfp0iU9+eSTmj17thYuXKj58+erfv36prOA68pisehvf/ubVq9erffee08PPPCAzp49azoLqLM4bAEAqLW+/PJLeXt7q0GDBtq+fbu6d+9uOgm4YRwcHBQXF6d58+Zp8uTJevrpp7kqaEcyMjLUs2dPjRgxQl5eXioqKlJ8fLxuueUW02kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPyf2P9CXcb+FwBcOScnJ9lsNu3cuVNlZWXy8vKSzWZTeXm56bQa6eeff1ZISIhWrlypjz76SOPHjzedBNxQQ4YM0aZNm7R37175+vrqyJEjppOAOonDFgCAWmnNmjW6//775eXlpS1btqh169amkwAjnn76aSUlJWnRokUaPny4zp07ZzoJv2Hnzp3q16+fAgIC1KJFC+3evVtJSUlq166d6TQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH4T+1/AP7H/BQBXrmvXrtq2bZtsNptiY2PVq1cv5eTkmM6qUb7//nvdc8892rt3rzIzMzVo0CDTSYARvXv31rZt23Tp0iV5e3trz549ppOAOofDFgCAWueNN97Q8OHD9fjjj+uzzz5T06ZNTScBRg0bNkzp6enaunWr/P39dfLkSdNJ+Bf79+9XaGio+vTpo/PnzyszM1Pp6enq1q2b6TQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH4X+1/Ar7H/BQBXztHRUVFRUcrLy1Pz5s3l7e2t6OholZWVmU4zbs+ePerZs6ckaceOHbrrrrsMFwFmtWvXTllZWerQoYPuu+8+bdiwwXQSUKdw2AIAUKvMmjVLU6ZMUWxsrN588005ODiYTgJqBB8fH2VnZ+vkyZO69957dezYMdNJ0D8vn0ZGRsrDw0MFBQVKTExUdna2/Pz8TKcBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHBF2P8C/jP2vwDgj3Fzc9PGjRsVFxent956Sx4eHsrMzDSdZcy2bdt0//33y9PTU1u2bFHr1q1NJwE1QvPmzfX5559r4MCBGjRokD755BPTSUCdwWELAECtMWPGDNlsNi1YsEDPPPOM6RygxunQoYOysrJUr1499e3bV8XFxaaT6qwzZ84oOjpaHTp00Lp16xQXF6fc3FxZrVbTaQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXDH2v4Dfxv4XAPwxFotFERERys3Nlaurq/z9/RUZGanS0lLTaTdUZmamgoKC5OPjo9TUVDVp0sR0ElCjNGjQQO+//77Cw8M1dOhQLV++3HQSUCdw2AIAYPeqqqo0adIkzZkzR++++64mTJhgOgmosW699VZt2LBBLi4u8vf314EDB0wn1Snnzp1TbGys2rdvr8WLF2vmzJk6cOCAIiIiuDAPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALAb7H8BV479LwD449q2bau0tDQlJiYqJSVFnp6eSk9PN511Q6xbt07BwcF64IEHtGbNGjk5OZlOAmoki8WiBQsW6C9/+Ysef/xxLVmyxHQSUOtx2AIAYNcqKioUHh6uv//970pMTNTo0aNNJwE13i233KJNmzapdevW8vPzU25urumkWq+yslLJyclyd3fX7NmzFRERoeLiYkVFRfGSCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgV9j/Av449r8A4OpYrVYVFBSoV69eCgwMVGhoqE6dOmU667pJTU3VkCFDNGzYMK1YsUL169c3nQTUaBaLRfPmzdNLL72k8PBwvfHGG6aTgFqNwxYAALtVUVGhUaNG6YMPPtBHH32kYcOGmU4C7IaLi4vS0tLUqVMn3X///dqzZ4/ppForIyND3bt316hRoxQYGKhDhw4pJiZGzZo1M50GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAfwv4XcPXY/wKAq9OyZUslJSUpNTVV2dnZ8vDwUEpKiumsardy5UoNHTpUY8eO1bJly+To6Gg6CbAbUVFRmjNnjqZMmaJXX33VdA5Qa3HYAgBglyorK/XEE08oNTVVn332mYKDg00nAXanSZMmWrt2rbp3766goCDt27fPdFKtkpWVpXvuuUeBgYHq1KmTCgsLFR8fr1tvvdV0GgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfxj7X8C1Y/8LAK5eSEiI8vPzNXjwYFmtVoWEhOjo0aOms6rFhx9+qNGjR2vSpElauHChLBaL6STA7kRHR+u1117TtGnTFBcXZzoHqJU4bAEAsDtVVVWaMGGCVq1apeTkZPn7+5tOAuyWs7OzUlNT1blzZ/n7+2v//v2mk+xefn6+QkND5evrKycnJ+Xk5CgpKUlubm6m0wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuCrsfwHVh/0vALh6Li4uio+P17p165SXlyd3d3clJCSYzrom6enpGjlypEaPHq25c+eazgHs2qRJkzRv3jxNnDhRixcvNp0D1DoctgAA2J1nn31WCQkJWrFihQYOHGg6B7B7zs7O+uSTT3T77bcrICBAJSUlppPsUklJiSIjI9WtWzeVlJRo48aNSk9Pl5eXl+k0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACuCftfQPVi/wsArk1QUJAKCwsVGRmpcePGKTg4WN9++63prD8sKytLQ4YM0cMPP6yEhARZLBbTSYDdmzx5sp599lk9+eSTWrVqlekcoFbhsAUAwK7YbDbNnTtX7733nqxWq+kcoNZo2rSp1q1bp2bNmikgIEDHjx83nWQ3Tp48qejoaN15553avHmzVq1ape3bt3NNHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQK7D/BVwf7H8BwLVxdnZWTEyMNm/erJKSEnXu3FmxsbGqrKw0nXZFvvzySwUHBysoKEjvvPOO6tVjLhyoLi+99JImT56ssLAwffrpp6ZzgFqDn1QAALsxb948zZo1S/Hx8Ro1apTpHKDW+dOf/qT09HRJ/7w+eubMGcNFNVtpaaliY2PVvn17vf/++1qwYIHy8vJktVq5cgoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqBXY/wKuL/a/AODa9e3bV7t379bUqVM1Y8YM+fn5qaioyHTWb9q7d6+Cg4N13333adWqVXJ0dDSdBNQ6r7zyisLCwmS1WrVp0ybTOUCtwGELAIBdSExM1NSpU/Xaa68pPDzcdA5Qa916663KyMjQ6dOnNWzYMF28eNF0Uo1z8eJFJSQkyM3NTa+88oqee+45HThwQBEREbwMAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUGux/ATcG+18AcO2cnJxks9m0c+dOlZWVycvLSzabTeXl5abT/s13332ngQMHysvLS0lJSapfv77pJKBWslgsio+P14MPPqihQ4eqoKDAdBJg9zhsAQCo8bZu3arHHntMkyZN0qRJk0znALVemzZttH79eu3Zs0ejR49WVVWV6aQaobKyUsnJyercubMmT56sxx57TMXFxYqKilKjRo1M5wEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUG3Y/wJuLPa/AKB6dO3aVdu2bZPNZlNsbKx69eqlnJwc01mX/fzzzxo0aJCaNWum1atXy8nJyXQSUKs5ODho2bJl8vLyUlBQkL777jvTSYBd47AFAKBGKy4u1tChQ9WvXz/NnTvXdA5QZ7i7u2vVqlVavXq1XnjhBdM5xmVkZOiuu+7SyJEj1b9/fx08eFAxMTFycXExnQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQLVi/wswg/0vAKgejo6OioqKUn5+vlq0aCFvb29FR0errKzMaFdFRYVGjhypH374QWvXrlXz5s2N9gB1RYMGljve/QAAIABJREFUDbR69WrddNNNevDBB1VaWmo6CbBbHLYAANRYp06d0gMPPKA2bdooMTFRDg4OppOAOiUoKEhvv/22Zs2apaVLl5rOMWL79u267777FBgYqI4dO6qgoEDx8fFq1aqV6TQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKod+1+AWex/AUD1ad++vTZs2KC4uDi99dZb8vDwUGZmprGeiRMnasOGDVqzZo3uuOMOYx1AXdSiRQutXbtW3333nR5++GFdunTJdBJglzhsAQCokS5cuKDBgwfr4sWL+uyzz9S4cWPTSUCdNGbMGEVFRSkiIkIZGRmmc26Yffv2KTQ0VHfffbcuXbqkLVu2KCkpSR07djSdBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAdcH+F1Az1NX9LwC4HiwWiyIiIpSbmytXV1f5+/srMjJSpaWlN7Tj5ZdfVnx8vFauXClvb+8b+tkA/snV1VWffvqpvvjiC40fP950DmCXOGwBAKiRIiIiVFhYqLVr16ply5amc4A6bc6cORo6dKhCQ0NVXFxsOue6OnLkiCIjI+Xp6al9+/YpKSlJW7dulY+Pj+k0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACuK/a/gJqjLu1/AcCN0LZtW6WlpSkxMVEpKSny9PRUenr6Dfnsjz/+WNOnT9frr7+uhx566IZ8JoD/rFevXlq6dKkWL16s+Ph40zmA3eGwBQCgxlm4cKHef/99vf/+++rcubPpHKDOs1gsWrp0qVxdXTV06FCdO3fOdFK1O3XqlKKjo9WxY0elpaXprbfe0t69e2W1Wk2nAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABw3bH/BdQsdWH/CwBMsFqtKigoUK9evRQYGKjQ0FCdOnXqun3ewYMHNXr0aD366KP6y1/+ct0+B8CVs1qtmj59uiZOnKisrCzTOYBd4bAFAKBG2bZtm5555hm98MILeuCBB0znAPgfTk5OSklJ0dGjRzV27FjTOdXml19+UWxsrNq3b68lS5bIZrNp//79ioiIUL16PCoDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGo/9r+Amqm27n8BgGktW7ZUUlKSUlNTlZ2dLQ8PD6WkpFT755SWlmrIkCFydXXV22+/Xe1fH8DVs9lsCggIkNVq1bFjx0znAHaDtV4AQI3xww8/yGq1KjAwUM8995zpHAD/4o477tAHH3ygxMRELVy40HTONSkvL1dCQoI6dOigF198UU8++aSKi4sVFRWlhg0bms4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOCGYP8LqNlq0/4XANQ0ISEhys/P1+DBg2W1WhUSEqKjR49W29cfM2aMjh07ppSUFDVq1Kjavi6Aa1evXj2tWLFCzs7OGjlypC5dumQ6CbALHLYAANQI5eXlCg0NlbOzs5YvX6569fgRBdRE/fv3l81m01//+ldt3rzZdM4fVlVVpeTkZHXp0kUTJ05USEiIiouLFRMToyZNmpjOAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADghmH/C7AP9r7/BQA1mYuLi+Lj47Vu3Trl5eXJ3d1dCQkJ1/x1X331VaWkpGjlypVq165dNZQCqG7NmzfXhx9+qB07dig6Otp0DmAXeGsAAKgRpk6dqpycHH344YdycXExnQPgN0yfPl3BwcEaMWKEjh8/bjrnimVkZKhnz54aMWKEvLy8VFRUpPj4eN1yyy2m0wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuOHY/wLsh73ufwGAvQgKClJhYaEiIyM1btw4BQcH69tvv72qr5WZmalnn31Wc+bMUVBQUDWXAqhOXbt21dtvv63XXntNycnJpnOAGo/DFgAA4z777DMtWLBACQkJ8vDwMJ0D4HdYLBYtW7ZMzs7Oevzxx1VVVWU66Tft3LlT/fr1U0BAgFq0aKHdu3crKSmJq6UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDqL/S/Avtjb/hcA2CNnZ2fFxMRo8+bNKikpUefOnRUbG6vKysor/hqnT5/WI488opCQEE2dOvU61gKoLo8++qiefPJJRUREqKSkxHQOUKNx2AIAYNSJEycUHh6uRx99VCNHjjSdA+AKNWvWTB988IE2bNighQsXms75j/bv36/Q0FD16dNH58+fV2ZmptLT09WtWzfTaQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGMP+F2Cf7GH/CwBqg759+2r37t2aOnWqZsyYIT8/PxUVFV3R3x03bpyqqqq0aNEiWSyW61wKoLq89tpruv322/XII4+ooqLCdA5QY3HYAgBgTFVVlZ544gk1atSIF2OAHerVq5emT5+uadOmKTc313TOZd9//70iIyPl4eGhgoICJSYmKjs7W35+fqbTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwiv0vwL7V1P0vAKhtnJycZLPZtHPnTpWVlcnLy0s2m03l5eX/59959913lZycrPfee08333zzDawFcK2cnJy0cuVK7dq1S7GxsaZzgBqLwxYAAGPi4uK0du1avfvuu2ratKnpHABX4fnnn5e3t7dGjhyp8+fPG205c+aMoqOj1aFDB61bt05xcXHKzc2V1Wo12gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQE3B/hdg/2rS/hcA1HZdu3bVtm3bZLPZFBsbq169eiknJ+ff/r+vv/5akyZN0pQpU9SvXz8DpQCulYeHh1566SXNnDlTX375pekcoEbisAUAwIjCwkJNmzZNzz//vO69917TOQCuUr169bR8+XIdPXpUzz33nJGGc+fOKTY2Vu3bt9fixYs1c+ZMHThwQBEREXJwcDDSBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABATcP+F1A71IT9LwCoSxwdHRUVFaX8/Hy1aNFC3t7eio6OVllZmSTp0qVLeuSRR9SmTRvNnj3bcC2AazF58mQFBgZq1KhR+vnnn03nADWOpaqqqsp0BACgbikvL1fv3r3l5OSkLVu2yNHR0XQSgGu0YsUKhYWFKS0tTQEBATfkMysrK5WSkqJp06bpxIkTmjBhgp599lk1a9bshnw+AAAAAAAAAAAAAABXysXFRXPnztXYsWNNpwAAAAAAAAAAAAAAAAAAgDqK/S+g9jGx/wUAdV1VVZUWLVqkZ555Ri1bttTixYu1adMmvfLKK9q1a5e6dOliOhHANTp69Ki6deumIUOGKCEhwXQOUKPwJgEAcMPFxsbqwIED2rt3Ly+1gVrikUceUWpqqiIiIpSfn6/GjRtf18/LyMjQlClTVFRUpMcff1wvvPCCbr311uv6mQAAAAAAAAAAAAAA/JbS0lKdOnVKJ06c0E8//aRz586prKxMknTx4kV9+eWXcnFxkfTPQxeNGjXSzTfffPmPg4ODyXwAAAAAAAAAAAAAAAAAAFDLsf8F1D43ev8LACBZLBZFREQoMDBQkZGRuv/++2WxWDRv3jyOWgC1RKtWrfT3v/9doaGhGjFihO6//37TSUCNYamqqqoyHQEAqDsOHDigbv+PvTuPrrI8Fz58hxknAgSKthYCCAgyyCBC6lERCrRYLUWoStWi2EGcqp6iflVQ64QojkXFajl1QMEJBRScCWpRFLCKogbEKloCIjgwJPv741ROqVMCJE+G61qra9W43fu3Ny7zvOTlvjt3jgsuuCDOOuus1DnADvTBBx9E+/bt49hjj40rr7yyTF4jPz8/Ro8eHfn5+TFkyJC4+OKLo3Xr1mXyWgAAAAAAAADw7zKZTBQUFMSiRYvitddei4KCgli2bFksW7Ys3nnnnS1LLL7KLrvsEhs2bIhNmzZ97WO+853vRIsWLbb8r3Xr1tG5c+do3769P2AGAAAAAAAAAAAAbBfzv6DqKo/5XwB8teLi4mjbtm3Uq1cvXn755ahZs2bqJGAHGjx4cLz88suxePFif74L/sViCwDKTXFxcRx00EHx8ccfx/z586N27dqpk4Ad7M9//nOMHDky5s6dG7169dphz/vKK6/EBRdcEPfcc0/07ds3LrvssujatesOe34AAAAAAAAA+E/vvfde5OfnR35+fsyfPz8WL14c69ati6ysrGjevHnk5uZGbm7ulkUUOTk50bhx42jSpElkZ2fHLrvs8rX3x6xduzY+/fTTKCwsjFWrVkVhYWH84x//2LIso6CgIN5888345JNPokaNGtGqVavo2rVr9OrVK/Ly8qJLly5Rq1atcv5EAAAAAAAAAAAAgMrI/C+o+spq/hcA32zChAnx+9//Pl588cXYZ599UucAO9j7778f7du3j1/96ldx6aWXps6BCsFiCwDKzQ033BCnnnpqPPfcc9GtW7fUOUAZyGQy0b9//1i5cmW8+OKL2/0DrOXLl8fFF18ckyZNiu7du8ell14aBx988A6qBQAAAAAAAID/s3bt2pgzZ07MmjUrHnvssSgoKIhatWpFp06dYv/994/OnTtHp06dYp999olddtmlzHuKi4vj7bffjoULF8Yrr7wSL7zwQsybNy9Wr14dO++8c/Tu3TsGDBgQAwYMiPbt25d5DwAAAAAAAAAAAFA5mf8FVd+Onv8FwLdbvnx57LPPPvG73/0uxo4dmzoHKCMTJ06Mk08+2fUU/IvFFgCUi/feey86dOgQv/71r+OSSy5JnQOUoWXLlsU+++wTZ599dpx77rnb9ByrVq2KK664IiZMmBC5ublxwQUXxJAhQyIrK2sH1wIAAAAAAABQnb333nsxderUuPfeeyM/Pz8ymUzst99+0b9///jBD34QPXv2LJclFiWVyWRiyZIlkZ+fH4899ljMnj07CgsLo3nz5nHooYfG0KFDIy8vL2rUqJE6FQAAAAAAAAAAAKgAzP+C6mNHzP8CoOQOPfTQWLp0abz88stRr1691DlAGclkMtG3b98oLCyM+fPnWyBGtWexBQDl4vDDD49XX301Fi5cGPXr10+dA5SxcePGxXnnnRcLFy6MNm3alPifW79+fVx//fVx8cUXx2677RZ/+MMfYsSIEVGrVq0yrAUAAAAAAACgOvnoo4/ijjvuiClTpsTcuXNjl112iUMPPTQGDRoU/fr1i8aNG6dOLLGioqKYP39+zJw5M+6999545ZVXYo899oghQ4bEMcccE926dUudCAAAAAAAAAAAACRk/hdUL9s6/wuA0rn99tvjmGOOiaeffjry8vJS5wBl7PXXX48uXbrEhRdeGGeeeWbqHEjKYgsAytyjjz4a/fv3j9mzZ0ffvn1T5wDlYPPmzdG1a9f4/ve/Hw899NC3Pn7jxo1x2223xXnnnRebNm2K//7v/45TTjnFD8IAAAAAAAAA2GHmzp0bN998c9xzzz1Ro0aNOOyww2Lo0KHRv3//qFevXuq8HeLVV1+Nu+++O6ZMmRJLliyJrl27xgknnBBHHXVUNGjQIHUeAAAAAAAAAAAAUI7M/4Lqp7TzvwAovfXr10fbtm1j0KBBceONN6bOAcrJmDFj4sorr4w33ngjmjVrljoHkrHYAoAytXnz5th3332jdevWcd9996XOAcrRE088EX369IkZM2bEwIEDv/IxxcXFMW3atBg9enSsXLkyTj755Bg9enRkZ2eXcy0AAAAAAAAAVdGGDRvijjvuiKuuuioWL14c3bp1i5EjR8aRRx4Zu+22W+q8MpWfn79lkUdWVlb88pe/jNNOOy1atWqVOg0AAAAAAAAAAAAoY+Z/QfVVkvlfAGy7c889N6677rp444034jvf+U7qHKCcfPbZZ7H33nvHIYccErfcckvqHEjGYgsAytS1114bZ555Zrzyyiux1157pc4BytngwYPjtddei0WLFkXt2rW3+ntz5syJM888M/7+97/HiBEj4vzzz4899tgjUSkAAAAAAAAAVclHH30UN9xwQ1x77bWxevXq+PnPfx6nnnpqdO3aNXVauVu7dm3cdtttcfXVV8fy5cvjpz/9aZx11lnRs2fP1GkAAAAAAAAAAABAGTH/C6q3b5r/BcC2W7FiRbRr1y4uuuiiOP3001PnAOXsrrvuiqOPPjqee+656NGjR+ocSMJiCwDKzJo1a2KvvfaK448/Pi677LLUOUACb7/9dnTo0CEuu+yyOOWUUyIi4rnnnovRo0fHU089FYMGDYrx48dHmzZtEpcCAAAAAAAAUBWsW7curr766rjyyisjk8nEr371qzjllFNijz32SJ2WXFFRUUybNi3Gjx8ff/vb3+LHP/5xXHDBBdVy2QcAAAAAAAAAAABUZeZ/AV81/wuA7XfEEUfEyy+/HK+88krUrVs3dQ6QwIEHHhibNm2K/Pz8yMrKSp0D5a5G6gAAqq7zzjsvatasGeecc07qFCCRli1bxmmnnRZjxoyJefPmxdChQ6NXr16xefPmeOaZZ2L69OmWWgAAAAAAAACw3TZs2BDjx4+Pli1bxrhx4+KUU06JZcuWxaWXXmqpxb/UrFkzhg4dGs8//3zMnDkzPvzww+jevXsMHjw4Xn/99dR5AAAAAAAAAAAAwA5i/hfw7/O/Vq1alToHoErIz8+PadOmxYQJEyy1gGpswoQJ8fzzz8eUKVNSp0ASWZlMJpM6AoCq57XXXotOnTrFxIkT4/jjj0+dAyS0bt262GuvvaKwsDA6d+4cl1xySfTr1y91FgAAAAAAAABVxP333x9nnXVWvPfee3HqqafGmWeeGY0aNUqdVeFlMpmYPn16/L//9/9iyZIlMWrUqDjvvPMiOzs7dRoAAAAAAAAAAACwjcz/Ar6wbt26aNu2bQwePDiuu+661DkAlVpxcXH06NEjmjRpErNmzUqdAyR2/PHHx5w5c2LJkiVRv3791DlQriy2AKBM/OxnP4u33norFixYEDVq1EidAyR2yy23xK9//etYsmRJtGrVKnUOAAAAAAAAAFXA66+/HieddFI8/vjj8fOf/zwuu+yy2HPPPVNnVTpFRUVx8803x3nnnReZTCYuvvjiOOGEEyIrKyt1GgAAAAAAAAAAAFBK5n8B/+6WW26J3/zmN7FkyZJo2bJl6hyASuuuu+6K4cOHx8KFC6NDhw6pc4DEVq5cGa1bt46xY8fGGWeckToHypXFFgDscAsWLIju3bvHAw88EIceemjqHKACKCoqig4dOsT+++8ft912W+ocAAAAAAAAACqxTZs2xbhx4+LCCy+M9u3bx7XXXhu9e/dOnVXpffTRRzF27Ni47rrrIi8vL2666aZo06ZN6iwAAAAAAAAAAACghMz/Av6T+V8A26+oqCj22Wef6NGjR0yePDl1DlBBjB49Om655ZZ4++23Y9ddd02dA+XGYgsAdrhBgwbFypUrY/78+ZGVlZU6B6gg/vrXv8Zxxx0Xr7zySrRr1y51DgAAAAAAAACV0IIFC2LEiBHxxhtvxNixY+P000+PWrVqpc6qUl588cU44YQTYsmSJXH++efHWWedFTVr1kydBQAAAAAAAAAAAHwL87+Ar2L+F8D2ue222+KEE06Iv//979G2bdvUOUAFUVhYGC1btozRo0fH2WefnToHyo3FFgDsUPPnz4+ePXvGzJkzo3///qlzgAqkuLg4unTpEvvss0/ccccdqXMAAAAAAAAAqESKi4tj3Lhxcd5550Xv3r3j5ptvjtatW6fOqrI2b94cV1xxRYwdOza6d+8e//M//xMtWrRInQUAAAAAAAAAAAB8DfO/gK9j/hfAttu0aVO0a9cuDj744Jg0aVLqHKCC+cMf/hDXXXddFBQURHZ2duocKBcWWwCwQ/Xr1y8+++yzmDt3buoUoAK6++6748gjj4yXXnopOnXqlDoHAAAAAAAAgErgnXfeiWOOOSaeffbZuOiii+KMM86IGjVqpM6qFhYvXhxHHXVUrFixIq677roYPnx46iQAAAAAAAAAAADgK5j/BXwT878Ats1NN90Uo0aNitdffz1yc3NT5wAVzNq1ayM3NzdOPfXUOP/881PnQLmw2AKAHWbu3LlxwAEHxOOPPx4HH3xw6hygAspkMrHvvvtG69atY+rUqalzAAAAAAAAAKjgnnzyyRg2bFg0atQobr/99ujatWvqpGrn888/jzFjxsS4cePi6KOPjhtvvDHq16+fOgsAAAAAAAAAAAD4F/O/gG9j/hdA6W3cuDHatm0bP/rRj+L6669PnQNUUBdeeGGMHz8+3n777WjUqFHqHChzFlsAsMMccsghkclk4vHHH0+dAlRg999/fwwePDgWLlwYHTt2TJ0DAAAAAAAAQAWUyWTi8ssvj3PPPTeGDh0aN998c+y8886ps6q1hx9+OIYPHx4tW7aMadOmRYsWLVInAQAAAAAAAAAAAGH+F1Ay5n8BlM7EiRPj9NNPjzfffDO++93vps4BKqh169ZFbm5unHTSSTF27NjUOVDmLLYAYIdYuHBhdOnSJWbPnh19+/ZNnQNUYJlMJjp27Bg9evSIW2+9NXUOAAAAAAAAABXMp59+GsOHD4+HHnooxo0bF6eeemrqJP7ljTfeiMGDB8eHH34Y06ZNiwMOOCB1EgAAAAAAAAAAAFRr5n8BJWX+F0DJFRcXR4cOHeK//uu/4sYbb0ydA1RwY8aMiWuvvTbeeeed2HnnnVPnQJmqkToAgKrh8ssvj44dO8YhhxySOgWo4LKysuL000+P22+/Pd59993UOQAAAAAAAABUICtXroyDDjoonnnmmZgzZ46lFhVMmzZt4rnnnou8vLzo169f3HXXXamTAAAAAAAAAAAAoFoz/wsoKfO/AEruwQcfjNdffz1OO+201ClAJXDSSSfFZ599FpMnT06dAmXOYgsAttu7774b99xzT5x11lmRlZWVOgeoBIYPHx45OTlxww03pE4BAAAAAAAAoIJ49dVXo1evXrF69eqYO3du/Nd//VfqJL7CLrvsEvfee2+MHj06jjrqqBgzZkzqJAAAAAAAAAAAAKiWzP8CSsv8L4CSGT9+fAwaNCj23nvv1ClAJdCkSZM45phj4oorroiioqLUOVCmLLYAYLtNmDAhmjZtGsOGDUudAlQSdevWjZNOOikmTpwY69evT50DAAAAAAAAQGLz58+PAw44IL73ve/F888/H23btk2dxDfIysqKMWPGxDXXXBMXXXRRnHbaaZHJZFJnAQAAAAAAAAAAQLVi/hdQWuZ/AXy7+fPnx9y5c+OMM85InQJUIr/73e9i2bJl8eCDD6ZOgTJlsQUA22XdunUxadKkOOWUU6JOnTqpc4BK5Le//W1s2rQpbrnlltQpAAAAAAAAACQ0d+7c6Nu3b/Ts2TMeffTRaNy4ceokSmjUqFExbdq0mDhxYhxzzDGxefPm1EkAAAAAAAAAAABQLZj/BWwr878Avtm4ceOie/fuceCBB6ZOASqRNm3axKGHHhrjx49PnQJlymILALbLpEmTori4OE488cTUKUAl07Bhw/jlL38ZV199dRQVFaXOAQAAAAAAACCBxx57LAYMGBB9+/aN+++/P+rXr586iVI67LDDYurUqTF16lTLLQAAAAAAAAAAAKCcmP8FbCvzvwC+3rJly+K+++6LM844I3UKUAmdccYZkZ+fH88991zqFCgzFlsAsM0ymUz86U9/iuOOOy6ys7NT5wCV0KmnnhrLli2LGTNmpE4BAAAAAAAAoJw988wz8ZOf/CQOO+ywmDJlStSpUyd1Etto0KBB8dBDD8UDDzwQI0aMiOLi4tRJAAAAAAAAAAAAUGWZ/wVsL/O/AL7ajTfeGM2aNYshQ4akTgEqoQMOOCC6d+8eN9xwQ+oUKDMWWwCwzZ588slYunRpHH/88alTgEqqVatW0adPn5g0aVLqFAAAAAAAAADK0UsvvRQ/+clPon///vGXv/wlatWqlTqJ7XTIIYfEAw88EPfcc0+MHDkyMplM6iQAAAAAAAAAAACoksz/AraX+V8AX7Z58+aYPHlyjBgxwp9zAbbZyJEjY+rUqbFmzZrUKVAmLLYAYJvdfPPNsf/++0fnzp1TpwCV2AknnBAzZsyIf/zjH6lTAAAAAAAAACgHixcvjkMOOSTy8vLirrvucrN/FdK3b9+48847Y/LkyTF69OjUOQAAAAAAAAAAAFAlmf8F7AjmfwFs7cEHH4yVK1fGiBEjUqcAldhRRx0VtWrVittvvz11CpQJiy0A2CaFhYVx3333xciRI1OnAJXc4MGDo2HDhnHbbbelTgEAAAAAAACgjL333nvx4x//ODp16hRTp06NOnXqpE5iBzv88MPj1ltvjXHjxsX111+fOgcAAAAAAAAAAACqFPO/gB3F/C+Ard18883xwx/+MJo3b546BajEdtlllzjiiCPipptuSp0CZcJiCwC2yeTJk6NWrVpxxBFHpE4BKrk6derE8OHD45Zbboni4uLUOQAAAAAAAACUkU8//TR++tOfxs477xz33Xdf1KtXL3USZWT48OFx4YUXxqmnnhoPPPBA6hwAAAAAAAAAAACoMsz/AnYU878A/s+KFSti9uzZlocBO8TIkSNj8eLF8be//S11CuxwFlsAsE1uueWWGD58eOy6666pU4Aq4MQTT4xly5bF448/njoFAAAAAAAAgDJQXFwcw4YNi2XLlsXDDz8cDRs2TJ1EGTv33HPjuOOOi+HDh8fLL7+cOgcAAAAAAAAAAACqBPO/gB3J/C+A/zVp0qTIycmJQw89NHUKUAXsv//+0blz55g0aVLqFNjhLLYAoNTmzZsXf//73+OEE05InQJUEe3atYvevXu76AIAAAAAAACoosaMGROzZ8+O+++/P1q2bJk6h3Lypz/9KXr06BGDBw+O1atXp84BAAAAAAAAAACASs38L2BHM/8LIKK4uDhuvfXWOO6446KD3mqRAAAgAElEQVR27dqpc4AqYsSIEXHnnXfG+vXrU6fADmWxBQClduedd0aHDh2iW7duqVOAKuTYY4+N6dOnu+gCAAAAAAAAqGIeeuih+OMf/xjXXHNN9OrVK3UO5ah27dpxzz33RCaTiWHDhkVRUVHqJAAAAAAAAAAAAKi0zP8CyoL5X0B1N3fu3FixYkUce+yxqVOAKuSoo46Kzz//PB566KHUKbBDWWwBQKkUFxfHtGnTYtiwYalTgCpmyJAhsXnz5pg+fXrqFAAAAAAAAAB2kDfffDN+8YtfxHHHHRcnnnhi6hwSaNy4cdx1113xzDPPxAUXXJA6BwAAAAAAAAAAACol87+AsmL+F1DdTZkyJTp16hR777136hSgCsnJyYlDDjkkpkyZkjoFdiiLLQAolaeeeiref//9GDJkSOoUoIpp2LBh9OnTx0UXAAAAAAAAQBWxefPmGD58eOTm5sb111+fOoeEevbsGVdddVX88Y9/jGeeeSZ1DgAAAAAAAAAAAFQ65n8BZcX8L6A6KyoqimnTpsXQoUNTpwBV0NChQ2PmzJmxdu3a1Cmww1hsAUCpTJkyJbp06WKTIFAmhg4dGrNmzXLRBQAAAAAAAFAFjB07NhYuXBh/+ctfol69eqlzSOw3v/lNDBo0KI466qhYs2ZN6hwAAAAAAAAAAACoVMz/AsqS+V9AdfXkk0/GBx98YLEFUCYGDx4cmUwmHnzwwdQpsMNYbAFAiRUVFcV9993nggsoMz/96U8jIlx0AQAAAAAAAFRy+fn5cckll8T48eOjY8eOqXOoICZNmhRFRUUxatSo1CkAAAAAAAAAAABQaZj/BZQ187+A6uruu++OfffdN/baa6/UKUAVlJ2dHf369Yu77747dQrsMBZbAFBijz/+eHz44YdxxBFHpE4BqqgvLrqmTJmSOgUAAAAAAACAbfTZZ5/FiBEjon///vGb3/wmdQ4VSE5OTtx6661x5513xn333Zc6BwAAAAAAAAAAACoF87+Asmb+F1Adbd68Oe6///4YNmxY6hSgChs6dGg88sgjsXr16tQpsENYbAFAiU2dOjW6desWrVu3Tp0CVGFDhw6N2bNnx0cffZQ6BQAAAAAAAIBtMHbs2Fi5cmVMnDgxsrKyUudQwfTv3z+OPfbYOOmkk2LNmjWpcwAAAAAAAAAAAKDCM/8LKA/mfwHVzRNPPBEffvhhDBkyJHUKUIUddthhUaNGjZg+fXrqFNghLLYAoMRmzpwZhx12WOoMoIobNGhQFBUVxZw5c1KnAAAAAAAAAFBKCxcujCuvvDIuu+yy2HPPPVPnUEGNHz8+iouL4+yzz06dAgAAAAAAAAAAABWe+V9AeTD/C6huZsyYER07doxWrVqlTgGqsAYNGsRBBx0UM2bMSJ0CO4TFFgCUyOLFi2PFihUxYMCA1ClAFdewYcPYb7/9YtasWalTAAAAAAAAACiF4uLiGDlyZOy///5x4oknps6hAmvUqFFMmDAhbrrpppg3b17qHAAAAAAAAAAAAKiwzP8Cyov5X0B1M3PmzBg4cGDqDKAaGDBgQMyePTs2b96cOgW2m8UWAJTIzJkzIycnJ7p165Y6BagGBg4cGDNmzIhMJpM6BQAAAAAAAIASmjx5cixYsCCuu+66qFHD7Yl8s5///OfRr1+/OPnkk6O4uDh1DgAAAAAAAAAAAFRI5n8B5cn8L6C6KCgoiNdff93yMKBcDBw4MNasWRPPP/986hTYbv7kKAAlMmvWrBgwYIChA0C5GDBgQLz//vvxyiuvpE4BAAAAAAAAoATWr18f5557bpx44onRqVOn1DlUEldddVUsWrQoJk+enDoFAAAAAAAAAAAAKiTzv4DyZP4XUF3MnDkzdtlll+jdu3fqFKAaaNu2bbRs2TJmzZqVOgW2m9+dAOBbrV+/PubNmxcDBw5MnQJUE926dYumTZvGzJkzU6cAAAAAAAAAUAKXXnppfPrppzF27NjUKVQi7du3j5EjR8Y555wT69evT50DAAAAAAAAAAAAFYr5X0B5M/8LqC5mzZoVffv2jbp166ZOAaqJ/v37W2xBlWCxBQDfas6cObFp06bo27dv6hSgmqhRo0b88Ic/dNEFAAAAAAAAUAl8+OGHMWHChDjnnHOiSZMmqXOoZMaOHRvr16+Pa6+9NnUKAAAAAAAAAAAAVCjmfwHlzfwvoDrYuHFjPPHEE5aHAeVq4MCBsWDBgvjggw9Sp8B2sdgCgG/1yCOPRPfu3aNp06apU4BqZODAgZGfnx/r169PnQIAAAAAAADAN7j00ktj1113jZNOOil1CpVQkyZN4pRTTonLL788Pvroo9Q5AAAAAAAAAAAAUGGY/wWkYP4XUNXNnTs31q9fH/3790+dAlQjffr0idq1a8fs2bNTp8B2sdgCgG/19NNPR58+fVJnANVMnz59YuPGjfHcc8+lTgEAAAAAAADga7z//vtx4403xtlnnx077bRT6hwqqTPPPDOysrLimmuuSZ0CAAAAAAAAAAAAFYb5X0AK5n8BVd3TTz8drVq1iubNm6dOAaqRnXfeOXr06BFPP/106hTYLhZbAPCN1qxZE0uWLIm8vLzUKUA106xZs2jZsmXk5+enTgEAAAAAAADga1x++eXRqFGjOPHEE1OnUIllZ2fH6aefHldddVWsW7cudQ4AAAAAAAAAAAAkZ/4XkIr5X0BVl5+f74wFJPGDH/zAGYtKz2ILAL7RvHnzIpPJxP777586BaiG8vLyXHQBAAAAAAAAVFAff/xx/PnPf47TTz896tWrlzqHSm7UqFGxefPmuPnmm1OnAAAAAAAAAAAAQHLmfwEpmf8FVFVFRUXx/PPPW2wBJJGXlxevvfZarF69OnUKbDOLLQD4Rvn5+dGuXbvIyclJnQJUQ3l5efHss8/G5s2bU6cAAAAAAAAA8B8mTpwYmUwmjj/++NQpVAENGzaM448/Pq666qrYtGlT6hwAAAAAAAAAAABIyvwvICXzv4CqatGiRbFu3TqLLYAk8vLyIisrK5599tnUKbDNLLYA4Bvl5+e74AKSycvLi/Xr18fixYtTpwAAAAAAAADwbzZt2hTXXnttnHjiidGgQYPUOVQRp512WqxcuTKmTp2aOgUAAAAAAAAAAACSMv8LSMn8L6Cqys/Pj+zs7Nh7771TpwDVUMOGDaNt27aRn5+fOgW2mcUWAHytTZs2xQsvvBC9e/dOnQJUUx06dIhGjRq56AIAAAAAAACoYKZPnx7vv/9+nHzyyalTqEJatGgRhx9+eNxwww2pUwAAAAAAAAAAACAZ87+A1Mz/Aqqq/Pz86N27d9SoYSw3kEZeXl7MnTs3dQZsM99BAfhaL730Unz66ad+YxtIJisrK3r27Bnz5s1LnQIAAAAAAADAv7npppuif//+0bx589QpVDEjR46MuXPnxquvvpo6BQAAAAAAAAAAAJIw/wtIzfwvoKp69tlno1evXqkzgGosLy8vXnjhhdi4cWPqFNgmFlsA8LUWLFgQDRo0iDZt2qROAaqx/fbbL1588cXUGQAAAAAAAAD8yzvvvBNz5syJkSNHpk6hCurXr1+0atUq/vznP6dOAQAAAAAAAAAAgCTM/wIqAvO/gKpm1apVsXz58thvv/1SpwDVWI8ePeKzzz6L1157LXUKbBOLLQD4WgsXLoxOnTpFVlZW6hSgGuvYsWO8+eab8cknn6ROAQAAAAAAACAibrnllmjatGkMGjQodQpVUFZWVhx33HHxl7/8JTZt2pQ6BwAAAAAAAAAAAMqd+V9ARWD+F1DVLFy4MCIiOnXqlLgEqM7atm0b9erVi0WLFqVOgW1isQUAX2vRokUuuIDkOnXqFMXFxfHqq6+mTgEAAAAAAAAgIu6666448sgjo1atWqlTqKJ+8YtfRGFhYcyZMyd1CgAAAAAAAAAAAJQ787+AisD8L6CqWbRoUTRp0iSaNWuWOgWoxmrVqhXt2rWLxYsXp06BbWKxBQBfKZPJxCuvvBIdO3ZMnQJUc61atYqdd97ZRRcAAAAAAABABbBgwYJ44403YtiwYalTqMKaN28ePXv2jClTpqROAQAAAAAAAAAAgHJl/hdQUZj/BVQ1ixcvjs6dO6fOAIhOnTrFokWLUmfANrHYAoCvVFBQEB9//LGNzUByNWrUiPbt2/uNbQAAAAAAAIAK4J577okWLVpEjx49UqdQxQ0dOjTuu++++Pzzz1OnAAAAAAAAAAAAQLkx/wuoKMz/AqqaRYsWOWMBFULHjh2dsai0LLYA4CstXrw4srKyokOHDqlTAGwTBAAAAAAAAKggpk2bFkcccURkZWWlTqGKO+KII2LdunXx2GOPpU4BAAAAAAAAAACAcmP+F1CRmP8FVBVFRUXx6quvRseOHVOnAETHjh3jvffei3/+85+pU6DULLYA4CstWrQocnNzY7fddkudAhAdO3b0G9sAAAAAAAAAiS1dujSWLl0ahx56aOoUqoHvfe970aVLl5g1a1bqFAAAAAAAAAAAACg35n8BFYn5X0BVsXTp0vjss88stgAqhE6dOkXE/y42hMrGYgsAvtKSJUuiffv2qTMAIiKiQ4cOsWrVKtsEAQAAAAAAABKaNWtW7LbbbrH//vunTqGaGDhwYDz88MOpMwAAAAAAAAAAAKDcmP8FVCTmfwFVxZIlSyIrKyv23nvv1CkAsfvuu0ejRo1iyZIlqVOg1Cy2AOArFRQURMuWLVNnAERERG5ubkRELFu2LG0IAAAAAAAAQDU2c+bM+OEPfxi1a9dOnUI1MWDAgCgoKIilS5emTgEAAAAAAAAAAIByYf4XUJGY/wVUFW+//XY0a9Ysdtppp9QpABER0aJFiygoKEidAaVmsQUAX2nZsmXRokWL1BkAERHx/e9/P2rWrOmiCwAAAAAAACCRjRs3xlNPPRX9+/dPnUI10qtXr2jQoEHMnj07dQoAAAAAAAAAAACUC/O/gIrE/C+gqli+fLkzFlCh5ObmWh5GpWSxBQBf8vnnn8fKlStddAEVRu3ateO73/2uiy4AAAAAAACARBYsWBCffvppHHjggalTqEZq1aoVvXr1irlz56ZOAQAAAAAAAAAAgDJn/hdQ0Zj/BVQVBQUFkZubmzoDYIvc3FzLw6iULLYA4EuWLVsWmUzGRRdQobRo0cJFFwAAAAAAAEAi8+bNi5ycnGjdunXqFKqZvLy8yM/PT50BAAAAAAAAAAAAZc78L6AiMv8LqAqWLVtmeRhQoThjUVlZbAHAl3yxEdVFF1CR5Obm2tgMAAAAAAAAkEh+fn7k5eVFVlZW6hSqmR/84AfxzjvvxIoVK1KnAAAAAAAAAAAAQJky/wuoiMz/AqoCiy2AiiY3NzdWr14da9euTZ0CpWKxBQBfUlBQEA0aNIjs7OzUKQBb5Obm2iYIAAAAAAAAkMjf/va36NWrV+oMqqH99tsvatWqFc8991zqFAAAAAAAAAAAAChT5n8BFZH5X0Blt2rVqli3bl3k5uamTgHY4ov/Ji1fvjxxCZSOxRYAfMk777zjgguocFq0aBHLly+PTCaTOgUAAAAAAACgWlm9enW8++670aVLl9QpVEM77bRTtG7dOhYvXpw6BQAAAAAAAAAAAMqU+V9ARWT+F1DZfTE0vnnz5olLAP5PixYtIisrywIxKh2LLQD4kg8++CCaNWuWOgNgK82aNYvPP/88Pv7449QpAAAAAAAAANXKwoULIyKiU6dOiUuorjp16hSLFi1KnQEAAAAAAAAAAABlyvwvoCIy/wuo7D744IOIiNh9990TlwD8n/r168euu+4aH374YeoUKBWLLQD4klWrVkVOTk7qDICtNG7cOCIiCgsLE5cAAAAAAAAAVC+LFi2KnJwcN/CTTMeOHS22AAAAAAAAAAAAoMoz/wuoiMz/Aiq7wsLCqFu3buyyyy6pUwC2kpOT44xFpWOxBQBfUlhYuOU3kAAqii9+4OaiCwAAAAAAAKB8vfrqq9GhQ4fUGVRj++yzTyxbtiw++eST1CkAAAAAAAAAAABQZsz/Aioi87+Ays4ZC6ioGjdu7IxFpWOxBQBf4qILqIi++O/SqlWrEpcAAAAAAAAAVC8FBQXRqlWr1BlUYy1btoxMJhPLly9PnQIAAAAAAAAAAABlxvwvoCIy/wuo7AoLC7cs6QGoSHJyciy2oNKx2AKAL1m1apWLLqDC2XXXXaNevXouugAAAAAAAADKWUFBQeTm5qbOoBr74t+/goKCxCUAAAAAAAAAAABQdsz/Aioi87+Ays4ZC6iocnJyLA+j0rHYAoCtFBcXx0cffeSiC6iQGjVq5KILAAAAAAAAoBwVFxfHihUrokWLFqlTqMZ23XXXaNy4scUWAAAAAAAAAAAAVFnmfwEVmflfQGVWWFgYjRs3Tp0B8CWNGze2PIxKx2ILALayZs2aKCoqctFFEjfddFPMmDGjRI994IEH4u677y7jooppe977jBkz4q677trBReUnJyfHRRcAAAAAAABAOVq5cmVs2LAhmjdvnjqlTFXn+xAqi9zc3Fi+fHnqDAAAAAAAAAAAACgT5n+RkvlfJWP+l/lfQOW0atUqy8NIpqTnLGes6nnGaty4seVhVDoWWwCwlbVr10ZERIMGDRKXUBrz5s2Liy66KD744IPUKdvlnHPOiVtvvbVEj73oooti9OjRZVyU3lf92m7Pe7/88svjrLPO2lF55S47O3vLf6cAAAAAAAAAKHsffvhhRER85zvfSVxStqrLfQiVWdOmTd2oDQAAAAAAAAAAQJVl/lflZP5X1WX+19bM/wIqs48//jh222231BmUQlU5Y0WU/JzljOWMBZVFrdQBAFQsGzZsiIiIunXrJi6hNJ555pn4wx/+EIMGDarygyS+MGrUqPjss89SZ5S5r/q1rS7v/avUqVMnNm7cmDoDAAAAAAAAoNooLCyMiIicnJzEJWWrOv8svrJo3LixxRYAAAAAAAAAAABUWeZ/VU7mf1Vd5n9tzfwvoDLbsGFD1KtXL3UGpeCMVXU5Y22tbt26zlhUOhZbALCVLw4zderUSVySXnFxcdSoUSN1RrnKZDIREZGVlfWtj039+Rx77LHJXju16vze69atu+UHcAAAAAAAAACUvVWrVkXNmjUjOzs7dUqZqs4/i68scnJy4s0330ydAQAAAAAAAAAAAGXC/K//k3q+VQrmf1UO1fm9m/8FVGYbN26M2rVrp85ILvUZIpWSnrNSfz7V+ZxRnd97nTp1nLGodKrfdxIAvtEXv7FdGTc2jxw5Mo499th4880344QTTog999wz+vTpE3/9618jIuLKK6+Mbt26RdOmTWPgwIGxdOnSLz3Ha6+9Fj/60Y+iSZMmsfPOO0ePHj1i2rRpO/x1Pvroo/jtb38b++yzTzRr1iwGDx4cM2bM+NLrjBo1Kt5777046qijonnz5tGqVasYMWJEfPLJJ1sed+KJJ8bEiRMjImLEiBFxyimnlPqzW7hwYfTt2zeys7Njp512ip49e8bMmTOTfT6PPPJI5OXlxc477xx77713XHDBBbF58+atHnPKKafEL3/5y1J/XhEl+/y/ybBhw+Liiy+OefPmxbBhw6JJkybRoUOHuOyyy6K4uHirxz755JNx0kknRZs2bWLPPfeMI488MiZOnBhFRUVfej/HH398vPvuu3HSSSdFkyZNvvbX9j/fe2lep7Jz0QUAAAAAAABQvtasWRPZ2dnJbsz+/PPP4/zzz49WrVpF3bp1Y6+99opf/epXsW7duq0eV5J7Ab7qZ/P//vf+82fxJXnOkvZ9ne29z6I090CU5N6C0tx/Ud4aN24chYWFSRsAAAAAAAAAAACgrJj/Zf6X+V/fzvyvdMz/AiqzDRs2VMozVsT2f38vyRliR7xOSb/Hl+TcsCPOWBElO2eV1xkr4tvPWdtzxorYvnNWac5YESU7/2zvGaukr1PZWR5GZZSV+WJlEABExNy5c+OAAw6I9957L3bffffUOaXSo0ePePfdd6NGjRqRnZ0d3bp1iylTpsSmTZtiwIABMXv27PjRj34UNWvWjIcffjiaNWsWBQUFWwYvzJ07NwYMGBBNmjSJo48+OurXrx/Tp0+P559/Pi644IL4wx/+sENe5913340DDjgg/vnPf8YxxxwTDRo0iEceeSQWLlwY48ePj9NOO23L66xatSo2bdoUubm50bt373j++efjqaeeisGDB2+52Lniiivi3nvvjWeffTaGDRsWvXv3LtWF15NPPhkDBw6Mxo0bx9ChQ2Pt2rUxbdq0+OSTT+Kpp56K3r17l9vnk5OTE7Vr147CwsL42c9+Fm3atIk5c+Zsubi56667tvr1LiwsjLfffrtUn1dJP/9vkpOTE9nZ2bFq1ao4+OCDo3379vHoo4/GCy+8EMcff3xMmjQpIiKeeOKJ6NevXzRo0CCOOuqoyMnJidmzZ0d+fn6cddZZcfnll295zoMOOihWrlwZdevWjUWLFkXXrl3jyCOP/Mpf2/9876V9nbfeeitWrFhR4n9HKpIjjzwyNm3aFFOnTk2dAgAAAAAAAFAtXHnllTFhwoR45513krz+iBEjYvLkyfGLX/wi9t1333jrrbfi5ptvji5dusS8efMiouT3AnzVz+ZffPHFiPjyfQglfc6S9H2T7bnPojT3QJT03oKS3n+RQup/FwEAAAAAAAAAAKAsmf9l/pf5X+Z/VWTmfwGV2R577BGjR4/e5gUJKW3P9/eSniG293VK8z2+JOeG7T1jRZTsnFVeZ9CSnrO29YwVsf3nrJKesSJKfv7ZnjNWaV+nMp+x7r333vjZz34Wmzdvjpo1a6bOgZLJAMC/eeyxxzIRkVm1alXqlFLr3r17JiIyF1100ZavzZgxIxMRmfr162def/31LV8/9thjMxGx5WvFxcWZrl27Zho1apT5xz/+seVxGzduzPTp0ydTp06dLY/dntfJZDKZo48+OhMRmeeee27L1zZs2LDldQoLC7d6nd///veZ4uLiTCaTyRQVFWW6du2aadCgwVbv/dJLL81EROall14q1WdWVFSU6dy5c6ZBgwaZpUuXbvn6a6+9lsnKysocffTR5fr5NG7cOBMRmXvuuWfLYzZv3pzp27dvJiIyzz777Javd+/ePZObm7vVX5fk8yrp5/9Nvui88sort/osDz744ExWVlbmhRdeyGQymczIkSMzdevWzaxZs2bL4z777LPM7rvvnmnXrt1Wz3nggQdmIiLTv3//zGuvvbbl61/1a/uf7720r/O9733vW99jRXXMMcdkBg0alDoDAAAAAAAAoNq45JJLMq1atUry2p9//nmmdu3amZ/85Cdbff3qq6/e6n6Dkt4L8HU/m89kvvyz+JI8Z0n7vsn23GdRmnsgSnpvQWnuVylv1157baZp06ZJGwAAAAAAAAAAAKCsmP9l/lcmY/7XtzH/Kx3zv4DKrFGjRpk//elPqTO2ybZ+fy/NGWJ7XieTKd33+JKeG7b1jPXF833bOas8z6AlPWdt6xkrk9n+c1ZJz1iZTMnPP9tzxirt61TmM9b06dMzEZH59NNPU6dAidXYnqUYAFQ9GzZsiIiIOnXqJC7ZNjVr1oyzzjpry1937tw5IiL69OkTbdq02fL1gw46KCIiXn311YiIWLBgQSxYsCD69OkTe+yxx5bH1a5dO4477rjYuHFjzJ49e7tfZ/Xq1XHHHXdEjx49omfPnlseV6dOnRg5cmRs3Lgx7r333i1fr1+/fowZMyaysrIiIqJGjRqRl5cXa9eujXfffXcbPqGtvfTSS7Fw4cI4/PDDo3Xr1lu+3q5du7jmmmtiv/32K9fPJyJi3333jSFDhmz1XEOHDo2IiMcee+wb38+3fV6l+fyLi4vjk08+2ep/RUVFW/6Z7OzsrbYO1qhRI84555zIZDLx6KOPRkTE7373u5g/f35kZ2dvedzGjRsjOzs7Pv744698DxdeeGG0a9fuG9/nf9qW16ms6tSps+W/UwAAAAAAAACUvQ0bNiS7j+SLn9M/+eST8dJLL235+qhRo2L9+vXRqlWrUt+LEfHtP5sv6XOWpC/i2+9B2Jb7LEr7vktzb0FZ36+yrerWreueAQAAAAAAAAAAAKos87/M/4ow/yvC/K+KyvwvoDLbuHFjpT1jRWzb9/fSniG29XW25c/1VIRzVnmesSK2/ZxVks+qpL8GO+KMFVH688+2nLG25XUqq7p160ZEOGdRqdRKHQBAxbJp06aIqLy/sb3HHnts1V6vXr0tX/93NWvWjIj/PZRGRCxdujQiIg488MAvPWfXrl0jIuKNN97Y7td5/fXXI5PJxPr162PYsGFbPfaLg/Fbb7215WtNmzbd8txfaNiwYURErF+//kutpfXmm29GRETHjh2/9PdGjRq15f+X1+cTEbH33nt/6TX69OkTEREFBQXf9Ha+9fNasWJFiT//559/Pnr37r3VY+6444448sgjIyJir7322nJx94UOHTps9Rzt2rWLwsLCGD9+fDz77LOxbNmyWLp0aXz88cdf+iwiIpo0aRI9evT4xvf4VUr7OpWZIRXA/2fvzsOsLOj+8b8HGEQUXAAV0BwURNlccsOJcgHFJ01NwY3Ub0qa+tXcHtAKFcTlcdfMwFyfLEF9sqgHRDQ3cEkRGVERENTCDSRTZHOY3x998RepyTZzz/J6XZeXl3POnPt9zswln/twn/cHAAAAAACAmrVs2bKUlpYWcuzmzZvnwgsvzE9+8pPssssu2WGHHbLPPvvkP/7jP3LAAQekcePGq30txqr83fyqPuaq5Eu++hqENbnOYnWf9+pcW1Dd16usqfXWW2+la0wAAAAAAAAAAACgPtH/pf9rBf1f+r9qI/1fQF1W1xdbrMmf76s7Q6zpcVZ3xkpqx5x1zz33JKmZGStZ8zlrVV6rVf0ZrIsZK1m9+WdNZ6ANI20AACAASURBVKzVPU5dZrEFdVGjogMAULusGCKrqqoKTrJmNthggy/8eqNG//6PvHnz5iVJysrKPnfbiuFuxQnC2hxn/vz5Sf4xOJaWlq70T6tWrXLsscd+Nrgn/9iO92XWxc/o/fffT5K0b9/+396vpl6f5B+bkv9VkyZNVvr3l/mq12t1Xv/WrVvn2GOPXemff37+bdu2/dwxVjzvFSd+V155ZbbccssMGzYsy5YtS+/evXPHHXekvLz8CzOuOKFYXat7nLps+fLlq/R7BAAAAAAAAMC68a8XJNe0H//4x5k5c2Z++tOfpnnz5vnFL36Rgw46KF27ds0777yz2tdirMrfza/OY35VvuSrr0FYk+ssVvd5r861BdV9vcqaWr58eeG/jwAAAAAAAAAAAFBd9H+Vfe42/V/6v/R/1R76v4C6rKSkpM7OWMma/fm+ujPEmh5ndWespHbMWTU5YyVrPmetymu1qj+DdTFjJas3/6zpjLW6x6nLVvxumLOoS/792SEADc6KDXBLly793Fa2+qxDhw5JkieeeCIHHXTQSrc99dRTSZJtttlmrY+z4jE6deqUX/3qVyvdVllZmY8++ijNmzdf6+OsqhUnEc8880yOOuqolW676667snz58pxwwgk19vokyauvvvq5rz355JPr5Bir8/p/0X3+2YotjP9szpw5SZLOnTvn/fffz+DBg9OmTZvMmDEjLVq0+Ox+w4cPX6vn8c9q6ji1xdKlS9fq5BQAAAAAAACA1dO0adMsXbq0kGMvXbo0n3zyScrKyjJ06NAMHTo077zzToYPH56f/exnufHGG3PssccmWbfXYqzq9QWrkm/48OFfeQ3CmlidayDqy7UFS5Yscc0AAAAAAAAAAAAA9Zb+L/1fK+j/0v9VG+n/Auqy9dZbr7DPxhSloc5YyarNWTU5YyW1Y85q2rTpWs1YSc3NPw1pzlqxSMWcRV1iDQsAK1kxyKwYbBqKnXfeOU2bNs1DDz30udseffTRNG7cOAcccMBaH6djx45p06ZNHnzwwSxbtmyl2y677LJssskmefbZZ9f6OKtqt912y/rrr59HHnlkpa+//PLLOeGEE/LYY48lqbnXZ8WxX3755ZW+9qc//SklJSU58MAD1+qx1+Xr/9prr2XGjBkrfe32229Pkuy000554403snz58nz3u99d6STorbfeypQpU9bqefyzmjpObaGkAgAAAAAAAKBmFXnx/iOPPJJNNtkkv/nNbz772hZbbJHzzjsvSbJgwYJquRZjVR9zVfJVl9V53vXl2gIfhgMAAAAAAAAAAKA+0/+l/yvR/7Uq9H8VQ/8XUJc1bdrUjPVP6vOMlazanFWTM9aKY9f2OeurZqyk5uafhjRnrfjc3opFh1AXWGwBwEr+eWNzQ9KuXbucfvrpeeGFF3LqqafmpZdeyvTp03PhhRfmvvvuy4ABA9KpU6e1Pk7Tpk1z2WWX5e9//3sGDBiQyZMnZ+bMmbn66qtzySWXpE+fPikvL1/tx916662TJCNHjsyf//znVf6+zTffPD/60Y8yderUnHLKKXnuuedy11135eijj06TJk1yyimnJKm51ydJSkpKcthhh+Wuu+7Kc889l2HDhuW2227L4Ycfnu7du6/VY6/L17+ysjKHHnpofvvb32batGkZNmxYbrjhhvTv3z+9evVK586ds+GGG2bUqFEZM2ZMZsyYkTvuuCN77bVXWrZsmY8//jjTp0//yuN81c92XR2nrli6dKkTLgAAAAAAAIAa1LRp08KuIykvL89mm22WoUOH5tFHH82HH36Y559/Pj/60Y+SJN/+9rer5VqMVX3MVclXXVbnedeXawt8GA4AAAAAAAAAAID6TP+X/i/9X/q/ajP9X0Bdtt5665mxGsiMlazanFWTM1ZSN+asr5qxknUz/6zKz7YhzVkrlu6Ys6hLmhQdAIDapaG+sZ38Y5NcZWVlrr/++tx8882fff2UU07J9ddfv86Oc+KJJ+aTTz7Jf/7nf2b06NFJkiZNmuSkk07K8OHDU1JSstqP2adPn+y55565+eab88orr+RPf/rTKn/vsGHDUlVVlSuvvDIjRoxIkrRt2zZ333139thjj8/uV1Ovz3HHHZfFixfnxBNPzKeffpok6devX+6888518vjr6vXfb7/90r59+xxxxBFZvnx5kmTvvffOz3/+8yRJixYtctttt+X73/9+vvOd7yRJNt1001x77bXZYIMNcvzxx6dbt26f22j4r77qZ7uujlNXLFmyJBtuuGHRMQAAAAAAAAAajA033DAfffRRIcdu0aJF7r777hx//PHZZ599Pvt6s2bNMnz48M8WR1THtRir8pirmq+6rOrzri/XFnz88ceuGQAAAAAAAAAAAKDe0v+l/yvR/7Uq9H8VQ/8XUJc1bdrUjNWAZqxk1easmnp9kroxZ33VjJWsm/lnVX62DWnOWrp0aUpLS9OoUaOio8AqK6mqqqoqOgQAtUdFRUV69OiRV199NZ07dy46TiHee++9TJkyJeutt1569OiRTTbZpFqO89FHH+WFF17Ixx9/nO7du2errbZa68ecO3duWrRokRYtWqz29y5cuDBTp05Ny5Yt06lTpy/d1lZTr8+HH36YKVOmpEuXLmnTps06f/y1ef1bt26d3XbbLWPHjs2CBQvy3HPPpX379unSpcvn7jt//vy88MILadu2bbp06fLZCd38+fOzYMGCdOzYcZWO+VU/23V1nNruP/7jP9K2bdvceuutRUcBAAAAAAAAaBAeeOCBHHbYYVmyZMmXXktQ3T755JNMnTo1b775Zlq3bp1u3bpls802+9z9quNajFV5zFXNV11W9XnX9WsLTj/99Lz00kt59NFHi44CAAAAAAAAAAAA65z+L/1f+r++mv6v4uj/Auqy7bffPgMGDMhPfvKToqMUoqHOWMmqzVk19foktXfOWp0ZK1k388+q/Gwbwpx1++2354wzzshHH31UdBRYZRZbALCS6dOnZ/vtt8/UqVPTvXv3ouOwhk499dRVut/3vve99OzZs5rT1D//fNJFzdpvv/2y3XbbrbTREgAAAAAAAIDq88QTT+Sb3/xm5s6dm7Zt2xYdhwbsqKOOyrJly3L//fcXHQUAAAAAAAAAAADWOf1f9YP+r+ql/6s4+r+AumzHHXfMIYcckqFDhxYdhTVkxqpeZqzijBgxIhdccEHmz59fdBRYZU2KDgBA7dKsWbMkyaJFiwpOwtrYZ599Vul+Cieoa5YsWfLZ/6cAAAAAAAAAqH6tWrVKksyfP991BhRq3rx52XbbbYuOAQAAAAAAAAAAANVC/1f9oP+L+kr/F1CXNWvWzIxVx5mxqK8WL15sxqLOsdgCgJVsuummSZIPPvig4CSsjX79+hUdoV5r27ZtWrduXXSMBmn+/Pmf/X8KAAAAAAAAgOq3+eabJ0nefvvtdOvWreA0NGTvvvtuevbsWXQMAAAAAAAAAAAAqBb6v+oH/V/VS/9XcfR/AXXZpptumgULFhQdg7VgxqpeZqzifPDBB2Ys6hyLLQBYSYsWLbLeeutl3rx5RUeBWquioqLoCA3WvHnz0qpVq6JjAAAAAAAAADQYrVq1SosWLTJnzpyio9DAzZkzJ2VlZUXHAAAAAAAAAAAAgGqh/wu+mv6v4uj/AuqyVq1ambHg3zBjFWfevHmWilDnNCo6AAC1z6abbpr58+cXHQNgJcuXL8+CBQucdAEAAAAAAADUsLKyMostKNR7772Xjz/+OB06dCg6CgAAAAAAAAAAAFQb/V9AbaT/C6jrLLYAaivLw6iLLLYA4HNat27tjW2g1lmwYEEqKyuddAEAAAAAAADUsLKyssyePbvoGDRgK37/LLYAAAAAAAAAAACgPtP/BdRG+r+Auq5Vq1ZmLKBWmj9/vuVh1DkWWwDwObYJArXRijeDnHQBAAAAAAAA1KyOHTtmxowZRcegAZs5c2aaNm2aLbfcsugoAAAAAAAAAAAAUG30fwG1kf4voK5r3bq1GQuolebNm2d5GHWOxRYAfI6NzUBttOLNICddAAAAAAAAADWrW7dumTZtWiorK4uOQgM1derU7LDDDiktLS06CgAAAAAAAAAAAFQb/V9AbaT/C6jrWrVqlQULFmT58uVFRwFYyfz5881Y1DkWWwDwOTY2A7WRN7YBAAAAAAAAitGjR48sWrQoM2fOLDoKDVRFRUW6d+9edAwAAAAAAAAAAACoVvq/gNpI/xdQ17Vu3TqVlZVZsGBB0VEAVjJ//vy0bt266BiwWiy2AOBztthii8ydO7foGAArefvtt7PRRhtl/fXXLzoKAAAAAAAAQIPStWvXNG7cOBUVFUVHoYGaOnWqxRYAAAAAAAAAAADUe/q/gNpI/xdQ122xxRZJYs4CapUFCxZk0aJF2XzzzYuOAqvFYgsAPqesrCxz5sxJVVVV0VEAPjN79ux06NCh6BgAAAAAAAAADc7666+fzp07Z/LkyUVHoQF677338te//jU77rhj0VEAAAAAAAAAAACgWun/Amoj/V9AXVdWVpYkmTNnTqE5AP7Z7Nmzk8ScRZ1jsQUAn1NWVpbFixfn3XffLToKwGdmz5792ZtCAAAAAAAAANSsnj17ZtKkSUXHoAGaOHFiGjVqlD333LPoKAAAAAAAAAAAAFCt9H8BtZH+L6Cu22CDDdKmTRuLLYBaZfbs2SkpKcnXvva1oqPAarHYAoDPWbGpa8XmLoDaYM6cOTYJAgAAAAAAABSkvLw8zz77bJYuXVp0FBqYiRMnpnv37tloo42KjgIAAAAAAAAAAADVSv8XUBvp/wLqg7KyMostgFpl9uzZadeuXZo1a1Z0FFgtFlsA8DlbbrllSktLnXQBtcrs2bO9sQ0AAAAAAABQkPLy8ixatChTpkwpOgoNzJNPPpny8vKiYwAAAAAAAAAAAEC10/8F1Eb6v4D6oEOHDpaHAbWK5WHUVRZbAPA5jRs3zpZbbumkC6g1Fi5cmPfffz9lZWVFRwEAAAAAAABokDp16pTNN988f/rTn4qOQgPy0UcfZfLkyenVq1fRUQAAAAAAAAAAAKDa6f8Cahv9X0B9UVZWZnkYUKtYHkZdZbEFAF+oQ4cOTrqAWmPFX7Q56QIAAAAAAAAoRklJSfbff/+MGzeu6Cg0IBMmTEhlZWX222+/oqMAAAAAAAAAAABAjdD/BdQm+r+A+qKsrCyvv/560TEAPjN79mzLw6iTLLYA4Atts802mTlzZtExAJIks2bNSklJiZMuAAAAAAAAgAL17ds3EydOzIcfflh0FBqIcePGZbfddkubNm2KjgIAAAAAAAAAAAA1Qv8XUJvo/wLqi2222SYffvhh5s+fX3QUgFRWVmbOnDmWh1EnWWwBwBfq2rVrKioqio4BkCSZOnVqOnTokA033LDoKAAAAAAAAAAN1gEHHJDly5fn4YcfLjoKDcS4cePSt2/fomMAAAAAAAAAAABAjdH/BdQm+r+A+qJbt25JYs4CaoWZM2dm0aJF6d69e9FRYLVZbAHAF+rRo0fmzZuXt99+u+goAKmoqHDCBQAAAAAAAFCwVq1aZc8998wDDzxQdBQagMmTJ+fNN9/Mt7/97aKjAAAAAAAAAAAAQI3R/wXUJvq/gPqiffv2ad26daZOnVp0FIBUVFSkcePG6dKlS9FRYLVZbAHAF9pxxx2TxEkXUCtUVFSkR48eRccAAAAAAAAAaPD69euXBx54IIsXLy46CvXcqFGj0qFDh+y6665FRwEAAAAAAAAAAIAao/8LqE30fwH1Sffu3VNRUVF0DIBUVFSkY8eOad68edFRYLVZbAHAF2rVqlXatWvnpAso3OLFizNjxgwbmwEAAAAAAABqgf79+2fhwoV58MEHi45CPXf//ffnyCOPTElJSdFRAAAAAAAAAAAAoMbo/wJqC/1fQH3To0cPy8OAWmHq1KmWh1FnWWwBwJfq0aOHN7aBwk2bNi2VlZVOugAAAAAAAABqgbZt26a8vDyjR48uOgr12DPPPJNZs2alX79+RUcBAAAAAAAAAACAGqf/C6gN9H8B9U337t0zbdq0LF++vOgoQANXUVFheRh1lsUWAHwp2wSB2qCioiLrr79+OnbsWHQUAAAAAAAAAJIce+yx+e1vf5sFCxYUHYV66vbbb0+XLl2yyy67FB0FAAAAAAAAAAAAapz+L6A20P8F1Dc9evTIwoULM2vWrKKjAA3YwoULM3v2bIstqLMstgDgS3Xv3j2vvPJKli5dWnQUoAGrqKhIly5d0rhx46KjAAAAAAAAAJB/LLZo0qRJ7r777qKjUA8tXLgwv/nNb3LSSScVHQUAAAAAAAAAAAAKof8LqA30fwH1TdeuXdO4cWMLxIBCVVRUZPny5RZbUGdZbAHAl9p9992zZMmSTJkypegoQAM2adKk7L777kXHAAAAAAAAAOD/2XDDDdO/f/+MHDmy6CjUQ6NGjcrixYszYMCAoqMAAAAAAAAAAABAIfR/AbWB/i+gvmnevHm6du2ap59+uugoQAP21FNPpXXr1tlmm22KjgJrxGILAL5Up06dstlmm2XixIlFRwEaqCVLluSFF15IeXl50VEAAAAAAAAA+CcDBw5MRUVFJk2aVHQU6pkRI0bksMMOS5s2bYqOAgAAAAAAAAAAAIXQ/wUUTf8XUF+Vl5ebsYBCTZw4MXvttVdKSkqKjgJrxGILAL5USUlJevbs6aQLKMyzzz6bJUuWeGMbAAAAAAAAoJbZY489sueee+aaa64pOgr1yOOPP55nn302Z555ZtFRAAAAAAAAAAAAoDD6v4Ci6f8C6qvy8vI8//zzWbRoUdFRgAZq0qRJZizqNIstAPi3ysvL8+STTxYdA2igJk6cmHbt2qWsrKzoKAAAAAAAAAD8i7POOisPPPBAZs6cWXQU6omrr7465eXl6dmzZ9FRAAAAAAAAAAAAoFD6v4Ai6f8C6qvy8vIsXbo0zz//fNFRgAbo9ddfz9tvv51vfOMbRUeBNWaxBQD/Vnl5ed599928/vrrRUcBGqCJEyc64QIAAAAAAACopQ4//PB87Wtfy/XXX190FOqB6dOn5w9/+EPOOeecoqMAAAAAAAAAAABA4fR/AUXS/wXUV2VlZdlyyy0zceLEoqMADdCTTz6Z9dZbL7vsskvRUWCNWWwBwL/19a9/Pc2aNXPSBdS4qqqqTJo0KeXl5UVHAQAAAAAAAOALNG7cOGeddVZuvfXWvP3220XHoY4bPnx4OnXqlEMOOaToKAAAAAAAAAAAAFA4/V9AUfR/AfVdz549zVhAISZOnJhdd901zZo1KzoKrDGLLQD4t9Zbb718/etfz5NPPll0FKCBeeWVV/LBBx9kr732KjoKAAAAAAAAAF9i4MCBadWqVS677LKio1CHvfbaa/nNb36TIUOGpFEjl7YCAAAAAAAAAACA/i+gKPq/gPquvLw8kyZNSlVVVdFRgAbG8jDqA5/+A+Ar7b333pkwYULRMYAGZsKECdl4442z0047FR0FAAAAAAAAgC/RrFmzXHDBBRkxYkTmzJlTdBzqqCFDhqRz58456qijio4CAAAAAAAAAAAAtYb+L6AI+r+A+m7vvffO/PnzM3ny5KKjAA3I22+/nWnTpmXvvfcuOgqsFYstAPhKffv2zeuvv57XXnut6ChAAzJ27Nj06dMnTZo0KToKAAAAAAAAAP/GiSeemHbt2uWSSy4pOgp1zBtvvJGrrroq9957b3784x+nUSOXtQIAAAAAAAAAAMAK+r+AIuj/Auq7Hj16pF27dhk3blzRUYAGZNy4cVlvvfXyrW99q+gosFZ8AhCAr9SzZ89suummTrqAGrNo0aI8/vjj6du3b9FRAAAAAAAAAPgKH330UY499tjcfvvtOe644/Lee+8VHYk64mtf+1quueaaLF++PAMGDMhWW22VAw88MOeee25uueWWPPHEE5k3b17RMQEAAAAAAAAAAKAQ+r+Amqb/C2gISkpKcsABB5ixgBo1duzY7L333mnevHnRUWCtlFRVVVUVHQKA2q9///756KOPMnbs2KKjAA3A2LFj8+1vfztvvfVW2rdvX3QcAAAAAAAAAJJ88MEHmTZtWl5++eVMmzYtU6dOTUVFRT744IPP7rP99tvn5ZdfTklJSYFJqSvuvffeHHnkkfnGN76RJ5544rOvl5aWZvny5amsrEyStGzZMh07dszOO++czp07Z/vtt8/222+fDh06pEmTJkXFBwAAAAAAAAAAgGqn/wuoSfq/gIZi9OjROeaYY/Lee+9l0003LToOUM9VVlZms802y5AhQ3LmmWcWHQfWik/zAbBK+vbtm9NOOy2ffPKJzV5AtRs3blx69OjhTW0AAAAAAACAAixYsCDTpk37bInFiy++mJdeeinz589PkjRp0iRNmjTJ4sWLV/q+c845J9dcc03uv//+HHHEEUVEpw5ZtGhRBg0alAEDBmTkyJHp06dPnnnmmSxbtizLli1b6b5///vfM3ny5EydOjWNGjXK0qVLkySbbLJJZs+enY022qiIpwAAAAAAAAAAAADVTv8XUJP0fwENRZ8+fVJSUpKHH344/fr1KzoOUM89/fTT+eCDD9K3b9+io8Bas9gCgFVy4IEHZsmSJXnsscdy4IEHFh0HqOfGjRuXww47rOgYAAAAAAAAAA3Ou+++mw4dOmTRokVp0qTJSksEVvj000/z6aeffvbfjRo1yqBBg3LppZdm3rx5Oeuss7L//vunZcuWNR2fOuSSSy7J/Pnzc/nll6dZs2b54x//mF69euXVV1/93O/cCv/6e/d//+//tdQCAAAAAAAAAACAek3/F1CT9H8BDcUmm2ySPfbYI+PGjbPYAqh248aNS4cOHdK5c+eio8Baa1R0AADqhrZt26ZHjx4ZO3Zs0VGAeu7111/Pa6+9ZpMgAAAAAAAAQAE233zznH322WncuHE+/fTTL10wsELjxo0zYMCADB8+PEly9dVXZ+nSpTn//PNrIi51VEVFRa688spcdtlladeuXZKkZcuWmTBhQrbccss0adLkKx+jRYsWOeecc6o7KgAAAAAAAAAAABRK/xdQU/R/AQ3NgQcemLFjx6aqqqroKEA9N3bsWDMW9YbFFgCssoMPPjgPPPCAky6gWt1///3ZdNNNU15eXnQUAAAAAAAAgAZp8ODB2Wijjb7yfqWlpendu3duvfXWlJSUJElatWqVa6+9Nr/4xS/yxBNPVHdU6qDly5fn5JNPzi677JJTTjllpdvatGmTRx99NG3atPm3yy0aN26ciy++OC1btqzuuAAAAAAAAAAAAFA4/V9ATdD/BTQ0Bx98cN5+++089dRTRUcB6rE5c+Zk8uTJOfjgg4uOAuuExRYArLL+/fvnrbfeyqRJk4qOAtRjo0aNyne/+92UlpYWHQUAAAAAAACgQdpwww0zdOjQNGr05ZcYlpaWpmvXrrnvvvs+t4DgmGOOSd++fXPiiSfm448/ru641DFXXnllnn/++dx6661f+Du21VZb5aGHHkrz5s3TuHHjz91eUlKSjTfeOLvuumtNxAUAAAAAAAAAAIDC6f8CaoL+L6Ch6dGjR3bYYYeMHj266ChAPTZ69OhsvPHG2W+//YqOAuuExRYArLLu3bunS5cuTrqAavP6669n8uTJ6d+/f9FRAAAAAAAAABq0rbbaKhtssMEXLh5o0qRJ2rZtm3HjxmXDDTf8wu+/5ZZbsmDBgpx11lnVHZU6ZPLkyRkyZEiGDx+erl27fun9unbtmvHjx6e0tDQlJSUr3VZSUpJOnTqlV69e6devX6ZPn17dsQEAAAAAAAAAAKBQ+r+A6qb/C2io+vXrl9GjR2f58uVFRwHqqVGjRuWII45I06ZNi44C64TFFgCslv79+2f06NGprKwsOgpQD91zzz1p1apV9tlnn6KjAAAAAAAAADRIzz//fPbdd98ccsgh6dq16+cuzG/SpElatGiRCRMmZPPNN//Sx2nXrl1uueWW/PKXv/QhSpIkCxcuzDHHHJOePXvm7LPP/sr777HHHhkzZkwaN2782XKLxo0bZ7vttsvEiRMzfvz4zJw5M126dMlxxx2XuXPnVvdTAAAAAAAAAAAAgMLo/wKqk/4voKE6+uij8/bbb2fixIlFRwHqIcvDqI8stgBgtRx11FF555138uSTTxYdBaiHRo8enSOOOCJNmjQpOgoAAAAAAABAg/LWW2/l5JNPzu67756FCxfmsccey1NPPZU99tjjs7/DbdSoUUpLS/Pwww+nU6dOX/mYhx56aE466aSceuqpeeONN6r7KVDLnX766Zk3b17uvvvuNGq0apev9u7dO3fcccdn/11ZWZkrr7wyjRo1Su/evfP888/nnnvuycSJE9OpU6cMHjw4CxYsqKZnAAAAAAAAAAAAAMXR/wVUJ/1fQEO1/fbbp1u3bhk9enTRUYB66J577kmbNm2y9957Fx0F1hmLLQBYLZ07d0737t2ddAHr3PTp0/Piiy/myCOPLDoKAAAAAAAAQIOxYMGCDB48ONttt10efPDB3H777Xn66afzzW9+M0lyzTXXpLKyMsk/FluMGTMmO++88yo//nXXXZd27drl8MMPz+LFi6vlOVD7jRgxInfddVfuuOOOtG/ffrW+99hjj811112XJNlzzz1z0EEHfXZbo0aN0q9fv7zyyiu59tprc8cdd2TbbbfNFVdckUWLFq3T5wAAAAAAAAAAAABF0v8FVBf9X0BD179//9x3332ffX4GYF0ZNWqU5WHUOxZbALDajjzyyNx///359NNPi44C1COjRo3KFltskV69ehUdBQAAAAAAAKDeW7ZsWUaOHJnOnTvnl7/8ZS666KJMnz49xx13XEpKSj6731577ZVDDjkkJSUlueuuu7Lffvut1nE22GCD/P73v8+cOXMyFKCLEwAAIABJREFUcODAdf00qAOeeeaZnHnmmfnpT3+60lKK1XHGGWfkpz/9aa666qovvL1p06b5wQ9+kJkzZ2bQoEG59NJL06lTp4wcOdI1TgAAAAAAAAAAANQb+r+A6qD/C2jo+vfvn3feeSePPfZY0VGAeuTVV1/N1KlT069fv6KjwDpVUlVVVVV0CADqltmzZ6djx475n//5nxxyyCFFxwHqgeXLl6dTp0455JBDcs011xQdBwAAAAAAAKDeqqqqyn333Zfzzz8/c+fOzRlnnJHzzz8/G2200Zd+z4wZMzJ27NicccYZa3zcMWPG5NBDD83111+f008/fY0fh7pl7ty52WOPPdKtW7f88Y9/TKNGjWrkuPPmzctVV12V6667LmVlZRk2bFiOOOKIlZa2AAAAAAAAAAAAQF2j/wtY1/R/AfzD7rvvns6dO+e///u/i44C1BODBg3KPffck9dffz2NGzcuOg6sMxZbALBG+vTpk2bNmmXMmDFFRwHqgYceeij7779/XnrppXTt2rXoOAAAAAAAAAD10lNPPZVzzz03Tz/9dA4//PD813/9V8rKymrs+MOHD8+FF16YBx54IAcddFCNHZdifPzxx/nWt76VhQsXZtKkSdl0001rPMMbb7yRSy+9NLfeemu+/vWv57LLLsu+++5b4zkAAAAAAAAAAABgXdH/BaxL+r8A/mHkyJE588wz89e//rWQzz8A9cunn36arbbaKqecckouvPDCouPAOtWo6AAA1E0DBw7M2LFj8+abbxYdBagHfvnLX6a8vNyb2gAAAAAAAADV4NVXX03//v2z1157pXnz5nn++eczevToGl1qkSQ//vGPM3DgwBx55JF59tlna/TY1KzKysoMGDAgb775ZsaMGVPYhzq23nrrjBgxIi+++GK23nrr7LfffunTp08mT55cSB4AAAAAAAAAAABYW/q/gHVJ/xfAPxxzzDEpLS3N3XffXXQUoB743e9+l/feey8nnHBC0VFgnbPYAoA1cuihh6ZVq1a58847i44C1HHz58/P7373u5x00klFRwEAAAAAAACoV+bNm5czzzwz3bt3z7Rp0zJmzJg89NBD2WmnnQrLdMMNN6S8vDyHHnpoZs2aVVgOqk9VVVV++MMfZvz48fnDH/6QTp06FR0pXbt2zejRozNx4sQsWbIku+66a/r375+ZM2cWHQ0AAAAAAAAAAABWi/4vYF3R/wXw/9twww3Tv3//3HLLLUVHAeqBW265JX379s3WW29ddBRY5yy2AGCNNG3aNN/73vdyyy23pLKysug4QB12xx13pFmzZunXr1/RUQAAAAAAAADqhYULF+aKK67Itttum//5n//JTTfdlKlTp+aggw4qOlpKS0tz3333pX379undu3feeuutoiOxjp177rm54447MmrUqOyxxx5Fx1nJXnvtlccffzzjx4/Pq6++mi5duuTkk0/O22+/XXQ0AAAAAAAAAAAAWCX6v4B1Rf8XwMoGDhyYioqKPPPMM0VHAeqwt956KxMmTLA8jHrLYgsA1tjAgQPzl7/8JRMmTCg6ClCH3XbbbTnmmGOywQYbFB0FAAAAAAAAoE5bvnx57rrrrnTq1CmXXHJJzjrrrLz22mv5wQ9+kMaNGxcd7zMtW7bMQw89lE022ST77ruvpQL1yIUXXpjrrrsud955Zw4++OCi43yp3r17Z8qUKbn77rszfvz4dOrUKYMHD86HH35YdDQAAAAAAAAAAAD4Svq/gHVB/xfAyvbYY4/stNNOueWWW4qOAtRhv/zlL9O6descdNBBRUeBamGxBQBrrHPnzunVq1duvvnmoqMAddRjjz2Wl19+2SZBAAAAAAAAgLU0YcKE7LTTTjnppJNy8MEHZ+bMmbnooouy/vrrFx3tC2288cb53//935SUlKR3796ZO3du0ZFYSxdffHGGDRuWkSNH5uijjy46zldq1KhR+vXrl+nTp+eaa67Jbbfdlm233TZXXHFFFi9eXHQ8AAAAAAAAAAAA+FL6v4C1pf8L4IudeOKJueeee7JgwYKiowB10LJly3LbbbflhBNOSGlpadFxoFpYbAHAWjnjjDMyZsyYvPrqq0VHAeqgq6++Or169couu+xSdBQAAAAAAACAOunPf/5z9tlnn/Tp0ydbb711Xn755YwYMSKbb7550dG+0hZbbJHHH388jRo1Snl5eWbNmlV0JNZAVVVVzjvvvAwdOjQjR47MiSeeWHSk1dK0adP84Ac/yKxZs3L66afn4osvznbbbZeRI0emsrKy6HgAAAAAAAAAAADwhfR/AWtD/xfAFzv++ONTWlqaESNGFB0FqIPuueeevPPOOzn11FOLjgLVxmILANbKoYcemm222SY33HBD0VGAOmb69On54x//mHPOOafoKAAAAAAAAAB1zptvvpnjjjsue+yxRxYtWpTHH388Y8aMSceOHYuOtlq22GKLPPzww9l4442zzz77ZPr06UVHYjVUVlbmhz/8Ya6//vr86le/ykknnVR0pDXWokWLXHTRRZkxY0YOPPDAnHbaaenevXvuvffeoqMBAAAAAAAAAADA5+j/AtaU/i+AL9eiRYsMHDgwN954Y5YuXVp0HKCOufbaa3PkkUfma1/7WtFRoNpYbAHAWmncuHHOPPPM3HnnnZk3b17RcYA65KqrrkrHjh1z8MEHFx0FAAAAAAAAoM744IMPMnjw4Gy33XZ55plnMmrUqDz11FPp1atX0dHW2GabbZZHHnkk7du3T3l5eZ588smiI7EKPvnkkxx++OG58847c9999+Xoo48uOtI60b59+4wYMSIvvfRSunXrliOPPDI9e/bMY489VnQ0AAAAAAAAAAAA+Iz+L2BN6f8C+PfOPPPMzJs3L7/5zW+KjgLUIePHj88LL7yQs88+u+goUK0stgBgrX3/+9/P+uuvn5///OdFRwHqiPfeey+/+tWvcvbZZ6dRIyMpAAAAAAAAwFdZunRprr/++my77ba59dZbc/HFF6eioiL9+vVLSUlJ0fHW2iabbJI//elP6d27d3r37p2777676Ej8G++880723nvvPPHEExk/fny+853vFB1pnevcuXNGjx6dZ555Js2bN8/ee++dPn365MUXXyw6GgAAAAAAAAAAACTR/wWsPv1fAF+tffv26d+/f6666qpUVVUVHQeoI66++urst99+2WWXXYqOAtXKWQQAa6158+Y5+eSTc9NNN2XRokVFxwHqgBtvvDEtWrTIcccdV3QUAAAAAAAAgFqtqqoq9957b7bffvtccMEFOfnkkzNr1qwMGjQoTZs2LTreOtWsWbP8+te/zg9/+MN873vfy8UXX5zly5cXHYt/8cILL6Rnz55ZsGBBnn766fTq1avoSNVqt912y8MPP5yHHnooH3zwQXbZZZf0798/r7/+etHRAAAAAAAAAAAAaOD0fwGrS/8XwKo577zzMm3atDz00ENFRwHqgIqKijz00EM555xzio4C1c5iCwDWidNPPz0ffvhhfvWrXxUdBajlPvnkk9x888059dRTs/766xcdBwAAAAAAAKDWevjhh7PrrrvmqKOOyq677pqXX345l19+eVq2bFl0tGrTqFGjXHvttbnpppty6aWX5jvf+U7+9re/FR2L/+euu+5KeXl5OnTokKeeeiqdOnUqOlKN6d27d5577rncc889mTJlSnbYYYecfPLJeffdd4uOBgAAAAAAAAAAQAOm/wtYVfq/AFZdjx49su++++bqq68uOgpQB1x99dXp0qVL+vbtW3QUqHYWWwCwTrRt2zYDBgzIFVdckWXLlhUdB6jFbr755ixevDinnXZa0VEAAAAAAAAAaqVXXnkl/fv3T+/evbPppptm8uTJGT16dLbeeuuio9WYH/7wh3n00UczZcqU7LrrrpkyZUrRkRq0JUuW5LTTTssJJ5yQ008/PePHj0/r1q2LjlXjSkpK0q9fv0ybNi033nhjxowZk44dO2bw4MH5+9//XnQ8AAAAAAAAAAAAGiD9X8Cq0v8FsHrOO++8jB8/Ps8880zRUYBabNasWfn1r3+dc889NyUlJUXHgWpXUlVVVVV0CADqhzfeeCPbbbddbrrpppx00klFxwFqoYULF2abbbbJ//k//yeXX3550XEAAAAAAAAAapW//vWvGTp0aG699dbstNNO+a//+q/su+++Rccq1LvvvpujjjoqTz31VC677LL86Ec/coFvDZs2bVqOOeaYzJkzJ7feemuOOOKIoiPVGgsXLszPfvazXH755WnSpEnOPffc/OhHP8p6661XdDQAAAAAAAAAAAAaEP1fwFfR/wWwZr75zW9m/fXXz4MPPlh0FKCWOv744zNp0qS88soradKkSdFxoNo1KjoAAPXH1ltvne9///sZNmxYlixZUnQcoBa6/vrr88knn+Scc84pOgoAAAAAAABArbFw4cJcccUV2WGHHTJ27Nj8/Oc/z7PPPtvgl1okyeabb54JEyZkyJAhGTRoUA444IDMnTu36FgNQlVVVX72s59lt912ywYbbJAXXnjBUot/scEGG2TQoEGZNWtWTjzxxFx00UXp3LlzRo4cmeXLlxcdDwAAAAAAAAAAgAZC/xfwVfR/AayZCy+8MOPHj89jjz1WdBSgFpoxY0Z+/etf56KLLrLUggajpKqqqqroEADUH3Pnzk3Hjh1z5ZVX5rTTTis6DlCLfPjhh9lmm21y2mmnZejQoUXHAQAAAAAAACjcsmXLcvvtt2fIkCFZunRpBg0alDPPPDPNmjUrOlqt9Oc//zkDBgzIe++9lyuuuCIDBw5MSUlJ0bHqpddffz2nnHJKHnnkkZx77rkZNmxYSktLi45V67311lu55JJLcuutt2aHHXbIkCFD0q9fv6JjAQAAAAAAAAAA0ADo/wK+jP4vgLWz7777ZtmyZXniiSeKjgLUMkcffXQmT56cl19+OY0bNy46DtSIRkUHAKB+adeuXQYOHJjhw4fnk08+KToOUItce+21qayszFlnnVV0FAAAAAAAAIDCTZgwITvvvHNOP/30HHLIIZk+fXoGDRpkqcW/sdtuu2Xy5Mk54YQTcuqpp6ZPnz6ZNWtW0bHqlU8//TRXXHFFunXrlnfffTeTJk3K5ZdfbqnFKtpqq60yYsSIVFRUZIcddsiRRx6Zb3zjG3nyySeLjgYAAAAAAAAAAEA9p/8L+DL6vwDWzrBhw/Lkk0/m4YcfLjoKUItMmzYto0ePziWXXGKpBQ2KxRYArHPnn39+Pvzww/ziF78oOgpQS/ztb3/L9ddfn3PPPTebbLJJ0XEAAAAAAAAACvPss8/mW9/6Vvbff/906dIlr7zySkaMGJE2bdoUHa1O2GCDDXLttddm0qRJef/999O9e/cMGTIkCxcuLDpanffwww9n5513zkUXXZSf/OQnee6557L77rsXHatO2mGHHTJ69OhMmjQpTZo0Sa9evdKnT59UVFQUHQ0AAAAAAAAAAIB6TP8X8K/0fwGsvfLy8hxwwAE5//zzU1VVVXQcoJYYMmRIunTpksMPP7zoKFCjLLYAYJ3bYostctppp+Xyyy/Phx9+WHQcoBa49NJL07hx45xxxhlFRwEAAAAAAAAoxIwZM9K/f//sueeeWbZsWZ544omMHj062267bdHR6qTdd989zz33XIYOHZobbrgh22+/fe6++24fEFgDs2bNymGHHZbevXunrKwsU6dOzQUXXJDS0tKio9V5e+65Zx599NE89NBDmTdvXnbaaaccd9xxmTt3btHRAAAAAAAAAAAAqIf0fwH/Sv8XwLoxdOjQPPfcc/n9739fdBSgFvjzn/+c3/72txk2bFgaNVLzT8PiNx6AarFik+CwYcOKjgIUbNasWbnhhhty0UUXpWXLlkXHAQAAAAAAAKhR8+fPz+DBg9O9e/dUVFRk1KhRmTRpUsrLy4uOVueVlpbm3HPPzaxZs/Ld7343xx9/fHbcccfce++9Flysgvfeey+DBw9Ot27d8sorr+QPf/hDxowZk06dOhUdrd7p3bt3nn/++dxzzz2ZOHFiOnXqlMGDB2fBggVFRwMAAAAAAAAAAKCe0f8FrKD/C2Dd2X333dO/f/+cc845WbJkSdFxgAJVVVXl7LPPTs+ePXPIIYcUHQdqXEmVT28CUE1+/vOf56yzzkpFRUW22267ouMABTnkkEMyY8aMvPjiiyktLS06DgAAAAAAAECNWLRoUW644YZcdtllKS0tzU9+8pOcdtppadKkSdHR6q0XX3wxQ4YMye9///v07NkzF198cfr06VN0rFrnnXfeyRVXXJFf/OIXadOmTX784x/nxBNP9LtZQ5YuXZo77rgjQ4YMydKlSzNo0KCcccYZWX/99YuOBgAAAAAAAAAAQD2h/wtI9H8BrGt/+ctf0rlz51x88cU599xzi44DFOTuu+/Occcdl2eeeSa77rpr0XGgxllsAUC1qayszM4775yysrL8/ve/LzoOUIBHHnkk++23X8aNG5cDDjig6DgAAAAAAAAA1W758uW5//7785//+Z95//33c/rpp+eCCy5Iy5Yti47WYEydOjWXXHJJ7r333uy44445++yzc/TRRzf4D2PNnDkzN954Y2655ZZsuOGGOeecc3LmmWemWbNmRUdrkD7++OPcdNNNufTSS9OiRYsMGTIk3//+9y0YAQAAAAAAAAAAYK3p/wL0fwFUjyFDhuS6667L9OnT07Zt26LjADVs0aJF2X777XPAAQdk5MiRRceBQlhsAUC1+dvf/pbbb789Z599dvr06ZMrr7wyO+64Y9GxgBqy4i+3OnTokN/97ndFxwEAAAAAAACodhMmTMh5552XqVOn5thjj80VV1zhIvUCPffcc7nqqqty//33p127djnttNNy/PHHZ/PNNy86Wo2prKzMgw8+mJtvvjn/+7//m06dOuXss8/OcccdZ6FFLTFv3rxcddVVue6661JWVpZhw4bliCOOSElJSdHRAAAAAAAAAAAAqMNWlNqPHTs2ffv2LToOUIP0fwFUnxWl9vvvv39uueWWouMANezCCy/Mtddem9deey1bbLFF0XGgEBZbALBO/OUvf8kLL7yQKVOm5Pnnn89zzz2Xv/71r5/dvtlmm+Uvf/lLSktLC0wJ1KSbbropZ599dioq/j/27jyqCjp/4/hzWZQs1zRtc4mkQHFBckcMwS1zqcCdsgzcCjMNXCrQMlDLKK1kchnTQlArcU0Ql0DUcAMRl3JyyRpJM3Fjuff3x2/GM03WqAFflvfrnPkj7vXytnOygbjPJ0MuLi6mcwAAAAAAAAAAAACg2GRlZSk0NFSrV6+Wr6+v3nnnHbm7u5vOwr/84x//UHR0tBYtWqSLFy+qd+/eGj58uPz8/GRvb286r1h8//33WrhwoRYsWKCTJ0+qc+fOCgkJ0eOPPy47OzvTebiO77//XtOnT9f8+fPVqlUrvfXWW/Lx8TGdBQAAAAAAAAAAAAAAAAAow/r27avDhw9r37597H8BFQj7XwBQvJYsWaKnn35aO3bskKenp+kcACXk5MmTeuihhxQREaHx48ebzgGM4bAFAOCmFBYW6vDhw9q7d6/27Nmjb775Rrt379b58+clSU5OTsrPz1dhYaEkyWKxyN/fX1988YVmzJihkJAQk/kASkhOTo4efvhhDRs2TDNnzjSdAwAAAAAAAAAAAADF4uTJk5o2bZrmz5+vli1baubMmercubPpLPyBq1evatWqVYqJiVFSUpJq1aqlnj17yt/fXz169JCDg4PpxL/k1KlTWr58ueLj45Wamqq77rpL/fv31/PPP6+mTZuazsMNOnDggCIiIhQfHy9fX19FRUXJw8PDdBYAAAAAAAAAAAAAAAAAoAw6evSomjRpwv4XUIGw/wUAxc9ms6l9+/ZydHTUli1bZLFYTCcBKAEBAQHau3evMjMzValSJdM5gDEctgAA3BCbzaYnnnhC69at09WrV2VnZycHBwfl5eX94a9xdHSUl5eX1q9fr4iICL333nvKzMxU/fr1S7AcgAmBgYFKTk7WgQMHVK1aNdM5AAAAAAAAAAAAAFCkcnNzNWvWLM2YMUN16tTR5MmTNXz4cNnZ2ZlOww06cuSIli1bpri4OGVkZOjuu+9Wjx491L17d/n5+alGjRqmE/8nq9Wq9PR0rV+/XmvXrtXOnTtVtWpV9enTRwEBAeratascHR1NZ+IWpaamKiwsTF9//bWeeuopTZ8+XQ8++KDpLAAAAAAAAAAAAAAAAABAGTNlyhT2v4AKhP0vACgZ6enpatu2rebOnaugoCDTOQCK2erVq/X4449r3bp16t69u+kcwCgOWwAAbtiiRYs0bNiwG3quo6OjHnjgAe3YsUPVq1fX1atX1bJlSzVs2FBr164t5lIAJm3atEm+vr5auXKl+vbtazoHAAAAAAAAAAAAAIpMfn6+Fi5cqFdffVUFBQV65ZVXFBISIicnJ9Np+AsOHjyolStXat26dUpLS5PFYlGbNm3UsWNHdejQQe3bt9edd95pOlMFBQXat2+fUlJSlJKSouTkZJ05c0b33Xefunfvrl69eql79+6qXLmy6VQUocTERI0bN07Z2dkaNmyYwsPDdffdd5vOAgAAAAAAAAAAAAAAAACUEex/ARUH+18AULImTJigmJgYZWVl6d577zWdA6CYXLhwQU2aNJG3t7c++eQT0zmAcRy2AADcMJvNplatWikjI0MFBQV/+Dx7e3vVqFFD6enpatCgwbWPb926VZ07d9bSpUs1cODAkkgGUMIuXbokd3d3eXp6atmyZaZzAAAAAAAAAAAAAKDIJCQkaNy4cTp+/LhGjBihiIgI1ahRw3QWiti5c+eUmJioxMREpaSkKCsrS5LUuHFjNW/eXM2aNVPTpk3VtGlT1a9fX5UqVSqWjjNnzujQoUPKzMzUvn37lJmZqb179yo3N1e1atVS+/bt1alTJ3Xv3l3u7u7F0oDSw2q1asWKFXrllVd05swZjRkzRhMnTlT16tVNpwEAAAAAAAAAAAAAAAAAygD2v4Dyj/0vACh5ly5dUrNmzeTq6qqEhATTOQCKyZgxYxQbG6usrCzdddddpnMA4zhsAQC4KWlpaWrfvr3+6F8fFotFjo6O2rJli9q2bfu7x0eMGKEVK1YoKytLderUKe5cACXs5Zdf1vz585WVlaV77rnHdA4AAAAAAAAAAAAA/GVpaWmaMGGCUlJS9NRTTykyMlIPPPCA6SyUkHPnzik1NVU7duxQRkaG9u/fr2PHjslms8ne3l733nuvGjZsqIYNG6p27dq68847VadOHdWoUUNVq1aVg4OD7O3tVa1aNV29elWXLl2SJF24cEG5ubn6+eef9fPPPysnJ0enTp3SsWPHdOzYMV28eFGSVL16dbm7u8vd3V0eHh5q3769XF1dZbFYTP5tgSF5eXlatGiRpkyZIqvVqgkTJigkJEROTk6m0wAAAAAAAAAAAAAAAAAApRz7X0D5xv4XAJiRnJysLl26aPny5XriiSdM5wAoYjt27FCHDh20aNEiDRkyxHQOUCpw2AIAcFPy8/PVrVs3ff3118rPz//d4xaL5U+/oPr111/VpEkTdenSRYsWLSrmWgAladeuXWrXrp3mzZun5557znQOAAAAAAAAAAAAAPwlhw4d0quvvqrly5fLx8dHM2bMkIeHh+kslAIXLlxQdna2/vGPf1w7RHH8+PFrRyrOnDmj8+fP/8/XcXJy0p133nntf/fcc8+1IxmNGjWSs7OzGjZsWPy/IZQ5586dU1RUlN577z3Vrl1bU6ZM0XPPPSd7e3vTaQAAAAAAAAAAAAAAAACAUor9L6D8Yv8LAMwaNmyY1q9fr6ysLNWsWdN0DoAikpeXJw8PD9WtW1eJiYmyWCymk4BSgcMWAIAbtm7dOr300ks6fvy4bDabrly58pvHLRaLZs6cqZdffvlPX+eLL75Qv379tG7dOnXv3r04kwGUkKtXr6p169a68847lZSUxBdcAAAAAAAAAAAAAMqsnJwczZo1S7Nnz5azs7MiIiLk7+9vOgtlUG5urvLz81VQUKALFy6oUqVKuv322yVJ1apV4wgB/rJTp05p6tSpWrBggVxcXBQeHs6fVwAAAAAAAAAAAAAAAACAP8T+F1C+XLlyRRaLhf0vADDs7NmzcnNz02OPPab58+ebzgFQRF577TW98847yszMVMOGDU3nAKWGnekAAEDpd+TIEQUEBKhnz55q3LixMjMzNXny5N+8ud7e3l7Dhg37n0ctJKlv374aNGiQnn32WZ05c6Y40wGUkMmTJ+vYsWP629/+xje1AQAAAAAAAAAAAJRJly5dUlRUlJydnbVkyRK9//77ysjIYCQet+yOO+5QzZo1VadOHT3wwAO67777VLNmTdWsWZOjFigS9957r+bNm6fMzEw1adJE/fv3V7t27bRlyxbTaQAAAAAAAAAAAAAAAACAUoj9L6B8OXDggOrXr6/s7Gz1799fv/76q+kkAKiQatWqpQ8//FALFy7U559/bjoHQBFITU3VW2+9paioKI5aAP/FYrPZbKYjAAClU25urmbNmqXIyEg98MADmj17trp16ybp/y+0Pvjggzp9+rTs7OzUuXNnrVu3Tg4ODjf02ufPn1eLFi3k6uqqNWvWMIQPlGEbN25U9+7dtWDBAj399NOmcwAAAAAAAAAAAADgplitVi1ZskQTJ07U+fPnNWbMGE2ePFlVq1Y1nQYAN2XXrl0KCwvTpk2b5Ovrq1mzZql58+amswAAAAAAAAAAAAAAAAAApQj7X0D5sXHjRnXr1k3/npW1s7NT8+bN1bNnT3Xp0kXt27dX5cqVDVcCQMXx/PPPa8WKFdq3b5/uv/9+0zkAblFubq48PDzk7OystWvX8jUT8F84bAEA+J1/Dza88sorys/QdE+OAAAgAElEQVTP12uvvaYxY8bI3t7+N89bsWKFnnrqKbm6uiotLU3VqlW7qc/z9ddfq3PnzpozZ45GjBhRlL8FACXk3Llzat68uVq3bq3ly5ebzgEAAAAAAAAAAACAm5KYmKiXX35ZBw8e1LBhwxQREaF69eqZzgKAvyQxMVGhoaHau3evnnzySUVGRuqBBx4wnQUAAAAAAAAAAAAAAAAAKCXY/wLKvv/c/8rLy9OaNWtktVolSY6OjsrPz1flypXVoUMHdevWTb6+vmrRooXs7OwMlwNA+XXx4kW1atVK9erV06ZNm/gzFyijhg4dqg0bNmj//v281xC4Dg5bAAB+Y+fOnXrxxReVnp6uZ599Vm+++aZq1679h89/+umnNW3aNNWvX/+WPt+UKVP09ttva9euXWratOmtZgMwJCAgQNu3b9e+fftUq1Yt0zkAAAAAAAAAAAAAcEPS09M1YcIEJScny9fXV7Nnz+bnFgCUKzabTcuXL9ekSZN0/PhxPfPMM5o6darq1q1rOg0AAAAAAAAAAAAAAAAAUAqw/wWUbf+5/2VnZyd3d3f9+OOPKigo+M3zLBaLHBwclJ+frypVqqht27bq2rWrfH191apVK0P1AFB+paenq3379po+fbpefvll0zkAblJ8fLz69++vVatWqVevXqZzgFKJwxYAAEnSqVOnNHHiRC1ZskQ+Pj569913S+QbzQUFBfLy8tLVq1eVlpamSpUqFfvnBFA05s2bp1GjRmnjxo3y8fExnQMAAAAAAAAAAAAA/9OJEyf0xhtv6OOPP5anp6dmzpypTp06mc4CgGKTn5+vhQsXKjw8XBcuXNDo0aM1adIkVatWzXQaAAAAAAAAAAAAAAAAAMAg9r+Asut6+19paWnq2LGjCgsL//TX2tvbS5IKCwsVFRWlV155pdh7AaCimT59uqZOnaq0tDS1aNHCdA6AG3TixAk1b95cQ4YM0XvvvWc6Byi1OGwBABXc5cuX9d577+mNN95QvXr1NH36dPn7+5dow9GjR9WyZUs999xzevfdd0v0cwO4NRkZGWrXrp1efPFFTZ8+3XQOAAAAAAAAAAAAAPypc+fOKSoqStHR0apbt66mTp2qoUOHymKxmE4DgBJx8eJFzZkzR5GRkXJwcND48eM1duxYVa5c2XQaAAAAAAAAAAAAAAAAAMAQ9r+AsufP9r9mzpypsLAwWa3WP30NBwcHNWrUSPv375eTk1Nx5gJAhWS1WuXj46OffvpJO3fuVNWqVU0nAfgf8vLy1LlzZ124cEG7du3i/yMBf4LDFgBQgSUkJOjFF1/UmTNnNH78eE2cONHYG5U//fRTDRkyREuXLtXAgQONNAC4MefPn9cjjzyievXqKSkpSY6OjqaTAAAAAAAAAAAAAOC68vPztXDhQk2ZMkVWq1UTJkxgyB1AhXb27FnNmDHj2qGfSZMmafjw4bKzszOdBgAAAAAAAAAAAAAAAAAwgP0voOz4X/tfNptNjz/+uL766ivl5+f/4evY2dlp+/btat26dXEnA0CFderUKbVq1UodO3ZUfHy8LBaL6SQAf2LMmDH6+9//rh07dsjNzc10DlCq8S40AKiA9uzZo06dOqlPnz7y8vLS0aNHFR4ebnS0YdCgQXrxxRf13HPPac+ePcY6APw5m82mZ599VhcuXFBsbCxHLQAAAAAAAAAAAACUSjabTfHx8XJ1ddXYsWP17LPP6ttvv1VoaChHLQBUaLVq1VJkZKQOHz6sbt26adSoUWrevLni4+NNpwEAAAAAAAAAAAAAAAAADGD/CygbbmT/y2KxaPHixapdu7bs7e2v+zr29vaaPHkyRy0AoJjde++9WrlypVatWqUZM2aYzgHwJ5YuXaoPPvhA8+fP56gFcAM4bAEAFcjPP/+skJAQPfLII7py5YpSUlK0ePFi1atXz3SaJGnWrFlq3bq1AgIC9Msvv5jOAXAdb7zxhhISEhQXF6d77rnHdA4AAAAAAAAAAAAA/M727dvVsWNHDRgwQB4eHsrKylJkZKSqV69uOg0ASo37779f8+bNU0ZGhlxdXdW/f3917NhRX3/9tek0AAAAAAAAAAAAAAAAAEAJY/8LKP1udP+rVq1aio2Nlc1m+91jDg4Ouv3220vN9iAAlHft27dXZGSkJk2apA0bNpjOAXAd+/fvV1BQkMaPH6+AgADTOUCZwGELAKgA8vPzFR0dLWdnZ61YsUILFizQjh071K5dO9Npv+Hg4KBly5bp8uXLGjp0qKxWq+kkAP8hMTFREREReuedd+Tl5WU6BwAAAAAAAAAAAAB+Izs7WwEBAWrfvr2qVKmi9PR0xcXFqWHDhqbTAKDUcnV1VVxcnFJTU+Xg4CAvLy/5+fkpIyPDdBoAAAAAAAAAAAAAAAAAoISw/wWUbje7/9WpUyeFh4fLzu63k7M2m009e/bUCy+8oL59++qnn34qrmQAwL+MGzdO/v7+GjRokI4dO2Y6B8B/OHfunJ544gm1adNG06dPN50DlBkctgCAci4xMVEtW7bUxIkTNWLECB08eFCBgYGyWCym066rbt26WrZsmTZs2KA333zTdA6Afzl27Jj69++vAQMGaMyYMaZzAAAAAAAAAAAAAOCanJwchYSEyN3dXQcOHFBCQoI2btyoFi1amE4DgDKjbdu22rx5szZu3KicnBy1aNFCgYGB+uGHH0ynAQAAAAAAAAAAAAAAAABKAPtfQOl0q/tfkydPVufOneXo6ChJsre3V0REhD777DNt27ZNWVlZevjhh/XJJ58UVzoA4F8+/vhj3X333erfv7+uXLliOgeAJKvVqsGDB+vq1auKjY2Vg4OD6SSgzOCwBQCUU4cPH1avXr3k5+enRo0a6cCBA4qMjFTVqlVNp/1PHTp00OzZsxUeHq64uDjTOUCF98svv6hXr16qX7++YmJiTOcAAAAAAAAAAAAAgCTp4sWLioqKkrOzs1auXKm5c+dq//796tWrl+k0ACizfH19lZ6ertjYWKWkpKhx48YKCwvTuXPnTKcBAAAAAAAAAAAAAAAAAIoZ+19A6fJX9r/s7Oy0dOlSVatWTRaLRe7u7goNDZUktW/fXnv37lVgYKCefvppBQQEKCcnpzh+CwAASXfccYdWrlypI0eO6JlnnpHNZjOdBFR4L7/8spKTkxUfH6+77rrLdA5QpnDYAgDKmV9++UVhYWFq1qyZTp06pS1btighIUGNGjUynXZTRo8erTFjxujpp59WSkqK6RygwsrKylK7du109uxZffnll6pSpYrpJAAAAAAAAAAAAAAVnNVq1eLFi9W4cWO98cYbeumll3T48GEFBQXJ3t7edB4AlHl2dnby9/fXwYMHNXv2bC1atEjOzs6KiorS5cuXTecBAAAAAAAAAAAAAAAAAIoR+19A6ZCfny9/f3/98ssvt7z/Va9ePcXGxsrJyUlLly6Vg4PDtceqVKmi6OhobdiwQWlpaWrSpIk+//zzovwtAAD+g4uLi7744gt98cUXmjx5sukcoEKbN2+eoqOj9be//U1t27Y1nQOUORYbJ5oAoFywWq1asmSJJkyYoIKCAr322msaM2ZMmR5ssFqtevLJJ7Vt2zalpqbKxcXFdBJQodhsNg0bNkxLly6VxWJRv3799Oyzz8rPz092dtxHAwAAAAAAAAAAAFDyEhMTNW7cOGVnZ2vYsGGaOnWq6tatazoLAMq13NxczZ07V9OnT1fVqlX12muv6dlnn/3NmxsBAAAAAAAAAAAAAAAAAOUH+1+AWf/e/1q5cqW2bt2qFi1a/KXXy8rKkpub2x8+fv78eb3yyiuKiYmRv7+/PvroI9WqVesvfU4AwPV99tlnGjx4sObOnauRI0eazgEqnLVr16p3796aNm2aJk6caDoHKJM4bAEA5cCWLVs0duxYHThwQMOGDdObb76p2rVrm84qEpcvX5aPj4/OnDmj7du3q06dOqaTgAojIiJC06ZN05w5c/TCCy+osLBQNptNdevW1fPPP6+nn35aDz74oOlMAAAAAAAAAAAAABXArl27NGHCBG3ZskW9evXS7Nmz+e+VAFDCcnJyNGvWLL377rtq2LChpk2bpqeeekoWi8V0GgAAAAAAAAAAAAAAAACgiLH/BZjz7/2vlStXqnfv3iX2edetW6fnn39ehYWFiomJ0eOPP15inxsAKpLXX39db775pr744gv16tXLdA5QYezevVve3t7q37+/Pv74Y9M5QJllZzoAAHDrTp48qcDAQD366KOqXbu2du/erXnz5pWboxaSdNttt2nVqlWSpCeeeEJXrlwxXARUDLGxsYqIiFB0dLRGjBih8ePHy97eXpL0008/KSoqSo0bN1aLFi0UExOjCxcuGC4GAAAAAAAAAAAAUB4dP35cgYGBatOmja5cuaKtW7cqISGBoxYAYEDt2rUVGRmpQ4cOydvbWwMHDlTbtm21adMm02kAAAAAAAAAAAAAAAAAgCLG/hdgxn/uf5XkUQtJ6tGjhzIzM9W7d2/17t1bgYGB7IsBQDEIDw/X4MGDNWjQIO3bt890DlAhnDp1Sn369FGHDh300Ucfmc4ByjSLzWazmY4AANycS5cuacaMGZoxY4buu+8+vfnmm/L39zedVayysrLUoUMHdenSRbGxsXJwcDCdBJRbGzZsUO/evTV27FhFRUVJ+v8/dxo3bqwff/xRVqv12nP/fezC3t5evXv3VnBwsLp06SKLxWKkHQAAAAAAAAAAAED5cPbsWc2YMUPvvvuuGjRooDfeeENPPfUU/y0SAEqRAwcOKCIiQvHx8fL19VVUVJQ8PDxMZwEAAAAAAAAAAAAAAAAAihD7X0DJud7+lynx8fEaNWqUbr/9di1YsEA+Pj5GewCgvMnLy1O3bt105MgRbdu2TY0aNTKdBJRbZ86ckbe3txwdHbVt2zZVq1bNdBJQptmZDgAA3JyEhAS5ubnp7bff1iuvvKKMjIxyf9RCktzc3LRq1SqtW7dOzz777G+G9QEUna1bt+qJJ57QwIED9dZbb137eJUqVfT222/rv2+iFRYWqrCwUHl5efryyy/l5+en++67T2FhYTp27FhJ5wMAAAAAAAAAAAAo4/Ly8hQdHS1nZ2fNnz9fERER1342gqMWAFC6NGnSRHFxcUpJSdHVq1fl6empgIAAHT161HQaAAAAAAAAAAAAAAAAAKCIsP8FlIw/2v8yxd/fXwcOHJCHh4d8fX0VHBysixcvms4CgHKjUqVK+vzzz1W3bl35+vrq1KlTppOAcumXX35Rt27ddPXqVa1du5ajFkARsNj+e50YAFAq7d69WyEhIUpNTdXgwYM1c+ZM1a1b13RWiUtMTNTjjz+uQYMG6eOPP2a0AihCe/bskY+Pjx599FHFxcVd9zK6l5eXduzYofz8/D99LYvFoipVqujAgQNq0KBBcSUDAAAAAAAAAAAAKCdsNpuWL1+u0NBQ/fTTT3rhhRc0adIkflAUAMqQxMREjRs3TtnZ2Ro2bJgiIiJUr14901kAAAAAAAAAAAAAAAAAgCLA/hdQfG5k/8uk+Ph4jRw5UtWrV9fChQvVqVMn00kAUG7k5OSoc+fOysvL09atW/kZfKAIXbp0Sd27d9d3332nbdu2qVGjRqaTgHLBznQAAODP5eTkKCQkRK1bt1ZeXp5SUlK0ePHiCnnUQpJ8fX0VGxurTz75RGPHjjWdA5QbGRkZ8vPzU+vWrfXZZ5/94Te1P/zwQxUWFt7Qay5YsICjFgAAAAAAAAAAAAD+p6SkJHl6emrAgAHy9PRUVlaWIiMjOWoBAGWMr6+v9u7dq6VLl+qrr77Sgw8+qLCwMJ0/f950GgAAAAAAAAAAAAAAAADgL2L/CygeN7r/ZZK/v78yMzPVtGlTPfroowoJCdHVq1dNZwFAuVC7dm0lJSXJzs5OXbt21dmzZ00nAeVCXl6ennjiCWVnZ+urr77iqAVQhDhsAQClVH5+vqKjo+Xs7KwVK1ZowYIFSktLU9u2bU2nGdenTx999tlnmjt3rsLDw03nAGXekSNH1LVrVz388MNauXKlKleu/IfPbdq0qUaPHv2n3/i2s7NTRESEAgICiiMXAAAAAAAAAAAAQDlx8OBBBQQEyNfXV7Vq1dLu3bsVFxenBg0amE4DANwiOzs7+fv769ChQ3rnnXe0YMECOTs7KyoqSleuXDGdBwAAAAAAAAAAAAAAAAD4C9j/AorWzex/mVavXj19+eWXWrhwoRYuXCgPDw998803prMAoFyoW7euNm7cqAsXLqhHjx66cOGC6SSgTMvPz9eTTz6ptLQ0rV+/Xm5ubqaTgHKFwxYAUAolJiaqRYsWmjhxokaOHKns7GwFBgbKYrGYTis1nnzySX300UeaOnWq3nzzTdM5QJl1+PBh+fj4qGHDhlq/fr1uv/32//lr3njjDdWoUeO6fyY5ODioT58+mjJlSnHkAgAAAAAAAAAAACgHTp06peDgYLm7u+u7775TUlKSNm7cqObNm5tOAwAUkUqVKikoKEiHDh3S8OHDFRERIRcXF8XExKiwsNB0HgAAAAAAAAAAAAAAAADgFrH/BRSNW9n/Kg0CAwOVkZGhevXqqV27dgoLC1NeXp7pLAAo8+6//35t2LBBx48f12OPPaZff/3VdBJQJuXl5WnAgAHasmWLNmzYIA8PD9NJQLnDYQsAKEUOHTqkxx57TH5+fnrggQeUlZWlyMhI3XHHHabTSqXhw4dr7ty5eu211zRp0iTTOUCZk5GRIW9vb91zzz1au3btDf9ZU61aNUVFRf3u446OjnJwcND58+d1/vz5os4FAAAAAAAAAAAAUMZdvHhRUVFRcnV11bp16/TBBx9o586d8vHxMZ0GACgmNWvWVGRkpI4cOaIePXpo9OjRatasmeLj402nAQAAAAAAAAAAAAAAAABuEftfwF9zq/tfpUWDBg2UmJiouXPnau7cufL09NSePXtMZwFAmefi4qLExEQdOXJEfn5+Onv2rOkkoEy5fPmy+vbtq8TERK1Zs0Zt2rQxnQSUSxy2AIBS4Ny5cwoLC1OzZs10+vRpbdmyRQkJCWrYsKHptFJv5MiR+uSTTzRz5kyNGjVKVqvVdBJQJqSnp8vHx0cuLi7auHGjataseVO/ftiwYWrVqpUcHBwkSQ4ODqpTp47WrFmjo0ePqnXr1jp06FBxpAMAAAAAAAAAAAAoY/Lz8xUTEyNnZ2dFRUVp8uTJOnz4sIKCgmRnx4+wAUBFcO+992revHnKzMxUkyZN1L9/f7Vr105btmwxnQYAAAAAAAAAAAAAAAAAuAXsfwG35q/uf5UWFotFQUFB2r9/v2rVqqU2bdooLCxM+fn5ptMAoExr0qSJUlNTlZOTIy8vL/3www+mk4Ay4eLFi+rdu7fS0tK0YcMGeXl5mU4Cyi3eFQwABlmtVi1evFgPP/ywPv74Y82YMUO7du1Sp06dTKeVKYMGDdKKFSu0YMECPf300yooKDCdBJRq27Ztk4+Pjx555BGtX79e1apVu+nXsFgs+vDDD1VYWCiLxSJHR0etW7dOPj4+2r59u6pXr6727dsrOTm5GH4HAAAAAAAAAAAAAMqKxMREtWzZUmPGjFGfPn106NAhhYaGysnJyXQaAMCAhx56SHFxcdqxY4eqVKmizp07y8/PT/v27TOdBgAAAAAAAAAAAAAAAAC4Sex/ATenKPa/SptGjRopOTlZc+bM0fvvv6+OHTsqOzvbdBYAlGn//rM1Pz9fPj4+OnHihOkkoFT75Zdf5Ofnp4yMDCUnJ6tt27amk4ByjcMWAGDI5s2b5eHhoeHDh2vAgAH69ttvFRISInt7e9NpZVLv3r31+eefa8WKFRoyZAjXWoE/kJycrJ49e8rb21srV67Ubbfddsuv5enpqeeee04Wi0VxcXFq1qyZJOmee+7Rtm3b1K1bN3Xt2lUffvhhUeUDAAAAAAAAAAAAKCN27twpb29vde3aVW5ubjp48KDmzZunOnXqmE4DAJQCjzzyiJKSkrRx40adPXtWHh4eCggI0HfffWc6DQAAAAAAAAAAAAAAAABwE9j/Am5MUe5/lTYWi0VBQUHatWuXbDabWrZsqaioKBUWFppOA4Ayq379+tq2bZsqV64sLy8vHT161HQSUCr985//1KOPPqqTJ09q69atat68uekkoNzjsAUAlLATJ04oMDBQjz76qOrUqaM9e/YoOjpa1atXN51W5vXo0UNr1qzRmjVr1LdvX+Xm5ppOAkqV2NhY9ejRQ/369dPKlSvl5OT0l1/zrbfe0gcffKBevXr95uNOTk5aunSpJk+erNGjRyskJERWq/Uvfz4AAAAAAAAAAAAApduRI0cUEBCgtm3bKj8/X9u2bVNcXJycnZ1NpwEASiFfX1998803io2N1Z49e+Tq6qrg4GD99NNPptMAAAAAAAAAAAAAAAAAADeI/S/gzxXH/ldp5ObmptTUVIWHh+u1116Tl5eXDh8+bDoLAMqsunXrKikpSbVr15a3t7f27t1rOgkoVb777jt16tRJubm52rp1q1xcXEwnARUChy0AoIRcunRJ4eHhcnFx0Y4dO5SQkKCNGzeqSZMmptPKlUcffVRJSUn65ptv1KlTJ/3www+mk4BS4a233tKgQYM0atQoLVq0SA4ODkXyurVr11ZwcPB1H7NYLAoPD9enn36qv/3tb+rVq5d+/fXXIvm8AAAAAAAAAAAAAEqXn3/+WWFhYXJ3d1dGRoaWLVum1NRUdejQwXQaAKCUs1gs8vf3V1ZWlt5//30lJCTowQcfVFhYGD9rAgAAAAAAAAAAAAAAAABlBPtfwPUV1/5XaeXg4KDQ0FClp6fr6tWratGihaKiomS1Wk2nAUCZVLt2bSUlJcnV1VVeXl5au3at6SSgVEhLS1O7du10++23a+vWrWrYsKHpJKDCsNhsNpvpCAAoz2w2m5YvX67x48fr119/VVhYmMaOHavKlSubTivXjh07pscee0znz5/X6tWr1bJlS9NJgBEFBQV68cUXFRMTo9mzZ+uFF14w0rF9+3b169dPdevW1apVq9SgQQMjHQAAAAAAAAAAAACK1uXLl/Xee+/prbfekqOjo6ZMmaLRo0eX+zfbAACKz8WLFzVnzpxr/24ZP348P3MHAAAAAAAAAAAAAAAAAGXE9fa/Ll26pCpVqphOA0pUadn/Mik/P1/vvPOOXn31VXl7e2v+/PmqX7++6SwAKJMKCgo0ZswYffzxx4qOjtbo0aNNJwHGfP755xoyZIi8vLwUFxenatWqmU4CKhQ70wEAUJ6lp6fLy8tLAwYMkLe3t7KzsxUaGsobbEtAo0aNlJKSIhcXF3Xq1Elr1qwxnQSUuNzcXPXp00eLFy/WypUrjX5Tu127dtq+fbsKCwvVrl077dy501gLAAAAAAAAAAAAgL/OarUqPj5ebm5umjZtmkaMGKFvv/1WISEhHLUAAPwlt99+u0JDQ/Xtt9/queeeU3h4uB566CHFxMTIarWazgMAAAAAAAAAAAAAAAAA/In/3P/y8vJSly5dlJ6ebjoLKFGlaf/LJEdHR4WGhurrr7/WqVOn5O7urpiYGNlsNtNpAFDmODg46KOPPtLbb7+tF198USEhIfx8PSqk6OhoPfXUUxo8eLBWr17NUQvAAA5bAEAxOH36tIKDg9W6dWs5ODgoPT1dixcvVt26dU2nVSg1a9bU+vXr1adPH/Xr108ff/yx6SSgxJw4cULt27fXnj17tGXLFvXu3dt0kho1aqTt27fL09NTnTp10tKlS00nAQAAAAAAAAAAALgFiYmJatWqlQYMGCAvLy8dOXJEkZGR/BAoAKBI3XnnnYqMjNThw4fVrVs3jRo1Ss2bN1d8fLzpNAAAAAAAAAAAAAAAAADAn6hSpYp8fHx05coVJScnKzs723QSUGJK4/6Xaa1bt9bu3bs1cuRIjRo1Sj179tSpU6dMZwFAmRQSEqK///3v+uijj9S/f39dvnzZdBJQIgoKCjRq1CiNGzdOM2fOVExMjBwcHExnARUShy0AoAjl5+crOjpaDz/8sNauXauFCxcqOTlZLVq0MJ1WYVWuXFmffPKJQkNDFRQUpNGjRysvL890FlCskpOT5enpKavVqu3bt6tVq1amk66pWrWqPv/8c40dO1ZDhw5VWFgYl5MBAAAAAAAAAACAMiIrK0uPP/64/Pz8VLt2be3du1eLFy/W3XffbToNAFCO3X///Zo3b54yMjLk6uqq/v37q2PHjvr6669NpwEAAAAAAAAAAAAAAAAA/suqVavk4uKi8PBwFRYWqnPnzgoODmb/CxVCad7/Ms3JyUmRkZHatm2bvvvuOzVt2lQxMTGmswCgTBoyZIg2bNigpKQkdejQQceOHTOdBBSrf/7zn/Lz89OiRYsUFxencePGmU4CKjQOWwBAEUlISJCrq6smTZqkkSNH6uDBgwoMDJTFYjGdVuFZLBZNmzZNX3zxhZYuXaoOHTro+PHjprOAYhETE6Nu3bqpbdu2SklJUYMGDUwn/Y69vb0iIyM1b948vfPOO1z6BAAAAAAAAAAAAEq5kydPKjg4WM2aNdOPP/6o5ORkbdy4Ue7u7qbTAAAViKurq+Li4pSamioHBwd5eXnJz89PGRkZptMAAAAAAAAAAAAAAAAAoMI7fPiwunfvrj59+ujkyZOyWq2yt7fXkiVL2P9ChVAW9r9Kg3bt2mnv3r0KDg7WyJEj1atXL50+fdp0FgCUOZ07d9bevXtlb28vT09PrV+/3nQSUCzS09PVunVrfffdd9qyZYuefPJJ00lAhcdhCwD4iw4dOqSePXuqd+/ecnV1VVZWliIjI3XHHXeYTsN/6d27t3bs2KFLly7J09NTSUlJppOAIpObm6v+/ftr1KhR1w65VK9e3XTWn3r++ee1du1abdy4UT4+Pjw+ATYAACAASURBVPrxxx9NJwEAAAAAAAAAAAD4D7m5uQoPD5eLi4vWr1+vDz74QDt27FDnzp1NpwEAKrC2bdtq8+bN2rhxo3JyctSiRQsFBgbqhx9+MJ0GAAAAAAAAAAAAAAAAABVObm6uXn/9dTVt2lTJycmSJKvVKgcHB3Xr1k333HMP+18o18ri/pdpt912myIjI7VlyxZlZ2erefPmWrFiheksAChz6tevr23btqlv377q2bOnwsLCZLVaTWcBRSYmJkbt27eXm5ub9uzZo0ceecR0EgBx2AIAbtm5c+cUEhKipk2b6qefftLWrVuVkJDAddRS7qGHHlJaWpq8vb3VvXt3RUVFmU4C/rIjR46oXbt22rRpk9avX6/Q0FBZLBbTWTfE19dXu3bt0rlz5+Tp6andu3ebTgIAAAAAAAAAAAAqvPz8fMXExMjZ2Vnvv/++Xn/9dR06dEhBQUGys+NHzgAApYOvr6/S09MVGxurlJQUNW7cWGFhYTp37pzpNAAAAAAAAAAAAAAAAAAo92w2mxYvXqwGDRpo+vTpys/PV15e3rXHCwsLFRQUdO2v2f9CeVSW979Kg44dO2r37t3q16+f/P39FRAQoJ9//tl0FgCUKU5OTpo/f74++ugjzZ49W7179+Zn6lHmXb16Vc8//7xGjBihl156SatXr1atWrVMZwH4F95lDAA3yWq1avHixXrooYe0dOlSzZo1Szt37pSXl5fpNNygqlWrKi4uTlOnTtXkyZMVEBBw7QuvK1euGK4Dbs7SpUvl6emp22+/Xbt375avr6/ppJv24IMPKjU1VS4uLvL29taXX35pOgkAAAAAAAAAAACosBISEuTm5qYXXnhBAwYM0LfffqvQ0FA5OTmZTgMA4Hfs7Ozk7++vgwcPavbs2Vq0aJGcnZ0VFRWly5cvm84DAAAAAAAAAAAAAAAAgHJp165datOmjYYNG6Zz586poKDgd8+pWbOmevbs+ZuP/dn+F1DWlIf9r9KgWrVqmjdvntatW6ft27erSZMm7JABwC0ICgpSUlKSdu/erdatW2vXrl2mk4Cb8u894OzsbLVr107Lly/XqlWrFBkZKTs7ZvSB0oR/IgHgJiQnJ6tly5YaPny4Bg4cqG+//VYhISGyt7c3nYabZLFYNHHiRG3YsEEpKSlq3ry5Jk2apPnz55tOA27I+fPnNWTIEA0dOlTPPPOMtmzZovvvv9901i2rVauWvvrqKw0dOlT9+vVTeHi46SQAAAAAAAAAAACgQklLS5OXl5f69Omjli1bKjs7W9HR0apRo4bpNAAA/qdKlSopKChIR48eVWhoqKZPn67GjRsrJibmum+YBgAAAAAAAAAAAAAAAADcvB9++EGDBw9WmzZttGfPHlmtVtlstt89z9HRUcOHD5ejo+PvHrve/tfmzZtLoB4oGuVt/6u06NatmzIzM9WnTx/17duXwzcAcAs6duyo9PR0NWrUSB06dND06dNVWFhoOgu4IRMmTNC4cePUqlUrOTo66ptvvlGvXr1MZwG4Dovtet8JAAD8xokTJzR58mR98skn8vX1VXR0tNzc3ExnoYgcPnxYnTt31unTpzV48GAtWLBAlSpVMp0F/KEdO3Zo8ODBunDhgubPn1/uvtiKjo7WuHHjNGzYMH3wwQf88wgAAAAAAAAAAAAUo0OHDunVV1/V8uXL5ePjoxkzZsjDw8N0FgAAf0lOTo5mzZqld999Vw0bNtS0adP01FNPyWKxmE4DAAAAAAAAAAAAAAAAgDKpsLBQvr6+N3SEwmKx6ODBg3rooYf+9Hm//PKLRo4cqWXLlumFF17QzJkz2RtCqVbe979Ki7Vr1+r555+Xg4OD5s+fL19fX9NJAFCm2Gw2vffeewoNDZWHh4eWLFmiBx54wHQW8IdycnLk5+envXv3qmXLltq8ebOqVatmOgvAH7AzHQAApdnFixcVHh4uFxcX7dixQ6tXr9bGjRs5alGOrFu3Th06dNDp06dVo0YNffnll+rQoYMOHTpkOg34nYKCAkVFRcnLy0vOzs7au3dvufymdkhIiFavXq34+Hh16dJFZ86cMZ0EAAAAAAAAAAAAlDs5OTkKCwtTs2bNlJmZqWXLlikxMZGjFgCAcqF27dqKjIzUoUOH5O3trYEDB6pt27batGmT6TQAAAAAAAAAAAAAAAAAKJPs7e21bt06BQQEyM7uj2cs7ezs1KZNm/951EKSatSooc8++0yLFi3SggUL2P9CqVVR9r9Ki549e2rv3r165JFH1LVrVwUHBys3N9d0FgCUGRaLRSEhIUpPT9fFixfVsmVLLVmyxHQWcF1JSUlq0aLFtd3RPXv2yNPTU7t37zZcBuCPcNgCAK7DZrMpPj5ebm5uio6OVnh4uDIyMvTYY4+ZTkMRuXDhgp555hn17NlTZ8+elYODgwYPHqz09HRJUqtWrTRnzhxZrVbDpcD/y8rKkpeXlyIiIvTuu+9q/fr1uvvuu01nFZsePXro66+/1okTJ9SuXTsdPHjQdBIAAAAAAAAAAABQLly6dElRUVFydnbWkiVL9P777ysjI0P+/v6m0wAAKHINGjTQvHnztG/fPjVo0EBdunSRn58fb3AAAAAAAAAAAAAAAAAAgFvg5OSk2NhYTZky5U+fN2LEiJt63cDAQPa/UGpVtP2v0qJOnTpavny5li1bppUrV6pZs2bavHmz6SwAKFOaNGmitLQ0DR06VIGBgRoyZIhycnJMZwGSpNzcXL344ovy8/NTx44dlZmZqWbNmkmSjh07pjZt2igqKkqFhYWGSwH8Nw5bAMB/+eabb9SxY0cNGDBA3t7eOnTokEJDQ1WpUiXTaSgiaWlpcnd316effipJslqtKigo0OOPPy4XFxelpqbqpZde0rhx4+Tl5aWsrCzDxajI8vLyFB4erpYtW6qwsFDffPONRo0aJYvFYjqt2Lm7uystLU133nmnOnTooKSkJNNJAAAAAAAAAAAAQJlltVq1ePFiNW7cWNOmTdPIkSN18OBBBQUFyd7e3nQeAADFqkmTJoqLi1NKSoquXr0qT09PBQQE6OjRo6bTAAAAAAAAAAAAAAAAAKBMsVgsioiIUFBQkOzs7H73s8iVK1fWk08+edOvy/4XSpuKvP9Vmvj7+yszM1PNmzeXj4+PgoODdfHiRdNZAFBm3HbbbZozZ45Wr16tLVu2yM3N7doWK2DK2rVr1bRpUy1dulR///vfFRsbqxo1aqhfv35ydHRUQUGBCgoKNGnSJLVt25b3fgClDIctAOBffvjhBwUHB6tNmzaqVKmSdu/ercWLF+uuu+4ynYYikp+fr9dff10dOnTQyZMnlZ+ff+0xJycneXt7S5IcHR01bdo0paenq7CwUC1atFBYWJiuXr1qKh0VVGpqqjw8PDRjxgxNnTpV27dvl5ubm+msElWvXj1t3bpVjz32mLp37645c+aYTgIAAAAAAAAAAADKnMTERLVs2VLDhw9Xr169dPToUUVGRqpq1aqm0wAAKFHt27fX1q1b9dVXXyk7O1tubm4KDg7Wjz/+aDoNAAAAAAAAAAAAAAAAAMqMlJQULV68WE8++aRuu+02OTo6Svr//a4hQ4bojjvuuKXXZf8LpQX7X6VL3bp19fnnn2vZsmVavny5mjdvrm3btpnOAoAypWfPnjpw4IAGDhyooUOHqmfPnvr+++9NZ6GCOXv2rIKDg/XYY4/J3d1d+/fv19ChQ6893qtXr99sBVutVu3bt0/NmjVTTEyMiWQA18FhCwAVXl5enqKjo+Xq6qq1a9dq4cKF2rRpk5o3b246DUUoKytLrVq10ptvvimr1arCwsJrj9nb26tr165ycnL6za9xd3dXamqq5syZo7lz58rd3V2bN28u4XJURJcuXVJYWJg6deqk2rVra9++fQoNDf3dZfKKonLlylq8eLHeeOMNhYSEKDg4WAUFBaazAAAAAAAAAAAAgFIvPT1dPj4+8vPz01133aXdu3dr3rx5qlevnuk0AACM8vX11d69e7V06VJ99dVXevDBBxUWFqbz58+bTgMAAAAAAAAAAAAAAACAUu3YsWN64okn5OPjo88++0w7d+5U3bp15eDgoPz8fD333HN/+XOw/wVT2P8q3fz9/ZWZmSlXV1f5+Phw+AYAblK1atUUHR2tbdu26fvvv5ebm5uioqJ+s88KFJf4+Hg9/PDDWr16tVasWKGEhATde++9v3lOq1atVKdOnd98LD8/X5cvX9aIESPUrVs3nT59uiSzAVwHhy0AVGgJCQlydXXVpEmT9NJLL+nIkSMKDAyUxWIxnYYiYrPZFBMTIw8PDx08ePAPv2Dq06fPdT9uZ2enoKAg7d+/X40aNVKXLl0UFBSkf/7zn8WZjQrKZrPp008/1UMPPaT58+dr4cKF2rx5sxo3bmw6zTiLxaLQ0FDFxsbqk08+Ua9evRgSAAAAAAAAAAAAAP7AiRP/x959h9d8//8ffySRYVdt2hpRO2LWCjWSGqVoJYqi0oj2Y0StRAcxSkKrYpVYFaOSFK1QWlENsQUhRuzamyIi8/z++Pzq+vp0UeGVcb9dl6vyPifnfa+r5X3ekufzrPr27atXXnlFCQkJioqK0vr161W9enXTaQAAZBrW1tZyd3dXfHy8Jk+erPnz58vR0VGBgYG6f/++6TwAAAAAAAAAAAAAAAAAyHRu376tN954Q6VLl1ZoaKhsbGxUpUoVxcTEqFatWqpcubLq16+fIedi/heeJeZ/ZR0lS5bUqlWrNGPGDM2YMUN16tRRTEyM6SwAyFIaNWqkPXv2aPDgwfr000/VsGFDbdu2zXQWsqkDBw6oZcuWevvtt9WlSxcdOXJEb7755p8+18rKSh07dpSdnd0fHrNYLNq4caOqV6+uVatWPe1sAH+DxRYAcqQjR46oTZs26tChg+rUqaNDhw7J399fDg4OptOQgc6cOaNmzZrpgw8+UFJSklJTU//0eenp6WrTps3fvla5cuX0448/KiQkRD/88IMqVqyoL774QsnJyU8jHTnQrl275OLioh49eqhVq1Y6dOiQevToYTor03F3d9fGjRsVGxsrFxcXnT592nQSAAAAAAAAAAAAkGncvHlTfn5+qlixon788UctWLBA27dvV9OmTU2nAQCQadnZ2cnb21vx8fHy8vLS6NGjVbFiRQUHBystLc10HgAAAAAAAAAAAAAAAABkCikpKXrrrbd048YNrVq1Svny5XvwWLFixbRp0ybNmTMnw8/L/C88bcz/ynqsrKzk7e2tAwcOqFixYmrQoIH8/Pz4fQEAHoO9vb3Gjh2rPXv2KF++fGrcuLHeeecdnTt3znQasonr16+rX79+ql27tm7fvq0tW7Zo2rRpyp8//99+Xrt27ZSSkvKnj6WkpOjmzZvq0KGD+vTpo7t37z6NdAD/gMUWAHKUGzduyMfHR05OTrp69ao2bdqksLAwlSlTxnQaMti9e/fUqlUrbdq0Senp6X/7XGdnZ5UsWfKRXrd79+46evSoBg0apE8//VTVqlVTeHh4RiQjh7p48aL69u2rhg0bKjU1VVu2bNHcuXNVtGhR02mZVv369bV7927Z2dmpbt262rRpk+kkAAAAAAAAAAAAwKiUlBQFBwerUqVKmjt3rvz9/RUfH6+ePXvKysrKdB4AAFlCoUKFFBAQoGPHjqlNmzbq16+fatSowdeHAQAAAAAAAAAAAAAAAICkgQMHauvWrfruu+/0wgsv/OFxBwcHubi4PLXzM/8LGY35X1lf2bJltWHDBs2YMUPTp09XvXr1tG/fPtNZAJClVK9eXT///LO+//57bdu2TZUqVZKfnx8LA/CvpaamKjg4WJUrV9bKlSs1Y8YMbd++XQ0aNHikz2/ZsqVy5cr1l49bLBZJ0ty5c+Xp6ZkhzQAeD4stAOQI//eiJjw8XDNmzNCOHTue6g1QmJUnTx5t2rRJbdq0kbX1X/9xZ2dnp06dOj32a/v7++vw4cOqVauWPDw81KpVK8XFxT1pNnKQxMREBQQEqFKlSvrxxx+1dOnSx3qzldOVLl1aUVFRcnFx0WuvvaaQkBDTSQAAAAAAAAAAAMAzZ7FYFB4eripVqmjQoEHy9PTUiRMn5OvrK3t7e9N5AABkSaVLl9bs2bMVFxenatWqqUuXLmrYsKGioqJMpwEAAAAAAAAAAAAAAACAEYGBgQoODtbSpUtVr149Yx3M/0JGYP5X9mJlZSVvb2/t379fBQsWVMOGDRUYGKi0tDTTaQCQpbRv314HDx7UJ598ohkzZqh69eoKDQ19sEQAeBRr165VjRo1NHDgQHl5eSk+Pl7e3t6ysbF55NfImzevWrRo8ZefY2VlJUkaMGCAFi1alCHdAB4Piy0AZHs///yzateurf79+6tr1646cuTIY1/UIGsqWrSo1qxZo6+++kp2dnZ/unEtOTlZ7du3/1evX6ZMGYWFhSkqKkpXr16Vs7Pzg43OwF9JSkrS9OnTVaFCBY0bN07Dhg3T4cOH5eHh8eANEh5Nvnz5tHLlSvn5+alXr17y8fFRenq66SwAAAAAAAAAAADgmdi2bZtcXFz09ttvq3bt2jp06JACAgJUsGBB02kAAGQLlSpVUlhYmHbs2KE8efKoWbNmcnNzU2xsrOk0AAAAAAAAAAAAAAAAAHhmVqxYoY8++khffPGFOnToYDpHEvO/8O8w/yt7K1++vDZu3Ch/f3+NGjVKLi4uio+PN50FAFmKg4ODRowYoaNHj6p58+bq1q2bateurVWrVrHgAn/rl19+UZMmTdS2bVtVrlxZhw4d0oQJE5Q/f/5/9XpvvPHGnx63tbVVwYIFtXr1ak2dOlX29vZPkg3gX2KxBYBs6/jx4/Lw8FDLli1VvHhxxcbGKigoSAUKFDCdhmfo9y2q48ePV6FChf6w3KJo0aKqWbPmE52jadOmiomJ0XfffaeDBw+qSpUq8vDw0LFjx57odZG9pKSkKCQkRFWrVtWQIUPUrl07HTt2TJ9++qly585tOi/LsrKykr+/v+bNm6dZs2bJw8ND9+7dM50FAAAAAAAAAAAAPDVHjhyRh4eHGjVqpDx58igmJkZhYWEqW7as6TQAALKlevXqacOGDVq/fr1u3Lih2rVry8PDQydPnjSdBgAAAAAAAAAAAAAAAABP1Z49e9SzZ095enpq0KBBpnP+gPlfeBTfffcd879yCBsbG/n6+iomJkYpKSmqVauWAgMDlZ6ebjoNALKUkiVLasGCBTpw4IBefvlldezYUTVr1lR4eLjpNGQy27ZtU/v27dW8eXNZLBb98ssvWrFihcqXL/9Er9u+ffs//PltbW2tIkWKaOXKlXr99def6PUBPBkWWwDIdhISEuTv7y8nJyft379fa9as0fr161WlShXTaTDk7Nmz+uyzz/Tmm2+qZ8+ekv47DN/W1ladOnXKkC25VlZWat++vfbs2aNly5YpNjZW1apVU8+ePfkG5hwuPT1d4eHhqlq1qry8vOTq6qqTJ09q9uzZKlmypOm8bMPT01M///yzNm3apMaNG+vs2bOmkwAAAAAAAAAAAIAMde3aNfn4+MjJyUkHDx5URESE1q9fr5o1a5pOAwAgR3B1ddXu3bu1bNky7d27V1WqVFHfvn11+fJl02kAAAAAAAAAAAAAAAAAkOHOnz+vDh06yMXFRV999ZXpnL/E/C/8ld/nf3Xt2lWenp7M/8pBqlWrpu3bt2vUqFEaOXKkmjZtquPHj5vOAoAsp2rVqgoLC1NsbKwqVaqkLl26qGHDhoqIiDCdBsP2798vDw8PNWrUSDdu3NCGDRsUHR2tV199NUNe/8UXX1TlypUl/XdxVa5cuRQQEKCyZctqwIABSkxMzJDzAPh3WGwBINuwWCwKCQlRhQoVNHXqVPn7+2v//v1q27at6TQYlJqaqrffflulSpXSl19+qXnz5iksLEx58+ZVSkqK2rVrl6Hns7a2lru7uw4fPqwlS5Zo27ZtDzY479q1K0PPhcwtISFBwcHBqlq1qrp3766GDRvq8OHDmj17tkqXLm06L1tq3Lixtm3bpqSkJDVo0EC7d+82nQQAAAAAAAAAAAA8sYSEBAUGBsrR0VErVqzQjBkztH///gz/+24AAPDPrKys5O7urkOHDmnatGmKiIhQhQoV5Ofnp9u3b5vOAwAAAAAAAAAAAAAAAIAMcefOHb3++usqUKCAli1bply5cplO+kfM/8Lv/nf+V6lSpZSWlqYKFSow/ysHyZUrl3x9fbVr1y4lJCTI2dlZQUFBslgsptMAIMtxcnJSWFiYtm3bpiJFiuiNN95Q3bp1FRISotTUVNN5eIaio6PVvn171axZU2fPntWqVau0ZcsWtWjRIsPP9eabb0qSXnrpJW3fvl3Dhg3TsmXLdP78efn5+WX4+QA8OhZbAMgWdu3apcaNG6t3795yc3NTfHy8fH19ZWdnZzoNho0ePVp79uzR0qVLlTt3bkmSu7u74uLi5ObmppYtWz6V8/5+g/vgwYP66quvdPDgQdWvX1+tW7dWZGTkUzknModLly7p448/1ksvvaQPP/xQLVu21JEjRxQSEiJHR0fTedmeo6Ojtm/frpo1a6pZs2ZauXKl6SQAAAAAAAAAAADgX0lPT1dISIhefvlljRs3Th9++KGOHj0qb29v2djYmM4DACBHs7W1lbe3t44dO6ZPPvlEs2bNkqOjowIDA5WUlGQ6DwAAAAAAAAAAAAAAAAD+tbS0NHXv3l3nz5/XqlWr9Nxzz5lOeizM/8q5/mr+V/fu3WVlZaXhw4dr7NixpjPxjNWoUUM7d+7UsGHDNGTIELVu3Vpnz541nQUAWVL9+vUVERGh6Ohovfjii+rdu7cqV66smTNn6t69e6bz8JQkJycrJCREzs7OatKkie7fv6+1a9dq27Ztat++/VM7b7t27fTuu+9q//79qlOnjqT/LrmYPXu2pk2bplWrVj21cwP4e1YW1sUByMIuXLggPz8/LV68WM2aNdOUKVNUo0YN01nIJDZv3qzmzZtrxowZ6tu3r+kcRUdHKzAwUGvWrJGTk5P69eunnj17ysHBwXQaMsDx48c1bdo0zZkzR/ny5dN//vMf9e/fX0WKFDGdliOlpqbqww8/1IwZMzRy5Ej5+/ubTgIAAAAAAAAAAAAeWWRkpAYPHqwjR46od+/eGjNmjIoXL246CwAA/IXr169r0qRJCgoKUvHixfXRRx/Jy8tL1tbWptMAAAAAAAAAAAAAAAAA4LEMGDBAc+fO1caNG9WgQQPTORmC+V/Z2z/N/5o/f768vb2VlpYmKysrDRs2TIGBgYarYcKOHTv07rvv6uLFi5o4caK8vb1NJwFAlnbixAlNnTpVc+fOla2trXr16qXhw4erdOnSptOQAe7cuaP58+friy++0KVLl9SxY0cNHTpUr7zyiuk0vfvuu/rhhx+0b98+lSpVynQOkOOw2AJAlpScnKyvvvpKn376qZ577jmNGzdOPXv2NJ2FTOTmzZuqWbOm6tSpoxUrVpjOeci+ffs0efJkLVu2TIULF5aHh4e8vb1VrVo102l4TElJSVq1apWCg4O1YcMGOTo6qn///vL29lbu3LlN50FScHCw+vXrp86dO2vBggX8RRIAAAAAAAAAAAAytV27dmnYsGGKiopSu3bt9OWXX6pChQqmswAAwCM6e/asxo0bp3nz5qlKlSoaOXKk3N3dTWcBAAAAAAAAAAAAAAAAwCOZOnWqBg0apCVLlqhr166mczIc87+yj8eZ/7Vx40a1aNHiwcfW1tbq27evZsyYISsrq2edDsMSExM1evRoTZo0Sa1atdLcuXMZiA0AT+jatWuaN2+epk6dqmvXrqlDhw7q0aOH2rZtKxsbG9N5eEwxMTEKDg7W0qVLZWVlpd69e2vIkCF66aWXTKc9kJCQoDp16qhEiRLasGED/50BzxiLLQBkOREREfLx8dHly5c1bNgw+fn5Magcf9ClSxdt2bJFsbGxKly4sOmcP3X27FnNnTtX8+fP1/nz59WsWTP16dNHb775puzt7U3n4W8cOHBAc+fO1eLFi3Xnzh21a9dOffr0UatWrWRtbW06D//jp59+koeHh6pVq6aVK1eqWLFippMAAAAAAAAAAACAh5w5c0affPKJFi9erPr162vixIlq0qSJ6SwAAPAvHT58WKNGjdK3336rRo0aKSAgQC4uLqazAAAAAAAAAAAAAAAAAOAvrVu3Tu3bt9eYMWM0YsQI0zlPFfO/sq5/M//r119/VdmyZR86Zm1tLU9PT82ePZu5YTnU1q1b9e677+rq1auaOnWqevToYToJALK8xMREhYaGau7cudqyZYvKly+v9957T++++y5LhDK569eva9GiRZo7d64OHjyomjVrysvLSz169FCBAgVM5/2pmJgYNWrUSGPHjtXw4cNN5wA5CostAGQZhw8f1ocffqiffvpJnTt31ueff56ptnUh85g1a5b69eun9evXP7QhN7NKS0vTunXrNGfOHK1Zs0YFCxZUjx499M4776hOnTqm8/D/3bhxQ8uXL9f8+fO1fft2VahQQV5eXurVq5dKlChhOg//IC4uTm+88Yak/y5IYkM6AAAAAAAAAAAAMoMbN25o4sSJmjJlisqUKaNx48apc+fOsrKyMp0GAAAywPbt2+Xn56eoqCi5urpq8uTJcnJyMp0FAAAAAAAAAAAAAAAAAA85ePCgGjdurE6dOmnBggWmc54Z5n9lDU86/ystLU329vZKS0t76LiNjY3c3d21aNEi5cqV62nlIxO7d++eRowYoWnTpqlz586aOXOmihQpYjoLALKFQ4cOae7cuQoJCdFvv/2mtm3bqnfv3mrdurUcHBxM50FSamqqNmzYoIULF2rFihWyt7fX22+/rT59+qhu3bqm8x7JpEmT9NFHH2nz5s1qW8+MJQAAIABJREFU0KCB6Rwgx2CxBYBM78aNGxo9erRmzJihWrVqacqUKWrcuLHpLGRShw4dUr169TRkyBCNGTPGdM5ju3jxohYsWKAFCxbo+PHjqlChgjw8POTh4SFnZ2fTeTnOrVu39P333yssLEzr169Xrly51KlTJ3l5ealZs2YMk8lirl+/rrfeekt79uzR0qVL1a5dO9NJAAAAAAAAAAAAyKGSk5P11Vdfyd/fX7ly5dLQoUP14Ycfys7OznQaAAB4CiIjIzVs2DDFxcXJ09NTo0aNUqlSpUxnAQAAAAAAAAAAAAAAAIAuXbqk+vXrq0yZMlq/fr3s7e1NJxnB/K/MJaPnf73wwgs6f/78H47b2NjozTff1JIlS2Rra5tR+chi1q9fr/fee09JSUmaNWuWOnXqZDoJALKNpKQkrVy5UnPnztXGjRuVP39+vfHGG+rSpYvc3Nz4frpnLC0tTVFRUQoNDdWKFSt07do1NWzYUF5eXvLw8FC+fPlMJz4Wi8Wi9u3b68iRI9qzZ48KFChgOgnIEVhsASDTSk1N1fz58/Xxxx/L1tZW/v7+8vLykrW1tek0ZFJJSUmqX7++7O3tFR0dneVvEO7atUthYWEKCwvTmTNnVLly5Qc3uatVq2Y6L9u6ffu2IiIiFBoaqp9++kmS1KpVK3l4eOiNN95Q/vz5DRfiSSQlJcnb21tLlizRZ599Jl9fX9NJAAAAAAAAAAAAyEEsFou+/fZb+fr66vLlyxowYIA++ugjvmASAIAcID09XcuXL5efn58uXbqkAQMGyNfXV4UKFTKdBgAAAAAAAAAAAAAAACCHSkxMVPPmzXXt2jVt375dRYoUMZ2UKTD/y4ynOf+refPm+uWXX/70MRsbG7Vq1UorVqzIsYtd8N///oYNG6bg4GC5u7tr1qxZev75501nAUC2cuHCBYWHhyssLEzbtm3Tc889p44dO6pLly5q0aJFlp8hm1mlp6crOjpaoaGhWr58uS5fvqxatWrJw8NDXbp0Ubly5UwnPpErV67I2dlZr732mhYuXGg6B8gRWGwBIFPasGGDBg0apKNHj+r999/X2LFjGeKAfzRgwAAtWrRIe/fuzfIXxv/r4MGDCg8PV0hIiE6dOqVy5crJzc1Nrq6uatWqFf9/PKGTJ08qIiJCq1ev1ubNm5WamqoGDRrI3d1d3bt35y9bsqGgoCANHjxYXl5emj59OjcxAAAAAAAAAAAA8NRt2LBBw4cP1759+/TWW29p0qRJKlOmjOksAADwjCUnJ+vrr7/WyJEjlZycLF9fXw0cOFC5c+c2nQYAAAAAAAAAAAAAAAAgB0lPT1fnzp21adMmbd26VRUrVjSdlCkx/+vpelbzv7y9vbVgwQKlpqb+6eM2NjZq2bKlvvvuO76eL4dbu3at+vTpo7S0NAUHB6t9+/amkwAgWzp37pyWL1+u8PBwbd26VXny5FHDhg3Vrl07derUSS+99JLpxCzt2rVr2rhxoyIjIxUREaGLFy+qatWqcnd319tvv63KlSubTsxQ69atU9u2bRUSEqJ33nnHdA6Q7bHYAkCmcvz4cX300UcKDw9Xu3btFBQUpPLly5vOQhawdu1avf7661q8eLG6detmOuepSU9P17Zt2/TDDz9o3bp12rt3r+zs7NS0aVO1bt1arVu3VtWqVU1nZnq3bt3Shg0btG7dOq1bt07nzp1T0aJF9dprr6lNmzZq06YNW3JzgOXLl6tnz55q3LixwsLC9Nxzz5lOAgAAAAAAAAAAQDZ0+PBhjRo1SuHh4XJ1ddXnn38uZ2dn01kAAMCwu3fvasaMGRo/frzy58+vkSNHytPTU7ly5TKdBgAAAAAAAAAAAAAAACAHGD58uKZMmaIff/xRzZs3N52T6TH/K2OYmv81YcIEjR49WklJSX/7PFdXV33//ffKkydPhjcg67h165Z8fX0VHBysHj16aMaMGcqfP7/pLADItk6dOqU1a9Zo7dq1+uWXX3Tv3j05OTk9uMZq3Lix7O3tTWdmaqmpqdqxY4fWrVuntWvXau/evbK1tZWLi4tat26tdu3aZbtlFv9r0KBBmjdvnmJiYljaBzxlLLYAkCkkJCRo0qRJCggIULly5fTll1+qdevWprOQRVy+fFnOzs5q27at5s+fbzrnmbp69ap++eWXh7bgFSxYUPXq1VPjxo3l4uIiFxcXOTg4mE416sKFC9qyZYuio6MVExOjnTt3Ki0tTbVq1ZKrq6tcXV3VrFkzvik8B4qNjdUbb7whe3t7RUREqFKlSqaTAAAAAAAAAAAAkE2cP39eY8aM0bx581SzZk1NnDhRLVq0MJ0FAAAymWvXrunzzz/XlClTVLZsWY0dO1adO3eWlZWV6TQAAAAAAAAAAAAAAAAA2dT8+fPl5eWlhQsXqkePHqZzsiTmfz2azDL/a9myZerWrZv+bPzq71+vV6ZMGY0dO1Zdu3aVjY3NU+1B1hAeHq5+/fopT548mj9/Pt8TAgDPQGpqqrZv367Vq1crMjJSMTExypUrl5ydnR9cYzVv3lxFihQxnWrU3bt3tW/fvgfXWdHR0bp165bKlSsnNzc3ubq66rXXXlPBggVNpz4zSUlJatiwoWxsbLRlyxbZ2dmZTgKyLRZbADDKYrFo0aJF8vX1VVJSkkaNGqV+/foxXB6PLD09Xa1atdLp06e1Z8+eHL3NNC0tTTExMQ/eVGzdulWXL1+Wg4PDgxvdderUUY0aNeTo6Jhtb5reuHFD+/fvV2xsrLZt26YtW7bo3LlzsrW1VZ06ddSoUSO5uLjo1VdffSpbmZH1XLhwQR06dNDJkyf17bffsj0eAAAAAAAAAAAATyQhIUHTp0/XZ599pueee06ffPKJvLy8ZG1tbToNAABkYr/++qvGjx+vefPmqU6dOpowYQLfAAkAAAAAAAAAAAAAAAAgw0VFRem1116Tn5+fRo8ebTonW2D+139l5vlfO3bsUIMGDR469vtCi9KlS+vTTz+Vp6cnMxDxB1euXNEHH3yglStXqk+fPpo8ebLy5s1rOgsAcozTp08rKipKW7Zs0ZYtW3T48GFJUuXKldW4cWPVr19fzs7OqlatmvLkyWO49ulISkrSoUOHdODAAe3cuVPR0dGKi4tTWlqaKlSooMaNG6tx48Zq2rSpKlWqZDrXqGPHjql27doaMGCAxo8fbzoHyLZYbAHAmJ07d8rHx0e7d++Wp6enxo0bp6JFi5rOQhYTEBCgkSNHavPmzapfv77pnEzn2LFj2rp164M3YfHx8UpLS1Pu3LlVrVo11ahRQ05OTnJyclKVKlVUqlQp08mP7N69ezp69Kji4uJ04MAB7d+/XwcOHND58+clSYULF1aDBg0e3MiuV6+ecufObbgamdX9+/fl6emp5cuXa9asWerdu7fpJAAAAAAAAAAAAGQxKSkpWrBggUaOHKnk5GT5+vrKx8dHDg4OptMAAEAWcvDgQY0ePVrh4eFydXVVYGCgateubToLAAAAAAAAAAAAAAAAQDZw5MgRNWrUSK6urgoNDX0w2B8Z79/O/0pISNDJkyfl5ORk+N/gr2XF+V9Xr15VsWLFJP13oYWVlZWKFy+uAgUKaOvWrc980QaynvDwcH3wwQcqWLCgFixYoKZNm5pOAoAc6caNG9q6dau2bt2q6Oho7dmzRwkJCbK2tpajo+ND11hOTk4qU6aM7OzsTGc/ktTUVJ05c0YHDx586Brr6NGjSk1Nlb29vWrVqvXgGqtRo0YqXry46exMZ86cOXr//ff1008/qWXLlqZzgGyJxRYAnrnz589rxIgRWrx4sZo3b64pU6Zk6ptnyLx2796txo0ba8KECRo8eLDpnCwhMTFRhw4dUmxsrOLi4rR//37t379fV69elSQ5ODioXLlyKlu27EP/fOmll1SiRAkVLlz4sbfEbtq06bFvvqWlpen69eu6du2azp07p9OnT+vUqVM6derUg59fuXJFkmRnZ6cqVao8eOPo7OwsJyenLLWkA5mDxWLR6NGjNWbMGA0YMEBffvmlrK2tTWcBAAAAAAAAAAAgC4iMjNSgQYN09OhR9e7dW+PGjVPRokVNZwEAgCxs69at8vX11ZYtW9S5c2eNHz9eFSpUMJ0FAAAAAAAAAAAAAAAAIIu6fv26GjRooEKFCumXX35Rnjx5TCflKI86/8tisahQoULq1KnTE8//+jey8/yvPHnyKDExUS+99JLGjBmjdu3aqWLFiho4cKBGjRplOg9ZwKVLl9S3b1+tXr1a/fv318SJE2Vvb286CwBytPT0dJ08eVKxsbE6cOCA4uLiFBsbq5MnTyo9PV3W1tYqXbr0Q/NVf/9RokQJFSlS5LEXXF27dk1XrlxR1apVH+vzfvvtN129elWXL19+6Nrq95+fPXtWqampkqSyZcv+4Rrr5ZdfVq5cuR7rnDlV165dtXnzZu3bt09FihQxnQNkOyy2APDMJCYmaurUqfrss89UrFgxTZgwQe7u7qazkEXdvXtXderUUdmyZbVu3Tq2Pj+hS5cuKT4+/k/f3Jw/f17p6ekPnuvg4KAiRYqocOHCKly4sIoWLaqCBQtKkgoVKiTpvzebf78BPn/+fLVt21YlSpRQWlqabt++Lem/vyfcv39fSUlJun79+oMb2deuXdPNmzcf6itQoMCfvhEsX768KlasKFtb22fxy4QcYtmyZerdu7eaN2+uZcuWqUCBAqaTAAAAAAAAAAAAkEnt3LlTw4YN0+bNm9W5c2dNmDBBjo6OprMAAEA2EhkZqcGDB+vIkSPq3bu3Ro8erRIlSpjOAgAAAAAAAAAAAAAAAJCFJCcnq1WrVjp9+rS2b9+u4sWLm07C//d/538dO3ZMX3zxhfLnz6/cuXM/8fyvfPnyKTExUWlpacz/ktSxY0d16NBBPXr0eDAUeuzYsfriiy906tSpB7+GwD8JCQlR//799eKLL2rhwoWqW7eu6SQAwP9ISEjQ4cOH/7Cg6/Tp0zp9+rTu37//4Lk2NjYPrq8KFy784HrLxsZG+fLlk62traysrPTcc89Jknbv3q3ffvtNLVu2lCTdvn37oesti8Wia9euPbjO+v1HSkrKg3Pa2dnppZdeeug6q2zZsipfvrwqV6784BoP/86tW7dUq1YtVa1aVatXr2ZmMZDBWGwB4JmIiIiQj4+Prly5oqFDh8rPz08ODg6ms5CF9ejRQz/++KNiY2NVsmRJ0znZWnJyss6dO6crV6784Y3R7zeif/vtN0n/vXi3WCxKSkrSvXv3lJaWpl9//VX58+dX0aJFZWNj82BJQJ48eWRvby97e/s/vIn7/Y1ckSJFVKpUqcfeYAg8qW3btqlTp04qXry4Vq1apTJlyphOAgAAAAAAAAAAQCZy7Ngxffzxx/r222/VoEEDTZo0SY0bNzadBQAAsqn09HQtX75cw4cP19WrV9W/f3+NGDGCb1YBAAAAAAAAAAAAAAAA8I8sFot69uypVatWKTo6Wk5OTqaT8BcmTpwoX19flShRQhcvXnyi+V/Sf4cs586dW7a2tsz/+gu3b99WuXLlNGDAAPn7+5vOQRby66+/ytPTU5s2bdKQIUM0ZswY2dnZmc4CADyiCxcu6MqVK7p69eqDa6v/vd5KS0tTQkKCkpOTZbFYdOvWLUnSuXPnlJaW9mBGZYECBWRjYyNbW1vly5dPVlZWDy3I+N/rrRIlSqhkyZKytrY2+UuQ7UVHR6tZs2YKCgpSv379TOcA2QqLLQA8VXv37tWgQYO0efNmde7cWV988YVefPFF01nI4hYtWqRevXpp1apVateunekc/I0vv/xSgwcPVokSJXT+/HneOCFLOXXqlNq3b68bN27ou+++0yuvvGI6CQAAAAAAAAAAAIZdv35dkyZN0pQpU1SuXDmNGTNG7u7uprMAAEAOkZycrK+//lqffPKJ0tPTNWzYMPn4+MjBwcF0GgAAAAAAAAAAAAAAAIBMatSoUZowYYLWrFkjNzc30zn4CwkJCXrxxRd18+ZNSdLFixdVokQJw1U5w7hx4/T555/r1KlTKlSokOkcZCEWi0Vz5szRkCFDVK5cOS1cuFC1atUynQUAeIrOnj2rMmXKyGKxaOvWrWrYsKHpJPwNf39/BQQEaMeOHXJ2djadA2QbTJcG8FTcuHFDPj4+qlevnhITExUdHa2wsDCWWuCJnTx5Uv3799egQYNYapEFLFq0SFZWVrp06ZKio6NN5wCPpVy5ctq2bZvq1q2rpk2basmSJaaTAAAAAAAAAAAAYEhiYqICAwPl6OioefPmKTAwUAcOHGCpBQAAeKbs7Ozk7e2t+Ph4eXl5afTo0apYsaKCg4OVlpZmOg8AAAAAAAAAAAAAAABAJhMaGqqxY8cqKCiIpRaZ3PTp03X79m1JkpWVlXbu3Gm4KOcYNGiQ7OzsNGXKFNMpyGKsrKzk7e2t/fv36/nnn1f9+vXl5+enlJQU02kAgKdk2bJlsrGxka2trb755hvTOfgHI0eOVMOGDdWtWzfdu3fPdA6QbbDYAkCGSklJUVBQkBwdHfXtt99q5syZ2r59uxo1amQ6DdlAamqqunfvrjJlymj8+PGmc/APTpw4oX379sliscjW1lZLly41nQQ8tvz582vlypUaNGiQevToIT8/P1ksFtNZAAAAAAAAAAAAeEbS09MVHh6uqlWrauzYsXr//fd14sQJ+fj4KFeuXKbzAABADlWoUCEFBATo2LFjatOmjfr166caNWooPDzcdBoAAAAAAAAAAAAAAACATCI6Olq9evXS0KFD9cEHH5jOwd9ISEjQxIkTlZaWJkmytbVlscUzlC9fPvn4+GjKlCm6ceOG6RxkQeXKldPGjRs1ffp0TZs2TS4uLjpy5IjpLADAU7Bw4UKlpaUpJSVFixYtUmpqqukk/A1ra2stWrRIly5d0tChQ03nANkGiy0AZJjIyEjVqlVLw4cPV8+ePXXkyBF5e3vL2prfapAxPvnkEx04cEBhYWFycHAwnYN/sGTJkgeDXFJSUvTNN98oOTnZcBXw+GxsbBQQEKDZs2dr8uTJ6tKlixITE01nAQAAAAAAAAAA4CmLjIxUnTp19Pbbb6tJkyY6duyYAgICVKBAAdNpAAAAkqTSpUtr9uzZiouLU7Vq1dSlSxc1bNhQUVFRptMAAAAAAAAAAAAAAAAAGHTq1Cm99dZbcnV11YQJE0zn4B9Mnz5dv/3224OPU1JStHXrVoNFOY+Pj4/s7e01ZcoU0ynIoqysrOTt7a1du3bJYrGoVq1aCgwMfLCwBgCQ9R05ckQHDx6UxWKRJN26dUs///yz4Sr8kxdeeEFz5szRV199pbCwMNM5QLbAtHkAT+zYsWPy8PCQm5ubypUrp8OHDysoKEj58+c3nYZsJCoqSp9//rmmTp2qypUrm87BI1i0aJFSUlIefHz79m1FRkYaLAKeTJ8+ffTDDz9o/fr1atGihS5dumQ6CQAAAAAAAAAAAE/BwYMH1b59e7m5ualIkSLat2+fQkJCVLJkSdNpAAAAf6pSpUoKCwvTjh07lCdPHjVr1kxubm6KjY01nQYAAAAAAAAAAAAAAADgGbt9+7bat2+vF154QaGhobKxsTGdhL+RkJDwh+H3FotFO3fuVHp6usGynCVfvnz68MMPFRQUpBs3bpjOQRZWtWpVbd26Vf7+/ho5cqSaNGmio0ePms4CAGSApUuXytbW9sHHtra2WrJkicEiPKo333xTXl5eev/993XmzBnTOUCWx2ILAP/a3bt35e/vLycnJ8XFxWndunWKiIhQ+fLlTachm7l27Zq6deumjh07ytPT03QOHsHevXt1/Pjxh47xpgvZgaurq3bt2qWbN2+qbt262rNnj+kkAAAAAAAAAAAAZJBz586pb9++cnZ21qVLl7Rx40atX79eTk5OptMAAAAeSb169bRhwwatX79eN27cUO3ateXh4aGTJ0+aTgMAAAAAAAAAAAAAAADwDKSkpOjNN9/UzZs39f333ytv3rymk/APpk2bptu3b//heEJCgo4dO2agKOcaOHCg7O3tNXnyZNMpyOJy5colX19fxcTEKCkpSTVr1lRgYCDLagAgiwsJCVFKSsqDj1NSUvTtt98qMTHRYBUeVVBQkEqUKKF33nnnoaVyAB4fiy0APLb09HSFhISoQoUKmjZtmgIDA3XgwAG1atXKdBqyIYvFovfee082NjYKDg42nYNH9M0338jOzu6hYykpKVqxYoUSEhIMVQEZo0KFCtq6dasqVqyoV199Vd9//73pJAAAAAAAAAAAADyBu3fvyt/fXxUrVtS6des0c+ZM7dixQ82aNTOdBgAA8K+4urpq9+7dWrZsmfbu3asqVaqob9++unz5suk0AAAAAAAAAAAAAAAAAE/RgAEDtGPHDq1Zs0YvvPCC6Rz8g4SEBAUGBv7pYF1ra2vt3LnTQFXOlTdvXg0ePFhBQUG6evWq6RxkA9WrV9f27ds1atQoffrpp2rVqpXOnDljOgsA8C/s3LlTv/766x+OJyYm6ocffjBQhMeVJ08ehYWFadeuXQoICDCdA2RpLLYA8Fh27typRo0a6b333lOHDh0UHx8vHx8f2djYmE5DNjV9+nStXr1aISEhev75503n4BFYLBYtXrxYycnJf3gsKSlJq1evNlAFZKznn39eP/30k3r06KFOnTrJ39/fdBIAAAAAAAAAAAAeU0pKioKDg+Xo6Khp06Zp1KhRio+Pl7e3t6yt+bIqAACQtVlZWcnd3V2HDh3StGnTFBERoQoVKsjPz0+3b982nQcAAAAAAAAAAAAAAAAggwUEBGjOnDlavHixatasaToHj2Dq1Km6c+fOnz5mY2PDYgsDBgwYoDx58mjKlCmmU5BN2NraytfXV7t27dLVq1fl5OSk4OBgWSwW02kAgMfwzTffyNbW9g/HbWxstHjxYgNF+DeqV6+uCRMmyN/fX1u3bjWdA2RZVhauZgE8gvPnz2vEiBFavHixWrRooSlTpqh69eqms5DNHTx4UPXq1ZOfn59GjhxpOgePaNOmTXr11Vf/9LFcuXKpdevWioiIeMZVwNMTFBSkwYMHq3fv3po5c6bs7OxMJwEAAAAAAAAAAOAfREREaPDgwTpz5ozef/99jR49Ws8995zpLAAAgKcmISFB06dP14QJE2Rra6uhQ4dq0KBBsre3N50GAAAAAAAAAAAAAAAA4AktX75cHh4e+vLLLzVw4EDTOXgEd+/e1Ysvvqhbt2795XNq1qypvXv3PsMqSFJgYKDGjRunkydPqmjRoqZzkI3cv39f/v7++vzzz+Xq6qq5c+fqhRdeMJ0FAPgH6enpKlGihK5evfqnj9va2urq1asqWLDgMy7Dv2GxWNShQwft27dPsbGxKlSokOkkIMuxNh0AIHNLTExUYGCgKleurG3btik0NFSRkZEstcBTd//+fXXr1k1169bVxx9/bDoHj+Gbb775y8H+qampWrdunW7cuPGMq4Cnx8fHR6tXr1Z4eLhatmz5lzccAAAAAAAAAAAAYN727dvVpEkTdejQQbVq1dKRI0cUFBTEUgsAAJDt5c2bV76+vjpx4oTee+89+fv7q1KlSgoODlZ6errpPAAAAAAAAAAAAAAAAAD/UkxMjHr16qX33nuPpRZZyNSpU3Xnzp2/fU5cXJySkpKeURF+179/f+XJk0eTJ082nYJsxsHBQQEBAdq8ebNOnTolJycnBQcHm84CAPyDjRs3/u2MyfT0dK1cufIZFuFJWFlZad68eUpNTVXfvn1N5wBZEostAPyliIgIVa1aVWPHjtWQIUMUFxcnd3d301nIIQYNGqQzZ85o0aJFsrGxMZ2DR5SamqrQ0FAlJyf/5XMsFgtvupDttGnTRtHR0Tp79qwaNmyow4cPm04CAAAAAAAAAADA/xEfHy8PDw81atRI9vb22r17t8LCwlSuXDnTaQAAAM9U4cKFFRAQoKNHj6pVq1b6z3/+I2dnZ4WHh5tOAwAAAAAAAAAAAAAAAPCYzp8/rw4dOsjFxUUzZ840nYNHdOfOHU2aNEnp6el/+7zU1FTFxsY+oyr8Lm/evBo6dKimTZumK1eumM5BNtSwYUPt27dPffv21QcffKB27drp4sWLprMAAH9h6dKlsrOz+9vnLFq06BnVICMULVpUCxcu1PLly/X111+bzgGyHBZbAPiDvXv3qmnTpurQoYOaNGmi48ePy9/fX/b29qbTkEOsXLlSs2fP1qxZs1SmTBnTOXgMP/30k27evPm3z7FYLAoJCXlGRcCz4+TkpG3btqlw4cJq3LixNmzYYDoJAAAAAAAAAAAgx7t27Zr8/PxUo0YNxcXFKTQ0VJGRkapdu7bpNAAAAKNefPFFzZ49WwcOHFCVKlXUpUsXubi4KDo62nQaAAAAAAAAAAAAAAAAgEdw584dtW3bVgULFlRoaKhy5cplOgmP6MqVKxo4cKDeeecdNWjQQMWKFXvocVtbWzk4OEiSdu7caSIxx/vPf/6jvHnzavLkyaZTkE3lzp1bAQEBioqKUnx8vJydnbV8+XLTWQCA/5GcnKzw8HAlJyf/5XPS0tIUFRWly5cvP8MyPCk3NzcNHjxY/fv3V3x8vOkcIEthsQWAB65fvy4fHx/Vq1dP9+/f15YtWxQSEqISJUqYTkMOcu7cOfXp00fe3t7q0qWL6Rw8pm+++eYfn5Oenq4tW7bowoULz6AIeLZKliypTZs26fXXX1fr1q01ffp000kAAAAAAAAAAAA50r179xQYGChHR0ctXrxY06ZN04EDB+Tu7m46DQAAIFOpUqWKwsLCtHXrVuXKlUtNmjSRm5ub4uLiTKcBAAAAAAAAAAAAAAAA+AtpaWnq3r27rly5oh9++EEFCxY0nYTH4OjoqNGjRyskJETbtm3T5cuX1bdvX9WtW1dr165n/yrmAAAgAElEQVRVUFCQBgwYoM6dO+vOnTumc3OkvHnzatiwYZo+fbquXLliOgfZmIuLi2JiYtSpUye5u7vLw8ND169fN50FAPj/1q5d+0jXY2lpaQoLC3sGRchI48ePV/Xq1dWtW7e/XV4C4GFWFovFYjoCgFkpKSmaOXOmRo0apXz58mn8+PHq0aOHrKysTKchh0lPT5ebm5suXryo3bt3K0+ePKaT8JgOHjyo+/fvP3SsWbNm8vHxUadOnR46XqFCBf4yBNmWxWLRxIkT9dFHH8nLy0szZsxgoz0AAAAAAAAAAMAzkJ6ersWLF2vEiBH67bff1L9/f3388cfKnz+/6TQAAIAsITIyUsOGDVNcXJw8PT01atQolSpVynQWAAAAAAAAAAAAAAAAgP9jwIABmjdvnn7++Wc1aNDAdA4yQNu2bVW0aFEtXLjQdAr+v8TERFWoUEHvvPOOAgMDTecgB/jxxx/l5eWllJQUzZ49Wx06dDCdBAA53oULF3Tx4sWHjo0bN06XLl3S9OnTHzpeuHBhlS1b9hnWISOcOHFCtWrVUt++fTVp0iTTOUCWwHRdIIeLjIyUj4+PTp06pYEDBzLMAUZ99tln2rJli7Zv385SiyyqWrVqfzhmY2OjMmXKqE6dOgaKADOsrKzk6+ur8uXLq1evXvr1118VGhrKMhcAAAAAAAAAAICnKDIyUkOGDNHhw4fVu3dvjR49WiVKlDCdBQAAkKW4uroqJiZGy5cvl5+fnxYvXqwBAwbI19dXhQoVMp0HAAAAAAAAAAAAAAAA5HhBQUGaMWOGlixZwlKLbOTUqVN65ZVXTGfg/8idO7eGDBmikSNHasiQISpWrJjpJGRzrVq1UlxcnIYPH66OHTvK3d1ds2fP5us3AcCgUqVKqVSpUg8dK1KkiO7du8eM1WzC0dFRU6dOlaenp5o1a6bXX3/ddBKQ6VmbDgBgxtGjR9WuXTu5ubmpfPnyOnjwoAICAlhqAWN27typsWPHatKkSapZs6bpHADIEO7u7tq4caNiY2Pl4uKi06dPm04CAAAAAAAAAADIdmJiYtSiRQu5ubmpWLFi2rNnj2bPns1SCwAAgH/J2tpa7u7uOnz4sL788kt9/fXXcnR0VGBgoBITE03nAQAAAAAAAAAAAAAAADnW2rVrNXToUI0fP15du3Y1nYMMYrFYdObMGZUrV850Cv7Hf/7zHxUsWFCTJk0ynYIcomDBgpo9e7bWrFmjLVu2qGbNmoqMjDSdBQBAtvbuu++qW7du8vT01KVLl0znAJkeiy2AHObWrVvy8/OTk5OTzp8/r6ioKEVERHAjC0b99ttvevvtt+Xq6qr+/fubzgGADFW/fn3t3r1bdnZ2qlu3rjZt2mQ6CQAAAAAAAAAAIFs4e/as+vbtq1deeUUJCQmKiorS+vXrVb16ddNpAAAA2YKdnZ28vb11/Phx+fr6avz48Xr55ZcVHBys1NRU03kAAAAAAAAAAAAAAABAjnLw4EF17dpVPXr0kJ+fn+kcZKBLly7p3r17zAPMhBwcHDR06FDNnDlTly9fNp2DHKRt27aKi4tT06ZN9dprr6lv3766e/eu6SwAALKtWbNmqWDBgurdu7csFovpHCBTY7EFkEOkp6crJCRElSpV0pw5czRx4kTt3r1bTZs2NZ0G6IMPPtC9e/e0YMECWVlZmc4BgAxXunRpRUVFycXFRa+99ppCQkJMJwEAAAAAAAAAAGRZN2/elJ+fnypWrKgff/xRCxYs0Pbt2/kaCAAAgKckX7588vX11YkTJ/TOO+9o4MCBql69usLDw/mGDQAAAAAAAAAAAAAAAOAZuHjxotq0aSNnZ2fNmjXLdA4y2KlTpySJxRaZ1AcffKBChQpp0qRJplOQwxQqVEiLFi1SaGioVqxYoRo1auiXX34xnQUAQLaUL18+LVmyRBs2bFBQUJDpHCBTY7EFkANERUWpdu3a8vLyUseOHRUfHy8fHx/Z2NiYTgM0f/58hYaGatGiRSpevLjpHAB4avLly6eVK1fKz89PvXr1ko+Pj9LT001nAQAAAAAAAAAAZBkpKSkKDg5WpUqVNHfuXPn7+ys+Pl49e/aUlZWV6TwAAIBsr0iRIgoICFB8fLxeffVVde3aVQ0aNNDPP/9sOg0AAAAAAAAAAAAAAADIthITE9WxY0flyZNH3333nezs7EwnIYOdPn1atra2KlWqlOkU/AkHBwcNHTpUM2bM0IULF0znIAdyd3dXXFycnJ2d1aJFC/Xt21cJCQmmswAAyHbq1aunUaNGyc/PT3v37jWdA2RaLLYAsrFz586pZ8+eat68uYoWLao9e/Zo9uzZKlKkiOk0QJJ0/PhxDRo0SEOHDpWbm5vpHAB46qysrOTv76958+Zp1qxZ8vDw0L1790xnAQAAAAAAAAAAZGoWi0Xh4eGqUqWKBg0aJE9PT504cUK+vr6yt7c3nQcAAJDjlClTRrNnz1ZsbKzKlCmjli1bys3NTXv27DGdBgAAAAAAAAAAAAAAAGQr6enp6t69u06cOKGIiAgVKlTIdBKeglOnTqlMmTKysbExnYK/8P7776tw4cL64osvTKcghypevLhWrlyp0NBQffvtt3J2dtbmzZtNZwEAkO2MGDHi/7F35/Fez/n//++nTUSRNVulRYtEISHbZCfLTMkWphSfmfT58ElhPoTBiTE+WaLskaU0loylZF9TaZRIy0ERBtmLk/r98bno95kvMx9L9TrndL1eLuePXq9z3t3O5XLey/P9er1fj+y6667p1q1bPv/886JzoEIy2AKqoK+++iqDBg1K8+bN88ILL+Suu+7K+PHjs8022xSdBsuVl5fnmGOOSfPmzXPBBRcUnQOwSv32t7/NY489lqeeeiq77rpr5s2bV3QSAAAAAABAhfT8889nt912S/fu3dOuXbvMmDEjpaWlqVevXtFpAACrvdatW2fUqFF59tlns3jx4uywww7p1q1bZs+eXXQaAAAAAAAAAABUCQMGDMhf//rXjB49Os2aNSs6h5WkrKwsjRs3LjqDf6F27do544wzMnTo0Lz77rtF57Aa69q1a6ZPn56WLVtm7733zsCBA/P1118XnQUAVUa1atUyYsSIfPLJJznttNOKzoEKyWALqGLGjh2bVq1a5bLLLssZZ5yRadOmpWvXrkVnwfcMHDgwM2bMyO23355atWoVnQOwyu266655/vnn8/XXX2fnnXfOpEmTik4CAAAAAACoMF5//fV069Ytu+yyS9Zaa61Mnjw5o0aNSqNGjYpOAwDg/7HLLrvk6aefzrhx4/L666+nVatW6dOnT957772i0wAAAAAAAAAAoNK68cYbc9lll+X666/PXnvtVXQOK5HBFpVD7969s/766+fSSy8tOoXVXIMGDXL//ffn6quvztChQ9O+fftMnjy56CwAqDI222yz3HLLLbnhhhty5513Fp0DFY7BFlBFTJkyJZ06dcphhx2W3XffPbNnz86gQYOyxhprFJ0G3/PII4/k8ssvz9ChQ9O8efOicwAK06RJk7zwwgvZbrvtsueee+aee+4pOgkAAAAAAKBQH374Yfr165c2bdrk1VdfzdixYzN+/Phst912RacBAPB/6Ny5c6ZOnZqRI0dm3Lhxadq0aQYOHJhPP/206DQAAAAAAAAAAKhUnnjiiZxyyik555xzctxxxxWdw0pmsEXlULt27QwYMCDXXntt3nnnnaJzWM2VlJSkd+/eeeWVV7LRRhtl5513zsCBA/PNN98UnQYAVcKBBx6Yk08+OaecckrefPPNonOgQjHYAiq57y7osNNOO+Wbb77Js88+mxEjRmTjjTcuOg1+0AcffJATTjghXbt29WY5QJK6devmvvvuy4knnphf//rXGTRoUNFJAAAAAAAAq9yXX36ZwYMHp0mTJvnLX/6Sq6++Oq+88koOPvjgotMAAPgJqlWrlq5du2bmzJm58MILM3z48DRp0iSDBw/O4sWLi84DAAAAAAAAAIAK77XXXsvhhx+eQw89NOeee27ROaxkS5Ysyfz58w22qCR69+6dDTbYIJdeemnRKZAkadSoUSZMmJCrr746V111VXbcccdMnTq16CwAqBL+/Oc/Z8stt8yxxx6bJUuWFJ0DFYbBFlBJlZeXZ8iQIWnSpEnGjBmTG2+8MS+88EJ23nnnotPgn1q2bFl69uyZtdZaK9ddd13ROQAVRo0aNXLllVfm2muvzYUXXpijjjrKB/kBAAAAAIDVwtKlSzNixIg0bdo0f/zjH/Mf//EfeeONN9K7d+9Ur1696DwAAH6mWrVqpV+/fpkzZ0569eqV8847L82bN8/w4cPz7bffFp0HAAAAAAAAAAAV0ocffpguXbqkdevWGTFiREpKSopOYiWbP39+ysvL06hRo6JT+BHWWGONDBgwIMOGDcs777xTdA4kSUpKStK7d++88sorqVevXjp27JjBgwc7XxMAfqHatWvn9ttvz5QpU/LHP/6x6ByoMAy2gEro0UcfzXbbbZczzzwzp5xySl5//fX06NHDm49UeJdffnkefvjh3Hbbbalbt27ROQAVTu/evfPAAw/koYceyq9+9at88MEHRScBAAAAAACsNN+d/9CrV6906dIls2fPzqBBg7LmmmsWnQYAwAqy3nrrpbS0NLNmzcoBBxyQ3/3ud9l2220zevTootMAAAAAAAAAAKBCWbx4cQ499NB8++23+ctf/pLatWsXncQqUFZWliRp3LhxwSX8WCeddFI22GCDXHLJJUWnwD/Yaqut8sQTT6S0tDTnnntudtttt8ycObPoLACo1Fq3bp1LL700F1xwQR5//PGic6BCMNgCKpGZM2fmoIMOyj777JOtttoqM2bMSGlpadZee+2i0+D/NG3atJx99tk5//zz07Fjx6JzACqs/fbbL88880wWLFiQjh075tVXXy06CQAAAAAAYIV66aWXsueee2afffZJw4YNM2PGjAwbNiwbb7xx0WkAAKwkm222WYYNG5bp06endevWOfLII9OxY8c8+eSTRacBAAAAAAAAAEDhli1bll69emX69Om5//77s9FGGxWdxCpSVlaWOnXqZMMNNyw6hR9pjTXWyJlnnpnhw4dn/vz5RefAP6hWrVr69euXyZMnZ8mSJdl+++0zePDgLF26tOg0AKi0fve73+WQQw5Jjx498vHHHxedA4Uz2AIqgYULF2bgwIHZdttts2DBgjz11FMZO3ZsGjVqVHQa/ChffvllunXrlg4dOuSMM84oOgegwttmm23y0ksvZYsttkjHjh3zwAMPFJ0EAAAAAADwi7399tvp0aNHOnTokK+//jpPP/10xo4dm6ZNmxadBgDAKrL11ltn1KhRefHFF7PWWmstH3j2t7/9reg0AAAAAAAAAAAozLnnnptRo0ZlzJgx2WabbYrOYRUqKytLo0aNUlJSUnQKP0GvXr2y8cYbZ/DgwUWnwA9q3bp1nn/++Zx77rk555xzsvvuu2f27NlFZwFApXXTTTelWrVqOemkk4pOgcIZbAEV2NKlSzNixIi0aNEi119/fS655JK89NJL6dSpU9Fp8JOceuqpef/99zNixIhUr1696ByASmH99dfPI488ksMPPzyHHXaYAxgAAAAAAECl9fHHH2fgwIFp3rx5Xnzxxdx111157rnnsttuuxWdBgBAQXbcccdMmDAh48ePz8cff5x27dqlW7dumTt3btFpAAAAAAAAAACwSt1111354x//mCuuuCKdO3cuOodVrKysLI0bNy46g5+oVq1aGTBgQK677rrMnz+/6Bz4QTVq1MiAAQPy0ksv5csvv0zbtm0zZMiQLFu2rOg0AKh01ltvvdx666257777ct111xWdA4Uy2AIqqCeeeCLt2rVLr1690r1798yZMyf9+vUzFIBK5+67785NN92Um266KVtuuWXROQCVyhprrJFbbrkll112Wc4666z06dMn5eXlRWcBAAAAAAD8KN98802GDBmSJk2a5IYbbsh5552XadOmpWvXrikpKSk6DwCACqBz586ZNGlS7rzzzrz88stp2bJl+vTpk/fff7/oNAAAAAAAAAAAWOmeeeaZHH/88enfv39OPvnkonMogMEWlVevXr3SoEGDlJaWFp0C/9K2226biRMnpn///jn99NOz//77Z968eUVnAUCls/vuu+eMM87Iv//7v+e1114rOgcKY7AFVDDz5s1Ljx49stdee2XDDTfMyy+/nCFDhqRevXpFp8FPNm/evPTp0yf/9m//lkMPPbToHIBKq1+/fhk1alRuu+22HHTQQfnkk0+KTgIAAAAAAPinli1bltGjR6dFixbLh3fPmTMnAwYMSK1atYrOAwCggikpKUnXrl0zY8aMXHnllRk7dmyaNm2agQMH5rPPPis6DwAAAAAAAAAAVoq5c+fmiCOOSOfOnXPRRRcVnUNBDLaovGrWrJkBAwbkuuuuy1tvvVV0DvxLNWvWzKBBg/Lss8/m7bffTps2bTJ8+PCiswCg0jn//PPTtm3bdOvWLYsWLSo6BwphsAVUEF999VUGDRqU5s2b58UXX8zYsWMzfvz4tG7duug0+FmWLFmSo446Kg0aNMill15adA5ApffrX/86zz33XF5//fXstNNOmTlzZtFJAAAAAAAA3zNhwoTssMMO6d69e3bYYYfMmDEjpaWlqVu3btFpAABUcDVr1kzv3r0za9as/OEPf8i1116bJk2aZPDgwfn666+LzgMAAAAAAAAAgBXm448/zoEHHpgtttgid911V6pXr150EgVYvHhx3nvvPYMtKrGePXtms802y+DBg4tOgR+lQ4cOmTJlSk4++eSccsopOfDAA/Puu+8WnQUAlUaNGjVy22235e23386ZZ55ZdA4UwmALKNiyZcsyevTotGzZMkOGDMmgQYPyyiuv5OCDDy46DX6R888/P5MnT87tt9+eNddcs+gcgCqhbdu2eeGFF1KvXr3ssssueeKJJ4pOAgAAAAAASJK89tpr6datWzp37pz69etnypQpGTVqVBo2bFh0GgAAlUydOnUyYMCAzJkzJz179sygQYOy9dZbZ/jw4Vm6dGnReQAAAAAAAAAA8IuUl5enW7du+fzzz3PfffelTp06RSdRkDfffDPLli0z2KISq1mzZgYOHJjrr78+b775ZtE58KOsueaaKS0tzdNPP53Zs2endevWufXWW4vOAoBKY6uttsp1112XK664ImPHji06B1Y5gy2gQJMnT06nTp3SvXv37LHHHnn99dczYMCArLHGGkWnwS/y9NNP56KLLsrll1+ebbfdtugcgCpl0003zdNPP5399tsv++23X2666aaikwAAAAAAgNXYO++8kz59+qRNmzaZO3duJkyYkPHjx6dt27ZFpwEAUMmtv/76KS0tzRtvvJH99tsv//Zv/5a2bdtm9OjRRacBAAAAAAAAAMDP9vvf/z4TJ07Mgw8+mM0337zoHApUVlaWJGnUqFGxIfwiJ554YjbffPMMHjy46BT4SXbZZZdMnTo1ffr0yQknnJBu3brlww8/LDoLACqFbt265bjjjkvPnj2zYMGConNglTLYAgqwYMGC9OnTJzvttFNq1KiRyZMnZ8SIEdl4442LToNf7JNPPslxxx2X/fffP3369Ck6B6BKql27dkaOHJkzzzwzPXv2TL9+/bJ06dKiswAAAAAAgNXIl19+mcGDB6dly5Z56KGHMnTo0EycODF777130WkAAFQxW2yxRYYNG5Zp06alZcuWOfLII7PbbrvlmWeeKToNAAAAAAAAAAB+kosuuig33HBDbrvttrRt27boHApWVlaW+vXrp169ekWn8AvUrFkzZ555Zm644Yblw0qgslhrrbVSWlqahx9+OC+88EJat26de+65p+gsAKgUhg4dmvr16+foo492PVBWKwZbwCpUXl6eIUOGpEWLFnnwwQdz00035fHHH892221XdBqsMCeffHKWLFmSW265JSUlJUXnAFRZJSUlGTRoUG6//fYMHz48Bx98cD777LOiswAAAAAAgCquvLw8w4cPT5MmTTJ48OCcffbZeeONN9K7d+9Uq+ZUJAAAVp6WLVtm1KhRee6551KjRo106tQp++yzT6ZPn150GgAAAAAAAAAA/J/GjBmT//qv/8rll1+eLl26FJ1DBVBWVpbGjRsXncEKcMIJJ2SLLbbI4MGDi06Bn+W78zEPO+ywHHHEEenWrVs+/vjjorMAoEKrU6dORo4cmeeeey6XXXZZ0Tmwyvg0OawiY8eOTcuWLXPWWWfllFNOyWuvvZYePXq48D9VyrBhwzJ69OiMGDEi66+/ftE5AKuF7t2757HHHsvkyZPTqVOnvPXWW0UnAQAAAAAAVdSjjz6a7bffPr///e9z6KGHZubMmRkwYEBq165ddBoAAKuRnXfeOU888UTGjx+fDz/8MNtvv3369OmTd999t+g0AAAAAAAAAAD4QZMnT06PHj3Ss2fP9O3bt+gcKgiDLaqOmjVr5qyzzsqNN96YsrKyonPgZ6lbt26GDRuWBx98MM8991xat26dsWPHFp0FABVa+/btc8EFF+Tss8/Oiy++WHQOrBIGW8BKNnPmzBx44IHp0qVLWrZsmRkzZqS0tDRrr7120WmwQs2YMSOnnXZazjzzzOy9995F5wCsVjp27JgXXngh3377bTp27JiJEycWnQQAAAAAAFQhEydOzB577JF99903rVq1ymuvvZZhw4Zlww03LDoNAIDVWOfOnTN58uTcfvvtefTRR9OsWbMMHDgwn3zySdFpAAAAAAAAAACw3FtvvZWDDjoou+++e4YOHVp0DhWIwRZVS48ePbLFFlvk4osvLjoFfpEDDjgg06dPT5cuXdKlS5f06NEjn3/+edFZAFBh/ed//mf23HPPHHPMMfnss8+KzoGVzmALWEkWLlyYfv36ZZtttsn777+fp556KmPHjk3Dhg2LToMV7uuvv84xxxyT1q1b59xzzy06B2C11Lhx4zz//PNp37599thjj4wcObLoJAAAAAAAoJKbNWtWunXrlp133jnl5eV5+umnM2rUqDRp0qToNAAASJJUq1YtXbt2zWuvvZbLL788N998c5o0aZLBgwdn0aJFRecBAAAAAAAAALCa+/zzz9OlS5esv/76ufPOO1OjRo2ik6hA3nzzTYMtqpCaNWvm7LPPzs0335yysrKic+AXWXfddTNs2LCMHj06Dz/8cNq0aZPHHnus6CwAqJCqVauWW2+9NV9++WVOPfXUonNgpTPYAlawpUuXZsSIEdl6660zcuTI/OlPf8rEiRPTqVOnotNgpenfv3/Kyspy1113pWbNmkXnAKy21llnndx7773p169fjjvuuAwcODDLli0rOgsAAAAAAKhkPvroowwcODBt2rTJtGnTctddd+W5557LrrvuWnQaAAD8oFq1aqV3796ZPXt2zjjjjFx00UVp1qxZhg8fniVLlhSdBwAAAAAAAADAaujbb7/N0UcfnQ8++CAPPfRQ6tWrV3QSFchnn32Wjz/+2GCLKub4449P48aNc9FFFxWdAivEb37zm0yfPj3t27dP586d06dPn3zxxRdFZwFAhbPxxhvnpptuyogRIzJy5Miic2ClMtgCVqDHH38822+/fXr16pWjjjoqc+bMSb9+/VK9evWi02Cleeihh3LVVVdl6NCh3hwFqACqV6+e0tLSDBs2LH/+85/TvXv3LFq0qOgsAAAAAACgEli0aFEGDx6cJk2a5IYbbsjgwYMzbdq0dO3ateg0AAD4UdZee+0MGDAgc+bMybHHHptTTz0122yzTUaPHp1ly5YVnQcAAAAAAAAAwGqkX79+mTBhQu69995sueWWRedQwZSVlSWJa7dVMdWrV8/AgQNzyy23ZO7cuUXnwAqx0UYbZcyYMbnrrrsyZsyYtG3bNk899VTRWQBQ4ey///7p27dvTj755MyaNavoHFhpDLaAFWDevHnp0aNH9t5772y00UaZOnVqhgwZYjIuVd7777+fE088Mccff3yOPvroonMA+F9OOumkPPjggxk3blz23nvvvPfee0UnAQAAAAAAFdTSpUszevTotGrVKhdccEFOPvnkzJkzJ/369UuNGjWKzgMAgJ9sgw02SGlpaWbOnJk99tgjRx11VHbeeec89thjRacBAAAAAAAAALAauPzyyzN06NDceOON6dChQ9E5VEBlZWUpKSlJw4YNi05hBevRo0caN26ciy66qOgUWKG6du2a6dOnZ5tttslee+2Vfv365euvvy46CwAqlEsuuSRNmzbNMccck/Ly8qJzYKUw2AJ+gS+//DKDBg1K8+bN8+KLL+aBBx7I+PHj06pVq6LTYKVbunRpjj322Ky99tq54ooris4B4Ad07tw5L730UhYuXJgddtghU6ZMKToJAAAAAACoYB599NG0b98+3bt3T6dOnTJr1qyUlpambt26RacBAMAv1rBhwwwbNix/+9vf0rBhw/zqV7/KPvvs4zwaAAAAAAAAAABWmoceeij9+/dPaWlpunfvXnQOFVRZWVkaNGiQ2rVrF53CCla9evWcddZZufnmmzNr1qyic2CF2mSTTXLfffflzjvvzK233pp27dpl0qRJRWcBQIWxxhprZNSoUXnttdcyaNCgonNgpTDYAn6GZcuWZfTo0WnVqlWGDBmSQYMGZdq0aTnooIOKToNV5tJLL82TTz6ZkSNHZp111ik6B4B/omnTpnnuuefSvHnz7LHHHrnvvvuKTgIAAAAAACqAV199NQcffHD22WefbLDBBpk6dWpGjBiRBg0aFJ0GAAArXOvWrTNq1Kg888wzWbx4cXbYYYd069Yts2fPLjoNAAAAAAAAAIAqZOrUqenWrVt69OiRM844o+gcKrCysrI0bty46AxWkmOPPTZNmzbNxRdfXHQKrJSE+FYAACAASURBVBRdu3bNyy+/nAYNGqRjx44ZOHBgvvnmm6KzAKBCaNasWS677LKUlpZmwoQJRefACmewBfxEkyZNym677Zbu3btnjz32yMyZMzNgwIDUqlWr6DRYZSZPnpxzzjknF110UTp06FB0DgD/h/r162fcuHE57rjjcvjhh5vcCAAAAAAAq7H58+enT58+adu2bd5///08/vjjGT9+fNq0aVN0GgAArHS77rprnn766YwbNy6vv/56WrVqlT59+uS9994rOg0AAAAAAAAAgEpuwYIF6dKlS9q1a5drr7226BwqOIMtqrbq1avnrLPOyogRI/LGG28UnQMrRcOGDTN+/PhcffXVufrqq7PDDjvk5ZdfLjoLACqE3r17p1u3bjn++OPz4YcfFp0DK5TBFvAjvfvuu+nTp086dOiQWrVqZcqUKRkxYkQ22mijotNglfriiy9y9NFHZ88998xpp51WdA4AP1KNGjUydOjQXH755bngggvSq1cv040BAAAAAGA18sUXX2TQoEFp3rx5Hn744dx4442ZOHFi9txzz6LTAABglevcuXOmTp2akSNHZty4cWnatGkGDhyYTz/9tOg0AAAAAAAAAAAqoUWLFuWwww5LnTp1cu+996ZWrVpFJ1HBGWxR9R1zzDFp2rRpLr744qJTYKUpKSlJ796988orr6R+/frp0KFDBg4cmPLy8qLTAKBw11xzTWrUqJHjjz8+y5YtKzoHVpiSZf6iV1unnnpqvvrqq6IzKrTjjz8+HTp0yDXXXJNzzjkndevWzYUXXpjjjjsuJSUlRedRCbz66qu5/PLLi85YocrKyvL888/n8MMPz5prrrlCbvPKK69cYbdFxXt8v+eee9K2bdtstdVWRacsd/zxx6dTp05FZ8BK8389/7z11lt58skn07FjxzRr1mwVllUsnn8AAAAAACqninY8rCL638fDysvLc9NNN+W//uu/smTJkpxxxhnp169fateuXXAlAABUDN98802uueaanHfeealWrVr69+//vdfMVfF80JXB+TgAAAAAAAAAwD9T1c+/mD17dl588cUccsghqVu37s++HedfrFgV+fMH999/f1q1apWmTZsW2rG6X4/rlltuydNPP73Sbn/27Nl5+eWXc8QRR6R69eor7f9ZmVq3bp3/+I//KDqDSuCmm27Ktddem8mTJ2ennXZKq1atik6qcNyf4OdZ2c/XP9WkSZPy5ZdfZo899ig6ZTmPLyvWily/vvfeexk3bly6dOmSddddd4XcZkVh/br6MthiNVavXr1svvnm2WyzzYpOqZAef/zx9OnTJw899FDee++99O/fPwMHDnRhB36SRx55JPvvv3/22muv1KhRo+icFWbJkiUr5Pf56KOPMmXKlHzyySepV6/eCigj8fj+f3n88cczdOjQnHTSSUWnwErzY55/Fi1atNouAj3/AAAAAABUbo6H/Wv/+3jY2LFjc9ppp+Xtt9/OySefnPPOO6/KnfgGAAArysKFCzN48OBcccUV2WCDDfKHP/whPXv2TPXq1avs+aArivNxAAAAAAAAAID/y+pw/sU333yTWrVq/ayfdf7FyuHzB/+a63ElvXr1yr333pt27dqtlNv/7nKvJSUlK+X2V7YZM2akVatWGTduXNEpVALf3Z+23nrrrLnmmqlWrVrRSRWK+xP8fCv7+bqy8/iy4q3o9euKuo5zRWH9StX5a+Zn+fd///fV+o2Ef2WttdbK0KFDc8wxx6S0tNQbUvwi99xzjyfaH/DdCzVWPI/v/5z7IqsTzz8/zPMPAAAAAEDl53jYP1evXr3MnTs3nTp1yrPPPpvf/OY3GTduXBo3blx0GgAAVGjrrbdeSktL07dv35x//vn53e9+lyFDhmTQoEGpW7duEufj/DPOxwEAAAAAAAAAfiznX/ww51+sPD5/8M+5L/6Pdu3auRD0P9GrV6+8/fbbRWdQibg//XPuT/DLeHz55zy+rDzWrz/M+hXjy+CfqFmzZs4888zceuuthloAAAAAAAAAAJXCt99+m9LS0qyxxhqZNGlSRo0aZagFAAD8BJtttlmGDRuWadOmpUWLFjnyyCPzn//5n0VnAQAAAAAAAAAAAAAAQKEMtoB/oVGjRkUnAAAAAAAAAAD8aNWrV8+ZZ56ZRx99NO3atSs6BwAAKq0WLVpkzJgxef7551O9evWicwAAAAAAAAAAAAAAAKBQBlsAAAAAAAAAAEAV0rhx46ITAACgyujQoUMGDx5cdAYAAAAAAAAAAAAAAAAUymALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfpDBFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPwggy0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4QQZbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8IMMtgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAHGWwBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADADzLYAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgB9ksAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/yGALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfpDBFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPwggy2oML744ouiE2C1sHTp0qITWI0sWbIk3377bdEZAAAAAAAAsNI4BgsAABTBWgQAAAAAAAAAACqPZcuWZeHChUVnUEl8/vnn+eijj4rOAAB+wJIlS7Js2bKiM1iNLFmyJIsWLSo6A5Yz2IJCTZkyJfvtt1/q16+fddZZJ5tsskn69OmTzz77rOg0qFLeeOON9OvXL40aNcr666+fgw8+OBMmTCg6iyps5MiR2WWXXbLOOuukdu3aadGiRa666iofpIXVWLNmzXLSSScVnQEAAAAAACuEY7AAAEARrEUAAAAAAAAAAH6eCRMmpHXr1v/yq0ePHkVnUgUtXLgwJ510UurUqZP69eunbt26OfLII/Phhx8WnUYF9dFHH6VFixbp1KlT0SlQ6SxdujRt27b9wef5gw46qOg8oJJ78MEH065du6y99trZeOON07179zz11FNFZ1GFjRs3Lu3atctaa62VOnXqpHHjxq7tS4VQo+gAVl+TJk1K586dU6NGjRx99NGpX79+7rrrrgwfPjwvv/xyXnjhhVSrZvYK/FKLFi1Kly5d8s477+Too4/O+uuvnzFjxuSQQw7Jww8/nN13373oRKqYESNG5IQTTsjWW2+dfv36ZdGiRRkzZkz69u2bTz75JH/4wx+KTgRWsZtvvjmzZ8/OnnvuWXQKAAAAAAD8Yo7BAgAARbAWAQAAAAAAAAD4+UpKSlKzZs0f3Ld48eLMnDkzzZo1W8VVVHXffPNNDjzwwLz44ov57W9/m44dO2bixIkZPnx45s+fn2effbboRCqgnj175t133029evWKToFKZ/78+XnllVfSpk2b1K9f/x/2/b//Bvgp7rjjjhxzzDFp1KhR+vfvn3feeSejRo3KQw89lIkTJ2brrbcuOpEqZsKECdl///2z7rrr5sQTT0zNmjVz9913p2/fvvn73/+e8847r+hEVmMGW1CYq666KosWLcqLL76Y7bbbLkly/vnnp3PnzpkwYULGjBmTrl27FlwJld/ZZ5+dmTNn5sEHH8wBBxyQJOnXr1/atm2bE044IXPnzi24kKrmsssuS7NmzfLiiy+mbt26SZIBAwakcePGufrqqw22gNXE/Pnzc9555+Wll17K3/72t6JzAAAAAABghXEMFgAAKIK1CAAAAAAAAADAz7f33ntn6tSpP7ivb9+++eyzz3Lttdeu4iqqultuuSUvvPBC/vSnP+X0009P8j9DC0pKSjJs2LBMmjQpO+ywQ8GVVCTXXHNNHn74YRfgh59p9uzZSZJbb701bdu2LbgGqCq++eab9O/fP3Xq1MmUKVOy7rrrJklKS0uz+eabp3v37nn55ZcLrqSqueCCC7Js2bK89NJLadKkSZLk4osvzuabb57LLrss55xzTqpXr15wJaurakUHsPp67rnnst122y0favGdE088MUkyceLEIrKgyrn55puz7bbbLv8QY5JsvPHG2W+//VJWVpYXX3yxwDqqmk8//TTTp0/PAQccsHyoRZJsuumm2XvvvfPxxx+nvLy8wEJgVfn888/zxhtvpF69etlxxx2LzgEAAAAAgBXGMVgAAKAI1iIAAAAAAAAAACveww8/nKFDh+a2227LJptsUnQOVcxtt92WjTbaKH379v2H7WeddVZGjBiRDTfcsKAyKqJXX301p59+egYPHpwGDRoUnQOV0qxZs1JSUpLmzZsXnQJUITNmzMg777yTAw88cPlQiyTZaKONsu+++2bq1Kn59NNPCyykKpo3b14233zz5UMtkmSdddbJTjvtlPLy8ixevLjAOlZ3BltQiPLy8uy33375/e9//7198+bNSxJTImEF+PDDD7Nw4cJ07tz5e/u+W2xPmjRpVWdRhdWoUSNPPfVUBgwY8A/bP/3007zyyivZd999U7NmzYLqgFWpZcuWefLJJ/Pkk0/m9ttvLzoHAAAAAABWCMdgAQCAIliLAAAAAAAAAACseB999FF++9vf5sgjj8zee+9ddA5V0KxZs3LAAQekVq1amTt3bu6///5Mnjw5m266aY477rg0bNiw6EQqiMWLF+eoo45Kp06dcuqppxadA5XW7Nmzs+WWW+aLL77IAw88kBtuuCHPPfdcvv3226LTgErs3XffTZLstNNO39v33bZXX311lTZR9R1++OGZP39+HnzwweXbZs6cmccffzx77bVX6tSpU2Adq7saRQeweqpZs2auvPLK723/4IMPcvXVV6dmzZo5+OCDCyiDqmXmzJlJ8oNTV7feeusk/3O/gxWlTp062XXXXZf/+7//+7/z1ltv5a9//Wu+/fbbnHnmmQXWAQAAAAAAwC/jGCwAAFAEaxEAAAAAAAAAgBXvd7/7XT755JOUlpYWnUIV9MUXX2TBggXZeOONc8ghh+SBBx5Yvq9Fixa56aabsvPOOxdYSEXSv3//vPvuu3nkkUdSUlJSdA5UWrNnz85nn32WRo0a5auvvlq+vX379rn11lvTsmXLAuuAyqpJkyZJksceeyynn376P+ybMWNGkv8ZbLHLLrus8jaqrr59+2bChAk5+OCDs8suu6R27dp5/PHHs+mmm+bCCy8sOo/VXLWiA+A7DzzwQNq0aZN33nknf/rTn9KmTZuik6DSmz17dpKkfv3639v33ZTeTz75ZJU2sXo5++yz89///d+ZNWtWNthgg6y55ppFJwEAAAAAAMDP5hgsAABQBGsRAAAAAAAAAIAV69VXX82oUaNy2mmnZcsttyw6hyrou3N+hgwZkrKyslx55ZWZPHlyrrjiirz11ls59NBD88EHHxRcSUXwwAMP5Kqrrsp1112XBg0aFJ0Dldrs2bPz+eef59xzz80bb7yRZ599Nr17987UqVNz6KGH5ssvvyw6EaiEmjVrlh122CETJkzI9ddfn88//zyffvpprr766owePTpJ8u233xZcSVWz7rrrpmHDhlm2bFleeumlvPDCC1m6dGlq1KiRzz//vOg8VnMGW1C4OXPmpEuXLjnkkENSt27djBs3LqeeemrRWVAlrLHGGkmSjz/++Hv7vltUr7feequ0idXLl19+mTfeeCM33nhjPvroo3To0CHvvfde0VkAAAAAAADwszgGCwAAFMFaBAAAAAAAAABgxbrkkktSq1atnHbaaUWnUEV9d67P119/nbvvvju///3v065du/Tt2zennXZaPvjgg9x5550FV1K0BQsW5MQTT0yvXr1y+OGHF50Dld7NN9+cl19+OWeccUaaNWuWXXbZJcOGDctpp52WWbNm5S9/+UvRiUAlVK1atdx4443ZZJNNctJJJ2WTTTbJJptsktNOOy0nnXRSkqR169YFV1LVdOrUKffdd1+GDh2a9957L3//+98zZsyYfPbZZznooIPy5ptvFp3IasxgCwp12223ZbvttssTTzyRSy65JNOnT0/nzp2LzoIqY5NNNkmSzJ0793v7vnvDc8MNN1ylTVRty5Yty9KlS/9hW7NmzXLiiSemtLQ05eXlefDBBwuqAwAAAAAAgF/GMVgAAKAI1iIAAAAAAAAAACvO22+/ndtvvz2HHXZY6tevX3QOVdRmm22WJNl5553TokWLf9h3yCGHJElee+21Vd5FxXLNNdfkww8/zKeffpoTTzxx+dc777yTd999NyeeeGIuvvjiojOh0mjfvn222Wab720/8MADkyTTp09f1UlAFdGmTZtMmzYt119/fU4++eRccMEFmThxYlq2bJnEYAtWrNdeey3Tpk3LnnvumVNOOSXrrbde1lxzzRxxxBE54YQT8tVXXxnWRKFqFB3A6uuBBx5Ijx490rFjx9xxxx3Zcssti06CKqd58+YpKSn5wQ8y/u1vf0uSdOjQYVVnUYWVlpbmrLPOyl//+tflb+B8Z4MNNkiSzJs3r4g0AAAAAAAA+MUcgwUAAIpgLQIAAAAAAAAAsOIMHz48S5YsSc+ePYtOoQr77tqK5eXl39u3aNGiJEm9evVWaRMVz4Ybbpjtttsus2bN+oftX3/9dZYuXZqpU6emWrVqBdVB5TJv3rxMnDgxO+644/eub/vd+ZcbbbRREWlAJffNN9+krKwsG2ywwffWEKWlpWnQoIGBeaxQr7zySpJkjz32+N6+ffbZJ3/+85+zcOHCVZ0Fy1mhUJizzjor9erVy913322oBawkm266aXbfffc89dRTmTNnzvLt5eXluf3227PZZpulffv2BRZS1bRp0yZJMn78+O/tu+6665Ikbdu2XaVNAAAAAAAAsKI4BgsAABTBWgQAAAAAAAAAYMUZN25c6tevn1/96ldFp1CFrbnmmtl7770zefLk7w0tuPfee5Mku+yySxFpVCB9+/bNyy+//L2vli1bZquttsrLL7+cG264oehMqBQ+/vjj/OY3v8mFF174vX133XVXkqRTp06rOguoAr766qu0aNEiffv2/Yft8+fPz5gxY9KlS5eCyqiqWrVqlSS5++67v7dv1KhRSf7/6/9CEWoUHcDqaeHChZk+fXq23377XHbZZT/4PXvuuWcOPvjgVVwGVc9ZZ52Vgw46KN26dcvZZ5+d9dZbL4MHD87cuXPzwAMPpKSkpOhEqpADDzwwbdq0yZVXXpl11103++23X955552MHj06Y8eOzY477uixHQAAAAAAgErNMVgAAKAI1iIAAAAAAAAAAL/cwoULM3ny5BxyyCGpVq1a0TlUcaWlpenQoUO6deuWiy66KFtssUUee+yxDBs2LLvttpuLIAOsQNtuu206duyY6667Luuvv36OOOKILF26NLfddlvGjRuXX//619lpp52KzgQqoXXXXTd777137r777nTu3DmHH354Zs+end69e2fzzTfPpZdeWnQiVUzr1q2z7777Zty4cdl///1z7LHHplGjRrnnnntyxx13pHXr1jnssMOKzmQ1ZrAFhXj22WezbNmyTJkyJVOmTPnB7ykpKXHxc1gB9t1339x6663p1atXfv3rXyf5nxfFf/7zn3PAAQcUXEdVU61atdx777059thjM2jQoAwaNGj5viOOOCJXXHFFatTw8gMAAAAAAIDKyzFYAACgCNYiAAAAAAAAAAC/3OOPP56lS5emY8eORaewGthxxx3z17/+NSeeeGIOPPDA5du7dOmSm266qcAygKqnpKQk9957b3r16pWLL744F1988fJ9p5xySi677LIC64DK7sYbb8xRRx2Vnj17pmfPnkmSdu3a5fbbb88666xTcB1VTbVq1XLHHXekb9++ueOOO/LII48s37f77rvnxhtvTK1atQosZHXnytIU4uCDD86yZcuKzoDVRvfu3fOb3/wmkyZNytKlS9OhQ4dUr1696CyqqK222irPPPNMysrK8vrrr2fNNdfM1ltvnc0226zoNKAgTZs29doPAAAAAIAqxTFYAACgCNYiAAAAAAAAAAC/zBFHHOE6KKxSBxxwQObNm5fp06fn73//e9q0aZMGDRoUnUUFN3ny5KIToFLaaKONcv/99+ett97KzJkzs+6666Zly5YuOg/8Yg0bNsyzzz6badOmZe7cuWnXrl223HLLorOowurXr5+RI0dm8ODBefXVV7No0aK0aNEiW2+9dUpKSorOYzVnsAXAaqJGjRrZeeedi85gNVGtWrU0adIkTZo0KToFAAAAAAAAVgrHYAEAgCJUlbXIsmXLsmDBgpSVlaVOnTrZbrvtik4CAAAAAAAAAICVombNmtl+++2LzgBYbTRs2DANGzYsOgOoYkpKSrLttttm2223LTqF1cjmm2+ezTffvOgM+AcGWwAAAAAAAAAAAAAAACvUggUL8uabb/7D1+zZszNnzpy8++67KS8vT5JceeWVBlsAAAAAAAAAAAAAAABUcAZbAAAAAAAAAAAAAAAAP1l5eXmefvrpJMnpp5+e+fPnZ/bs2Zk3b16++eabJEm1atVSq1atlJSUZNGiRd+7jQ4dOqzSZgAAAAAAAAAAAAAAAH46gy0AAAAAAAAAAAAAAICfrGbNmtl4442TJDfccMMPfs/SpUuzePHif/rzbdu2XWl9AAAAAAAAAAAAAAAArBjVig4AAAAAAAAAAAAAAAAqp+bNmydJrr322tStWzc1atT40T+77bbbplatWisrDQAAAAAAAAAAAAAAgBXEYAsAAAAAAAAAAAAAAOAX6d69e8rKynLCCSekpKQk1atX/5ffX6tWray11lq54447Mnfu3FVUCQAAAAAAAAAAAAAAwM9hsAUAAAAAAAAAAAAAAPCL1a9fP9ddd12efPLJNGvW7F8Ot1iyZEkWLFiQHj16pEmTJtloo41yyCGH5IILLsgjjzySTz75ZBWWAwAAAAAAAAAAAAAA8K8YbAEAAAAAAAAAAAAAAKwwnTp1yrRp03LZZZdlrbXWSq1atb73PUuXLs3DDz+cr776KpMmTcrZZ5+d9dZbL3feeWcOOOCArLfeetl0003TrVu3DBkyJM8880wWL15cwG8DAAAAAAAAAAAAAABAjaIDAAAAAAAAAAAAAACAqqVGjRrp169funbtmv79++f2229PtWrVsnTp0iRJ3bp1s9VWW6WkpCTt27dP+/btl//sJ598kkmTJuWZZ57J5MmTc8EFF+Sjjz5KzZo106xZs+y2227Zdddd0759+7Rq1SolJSVF/ZoAAAAAAAAAAAAAAACrBYMtAAAAAAAAAAAAAACAlWLTTTfNyJEjc/TRR+eUU07JggULsmTJkuy8887/dCDFuuuum86dO6dz587Lt82dO3f5oIvJkyfnlltuyddff5169eplxx13XD7oomPHjtlggw1W1a8HAAAAAAAAAAAAAACwWjDYAgAAAAAAAACACmvx4sX58MMP89FHH+Xvf/97ysvL8+STT+aoo47K2muvXXQeAAAAP9JBBx2UmTNn5qKLLsrgwYOzyy67/KSf32qrrbLVVlulR48eSZLy8vK88sory4ddjB49Oueff36WLVuWBg0aZLfddls+7GKHHXZI7dq1V8avBQAAAAAAAAAAAAAAsFr4/9i797ioy7z/4++BGQ+ZSGWmU2JhoTlYW7ibJbYdwLScQA1jtHDbWtx2uxvvrQ3b7YAdPazbct+2ibW1YTEKhtqkluJaMbYdwLSYVkxJLQw8JGIKcpj5/dEdu/60I8gFw+v5H9+5YF7zeMiMM3y/14fBFgAAAAAAAAAAAAAAAGhTn332mbZu3ap9+/Zp9+7d2rdvX/PwisrKSlVVVWnPnj2qrq5WXV3dMd8fERHBUAsAAAAA6IC6d++uhx9+WDfffLPq6+tb9LNsNpvi4uIUFxfXfOzAgQN67733moddPPzww9q3b59sNpvOO++8o4ZdDBkyRBaLpaUPCQAAAAAAAAAAAAAAAAAAAAAAoFNgsAUAAAAAAAAAAAAAAADalN/v1+jRoyV9tRFpWFiYgsGgGhsbFQgEjvs9YWFh6tq1qywWiy666KK2zAUAAAAAtLKYmJgT8nN79eqlhIQEJSQkNB/btWuX1q9f3zzs4vnnn9eRI0fUq1cvxcbGNg+7uPTSS9W7d+8T0gUAAAAAAAAAAAAAAAAAAAAAANDRMdgCAAAAAAAAAAAAAAAAbWrUqFE677zztG3bNjU0NHzneqvVqpNOOkmrV6/WqFGj2qAQAAAAABAq7Ha7UlJSlJKSIklqaGjQBx980Dzowuv1avbs2QoGg+rXr1/zoIu4uDgNGzZM3bp1M/wIAAAAAAAAAAAAAAAAAAAAAAAAzGOwBQAAAAAAAAAAAAAAANqUxWLR3Xffrdtvv/0719psNkVERGjt2rW68MIL26AOAAAAABDKbDab4uLiFBcX13zswIEDeu+995qHXTzyyCPau3evbDabzjvvvKOGXQwZMkQWi8XgIwAAAAAAAAAAAAAAAAAAAAAAAGh7DLYAAAAAAAAAAAAAAABAm7v55pt1zz336MCBA9+4xmazqU+fPlq3bp3OO++8NqwDAAAAAHQmvXr1UkJCghISEpqP7dq1S+vXr28edvH888/ryJEj6tWrl2JjY5uHXQwfPlynn366wXoAAAAAAAAAAAAAAAAAAAAAAIATL8x0ADqPw4cPy+fzmc4AQt4777zzrRu/AG3N6/UqGAyazgAQYurq6kwnAAAAAAAAAABa6N1331VMTIxsNttxb7fZbBowYIDefvtthloAAAAAANqc3W5XSkqKsrKy5PP5dPDgQRUXF2vGjBmKjo6W1+tVUlKS+vTpI7vdrokTJzav5fwmAAAAAAAAAAAAAADMKC4uNp0AHGXFihWmExAiXn/9dR05csR0e5p3eQAAIABJREFUBhAyVq9ebToBQAe1a9cu3negXdm4caN2795tOgOdiNV0AMzKycnRO++80yb3tW7dOvXr10+DBw9uk/trqdraWtMJCCF33nnnN27G0ppqa2u1fPlyjRs3Tl27dj3h99dSFRUVphNCVls+v38Xr9ern/3sZzrjjDNMp0ji+R2dS1u9/piwc+dObd26VcOGDVNERMQP+l5efwAAAAAAAADAnPr6ei1atEh/+ctf9P777+unP/3pcYek22w2ORwOrVmzRr179z7m9vb097D2hr+HAQAAACdOKJ+P0xKd5Xwcm82muLg4xcXFNR87cOCA3nvvPfl8PpWUlOiRRx7R3r17ZbVaFRMTo/j4eI0YMUJxcXEaMmSILBaLwUcAAAAAAAAAAAAAAIB5J/L8i82bN6uyslJXXHHFCfn5J1JnOf/CBJPXH3zxxRd68803lZycbOT+vwvXH3zlo48+0m233WY64ztt2rRJhw8f1qWXXtpm9+nz+RQVFdVm94eOr6P8PknSm2++qdNOO00Oh6NN7o/fJ6Bl2tPzy4cffqhDhw5p+PDhplMk8fxyInWU6wc+/fRTbdq0Sddee63CwsJO+P3x/hUMtujErrrqKh06dEg7d+484fe1fft2lZeXq2vXrm1yf63hiiuu0FlnnWU6Ax1c7969lZiYqM8///yE31cgEFBxcbEOHTqkzz77rEP8x0eSEhMTO0xrR9GWz+/fpba2Vrt379amTZvazWAjnt/RGbTl648pwWBQlZWVWrJkic466yxFR0erS5cu3/v7ef0BAAAAAAAAgLa1Z88ePfvss5o3b54+//xzjRkzRvPmzdNll12myZMnKz8/Xw0NDZK+2ij0Zz/7mVauXHnc4cbt6e9h7RF/DwMAAABaX2c4H6elOuv5OL169VJCQoISEhKaj+3atUvr169vHnaRk5Ojuro69erVS7Gxsc3DLoYPH67TTz/dYD0AAAAAAAAAAAAAAG3nRJ9/sXPnTpWVlenss8/usOead9bzL04k09cflJSUaP/+/dq+fXubbDD7Q3H9geRwOLRz584O8bzxxRdfqLy8XDabTX369GmT+4yKilJcXFyb3Bc6vo70+yRJhw4d0tatW9XQ0KBTTz31hN8fv0/Aj9fenl/+9a9/qa6uTv369ZPFYjGdw/PLCdDRrh/Yu3evqqqqVFhY2GZ7//L+tXOzBIPBoOkIhLY1a9Zo9OjRCgQCmj9/vqZOnWo6CQhJv/71r5WdnS1J2rdvX5u8OQa+y6OPPqr77rtPkZGR2rNnj6xWZmoBaD3/8z//I7fbrbCwMNlsNt111136/e9/r8jISNNpAAAAAAAAAID/s2XLFj355JN65plnZLPZNGXKFN11112KiopqXlNSUqJhw4ZJksLDwzVmzBjl5+erW7duprIBAAAAAGg1DQ0N2rJly1HDLv71r38pGAyqX79+zYMu4uLiNGzYMN4PAwAAAAAAAAAAAADwAz322GP64x//KEnKzs5Wenq64SJAeuONN3TFFVdIkjZs2KCLLrrIbBA6vOnTp2vWrFk6+eST9cEHH+icc84xnQR0aLfccov+/ve/KzIyUhs3btSAAQNMJwHoALZu3arzzjtPklRYWKirr77acBEgrVy5Utddd50k6bnnntMvfvELs0EIee1vbCNCyvbt2zVx4kRJktVqbRdTpIBQ9PzzzzcPtZDE7xrajYULF0qSqqurtXbtWsM1AELNLbfcoh49eigQCOjIkSOaM2eOzjzzTE2fPl01NTWm8wAAAAAAAACg0woGgyosLJTT6dTgwYO1cuVKPfbYY6qoqFBWVtZRQy0kKS4uTpdeeqkkyeVyaenSpWziCQAAAAAIGTabTQ6HQ+np6crJyZHf79f+/fu1Zs0apaenq7a2Vo888ohGjhypnj17yuFwaOrUqc1rg8Gg6YcAAAAAAAAAAAAAAEC7NXPmzOahFpIUHR1tsAb4SjAY1F133SWr1arw8HBt2rTJdBJCQG1trWw2m+rq6jR+/HjV19ebTgI6vPDwcB06dEjXXnutDh8+bDoHQAeQm5srm80mm82m3Nxc0znAMdLT0/Xuu++azkCIY7AFTpja2lpdf/31OnTokAKBgOkcIGS9/fbb+tWvfmU6AzjGBx98oLKyMkniTReAE6Jnz56aOnWqbDabJKmhoUGHDx/W3LlzNWDAAM2aNUt1dXWGKwEAAAAAAACg8zhy5IhycnI0dOhQJSYmav/+/Vq8eLE2b94st9utHj16fOP33n333frNb36j559/XlartQ2rAQAAAABoe7169VJCQoIyMzPl9Xq1Z88eVVRUKDc3VwkJCfL7/Zo6dapiY2MVGRmp+Ph4TZ8+vXktAAAAAAAAAAAAAACd3deDA/7whz8cdZzBFmgPCgoKVFJSosbGRoWHh2vjxo2mkxACvt5LqbGxUaWlpcrIyDBcBHRsFotF0ld7l23ZskW33nqr4SIAHcHChQvV0NCghoYG5eXl6ciRI6aTgObXNEkKBAIaO3asdu3aZbAIoY7BFjghgsGgpkyZon/9619qaGhoPv6fT3IAWq6yslJJSUnHDI/hdw3tgcfjOWqz+SVLlqi2ttZwFYBQc+edd6qpqemoY42NjaqurtYf/vAHnXPOOVqwYIEaGxsNFQIAAAAAAABA6KusrFRmZqbOPPNMpaen6+KLL9YHH3wgn8+nlJQUhYeHf+fPGDdunJ588kmFhXEqCwAAAACgc7Lb7UpJSVFWVpZ8Pp9qampUWlqqOXPmKDo6Wl6vV0lJSerTp4/sdrucTqdmzZoln8/XfNE6AAAAAAAAAAAAAACdQTAYlNvt1hNPPKFgMNh8PDw8XP379zdYBkhNTU269957m6+PqK+vV3FxseEqhILa2trmvZYaGxuVlZWlZcuWGa4CQkNjY6MWL16sJ554wnQKgHZsw4YN2rp1a/PXhw4d0quvvmqwCDhWU1OTqqurNW7cONXX15vOQYhiNwCcELNnz9aSJUvYQBg4gRoaGjR+/Hjt37//mA29AdOCwaBeeOGFo4Yb1dXVacWKFQarAISiAQMGKDk5uXmQzn8KBAKqqqrS7bffrsGDBys/P/+oP0YDAAAAAAAAAFpmw4YNSktLU1RUlObPn6/bbrtN5eXlysnJ0dChQ3/Qz7JYLCeoEgAAAACAjslms8nhcCg9PV05OTny+/3av3+/1qxZo/T0dEnSn/70J40cOVI9e/aUw+HQ1KlTm9dyrhQAAAAAAAAAAAAAIBQ1NTXp1ltv1ZNPPnnM38b79u173D1IgLb097//XVu3blUgEGg+tmnTJs7lQIvV1dUd9e/KYrEoLS1N27dvNxcFdGAWi+Woa9qCwaDuvvtuvfbaawarALRnHo9HXbp0af46PDxcL774osEi4Cv//zXaDQ0N2rBhg/77v//bUBFCHYMt0OoKCwv1hz/84bgfnrARBdB6fvvb3+rdd989anDA1/hdg2lvvfWWPvvss6OOhYWF6YUXXjBUBCCU/e53vzvu66H01QfFgUBAn3zyiW688UYNGzZMO3fubONCAAAAAAAAAAgdgUBAXq9XiYmJiouL04cffqh58+bpk08+0cyZM2W3200nAgAAAAAQsnr16qWEhARlZmbK6/Vqz549qqioUG5urhISEuT3+zV16lTFxsYqMjJS8fHxmj59evNaAAAAAAAAAAAAAAA6sqamJk2ZMkU5OTlHbe7+tXPPPddAFfBvdXV1uv/++485/uWXX2rHjh0GihBKDh06dNTXgUBAdXV1mjBhgurr6w1VAaFn4sSJKi8vN50BoJ0JBAJauHDhUa+5jY2NWr58uWpqagyWAcfX2Niov/71r3rmmWdMpyAEMdgCrWr79u1KSUkxnQGEvOzsbD399NNqamoynQIcl8fjOWZyeWNjo1auXKnq6mpDVQBC1YgRI/STn/xE4eHh37gmEAgoGAzq2muvVVRUVBvWAQAAAAAAAEBoOHjwoLKysjRw4EAlJydLkl5++WVt2LBB6enp6t69u+FCAAAAAAA6J7vdrpSUFGVlZcnn86mmpkalpaWaM2eOoqOj5fV6lZSUpD59+shut8vpdGrWrFny+Xyqra01nQ8AAAAAAAAAAAAAwPdSX1+vCRMmaNGiRcfde8tqtSomJsZAGfBvTz75pHbv3q1gMHjUcYvFoo0bNxqqQqg4fPjwMccaGhr0wQcf6L777jNQBHRsFovlmGOBQEC1tbVyOp3HDJMB0LkVFRWpqqrqmOONjY16+eWXDRQB/3a817Sv/eY3v9G7777bhjXoDBhsgVZz6NAhXXvttTp06NBxp9hK3/4kB+D7+ec//6n/+q//+tY1/K7BpMbGRnk8HjU0NBxzWyAQ0LJlywxUAQh199xzzzf+H/Rrc+bM0cMPP9xGRQAAAAAAAAAQGsrLyzV9+nRFRUXpvvvu06hRo+T3+7VmzRo5nU7+NgkAAAAAQDtjs9nkcDiUnp6unJwc+f1+7d+/X2vWrFF6erok6U9/+pNGjhypiIgIORwOTZ06tXnt/7+xAgAAAAAAAAAAAAAAph05ckTjx4/XihUrjjvUQpLCw8N1zjnntHEZ8G8HDx7Uo48+etx/ozabjcEWaLHjDbaQvtr37U9/+pOWL1/exkVAaGpoaNCWLVt06623mk4B0I54PB516dLlmOMWi0UvvPCCgSLg+wkEAho7dqx27dplOgUhhMEWaBXBYFC33HKLPv744+NuZA6gdVRWVio5Ofk7N+4GTFq7dq2++OKLb7x94cKFbVgDoLNISUnRGWeccdzbwsLC9PTTT+vuu+9u4yoAAAAAAAAA6Lh8Pp8mTpyomJgYLVy4UG63Wzt27FB2drYGDx5sOg8AAAAAAPwAvXr1UkJCgjIzM+X1erVnzx5VVFQoNzdXCQkJ8vv9mjp1qmJjYxUZGan4+HhNnz69eS0AAAAAAAAAAAAAAKZ8+eWXGjVqlFauXKnGxsZvXFdfX89gCxg1e/ZsHTx48Li3NTQ0aMOGDW1chFDzTYMtvnbzzTdrx44dbVQDdHwWi+Ubb2tsbFR+fr7mzp3bhkUA2quGhgZ5PB7V19cfc1tTU5MKCwu1e/duA2XAd2tqalJ1dbWSk5OP+28Y+DEYbIFWMXv2bOXn53/rB34AWubIkSO6/vrrtW/fvm+cGA20B7m5ubLZbMe9rampSa+//rqqqqrauApAqLNarXK73bJarc3HwsLCFB4eLqvVqoEDBxqsAwAAAAAAAICOob6+Xvn5+Ro+fLhGjhyp8vJyPfvss9qxY4cyMzN16qmnmk4EAAAAAACtxG63KyUlRVlZWfL5fKqpqVFpaanmzJmj6Ohoeb1eJSUlqU+fPrLb7XI6nZo1a5Z8Pp9qa2tN5wMAAAAAAAAAAAAAOokjR45o2LBh6tKlyzfuayRJwWBQ0dHRbVgG/NuePXs0d+7cb9yLMRgMMtgCLVZXV/eNtwWDQdXV1Sk1NZU9QYHv6dsGW0hSIBDQPffco8LCwjYqAtBevfbaa6qpqfnG2y0Wi1566aU2LAKO9l2vaQ0NDSouLta0adPaqAihjsEWaLG6ujpt3LhRXbp0ad48+HiCwWAblwGh5cMPP5T01Rvcb/twHTCprq5OL730khoaGr5xTVhYmPLy8tqwCkBnMXXq1ObBFmFhYbLZbPJ6vRo/frycTqfeeustw4UAAAAAAAAA0D7t2bNHs2bN0sCBAzV58mRFRUVp/fr1Ki4uVlpa2lFDhQEAAAAAQGiy2WxyOBxKT09XTk6O/H6/9u/fr6KiIrndbknS3LlzNXLkSEVERMjhcGjq1KnNa7leAAAAAAAAAAAAAABwIpx22mmaO3euPv30U/3ud7/71gEXDLaAKQ8//PB3DhPYtWuXqqur26gIoejbBltYLBYFg0G9/fbbys7ObsMqoGP7po3Av/6/RkREhN588822TALQDuXm5n7rPsBNTU3KyclpwyLgaN822OLr/eLDwsK0Y8cO7dmzpw3LEKosQa4eQCupra3VK6+8oueee06rV6+W9NUwi0AgIEkKDw/XggUL9Mtf/tJkJtDh7dy5U0uXLtXTTz8tv9+vLl26qL6+/qg1NTU16tmzp6FCdGYvvfSSbrjhhm9dY7FYNGzYML377rttVAWgM7n99ts1f/589ezZU6+++qouu+wyNTQ0aNy4cXr77bf1xhtvyOFwmM4EAAAAAAAAgHZhy5YtevLJJ/XMM8/IZrNpypQpuuuuuxQVFWU6DQAAAAAAtFO7du3S+vXr5fP5VFJSopKSEtXV1SkiIkJDhw5VfHy8RowYoUsuuUR9+vQxnQsAAAAAAAAAAAAACDHvv/++rrzySh0+fFgWi6V5/63u3bvr8OHDhuvQGX3yyScaNGiQmpqaZLPZVF9fr2/a4vP111/Xz3/+8zYuRKg4/fTTtXfv3uavw8PDJUmBQEBDhw7VuHHjdOONN+r88883lQh0KOnp6XruueeaBxOFh4crGAzKarXK6XRqypQpGj169LduZg8g9B0+fFinnXbatw6Ykr7aZ3XHjh3q379/G5UB/7ZmzRqNGjWq+WuLxSKr1aqGhgZdeOGFuuWWW+RyuTi3G63GajoAoaN79+5KSUlRSkqKRo8erbq6OtXW1uq9996TzWZTQ0OD6UQgJERFRcntdusXv/iF+vfvrzFjxujNN99UZWWlwsPD1dTUZDoRnZjH4/nONcFgUMXFxfrkk090zjnntEEVgM7E7XZr2bJleu2113TBBRdI+mrycX5+vkaPHq1Ro0bJ5/Px/AMAAAAAAACg0woGg1q7dq2ysrK0YsUKDRw4UI899phuu+029ejRw3QeAAAAAABo5+x2e/N1A5LU2NiosrKy5mEXXq9Xs2fPVjAYVL9+/RQXF9c87CIuLk7du3c3/AgAAAAAAAAAAAAAAB3Z/PnzFRkZqffff19z5szRM888o8bGRg0YMMB0Gjqp008/XW+++aY2b96ssrIybd68We+8846qqqoUCAQkqXkvxk2bNjHYAj/akSNHZLFYJH21AX9sbKw2bdqkDRs26Cc/+YnhOqDjsVgsampqUlhYmMLCwpSYmKgtW7bo5ptv1oMPPmg6D0A78fLLL3/nUAvpq2t3PR6P7rnnnjaoAo7ParWqsbFRgwcP1jnnnKOdO3dq48aNprMQgizBbxrnCPxI+/fvV9++ffXMM8/o5ptv1ieffCKPx6MXXnhBv//973XLLbeYTgRCwrPPPqvf/OY3qqysVEREhHw+n1588UUtWbJEO3bs0Mknn2w6EZ3QgQMHmj9I/9rZZ5+thx56SGlpaUcdP/nkk5lACuCE2Lt3r3r37n3M8ZqaGl111VWqrq5WUVGR+vXrZ6AOAAAAAAAAAMw4cuSIFi9erNmzZ8vv92vEiBHKyMjQ2LFjm09qBwAAAAAAaA0HDhzQhx9+2Dzs4p133tGePXtktVoVExNz1LCL888/X2FhYaaTAQAAAAAAAAAAAAAdwI4dOxQTE6O//vWvuvXWWyVJn376qR599FHt379fixcvNlwIfGXKlCmqrKzUk08+2TzsYsuWLXI4HLrzzjtN56GD6tu3ry6//HJNmDBBY8aMkc1m0+mnn665c+dq6tSppvOADuf2229XaWmpbrrpJqWkpOjUU0/Vb3/7W61bt04fffSR6TwA7URtbe0xgy3cbrc+++wzvfTSS0cd79Kli3r06NGWeYAkqbCwULfddptuuukmuVwuORwOvf7667ryyitVWloqh8NhOhEhhsEWaHXZ2dmaNm2aqqqqFBERcdRtR44cUdeuXQ2VAaElMTFRERERx/xHtr6+XlarlQu80G5ERkZqzpw5+tWvfmU6BQC0d+9eXX755QoPD9cbb7yhU0891XQSAAAAAAAAAJxQlZWVmj9/vubNm6cvv/xSEydO1O9//3sNHTrUdBoAAAAAAOhEdu3a1TzooqSkRCUlJaqrq1NERISGDh3aPOjikksuUZ8+fUznAgAAAAAAAAAAAADaodtuu01r165VWVmZunTpctRt9fX1xxwDTBk+fLiGDx+uv/zlL6ZTEEKO9zw3YcIEHT58WKtWrTJUBXRcx9sf1+fzaeTIkdq0aZMuuOACQ2UA2rtf/epX2rlzp1577TXTKYCkr17TunTpIovF0nwsEAhowIAB+sUvfqGHH37YYB1CEbueo9V5PB4lJSUdM9RCEkMtgFZSWVmpdevWyeVyHXNbly5dGGoBAMA36N27t1avXq0vv/xSY8aM0Zdffmk6CQAAAAAAAABOiA0bNigtLU1RUVGaP3++7rjjDn322WfKyclhqAUAAAAAAGhzdrtdKSkpysrKks/n08GDB1VaWqo5c+YoOjpaXq9XSUlJOuOMM2S32+V0OjVr1iz5fD7V1taazgcAAAAAAAAAAAAAGLZjxw4tXLhQDz744HEHWDDUAu1JWVmZBg0aZDoDIeZ4z3NJSUlau3atqqurDRQBHdvx9scdMWKEzj77bHk8HgNFAAD8OF27dj1qqIUkhYWFKTU1Vbm5uQoGg4bKEKrY+RytateuXSoqKjruZvsAWs+iRYvUo0cPXXfddaZTAADocM466yytWbNGO3fuVFJSkurq6kwnAQAAAAAAAECrCAQC8nq9SkxMVFxcnD788EPNmzdP27dvV2Zmpnr37m06EQAAAAAAQJJktVrlcDiUnp6unJwc+f1+VVdXq6ioSG63W5I0d+5cjRw5UhEREXI4HEpLS9OCBQvk9/sVCAQMPwIAAAAAAAAAAAAAQFuaMWOGoqKidNNNN5lOAb5VVVWVqqurGWyBNnH99ddLkl599VXDJUBosFgszZuAc44aAKCjc7lcKi8v1zvvvGM6BSGGwRZoVS+++KJ69eql0aNHm04BQlpubq7Gjx+v7t27m04BAKBDOvfcc/Xaa6/p/fffV2pqqhobG00nAQAAAAAAAMCPdvDgQWVlZWngwIFKTk5Wt27dtGbNGr3//vtKT09Xt27dTCcCAAAAAAB8p4iICMXHxysjI0Ner1e7d+9WRUWFcnNzlZCQoPLycrndbsXGxuqUU05RfHy8pk+f3rwWAAAAAAAAAAAAABCatm3bpoULF+qBBx6Q1Wo1nQN8q7KyMklisAXaRGRkpC6//HItW7bMdAoQMm6++Wbt3LlT69evN50CAECLXHzxxRoyZIhyc3NNpyDEMNgCrSo3N1c33HCDunbtajoFCFnbtm1TcXGxJk2aZDoFAIAO7YILLtDKlStVWFioX/7yl0xHBgAAAAAAANDhlJeXa/r06YqKitL999+vUaNGye/3y+v1KiEhwXQeAAAAAABAi9ntdqWkpCgrK0s+n08HDx5UaWmp5syZo+joaHm9XiUlJemMM86Q3W6X0+nUrFmz5PP5VFtbazofAAAAAAAAAAAAANAKHnroIZ1zzjlyuVymU4DvVFZWph49eshut5tOQSeRlJSkFStWqK6uznQKEBKGDBmioUOHyuPxmE4BAKDFUlNTtWjRIjU2NppOQQhhsAVazebNm7Vx40Y22wdOsBdeeEGnn366rrzyStMpAAB0eMOHD9eyZcuUl5cnt9ttOgcAAAAAAAAAvhefz6eJEycqJiZGeXl5mj59unbs2KHs7GwNHjzYdB4AAAAAAMAJY7Va5XA4lJ6erpycHPn9flVXV6uoqKj5HLC5c+dq5MiRioiIkMPhUFpamhYsWCC/369AIGD4EQAAAAAAAAAAAAAAfoiPP/5Yubm5evDBB2W1Wk3nAN+prKxMgwcPlsViMZ2CTmL8+PE6dOiQ1q1bZzoFCBkul0uLFy9WfX296RQAAFpk0qRJ2rt3r9auXWs6BSGEwRZoNS+++KLsdrtGjhxpOgUIaXl5eXK5XHzADgBAK0lISJDH49FTTz2lhx56yHQOAAAAAAAAABxXfX298vPzNXz4cI0cOVLl5eV69tlntWXLFmVkZOiUU04xnQgAAAAAAGBERESE4uPjlZGRIa/Xq927d6uiokIFBQVyOp0qLy+X2+1WbGysTjnlFMXHx8vtdis/P1+7d+82nQ8AAAAAAAAAAAAA+BYzZsxQdHS0UlNTTacA38vmzZs1aNAg0xnoRM4880zFxcVp2bJlplOAkDF58mTt379fa9asMZ0CAECLDBw4UD/72c/k8XhMpyCEMNgCrWbx4sWaNGmSwsPDTacAIaukpEQfffSRXC6X6RQAAELKuHHj9Le//U2ZmZn685//bDoHAAAAAAAAAJrt2bNHs2bN0sCBAzV58mRFRUXprbfeUnFxsdLS0mS1Wk0nAgAAAAAAtDt2u11Op1MzZ86Uz+fTwYMHVVpaqjlz5ig6OlqFhYW68cYbdcYZZzSvnTVrlnw+n2pra03nAwAAAAAAAAAAAAAkffzxx1q8eLFmzJjB/nboMMrKyhhsgTaXlJSk5cuXKxAImE4BQkJUVJQuu+wyNgEHAIQEl8ulgoICzpFGq2GwBVrF22+/rY8//pjN9oETLDc3t3nSFQAAaF1TpkzRE088obvvvlt/+9vfTOcAAAAAAAAA6OS2bNkit9uts88+W48//rjGjx+vbdu2KS8vT5deeqnpPAAAAAAAgA7FarXK4XAoPT1dOTk58vv9qq6uVlFRkdxutyRp7ty5GjlypCIiIuRwOJSWlqYFCxbI7/dz0T8AAAAAAAAAAAAAGPDggw8qJiZGEydONJ0CfC/19fXavn07gy3Q5saNG6eqqiq9/fbbplOAkOFyubRs2TJ9+eWXplMAAGgRl8ul2tpavfLKK6ZTECIYbIFW4fF4NHjwYF188cWmU4CQFQgEtHjxYk2aNEkWi8V0DgAAIcntdmv69OmaOnWqlixZYjoHAAAAAAAAQCcTDAZVWFgop9OpwYMHa9WqVXrsscdUUVGhrKws9e/f33QiAAAAAABAyIiIiFB8fLwyMjLk9Xq1e/duVVRY+D2PAAAgAElEQVRUqKCgQE6nU+Xl5Zo2bZpiY2MVGRmp+Ph4ud1u5efna/fu3abzAQAAAAAAAAAAACCkffTRR1q8eLEyMzMVFsaWiegYtm3bpsbGRgZboM05HA7FxMRo2bJlplOAkDFx4kTV19fr5ZdfNp0CAECL9OnTR1deeaU8Ho/pFIQIq+kAdHxNTU3Ky8vT7bffbjoFCGmvv/66KioqlJqaajoFAICQ9thjj6m2tlaTJ09Wz549dc0115hOAgAAAAAAABDi6urqlJeXp1mzZumjjz7SiBEjtHz5co0dO5ah9wAAAAAAAG3IbrfLbrfL6XRKkhobG1VWVqb169fL5/OpsLBQ//u//6tgMKh+/fopLi5O8fHxGjFihOLi4tS9e3fDjwAAAAAAAAAAAAAAQsOMGTN0/vnna8KECaZTgO9t8+bNslgsOvfcc02noBNKSkrS0qVLNXv2bNMpQEg4/fTTlZiYKI/Ho0mTJpnOAQCgRVwul37961/riy++0Kmnnmo6Bx0c40fRYoWFhaqsrGSzfeAE83g8uvjiizVkyBDTKQAAhLy5c+dqwoQJGj9+vNavX286BwAAAAAAAECIqqysVGZmps466yylp6crLi5OH374oXw+n5xOJ0MtAAAAAAAADLNarXI4HEpPT1dOTo78fr+qq6tVVFQkt9st6avzzUaOHKmIiAg5HA6lpaVpwYIF8vv9CgQChh8BAAAAAAAAAAAAAHQ8fr9fS5Ys0YwZMxQWxnaJ6DjKysrUv39/nXzyyaZT0AklJydr69at8vv9plOAkOFyufTaa69p7969plMAAGiRCRMmKDw8XAUFBaZTEAL4pAYt5vF4dMkllygmJsZ0ChCy6uvrVVBQIJfLZToFAIBOISwsTM8//7yuuuoqjR07Vhs3bjSdBAAAAAAAACCEbNiwQWlpaYqKitL8+fN1xx136LPPPlNOTo5iY2NN5wEAAAAAAOBbREREKD4+XhkZGfJ6vdq9e7cqKipUUFAgp9Op8vJyTZs2TbGxsYqMjFR8fLzcbrfy8/NVVVVlOh8AAAAAAAAAAAAA2r3MzEwNGTJE48aNM50C/CBlZWUaNGiQ6Qx0UsOHD1e/fv20dOlS0ylAyBg3bpy6dOmiJUuWmE4BAKBFIiIidN1118nj8ZhOQQhgsAVapK6uTsuWLWOzfeAEW7lypaqrq5Wammo6BQCATsNmsykvL08XXnihrrnmGm3ZssV0EgAAAAAAAIAOLBAIyOv1KjExUXFxcSotLdW8efO0fft2ZWZmqnfv3qYTAQAAAAAA8CPZ7XY5nU7NnDlTPp9PNTU1zZ//OBwOFRYWKjU1VX379m1eO2vWLPl8PtXW1prOBwAAAAAAAAAAAIB2o7S0VAUFBXr44YcVFsZWiehYGGwBk8LCwuR0OrV8+XLTKUDI6NGjh5xOJ5uAAwBCgsvl0uuvv66KigrTKejg+LQGLeL1enXw4EGlpKSYTgFCmsfj0eWXX66zzjrLdAoAAJ1K9+7d9fLLLysqKkpjxozRrl27TCcBAAAAAAAA6GBqamqUlZWl6OhoJScnq1u3blqzZo02bNig9PR0devWzXQiAAAAAAAAWpnVapXD4VBaWpqys7Pl9/u1f/9+FRUVye12S5L+/Oc/a+TIkYqIiGheu2DBAvn9fgUCAcOPAAAAAAAAAAAAAADMeOCBB3ThhRcqKSnJdArwg23ZsoXBFjAqOTlZJSUl2rlzp+kUIGS4XC4VFRVp+/btplMAAGiR6667ThEREVq8eLHpFHRwDLZAi3g8Hl199dWy2+2mU4CQdfDgQb3yyityuVymUwAA6JQiIiK0atUqdevWTddcc4327dtnOgkAAAAAAABAB1BeXq7p06drwIABuv/++3XNNdfoo48+ktfrVUJCguk8AAAAAAAAtLGIiAjFx8crIyNDXq9XVVVVqqioUEFBgZxOp8rLyzVt2jTFxsYqMjJS8fHxcrvdys/PV1VVlel8AAAAAAAAAAAAADjh3n//fS1btkwzZsyQxWIxnQP8IHv27NG+ffsYbAGjrrrqKvXs2VPLly83nQKEjDFjxujUU09VXl6e6RQAAFqka9euGj9+vDwej+kUdHAMtsCPVlNTo1WrVrHZPnCCFRQUqLGxURMmTDCdAgBAp9W7d2+tXr1aX375pa699lodPHjQdBIAAAAAAACAdsrn82nixImKiYlRXl6epk+frh07dig7O5uLEwAAAAAAAHAUu90up9OpmTNnyufzqaamRqWlpZo3b54cDocKCwuVmpqqvn37Nq/NzMxUYWGhamtrTecDAAAAAAAAAAAAQKvKzMzURRddpLFjx5pOAX6wsrIySdLgwYMNl6Az69q1q8aMGcNgC6AV2Ww2TZgwQbm5uaZTAABoMZfLpeLi4ub3L8CPwWAL/Gj5+fmSpHHjxhkuAUKbx+PRmDFjdNppp5lOAQCgUzvzzDO1Zs0a7dy5U0lJSaqrqzOdBAAAAAAAAKCdqK+vV35+voYPH66RI0eqvLxczz77rLZs2aKMjAydcsopphMBAAAAAADQAVitVjkcDqWlpSk7O1t+v1/79+9XUVGR3G63JOmpp55SYmKiIiIimtcuWLBAfr9fgUDA8CMAAAAAAAAAAAAAgB9nw4YN8nq9euihh2SxWEznAD9YWVmZTjrpJJ155pmmU9DJJScn64033tDevXtNpwAhY9KkSdq0aZNKS0tNpwAA0CJXXXWVzjzzTHk8HtMp6MAYbIEfLTc3V9ddd50iIyNNpwAha8+ePVq7dq1cLpfpFAAAIOncc8/V6tWrtWnTJt14441qbGw0nQQAAAAAAADAoD179mjWrFmKjo7W5MmTFRUVpbfeekvFxcVKS0uT1Wo1nQgAAAAAAIAOLiIiQvHx8crIyJDX61VVVZUqKipUUFAgp9Op8vJyTZs2TbGxsYqMjFR8fLzcbrfy8/NVVVVlOh8AAAAAAAAAAAAAvpcHH3xQF198sa699lrTKcCPUlZWppiYGIWFscUnzLruuusUHh6ulStXmk4BQsbll1+uAQMGaNGiRaZTAABokbCwMKWkpOiFF15QMBg0nYMOine9+FE+//xzvfHGG5o0aZLpFCCkLVq0SF27dtXYsWNNpwAAgP8zdOhQrVixQv/4xz90yy23KBAImE4CAAAAAAAA0Ma2bNkit9utAQMG6PHHH9eECRO0bds25eXl6dJLLzWdBwAAAAAAgBBnt9vldDo1c+ZM+Xw+1dTUqLS0VPPmzZPD4VBhYaFSU1PVt2/f5rWZmZkqLCzU4cOHTecDAAAAAAAAAAAAwFFKSkq0YsUKPfLII7JYLKZzgB+lrKxMgwYNMp0BqGfPnrryyiu1fPly0ylAyLBYLJo4cSKbgAMAQsKkSZO0bds2FRcXm05BB8VgC/woHo9HPXr00JgxY0ynACHN4/Fo/Pjx6tGjh+kUAADwH4YPH66lS5cqPz9fd955p+kcAAAAAAAAAG0gGAyqsLBQTqdTgwcP1qpVq/T4449r165dysrKUv/+/U0nAgAAAAAAoJOyWq1yOBxKS0tTdna2/H6/9u/fr6KiIrndbknSU089pcTERPXq1at57YIFC+T3+xUIBAw/AgAAAAAAAAAAAACd2f3336/hw4dr9OjRplOAH62srEyDBw82nQFIkpKTk/Xqq6/q8OHDplOAkOFyubRjxw69/fbbplMAAGiRn/70p4qJiZHH4zGdgg6KwRb4UTwej2644QZ1797ddAoQsr5+0+pyuUynAACA40hISNCiRYuUnZ2tzMxM0zkAAAAAAAAATpC6ujrl5OQoNjZWiYmJ2r9/v5YvX66ysjK53W6ddNJJphMBAAAAAACAY0RERCg+Pl4ZGRnyer2qqqpSRUWFCgoK5HQ6VV5ermnTpik2NlaRkZGKj4+X2+1Wfn6+qqqqTOcDAAAAAAAAAAAA6CSKi4v16quvasaMGaZTgB+toaFB5eXlGjRokOkUQNJXgy3q6uq0Zs0a0ylAyLjooovkcDiUm5trOgUAgBZzuVxatGiRmpqaTKegA2KwBX6wrVu3qri4mM32gRNs4cKF6t27txISEkynAACAb5CcnKxnnnlGDz30kObOnWs6BwAAAAAAAEAr+vzzz5WZmamzzjpL6enpiouL04cffiifzyen0ymLxWI6EQAAAAAAAPhB7Ha7nE6nZs6cKZ/Pp5qaGpWWlmrevHlyOBwqLCxUamqq+vbt27w2MzNThYWFOnz4sOl8AAAAAAAAAAAAACHoj3/8oy699FIlJiaaTgF+tPLycjU0NDDYAu3GGWecoUsuuUTLly83nQKElNTUVC1evFiNjY2mUwAAaJGbbrpJn3/+uV5//XXTKeiArKYD0PG88MIL6tu3r6688krTKUBIW7RokW688UbZbDbTKQAA4FtMmTJFBw4c0LRp0xQZGalbb73VdBIAAAAAAACAFigpKVFWVpYWLVqkU089VXfccYfuuOMO9e7d23QaAAAAAAAA0KqsVqscDoccDofS0tIkSTU1Nfrggw9UUlKi9evX66mnntKMGTNktVoVExOjuLg4xcXFKT4+XhdddJHCwsIMPwoAAAAAAAAAAAAAHdU///lPrV69WoWFhaZTgBYpKyuTxWLReeedZzoFaJacnKzZs2ersbFRVitbzwKtYdKkSXrggQdUWFio0aNHm84BAOBHO/fccxUXFyePx6Orr77adA46GM4exw+2aNEipaamKjw83HQKELI2btwov98vl8tlOgUAAHwPd955p+69915NnTpV+fn5pnMAAAAAAAAA/ECBQEBer1eJiYkaNmyYSktLNW/ePG3fvl2ZmZkMtQAAAAAAAECnERERofj4eLndbuXl5amqqkoVFRUqKCiQ0+lUeXm57r33Xg0bNkyRkZHNa/Pz81VVVWU6HwAAAAAAAAAAAEAH8sADD2jEiBFsookOr6ysTHa7XT179jSdAjQbP3689u3bJ5/PZzoFCBnR0dG65JJL5PF4TKcAANBiLpdL+fn5qqurM52CDoaxefhBiouLVVZWppycHNMpQEjzeDwaMGCALr30UtMpAADge3r00Ud1+PBh3XTTTerZsyfTlAEAAAAAAIAOoKamRs8995yeeOIJffrpp7r22mu1Zs0aJSQkmE4DAAAAAAAA2g273S673S6n0ylJamxsVFlZmUpKSrR+/XoVFhZq3rx5CgQC6tevn+Li4hQXF6f4+HhddtllOumkkww/AgAAAAAAAAAAAADtzdd/a1y3bp3pFKDFysrKNHjwYNMZwFHOPfdcDRkyRMuXL9cVV1xhOgcIGS6XS/fdd5+eeuopzosCAHRoLpdLGRkZWrVqlcaNG2c6Bx1ImOkAdCy5ubkaOHCgfvrTn5pOAUJWMBhUXl6eJk+eLIvFYjoHAAD8AH/+8581efJkTZgwgUnlAAAAAAAAQDu2bds2TZ8+XQMGDND999+va665Rh999JG8Xi9DLQAAAAAAAIDvYLVa5XA4lJaWpuzsbPn9flVXV6uoqEgZGRnq3r27nnrqKSUmJqpXr17Na7OyslRSUqJAIGD6IQAAAAAAAAAAAAAw7P7771d8fDybrSMkbN68WYMGDTKdARwjOTlZS5cuVTAYNJ0ChIzU1FTV1tbqlVdeMZ0CAECL2O12XX755crNzTWdgg6GwRb43gKBgPLy8nTTTTex2T5wAhUVFWn79u1yuVymUwAAwA9ksVj09NNPa8yYMRo7dqw2btxoOgkAAAAAAADAf/D5fJo4caIGDRqkvLw8TZ8+XTt27FB2djYXEAAAAAAAAAAt0LNnT8XHx8vtdisvL09VVVWqqKhQQUGBnE6nysvLde+992rYsGGKjIxsXpufn6/KykrT+QAAAAAAAAAAAADakM/n07p16/TII4+YTgFaRVlZGdeloF1KTk7Wjh072AcJaEV9+vTRVVddxSbgAICQMGnSJL3yyis6cOCA6RR0IAy2wPe2bt06VVRUaOLEiaZTgJCWm5urCy64QLGxsaZTAADAjxAeHq6FCxfqoosu0jXXXKOysjLTSQAAAAAAAECnVl9fr/z8fF1yySUaOXKkysvL9eyzz2rLli3KyMjQKaecYjoRAAAAAAAACEl2u11Op1MzZ86Uz+dTTU2NSktLNW/ePDkcDhUWFio1NVX9+vVrXpuZmanCwkIdPnzYdD4AAAAAAAAAAACAE+S+++7T1VdfrZ///OemU4AW++KLL7R3714GW6BdGjZsmPr376/ly5ebTgFCyqRJk7Rq1Srt27fPdAoAAC1yww03KBgMaunSpaZT0IEw2ALfm8fjUVxcnIYMGWI6BQhZDQ0NWrJkiSZNmmQ6BQAAtED37t318ssvKyoqSqNGjdLOnTtNJwEAAAAAAACdzu7duzVr1ixFR0frpptu0oABA/TPf/5TxcXFSktLk9VqNZ0IAAAAAAAAdCpWq1UOh0NpaWnKzs6W3+9XdXW1ioqKlJGRoe7du2v+/PlKTExURERE89qsrCyVlJQoEAiYfggAAAAAAAAAAAAAWugf//iH3njjDT3wwAOmU4BWUVZWJkkMtkC7ZLFYdP3117NRMdDKxo8fr/DwcBUUFJhOAQCgRSIjIzVmzBh5PB7TKehAGGyB76W+vl5Lly6Vy+UynQKEtFdffVVffPGFbrzxRtMpAACghXr27KlVq1bp5JNPVmJionbv3m06CQAAAAAAAOgUysrK5Ha7dfbZZ+vxxx/XhAkTtHXrVuXl5Wn48OGm8wAAAAAAAAD8h549eyo+Pl5ut1t5eXmqrKxURUWFli5dqpSUFH3++ee69957NWzYMEVGRjavzc/PV2Vlpel8AAAAAAAAAAAAAD/QjBkzNGrUKF1++eWmU4BWsXnzZnXr1k39+/c3nQIcV3Jysj744AOVl5ebTgFCRs+ePTV27Fg2AQcAhASXy6W1a9dyXi6+NwZb4HtZsWKFqqur2WwfOME8Ho/i4+N19tlnm04BAACtoHfv3lq9erUaGho0duxYHTx40HQSAAAAAAAAEJICgYAKCwvldDp1/vnn6/+xd+dhVdD528dvwV1SSUtxSdCU3FA0V3CbQcUQdzCXMFM0G3NjGttsqBy1xVS0RcncFVwwM9xNU0DNiMUNMxU3zB0VyYXl+WN+nmesqTEFvodz3q/r4i8RbrrCcwOH+7N+/XpNnjxZaWlpmjFjBr8cAAAAAAAAABQiVapUkb+/v0JDQ7V582Zdu3ZN+/fv16xZs1S/fn1t2bJFzz77rFxcXO553S1btigzM9N0fAAAAAAAAAAAAAC/Y/PmzdqxY4cmTJhgOgqQZw4fPqw6derI0dHRdBTgv2rXrp2cnZ315Zdfmo4C2JR+/frp22+/1enTp01HAQDgoXTr1k1OTk5avny56SgoJIrk5ubmmg4B6xcQEKBLly7pm2++MR0FsFk3btxQ5cqV9f7772vEiBGm4wB5pnz58vrggw8UHBxsOgoAGHP06FG1adNGTz31lNatW6eSJUuajgQAAAAAAADYhJs3b2r58uV67733dPDgQXl5eWn8+PHq2rWrihQpYjoeAAAAAAAAgHxy/fp1JSUlKT4+XrGxsdqxY4fOnTsnR0dHubu7q2nTpmratKm8vb3l6ekpBwcH05EBACjULl68qNTUVJ09e1aXLl2yvFy4cEFXr17VnTt3lJGRIenfvyd3+/ZtSf/+vaIiRYqoWLFicnJyUokSJVShQgXLS8WKFVWpUiVVr15d1atXV7FixUx+mAAAAAAAAADyWdu2bVWmTBmtX7/edBQgz/Ts2VPFihVjBBZW7bnnntOJEye0Y8cO01EAm3H79m25uLjo9ddfV0hIiOk4AApQcHCwTp48qY0bN5qOAuSZQYMG6fDhw9q9e7fpKCgEipoOAOt37do1RUdHKywszHQUwKZ9+eWXunnzpnr37m06CgAAyGO1atXSxo0b1b59e/Xt21erVq1S0aJ8OQYAAAAAAAA8qLNnz2r27NmaNWuWMjIyFBgYqMjISDVo0MB0NAAAAAAAAAAF4JFHHpG3t7e8vb01evRoSVJaWpri4+Mtxy5ef/11ZWZmysnJSY0aNbIcu2jbtq1cXV3NfgAAAFihX375RQcOHFBSUpIOHDign376ScePH1dqaqrlaIUklS5d2nKU4rHHHlO5cuVUpkwZPf7445Y/L1GihCQpPT1dubm5ys7O1rVr13Tt2jUdO3bsnuMYubm5kiRHR0dVrVpVbm5ucnNzU926deXh4aGGDRuqatWqBf8fBAAAAAAAAECe2rBhg3bu3MlIJmzO4cOH2Y6D1evRo4cCAwP1888/q3LlyqbjADahePHi6tmzp5YtW8ZhCwBAode/f3/5+vrqyJEjql27tuk4sHIsqeJ/ioqKUnZ2tnr16mU6CmDTli5dqs6dO1uewAsAAGxLw4YNtW7dOvn4+Oj555/XwoUL5eDgYDoWAAAAAAAAUKjEx8drxowZioiIUIUKFTRy5EiNHDlSFStWNB0NAAAAAAAAgGFVqlRRlSpV5O/vL0nKysrS4cOHLYcutmzZolmzZiknJ0cuLi6WQxfe3t5q3bq1SpcubfgjAACg4Ny5c0cJCQmKi4vTrl27lJSUpJ9++knZ2dkqXbq06tevr9q1a6tbt25yc3OTq6urXF1dVbVqVZUqVSrPcuTk5OjChQs6ceKEUlNTLYc0jh07pi1btuj06dOSpAoVKsjDw8Py2N2qVSt+Dw8AAAAAAAAoZEJDQ+Xn56cWLVqYjgLkmezsbB07dkzu7u6mowB/qEuXLipZsqSio6M1ZMgQ03EAm9GvXz/NnTtXBw8eVL169UzHAQDggfn4+KhSpUqKiIjQhAkTTMeBlSuSm5ubazoErFvnzp1VunRprV692nQUwGZdvHhRVapU0fz589W/f3/TcYA8Vb58eX3wwQcKDg42HQUArMLWrVvl5+enIUOG6OOPPzYdBwAAAAAAALB6OTk5io6OVlhYmLZs2SJPT0+9+OKLCgoKUsmSJU3HAwAAAAAAAFCIXL9+XUlJSZZjFzt27NC5c+fk6Ogod3f3e45deHp6ysHBwXRkAADyxJ07dyyHnmJiYrR3715lZmaqYsWKatWqlTw9PdWwYUM1atRINWvWlKOjo+nIkqTLly8rOTlZ+/btU3Jysvbs2aMDBw4oJydHderUUevWrdW+fXt17txZlStXNh0XAAAAAAAAwO9Yt26d/Pz8tGfPHjVv3tx0HCDPHDlyRHXq1NF3332nZs2amY4D/KFu3bopNzdXa9euNR0FsBk5OTl64oknNGTIEL399tum4wAoIMHBwTp58qQ2btxoOgqQp0aNGqXNmzfr0KFDpqPAynHYAn/o/Pnzqlq1qpYsWaLAwEDTcQCb9cknn+iVV17RuXPn5OTkZDoOkKc4bAEAv/Xll18qICBAr732mt555x3TcQAAAAAAAACrdO3aNc2bN0/Tpk3TqVOn9Mwzz2j06NHy8fExHQ0AAAAAAACADUlLS1N8fLzl2EVcXJwyMzPl5OSkRo0aWY5dtG3bVq6urqbjAgBw306dOqUNGzZo/fr12rp1q65du6Y6derI29tb3t7eatWqlZ566inTMf+0q1evKi4uTrt27VJMTIx27dqlW7duydPTU76+vvL19VWrVq1UtGhR01EBAAAAAAAA/J8WLVqocuXKWrNmjekoQJ76+uuv5e/vr6tXr6ps2bKm4wB/6IsvvtBLL72kCxcu6JFHHjEdB7AZISEhWrNmjY4cOaIiRYqYjgOgAHDYArZq165dat26tX744Qd5enqajgMrxrOy8IciIiJUqlQpde3a1XQUwKYtW7ZMPXr04KgFAAB2okePHpo7d66ef/55lS1bVn//+99NRwIAAAAAAACsxtGjRxUeHq7PPvtMOTk56tevn8aNGyd3d3fT0QAAAAAAAADYoCpVqqhKlSry9/eXJGVlZenw4cOWQxdbtmzRrFmzlJOTIxcXF8uhC29vb7Vu3VqlS5c2/BEAAPD/nT59WqtWrdKKFSsUFxenkiVLysvLS6+//rq6deumunXrmo740MqVK6cuXbqoS5cukqRffvnF8pj95ZdfatKkSXr00Ufl5+engIAAdenShSMXAAAAAAAAgEFr167V3r17tWfPHtNRgDx3+PBhubi4cNQChUL37t01fPhwbdy4UX369DEdB7AZ/fr100cffaS9e/eqefPmpuMAAPDAWrVqpSeffFLLli3jsAX+UJHc3Nxc0yFgvVq1aqU6depowYIFpqMANuvkyZNydXXVV199xREZ2KTy5cvrgw8+UHBwsOkoAGB1Zs6cqdGjR2vOnDkaOnSo6TgAAAAAAACAUTExMQoLC1NUVJSeeOIJDR8+XMOGDZOzs7PpaAAAAAAAAADs3PXr15WUlGQ5drFjxw6dO3dOjo6Ocnd3v+fYhaenpxwcHExHBgDYkUuXLmnJkiWKjIzUrl27VL58efXo0UOBgYFq3769SpYsaTpigfrxxx+1atUqLV++XImJiapUqZL69OmjgQMHqmXLlqbjAQAAAAAAAHanefPmqlq1qlavXm06CpDnhg0bpiNHjmjbtm2mowD3pV27dqpevboWL15sOgpgU5566il16dJF06ZNMx0FQAEIDg7WyZMntXHjRtNRgDz35ptvat68eTp16hTPhcXv4rAFftfRo0dVu3ZtrVu3Tr6+vqbjADZrypQp+uCDD3T27FkVL17cdBwgz3HYAgD+2IQJEzR58mQtXbpUgYGBpuMAAAAAAGAXLl68qPPnz+vy5cu6ePGiLl26pEuXLunmzZvKzMyUJGVkZOjOnTuSpHLlysnBwUGOjo4qW7asypQpowoVKqhChQp67LHHVKFCBbm4uKhYsWImPyygULp9+7YiIiI0depUJScnq2nTpho1apT69++vokWLmo4HAAAAAAAAAL8rLS1N8V5mm20AACAASURBVPHxlmMXcXFxyszMlJOTkxo1amQ5dtG2bVu5urqajgsAsDG5ubnavn27wsPDFRUVpRIlSliOWXTs2JHfU/s/P/74o5YvX67IyEjt379fDRs21NChQ/Xcc8/J2dnZdDwAAAAAAADA5q1Zs0Y9e/bUDz/8oMaNG5uOA+S5du3aqW7duvrss89MRwHuy7Rp0/T222/r/Pnz/DwJyEOhoaGaPXu2Tp8+LUdHR9NxAOQzDlvAlh06dEj16tXT9u3b1a5dO9NxYKU4bFHAMjMzLcM4Fy5c0KVLl3Tt2rV7hnGuXLkiSZZhHEkqVaqUSpYsqQoVKqhixYqWoZwKFSrk2xeE7777rmbOnKm0tDQGQ1DoXLly5Z4hqkuXLumXX35Renq6pH8P5Ny4cUPS///8kv49THX3c+3XL0WKFMmXrB4eHvLy8tKnn36aL28fyC9ZWVm/+Ty7O/x29/MrIyNDCxYsULNmzfT000/fM/zm5ORkeVy7+9jm5ORk+KMCADPGjRunjz/+WF9++aW6dOliOk6hVJj6HwAAAACgYFy6dEnJycnat2+fjh49quPHj+v48eNKTU1VRkbGPa/7yCOPqGLFiipdurTla8YyZcpYfg539epV5eTkKDc3V+np6bpx44YuXbqkrKwsy9twdHRU1apV5erqKjc3N7m5ualevXry8PDQk08+yRPRgF85f/685s2bp5kzZ+rChQvq3r27xo0bp5YtW5qOBgAAAAAAAAAPJCsrS4cPH77n2EVCQoJycnLk4uJiOXTh7e2tVq1aqUyZMqYjAwAKofT0dIWHhys8PFxHjhxRy5YtNWzYMAUGBvLY8j989913Cg8PV0REhLKystSnTx+NGjVKzZo1Mx0NAAAAAAAAdqgw7dE9qNzcXDVp0kS1atXSypUrTceBncrvPZLKlStr/PjxGjt2bMF/cMADSE1NlZubmzZt2qSOHTvmydu83z26u49v5cqVY48ONuenn35S7dq1tXnzZvn4+OTL+7CH/ghYg/vpj5s3b9aNGzfUrVs39uxgkxo3bqwWLVpo9uzZ+fL26Y+FH4ct8sHVq1e1b98+7d+/X8eOHVNqaqrl5cKFC/e87t1PhrJly1rGbJydnSX9+xPs+vXrkqRbt27pxo0blgexuxwcHFSlShXLQI6rq6tq1aqlhg0bqn79+ipRosQDfxwNGjTQX/7yF4WFhT3w2wDy06lTp5ScnKyDBw8qNTVVJ06csAxSZWZm3vO6pUqVUunSpVWuXDlJUrFixSwPOJmZmbp165Yk6fr168rMzLQ8iN1VsmRJ1ahRQ66urpaXp556Sh4eHnJzc3vgknjw4EHVr19fO3bsUJs2bR7obQD56c6dOzp8+LD27dunw4cP3/OYdubMmXtG26R/l73SpUurVKlSkv778FtOTo6uXr16T0m8y9nZ+Z7Ps5o1a6p+/fpq1KiRHn300YL5oAHAgNzcXA0dOlQRERHauHGjvL29TUeySrbQ/wAAAAAA+SM9PV1xcXHatWuXvv/+e+3bt09nzpyRJFWoUEHu7u73/DzN1dVVlStXfugnXqWnp1ue/HXy5EmlpqZavlY9duyYjh49quzsbJUqVcryvc5WrVqpdevWeuqpp/j6EnYpKSlJn3zyiRYtWqTixYtr0KBBeuWVV1StWjXT0QAAAAAAAAAgz12/fl1JSUmWQxc7duzQuXPn5OjoKHd393uOXXh6esrBwcF0ZACAlUpNTdWMGTM0d+5cFSlSRIMGDVJwcLAaNmxoOlqhc/36dUVEROizzz7TDz/8oLZt2yokJERdu3blsRgAAAAAAAB5ylb26B5UVFSU+vTpo4SEBDVq1KjA3z/sh6k9kurVq2vt2rV68cUXFRQUxB4JCo3GjRvL29tbs2bNuu+/wx4d8L81a9ZMDRs21BdffPHAb8Pe+yNQUNizA/7Y+++/rylTpujs2bMP/HhAf7RtHLZ4SNevX9fu3bsVGxurhIQE7du3T8ePH5f070+GWrVq3fM/tKurq+WSS8WKFS2l735lZ2dbLshcvHhR586du+eTMjU1VT/99JNu3bqlokWLqk6dOvLw8FCzZs3UunVrNWnS5L6GeRISEtSkSRPFxcWpVatWD/TfBshLJ0+eVGxsrHbv3q2kpCQlJydbrgFWq1btN2NUVatW1eOPP265mlS6dOk/9f5u3rxpudx08eJFnTlzxlIy776cOHFCubm5euSRR9SwYUN5eHioZcuWat26tWrXrn1f7+f111/X4sWLlZqaypNeYVx2draSk5MVExOjvXv3at++fTp48KBu376tYsWK/eYxrUaNGqpSpco9lwCLFSv2p97ntWvXdOHCBV28eFEXL17UiRMn7vk8O3bsmC5duiRJqlq1qjw8POTp6WkZfqMcArAl2dnZ6tu3r7Zs2aJt27bJ09PTdCSjbLX/AQAAAADyxpUrV7R582Zt3bpVsbGxOnTokHJycuTu7q5mzZrJw8NDHh4eatiwoapUqWIs5y+//KKDBw8qOTlZ+/btU0JCgvbu3asbN26oQoUKatWqldq2bavOnTvLw8PDWE4gv+Xk5Oibb77RjBkzFB0drSeffFJ/+9vfFBwc/Ke/jwMAAAAAAAAAhV1aWpri4+Mtxy7i4uKUmZkpJycnNWrUyHLsok2bNnJzczMdFwBgWEJCgqZMmaJVq1apatWqGjVqlIKDg1W2bFnT0WzC9u3bNXXqVEVHR6t27doKCQnR888/f1+/hwsAAAAAAAD8J1vdo3tQubm58vT0lLu7uyIjI/Pt/cD+sEcCPLzQ0FB9/vnnOnXq1H8d02aPDngw06ZNU2hoqH7++WfLKPcfoT8CBYP+CPx5p06dkqurq1avXq1u3br9z9enP9ofDlv8SVevXrUMzcbGxmrfvn3Kzs5WrVq11LRpUzVq1EgNGzZUw4YN5erqaiRjVlaWjhw5ouTkZMvLd999p/Pnz6tUqVJ6+umn5e3tLR8fH3l7e//XYviPf/xDy5cv1/Hjx7ncBCOOHTumDRs2aMeOHYqNjdXp06dVrFgxeXp6qnHjxpYxKg8PD5UvX95IxuvXr+vAgQOWz7PExETFx8fr5s2bqlSp0j1jVPXq1fvN38/NzVWtWrUUGBioKVOmGPgIYO+ys7O1Z88ebdq0yfKFVkZGhsqXL68WLVrc85hWt25dY99IOHPmjPbv36+kpCTt27dP8fHxSklJkSTVrVtXXl5e6tChgzp27KiKFSsayQgAeeX27dvy9/dXYmKiduzYIXd3d9ORCow99D8AAAAAwMOJj4/X+vXrtX79eu3Zs0dFihRRixYt5O3trdatW6t169aF4nuEWVlZSkhIUFxcnGJjY/Xtt9/q/Pnzqlq1qrp06SJfX1916tRJjzzyiOmowEPLyMjQ0qVLNX36dB06dEheXl4aP368unbtys+hAQAAAAAAAOD/ZGVl6fDhw/ccu0hISFBOTo5cXFwshy7uHrsw9Rw6AEDB2r9/v0JDQxUVFSVPT0/9/e9/V0BAgIoWLWo6mk06dOiQPvroIy1atEguLi6aMGGCgoKC+O8NAAAAAACA32Uve3QPasWKFXr22WeVmJiohg0b5tnbhf1hjwTIe4mJifL09NSePXvUvHlz9uiAPHL27FlVr15dkZGR6t2792/+nP4IFAz6I5A32rVrpypVqmjZsmW/+TP6IzhscR+SkpK0fv16bdiwQbGxscrNzVXTpk3l5eVlGcqpXLmy6Zj/048//mgZyNm5c6cOHz4sJycn+fj4yNfXV88884yqV6+u3Nxcubm5aeDAgZo4caLp2LATt27d0rZt27RhwwatX79eP/74o8qWLas2bdqodevW8vLyUrNmzf70pbKCdvv2bcXHxysuLk4xMTHauXOnLl26pBo1asjX11e+vr7q2LGjypQpo9jYWHl7eysxMVGNGjUyHR124vz581q3bp3Wr1+vLVu26PLly3J1dVXbtm3l5eUlLy8v1a1bVw4ODqaj/qFLly4pLi7O8rm2Z88eZWdnq1mzZpbHtGbNmjGKBaBQunHjhjp16qRTp04pJiZGTzzxhOlI+cIe+x8AAAAA4M87cOCAVqxYoWXLlunHH3/U448/rnbt2qlr167y9/eXs7Oz6Yh54sCBA/r666+1ZcsWffvtt3J0dJSPj48CAgLUs2dPjlyg0Dl79qxmz56tmTNn6saNGwoMDNT48eNVv35909EAAAAAAAAAoFC4fv26kpKSLIcudu7cqZ9//lmOjo5yd3e3HLrw9vZW48aN5ejoaDoyACCP/PjjjwoNDVVkZKQaNGigd955R926deN3ZArIyZMnNXHiRM2fP1+urq5666231L9/f6v/XSsAAAAAAAAUDHvbo3tQOTk58vT0VL169f7rACbwR9gjAQrGk08+qbZt2+rGjRvs0QF5yMfHR+XLl9fKlSsl0R+BgkB/BPLHZ599ppCQEJ07d05OTk7sGeMeHLb4HXdHciIjI5WSkqKKFSuqQ4cO8vHxUbdu3QpF8ftfUlNTtWnTJm3ZskWbNm3S1atXVa9ePf3lL3/R/PnztXv3boZFkK+ys7O1a9curVixQkuXLtXFixdVs2ZNyxhV27ZtC/0FvpycHCUkJGjLli3asmWLtm/frqJFi8rHx0dly5ZVUlKS9u/fbzombNzly5f19ddfa8WKFdqwYYMkqUWLFvL395ePj4+aNm1qOOHDy8zMVFxcnNauXas1a9boxIkTqlatmnr16qWAgAB5eXlRCgEUKpcuXVK7du10584d7dixQ5UqVTIdKU/Ye/8LCAhQr1695OTkZDomAAAAAFi106dPa+7cuVqyZImOHDkiV1dXBQYGKjAw0Ca+n/m/XLp0SatXr9by5cu1bds2FS9eXP7+/nrhhRfk4+Nj9T/Ih32Lj4/XjBkzFBERoQoVKmj48OEaOXKkKlasaDoaAAAAAAAAABR6aWlpio+Ptxy7iIuLU2ZmppycnNSoUSPLsYs2bdrIzc3NdFwAwJ905coVvffee5o2bZpq1aqlV199VQMGDOB4kSEnTpzQpEmT9MUXX6h27dqaNm2aOnfubDoWAAAAAAAADLDnPbqAgAAFBQWpZs2af+rtRUZGasCAAdq3b5/q1q2bT6lhS9gjYY8EBYM9OvbokP+++OILhYaG6vnnn9eKFSvoj0A+oT/SH5H/Ll26JDc3N40cOVL79u2jP+IeHLb4D2lpaZo3b56WLFmiQ4cOqXr16goICFBgYKCaN29u0/8D3bp1S1u3blVkZKTWrFmj69evy8vLS4MGDVLfvn15oEKe2r17t+bOnatVq1YpPT1dLVu2VGBgoHr37m3zV/YuXLigqKgoLV++XN9++61KlSql7t2764UXXlCHDh1s+t8ZFKxbt24pKipK8+fP1zfffKPixYvLz89PgYGBeuaZZ6z+WuDDSkpK0ooVK7R8+XLL8N2AAQP0wgsv8I0OAIVGWlqavL29Va5cOW3btk3ly5c3HemB0f/ofwAAAADwv2RlZSk6Olrh4eHasGGDKlasqAEDBqhv375q3ry56XjGXLx4UatWrdLixYsVExMjNzc3DRkyRIMHD1aVKlVMxwMk/fuJUdHR0XrvvfcUGxsrT09PvfjiiwoKClLJkiVNxwMAAAAAAAAAm5Wdna2UlJR7jl0kJCQoJydHLi4ulkMXd49dFObnIQKALcvKytJnn32mf/7znypevLgmTpyowYMHy8HBwXQ0SDp06JBCQkK0fv169e7dWx988AEHpAAAAAAAAOwAe3QPvkeXk5Ojxo0by8PDQ4sXLy6g1Cis2CNhjwT5jz069uhQMO72x8WLFyslJYX+yJ4x8gn9kf6I/Ed/pD/eD7s/bJGdna0NGzYoPDxc0dHRKleunGUkp1WrVnb5j/KtW7e0ceNGRUREaPXq1SpWrJj69eun4OBgPf3006bjoZC6cuWKFi9erPDwcO3bt08eHh4KCgpSQECAnnjiCdPxjDh37pxWrlypJUuWaNeuXXryySc1dOhQDRo0yCauKMKMgwcP6vPPP9fChQt19epV+fn5qV+/furatavKlCljOp4RCQkJioyM1KJFi/Tzzz/rr3/9q4KDg9W9e/dCf0URgO07evSo2rRpIzc3N23evLlQfSFP//st+h8AAAAA/NaVK1c0e/ZszZo1S2fPnpWPj4+Cg4PVrVs3vn/3K4cOHbJ8/zc9PV09e/ZUSEiIWrRoYToa7NS1a9c0b948TZs2TadOndIzzzyj0aNHy8fHx3Q0AAAAAAAAALBb169fV1JSkuXQxc6dO/Xzzz/L0dFR7u7ulkMX3t7eaty4sRwdHU1HBgC7tm3bNo0cOVJHjx7V6NGj9cYbb6hs2bKmY+G/WLduncaNG6cTJ04oJCREb775pkqWLGk6FgAAAAAAAPIQe3S/9SB7dEuXLlVQUJD279+vp556qoATozBgj+S32CNBfmCP7rfYo0Neoz/+FnvGyA/0x9+iPyI/0B9/i/74++z2sMW1a9cUHh6usLAwnTp1Su3bt1dwcLB69eqlEiVKmI5nNS5fvqxFixYpPDxcBw4c0NNPP62QkBD16dNHRYsWNR0PhUBKSoqmTZumRYsWydHRUX379lVwcDAjS7+yf/9+hYeHa9GiRcrIyFBAQIBCQkLUpEkT09FQCOTk5Cg6OlofffSRtm/fLjc3Nw0dOlSDBw+Wi4uL6XhWIysrS+vWrVN4eLjWr1+vChUq6KWXXtJLL72kxx57zHQ8APhd+/fvV7t27eTl5aVVq1apWLFipiP9Ifrf/aH/AQAAALB3x48f1/Tp0/XFF1/I0dFRw4YN04gRI+Tm5mY6mtW7deuWoqKiNG3aNO3du1fe3t4KCQlRt27d5ODgYDoe7MDRo0cVFhamuXPnysHBQf369dO4cePk7u5uOhoAAAAAAAAA4L9IS0tTfHy85dhFXFycMjMz5eTkpEaNGlmOXbRp04af1QBAAUlPT9crr7yiuXPnyt/fXx999JFq1aplOhb+hzt37mjWrFkKDQ1V5cqVNWfOHLVr1850LAAAAAAAADwk9ujuz/3s0WVnZ6tBgwZq3ry5FixYYDgxrA17JPeHPRI8DPbo7g97dHhY9Mf7w54xHhb98f7QH/Ew6I/3h/74W3Z32OLkyZMKCwtTeHi4cnNzNWTIEL300kuqXbu26WhWLy4uTjNmzNCqVatUrVo1jRo1SkOHDlXZsmVNR4MV2r59u6ZOnap169apVq1aGjt2rAYMGMD/L//DzZs3tXz5ck2bNk2JiYnq0KGDxo0bJz8/P7u8uIg/dvPmTS1cuFDTpk3T4cOH5evrqzFjxsjHx4fxsv/h9OnTmj17tj799FNlZmYqKChIY8eOZXQLgNX67rvv9Ne//lXdu3fXwoULrfLfefrfg6H/AQAAALA3P/30k9555x0tXbpU1apV0+jRozV06FA98sgjpqMVSt9++62mTp2q6Oho1alTR2+99Zb69u1rld87QOEXExOjsLAwRUVFqUaNGho2bJiGDx+u8uXLm44GAAAAAAAAAPgTsrOzlZKScs+xi4SEBOXk5MjFxcVy6OLusQu+DwwAeWvt2rV66aWXdOfOHb3//vsKCgoyHQl/0tmzZzVy5EitXr1aAwcO1PTp0/Xoo4+ajgUAAAAAAIA/iT26B/d7e3Rr1qzR4MGDdeDAAXZ8YMEeyYNhjwR/Bnt0D449OvwZ9McHx54x/gz644OhP+LPoD8+OPrjv9nNYYsTJ05o4sSJWrBggR5//HGNGjVKw4YN48nVDyA1NVXTp0/X3LlzVbRoUY0dO1ZjxozhAR6SpM2bN+utt97S7t271aZNG40bN07dunXjQekBbN26VVOnTtWGDRtUv359vf322+rZsyeFELp586Y+++wzTZkyRenp6Ro4cKDGjh2r+vXrm45W6GRmZmr+/PmaNm2ajh07pj59+ig0NFR169Y1HQ0AfuObb76Rn5+fXnjhBX388cem41jQ//IO/Q8AAACALUtNTbX8rK5WrVqaMGGC+vbtq6JFi5qOZhNSUlL0r3/9S0uXLlW9evX4mhJ55vbt24qIiNDUqVOVnJwsLy8vjR49Wj179uTzFwAAAAAAAABsSEZGhhITEy3HLnbu3KnU1FQ5OjrK3d39nmMXLVq0ULFixUxHBoBC5/Llyxo+fLhWrVqlwYMH68MPP5Szs7PpWHgIkZGRGj16tBwdHTVv3jx16tTJdCQAAAAAAADcB/bo8s6v9+i6d++uatWqaeLEiaajwQqwR5J32CPB72GPLu+wR4c/Qn/MO+wZ44/QH/MO/RG/h/6Yd+y9P9r8YYszZ85o0qRJ+vzzz1W1alVNmDBBAwcO5AnUeeDKlSsKCwvTtGnTVLRoUb3yyisaOXKkypQpYzoaDNixY4cmTJigHTt2yNfXV6GhoWrRooXpWDZh//79euedd7Ry5Up5enrq7bffVteuXU3HggG3b9/W559/rkmTJunKlSsaMWKEXnnlFVWqVMl0tEIvJydHUVFRCg0NVUpKivr376+33npLTz75pOloAHCPNWvWqE+fPnr11Vf17rvvGs1C/8s/9D8AAAAAtuTy5ct6++239dlnn6latWp66623NHDgQDk6OpqOZpMOHjyot99+WytXrlTjxo310UcfqV27dqZjoRA6f/685s2bp5kzZ+rChQvq3r27xo0bp5YtW5qOBgAAAAAAAAAoIGlpaZZDF7GxsYqLi1NmZqacnJzUqFEjy6GLNm3ayM3NzXRcALBqW7du1aBBg1SkSBHNmzdPPj4+piMhj1y+fFkjR45URESERo8ercmTJ6tkyZKmYwEAAAAAAOC/YI8u/7BHh//EHkn+YY8Ed7FHl3/Yo8N/oj/mH/oj/hP9Mf/QH3EX/TH/2Gt/tNmTQ9evX9err76qJ598UmvXrlVYWJgOHz6swYMHUwLziLOzs/75z3/q+PHjevHFFzVx4kTVqlVLc+bMUXZ2tul4KCAHDhyQr6+v2rVrp6JFiyomJkbr16+nBOahBg0aaPny5UpISFD16tXVrVs3tW7dWnv27DEdDQUkNzdXkZGRqlOnjsaNG6devXrpp59+0ocffkgJzCMODg7q06ePkpOTtWjRIn333XeqW7euRowYoYsXL5qOBwAW3bt31xdffKFJkybpgw8+MJKB/pf/6H8AAAAAbEFWVpZmzZql2rVrKzIyUmFhYUpJSdGgQYM4apGP6tWrp8jISCUkJOjxxx9X+/btFRAQoNTUVNPRUEgkJSVp+PDhcnV11dSpUzVw4EAdPXpUy5cv56gFAAAAAAAAANiZKlWqyN/fX6Ghodq8ebOuXbum/fv36+OPP1bTpk0VGxurwYMHq2bNmve87tq1a3XlyhXT8QHAKty5c0ehoaHq1KmTWrRoocTERI5a2JhHH31US5cuVWRkpBYsWKCnn35aSUlJpmMBAAAAAADgP7BHl//Yo4PEHklBYI8E7NHlP/boINEfCwL9ERL9sSDQH0F/zH/22h9t7rBFTk6OvvjiC9WpU0dz5szR5MmTdeTIEQ0fPpwCmE+cnZ01ceJEHTt2TM8++6xGjhyppk2bavv27aajIR9dvnxZL7/8sho3bqwLFy7om2++0datW+Xl5WU6ms1q1KiRvvzyS+3Zs0fFixdXq1atFBQUpDNnzpiOhnwUHx+vtm3bqn///urQoYOOHDmisLAwubi4mI5mkxwcHNSvXz8dOHBAc+bM0Zo1a1S7dm1Nnz5dd+7cMR0PACRJzz33nGbMmKHx48crPDy8wN4v/a/g0f8AAAAAFFZbt25V48aN9fe//11DhgzRjz/+yM/qCpiHh4fWr1+vr7/+Wvv27VPdunX15ptv6pdffjEdDVYoJydHW7Zskb+/vzw9PbV9+3ZNnjxZqampmjJliqpVq2Y6IgAAAAAAAADACjg6Oqp+/foKCgrSjBkz9P333+vq1avauXOnxo8fL2dnZy1YsEDdunXTY489ds/rxsTE8HxsAHYnNTVVLVu21EcffaTPP/9cq1atUoUKFUzHQj4JCAhQfHy8ypUrp5YtW2ru3LmmIwEAAAAAANg99ugKHnt09ok9koLHHol9Yo+uYLFHZ5/ojwWP/mif6I8Fj/5on+iPBcve+qNNHbbYvXu3mjdvruHDh6t37946cuSIxowZoxIlSpiOZhcee+wxTZ8+XcnJyapSpYo6dOigPn366NSpU6ajIQ/l5OTo448/Vu3atbVixQp99tln2rt3rzp06GA6mt1o1qyZtm/fruXLl2vnzp1yd3fXpEmTbPJByp5dvHhRQ4YMUfPmzZWbm6s9e/Zo3rx5ql69uulodsHR0VGDBw/Wjz/+qBEjRui1115Tw4YNtXnzZtPRAECSNHLkSE2YMEEjRoxQZGRkvr4v+p959D8AAAAAhcXly5c1ePBgdezYUU8++aT279+v999/X2XLljUdzW75+flp3759mjRpkmbNmiUPDw998803pmPBSmRkZGjOnDlq0KCBOnXqpJs3b2rNmjVKSUnR6NGjVbp0adMRAQAAAAAAAABWzsnJSd7e3ho9erQWLlyo48eP68yZM1q9erUCAgJ09uxZvf7662rTpo0effTRe1732LFjpuMDQL7ZtGmTnn76aWVlZemHH37Q4MGDTUdCAXBzc9O3336rsWPHKjg4WMOGDdOtW7dMxwIAAAAAALBL7NGZxR6dfWCPxDz2SOwDe3RmsUdnP+iPZtEf7QP90Tz6o32gP5plL/2xSG5ubq7pEA8rIyNDb7zxhmbNmqX27dtrxowZatCggelYdm/dunUaM2aMzp07p0mTJmnEiBFycLCpWyp25+DBgxo6dKi+//57jRkzRm+++SZjVIbdvHlTU6dO1aRJk1SrVi2Fh4erRYsWpmPhIS1dulRjxoxR8eLF9eGHH6pv374qUqSI6Vh27fjx4woJU/F5FAAAIABJREFUCdHq1asVFBSkjz76SBUqVDAdCwAUEhKimTNnas2aNerSpUuev336n/Wh/wEAAACwVmvXrtWIESOUnZ2tmTNnqk+fPqYj4Vd+/vlnvfzyy1q5cqUCAgL06aef8n1OO3X27FnNnj1bM2fO1I0bNxQYGKjx48erfv36pqMBAAAAAAAAAGxQdna2UlJSFB8fr/j4eMXGxiohIUE5OTlycXFR06ZNLS/e3t5ydnY2HRkAHlhubq7ef/99vfHGGwoMDFR4eLjKlCljOhYM+Prrr/Xcc8+pZs2aWrVqlVxdXU1HAgAAAAAAsAvs0Vkn9uhsD3sk1oc9EtvEHp31YY/O9tAfrRP90fbQH60P/dE20R+tj632x0L/qLxhwwY1aNBACxcu1KeffqotW7ZQAq3EM888o+TkZI0dO1bjxo1TmzZtdPDgQdOx8ADu3Lmj9957T02aNNEvv/yiXbt26f3336cEWoGSJUvqjTfe0P79++Xi4qLWrVtr+PDhun79uuloeABpaWnq1auXBg4cKF9fXyUnJ+vZZ5+lBFoBNzc3RUVFae3atdq2bZvq1KmjOXPmmI4FAPrwww8VFBSkPn36aOfOnXn2dul/1ov+BwAAAMDaXLx4Ub169VL37t31zDPP6NChQxy1sFKVK1fWihUrtHLlSsXExKhBgwZav3696VgoQPHx8QoKCtITTzyh2bNn6+WXX9aZM2e0cOFCjloAAAAAAAAAAPKNo6Oj6tevr6CgIM2YMUPff/+9rl69qp07d2r8+PFydnbWggUL1K1bNz322GP3vG5MTIxu375t+kMAgPuSmZmpPn36aMKECZo6daqWLl3KUQs71rVrV+3evVs3b95U8+bNFRMTYzoSAAAAAACAzWOPznqxR2c72COxXuyR2Bb26KwXe3S2hf5oveiPtoP+aL3oj7aF/mi9bLU/FsnNzc01HeJBZGRkaMyYMZo7d6769u2rGTNmqFKlSqZj4XckJSUpODhYycnJmjRpksaOHcs/bIXE/v37NWDAAB09elTvvvuuRo0aJUdHR9Ox8F/k5uZqwYIFCgkJUfny5bVo0SK1bt3adCzcp/nz52vUqFGqWrWq5syZozZt2piOhN9x9epVvfrqq5o9e7Z69OihOXPmqGLFiqZjAbBj2dnZevbZZ7V582Z98803atKkyUO9Pfpf4UH/AwAAAGDapk2b9Pzzz6tYsWKaP3++OnToYDoS7lN6erpefvllLVmyRH/729/0/vvvq1SpUqZjIR/k5OQoOjpa7733nmJjY9WkSRONHj1a/fr1U7FixUzHAwAAAAAAAADAIi0tTfHx8ZaXmJgYpaenq0yZMmrcuLGaNm2qpk2bytvbWzVr1jQdFwDuce7cOXXr1k1Hjx5VVFSU2rZtazoSrERGRoYGDhyojRs3av78+erbt6/pSAAAAAAAADaHPbrChT26wos9ksKDPZLCjT26woM9usKL/li40B8LL/pj4UF/LNzoj4WHLfVHB9MBHsR3332nJk2aaM2aNYqKilJERAQl0Mo1atRIu3btUmhoqF599VV16tRJaWlppmPhD+Tm5iosLEzNmjXTI488YrlWRwm0XkWKFNHzzz+vgwcPqm7dumrXrp1CQ0OVlZVlOhr+wJUrVxQYGKghQ4Zo+PDhSkhIoARauXLlyunTTz/Vtm3bFB8fr0aNGmnz5s2mYwGwY46OjlqyZIlatmwpX19fpaSkPNDbof8VPvQ/AAAAAKbcvHlTY8eOla+vr9q1a6ekpCSOWhQyd59QsmTJEi1atEjNmjVTcnKy6VjIQ9euXdOMGTPk5uamHj16yNnZWZs3b1Z8fLyCgoI4agEAAAAAAAAAsDpVqlSRv7+/QkNDtXbtWl28eFH79+/XJ598oqZNmyo2NlaDBw9WrVq1fvO6V65cMR0fgB376aef1KZNG128eFExMTEctcA9nJyctHr1ao0fP179+vVTaGio6UgAAAAAAAA2hT26woc9usKHPZLChz2Swok9usKHPbrCif5Y+NAfCx/6Y+FDfyyc6I+Fjy31xyK5ubm5pkPcr5ycHE2ePFlvv/222rdvr/nz56tKlSqmY+FP+v777zVgwABdunRJ4eHh6tmzp+lI+JVz587p+eef15YtWzRhwgS98cYbFMBCJjc3V5988oleeeUVNWrUSEuWLFHNmjVNx8KvbNu2TUFBQcrNzdX8+fPl4+NjOhL+pPT0dL344otavny5xowZo8mTJ6tEiRKmYwGwU5mZmerUqZNOnjypnTt3qkaNGvf9d+l/hR/9DwAAAEBBOX36tHr37q2UlBR98MEHGjZsmOlIeEgnT55UUFCQdu/erVmzZmno0KGmI+EhHD16VGFhYZo7d64cHBw0ePBgjR07Vq6urqajAQAAAAAAAADw0DIyMpSYmKj4+HjFx8crJiZGx48fl6Ojo9zd3dW0aVPLS/PmzVW8eHHTkQHYuB07dqhHjx6qW7eu1qxZo4oVK5qOBCsWFhamcePGaciQIfrkk094zj4AAAAAAMBDYI/ONrBHZ/3YIyn82CMpHNijK/zYo7N+9EfbQH+0fvTHwo/+WDjQHwu/wt4fC81hi8uXL6t///7avn27Jk+erDFjxqhIkSKmY+EB3bhxQ2PHjtXnn3+ucePGacqUKSpatKjpWJAUGxurwMBAlSpVSosXL1bLli1NR8JDOHjwoPr376+TJ09q0aJF8vPzMx0J+ndRf//99/XGG2+oe/fumjNnjipUqGA6Fh7CwoULNXLkSNWrV08rV65UtWrVTEcCYKfS09PVoUMH3bhxQzt37ryvS9D0P9tC/wMAAACQn7799lv17dtXzs7OioqKUt26dU1HQh7Jzs7Wu+++q3fffVcDBgzQ7NmzVapUKdOx8CfExMQoLCxMUVFRqlGjhoYNG6bhw4erfPnypqMBAAAAAAAAAJCv0tLSLIcu7h67SE9PV5kyZdS4ceN7jl3Ur1/fdFwANmTDhg3q1auX/Pz8tGjRIpUsWdJ0JBQCX331lZ599ln5+/tr8eLFKlasmOlIAAAAAAAAhQ57dLaFPTrrxR6JbWGPxDqxR2d72KOzTvRH20J/tF70R9tCf7RO9EfbU1j7Y6E4bJGYmKjevXvr9u3bWrFiBQ9MNmTp0qUaNmyYmjZtqsjISFWuXNl0JLs2Z84cvfzyy+rYsaMWLVokZ2dn05GQB27duqWRI0dq7ty5+sc//qFJkybJwcHBdCy7df36db3wwgv68ssvNXHiRI0fP950JOSRI0eOqFevXvr555+1bNkyLtYBMOb8+fNq06aNSpUqpe3bt//heCH9zzbR/wAAAADktf/84XZgYKDCw8NVpkwZ07GQD6KiovT8888Xuh9626vbt28rIiJCU6dOVXJysry8vDR69Gj16tVLjo6OpuMBAAAAAAAAAGBEdna2UlJSLIcuYmNjlZiYqOzsbLm4uNxz6MLb25vnTgJ4IF9//bUCAgLUu3dvzZ8/n5EM/Ck7duyQv7+/vL29tXLlSpUqVcp0JAAAAAAAgEKDPTrbxR6ddWGPxDaxR2Jd2KOzXezRWRf6o+2iP1oX+qNtoj9aF/qj7SqM/dHqD1ssXLhQL774olq1aqWIiAg99thjpiMhj/1n0Y+KilKzZs1MR7I7N2/e1LBhw7RkyRKFhobqzTff5IKgDfr00081ZswYdezYUUuWLFG5cuVMR7I7KSkp6tmzp65cuaLIyEi1a9fOdCTksf8s+u+9957GjRtnOhIAO3Xs2DG1adNGrq6u2rRp02/GRul/9oH+BwAAACAv3L59W0OHDtWyZcv0wQcfaMyYMaYjIZ+lpKSoV69eunr1qtauXasmTZqYjoRfOX/+vObNm6ewsDBdvHhR3bt3V0hIiFq0aGE6GgAAAAAAAAAAVikjI0OJiYmWYxcxMTE6fvy4HB0d5e7ufs+xi+bNm6t48eKmIwOwYhEREQoKCtKQIUP08ccf8wv7eCDff/+9fH191aBBA61du1aPPPKI6UgAAAAAAABWjz0628cenXnskdgH9kjMY4/O9rFHZx3oj7aP/mge/dE+0B/Noz/avsLWH632sEVubq7eeust/etf/1JISIgmT56sokWLmo6FfHLlyhX1799fO3bs0OLFi9WzZ0/TkezG3bGbgwcPaunSperSpYvpSMhHu3fvVu/eveXs7Kzo6GjVqFHDdCS7sX37dvXq1Ut16tTRqlWrVLVqVdORkE9yc3P14Ycf6rXXXrP8kgIdBoAJ+/fvV/v27dW0aVOtXbvW8kuW9D/7Qv8DAAAA8DCuXLmi3r17a+/evYqIiJCfn5/pSCgg169fV9++fbVjxw4tW7ZM/v7+piNBUlJSkj755BMtWrRITk5OeuGFFzRy5EhVq1bNdDQAAAAAAAAAAAqdtLQ0y6GLu8cu0tPTVaZMGTVu3PieYxf169c3HReAlVi8eLEGDRqkkJAQvffee4wx4KEkJiaqc+fOcnd314YNG1S6dGnTkQAAAAAAAKwSe3T2hT06c9gjsS/skZjDHp39YI/OHPqjfaE/mkN/tC/0R3Poj/ajMPVHqzxscfv2bQ0ZMkQRERGaOXOmXnzxRdORUACys7M1ZswYffzxx3rrrbcUGhpqOpLNO3r0qPz8/HT79m1FR0erbt26piOhAKSlpcnf319paWlau3atnn76adORbN7y5cs1aNAgPfPMM1q8eLFKlSplOhIKwIYNGxQYGKiWLVtqxYoVXBUEYMR3330nHx8f+fv7a9GiRTp+/Dj9zw7R/wAAAAA8iLtfQ169elVff/21PD09TUdCAcvKytLLL7+s8PBwTZ8+XSNHjjQdyS7l5OTom2++0YwZMxQdHa3atWvrpZdeUnBwMKMmAAAAAAAAAADkoezsbKWkpFgOXcTGxioxMVHZ2dlycXG559CFt7e3nJ2dTUcGUMCioqLUt29fhYSEaMqUKabjwEYcOHBA7du3V5MmTfTVV1+pRIkSpiMBAAAAAABYFfbo7BN7dAWPPTr7xB5JwWOPzj6xR1ew6I/2if5Y8OiP9on+WPDoj/apMPRHqztsceXKFfXo0UNJSUlasWKFOnbsaDoSCtjUqVP1j3/8Qy+99JKmT58uR0dH05FsUmxsrLp3765atWrpq6++UqVKlUxHQgG6du2aAgMDFRMTo4iICHXt2tV0JJv1zjvvKDQ0VK+88oomT54sBwcH05FQgL7//nv5+/urUqVKio6O5rIdACO2bt0qPz8/9e7dWxs3bqT/2Sn6HwAAAIA/IyUlRT4+Pnr00UcVHR2t6tWrm44Eg2bMmKFx48bplVdeYZylAGVkZGjp0qWaPn26UlJS9Ne//lWjRo1S165dVaRIEdPxAAAAAAAAAACwCxkZGUpMTLQcu4iJidHx48fl6Ogod3f3e45dNG/eXMWLFzcdGUA+2bRpk7p166ahQ4dq1qxZpuPAxiQlJalDhw5q27atVqxYoWLFipmOBAAAAAAAYBXYowN7dAWDPTr7xh5JwWGPzr6xR1cw6I+gPxYM+qN9oz8WHPqjfbP2/mhVhy3Onz+vTp066fLly1q3bp0aNGhgOhIMWbVqlQYOHKiePXtqwYIFPBEvj23atEk9e/ZUp06dtGTJEpUuXdp0JBiQlZWlESNGaP78+VqwYIH69+9vOpJNyc3N1dixYzVr1ix9/PHHGj58uOlIMCQ1NVV+fn765ZdftHXrVrm5uZmOBMAOvfvuu5o0aZJ8fX3pf3aM/gcAAADgfiQkJKhz585yd3dXdHS0ypYtazoSrMDixYs1ePBgDR8+XDNnzuSwQj46e/asZs+erZkzZ+rGjRsKDAzU+PHjVb9+fdPRAAAAAAAAAACApLS0NMuhi7vHLtLT01WmTBk1btz4nmMXfH8fsA3btm2Tn5+f+vXrp88//5yflyJfxMbGqnPnzurevbsWLVrEGAEAAAAAALB77NHhLvbo8hd7dJDYI8lv7NHhLvbo8hf9EXfRH/MX/RES/TG/0R9xlzX3R6s5bPHzzz+rY8eOysjI0NatW1WzZk3TkWDYt99+K39/f7Vt21YrV65UyZIlTUeyCdHR0erTp4969eqlBQsWqGjRoqYjwbC33npLEydOVFhYmEaOHGk6jk3Izc3VqFGjNHv2bC1ZskQBAQGmI8GwK1euyNfXVydPntTmzZv5ZheAAkX/w6/R/wAAAAD8nu+//16+vr5q2LCh1q5dKycnJ9ORYEUiIiIUFBSkwYMH69NPP2VEI4/Fx8drxowZWrZsmSpWrKjhw4fr5ZdfVoUKFUxHAwAAAAAAAAAAfyA7O1spKSn3HLv47rvvdOfOHbm4uNxz6MLLy0uPPvqo6cgA/oR9+/apTZs28vX11ZIlS+To6Gg6EmzY1q1b5efnp7/97W+aOnWq6TgAAAAAAADGsEeHX2OPLn+wR4JfY48k77FHh19jjy5/0B/xa/TH/EF/xK/RH/Me/RG/Zq390SoOW5w4cUI+Pj4qWrSotmzZoqpVq5qOBCuxd+9e+fr6ysPDgwGlPBAZGannnnuOwSH8xnvvvafXXntNH374ocaNG2c6TqGWnZ2tIUOGKCIiQhEREerRo4fpSLASV69e1TPPPKOffvpJGzduVOPGjU1HAmAH6H/4PfQ/AAAAAL+2a9cude7cWe3bt9eKFStUokQJ05Fghb788ks9++yzGjBggD7//HMVKVLEdKRCLScnR9HR0ZoyZYri4uLUpEkTjR49Wv369VOxYsVMxwMAAAAAAAAAAA8oIyNDiYmJlkMXMTExOn78uCSpZs2a8vLyshy7aN68uYoXL244MYD/5uzZs2rZsqVq1KihzZs383N0FIjly5fr2Wef1YwZM/Tyyy+bjgMAAAAAAFDg2KPD72GPLm/9P/buM7zKOt/+/wohRIoUAaUKRCmTCqQQskEEghSRIFV0QA+GxIZY8Ig4Isg4R2eUEXF0lKqMYsjQpMOoKClAEgIJvfeAtBEJJZDk92D+5Pw5gqTt+7v3vd+vh3NluBfXRczayc76sEeCm2GPpPywR4ebYY+ufNEfcTP0x/JFf8TN0B/LD/0RN+OK/dH4YYvDhw/rvvvuU61atbRy5UrVrVvXZBy4oI0bN6p79+4KCQnRkiVLuHRWSnPnztWjjz6qUaNG6b333mNoCL/y3nvv6b//+781adIkvfDCC6bjuKX8/HwNGzZMixYt0sKFCxUdHW06ElzM+fPnFRMTo82bN+v7779XUFCQ6UgAbIz+h1uh/wEAAAC4ZuPGjeratas6deqkxMREBvXxm5YuXap+/fopLi5OU6ZMMR3HLZ07d04zZ87UpEmTdOTIEfXq1UujRo3i5woAAAAAAAAAANjYsWPHig5dZGRkKDk5WWfPnlXVqlXVunXrokMXoaGhCggIMB0X8HgXLlxQ586ddfr0aa1bt0516tQxHQke5O2339abb76pefPmKSYmxnQcAAAAAAAAy7BHh1thj658sEeCW2GPpOzYo8OtsEdXPuiPuBX6Y/mgP+JW6I9lR3/ErbhafzR62OKnn35Sp06d5OPjo++//161a9c2FQUuLisrS507d1Z4eLgWLVokX19f05HcyooVK9S3b1/Fx8dr8uTJpuPAhU2ePFkvvviiPvnkE8XHx5uO41YKCwv11FNPadasWVq0aJF69OhhOhJc1MWLF9WrVy9t27ZNP/zwg1q1amU6EgAbov+huOh/AAAAAHbu3KlOnTopKChIixcv5g05KJYFCxZo0KBBGjlypCZNmmQ6jtvYs2ePpkyZounTp8vb21tPPPGEXnzxRTVt2tR0NAAAAAAAAAAAYLH8/Hzt2LHjumMXaWlpysvLU/369a87dOFwOHTHHXeYjgx4jPz8fMXExCgtLU2pqany8/MzHQkeKDY2Vl9//bV+/PFHtW3b1nQcAAAAAAAAp2OPDsXFHl3ZsEeC4mKPpPTYo0NxsUdXNvRHFBf9sWzojygu+mPp0R9RXK7UH40dtjh16pQ6d+6sy5cv64cfflD9+vVNxIAbWb9+vbp166Zu3bopISFBFStWNB3JLfzrX//SQw89pCFDhmj69OlcNsMtjR8/XhMnTtTs2bP16KOPmo7jNkaPHq0PP/xQ8+fPV+/evU3HgYvLzc1Vjx49dODAAf34449q1qyZ6UgAbIT+h5Ki/wEAAACea8+ePbrvvvvUvHlzLV++XFWqVDEdCW5k9uzZeuKJJzRx4kSNHTvWdByXlpSUVPQzhCZNmiguLk7x8fGqWbOm6WgAAAAAAAAAAMCF5ObmKjMzs+jQRXJysvbt2ydJ8vPzk8PhKDp2ERERoUqVKhlODNjT66+/rvfff19r1qxRZGSk6TjwUFeuXFHPnj21Z88eZWRkMMQDAAAAAABsjT06lBR7dKXDHglKij2S0mGPDiXBHl3p0B9RUvTH0qE/oqToj6VDf0RJuEp/NHLY4vz58+rcubNOnz6tH3/8UY0aNbI6AtzUmjVr1KtXLz322GOaOnWq6Tgub926deratav69eunzz//XBUqVDAdCW7ilVde0QcffKAFCxZQaorhjTfe0DvvvKM5c+ZowIABpuPATZw9e1adO3dWbm6ukpOTdeedd5qOBMAG6H8oLfofAAAA4HlOnTqlqKgo1axZU99++61uv/1205Hghj755BM9++yzmjVrloYNG2Y6jku5fPmyEhIS9N577yk7O1sOh0OjRo1Sv3795O3tbToeAAAAAAAAAABwE8eOHSs6dHHt2MXZs2dVtWpVtW7duujQRWhoqAICAkzHBdzeN998o759++qzzz5TbGys6TjwcGfOnFFYWJj8/Py0cuVKftYMAAAAAABsiT06lBZ7dCXDHglKiz2SkmGPDqXBHl3J0B9RWvTHkqE/orTojyVDf0RpuEJ/tPywRX5+vmJiYpSWlqaUlBTdc889Vj4eNrBkyRL17dtX48eP1x/+8AfTcVzW3r171b59e0VGRmr+/PlchEOJFBYWasSIEUpISNCaNWsUGhpqOpLLmjFjhmJjYzVt2jQNHz7cdBy4mZ9++klRUVGqW7euvvvuO1WuXNl0JABujP6HsqD/AQAAAJ7l0qVLio6O1tGjR5Wamqp69eqZjgQ3NmbMGE2aNEnLli1TdHS06TjG/fTTT5o5c6Y+/PBDnTp1SjExMXr55ZfVrl0709EAAAAAAAAAAIAN5Ofna8eOHdcdu0hLS1NeXp7q169/3aELh8OhO+64w3RkwG3s2rVLERERGjx4sD799FPTcQBJ0qZNmxQVFaUXXnhBf/rTn0zHAQAAAAAAKFfs0aGs2KMrHvZIUBbskRQfe3QoC/boiof+iLKiPxYP/RFlQX8sPvojysJ0f7T8sMXIkSM1ffp0ffvtt2rfvr2Vj4aNTJ06VfHx8fr88881dOhQ03FczpkzZxQVFaWqVavqhx9+ULVq1UxHghu6cuWKevfurezsbKWmpqpJkyamI7mcNWvWqHv37nr11Vf11ltvmY4DN3XthXu7du20cOFCeXt7m44EwA3R/1Ae6H8AAACAZygsLNTQoUO1ePFiJSUlKSgoyHQkuDn+Tf3Hpk2b9Mknn2j27NmqVq2ahg8frueee06NGjUyHQ0AAAAAAAAAANhcbm6uMjMzrzt2sW3bNkmSn5+fHA5H0bGLiIgIVapUyXBiwPXk5uaqXbt2qlq1qn788Uf5+vqajgQUmT59ukaMGKEFCxYoJibGdBwAAAAAAIBywx4dygN7dL+NPRKUB/ZIbo09OpQH9uhujf6I8kB//G30R5QH+uOt0R9RHkz2R0sPW0yaNEmvvPKKEhMT1a9fP6seC5t65ZVXNGXKFK1cuVKdOnUyHcdlXL58WQ888IAOHDigdevWqX79+qYjwY2dO3dOHTt2VEFBgZKSklSjRg3TkVzGli1b1KFDB/Xu3VuzZ8+Wl5eX6UhwY2vXrlW3bt307LPP6v333zcdB4Cbof+hPNH/AAAAAPsbN26c3n33XS1fvlxdunQxHQc2cenSJXXt2lU5OTlKT0/XHXfcYTqSJQoKCvTdd99p8uTJWrp0qZo3b65nnnlGI0aMUJUqVUzHAwAAAAAAAAAAHuzYsWPXHbpITk7W2bNnVbVqVbVu3bro0EVoaKgCAgJMxwWMi4+P1z//+U9t2rRJjRs3Nh0H+JXY2FgtXLhQmzdvVsOGDU3HAQAAAAAAKDP26FCe2KO7MfZIUJ7YI7k59uhQntijuzn6I8oT/fHG6I8oT/THm6M/ojyZ6o+WHbZYuXKlHnzwQb377rt6+eWXrXgkbK6goECDBw/WmjVrlJGRobvvvtt0JJcQFxenhIQEJScnKzAw0HQc2MDhw4cVGRmptm3batGiRapQoYLpSMadPXtWYWFhatSokVatWiVfX1/TkWADc+bM0WOPPaaZM2fq8ccfNx0HgBuh/6G80f8AAAAA+1q8eLH69u2rjz/+WPHx8abjwGZ++uknhYWFyd/fX8uWLbP168nz58/rq6++0l//+lft3LlTXbt21fPPP6/evXvzxhEAAAAAAAAAAOCS8vPztWPHjuuOXaSlpSkvL0/16tVTWFhY0aELh8PhMYfMAUlatGiR+vbtq4SEBA0aNMh0HOCGcnNzFRoaqnr16um7776z9c/kAQAAAACA/bFHh/LGHt2NsUeC8sYeya+xRwdnYI/u1+iPKG/0xxujP6K80R9/jf4IZzDRHy05bHHw4EGFhYXpgQce0Jdffunsx8GDXLx4UQ6HQ4WFhUpJSVHlypVNRzJq9uzZevzxx5WYmKj+/fubjgMbWbdune6//36NHTtW48aNMx3HqIKCAj300EPKzs5Wenq67rzzTtORYCOvvvqqPvzwQyUlJSk0NNR0HABugP4HZ6H/AQAAAPaze/duRURE6KGHHtIXX3xhOg5sKjMzUw6HQy+//LImTpxoOk65O3bsmD777DNNmTLxE14JAAAgAElEQVRFFy5c0MCBAzVmzBj5+/ubjgYAAAAAAAAAAFBiubm5yszMvO7YxbZt2yRJfn5+cjgcRccuIiIiVKlSJcOJgfJ34sQJhYSEqHfv3po2bZrpOMBv2rhxo9q3b68//elPDPYAAAAAAAC3xR4dnIU9uuuxRwJnYY/kf7FHB2dij+5/0R/hLPTH69Ef4Sz0x/9Ff4QzWd0fnX7Y4tKlS+rQoYOuXLmi1NRUValSxZmPgwfas2ePwsPDPX6Iye5DQTDv448/1siRI7V48WL16tXLdBxjxo0bp3feeUfff/+9HA6H6TiwmYKCAvXq1Us7duxQenq66tSpYzoSABdG/4Oz0f8AAAAA+8jNzVX79u3l6+urtWvX6rbbbjMdCTY2depUxcfHa+HCherTp4/pOOUiIyNDkydP1pw5c1SnTh3Fx8dr5MiRql27tuloAAAAAAAAAAAA5SonJ0fp6elFhy6Sk5N19uxZ+fj4KDg4+LpjFwEBAabjAmVSWFioHj16aN++fcrMzFS1atVMRwJu6Z133tH48eO1fv16hYSEmI4DAAAAAABQIuzRwdnYo/sP9kjgbOyR/Ad7dHAm9uj+g/4IZ6M//gf9Ec5Gf/wP+iOcyer+6PTDFsOHD9fChQuVlpame+65x5mPggf75ptv1LdvX3322WeKjY01Hcdyp0+fVtu2bdWqVSstW7ZM3t7epiPBph5//HEtXrxYGzduVNOmTU3HsdzSpUvVp08fffLJJ4qLizMdBzZ18uTJol/yWbZsmby8vExHAuCC6H+wiqf3PwAAAMAuYmNjtWjRImVkZOjuu+82HQceIDY2VvPnz9fmzZvVuHFj03FKJT8/X8uWLdM777yjlJQUtW3bVqNGjdKQIUPk4+NjOh4AAAAAAAAAAIAl8vPztWPHjqJDFxkZGUpLS1NeXp7q1aunsLCwokMXDodDd9xxh+nIQLFNnTpVTz/9tJKTk9WuXTvTcYBiKSgoUOfOnfXLL79ow4YNqlixoulIAAAAAAAAxcYeHazAHh17JLCGp++RsEcHK7BHR3+ENeiP9EdYg/5If4TzWdkfnXrY4uuvv9ajjz6qb775Rr1793bWYwBJ0tixYzV58mRlZGSoVatWpuNYqn///kpLS1NmZqZq165tOg5s7OLFi2rXrp2qV6+uH374waNedBw/flzBwcHq1auXZs2aZToObG79+vXq2LGj3nnnHb300kum4wBwQfQ/WMWT+x8AAABgFwsWLFD//v21YMECxcTEmI4DD3Hp0iVFRESoZs2a+v77793q9eTPP/+sWbNmadKkSTpy5Ih69eqlUaNGKTo62nQ0AAAAAAAAAAAAl5Cbm6vMzMzrjl1s27ZNkuTn5yeHw1F07CI8PFy+vr6GEwO/dvz4cfn7++vJJ5/UX/7yF9NxgBLZvXu3QkJC9Oabb+rVV181HQcAAAAAAKBY2KODldijY48EzufJeyTs0cFKnrxHR3+EleiP9Ec4H/2R/ghrWNUfnXbY4siRIwoJCdGjjz6qKVOmOOMRwHWuXr2qDh066MqVK0pNTVWlSpVMR7LEtGnTFB8fr9WrV6tLly6m48ADbN26VeHh4Xrttdf0xhtvmI5jicLCQj300EPavn27MjMzVb16ddOR4AHefvttTZw4UevXr1dISIjpOABcCP0PVvPE/gcAAADYxdGjRxUSEqIBAwbo73//u+k48DCZmZmKjIzUhAkTNGbMGNNxbmnPnj2aMmWKpk+fLm9vbz3xxBN66aWX1KRJE9PRAAAAAAAAAAAAXF5OTo7S09OLDl0kJyfr7Nmz8vHxUXBw8HXHLgICAkzHBdS/f39t3LhR2dnZqlatmuk4QIn96U9/0ltvvaVNmzZ53LAKAAAAAABwP+zRwWrs0bFHAmt44h4Je3QwwRP36OiPsBr9kf4Ia9Af6Y+whhX90SmHLQoKChQdHa3jx48rIyNDlStXLu9HADe0d+9etWnTRs8++6z+53/+x3Qcp7v2933mmWf0zjvvmI4DD/Lhhx/q5Zdf1o8//qj27dubjuN0kydP1ujRoz3m7wvXcK1PnThxQunp6fQpAJLofzDH0/ofAAAAYAeFhYXq1q2bjhw5ooyMDFWtWtV0JHig9957T6+//rpSUlIUGhpqOs4NJSUl6cMPP9T8+fPVpEkTxcXFKT4+XjVr1jQdDQAAAAAAAAAAwG3l5+drx44dRYcuMjIylJaWpry8PNWrV09hYWFFhy6ioqJUu3Zt05HhQebNm6cBAwZo5cqVeuCBB0zHAUrl6tWrioiIUPXq1fX999/Ly8vLdCQAAAAAAIAbYo8OprBHB1jD0/ZI2KODCZ62R0d/hCn0R8Aa9EfA+azoj045bPHnP/9Z48aN07p169S6devy/uOB3zRjxgyNGDFCa9asUceOHU3HcZr8/HxFRUXp6tWrHnXRDa6hsLBQDz74oHbv3q3NmzerSpUqpiM5zfbt29W2bVu99tprGjdunOk48DCHDh1SSEiIHn/8cX3wwQem4wAwjP4Hkzyp/wEAAAB28fe//10jR45UamqqwsLCTMeBh7r2A+9Tp04pIyNDPj4+piNJki5fvqyEhAS99957ys7OlsPh0KhRo9SvXz95e3ubjgcAAAAAAAAAAGBLubm5yszMvO7YxbZt2yRJfn5+cjgcRccuwsPD5evrazgx7Cg3N1etWrVSdHS0Zs6caToOUCbp6emKjIzUzJkzNXToUNNxAAAAAAAAbog9OpjEHh3gfJ60R8IeHUzypD06+iNMoj8Czkd/BKzh7P5Y7octdu/erZCQEL3xxht67bXXyvOPBoqtT58+2rlzpzZv3qzbbrvNdBynmDRpksaOHauNGzfK39/fdBx4oJycHAUEBGj48OF67733TMdxioKCAnXs2FFXrlxRamoqY1Yw4osvvtB//dd/KTk5WZGRkabjADCI/gfTPKH/AQAAAHZx7NgxBQQEKD4+Xu+8847pOPBwBw4cUGBgoMaMGaM//OEPRrOcOHFCs2bN0ocffqhTp04pJiZGL7/8stq1a2c0FwAAAAAAAAAAgKfKyclRenp60aGLlJQUnTlzRj4+PgoODr7u2IW/v7+8vLxMR4abe+ONNzR58mTt2rVL9erVMx0HKLP4+HgtXbpUO3bsULVq1UzHAQAAAAAAuA57dHAF7NEBzucJeyTs0cEVeMIeHf0RroD+CDgf/RGwhjP7Y7ketigsLFS3bt108uRJpaeny8fHp7z+aKBEjh07Jn9/fz333HP64x//aDpOuTtw4ICCgoL0yiuvcHEJRk2bNk1PPfWU1q1bp7CwMNNxyt1HH32kF198URs2bFCbNm1Mx4EH6969uw4dOqRNmzbJ19fXdBwABtD/4Crs3v8AAAAAu3j44Ye1detWbd68WZUrVzYdB9Bf/vIXvfHGG8be4LRp0yZ98sknmj17tqpVq6bhw4dr5MiRatiwoeVZAAAAAAAAAAAA8Nv27dunpKSkomMXaWlpysvLU7169RQWFlZ06CIqKkq1a9c2HRdu5MiRI2rZsqXeeustvfzyy6bjAOXi5MmTatGihZ577jlNnDjRdBwAAAAAAIAi7NHBVbBHB1jD7nsk7NHBVdh5j47+CFdBfwSsQX8ErOGs/liuhy0+++wzPfPMM7b9DwLci53/A27nF5RwL3b+BsChQ4cUGBio559/3pYvKOFeDh48qMDAQL4BAHgw+h9chZ37HwAAAGAXiYmJGjx4sL799lt17tzZdBxAknT16lVFRkaqSpUq+uGHH+Tl5eX0ZxYUFOi7777T5MmTtXTpUjVv3lzPPPOM4uLiOPgCAAAAAAAAAADgRnJzc5WZmVl06CIjI0Pbtm2TJPn5+cnhcBQduwgPD+e9tripRx55ROnp6dq6dSv/TmAr77//vv7whz9o+/btatq0qek4AAAAAAAAktijg2thjw5wPjvvkbBHB1di5z06+iNcCf0RcD76I2ANZ/XHcjtsceLECbVq1UqxsbH6y1/+Uh5/JFAmBQUF6tixo/Lz85WSkqIKFSqYjlQu/vGPf+jxxx9XcnKyIiMjTccBtHv3boWEhGjChAl65ZVXTMcpNzExMdq5c6c2bdqk2267zXQcQJMmTdLYsWOVlZWlFi1amI4DwEL0P7gau/Y/AAAAwA5yc3PVqlUrdevWTTNmzDAdB7hOZmamwsPDNXPmTA0dOtRpzzl//ry++uor/fWvf9XOnTvVtWtXPf/88+rdu7clBzUAAAAAAAAAAADgfDk5OUpPTy86dJGSkqIzZ87Ix8dHwcHB1x278Pf35+dEUGpqqhwOhxYuXKg+ffqYjgOUq7y8PAUFBalt27aaM2eO6TgAAAAAAADs0cHlsEcHWMOueyTs0cHV2HGPjv4IV0N/BKxBfwSs4Yz+WG6HLUaMGKEVK1Zox44dqlq1ann8kUCZZWVlqW3btpo+fboef/xx03HK7Pz582rZsqV69+6tTz/91HQcoMj48eOLBqLq1atnOk6ZrVq1St27d9fq1asVHR1tOg4gScrPz1ebNm3UpEkTLV682HQcABah/8FV2a3/AQAAAHYxbtw4ffDBB9q1axddHS4pPj5eS5cu1Y4dO1StWrVy/bOPHTumzz77TFOmTNGFCxc0cOBAjRkzRv7+/uX6HAAAAAAAAAAAALimffv2KSkpqejYRVpamvLy8lSzZk2FhYUVHbuIiopS7dq1TceFxbp06aKCggKtWbPGdBTAKebPn6+BAwdq48aNCgkJMR0HAAAAAAB4OPbo4IrYowOsYbc9Evbo4IrsuEdHf4Qroj8C1qA/As7njP5YLoctNm3apLCwMH3++ed67LHHyiMXUG6efvppLViwQLt27VL16tVNxymT119/XR999JFtvtjCPi5evKjf/e536tq1q6ZPn246TplcvXpVbdq00b333qsFCxaYjgNc57vvvlPXrl21fPly9ejRw3QcABag/8FV2an/AQAAAHZx5MgRtWzZUhMmTNDo0aNNxwFu6OTJk2rRooWee+45TZw4sVz+zIyMDE2ePFlz5sxR3bp1FRcXp5EjRzJGBAAAAAAAAAAA4OFyc3OVmZlZdOgiIyND27ZtkyT5+fkVHboIDQ1VeHi4fH19DSeGs6xdu1b33Xef1qxZo06dOpmOAzhFYWGh2rVrp4YNG/I7cQAAAAAAwCj26ODK2KMDnM9OeyTs0cGV2WmPjv4IV0Z/BJyP/ghYo7z7Y7kctrj//vt1+fJlpaSkyMvLq8yhgPJ05swZNW/eXE899ZTefvtt03FK7fDhw2rVqpX++Mc/6sUXXzQdB/iVOXPm6Pe//73WrVun8PBw03FKbcqUKRo9erS2bNmi5s2bm44D/MrDDz+snTt3avPmzfLx8TEdB4AT0f/g6uzS/wAAAAC7GDJkiNLT07VlyxYGV+DS3n//fb3xxhvavn27mjRpUqo/48qVK1q4cKE++OADpaSkKDQ0VM8//7yGDBnC900BAAAAAAAAAABwUzk5OUpPTy86dJGSkqIzZ87Ix8dHwcHB1x278Pf353clbaJTp07y9fXVqlWrTEcBnGrJkiV66KGHtH79ekVERJiOAwAAAAAAPBR7dHBl7NEB1rDLHgl7dHB1dtmjoz/CldEfAWvQHwFrlGd/LPNhi/nz52vAgAFKTU1Vu3btyhQGcJa//vWvGjt2rHbu3Km7777bdJxSeeSRR5SZmans7GxVqlTJdBzgVwoLC9WxY0dVrFhRa9asMR2nVP7973/rnnvu0ZNPPqk///nPpuMAN7R3714FBATo/fff17PPPms6DgAnov/B1dmh/wEAAAB2sXHjRoWFhWnevHl6+OGHTccBflNeXp4CAgLkcDg0a9asEv1/f/75Z82aNUuTJk3SkSNH1KtXL40aNUrR0dHOCQsAAAAAAAAAAADb27dvn5KSkoqOXaSlpSkvL081a9ZUWFhY0bGLqKgo1a5d23RclNCKFSvUs2dPpaamKjIy0nQcwOnat2+vWrVqadmyZaajAAAAAAAAD8QeHdwBe3SA89lhj4Q9OrgDO+zR0R/hDuiPgPPRHwFrlGd/LNNhi4KCAgUHByswMFBff/11mYIAzpSXl6dWrVqpa9eumjp1quk4JbZ582a1bdtWiYmJ6tevn+k4wE2lpqYqKipKq1atUrdu3UzHKbFx48bpo48+0v79+1WjRg3TcYCbevHFF5WQkKC9e/eqcuXKpuMAcAL6H9yFu/c/AAAAwC4efPBBnThxQmlpafLy8jIdB7ilf/zjH3riiSe0ZcsWtWrV6pYfv2fPHk2ZMkXTp0+Xt7e3nnjiCb300ktq0qSJBWkBAAAAAAAAAADgSXJzc5WZmVl06CIjI0Pbtm2TJPn5+RUduggNDVV4eLh8fX0NJ8Zv6dChg2rUqKGlS5eajgJYYtWqVerevbvS0tIUFhZmOg4AAAAAAPAg7NHBXbBHB1jD3fdI2KODu3DnPTr6I9wF/RGwBv0RsEZ59ccyHbb46quvNGzYMGVnZ+t3v/tdqUMAVpgxY4aeeuopbd++Xffcc4/pOCXSt29fHTp0SBkZGQxSweX16tVLJ0+e1IYNG9zq3+vp06fl5+enV199VWPHjjUdB/hNJ0+elJ+fnyZMmKCXXnrJdBwATkD/gztx1/4HAAAA2EVaWpratWun5cuXq3v37qbjAMWSn5+voKAgtW7dWl999dVNPy4pKUnvvvuuli5dKj8/P40YMULx8fGqWbOmhWkBAAAAAAAAAADg6Y4fP660tLSiQxcpKSk6c+aMfHx8FBwcfN2xC39/f95P6SLS0tIUERGhH3/8UR07djQdB7BMaGioWrRooTlz5piOAgAAAAAAPAh7dHAn7NEB1nDXPRL26OBO3HmPjv4Id0J/BKxBfwScr7z6Y6kPW+Tn5yswMFARERH6/PPPSx0AsEp+fr4CAgIUGRmpWbNmmY5TbBkZGQoPD9c333yj3r17m44D3NK1f7OLFy/Wgw8+aDpOsY0ZM0bTp0/Xvn37dPvtt5uOA9zSq6++qhkzZvBvFrAh+h/cjbv2PwAAAMAuunXrpgsXLig5Odl0FKBE5s6dqyFDhigzM1PBwcFF//vly5eVkJCg9957T9nZ2XI4HBo1apT69esnb29vg4kBAAAAAAAAAACA/7Vv3z4lJSUVHbtIT0/X5cuXVbNmTYWFhRUdu4iKilLt2rVNx/VIAwcO1IEDB5SWlmY6CmCpL7/8Uo8//rh27dolPz8/03EAAAAAAIAHYI8O7oY9OsAa7rpHwh4d3I077tHRH+Fu6I+ANeiPgDXKoz+W+rDF559/rtjYWG3fvl333ntvqR4OWO3aG/K2bt2qli1bmo5TLA8++KBOnz6tdevWmY4CFFvfvn115MgRpaenm45SLD/99JP8/Pw0fvx4jR492nQcoFhOnTolPz8/jR07VmPGjDEdB0A5ov/BHblb/wMAAADsIjU1VVFRUfr222/VpUsX03GAEikoKFCbNm3k7++vOXPm6MSJE/rkk0/0t7/9TefOnVNMTIxGjx6tiIgI01EBAAAAAAAAAACAW7py5YqysrKuO3axbds2SVL9+vXVoUOHomMX4eHh8vX1NZzY3g4cOKDmzZvrH//4hwYPHmw6DmCpq1ev6p577lH//v01adIk03EAAAAAAIAHYI8O7og9OsAa7rZHwh4d3JE77tHRH+GO6I+ANeiPgPOVR38s1WGLwsJCBQUFKSwszK0uRQH5+fny9/dXp06d9Nlnn5mOc0vZ2dkKCQnRkiVL1KtXL9NxgGLLyMhQWFiYVq9erejoaNNxbunNN9/Uxx9/rIMHD6pKlSqm4wDF9tprr2nWrFk6cOAAv9QC2AT9D+7K3fofAAAAYBf9+/fX4cOHtWHDBtNRgFK59iauPn36aOnSpapZs6aefvppPf3007rrrrtMxwMAAAAAAAAAAADK5Pjx40pLSys6dJGSkqIzZ87Ix8dHwcHBRYcuQkND5e/vLy8vL9ORbeOFF17QwoULtWfPHlWsWNF0HMBy77//viZMmKDDhw+rRo0apuMAAAAAAAAbY48O7oo9OsAa7rZHwh4d3JU77dHRH+Gu6I+ANeiPgDXK2h9Lddhi2bJlevDBB7Vp0yaFhISU+KGASX//+9/1wgsv6MCBA6pXr57pOL/piSee0Pr167V161ZVqFDBdBygRLp27SofHx+tWLHCdJTfdPHiRd1999169tlnNX78eNNxgBI5ceKEmjZtqilTpig2NtZ0HADlgP4Hd+Yu/Q8AAACwi/3796t58+aaM2eOBg4caDoOUCpXr17VPffcoypVqui///u/9eijj7r8myYBAAAAAAAAAACAsti3b5+SkpKKjl2kp6fr8uXLqlGjhsLDw4uOXURFRal27dqm47qlCxcuqGHDhnr99dc1evRo03EAI86dO6cGDRro3Xff1bPPPms6DgAAAAAAsDH26ODO2KMDrOEueyTs0cGdudMeHf0R7oz+CFiD/gg4X1n7Y6kOW7jLJzdwI5cuXVLTpk0VFxent956y3Scm7r2yf23v/1Nw4cPNx0HKDF3+aaBO704BG5k+PDhSklJ0bZt2/imAeDm6H9wd+7S/wAAAAC7GDlypJYsWaLdu3erYsWKpuMApfb+++/rzTff1KFDh3THHXeYjgMAAAAAAAAAAABY6sqVK8rKyrru2MW2bdskSfXr11eHDh2Kjl2Eh4dzKL4YPv/8c8XFxenw4cO68847TccBjBk+fLgyMjK0efNm01EAAAAAAICNsUcHd8YeHWANd9kjYY8O7s5d9ujoj3Bn9EfAGvRHwBpl6Y8lPmyRlZWl1q1ba+XKlerWrVuJHga4ivHjx2vKlCk6dOiQqlatajrODY0dO1bTp0/XwYMHddttt5mOA5RYYWGhWrdurbZt22rmzJmm49xQYWGhAgIC1LFjR3366aem4wClsmPHDvn7+2vx4sV68MEHTccBUAb0P7g7d+h/AAAAgF38+9//VqNGjfT2229r1KhRpuMAZXLu3Dndfffdev311/XKK6+YjgMAAAAAAAAAAAAYd/z4caWlpRUdukhNTdXp06fl4+Oj4ODgokMXoaGh8vf3l5eXl+nILqVDhw5q2LChEhISTEcBjEpNTVVUVJTS0tIUFhZmOg4AAAAAALAh9uhgB+zRAc7nDnsk7NHBDtxhj47+CDugPwLOR38ErFGW/ljiwxYjRozQunXrlJWVxRse4bZOnjypxo0b6+OPP3bJ62F5eXlq1KiRnnvuOY0bN850HKDUpk+frmeffVZHjx5V7dq1Tcf5lVWrVqlHjx7asmWL/P39TccBSq1Hjx7y8vLS8uXLTUcBUEr0P9iFq/c/AAAAwC4++ugjvfbaazp27Jhuv/1203GAMnvhhRe0dOlS7dq1i59BAwAAAAAAAAAAADewb98+JSUlFR27SE9P1+XLl1WjRg2Fh4cXHbto37696tSpYzquMdd+2XbVqlWKjo42HQcwLjAwUA6HgxEFAAAAAADgFOzRwQ7YowOs4ep7JOzRwS5cfY+O/gg7oD8C1qA/AtYobX+sUJIPPn/+vBISEhQfH08JhFurW7euHn74YU2bNs10lBtasGCBzp49qyeffNJ0FKBMHnnkEfn6+mr27Nmmo9zQZ599po4dO1IC4fbi4uK0atUqHTx40HQUAKVE/4NduHr/AwAAAOxi+vTpeuSRRzhqAduIjY3Vnj17tGbNGtNRAAAAAAAAAAAAAJfk5+enYcOGafLkyUpKStIvv/yi9PR0TZgwQfXr11diYqJiYmJUt25dNWjQQIMGDSr62EuXLpmOb5mpU6eqWbNm6tKli+kogEsYMWKE5syZowsXLpiOAgAAAAAAbIY9OtgFe3SANVx9j4Q9OtiFK+/R0R9hF/RHwBr0R8Aape2PJTps8eWXX+rq1at67LHHSvQQwBXFxsYqNTVVmzdvNh3lV6ZOnapevXqpYcOGpqMAZVK1alUNGTJEn376qQoLC03Huc6JEyf0zTffaMSIEaajAGXWp08f3XXXXZo5c6bpKABKif4Hu3Dl/gcAAADYxbp167Rp0ya+twlbCQwMVGRkpKZOnWo6CgAAAAAAAAAAAOAWfHx8FBoaqlGjRumLL77Q1q1bdebMGa1evVpxcXG6ePGiJk6cqI4dO6p69eoKCwu77mPt+D7PgoICJSQkaOjQoapQoUS/OgvY1mOPPaaLFy9qyZIlpqMAAAAAAACbYY8OdsIeHeB8rrxHwh4d7MSV9+joj7AT+iPgfPRHwBql7Y8lenfe1KlTNWDAANWqVatEDwFcUZcuXXTvvfdq1qxZpqNcZ9++ffr+++/54gTbiI2N1Y4dO5Sammo6ynVmzZqlqlWrql+/fqajAGVWsWJFDR06VNOnT1d+fr7pOABKiP4Hu3HV/gcAAADYxdSpUxUcHKyIiAjTUYByFRsbq3nz5unUqVOmowAAAAAAAAAAAABuqWbNmoqOjtb48eO1ePFinTp1Snv37tW0adPkcDiUkZGhuLg4BQYGqlatWurWrdt1H+vukpKSdPToUQ0aNMh0FMBl1KlTR/fff7/mzp1rOgoAAAAAALAZ9uhgJ+zRAdZw1T0S9uhgJ668R0d/hJ3QHwFr0B8B5yttfyz2YYusrCxlZGTwxQm24eXlpeHDh2v27NnKy8szHafIjBkz1KBBA/Xs2dN0FKBchIWFqU2bNpoxY4bpKNeZMWOGhg4dqipVqpiOApSL2NhYHT16VP/6179MRwFQQvQ/2I2r9j8AAADADi5evKjExEQ9+eSTpqMA5W7w4MGqVKmSEhMTTUcBAAAAAAAAAAAAbMPPz0/Dhg3T5MmTlZSUpF9++UXp6emaMGGC6tevr8TERMXExKhu3bpq0KCBBg0aVPSxly5dMh2/RObOnavAwED5+/ubjgK4lEGDBmnp0qU6d+6c6SgAAJCfBVoAACAASURBVAAAAMAm2KOD3bBHB1jDVfdI2KOD3bjiHh39EXZDfwSsQX8ErFGa/ljswxZff/217r77bnXo0KFU4QBX9Pvf/15nzpxxqRddCQkJGjJkiLy9vU1HAcrNY489pnnz5rnMi66NGzdq165dGjp0qOkoQLlp3ry5IiIi9PXXX5uOAqCE6H+wI1frfwAAAIBdLFu2TLm5uRowYIDpKEC5q1atmnr37q2EhATTUQAAAAAAAAAAAADb8vHxUWhoqEaNGqUvvvhCW7du1ZkzZ7R69WrFxcXp4sWLmjhxojp27Kjq1asrICBA8fHxRR9bWFho+q9wQwUFBZo/f74GDRpkOgrgcgYMGKCCggItWbLEdBQAAAAAAGAT7NHBjtijA6zhansk7NHBjlxxj47+CDuiPwLWoD8Czlea/ljswxaJiYl65JFH5OXlVapwgCtq3LixIiMjXWYgJyMjQ3v27OENtLCdQYMG6eeff9bq1atNR5EkzZ07V82aNVNYWJjpKEC5GjRokBYuXKjLly+bjgKgmOh/sCtX638AAACAXcydO1edOnVSgwYNTEcBnGLw4MFau3atjh49ajoKAAAAAAAAAAAA4DFq1qyp6OhojR8/XosXL9apU6e0d+9eTZs2TdHR0dq6davi4uIUGBioWrVqqVu3btd9rCtISkpSTk6OBg4caDoK4HJq1aqlLl266J///KfpKAAAAAAAwCbYo4MdsUcHWMPV9kjYo4NdudoeHf0RdkR/BKxBfwSsUdL+WKzDFunp6Xxxgm1d+6S5dOmS6SiaO3eu/Pz8FBoaajoKUK6uveiaO3eu6SiSpH/+858aNGgQ39yA7QwaNEjnzp3TqlWrTEcBUEz0P9iVq/U/AAAAwA4uXLigpUuX8vM62FrPnj11++23a968eaajAAAAAAAAAAAAAB7Nz89Pw4YN0+TJk5WUlKRffvlF6enpmjBhgurXr6/ExETFxMSobt26atCggQYNGlT0sSZ+T2/p0qVq0aKFWrVqZfmzAXfw0EMPafXq1S4zXgQAAAAAANwXe3SwM/boAOdztT0S9uhgV660R0d/hJ3RHwHnoz8C1ihpfyzWYYvExET5+fmpbdu2ZQoHuKKBAwfq/Pnzxl90FRYWKjExUQMHDuSLE2xp8ODBWrRokfE3v6anp2vv3r0aOHCg0RyAMzRq1Ejt27d3mRddAH4b/Q925yr9DwAAALCLZcuW6dKlS+rXr5/pKIDT+Pr6qk+fPnyPEwAAAAAAAAAAAHAxPj4+Cg0N1ahRo/TFF19o69atOnPmjFavXq24uDhdvHhREydOVMeOHVW9enUFBAQoPj6+6GMLCwudmm/58uXq2bOnU58BuLOePXvq/PnzSklJMR0FAAAAAAC4OfboYGfs0QHWcJU9EvboYGeutEdHf4Sd0R8Ba9AfAecraX8s1mGLb775Rv379+eLE2ypYcOGioyM1KJFi4zmyM7O1v79+9W/f3+jOQBn6devn86dO6c1a9YYzbFo0SI1bdqUS4Kwrf79+2vp0qW6evWq6SgAboH+B7tzlf4HAAAA2MWSJUsUFRWlO++803QUwKliYmK0bt06nT592nQUAAAAAAAAAAAAAL+hZs2aio6O1vjx47V48WKdOnVKe/fu1bRp0xQdHa2tW7cqLi5OgYGBqlWrlrp163bdx5aXnJwcbdmyhcMWwG9o1qyZWrZsqRUrVpiOAgAAAAAA3Bx7dLAz9ugAa7jKHgl7dLA7V9mjoz/CzuiPgDXoj4A1StIfb3nYYv/+/dqxYwdv6oOt9ejRQ8uXL1dhYaGxDMuXL1fdunX54gTbaty4sQICAoy/+XX58uXq1auX0QyAM/Xs2VNnz57Vhg0bTEcBcAv0P9idq/Q/AAAAwA4KCwu1atUqfl4Hj9CtWzdVqFBB//rXv0xHAQAAAAAAAAAAAFBCfn5+GjZsmCZPnqykpCT98ssvSk9P14QJE1S/fn0lJiYqJiZGdevWVYMGDTRo0KCij7106VKpnrls2TLddtttuu+++8r5bwPYS48ePXhvNwAAAAAAKBP26OAJ2KMDnM9V9kjYo4PducIeHf0RnoD+CDgf/RGwRkn64y0PWyxfvly33367HA5HuYQDXFHPnj2Vk5Oj7OxsYxmWL1+uHj16qEKFW35aAm6rZ8+eWr58ubHnnzx5UpmZmerRo4exDICztWrVSn5+fkY/1wAUD/0PnsB0/wMAAADsYtOmTcrJyeGNW/AI1atXV2RkpPE3lgAAAAAAAAAAAAAoOx8fH4WGhmrUqFH64osvtHXrVp09e1arV69WXFycLl68qIkTJ6pjx46qXr26AgICFB8fX/SxxRl+WLlype6//35VrlzZgr8R4L569uyp7OxsHTt2zHQUAAAAAADgptijgydgjw6whuk9Evbo4AlcYY+O/ghPQH8ErEF/BJyvJP3xll9xVqxYoa5du6pSpUrlEg5wRW3bttVdd91l7AvUL7/8opSUFAapYHs9e/bUzp07tW/fPiPPX758uSpWrKjOnTsbeT5gle7duzP6Brg4+h88hen+BwAAANjF8uXLVa9ePYWEhJiOAliiZ8+eWrFiRbFGagAAAAAAAAAAAAC4lxo1aig6Olrjx4/X4sWLderUKR09elRffvmloqOjtXXrVsXFxSkwMFC1atVShw4dNGbMmKKP/b+SkpJ0//33W/8XAdxMhw4d5O3traSkJNNRAAAAAACAm2KPDp6APTrAGqb3SNijg6cwvUdHf4QnoD8C1qA/AtYobn/8zcMWeXl5+v7777kEA9urUKGCHnjgAa1cudLI87/99lvl5+erW7duRp4PWMXhcOj222839rm2atUq3XfffapWrZqR5wNW6dmzpzZu3KiffvrJdBQAN0H/g6cw3f8AAAAAu1i9erW6d+8uLy8v01EAS/To0UPHjx9Xdna26SgAAAAAAAAAAAAALNCgQQMNHDhQkydPVlJSks6ePaukpCS9+eabaty4sRISEtSnTx/deeedatmypYYNG6aPPvpICxcuVE5OjhwOh+m/AuDyqlatqpCQECUnJ5uOAgAAAAAA3BB7dPAU7NEB1jC9R8IeHTyFyT06+iM8Bf0RsAb9EbBGcfvjbx62yMzM1Pnz59WlS5dyDQe4os6dO2vdunXKy8uz/Nlr165VcHCw6tSpY/mzAStVqlRJDodDa9euNfL8H3/8ketm8AidOnWSl5cXbzQHXBj9D57CdP8DAAAA7ODKlSvasGGD7rvvPtNRAMuEhISoRo0afI8TAAAAAAAAAAAA8FCVK1eWw+HQiy++qDlz5mj//v3697//rVWrVmnIkCE6e/asJkyYoIcffliVKlVSaGio6ciAW3A4HPwsHgAAAAAAlAp7dPAk7NEBzmd6j4Q9OngKk3t09Ed4Evoj4Hz0R8Aaxe2Pv3nYIjk5WXXq1NG9995bruEAV+RwOHTx4kVlZmZa/uzk5GQ5HA7LnwuYYOrNr0ePHtXhw4cVFRVl+bMBq1WvXl0BAQG80RxwYfQ/eBJ++QkAAAAom8zMTF24cIHXkfAoFSpUUGRkJK8nAQAAAAAAAAAAABSpUaOGoqOjNX78eC1evFg//fSTHnnkEYWFhem2224zHQ9wCw6HQ5s3b9b58+dNRwEAAAAAAG6GPTp4EvboAGuwRwc4n8k9OvojPAn9EbAG/RFwvuL2x1setnA4HPLy8irXcIArat68ue68807Lv0BdK598cYKncDgcOnTokA4fPmzpc9euXSsfHx9FRERY+lzAlA4dOjD6Brgo+h88jan+BwAAANhFSkqK6tSpoxYtWpiOAljK4XAoKSnJdAwAAAAAAAAAAAAALsrLy0vbt2/nfdlACTgcDl29elVpaWmmowAAAAAAADfDHh08CXt0gDXYowOsYWqPjv4IT0J/BKxBfwSsUZz++JuHLVJTU7m6BI/h5eWlqKgoy4tgWlqa8vLy+FyDx4iMjFSlSpUs/1xLTk5W69atVaVKFUufC5jicDiUkZGhCxcumI4C4P+g/8HTmOp/AAAAgF0kJycrKiqKN27B4zgcDh08eFBHjhwxHQUAAAAAAAAAAACAC7p8+bK2bdum0NBQ01EAt9GwYUPdddddyszMNB0FAAAAAAC4Gfbo4EnYowOswR4dYA1Te3T0R3gS+iNgDfojYI3i9MebHrY4ePCgcnJy1L59e6eEA1xRVFSU1q1bZ+kz169fr/r166tJkyaWPhcwpXLlygoODtb69estfe6GDRv4mgaP0r59e125coU3mgMuiP4HT2Oq/wEAAAB2kZ6eroiICNMxAMtFRESoQoUKSk9PNx0FAAAAAAAAAAAAgAvavn27rly5ouDgYNNRALcSHBys7Oxs0zEAAAAAAIAbYY8Onog9OsD52KMDrGFij47+CE9EfwScj/4IWKM4/fGmhy02bdokLy8v3tQHjxISEqJjx47p5MmTlj1z8+bNatOmjWXPA1xBSEiIsrKyLHtefn6+tmzZotatW1v2TMC0pk2bqmbNmpZ+rgEoHvofPJHV/Q8AAACwi59//lkHDx5USEiI6SiA5apVq6ZmzZrxehIAAAAAAAAAAADADWVlZcnX11fNmzc3HQVwK8HBwfwsHgAAAAAAlAh7dPBE7NEB1mCPDnA+E3t09Ed4IvojYA36I+B8xemPNz1skZWVpWbNmql69epOCQe4oqCgIElSdna2Zc/MysriBRc8TlBQkDZv3mzZ83bv3q0LFy7wuQaP4uXlpcDAQEu/pgEoHvofPJHV/Q8AAACwi+zsbBUWFvI6Eh4rODiY73ECAAAAAAAAAAAAuKHs7Gz5+/vLx8fHdBTArQQFBWnr1q26evWq6SgAAAAAAMBNsEcHT8QeHWAN9ugA5zOxR0d/hCeiPwLWoD8Czlec/njTwxbZ2dl8wsDj1K9fX3Xr1rWsCObl5Wnnzp1FBRTwFMHBwTp9+rRycnIseV5WVpa8vb3l7+9vyfMAVxEUFGTpNUEAt0b/g6eyuv8BAAAAdpGVlaUaNWqocePGpqMARgQFBXHYAgAAAAAAAAAAAMANZWdnKzAw0HQMwO0EBQXp8uXL2r17t+koAAAAAADATbBHB0/EHh1gDfboAGtYvUdHf4Qnoj8C1qA/Ata4VX+86WELri7BU1k5kLN9+3bl5eXxuQaPc+3fvFXf4MjOzlaLFi1UuXJlS54HuIprX9MKCwtNRwHw/6H/wVNZ3f8AAAAAu8jOzlZQUJC8vLxMRwGMCAoK0p49e3ThwgXTUQAAAAAAAAAAAAC4mN27d6tVq1amYwBup2XLlpKkPXv2GE4CAAAAAADcBXt08FTs0QHOxx4dYA2r9+joj/BU9EfA+eiPgDVu1R9veNji6tWr2rt3L2/qg0fy9/fXjh07LHnWzp075e3trRYtWljyPMBV1K5dW3feeaeln2t8TYMn8vf317lz5yy7Jgjg1uh/8FRW9z8AAADALnbt2sX3NuHRWrVqpfz8fO3bt890FAAAAAAAAAAAAAAuJD8/X4cPH1bTpk1NRwHcTtWqVVW3bl3t37/fdBQAAAAAAOAG2KODJ2OPDnA+9ugAa1i5R0d/hCejPwLOR38ErHGr/njDwxaHDx/W1atX1axZM6eGA1xR06ZNdeDAAUuetX//fjVs2FCVKlWy5HmAK2natKkOHjxoybP2798vPz8/S54FuJJrXc6qr2sAbo3+B09mZf8DAAAA7GL//v38vA4e7dq/f8Y0AAAAAAAAAAAAAPz/HTlyRFeuXOFn6kApNWvWjN83AgAAAAAAxcIeHTwZe3SANdijA5zPyj06+iM8Gf0RsAb9EXC+W/XHGx62uPbBTZs2dUYmwKU1a9ZMx44d06VLl5z+rIMHD/J5Bo/VrFkzy4aoDhw4oCZNmljyLMCVXPtmA280B1wH/Q+ezMr+BwAAANhBfn6+jhw5whu34NGqVq2qunXr8j1OAAAAAAAAAAAAANfhd2CBsmnatCnv7QYAAAAAAMXC9+LgydijA6zBHh3gfFbu0dEf4cnoj4A16I+A892qP970sEXlypV11113OTMb4JKaNm2qwsJCHTp0yOnPOnDgAEUQHsuqIpibm6tTp04x/gaP5O3trcaNG/NGc8CF0P/gyThsAQAAAJTMkSNHdOXKFV5HwuPxehIAAAAAAAAAAADA/7V//37ddtttqlevnukogFtq1qyZJcNFAAAAAADA/bFHB0/GHh1gDfboAOezco+O/ghPRn8ErEF/BJzvVv3xhoctDh48qCZNmsjLy8up4QBXdO2LhVUvuiiC8FRNmza19GonF87gqRh9A1wL/Q+ezKr+BwAAANjFtf7M60h4Or7HCQAAAAAAAAAAAOD/OnbsmBo1asTvwAKl1LhxYx05csR0DAAAAAAA4AbYo4MnY48OsAZ7dIA1rPpdTfojPBn9EbAG/RGwxm/1xxsetsjJyVHDhg2dGgpwVbVq1VKVKlWUk5Pj9GfxuQZP1rBhQ/3888/Kzc116nOufS7zuQZP1bBhQ0u+pgEoHvofPJlV/Q8AAACwi5ycHHl7e+uuu+4yHQUwqkGDBjp+/LjpGAAAAAAAAAAAAABcyKlTp1S3bl3TMQC3VadOHZ09e1YFBQWmowAAAAAAABfHRgI8GXt0gDXYowOsYdUeHV/T4Mnoj4A16I+ANX6rP97wsAVv6vMMX3/9tWbPnm3k2fPmzdOyZcuMPLs46tSpo1OnTjn1GVeuXNHPP/+sOnXqOPU5MIvPs5u79m//9OnTTn3OyZMnVbHi/2PvzuOjKs/+j38nmUwSQpZJQlbWsCaBsAQXBKVSXKvW2mofRdzqvld/Lq214oILuFvrUh+3R7HYVtun1pWCVgNaRSCQIIvsBAPZCAGyTc7vD5+ZJpBlZpI55yTzeb9eeYXMmXPu+0SvnGvmPnNdTrnd7pCOA2sRax1LTU0NeZwB8A/5X3jgmtQxs/I/AAAAoK+orKxUcnKyIiLaXc7rk/72t7/pzTfftHoasJmUlJSQr9sBAAAAAAAAAAAA6F0qKiqUkpJi9TQswdo6ekJqaqo8Ho9qamqsngoAAAAAALA56tGFB+okdIx6dOgpxFnHqEeHnkSsdcysenTkj+GBWOsY+SN6CnHWMfJH9CRirWOd5Y8dNrYI15v67GLp0qW67777VF5eHrIxHnnkEd1///0hO35nfvvb3+rhhx+2ZGx/pKSkhPziVFVVJcMwSAQtRJxZy6xE0Fv8zeFwhHQcdIxYsxZF3wD7IP+zHtcka9HYAgAAAAhMZWVl2L2GvO+++3T77bdbPQ3YDM17AQAAAAAAAAAAABwqHNfUvVhbb58Z94r3Jd7PkPOZIwAAAAAA0BXq0VmPOgnWoh5deCDOrEU9uvBBrFnLrHp05I/WI9asRf4YHogza5E/hg9izVqd5Y/tNrYI55v67OLTTz/VnXfeqV27dlk9lbBkRoEcb1Dyoss6xJm1zLr5taKigmuaxYg1a5nx5gYA/5D/WY9rkrX48BMAAAAQmMrKyrB7DXnttdfq1ltvtXoasJnU1FTV1NSoubnZ6qkAAAAAAAAAAAAAsIlw/rwQa+vt417xwJhV5AEAAAAAAPR+1KOzHu99WYt6dOGBOLMW9ejCB7FmLbPq0ZE/Wo9Ysxb5Y3ggzqxF/hg+iDVrdZY/Ott7sKqqSsnJySGdlBVaWloUEdFuL48+yzAMSaKzT4BSU1NDfnGqqqqS1DcTQWIN/khKSpLT6TSlmyBx1ncQa4FLTU3V3r171dzcLKez3dQPgEnI//oWrkmBMyv/AwAAAPqKcGxsceGFF1o9BdhQSkqKDMNQdXW1BgwYYPV0AAAAAAAAAAAAANhATU2NkpKSrJ6GJeywtu7vvdTheJ95b+H9DLn3cw4AAAAAAAAdoR5d30GNhOBQj657iDX4g3p03ROOcSYRa8Ewqx4d+WPfQZwFh/yxe4g1+IP8sXvCMc4kYi0YneWP7f4ftG/fPsXHx5syuc5cdtlluvDCC7Vx40ZdeumlGjRokGbMmKHXXntNkvToo4+qsLBQaWlpOuWUU7Rhw4bDjrF27VqdeuqpGjBggOLi4nTEEUfoL3/5S4+PU1NTo6uvvlpjx45VRkaGzjrrLL377ruHjXPttdeqrKxM5513noYMGaLhw4frkksu0f79+33Pu/zyy/Xss89Kki655BJdf/31Af/uVq1apZkzZyopKUn9+vXTUUcdpffee6/d55aUlGj27NnKzs5WTk6OLr30Uh08eNC3/YILLtD5559/2H4PPvigjj32WDU3Nwd0fh3585//rGOPPVZz5swJ+Hx7Wv/+/f2ac3fU1dVJErFmUaz1RJxJ/sdaV3EmmRNrdoozh8OhuLg4U2LNDnEmdT8G/ImznhjHnzjzjtPbYs3fOPP3/Dpip1jr37+/DMPQgQMHrJ4KEPbI/8j/yP/Myf8AAACAvmL//v3q37+/1dOQJNXX1+uuu+7S8OHDFR0drZEjR+qKK67Qvn372jzP3/cWr7/+ev3iF7/Qjh07dM011/iaFVx//fW6+OKLgzqmv3MM9vwCfW+xu6+HO/Lxxx/rmmuu0ahRozRo0CCde+65evbZZ+XxeNo8r7i4WGeddZaGDRumH//4x3rllVe0aNEinX322W1u0PD3eVaKi4uTJF5PAgAAAAAAAAAAAPCpr69XTEyM1dNooyfX1jtaV/duC2ZtvTvr6l7+3Evtz33mPf35nmDvFQ/HNXgvb/w0NDRYPBMAAAAAAGB31KOjHh316KhH19djjXokc4I6355EPTrq0QWCenTBM6seHfkj+SP5I/ljX481u13TJPLHUCF/JH8kf+wkfzTa4XK5jNdee629TaaaPHmykZGRYWRlZRl5eXnG7NmzDZfLZTgcDuOUU04xnE6nccYZZxg/+clPDJfLZQwePNjweDy+/T/99FMjLi7OGDp0qHHHHXcY9913n3HUUUcZkox77rmnx8bZvn27MXToUCMuLs646qqrjNtvv92YOHGiERERYTz22GNtxhk6dKiRnZ1tTJs2zbj11luN6dOnG5KMs846y/e8+fPnG1OmTDEkGT//+c+NJ554IqDf25IlS4yYmBgjOzvb+OUvf2lccsklRmJiouF0Oo2ioqI280lJSTEGDBhgjBw50rjllluME044wTeuV15enjFmzJjDxrnkkksMSUZDQ0NA5+c95vHHH+/7+Y9//KPhdDqNE0880Thw4EBA5xsK11xzjTF9+vSQjvH2228bkozGxsaQjuOPcIy17saZYfgXa/7GmWH0fKzZPc4MwzAGDBhgPP300yEdY9asWcaZZ54Z0jH81Z0Y8DfOujuOv3HmHae3xZq/cebv+XmPaedY+/jjjw1Jxu7du62eChD2yP/I/8j/zMn/AAAAgL7i1FNPNS6++GKrp2EYhmFcfPHFRmRkpHHRRRcZTzzxhHH99dcbsbGxxpQpU3zPCeS9xenTpxujR482CgoKDEnGpEmTDMP4/vXPsGHDgjqmP3PszvkF+t5id14Pd2Tx4sVGZGSkkZycbFx77bXGnDlzjKlTpxqSjFtuucX3vE8++cTo16+fkZqaapx//vnGhRdeaPTv398YM2aMIcnYtm1bQM+z2qpVqwxJxrp166yeCgAAAAAAAAAAAACbSE9PN5566imrp9FGT66td7SubhjBr613Z13dMPy7l9rf+8x7+vM9wdwrHq5r8K05nU5jwYIFVk8DAAAAAADYHPXoqEdHPTrq0fX1WKMeifVxZhjUo6MenX+oR9c9ZtWjI38kfyR/JH/s67Fmt2uaYZA/hgr5I/kj+WPH+eNhjS1aWloMh8NhvPnmm6ZMrjOTJ082JBn33Xef77F3333XkGTExsa2KV5y4YUXtilo0tLSYkyaNMlITk42du7c6XteY2OjMWPGDMPlcvme251xDOP7PzKSjM8//9z3WENDg2+cysrKNuPcdtttRktLi2EYhuHxeIxJkyYZiYmJbc79wQcfNCQZK1asCOh35vF4jPHjxxuJiYnGhg0bfI+vXbvWcDgcxqxZs3yPeeczZ86cNsc48sgjDbfb7fs5kIuTv+fXOmhee+01IzIy0jj11FON+vr6gM43VG666Sbj6KOPDukYCxcuNBwOR0jH8Fe4xlqwceY9nj+x5m+cGUbPx5rd48wwDGPgwIHGo48+GtIxzj77bOOcc84J6Rj+CjYGAomz7oxjGP7HWetxelOsBZoI9oVYW7p0qSHJ2L59u9VTAcIe+V9g4xgG+R/5HwAAABDeZs6caVxxxRVWT8Oor683oqKijDPOOKPN40888UTQ7y16F1xPOukkY+3atb7HDy2+4e8x/Z1jd84vmPcWg3093JHLLrvMiI6ONqqrq32PHTx40MjMzPTNzfv61e12G1u2bPE9r7i42HC5XL5iGf4+zw7Wrl1rSDKKi4utngoAAAAAAAAAAAAAm3C73cZzzz1n9TR8enptvaN1dcMIbm29O+vqhuHfvdSB3Gceis/3BHqveLiuwbcWFxdnvPTSS1ZPAwAAAAAA2Bj16AIbxzCoR0c9uuBQjySwcQyDeiTUIwkO9ej8H8cwqEdHPbrgkD8GNo5hkD+SPwaH/DGwcQyD/JH8MTjkj/6PYxjkj+GWP0boEE1NTTIMQy6X69BNloiMjNQtt9zi+3n8+PGSpBkzZmjUqFG+x3/wgx9IkkpLSyVJX3/9tb7++mvNmDFDWVlZvudFRUXpoosuUmNjoz766KNuj1NVVaUFCxboiCOO0FFHHeV7nsvl0mWXXabGxka99dZbvsdjY2M1Z84cORwOSVJERISmTp2qvXv3aseOHUH8htpasWKFVq1apTPPPFMjRozwPT5mzBg9+eSTOvLII9s8PyIiQrfffnubxwoLC1VdXR3UfAI9v1dffVUXXHCBTjnlFL399tuKjo4OeMxQcLlcamxsDOkYjY2NtokzjVhW3QAAIABJREFUiVgLVCCx1tNxJgV2fnaNM+n7/34NDQ0hHaOhoaHXx1qgcRbsOIHGmUSstWbXWPPOI9SxBqBr5H+BjUP+11ZfuCZJ5uR/AAAAQF9hl/c2PR6PJOnjjz/WihUrfI9fe+21qqur0/Dhw4N6b1GS7r33Xo0ZM6bdcQM5pj9zbGlp0f79+9t8eTwev/YNRjCvhzuao9dNN92kL7/8UklJSb7HGhsblZSUpNraWkn/ef16xRVXaMiQIb7njRs3Tj//+c99P/v7PDvgPU4AAAAAAAAAAAAAh7LLmrpXqNbWO1tXl/xfW/d3bbyjdWt/7qUO5vNP/grmXnHW4LvGvd0AAAAAAKAr1KMLbJzeXCPBOz716A5HPTpirSvUI+kZ1KOjHl1XiLXuM+OzmuSPgY3Tm69p3vHJHw9H/kisdYVrWs8gfyR/7Aqx1n2d5Y/OQx/wXvzsEjRZWVlt5hITE+N7vLXIyEhJ/5n/hg0bJEnTp08/7JiTJk2SJK1fv77b46xbt06GYaiuru6wG8y8N699++23vsfS0tJ8x/Zyu92SpLq6usPmGqiNGzdK+v6Gt0Nde+21hz2WnZ192P+o3hvxgplPIOe3cuVKXXzxxWppabHViw/p+6AJ9cWpsbFRUVFRIR0jEMRaYAKJtZ6OM8n/87NznEnEmuRfDAQaZ8GOE2icScSal51jzTsXbjQHrNcXrkkS+R/XpO4xI/8DAAAA+gq7vI7s16+f7rrrLv3mN7/RpEmTlJubq+OPP16nnnqqTjrpJEVGRgb13uKAAQN0xBFHdDhuIMf0Z47Lli3TMccc0+Y4CxYs0LnnntvlvsEI5vXwF1980eEcpe8XyCsrK/XII49o2bJl2rJlizZs2KDa2lrfcb2/k9GjRx82p/z8fN+//X2eHfAeJwAAAAAAAAAAAIBDNTU12eo+2VCsrXe1ri75v7buz/wkdbhuHRERIanze6n/+Mc/Sgrs80/+CuZecdbgu8a93QAAAAAAoCvUowtsnN5cI0GiHl1HqJFFrHWFeiQ9g1ijHl1XiLXuM+OzmuSPgY3Tm69pEvljR7imEWtd4ZrWM4g18seuEGvd11n+GNHRToZhhG5GAYiLi2v3ce+NcB2pqKiQJA0dOvSwbd5fROtCNMGOU1lZKen7P2ZRUVFtvlJSUjRr1qw2N57FxsZ2eKye+J3v2bNH0vfB4I+Oztuf+VRVVR32WCDnV11drfPOO08XXHCB/vGPf2jBggVdzNY8LS0tvm424YJYC0wgsdadOJO6F2t2jjPp+1jr6r99d9ktloOJgUDjLNhxAo0zqe/EWntxJvWNWPPOM9SxBqD3If8LDPlfzzAj/wMAAAD6Cju9t3nHHXdo48aNuvPOO9WvXz89++yzOu2005Sfn6/vvvsuqPcWD13UPVSgx+xqjqmpqZo1a1abL+9r26727UxH7y0G83q4szlK0vz58zVw4EDde++9ampq0syZM/Xyyy9r6tSpvudUV1dLklJSUg47vsfjCfh5dsB7nAAAAAAAAAAAAADaY5fPwHr19Np6V+vqUmBr6/6sjXe0bu3PvdTBfP7pUN39fE9rrMF3jXu7AQAAAACAv+zyXhw1EgJDPbqeQT26/yDW2kc9kp5BPbr/oB5d+6hH131mflaT/NG/cXrzNU0if+wI+eN/EGvtI3/sGeSP/0H+2D7yx+7rLH90HvqA92Y3b1eh3mrYsGGSpE8//VSnnXZam23Lli2TJOXk5HR7HO8xRo4cqddee63NNo/Ho3379qlfv37dHsdf3j8SX3zxhf7rv/6rzbZXX31VLS0tuuiiiwI6psPhUEtLy2GPr1u3LthpSpIKCwv16quvqqqqSv/4xz9044036sQTT1Rqamq3jtsTGhsb/brxszuio6N7fZxJxJrdY83OcSaZE2sul6vXx1q4xpnU87EWjtc074uFUMcagK6R/wXGbtcl8r+eYUb+BwAAAPQVdnlvs7GxUQcOHNDQoUN1zz336J577tF3332nuXPn6ne/+52eeuopzZo1S1LPvoYL5HWhP3OcO3fuYccJZN9QvbfYWnvn6rVnzx7dfvvtGjBggDZs2KD4+Hjftrlz5/r+7X39WlRUpNNPP73NMVasWBHw8+zAGwcul8vimQAAAAAAAAAAAACwC7usqXvZfW3d37XxjtatvR8+7+xe6kDuM2cN3h64txsAAAAAAHSFenSBoUZC8OxcJ4F6dP4j1uwda3aOM4l6dP4K1ziTqEfXE8yoR0f+GBi7xVpvuaZJ9o418kf/EWv2jjU7x5lE/uivcI0zifyxJ3SWPx7W6iIqKkoRERG9PmgmTpwol8uljz766LBtH3/8sSIjI3XSSSd1e5wRI0ZowIAB+uCDD9TU1NRm2wMPPCC3261///vf3R7HX0cccYRiY2O1ePHiNo+Xlpbqoosu0ieffBLwMYcOHaotW7a0Ob+SkhJt3LixW3NNSEiQw+FQSkqK5s+frz179uiGG27o1jF7ipkXJ7t0EwwWsWbvWLNznEnfx1qoC1H1hRdd4RpnUs/HWrhe0ySKvgF2QP4XGLtdl8j/eoYZ+R8AAADQV9jlvc3FixfL7XbrjTfe8D2WkZGhW265RZJUXV0dktdwgRzTnzl25/yk0L236K+tW7eqpaVFZ511VpuCGtu3b9fKlSt9P48dO1ZOp/Ow1+2bNm3SokWLAn6eHQRzs2RjY6MWL16sW265xVdgBQAAAAAAAAAAAEDfYZc1dS+7r613Z11d8u9e6kDuM2cN3h4aGhq4txsAAAAAAHSKenSBoUZC8OxcJ4F6dP4j1uwda3aOM4l6dP4K1ziTqEfXE8yoR0f+GBi7xVpvuaZJ9o818kf/EGv2jjU7x5lE/uivcI0zifyxJ3SWPx7W2EL6Phns7UGTlZWla6+9VitWrNDVV1+tNWvWaN26dbrrrrv05z//Weeff75GjhzZ7XFcLpceeOAB1dbW6vzzz9fXX3+tjRs36pFHHtF9992nE044QVOnTg34uEOGDJEkPf/88/ryyy/93i89PV033nijiouLdeWVV+qrr77Sq6++qnPPPVdOp1NXXnllwHM56qij1NjYqIsuukgff/yxXnjhBZ155plKTEwM+Fgdueiii3TsscdqwYIFevfdd3vsuMEy44Y8b6J56B/b3qY3x1qwcSb1zlizW5xJ38caHc661pvjTLJXrIXjNc37/3+oYw1A18j/AkP+1312uyZJ5uR/AAAAQF9hl/c2p06dqrS0NN1zzz36+OOPtXfvXi1fvlw33nijJOlHP/pRSF7DBXJMf+bYnfOTzHlvsTOjR49W//79tXDhQv3973/Xhg0b9PLLL+uYY45RQkKC6urqtG7dOmVnZ+uGG27Q119/rYsuukjvvfeennzySZ1yyiltjufv8+zA3/c4t23bpueee05nnHGGkpKS9MMf/lAPP/ywoqKizJgmAAAAAAAAAAAAABPZZU3dy+5r691ZV5f8u5c6kPvMQ7EGH8i94uG8Bt+aGQVVAAAAAABA70c9Ov/ZrXZPb6yRINmvTgL16PzXm2ONeiTWox6df3pznEn2irVwvKaZVY+O/NF/dou13nhNk+wXa+SP/uvNsWana5pE/hgq5I/+s9s1TSJ/7Amd5Y/O9naIjo5WQ0NDaGdlggceeEAej0dPPPGEnnnmGd/jV155pZ544okeG+cXv/iFDhw4oFtvvVVvvvmmJMnpdOrSSy/V3Llz5XA4Aj7mCSecoKOPPlrPPPOM1q5dqyVLlvi977333ivDMDR//nw999xzkqTMzEy9/vrrOuqoowKey80336xly5ZpwYIFWrBggbKzszV79mxJ0oMPPhjw8drjcDj07LPPasKECbryyitVUlKi+Pj4Hjl2MMy4Ic97fDOSzlDrrbHWnTiTel+s2S3OJPNiraKiIqRjmKG3xplkr1gLx2uaN6fr7dcaoC8g/wsc+V/32O2aJPHhJwAAACAQdlmvi4+P1+uvv64LL7xQxx9/vO/xmJgYzZ0711fcIhTvLfp7TH/n2J3zM+O9xc7Ex8frxRdf1CWXXKIzzjhDkpScnKzHHntMcXFxuvDCCzV27Fg1NTXpwQcfVFJSkh5//HG98sorSklJ0axZs5SUlKR77rlHCQkJvnn78zyreRe7D30/pbGxUZ9++qnef/99/e1vf9OGDRvkdH6//N3c3CxJioiIsPy1MAAAAAAAAAAAAICeZ5c1dS+7r613Z13dy597qf29zzwUa/CB3CsezmvwXh6PRx6Ph3u7AQAAAABAl+z2XlywemuNBIl6dFbXSaAeXWB6a6xRjyQ86pFQjy4wdrumSdSj6y6z6tGRPwbGbrHW265pkv1ijfwxML011ux0TZPIH0OF/DEwdrumSeSP3dVZ/ugwDMM49MFBgwbppptu0i9/+cvQz84Eu3fv1sqVKxUdHa2CggK53e6QjLNv3z6tWLFCdXV1GjdunAYNGtTtY5aVlSk+Pj6o/4H279+v4uJiJSQkaOTIkd1ONvbs2aOdO3dq/PjxQf0h6E3OPvtsRUREaOHChSEbY9myZTrmmGO0Y8cOZWdnh2wcM/XWWOtOnEnEWrA8Ho9cLpcWLlyon/3sZyEb56abbtLnn3+upUuXhmwMM/XWOJPsFWvhEmeStHDhQs2aNUuNjY2KiIiwejpAWCP/Cx75X99gVv4HAAAA9BUXXXSRKioq9M4771g9FUnSgQMHVFxcrG3btik1NVVjx45VWlraYc8LxXuL/h7T3zl2Z1+rX8NVVlZqxYoVyszMVF5enm8OlZWVqq6u1ogRI9o8v7q62vd6/brrrtM777yjzZs3H3Zcf59nhUWLFumEE05QVVWVGhoa9OGHH+pvf/ubPvjgA+3fv7/Tmxzj4+NVW1tr8owBAAAAAAAAAAAAhFpeXp7OPfdc3XnnnVZPpQ27r613Z13dy597qf29zzwUa/CB3CsejmvwXvv27VNCQoLee+89nXzyyVZPBwAAAAAA2Bj16IJjt9o91EgIHvXogtNbY416JNagHl1wemucSfaKtXCJM8m8enTkj8GxW6xxTQse+WNwemus2emaJoVPrJE/Bqe3xplkr1gLlziTOs8f221sMWHCBJ122mm67777TJskOnf11Vf79bzZs2drypQpIZ5N33f88ccrNzdXv//970M2xvr16zV69GitXLlS48ePD9k48B9xZq49e/YoLS1NS5Ys0Q9+8IOQjTN37ly9+uqrWrduXcjGQGCINXP9/ve/11133aU9e/ZYPRUg7JH/2Q/XJHOZlf8BAAAAfcXNN9+spUuXatmyZVZPBb3IwYMHNWPGDB199NF67LHHfI/v379fEydOVH5+vt5++22/n2c1j8eju+66Sw888IBycnK0ceNGOZ1OSVJzc3OX+2dmZqqsrCzU0wQAAAAAAAAAAABgsmnTpmny5Ml6/PHHrZ4K+rC+tgbf2ubNm5WTk6Mvv/xSkydPtno6AAAAAADAxqhHZz/USTAX9ejCE3FmLurRhS9izVxm1aMjf7QfYs1c5I/hiTgzF/lj+CLWzNVZ/uhsb4fU1FRVVFSEfGLw3/HHH+/X8zIzM0M8k/BQWVmp1NTUkI6RkpIiScSajRBn5vL+v++NhVBJSUkhzmyGWDNXRUVFyK9pAPxD/mc/XJPMZVb+BwAAAPQVvLeJYMTGxio5OVlPPfWU9u7dq9NOO03V1dV66aWXtHPnTr3wwgsBPc9qkZGRqq+vl8vl0tatW+VwOPxqaOHV1NSk448/XgkJCUpMTGzz3e12+/596PbExMQQnhUAAAAAAAAAAACA7mJNHWboa2vwrVVWVkoK7t5uj8ejyMjInp4SAAAAAACwKerR2Q91EsxFPbrwRJyZi3p04YtYM5dZ9ejIH+2HWDMX+WN4Is7MRf4Yvog1c3WWP7bb2IKgsZ+zzz7b6imElYqKipBfnNxutyIjI303AMJ6xJm5vP/vh/pFV2pqqqqrq9Xc3Cyns93LHkxGrJmrsrKSAuKATZD/2Q/XJHOZlf8BAAAAfQU3biFYCxYs0P3336+PPvpIL7/8suLi4jRp0iT9/e9/13HHHRfw86wWHx+vYcOGaenSpXrllVc0f/58lZWVyel0qqmpqdN93W638vLyVFtbq71792rbtm2+f1dXV6u2tlYej6fdfZOSkg5rhuH9npSUpKSkpHa3tW6aEREREYpfCQAAAAAAAAAAABD2UlNTVVZWZvU0EAb62hq8VyBFHjZs2KDPPvtM//rXv/TJJ5/o3nvv1axZs0I9RQAAAAAAYBPUo7Mf6iSYi3p04Yk4Mxf16MIXsWYus+rRkT/aD7FmLvLH8EScmYv8MXwRa+bqLH9sNyJSU1NVUlIS0kkBdmUYhqqqqpScnBzScSIiIuR2u3nRhbDlTQRDHWspKSm+uE5LSwvpWIAd0dgCsA/yP4Q7s/I/AAAAoK9ISUnR3r17WeRGwBITE/XQQw/poYce0t69exUfH99ugwV/n2e1yspKJScnKykpSTfccIOuu+46LV68WI888og++OCDThtcjB49Wk8//XSnxz948KDq6+t18OBBVVdXt/vVevvOnTu1Zs2aw7a3JyYmRm63W7Gxsb5/H/rV2bbk5GTFxMR0+3cIAAAAAAAAAAAA9DUpKSkqLi62ehoIA31tDd6roqJCUVFRio+Pb/N4S0uLVq9erX/961/69NNPtWTJElVUVCgyMlIOh0PNzc3Kzs62aNYAAAAAAMAK1KNDOKMeHWAO6tEB5jCrHh35I8IZ+SNgDvJHwBwBN7bIysrSBx98ENJJAXa1e/duNTQ0aODAgSEfKzs7Wzt27Aj5OIAdbdu2TQMGDFB0dHRIx/HeKLtjxw4SQYSlbdu2ady4cVZPA8D/If9DODMr/wMAAAD6iqysLBmGobKyMg0ePNjq6aCXSkxM7NHnWWHHjh1timJERERo5syZmjlzpjZu3KgXXnhBzz77rOrq6mQYhlpaWnzPc7vdXR4/NjZWsbGxcrvdysrKCnqeHTXG6KhpxqZNm9psLy8v9839UB01vvC3aUZmZqYcDkfQ5wYAAAAAAAAAAADYTWpqqvbs2WP1NBBm+sIavJf3g+cej0erVq3SZ599pn/9619atGiRamtr5XR+//Hz5uZmSZLH4/HtS2MLAAAAAADCC/XoEM6oRweYg3p0gDnMqkdH/ohwRv4ImIP8ETBHZ/lju40thg4dqm3btsnj8SgyMjKkkwPsZvPmzZKkYcOGhXysoUOHasuWLSEfB7CjLVu2aOjQoSEfZ8iQIYqIiNCWLVs0adKkkI8H2M2WLVt0+umnWz0NAP+H/A/hzKz8DwAAALCjt956SyNHjlRubq7vg/9d8ebPmzdvprEFwtrmzZt10kkntbttxIgRevDBB3XnnXdqwYIFeuKJJ1RSUiKXyyWPx6OEhATT5ultkNHTzTE6aozhbY7RevuePXt8RUUO1V7zi86aYhy6PT09nXsHAAAAAAAAAAAAYBsDBw5UWVkZn4EFgrBo0SK98cYb2r9/v/r376+GhgZFR0erqalJLS0tktTh2rMkZWZmmjVVAAAAAABgA9SjQzijHh1gDurRAeYwqx4d+SPCGfkjYA7yR8AcneWPHTa2aGpqUllZmQYNGhTSyQF2s2XLFjmdTlM6nA0dOlRffPFFyMcB7Gjz5s2mvOCKjo5WRkYGL7oQlrz5nBmxBsA/5H8IZ2blfwAAAIAd3X///Vq+fLlcLpfGjh2ro48+WpMmTVJhYaHy8/MVFRV12D4ZGRnq16+ftmzZounTp1swa8AetmzZ0uXrybi4OF122WW67LLLVFRUpKeeekp/+ctflJiYaNIse0ZPN8forCmGd7u3QYb3scrKSjU2NrZ77EObYHTWGKO9bQMGDGj37x0AAAAAAAAAAAAQqGHDhqmpqUk7duzQkCFDrJ4O0KsMGjRI3333nerq6mQYhiSpoaHBr3379eun2tpaxcTEyOls9yPqAAAAAACgj6EeHcIZ9egAc1CPDgg9M+vRkT8inJE/AuYgfwRCr6v8scPGFtL3QUoiiHDj/f/ejJvqhgwZooULF4Z8HMCONm/erJNOOsmUsegmiHC1detWeTweU7oJAvAP+R/CmZn5HwAAAGAnHo9H1dXVcjgcamxs1Ndff63i4mIZhiGPxyOn06nRo0dr2rRpvmYX48aNk8vl0uDBg7V582arTwGwTHV1tWpqagK6sWTq1KmaOnWqysvLVV5eHsLZ2VNPNsforDHGodtaN8fwbm+Pt9lFZ00xOtuekpKi6OjooM8NAAAAAAAAAAAAfYP3cxJbtmyhsQUQoNGjR8vtduv0009XSkqKHn74YTU0NKi5ubnLfRMTE5WdnS1JcrvdyszMVFZWVoffBw8eTAMMAAAAAAB6OerRIZxRjw4wB/XogNAzsx4d+SPCGfkjYA7yRyD0usof273SZWZmKiYmRps2bdJxxx0XyvkBtrN582bTCoDn5OSovLxc+/fvV1xcnCljAnaxZcsW02Jt2LBh2rRpkyljAXbiLXpoRjdBAP4h/0M4MzP/AwAAAOwkMjJSFRUVMgzD91jrQgDNzc0qKSnRunXr9MILL8jj8SgyMlKjRo3S/v379f777+u8887TqFGjrJg+YCnve/vBvJ5MT09Xenp6D88oPHibY3RXR00xOmqa0bo5Rn19vWpqatr87WwtmKYYrbcnJSXJ4XB0+xwBAAAAAAAAAABgjYyMDPXr10+bN2/W9OnTrZ4O0Ots2bJFV155pa644grddNNNeumll3TfffepurpaLS0tHa7V5uTk6M0331RZWZl27dqlnTt3ateuXdqxY4e++uor7dixQ/v27fM93+l0Kj09XdnZ2crIyNDAgQOVkZHR5mfW9wEAAAAAsDfq0SGcUY8OMAf16IDQM7MeHfkjwhn5I2AO8kcg9LrKH9ttbBEREaHc3FyVlJSEbmaATa1evVqTJ082Zay8vDwZhqGSkhIdeeSRpowJ2MH27dtVU1Oj/Px8U8bLy8vT888/b8pYgJ2sXr1a6enpSklJsXoqAP4P+R/Cldn5HwAAAGA3Q4cOVXFxcafPad3swuPxaO3atXK5XDIMQwMHDgz1FAFbKikpUXR0NM17eylvg4ysrKygj9Fec4z2mmK0bo7Revvu3bvl8XjaPXZHzS86a4zRelt6eroiIyODPjcAAAAAAAAAAAAEz+FwaPDgwb4P0ALwX3V1tWpqanxFHhISEnTDDTfoyiuv1MKFC/Xb3/5W27Ztk8PhUEtLi2+/yMhI5eTkaNq0aZ0ev76+XlVVVdq1a5evAcamTZtUVlam9evX6+OPP1ZZWZlqamp8+7hcLqWkpCgrK0uZmZkdfs/IyFBERERIfi8AAAAAAKB91KNDOKMeHRB61KMDzGFmPTryR4Qz8kcg9MgfAXN0lT+229hCkgoKCrossAP0NYZhqLS0VBdffLEp4w0fPlz9+/fX6tWrSQQRVlavXi1JGjt2rCnjFRQUaNu2baqpqVFSUpIpYwJ2sHr1ahUUFFg9DQCtkP8hXJmd/wEAAAB2sGvXLm3YsEEbN27ssKh6VxobG1VWVqatW7cqNze3h2cI2N/q1auVm5urqKgoq6cCi4SiOUZnjTGqq6u1a9euNtsrKirU1NTU7rEPbYDRWVOM9rYPGDCA/78BAAAAAAAAAACCNGbMGK1du9bqaQC9jreI0JgxY9o8Hh0drQsuuEDnnnuu3njjDc2dO1fr169XZGSkPB6PIiIi/FrfjImJUVZWlrKyslRYWNjh8w4ePNim+UXr75s2bdJnn32mHTt2qLa2ts0ck5OTu2yAkZmZKYfDEeRvCAAAAAAAHIp6dAhH1KMDzEE9OsAcZtejI39EOCJ/BMxB/giYo6v8scPGFuPGjdOHH34YkkkBdrV582bV1taa9qIrIiJC+fn5vosiEC6Ki4s1aNAgud1uU8YrKCiQYRhas2aNpk2bZsqYgB2sXr1a06dPt3oaAFoh/0O4Mjv/AwAAAMzSunnFxo0b2/y7rq5OktSvX7+AF6idTqf69++vSy+9VA8//DAftEfYonkvekJPNsfoqilG6+2bNm3yPV5VVaWGhoZ2j+1tdBFoUwzvV0pKiqKjo4M+NwAAAAAAAAAAgN6qoKBACxcutHoaQK+zevVqJSYmavDgwYdtq6ysVGlpqerr63XqqacqNjZWpaWl8ng8ampq0t69e3tsHrGxscrJyVFOTk6nz/OnAca2bdt89+pI/1mH7aoBRnfWkQEAAAAACCfUo0M4oh4dYA7q0QHmMLseHfkjwhH5I2AO8kfAHF3ljx02tigoKNCuXbu0e/dupaWlhWRygN2sXr1aDodDeXl5po1JN0GEI7MLUQ0ePFhut1vFxcUkgggbHo9HpaWluvbaa62eCoBDkP8hHFGIFAAAAL2Ztzi596ukpESlpaXasGGDamtrJUkul0sDBw5UTk6Opk6dqtNPP12GYai2tla7du3SihUr/BorIiJCkZGRmjVrlubOnauUlBQ9/vjjWr16tcaMGRPK0wRsafXq1Zo5c6bV0wB8zTG64+DBg502xmhvW+vmGPX19aqurm732DExMUE3xvBuoyEpAAAAAAAAAACw0p133qmoqCiNHDnS95WYmNjpPuPGjdPcuXN14MAB9evXz6SZAr3f6tWrNWrUKC1atEhr165VaWmp1qxZo9LSUt+apNPpVGRkpBobG2UYhm9fK+4J724DDO/9PosWLdL27dvV1NTk2ycmJqbL5hcDBw7s8u8RAAAAAAB9HfXoEI6oRweYg3p0QOhZUY+O/BHhiPwRMAf5IxB6/uSPHTa2GD9+vCRp5cqVOvHEE3t+doANrVy5Ujk5OUpISDBtzIKCAv35z3+WYRhyOBymjQtYaeXKlfrxj39s6pgFBQV+F48D+oJ169bp4MGDFBEHbIj21dQjAAAgAElEQVT8D+HIivwPAAAACEQwzSsuuOACRURE6ODBg6qoqNA333yj0tJSLVmyRB6PR06nU8OGDVNeXp5OO+00Pf74413Ow+FwqLm5WS+//LJefvllpaSkKCoqSnPnztXIkSM1YcKEUP8qANuoqKhQWVmZxo0bZ/VUgB7hbY7hdruVlZUV9HECaYzRujmGd3t5eblaWlraPXZnjS/8aZqRkZGhiIiIoM8NAAAAAAAAAACErw0bNujNN9+Uw+HwrWW43W6NHj1aeXl5bRpejBw5UrGxsSooKPB9iHby5MkWnwFgfy0tLZo7d66ef/55eTwenXjiiYqKipKkNs0eJKm5uVnNzc2HHeOaa64xZa7B8LcBRnV19WHNL7zfly9frnfeeUfbtm1rc/7+NMAYPHiw4uPjQ32aAAAAAABYgnp0CEfUowPMQT06IPSsqEdH/ohwRP4ImIP8EQg9f/LHDhtbpKWlKScnR0uXLiURRNgoKirSMcccY+qYU6ZMUXV1tdauXWtqZzXAKtXV1frmm2/00EMPmTru0Ucfrb///e+mjglY6bPPPlNcXByNLQAbIv9DuLEq/wMAAAAOFUzzissvv1xpaWmKiIjwvZYrKSnRO++8o82bN8swDEVFRWnQoEHKy8vTT3/6U+Xl5Sk/P1+5ubnq16+fb/zf/e537X7gvzWPx9Pm58rKSiUkJMjhcNDUAmFn6dKlcjgcOuKII6yeCmAr3gYZPdkco6OmGN6vXbt2tdm+Z8+eDq9phzbA8LcphvfntLQ0OZ0d3soCAAAAAAAAAAD6qMLCQr311lttiutXV1fr888/17///W9FRkaqubnZV4xhwIABGjVqlJxOpx5++GFdf/31pn8uEOhtIiIi9Jvf/Ebz5s1TfHy8ysvLfXHlj7S0NKWkpIR4lqHnXZvMz8/v9Hn+NMDYunVrm/t9/GmAMXToUMXFxYX6NAEAAAAA6FHUo0M4oh4dEHrUowPMYUU9OvJHhCPyRyD0yB8Bc/iTP3ZaDWDq1KkqKirq8YkBduTxePT5559r/vz5po47fvx49e/fX0VFRSSCCAtFRUUyDENTpkwxddypU6dq3rx5qqqqUnJysqljA1YoKirS0UcfTfEnwIbI/xBurMr/AAAAEJ6CbV6Rk5OjuLg41dXVafPmzb793nzzTX333XeSpISEBI0cOVI5OTmaPXu28vPzlZeXpzFjxigyMrLLuaWkpKi8vNyv84iKilJkZKRuu+02ZWRk6P/9v/+n5uZm3utBWPG+d8J7+kDP6+nmGJ01xmi9bdOmTb7HKysr1djY2O6xWze6CLQxhtvtVmpqqlwuV9DnBgAAAAAAAAAAzDdx4sQ2TS1aa2lpUUtLi+9nwzC0e/du7d69Ww6HQyUlJRozZoxZUwV6tQ0bNqiurk4ffvihNmzYoJtvvlk1NTUdNrb3cjgccrvdevHFF1VQUKD8/HzFxsaaNGtr+NMAo6mpSbt379aOHTv03XffaceOHSovL/f9vGTJEpWXl2v37t1t9ktPT1d6eroGDhyojIwMZWdnKyMjQwMHDlR6erqys7OVnp6uqKioUJ8mAAAAAAB+ox4dwgn16ABzUI8OMIdV9ejIHxFOyB8Bc5A/AubwJ3/ssrEFhXIQLlatWqV9+/Zp6tSppo7rdDp15JFHqqioSJdddpmpYwNWKCoqUm5urlJSUkwd1xvby5Yt049+9CNTxwasUFRUpPPPP9/qaQBoB/kfwo1V+R8AAAD6ru40rxgyZIgcDoe2bNni2+/VV19VcXGx9u3bJ+n7D6Xn5OQoLy9PM2fOVF5envLz8zVs2DA5HA6/51lWVqbly5f7vmpqarrcx+l0yuPx6JxzztEjjzyi9PR0lZaWav/+/Vq1apUKCwuD+6UBvVBRUZGmTZtm9TQAdKCnmmN01hSjvaYZrZtjeLe3JyYmJqimGN6v5ORkxcTEBH1uAAAAAAAAAAAgMBMnTvT7uRERETIMQ1OnTlVOTo5WrlzJh8YBP3322WeKjY1VYWGhpkyZop/+9KeaP3++HnzwQbW0tHTYYMblcmn//v267rrrdODAAUVGRmrEiBEqKChQQUGBxo0bp3HjxgV8f01vFxUVpezsbGVnZ3f6vMbGRlVUVGjXrl0qKys77PuqVatUVlam8vLyNo183G63MjMzlZWVpczMTLndbt+/vd+HDBmi/v37h/pUAQAAAACgHh3CCvXoAHNQjw4wh1X16MgfEU7IHwFzkD8C5vAnf+yysUVdXZ2Ki4s1adKkHp0cYDdLly5VUlKSJV3Gpk6dqjfeeMP0cQErFBUV6ZhjjjF93OTkZI0ZM0ZFRUUkgujzvvvuO3377beWxBoA/5D/IZxYlf8BAACgd+tO84qcnBxlZWXp22+/VWlpqTZt2qTPPvtMzz//vEpLS3Xw4EFJUmZmpvLz85Wfn6+zzz5b+fn5Gjt2rDIyMgKaq2EY+vbbb7V8+XJ9/fXXvu/V1dVyOp0aM2aMCgsLdfrpp+vtt9+Wx+Np9zgOh0N5eXl65pln2uTQubm5Sk5OVlFREY0tEDYaGhq0fPlyXXHFFVZPBUAIeZtjeIuvBKujxhgdNc3wNsfwbj+0OExrHTW+8LdpRkZGhiIiIoI+NwAAAAAAAAAA+iqPx6N169ZpxYoV+vrrr7VixQolJyerqqqq0/2cTqdSUlI0b948zZ49W3/961/12muvae/evUpMTDRp9kDvVVRUpCOPPFIul0uSFBcXpzlz5ujSSy/V3Xffrf/+7/+W0+k8rMFFU1OT5s2bp3PPPVdlZWVavny5SktLVVJSojfeeEN33XWXWlpaFB8fr1GjRikvL0+FhYXKz8/X+PHjNWDAACtO1zZcLpeysrKUlZXV6f0/DQ0Nqqys7LABRmlpabsNMGJiYg5reHHo90GDBikhIcGM0wUAAAAA9FHUo0M4oR4dYA7q0QGhZ2U9OvJHhBPyR8Ac5I9A6PmbP3ba2CIvL0+pqalavHgxiSD6vH/+85869thjLSkqMX36dN17773aunWrhgwZYvr4gFnq6ur073//W5dffrkl4x933HH65z//acnYgJkWL14sl8ulKVOmWD0VAB0g/0O4sDr/AwAAgL11t3nF0KFDtW/fPm3cuNG376JFi1RSUqJ169bJ4/HI6XRq8ODBysvL08yZM3X55ZcrLy9PEyZMUP/+/YOat/fD+d6vzz//XBUVFXI6nRo1apSviUVhYaEmTpyouLg4SdKePXsUHR2thQsXqrm52Xc8p9OpuLg43X333bruuusOW6dwOByaOnWqPvnkE11//fVB/raB3uWLL75QfX29pk6davVUAPQC3gYZPd0co6PGGNXV1dq1a1ebbXv27GlzfW+tvQYY/jbGcLvdSktLk9PZ6e09AAAAAAAAAADYWmNjo9asWeNrYLFixQqtWrVKBw4cUFRUlMaOHauJEyequblZRUVF7Tak9hbh/+Uvf6nf/OY3vjX/qVOnqqWlRZ9//rlOOukkU88L6I2Kior0s5/97LDHBw4cqD/84Q+64oordP3112vZsmWKiIjwxWNLS4sKCgokydeg4fTTT/ftv2/fPq1fv14lJSW+phf333+/du/eLUnKzMxUfn5+m4YXY8eOVXR0tAln3XtER0f71QCjsbFRFRUVHTbAWL58ud555x1t3bpVHo/Ht58/DTAGDhxIoyAAAAAAQLuoR4dwQj06IPSsrkdCPTqECyvr0ZE/IpyQPwKhR/4ImMPf/NFhGIbR2RNmzZql8vJyLVq0qEcnCNhJU1OTBgwYoPvvv19XX3216eM3NjYqJSVFjzzyCAVf0af97//+r37yk59o165dSktLM338v/71r/rpT39q2fiAWWbPnq2dO3dq8eLFVk8FQAfI/xAurM7/AAAAYL1Am1fk5eUpPz+/TfOKiIgIVVdX+/ZtfZzNmzfLMAy5XC6NGDHCt6/3OPn5+YqJiQl6/oc2sVi2bJkqKyvbNLHwfk2aNEn9+vXr9HiPP/64br31VjU1NSkqKkoej0fXXHON7r333k4/EP673/1Od9xxhyoqKhQVFRX0+QC9xa9+9Sv95S9/0fr1662eCgD4rXWji86aYnS0vbKyUo2Nje0eu3UTjM6aYnS0LTk5uVs5EQAAAAAAAAAA/mpsbNSGDRvarLUvX75c9fX1vrX91mvthYWFio2NlSTdc889mjt3bpv3yyMjI+XxeHTqqafq6aef1tChQw8bc+TIkTrvvPN09913m3WaQK9UUVGhtLQ0/eMf/9App5zS4fMMw9Cf/vQn3XTTTfruu+/k8XjkdDp9zWgCUVZWptLS0jYNL0pKSlRfX6+oqCiNHDnysIYXOTk53T1VtFJdXd1u84vW37dt26bm5mbfPv40wMjOzlZSUpKFZwYAAAAAsAL16BAOqEcHmMPqeiTUo0O4sLoeHfkjwgH5I2AO8kfAHP7mj102tvif//kfXXrppaqoqFB8fHyPThKwiyVLlmjGjBnauHGjhg8fbskczjjjDEVGRurtt9+2ZHzADFdddZW++uorffnll5aMv2/fPqWmpuqll17SeeedZ8kcgFBraWlRZmambr75Zt16661WTwdAJ8j/EA6szv8AAABgjkCbVxzawMLbvEJq+2F2bxOL4uJi7d69W5KUlJSk4cOHt9k/Ly9Pubm5vmMEw+PxaOvWrb4P0S9fvlxLly5VVVVVu00sWhfWCMSnn36q4447TpJ0/PHH6+mnn1Zubm6X+23evFk5OTn65JNPfPsDfdnEiRN17LHH6sknn5Qk1dXVqaamRnv37u3we3V1tWpqalRQUKA77rjD4jMAgODU1dVp7969qq2tbfPd+7eutra2zZd3W+vHDhw40O6xo6OjlZCQoISEBCUlJSkxMVEJCQm+7+1tO/TL7Xab/BsBAAAAAAAAANhZbW2tiouL2zSwWLdunTwejxISEjRu3DjfGnt+fr7GjRsnl8vV4fHeeecdnX766b6fIyIilJOTo6efflonnnhih/v94he/0Pr16/Xpp5/26PkBfc2f/vQnnXfeedqzZ49fDQnq6+s1f/58PfDAAxo4cKDWr1/fI/NoamrS+vXrD2t4sWnTJkmS2+323RvkbXgxadIk9evXr0fGR/u62wDD7XZ32gwDAAAAANA3UI8O4YB6dIA5rK5HQj06hAM71KMjf0Q4IH8EzEH+CIReIPmjs6uDnXzyyWpubtaSJUt0xhln9NgkATt57733NHr0aMuSQOn7WLvtttvU0NCg6Ohoy+YBhNKHH36oWbNmWTZ+fHy8jjnmGL333nskguizli9frt27d+uUU06xeioAukD+h3Bgdf4HAACAnhNo84rCwkLNnj273eYVTU1N2r59u0pKSvSnP/3Jd7yVK1dq//79ktp+QP20007zHScnJ6fb5+LxePTNN9+0KazhHTsqKkojR45UYWGhfvvb36qwsFCTJ09WTExMt8eVpAkTJmj48OGaP3++fvKTn/i937BhwzRixAi99957NLZAn9bc3Kw77rhDK1eu1I4dO/TKK6+orq5OLS0thz03IiJCkZGRvr8tHo9Hzc3NmjZtmtnTBoAe079/f/Xv31/Z2dndOs7BgwdVXV3t+6qvrz/sMe/XgQMHVFlZ2eaxyspKNTY2tnvsmJgYud1uxcbG+v596FdX25KSkuRwOLp1jgAAAAAAAAAAc1VXV/sK0Hu/1q5dK8MwfGv8M2fO1G233abCwkLl5ub61vL8NXHiREnfrwXGx8frgQce0OWXX67IyMhO9zv55JP1yiuvqKqqSsnJyUGfI9CX1dfX66233tK4ceO0cuVKVVVVqaqqShUVFaqqqlJlZaUqKiq0e/duVVRUqLq6WrW1tWpqapIkHXXUUT02l6ioKOXn5ys/P19nn3227/GamhqtWbOmTcOL119/Xfv371dkZKSGDBnia3ThbXoRzN8atM+7npefn9/p8zprgFFSUqJFixZp+/btvv93pP+sMXbW+CIzM1OZmZmsIwIAAACAzVGPDuGAenSAOayuR0I9OoQDO9SjI39EOCB/BMxB/giEXiD5o8MwDKOrJx155JGaOHGinnvuuR6ZIGA3Y8eO1cyZM/X4449bNofNmzcrJydHixYt0g9/+EPL5gGESmlpqfLz81VUVKRjjjnGsnnMmzdPDz/8sHbt2tXlje1Ab3T33XfrD3/4g7Zv386NvIDNkf+hr7NL/gcAAAD/Bdq8Iicnx9d84tDmFZLU0NCgjRs3+j5sXlpa6jtufX29JCkzM9P3QXPvccaPH68BAwb0yDk1Nzdr3bp1XTax8H71ZBOLjjQ1NSkqKirg/W644QZ98sknWrlyZQhmBdjHiy++qCuuuELS9zEcqPXr12vkyJE9PS0ACDsHDx7stCGGP9vKy8vbbU4kqd3GFx01xGjv8dTUVLlcLpN/KwAAAAAAAAAQHsrKytqssy9fvly7du2S9P06f+t1du9af0/JysrSWWedpXvuucfvJhU1NTUaMGCAFixY0KZIPoDvHTx4UL/+9a8P+/ys0+n0fb7O4/F0uka/YsUKTZgwIaTz7Ejrv0ne+5C++eYbtbS0KD4+XqNGjWrT8KIn7z1C8DpqgFFdXe3797Zt21RXV+fbJzo6WsnJyV02wMjIyKChCQAAAABYiHp06OuoRweEnl3qkVCPDn2dXerRkT+iryN/BEKP/BEwRyD5o1+NLe6//3499thj2rVrl5xOZ49NFLCDb775Rrm5ufrkk0903HHHWTqXCRMmaMqUKXrmmWcsnQcQCnPmzNFzzz2nHTt2WJqAffvttxoxYgQvutBnjR07VjNmzNCTTz5p9VQA+IH8D32ZXfI/AAAAtNXTzSskqaqqSmvXrlVpaanv+zfffKNt27bJMAxFR0dr9OjRGjNmjHJzc5WXl6cxY8Zo9OjRio6O7rFza6+JxYoVK3TgwIF2m1gcccQRPTp+qH300Uc68cQTtXHjRg0fPtzq6QAhc/rpp8swDD344IM655xztGHDBr8bXGRnZ2vHjh0hniEAIBCHNr8ItFlGVVWVGhoa2j12TExMh80wOmuU0XobRW8AAAAAAAAAhDOPx6OtW7eqpKTEt87+xRdfaM+ePZIOb2Jx1FFHKS0tLaRzKi8vV3p6esD7TZs2TaNGjdKLL74YglkBvd+qVas0YcIEpaWlqbKyUh6Px+993W63KisrLS14dKh9+/Zp/fr1vr9fpaWlWrVqVZu/X/n5+W0aXowdO7ZX3SsULg4ePHhY84tDv2/fvl379u3z7eNvA4z09HQ+ywAAAAAAIUA9OvRl1KMDzGGXeiTUo0NfZ5d6dOSP6MvIHwFzkD8C5ggkf/SrscWmTZs0YsQIffjhh5o5c2aPTBKwizlz5uj555/X9u3bLb9B6YEHHtCjjz7Kiy70Sfn5+Zo5c6aeeOIJq6eiSZMm6YgjjqBzJ/qcNWvWaNy4cfr00081bdo0q6cDwA/kf+jL7JT/AQAAhJuOmlds3LhRe/fulRR48wrp++IRJSUl+uabb9p8Ly8vlyTFx8e3aVzh/fewYcN6/P339ppYfP311zp48KBcLpdGjBjRprjGkUceKZfL1aNzMJvH41FWVpZuvPFG/epXv7J6OkBI1NTUKD09XS+88IJmz56t+vp6zZkzR/PmzZPD4VBLS0uH+0ZFRemyyy7T008/beKMAQBmCaQZRnvb9uzZ02GjpEObXwTaLCMlJYUiSAAAAAAAAABsr7119pUrV2r//v1yOp0aNWpUm3X2CRMmqH///qbPs7i4WFVVVYqPj/e9J5uYmKioqCglJCR0uN/cuXP19NNPa+fOnbYqvg/YxUMPPaRHH31U69at0y233KIXXnhBERERna7DS5LT6dQ555yj119/3aSZdk9ZWZlKS0vbNLxYs2aNGhoaFBUVpZEjR7ZpeDF58mRlZmZaPW34wZ8GGDt37vTdHyd9f49cSkqKr9GF2+1utwnGkCFDLP98OQAAAAD0JtSjQ19GPTrAHHaqR0I9OvRVdqpHR/6Ivoz8ETAH+SMQeoHmj341tpCkyZMna9KkSXr++ee7PUnATvLz83XCCSfo8ccft3oqvhddH3zwgU444QSrpwP0mNWrV6ugoEBFRUU65phjrJ6OHnzwQT3yyCO86EKf89vf/lYvvfSStm7d2m7xSQD2Q/6Hvspu+R8AAEBfFKrmFd5je4/n/b5mzRp99913kqSkpCQNHz7cdzzv986O2R1NTU1av359m+Iay5cvV319vfr376/x48e3Ka4xZswYy2/8CJWrrrpKn3/+uVasWGH1VICQeOmll3TVVVepvLxciYmJvscXLVqkWbNmqaqqqsOi5JIUHR2tY489VqeddprOPPNMDRkyxIxpAwB6idYNMPxtiNHetvbExMR02BDD30YZ6enpfTaPBQAAAAAAAGCuxsZGbdiwod11dpfLpREjRrRZZy8sLFRsbKzV05Yk3Xfffbrzzjs73O5yueRyuRQfHy+n06nExETFxsbKMAx99dVXuvDCC/XCCy/weSHgEFOmTNGYMWP00ksvSZLef/99XXDBBaqpqVFTU1OH+0VGRuriiy/Wr3/9aw0bNsys6fYo771Hhza82LRpkyTJ7Xb7Gl1474WaNGmS+vXrZ/HMEQx/GmCUlZWppqamzX5ut/uwhheHfh88eDDXFwAAAAD4P9SjQ19FPTog9OxWj4R6dOir7FaPjvwRfRX5IxB65I+AOQLNH/1ubDFv3jzNmzdPu3btUlRUVLcnCtiB3S5O0vcvuiZOnKg//OEPVk8F6DF33nmnXnnlFW3dulUOh8Pq6fhedL3//vs68cQTrZ4O0GNyc3N18skn67HHHrN6KgACQP6Hvshu+R8AAEBvFcrmFZJUVlbWpnlFSUmJiouLtW/fPkn/+dC293it/x0qnTWxiI+PV0FBQZvCGrm5uba4ocosS5Ys0YwZM7R27VqNGTPG6ukAPe7kk09WbGys3n777cO21dTU6IorrtCbb74ph8OhQ5e5nU6n5s2bpyVLlmjx4sXav3+/cnNzdcopp+jkk0/Wscceq5iYGLNOBQDQh7XX9CKQRhkVFRUdFohq3QDD34YYrb+Sk5O53gEAAAAAAABhpra2VsXFxW3W2NetWyePx6OEhASNGzfOt8aen5+vcePGyeVyWT3tDhUXF2v8+PFB7ZuQkKALLrhATz31VA/PCujdtm3bpqFDh+rdd9/VySef7Hu8pqZGV111lf74xz+2uw7vFRsbq4MHD2rEiBE64YQTdMIJJ2jGjBlKTEw06xRCorq6uk2ji5KSEq1YsUIHDhxQZGSkhgwZcljDi3C7V6kv27dvn3bu3Kny8nLt2LHD93337t1tfq6rq/PtExkZqfT0dGVmZiozM1MZGRnKyspSenq6srOzlZaWpuzsbKWnpys6OtrCswMA/H/27jwu6np9H/8FDggqy4isIiYCCYgimBBqmo5aCh3NcjuZlWkdLe3YYn1PHSsz28zsZJvmUT+5lEsL45JOKi6Zy8iigECioLKJDAzLsMwMvz/8zRxGQNlm3jPD9Xw85jHynpn33EMKd/N6zX0RERGR8XEeHVkjzqMjMg1zm0fCeXRkrcxtHh37R7JG7B+JTIP9I5FptLZ/bHGwRU5ODvz9/bFr1y5Mnjy5XUUSmYtXX30VO3fuRHZ2tln8cgKAVatW4b333sP169fRrVs3ocshajetVouAgABMnToVH3/8sdDl6EVHRyMgIADff/+90KUQdYjTp08jKioKp06dwrBhw4Quh4hagf0fWRtz7f+IiIiIzNXt4RW6AIsLFy50SHiFWq1Gbm6uPrxCd/6kpCRUVlYCMAyw0F0PHDgQXl5eRn3tTYVYnD17FjU1NQyxaIZGo4Gvry+ef/55LFu2TOhyiDpUUVERfH19sWnTJsycObPZ++3YsQPPPPMMampq9EPBbWxsMHr0aBw6dAjArZ99f/75J6RSKWQyGc6dOwcHBwcMHz4cEokEcXFxCAkJMcnrIiIiaoou6KI1gRi331ZaWtrsgKnWBmLcftzDwwMikcjE3xUiIiIiIiIiIiK6m4ZD2HWX9PR01NfX69f+rWGd3dfXF9evX2/Rfe3s7GBjY4OPPvoIxcXF2LhxI3JycizydRMZy0cffYQPPvgABQUFTQbb7NixA88++yxUKlWjcO6AgACkp6cjOTkZMpkMMpkMR44cQX19PcLDwyGRSCCRSPDAAw+YdWhOS2k0GuTk5DQKvLh48SK0Wi2cnZ0RGBhoEHgRHh6OXr16CV06GUllZWWjAAzd1/n5+cjPz0dBQQFu3rxp8Dg3Nzd4eXk1GX7h6+sLDw8P+Pj4wNnZWaBXRkRERERE1D6cR0fWiPPoiIzPXOeRcB4dWRtznEfH/pGsEftHIuNj/0hkGm3pH1scbAEAEyZMgJ2dHaRSaZuLJDIXtbW16NOnD1544QW89dZbQpejV1xcDF9fX3z77bd48sknhS6HqN0OHDiACRMmIDU11ayGRK1btw4vvvgirl27xo2jZBXmzZuHU6dOISUlRehSiKiV2P+RtTHX/o+IiIhISO0Nr+jbty+6dOlyx+eoq6vD1atX9QEWuuu0tDSoVCoAgLe3t0F4RUhICAYPHgwnJyejfw9qa2uRlZVlMFzjzJkzqK2thbOzM8LCwqxiuIYpvPbaa9i+fTsuX758178XRJbko48+wvvvv4+8vLy7bpbKzs7GzJkzIZfLodFoYGdnhw8++ABLlixp8v6FhYX47bffIJVKcfDgQZSWlsLf318/YGPChAkcFEBERBapqeCL1oRl3Lx5E7W1tU2eWxd00VwYRktuc3V1NZuN2URERERERERERJYmLy/PYI1dLpcjPz8fwK31/4Zr7Lr9BdZi8eLF+Prrr5t9/1JHJBLB398fO3fuRFhYGC5cuICwsDAcP34cw4cPNyyB9i4AACAASURBVFG1ROZv6NChiIiIwLffftvsfQoKCvDMM89g//79+mBte3t7LFiwAKtXrza4782bN3Ho0CHIZDIcOHAAV65cQffu3XH//ffr1+EjIiKsao1AqVQiKyvLIPAiKSkJxcXFAAz3Zel+LoeFhVlF2Ae1TG1tLYqLi5Gfn4+8vDwoFAr9nxteX7161SBARrfW5uPjA29v70bXuttasoeQiIiIiIjI1DiPjqwJ59ERmYa5ziPhPDqyNuY6j479I1kT9o9EpsH+kcg02tI/tirYYufOnZg+fTouX74MPz+/NhVJZC527NiBGTNmmOXf52nTpiE/Px/Hjh0TuhSidps2bRoKCgpw9OhRoUsxUFFRgd69e2P58uVYtGiR0OUQtUtFRQV8fHzw3nvv8e8zkYVi/0fWxFz7PyIiIiJjM0V4BfC/gIiG4RWpqanIyMiARqOBSCSCn5+fwblDQkIwZMgQdO/e3djfBgC33qtISkoyGK6hq8/FxQUDBw40GLAREhJiVR9kN7ZLly4hMDAQe/bswcMPPyx0OUQdJiQkBGPHjsV//vOfFt1fo9Fg5cqVePvtt6HRaFq8IUWj0SApKQnx8fGQSqU4d+4cunTpgqioKMTFxVnlgA0iIqI7UalUrQrDaOq2wsJCaLXaJs/fVPBFa8IyevXqxaFPRERERERERERk1TQaDXJycvTD0uVyOU6dOoUbN24AaBxiERUVBQ8PD4GrNp5z585hzZo12Lx5c7P3sbGxQX19PZ544gl888036Natm/620NBQSCQSrFmzxhTlEpm9S5cuISAgAAcOHMC4cePueN/6+np89dVXWLJkCbRaLerq6iCVSjFp0qQ7Pi47OxsymQwymQwHDx5EaWkpvLy8MHLkSEgkEsTGxsLHx6cjX5bZyMvL0+/f0gVeXLhwATU1NbCzs0NgYKA+6CIkJARDhw6Ft7e30GWTwBQKxR3DL/Ly8nD9+nX9vkMdsVjcZPhFwxAMPz8/ODk5CfTKiIiIiIios+E8OrImnEdHZBrmOo+E8+jImpjzPDr2j2RN2D8SmQb7RyLja2v/2KpgC10i1IIFC7Bs2bI2FUpkLsw5se/gwYMYP348Lly4gNDQUKHLIWozXWLfN998gzlz5ghdTiPz58/H8ePHkZaWJnQpRO2yfv16vPDCC0zsI7Jg7P/IWph7/0dERETUXqYKrwCAsrIy/PXXX/rwCt1zXbx4EVqtFnZ2dujTp4/+/A2vHR0djfltMFBeXo7k5GSDEAtdja6urggNDWWIhRGMHj0aPXv2xO7du4UuhahDJCQkYPTo0UhMTER4eHirHnvmzBn8v//3/3Dw4ME2PfeNGzdw5MgRyGQy/PrrrygoKICXlxfGjRuHuLg4jB8/Hi4uLm06NxERUWeh0WigVCqhUCigVCobXcrKyu54W2lpKZRKJdRqdZPnd3JygrOzs8HF1dUVLi4ucHFxafY23ddOTk7o0aOHib8rREREREREREREjanVamRkZBissSclJaGyshIikQhBQUEGa+zh4eFW/95WbW0tjhw5gl9++QXx8fG4evUqevfujeLiYtTU1DS6v52dHezt7bF+/XrMmDGj0e0rVqzAZ599hmvXrqFr166meAlEZu3f//431q9fj9zcXIhEohY9JisrC3//+9+RlJSEkpKSVv0c0mg0SEpK0gddHD16FLW1tQgJCUFcXBwkEglGjBgBBweHtr4ks1dXV4fMzEyDwAu5XI78/HwAt8IJQkJCDAIvIiIiDEJ6iIBbAfW6oIs7hWDcHkLv4OBwx/AL3Z+9vb25l4+IiIiIiNqF8+jImnAeHZHxmfs8Es6jI2thzvPo2D+SNWH/SGR87B+JTKOt/WOrgi0AYOnSpdi6dSuys7NhZ2fX6kKJzMGlS5cQFBSEXbt2YfLkyUKX04hWq0VgYCAmTZqEzz//XOhyiNrsww8/xMqVK5GXl2eWGyvPnDmDYcOG4ejRoxg5cqTQ5RC12X333YegoCBs2bJF6FKIqI3Y/5G1MPf+j4iIiKglTBle0fD5dAEWuuvLly+jvr4e9vb2CAgIaBReMWDAgFY9T0dgiIX52Lp1K5566ink5OTA29tb6HKI2m327NnIyMjA6dOnBa1Dq9UiMTFRP2DjyJEjqK+vR3h4OGJjYxEXF4eIiAj+bCMiIjISlUqF6upqqFQqKBQKg0tzx2+/raioCBqNpsnzOzg4QCwWQywWw9HR0eDrhpfmbnN0dISrqyt7ASIiIiIiIiIiapHa2lpkZWUZrLHL5XJUV1fr9wI0XGOPjIyEo6Oj0GWbhEKhgEwmQ3x8PH799VeUlZXph97HxsZi+PDhmDVrFnbu3GkQiNulSxcMGjQIO3fuhL+/f5Pnzs/Ph5+fH7Zs2YJp06aZ6iURmSWNRoN+/fph9uzZWLFiRasf+/PPP2Pq1KntqqGyshInT57Ur8PL5XI4Ojpi+PDhkEgkkEgknWYdXqFQ6IMudPvEEhMTUVVVBZFIBD8/v0aBF9x/RS1RU1ODmzdv3jUE4+rVq6irq9M/TrcedrcQjNbuiSQiIiIios6F8+jIGnAeHZFpmPs8Es6jI2th7vPo2D+SNWD/SGQa7B+JTKOt/WOrgy1ycnIQEBCAjRs34u9//3urnozIXCxcuBD79u1DZmYmRCKR0OU0afXq1XjrrbeQk5MDNzc3ocsharW6ujr4+/tj5syZ+Oijj4Qup1kxMTHw9PTETz/9JHQpRG1y+PBhjBkzBidPnkR0dLTQ5RBRO7D/I0tnKf0fEREREWD68Ardc94eXpGamor8/HwAgIuLCwICAgyeJyQkBMHBwbC1te3w78HdKJVKpKSkNBliIRaL9R+i1l1CQ0NNXmNnVl1djb59+2LevHl47733hC6HqF3y8vLQr18/fPXVV3jmmWeELsfAzZs3cejQIchkMuzZswfXr1+Hh4cHRo0apQ+6EIvFQpdJREREDdTX16O0tBRlZWVQKpUoLy+HUqmEUqlEWVkZSktLDY7pLqWlpQZfV1VVNXl+Ozs7ODk5wdXVFS4uLnB2doazszOcnJzg7OwMFxcXuLq6GhzTXcRisf5Y165dTfydISIiIiIiIiIiY2pqjT0jIwMajQbOzs4ICwszWF8PCwuDvb290GWb1JUrV3DgwAHEx8fjwIED0Gg0iI6ORlxcHB599FEEBgYa3H/79u2YNWsW6uvrYWtrC61WixdffBGrVq2664CTRx55BCqVCgcPHjTmSyIye1KpFI888ggyMzMREBAgdDkAboXPHD9+HPHx8di7dy9u3rypX4eXSCR4+OGH0adPH6HLNBm1Wo3c3NxGgRe6fVrOzs4IDAw0CLwYMmQIP3NCbaZQKAwCL5oKwbh+/bp+H6WOWCxuMvyiYQhG37590aNHD4FeGRERERERCYXz6MgacB4dkfFZyjwSzqMjS2cJ8+jYP5I1YP9IZHzsH4lMoz39Y6uDLQBg5syZSEtLQ1JSEmxsbFr7cCJBlZSUwM/PDytXrsSLL74odDnNKi8vh5+fH5YuXYrXX39d6HKIWm3jxo2YP38+/vrrL/j5+QldTrN27dqFxx9/HGlpaRgwYIDQ5RC1WmxsLMrLy5GQkCB0KUTUTuz/yNJZSv9HREREnYcQ4RXArQHtDcMrsrOzkZycjBs3bgC49QHPhs+lu+7Xr59gay5lZWU4f/68wYCN9PR01NfXw9vbu1GAhb+/vyB1kqF3330Xa9asQU5ODj8QTBbt9ddfx8aNG3HlyhU4ODgIXc4dpaamQiqVQiaTISEhAVqtFuHh4ZBIJIiNjUVMTIwgYURERERkHCqVCgqFQn+prq5udOxuxxUKRbPnd3BwgFgsNrg4Ojq2+LibmxsDMoiIiIiIiIiIBKBQKPQDyG9fYxeLxfrh47pLcHBwp11DSk1NxY4dOyCVSiGXyyEWi/Vra4888ghcXV2bfWxZWRnc3Nz039dt27Zh3LhxLXre+Ph4/O1vfzOrYf5EQpg8eTLKy8vx+++/C11Kk7RaLRITEyGTySCTyXDs2DHU1NTA398fEokEEokEEyZMgLOzs9ClmpxSqURWVpZB4EVSUhKKi4sBQL+nS7f/LDIyEgMGDGjTfjeipqhUqjuGX+iuCwsLodVq9Y9zcHBoNvyiYQiGj4+PgK+OiIiIiIg6GufRkSXjPDoi07CUeSScR0eWzlLm0bF/JEvG/pHINNg/EplGe/rHNgVbyOVyDB06FL///jvGjBnT6iclEtK7776Lzz77DLm5uWY/6Om1117Dli1bcPnyZdjb2wtdDlGrhIeHY9CgQdi8ebPQpdyRVqvFvffei3HjxuHLL78UuhyiVsnIyEBISAh++uknPPLII0KXQ0QdgP0fWTJL6f+IiIjIuggVXqFWq5Gbm6t/Pl2QRXJyMioqKgBAP6yiYXhFaGgovL29O/R70FqlpaW4cOFCi0Ishg4dKni91DzdxpcPPvgAL7zwgtDlELXJjz/+iKeeegpTpkzB888/D3d3d3h4eKBnz55Cl3ZXFRUVOHz4MKRSKfbt24erV6+iV69eePDBB/XDePghfCIiIgJaHpBxt5CM5rQmIKOp23r16sV1KSIiIiIiIiKiZuTl5Rmsr8vlcuTn5wNAozV23V6Ezqy6uhrHjx9HfHw8du3ahevXr6Nv376YMGECYmNjMWHChFa9FzVmzBjY2Nhg69at8PT0bPHjNBoN+vbtiyeeeAIffPBBW14KkcW7fv067rnnHmzevBkzZ84UupwWqaqqwh9//KEPujh37hy6dOmCwYMH64MuRo8eDZFIJHSpgsnLy9PvVdP9XsrIyIBGo4G9vT0CAgIMAi/uu+8+eHl5CV02WbGamhrcvHnzriEYubm5UKvV+sfp1qruFoLh6enJwBYiIiIiIgvAeXRkyTiPjsg0LGUeCefRkSWzpHl07B/JkrF/JDIN9o9Extfe/rFNwRYAMHr0aHTr1g179+5ty8OJBKFSqdCvXz/MnTsXK1asELqcu7p27Rr8/f3x7bff4qmnnhK6HKIW279/Px5++GEkJiYiPDxc6HLu6osvvsDSpUtx5coVuLu7C10OUYvNnTsXJ06cQFpaGmxtbYUuh4g6APs/slSW1v8RERGRZREqvAIA6urqcPXqVYPwirS0NKSlpUGlUgG4NaiiYXiFv78/Bg8ebBbvM7UmxGLYsGGtGgJB5mHBggXYv38/srKy+AFeskgrV67Em2++Ca1Wa3C8S5cu+iHLvXv3hre3tz70wtPTE+7u7nB3d4e3tzf8/PwEqt5QdnY24uPjIZVKcezYMdTV1WHIkCH64RqjRo2CnZ2d0GUSERGRBWsu8KKlx0tKSlBTU9PkuR0cHJoNw2jpcXd3d/Y7RERERERERGSxNBoNcnJyDAaFnzp1Cjdu3ADQOMQiKioKHh4eAldtHm7evIk9e/ZAKpVi//79KC8vR0hICB5//HHExcUhIiICNjY2bTp3ZmYmAgIC2vR5iffeew+ffvqpRQyTIOpoV65cwSeffIJdu3bhypUr6Nq1q9AltUlRURESEhIgk8mwd+9eXLt2DW5ubhgzZgwkEgnGjx+Pe+65R+gyBVdXV4fMzEzI5XKD0AtdEJNYLEZISIhB4EVkZCQcHR0Frpw6G4VCYRB40VQIxrVr16BUKg0eJxaL7xh+IRaL0bdvX/6+JyIiIiISGOfRkSXiPDoi07C0eSScR0eWytLm0bF/JEvE/pHINNg/EplGe/vHNgdb6P6Rnzx5EtHR0W05BZHJrVq1CsuWLcOlS5csZkDXM888g6NHjyI9PZ0f/iaLER0djZ49e1rMmwVVVVXw9/fHE088gU8++UTocoha5NKlSwgODsY333yDp59+WuhyiKgDsf8jS2Rp/R8RERGZHyHDK4Bb7w+lp6cjPT0daWlpSE9PR2pqKi5fvgy1Wg2RSIT+/fsjNDQUAwYMQEhICIKDgzFgwAB069ato74N7aJQKAwGbOg+qAxwwIY1y8rKQnBwMDZv3oxZs2YJXQ5Rq1RXVyMwMBBxcXG4ePEiEhISGgVc6Nja2kIkEsHGxgZqtRoajQYAIJFIcPDgQVOW3SJVVVX4448/EB8fj19//RVXrlxBz549MXbsWEgkEkycOBG+vr5Cl0lERESdkEqlalUYRlPHi4uLUVdX1+T5dUEX7QnJ8PDwgEgkMvF3hoiIiIiIiIg6E7VajYyMDIP19aSkJFRWVkIkEiEoKMhgjT08PJyDkm/TMPT9yJEjEIlEGDFiBGJjY/HYY4+hd+/eQpeIkpIS+Pn5YeXKlXjxxReFLofIpA4fPoyxY8eivr4eXbt2hYuLC8RiMdzc3ODh4QE3NzeIxWL07Nmz0UV33NnZWeiX0Uh2djZkMhlkMpk+SMff3x8SiQQSiQTjxo2Dq6ur0GWajYb7yXSBF4mJiaiqqoJIJIKfn1+jwIuQkJA2hxERdRSVStUo8KKpEIzCwkKDvUYODg7Nhl80DMHw8fER8NUREREREVkvzqMjS8R5dESmYWnzSDiPjiyRJc6jY/9Iloj9I5FpsH8kMr6O6B/bHGwBAKNGjYKDgwN+++23tp6CyGQqKyvh7++Pp59+Gh988IHQ5bRYTk4OgoKCsHbtWjz77LNCl0N0V1KpFHFxcTh16hSGDRsmdDkt9tlnn+GNN97AX3/9ZRYb6InuZs6cOTh58iTS0tI41IPIyrD/I0tjqf0fERERmZ7Q4RUAUFNTg7/++kv/QV3d9cWLF6HVamFnZ4c+ffron7fhtaOjY0d8GzpEXl5eowCL7OxsAI1DLKKjo+Hu7i5wxWQMFRUVyMnJwaJFi3DhwgVs2LABkyZNErosohZbs2YNXn/9dfz111/o1asXpk2bhj179uhDK1pi7969ePjhh41YZcfQDdeIj4+HTCZDdXU1/P39ERsbi7i4ODzwwAOwt7cXukwiIiKiFrtTQEZLQzJu3LgBtVrd5PnvFpDRkpAMT0/Pdr+PQERERERERESWr7a2FllZWQZr7HK5HNXV1bC3t0dAQIDBGntkZKRZ7Q8wF1qtFomJiYiPj8eOHTuQlpYGNzc3jBkzBrGxsZg8ebJZDsFfuHAh9u3bh8zMTH7ugjqVTz/9FG+++SZ69OiBGzduNLpdJBLp3z/VarWNwowjIiIgl8tNUmtbqdVqJCcn60N2EhMTYWNjg/DwcH3QBdfiG1Or1cjNzW0UeJGeno76+nq4uLggICBAH3jBgCcyZ9XV1SgoKNCHXFy/fh1FRUW4fv06CgsLkZeXh4KCAhQVFRnsR+revTt8fHzg5eUFb29veHt76//s5eUFHx8feHh4wMPDg0EvREREREStxHl0ZEk4j47INCx1Hgnn0ZGlsdR5dOwfyZKwfyQyDfaPRKbREf1ju4ItDh06hLFjx+LIkSMYNWpUW09DZBLvv/8+Vq5ciezsbIsb4vX888/rN9F27dpV6HKImlVfX4+oqCj4+Pjg559/FrqcVqmurkZgYCCmTJmCzz//XOhyiO4oMzMToaGh2LRpE2bNmiV0OURkBOz/yFJYcv9HRERExtGW8IqGARYdEV4BAEqlEunp6bhw4QIuXryICxcuID09Hbm5uaivr4ejoyMGDBiA4OBgDBw4EAMGDMDAgQPRr18/s9uwc3uIxdmzZ1FQUACgcYjF/fffj169eglcMXWUoqIi5OTkIDc3F7m5ubhy5QouX76MS5cu4erVqygvL9ff18bGBl9//TXmz58vYMVELadSqRAQEIAZM2Zg1apVAACNRoNnnnkG33//PbRa7R0fb2Njg6CgIKSnp1vcB8hVKhVOnDgBmUwGmUwGuVyO7t274/7770dsbCymTJkCPz8/ocskIiIiMgldyEVLgjCau+32YUQNNQy+uFsQRnPhGa6urhbXcxIRERERERF1VkqlEikpKQZr7BkZGdBoNHB2dkZYWJh+fT00NBRhYWEceH4HKpUKMpkMUqkUv/76KwoKCgzC20eNGgU7Ozuhy7yj7OxsBAUFYfv27XjssceELofIJNRqNQICAjB58mQsWbIEY8aMQW5ubqPwijvZuHEj5syZY8QqO15xcTEOHz4MmUyG3377DTk5Ofq1eF3QRWRkpNBlmi2lUomsrCyDwIvExETcvHkTwP/2qYWGhupDLwYMGMCAabIYCoUCeXl5yM/PR15eHhQKhf7Puutr165BqVQaPE4sFsPb2xs+Pj7w9vaGWCzW//n2Y0RERERExHl0ZFk4j47I+Cx5Hgnn0ZElseR5dOwfyZKwfyQyPvaPRKbRUf1ju4ItAGDMmDHQaDRISEhoz2mIjKqsrAz+/v5YsGABli9fLnQ5rXb16lUEBQXhk08+wcKFC4Uuh6hZu3fvxmOPPYbExEQMHjxY6HJa7csvv8SSJUuQmZnJoVFk1mbMmIHz588jJSWFG4CJrBT7P7IUlt7/ERERUds0F16RmpqK0tJSAKYJrwBuvff7119/ITU1FWlpafrry5cvo76+Hvb29ggICNB/oFZ3ba4fqr09xOLMmTMoLCwE0DjEIiYmBm5ubgJXTB3pjTfegFwuR3Z2Nq5du4aamhoAtwb429vbw8bGBjU1NWi4tGdjY4OoqCgEBQUhISEBmZmZHLxCFuHjjz/GO++8g0uXLsHT01N/vL6+HosXL8YXX3yBOy1j29raYv369Xj66adNUa5RZWdn60MufvvtNyiVSvj7+0MikSA2Nhbjx4/nRjEiIiKiu2gYftHakAzd8cLCwmYD1m4PvmhtSIajoyPEYrGJvytERERERERE1k2hUOiHb+su6enpqK+vh1gs1g/d1l2Cg4Nha2srdNlm78aNG9i3bx+kUin27t0LlUqFIUOG6MMsLHEo/NSpU5GTk4MzZ84wwJQ6hc2bN2Pu3LnIzMxEv379UFJSgoceeghJSUktCrdwdXVFfn4+HBwcTFCt8TRciz948CBKS0vh7e2NESNGIDY2FpMmTeLeqxbQ7WfT7c1rGBql25vXMPDivvvug5eXl9BlE7VZaWkp8vLyUFRUZHBdWFiIwsJC/bGioiKDvU3du3eHt7c3PD094eXlBW9vb3h4eMDHx6fRMXMPBiMiIiIiai/OoyNLwHl0RKZh6fNIOI+OLIWlz6Nj/0iWgP0jkWmwfyQyjY7qH9sdbHHy5EkMHz4cu3fvxuTJk9tzKiKjeeWVV7Bx40b89ddfcHV1FbqcNlmyZAm+//57ZGZmWuxrIOtWW1uLgQMHIjIyEtu2bRO6nDapra1FcHAwoqOjsWXLFqHLIWrSn3/+iZiYGOzatQtTpkwRuhwiMiL2f2TurKH/IyIiouaZU3gFcOvDgpcuXWo2wKJr167o379/owALcx5McXuIxenTp1FUVASgcYjF8OHD0bNnT4ErJmNbsWIF3nzzzRbf387ODkOGDIFMJkNJSQmCgoLw6aefckMJmb3S0lIEBgbi2WefxcqVKxvdXl9fj9deew2ffPJJs+fo3r07vv76a8yYMQMikciY5ZqUWq3Gn3/+CalUCplMhnPnzsHR0RExMTGQSCR45JFHEBwcLHSZRERERFbr9uCLtoRklJaWNhvS1towjNuPu7m5MfSMiIiIiIiIOqXb19flcjny8/MBNF5fDw0Nhb+/v8AVW5bs7GzEx8djx44dOHnyJLp27YqxY8ciLi4OcXFx8Pb2FrrEdjl//jzCw8Oxa9cuxMXFwdbWlgEXZLXq6uoQHByMUaNG4bvvvtMfr6ysxOTJk3H48GFoNJpmH29nZ4fXX38d7777rinKNRmNRoOkpCR90EVCQgI0Gg2GDBkCiUQCiUSCkSNH8v3XFqqtrUVWVpZB4MXZs2dRUFAAAAYBU7p9fJGRkXB0dBS4cqKOpVAokJeXh/z8fOTl5UGhUOj/fPuxhhwcHODj4wNvb2/9tVgsbnTMy8vLbPe/EhERERHdCefRkSXgPDoi47OGeSScR0eWwBrm0bF/JEvA/pHI+Ng/EplGR/aP7Q62AIBZs2bh1KlTSE1NhYODQ3tPR9ShLl26hNDQUKxevRr/+Mc/hC6nzXRDfp588kmsWrVK6HKIGvn444+xbNkypKeno2/fvkKX02Y//fQTpk6dioSEBIwcOVLocogM1NfXIzo6Gt27d8ehQ4eELoeIjIz9H5k7a+n/iIiIOjNzC69oWFNzARbOzs4IDAw0qMPcAyyAW0Mgbh+yoVAo0KVLFwQHByMiIkI/ZCM8PBzdu3cXumQSgFKphK+vL8rLy+96Xzs7OwQHB+PIkSMQi8UAgFdffRXfffcdsrKy4ObmZuxyidrspZdewtatW++6+enDDz/EG2+80WgosJ2dHSIiInD27Fn4+vpi8eLFmDt3LpydnY1duskVFBTgwIEDkEqlOHjwIEpLS+Hv768frPHQQw/ByclJ6DKJiIiI6DYtDci4W0hGc1oTkNHUbb169YK9vb0JvyNERERERERELaPRaJCTk4PU1FT92vqpU6dw48YNAI1DLKKiouDh4SFw1ZZHo9Hg5MmTkEql+Pnnn5GRkQF3d3c89NBDiIuLw8MPP4wePXoIXWabaLVa5Ofn4/Lly7hy5Yr++tdff4VSqcRLL72EDz/8UOgyiYxm3bp1WLhwIS5evNgo5Ke2thZPPPEEdu3aBa1W2+Tju3TpgnXr1mHOnDlmvRervSoqKvDnn3/qgy7kcjm6deuGmJgY/Xp8REQEQ3BaSaFQ6H+H6/b+nTt3DiqVCiKRCH5+fvqQC13oRb9+/fh9JqtXXV2NkpKSZkMvdMeuXbuG2tpa/ePs7e3h5ubWZOhFw2O+vr5wcXER8BUSERERETXGeXRkzjiPjsg0rGUeCefRkTmzpnl07B/JnLF/JDIN9o9ExtfR/WOHBFtcu3YNAwYMwFtvvYWlS5e2uyiijhQXF4fs7GwkJydDJBIJXU67fPXVV1i8eDHOnz+Pe++9V+hyiPSK+yT8oAAAIABJREFUiooQFBSEl156CW+//bbQ5bTbhAkTUFxcjDNnzlj1JlyyPJs2bcLcuXMhl8sxePBgocshIhNg/0fmytr6PyIiImtmjuEVurp0oRUNgyyys7MBAC4uLggICDAIrwgNDcU999xj9u/XXLlyBWfPnjUIsSgpKYFIJEJwcDCGDh2qD7IYPHgwunXrJnTJZEbefvttrFixAmq1utn72NnZ4d5770VCQgJ69uypP15eXo6goCBMmzYNa9asMUW5RK128eJFDBo0CF988QXmz59/1/uvXbsWL774okG4RdeuXXHt2jWUl5fjm2++wddffw2tVounn34aL7/8Mvz8/Iz5EgSj0WiQlJSE+Ph4SKVSnDt3Dl27dsWIESP0gzUiIyOFLpOIiIiIOlBzgRctPV5SUoKampomz+3g4NBsGEZLj7u7u8POzs7E3xUiIiIiIiKyFmq1GhkZGQZr60lJSaisrIRIJEJQUJBBiEV4eLjFhi2Yg8rKShw6dAg7duxAfHy8PlA9NjYWjz/+OGJiYsx+P4ZOfn4+rly5or9cvnwZ2dnZuHTpEq5fv466ujoAgK2tLezs7FBbW4v6+nrY2Nhg27ZtmD59usCvgMg4amtrMWDAAEyYMAFfffVVk/fRaDRYuHAhvv32W9z+0XI7OzsMGDAAFy5cQL9+/bBw4ULMnTu3UwxLz87O1odc/P777ygpKYGHhwdGjRoFiUSCiRMnwtfXV+gyLZJarUZubm6jwIv09HTU19fDxcUFAwcO1O8R5O986uxUKtVdAzDy8vJQWFhoEFKkW7+5PQDj9iAMPz8/i5+1QERERESWgfPoyJxxHh2R8VnbPBLOoyNzZU3z6Ng/kjlj/0hkfOwfiUyjo/vHDgm2AIB33nkHq1atQkZGBry9vTvilETtduDAAUyYMAEymQxjx44Vupx202g0GDJkCPz8/CCVSoUuh0hv3rx52L9/Py5evIju3bsLXU67paSkICIiAuvXr8dTTz0ldDlEAICKigrce++9iIuLw9dffy10OURkIuz/yFxZW/9HRERk6VoSXmFnZ4c+ffqYNLxCV5sutKLhdX5+PgDA1dUV/fv3bxRg0a9fP9jY2Bilpo6Ul5dnMGTj9OnTKCoqQpcuXXDvvfcaDNmIiIhgiAXdVVlZGXr37o3Kysomb7ezs0NQUBCOHj1qEGqhs27dOixYsACJiYkYOHCgscslarWJEyfqf3a29HfPunXr8NxzzwEARCIRnn32WXz55Zf625VKJf773/9i1apVuH79OiZOnIh//etfiI6ONsprMBdFRUVISEjQB10oFAr069cP48aNg0Qiwfjx4zvFgBEiIiIiurOqqioolUoolUqUl5dDoVDov9YdUyqVKC0tRVlZmcExpVKJsrIylJaWNhpyp+Ps7AwnJyc4OzvrL66urgZf6+7j6uoKFxcXg2O640RERERERGTdamtrkZWVZbC+LpfLUV1dDXt7ewQEBBisr0dGRsLR0VHosi1ebm4u9u/fj/j4eBw4cAAajQbR0dGIi4vD5MmTLXJIwfLly/Hvf/8bwP+CK7RarT7MoildunTBnDlzUF1djcTERKSkpFj8sAmipqxduxavvPIKsrKy7hrC8MEHH+CNN95odPyPP/6Au7s71q9fj2+++QbV1dV4/PHH8dprr3WafSharRaJiYn6oItjx46hpqYG/v7+kEgkkEgkeOihh+Dk5CR0qRatrKwM58+f1+8nlMvlSE5ORkVFBQDA29sbkZGRBoEXAwYMMNo+RyJLU1tbi+Li4iZDLxoey8vL0+8j1hGLxQZhF00FYHh7e8Pb29si9vESERERkfniPDoyR5xHR2Qa1jaPhPPoyBxZ4zw69o9kjtg/EpkG+0ci4zNG/9hhwRZVVVUIDQ3Ffffdhx9//LEjTknULiqVCoMGDcKgQYOwa9cuocvpMEeOHMGYMWPw448/4rHHHhO6HCIcP34co0aNwpYtWzBjxgyhy+kwL7zwAn744Qekp6ejV69eQpdDhJdeegnff/890tPT4e7uLnQ5RGRC7P/I3Fhr/0dERGTumgqvyM7OxoULF1BQUABAuPAKXX23B1icP38ehYWFAG59EK5hPZYWYAE0DrE4c+YMCgsLmwyxGDJkiFUsmJJp7du3D8uXL8eVK1dw48YNqNVqg9vt7OwQGBiIo0ePws3NrclzaDQaDB06FL169cKBAwcs5t8XdQ7x8fF45JFHcPjwYYwePbpVj922bRtmz54NrVaLjIwMBAYGNrpPXV0dfv75Z3zyySc4ffo0hg8fjsWLF+PRRx+1+sEGGo0GSUlJkMlkiI+Px8mTJ2Fra4uoqCjExcVBIpEgIiKCPxOIiIiIqM1UKhWqq6uhUqmgUCgMLs0dv/22pv5fV8fBwQFisRiOjo76P+suTR1r6nivXr1gb29v4u8MERERERER3U6pVCIlJcVgfT0jIwMajQbOzs4ICwvTr62HhoYiLCyM/z/XgVJTUyGVShEfH48//vgDjo6OGDNmjD7MwsPDQ+gS26W0tBS+vr6orKxs0f27dOmCGTNmYPPmzcjOzkZoaChWr16NBQsWGLlSItMqLS1FUFAQZs+ejVWrVrXoMZ9//jleeuklAICNjQ3CwsKQlJSkv728vBzbtm3DZ599hvT09E61Bt9QVVUV/vjjD33Qxblz59ClSxcMHjwYsbGxiIuLw5AhQ2Brayt0qVZBt0evYeCFro9oGIal24M4bNgweHp6Cl02kVnTrdPcKQAjPz8fV69eNQgL69q1K3r27Nlk6EXDY35+fgz7ISIiIqImcR4dmRvOoyMyDWudR8J5dGRurHEeHftHMjfsH4lMg/0jkWkYo3/ssGALADh06BAkEgl2796NyZMnd9Rpidpk6dKl+Prrr5GWlobevXsLXU6Hmjt3Lvbu3Yu0tDSIxWKhy6FOrKamBhEREejbty/27t0rdDkdSqlUYuDAgRg9ejQ2b94sdDnUyZ0+fRoxMTH47rvvMGfOHKHLISIBsP8jc2HN/R8REZE5MPfwCl2NtwdYpKSkoKioCMCtAAtdPQ1r8/f3N2pdHa25EAsA8Pb2NgixGDFiBPt0aheZTIY333wTp06dgkQiwSuvvIIpU6ZApVLp72NnZ4f+/fvj2LFjd124PnXqFIYPH873ksislJeXIzQ0FKNGjcL//d//tekce/bswdatW7Fly5a73vf48eP48MMPsWfPHvj7++PFF1/EvHnz0K1btzY9t6UpLi7G4cOHIZPJIJVKkZeXB09PTzzwwAP6wRr83UVEREREQigrK4NSqUR5ebn+urS0FEqlUv+17jaFQmHwdXl5OcrKylBWVgatVtvk+bt37w4nJyc4OzvDyckJYrHY4GsnJye4uLjA1dVV/7XuNldXVzg7O8PZ2ZkDVYmIiIiIiFpIt4eg4fp6eno66uvr9fsHGq6vBwcHc/B3B1Or1fjzzz+xY8cO7N69G9euXYOfnx8eeughxMbGYvz48ejatavQZXaoZcuW4f333282QFOnS5cueOSRR/Djjz9CJBIBAF599VVs2LABmZmZcHNzM0W5RCbxz3/+E1u2bEFmZiZcXV1b/LgtW7Zgzpw50Gg02Lx5M2bPnt3oPlqtFocOHcKaNWv0a/Dz5s3DvHnz0LNnz458GRahsLAQR48ehUwmw549e3D9+nX06tULDz74ICQSCSZMmIC+ffsKXaZVqa2tRVZWlkHgRcP9fA17Dl3gxdChQ+Hg4CBw5USWR6FQNBl6cfuxgoICNBxR4uDgcMcADN21p6dnpwpHIiIiIiLOoyPzwnl0RMZnzfNIOI+OzIk1z6Nj/0jmhP0jkfGxfyQyDWP1jx0abAEATz75JGQyGdLS0lq1AYqoI6WkpGDo0KH4z3/+g+eee07ocjpcWVkZQkND8fDDD2PdunVCl0Od2L///W98+umnOH/+PPr16yd0OR1u7969mDRpEuLj4xEbGyt0OdRJqdVq3HfffRCLxfj9999hY2MjdElEJAD2f2QurL3/IyIiMgVLCK8AbgU7NAyvSE1Nxfnz56FUKgEYBljorkNDQ+Ht7W302jra7SEWZ8+e1f+3uD3EYvjw4Z3yA9nU8err6yGVSrF8+XKcOXMGEokEK1aswLBhwwDc2uyyevVq1NXV6X8mnDhxAl5eXi06/+LFi/H9998jLS0Nnp6exnwpRC3ywgsvYPv27UhLS4OHh0ebz6NWq/VDZ1oiKysLX3zxBdatW4cePXrgmWeewaJFi+Dj49PmGiyNVqtFYmIiZDIZZDIZEhISoNVqER4eDolEgtjYWMTExHCIFBERERFZFJVKherqaqhUKigUCoNLU8fvdN/mODg4QCwW6y+Ojo6NjjV3XHfMy8uLvTYREREREVmN29fW5XI58vPzATReWw8NDYW/v7/AFVuvkpIS/P7774iPj8cvv/wCpVKJkJAQxMXFITY2FsOHD7fqzx2UlZXB19cXFRUVzd5HJBJh4sSJ2LVrl8H6Ynl5OYKCgjB9+nR89tlnpiiXyOguXryIQYMG4YsvvsD8+fNb/fh9+/Zh4cKFSE9Pv2sQTlZWFr777jt88803UKvVmDVrFhYtWoTQ0NC2lm/xsrOz9evx+/fvR3l5Ofz9/SGRSCCRSDBu3Dh+1t5IGgZs6fY4njt3DiqVCiKRCEFBQfr9jbr+pF+/flb9O5LIVGpqanDz5s0mAzAaBmFcvXoV5eXlBo8Vi8UGYRdNBWHojhERERGRdeA8OjIHnEdHZBrWPo+E8+jIHHSGeXTsH8kcsH8kMg32j0TGZ8z+scODLYqLixESEoKpU6fiq6++6shTE7VIXV0doqOj0b17dyQkJFjl/3ABwM6dOzFt2jQcPHgQY8eOFboc6oTOnz+PoUOH4qOPPsLixYuFLsdopk+fjtOnTyMlJQVOTk5Cl0Od0HvvvYeVK1ciJSUF/fv3F7ocIhIQ+z8SWmfp/4iIiDqCpYRXAE0HWKSkpOg/SNZUgEVYWJjFDspvzaANhliQMWi1WuzZswdvv/02EhMTMWnSJCxbtgxDhw41uF9RURH8/PxQW1uL/v374/jx4636d1dZWYmwsDBER0dj69atHf0yiFrl1KlTiImJwaZNm/DEE08IUkNRURG+/PJLrF27FkqlEtOnT8fSpUs75XCNiooKHD58GFKpFHv37sW1a9fg7u6O0aNHQyKRIC4uziKDqoiIiIiI2qo1IRjNHS8tLUVzW3Ebhl60JRxDLBbDw8OjVSF/RERERERE7aHRaJCTk6MfFC2Xy3Hq1CncuHEDQOO19aioqHYFm1PLXL58Gb/++iukUikSEhJQX1+PqKgoPP7443j00UfRp08foUs0meLiYsyZMwcHDhyAWq1udLtIJMKDDz6I+Pj4Jof0r1u3DgsWLEBSUlKnXC8k6zNx4kTk5uYiKSmpze8hlZWVwcXFpcX3VyqV2L59O1avXo2MjAyMHTsW8+fPx6OPPmqyfW/mSKVS4cSJE/qgi8TERNjY2CA8PFwfdDFq1CjY2dkJXarVUqvVyM3NNehj0tLScPnyZdTX18PFxQUDBw40CLwIDw9Hjx49hC6dyGqpVCqDsIumAjDy8/ORm5tr0Nvp1kiaC73QHfP19YW9vb2Ar5CIiIiI7obz6EhonEdHZBqdZR4J59GR0DrDPDr2jyQ09o9EpsH+kcg0jNk/dniwBQD88MMPmDlzJqRSKSZOnNjRpye6ozfffBOrV6/GuXPncO+99wpdjlE99thjOH36NJKTkyEWi4UuhzqRmpoaDBs2DD169MDRo0etesNpYWEhwsLCEBsbiw0bNghdDnUyZ8+eRUxMDD744AMsWbJE6HKIyAyw/yOhdKb+j4iIqKUsKbwCaDrAIjk5GRUVFQCaDrAYNGiQRQ+fUCgUBh9QPXHiBLKzswE0HrQRExMDNzc3gSsma6bVarFr1y4sW7YMGRkZmDhxIt59910MGTKk2ce8/PLL+OWXX3Ds2LE2DZnft28fJk6ciN27d2PKlCntKZ+ozaqqqjB06FD4+flh//79QpeDmpoa/PDDD/jwww+RlpaG4cOHY+nSpYiNjbXazWV3k52djfj4eEilUhw9ehRqtRpDhgzRD9UYPXo0B+gSEREREbVAw9CLtoRjqFQqFBUVQaPRNHl+3QCntoZjiMVi9OrVi8OdiIiIiIjIgFqtRkZGhn5dXS6XIykpCZWVlRCJRAgKCjJYW+fgZ9PRarVITEzUr+PI5XKIxWJIJBLExsbib3/7W6uG0FuDGzduYNWqVVi7di0cHBygUqlQWVlpcB+RSISRI0di7969cHBwaPI8Go0GQ4cORc+ePSGTyTrtOiFZh59//hlTpkzBoUOH8OCDD5r8+bVaLQ4dOoQ1a9Zgz5498Pf3x7x58zB//nx+3gG3fm4dOXIEMpkM+/fvR25uLnr06IHo6Gj9mnxkZKTQZXYKZWVlOH/+vH7vpFwuN9g/qdtP2DDwIjg4GLa2tgJXTtS5KBSKJkMvmjrWkIODw10DMLy9veHl5cV/10REREQC4Tw6EhLn0REZX2eaR8J5dCSkzjSPjv0jCYn9I5HxsX8kMg1j949GCbYAgCeffBL79+9HSkoKvLy8jPEURI0cP34co0ePxhdffIHnn39e6HKMTqFQYPDgwRg2bBh27twpdDnUifzzn//E+vXrce7cOQQGBgpdjtHt27cPkyZNwrZt2zB9+nShy6FOorKyEpGRkfDy8sKhQ4e4YY6IALD/I+F0tv6PiIhIx9LCKzQaDXJycpCdnW0QYKEbOgHc+gBmw/AKf39/DB48GO7u7iar0xhKS0tx4cIFg2EbaWlpABqHWNx///3o1auXwBVTZ6ELtHjrrbeQlZWFqVOn4t1338WAAQPu+tjCwkKo1Wr07t27zc//7LPPYvfu3UhOTkafPn3afB6itvrHP/6B7du3Izk5GX5+fkKXo9dwuIZUKsXgwYOxYMECPPnkk80OuOkMKisrcfLkScTHx+OXX35BTk4O3NzcMGbMGEgkEkyaNKldP5OIiIiIiOjudMEXbQ3HUCgUKC4uRl1dXZPnd3BwaFc4hlgsRs+ePTv1/zsREREREVmq2tpaZGVlGayry+VyVFdXw97eHgEBAQZr65GRkXB0dBS67E5FpVLhxIkTiI+Px86dO5GXl4d77rkH48ePR2xsLB566CHY2dkJXabJFRcX44svvsDq1athb2+PhQsXYsmSJfjkk0+wcuVKqNVqALf28ERGRkImk6F79+53POeZM2dw//3349tvv8UzzzxjipdB1OGUSiVCQ0MxduxYbNy4UehykJmZibVr1+K7776Dra0tZs6cicWLFyMkJETo0sxGdnY2ZDIZZDIZDhw4gLKyMvj7++tDLsaOHYuePXsKXWankpeXp99rqAu8yMjIgEajMeiPdHsuo6Ki4OHhIXTZRJ1edXU1SkpK7hiAkZ+fj2vXrqG2tlb/OHt7e7i5uTUZetHwmK+vb6cLkSMiIiIyBc6jIyFwHh2RaXS2eSScR0dC6Izz6Ng/khDYPxKZBvtHIuMzRf9otGCLiooKREREoH///ti7dy9sbGyM8TREemVlZQgPD0dwcDD27NnTaf7OyWQyTJgwARs2bMCcOXOELoc6gYMHD2LChAnYtGkTZs+eLXQ5JmOuw7fIes2bNw+7du3i0EEiaoT9H5laZ+3/iIio87C08AoAUKvVyM3NNQivSEtLQ3p6OqqqqgA0DrAICQnB4MGD4eTkZNJajYEhFmQJ6urqsG3bNqxYsQKXL1/GjBkz8K9//Qv33nuvSevQLTb6+flh//79nWKzGpkP3SaLrVu3YsaMGUKX06zExESsXr0a27dvh5ubG5577jksWrSIwyLwv6Ea8fHxkMlkqK6uRkhICOLi4iCRSPDAAw/A3t5e6DKJiIiIiKgJKpWqVeEYTR0rKSlBTU1Ns8/RnnAM3XFXV9dOs9eTiIiIiMiUlEolUlJSDNbVdUOanZ2dERYWpl9XDw0NRVhYGN/zF0hxcTH27t0LqVSK/fv3o7KyEkOGDEFsbCzi4uIQGRkpdImCaS7QwtnZGQBQUlKCPn36oKqqqlWhFjpLlizBhg0bkJaWBh8fH2O+FCKjeP7557Fr1y6kpaXB3d1d6HL0lEol/vvf/2LNmjW4cuUKxo4di0WLFiE2NpbvAzWgVquRnJysD7pISEiAVqtFeHi4Puhi5MiR6Nq1q9CldjoNw8B0+zPPnDmDwsJCAIZ7M3W9VGhoKMOAiczUjRs3UFRUhPz8fBQUFKCwsBB5eXmNjhUXFxs8zsnJCT4+PvDw8IC3tzc8PT31f/bw8ICHhwd8fHzg7u7Of/9ERERELcR5dGRqnEfHeSRkGp11Hgnn0ZGpdcZ5dOwfydTYP7J/JNNg/8j+kUzDFP2j0YItAOCPP/7AqFGj8Mknn2Dx4sXGehoiAMD06dNx7NgxJCcnm9VGPFN45ZVX8O233+Ls2bMICgoSuhyyYgUFBYiIiMDo0aOxdetWocsxqaqqKkRGRsLT0xMymQwikUjoksiK7dixA9OmTcPu3bsxZcoUocshIjPE/o9MpTP3f0REZF0sMbwCaD7AIi0tDSqVCkDTARbh4eHo0aOHyes1hrKyMpw/f95g2EZ6ejrq6+sbhVhER0d3uveGyfzU1tZi+/btWL58OXJycjBjxgy89dZbCAwMFKwmuVyOmJgYrFy5EkuWLBGsDupcioqKMGjQIEycOBEbNmwQupwWyc/PxzfffIPPP/8cdXV1mDVrFpYsWWLyQBpzpVKpcOLECX3QRVpaGrp3744HH3wQcXFxePjhhzvNplgiIiIios6mPeEYuuOlpaVobrtyw9CLO4Vg3Om4p6enIO/hEhERERGZA4VCgdTU1CbX1cVisX7osu4SHBwMW1tbocvu1LKzsxEfHw+pVIojR45AJBJhxIgRiI2NxeOPP97pQxbuFmjR0FtvvYX33nsPQ4cOxaFDh+Dk5NTi56mqqkJYWBiGDh2KH374oSNfApHRnTx5EiNGjMD333+PmTNnCl1Ok7RaLQ4dOoQ1a9Zgz5496N+/P5599lk899xzcHV1Fbo8s1NRUYE///wT8fHxiI+Px+XLl9GtWzfExMTogy4iIiI6zQAdc9Sw59Lt55TL5aiuroZIJEJQUFCjwIt+/frxvxmRhaitrUVRURHy8vJQWFjYKACjqKhIf3tFRYXBY11cXODt7Q13d3d4eXnBy8sL7u7u+mAMhmAQERER/Q/n0ZEpcR4d55GQ8XXmeSScR0em1Jnn0bF/JFNi/8j+kYyP/SP7RzINU/WPRg22AIAVK1bgnXfewaFDhzBixAhjPhV1YqtXr8arr76K3377DWPHjhW6HJOrqanByJEjUVVVhT///NNqhtaReamrq4NEIkFeXh7OnDnTKTeQJicn4/7778fChQvx8ccfC10OWan09HRERUVh9uzZWLt2rdDlEJGZYv9HpsD+j4iILE1z4RWpqanIz88HYJ7hFcCt37uZmZlITU01CK/IyspCXV0dunTpAn9/fwwcOBDBwcEIDQ1FcHAwgoODreoDTq0JsYiKioKHh4fQJRPp1dbWYuPGjVi+fDmKioowffp0LFu2DP379xe6NADA+++/j3feeQcJCQmIjo4Wuhyycmq1GuPGjcO1a9eQmJhoce9blJeXY8OGDVi9ejWuXr2KiRMn4vXXX8fw4cOFLs2sZGdnQyaTQSaTYf/+/SgvL4e/vz9iY2MRFxeHkSNHomvXrkKXSUREREREZqQlQRh3CsdQqVQoKiqCRqNp8vy64Iu2hmOIxWK4u7vDzs7OxN8ZIiIiIqKWy8vLM1hTl8vl+j0Rt6+rh4aGwt/fX+CKCQA0Gg1OnjwJqVSKX3/9Fenp6XBzc8PEiRMRFxeHhx56qFWBDNaqYaBF165dsWDBgmYDLXRKS0sxZcoU7Nq1Cz179mz1cx44cAATJkzAzp07MXXq1PaUT2QylZWViIiIQGBgIKRSqdDltEhmZibWrl2L7777Dra2tpg5cyZeeuklBAcHC12a2Wq4Ji+TyaBQKODp6YkHHngAEokEkyZNQu/evYUus9NTq9XIyMgwCLpIS0vD5cuXUV9fD1dXV4SGhhoEXgwZMgTdu3cXunQiaofq6mqUlJRAoVAgPz8feXl5+uuGxxQKBQoKCgyCv3XrET4+PvD29tZfNzwmFovRp0+fO/bBRERERJaM8+jIFDiPjvNIyPg4j4Tz6Mg0OI+O/SOZBvtH9o9kfOwf2T+SaZiyfzR6sEV9fT0ef/xxHD9+HHK5nBtlqMP98ccfGD16NN577z289tprQpcjmKtXryIyMhLDhw/H7t27YWNjI3RJZGVeeuklfPvttzhx4gSGDBkidDmC2bp1K5544gls374d06ZNE7ocsjIVFRWIioqCs7MzEhISYG9vL3RJRGTG2P+RMeXm5uLNN9/Ezp07O33/R0RE5sWSwyuAWx9izMrK0gdY6EIsMjMzUVdXB5FIhP79+zcKsBgwYIDVDYZWKpVISUlhiAVZvJqaGmzatAnvvvsuiouLMWfOHLz11lvw9fUVujQDWq0WcXFxSExMhFwuh7e3t9AlkRV7+eWX8eWXX+LEiROIiIgQupw202q12LNnD1auXImTJ08iMjISixYtwqxZsyASiYQuz6xUV1fj+PHj+oEacrkc3bp1Q0xMDGJjY/G3v/0N99xzj9BlEhERERGRlWgYfNGWcAyFQoHi4mLU1dU1eX4HB4d2hWOIxWK4ublZ3Xu6RERERGRaGo0GOTk5+gHJcrkcp06dwo0bNwA0DrHgurr5qaqqwu+//w6pVIpffvkFhYWFBiHho0eP5prT/+/2QIuXX34ZL774Irp169aix2u1Wtja2rb5+Z977jn8+OOPSE5Ohp+fX5vPQ2Qq8+fPx86dO5GUlGRxf2eG8SDoAAAgAElEQVTLysqwceNGfPbZZ8jNzcWYMWOwaNEixMbG8vMQd6DRaJCUlKRfkz969Chqa2vh7+8PiUQCiUTCkCQzU1paigsXLhgEXiQnJ6OiogLA/3q5hoEXwcHB7fp9RkTmiSEYRERERI1xHh0ZG+fR3cJ5JGRsnEd3C+fRkTFxHt0t7B/J2Ng/3sL+kYyN/eMt7B/JmEzdPxo92AIAysvLERUVBVdXVxw5cqTTNsXU8fLz8xEZGYlhw4bhp59+6vTNz+HDhzF+/HisXLkSr7zyitDlkBXZtm0bZs2ahU2bNuHJJ58UuhzBvfDCC9i0aRNOnjyJgQMHCl0OWYn6+npMmzYNx44d45tnRNRi7P/IWL7//nvMnj0bPj4+WLBgAaZNm4bAwEChyyIiok7C0sMrgFsBFrm5ufrgCt11WloaVCoVgFsfTGz4oURdiEVLP5RvSVoTYjFs2DB4enoKXTLRXVVWVmL9+vX48MMPoVQqMXfuXCxduhQ+Pj5Cl9YshUKB++67D15eXjh8+DDs7OyELoms0E8//YSpU6diw4YNeOqpp4Qup8McP34cn3/++f/H3n1HNXm+bwC/kIBQhqICotZBFQUcCG6sM25SrdXaWnAPtO5Wrdpaa90VrbhHrbV1tIrWEpxxVayjRnGAolWLg63snYTfH/0lXyKgKOPNuD7n5Ji8hOSGg+Emz/PeFw4cOIC6deti6tSpGDNmDKysrIQuTSf9+++/OH78OGQyGY4fP46UlBStgRp9+vSBtbW10GUSEREREZGRU4dcvGk4RlJSEp4/f46cnJxin6Ok4RgvC8yoWrWq0e+NJSIiIjJ0CoUCkZGRWmvqYWFhyMjIgEgkgouLi9a6uoeHB99n11Hx8fE4evQo9u3bhxMnTkChUMDDwwM+Pj4YMmQIXF1dhS5RpyQkJGD9+vVvHGhRVjIzM+Hl5QUHBwecOnVK8H1HRC/z+++/4/3338evv/6q1wMOVCoVQkJCEBgYiJMnT6Jhw4b49NNPMXr0aP6OK4GMjAxcuHBBE3Rx9epVWFhYwNvbW7Mu37JlS4Yk6KDo6GjI5XKtwIs7d+5ApVLB3NwcDRs21PR87u7uaN68OcPLiIwIQzCIiIjImHAeHZUXzqPTxnkkVF44j04b59FReeA8Om3sH6m8sH/Uxv6Rygv7R23sH6k8CNE/VkiwBQDcunUL7du3x5AhQ7Bt27aKeEoycBkZGejSpQvS09Nx6dIlLqL/vxUrVmDevHk4dOgQ+vbtK3Q5ZAAuX76Mrl27YuzYsfj++++FLkcn5ObmomvXroiLi8OFCxdgb28vdElkAL7++mssWbIEMpkMnTt3FrocItIj7P+orKn7v/feew+//fYbVCoVAMDd3R1+fn748MMP0aBBA4GrJCIiffem4RXqAIsmTZrozEnk0dHRWicZRkRE4Pbt28jMzASgHWCh/tfT09MgAyyA1wuxUA/YJ9In6enp+OGHH7Bs2TKkp6dj1KhR+OKLL+Dk5CR0aSVy/fp1dOjQAf7+/ggICBC6HDIw4eHhaNeuHYYPH45169YJXU65uH//PgIDA7Ft2zaIRCKMGDECM2fORJ06dYQuTWcpFApcv34dwcHBkEqlRQ7U8PLyErpMIiIiIiKiUilJCMbLjmdnZyMpKanYxy9JEMbLwjEsLCzg6OioM++rExERERmz3Nxc3Lt3T2tNXS6XIzs7u9AwY/XF0tJS6LLpJcLDwyGVShEcHIy//voLlpaW6NatGyQSCd577z3uiyhCQkICAgICsHbtWlhZWQkWaFHQ1atX0b59eyxatAgzZ84UrA6il4mOjkbz5s3x/vvvY+vWrUKXU2YiIyOxYcMGzTr8Rx99hOnTp6NJkyZCl6Y3YmNjce7cOchkMkilUkRHR8Pe3h5dunSBWCxG7969UbduXaHLpGIU7A/Ve1EvX76M+Ph4ANp7UNWBF+7u7rCwsBC4ciISUkWEYNSpUwdVqlQR8KskIiIiQ8d5dFTWOI+uaJxHQmWN8+gK4zw6Kg+cR1cY+0cqa+wfi8b+kcoa+8fC2D9SeRCif6ywYAsAOHz4MPr374+FCxdizpw5FfW0ZIBUKhU++OADnDt3Dn/99RdcXFyELkln5OfnY9SoUdi/fz/OnTsHDw8PoUsiPfbvv/+iXbt2aNmyJYKDgyESiYQuSWckJiaiffv2sLOzw5kzZwx2GCVVjN27d8PX1xfr1q3DxIkThS6HiPQM+z8qSy/2f7Nnz8aaNWugVCphYmICkUiEvLw8uLi44OOPP4afnx/eeecdocsmIiIdZUjhFYB2gIX637CwMGRkZAAoOsCiZcuWsLKyErjy8pOamqoZsnHlyhXI5XLcv38f+fn5qFWrFlq1aqU1bIPDGkifpaWlYcOGDVixYgXy8vIwceJEzJo1C9WqVRO6tNe2a9cu+Pn5YdOmTRg3bpzQ5ZCBiIuLQ7t27VC7dm2cOnUK5ubmQpdUrlJSUrBjxw589913SEhIQP/+/TFz5ky0bt1a6NJ0Xnx8PM6ePasJukhKSoKzs7Mm5KJXr17cAEhEREREREarqMCL1wnHyMrKQlxcHFQqVZGPXzD44k3CMezs7GBvbw8zM7MK/s4QERER6afU1FTcuHFDK8AiMjISSqUStra2aNasmWY93d3dHc2aNTP4NRZDoFQqceHCBUilUhw8eBB3796Fvb09evfuDYlEgr59+xr0XpHS0MVAi4KWL1+O+fPnIzQ0lOt+pHOUSiV69uyJJ0+e4OrVqwb5OqNeh1+9ejUeP36Mbt26YcqUKfDx8YGJiYnQ5emVBw8eaNbkQ0NDkZ2drbUu37NnTw4q1wMF96wWDL3Izs6GmZkZGjVqVCjwwtnZWeiyiUgHMQSDiIiIdBnn0VFZ4Ty64nEeCZUlzqMrHufRUVniPLrisX+kssL+sXjsH6kssX8sHvtHKktC9Y8VGmwBAFu2bIG/vz927twJX1/finxqMiBTpkzB1q1bIZPJ4O3tLXQ5OicvLw/9+vVDeHg4Lly4gLp16wpdEumhlJQUdOzYEQAQGhrKDSVFuHPnDjp06IDu3bvj119/RaVKlYQuifTQmTNn0KtXL3z22WdYsmSJ0OUQkZ5i/0dloaj+LzMzE66urnj69CmUSqXmvi+GXIwaNQp+fn6oVauWUOUTEZFADC28AnizAAsPDw9YW1sLXHn5Sk9PR1hYGK5cuaK53L17F/n5+XBycoKXl5dWkIWTk5PQJROViWfPnmHt2rVYs2YNVCoVJkyYgNmzZ8POzk7o0kplwYIFWLRoEQ4ePAiJRCJ0OaTnsrKy0K1bN8THx+PChQtwcHAQuqQKk5ubi7179+K7777DrVu34O3tjdmzZ3OwRgkplUqEhYVBJpMhODgYFy5cQKVKldC2bVtIJBKIxWJ4enrye0lERERERPQaVCoVUlJSkJycjLS0NKSlpSE1NRVpaWlITk5Gamqq5rb6Y0lJSYXum5KSUuxz2NrawtbWFjY2NrCxsYGtrS3s7Oy0btvY2KBKlSqoUqWK5rj6Y1WrVoW1tTWHNhMREZFBSUpK0gwdVl9u376N/Px82NnZaQYOqy+urq48/0CPZGRk4NSpU9i3bx+Cg4ORnJwMNzc3SCQS+Pj4wNvbm+sZL1Ew0MLa2hozZszQqUALNZVKhb59+yIiIgJyuRz29vZCl0SkMXv2bKxduxbnz59Hy5YthS6nXKlUKoSEhCAwMBAymQwuLi6YOHEixowZY5CBHuUtKysL58+fh0wmg0wmw9WrV2FqaooWLVpogi46d+7MIFM9kZeXh7t37xYKvHj48CHy8/NRtWpVuLu7awVetGzZkv93iKjEcnJy8OzZszIJwSguEIMhGERERPQizqOjssB5dC/HeSRUFjiP7tU4j47KAufRvRr7RyoL7B9fjv0jlQX2j6/G/pHKgpD9Y4UHWwDAjBkzsHHjRhw9ehSdO3eu6KcnPbdy5UrMnj0be/fuxeDBg4UuR2clJyejY8eOMDU1xdmzZ1G1alWhSyI9kp2djd69e+P+/fu4ePEiateuLXRJOkv9S3zy5MlYuXKl0OWQnrlx4wY6deqEPn36YPfu3TyZhYhKhf0flcbL+r8TJ06gV69eKO7tAxMTE1SqVAkqlQrt27eHr68vPvjgA6MaZEpEZOgMMbwCKDrA4vr160hPTwdQdIBFixYtYGNjI3Dl5U998mPBgRt///03cnNzUaVKFTRt2lRr4Ia7u7vQJROVucTERKxbtw7ff/89RCIRJk2ahGnTphnM31r5+fkYOXIkDhw4gHPnzqFFixZCl0R6SqVSYdCgQfjzzz/x119/wcXFReiSBBMaGorly5cjJCQEDRs2xKeffopx48bB0tJS6NL0RkJCAs6cOaMJuoiJiYGjoyN69uwJiUSCHj16GMzrMBERERERkT5ISUkpFIKhDscoGILx4nH1sZSUFKSkpEClUhX5+JUrV9YKu7CxsYG1tXWhY+rjLx5TX/Q9hJaIiIj0T3R0tNZ6ulwu1+yfcHJyKrSe7uzsLHDF9CaioqJw7NgxBAcH4/jx41AqlWjXrh0kEgnef/99o14XK6miAi2mTJmi0+tnSUlJaNWqFerVq4fjx49DJBIJXRIRDh06hPfffx/btm3DqFGjhC6nQoWFhWHjxo345ZdfIBKJMGLECEybNg0NGjQQujS9VXBd/siRI3j8+DGsra3Rrl07+Pj44L333uP3Vw8lJyfj1q1bWoEXYWFhyMjIAKDdo6r3wzJojYhKq6gQjOICMRiCQURERK/CeXRUGpxHVzKcR0KlwXl0Jcd5dFQanEdXcuwfqTTYP5YM+0cqDfaPJcf+kUpD6P5RkGALlUqFjz76CEePHoVMJkObNm0qugTSU1u3bsX48eMREBCA6dOnC12OzouKikLHjh3x9ttv4/jx47C2tha6JNIDeXl5GDhwIM6fP48zZ86gefPmQpek83bv3g0/Pz8sWLAAX331ldDlkJ64e/cuOnXqBFdXVxw9ehSVK1cWuiQiMgDs/+hNlKT/GzZsGPbu3Yu8vLyXPpaJiQnMzMwQGhqK1q1bl1fJRERUDkobXtG4cWOdPZG7qACLGzduIC0tDQBgZ2enFV7h5eVlNAEWAKBQKBAZGak1cOPKlSvIycmBra0tmjVrpjV0w83NjRthyKAlJCRg/fr1WL16NSpXroyJEydi+vTpBnliXG5uLnr37o179+7h3LlzqF+/vtAlkR6aNGkSfvjhB8hkMnh7ewtdjk64ceMG1q9fj507d8LW1hYTJkzApEmTUKNGDaFL0ysqlQrXrl2DTCaDTCbD2bNnoVKp4OHhAR8fH0gkEnh6erIvISIiIiIi0gNZWVnIzs5GVlYWkpKSNJfXPZaQkACFQlHkc1hYWMDS0lIzDEt9ed1jjo6OOhnWTURERMJQKpWIiorSDAeWy+W4dOkSEhISABQOsWjbti0cHBwErppKIzw8HPv27YNUKsXVq1fx1ltvoWvXrhg8eDDee+89nqRfQvHx8Vi1ahUCAwNhY2OjF4EWBV2/fh0dOnTApEmTsHz5cqHLISMXGRmJNm3a4JNPPsGGDRuELkcwycnJ+Omnn7Bq1So8efIE3bp1w5QpU+Dj48M141J68OCBZl3+2LFjSE1NhbOzM8RisebCUFH9pQ5kKxh4cefOHahUKtjY2MDFxUWzb9bd3R0tWrSAvb290GUTkQFiCAYRERG9CufR0ZviPLrXw3kk9CY4j+71cR4dvQnOo3s97B/pTbF/fD3sH+lNsH98fewf6U3oQv8oSLAF8L8XmtDQUJw8eRKenp5ClEF6JCgoCEOGDMGXX36JBQsWCF2O3rh37x46deqEhg0b4ujRo7CyshK6JNJhSqUSvr6++OOPP3Ds2DF07NhR6JL0xo8//ojRo0dj2bJlmDVrltDlkI57/PgxOnXqBEdHR5w4ccJohqUSUcVg/0evo6T93/Pnz+Hi4oKkpCSoVKpiH8/ExASbN2/G2LFjy6tkIiIqBUMOrwD++/oKhldEREQgLCwMiYmJAAoHWBjjSXhFhVjI5XJkZ2fDxsYGzZs3Z4gFGS31YI21a9fC2toaM2bMwOTJk/HWW28JXVq5Sk5ORrdu3ZCSkoI///wTtWvXFrok0iNffPEFAgIC8Ouvv2LgwIFCl6Nz4uLisHHjRqxbtw7p6en48MMPMWfOHLi6ugpdml569uwZTp06BZlMhpCQEDx9+hQODg7o3LkzfHx84OPjg2rVqgldJhEREREREZUzdehFaYMykpOTUdwWevWQrNIGZXDoIxERkX4paj09LCwMGRkZEIlEcHFx0VpP9/Dw4MnaBiA7OxuhoaEIDg5GUFAQnj59inr16qFXr17w8fFBr169YG5uLnSZekPfAy0K2rFjB0aNGoVdu3bh448/FrocMlJJSUno0KEDqlatirNnz/L1CP8NKQoJCUFgYCBkMhkaN26MCRMmYMyYMTxvogwoFApcv35dE3Rx5swZ5Ofnw8PDQxNy0alTJ/4s6rnc3Fzcu3dP0/NGRETgxo0biI+PB/BfeJt6n6068KJp06YcokZEFYYhGERERMaL8+jodXEe3ZvhPBJ6HZxH9+Y4j45eB+fRvRn2j/S62D++GfaP9DrYP7459o/0OnSlfxQs2AL47+Sifv36ITw8HGfPnkWTJk2EKoV03KFDhzB48GBMmTIFK1euFLocvXP9+nV069YN7dq1w8GDB7lxjIqUn5+PMWPGYM+ePTh8+DC6dOkidEl6Z9WqVfj888+xceNGjB8/XuhySEfFxMSgU6dOsLKywunTp3kCMxGVC/Z/VBKv2//t3bv3pSfniUQiDBkyBL/88ksZV0pERK/D0MMrgKIDLAqeVFdUgEXz5s3h4OAgcOUVS6lU4s6dO1pDN65du4bMzExYWVnBw8NDa+iGq6srKlWqJHTZRBXu0aNHCAgIwNatW2Fra4vp06fr7WCNN5WYmIjOnTtDoVDg7NmzqFmzptAlkR5YtGgR5s+fj61bt2L06NFCl6PT0tPTsXv3bqxatQr37t1D3759MXXqVIjFYqFL02vh4eGQSqWQyWT4888/oVQqNcM0fHx80KFDB/Y2RERERERE9FIFAy/eNCjj+fPnyMnJKfY5CgZevGlQRo0aNbjvg4iIqIy9OMxXfcnOzoa5uTkaNmyotZ7u5eVlVOuHhk4dph0cHIxDhw4hNTUVbm5ukEgk8PHxgbe3N0xMTIQuU68YUqBFQdOnT8emTZtw4sQJnmhPFS43Nxe9evXCP//8g4sXL6J27dpCl6Rzrl27hk2bNuHnn3+Gubk5hg8fjunTp6N+/fpCl2Yw1L8zZTIZjh8/jn///RdWVlZo3769JujC09OTvzcNRHR0tGZfrjrwIjw8HNnZ2TAzM0OjRo0KBV44OzsLXTYRGTmGYBARERkezqOjkuI8utLhPBIqCc6jKz3Oo6OS4Dy60mH/SCXF/rF02D9SSbB/LD32j1QSutQ/ChpsAfw3yKNnz554+PAhTpw4gaZNmwpZDumgoKAgDB06FKNGjcKGDRu4yekNXb58GT169EDHjh2xf/9+vd8cTGVLqVRizJgx2L17Nw4ePIi+ffsKXZLe+vbbb/H1119j7dq1+PTTT4Uuh3TMo0ePIBaLYWpqirNnzxrdUFUiqljs/+hl3rT/k0gkOHbsGPLy8rSOqwek37p1iz9rREQVoLjwCvUF0P/wCqDoAIubN28iLi4OQNEBFk2bNjXagezR0dFaAzfOnz+PpKQkzQmFBQdutGnThovFZPSioqKwatUqbNmyBQ4ODpgxYwbGjx8PCwsLoUsTRHR0NDp16gSFQoHvvvsOgwcPFrok0lHZ2dl4//33cezYMWzYsAH+/v5Cl6Q3VCoVQkJCEBgYCJlMhpYtW2LatGkYOnSoXvRmuiwjIwOnTp2CVCrF0aNH8ejRI9SoUQNdu3bVBF3UqlVL6DKJiIiIiIjIgL1JKMaLxxITEwutxatZWFi8cTBGwWMODg58H4KIiIxOamoqbty4obWeHhkZCaVSCVtbWzRr1kyzlu7u7o5mzZpxPd0APXjwAMHBwZBKpTh79ixMTU3RsWNH+Pj44IMPPkCdOnWELlEvGWqghZpKpcLgwYNx9uxZnD9/Ho0bNxa6JDIS+fn5GDFiBA4ePIhz586hRYsWQpek0+Lj4/Hjjz9iw4YNePLkCfr27YupU6eie/fuPBe5jD148AAymUxzSUpKQs2aNfHuu+9ybd5A5eXl4e7du4UCL9R7lV/cx+vl5QVPT0+89dZbAldORFRYdnY24uPjER0djYSEBMTFxSEmJgYJCQmIjY1FbGwsEhISEBMTg5SUFK3PtbGxQa1atWBvbw9HR0c4OTnB3t4eNWvWRM2aNWFvbw8nJyc4OjoazN9DREREQuI8OnoVzqMrG5xHQi/DeXRlh/Po6GU4j65ssH+kV2H/WDbYP9LLsH8sO+wf6WV0rX8UPNgC+G/QRP/+/XH16lUcOXIEbdu2Fbok0hG7d+/G8OHDMXbsWKxbtw6VKlUSuiS9JpfL0bt3b7i5uUEqlcLGxkbokkgH5ObmwtfXFyEhIQgKCkLv3r2FLknvLV++HF988QW++eYbzJ8/X+hySEc8fPgQYrEYFhYWOHHiBDfqElGFYP9HRSlN/xcdHQ0XFxdkZGRojlWqVAlmZmbIz8/HmjVrONSUiKiMGEt4BVB0gMWtW7cQGxsLoOgAC3d3dzg5OQlcuXBeDLG4cOECnj17BpFIBBcXF60Qi9atW6Ny5cpCl0ykMx4+fIhly5bhxx9/RO3atTFt2jT4+/sb9f+TnJwc/PTTT1i4cCFiYmLg6uoKmUxmtEFB9HJLly7F3LlzYWpqiuHDh2P27NlwcXERuiy9I5fLsWbNGuzZswf29vYYN24cpk6dCjs7O6FLMwgFh1OdO3cOOTk5cHNzg0QigVgsRufOnWFmZiZ0mURERERERESFZGVlvVEoxovHU1JSoFKpinwOdehFaYMyqlatypP7iIhI56j3HxRcT799+zby8/M1ew8Krqe7urryPCUDpVKpcO3aNc16gVwuR7Vq1dC9e3f4+PhgwIABsLW1FbpMvVUw0MLW1hbTp083qECLgrKystC9e3fExcXhwoULgp8MTMbh66+/xpIlSyCVStGrVy+hy9EbSqUShw8fRmBgIGQyGRo3bowJEyZg7NixHLJfDpRKJcLCwjQhF3/++Sdyc3Ph7OwMHx8fSCQSdOzYERYWFkKXSuUgOTkZt27d0gq8CAsLQ0ZGBkxNTVGvXj1N763e+8vem4j0SU5ODp49e4akpCTExMQgOjpa63rBY7GxsSg4skf9fnqtWrXg5ORU6HrB2zVr1uRrIxERUTE4j46Kw3l0ZYvzSKgonEdX9jiPjorCeXRli/0jFYf9Y9li/0hFYf9Y9tg/UlF0sX/UiWAL4L/FvQ8//BCnTp3CH3/8ga5duwpdEgls06ZN+PTTTzFz5kwsW7ZM6HIMRkREBHr06IFatWrh6NGjqF69utAlkYBycnLw0Ucf4cSJEzh06BC6d+8udEkGY+PGjZg0aRJfwwgAcPv2bYjFYjg5OeHYsWN87SWiCsX+jwoqi/5v/fr1mDx5smbTrYmJCaRSKW7evIm5c+di6NCh2Lx5M08AIiIqAWMKrwD+9/WqT2JTn9AWExMDAKhatSreeeedQiEWzs7OAlcurBdDLC5duoSEhIQiQyy8vLwMckgAUVl48OABli9fju3bt+Ptt9/GF198gVGjRunV62hZS0tLw6ZNm7BixQokJiYCAGbNmoXff/8deXl5OHnyJBo0aCBwlaRLli9fjjlz5mDRokVYtGgRsrKyYGJiggEDBmDevHnw8vISukS98/DhQ2zevBmbN2+GUqnEyJEjMWPGDNSrV0/o0gxGZmYm/vrrL8hkMhw6dAh37tyBtbU1unTpAolEgj59+uDtt98WukwiIiIiIiKiMlcw9KI0YRnZ2dnFPkfBwIs3DcqoXr26UQcPExHRm3txLV0ul2v2Hzg5OWmto3PvgXHIysqCTCaDVCpFcHAwYmJi0KBBA0gkEkgkEgZflwFjCrQoKC4uDu3bt4e9vT1kMhkHM1C52rRpEyZOnIgtW7ZgzJgxQpejt65evYrNmzfj559/hrm5OYYPH861+HKWkZGBCxcuaIIu5HI5LC0t4e3tDbFYDLFYDE9PT4ZkGriCPbp6j/CdO3egUqlgY2MDFxcXrcCLFi1awN7eXuiyiYhKJTs7GwkJCYiOjkZ8fDwSEhIQExODhIQEzXX18YSEBK0QDHNzc9jb28PBwQE1a9bUXHdycoK9vT3s7e21rvNvWiIiMjacR0cv4jy68sF5JFQQ59GVH86jo4I4j658sH+kF7F/LB/sH6kg9o/lh/0jFaSr/aPOBFsA/6XsfPTRRzh27Bh27dqFAQMGCF0SCSA/Px8LFizAt99+i8WLF2POnDlCl2RwIiMjIRaLYWdnh5CQEA5rMVLPnj3DgAEDEBERgSNHjqBNmzZCl2Rwtm/fjnHjxmHcuHEIDAw06iF5xuzPP//E+++/j2bNmiE4OJgnMRCRINj/EVB2/Z9KpUKHDh1w5coVzd9vX331FQDgyJEj8PX1Rd26dREUFMSTgYmIYHzhFQCQnJyM+/fvIzw8XHNiWkREhObrrVKlCho2bMgAiyK8OHjj77//RlxcHExNTdG4cWOtwRuenp4MkiIqgfDwcCxfvhy7d+9G48aNMXv2bAwdOlTvXlvLUmJiItatW4fVq1cjMzMTCoUCAGBra4snT54gIyMDPXr0QHp6OmQyGd555x2BKyah5efnY+rUqdiwYQO2b9+OYcOGYc6cOVi5ciUUCgXMzMyQl5eHtm3bYt68eZBIJEKXrHdSU1Px448/IiAgAE+fPkXfvn0xb948tGvXTujSDM6DBw80g22lAfcAACAASURBVDSOHDmC9PR0ODs7w8fHBxKJBJ06dYK5ubnQZRIRERERERHplNKEYqiPJSYmIi8vr9jneJNQjBePcbAXEZFhUiqViIqKQnh4uGYt/dKlS0hISABQOMSibdu2cHBwELhqqiiJiYk4fPgwpFIpjhw5gszMTLRs2VLzvj+D2ctGXFwcVq9ejcDAQNSoUQOfffYZxo8fDwsLC6FLqzD//PMPOnXqhAYNGuDgwYMQiUSoVq2a0GWRAXn8+DHOnj2L4cOHY+HChZg3b57QJRmE+Ph4/Pjjj1i/fr1mLX7q1KkQi8VCl2bwYmNjce7cOchkMk3glL29Pbp06QKxWIw+ffrwvBYjkZaWhrt372r6+YiICFy/fl2rn1fvJVYHXjRt2pRBqERksJKSkhAdHY2kpCTExMRorr94+8mTJ0hNTdX6XAsLC9SqVQtOTk6ws7Mr9rr6NhERkSHgPDoCOI+uInAeCQGcR1cROI+OAM6jK2/sHwlg/1gR2D8SwP6xIrB/JEC3+0edCrYAAIVCgUmTJmHbtm0ICAjA1KlThS6JKlBubi7Gjh2L3bt3Y+PGjRgzZozQJRmsR48eoV+/fnj+/DmkUilatmwpdElUge7fv4++ffsiJycHhw8fhpubm9AlGayDBw/C19cXXbp0wa+//gpra2uhS6IKtHv3bowaNQo+Pj74+eefYWlpKXRJRGTE2P8Zt7Lu/27fvo0WLVpALBZDKpWiUqVKmo89evQIgwYNQmRkJH766Scu8hCRUTDG8AoASElJwT///FMowOLhw4fIz88vNsCiQYMGMDExEbp8wSUnJ+PWrVuawRuhoaF4+PAhgMKDNzp27Ag7OzuBKybSLzdv3sR3332H3bt3w9XVFTNnzsQnn3wCU1NToUsTTFRUFFatWoXNmzdDpVJpDZETiUT4+uuv8eWXXwL4byNB79698ejRI/zxxx9o27atUGWTwLKzszF8+HD8/vvv2LVrFwYNGgTgv5+ROnXqIDs7W3NfkUgEhUKBpk2b8v/cG8rLy8Pvv/+OlStX4vLly/D29sbUqVMxcOBAfi/LQVZWFs6fP68JupDL5bCyskL79u3h4+ODAQMGoF69ekKXSURERERERGQwsrKy3igU48Vj8fHxUCqVRT6HhYXFG4VivHi8SpUqWnshiIioYigUCkRGRmrW0eVyOcLCwpCRkQGRSAQXFxettXQPDw/uzzdCDx48QHBwMPbt24cLFy6gcuXK8Pb2ho+PDwYPHszhnWXo8ePHWLlyJbZu3Wq0gRYFnT59Gv369YOpqSkePXrEvTxUpnx9fbF7924MGDAAQUFB3F9XxnJzc3Ho0CFs2bIFMpkMHh4emDBhAnx9ffHWW28JXZ7BU6lUuHbtmmZt/ty5c8jJyYGzszPEYjHEYjF69eoFW1tboUulChQdHa3Ze6wOvLh16xZycnJgZmaGRo0aaQVetGrVCk5OTkKXTURUodTvkRcMvCjuemxsLAqODir43verwjAcHR25P5GIiHQa59EZN86jqzicR2LcOI+u4nAenXHjPLqKwf7RuLF/rDjsH40b+8eKw/7RuOl6/6hzwRZqa9aswYwZMzBmzBisX79eLwe70etJTk7GwIED8ffff2Pv3r3o16+f0CUZvLS0NAwZMgR//vkn9uzZA4lEInRJVAEuXbqE9957D05OTpBKpahTp47QJRm8y5cv47333oODgwNTBY2IupeZNGkSVq9ezZNciUgnsP8zTuXV/23fvh0DBw5E1apVC30sOzsbkydPxg8//IBZs2ZhyZIl/F1IRHrPWMMrACA1NRX37t0rNsDC1tYWjRo1YoDFS6SmpuLGjRtawzdu376N/Pz8QiEWHTp0QPXq1YUumUhvXb9+HYsXL8b+/fvRrFkzfPbZZ/D19TXqfvSff/7BihUrsH37dlSqVEkr0ELNysoKT5480ervMzIy8PHHH+P48ePYsWMHPvroo4osm3TA8+fPMWDAANy6dQsHDhxAly5dtD4+c+ZMrFmzptDPlKmpKVQqFd5++23MmDED/v7+qFy5cgVWbhhCQ0OxfPlyhISEwNnZGZMnT8bYsWM5VKMcPXz4ECdOnIBMJsOxY8eQmpqqGaTh4+ODHj16GO2gJiIiIiIiIiJdox7oVdqgjKSkpGKfo+DgrzcNy6hWrRrfTyAiKkZubi7u3buntY4ul8uRnZ0Nc3NzNGzYUGst3cvLS+dOyqOKoVQqceHCBUilUhw6dAh37txBjRo10KdPH0gkEvTp04cn7JYxdaDFli1bYG9vb/SBFjdu3EBAQAB2794NhUIBS0tL9OrVC7/99hvMzMyELo8MwNGjR9G/f3+YmJggJycHTZo0waxZszB06FCutZcDuVyOLVu2YOfOnbCwsMCwYcPw2WefoW7dukKXZjQyMzPx119/aYIurl69ClNTU7Ro0UITdNGlSxe93XNLby4vLw93794tFHih3qdtZ2enCbpQ71f29PTkXhoiIgA5OTl49uzZS8Mv1LcfP35caN+nnZ3dS8Mv1Nfr1KkDc3Nzgb5KIiIydpxHZ3w4j67icR6JceI8uorHeXTGifPoKh77R+PD/rHisX80TuwfKx77R+OkD/2jzgZbAMBvv/2G4cOHo2vXrvjll19QrVo1oUuichIREYGBAwciIyMDISEhaN68udAlGY28vDyMGzcOP//8M5YuXYrPP/+cAwcN2I4dOzBhwgT06NEDe/bsgZWVldAlGY0HDx6gX79+SEtLw759+9C+fXuhS6JykpmZifHjx2PPnj0IDAzExIkThS6JiEgL+z/jInT/t3PnTvj7+6Nr1674+eef+Xc9Eek8Yw6vAF4dYFG5cmW88847mpPB1CeG1a9fXyff/BZKWloarl+/XqIQi3bt2sHe3l7okokMQlhYGJYsWYL9+/ejefPmmDdvHgYNGmTUf+9cvXoVAQEB2Lt3L0xNTYsMtAD++902d+5cLFiwoNDHlEolpkyZgk2bNmHFihX47LPPyrlq0hV3795Fv379oFQqERISAldX10L3iYuLQ7169ZCTk1PkY5iYmMDExAR2dnaYOXMmJk2axHWJN3Dv3j2sW7cOW7duhZWVFUaPHo3Jkyejdu3aQpdm0BQKBS5evAipVKoZpGFhYQFvb2+IxWJIJBK4ubkJXSYRERERERERlYGCgRclDcV48fizZ8+Qm5tb7HO8SSjGi8fs7e05OJmI9FZqaipu3LihtY4eGRkJpVIJW1tbNGvWTLOO7u7ujmbNmnFIopHLzMzEyZMnIZVK8fvvvyM+Ph7Ozs7w8fHB4MGD0aFDB+5VKQcMtPif/Px8HDt2DCtWrMDp06dhZmaGvLw81K5dG7/88gskEgm6du2K3377zSi/P1R2Dh06hCFDhmDo0KFwc3PDzJkztdbap0+fDn9/f1SvXl3oUg1OXFwcduzYgXXr1iE6Ohp9+/bF1KlTIRaLhS7N6MTHx+Ps2bOQyWQ4fPgwnjx5gurVq6Nbt24Qi8Xo2bMn6tevL3SZJKCkpCStvc1yuRzXrl1DZmYmTE1NUa9evUKBF66uruwXiYheIisrq9gAjILXnz59ipSUFK3PVb9n/bIADPV1Jycno97LTUREZY/z6IwH59EJh/NIjIvQ80iMGefRGQ/OoxMW+0fjwf5ROAX7xyVLlmDo0KEMOjBg7B+Fw/7ReOhT/6jTwRbAf0k8gwYNgrm5OYKCguDh4SF0SVTG9u3bh1GjRqF58+bYt28fatWqJXRJRmnlypWYM2cOBgwYgO3bt8PGxkbokqgM5ebmYurUqdi8eTNmzZqFxYsXw9TUVOiyjE5SUhJ8fX0hk8nw/fffY8KECUKXRGXs/v37+OCDD/DkyRPs2rULvXr1ErokIqJisf8zbLrU/8nlcgwaNAgqlQr79+9H69atBamDiEgtOTkZ9+/fN9rwCuC/N7AjIiJw69YtRERE4ObNm7h9+zaioqIAAFZWVnB1dYW7u7vm4ubmhnr16nED2gvS09MRFhamNXzjzp07UKlUhUIs2rRpA0dHR6FLJjI458+fx7JlyyCVStG+fXvMmTMHPj4+Rv969dNPP2HEiBEwNTWFUql86X2trKzw+PFj2NnZFXufgIAAzJo1C76+vti0aRMsLS3LumTSISEhIfD19UXjxo1x6NChl/7+mj59OtavX19scEpBnp6euHjxIofvvaH4+Hj8+OOPWLNmDZ49e4YhQ4Zg1qxZaNq0qdClGYW4uDgcO3YMUqkUJ06cQHJyMpydnSEWiyEWi9G7d2++v0ZERERERERk5LKyskocjPGyYwkJCVAoFEU+h4WFxRuFYrx4zNHRkfuIiajcqIfOFlxHv337NvLz82FnZ6cZOKu+cOAsqT169AhHjx5FcHAwTpw4AYVCgXbt2kEikaB///5o0qSJ0CUarIKBFg4ODpgxY4bRBlrk5uZi7969WLp0Ke7cuQORSKTpzSpVqoRt27Zh5MiRuHLlCnr37o2mTZsiODiY60T0Rvbu3Ythw4Zh1KhR2LBhA3Jzc1G/fn3Ex8dDfdq3SCSCiYkJhgwZgrlz58LV1VXgqg1Pbm4uDh06hDVr1uD8+fNo2bIl/P394efnx/0xAnnw4AFkMhlkMhmOHTuG1NRUrfV5sVj80n1OZByUSiWioqI0f3uoQy/Ue3htbW3RqFEjrcALDw8P1KhRQ+jSiYj0Tnp6OmJiYhAfH4+EhATExsZqXY+Li0NCQgLi4uKQlJSk9bmWlpawt7eHk5MT7O3tYW9vD0dHRzg4OMDe3h4ODg6oWbMmatSowXBnIiIqMc6jM3ycR6cbOI/EsOnSPBJjxnl0ho/z6HQD+0fDx/5RN3z++edYtWoVunTpgkOHDrF/NDDsH3UD+0fDp2/9o84HWwD/DekYMmQILl26hM2bN8PPz0/okqgMKBQKzJkzBwEBAZg4cSJWrVoFc3NzocsyaqdPn8ZHH32E6tWr48CBA9z0bSCePHmCwYMHIzw8HDt27MDAgQOFLsmoqVQqLFy4EN9++y38/PywceNGbnI1ECEhIfDz80ODBg0QFBSE+vXrC10SEdErsf8zTLrY/yUmJmLo0KE4d+4c1q1bh9GjRwtdEhEZOIZX/Cc3Nxd37tzRhFeEh4fj1q1bePjwIVQqFSwtLQsFWLi7u6N+/fpGPxC+KHl5ebh7965m8Mb58+cRFhYGpVKJqlWrwt3dXTN4o2PHjnB2dha6ZCKDFhoaiuXLl0MqlcLb2xuzZ8+GRCIRuiydkZ+fj8mTJ2Pjxo1QqVTF3k8kEmH27NlYtGjRKx/zyJEj8PX1Rd26dREUFMTXOQOUn5+PFStWYO7cufjkk0+wadMmvPXWWy/9nJiYGNSrV++lwRYikQjVq1fH+fPn8c4775R12UYnJycHv/76K5YvX46IiAjNayBDfSqOUqlEWFgYgoODIZVKcfXqVVSuXBkdO3bUDNHw8vISukwiIiIiIiIi0mPq0IvSBmUkJyejuNNF1KEXpQ3K4DBRIuMWHR2tFWAhl8sRExMDAHByctIKsHB3d+f6EhUSHh4OqVSK4OBg/PXXX7C0tES3bt00YRYvC2Cn0mOgxf+kpKRgx44dWLJkCRITEwFAa629UqVKqFu3Lu7du6fZVxYWFoaePXuifv36OHr0KKpVqyZI7aSftmzZggkTJuCzzz7D8uXLNWu969evx5QpUwrt9TAzM4NCoUDv3r0xY8YMiMViIco2eHK5HFu2bMHOnTtha2uLkSNH4tNPP8Xbb78tdGlGS6FQ4Pr165r1+WvXrsHExAQeHh6a9flOnTrx3HTSSE1Nxb1797QCL8LCwjS/352cnODu7q4VeNGsWTP+DBERlZHc3FxNyEVsbCwSEhIQHx+vua4Ow1Bfz83N1fr86tWrw8HBATVq1NCEXqgDMQped3Bw4N9gRERGjvPoDBPn0ekeziMxTLo4j8SYcR6d4eI8Ot3C/tEwsX/UDZmZmfjmm28QEBCAGjVqID8/n/2jgWH/qFvYPxoufewf9SLYAvhvOMS8efOwYsUKDBo0CFu2bEHVqlWFLoveUFRUFPz8/PD3339j/fr1GDVqlNAl0f97+vQpBg8ejLCwMCxduhRTp04VuiQqhd9//x1jx45FtWrVcODAAbi7uwtdEv2/I0eO4JNPPkHNmjWxe/duJnjqsby8PCxevBjffvsthg4dis2bN79y2BsRkS5h/2dYdLn/UyqV+Pbbb/Htt99izJgxWLt2LRcDiKhUGF7xP0qlElFRUQgPD0dERITWv9nZ2RCJRKhbty7c3Ny0TsZq0qQJE9CLoVAoEBkZqTV848qVK8jJyYGtrS2aNWumNYDDzc2Ng6SJKkhoaCi+/vprnDp1Ct7e3liwYAFP1i9Gfn4+Pv30U2zevLnYcAtLS0tERUXB3t6+RI/54MEDfPDBB3j8+DF27dqFXr16lWXJJKDnz5/Dz88PJ0+exJo1azB+/PgSf+7kyZOxefPmIsMtRCIRbG1tERoaCldX17Is2eipVCqcOnUKa9asgVQqRYsWLTBx4kQMGzbMKIcNCSkhIQFnzpxBcHAwQkJC8Pz5c9SsWRM9evSARCJBz549UaVKFaHLJCIiIiIiIiIjpFAokJaWhqSkJKSlpWku6enphY6lpaUhOTm5yGOpqalQKpVFPoe5uTlsbGxQpUoVVKlSBdbW1rCxsdE6ZmNjozlepUoV2NrawtraWnOsatWqsLa25j4SIh1WcF+Ceg390qVLSEhIAFA4xKJt27ZwcHAQuGrSRQqFAhcvXsS+fftw8OBBPH78GA4ODujVqxcGDx6Mnj17onLlykKXafAePXqEgIAABloAuH//PtasWYMtW7ZAqVRCoVAUeb9KlSrhl19+wccff6x1/Pbt2xCLxXB0dIRUKkWtWrUqomzSc0uWLMGXX36JBQsWYP78+Vofy8vLg7OzM6Kjo4vc6yESiaBQKNC0aVPMnDkTH3/8MczMzCqqdKMRGxuLn376CWvXrkV8fDwGDBiAcePGcY+SDkhMTMTp06chk8lw7NgxREVFwcrKCu3bt9cEXXh5eQldJumg6Ohozd5qdeDFrVu3kJOTAzMzMzRq1EgTdOHm5oZWrVrByclJ6LKJiAyeOrA5JiYG0dHRha4XvB0fH1/ofWo7Ozs4OTnBzs4OtWrV0lx/8Xbt2rU5n4iIyABxHp1h4Tw63cV5JIZFl+eRGDvOozMcnEenu9g/Ghb2j7ohODgY/v7+iI+Ph0KhwFdffYXx48ezfzQg7B91F/tHw6HP/aPeBFuoHTt2DCNHjkTlypXx888/o2PHjkKXRK9p3759GDduHGrXro1du3ahRYsWQpdEL1AoFFi0aBEWLVqE9957D1u3bkX16tWFLoteQ1ZWFr744gsEBgbCz88PGzZsgLW1tdBl0QsePXoEPz8/XLp0Cd988w1mzpyJSpUqCV0WvYbbt2/jk08+wT///IOVK1di3LhxQpdERPRG2P/pP33q/4KDgzFs2DC88847CAoKQr169YQuiYh0GMMrCit4YpX632vXriEzMxPA/4ZFqE+sUv/LdO3iFRViIZfLkZ2dDRsbGzRv3pwhFkQ6QCaT4auvvsLFixfh7e2Nb7/9Fl27dhW6LJ2Xn5+PkSNH4ueffy408EAkEmHmzJlYsmTJaz1mZmYm/P398csvv2D69OlYsmQJh8voudOnT2PYsGEwMTHB/v370aZNm9f6/JiYGNSrV69QsIVIJIKlpSUuXrwINze3siyZXnDt2jWsXr0ae/fuRfXq1TF+/HhMmTIF1apVE7o0o6NUKhEWFgaZTAaZTIYzZ84gPz8fHh4e8PHxgUQigaenJ/tJIiIiIiIiItI7WVlZhcIuCgZlvHgsLS0NKSkpRd6vOJUrV4a1tfVLwy/Ul6pVq2oFZrx4Hysrqwr87hAZlqLW0MPCwpCRkQGRSAQXFxetNXQPDw+d3atGuiEpKQkymQzBwcH4448/kJKSAjc3N0gkEvj4+MDb25vvm1eQogIt/P39jXK9V6lUwtfXF7/++itEIlGhtc6CTE1N0bBhQ0RERBR5zs/Dhw/Rt29fZGRkICQkBM2aNSvP0kmP5eXlYcKECdixYwcCAwMxceLEIu+3fft2jB07tshgC7VKlSohPz8ftWrVwr59+9C+ffvyKtuo5ebm4tChQ1i9ejUuXLgAT09PjB8/Hn5+ftyTqSMePHigWZ8/ceIEkpOTUbNmTbz77rsQi8WQSCQMJ6Bi5eXl4e7du1qBF3K5HDExMQD+G5bu5uamtS/b09NTb4aIEBEZoqSkpCJDL4oLxCjIwsKiyNCLogIx3n77bQbIERHpEc6j03+cR6f7OI9E/+nTPBJjxnl0+o/z6PQD+0f9x/5ReNHR0Zg5cyZ2796NSpUqada279y5g8aNG7N/NADsH/UD+0f9p+/9o94FWwBAbGwsRo4cCZlMhi+//BJz587lopAeePbsGSZNmoRff/0V06ZNw9KlS41y46s+OXXqFIYPH478/Hz8+OOP6NGjh9AlUQlcvnwZw4YNQ0JCArZu3YqBAwcKXRK9hFKpxNKlS/HNN9+ge/fu2LZtG+rUqSN0WfQKKpUK69evx+zZs9GiRQvs2rULzs7OQpdFRFRq7P/0kz72f3fv3sUHH3yA2NhY7NmzB2KxWOiSiEhApQmvcHZ2hru7OywsLAT+KspeUlKSVniFXC7HjRs3kJaWBuC/AIsXwytatmzJAS2voFKpcOfOHfz999+4cuUK/v77b1y/fh3Z2dmwtrZGy5Yt0apVK3h5eaFVq1ZwcXHh8AQigclkMsybNw+XL1+GWCzGokWL0LZtW6HL0huJiYno0aMHoqKikJKSojX0wMLCAlFRUXBwcHijxy648Wf37t1o3rx5WZVNFaTgxqD+/ftjy5Ytb7wxaMKECfjhhx80A19EIhHMzc2Rk5ODnTt3YujQoWVZOhUjJiYGmzdvRmBgIPLy8jB06FDMmDEDjRs3Fro0o/Xs2TOcOnUKMpkMUqkU0dHRcHBwQOfOnTVBF3Z2dkKXSURERERERERUobKyspCdnY2srCzNkLEXbxd1rLj7FEc9qMzS0lJraNmLt191H3t7e56vQgYrNzcX9+7d0wqxkMvlyM7Ohrm5ORo2bKgVYuHl5cUhzlQi//77L44fP47g4GAcO3YMKpUK7dq1g0QiwcCBA9GoUSOhSzQqBQMtHB0dMX36dKMNtCjoxIkT6NevH5RK5UsDBADgwIEDeP/994v9eFJSEgYOHIgrV65g79696NevX1mXS3ouPT0dQ4YMwdmzZ7Fnzx5IJJJi76tQKNCoUSM8evTopT+bIpEI/fr1w/79+yESicqjbCpALpdjzZo12Lt3L+zs7DBy5EhMmjSJ5wHqEKVSibCwME3QxdmzZ6FUKtGyZUuIxWKIxWK8++67Rv/7j15NvYdbLpdr9nFfu3YNmZmZEIlEqFu3bqHACzc3N+43JiLSMdnZ2Xj+/HmJAjAeP35cKPDQwsLilQEY6ts1a9bksDAiIoFxHp1+4jw6/cN5JPpJH+eRGDPOo9NPnEenf9g/6if2j8JTKBRYv3495s6di7y8PM17aiYmJvDw8MDVq1e17s/+UT+xf9Qv7B/1k6H0j3oZbAEA+fn5WLt2LebMmYOGDRti69ataNOmjdBlUTH27NmDadOmQSQSYfv27ejVq5fQJVEJPX/+HBMmTMC+ffswbNgwrFq1CtWqVRO6LCpCeno6vvrqK6xduxZdu3bFjh07ULt2baHLohK6fPky/Pz8EBsbi6VLl8Lf358bGHRUREQExo0bh8uXL2POnDn46quvuAGciAwK+z/9oe/9X3p6OkaPHo2goCAsXrwYs2bN4kZ+IgNWkvAK9Yk+xhReAfzve1PwBKibN28iLi4OAGBnZ6cVXuHu7o4WLVrA3t5e4Mr1w/379zUhFleuXMHVq1eRlpYGCwsLeHh4oFWrVppLkyZNYGpqKnTJRIT/1oCkUikWLlwIuVyOfv36Yf78+WjdurXQpemV+Ph49OjRA8nJyTh58iQWLFiAvXv3QqlUwszMDNOmTcOKFStK9RwPHjyAr68vwsLCsHTpUkyePJnva+qJW7duYcSIEYiMjMT333+P0aNHl+rxHj9+DGdnZygUCohEIlhaWuLMmTMICgrC8uXLsW3bNowYMaJsiqdXSktLw/bt27F69Wo8fvwYffv2xRdffAFvb2+hSzN64eHhkEqlmiEaKpUKHh4eEIvF8PHxQYcOHfg6SkRERERERET0msoqIOPFgOiCLCwsSh2QYWdnh2rVqhns2jfpvtTUVNy4cUMrwCIyMhJKpRK2trZo1qyZJrzC3d0dzZo1g7m5udBlkx4JDw/Hvn37IJVKIZfLYWdnp3n/u3///qhSpYrQJRoddaDF5s2bUbNmTQZaFOGPP/7AwIEDoVKpUNRptqampnB3d0dYWNgr97jm5ORgzJgx2Lt3L9auXQt/f//yKpv0zIMHDzBgwAAkJiYiODgYXl5er/ycXbt2wc/Pr8ifSwAwMzNDx44dceTIEf6frmCxsbHYtGkTNmzYgJSUFPTv3x9Tp07lerwOSk9Px8WLFzVBF3K5HG+99RY6dOigCbrw9PTkOQxUIgqFAo8ePSoUeHHnzh2oVCrY2tqiUaNGWoEXLVu2RPXq1YUunYiISigrK6vI0IuiAjHi4uK03kuuXLkyqlWrVmToxYuBGG+//TZsbW0F/EqJiAwX59HpF86j01+cR6I/9H0eibHjPDr9wXl0+ov9o35h/yg8uVyO0aNH4+bNm4X2WYpEIgQEBGDKlCmFPo/9o/5g/6jf2D/qD0PqH/U22ELt4cOHGD9+PE6ePIkxY8Zg5cqVsLGxEbos+n/R0dGYNGkSfv/9d/j6+uL7779nE6GnpFIpJk6ciJycHHz33XcYNmyY0CVRAUePHoW/vz9SksGo4wAAIABJREFUUlKwfPlyjB07lhvq9FB2djaWLVuGpUuXolWrVti6dSvc3NyELov+X15eHlatWoWvv/4arq6u2Lp1K1q1aiV0WURE5Yb9n24zpP5vy5YtmDRpEvr06YOdO3fy5FUiPcbwipdLS0vD3bt3ER4erjmZKSIiQvO9qVKlCho2bKgVYtG6dWvUrFlT4Mr1R3R0tNYAjkuXLiEhIQEikQguLi6aARxeXl5o3bo1T+gl0kEqlQohISFYsGABwsLC0LdvXyxYsKBEJ/STtvj4eHTv3h3p6ek4deoUGjRoAKVSiaFDh+K3335D5cqVERUVBUdHx1I/l0KhwOLFi7F48WJ4eXlh27ZtcHd3L4OvgspDTk4OFi9ejGXLlsHLyws7d+5Eo0aNyuSxx44di23btsHW1hZnz56Fh4cHAGD+/PlYtGgR1q9fjwkTJpTJc1HJqF9Xly5digsXLsDLywtTpkzB0KFD9XaDgyFJT0/H6dOnIZVKceTIETx+/Bg1atRA165dIRaLIZFI4OTkJHSZRERERERERERGRR14UZqAjKysLCQmJiIvL6/Y5yltQIb6WJUqVXjiGRUpKSlJM3BVfbl9+zby8/NhZ2enGbaqvri6uvJniV5bdnY2QkNDERwcjKCgIDx9+hT169dHz5494ePjg169ejEcRSBRUVFYtWoVAy1K6FUBAocPH0afPn1K9Fj5+flYuHAhvvnmG4wYMQIbNmww6D1x9GqHDx+Gr68v6tWrh0OHDqFu3bol+jyVSoWmTZsiMjKy0FAQMzMzeHh44PTp07CysiqPsqkEcnJy8Mcff2DVqlW4ePEivLy8MG7cOAwbNoz/73VUTEwMTpw4AalUipMnT+L58+dwcHBA586dIRaL0bdvX9SpU0foMknPpKam4t69e1qBF2FhYUhMTAQAODk5aYIu1H+HNWnSBKampgJXTkREpZGbm4uEhAQkJCQgNjZWcz0uLg7x8fGFPpaVlaX1+TY2NnBycoK9vT1q1KgBR0dHODo6okaNGprbDg4OmttmZmYCfaVERPqJ8+h0G+fRGQ7OI9FthjSPxJhxHp1u4zw6w8H+UbexfxRecnIy5s+fj3Xr1sHU1BQKhaLQfUxNTfH06dOXzi1g/6jb2D8aBvaPus0Q+0e9D7YA/tvwt2PHDnz++eewtrbGihUr8OGHH/JFUEDZ2dlYtWoVli5dijp16mDLli149913hS6LSiklJQWzZ8/Gli1b0KNHD6xevZq/pAT277//YubMmdi/fz8+/PBDBAYGlskgMhLW9evXMWbMGNy8eRPTpk3DvHnz+CaHwI4cOYIZM2bg8ePHWLhwIaZOncrNg0RkFNj/6R5D7f/OnTuHIUOGwMbGBgcOHOAQXCIdxvCKV8vLy8Pdu3e1wivCw8Nx584dqFQqmJubo2HDhlonKbm7u6NBgwZ8P/M1pKSk4ObNm5oBHKGhoXj48CGA/04C69ixI7y9veHl5QVPT0+89dZbAldMRC+jUqkQFBSEr7/+GpGRkejbty8WLlyIli1bCl2aXoqLi0P37t2Rm5uLU6dOaZ1wrVAoMGTIENStWxerV68u0+e9desWxo4dC7lcjhkzZuCbb77hYBQdc/78eYwbNw7//vsv5s+fj88//7xM3+d8+PAh2rRpg6NHjxYKpFmwYAEWLlyItWvX4tNPPy2z56SSCw0NRWBgIA4cOIC6deti/Pjx8Pf3Z8CkDnnw4AGCg4MhlUpx7tw55OXloWXLlhCLxRCLxejcuTNPUCUiIiIiIiIi0iNZWVmlDshISkrC8+fPkZOTU+zzqAMvShqGUdx97O3t+f6TnoqOjtYKsJDL5YiJiQHwvyGq6ou7uzucnZ0Frpj02bNnzxASEgKpVIqjR48iLS0Nbm5uGDx4MCQSCTw9Pbn/RUAMtHgz4eHh6N+/P+7fv6913NTUFJ6enrh8+fJrP6Y6zKB+/foICgpCgwYNyqpc0hP5+flYsWIF5s6di48//hhbtmx57T1sQUFBGDRokNYxMzMzVKlSBcOHD8fKlSvLsmQqBblcjjVr1mDv3r2oVq0aRowYgUmTJjEkQYepVCpcu3YNMpkMMpkM586dQ05ODpydnTVr9L179+Y5nfTGoqOjNXvI1YEXN2/eRG5uLszMzNCoUSOtveStW7dGzZo1hS6biIjKSXp6ulboRXx8vCb0IjExUSscIzExsdBwwGrVqmmCLuzt7eHo6KgJxSjqtkgkEugrJSLSHZxHp3s4j84wcR6J7jHUeSTGjvPodA/n0Rke9o+6h/2jbti3bx/8/f2RlpaGvLy8Iu9jamoKsViMo0ePvvLx2D/qHvaPhon9o+4x1P7RIIIt1OLi4jBnzhz89NNP6NChA77//vtCQ1Oo/AUFBWHmzJmIj4/HF198gZkzZ3IDrIEJDQ3F1KlTcePGDfj7++Obb75hcl0FS09Px7JlyxAQEKAZQNa3b1+hy6IypFQqsWHDBixYsADm5uZYvHgxRowYgUqVKgldmlG5c+cOZsyYgSNHjmDgwIEICAhA/fr1hS6LiKjCsf8TnjH0f9HR0Rg8eDBu3LiBH374AR9++KHQJREZLYZXlIxCocCjR4+0wivkcjkiIyOhVCo1Jx0VDK9wc3ODq6sr/7Z7TWlpabh+/brWEI7bt28jPz+/0BAOb29v9ilEeiQvLw979uzBkiVLcO/ePXzwwQdYuHAhmjRpInRpeis2Nhbdu3eHUqnEyZMnUbt27UL3ycvLQ3p6Ouzs7Mr8+VUqFbZt24bPP/8cjo6OWLJkCQb/H3t3HldT/v8B/NUq2mhB2RtriyJhlGWohNtYRtlmhu9Yx74XY5gZazOEML5hmMFkSRlTiK69MoZbikoiCaXNbbl1q7v9/vC759tV9urc5f18PO4j53a79y0d99P5fD7vl49Pnb8OeT85OTn44YcfsG/fPgwdOhS7d+9Gu3bt6uW18vLy0Lx581o/FxAQgBUrVmDbtm2YP39+vbw+ebuHDx8iKCgIv/32G3R0dDBlyhQsXboUbdq0Ybs0Uk15eTni4uIQERGBU6dO4fHjxzA3N8fgwYPh7u6O4cOHUxMUQgghhBBCCCGEEA3zPmEYb3pMcXExpFJpra9hYGDw0QEZzZo1g5mZmUasG2hoEokEjx8/ZtYn8Hg83LhxA/n5+QBqhlj06dPntdfsCXkf1YOZL1++DF1dXbi5uYHD4WDs2LG1zkmShkWBFh8uPj4eXl5e6Nq1K0aMGAF/f3+Fz1+8eBGfffbZBz33gwcPMGbMGOTk5ODQoUPw8vKqi5KJCigoKMCUKVMQHR2NwMBAzJkz54OeRyaToWfPnrhz5w6zJtHGxgaLFi3C3LlzMWPGDOzYsYPWIyqRnJwcBAcHY9euXSgpKcHIkSOxcOFC9OvXj+3SyFvI5+jlQRfx8fHQ0dGBo6MjOBwOvL290aNHDzrfyEcRiUS4f/8+E3Qh/91OHkzYrFkz2NraKgReODs7o3HjxixXTgghpKHJr+vm5OQgOzubub5b2/GTJ09qNBWUX6u1traGlZUVc922tuM2bdpQ4DEhRK1RPzrlQP3o1B/1I2GfJvQj0XTUj045UD869UfjR+VA40fl4O/vj4CAgLc+TltbGwcPHsSkSZPe+blp/Mg+Gj+qPxo/Kgd1Hz+qVbCF3K1bt7Bw4UJcv34dX3/9NdasWaNW/2jK6p9//oG/vz+uXr2KSZMmYdOmTbQ4WY1JpVIcOHAA3333HUQiEVatWoVZs2bRApl6JhaL8fvvv2PNmjUoLy/H999/j3nz5tFksRorLCzEmjVrEBwcDEdHR2zcuBEeHh5sl6X2cnNzsWHDBuzevRu2trbYunXrB29GIIQQdUHjP3Zo2vhPLBZj1apVCAgIwIwZM7Bz5061/bsSwjYKr3g/2dnZChuIUlJSkJKSAqFQyHyfqodX2NnZwd7eniZHP4B801ZsbCxiYmLA4/Fw7949SKVSasJBiBqRB1qsW7cOmZmZGD9+PFatWoXOnTuzXZpKe/LkCQYPHgxdXV1cuHAB1tbWrNXy+PFjLF++HMePH4enpycCAwNhZ2fHWj2aqqKiAoGBgdi4cSMsLCzw888/sx408vPPP8Pf3x+BgYFYuHAhq7VouuLiYvz+++/45ZdfkJ+fj5EjR2Lp0qXo3bs326WRWmRkZIDL5SIiIgJcLhcVFRWwtbWFt7c33N3dMWDAAOjr67NdJiGEEEIIIYQQQghREfLGaB8TkCEUCpGfnw+xWPza1/nYgAz5faamphq3mU4sFiMtLY0JsODxeLh9+zbKysqgq6uLzp07K8yfOzk5wcjIiO2yiZqQSqVISEhAREQEQkNDkZKSwoQvczgcjB49GsbGxmyXSaAYaGFlZYUVK1bgm2++ga6uLtulqYSYmBhwOBw4Ozvj1KlTMDIywurVq7Fu3TpoaWnBzc0NV65c+ajXKCsrw8yZMxESEoJ58+YhICBAo9bdaSIul4vJkydDR0cHx44dw6effvpRz3fmzBmMGDECOjo6aNWqFf755x9YWVnh77//hq+vL3x8fHDgwAE675VMZWUljh07hsDAQCQmJsLZ2Rnz58/HhAkTaG28isjNzcXVq1fB5XJx+vRpPHv2DBYWFvjss8/g7u6OoUOHol27dmyXSdQEn89XWKOenJyMhIQElJeXK6xTrx54YWtrCy0tLbZLJ4QQoiSEQuE7hWBkZ2ejoKCAgjAIIRqJ+tGxg/rRaRbqR8IOTetHQqgfHVuoH53mofEjO2j8qFwqKysxe/ZsHDhwAG9qW964cWPk5+fD0NDwvZ6fxo/soPGj5qHxIzs0ZfyolsEWACCTyXDs2DF89913ePr0KaZOnYqVK1eidevWbJemdng8HtasWYPTp0/D1dUVmzdvRt++fdkuizSQkpISbNiwATt27EDTpk2xcuVKTJ8+nRqn1DGJRIKQkBD8+OOPyMrKwtSpU/HTTz/B0tKS7dJIA0lOTsayZctw9uxZ9O/fH2vXrsXAgQPZLkvtFBQU4JdffsGuXbtgYmKCNWvWYNq0adDR0WG7NEIIURo0/msYmj7+CwkJwYwZM+Ds7Ixjx46hZcuWbJdEiEqqqKjAw4cPkZKSUiO44tGjR5DJZBRe8YrqARbyj/LGEABgZWWlEF4h3yREE2MfprZGHLdu3UJlZSVMTEzg4OCg0IiDGqITovqqqqpw9OhR/PTTT3jy5AnGjRuH1atXo2PHjmyXpvKysrIwePBg6Ovr48KFC7CysmK7JADAtWvXsHDhQiQlJWH69On47rvvaBFRA5BIJDhy5AhWr16NvLw8+Pv7Y8mSJUozZtmyZQuWLl2K9evXY+XKlWyXo/Hk/zf/8ssvuHv3LlxdXeHn5wcOh0Mb4JWUUChEbGwsE3SRkpICQ0NDfPbZZ/D29oaXlxfatm3LdpmEEEIIIYQQQgghREMIhcKPDsjg8/l48eIFKisrX/s68uZqHxOQYWBgAEtLS6XbhFlVVYX09HSFuXMej4eKigro6+ujY8eOCnPntE6B1Ify8nJcuHABkZGR+Pvvv/H8+XPY2NiAw+HA29sbgwYNoqbpSiQzMxMbN27EgQMH0KpVKwq0+ACXLl3C559/jsGDB+PYsWMK6+QWLFiAoKAgxMXFfXQogVxoaChmzpwJKysr/Pnnn3BycqqT5yXKQyQSYf369Vi7di1Gjx6NPXv2wMzMrE6eu0+fPsjKysL169cVGuacPXsWX3zxBTw9PXHs2DE0atSoTl6P1C0ej4ft27fjyJEjsLCwwOTJkzFv3jxaP6NiMjIywOVyweVyERUVhdLSUtjY2MDd3R3u7u7w8PBA06ZN2S6TqBGxWIysrKwagRepqamQyWQwNTVFx44dmbXsFHhICCHkfdRFEMa7hGBYWVkp5fVYQojmon50DYf60Wk26kfSMDS9HwmhfnQNhfrRaTYaPzYcGj8qtz179mD27NkAXo5BqtPT08O4ceNw6NChD35+Gj82DBo/Eho/NgxNGz+qbbCFnEgkwu+//45169YhLy8PM2bMwJIlS6iRQx24desW1q9fj1OnTsHFxQU//vgjvLy82C6LsOT58+fYuHEjgoOD0bJlS6xYsQKTJ0/WuAaYdU0kEuH48eNYt24dHjx4gC+//BKrV69Ghw4d2C6NsCQuLg7ff/89Ll68iCFDhmDVqlUYNGgQ22WpvLy8PAQFBSEoKAgGBgbw8/PD7NmzadMXIYS8AY3/6geN//4nKSkJY8aMQUVFBUJDQ+tscyAh6obCKz4Mn89XCK9ISUlBYmIi8vPzAQDNmjVjNvrIAyxos8/Hy8jIQExMDNOEIz4+HkKhEEZGRnB0dFRowmFra0uNlAlRI5WVlfjjjz+wdu1a5OXlYcqUKVi1ahXatGnDdmlq4fHjx/jss89gamqK6OhoWFhYsF2SAqlUigMHDuDHH39Efn4+Zs2aBX9/f7Ro0YLt0tSOVCrFiRMn8MMPP+D+/fv46quvsG7dOqVshrB7927MmTMHP/30E1atWsV2OeT/xcTEICAgAKdPn0bHjh0xZ84czJgxg66VK7nqDTTOnTuHkpISpoEGh8OBp6cnNbEhhBBCCCGEEEIIISrjfQMyXheYUVRUhNdtlzIwMHivMIzXHZuZmb33mouSkhIkJSUpBFikpaVBIpHAxMQEDg4OzLy5nZ0dHBwcaJMuqTf5+fk4e/YsIiMjcebMGQiFQvTo0QMcDge+vr6wtbVlu0TyCnmgxf79+9G6dWsKtPhAERER8PX1xZgxY/DHH3/U+P7JZDL88ccfmDJlSp2+bmZmJr788kvweDysX78eCxYsUNtNy5omMTERU6ZMwcOHDxEUFFTnPztxcXEwNzdHly5danzu2rVr4HA4cHV1RVhYGM3tKrGcnBwEBwdj165dKCkpwciRI7Fo0SJaI6+ChEIhYmNjmXn6hIQEaGlpwcnJiQm6GDhwIDVwJvWipKQE6enpCoEXCQkJKCwsBABYWVkprH93dnZG165dacxBCCHko1AQBiFE3VA/uvpD/ehIddSPpH5QPxLyKupHVz+oHx2pjsaP9YfGj6rj77//hq+vL6RSaY1rP1FRURg6dOhHvwaNH+sHjR/Jq2j8WD80dfyo9sEWcpWVldi7dy8CAgKQm5sLHx8fLF26FD169GC7NJUik8lw5swZbN68GZcvX0bPnj3xww8/wNvbm+3SiJJ4+vQp1q9fjwMHDsDU1BRz5szB7Nmzla6RlrIrLS3F3r17sX37dmRnZ2PcuHFYvXo1OnfuzHZpRElcvnwZa9aswdWrV9GrVy8sXboUX3zxBW1IeE/3799HYGAg/vjjDxgZGWHx4sWYN28eNaslhJD3QOO/ukHjv9qVlJRgypQpiIiIwLp16+Dn58d2SYSwgsIrPlxxcTEePHigEGLB4/GQk5MD4H8BFvLNO3Z2dujevTuaN2/OcuWqLzs7W6ERR1xcHF68eAE9PT106tSJacTh5uYGJycn2jBFiJoqKyvDvn378PPPP6OwsBCTJ0/G6tWrlbLJvqpKT0/H4MGDYWlpiejoaJibm7Nd0mtVVlYiODgYmzZtQklJCWbPno2FCxfC2tqa7dJUnkQiQXh4ONatW4e7d+9i3LhxWLNmTa1NLZRJcHAwvv32W6xZswZr1qxhuxxSTVJSEnbt2oWDBw/CxMQE3377LebOnUvXe1SAWCzGP//8g8jISHC5XMTHx6Nx48bo168f3N3d8fnnn6Nbt25sl0kIIYQQQgghhBBCSIOQB168LvziXQIyhEIh8vPzIRaLX/s6rwu/MDQ0hEQiAZ/PR35+PvLy8pCbmwuZTAYjIyN06NAB3bt3R+/eveHi4gIXFxdaC07qXXJyMiIjIxEREYG4uDgYGBhgyJAh8Pb2hre3N6ysrNgukdSCAi3qTkhICCZPnoxp06Zh165d0NbWbtDXl0gk2LhxI9auXQtHR0fs27cP3bt3b9AaSN0RCoVYu3YtNm/ejN69e+OPP/7AJ5980uB18Hg8eHl5wdbWFhERETAxMWnwGsi7q6ysxLFjx7BlyxYkJSXB2dkZ8+fPx4QJE6iBr4oqKCjApUuXwOVyERUVhaysLBgZGaFv375M0IWzszPbZRI1J1+3XX29vDxEUV9fHx07dlQIvHBxcUHLli3ZLpsQQogakslkyM/PR0FBAQoKCphrorUdyx8nlUqZr9fS0oKFhQUsLS2Zjy1atGCOLSws0Lx5c4VjGkcTQj4U9aOrG9SPjrwN9SOpG9SPhLwN9aOrG9SPjrwJjR/rBo0fVY9IJIKHhwcePnwIU1NTpKWlMWvpmjVrhry8vDp9v6HxY92g8SN5Gxo/1g1NHz9qTLCFnEgkwtGjR7FlyxYkJiZiyJAhmDNnDjgcDk1WvEFJSQmOHDmCoKAgpKamwsvLC0uWLMGQIUPYLo0oqefPn2Pnzp3YvXs3Kioq8PXXX2PWrFlwdHRkuzSllp6ejr1792Lv3r0Qi8WYOnUqFi5ciPbt27NdGlFSN27cwJYtWxAeHo42bdpg7ty5mDx5Mv3y9QZSqRRcLhe//vorIiIi8Mknn2DRokWYPHkymjRpwnZ5hBCismj892Fo/Pd2MpkMP//8M7777juMHz8ee/bsofdsopY+NrzC1tZW7RN636Sqqgrp6ekKG3JSUlKY752JiQk6depUI8TCxsaG7dLVwqshFjdu3EB+fj50dXXRuXNnJsTC2dkZvXr10tigFUI0iUAgwG+//YaAgACUlJRg6tSp8PPzowCDOpaWloYhQ4agRYsWiI6OhpmZGdslvZPy8nLs3r0bmzdvxosXLzBx4kQsWbIE9vb2bJemcsrKynDgwAFs3boVmZmZGDNmDNasWaNS38u9e/di1qxZWLZsGTZt2sR2OeQVubm52L17N3bu3AmBQABfX1+sWLGCghFUyPPnz3H+/HlERkbi/PnzKC4uho2NDdM8w8vLC8bGxmyXSQghhBBCCCGEEEKI0hMKhW8Mv8jMzMS9e/eQlZWF7OxsPH/+HEKhEACgp6cHAwMDyGQyVFZWQiQSvfZ15KEY1QMyagvNeNtjLC0taY8UAfCyif7169cRGRmJkydP4v79+7C0tISXlxe8vb0xbNgwjdlEqYqqB1q0adMG/v7+FGjxEf773/9izpw5SjE3mZ6ejhkzZiAmJgZLlizBDz/8QGuqVExMTAymT5+OrKwsrF69GkuXLoWOjg5r9aSkpMDDwwPW1tY4e/Ys7StTETExMQgKCsLJkydhYWGBmTNnYs6cObC0tGS7NPIRMjIywOVyweVymXl6KysruLu7w9vbG0OGDFGZdV5EtdW2vv7WrVt4/vw5gJfNpmxtbRUCL5ydnTV6TwIhhJCGVz0IQx4OnJeXV+ux/CaRSBSew9TUFC1atGCCLuSBGM2bN4eFhQXMzc1hYWHBPIauhRFCXkX96D4M9aMj74v6kXwY6kdC3hf1o3t/1I+OvC8aP34YGj+qrpkzZyIkJARxcXGwsbHBlClTEB4eDi0tLcybNw9bt26tl9el8eOHofEjeV80fnx/NH78H40LtqguOjoagYGBOH/+PJo3b44pU6Zg6tSp6NixI9ulKY24uDjs27cPx48fh1Qqxfjx47F48WKVaohD2CVvqrRjxw7cv38fLi4umD59OsaPH09NUv5fRUUFwsLCsG/fPly5cgWtW7fG7NmzMXPmTDRr1ozt8oiKyMjIwLZt23Dw4EFUVFRg1KhRmDZtGgYPHgxtbW22y1MKT58+xYEDB7B//35kZmaif//+WLRoEUaOHEnfI0IIqUM0/ns7Gv99mEuXLmH8+PGwsrJCWFgYPvnkE7ZLIuS9UXjFxxOJRLh//75CeEVycjLu3bsHqVQKfX19dOzYUWFzjZ2dHTp06AAtLS22y1cLxcXFuHPnDhNiERMTg0ePHgEArKys4ObmBldXVzg7O6Nnz54ad8GdEE1XWlqK/fv3Y+PGjSgrK8M333yDFStWoGXLlmyXpnbu3buHIUOGwNraGufOnVPJzc6VlZU4fPgwAgMDkZqaiqFDh2L27NkYPnw4q80eVEFGRgb27duH4OBgVFRUYMqUKVi0aJHKznH+9ttvmDFjBpYuXYqAgAC2yyG1KCsrw59//omtW7fi/v37GDx4MObPnw9vb2+2SyPvQSKR4Pbt24iIiEBkZCTi4+NhYGAAV1dXJujC2dmZ7TIJIYQQQgghhBBCCFFqEokEjx8/RnJyMjNvfuPGDeTn5wN4OW/u7OzM3Pr06YPmzZvXeJ7XBWS87vh1jykqKsLrtoUZGBh8UEDGq8fm5uZo1KhRvX5fSd0qKyvDxYsXERoaioiICBQVFcHGxgYcDgc+Pj7o168frZ9XchRoUfd+/vln+Pv7Y/ny5ayHWshJpVL8+uuvWLlyJVq2bInAwEBwOBy2yyJvkZ2djZUrV+LgwYPgcDj49ddf0bp1a7bLAgA8evQI7u7uMDAwQHR0NKytrdkuibyj7Oxs7NmzBzt37oRAIMDnn3+OxYsXo2/fvmyXRj6SfJ5eHnRx5coVSCQS9OjRg5mn79+/P423SYPi8/nM77Tytfjx8fEQCoXMXgb5Onxai08IIUQZya+R5uTkIDs7m7le+uoxn89HdnY2ioqKFL7+1eulzZo1g7W1NaysrGo9bt68OV2TIUSDUD+6t6N+dORjUT+S1xMIBDAwMIBYLKZ+JOSjUT+6t6N+dKQu0Pjx7Wj8qNp+/fVXzJ07F8eOHYOPjw+Al0GlGzduxPfff49///233vek0vjx7aifHakLNH58Oxo/1qTRwRZyjx8/xv79+7F//348e/YM/fv3x7hx4zB27NhaF5Cru7S0NBw7dgxHjx5FamoqnJycMG3aNEyaNAlNmzZluzyiomQyGa5evYp9+/bhxIkT0NXVxahRo+Dr6wtPT0+NW3glkUhw6dIlHD9+HCfAAwMEAAAgAElEQVROnIBAIACHw8H06dPh6elJTbvIBysvL8fx48exb98+xMbGokOHDhg1ahSsrKywbNkytstrcHw+H3/99ReOHz+O6OhomJmZ4euvv8a0adPQtWtXtssjhBC1RuM/RTT+qxtPnjzB2LFjce/ePfz+++8YPXo02yURUgOFV9QNsViMrKwshfCKlJQU3L17F5WVldDT00ObNm0UwitsbW3RtWtX+j+1DpWWliIxMZFpxsHj8ZCamgqZTFajGUe/fv1gbm7OdsmEEJaUlpbi119/RUBAAMRiMWbPno3ly5erZNiCKkhNTcWQIUNgY2ODM2fOwMTEhO2SPopMJsOZM2ewbds2XLhwAdbW1vjPf/6DqVOnon379myXpzQqKyvx119/Yd++fbh48SJatmyJWbNm4dtvv4WFhQXb5X20kJAQTJ48GQsXLsQvv/zCdjnkNaRSKU6fPo2goCBwuVz06NEDCxcuxIQJE6Cnp8d2eeQ95eXl4cqVK0zQBZ/PR4cOHeDh4QF3d3cMHTpU5d9jCCGEEEIIIYQQQgj5GGKxGGlpaQpz5rdv30ZZWRl0dXXRuXNnhXlzJycnGBkZNXid8kZu7xqG8brH5OfnQywWv/Z13hR+8S4BGfL7TE1NNXYTX316/Pgxzp07h4iICJw/fx4SiQR9+/aFt7c3Ro0ahS5durBdInkHjx49wqZNmyjQoo4FBARgxYoVCAwMxMKFC9kup4asrCwsXboUoaGhGDp0KAIDA2Fra8t2WeQVFRUV2Lp1KzZs2ABzc3Ns3rwZY8eOZbusGrKysuDh4QGRSAQulwsbGxu2SyLvoaKiAsePH8fmzZtx584dODs7Y/78+TQnr0YEAgH++ecfcLlcREREICUlBU2aNEG/fv2YoIuePXtSgABpcNXX7lcPvJCvGzc1NYW9vT2zZp/N34EJIYSQ9/Xq9dC3BWLk5uZCKpUqPIeBgUGN8IvXBWK0atVK4/ZPE6KOqB8dUFVVBX19fQDUj47UD+pHokgikeDQoUPYsmULnj17Rv1ISJ2prR/d+PHj4evrCycnJ7bLa3DUj47UFxo/KqLxo3qIjY3F4MGDsXLlSqxZs6bG569du4b+/fs3WD00flRE/exIfaHxoyIaP74ZBVtUI5FIEBUVhT///BMREREQCoUYNGgQfH19weFwYG1tzXaJ9SYlJYU5URITE2FlZYUvvvgCkydPRq9evdguj6gZPp+PkJAQHD16FHFxcTAxMcGoUaMwduxYDB48mGngKZPJ1GoBVlVVFa5du4awsDCEhYUhLy8Pzs7OGD9+PL788ku0bNmS7RKJmklJScHvv/+OnTt3QigUonPnzvD19cWYMWPg5OSkVudXdQUFBThz5gxCQ0Nx/vx5aGtrw8vLCxMnTsTIkSOZiTNCCCEN513Hf+qGxn/1o7KyEnPnzsVvv/2G5cuXY8OGDbTRmTQ4Cq+oW9nZ2QrhFcnJyUhISEB5eTkAMAEK8o0wdnZ2sLOzg4GBAcuVqxeRSIT79+8jNjYWMTEx4PF4uHfvHqRSaY0Qiz59+mjkBDohpKbCwkLs2LED27dvh1Qqxbfffgs/Pz80a9aM7dLU1u3bt+Hh4YGuXbvizJkzMDY2ZrukOvXw4UP89ttv+P3335Gbm4tBgwZh/PjxGDNmjEYGKEmlUly9ehXHjx9HaGgoioqKMGzYMEyfPh3Dhw9Xu0UlR48exVdffYV58+Zhy5YtansNW13weDxs374dR44cgaWlJWbMmIEFCxbQe4CKkkgkuH37NtM84/r169DW1kafPn3g7e1NzTMIIYQQQgghhBBCiNqrqqpCenq6QogFj8dDRUUF9PX10bFjR4V5c2dnZ7Vc+1FcXAyBQACBQIDS0lIUFRWhtLSUua+kpEThMQKBAHw+X+Fr5I95tfmbnI6ODkxMTGBqagojIyPm1qxZMxgaGsLIyAiGhoa1Hsv/XP1Yk5s8JycnIzIyEhEREYiLi0OTJk3w2WefwcfHB97e3nTNXoVQoEX9kMlkWLJkCYKCgrBnzx588803bJf0RlevXsXChQtx584dfPvtt1i9ejUsLCzYLkvjyWQyhIWFwc/PD7m5ufD398eSJUuUehyQm5uLoUOHgs/ng8vlolOnTmyXRD5ATEwMgoKCcPLkSWZOfu7cufT/gprJyMgAl8tlbnw+Hy1atMCAAQPg7u6OESNGoFWrVmyXSTRYcXExHjx4wARe8Hg8JCYmQiAQAKi5zt/Z2Rldu3ZVu3VthBBCNA+fz1cIu3hTIEZBQQFEIpHC11cP/H2XQAwrKytan0mIktLkfnSLFi2Cnp4ezp8/T/3oSL2jfiT/60cCAL6+vti+fTv1IyF1LiUlBX/88QeOHz+OzMxM6kdH/ehIPXjT+NHQ0BCTJk1iu8R6Q/2M1UtWVhZcXFzw6aefIjw8XOl6e9H4kfrZkYZB40caP74NBVu8RkVFBaKjoxEaGoqTJ09CIBDAxsYGHA4H3t7eGDBggEr/IJWXlyMuLg4RERE4deoUHj9+DDMzM4wYMQI+Pj4YNmwYLX4lDeLp06cICwtDaGgo4uLi0KhRI7i5ucHKygoTJkzAsGHD2C7xozx//hznz59HZGQkzp8/j+LiYtja2sLHxwcTJkxAly5d2C6RqLkVK1Zg06ZNWLBgAZo2bYpDhw4hIyMDlpaWGDRoEDgcDjgcDszMzNgu9YNJpVIkJCQwCzgvX74MmUyGvn374uuvv8a4ceNgamrKdpmEEEL+3+vGf+7u7nB3d4ezszPbJX4UGv81nIMHD2LWrFkYNGgQDh8+rNLjGaKcKLyi7vH5fGZTizzA4tWNLdXDK2xtbdGzZ080adKE5crVj1gsRlpamkIzjlu3bqGyshImJiZwcHBQaMZhZ2fHdsmEECVTUFCAnTt3Ytu2bdDT08OcOXOwcOFCNG3alO3S1FpCQgI8PDxgZ2eH06dPw8jIiO2S6o1YLMbp06dx+PBhnD59GiKRCO7u7vD19cWIESPUOmBJLBYjNjYWYWFhOHHiBHJycuDo6Ihx48Zh8uTJar3xAQCOHz+OSZMmYerUqdi9e7faLmhQJ48ePUJwcDCCg4MhkUjwn//8B4sXL0a7du3YLo18hIKCAly6dIkJusjJyUGLFi3g6ekJb29veHh40Ps+IYQQQgghhBBCCFFZJSUlSEpKUpgzT0tLg0QiqTFnbmdnBwcHB5XeP8SW8vLyWsMvBAIBiouLUVJSwoRhCAQCFBUVQSAQoKysrNbj19HX14eRkRGaNm3KhGQYGhrWemxsbMwEY1Q/NjIygqmpKYyNjZV6L1VFRQViYmIQERGB8PBwPH36FG3btoWXlxc4HA6GDh1KP6sqpnqgRdu2beHn50eBFnVEIpFg5syZOHToEA4fPgwfHx+2S3onUqkU+/fvx/fffw+BQIAFCxZgyZIlFFTDksjISKxZswa3b9/GxIkTsWnTJpVpMF9UVIThw4cjIyMD586dg6OjI9slkQ8kn5Pfu3cvysrK4OvriyVLltC/qRqSSCS4ffs2s0fy2rVrqKyshI2NDbPfxsvLC8bGxmyXSgiys7MV9gRU/726ejikfE9A79690aJFC7bLJoQQQuqNUCisNfziTfdV16hRI5iZmb0x/KL6fc2bN6frR4SwQBP70enq6mL8+PHw9fWlfnSkwWhyPxI3Nzd4eHhAR0cHly5dQv/+/dkul6ix5ORkhIaGUj86QupR9fFjWFgYysvL1X78SP2M1YNQKMSAAQNQVlaGf/75ByYmJmyX9EaaPH6kfnakIdH4kcaPtaFgi3cgFAoRGxvL/IDxeDwYGhrCyckJbm5ucHV1hZubm1IvEMzNzcW///6L2NhYxMTE4NatWxCJROjRowfzhjtw4EDo6emxXSrRYHl5ebhy5QqOHz+OsLAwyGQyWFlZwdnZmTnXevfurdS/hGVkZCAmJoY511JTU9G4cWP069cP7u7uGDlyJLp27cp2mURDhIaGYty4cQCADRs2wN/fH8DLQWFkZCS4XC6uXr0KiUSCLl26MOeZsjctFYlESEpKYs61ixcvorCwkBoqEUKICpKP/yIiIhAZGQk+n0/jP/Je4uPj8cUXX0AikSAsLAwuLi5sl0RUDIVX1I/CwkLcuXMHd+/exd27d5GcnIy7d++iqKgIwMsAC3t7e9jb28PW1hYODg6wtbWljVb1SP5+JW/IER8fD6FQCCMjIzg6OiqEWNja2lIDaULIa+Xl5SEwMBA7duyAoaEhZs+ejcWLFyv9ggR1EB8fD09PT9jb2+P06dMwNDRku6QGIxQKweVyERoaivDwcJSVlcHW1hbe3t5qM79V2+/H8kUl48aNQ7du3dgusUGdOHECEydOxJQpU/Df//4X2trabJdE3kFJSQkOHDiALVu24NmzZxg+fDi+++479O3bl+3SyEd6dUHOlStXIJVK4eTkxCyk7dmzJ/0eQQghhBBCCCGEEEKUEp/PZ5psym+pqamQyWRo1qwZbG1tFebMu3XrRtellZRQKERFRQXTJI7P59c4ru2+2o6Li4shlUpf+1oGBgZMs7jGjRt/8LG5uTkaNWr0UX/vFy9e4MKFC0wjgJKSEmaujMPhwNXVla7PqiAKtKhfVVVV+Oqrr3Dq1CkcO3YMI0eOZLuk91ZeXo69e/di48aNKCsrw5w5c+Dv70/7ZBpITEwMvvvuO1y9ehXu7u4ICAhAz5492S7rvZWVlWHUqFHg8Xg4c+YMzd2quIqKChw/fhy//PIL7t69C2dnZ8yfPx8TJ06k9w81JW8IJZ+rj4+Pr9GIp0ePHvT7C1EaVVVVSE9PVwi8uHnzJnJzcwFA4XdweeCFs7Mz7ccghBCikcrLy1FQUIC8vDzk5+ejoKCAueXm5ioc5+fn48WLFwpfr6WlBQsLC4WbpaUl82dzc3Pmo/x+2vNBSN3ShH50d+7cwZkzZ+Dv74+NGzeyXS7RUJrWj+Tx48do3749tLS0YG5ujsTERFhbW7P8NyCagPrREVK/hEIhnJyckJmZiUWLFqnt+FFd9ntrOplMhkmTJiEqKgr//vsvOnbsyHZJ70XTxo+EsIXGj0SOgi0+wMOHD3HhwgXExsYiNjYWDx8+hI6ODrp06QIHBwd0794dDg4OsLe3R7t27Rp0UYh80v/u3btITEzE3bt3kZSUhMePH0NHRwcODg7MiT5kyBBYWlo2WG2EvAuZTIbhw4cjKioKO3fuRHFxMeLi4hAXFwc+nw8jIyM4ODgw55q8Eaa5uXmD1llcXIyUlBQkJSXhzp07uHPnDpKSklBUVAQjIyP07dsXrq6uGDBgAFxdXT96MwIh7yspKQl9+vRBZWUl9PX18eOPP8LPz6/G44qKinDp0iVcu3YNcXFxiI+Ph0gkgrW1Nbp3767wnta1a1cYGBg02N9BJpPh6dOnSE5OVjjXUlJSIBKJ0KZNG7i5uaFfv3747LPPlHrwSggh5O3EYjFu3LiBK1eu0PiPvJeCggJMmjQJV69exY4dOzBt2jS2SyJKhsIr6o9QKERKSgoTYiH/mJ2dDQAwMzNjQiscHBxgZ2cHe3t7lU5YVgXZ2dkKDTni4uLw4sUL6OnpoVOnTkwzDjc3Nzg5OUFHR4ftkgkhKiA3Nxdbt25FUFAQjI2NsXjxYsybNw9NmjRhuzSNwOPx4Onpid69eyM8PFyjxyYCgQAXL17E2bNnERUVhczMTJiamqJfv3749NNP4ebmht69eyt98Me9e/cQFxeHmJgYxMXFIS0tDU2aNMHAgQMxbNgweHl5oVOnTmyXyarIyEiMHTsWX375Jfbs2UOb8FWISCTCX3/9hc2bN+Pff/+Fq6srFixYgDFjxtDYU03Im6hxuVycOXMGT58+haWlJQYNGgR3d3d8/vnnaNmyJdtlEkIIIYQQQgghhBAN9Op8OY/HQ05ODgAwG1TlNzs7O9jY2LBcMWGTPOziXYIwGjooo7S0FGlpaUhISMDt27chk8nQs2dPjB8/Hj4+PmjTpk0DfqdIXcrIyEBAQAAFWtSjyspKjB8/HtHR0Th16hSGDBnCdkkfRSAQYNeuXQgICIBEIsGUKVOwdOlS+n+gHkilUpw+fRobN27E9evX4e7ujg0bNsDFxYXt0j6Kup0T5KWYmBgEBQUhPDwcLVq0wPTp0zFv3rwG32NBGtbz589x7do1cLlcREZGIjs7W2Gu3svLC23btmW7TEJqqB44KQ+8iI+Ph1AohK6uLjp37qwQdGFnZ4cOHTpQgB8hhBBSjVgsVgi7qC0Qo/pxYWEhKioqFJ5DX1+/RuCFpaUlzM3NX3u/sq/JJ0SZqGM/uq+++gqHDx+GlpYWzp49i6FDhzZYzYTURhP6kTx58oS5vqOnp4du3brhn3/+0ei9hKThUT86QurezJkzsWfPHmhpaUEikUBLS0stx49EPWzatAmrVq1CREQEhg0bxnY5H0UTxo+EKAMaP2o2CraoA8+fP2dOHvkP6aNHjwC8vLDftm1bdOjQAe3bt0fbtm3RsmXLGhf29fX1oaOjwyRch4SEYOLEiZDJZCgqKgLwMnG7sLAQhYWFyMvLYz4+evSIuWVnZ0MqlUJXVxddunSBvb09HB0d4ezsjE8//RTGxsasfZ8IeRfBwcH49ttvIZPJcPLkSYwaNQrAy8WhqampuH79OhITE5mBF5/PBwCYmJgw51mHDh3Qpk0b5vyqfr4BLzcFvHqxrrKyEuXl5QBevjHm5+ejsLCQmbR7+vQpMjMz8ejRI2RmZjKJ9sbGxgoD0759+8LR0ZEa8xBW8fl8ODk5ITs7G2KxGI0aNXptsMWrysvLcfPmTfz7778KA6+qqioALzd1VT/X5O9pFhYWzAS1kZERgJfn5avngkAggEgkYibP5e9rhYWFyM3NxZMnT5jzLDMzk5kwb926NXOuOTk5wdXVlRZaEkKImqPxH3kfEokEa9euxdq1azFp0iQEBwfTBL2GofCK+idv/iDfTMLj8ZCWlgaJRMIEJtCGkob3alOOGzduID8/n9nkU70pR69evRr04j4hRD1kZWVhy5Yt2LNnDywtLbFkyRLMmDGD3jcbUGxsLIYPHw5XV1eEh4fT/+WvuHfvHi5cuMCERGRlZUFXVxf29vbMBLejoyPs7e3RqlWrBq+vvLycWVQiDwJLSEhAYWEhmjRpAhcXF7i5uWHAgAHo378/nVuvOHPmDL744guMGTMGBw8epN+9VVBMTAwCAgJw+vRp2NjYYN68eZg+fToFI6mZjIwMREREIDIyElevXoVYLEaPHj3g7u4Od3d3DBo0iBpyEUIIIYQQQgghhJA6JZFI8PjxY2b9QvX5cqBmiEWfPn3QvHlzlqsm6u5jgzJycnKQl5cHoVAIiUTyxtd636CM1x1bWFhAX1+/gb5Dmq22QIupU6fS/FcdKysrw6hRo8Dj8XDmzBn07duX7ZLqDJ/Px+7du7Fjxw68ePECEyZMwJIlS+Dg4MB2aSqvrKwM+/fvx7Zt25CZmYnRo0dj2bJl6NOnD9ul1Zmqqip89dVXOHXqFI4dO4aRI0eyXRKpIxkZGdizZw/27t2LsrIy+Pr6YunSpejevTvbpZEGUH2uPiYmBhUVFbCxsWHm6j09PWFqasp2mYTUSiwWIysrS+H3+pSUFGbvh6mpKezt7RX2Jzg5OTF7lwkhhBDydtWvQcpvOTk5yM7OrvX+p0+fMj1F5KpfV6x+s7a2hpWVVY37W7VqhaZNm7L0NyZEudRHPzq5hupH5+PjgxMnTkBbWxsmJia4e/cuK/tyCHkddexH8uzZM7Ru3Zo51tXVxbhx43D48OE6+Z4R8iHY6Ed38uRJ2NraIi8vj/rREZV34sQJ+Pj4MMdlZWW17q1Uh/EjUX3nz5/H8OHD8csvv2DRokVsl1Pn1HH8SIgyqo/x45EjR+Dr6wsdHR3qZ6xkKNiinpSUlCA5ORkPHz5UePN48uQJcnNzUVJS8lHPr6WlBXNzczRv3hzt27dnbh06dMAnn3wCOzs7WlxMVE5GRgbs7e0hFAqho6ODvXv34j//+c8bv+bJkydITU1VeON49OgRnj17hsLCQgiFwo+qqVGjRjA3N4e1tbXCeda+fXt069YN7du3pyadRKlIpVIMGzYMly5dgkgkAoD3CraojUgkQlpaGtLT0xXOs0ePHjEXJt62eeZtjIyM0Lx5c7Ru3VphoGljYwM7OzuYmZl91PMTQghRHzT+I28SERGBr7/+GjY2NggLC0P79u3ZLonUoXcJrwBeXry0s7Oj8IoPxOfzmQ0i8hCL27dvo6ysDMD/mj9U3yTStWtXmhBpAAUFBbh58yZu3brFfMzJyYG2tja6dOmCXr16oVevXnBxcYGTkxP9vBNCPkpmZia2bt2K4OBgtGzZEosWLcLMmTMpVKGBxcTEYPjw4RgwYADCwsLQqFEjtktSek+fPkVsbCzi4+ORlJSEO3fu4NmzZwAAQ0NDdOjQgbm1b98eLVq0gLm5OSwtLZnFJYaGhgrPGRMTAzc3N4X7JBJJjYnuVxdKZmRkICcnBwDQuHFj2NnZoXv37ujevTs+/fRT9OjRA3p6eg3zjVFhUVFRGD16NEaNGoVDhw5Rc3wVlZ6ejp07d2Lv3r0wNDTE1KlTMW/ePNrYoobKyspw/fp1RERE4K+//kJWVhbMzc0xePBguLu7Y8SIEfTvTgghhBBCCCGEEELei1gsRlpaGtPoksfjMesYdHV10blzZ4UQC2p0SVSFUChEbGwsIiIicOLECWRnZ6NDhw7w8PAAh8PBwIEDIRAIPjgoo/pxUVER3rR98E1BGO8TlmFpaUnzX6+oHmjRqVMn+Pv7Y9KkSbTWqh4UFRVh+PDhyMjIwPnz59W2qXtlZSX+/PNPbNmyBampqRg0aBCmTZuGMWPG0JqO93Tnzh3s27cPhw4dQmVlJaZMmYLFixfjk08+Ybu0eiGRSDBz5kwcOnQIhw8fVmigQ1SfQCBASEgIgoKCkJycDFdXVyxYsACjR4+mdRYaQj625HK54HK5iI+Ph7a2NpycnJigi4EDB9JYjSi94uJiprmNfE9DYmIiBAIBgNr3MnTr1g3a2tosV04IIYSoh1fDMN4UhJGdnY2CggKmp4lcbWEYrwvCsLa2RqtWrWifBNEYqtaPbtiwYYiKigIA6OnpwcXFBVevXqXr20TpqXI/kpycHFhbWyvcp6WlhS1btqhlc2miuhqiH13jxo1hZWVF/eiISsvKyoKDgwNKS0uZNRv5+flMY/y3UbXxI1Ft9+/fR58+feDt7Y2DBw+yXU6DUuXxIyGqgvoZqy8KtmCJSCRSaHZTVVUFiUSCkpIShIeH4+jRo/j+++/RvXt3Jo26SZMmCmlN9OZD1IlUKoWrqyt4PB5EIhH09fWxceNGLF68+KOeV54MKG8wBYBZqA+8TBHU0tJCo0aNmATDpk2b1khqIkRV+Pn5YcuWLQoDs0aNGuGnn37C8uXL6+11+Xw+c57JF4mVlJRAIpEw5xnwMhVQV1cXurq6Cu9pNNlMCCGkrtD4j6Snp2PMmDF4/vw5QkJC4OHhwXZJ5D1QeEXDKSkpQXp6OpKTk5mNHzdv3kRubi4AoFmzZsxmD/nGjx49etRo9EzqR1lZGRISEhQac6SmpkImkzEbcuS3fv36wdzcnO2SCSFq4tGjR9i0aRP279+P1q1bY+HChZg1axZdu2HB1atXMWLECHh5eSEkJIQ2FX+EFy9eICkpCQ8fPmQmuOWT3fn5+RCLxbV+nYmJCXR0dFBaWoomTZpAR0cHAoGgxuab6o9v06ZNjfAMOzs7fPLJJ7R4/yOcP38eo0aNgre3N/78809quqDC8vPzsX//fmzfvh2FhYUYN24cli9fDnt7e7ZLI/UkIyMDXC4XERERiI6ORmVlJWxtbeHt7U2NMwghhBBCCCGEEEJIDVVVVUhPT1eYK+fxeKioqIC+vj46duyoMF/u7OxM60SISikoKMCZM2cQGRmJs2fPory8HD169ACHw4G3tzecnZ3r5XXFYjFKS0tRVFSEsrIylJWVKRwLBAIIBIJajwUCAXOf/Liqquq1r2VkZARDQ0MYGRmhadOmMDIyYu6r7djY2Jh5vKmpKXMs/7yqSk1NxcaNGxESEoIuXbrAz8+PAi3qUW5uLoYOHQo+nw8ul4tOnTqxXVK9k8lkOHfuHIKDgxEZGQkTExN89dVXmD59Ouzs7NguT2mVlpbi2LFj2LdvH27cuIFOnTph6tSpmDZtmkaswZPJZFiyZAmCgoKwZ88efPPNN2yXROpBTEwMgoKCEB4ejhYtWmD69OmYN2+eRvyMk//Jz8/H5cuXweVycfbsWTx58gRGRkbo27cv3N3d4e3tDVtbW7bLJOSdZWdng8fjKQRepKWlQSKRKFwvkO976NOnD5o3b8522YQQQohGqB6G8bYgDD6fX+v6/VfDMN4UhGFlZUUBu0RtvakfHfC/HglaWloN0o9u4MCBuHr1KnOso6OD7777Dj/++GOdvQYhbFDmfiS5ublo2bJljfu1tbURGRmJYcOG1dtrE1LXPrQfXePGjdGtWze4urri8uXLLP4NCPk4YrEY/fr1w+3btxX2JD9+/Bht27atk9dQtvEjUV2lpaXo27cvDAwMEBMTQ+vxXqHM40dC1Mnrxo9Pnz7FggUL4O7ujhkzZlA/YyVDwRZKqHPnzkhPT8c333yD3377je1yCGkQ69evx+rVqyGVSgG8bMS/bNkyrF27luXKCFEd4eHhGDt2LF59a9fX18fatWvrNdiCEEIIIUSZCAQCTJs2DSdOnMCqVauwevVqaGtrs10W+X8UXtGwRCIR7t+/z2zikH+8d+8epFIpjI2N0blzZ9ja2jIbOVxcXGpd+ELqh0gkwt27d/Hvv//i5s2buHnzJpKTkyGRSNC8eXO4uLigd+/ecHFxgYuLCywsLNgumYxeeWMAACAASURBVBCihlJSUrBp0yYcOXIEbdu2hZ+fH7755htqHs+SK1eugMPhYPjw4Th8+DBtuqhnxcXFyM/PZxZvlZWVAXg50f3ixQv4+fnB09MTY8aMgZGREfT09KCjo6Mw0W1hYUH/TvWMwl7US2VlJY4dO4aAgACkpKTA1dUVfn5+4HA4tBhSjZWXlyMuLg5cLhd///03UlNTYWRkhEGDBsHb2xvDhg1DmzZt2C6TEEIIIYQQQgghhDSQkpISJCUlKQRYyJtSmpiYwMHBgQmvsLOzg4ODA/T19dkum5D3lpGRgYiICERGRuLy5cvQ1dWFm5sbOBwOfHx8YG1tzXaJH0TesE6+Ubt6o7pX73uX4zep3tiucePGH3zcuHFjNG3atF7nIijQouFlZWXBw8MDIpEIFy5cQIcOHdguqcE9f/4cf/zxB/bt24cHDx7A1tYWPj4+mDBhArp06cJ2eayrqKhAdHQ0QkNDcfLkSYhEInz++eeYMWMGhgwZopHzkwEBAVixYgUCAwOxcOFCtssh9eThw4fYu3cv9uzZA6FQCB8fHyxbtgwODg5sl0ZYkJGRAS6XCy6Xi3PnzqGkpAQ2NjZwd3dnbs2aNWO7TELeS/VwTPkeiZs3byI3NxcA0KxZM9ja2ipcW7Czs4OBgQHLlRNCCCGaTSqVKjSDlH/My8tj/vzq/cXFxTWex8zMDBYWFsxafvlHS0tLWFhYMPfJ7zczM6M9xoS8p969e+PmzZsK92lpaeHcuXPw8PBgqSpC1FtBQQEsLS1r3K+trQ1DQ0PEx8ejY8eOLFRGSMOJiopiQlwSEhLg5OTEckWEfBg/Pz9s2bIFEolE4f7U1FR07dqVpaoIqUkqlWLkyJG4desWbt68idatW7NdEiGEKPjhhx/w448/wtjYGAUFBbSOWMlQsIWSSUpKgqOjIwDAyMgIBQUFlPpC1F5CQgJ69+6tkKqup6eH6dOnY9euXSxWRojqSEpKQp8+fVBZWVkj2KJRo0ZYu3Ytli1bxlJ1hBBCCCHs2LNnD+bOnQsvLy8cPHiQSRAn9a+yshIPHjyg8IoGlp2dzWzKqL5Bo6KiArq6umjbti2zOUMeYtGtWzdalNnAsrOzwePxEBsbi5iYGCQkJKC8vBxGRkZwdHRkNs84OzvD1tZWIzfOEkIaTnJyMgICAqiphhKJiorCmDFj8Pnnn+Pw4cMULsKybdu2YdGiRWjZsiWePXtG4yaWXbt2DSNGjMDAgQNx4sQJmkNVAzKZDBcuXMD27dsRGRkJR0dHzJ49G19//TVtItcA1RtnREVFobS0FDY2NuBwOPD29kb//v3pPCeEEEIIIYQQQghRE3w+n1nLIL+lpqZCJpPVaDTp7OxMaxmISpNIJLh+/ToiIyNx6tQp3Lt3DxYWFhg2bBi8vb3h5eUFY2NjtstUKlVVVRAIBCgqKoJAIEBZWRnKysrA5/NRVlaG8vJylJaWori4mPlcSUkJSkpKmOPi4mKFr30dXV1dGBsbw9TUFIaGhjA0NISJiQlMTEzQpEkTGBoaomnTpjAyMmI+36xZM+bPRkZGNb4WAFJSUrBp0yaae29gjx49gru7OwwMDBAdHa2yQTF1RSaT4erVqzh69CjCwsKQn58PZ2dn+Pr6YsSIEbCzs2O7xAZTVFQELpeLsLAwREZGQigUYtCgQfD19YWPjw81bwfw888/w9/fH8uXL8emTZvYLofUo9LSUhw5cgTbt29HSkoKXF1dsWDBAowePZrWJWkosViMxMREZr7+8uXLkMlkcHJyYkIuBgwYQA1BiMqqfg2i+t4K+Z6Kzp07M3sp5PsqOnToQGv2CSGEECUnFAqRk5OD7OxshZBdPp9f6/3Pnz+v0XeleiBus2bNYG1tDSsrK4X7qt9atWpFe5KJRrO3t0dycrLCfdra2mjatCnu3r0LKysrliojRH29ePEC5ubmtX5OT08P7dq1A4/HY+anCFFHfn5+2LZtG2QyGcaNG4dDhw6xXRIh7+3cuXMYNmxYjd9JAIDH46Fnz54sVEVI7VauXInNmzfjwoUL6N+/P9vlEEJIDZ988gkyMjIAABEREeBwOCxXRKqjYAsl4+/vj8DAQIhEImhpaSE8PByjRo1iuyxC6k1lZSWcnJzw4MEDhWALLS0tjB8/HiEhISxWR4hq4PP5cHJyQnZ2tsJ5JEfBFoQQQgjRZDExMfD19YWxsTHCwsJgb2/Pdklqg8Ir2FNUVIS7d+8qbLRISkpCaWkpgP99z6tvtrCzs6PGsCzIycnBrVu3mMYc//zzDwoKCphNMfKmHG5ubnBycqLN7ISQBnPnzh388ssvCAkJQbdu3bBs2TJqqqEEzp49izFjxmD06NE4ePAgbR5XAs7OzkhISGAagNCiHPbFxsZi+PDhcHNzQ1hYGI1x1cjt27cRGBiIo0ePwszMDLNmzcL8+fNhZmbGdmmkAVRUVCAmJoZpnMHj8dCkSRP069cPHA4HI0eORPv27dkukxBCCCGEEEIIIYS8g+zsbIUACx6Ph5ycHAAv1zNUD7CQrychRNWVl5fjwoULTJhFbm6uQpDvoEGDaO6vgQmFQlRUVEAoFDLN7N7nuPqfCwsLUVVV9drX0tHRgUQiga6uLlq0aIF27dqhSZMmTKO8xo0bKzTNe9OxmZkZzX+9o5SUFHh4eMDa2hpnz56FhYUF2yUpFYlEgosXL+L48eP466+/UFBQgLZt28LLywteXl5wd3dXq5AdmUyGhIQEREVFISoqCtevX4dMJoObmxt8fX3xxRdfoEWLFmyXqXSCg4Mxe/ZsLFu2jMItNIBMJsOFCxewZ88ehIeHo127dpgxYwamT59O8/IarrS0FJcvX0ZkZCSio6Px6NEjGBoa4tNPP2WCLnr27ElN/4lKE4vFSEtLU9h/kZKSwux7adq0KbPnQr4Ho0ePHjA0NGS7dEIIIYR8oMrKShQWFqKgoEDh46u3Fy9eKBy/qkmTJjA3N2duFhYWzJ/NzMwUPie/UaAmURcdO3bEw4cPa9yvp6eHPn364PLly7QPjZA6VlRU9Mb3ET09PQwdOhSnTp2CtrZ2A1ZGSMNxdHREUlISgJfzsJmZmWjdujXLVRHy7nJzc2FnZwc+nw+pVFrj89euXYObmxsLlRFSU3h4OMaOHYvg4GBMnz6d7XIIIaQGHo+HXr16AQB0dXUxduxYHDlyhOWqSHUUbKFEZDIZWrdujezsbAAvT5pRo0YhNDSU5coIqT8LFy7Erl27am3GP2TIEHC5XBaqIkR1SKVSDBs2DJcuXYJIJKr1Mfr6+li3bh0FWxBCCCFEY+Xl5WH8+PG4efMm9u3bh3HjxrFdksqg8Ap2VVVVIT09ndk4kZyczPxbAKixgcLOzg5OTk60SZclpaWlSExMVGjOkZKSAuDlOeLm5gZXV1emQQedG4QQNiQmJmL9+vU4ceIEHBwcsGrVKowdO5Y2nSqB06dP44svvsCkSZOwd+9eWlyqBB4+fIhOnTpBJpNBT08P06dPx65du9guiwC4desWPD090adPH5w8eZKa+6iZnJwcBAcHIygoCCKRCBMnTsTixYvRpUsXtksjDejRo0eIjo4Gl8vF+fPnUVxcDBsbG7i7u4PD4cDDw4POfUIIIYQQQgghhBCWSSQSPH78mGkIyePxcOPGDeTn5wOoGWLRp08fNG/enOWqCak7eXl5iIqKQmhoKKKjoyEWi+Hk5AQOh4Nx48ahW7dubJdI6lj1EIyUlBT89ttviI6OhpWVFTw9PeHg4IDi4uI3hmTIj4uKivCmLZ0fEorxumMTExO1ay7G4/Hg5eUFW1tbREREwMTEhO2SlJpUKkVCQgITMH7lyhVIpVJ06dKFWdM2YMAAlQoZF4vFSExMRExMDGJjY3H58mXk5+fD0tISgwYNAofDAYfDoWb97yAkJASTJ0/GtGnTsGvXLlqvoiEePHiAffv2ITg4GBUVFfDx8cHy5cthb2/PdmlECWRkZDDvGVwuF3w+Hy1btkT//v2ZOXtra2u2yySkThQVFeHu3bsKgReJiYkQCAQA/ndto3rgRbdu3ej9khBCCFFj1a/j5eTkIDs7mzl+9Sb/fEVFRY3nkV+js7a2hpWVFXO9rrabtbU1WrVqhUaNGrHwNybk9Vq1asX0wXuVjo4O1qxZg++//76BqyJEvZWWlr51zkNbWxurV6/GmjVrGqgqQhpOUVERzM3NmTAAPT09LF26FBs2bGC5MkLejVQqhYeHB65du/bafpDnzp2Dp6dnA1dGSE2JiYlwdXXFN998g6CgILbLIYSQWi1duhQ7duxAVVUVAKBRo0YoKCiAkZERy5UROQq2UCIxMTHo37+/wn36+vrIz8+nBZZELV27dg0DBw587WJsR0dH3L59u4GrIkS1+Pn54eeff37jYyjYghBCCCHk5Sa2VatWISAgADNmzMDOnTuhp6fHdllKgcIr2Fe92UP1TRFpaWmQSCTQ19dHx44dFTZFyP8tCDtEIhHu37+P2NhYxMTEgMfj4d69e5BKpTWac/Tr1w/m5uZsl0wI0XDXr1/Hhg0bcPr0aTg6OmLlypUUaKFEwsLCMGHCBEyZMgX//e9/adOjkli7di3Wrl3LLCAzNTVFfn4+/R6hJHg8Hjw9PdGrV6//Y+/O46Kq9/+Bv2Bg2AdQQNFywRUQRSktIddxycBMr1p506w008Ls3qvdbmaWXtNs0UqvqaXXyq38mkBcZUQrDJcQJFHQwjUUUGdhZmBWfn/0m9MMmxtwBng9H495MDMMhxcoLp9zPu8Xdu/ezf+TNENlZWX47LPP8MEHH+DSpUsYM2YMXn31VcTGxoodjRqZ2WzG4cOHkZycDIVCgePHj8PT0xOxsbGQy+WQy+WIiYkROyYRERERERERUbNmNptRUFAgFFhkZWUhJycHOp0Obm5u6N69u8N58ujoaG4co2YpLy8PycnJSEpKwk8//QQvLy8MGzYMCQkJGDt2LNq2bSt2RGpgp06dwjvvvIOvvvoKPXv2xPz58zFlypQ7Ko6oq/jiVt5n//jatWu1DsYA/hikdzclGfb3g4KCIJVK7+bbeFd++OEHJCQkIC4uDl9//TXPE96B69evY//+/Th06BAOHTqEEydOwGw2o1OnTujbty+ioqIQFRWF3r17o0uXLndVjGKxWO66WOXGjRvIzc3FL7/8gl9++QW5ubnIycmBwWBAaGgoBg4ciLi4OAwZMgR9+vThtTB3ICkpCZMmTcL48eOxefNmuLm5iR2JGklZWRm2bt2KDz/8EKdPn0ZsbCzmzp2L8ePHN7tSJLozFosFOTk5QsnFDz/8AKPRiLCwMMTHxwt/J3t6eoodlaheFRUVISsry2Fvh22vgP3eDtv+jt69e7PMk4iIqAWzX6+rrfyi6vMlJSWwWCwOx7Ffm6tafFFbOUbbtm25/4QaTFBQEK5fv17r+11cXJCWlobhw4c3Yiqi5k2n0930PLtEIoHVasUPP/yAuLi4RkpG1Dj+7//+DxMmTHCYSenn54eioiJeg0JNwtKlS/HGG28I5Sw12bVrFx577LFGTEVU3fXr19G/f3+0a9cO+/fvF/UaECKi2litVrRr1w7FxcXCc66urvjiiy/wxBNPiJiM7LHYwonMmTMH69evd7iQ1NXVFZs2bcJTTz0lYjKi+qdWqxEeHl7jyRabDh064MKFC42cjKjpMJvNeP/997Fp0yacPn0aHh4eMBgM1V4nlUqxdOlS/P3vfxchJREREZFz2bp1K2bMmIF+/fph+/btCA0NFTtSozAYDPj999+F4gSWV4hHqVQKmxtsGx2ys7Oh1+shkUjQsWNHobgiIiICMTEx6NmzJzeIichisSA/P99hQEdWVhYqKiogk8kQFRWFmJgYxMXF4aGHHuKQAiJyKhkZGVi+fDmSk5MxcOBAvPrqq0hISBA7FtnZuXMnpkyZgmeeeQZr1qzhpgIn0r17d5w9e9bhue+++w4PP/ywSImoquzsbIwYMQK9evVCcnIyL1BtpqxWK1JSUrBs2TJkZmYiJiYGiYmJePLJJzlQpYUqLi7G3r17haILpVKJsLAwoeRi1KhRkMlkYsckIiIiIiIiImqyjEYjzp49W+M58qrDG203XlNCzZXFYkFmZiaSk5Oxa9cunD17FsHBwRg9ejQmTpyIkSNHwsPDQ+yY1Ajy8vKwfPnyeim0aCjl5eV3VIpRW6GGUqms8/PdSSlGbY/9/f1v6Vx5amoqJkyYgJEjR2L79u38+asnWq0WR44cQWZmJk6cOIHc3Fz89ttvsFgs8PLyQpcuXdC5c2d07twZnTp1QufOnREaGoqgoCAEBwfXeV7m3XffxUsvvVTrwHODwYDr16/j+vXrKCkpwfnz53H+/HmcO3cO58+fx2+//YarV68CAFq1aoU+ffogKioK9913H2JjYxEWFtYg35OW6MCBAxg7diyGDh2KHTt2cEh9C2O1WpGeno5Vq1YhJSUFYWFhmDFjBmbMmIFWrVqJHY+ciE6nQ2ZmplB0kZWVBS8vL8TGxgrn7Pv168eSIWqW7NdLbPtAjh49ipKSEgB/7sWx7QGJjIxEZGQk/04lIiKiWpWXl9dafFFTOcb169dhNBqrHcfT07PO8ouq5RjBwcFwd3cX4SumpsbPzw9arbbW97u4uCAoKAgnT55k0RtRPSkvL4e3t3e1593d3WEymdCmTRtMnjwZ06dPR3R0tAgJiRpWYmIi1q1b5/BvHolEglWrVmHOnDkiJiO6uUOHDmHQoEF1llq4uLhgy5YtmDJlSiMmI3JkMpkwatQoFBYW4tixYwgODhY7EhFRjQ4ePIihQ4c6PCeRSDBq1CikpKSIlIqqYrGFkzCbzWjTpg1u3Ljh8LyrqyuGDx+Offv2iZSMqGE89dRT2L59u0ORS1X+/v5QqVSNmIqo6Tp16hR27NiBtWvXoqSkBFKpVFigk0ql+Pe//42//e1vIqckIiIicg75+fkYP3481Go1du7ciYEDB4odqV6wvMK5aDQanD171qHEIjc3V9i4EBgY6LBpISIiAv369avxghNqXEVFRQ7DOQ4dOgSlUgl3d3f07t0bsbGxwnCOiIgIbr4iIqdkX2gRGxuLBQsWsNDCCW3fvh1//etf8dxzz2HNmjX8O8WJ5OTkoG/fvg7Pubu7Y/LkydiyZYtIqagmOTk5GDFiBMLDw5GSkgI/Pz+xI1EDysrKwqpVq/DVV1+hQ4cOeP755zFr1iz4+/uLHY1EYrFYkJOTA4VCgaSkJGRmZsLV1RUDBgxAQkICh2YQEREREREREd2ERqNBbm6uwznygoICWCwWyGQyREVFCefHIyMjERUVBalUKnZsogalVCqFNcc9e/ZArVYjIiICCQkJiI+PR2xsLNccW5CmUGjRUEwmE7RaLVQqFXQ6HXQ6HcrKyqBWq4XHGo0GZWVlwmOVSgWtVis8ViqV0Ov1wsfWxtXVFf7+/vDz84O3tzd8fHzg7+8PLy8veHt7IyAgAFeuXEFqaip69+6NadOmCa/x8fGBl5cXZDIZfH194eXlBT8/P8hkshbx69RQ9Hq9cM2j7RpUW+HElStXHF7r7u6O1q1bIzAwULj+0c/PD25ubjh06BC6d++O4OBglJWVwWw2w2KxQKVS4fr169V+X3h7ewslGrYijYiICERFRaF9+/aN9vW3VBkZGYiPj0dMTAy+/fZb+Pr6ih2JRHD27Fls3LgR69atg9lsxpNPPonExERERkaKHY2c0NWrV/Hjjz8K/36+cuUKgoODMWTIEMjlcjz88MO49957xY5J1KCKioqEogv70ouKigq4u7ujW7du1QovWM5FREREd0qj0eDatWu4du0abty4IRSGXr9+3eFxaWmp8LimYoKAgABhPadVq1ZCAYbtfk3PBQYGcq2ghfHw8KixTEUikcBqtUIikWDw4MF44403MGjQIBESEjU/BoNBKEh0c3ODxWKBp6cnfH19sXPnTgwaNIjnKalZ6969O86ePVvt+XvuuQfnz5/nuT9yWhUVFYiKisKvv/4KNzc3mM3mGl/n5uaGNWvWYMaMGY2ckOhPc+bMweeff44ff/wRMTExYschIqrV888/j02bNlVbm5BIJCguLkbr1q1FSkb2WGzhJFJTUzFmzJga3yeRSFBUVMRmWmo2kpOTkZCQICye1fbHkKurK8xmMxfTiG7DuHHjcPXqVdx///348ssvoVQq4eLignfffZfFFkRERER2NBoNpk+fjj179mDJkiVYsGCB2JFuyd2WV4SHh7M4oZ6ZTCacOXNG2IBge3v69GlUVlZCJpOhW7duDhsRoqKi0KZNG7GjEwC1Wo1ffvkFhw4dQkZGBo4ePYqSkhJIJBL06NFDGNARExOD+++/Hx4eHmJHJiKqU0ZGBhYtWoT09HTExsZi8eLFGD58uNixqAZbt27F1KlTMXfuXKxcuVLsOFTFggUL8MEHH1Qr5/by8sK1a9f4b2onc/r0aQwbNgxdunRBamoqyy1agN9++w2rV6/Gxo0bIZFI8PTTT+Pvf/87hyEQSktLcfDgQSgUCuzZswdXr15F27ZtMWLECCQkJGDEiBEICAgQOyYRERERERERkSiUSqUwZNF2s13bEBgYKFzXYLuFh4fD1dVV7NhEjeL8+fPYt28fkpKSsG/fPlgsFjzwwANISEjAY489hu7du4sdkRqZfaFFeHg4/vGPf7SYQouGVLUUQ6PRQKfTQa/XC6UYer0eWq0WGo0G5eXl0Ol0yM/Px8mTJxEUFAQ/Pz+Ul5dDr9dDrVbX+fmkUmmNJRn29729veHl5VVjSYa3tzd8fX0hk8ng5eUlHKul//1YUVGB4uJilJaW4tq1a8LARI1GIwxKLCsrQ1FREXbv3o3OnTtjxIgRQtmFu7s7ZDIZWrdu7XALDg5GUFCQyF8dHT9+HKNHj0bPnj2RnJwMmUwmdiQSiUajwbZt2/DBBx+goKAAw4cPx8yZMzF+/Hj+fUg1slqtyM7OhkKhgEKhQEZGBioqKhAWFga5XA65XI5Ro0bxzxVqEaruMbEVXtj2/AQEBCAyMtKh8KJv377w8fEROzoRERE1QwaDoVr5ha0Y48aNG1AqlVAqldXu11RUK5VKb7kEo+p9Fqc3LZWVlZBIJMKedduAZqlUirFjx2L8+PEYM2YM/P39RU5K1LyYzWa4u7vD3d0djzzyCKZOnYoePXqgV69e2Lt3L0aMGCF2RKIGU1JSgrZt29Y4j9LFxQW7du3CuHHjREhGdGv0ej3279+PHTt24Ntvv0VZWRnc3d0d9ihLpVKsWLECc+fOFTEptWSbN2/G9OnTsXXrVkyePFnsOEREtTKZTAgKCoJGo6n2PolEgjVr1mDmzJkiJKOqWGzhJJ566ils37692oAc4I8fmtWrV2P27NkiJCNqGIWFhVAoFNi9ezf2798Po9EIqVRarQ1JpVJxEZvoFimVSoSGhmLdunWYNm0azGYzFAoFvvrqK8TFxfEfX0RERERVVFZWYsWKFfjXv/6FyZMn49NPP3WKC8FZXuG8ioqKqm0uOHnyJAwGA9zd3dGtWzdhc4HtbUREBAsbnYRWq0VOTk6NQzpCQ0OF4RxxcXEYOHAgf46IqElRKBR4/fXXceTIEcTGxuLtt9/G0KFDxY5Ftfjss88wY8YM/O1vf8OKFSvEjkNVVFZW4p577kFRUVG197m4uGDbtm2YNGmSCMmoLvn5+Rg+fDg6deqE1NRUboJvIdRqNTZt2oR3330XJSUlGDduHP7+97+jf//+YkcjJ1B1aMbBgwdRWVmJ6OhoxMfHIyEhAf369eP/2YmIiIiIiIioWSoqKnI4N56VlYUrV64AgMP58ZiYGOHaE6KWJi8vDzt37kRycjKOHz8Ob29vDB06FBMnTsTYsWNZkttCnTx5EitWrHAotPjrX//a4osMxLR27Vq8+OKL+Mc//oF33nmn2vt1Oh3Ky8uFUoWaijHUajX0ej3Ky8uhVCpRXl6O8vJyqFSqah9fXl5e49A+ex4eHvD29kZgYCC8vLzg5eWFgIAAeHp6CsUYHh4e8PPzg7e3Nzw8PBAQEAAPDw/4+PjA19cXHh4e8Pf3Fz7G398fUqkUfn5+DfWtbHTz5s3Dhx9+CKlUimvXrjWrr625O336NEaMGIG2bdvif//7HwtHWjir1Yr09HSsWrUKKSkpCAsLw4wZMzBz5kwEBgaKHY+cWHl5OQ4dOiScsz9+/DgkEgn69OkjFF0MGTIEbm5uYkclajQqlQonT5502JOSk5MDnU4H4M81G/vCCxaPEhERkVjMZnOdxRdV79s/V1FRUe14Pj4+Ny3BCAgIgL+/f7Ub9wY0voqKCnh5eQEAWrVqhfHjx6Njx45YuHAhCgsL0blzZ5ETEjVPVqsVGzduxMSJEx3OVQ4YMADh4eHYtGmTeOGIGtjWrVsxZcqUGostJBIJ7r//fmRmZoqQjOj2mUwmTJ06FQcOHIC7uzsuX74MqVQKs9mMJUuW4J///KfYEakFyszMxNChQ/H3v/8dS5YsETsOEVGdkpKSMHbs2Brf5+rqigcffBAZGRmNnIpqwmILJ1BRUYGgoCDhpHNVLi4u6N+/Pw4fPtzIyYgah06nQ7du3dCvXz8UFBTg119/hYuLCyorK3Hu3Dl06tRJ7IhETcL69euRmJiIq1evshCGiIiI6DYcPHgQkydPRuvWrbFr1y707NmzwT8nyyucm1KpFH5tbBsGTpw4Aa1WC+DPXxfbZoHIyEhERkbC09NT5ORkYzabUVBQIAzoOHToEHJycmCxWKoN6XjggQcQHBwsdmQiottWWVmJ5ORkvP322zh27BjkcjmWLl3KYd5Obv369Zg1a1atQzdIfD/++CMGDRpU4/vc3Nzw8MMPY8+ePY2cim5FQUEBhg0bhtDQUOzbtw+tWrUSOxI1EqPRiG3btuHd6s2BcAAAIABJREFUd9/FyZMnERsbiwULFiA+Pp6lBSS4fv060tPToVAokJKSgt9//x0hISEYPHiwUHTBwStERERERERE1NRYLBZcuHBBuLYhKysLR44cQWlpKYDqJRYDBgxASEiIyKmJxFFRUYGMjAwkJSXhm2++we+//46OHTti1KhRiI+Px6hRoyCVSsWOSSKxFVp8+eWXiIiIYKGFk1i+fDleffVVLF68GG+88Uajfu47KcbQ6/UwGAxQqVQwGAzQ6XTQarUwGo1QqVSoqKhAeXn5TT+3j48PpFIpAgMDIZVK4ePjAz8/P0ilUvj7+8PLywuenp7w9/eHh4cHfH194ePj41Cg4e3tDT8/P3h4eEAmkwkfExAQ0Cjnz6xWK9q2bYvS0lK4urpi06ZNeOqppxr881L9OX/+PORyOaRSKdLS0tC+fXuxI5ETOHPmDD755BNs3LgRrq6ueOKJJzB37lxERESIHY2agJKSEnz//fdQKBRITU3FpUuX4Ofnh8GDByMhIQEjRozgYFRqsWwFpfb7V/Lz82G1WuHn54fu3bs77F3p06cP9z8QERGRU9Pr9bdcgmF/X6VSwWw2Vzuei4sLAgICai2+sL8FBgZWey4gIEAoaaBbo9Pp8Oabb+LRRx/FwIED4erqCpPJhJCQELz55puYO3eu2BGJWpTVq1fjtddew9WrV+Hr6yt2HKIGMXPmTGzatAkmk6nW1xw+fBgDBgxoxFREdy48PByPPPIIVq5ciRMnTiApKQm7du1CfHw83nrrLbHjUQtz5coV3HfffYiKikJKSgokEonYkYiI6vT4449j165dtf7b0MXFBRcvXsQ999zTyMmoKhZbOIGdO3di8uTJNbYE2ri4uKCwsJAD/qlZysnJQd++fZGVlYV+/frh8uXL2LdvH/bu3YvFixc3ylBZouZg2LBhCAoKwo4dO8SOQkRERNTkXLp0CRMnTsTp06fx+eefY/z48Xd9TJZXOD+j0YizZ89W2wRw5coVAEBgYCAiIiIcSiyio6N50YcTKioqwqFDh5CRkYGsrCwcP34c5eXl8PPzQ+/evR0GdURGRoodl4jorlitVqSkpGDx4sU4fvw4HnnkESxatAj33Xef2NHoJj799FO88MILLLVwcrNnz8bGjRthNBprfL+bmxuKi4tZmuCkzpw5g+HDhyM4OBhpaWlo3bq12JGokWVkZGD58uVISUlB165dMWfOHMycOZObkaiavLw8JCcnQ6FQ4IcffoDFYkF0dDTkcjni4+OFTVhERERERERERM7CbDajoKBAKLDIyspCTk4OdDod3Nzc0L17d4dz47y+gejPwtukpCR8++230Gg0iIiIwMSJE5GQkIB+/fqxILmFsy+0iIyMxMKFC/GXv/yFvy+cwJtvvom33noLH3zwQbMbkqbRaGAwGFBWViaUYSiVShiNRuh0OpSVlcFoNEKtVgtlGGq1GkajEWVlZdDpdDAajVAqlTAYDNDr9SgrK4PBYIBGo7np53d3d4evry+8vb3h4eEBPz8/uLm5ISAgABKJBP7+/sJrPD094eXlJZRtyGQySCSSm742MzMTjz32GABAIpFg+PDh2Lt3b0N/a6meXblyBSNHjoROp0NaWhq6dOkidiRyEhqNBp9//jlWrVqFCxcuYNiwYUhMTER8fDz/DqVbVlhYCIVCAYVCgb1790Kj0SAsLAxyuVy4BQYGih2TSDT2e11s+11yc3NRUlIC4M99SPaFF7169YKHh4fIyYmIiIjujq1otupNpVJBpVLV+D77m1KprPG4ttLYugowbDc/Pz8EBATA19dXuPn7+wtrYy3Zk08+iStXruDAgQNiRyFqUUpLS9G+fXts2rQJTz75pNhxiBpEhw4dcOnSpVrf7+7ujnHjxnG2HjUJv/76K7p164aDBw9i8ODBDu8zmUxwd3cXKRm1RBUVFRg8eDDUajWOHDkCf39/sSMREdVJr9ejdevWqKioqPU17u7ueOedd/DKK680YjKqCYstnMC4ceOQlJQEq9Va62tcXFywbNkyLFiwoBGTETWO5cuXY+XKlSguLuZwEKI7VFRUhA4dOmDnzp3Cxd9EREREdHsMBgNeeuklbNiwAfPnz8fSpUtvepERyyuaBrPZjIsXLwrFFbYSi/z8fFitVkilUnTt2lW4oN9WZhEWFiZ2dKpBUVGRw6COzMxMXL9+3WFQR1xcHGJjYxEeHs61BiJqNmyFFosWLcKJEycwZswYLF68GP369RM7Gt2C//znP5g9ezYWL16MhQsXih2HamE2mxESElLrZgbgj6Ebn376KZ555plGTEa34/z58xg2bBj8/f2RlpaGoKAgsSORCHJzc/HJJ5/gv//9L2QyGV544QW8+OKL/P1ANdLpdEhPT0dycjJSU1Nx6dIlBAUFYejQoULRRbt27cSOSUREREREREQtSNXhhbZbRUWFwzUO9jeWuxL9obCwEElJSUhOTsbBgwfh5uaGuLg4xMfHY8KECbjnnnvEjkhOgIUWzquyshKvvPIKPvroI6xfvx7Tp08XO1KTU15ejoqKCqjVahgMBmi1Wuh0OhgMBqhUKocyDLPZDLVaDYvFApVKBbPZLJRk6PV6oXjD9lqVSgWLxQK1Wn3buTp27CgUX9RWmBEYGAiJRAKZTAapVAofHx94eXnB09MTHh4e8Pb2Fp53c3ODn5+f8HoXFxcEBAQ0wHe0ZSspKcGoUaNQXFyMtLQ0REZGih2JnIjVakV6ejpWrVqFlJQUdOnSBc899xyef/55/jzSbTGbzThx4gQUCgWSkpKQmZkJFxcXREdHCyUXgwYNglQqFTsqkeiKioqE/TD2e2MqKirg7u6Obt26VSu84L4YIiIiamnKy8uhVCqhVCqF4ljb49pu9q8rLi6ucw6cp6cnAgMDERgYKKxd2R7X9Fxtj0NCQuDm5taI35m7t2PHDjz55JO4evUqr8snamSPPPIIACAlJUXkJET178KFC+jUqdNNXyeRSFBYWIgOHTo0fCiiu7By5UosW7YMxcXFTe7fe9T8PPvss/j666+RmZmJiIgIseMQEd3U1q1bb6nQr3fv3jhx4kQjJKK6sNhCZGq1Gm3atIHBYLjpa/v06YOcnJxGSEXUuIYPH47Q0FB88cUXYkcharLee+89vPXWWyguLoanp6fYcYiIiIiatP/+97+YNWsWHnjgAWzbtg3+/v4sr2hC7C/Ut709fvw4ysvL4ebmhg4dOgjFFbaL9Vl+4Lw0Gg1yc3OFIR0ZGRk4d+4cACAsLAyxsbHCkI777ruP/x8iombJarXim2++wRtvvIEzZ85gwoQJWLx4McLDw8WORrfo/fffx9/+9jcsWbIE//rXv8SOQ3VITU3FmDFj6nyNq6srBg0ahAMHDjRSKroTFy5cwLBhw+Dh4YH09HS0bdtW7EgkkuLiYqxduxYff/wxtFotJk2ahFdffZUX4VGd7Aff/fjjjzCZTOjbt68wMGPw4MFwd3cXOyYRERERERERNRNVz4tnZWWhoKAAFosFMpkMUVFRwnnxyMhIREVFcZgnkR2r1Yrs7GwkJSVh586dOHXqFFq1aoXhw4cjPj4e48aNg0wmEzsmOYlffvkFb7/9Nr7++mv06tWLhRZOxmKxYObMmfjiiy/w1VdfYcKECWJHojrUVoKhVCrx6KOPQq/XC691dXXF2LFjER0djfLy8joLM0wmE7RarTBMUKfTwWg03la2wMBAAIC/vz9cXV2F4gxfX1+4u7vD29sbHh4ewhBBW9HGrZRm1HZs2zGbI5VKhUceeQS//vor9u7di+joaLEjkRM6c+YMPvnkE2zcuBGurq544okn8PLLL/MaN7oj165dw4EDB6BQKLBv3z6cP38ePj4+ePDBB4Xz9jExMWLHJHIaJpMJZ86cqVZ4UVhYCOCPf79U3UPTr18/7nMiIiIiqoNSqYRWqxVKY1UqFcrKyoTnNBoN1Go1dDodtFotysrKoFKpHD7GdgyTyVTr5wkICICPjw98fX3h6+uLwMBA+Pr6wtvbW3jO09MTMpkM3t7e8PT0REBAgLCeZbvv7e0NmUwGT09P+Pr6Ntj3RavVIjg4GGvXrsXTTz/dYJ+HiKr76quvMG3aNFy+fBlt2rQROw5Rvfr888/xzDPPVHvex8cHbdq0QUhICNq1a4e2bdvi8ccfx0MPPSRCSqJbN2jQIHTu3BmbN28WOwq1cO+99x7mz5+PPXv2CCVZRETObuzYsUhKSrql1xYUFKB79+4NnIjqwmILJ7R3716MHj0aKpUK/v7+YschalA6nQ6tW7fGp59+iqlTp4odh6jJiomJQd++fbFhwwaxoxARERE1SQaDwaG84ujRo0hNTYXJZILFYmF5hRNSq9X49ddfHS68P3HiBEpLSwH8+WtlfwE+L753biaTCbm5ucjIyBCGdeTn58NqtSI0NFQY1BETE4PY2Fi0atVK7MhERA3KZDJh69atWLp0KX799VdMmDABb7/9Nnr06CF2NLoN7777LhYsWID3338fL7/8sthx6CamTp2KLVu23PR1EokEly9fZlmCk7t48SKGDRsGd3d3pKenIzQ0VOxIJKKKigrs2LEDy5Ytw5kzZzBs2DAkJiYiISFB7Gjk5PR6PX766SckJSVhz549OH/+PHx9fTFkyBAkJCRgzJgxuOeee8SOSURERERERERNhFKpFK5zsN1Onz6NyspKYcig/bnx8PBwuLq6ih2byOmUl5dDoVAgOTkZSUlJuHLlCsLCwhAfH4+EhASW01I1LLRwfkajEVOmTMF3332HXbt2YdSoUWJHoju0e/dujB8/Hvbbll1cXDBgwABkZmbe1bHLy8uFwotbeXsnH1P17Z0UawAQhgtWfVvT++7muZu93lbAcbd0Oh0ee+wxHDt2DCkpKRg4cOBdH5OaJ7VajU2bNuHDDz8UrttITExEfHw8/96lO1ZYWAiFQgGFQoG0tDSoVCq0bdsWDz30EORyORISEnhdEFENVCoVTp486VB4kZOTA51OB4lEgo4dOwprUbY9N1yLIiIiIqp/BoMBWq0WarUaGo1GKMOwlWPYyjC0Wq1QjqHX64UiDYPBALVaDb1ej4qKCqhUqpt+zlspxPDw8ICPjw9kMhk8PDzg5+cHX19feHh4wN/fXyh/dXd3h6+vr1AK+8QTT8DT0xO7d+9uhO8eEdno9Xq0bdsWS5YsQWJiothxiOrVTz/9hAsXLqBt27YIDg5GUFAQEhMTYbVa8fXXX4sdj+i2XL9+HW3btsW2bdswYcIEseNQC6ZQKPDwww9j6dKlmD9/vthxiIjuSkBAAN59913MmDFD7ChUBYstnBCLLaglSUlJQUJCAn7//XdeOER0h/Lz8xEeHo79+/dj2LBhYschIiIiclpVyysKCwuF27lz56qVV7Rr1w6ZmZk4f/485s+fj9dee42lCCIwGo3Iy8vDL7/8gpMnTyI3Nxd5eXm4fPkygD8WHqOiotCrVy/07t0bkZGRiIqKQkBAgMjJqS4WiwX5+fkOwzp+/vlnGAwG+Pv7o1evXoiLi0NsbCz69++PNm3aiB2ZiKjRGI1GbNu2DW+//TYuXLiAxx9/HAsXLkS3bt3Ejka3afny5fjnP/+JDz/8kBeMNhF5eXnCcAubIUOGYO7cuXjsscccnu/atSvP4zUBly5dwrBhwyCRSJCeno527dqJHYlEZrVakZKSgtWrV0OhUKBv3754+eWX8cQTT3DIGd0S+4EZqamp0Gq1DgPzBg0aBKlUKnZMIiIiIiIiInICRUVFDufEs7KycOXKFQB/XJtiX2ARGRmJsLAwkRMTObfS0lKkpqYiOTkZqamp0Ov16Nu3r7A2FxMTI3ZEckL2hRZRUVF4/fXXWWjhhPR6PSZMmICMjAx8++233BfTxE2cOBHffvstTCaTw/MuLi4oLCxEp06dxAl2F8xmM8rKymC1WqFWqwH8UVgG/DEwurKyElqtFiaTCSaTCVqtFgCg0WhgsVhgNBqh0+kcXm8rz6isrBSGEer1ehgMBlgsFmg0GgCo8bi3yzZ0EIBD6YW3tzc8PDwA/DHs0Ha+VCaTQSKRAAACAwMBAK6urvD19cWePXtw7tw5TJ06Fd26dav12D4+PsI5Mz8/P7i5uQFwLNqwfx7443pg/vncfNifm9+/fz+6du2KOXPm4Nlnn4Wvr6/Y8agJs1gsyMnJEc7b//DDDzCbzejbty/kcjnkcjni4uLg6ekpdlQip2W/ZmUrvcjPz4fVaoWfnx+6d+/uUHjRp08fBAcHix2biIiIiOzY1pZUKhUqKiqg1+uh0WhQUVEBrVaLsrIyGAwGoUijoqICarVaKHNVKpXCMdRqtVDwalvPuhW2tSBb0aptrcm2zmRb+7GtNdnWhWxrQIGBgXB1dYW/vz8kEglkMhlcXFyEveG249leAziuORG1RNOmTUN+fj6OHDkidhSiBvfSSy/hxIkT+OGHH8SOQnRbNm/ejOeffx6lpaXw8/MTOw61UOfOnUP//v0xZMgQ7Nixg+dgiajJY7GF82KxhRNisQW1JHPnzsXBgwdx4sQJsaMQNVmLFi3C+vXrcenSJeHCYSIiIqKW6nbLK8LCwhxu4eHhDuUVlZWVWLFiBV577TVMmTIF69atEzZdUf27dOkSfvnlF+Tm5gq3goICmM1meHh4ICIiAr169XIosbj33nvFjk23wH7zw6FDh/DTTz9Br9fDx8cH0dHRDgM7IiIieGKMiFoko9GITZs2YcmSJSguLsbkyZOxaNEidOnSRexodAdspRarV6/Giy++KHYcugs80d30Xb16FcOHD4fZbEZ6ejrat28vdiRyEllZWVi1ahW2bt2K4OBgzJw5E3PnzhWGsxDdTHl5OQ4dOiQMzMjKyoKPjw8efPBBxMfHY9y4cejYsaPYMYmIiIiIiIiogVksFly4cAF5eXnCefEjR46gtLQUQPUSiwEDBiAkJETk1ERNQ2FhIZKSkrBz505kZmbCw8MDsbGxiI+Px6RJkxAaGip2RHJSLLRoOrRaLR599FFkZ2cjNTUVAwYMEDsS3YWysjIEBwfDYDBUe5+7uzuWLFmC+fPni5CsebENGDQYDNDr9QD+LMywDSe0L8ywDSkE/izPAP4szQAAtVoNq9UK4M/SDvsiD1u5R2VlJc6dOweVSoWQkBC4urqioqICAKDT6WA0Guvla7QNM7SxL9AAIAxMtKmrJMN++OGtHMu+5ONmx3J3d3coabjZseyLPVqSgoICrFmzBhs2bICbmxsef/xxzJs3Dz179hQ7GjUDOp0OmZmZDuftvby8EBsbKxRd9OvXj/8OJLqJsrIynDlzRljfOnXqFE6cOOGwvhUZGelQeNGrVy+hJIuIiIiImg/bOpCtrNW2BmVbY7p69SqmTZuGOXPmoFevXsKaUFlZGcxms7B2ZVtvsq1bKZVKYc3Ktu5kX/B6O2oqu7BfT6rpOds6jZubmzBk2n7txn59qer6kf2ajn25q30RB+BYJFt1fYuoPuzbtw+jRo1Cfn4+evToIXYcogb11ltvYevWrTh9+rTYUYhuy4QJE1BeXo7vvvtO7CjUQmm1Wjz44INwc3PDoUOHHGZoERE1VZz34bxYbOGEWGxBLUl4eDgSEhKwYsUKsaMQNVk9evRAfHw83nvvPbGjEBERETWKWy2vCAwMRERERLUCi6rlFbciOTkZTz31FMLCwvDNN9+gU6dODfCVtRxGoxFnz54VLnjPy8vD0aNHUVJSAoAXvTd1KpUKP//8MzIyMhwGdri5uaF79+4OAzv69+8PqVQqdmQiIlEZDAZs3rwZb731FkpLS/H0009j4cKFuOeee8SORndo0aJFePvtt/Hxxx9j9uzZYsehu8QT3c1DcXEx5HI5tFot0tPT0blzZ7EjkRM5d+4c1q1bh3Xr1sFisWD69Ol45ZVXWEhAt62wsFAYlrF3715oNBqEhYVBLpcjPj4eI0eO5NoGERERERERURNnNptRUFAgFFhkZWUhJycHOp2uxnPi0dHRDoNuiahuFosFmZmZSE5Oxu7du1FQUICgoCA8/PDDSEhIwMMPP8yfKapTbm4ulixZwkKLJkKpVGLMmDE4f/489u3bh6ioKLEj0V3asmULnn76aaEgoaqIiAjk5eU1ciqqb1arFbNmzcLnn3+OjRs3YurUqdVeYxtkCNRcmgH8WcZhO6atRAOAMDjRxlbYYWNfynGzY5lMJmi12ls+ln3eqseqTzcryQAcByXasx+SaK9qwYdNTYUaVQcv2tQ2dLHqQMebZbQNkLSn0+nw/fffY9u2bSguLsZ9992Hxx9/HA899BACAwNr/Pv6ZmUgteWiluvKlStIS0tDcnIy9u/fjxs3biAkJASDBw+GXC7HmDFjeG0m0W0oKioS9vzY9v+cPHkSBoMB7u7u6NatW7W9P2FhYWLHJiIiIqIGFhcXhy5dumDz5s31cjzb+o2tVAP4c83G/jnbmpP9ek9Nz9nKNWp6zn7dyX4dyH59qer6UX2oWoAqk8kgkUjqfA1Q8zpQTesxNa2R2Jd43K7a1p9uRU3rXLfDvmj2TtxpYUpd7IuE68PtrjvaimUqKyvx1VdfoUePHrjvvvtqfb3t9/utuN3vV9X11sZSdR23IdW0tnmralujrW09FgA8PDxqnX1S9XhVf66rfmzVn926yperZgoMDARQ+5pvY1u7di1ef/11XL9+XewoRLfMYDAgODgYK1aswKxZs8SOQy1QZWUlJk2ahAMHDuDYsWPcR01EzQbnfTgvFls4IRZbUEtx+fJl3HvvvUhLS4NcLhc7DlGTdPToUQwYMADHjh2rc8GZiIiIqKkRo7ziZs6ePYsJEyagqKgIX331FUaOHFmvx2+uioqKHAossrKykJ+fD6vVCqlUiq5duwoDHSIjI9G7d2+EhISIHZtukU6nQ3Z2tsPQjlOnTgH4o6AkJiYGcXFxiI2NRb9+/djmTkRkR6fTYcOGDVixYgXUajWeffZZzJ8/H+3btxc7Gt2F119/HcuWLcPGjRvx9NNPix2H6gFPdDcfJSUlkMvl0Gg0SE9P5wZaqkaj0eDzzz/He++9h99//x1jxozBa6+9hgcffFDsaNQEmc1mHD58GMnJyVAoFDh+/Di8vLwwcOBAyOVyjB07FuHh4WLHJCIiIiIiIqI6GI1GnD171uF8eFZWFioqKqpd72C7OcPmfqKmRq/XY//+/UKZRUlJCcLCwhAfH4+JEydi4MCBdQ4zJgJYaNEUFRcXY+TIkVCr1VAoFOjatavYkagejBo1Cvv3769zYNbJkycRGRnZiKmoIVRWVuIf//gHPvzwQ/znP//Bc889J3akRlF1aJttoJxNXSUZVYff3exYNR3PprbBdPbFITa1DcmrbQBdTTmAP/7NZjAYqj1vX2LirGoaFGnvVoYt1jRY0l5thSD2bjYQr2rZSW1sA+bqcqvD525lUGRjH6uu19T161BTCYrVakV2djYUCgUUCgV+/PFHGAwGhIWFQS6XQy6XY9SoUTf9tSMiRyaTCWfOnKlWeFFYWAjgz31etj1CERER3EtCRERE1MysXLkSy5YtQ3FxcY0D3JuTqms6Op0ORqMRQPVCAPt1kqprL3WtE9nYl2vY1LQOVNOaUU1rN7Wt89zM3RZD2H+tt6u2Najb1RBlqHdTFFKT2y1PsK0JnTlzBqWlpYiNja31tbf79ddWxlCbW13Hqm9eXl7w9PRs0M9hMBig1+vv+ONrWqMFqpc526ttHbimPyuq5qv6M1Pf67W2NT/7Ag3beqv9uqrt95D9z4ltLc/2OtsxbL+OtvfbjhcQEACJRAJ/f3+4ublh3759mDhxolCuSdQUfPfdd4iPj8fFixdZsEyiWLRoEZYtW4a0tDQMHjxY7DhERPWG8z6cF4stnBCLLailWL9+PebOnYvr169zEw/RHZo3bx6Sk5Nx9uxZsaMQERER3ba6yivOnz8vXLTQmOUVN1NeXo7Zs2djy5YteP311/HGG29w4/T/p9FocPbsWeHC9KysLJw4cUK48MZWcmC7MD0mJgbh4eH8/jUhFosFp06dwtGjR3H48GEcPXoUeXl5sFgsaNu2Lfr37y/c7r//fgQEBIgdmYjIKWm1WmzcuBHvvPMOysrK8Oyzz+LVV19FaGio2NHoLlRWVuKVV17BRx99hI0bN2LatGliR6J6whPdzUtpaSlGjBgBpVKJ9PR0dOnSRexI5IRMJhN2796N9957D0eOHEFsbCzmzp2L8ePH1znsgqguxcXF2Lt3L5KTk5GWlgaVSuUwLGP06NH1utGFiIiIiIiIiG6PRqNBbm6uQ4FFQUEBLBYLZDIZoqKihPKKyMhIREVF3daQCSJydPHiRfzvf/9DUlIS0tLSYDab8cADDyAhIQGPPvooevbsKXZEaiLsCy169+6Nf/3rXyy0aAIuXrwIuVwOV1dXpKWl4d577xU7EtWDa9euoW3btnWWWri7u+PVV1/FW2+91YjJqCEtX74c//znP7Fy5Uq88sorYschJ1LTAMOaBrGdOnUKX3zxBb799ltIJBIkJCTgySefRLt27WA2m1FWVlbn56lt6JvNrQxivNnAxNqGTdorLy9HRUVFna+pbaidza0Mm6xrAJ692spPGupYzsx+0GJlZSXMZjPMZjNMJhMsFgtcXFwglUrh5eUFb29vYThifRZsVM1hr6ahmFVLQqp+vqrZajpG1QKUqgMqqw6CvJWCF6KbUSqVwv4w276i7Oxs6PV6SCQSdOzYsVrhBfcUERERETVNv/32G7p27Yr9+/dj2LBhYschalGys7PRr18/HDp0CAMHDhQ7Djm5ukp17Ndf7QuSbeul9q+3X/+0rXPar2faPo/9mqNtXdFWxmE7hn1B0K3w9/eHj48PPD09hUIY21qXfRmGj48PvL294efnB5lMBm9vb3i6lRj6AAAgAElEQVR7eyMgIEC4X/V1RPVt1qxZyMrKwrFjx8SOQi3Q7t27MX78eKxduxbPP/+82HGIiOoV5304LxZbOCEWW1BLMXHiROh0Onz33XdiRyFqkqxWKzp06IDnnnsOb775pthxiIiIiGrUFMsrbsWnn36Kl156CaNGjcJ///vfFjXA32w24+LFi8KF5raLzk+fPo3Kykr4+/ujV69eDgUW0dHR3OjQBBUVFTkM7Th06BCUSiV8fHwQHR0tDO2IiYlBREQEN4QTEd1EWVkZ1qxZgxUrVsBoNOKZZ57Ba6+9hjZt2ogdje5SZWUl5s2bh48//hibNm3CX//6V7EjUT3iie7mR6lUYtSoUbh69SrS09PRtWtXsSORE8vIyMDy5cuRkpKCsLAwvPTSS5gxY4ZTrlVQ02GxWJCTk4OkpCQkJyfj+PHj8PDwQFxcnFB0ERMTI3ZMIiIiIiIiombLNmTP/ny47ZoH2/Ur9ufDOWCPqH7k5eUhOTkZSUlJ+Omnn+Dl5YVhw4YJZRY8b0q348SJE1i6dCkLLZqggoICjBgxAjKZDGlpaQgNDRU7EtWTtWvXYvbs2Td9XYcOHXDhwoVGSESN5eOPP0ZiYiLmz5+Pd955R+w41ESpVCps3rwZ77//Pi5fvoxhw4YhMTER8fHx/Pu9CajPkoyysjKYzeYa36dSqVDTWIy6CkzqylZcXIyCggKcPXsW+fn50Gg08PHxQVhYGO6991507NgRMpms2sfVVlJSVw7bAL+bPV/TMap+3bc7/O9OuLi4VNsjI5PJIJFIhMfe3t7w8PAQHkulUvj4+AiPq5Z52D+u7b5EIhG+57Xdty/yqO0+izqch8ViwYULF6rtP8rPz4fVaoVMJkO3bt0cCi+io6MRFBQkdnQiIiIiuonevXtjyJAhWL16tdhRiFqcqKgoPPTQQ1izZo3YUYjumG2tUKVSwWq1QqVSCWUbRqMRZ86cwbx587Bw4UIEBgbCaDQKa4dqtVr4WNvHlJWVQa/XQ6fTQa1WC2UadbnVAgyZTCa89ff3F94GBAQIj6VSaSN958hZVVZWokOHDpg5cyYWLlwodhxqYU6fPo0HHngAEyZMwGeffSZ2HCKiesd5H86LxRZOiMUW1BJYLBaEhIRg4cKFePnll8WOQ9QkpaWlYeTIkcjPz0ePHj3EjkNEREQtWHMtr7iZjIwMTJo0Cb6+vvjmm28QFRUldqR6Zz/MwXYBeXZ2NvR6Pdzc3NChQweHC8gjIiJYcNBElZWV4cSJE8LQjoyMDJw7dw4SiQQ9evRwGNrRv39/nlwnIroNGo0Ga9euxfLly2E2mzF79mzMnz8frVq1Ejsa1YPKykokJiZi7dq12Lx5M6ZMmSJ2JKpnPNHdPKlUKowePRoXLlzA/v37ERERIXYkcnK//vorPvroI2zYsAHu7u6YNm0a5s+fj/bt24sdjZqBkpISfP/990hKSkJKSgpu3LiBTp06YeTIkZDL5Rg5ciSvHSEiIiIiIiK6Q0VFRQ4FFllZWbhy5QoAIDQ01OFcuO16FiKqH2azGYcPH8bOnTvxf//3f7h06RJCQkIwatQoTJw4ESNHjnQYgkp0K1ho0bTl5eVh5MiRaN++PVJTU9G6dWuxI1E9euqpp3Dw4EGHwdtarRYeHh5wd3cXnnNzc0NqairCw8PFiEkN5NNPP8ULL7yAOXPmYNWqVfxzme6Y1WpFSkoKVq9eDYVCgR49euCFF17Ac8895zAwn6ghFBYWQqFQQKFQ4H//+x/KysoQFhYGuVwOuVyOESNGVCt7cAZ3Uo6h1WphMpmExxUVFQ6D/mwDAe1VLfSoWkJSXl6OiooK4bHJZIJWq63xmPb37V9X2/27YV9y4e/vD1dXV3h6esLLy8uhwMPHxwdSqdShIMNW5uHh4SHseQoMDATwZ7GHfemGn58f3NzcHEo+bK+3vaU/lJWV4cyZMw77lXJycnDt2jUAf6zb2fYo2dbtoqKiuI+FiIiIyIm88cYb+Oyzz3Dp0iWuBRE1smXLlmHlypUoKiri+VZqtm7cuIHWrVsjLS0Ncrn8jo+jVCqh1+uh1+uh0Wig1Wqh1+uh1Wqh0WiE96lUKuG+Wq2GTqeDXq8XSjM0Go3w+pp4enoKJRcymQyBgYEOj+3vBwQEICAgoNr7WNTatB07dgz9+/dHTk4O+vTpI3YcakFu3LiBAQMGICQkBAcOHOAaKhE1S5z34bxYbOGEWGxBLcHhw4fx4IMPIi8vj8OCiO7QM888g5MnT+Lo0aNiRyEiIqIWoKWWV9xMaWkpHn/8cRw9ehQbNmzA5MmTxY50R0wmE86cOSOUV9guDC8sLATw56+rfYFFTEwMvLy8RE5Od8JsNqOgoEAY2nHo0CFkZ2fDarVWG9wRFxfHTRRERHfo2rVr+Pjjj7Fq1SpIJBK8+OKLePnll51yYyPdmcrKSrz44ovYsGEDtm7divHjx4sdiRoAT3Q3X2q1GqNHj8a5c+egUCjQq1cvsSNRE1BaWorPPvsMq1evxrVr1zB58mTMnz+fv3+o3lgsFuTk5EChUCApKQmZmZlwdXXFgAEDkJCQALlcjn79+nEDGBEREREREVEVFosFFy5cEK55yMrKwpEjR1BaWgqgeomFbTMnEdWvGzduYP/+/UhKSsKePXugVqsRERGBhIQExMfHIzY2lmtbdEfsCy369OmD1157jYUWTczPP/+M0aNHo1evXkhKShKGBVPzxvPtLcu2bdswdepUTJ8+HWvXroWrq6vYkaiJy87Oxn/+8x9s2bIFUqkU06ZNw7x589CpUyexo1ELYCvqS05OhkKhQHZ2NlxcXBAdHS0UXQwePNihvIkajtFohE6nq/O+fcFHbfdt5Rx6vR4Gg8GhBMRW1GF/TFshiK20w2q1Qq1WA6heDnKrqhZd1PfbgIAAobBDIpE0uVklRUVF1fY1nTx5EgaDAe7u7ujWrZvDvqb77rsPoaGhYscmIiIiapGOHz+OmJgY/Pzzz4iJiRE7DlGLcvHiRXTu3Bm7du3Co48+KnYcogZRWVkJDw8PbN68GU888YTYcRyUl5dDqVQ63GzFsVWfr+l9paWlDoWx9jw9PREYGOhwa9euHUJDQ6s9b7sFBwdzndIJLFy4EFu2bMG5c+d4HQM1GovFgvj4eOTl5eHnn3/m9ZBE1Gzx+iPnxWILJ8RiC2oJFi9ejA0bNuDSpUtiRyFqkioqKhAaGoo33ngD8+bNEzsOERERNRN3W17Rs2dP+Pj4iPxVND6z2YzXX38dy5cvx8yZM/Hxxx879Ym/W7nQ2768ghd6N31FRUVCgUVGRgays7Oh1+vh6+uLPn36CIM7HnroIXTu3FnsuERETV5paSk++eQTfPDBB5BKpZgzZw7mzZvH9f5mxmq14rnnnsOXX36J7du3Y9y4cWJHogbCE93Nm06nQ3x8PE6dOgWFQoGoqCixI1ETYTAYsH37dixfvhynTp1CbGwsFixYgPj4eF58SvXq2rVrOHDgABQKBZKTk1FUVISQkBAMHjwY8fHxSEhIYCElERERERERtThmsxkFBQVCgUVWVhZycnKg0+ng5uaG7t27O5RYREdHw9fXV+zYRM3WuXPnkJaWhqSkJOzduxdWqxUPPPAAJk6ciPHjx+Pee+8VOyI1YfaFFgMGDMBrr73Gtfgm6Pvvv0dCQgIGDRqEnTt3wsvLS+xI1Eh4vr3lSU5OxsSJE/HYY49h8+bNTn09NTUdJSUl+Pzzz7FmzRpcvnwZY8aMwdy5czF8+HD+m4Aajf25+7179+LChQvw9fXFAw88IBRdcJBry2QymaDVagEAarUaVqtVGFZoK8JoqLe3ytPTE15eXvDz84NUKoW/vz88PDzg7e0NPz8/uLu7IyAgQHjO19cXUqkUAQEBkEql8PHxga+vL9zd3REYGCg85+PjA6lU2uDXrZhMJpw5c8ZhH1RWVhauXLkC4M89bvaFF/369YO3t3eD5iIiIiIiICwsDFOmTMHbb78tdhSiFmfIkCEICQnBjh07xI5C1GBCQ0Px6quvYu7cuWJHqXdqtRpqtRoajUZ4q1QqcePGDeFt1fu2x0ajsdrx/P390apVq2q3wMDAavdbt26NoKAgBAUFQSKRiPDVN0+9e/fG0KFDsWrVKrGjUAvy8ssvY926dfjhhx9w//33ix2HiKjB8Poj58ViCyfEYgtqCWJjYxEeHo4NGzaIHYWoSfrmm28wadIkXLx4Ee3btxc7DhERETUhtvKKwsLCagUWLK+4O9u2bcNzzz2Hvn37YseOHaKXQRiNRpw9e1a4aPvUqVPIzc1FSUkJgD9O5NoXWERGRqJXr17w8PAQNTfdHY1Gg9zcXKHE4ujRoygpKak2vCMuLg59+/aFq6ur2JGJiJqNkpISvP/++/joo4/g4+OD2bNn45VXXoFMJhM7GtUzi8WCZ599Flu3bsXOnTsxduxYsSNRA+KJ7uZPp9MhISEBJ0+ehEKhQO/evcWORE1IZWUl9u/fj1WrViE5ORm9e/fGnDlzMHXqVHh6eoodj5qhvLw8JCcnQ6FQ4Pvvv4fVakV0dDTkcjni4+MxcOBA/l+fiIiIiIiImpWq1z7YbhUVFZBKpejatatDiUVMTAyHZRM1MKvViuzsbCQlJSE5ORlZWVkIDAwU1qgeffRR7oWiu5aTk4N///vfLLRoBr777jv85S9/wdixY7FlyxYOuW9heL69ZTp48CDGjh2LwYMHY+fOnTxvSvXGYrHgu+++w+rVq6FQKNCzZ0/MmjULM2bM4PByanSFhYVQKBRQKBTYt28f1Go1QkNDIZfLkZCQgOHDh6NVq1Zix6Rm7mbFF2azGWVlZdDr9TAYDFCr1TAajSgrK0N5eTkqKiqgVqthMpmg0WiE5zQaDYxGIzQajVDScTPu7u7w9fUVyi4CAgLg6ekJb29vBAQEwNvbG15eXggICICPj49QquHn5wdvb2/4+PjA399feF1gYCC8vb3r3N+kVCqFogtb6UV2djb0ej3c3NzQoUOHaoUXERER/H8lERERUT2aO3cu0tPT8csvv4gdhajFWb9+PRITE3HlyhUEBASIHYeoQfTp0wcJCQlYsmSJ2FGcSnl5OZRK5W3frl69iqpjhz09PREYGIh27dohNDQUgYGBNT4ODAzEPffcw2tBanHhwgV06tQJaWlpkMvlYsehFmLLli2YNm0avvjiCzz55JNixyEialC8/sh5sdjCCbHYgpo7lUqF4OBgfPnll5g0aZLYcYiapL/85S9QqVRQKBRiRyEiIiInxPIK8eTn52P8+PG4fv06tm3bhqFDhzbK5y0qKnK4GDsrKwv5+fmwWq3VBjlERkaiT58+CA4ObpRs1HBMJhPOnDkjlFhkZWXh9OnTqKysRGhoqEOJxcCBA7lpi4iogVy6dAkrV67E+vXrIZPJMG/ePCQmJnJoUjNlsVgwffp07NixA19//TXi4+PFjkQNjCe6Wwa9Xo+xY8fi+PHj2Lt3L+6//36xI1ETlJOTg/fffx/btm1Dq1atMGvWLCQmJnJQATUYrVaLAwcOIDk5Gampqbh06RKCg4MxZMgQYViG2MWrRERERERERLdDo9EgNzfXocCioKAAFosFMpkMUVFRDtc+REVFQSqVih2bqEWoqKhARkYGkpKS8PXXX6OoqAidOnXCyJEjER8fj1GjRvHnkerF4cOHsXTpUqSkpAiFFgkJCWLHoju0fft2PPXUU3j88cfx2Wefwc3NTexI1Mh4vr3lOnbsGEaPHo3evXtjz5498PPzEzsSNTPHjx/HunXrsGXLFkilUkybNg2vvPIKOnbsKHY0aoEsFgtycnKEoovvv/8eFosFffv2hVwuh1wux0MPPVTngH4iZ6fRaGAymaBWq4Wyi7KyMhiNRqjVahgMBuj1epSVlcFkMkGlUqG8vBzl5eVQqVTQ6/XQ6/XQaDTQarXQ6/XQarXQaDSwWCy1fl5XV1f4+/vD19cX3t7e8PX1hUwmg7e3d42lGV5eXsJwx8uXL6OoqAgXLlwQ9tLJZDJ069bNofCib9++aN26dSN+N4mIiIiajwMHDmDYsGEoKChA9+7dxY5D1KLYSjY/+ugjPPvss2LHIWoQcrkcXbp0wbp168SO0iwYjUbcuHEDN27cwLVr11BaWori4mJcu3ZNuJWUlKC0tFR4bDQaHY7h6+uL4OBghISEICgoSLi1adNGuB8cHCw811LOD61atQqLFi1CSUkJr52hRnH8+HHExcUhMTER77zzjthxiIgaHK8/cl4stnBCLLag5u6bb77B5MmTUVxczBP9RHdAo9Ggbdu2XFgmIiJq4Vhe4bzKysowffp0fPvtt1iyZAkWLFhQb8f+f+zdeVjU5f4+8FtlcwEF2WZYFFJUEEVHRQVLcVxjXFJLK7dTqZVLmWa2mlammYXbKY9mq0t23MBcGNdAMx0BDQU1DNQZBpARZIeB3x/nN58vk1aayjPM3K/r+lwMo8D9Sa6UeZ7nfRcUFODs2bNmBRYpKSkoKioCAKnMICQkRNpo3aFDBzRs2PC+ZSBxtFqtWYmFRqNBWVmZNMAjMjISERERCA8Ph6enp+i4RERWLzMzE8uXL8fatWvh6emJ2bNnY8qUKSy0sGJGoxETJ07E9u3bsXPnTiiVStGRqA5wodt2lJSUYMSIETh58iT27t2L8PBw0ZGonsrOzsZnn32GFStWoLKyEk8++SRmz56Ndu3aiY5GVi4jIwOxsbGIi4vD0aNHUVVVZTYo45FHHoG9vb3omEREREREREQAAIPBIO17MF3nz59HTU2NtNfFVGLBvQ9EYuTl5eHHH39EXFwc9u7di5s3byI4OBhjxoyBSqWCQqEQHZGsiKnQIi4uDr169cL8+fNZaFHPffvtt5g8eTKmTp2KlStXokGDBqIjkQBcb7dtSUlJGDRoEAICArBnzx64ubmJjkRWKCcnBxs2bMDq1atx7do1DB06FLNmzeK+LhKqqKgIP//8M9RqNWJjY3Hu3Dk0adIEvXv3ltbvu3btyn8fEdViKqMwlWb81eM7+X15eXmorKz8069nep3RdPbO0dERzs7OcHd3h5+fH9q2bQtfX180adIErq6u0tW4cWM4OTnB1dUVHh4e3IdDRERENs9oNMLb2xuvvvoq5s6dKzoOkc0ZPXo08vPzcfDgQdFRiB6IJ598EqWlpdi+fbvoKDar9usxOp0OWq32T983PVebo6Mj3Nzc4OrqCrlcDplMJr2t/Zyvr2+9nrnbv39/eHl5YePGjaKjkA3Izs5G9+7d0aFDB+zZsweNGjUSHYmI6IHj/iPLxWILC8RiC7J2U6dORXJyMk6cOCE6ClG9tGHDBkybNg06nY6beomIiKwcyyvqr5qaGixduhRvvPEGHn/8cfznP/+5qz+LqqoqZGVlSUMcTEUWpiEOzZs3R8eOHc0KLMLCwtCsWbMHeFdUl27cuIFTp05JJRY///wz8vLyYGdnh6CgIKnEQqFQIDg4mAdbiIjq0O+//45PPvkEn3/+Oby9vfHyyy9j6tSpcHJyEh2NHqDKykqMHTsWe/fuRWxsLKKiokRHojrChW7bUl5ejjFjxuDo0aPYu3cvevbsKToS1WNFRUVYv349PvnkE1y5coUDNKhOFRcX4/jx44iNjcXOnTuRmZmJli1bIioqCkqlEo8++ih8fHxExyQiIiIiIiIbodVqzQosNBqNdJBZJpOZFViY9r4QkRi1y1MPHz4MOzs7REZGIjo6GqNHj+ZrSnTfHT9+HB988AELLazM6tWrMXPmTMydOxcffvih6DgkENfbKS0tDQMGDICHhwf27dsHDw8P0ZHISlVUVGDnzp1Yu3Yt1Go1wsLC8Pzzz+Ppp59GkyZNRMcjG5eRkQG1Wg21Wo0DBw4gPz8fXl5eePjhh7l+T/QAFRUVoaioCDdv3kRhYSFu3LghvW967urVq8jKyoJOp4Ner8eNGzdw8+ZN1NTUoEGDBmjQoIF0du92nJ2d4ezsjGbNmsHZ2Rmurq7Sc6bnXV1d4eLighYtWqB58+a3XC4uLnX4X4WIiIjo/ps0aRIuXbqEhIQE0VGIbM727dsxatQoZGRkoHXr1qLjEN13s2bNgkaj4d8x9YipcDQnJwc5OTnIzc2FXq+HTqdDTk4OtFot9Ho9srOzkZ+fb/axLi4ukMvl8PT0hFwuh5eXF7y8vCCTyeDp6QkfHx94enrC09PTogb5FxQUwMPDA1999RXGjRsnOg5ZucrKSvTv3x96vR4nTpxAixYtREciIqoT3H9kuVhsYYFYbEHWLjAwEE8//TQWLlwoOgpRvTRgwAA4Oztj27ZtoqMQERHRfcDyCut2+PBhjB07Fq6urti2bRs6dOhwy+8xGAy3FFgkJSWhpKQEdnZ28Pf3l8orTEUWLDKwLpWVlThz5oxUYqHRaKQSE5lMZlZi0a1bNw5OJyISJCMjA0uWLMEXX3wBPz8/vPbaa/jXv/4FOzs70dHoAauoqMATTzyB+Ph4xMbGol+/fqIjUR3iQrftqaiowJgxY3Dw4EHExsaib9++oiNRPVddXY3du3dj8eLFOH78OBQKBWbOnIknn3yS/46gOmMalBEbGwu1Wo2ysjIEBwdDpVJBqVTi4YcfhoODg+iYREREREREVM8ZjUZkZmZKeyA0Gg1OnDiB3NxcALeWWISHh8PT01NwaiLbZjQakZycjNjYWHz//fc4f/48WrZsiaFDh0KlUmHw4MFwdnYWHZOsEAstrNeSJUswf/58LF26FHPmzBEdhwTjejsBQGZmJpRKJezs7BAfHw9fX1/RkcjKaTQarF27Fl9//TWcnJwwYcIEvPLKK/D39xcdjUj6GcxUdPHTTz+hvLwcgYGBUCqVUCqV/DmMSLDKykpcuHDB7IzXyZMnodfrAfyvzMLf3x/+/v7w9PREixYt0KJFC5SVlcFgMEjFGaYSDYPBgMLCQhQUFKCysvKWr9ewYUM0b94crq6ut5Re3K4Mw/T7av+ao6NjXf9nIiIiIpLs2LEDo0aNwtWrVyGTyUTHIbIpFRUVkMvlmDt3LubNmyc6DtF999577+Hrr7/GhQsXREehB6C8vFwqu8jJyYFOp0N2djZycnJw7do1s+dKS0ulj2vYsKFUcGEqwPD29pYuX19fyOVy+Pj41MlrJhs3bsSkSZOg1+vh6ur6wL8e2bbnnnsOW7ZswfHjxxESEiI6DhFRneH+I8vFYgsLxGILsmYXLlxAu3bt8NNPPyEyMlJ0HKJ6Jzs7G76+vti8eTNGjx4tOg4RERHdIZZX2LarV69i9OjROHfuHBYuXAgfHx+zIQ46nQ7A//351y6wUCgUaNy4seA7oPvJaDQiLS1N+vPXaDQ4efIkKioq0KJFC3Tr1k0qsejVqxfc3d1FRyYisnnnzp3Dhx9+iE2bNsHf3x/z5s1joYUNMQ24P3LkCPbs2YNevXqJjkR1jAvdtomFNvSgaDQaxMTEYOPGjfD398fUqVMxbdo07gugOlVaWorExESp6OLcuXNo2rQp+vXrJw0r5FAXIiIiIiIi+jtVVVVIT083W/tOTk5GcXEx7OzsEBQUZFZiERYWhmbNmomOTUQASkpKcODAAcTFxWHXrl3Izs5GYGAgoqOjoVKp0LdvX66F0gNTu9Cid+/eeO2111hoYSVqamowb948LFu2DDExMZgxY4boSGQBuN5OJtnZ2Rg4cCBu3ryJ+Ph4tGnTRnQksgF6vR5ffvklVq1aBa1Wi6FDh2LWrFlQKpWioxFJSkpKcOzYMano4vTp03B0dERkZKRUdNGlSxc0bNhQdFQim2cwGKSzYKbCi6SkJJSUlMDOzg7+/v63nAkLDg5GgwYNpM9RXFyMgoICs+vGjRsoKCiAwWD401+rfd2Ok5PTLWUXpsKNP5ZkuLq63nI5OTnV1X9GIiIiskKlpaXw8PDA8uXLMWXKFNFxiGzO888/j6NHjyI1NVV0FKL7bu3atZg3bx4MBoPoKCTYzZs3pQIMrVYLvV4PvV5/y3M5OTkwGo3Sx3l4eEAul8PX1xc+Pj7SY7lcDj8/P8jlcri5ud1TtrFjx+L69euIj4+/19sk+ksxMTGYPXs2duzYwX02RGRzuP/IcrHYwgKx2IKs2cqVK/Hmm28iLy8P9vb2ouMQ1Tuffvop3nnnHWRnZ3PAMRERkYVheQXVptVqpY3KGo0GqampSElJgdFoRMOGDdG+fXuz8opu3bpBJpOJjk0PgFarNRvkkZiYCIPBAHt7e3Tq1EkqsVAoFLdsWiciIrF+/fVXLF26FBs3bkT79u3x6quv4qmnnkKjRo1ER6M6Ul5ejtGjR+Onn37C3r170bNnT9GRSAAudNuuyspKjB07Fnv37sWuXbvQv39/0ZHIimRkZCAmJgbr169Ho0aNMGnSJMyZMwd+fn6io5ENysjIkIZk7N27Fzdv3jQbZNinTx84OjqKjklEREREREQCVVRU4OLFi2Zr3xqNBmVlZXBwcECbNm3MSiwUCgX3uBJZmNzcXOzZswdbt25FfHw8Kisr0aVLF0RHR+Pxxx9HcHCw6Ihk5Y4dO4bFixez0MJK1dTU4KWXXsLq1auxfv16TJw4UXQkshBcb6fa8vPzMXToUGRmZmL//v0IDQ0VHYlsREVFBXbu3ImYmBgkJiaiS5cumDZtGsaPH8+fXcni6PV6HD16FGq1Grt378a1a9fg7u6Ofv36QalUYtCgQWjVqpXomET0/1VVVSErK+uWwovz58+jpqYGzZs3R5s2baSzYwqFAp07d4azs/M//pqmAozblV7Ufu7GjRu3vF9QUICysrJbPmeTJk1uW3jh5ub2t89zXggREREBwMiRI1FRUYHdu3eLjkJkcxISEtCnTx8kJyejc+fOouMQ3Vc7duzAyJEjUVZWxjMtdMcMBgO0Wi10Oh0yMjKkx6a3vxILWAYAACAASURBVP32G27cuCH9fkdHR7i5uUEulyMwMBAymQxyuVx6GxgYCD8/v9u+BlJZWQlPT0+8++67mDlzZl3eJtmYn376Cf3798c777yDN954Q3QcIqI6x/1HlovFFhaIxRZkzVQqFezt7bFt2zbRUYjqpfDwcAQHB2PDhg2ioxAREdkkllfQH/1xeMO5c+dw5swZ5OTkAABkMplZgcXvv/+OJUuWoEePHtiyZQs8PT0F3wHdT0VFRUhOTpa+HxISEnD58mUAQGBgoFmJRffu3bmATkRkoc6cOYNly5bhu+++Q0hICObMmcNCCxtUUlKC4cOH49SpU9i3bx969OghOhIJwoVu22Y0GjFx4kRs374dO3bswIABA0RHIitTUFCAL7/8EsuWLYNer8eIESMwZ84c/r1DwpSVlSEhIUEqutBoNGjSpAl69+4NpVKJ4cOHo3379qJjEhERERER0QNUWFiIM2fOmBVYpKenw2g0wsXFBaGhodK6d0hICEJDQ+Hg4CA6NhHdRmpqKuLi4hAbG4tjx47ByckJ/fv3h0qlwrBhw+Dt7S06ItkAFlpYP6PRiGeffRYbN27Epk2b8Nhjj4mORBaE6+30RwUFBXj00Udx/vx57Nmzh+uiVOc0Gg3Wrl2Lr7/+Gi4uLpg8eTJefPFF+Pn5iY5GdFsZGRlQq9WIjY2FWq1GWVkZAgMDoVQqoVQqMXDgQM6iILJAhYWFuHjxolnhRVJSEq5fvw7gf2fNTK+vms6btW/fvk72qpeWlsJgMNz1lZ+fj/Ly8ls+n5OT023LL/7ucnd35+vKREREVuSrr77C1KlTkZOTAxcXF9FxiGxKTU0N2rRpg8ceewwfffSR6DhE91ViYiIiIyNx9epV+Pj4iI5DVqSgoADXrl3D1atXodPpkJWVBZ1Oh6tXr+LatWvQarXQ6/UwjWlu0KABvL29IZfL4ePjA19fX8jlchQUFOCjjz7CgQMH0Lt3bzg5OQm+M7JGmZmZ6N69O/r06YMffvgBDRo0EB2JiKjOcf+R5WKxhQVisQVZq4qKCrRs2RIfffQRpk2bJjoOUb3z22+/oW3btti7dy8GDhwoOg4REZHVYnkF/RmtVittKDZtLk5LS0N1dTWcnZ0RFBQkbSgOCQlB586d4eHhccvnSUpKwqhRo1BVVYWtW7ciPDxcwN3QvaqqqkJ6ero0yCMxMRFJSUmorq6WNpmbroiICLi5uYmOTEREfyM5ORkffPABfvjhB3Tq1AlvvPEGRo8ezQV+G1RSUgKVSoWkpCTs27cP3bt3Fx2JBOJCNxmNRkyePBnff/89tm7dymFL9EBUVFRg8+bNWLZsGc6ePYuIiAjMmzcP0dHR/LcICZWdnY39+/cjLi4O+/fvR0FBgdmQjCFDhqBZs2aiYxIREREREdE/ZDAYpP0Ppuv8+fOoqamR9sXUXvvu0KEDGjZsKDo2Ef0Jo9GI48ePIy4uDtu3b8eFCxfg4eGBwYMHQ6VSYejQodzXRnWmdqGF6TVvrrFYn4qKCjz55JPYs2cPtm/fznMudAuut9PtlJSUYOTIkThx4gR2796NiIgI0ZHIBmVnZ+Orr77CypUrkZOTgxEjRmDKlClQKpWioxH9qdLSUiQmJkKtVkOtVuP06dNo2LAhwsLCpDX8Rx55BPb29qKjEtGfuN25NFOpsIODA9q0aWNWeNG9e3eLKiYtLi5Gfn7+nxZf/NXzRqPxls/n4uICNzc3eHh4oGXLlnBzc0PLli2ly/S+u7s73N3d4ebmBmdnZwF3TkRERH8nPz8fXl5e+Pbbb/HEE0+IjkNkc9566y188cUXyMrKqpPCPKK6cvHiRQQFBeH06dPo0qWL6DhkYyorK5GbmwudTgetVmv2NiMjA1qtFpcuXUJFRYX0Ma6urpDJZJDL5WZzqEzPtW7dmnvv6K6UlpYiMjISVVVVOHbsGPd9EZHN4v4jy8ViCwvEYguyVocOHUJUVBR+++03BAYGio5DVO8sXLgQq1evxrVr12BnZyc6DhERUb1WUVGBq1evsryCbqugoABnz5412yickpKCoqIiAJBKC0wbhf/J8Ibr16/jqaeewuHDh7FixQpMmTLlQd0O3SemDeSmEotjx46hpKQEzZo1Q+fOnaVBHpGRkfyZl4ionjEN1Ni9ezd69uyJ+fPnc4i0DSsuLoZKpcKvv/4KtVqNTp06iY5EgnGhm4D/DQN75plnsGnTJmzduhXDhg0THYmsWEJCApYsWYLdu3ejTZs2ePHFFzFlyhQ0btxYdDSycUajEcnJyYiNjUVcXBxOnz4NJycnRERESEMyFAqF6JhERERERET0J2qveZsunU4H4P/2QZgu0z4ZIrJ8xcXFOHjwILZu3YrY2FjcuHEDgYGBiI6OxpgxYxAREcF1T6pTiYmJ+PDDD1loYQM4mJ7uBNfb6c+wGIcsRUVFBXbu3IlPPvkEx48fR9euXTF16lSMHz+ea/Rk8XJzc3H48GGo1Wrs3bsXWVlZaNasGXr27AmlUgmVSoXg4GDRMYnob1RUVODixYtmhRenTp1CdnY2AJgVENc+x1bf/p4qLCy8beFFfn4+8vLycP36denKz8+XHldVVZl9HgcHh1uKL0zlF7VLMf746xzuS0RE9OBFRUXB29sbGzduFB2FyOaYhv/Hx8ezuJWsyo0bN+Dq6op9+/ZxHYEsUkBAAEaNGoUnn3wSWVlZyMzMRFZWlnRduXJF2p8HAI0bN0arVq3g5+cHf39/+Pv7o3Xr1tL7fn5+cHBwEHhHZElqamowduxYqNVq/PLLL3jooYdERyIiEob7jywXiy0sEIstyFrNnz8fP/zwAy5evCg6ClG9FBISAqVSiZiYGNFRiIiI6gWWV9DfqaqqQlZWllReYdoAfP78edTU1KB58+bo2LGj2cbfsLAwNGvW7L58/ZqaGixduhSvv/46nnrqKXz++ef1bmOxtSosLMSZM2ekEoujR49Cr9ejUaNGaNeunVmJRZcuXe6q1ISIiCyHaWg0B2qQSUFBAYYMGYLffvsNarUaoaGhoiORBeBCN5lUV1fj2WefxXfffYctW7ZgxIgRoiORlTtz5gxWr16Nr7/+Gi4uLnj++ecxffp0uLu7i45GBADIycnBkSNHpKILg8GAgIAADBgwAEqlEoMGDYKLi4vomERERERERDbHaDQiMzNT2guh0Whw4sQJ5ObmAri1xCI8PByenp6CUxPR3cjMzMS+ffsQGxuL/fv3w2g0omfPnlCpVBgxYgTatWsnOiLZIBZa2JaCggI8+uijOH/+PPbs2YMePXqIjkQWiuvt9FeMRiOeffZZbNy4EZs2bcJjjz0mOhLZOI1Gg5iYGGzevBmurq6YPHkypk+fDl9fX9HRiO5IRkYG1Go11Go19u/fj4KCAgQGBkKpVEKpVKJ///5wc3MTHZOI7pDBYLjlvNvp06dRWloKOzs7+Pv731J4ERwcbHUFpwUFBX9ZfGG6av+e4uLiWz5PixYtbim/qF188ceCDHd3d57xIyIiuksrVqzA22+/jZycHA5kJhKge/fu6NixIzZs2CA6CtF95ejoiPXr1+Ppp58WHYXITHJyMrp06YKTJ0+iW7duf/r7TLOvtFotdDqdNPfK9P6FCxdw8+ZN6fe7uroiMDAQMpkMcrncbA6WTCaDTCazutd/6PYWLVqEhQsXYv/+/ejXr5/oOEREQnH/keVisYUFYrEFWSuFQoFevXph1apVoqMQ1TsajQbdunXDzz//jPDwcNFxiIiILMbdlFcEBgbeUmDB8grbkZeXh5SUFKSkpODMmTM4c+YMUlNTUVFRAXt7e7Rr1w6hoaHo3LkzOnXqhNDQ0Do7hLJ7926MHz8erVu3xn//+18EBATUydel/6mqqkJ6ejoSExORkJAAjUaDtLQ0VFdXmw30iIyMRO/evdGkSRPRkYmI6B4lJCRgwYIFOHDgAAdqkKSgoACDBw/G5cuXceDAAYSEhIiORBaCC91UW01NDWbMmIG1a9di8+bNHKxBdUKv1+Pf//43Vq1ahaKiIjz++ON47bXXEBwcLDoakcRoNCI5ORlqtRqxsbE4fvw4GjZsiPDwcKhUKiiVSnTt2pWbp4mIiIiIiO4z03q3qcBCo9EgOTkZxcXFsLOzQ1BQkFmJRVhYGJo1ayY6NhH9A6mpqdi6dSvi4uJw+vRpNGnSBP369cOYMWMwbNgwtGjRQnREslEstLA9+fn5GDJkCLKyshAfH4+OHTuKjkQWjOvt9Hdqamrw0ksvYfXq1Vi/fj0mTpwoOhIRsrOz8dlnn2HNmjUoKCjA8OHDMWvWLERERIiORnTHqqqqkJKSIhVdHDlyBNXV1QgLC5OKLvr06QNHR0fRUYnoLlRVVSErK+uWwovz58+jpqYGzZs3R8eOHaWiC1t+TdhgMECr1cJgMNz20ul0Zr+el5eHyspKs8/h5OQEV1dX6ZLL5ZDJZH/6vre3Nxo2bCjojomIiMTLyspC69at8eOPP2Lw4MGi4xDZnE8//RRvv/02srOzOQuBrIqvry9eeeUVvPzyy6KjEJl59913sXbtWly9evWez0rp9XpkZWXhypUryMrKwu+//y49vnLlCvR6vfR7mzZtilatWqFVq1Zo3bo1AgICEBgYiICAAAQEBMDV1fVeb40swK5duzBy5EjExMRg+vTpouMQEQnH/UeWi8UWFojFFmSN8vLy4OXlhe3bt2PYsGGi4xDVO3PmzMGOHTtw8eJFDnwhIiKbw/IKuhtGoxEXLlzAmTNnkJycLBVZXLt2DQDg6emJzp07IywsDKGhoQgNDUVwcDAcHByE5r506RJGjRqFa9euYePGjRg4cKDQPNbs4sWLOHHiBE6cOIFffvkFycnJqKiogKurK3r06GF2eXp6io5LRET3UUJCAt5++20cOnQIERERWLhwIaKiokTHIgtw48YNDBo0CFlZWThw4AAHhZMZLnTTH9XU1GDWrFlYs2YNvvrqKzz11FOiI5GNKCsrw/fff4/FixfjwoULiIqKwsyZMzkgjCxSXl4eDh06JBVd6HQ6eHl5YeDAgVCpVBgwYACHLRIREREREd2liooKXLx40azEQqPRoKysDA4ODmjTpo1ZiYVCoUDjxo1Fxyaif6isrAwJCQmIjY3Ftm3bcPXqVbRq1QqDBg1CdHQ0Bg0aJHy/E9m2hIQELFmyRCq0WLBgAZRKpehY9IBlZ2dj4MCBuHnzJuLj49GmTRvRkcjCcb2d7kRNTQ3mzZuHZcuWISYmBjNmzBAdiQgAUF5ejl27dmH58uX4+eefoVAoMGXKFEyYMAFOTk6i4xHdlaKiIhw6dAhxcXGIj4/H5cuX0aRJE/Tu3VsquujatSvPLhPVUwUFBbh06ZJUeKHRaJCSkoKioiIAgEwmg0KhMCu8aN++PRo1aiQ4uWXJz8/H9evXkZeXJ125ubnIyckxe06v1yM3NxfFxcVmH+/g4AB3d3e4u7vD09MTnp6e0vvu7u7w8vIye9/d3Z1FGEREZHUUCgV69OiBf//736KjENmcnJwc+Pj44JtvvsHYsWNFxyG6b7p06YIhQ4bggw8+EB2FyEy3bt3QvXv3Ovl3T1lZGTIzM6WyC1P5xeXLl3H58mVcu3ZNmr3VokULqeTCdJmKL1q3bs31jXogPT0d4eHhGD58OL766ivRcYiILAL3H1kuFltYIBZbkDX67rvvMHnyZOTl5cHFxUV0HKJ6pbq6Gq1atcLkyZOxcOFC0XGIiIgeCJZX0D9RWFiIM2fO4Ny5c9Lm2+TkZBQXF8POzg7+/v7ShlvTBtzAwEDRsf9UWVkZXnjhBXz55Zd49dVX8cEHH3CD6j0qKCiQSix+/vlnnDhxAtevX4eDgwPCwsIQHh4ulVi0bduWBzGIiKyUWq3Gm2++iRMnTkCpVGLRokXo2bOn6FhkIQwGAwYNGoTs7GwcPHiQgzfoFlzoptupqanByy+/jFWrVmHDhg0YP3686EhkQ6qrq7F7926sWLECarUaXbp0wUsvvYRx48bB3t5edDyiW1RXVyMpKQlqtRpqtRpHjhxBdXU1wsLCEB0dDZVKxQEZREREREREf2DaD1G7wCI9PR1GoxEuLi4IDQ012wsRGhrKAfdEViA/Px8HDhxAbGwsdu7cicLCQgQHB0OlUiE6OhoRERF8DYWE+2Ohxbvvvov+/fuLjkV1IDMzE0qlEnZ2doiPj4evr6/oSFQPcL2d7saSJUswf/58LF26FHPmzBEdh8iMRqNBTEwMNm/eDDc3N0yaNAnTp0/n34dUb2VkZEhr+Gq1GgaDAV5eXnj44YehVCoRHR0NuVwuOiYR3SOtVguNRmN27s70OnPtsmRT4UWPHj3g5eUlOna9UVZWhvz8fBgMBhgMBuh0Omi1Wun9Pz6Xk5MDo9Fo9jmcnJwgl8shk8ng6uoqXX98Ti6Xw8fHB46OjoLuloiI6M4sWrQIq1evhlar5fl4IgGGDBkCOzs7xMbGio5CdN8MGjQIfn5+WLdunegoRJJr167Bz88Pu3fvxpAhQ0THQWVlJa5cuSLN6dJqtdDpdNL7ly9fhmnktGlu1+2uVq1asQhVMIPBgPDwcLi7u+PQoUN8LYiI6P/j/iPLxWILC8RiC7JGEydORGZmJg4fPiw6ClG9c+jQIURFReHXX39FSEiI6DhERET/GMsr6F7cbjNtWloaqqur0bx5c3Ts2FHaSKtQKNC1a1c0adJEdOx/ZO3atZgxYwYGDhyIb775Bi1atBAdqV4wGo1IS0uThnokJiYiKSkJ1dXVkMlkUCgUiIyMREREBBQKBRo3biw6MhERPUA1NTWIi4vDokWLcPLkSSiVSrz//vvo0aOH6GhkQXJzc6FUKnHjxg0cPHgQDz30kOhIZIG40E1/5Y033sCSJUuwfv16TJw4UXQcskGnT5/Gp59+ik2bNsHDwwNTpkzBrFmz4OrqKjoa0Z+6fv06Dh48CLVajd27d+PatWvw8PBA3759ER0djejoaLi5uYmOSUREREREVGcMBoO0D8J0nT9/HjU1NXB1dZX2QZiuDh06cAgIkRXJyMhAbGws4uLicOTIEdTU1CA8PBxjxozBqFGjOCiXLEZCQgLeffddqNVqFlrYoLS0NAwYMAAeHh7Yt28fPDw8REeieoLr7XS31qxZgxkzZmDu3Ln48MMPRcchuoVOp8Pnn3+O1atXo7CwEMOHD8dLL72E3r17i45G9I8ZjUYkJydLJRdHjx5FRUUFAgMDER0dDZVKhcjISDg5OYmOSkT3QUVFBS5evGh2Ru/UqVPIzs4GALPXpGuf0+MZrHtXVVWFvLw86crJyUFubq70fm5u7i3PVVVVmX0OZ2dnyGQyeHh4wNPTU3rs4eFh9ryXlxfPIxIRkRBnz55Fp06dcOzYMfTq1Ut0HCKb891332HSpEm4evUqS+vIaowfPx6FhYXYuXOn6ChEkjVr1mDevHnIzc2tF6+blpWVQavVSjO+al8XLlzAzZs3AQD29vbw8/OT5nzJZDLI5XLp/YCAADRo0EDw3Viv6upqqFQqJCUl4eTJk/Dx8REdiYjIYnD/keVisYUFYrEFWZuamhr4+Phg+vTpeP3110XHIap3pkyZglOnTuH06dOioxAREf2tey2vaNeuHZo1ayb4Lkik2htkTZtkk5KScP36dQCQCgpqb5ANDg62usWPxMREPP7442jSpAm2bduG0NBQ0ZEsTnZ2Nk6ePGlWZGEwGNC0aVOEhYVJ3yePPPIIWrVqJTouERHVkerqauzevRsLFixAUlISHn30USxYsAAKhUJ0NLIwOTk5UCqVKCwsxKFDhxAQECA6ElkoLnTT33nrrbfwwQcfYN26dZg8ebLoOGSjfv/9d3z22Wf4/PPPYTQaMXnyZMyePZs/D1O9kJqairi4OGlAhtFoRFhYGJRKJZRKJfr27Qs7OzvRMYmIiIiIiO4LrVZrVmCh0Wig0+kAmO+HMO2JCAwMFJyYiO636upqJCUlSWUWGo0Gbm5u6N+/P6KjozFixAi4uLiIjkkkSUhIwIIFC3DgwAEWWtiopKQkDBo0CAEBAdizZw+LiemucL2d/olvv/0WkydPxtSpU7Fy5Uqr2yNO1qG8vBxbtmzB8uXLkZKSAoVCgZkzZ2LcuHGwt7cXHY/onhQXF+P48eNS0YVGo0Hjxo0REREhreN37dqV/38msjK1C5hNhRenT59GaWkp7OzsEBQUZFZ0ERISwmGGdcBgMCAnJ8es/CI7O1sqwdDpdMjNzZWu2hwdHeHh4QEvLy94eXlJj729vaUCjNqPGzVqJOguiYjI2gQFBeGxxx5jaSmRACUlJfDy8sLixYsxffp00XGI7ovZs2fj+PHjOH78uOgoRJIhQ4agadOm+OGHH0RHuS90Oh0uX7582+vKlSswGo0A/le4GRAQgMDAQDz00ENo06aNdPn5+fG1hXs0d+5crFq1CkeOHEGPHj1ExyEisijcf2S5WGxhgVhsQdbmzJkz6Ny5M06ePIlu3bqJjkNUr1RUVEAul2PevHmYO3eu6DhEREQAWF5B949Wq5U2u5oGNqSlpaG6uhrOzs4ICgqSNrwqFAqEhYXZ1PdObm4uxo0bh2PHjmHNmjWYNGmS6EjCVFZW4syZM0hISDArPQGAwMBARERESN8nPXr0gIODg+DERERU16qrq/Hf//4X77zzDtLT0zF06FAsXLgQXbp0ER2NLJBer0f//v1RXFyMQ4cOoXXr1qIjkQXjQjfdiXfeeQeLFi3CqlWr8MILL4iOQzassLAQGzZswPLly3H16lUMHToUr7/+Onr16iU6GtEdKS4uxsGDBxEXF4e9e/ciKysLLVu2RFRUFJRKJaKjoyGXy0XHJCIiIiIi+ltGoxGZmZlm+yFOnDghDZb6Y4lFeHg4PD09BacmogeltLQUiYmJiI2NxdatW6HT6RAQEACVSgWVSoVHHnmEw2/J4vyx0GLhwoWIiooSHYvq2MmTJzF48GB06tQJu3btgrOzs+hIVM9wvZ3+qS1btmD8+PEYO3YsvvjiC5agk0XTaDSIiYnBpk2b4O7ujokTJ2LGjBnw8fERHY3ovsjOzsZPP/0EtVqNuLg4aLVaeHh4oG/fvlAqlRg8eDD8/f1FxySiB6CqqgpZWVlmr3OfO3cOly9fRk1NDZo3b46OHTuaFV7Y2tk/S2MwGKDVamEwGKDT6f708dWrV1FRUWH2sU5OTpDL5ZDJZHB1df3Txz4+PmjRooWgOyQiovpgzpw52LVrFy5cuCA6CpFNmjBhAi5evMgSALIaixcvxvr163Hp0iXRUYgAAEVFRfDw8MDnn3+OCRMmiI7zwFVWViIrK+uWwotLly7h0qVLuHHjBgDAwcEBgYGBaNOmDdq2bWtWeuHv78+1vr/x3Xff4emnn8a6devwzDPPiI5DRGRxuP/IcrHYwgKx2IKszUcffYSlS5dCr9ejYcOGouMQ1Ss7d+7EyJEjcfnyZbRq1Up0HCIisiG1yyv+WGDB8gq6W5WVlbhw4YK0gTU1NRW//PILcnJyAPzfwIbaG1k7dOjAnx/wv03Ab775JpYuXYrnnnsOK1eutInSBq1WC41Gg8TERKnMoqysDM2bN0f37t2lIovevXujZcuWouMSEZFApkKLt956CxcvXsSoUaOwcOFCtG/fXnQ0slDZ2dno378/qqqqcPDgQR4gpr/FhW66U0uWLMH8+fMRExODGTNmiI5DNq6yshI7duzAxx9/jBMnTiAiIgKzZs3CY489hkaNGomOR3THMjIyoFarERsbi/j4eJSXlyM4OBgqlQpKpZJDH4mIiIiIyCJUVVUhPT1dGuyl0WiQnJyM4uJi2NnZISgoyKzEgoO9iGxDXl4efvzxR8TFxWHPnj0oKSlBly5dEB0dDZVKBYVCIToi0W0lJCTgnXfewcGDB1loYeMOHz6MYcOG4ZFHHsHWrVvh5OQkOhLVQ1xvp3vx448/YvTo0Rg2bBi++eYbrgmRxdPpdPj888+xevVqFBYWYvjw4Xj55ZfRq1cv0dGI7qvU1FTExcVBrVYjISEBZWVlCAwMhFKphFKpxKBBg+Di4iI6JhE9QAUFBTh79qx0RlCj0SAlJQVFRUUAeE6wvjAYDNDr9cjNzYVer0d2djZyc3ORk5Nj9lin00l/tiZNmzaFt7c3vLy84OHhAS8vL+mxTCaTfk0ul6Np06aC7pCIiERJSEhAnz59kJqaiuDgYNFxiGyOaX5lWloa2rVrJzoO0T1bv349Xn75ZRQWFoqOQgQA2Lp1K8aNG4fs7Gy4u7uLjiOcwWCQZpPd7gIAe3t7+Pn5STPJal/BwcFo3Lix4LsQKykpCZGRkZg2bRo+/vhj0XGIiCwS9x9ZLhZbWCAWW5C1GTBgADw8PLBx40bRUYjqnSeeeAJ6vR6HDx8WHYWIiKwQyyvoQTAYDNKmVFORxa+//ory8nI4ODigTZs20rCGkJAQhIWFcbHmDuzYsQMTJ05EaGgovv/+e8jlctGR7puioiIkJydLRRZHjhxBTk6ONOAjMjJSKrIIDg5GgwYNREcmIiILUFlZiU2bNuH999/H5cuXMXbsWLzxxhvcbEd/6cqVK4iKikKjRo1w8OBBq/o3FT04XOimu7F06VK89tpr+OSTTzBr1izRcYgA/O9w0IoVK7Bt2za0bt0aM2bMwHPPPYcmTZqIjkZ0V0pKSnDs2DGo1Wrs2rUL58+fR7NmzdC3b1+oVCoMGTIEfn5+omMSEREREZGVq6iowMWLF81KLDQaDcrKym7ZE2G6bP3gJZEtycjIQGxsLLZu3Yrjx4/D0dERERERiI6OxpgxY7g2RRaNhRZUW1xcHMaMGYORI0fiq6++4jB5+se43k736siRIxg2bBj69OmDrVu38ucrqhfKy8uxZcsWfPzxxzhz5gwUCgVmzpyJcePG8e9U2CqQJgAAIABJREFUsjqlpaVITEyEWq2GWq3G6dOn0ahRI3Tu3FkqunjkkUf4vU9kI7RarXSW0HS2MD09HUaj0ez1c1PhRXh4ODw9PUXHpjtQWlqK3Nxc6HQ6s8KL3NzcW57Pzc1F7TFWTZs2hVwuh5eXF7y9vSGTyeDp6QkfHx94enpKRRienp6ws7MTeJdERHS/VFdXw8fHBzNmzMDrr78uOg6RzTEajfD19cXUqVOxYMEC0XGI7tmuXbswfPhwlJSUcI2ALML48eNx5coVzoS8A3dSemFnZwd/f//bll506NDB6s8/6vV6dO/eHUFBQdi7dy9fGyEi+hPcf2S5WGxhgVhsQdaktLQULVu2xJo1azBp0iTRcYjqlZs3b8Lb2xuffPIJpkyZIjoOERHVUyyvoAelqqoK6enpZptNT506hezsbACATCaTNpqahjW0b98ejRo1Epy8/kpPT8djjz2G3NxcbN68uV4eHDYajUhLS5OGeyQmJiIpKQnV1dWQyWTS94qpzIKLy0RE9EcVFRXYvHkzFi1ahMzMTIwdOxZvvfUW2rZtKzoaWbisrCxERUXBwcEBBw4cgEwmEx2J6gkudNPdWrZsGebOnYsPPvgA8+fPFx2HSHLp0iWsXLkS69atg729PSZOnIhXX30VPj4+oqMR/SMZGRnScIy9e/fi5s2bCAwMRHR0NFQqFfr06QNHR0fRMYmIiIiIqB4rLCzEmTNnzAosTEO4XFxcEBoaKq1xh4SEIDQ0FA4ODqJjE1EdMhqNOH78OOLi4rBz506kpaXB3d0dQ4YMgUqlwuDBg+Hs7Cw6JtFf+mOhxaJFi9CvXz/RsUigzZs3Y8KECZg8eTL+/e9/o2HDhqIjUT3G9Xa6H06dOoXBgwejY8eOiI2N5b+vqF5JSEjAihUrsH37dri7u2Pq1Kl48cUX4eHhIToa0QORk5ODI0eOQK1WY8+ePbhy5QqaNWuGvn37QqVSYcCAAQgICBAdk4jqUO2yaNMZxJMnT0Kv1wP435nW2mcPQ0JCEBISAicnJ8HJ6V4YDAZotVrodDpotVoYDAbpce23BoPB7ONcXV0hk8ng6uoKuVwOmUwmva39nEwmQ4MGDQTdHRER3YnnnnsOKSkp+OWXX0RHIbJJs2fPxq5du3Dx4kX+u4nqvZ9//hm9evVCZmYm/P39RcchG2c0GuHl5YX58+fjlVdeER2nXisrK8Nvv/0mzUCrfV2+fFkqzTTNrvpj6UX79u3RtGlTwXdxbyorKzFgwABkZmbi5MmTcHd3Fx2JiMhicf+R5WKxhQVisQVZkz179mDo0KG4cuUKfH19Rcchqle+/vprPPvss9DpdGjZsqXoOEREZMFYXkEP2o0bN/Drr7+abSI9ffo0SktLYW9vj7Zt20qbR4ODg9GjRw94eXmJjm2Vbt68iX/961/YsWMH3nvvPcybN090pL9048YNnDp1CgkJCVKRhcFgQNOmTREWFiZtPH744YfRunVr0XGJiMiCVVRU4Msvv8SiRYuQk5ODJ554Au+88w4eeugh0dGoHsjMzERUVBScnZ0RHx/Pg8F0V7jQTf/E8uXL8corr2DRokV48803RcchMpObm4svvvgCK1asQF5eHp544gm8+uqr6Nixo+hoRP9YaWkpEhMTpaILjUaDJk2aoHfv3oiOjsaIESPQqlUr0TGJiIiIiMiCGQwGpKammpVYnD9/HjU1NbcM1lIoFOjQoQOHPBPZqJKSEhw4cEAqs9Dr9WZlm3379oWdnZ3omER/KyEhAW+//TYOHTrEQguSrF27Fs8//zxefPFFxMTEcNgR3TOut9P9kpqaioEDB8LHxwd79uzhOTuqd7RaLdauXYtVq1ahqKgIw4YNw+zZs9GzZ0/R0YgeqIyMDGkdf9++fSgsLERgYCCUSqV0ubq6io5JRALUfk3edFZRo9GgrKwMdnZ2CAoKks4pms4sBgQE8OdUK1NaWnrb0os/PnflyhVUVlZKH+fo6Ag3N7fbll7Ufuvr68tCciIiQXbv3g2VSoXMzEz4+fmJjkNkczQaDbp164Zjx46hV69eouMQ3ZPffvsNbdq0walTp6BQKETHIRt3+PBh9OvXD+np6QgKChIdx2qVlZVBq9WazU+7k9IL0zy11q1b14u9ndOmTcN3332HY8eOITQ0VHQcIiKLxv1HlovFFhaIxRZkTV5++WWo1WqcPXtWdBSiemfIkCFwcHDAzp07RUchIiILwPIKqgvV1dW4dOkSUlJSkJSUhJSUFKSkpODatWsAAC8vL3Tq1AlhYWHo1KkTOnfujPbt28Pe3l5wcttSU1ODFStWYM6cORg9ejTWrVtnEU3iVVVVSE9PR2JiolRkYRr0ERgYiIiICGnIR48ePbgxlIiI7kh5eTm++uorLFy4EHl5eZg4cSLeeustlujSHfv999/Rr18/tGjRAvHx8XB3dxcdieoZLnTTP/XZZ5/hhRdewIIFC/D222+LjkN0i/LycmzZsgVLlizBuXPnEBERgXnz5iE6OpoHgKneu3z5MuLj4287HCM6OhoDBgyAk5OT6JhERERERCSIVqs1K7DQaDTQ6XQA/nfYsXaBhWnvDRHZtpycHOzduxdbt25FfHw8qqqq0LNnT6hUKgwbNgwdOnQQHZHojrHQgv7MqlWrMHPmTLz66qv48MMPRcchK8H1drqf0tPTMWDAALi4uCA+Ph4ymUx0JKK7VlZWhu+//x7Lli3D2bNnoVAoMHPmTIwbN45nMsjqVVVVISUlBWq1GrGxsTh+/DgaNGiAsLAwqeTi4Ycf5jkTIhtmOpdWu+ji3Llz0sDCFi1aICQkxKzwokuXLhZxpo4erOrqauTk5CAnJwfXrl1DTk4OdDodsrOzodfrodVqkZOTA61Wi8LCQrOPdXd3h5eXF7y9vSGTyeDp6QkfHx94enrC19cXXl5e8PX1hbOzs6C7IyKyTuXl5fDw8MDixYvx4osvio5DZJM6duyIvn37YtWqVaKjEN2TmzdvwsXFBT/++COGDBkiOg7ZuNmzZ2Pfvn1ITU0VHcVmFRUV4dKlS7h06RIuXLiAtLQ0pKenIz09HQUFBQAAZ2dnBAUFoV27dmjfvr30OCgoCE2aNBF8B/+zZs0aTJ8+HVu2bMGYMWNExyEisnjcf2S5WGxhgVhsQdYkJCQEQ4YMwbJly0RHIapXcnNzIZfL8c0332Ds2LGi4xARUR1heQXVpZKSEvz6669ITk6WrrNnz6KoqAh2dnYICgpCWFgYOnfuLBVZeHt7i45NtRw5cgRPPPEEXF1d8d///hfBwcF1+vVNwz5qF1mUlZXBxcUFoaGhiIyMREREBHr16sUB0kREdNeKi4uxbt06LFmyBIWFhXjmmWcwb948yOVy0dGoHrlw4QKioqLg5eWF/fv3o2XLlqIjUT3EhW66F2vXrsXzzz+PuXPncgAQWayamhocOHAAMTExiIuLQ6dOnfDiiy9iwoQJHPxPVqGqqgo///wz4uLioFarcfr0aTg5OSEiIgJKpRIqlarOX1cjIiIiIqK6YTQakZmZKQ3A0mg0OHHiBHJzcwHcWmIRHh4OT09PwamJyFKkpqYiLi4OsbGxOHbsGBo3boyoqCioVCoMHz4cXl5eoiMS3ZU/Flq899576Nu3r+hYZCGWLFmC+fPnY9myZZg9e7boOGRFuN5O91tWVhaUSiUaNmyI+Ph4+Pn5iY5E9I8lJCRgxYoV2L59Ozw8PDBlyhRMnz6d++7JZly/fh0HDx6EWq3G/v378fvvv6Np06bo1auXVHShUChExyQiC1BQUICzZ8+aFV6kpKSgqKgIwP+91l+78KJDhw5o2LCh4OQkQllZGfLz86HT6aDVamEwGKTHtd9evXoVFRUV0sc5OTnB1dUVcrkcMpkMcrkcgYGB0mOZTAYfHx+0aNFC4N0REdUvjz/+OAwGA+Lj40VHIbJJ77//PpYvXw6dTscSSar3mjRpgs8++wwTJkwQHYVsXFBQEEaNGoXFixeLjkK3YTAYbpnXlpqaigsXLqCqqgrA/2a21Z7XZnrcunXrOnstKTExEVFRUZg/fz4WLFhQJ1+TiKi+4/4jy8ViCwvEYguyFlevXoWfnx/27duHgQMHio5DVK+sWrUKr732GvR6PZo2bSo6DhER3UcsryARDAaD2aAGjUaD9PR0GI1GNGvWDO3atZM2bioUCnTt2tViWqbpr129ehVjxoxBamoqNmzYgFGjRj2Qr1NUVITk5GSpyOLo0aPQ6/VSCYpCoZCKLIKDg9GgQYMHkoOIiKxfUVER1q9fjw8//BBFRUX417/+hfnz57Ngi+5aeno6oqKiIJPJsH//fri5uYmORPUUF7rpXq1btw5Tp05luQXVC8nJyVi+fDk2b94MNzc3TJs2DTNmzGA5FFkVvV6Pffv2IS4uDvHx8bhx4wYCAwOlwRiDBw+Gs7Oz6JhERERERHSXqqqqkJ6ebrYvIjk5GcXFxWbr2qYrLCyM+2+IyIzRaMTx48exdetWbN++HVeuXIGnpycGDRqEMWPGYODAgXB0dBQdk+iuJSQk4K233sLhw4dZaEG3qKmpwdy5c/Hpp5/is88+w7PPPis6ElkZrrfTg6DX6zFw4EAUFBQgPj4ebdu2FR2J6J5cvnwZn3/+Of7zn/+guLgYjz/+OF555RV07txZdDSiOpWRkQG1Wg21Wi2t5Xt7e6NPnz5QKpWIjo6GXC4XHZOILIhWq4VGozErvEhLS0N1dTUcHBzQpk0baU0gJCQEnTp1Yrk1mTEYDLcUXvzx7ZUrV1BZWSl9jJOTk1n5xe3e+vr6clYUERGAjRs3YtKkSdDr9XB1dRUdh8jmZGZmIiAgADt37oRKpRIdh+ietGrVCjNmzMCcOXNERyEblpqaio4dO+LYsWPo1auX6Dh0FyorK3HlypXbll7odDoAgIODA3x9fW8pvejUqRNcXFzuW5asrCx0794dvXr1wrZt21jMSkR0h7j/yHKx2MICsdiCrMX69esxffp05Ofno3HjxqLjENUrvXv3xkMPPYRvvvlGdBQiIvoHWF5BIpk2ZZou0/ceAMhkMoSEhJiVWHTo0IEvdNdz5eXlePXVV7Fy5UrMmDEDH3/8Mezs7O7pc2ZkZCAhIUEqskhOTobRaIRMJpO+dyIjI9G7d2+WoBAR0X1x8+ZNrFmzBkuXLkVlZSVeeOEFvPrqqywjoH8kLS0NUVFRCAgIwJ49e+7rphGyPVzopvvhiy++wHPPPYfZs2fjo48+Eh2H6G9lZ2fjs88+w8qVK1FeXo6nnnoKL7/8Mtq3by86GtF9ZTQakZycjNjYWMTFxeH06dNo1KgRwsPDoVKpoFQq0bVrV5a4EhERERFZmIqKCly8eNFsb4RGo0FZWdktw6pMF/cxE9HtGAwGqNVqxMbGYteuXSgoKEBwcDBUKhWio6MRERHB1wWo3qpdaKFUKvHee+8hPDxcdCyyINXV1Zg2bRo2bNiA9evXY8KECaIjkRXiejs9KAaDAUOHDsXvv/+O/fv3IzQ0VHQkontWVlaG77//Hh999BF+/fVXKBQKzJw5E08++eQ9nw0gqm9Ma/mmooujR4+iqqoKXbp0gVKphFKpRGRkJJycnERHJSILU3v9wFR48csvvyAnJwfArWcrQ0JCEBISwv+f0F+6kwKMrKwsVFVVSR9zJwUY/v7+cHZ2FnhnREQPVkFBATw9PbF+/Xo8/fTTouMQ2aSHH34YcrkcmzdvFh2F6J5069YN/fv3x5IlS0RHIRu2ePFifPrpp9DpdJzRZEUMBsNt58OdO3cOpaWlAG4/Hy44OBjt27dHo0aN7vhrlZaW4uGHH0ZRURFOnDjB2QdERHeB+48sF4stLBCLLchaPPHEEygoKMDevXtFRyGqV0yNx7t378aQIUNExyEioj/B8goS7XaDGpKTk1FcXAw7OzsEBQWZbbTs0aMHvLy8RMemB+jbb7/F1KlT0aNHD2zevPmO/7wLCgpw8uRJqcji2LFjyM/Ph729PTp16oSIiAgoFAr06dMHAQEBD/guiIjI1ly/fh0rV65ETEwMqqur8fzzz2PevHlwdXUVHY3qqZSUFAwYMADt2rXDjz/+yMMedM+40E33y+bNmzF+/HjMnDkTH3/8seg4RHekqKgIGzduxMcff4xLly5h6NChmDVrFpRKpehoRA9Ebm4uDh8+DLVajV27diE7Oxve3t4YMGAAVCoVBg4cyH08RERERER1rLCwEGfOnDHbG5Geng6j0QgXFxeEhoZK5RUhISEIDQ2Fg4OD6NhEZMFMw49jY2Oxf/9+GI1G9OzZEyqVCiNHjkRQUJDoiET3JCEhAW+++SaOHDnCQgv6U0ajEc888ww2b96MTZs2YeTIkaIjkZXiejs9SEVFRRgxYgROnz6NPXv28O87sioJCQlYsWIFtm3bBi8vLzz33HOYMWMGWrZsKToakRDFxcU4fvy4VHSh0WjQuHFjRERESEUXXbt2ZTklEf0prVYrFV3ULr0oKyuDvb092rZte0vhRWBgoOjYVM/cSQFGZmYmjEaj9DF3UoDRqlUrnkUnonpr0KBBcHZ2xg8//CA6CpFNWrt2LWbNmoXs7Gzugad6bejQofD29sYXX3whOgrZsF69eiEkJATr1q0THYXqQGVlJS5fvoy0tDSkp6fjwoULSE9PR1paGnJzcwEAjo6OCAoKQvv27dGhQwcEBwejQ4cOaN++/S17WGtqavDUU09h7969+OWXX9CmTRsRt0VEVG9x/5HlYrGFBWKxBVkDo9EILy8vvP7665g9e7boOET1yvvvv4+YmBhcu3YN9vb2ouMQEdm0vyqvqL2BiOUV9KAZDAZp4+QfBzU4OzsjKChI2jipUCjQtWtXNGnSRHRsEiA5ORmjRo1CRUUFtm7dip49e5r9elVVFdLT05GYmCgVWZw/fx41NTWQyWSIjIyUiiy6d+8OR0dHQXdCRETWLi8vD6tWrcKnn34KOzs7TJ8+HS+99BJatGghOhrVY8nJyRgwYAA6dOiAH3/8kT+P0X3BhW66n77//ns89dRTePbZZ7FmzRoepqZ6o7q6Grt378aHH36IY8eOQaFQYObMmXjyySdhZ2cnOh7RA1FdXY2kpCRpMMbhw4dRU1ODsLAwREdHQ6VScTAGEREREdF9dru9Eab1bFdXV7N9EQqFAh06dEDDhg1FxyaieiA1NRVbt25FXFwcNBoNXF1doVQqER0djWHDhnGNkqyCWq3Gm2++iRMnTrDQgv5SeXk5xo0bh/3792P79u0YMGCA6EhkxbjeTg9aSUkJRo0ahYSEBOzcuRNRUVGiIxHdVxkZGVi79v+xd+dRUV3ZGsA/RkUFBRUtVFBUUEoQKBUVHBJLHBqMJpLE+GK3rWLsjtoxMdqmu58ZTDRmcMjwHGLyEqOJU6cDDlGMmoAzgggoaHBAwRkREASKen/4qFiKQsEdq77fWi6TW3DZuM6599xz9j17JVatWoWSkhI8++yzeO211xAUFCR3aESyys/PR2JiIuLi4rBt2zbcuHEDnp6eGDRoEPR6PUaMGIEOHTrIHSYRKVxFRQWys7MfKnhx9uxZGI1GtGjRAlqt1qzgRUhICJo2bSp36KRiFRUVuHr1Ki5evIjLly/j4sWLuHLliunv3NxcXLlyBVevXjX7vtatW0Oj0aBDhw7w8vJCu3btTP9d/be7u7tMvxUR0aN9/vnnmD17Nq5duwYXFxe5wyGyOQUFBdBoNPj8888xceJEucMhqrc//vGPuHHjBuLj4+UOhWzU1atXodFo8O9//xujRo2SOxySWUFBganIRXZ2Nk6dOoX09HScPXsWlZWVcHR0hK+vL7RaLbp16watVotDhw7hs88+Q1xcHEaMGCH3r0BEpDrMP1IuFrZQIBa2IGtw6NAh9O3bFydOnECPHj3kDodIVQIDAzFo0CB88skncodCRGQTWLyClMRgMOD8+fNmGzUcPXoUly9fBgBoNBqzZEhu1EA1uXnzJsaPH489e/Zg3rx5CAkJMRWyOHbsGEpLS+Hm5obAwEBTIYt+/fqhVatWcodOREQ24Nq1a/j000/x8ccfo1GjRvjLX/6CV155hXPh1GDHjh1DZGQkevTogfj4eD6nkWC40E1C27hxI8aPH4+JEyfi888/5zM9qU5ycjKWLl2KdevWwdvbG1OnTsXUqVO5+R9ZvRs3buDnn39GQkICtm7dikuXLpk2xqgudMGXg4mIiIiI6i4vL8+sgEVycjLy8/MB3MuNuL+ARXWeDhFRXZWVlZk2uNy8eTMuXboEHx8fDBs2DFFRURg2bBicnZ3lDpNIEA8WtFiwYAH69Okjd1ikUCUlJRgzZgyOHDmCrVu3on///nKHRFaO6+0khfLycowfPx7btm3D5s2bMXz4cLlDIhJccXEx1q1bh2XLliEjIwPh4eGYOXMmxowZA0dHR7nDI5JVVVUVUlJSkJCQgISEBPz666+4e/cufH19odfrodfrMWzYMLi5uckdKhGpxK1bt5Cenm5W8CI1NRUlJSUAfl/DuP8dT77fSUIrLy83FbyoLoCRn5+Pixcvmv77woULuHPnjul7mjRpgg4dOpgKYLRr1w5eXl7w9vaGRqNB+/bt0bZtW7ZVIpJUXl4e2rdvj//85z+Ijo6WOxwim/TMM8/g1q1b2L17t9yhENXb7NmzsW/fPhw+fFjuUMhGrV69GjNmzMD169fRpEkTucMhhaqoqEBubq5p77rqv9PT03H37l0A5vuGVf/ds2dPuLq6yhw9EZGyMf9IuVjYQoFY2IKswdtvv40VK1YgNzcXdnZ2codDpBrHjx9HcHAwEhMTER4eLnc4RERWw9LiFQ8WsGDxChJDUVERsrOzzYpYpKSk4M6dO3B0dISfn59ZgmNYWBg8PT3lDpsUrKSkBCkpKab2FB8fj4KCAtjZ2cHf3x+9e/c2FbJgwiwREUnt6tWr+Oijj7B8+XI0a9YMs2bNwvTp05nAQYJITk5GZGQkevfujX//+99wcXGROySyIlzoJjHEx8dj7NixePHFF7FixQo+n5Eq5eTkYOnSpfjiiy/g4OCAP/3pT3jttdfQoUMHuUMjkkRGRgbi4+ORkJCAffv2oaqqCsHBwdDr9YiKikL//v15fSciIiIiAmAwGHD+/Hmz3IhDhw7h2rVrAB4uYsHcCCKqrxs3bmDr1q2Ij4/Hjh07UFRUhICAAMTExCA6OhqhoaF8r4GsCgtakKVu3bqFP/zhDzhz5gx++uknBAcHyx0S2QCut5NUDAYDYmNjsXbtWnz77bcYO3as3CERiSYxMRHLli3Dli1b0KZNG0yZMgXTp09Hy5Yt5Q6NSBHu3LmD/fv3mwpdHDt2DA4ODujZsyfX84moQaoLdt9f8OLUqVOoqqqCq6sr/Pz8TO+BarVa9OzZE61bt5Y7bLJypaWlyM/PR15eHvLz85GTk/PQf1+5cgVVVVWm76l+j16j0cDLy8v0d/Uxb29vbqhJRILq27cvtFotvvjiC7lDIbJJW7ZsQUxMDM6dO8d3PUi13n//fXz++ec4e/as3KGQjRo1ahTs7Ozwn//8R+5QSGWys7MRFhaGwYMH489//rNpv7uMjAyzQqru7u5mxS60Wi0CAwPRpk0bmX8DIiJlYP6RcrGwhQKxsAVZgwEDBqBr165Ys2aN3KEQqcrcuXOxfv16nDt3ji9PERFZiMUrSMny8vLMkhbvT1x0c3NDYGCgWRELnU7HzXipVjk5OUhMTDS1qSNHjqC8vNxs4w9nZ2csXrwYnTp1wubNm9GpUye5wyYiIhtz4cIFfPjhh1i1ahXc3NzwyiuvYMaMGRzrkGD279+PESNGIDw8HFu2bEHjxo3lDomsDBe6SSxbt27F2LFj8cILL2DVqlV8WZpUq7CwEF999RU++OADXLlyBaNHj8Zrr73GDdTIphQXF2PPnj2Ij4/H9u3bkZubi1atWuGJJ56AXq9HdHQ0NBqN3GESEREREYmusrISWVlZpjXs5ORk08t3jo6O8PPzMytiERwczFwdImqQnJwcxMXFIT4+Hnv37oWjoyMiIiIQFRWFsWPHol27dnKHSCS4hIQEvPHGGzh8+DALWlCdXb16FcOGDcOVK1ewa9cuaLVauUMiG8H1dpKS0WjErFmzsHz5cqxatQoTJ06UOyQiUf32229YtWoVVq5cidLSUsTExGD27NkIDAyUOzQiRbly5Qp++eUXJCQkYNu2bbh48SJatmyJJ598Enq9HpGRkejYsaPcYRKRSpWXl+P06dOmNZHMzEykpaXh6tWrAO4V977/nVGtVosePXqgUaNGMkdOtqS8vBzXr19/qPDF/QUwcnNzUVFRYfqexo0bmxW7qKkAhkaj4X4oRFQnCxcuxAcffIDLly/D0dFR7nCIbE55eTm8vLzw+uuv4/XXX5c7HKJ6+fLLL/Hyyy+bNoAnktKdO3fQunVrLFu2DJMmTZI7HFKRoqIi9O3bF40bN8avv/6KJk2aPPQ19+9HVv13WloaioqKANRc8KJ63zwiIlvC/CPlYmELBWJhC1K727dvo1WrVvj666/x/PPPyx0OkWoYjUb4+vpi3LhxePfdd+UOh4hIkRpavMLPzw+urq4y/xZkzao3abi/iMWRI0dw5coVADAVHLg/ITEgIIAJXFSrwsJCHDlyxFTI4sCBA7hx4wacnJwQFBSE8PBw0+YfD750euHCBTzzzDM4e/Ysvv32WwwbNkym34KIiGzJ+fPn8dFHH2HlypXw9PTErFmzMHXqVBYdIEElJiZi5MiRGDhwIDZt2sT2RaLgQjeJafv27Xj66acxZswYfP3113xRg1StvLwc3333HT744AOcOHEC4eHhmDNnDqKiojj3RTbn/k01f/31V1RUVCAkJAR6vR56vR6DBg2Ck5OT3GESERERETXIg5s1Vf8pKyuDs7Nj0kKVAAAgAElEQVQzunTpYlbEQqfTseg1ETVYVVUVUlJSEBcXh40bNyIzM9O0GWVUVBRGjx4NNzc3ucMkEsWDBS3effdd9O7dW+6wSAXy8/MRGRmJkpIS7Nq1C507d5Y7JLIhXG8nOcyfPx9vvfUWPv74Y8ycOVPucIhEV1RUhPXr12Pp0qXIzMxEeHg4Zs6ciTFjxjAPhagGOTk5SEhIQEJCAnbs2IGioiL4+vqa1vOHDh2KFi1ayB0mEanc/ZsSVhe8yMjIQFlZGZycnNC1a9eHCl5wQ0KSW0FBgVmxiwcLYJw5cwaFhYWmr68ufvGowhdeXl7w9vbmmJSIcPr0afj5+WHfvn0YOHCg3OEQ2aSpU6ciKSkJ6enpcodCVC9bt25FVFQUiouL0bRpU7nDIRvzww8/4JlnnsGlS5fQtm1bucMhlaiqqsJTTz2Fo0eP4siRI2jfvr1F3189t3T//nr3F1Ot3lvvwaIXnTp14nucRGSVmH+kXCxsAWDfvn144YUX5A7DpKKiAsXFxWjRooWiBganTp3iJsAymz17NtatWyd3GLUyGAy4desW3N3dYW9vL+nPHjRokCr+jUgaSru+16aqqgq3bt2Cm5ubpAu0vL4rQ/fu3XH79m25w7BabOfqIlbxCrXdF9TGFsdhZWVlOHHiBI4dO4Zjx44hOTkZ6enpuHv3LpydnaHVatGzZ08EBweb/q5ObmZ7FJfa26PBYEBGRgb279+P/fv348CBAzhz5gwAwM/PD2FhYQgLC0Pfvn0RFBT00CZ4NY0rjEYjbt26haqqKrRs2VKy30WpFi9ezD5IZMP4/CWun376CcuXL8eXX36Jdu3a4W9/+xteeuklNGrUSO7QrIZa5omlcPv2bVRWVsLd3V2w9RSOE8SntuehW7duwcXFRTXXMbU/D6mFkOOJu3fvorCwEC1btoSDg4Mg51Q7zueqX2JiIhYtWoStW7eiS5cu+Otf/4rY2FizDUzVdj9QG94PlOPOnTvYv38/4uLi8OOPP+LcuXPw8PDAkCFDoNfrMXLkSIsTlIXG/igu9kciIhID79/i4v37Ybdv30ZaWppZAYusrCwYDAa4ubkhMDDQVLxCq9UiMDAQzs7OcodNNo7rKeKScj2ltLQUCQkJiI+Px48//ojLly/D19cXUVFRiI6OZgFJBWB/E9cf//hH7N69mwUtLMDxsrnS0lIUFxfDw8NDkLUojpflpbb2zfV2soSQ7bu4uBhlZWVo1aqVIOezBmzf1s9oNGL37t1YuXIltmzZAh8fH8TGxmLKlCnw8PCo8XuYTysu5r8oX2VlJQ4ePIj4+HgkJCQgJSUFdnZ2CA4ONhW6GDhwoKLmOtU2HlQb3i9JTBUVFcjOzn6o4EVOTg6Ae+9L378ZoU6nQ2hoKJo0aSJz5OrD+UrxVFVV4ZVXXkFQUBDy8/ORm5uLS5cu4dKlS7h48SLy8vJw7do109c7Ojqibdu28PHxgY+PD7y9veHt7Y0OHTqgY8eO8Pb2ZrFqC3D8Li5bGr/LcZ0sKChAkyZNOE9IdB8pr+vl5eUoLi4W9B1MKfA9T/kpZR6isrISRUVFaN68ueR7WtaFLY0jhKKm57aysjKUlZVJXgzXVsYj1vqcU1VVhRs3bqB58+YNnl++/35YXfDi5MmTyMjIwKlTp5CRkYHr168DuLfxe1BQkNleZz169JBljltN/VyNOE4isSnt+qzE/CP2w3tY1hj3Box5eXl499130bhxY7nDUZysrCysWLECVVVVcodi8woKCuDq6oqpU6fKHYoiff/996aBNRHA63tteH1Xlry8PAwfPhx9+/aVOxSrwnauXPUpXvHiiy/WWrzicXhfEI8tjMNKSkpw/PhxUxGLY8eOITMzExUVFXB1dUVwcDAiIiIwffp0BAcHIyAg4LEvTLM9ikeN7fH27ds4cOAADhw4gP379+PQoUO4ffs2XF1d0adPH4wbNw59+/ZFWFhYnYpSPG5cUV5erqikejnMmzcPJSUlcodBRDLi85c4qp+/goOD0blzZ6xevRovvPCCpMU7bQXniX9nNBphNBoFS0bjOEEafB4Sjxqfh9RK6PGEwWBgUQtwPteaREREICIiAmlpafj000/x97//He+++y4mTpyImTNnQqPR8H4gIt4PlKVJkyamDS+WLl2KnJwcJCQkIC4uDjNnzsTUqVMREBCA6Oho2TbFYH8UD/sjERGJhfdv8fD+fW8OunpDpeo/J0+ehNFoNG2qpNfrMWfOHOh0OnTv3l2RLwwTcT1FPFKsp1y7dg3bt29HfHw8tm3bhtLSUoSEhGDq1KmIjo6GTqcT9eeTZdjfxPP3v/8dCxcuRHR0NJKTkxEaGip3SKrA8fLDhFqL4nhZfmzf4mH7lp/Q7Zvr8L9j+7YNdnZ2pnXJM2fOYPXq1Vi4cCHmz5+PmJgYvP766+jRo4fZ9zCfVhzMf1EPR0dHU44LAFy/fh179uxBQkICvvvuOyxatAhNmzZFv379TP1L7jkJjgfFw/slic3JyQlarRZarRYxMTGm47du3UJ6erpZwYtvv/0WJSUlcHBwgI+Pj6nQRXXRC67NPB7nK8Uzb948uLu7Y/jw4Y/8mrKyMly6dAl5eXmmwhe5ubk4d+4ctm/fjtzcXNy8edP09S1atDAVvOjUqZNpTwFfX1907twZLi4uUvxqqsDxuzhscfzO6+TjcVxIUuF1/fH4nqcycB7i8WxxHCEUjkcez5bGI9Z8PzQajQ0uKPXg/dDLywteXl7Q6/VmX3f9+nWkp6fj1KlTSE1NxaFDh7B69WrcuXMHTk5OCAgIMBW6CAkJQa9evdCsWbMGxVYb9nPxcJxEUrDm67MQ2A9/xx2l7vOXv/wFzZs3lzsMxfnpp5+wYsUKucOg/+ft7Y1XXnlF7jAUKSMjAxcuXJA7DFIgXt9rxuu78uj1ekyZMkXuMKwK27m85CheURe8LwjP2sZhRUVFOH78uNkmDVlZWTAYDHBzc0NgYCAGDRqEWbNmNXiTBrZH4amhPebl5SEpKQmJiYlISkpCSkoKqqqqoNFoEBERgbfeegs6nQ59+vSp9yZ2HFc82vz58+UOgYgUgNdJ4VU/f/3P//wPJk6cyJeCRcZ5YnFwnCAtPg8JTw3PQ9aE4wnhcT7X+gQFBWHFihV466238Pnnn+OTTz7BkiVL8Oyzz2LAgAEAeD8QA+8Hyubr64vY2FjExsaitLQUSUlJSEhIQEJCgtmmGFFRURgzZgy8vb0li439UXjsj0REJDbev4Vna/fvvLw8s9yI5ORk5OfnAwA0Gg10Oh1iYmJMmyX5+vrKHDGRZbieIg6x1lNycnIQFxeHjRs34sCBA2jUqBGGDBmCjz76CNHR0dBoNKL8XBIG+5s45s+fj3/961+YN2+e3KGoEsfLwrO18bKSsX0Lj+1bOdi+hcf2bXu6dOmChQsX4o033sD69euxZMkSBAYGIjw8HDNnzsTTTz9tyvFk/ovwmP+iXq1atUJMTIxpw/mcnBzTev57772HuXPnQqPRQK/XIzo6GkOGDIGHh4cssfJ+KTzeL0kuLVq0MCuyU+3+NZzMzExs3LgRb7/9NqqqquDq6go/Pz+zghc9e/ZE69atZfotlIfzleKoy/pA48aN0blzZ3Tu3PmRX1NcXIzz58/jwoULZn+OHTuGTZs2mdYrgXtrlvcXuqj+28/PD61atRLi11IVjt+FZ6vjd14nH43jQpISr+uPxvc8lYXzEDWz1XGEUDgeeTRbG4/wfvhodb0ftmrVCoMHD8bgwYPNjj+YI7x48WLk5+fDwcEB/v7+0Ol0iIiIQHh4OAICAhpciONB7Ofi4DiJpMLr86OxH/6OhS2IiIiIiKjelFq8gqiuCgsLceLECbNJ2FOnTqGqqgotWrSAVquFXq/HnDlzoNPpRJmEJetWUVGBtLQ0UxGLffv24erVq3B0dETPnj0RHh6OGTNmYNCgQfDx8ZE7XCIiogaLiYlhUQsiIiIiMtOmTRvMnz8fs2fPxldffYUlS5Zg7dq1codFJDsXFxfo9Xro9XoA5pti/Otf/8Lf/vY3+Pr6Qq/XIyoqCpGRkWjUqJHMURMRERGRGhkMBpw/fx4ZGRmm3IhDhw7h2rVrAH4vYhEbGwudToewsDB4enrKHDURWTuDwYADBw4gPj4eP/zwA7KystC6dWsMHz4cM2fOxIgRI9CsWTO5wySSHTckJCIiIqL6cnV1RWxsLCZPnoyff/4ZS5cuxXPPPQdfX19MmTIFRqNR7hCJFM3X1xexsbGIjY2FwWBAamqqaU1//PjxMBgMCAkJMa37DxgwgGv6RCQYLy8veHl5ITo62nSsqKgI2dnZpvWezMxMLFiwwGy9R6vVmhW86NGjB69NpDjNmjWDVquFVqut8fO7d+/i0qVLpr0Lqv/ExcXh1KlTKCkpAWC+d0FAQIBp74KAgAC4uLhI+SsRERERERERKU5N80sXL17EwYMHceDAARw8eBAbNmzA3bt30apVK/Tt2xd9+/ZFeHg4wsLC+GxNRES1YmELIiIiIiJ6rAeLV9xfwILFK0hNbt26hfT0dLMiFidPnoTRaDQl7bGIBTVUfn4+jh49iqSkJCQmJiI5ORllZWVo27YtevXqhWnTpiEiIgIRERFo3Lix3OESEREREREREUmmadOm+Otf/4pp06bhzTffxFtvvSV3SESKcv+mGJWVlTh48CDi4+ORkJCAVatWwcXFBf3794der8eoUaPQvXt3uUMmIiIiIgWqrKxEVlaWWW5EamoqSkpK4OjoCD8/P+h0OrzxxhvQ6XQIDg7mxvFEJJmSkhL8/PPP2LhxI+Li4nDr1i34+voiKioKq1evRv/+/WFvby93mERERERERFbF3t7etPH+yZMnsXz5crzzzjsoLS2VOzQi1XBwcIBOp4NOp8OcOXNQXFyMgwcPmgpdLFq0CE2aNDGt6ev1eoSGhvK9NCISlKurq+laNGHCBNPxvLw8ZGZmmgpeJCUlYcWKFbh79y6cnJzQtWvXhwpe+Pr6yvibED1eo0aNTPsVPKiqqgoXL15EdnY2srKycPLkSWRlZeHLL7/EhQsXAABOTk7w9fVFt27d4O/vD39/f9N/t2zZUupfh4iIiIiIiEgx2rdvj7Fjx2Ls2LEAfs85rt4na926dfjHP/4BR0dH9OzZ0zTfHR4ezkIXRET0EBa2ICIiIiIiFq8gq5OXl4fk5GSzhLzMzEwAgEajgU6nQ0xMDHQ6HXr16gWNRiNzxKRGBoMBp06dMitikZmZCQcHB/j7+5uSRMPDw1kohYiIiIiIiIjo/9nb26N///5yh0GkaI6OjqYCuQBw+fJl7Ny5E/Hx8Vi4cCHmzp0LX19fU4Lw8OHDuU5DREREZIPKy8tx+vRpsyIWycnJKCsrg7OzM7p06WKWH6HT6fhiGRFJ7sKFC9ixYwfi4uKwc+dOGAwG9O3bF3PnzsXo0aPh7+8vd4hEREREREQ2o3v37vjss8/w3nvvoX379nKHQ6RazZo1M63XA0BOTo6pyMX777+PuXPnok2bNhg4cCD0ej1GjhzJPkdEovHy8oKXl5fpmgQAFRUVyM7ONnu/9ptvvsGbb74J4N674vcXuggICEBoaCiaNGki169BVCf29vbw9vaGt7e3WZsHfl87zczMNO2VkJSUhM8++wzFxcUAzPdJCAgIMO2ToNVq0bhxYzl+JSIiIiIiIiLZODo6QqvVQqvVIjY2FsC9fL+9e/di79692LBhAxYtWoTGjRsjLCwMgwcPxuDBg9G3b18+RxMREQtbEBERERHZChavIGuVm5uLI0eO4NixY6Y/V65cgZ2dHTp37ozQ0FBMmDABoaGhCA0NRcuWLeUOmVSqqKgIBw4cQFJSEn799VccPnwYJSUlcHd3R79+/TBu3Dj0798fffr0QbNmzeQOl4iIiIiIiIiIiKxE27ZtMWHCBEyYMAEGgwGpqamIi4tDfHw8Vq1ahUaNGiEiIsK0cYZOp5M7ZCIiIiIS2O3bt5GWlmZWwCIrKwsGgwFubm4IDAyETqdDbGwstFotAgMD4ezsLHfYRGSjMjIyEB8fj7i4OOzfvx8uLi548sknsXz5cowePRqenp5yh0hERERERGTTmjdvDnt7e7nDILIavr6+iI2NRWxsrGlNv7rQxYwZMzB16lT4+vqa1vSHDx/O9zSJSFROTk6mTQljYmJMxwsKCkzvlVcXvFi9ejXu3LkDBwcH+Pj4PFTwonv37hw3kCo4Ozub2v39jEYjLly4gOzsbGRlZeHkyZPIzs7GmjVrkJubC+Ben+natSt69OiBwMBA09+dOnVi+yciIiIiIiKb4u3tbXqHDQDy8/ORmJiIhIQEbNy4EW+++SZcXFwQHh5umvMODQ2FnZ2dzJETEZHUWNiCiIiIiMiKsHgFWbvCwkKcOHECycnJpuICly9fBgBoNBrodDq89NJL0Ol06NevH1q1aiVzxKRmeXl5SEpKQmJiIhITE3H8+HEYDAZ07doV4eHhGD9+PPr164fu3btzcp2IiIiIiIiIiIgk4eDgAJ1OB51Oh/nz5+Pq1avYt28f4uLisGjRIsydOxedOnXC0KFDodfrERkZiebNm8sdNhERERFZoHpTofuLWJw8eRJGoxHu7u4ICAiAXq/HnDlzoNPpuKEQEcmusrISBw8exMaNG7FlyxZcvHgR3t7eGD58OObMmYPIyEg0atRI7jCJiIiIiIiIiER3/5r+nDlzcOfOHezfv99U6GLVqlVwcHBAWFgYoqOjodfrERISwjleIpKEu7s7IiIiEBERYTpmMBhw/vx509pUZmYmNm7ciLfffhtVVVVwc3ND165dzQpeBAcH891dUg07Ozv4+PjAx8cHQ4cONfusuLjYVPAiIyMD6enp+PLLL3H27FkYjUY0bdoUAQEBCAoKQo8ePUwFL9q0aSPTb0NEREREREQkLY1Gg5iYGFPx1PPnzyMhIQE7d+7E4sWLMXfuXLRr1w6RkZGIjIyEXq+XOWIiIpIKC1sQEREREakMi1eQrSguLkZqamqNGzVUF7GYOnUqdDodIiIi4O7uLnfIpHI5OTlITEw0FbM4efIk7O3t4e/vj4iICMycORODBw+Gt7e33KESERERERERERERAQA8PT1NCcIGgwGpqalISEhAXFwcVq9eDXt7e7MNMUJDQ1mol4iIiEhB8vLyzPIikpOTkZ+fDwCm3IiYmBjTRkG+vr4yR0xEdM/Nmzexe/duxMXF4ccff0RhYSECAgIwfvx4REVFITw8nM+fRERERERERGTzmjRpAr1eb9rM68qVK/jll1+QkJCA5cuXY+7cuWjVqhWeeOIJ6PV6DBs2DD4+PjJHTUS2xMHBwfQuenR0tOl4UVERsrOzzQpeLFiwANeuXQNwbx1Lq9WaFbzo0aMHixyTqjRr1gyhoaEIDQ01O15eXo7Tp0+b2n5GRgb27NmDnJwcAPf2cAgICDDrAz179uT+DURERERERGT1fHx8MGnSJEyaNAkGgwHJycnYuXMndu7ciW+++QZVVVXo1KkT852JiGwAC1sQERERESlQRUUFcnNzWbyCbEZFRQWys7NNmzQkJSUhJSUFVVVVD23UEBYWBk9PT7lDJpWrrKzE8ePHTYUs9u7di2vXrqFJkyYICQlBdHQ0Fi5ciAEDBqBFixZyh0tERERERERERERUKwcHB+h0Ouh0OsyZMwfXr1/Hnj17kJCQgGXLlmHu3Llo06YNIiMjER0djaFDh8odMhEREZHNMBgMOH/+vGnzn+TkZBw6dMhs8x+dTofY2FjmRhCR4n388ceYNm0aHB0dMXjwYLz77ruIjo5Ghw4d5A6NiIiIiIiIiEjR2rRpg5iYGMTExAAAcnJykJCQgLi4OMycORNlZWXw9fU1FcOIjIxE8+bNZY6aiGyRq6urKQ9pwoQJpuN5eXmmjf6r3wVesWIF7t69CycnJ3Tt2tVU6CIgIAC9evWCRqOR8TchspyzszO0Wi20Wq3Z8atXr+LEiRNIT09Heno6UlNTsW7dOhQXF8POzg4dO3ZEYGAgevTogaCgIAQGBsLf3x8ODg4y/SZERERERERE4nFwcECfPn3Qp08f/OMf/8Dt27fx888/49NPP5U7NCIikgALWxARERERyYTFK8hWGQwGnDp1yrRRQ/WfsrIyuLm5ITAwEOHh4ZgxY4YpgY2ooYqLi5GamoqkpCQkJCQgKSkJpaWl8PT0RJ8+ffDqq68iPDwcvXv3RqNGjeQOl4iIiIiIiIiIiKjBWrVqZdoQo6qqCsnJydixYwe2b9+OcePGwc7ODgEBAXKHSURERGR1KisrkZWVZZYTkZqaipKSEjg6OsLPzw86nQ5vvPEGdDodgoOD0axZM7nDJiKqM39/f7z55psYPnw4cxiJiIiIiIiIiBrA19cXsbGxiI2NRWlpKX799Vfs2rULu3btwqpVq+Do6Ih+/fph6NChnIchIkXw8vKCl5cX9Hq96VhFRQWys7PNCl4sXboU+fn5AO69Jx8QEGBW8CI0NBRNmjSR69cgqhdPT08MGTIEQ4YMMTv+YMGXn376CR999BHKysrMCr5U/2H7JyIiIiIiImvk5uaG0aNHIz4+HhcuXJA7HCIiEhkLWxARERERiYjFK4juJeRUb9SQlJSEAwcOoKSkBE5OTggKCkJ4eDhiY2Oh0+nQvXt32Nvbyx0yWYH8/HwcPXoUSUlJSExMxOHDh1FRUQGNRoOIiAgsWbIE4eHhCAgIgJ2dndzhEhEREREREREREYnK3t4evXv3Ru/evfHPf/4TN2/exK5duxAfH4+0tDS5wyMiIiJSrfLycpw+fdqsiEVycjLKysrg7OyMLl26QKfTISYmxrRRiYuLi9xhExE1yMiRIxETEyN3GEREREREREREVsXFxQWRkZGIjIwEAFy7dg179+5FQkICVq1ahcuXL8scIRFRzZycnKDVaqHVas3mjgsKCkwb/WdmZiI5ORmrV6/GnTt34OjoCG9v74cKXvB9T1Kjmgq+lJeXIz09HampqUhJSUFqaip++OEHFBUVwdHREd26dUNwcDBCQkJMf7u7u8v4WxARERERERERERHVHQtbEBERERE1EItXEP3u/iIWycnJOHToEK5duwZHR0f4+flBp9NhwYIF0Ol06NOnD5ydneUOmazQwYMH4eXlBUdHR4SEhCAiIgKzZs1CeHg42rRpI3d4RERERERERERERLLz8PDAc889hxYtWmDt2rVyh0NERESkCrdv30ZaWppZXkRWVhYMBgPc3NwQGBgInU6H2NhYaLVaBAYGMi+CiIiIiIiIiIiIiOqldevWiImJMW0S/80332DChAkyR0VEVHfu7u6IiIhARESE6ZjBYMD58+fNCl5s3LgRb7/9NqqqquDm5oauXbuaFbwICQlBy5YtZfxNiCzn7OyM0NBQhIaGmh1/8D38Dz74APn5+QAAjUYDnU7HYi9ERERERERERESkeCxsQURERERUByxeQfR4WVlZaNeuHfLy8mBvbw9/f3/06tUL//znP9G7d28EBwejcePGcodJNsLHxwdLlixB37590bRpU7nDISIiIiIiIiIiIiIiIiIilSkoKDBtqFP95+TJkzAajXB3d0dAQAD0ej3mzJkDnU6H7t27w97eXu6wiYiIiIiIiIiIiMhKeXp6yh0CEVGDOTg4mN7Dj46ONh2/ffs2Tp8+bVbw4p133sH169cB3Nvwv3qj/+qN/7t16wYHBwe5fhWievHy8oKXl5dZ+8/Pz0dKSgpSU1ORkpKCtWvXIicnB0ajEa1atUJISIhpLwsiIiIiIiIiIiIiJWBhCyIiIiKi/8fiFUT116RJE0ycOBG9e/eGTqeDm5ub3CGRDdNoNBgyZIjcYRARERERERERERERERERkcqkpaVBo9Hg8uXLAICOHTsiNDQU48aNQ0hICEJCQuDl5SVzlERERERERERERERERETWw83NzVSwYsKECQAAo9GIc+fOIS0tDSdOnEBaWhp27tyJTz/9FAaDAS4uLtBqtQgKCkJgYCACAwNRVlYm829CZDmNRgONRoORI0eajhUWFuL48eOmghdERERERERERERESsLCFkRERERkU+pTvCImJgYBAQHQarXo2rUrN+wnqkGHDh3w+uuvyx0GERERERERERERERERERERUb01bdoU06ZNQ0hICEJDQ+Hu7i53SEREREREREREREREREQ2x87ODp06dUKnTp3w1FNPmY5XVFQgOzsbycnJyMzMREZGBt5//33k5+ejS5cu6NSpk4xREwmjefPmGDhwIAYOHAgA2LJli8wREREREREREREREf3OXu4AqGbFxcVyh0BUJ1VVVXKHQKQalZWVpg3ziYT0zjvvYP/+/Y/8XOhrtRjjlJpi/O233zB79mxB4n/11VcRGRmJTp06wcXFBZ07d8bQoUMxf/58HDhwAJ6enpgyZQq+++47pKSkoLi4GDdv3sTRo0exYcMGLFy4EBMmTIBOp2NRCxv2uL4mxphIqnMK2ddIOlK2R7HGMGyPRESkRlI/f4mB92CS+tlGaI+Kke3YdkjZho1GIwoKCgQ9J8Brsa2TcjxRWVkJo9Eo2PmqsQ2TEsgxpikqKsKNGzcEOx/7ElkLtT9jAOyPRERke6S+f6st16hz58547bXXMGTIEBa1ILJhas8V43oKqYnac+HY36wP57vImrF9kzVjPgmRtJj/QqROzLchImvh5OQErVaLCRMmYOHChYiLi0NeXh7y8/Oh0+kadG61PztzvpJqIvX4vbS0VLDzVeMYgIhIPGLNdxKJRei5BiIiQLy1CKofqfPJhH6O5fwMkXDEmmsiYbCwhYIcO3YMw4YNg4eHB1xdXdG2bVtMnToVt2/fljs0IjPZ2dmYOXMmOnbsiJYtWyIqKgq7d++WOywixfr222/Rv/4PpVMAACAASURBVH9/uLq6onHjxujWrRs++eQTPlSQILZv346PP/4YgYGBZseFvlaLMU6pLUZfX1/89NNPWLFiRb1/RrWTJ0+iQ4cOiI2NNRWvKCoqQl5eHvbt24cvvvgCc+fOxdixYxEcHIymTZs2+GeSdampr4kxJpLjnEL2NZKGVO1RjDEM26Nt6tq1K6ZMmSJ3GEREDSbV89f9hLqG8h5M1cQeS+7evRtarfaxfyZMmGDxeesSI9uxbZDqeaigoABTpkxB06ZN4eHhATc3Nzz33HO4fv16vc/JazEB0o0ntm3bhtDQUDRr1gxt2rTB888/j19++aVBsbMNk5JIdT+4340bN9CtWzcMGDCgQedhXyJrI0V/rKqqQs+ePWt8vvjDH/5Q7/OyPxIRka2Sajyt9lwjIrJtas0V43oKqZFac+HY36yXHPPPzA0hqag1Z6QucbJ9E/NJiKTF/BcidWK+DRHZgrZt26JZs2b1/n615kJxvpIeR6rx+86dOxEaGoomTZqgadOm6NSpE99JpxqJOY9IRJYRY76TSGxCzTUQifWeCqmPGGsR1DBSzWUL/RzL+RkiYYkx10TCc5Q7ALrn6NGj0Ov1cHR0xAsvvAAPDw98//33WLlyJVJSUnDw4EHY27MOCcmvtLQUo0aNwqVLl/DCCy+gZcuW2Lx5M6Kjo7Fjxw4MHDhQ7hCJFOXrr7/Gn/70J/j7+2PmzJkoLS3F5s2bMX36dNy6dQv/+Mc/5A6RVKy8vBzTp0/HzJkz4erqajou9LVajHFKXWK0s7PDP//5T8TGxuKZZ56Bp6enRT/jftu2bUPz5s3r/f1k22rqa2KMieQ6p5B9jcQnVXsUYwzD9mibvvrqK5w5cwaDBw+WOxQiogaR6vnrfkJdQ3kPpmpSjCXt7Ozg5ORU42dlZWXIyspC165dLTpnXWNkO7Z+Uj0PlZeXY+TIkTh06BD+/Oc/o1+/fjh8+DBWrlyJixcvIikpyeJz8lpMgHTjifXr12P8+PHo2LEjZs+ejUuXLmHDhg3Yvn07Dh8+DH9/f4tjZxsmJZHqfvCgSZMmIS8vr0FrDexLZG2k6o8XL15EWloaAgMD4eHhYfbZg/9fV+yPRERkq6S6f1tDrhER2S615opxPYXUSK25cOxv1kuO+WfmhpBU1JozUtc42b5tG/NJiKTF/BcidWK+DRFR7dSaC8X5Snocqcbvu3fvxvDhw9GiRQtMnDgRTk5O2LRpE6ZPn45r167hzTfftDh2jgGsl1jziERkGTHmO4mkIMRcAxEgznsqpD5irEVQw0g1PyP0cyznZ4iEJcZcE4nESMYdO3YYARhv3bolWwx//OMfjc7OzsaUlBSz40OGDDECMG7YsEGmyJTx70P3TJo0yTh06FBZY3jllVeMAIzbtm0zHbt8+bKxTZs2xk6dOskYmTL+fUhZlHD9CgoKMvr5+RkLCwtNxy5dumR0dnY2tm3bVra4jEZl/PvQ79zc3IwrV6606Hs+++wzo7Ozs/HKlStmx4W+VosxTqlrjJWVlcb27dsbp0+fbvHPMBrZzslcfdtDTX1NjDGRnOdsaF/jOMxySm+PYoxh2B6lU59xhZByc3ONkydPNvbs2dMIwAjAOHnyZNnieZDc/z5EJD8lP3+JcQ3l85f1qe94R6qx5KO8/PLLRo1GY8zPz7fo+yyJsaHtmOMEaSj9eWjlypVGAMYPPvjA7PjUqVONAIxHjhyx+Jx8HrI+Sh1P3L1719iuXTtjs2bNjAUFBabjV65cMTo5ORmDg4MtOp+lMXI8QZZQ+v3gwZ/ZqFEjo4eHh7F79+71Pg/vB6RUSu+Pu3fvNgIwpqam1uv7a8L+SEREaqf0+7eac414/yayHkpfTxH6nFxPITkpvb8JnQvH/qZ8Sh8vqzk3hONl+Sm9fT9KfXNGjEa2b1ui9PbNfBKyRsx/Yf4LqY/S75cP/kzm2xCRHJQ+Xyl0LhTnK22HUsfvRqPROGjQICMA45kzZ0zHbt++bXRzczM2bdrUWFlZafE5OX4Xj5LHPQ2ZRxSKkv99yLrIfV8VY75TSHL/+9A9SrtPCjXXIBSl/fuoiRLut2K8pyIUJfz7SEXO671YaxFCUvP9UOnzM0I/x3J+hqyN3O1MjLkmIcn976Mk9hZVwSDR7N+/H8HBwQgODjY7PnHiRADA4cOH5QiL6CFfffUVgoKCMGLECNOxNm3aYNiwYTh79iwOHTokY3REylJYWIj09HSMGDECbm5upuNeXl548skncfPmTVRUVMgYIand4sWLMXz48IcqLgp9rRZjnFLXGB0cHDB27FisWbMGRUVFFv8cIiHU1NfEGBPJeU72NfWQoj2KNYZhe7QdRUVFyM7ORvPmzdG7d2+5wyEiEoRUz19iXEN5D6ZqUj3b1GTHjh347LPPsHbtWrRt29ai77UkRrZj6yZVG167di08PT0xffp0s+Pz5s3D119/jdatW1t8Tl6LCZBmPJGZmYlLly5h5MiRaNGihem4p6cnIiMjkZqaisLCQotjZxsmJZF6TJORkYFXX30VixYtgkajaVDs7EtkbaTqj6dPn4adnR38/PwEiduSONkfiYjI2kh1/2auERGpmVpzxbieQmqk1lw49jfrJdU9gLkhJAe15oxYEifbt+1iPgmRtJj/QqROzLchIqqdWnOhOF9JjyPV+3C5ublo3749OnfubDrm6uqKPn36oKKiAmVlZRbHzjGA7WnoPCIRWUaM+U4iMQk510AEiPOeCqmLWGsR1DBSzc8I/RzL+RkiYYkx10TiYGELBaioqMCwYcPw8ssvP/RZbm4uAMDDw0PqsIgecv36dRQUFECv1z/0WfWD2dGjR6UOi0ixHB0d8csvv2DOnDlmxwsLC5GWlobIyEg4OTnJFB2pXUZGBs6ePYsePXqYHRf6Wi3GOMXSGAMCAlBSUoLdu3db9HOIhFBTXxNjTKSEc7KvKZ9U7VGMMQzbo23p3r079u3bh3379mHdunVyh0NE1GBSPX8Bwl9DeQ+malKNJWty48YN/PnPf8Zzzz2HJ5980qLvrU+MbMfWSco2fPr0aYwYMQLOzs7IycnBjz/+iOTkZHh5eeHFF1+Ej4+PRefjtZgA6cYTeXl5AIA+ffo89Fn1sYyMjDqfrz4xsg2TmKQe05SVlWHcuHEYMGAAZsyYUb+g6xkn+xIpnZT98cyZM/D29kZxcTHi4+PxxRdfYP/+/TAYDPWKnf2RiIhslVT3b+YaEZGaqTVXjOsppEZqzYVjf7NeUs53MTeEpKbWnJH6xMn2bXuYT0IkLea/EKkT822IiGqn1lwozlfS40j5PtyYMWNw8eJFbNu2zXQsKysLe/bswRNPPIGmTZtadD6OAWxPQ+cRichyQs93EolJyLkGompCv6dC6iPGWgQ1jJTzM0I+x3J+hkh4Qs81kXhY2EIBnJycsHz5crz44otmx69evYpPP/0UTk5OiIqKkik6ot9lZWUBQI3VKv39/QHca7dEdE/Tpk0RHh5u6jNLlizBK6+8gt69e8NgMODvf/+7zBGSmu3atQsA0KVLF7PjQl+rxRinWBpj9bGdO3da9HOIhFBTXxNjTKSEc7KvKZ9U7VGMMQzbIxERqZlUz19i4D2Yqkk1lqzJX//6V9y6dQsLFy60+HvrEyPbsXWSqg0XFxcjPz8fbdq0QXR0NDp37oynnnoKvXr1QmBgIA4ePGhx7LwWEyDdeKJz584AgJ9//vmhzzIzMwFYnkzHNkxKIvWYZvbs2cjLy8NXX30FOzu7ep2jGvsSWRsp++OZM2dw+/ZtdOzYEdHR0Zg8eTLCw8MRFhaGkydPWnw+9kciIrJVUt2/mWtERGqm1lwxrqeQGqk1F479zXrJuabeUBwvU23UmjMCsH1T7ZhPQiQt5r8QqRPzbYiIaqfWXCjOV9LjSPk+3PTp0xEcHIyoqChERERAr9cjICAAGo0GCxYssDh2jgFsT0PnEYnIMmLMdxKJSci5BqJqQr+nQuojxloENYyU8zNCPsdyfoZIeELPNZF4WNhCoeLj4xEYGIhLly7hgw8+QGBgoNwhEeHMmTMAAA8Pj4c+q66weuvWLUljIlKTN954A0uWLMHp06fRqlUruLi4yB0Sqdi5c+cAPLyQLMW1uqHjFEtjrH4AP3XqVH1DJqq3mvqaGP1MCedkX1M+qdrjg4QYw7A9EhGRmsn5/NVQvAdTNbnGkhkZGdiwYQNmzZoFb29vi7+/PjGyHVsnqZ/Ply5dirNnz2L58uVITk7GsmXLcP78eTz11FMWJ7jwWkyAdOOJrl27olevXti9ezdWr16NoqIiFBYW4tNPP8XGjRsBAAaDwaLY2YZJSaQc08THx+OTTz7BqlWrakwqtBT7ElkbKfvjmTNnUFRUhP/+7/9GdnY2kpKSEBsbi9TUVDz11FMoKSmx+HyWxMn+SERE1kKuOUKAuUZEpB5qzRXjegqpkVpz4djfrJec4+WG4niZaqPWnBGA7Ztqx3wSImkx/4VInZhvQ0RUO7XmQnG+kh5HyvfhWrRoAR8fHxiNRhw5cgQHDx5EVVUVHB0dUVRUZHHsHAPYFiHmEYnIMmLMdxKJRei5BqJqQr+nQuojxloENYyU8zNCPsdyfoZIeELPNZF4WNhCYX777TeMGjUK0dHRcHNzw86dOzFjxgy5wyICADRq1AgAcPPmzYc+q34Ac3d3lzQmIjUpKSlBdnY21qxZgxs3biAsLAyXL1+WOyxSqWvXrgF4eCFZzGu1UOMUS2Ns06YNWrRogStXrtQrbqKGqKmvidHPlHBO9jXlk6o91nSeho5h2B6JiEjN5Hj+EgrvwVRNrrHk+++/D2dnZ8yaNate31+fGNmOrZNUbbj6XHfv3sWmTZvw8ssvIzQ0FNOnT8esWbNw9epVfPfddxadk9diAqQbT9jb22PNmjVo27YtpkyZgrZt26Jt27aYNWsWpkyZAgDQarUWxc42TEoi1f0gPz8fEydOxOTJkzFmzJj6hmuGfYmsjZTPGF999RVSUlLw+uuvo2vXrujfvz9WrFiBWbNm4fTp09iyZYtF52N/JCIiWyXHHCFzjYhIbdSaK8b1FFIjtebCsb9ZL7napBA4XqbaqDVnBGD7ptoxn4RIWsx/IVIn5tsQEdVOrblQnK+kx5HyfbgBAwbgP//5Dz777DNcvnwZ165dw+bNm3H79m384Q9/MG1OWlccA9gWIeYRicgyYsx3EolBjLkGompCv6dC6iPGWgQ1jJTzM0I+x3J+hkh4Qs81kXhY2EJB1q5di+DgYOzduxfvv/8+0tPTodfr5Q6LyKRt27YAgJycnIc+qx5ItW7dWtKYiJTMaDSiqqrK7FjXrl0xceJELFy4EBUVFdi2bZtM0ZHalZaWAgCcnJzMjot1rRZynFKfGBs3blyvn0XUUDX1NTH6mVLOyb6mbFK1RzHGMGyPRESkZlI/fwmJ92CqJtVY8n4XLlzAunXrMHr0aHh4eNTrHPWNke3Y+kjVhtu1awcA6Nu3L7p162b2WXR0NADg5MmTFp2T12ICpB1PBAYG4sSJE1i9ejVeeuklvP322zh8+DC6d+8OwPJkOrZhUhKp7geff/45rl+/jsLCQkycONH059KlS8jLy8PEiRPx3nvvWXRO9iWyNlI+Y+h0OvTo0eOh4yNHjgQApKenW3Q+9kciIrJVUs8RMteIiNRIrbliXE8hNVJrLhz7m/WSY01dKBwvU23UmjMCsH1T7ZhPQiQt5r8QqRPzbYiIaqfWXCjOV9LjSDV+P3nyJE6cOIHBgwdj2rRpcHd3h4uLC55++mn86U9/wp07dyzeFJhjANsh1DwiEVlGjPlOIjGIMddAVE3o91RInYRei6CGkWp+RujnWM7PEAlLjLkmEg8LWyhEfHw8JkyYgKCgIKSnp2P27NmmyktESuHn5wc7O7saB03Hjx8HAISFhUkdFpFiLVy4EA4ODjW+7NKqVSsAQG5urtRhkZWoXpTLysoyOy7GtVrocYqlMZaUlODy5cuKePGHbE9NfU2MfqaEc7KvKZ9U7VGMMQzbIxERqZmUz19C4z2Yqkk1lrzfypUrUVlZiUmTJtX7HPWJke3YOknVhr29vQEAFRUVD31WnRDTvHlzi87JazEB0o0nysvLkZWVhfLyckyaNAkffvghXnvtNfTs2RMHDx6ERqOx+IUPtmFSEqnuB61bt0ZwcDBOnz6N1NRU05+7d++irKwMqampOHPmjEXnZF8iayNVf8zNzcXmzZtx4cKFhz6r/jmenp4WnZP9kYiIbJWUc4TMNSIitVJrrhjXU0iN1JoLx/5mveRYUxcKx8tUG7XmjABs31Q75pMQSYv5L0TqxHwbIqLaqTUXivOV9DhSjd/T0tIAAIMGDXros6FDhwIACgoK6ny++sTIdq1eQs0jEpFlxJjvJBKDGHMNRIA476mQ+oixFkENI9X8jNDPsZyfIRKWGHNNJB4WtlCIefPmoXnz5ti0aZPpoZ9Iaby8vDBw4ED88ssv+O2330zHKyoqsG7dOrRr1w46nU7GCImUJTAwEACwa9euhz5btWoVAKBnz56SxkTWo/p6++BCshjXaqHHKZbGWP011RW/iaRUU18To58p4Zzsa8onVXsUYwzD9khERGom5fOX0HgPpmpSjSXvt3PnTnh4eGDIkCH1Pkd9YmQ7tk5StWEXFxc8+eSTSE5OxunTp80+++GHHwAA/fv3t+icvBYTIN144s6dO+jWrRumT59udvzixYvYvHkzRo0aZXHsbMOkJFLdD6ZPn46UlJSH/nTv3h2+vr5ISUnBF198YdE52ZfI2kjVH2/evImxY8diwYIFD332/fffAwAGDBhg0TnZH4mIyFZJOUfIXCMiUiu15opxPYXUSK25cOxv1kuONXWhcLxMtVFrzkh94mT7tj3MJyGSFvNfiNSJ+TZERLVTay4U5yvpcaQavwcEBAAANm3a9NBnGzZsAPD7XH1dcQxgO4SaRyQiy4gx30kkBjHmGogAcd5TIfURYy2CGkaq+Rmhn2M5P0MkLDHmmkg8LGyhAAUFBUhPT4evr6+pUteDf+Lj4+UOkwjAvRcOKyoq8Oyzz2LLli3Ys2cPoqOjkZOTg1WrVsHOzk7uEIkUY+TIkQgMDMTy5cvx5ptv4uDBg9i8eTOef/55xMXFoXfv3oiKipI7TFKp6ipyDy4kA3W/Vn/88cdwdHTEW2+99cifY+k4pS7ntCRG4PcH8CeeeKLu/0BEAnlUX7OkDQvdL+p6PkvjZF9TPqnaoyVjGLZHIiKyBVI9f1mKz19kiYaOJS1twwUFBUhOTsaAAQNgb1/zUpQYbRhgO7ZWUj6fL1y4EHZ2dnj22Wexfft2pKenY9myZVixYgUiIiJMyUh8HiJLSDWeaNGiBZ588kls2rQJa9asQUFBAY4cOYLo6Gi0b98eixcvNvt6jidIbaS8H9QV7wdkq6Tqj0FBQejXrx9WrVqFefPm4ejRozh8+DBmzJiBnTt34plnnkGfPn3qfL76xMn+SERE1kKq+7cluUa8fxOR0ki5niL0ObmeQmojVX8TIxeO/c06cf6ZrJnU7VvInBFL42T7tj3MJyGSFvNfiNSJzztERLWTar5SjFwozlfSo0g1ftdqtYiMjERGRgaGDx+OtWvXIjExEa+++irWr18PrVaL0aNHm76e43eqVpd5RCIST13nO4mIrJElz2ZkvSxdiyDxSTU/Y8lzLOdniKRn6VwTyctR7gAISEpKgtFoxLFjx3Ds2LEav8bOzo6bn5MiREZG4ptvvsHkyZPxzDPPALg3MP/oo48wYsQImaMjUhZ7e3v88MMP+K//+i/Mnz8f8+fPN3329NNPY9myZXB05K2Y6icgIAAajabGheS6XqurqqpgMBhgNBof+XMsHafU5ZyWxAjcm2Sws7PjfYZk8ai+ZkkbFrpf1PV8lsbJvqZ8UrVHS8YwbI9ERGQLpHr+shSfv8gSDR1LWtqG9+zZg6qqKvTr1++RXyNGGwbYjq2VlM/nvXv3xtatWzFx4kSMHDnSdHzUqFH48ssvLT6fpXGyDVsnKccTa9aswbhx4zBp0iRMmjQJABAaGop169bB1dXV7Gs5niC1kfJ+UFe8H5Ctkqo/2tnZ4YcffsDkyZPx3nvv4b333jN9Nm3aNHz44YcWna8+cbI/EhGRtZDq/m1JrhHv30SkNFKupwh9Tq6nkNpI1d/EyIVjf7NOnH8mayZ1+xYyZ8TSONm+bQ/zSYikxfwXInXi8w4RUe2kmq8UIxeK85X0KFKN3+3t7bF+/XpMnz4d69evx08//WT6bODAgVizZg2cnZ0tOqclMQJs12pVl3lEIhJPXec7iYiskSXPZmTdLFmLIPFJmU9W1+dYzs8QSc/SuSaSF3fTVoCoqChBNzQjEtvzzz+PsWPH4ujRo6iqqkJYWBgcHBzkDotIkXx9fZGYmIizZ8/i1KlTcHFxgb+/P9q1ayd3aGQFXnrpJXz44YcoLi5Gs2bNzD6ry7X61VdfRVlZGXx9fR/5Mywdp9TlnJbECADff/89xowZw35DsnlUX6trGxa6X1hyPkviZF9TB6naY13HMGyPVJsuXbpwzoOIrIIUz18Pqu0ayucvslRDxpKWtuGnn3661jGAGG0YYDu2ZlI+n48YMQK5ublIT0/HtWvXEBgYCI1GU+/zWRIn27D1kmo84ePjg6SkJJw4cQI5OTkIDQ2Ft7d3jV/L8QSpkZT3gwclJyc3+HzsS2RNpOqPnp6e+PHHH3H+/HlkZWWhRYsW6N69+0NJ4uyPREREtZPi/m1JrhHv30SkRFKupwh9Tq6nkNpI1d/EyIVjf7NOcsw/Py43hONlEpKU7VvonBFL4mT7tk3MJyGSFvNfiNSJ+TZERLWTar5SjFwozlfSo0g1fvfw8MC3336LRYsWISMjA6WlpejWrRv8/f1hZ2dXr3PWNUaA7Vqt6jKPSETiqst8J5ES1TTXQGSpuj6bkXWzZC2CpCHV/Exdn2M5P0MkD0vmmkheLGxBRPXi6OiIvn37yh0GkSrY29ujc+fO6Ny5s9yhkJV5+eWXsWzZMnzzzTeYNm3aQ5/Xdq0+c+YM1qxZg7179woWk6XnrC3GpKQkpKWl4X//938FipDIco/ra3UZEwndL+rTd9nXrIeU7bEuYxi2RyIishV8/iJr0JCxpBraMMB2bO2kfj53cnJCSEiIYOerS5xsw9ZNyvGEnZ0dgoKCEBQU9Niv43iC1Ejq+0FteD8gWyZ1f/Tx8YGPj49g56tLnOyPRERkbTieJiKqndTrKUKfk+sppCZS9jcxcuHY36wPx8tkzdi+yZoxn4RIWsx/IVInjgeJiGon9fqA0LlQnK+kmkj9Plz79u3Rvn37x34Nx+9ERMpS23wnEZG1q+3ZjKxfXdciSBpSz8/U9hzL+RkiedVlronkZS93AERERERUPx4eHli8eDHef/99VFRUWPz9v/32G+Li4tChQwfBYhL6nAsWLMC0adM46UOyUlpfE6Pvsq+pB9sjERGRPJR2DxbjnLwHW7+GtGM1tGGA7djaKe1azDZMllJaGxbjnGzDJAWl9SXeD8iWsT8SERGpD+/fRES143oKkXTY30hpOF4ma8b2TdaM7ZtIWkrrc2Kck32OrJHS+i7vl0SkRJyvJGuktDGAGOdkuyYiIiIiIrIenJ8hIlIXFrYgIiIiUrGJEyeiX79+2L17t8XfO2zYMAQEBAgaj5DnPHfuHAoLC/HOO+8Icj6ihlBSXxP6fOxr6sP2SEREJA8l3YOFPifvwbajvu1Y6W0YYDu2FUq6FrMNU30oqQ0LfU62YZKSkvoS7wdk69gfiYiI1If3byKi2nE9hUg67G+kNBwvkzVj+yZrxvZNJC0l9Tmhz8k+R9ZMSX2X90siUirOV5I1UtIYQOhzsl0TERERERFZH87PEBGph6PcARARERFRw6xbt07uEETRsWNHJCUlyR0GkQn7GikJ2yMREZE8eA8ma8B2TGrHNkxqxzZMJAz2JSLlYH8kIiJSn/9j787DbK4b/4+/zpxzBmNnJI0lKUu02bJlGUuaKNxkhCSUdCeJKHWnLKkolEKUZUiUpRiy32NPbqFwVypmBjEzzQzDmLP9/vAz3+aeGVsz533mnOfjuu7ras7M3Xne132Wz/Je+P4GgCvjsxLwHt5v8DW8JuHPeH3Dn/H6BryL9xxQMPHeBYAr47MS/ojXNQAAAACgIOE8FgAKhiDTAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPBNbGwBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAHLGxBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHLExhYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIERtbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIEdsbAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAcsbEFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcsTGFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgRG1sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICA4nK5FBcXpwsXLphOAQAAAAAA8Hk20wEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADeZLValZaWpq1btyo0NFQNGzZUgwYNVK9ePdWrV09hYWGmEwEAAAAAAHwGG1sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICAU6NGDcXGxuro0aNavXq1NmzYoIyMDElSmTJl1KBBAzVs2FB169ZVvXr1VKlSVe84CQAAIABJREFUJcPFAAAAAAAAZrCxhY/yeDyyWCymM4BMLpdLVqvVdAYAAAAAAAAAwIdwPwP+zu12KygoyHQGkG/4HAcAAAAAAAAAAAAAAAAAAAAAAJBuu+021alTR2vXrs3c1EKSkpKStHbtWm3cuFFOp1Mej0clS5ZU/fr11ahRI9WtW1ctWrRQ2bJlDdYDAAAAAOBfWAvBd7EKi4/64IMPTCcAmTwej8aMGWM6A8h3J06cMJ0AeI3H49HWrVtNZwAB5fTp0zp8+LDpDOCaLFmyxHQC/MiRI0e0Z88e0xkA4HUHDx40nQDkK64dw99NnjxZFy5cMJ0B5JuZM2cqPj7edAbgd7Zs2WI6AcD/2L9/v+kEAAAKtG+//dZ0AgAYlZSUZDoBCFi//fabdu7caToDuC5JSUn64osvTGcAxsyePVtOp9N0BmDE+fPnNWPGDNMZQECLiYlRamqq6QwA12n58uU6f/686QwAMOb48eOmEwAjdu/ebToBkMVi0aJFi1S9enXZ7fYsv/N4PHI4HPJ4PJKklJQUbdy4URMmTFDPnj115swZE8lAvvrxxx/1008/mc4AMv3xxx/M2UGe+fzzz00nwDCHw6GvvvrKdAZ80I8//mg6AcD/N2PGDDkcDtMZyIHNdIAvqVWrlk/swOJ0OpWQkKA333zTJ3pYrMe3xMTEKCwszKvPee7cOZ05c0Yff/yxV5/3WiUnJ6tp06amM+CDrvT5npGRobNnz8put6t48eJeLDOLz3ff8+KLL2r06NH5/jxut1vJyckKDg5WsWLF8v35TOJ1jpyYOO53uVxKTExUmTJlZLP532kYx2HXz1fOQ3OSkZGhlJQUDRkyxHTKNeH1eJG3jiuuxblz53ThwgWVLl3aaAeDggBI3vmcdLvdSklJkd1u9/tzL4nzL28zcZ04J+fPn1dycrLfTMLmOMG7fPl86K9OnTqlcePGqXDhwqZTrojzIe/yxfOu63HmzBkNHjxYZcuWNf6e5HgiMBWU74NrlZSUpEKFCqlo0aJef26+D3C9/PX9eEliYqKKFCmikJAQrz0n70cAQH7zxve3x+NRamqq3G638ft83sD3N+Bf8uJ+yoULF5SWlhYQ4y2vFvdTkJP8uH/pdrt19uxZpaWl6YYbbpDVas3Tf39BwPvt7zF9vcvj8SgxMVGFCxfWc889Z6wjL3G87DtMv76v1unTpzVixAgVKlTIdMoV8fr2HQXl9X01Tpw4oVGjRhl/D/D6xuX4y/iXnKSnpys1NVVly5b16vkE41/gDf70fZmbtLQ0paWleW0+Jt+XgH/xlfkWf8e5c+ckyatjna6E65Xm+fPx+yV//vmnrFarSpQo4ZXnC9Tjd3/4nMwvl44LixUrprVr16pu3bpKSEiQy+XK9b/j8XhksVg0cuRI3Xzzzd6LRYFXUD7XMzIylJycrHLlynntXJTjDt/ia9chzp8/r/Pnz6tMmTJGOwL1OCKv+MLxiMvl0unTp/X888/71Gs80K5Tmf4+9JW1kHJS0L8PfeF9/necPn1aZcuWVVBQkOmULAr66wIFh+nP5786deqURo0a5TPrffA+/D/+t6LqdahZs6beffdd0xmZoqOjtX79ekVERKh27dqmczIVKVLEdELAi4yM9Ppr4s8//9Rbb72loKAgDRs2zKvPfT2qVKliOgE+5HKf7x6PRwcPHtSGDRt0/PhxFSpUSCNHjgzIz7pA/N/si958802vXKz87bffNGfOHKWnp2vgwIGqXLlyvj+nL+B1Dsnccf/Jkyf10Ucfye12a9iwYX65sYXEcdi18rXz0Jx8/PHHSkxM1DPPPFPgPkcD/fXoreOKa7V48WLt2rVLjz32mG644QajLY0bNzb6/ADM8sbn5JEjRxQVFaXz58/rmWee0U033ZSvz+dLCtpxQ0Fk4jpxTuLi4jRlyhQFBwcXiGvHV4vjhPxXEM6HLjl27JgmT56sSpUqqU+fPqZzrkqgnw95i6+ed12PdevWafXq1apcubK6d+9uOkcSxxOBoiB9H1yP5cuXKyYmRvfee6/at2/v9efn+wDXwt/fj5d89dVX2rx5s+rUqaNOnTp5bWAx70cAQH7w1vf3qVOnNGfOHKWlpenRRx9V/fr18/05fQHf34B/+Dv3UxwOh/bs2aPNmzcrMTFRxYsX16hRo2S32/O4suDifgr+Kq/vX7pcLm3fvl2rV69Wenq6ateurX79+uXZv7+g4f127XzhepfH41FUVJROnDihhx9+2K/+f+R42SxfeH1frZMnT+rtt9/WLbfcoh49epjOuSq8vs0qSK/vq/Xiiy/q7Nmz6t+/v8qXL2+0hdc3cuJP419ykpKSotdff11nzpzRgAEDvP4+YPwL8oM/fl/m5tSpU5owYYKSkpLUpUsXNWrUKN+fk+9LwD/4ynyLvysmJkarVq3SwIEDjc/F/Ct/us5V0Pj78fsl27dv1xdffKEbbrhBffr0UfHixb3yvIF0/O4vn5P56dJx4U033aTo6Gg1bdpUbrdbHo8nx78PCgpSuXLlNHz4cG9mooArSJ/rR44c0bRp01S+fHk99thjXntejjvM89XrEIsWLdLu3bvVt29flS1b1nROQB1H5BVfOR5Zs2aN1q5dq65du6pq1aqmc7IIlOtUpr8P3W63xo0bJ7vd7rNrJRTU70NfeZ9fL7fbrRdffFGVK1dWZGSk6ZxsCurrAgWH6c/nvzp+/LgmTpyoqlWrqmfPnqZzMvE+vMjiye1qCYzweDyqUqWKYmNj1b17dy1atMh0EgKYx+NReHi4/v3vf8vj8ejcuXOcQKPAy8jI0MKFCzV+/Hj9/PPPslqtcrlcGj16tF577TXTeUC+8Xg8euutt/TKK6/I7XaraNGiSk5OltVqNZ0G+LWdO3fq/vvvV2pqqipXrqyjR4+aTgKuysGDB1WnTh15PB6tWrVKERERppPgB6pVq6Zff/1Vffr00Zw5c0znAEC+yMjI0Guvvaa3335bbrdb5cuX18mTJ01nAXnu1KlTuvvuu3Xy5EkVK1ZMqampppOAfPHCCy/o3XffVaFChZSQkKBixYqZTgLy3Pjx4/XKK69Ikt5//30988wzhosA/zBjxgwNHDhQFotFTz75pD788EOvLaIPIGdffvmlunbtKovFoqZNm2rp0qUqV66c6SwAAHzW7Nmz9c9//jNzQkJ8fLwqVKhguAoA8texY8f04Ycfavr06Tp79mzm4iQzZ87UgAEDTOcBAWHZsmUaNmyYjh49KpfLJUn65ptv1K5dO8NlwLV59dVXNX78eLndbs2bN0+9e/c2nQR43SuvvKJx48apaNGiSkhIUOHChU0nAV5XunRpJScnKywsTHv27DG+uQUQiMqWLaukpCTZ7XbNnz9f3bt3N50E4BpUqFBBJ0+elMViUZcuXTR79myVLFnSdBYAeMUbb7yh1157TXfccYe+++47BQcHm04CvOLw4cOqVauWLBaLypQpoy+++EItW7Y0nYUAt3TpUnXt2jXXjS2ki2NUu3Tp4sUqwHs2bdqk8PBwSdKUKVM0ePBgw0UIdDfddJNOnDihZ599VlOnTjWdgwLqwoULuummm5SUlKR//etfev31100nwYAFCxaoV69ekqTY2FhVrFjRcBF8RVxcnCpVqiSLxaL169dnHgsB8L6RI0fqrbfeUpEiRZSQkKCQkBDTSfgLZs37mJ07dyo2NlaStHz5cp09e9ZwEQLZjBkzMje1kKTTp08bLgKu39mzZzVlyhRVqVJF/fr105EjRyRJLpdLRYsW5YIp/FpCQoIeeOABjRo1Si6XSxaLRa1atWJTCyCfbdiwQa1bt9a5c+dksVh05513mk4CrtqYMWNks9kUHBysbdu2mc6BH0hISNBvv/0mSYqKitKxY8cMFwFA3jt8+LAaNmyod955R263W3a7XZ07dzadBeQ5h8OhLl26KCEhQR6Ph+sL8Ftut1vz58+XdPF1v2LFCsNFQP6wWCwKDg6Wx+PR4MGDtWnTJtNJgF+oUaOGpIsbj8+aNUudOnVSenq64SogsDVu3FjSxfflrl27dMcdd2j37t2GqwAA8D2pqanq0aOH+vfvrwsXLsjj8ahmzZpsagHAr+3Zs0e9evXSLbfconfffVcpKSmZYy2rVq2qvn37mk4E/N6ePXvUrFkzdenSJcumFpUrV1abNm0M1wHXZs6cORo7dqzcbrckMZkWAevS/fZz584pOjracA1gxqUNXU6dOqX27dsrLS3NcBEQeOrXry+LxSKHw6HIyEiNHDnysguRAvAtERERstvt8ng8WrFihWrVqsU8NwAB4+zZs7LZbDp48KBGjRplOgfwmpo1ayo0NFQej0fJyclq3bq1Ro8enXm9FTChS5cuGjNmjCwWS7bf2e12hYaG6t///jfXfuC3nE5n5j8PHTpUW7ZsMViDQPfzzz/rxIkTkqRZs2YpJSXFcBEKqs8++0zJycmSpFWrVhmugQlut1tvvPGGgoKCZLFYtH37dtNJ8CHx8fGSLs6/HjBggC5cuGC4CAhMHo8nc/xRenq6Vq5cabgI/4uNLXzMZ599lrlLtsPh0FdffWW4CIHq6NGjeuGFF7IM0Dl16pTBIuD6nDp1SqNHj1ZYWJiGDRumkydPyu12Z960stlsevHFF1W6dGnDpUD+iImJUZ06dbRx48bM131QUJDatm1ruAzwbwsXLtT999+v9PR0OZ1OBQcH6/bbbzedBVyVX3/9VYsXL5bD4VBGRgYLWiJPbN26NfP8MigoSBMnTjRcBAB5x+PxaObMmbrnnnt08ODBzAU2nE6nIiIiDNcBee/ZZ5/Vzp075XA4JCnHQbmAP9i8eXPmht8WiyXzpjfgb4KC/m/IgMViUefOnfXrr78aLAL8Q61atTL/2eVyafXq1WrXrp1SU1MNVgGB7aabbspckNvhcCghIUFNmzbVnDlzzIYBAOBDvv32W91xxx364osvJF28/h0cHKyOHTsaLgOAvHfhwgUtWbJE9evXV/369bV48WK5XK7M+x/Sxc/Bd955RzabzWAp4N/i4uI0YMAANWjQQN9++60kZd5zt9lsGjx4cJbr2ICv+/e//60nn3wyy2NFihQxVAOYs2PHDh07dkySZLVaFRUVZbgIMOPSd4DD4dAPP/ygbt26ZR7rAPCOBg0aZK7bIEnvvPOOHnnkEZ0/f95gFYCr1bZt28wFVJ1Op06dOqXmzZuzuDWAgJCamiqLxSKXy6VJkyZp/fr1ppMArwkPD5fNZpPL5ZLb7daYMWP04IMPKikpyXQaAtioUaP0xBNPyGq1Znnc7Xarf//+mjNnju6++24+r+GX/veaZufOnXX8+HFDNQh069evzxzH43A4NGvWLMNFKKgmT56c+c979+7lWDMALVu2TD/99JPcbrfsdrt27NhhOgk+5NixY7JYLHK73Tp27JjefPNN00lAQNq6dWvmuQfjj3wTo3t9iMvl0oIFC5SRkSGJRXJgjsfj0RNPPJFlYo6kzAWcgILgyJEjGjx4sCpVqqTx48crNTU1y+6/lxQqVEiDBw82UAjkL4/HoylTpig8PFwJCQlZPtOdTqdat25tsA7wb9OmTVOvXr2ybKTkdDpVs2ZNw2XA1ZkwYUKWQRXfffcduwbjb9u2bVuWjTxnzpzJ5okA/MKpU6fUoUMHDRw4UOnp6VnOvWw2m1q1amWwDsh7c+bM0YwZM7IMRmRjC/irhQsXym63S7p4D2/9+vUcw8Iv/fVz3OVyKS0tTR07dlRaWprBKqDgK1++vIoXL575s9Pp1M6dO9WiRQvuuwMGNW/ePPP696UFa/v27asnn3wy2xgZAAACyaVxRk2aNFF8fHyWcXYZGRm6//77DdYBQN46efKk3nrrLVWqVEmRkZHau3evJGU7J7BarbrrrrvUpUsXE5mA30tLS9Po0aNVrVo1zZkzRx6PJ9v70GKx6LHHHjNUCFy7Q4cOqWPHjtkW9wkJCTFUBJjz2WefZY4ZdTqdWrlypVJSUgxXAd731+8Ap9OptWvXasSIEQaLgMBTt27dzHUbpIsLji5fvlzNmzdnLBhQALRt2zbLz39d3LpVq1YspArAr505cybzOpPFYlFkZKT++OMPw1WAd7Rq1UoejyfzZ7fbrQ0bNqh27drauXOnwTIEuo8++khNmjTJnGtks9n03HPP6c0339Thw4fVuHFjtW3bVo888gjnnPArf7335XK5lJqaqu7du+e4lhuQ39atW5d5nOB0OjVp0iRei7hmMTEx2rdvX+a6YB6PR5s3bzYbBa8bM2ZM5vyijIwMXgPIIjY2NvO43+l0aty4cTp48KDhKiDw/O/4o9WrV7MZlY9hYwsfsmHDhixvEJfLpXXr1ikxMdFgFQLR9OnTtWnTpiwTA6xWKxdMUSD88ssv6tSpk2677TbNmDFDGRkZuS5AYbPZ9OKLL6pUqVJergTyV0JCgtq3b6/nn39eLpcr2+SYMmXKqFatWobqAP82YcIE/fOf/5TH48kyYMLlcrGxBQqEkydPas6cOVmOnxwOh/7zn/8YrII/2LRpU7YJIVOnTjVYBAB/35o1a1S7du0sg2AuCQoKUosWLVSsWDFDdUDe27Fjh5588slsjwcFcasJ/icjI0OLFy/Ocm5ksVi0dOlSg1VA/ggKCspyLON0OvXTTz+pd+/e2Y5xAFyb6tWrZ/nZ4XDoxx9/VKNGjXTs2DFDVUBga9KkSY6b833yySdq2bIl42IAAAEpLi5OzZs319ChQ3McZ1S4cGE1bdrUUB0A5K2oqChVqlRJr7zyik6fPi232505Qfl/uVwuTZo0iQ2+gTzmdDo1c+ZMVa5cWePGjVNGRkaOi0zY7XY98sgjKleunIFK4NolJCTogQceUHp6erbvFja2QKBxuVxauHBhljGjLpdLK1asMFgFmFG0aNEsP186z5g2bZqhIiDw1K1bN9v4F6fTqX379qlevXosQgT4uLJly+qOO+7I9rjb7daOHTtUu3ZtrV692kAZAOS/lJSUzOtMbrdbqamp6tOnD2N7ERBatmyZbeyCw+HQ6dOn1axZM7311luGyhDo7Ha7li5dqgoVKshisahEiRJ67bXXJEkVKlTQvHnz9PXXX+vbb79VjRo1NGXKlFzvRwMFSU6fyTt27NDLL79sqAiByu12a+PGjVlekydPntSyZcsMVqEgmjx5cuaC9dLFtSjXrVtnsAjeFh0drX379mX5PDlw4IDOnTtnsAq+JC4uLsvPFotF/fv357oM4EVOp1OLFi3KMv7I4/Fw7OdjWG3IhyxcuDBzJ5i/+uKLLwzUIFD9/vvvGjZsWLaDJja2QEERFhamxMREWSyWLAchOSlSpIiee+45L5UB3vHvf/9btWvX1qZNm3I8AbZarWrfvj2TLYE85nK5NHDgwMveeGNjCxQEEydOzPZYcHCwtm7daqAG/uL8+fPat29flsccDofee+89JScnG6oCgOt3/vx5Pfvss3rggQeUlJSU44aaQUFBevjhhw3UAfnjxIkTevjhh3McTMvGFvBHq1ev1tmzZ7M85na7NW/ePENFQP7J6XPc6XRq+fLleueddwwUAf7jzjvvlM1my/KYw+FQbGys6tWrp/379xsqAwJXkyZNclws0+Vyaffu3brrrru0Z88eA2UAAJixYsUK1alTR7t27cr12l+LFi1UqFAhA3UAkPe6d++uNm3aXPHvbDabwsPDFR4e7oUqIHCcO3dODRs21FNPPaWkpKQcz9EvcTgcGjRokBfrgOt3/vx5RURE6Pjx4zmOIWFjCwSajRs3KjExMdvj8+fPN1ADmFWsWLEcHx88eLC++uorL9cAgenmm29WyZIlsz3ucDh08uRJNWjQQKtWrTJQBuBqRURE5LgGi8PhUGpqqiIiIjR48OArrikAAAXN/867dDgcWrt2raZPn26oCPCemjVrKjQ0NNvjLpdLLpdLL730kjp16qSUlBQDdQh0oaGhWrNmjYoXL65JkyapRIkSWX7foUMHHThwQH369NELL7yg8PBw/fTTT4ZqgbzxvxtbXHps4sSJWrJkiYEiBKr//Oc/2b7/LRYL899wTY4dO6YVK1ZkubfvcDi4bxNgxowZk23On8vl0nfffWeoCL7m2LFj2T4ndu3apdmzZxusAgLL2rVr9eeff2Z5zOPxMP7Ix7DakI9IT0/Xl19+me2GqcfjYZEceI3H41G/fv1yHEhtsVh0+vRpA1XAtSlSpIi++eYbNWrUKNtJ41/ZbDYNHz48x0FpQEHkdrs1ZswYhYeHKzExMcfP8ktat27txTLA/2VkZCgyMlIff/xxrjuqlilTRqVLl/ZyGXBtkpKS9OGHH2b7DnE6nYqJiTFUBX/w7bff5jgRPSMjg4GUAAqcXbt2qVatWpoxY4Yk5bjQl3Tx+zMiIsKbaUC+SU9PV4cOHZScnJzjIEQ2z4Q/WrBgQbbry263Wzt37tTRo0cNVQH5I7cNijwej0aOHMnkfeBvqFmzZo7vMYfDoeTkZDVr1kzbtm0zUAYErrvuuivXhbkdDodOnz6txo0bM8ARAOD3zp8/r6efflqdOnXSmTNnch1nFBQUxLVuAH7Fbrdr6dKlatCggex2e65/53K5mPQO5IOQkBBNmTJFxYsXv+x70GKx6Pbbb1eTJk28WAdcH7fbrR49emjv3r25HlezsQUCzcKFC7MtPOx2u7Vp0yb98ccfhqoAM4oWLZrr7yIjI/X99997sQYIXPfcc0+OjzudTp0/f14PPfSQPvjgAy9XAbha7dq1y3XTiktj+T/88EM1btxYv/32mzfTACBf5bRgv8fj0ZAhQ3TgwAEDRYB3tW7dOtc1gzwej6Kjo3XPPfdo//79Xi4DpFq1amnz5s3q06dPjr8vXry4Jk+erJ07dyo1NVV33323Jk2alOO8PKAguNxrt0+fPjp48KAXaxDINmzYkG2sgdvt1u7du7Vr1y5DVShoPvjgA1mt1myPHz9+XEeOHDFQBG/buHGjdu7cmW0dpODgYG3fvt1QFXzNr7/+mm0tQbfbrSFDhuj48eOGqoDAsnDhwhyP/WJiYhQfH2+oCv+LjS18RHR0tNLS0rI97na7tWPHDsXFxRmoQqD56KOPtHnz5hwHUzudTja2QIEREhKi1atX684778x10kvhwoX17LPPerkMyD+TJk3Sv/71L7nd7sveEHC5XGxsAeShtLQ0RUREaNmyZbkuaixdvDkN+LqpU6fmeC7gdru1ZcuWXDduAa5k69at2SYpShfPM99++22dP3/eQBUAXDu32633339fR48evexmgpJUrVo13XLLLV4qA/LX008/rf379+f6umdjC/ibtLQ0ff311zm+5m02mxYvXmygCsg/l/sct1gseuSRR3To0CEvFgH+o2bNmrlOrHc6nTp37pxat26t1atXe7kMCFx2u11169bN9fcul0sOh0OPPfaYRo4cySRCAIDfioqK0syZMxUUFHTZsQ5Op1Pt2rXzYhkA5L8iRYpo9erVql69eo5jjO12ux555JHLnjsAuH733Xefdu3apRtuuCHXcf5BQUEaPHiwl8uA6/Piiy/q66+/zrbgwV8VKVLEi0WAWenp6friiy9yvT/yxRdfeLkIMKtYsWIKCso+jd/tdsvhcKhdu3aKjY01UAYEloYNG+Y4n0G6uCCu2+3Ws88+q+eff577g4APatKkiQoXLnzFv9u3bx/jOwH4lTNnzuT4uNvtVrdu3ZiTCb/XqlWry85rdzgc+v3339WoUSPt3LnTi2XARffcc88V59TVr19f3377rV577TWNGjVKzZo1Y24GCqTc7oN5PB45HA517NhRqampXq5CIPrmm29yvH5nt9s1adIkA0UoaM6dO6cZM2bkOHfYarVq3bp1Bqrgba+//nqOm+g5nU5t3brVQBF8UW7rf2dkZGjo0KFergECT3p6upYtW5brdzbjj3wHG1v4iAULFuS4e5t0cZGczz//3MtFCDS///67hg8fnuskRZfLpRMnTni5Crh+JUqU0BtvvKFSpUplm/Ris9k0YsQIlSpVylAdkPeGDx+uxYsXq0SJErlO9JKkypUrq0qVKl4sA/zXpQUcNmzYcNmBy3a7XXXq1PFiGXDt0tLSNGXKlFxvKqekpOjw4cNeroK/iImJyXUh7NTUVH3yySdeLgKA6xMUFKSoqCgtXrxYxYoVy/GGtXTx+K9z585ergPyx3vvvae5c+dedhGOnCZfAwXZsmXLLrsI+bx587xcBOSvy32Ou91uZWRkqEOHDkpJSfFiFeAfrrThscvlUkZGhh5++GFt2LDBS1UAmjdvnuvCNdLF8QTBwcEqUaLEZRf6BgCgIBswYIC2bdumSpUqXXacUYUKFVSzZk0vlgGAd7jdbtWvX18VKlTIds/P7XZr7NixhsqAwFCrVi3t3r1bVatWzfFYJDg4WD169DBQBlybjz76SJMmTbriNaSQkBAvFQHmRUdHKy0tLcffud1u7rcj4ISEhOR6T97pdOrPP//UAw88oLNnz3q5DAgs9erVy3U+g/R/Y2cOHTqk06dPeysLwFUqVKiQmjdvnut3qs1mU4UKFbRp0yaNGDHCy3UAkH9yO09wOp365Zdf9NJLL3m5CPCuli1bXnH9hmLFiumjjz5So0aNvFgGXJtLa1zt2bNHbrdbdevW1ejRoy97ngr4GpfLddnrnMeOHVP//v29XIVAc+HCBW3bti3He7MOh0NLly7VsWPHDJShIJk/f/5l78l88803XqyBCTt37lRMTEyO6ya43W5t3br1shvsITA4nU4lJibm+DuHw6HPP/9cK1eu9HIVEFi++uqrXDf2dblcmjt3rpeLkBtWG/IBZ86c0cqVK3NdGMrpdPKmQb7yeDzq06fPFS94Hj9+3EtFwN+3detWRUZGqmnTprrllluyTHopXLiw/vmP1xKdAAAgAElEQVTPfxqsA/JHt27d9N///lft2rWTxWLJtru73W7XAw88YKgO8D82m01RUVHq0aOHLBbLZRd7YKEH+Lrp06frzJkzuf7earWyqzSui9vt1vbt23O9ceNyuTR27NhcFw4GAF/UrVs3HThwQHXr1s1xs2KHw6GIiAgDZUDe2rBhg4YPH37FARj/e/0BKOiioqJyfV17PB798MMPOnjwoJergPxjtVov+1nvdDr166+/qk+fPizuDVyjqlWr5rohnnRxcYxKlSpp3rx5Cg8P92IZENgaN26c4/XIS/dXGzVqpP379+vll1++7L0fAAAKukaNGunAgQPq06ePpOwbH9rtdnXs2NFEGgDkqxMnTqhFixbasGGDPvnkE5UqVSrz/N1ut+vJJ5/UrbfeargS8H+nTp3SiRMndMstt2S572632/X444+rRIkSBuuAK9u0aZOeffbZy24gfkmRIkW8UAT4hgULFuQ4nkq6eL999+7d+v33370bBRh0uY0tpIv343/88Uf17t3bi1VA4Klbt26uY2OsVqsqVqyoxYsXa82aNbrxxhu9XAfgarRv3z7bd6rVapXFYlHfvn116NAh3XfffYbqACB/nDt3LtffuVwuTZ06lUUU4ddq1Kih0NDQbI9fGufXunVrHTx4MHPMA+DrateurW3btmn06NF666231KBBA+3du9d0FnBVrjSXyOl0asmSJZo6daqXihCItm3bdtk1SYKCgjRt2jQvFqEgmjx5cq6/c7lcWr9+fa7rAcM/jB49+rLzhFJSUvTzzz97sQi+6Pjx45c9/gkKCtJTTz2ltLQ0L1YBgSUqKuqy44/27t3L57WPYGMLH7B06dLLHsR6PB4dOHCARXKQb2bMmKGYmJgr/t3p06e9UAP8fTt37lRERITatm2rxYsXa/PmzapUqZLsdrtsNptGjhypUqVKmc4E8sWNN96oJUuW6JZbblHhwoWzXERxuVwsjATksapVq2rhwoX64Ycf1KFDB0nKtlCZw+FQrVq1TOQBV+XChQt6++235XK5cv0bi8XCxha4LgcOHLjsjvXSxYnqn332mZeKACBv3HzzzXrqqadUqFAhBQUFZbkhEhISoqZNmxqsA/JGpUqVNHLkSIWFhUmSgoODc/y7q1moAygokpKStGHDhsueH9ntdn3++ederALyV24buQQFBSkoKEg2m00PPfQQG1sA18Fms6lKlSrZHrdarSpZsqTGjx+vn376SZGRkWwWBnhR48aNsz1ms9lUqFAhzZgxQ1u2bFGNGjUMlAEA4H3FixfX22+/rbJly6pIkSJZxhk5nU7df//9BusAIO/99ttvat68udLS0rR582a1bt1a69atU6FChWSxWGS1WvXqq6+azgT8XlxcnDp27Kh69epp9+7dioyMzLzn6HA49PTTTxsuBK6sRYsWWrNmjTp37iyr1ZrrJsdWqzXXe+2Avzlz5oxWrlx52XmyNpuN++0IKEWKFMnxPuCl74YqVapowoQJmj59urfTgIBSrVo1FStWLMtjdrtdVqtVQ4cO1X//+19169bNUB2Aq9G2bdssx5l2u10lSpRQ5cqVNWjQoGzvcQAo6Nxut9LT06/4d48//rhOnTrlhSLAjDZt2mS59mqz2RQSEqK+fftq9erVqlixosE64NrZbDaNGDFCe/bsUeHChdW4cWO9+eabl53DBPgCl8t12blHVqtVQUFBio6O1vnz571ch0CxYcOGy953dTgc+vDDD6+4tgkC17p163T48OHLzo88e/asdu/e7cUqeNP333+vtWvXyuFw5Po3VqtV27dv92IVfFFcXNxlf+92u3XixAm9/vrrXioCAktycrLWrFlz2fFHrPfhO1htyAdERUXJ4/Fc9m8sFosWL17spSIEmr59+2rz5s166aWXdO+992YuxFeoUKEsf5eUlGQiD7gme/fuVUREhJo1a6bPPvtMdrtdN954o2JiYlShQgWFhITo2WefNZ0J5KtRo0YpISFBGzZsUJMmTTIne3k8HrVq1cpwHeCfbr/9ds2YMUMhISG68cYbMyc6X8ICSPBlc+fO1alTp3KdWCldXLRk06ZNXqyCv9i2bdtlX1uXjlPGjx/PAqkACpQjR45oyJAhGjRokDZs2KBy5crJbrcrKChI7du3Z1EC+IXq1atr7Nixio2N1ZYtW/TYY49lTrb+6wJ3bGwBf7J48eLL3uSWLg5ynDt3rpeKgPwXFBSU5V61zWaTxWJRrVq1NGPGDJ06dUorVqxQ586dL3t+ByBnd955Z+bxks1mU+HChWWz2TRkyBCNGDEi2z15APnvhhtuUOXKlSVdHHRusVjUo0cPFS5cWD///LPhOgAAvG/QoEEqVKiQ/vOf/6hdu3ayWCyyWCwKCgpSeHi46TwAyDM//PCDmjVrppIlS2rHjh2qVq2aJOnuu+/WqlWrZLfb9cILL6hChQqGSwH/lpKSooiICJUsWVLLli1T8eLFNX/+fA0fPlyS1KhRI91xxx2GK4ErCwoKUps2bfTFF18oPj5eb731lsqUKSNJWcaMcA0YgWTZsmXKyMi47N9wvx2BpkiRIpn/fGmOidVqVcOGDbVu3Tr99ttvGjFihMqXL2+wEvB/FotFd999tyRlzvV6+OGHVa5cOaWmpqpw4cIm8wBchdq1a6tcuXKZC6l269ZNv/zyi26++Wb17NnzqhZ/B4CCJC0tLcd1qCwWS+ZY3goVKqh79+46ffq0t/MAr2nVqpU8Hk/mONxOnTpp5MiRioqK0v79+w3XAdfv9ttv17Zt2zR27Fi98cYbatGihX777TfTWUCunE5nlo0tLo0ts1gsql+/viZNmqS4uDitWbMmyzVRIC+tWbPmivehzp49y30o5Gry5Mm5btJzid1u19q1a71UBG8bO3asPB5PljUS/ldQUBAbW0BxcXG5fl4EBwfLYrHI4/Fo6dKlSkxM9HId4P+WLl162U2IJMYf+RJWGzLszz//1Pfff6+iRYuqWLFiKlasmIoWLarg4ODMny89tmbNGtO58FOFChVSixYt9Prrr2vnzp36448/FBwcrNatW+uuu+7KvMCfkZHBbpTwad9//73atGmjBg0aaOnSpVkmAYSFhSkmJkaTJ09WiRIlDFYC+Wv79u2aOnWq3nvvPTVu3FibNm3S+++/ryJFiqhWrVoqV66c6UTAb40dO1YlS5bUoUOHtGTJElWpUkXSxWOtSwskAb6oYsWKGj16tPr27av27durevXqOS7GHRsbqxMnThgoREG2bdu2bAsDW61W3Xjjjbr33nsVGRmpoUOHatCgQUpNTTVUCQDXxul0qlevXrr11ls1btw4tWzZUgcPHlSHDh3kdrvVoUMH04lAnrJYLGrWrJnatGmjjIwMffrpp3rooYcyB26wsQX8yfbt21WxYkWFhYVl/qdEiRIqV65clscsFosOHz5sOhfIE0FBQZnnbTVq1NDYsWPVpUsXFS1aVP3791fp0qUNFwIF2+233y632y2bzaZBgwbp2LFjeumllzR58mQGLgIGNW/eXNLFDf22bdumefPmacKECXrvvfe0d+9ew3UAAHjPwoUL9fnnn2vWrFmqXr26Vq5cqZkzZ6pw4cKqV6+eSpUqZToRAPJETEyMmjVrpurVq2vjxo264YYbsvy+RYsWWr58eebC+gDyR3p6ujp06KCkpCRFR0dnHmtYLBZNmDBBH3zwgZ577jnDlcC1K1++vKpWrao///xTCxYsUJcuXTLvp7N4DwJJdHS0ihcvnmVOrN1uV5EiRbI8dvz4cTYZRsAoWrSoLly4IOni/fh3331XERERkqQ2bdpccQElAHmnYcOGkqRatWpp69atWrJkiSZOnKiPP/5Yu3fvNlwH4EosFoseeOABlSxZUkuWLNGCBQtUpkwZffrpp4qNjdVrr71mOhEA8tRf51nabLbMxaNvuukmjRs3Tj/88IPi4+M1bdo01a5d22ApkL9atmwpl8ul0qVL68svv9SSJUv08ssvq2HDhurTp88VFzkEfJnVatWwYcO0Z88enTt3TnfddZdmzpxpOgvIkcvlksvlktVqlcViUaNGjXTbbbfpwQcf1K5du/Tcc8+pQoUKpjPhx5KTk/X9999ne9xqtSo0NFQ1atTQfffdp8jISDa/RI7Onz+vsmXLqk2bNrr77rtVqVIlFStWLNvfORwOffPNNwYKkd/cbrcefvhhvfHGG3r88cfVrl073XLLLVnWKZUuvga2bNliqBK+IjY2VhaLRRaLJct6GrfeeqsGDRqkxYsXKz4+Xr/88ovKli1ruBbwPzmNPwoODlZISEiWx06fPq1Dhw6Zzg14Fk9OWzTDqG+++Ubt27dXcnKySpYsaToHAWj9+vVq27atfv/9d1WpUkXJycmKiYnRxo0b9fLLL2ebzAP4gv379ys8PFx169bVV199pcKFC5tOArzu3LlzuvvuuzMnmv/Vr7/+qu3bt6tXr16G6gD/9vvvv6tmzZqaMmWKnnrqKUkXL2h++eWXWrhwoZYtW2a4ELg2RYsW1bvvvqvWrVvr+PHjOnbsmI4fP65OnTqpevXqpvNQgHz44YeyWq0KCwtTxYoVddNNN6lmzZoaN26cnn76adN5AHBdXn75ZU2ZMkV79uxRzZo1s/xu9uzZ6tChg8qXL2+oDsg/Dz30kBwOh1avXi1JSklJ0dKlS7Vr1y5Nnz7dcB2Qf0qVKqV33nlHAwYMMJ0C5IsVK1Zo27Zt6tmzp+666y5J0tq1a3X//ffr8OHDqlGjhuFCoGBbsGCBVqxYoTfffFPVqlWTJJ09e1a33XabHn30UU2aNMlwIRCY5s6dq1OnTmnIkCGZg4zdbreaN2+ujIwM7dixQ1ar1XAlAAD5Kz4+Xnfeead69uypqVOnZvndr7/+qr179+of//iHoToAyDtff/21unfvrnbt2mnRokWMLwYMcbvd6t69u9atW6eYmBjdeeedppOAPBURESGXy5W5yEVSUpKioqK0fv16ffXVV4brAHO4345AN3fuXG3ZskUDBgzQvffeK+n/5o//+OOPuv322w0XAoFj5cqVio+P14ABAxQUFCRJ8ng8atmypZxOp7Zu3cpmM4CP++6771SxYkXdeOONWR6fOXOmnn76aW3cuFEtWrQwVAcAeevw4cOqVauWSpYsqQ4dOqhDhw5KT09X//799ccff7BoIgLK0KFD9corr6hMmTKZj/33v//VPffco1dffVUvvfSSwTogbzgcDo0bN05jxoxRp06dNGPGDIWGhprOAjJNnz5d8+bNU2RkpLp27aqbbrpJM2fO1PPPP68//vgjx8Xhgbx08uRJrV27VqGhoQoNDVW5cuW0ZcsW9e3bVxkZGYz7x3WJjo7Wgw8+qKNHjyo9PV1JSUlKSkpSamqqIiMjTefBC7Zt26ZmzZrp4MGDcrvdOnr0qGJjY3X8+HH961//4rMlgA0ZMkSffvqpmjRpovvuu0/NmjXT66+/rrCwMM2bN890HhCQGH/ku9jYwgexsQVMGzVqlJYsWaKffvrJdApwVQ4fPqxWrVrp1ltv1Zo1a1S0aFHTSYARgwcP1vz583XgwAFVrFjRdA4QUHr16qVvv/1WP/74Y+YCSJd4PB4GN6NASUpKUtmyZbV27Vq1bdvWdA780B133KGHH35YY8eONZ0CANdsy5YtatWqlT766CNueCCgJCUlqUKFCpo9ezabZiLgcKMbgcjtdqty5crq37+/Ro8ebToHKNByuz78wQcf6IUXXtDhw4dVtWpVA2UAcvLDDz+obt26mjJlChvzAgD8msfjUUREhH7//Xft2bNHISEhppMAIF9ERUXpiSee0KOPPqpZs2bJZrOZTgIC1pAhQ/TRRx8pOjparVu3Np0D5Km4uDjdfPPNWrRokbp27Wo6B/Ap3G8HsnO73apWrZr+8Y9/aOLEiaZzgIC3d+9eNWjQQHPmzGFsJFCAdejQQQcPHtS+fftUvHhx0zkA8LclJCTop59+0r333pu5kGZqaqrKlSunTz/9VI8++qjhQsC8t956S6+99pr27Nmj2rVrm84B8sT27dvVu3dvpaWladasWerQoYPpJEDSxWualzYKvSQhIUEVKlTQ/PnzWQAeRmzatEnh4eE6deqUypUrZzoHBVBUVJT69eunCxcumE6BIZ999pl69+6t9PR0xhUii4SEBJUtWzbLnNDRo0crKipKv/zyi8EyIHAx/sh3BV35TwAEmksn7EBB8NNPPyk8PFzVqlXT6tWr2dQCAWvr1q2aNm2a3n//fTa1ALxs//79+uyzzzRu3Lhsm1pIYlMLFDhxcXGSpLCwMMMl8FcVK1ZUfHy86QwAuGbJycnq3bu3OnbsyM0OBJxFixbJZrOpU6dOplMAAF4QFBSkRx55RFFRUfJ4PKZzgAItt+vDTz31lCpXrqw33njDy0UALqdOnTp6/vnnNXLkSB0/ftx0DgAA+Wbq1Klav3695s6dy6YWAPzW1KlT1adPHw0dOlSffvopk08Bg9555x1NnTpVn3zyCZtawC/Nnj1bpUuXVseOHU2nAAAKgKCgID3xxBOaM2cOiyUBPuCee+5R//79NXz4cKWmpprOAXCdPvnkE6WlpWn48OGmUwAgT4SGhqpJkyaZm1pIUokSJdS0aVOtWrXKYBngO4YNG6Y777xT/fr1k8vlMp0D5IkmTZpoz549Cg8P10MPPaTBgwcrPT3ddBaQbVML6eLxSnh4uJYsWWKgCLj4GpQuLj4OXI/ExESVLVvWdAYMio2NVVhYGOMKkU1oaGi2OaFNmzbVkSNHdOLECUNVAOCb2NgCQBZnzpzRd999p1atWplOAa7o559/VqtWrXTzzTdr9erVKlasmOkkwIi0tDQ9/vjjevDBB9WrVy/TOUDAGTFihOrWrauuXbuaTgHyxKUNB9goCfklLCwscwMVAChIBg4cKKfTqVmzZplOAbxuwYIF6ty5M9ffACCA9OzZU0eOHNGuXbtMpwB+yW6364033tC8efO0b98+0zkA/uK1115TaGioXnjhBdMpAADki0OHDumll17Sq6++qoYNG5rOAYA85/F4NHr0aA0ZMkQTJkzQhAkTct14EkD++/zzzzVy5Ei9++676tmzp+kcIM+53W59+umn6tu3rwoVKmQ6BwBQQDzxxBNKTk7WihUrTKcAkDR+/Hg5HA69+eabplMAXKcbbrhB06dP18yZM1nwHYBfe/DBB7VmzRo5nU7TKYBxVqtVc+fO1b59+zR58mTTOUCeKVWqlBYuXKioqCjNnz9fjRo10n//+1/TWUCOunXrpujoaDYLhRFsbIG/688//1SZMmVMZ8Cg2NhYVapUyXQGCohGjRrJarVqx44dplMAwKewsQWALGJiYuR0OtWyZUvTKcBlxcbGqnXr1qpUqZLWrFmj4sWLm04CjBk2bJiSk5M1c+ZM0ylAwImJidGaNWuYAA2/EhcXp+LFi6tEiRKmU+CnKlasmLmBCgAUFLNnz9aSJUs0d+5clS1b1nQO4FVHjx7Vjh07WGgGAAJMvXr1VLt2bS1YsMB0CuC3IiMjdc899+jVV181nQLgL0JCQjRt2jQtWrSIBS8AAH7H6XSqT58+uv322/XSSy+ZzgGAPOdyufTUU09p7Nix+vjjjzV8+HDTSUBA27x5s/r06aPnn39eQ4YMMZ0D5ItvvvlGR48eVd++fU2nAAAKkLCwMLVv314ff/yx6RQAksqUKaPRo0fr3XffZbFQoADr3LmzevTooQEDBigxMdF0DgDkiwcffFBJSUnatWuX6RTAJ9SqVUsvvfSSXnnlFR06dMh0DpCnHn30Ue3bt08hISGqX78+8zrgk/7xj3/I7XZr5cqVplMQgEJDQ2WxWNjYAtctMTGRNSMCHBtb4FoUL15cderU0fbt202nAIBPYWMLAFls2rRJderUUfny5U2nALlKSEjQ/fffr5IlSyo6OppFlxHQNm7cqBkzZmjatGm68cYbTecAAWfkyJG6//771bp1a9MpQJ6Jj49XWFiY6Qz4sbCwMMXFxZnOAICrduTIET3//PMaNmwYx30ISPPmzVNoaKjatGljOgUA4GWRkZH6/PPP5XA4TKcAfslisWj8+PH6+uuvtXnzZtM5AP6iffv26tq1q5555hmlpaWZzgEAIM+8/vrr+vHHH7Vw4ULZ7XbTOQCQpy5cuKAePXpo3rx5Wrx4sfr162c6CQhoP/74ozp37qyHH35Yb7/9tukcIN/MmjVLzZs3V61atUynAAAKmAEDBmjDhg06cuSI6RQAkp5++mnVqlVLgwcPNp0C4G+YNm2abDabBgwYYDoFAPJFzZo1deutt2rVqlWmUwCf8fLLL6t27drq16+f3G636RwgT1WuXFkxMTF64YUX9Nhjj+mxxx5jTCt8SunSpRUeHq4lS5aYTkEAstvtKlmypE6fPm06BQVUUlKSypQpYzoDBh07dkyVK1c2nYECpGnTptq2bZvpDADwKWxsASCLjRs3Kjw83HQGkKtz587poYce0tmzZxUdHc2FAQS01NRU9e3bVw899JC6d+9uOgcIOF9++aV27typ8ePHm04B8lR8fLwqVqxoOgN+LCwsTGfOnFFqaqrpFAC4IqfTqZ49e+q2227TmDFjTOcARixatEg9evRgoTsACEC9e/dWQkKC1q5dazoF8Fvt2rVT69atNXLkSHk8HtM5AP7i/fffV0pKisaNG2c6BQCAPLFjxw69+eabmjhxoqpXr246BwDy1NmzZ9WxY0etW7dO69atU5cuXUwnAQEtPj5eDzzwgO68807NmzdPQUFMXYN/+uOPP/T111+zYCoA4Lo8+OCDqlChgj799FPTKQAkWa1WffDBB1q3bh0LRQMFWKlSpfTJJ59o+fLl+uyzz0znAEC+eOCBBzheAf7CZrNp9uzZ+u677zRt2jTTOUCes9lsGj16tJYvX65Vq1apQYMGOnDggOksIFO3bt20evVqpaSkmE5BAAoNDVVCQoLpDBRQbGyB2NhYVapUyXQGCpAmTZpoz549OnfunOkUAPAZjA4GkCkpKUn79u1Tq1atTKcAOcrIyFCXLl30yy+/aN26dZwQIuANHTpU586d04wZM0ynAAHH5XLp1VdfVY8ePVS3bl3TOUCeio+PV1hYmOkM+LFLG6fEx8cbLgGAK3vllVf0ww8/aOHChQoODjadA3jdd999p4MHD6pnz56mUwAABlSpUkVNmjTRggULTKcAfm3ChAn69ttv9dVXX5lOAfAXN954o8aMGaN33nlH+/btM50DAMDfkpaWpscff1ytW7fWwIEDTecAQJ5KSkpS27ZttX//fm3atEn33Xef6SQgoKWmpioiIkIlSpTQ8uXLVahQIdNJQL6ZM2eOQkJC2FAJAHBdbDabHn/8cc2ePVsOh8N0DgBJzZo1U7du3fTcc8/pwoULpnMAXKc2bdpo4MCBGjRokGJjY03nAECee/DBB7V//34dPXrUdArgM+666y69+OKLGjlypI4cOWI6B8gXHTt21Pfff68yZcro3nvv1cyZM00nAZKkLl26yOPxMBcCRoSGhioxMdF0BgqoxMRENrYIYOnp6UpMTGQdU1yTpk2byuFwaM+ePaZTAMBnsLEFgEybNm2SxWJR8+bNTacA2bhcLvXq1Us7duzQmjVrVKNGDdNJgFHr1q3TJ598oo8++kjly5c3nQMEnNmzZ+uXX37RG2+8YToFyHNxcXGZGw8A+eHSxilsbAHA18XExGjixImaMmUK1yEQsBYsWKBbb71VDRo0MJ0CADCkZ8+eWrFihc6cOWM6BfBb9evXV9euXTVixAg5nU7TOQD+YtCgQWrQoIH++c9/yuPxmM4BAOC6DR06VElJSZozZ44sFovpHADIM0ePHlWTJk108uRJbdmyRXfffbfpJCCgZWRkqEuXLkpISFB0dLRKly5tOgnINx6PR7Nnz1bv3r0VEhJiOgcAUED1799fp06d0urVq02nAPj/Jk2apJMnT2ry5MmmUwD8DRMnTtQNN9ygfv36ca8fgN9p2bKlihUrxnkE8D/+9a9/6ZZbbtGAAQP4/offqlSpkjZt2qRnnnlGAwcO1BNPPKH09HTTWQhwpUqVUps2bbRkyRLTKQhAoaGhSkhIMJ2BAiopKYmNLQLYsWPH5PF42NgC1+Tmm29WxYoVtX37dtMpAOAz2NgCQKZNmzapbt26TCCAz/F4PHr66ae1cuVKff3116pbt67pJMColJQU9evXT5GRkeratavpHCDgnD9/XmPGjNHAgQNVrVo10zlAnouPj8/ceADID2XLllWRIkUUFxdnOgUAcvXnn3+qd+/eeuihh9SvXz/TOYARLpdLixYtUq9evVjsDgACWPfu3eV0OrVs2TLTKYBfGzdunH799VfNnz/fdAqAvwgKCtL06dO1a9cuzZ4923QOAADX5ZtvvtHHH3+sadOmqUKFCqZzACDPHDp0SPfdd59sNpu2bt2q2267zXQSENA8Ho/69eun3bt3Kzo6WpUrVzadBOSrzZs36+eff2ZMCQDgb6latapatWqlWbNmmU4B8P9VrFhRI0aM0NixYxUfH286B8B1CgkJ0Zw5c7Rx40bNmDHDdA4A5KlChQopPDxcq1atMp0C+JTg4GDNnj1bMTEx+vjjj03nAPnm/7F373E93/0fx5+dT0IKS0kMcyqMoXKKjVJiKKyFKIcxNqccfjmMjRhj2ByaWZYoZxoxmUM5jSGHOZbqKzoK6Vy/P66ta3bZdaHD63t43m83t+uPmR52+X71+n4+n/dLT08PS5cuxd69e7Fr1y507dqVz+uTOC8vL0RFRSErK0s6hTQMF1tQeXCxhWZLSkoCAC62oFfm4OCAmJgY6QwiIqXBxRZEVCY6Oho9evSQziD6D7NmzcLGjRvx448/omvXrtI5ROImTZqEvAPdPnYAACAASURBVLw8rFixQjqFSCOtWLECjx49wuzZs6VTiCpcbm4uMjMzudiCKp2VlRUf9CAipTZ27FgUFxfzRlbSaD///DMePHiAoUOHSqcQEZGgWrVqwcXFBaGhodIpRGqtSZMmGDVqFAIDA/Hs2TPpHCL6C3t7e0yYMAEBAQFITU2VziEiInol6enpGDFiBHx8fODl5SWdQ0RUYc6dO4euXbuiXr16OHbsGO9zIVICU6ZMQXh4OHbs2IHWrVtL5xBVuuDgYHTo0AFt2rSRTiEiIhXn7++Pn376qewAHSKSN336dFhaWmLGjBnSKURUDg4ODpg+fTqmTp2KW7duSecQEVUoNzc3HDlyhPcaEv1Nhw4dMHnyZEybNg2JiYnSOUSVyt3dHefOnUNubi7atm2L6Oho6STSYP369YOWlhb27t0rnUIahost6HUVFxcjOzsb5ubm0ikkJCkpCYaGhrCwsJBOIRXj6OiI2NhYlJaWSqcQESkFLrYgIgBASkoKfv/9dzg7O0unED1n9erVCAoKwvr16zFgwADpHCJx+/fvxw8//IC1a9eiTp060jlEGicrKwtffvklpkyZgrp160rnEFW45ORkAIC1tbVwCak7LrYgImW2YcMGbN++HSEhIbwhgTRaaGgoOnXqhKZNm0qnEBGRMG9vb/z888+c44gq2Zw5c/Do0SN888030ilE9DcLFy5E9erVMXXqVOkUIiKiV/LRRx9BV1cXK1askE4hIqowR44cQc+ePdGpUydER0fzeh6REli+fDlWrFiB4OBgvPvuu9I5RJUuMzMTO3fuhL+/v3QKERGpgffffx+1atXCDz/8IJ1CRH8wMDBAUFAQQkNDcfz4cekcIiqH+fPno1mzZhg+fDiKi4ulc4iIKoy7uzvy8vJw7Ngx6RQipbNgwQJYW1tj1KhRPGiU1F7jxo1x6tQpdO/eHb1790ZQUJB0EmmomjVrolevXoiIiJBOIQ1jYWGBtLQ06QxSQY8ePUJJSQlq1aolnUJCEhMTUb9+fWhpaUmnkIpxcnJCRkYGbt68KZ1CRKQUuNiCiAAA0dHR0NPTQ+fOnaVTiMr8+OOPmDRpEpYuXYqRI0dK5xCJe/ToEcaOHYthw4Zx0QuRkC+++AI6OjqYPHmydApRpfjzgEorKyvhElJ31tbWZYtUiIiUye3btzFlyhQEBASgR48e0jlEYp49e4Zdu3bB29tbOoWIiJSAh4cHTE1NeZM5USWztLTEJ598gi+++AKZmZnSOUT0F8bGxlizZg02b96Mn3/+WTqHiIjopWzatAk7duxASEgIzMzMpHOIiCrErl274ObmBg8PD+zcuRPGxsbSSUQaLzw8HNOmTcPSpUvh4+MjnUNUJTZv3gxdXV0MHjxYOoWIiNSAvr4+fHx8sGHDBh64TaRE3n//ffTu3RuffPIJX5tEKkxPTw8hISH47bffsHTpUukcIqIKU69ePbRu3RqRkZHSKURKx8DAAMHBwTh69CiXSJJGqFatGsLDw7Fw4ULMmjULH374IXJzc6WzSAN5enri0KFDfA6CqpSFhQXS09OlM0gFZWRkAAAXW2iwpKQk2NjYSGeQCmrTpg2MjY0RExMjnUJEpBS42IKIAABHjx5Fx44dYWJiIp1CBACIjIyEr68vAgICMGXKFOkcIqUwfvx4lJSU4KuvvpJOIdJICoUCa9asQWBgIKpXry6dQ1QpkpOToaenh9q1a0unkJqzsrIqW6RCRKQsCgsL4e3tjaZNm2LevHnSOUSidu/ejby8PHh6ekqnEBGREjA0NMSAAQMQGhoqnUKk9gICAqCnp8eH6YmUUJ8+fdC/f3989NFHyMvLk84hIiL6r5KTkzF58mR8+umncHZ2ls4hIqoQ33zzDQYNGoTRo0cjJCQEenp60klEGu/48eMYPnw4xowZw/v9SaN8//33GDJkCExNTaVTiIhITfj7+yMpKQlHjhyRTiGiv1i+fDmuXLmC7777TjqFiMqhRYsWmDdvHubOnYtLly5J5xARVRg3Nzfs27dPOoNIKTk4OGDChAn45JNPkJycLJ1DVOm0tLQQEBCA/fv346effkLnzp1x79496SzSMP3794eOjg727NkjnUIaxMLCAk+ePEF+fr50CqmYP5fwmJubC5eQlKSkJNSvX186g1SQnp4e3nnnHcTGxkqnEBEpBS62ICIAQHR0NHr06CGdQQQAuHjxIoYMGYJhw4bh888/l84hUgp79+5FWFgYgoODuemVSEhgYCDq1q2L0aNHS6cQVRqFQoF69epBW5sfF1DlsrKy4g1hRKR0Zs2ahatXryI0NBT6+vrSOUSiQkND0atXL9StW1c6hYiIlIS3tzd+/fVXXL16VTqFSK2ZmpoiICAAK1eu5GcnREro66+/xoMHD7Bo0SLpFCIion9UUlICHx8fWFpaYsGCBdI5REQVIigoCOPHj8e0adPw9ddf874WIiVw7do19O/fH7169cKqVaukc4iqzKlTp3Dp0iX4+/tLpxARkRpp1qwZHB0dERwcLJ1CRH/RvHlzTJgwATNnzkRGRoZ0DhGVw7Rp09CpUyd88MEHyMvLk84hIqoQbm5uSExMxLVr16RTiJTSF198gdq1a2PcuHHSKURVxtXVFadPn0Zubi46deqEc+fOSSeRBjE1NUXv3r0REREhnUIaxMLCAgCQnp4uXEKq5s/FFjzHT3NxsQWVh5OTE2JiYqQziIiUAu/oJyLcu3cP8fHxcHZ2lk4hQkpKCjw8PNCuXTt8++230NLSkk4iEpeeno7Ro0fD19cXffr0kc4h0ki///47Nm/ejM8//xwGBgbSOUSVRqFQwNraWjqDNIC1tTXS0tKQn58vnUJEBAA4duwYli9fjlWrVuGtt96SziESlZaWhsOHD8Pb21s6hYiIlIizszOsra2xdetW6RQitTdhwgQeQkykpOrXr4/58+dj8eLFuH79unQOERHRCy1btgwxMTH44YcfYGRkJJ1DRFQupaWlmDx5MmbPno21a9di8eLF0klEBOD+/fvo06cPWrVqhW3btkFHR0c6iajKBAcHw87ODh06dJBOISIiNePv7489e/YgNTVVOoWI/mL+/PkwMDDA/PnzpVOIqBy0tbWxadMmJCUl8fVMRGqjY8eOqFOnDiIjI6VTiJSSsbExNmzYgMjISISFhUnnEFWZpk2b4syZM2jbti26d++OPXv2SCeRBvH09MTPP//MBaFUZbjYgl5XRkYG9PX1YWJiIp1CQrjYgsrD0dERN27c4N8/RETgYgsiAvDzzz/D0NAQHTt2lE4hDffs2TP0798fJiYm2LVrF/T19aWTiJTC+PHjoauriy+//FI6hUhjBQQEoEWLFhgyZIh0ClGlSk5OhpWVlXQGaQArKyuUlpYiJSVFOoWICFlZWfDx8cH7778PX19f6RwicVu3boW+vj48PDykU4iISIloa2tj8ODB2Lx5M0pLS6VziNSavr4+5syZg++++44H5xMpoYkTJ6JVq1YYO3Ys/04kIiKlc/XqVcyZMwefffYZ2rdvL51DRFQuBQUF+OCDD7BmzRps2bIFY8aMkU4iIgCPHz+Gm5sbTExMsHv3bhgaGkonEVWZp0+fIiIiAv7+/tIpRESkhry8vGBiYoKQkBDpFCL6C1NTUyxcuBDffPMNLl++LJ1DROXQsGFDLFmyBEuWLMHx48elc4iIyk1bWxu9evXiYgui/6J79+4YM2YMPv74Yzx8+FA6h6jKmJqaYt++ffD19cX777+PefPmSSeRhvDw8ICuri52794tnUIagost6HVlZmbC3NxcOoOEPHr0CE+ePIGNjY10CqkoR0dHaGlp4fTp09IpRETiuNiCiHD06FF06dKFDxWQqJKSEnzwwQe4e/cu9u3bBzMzM+kkIqWwbds2REREIDg4mK8LIiFnzpzBvn37EBQUBG1tjlCk3hQKBaytraUzSAP8uUAlOTlZuISICBgzZgxKS0uxfv166RQipRAaGooBAwagWrVq0ilERKRkvL29ce/ePZw6dUo6hUjt+fj4wM7ODoGBgdIpRPQ3Ojo6WLduHWJiYni4FBERKZX8/Hx4e3ujXbt2mDZtmnQOEVG5PHv2DP3798e+ffuwb98+eHl5SScREYDCwkIMGjQIqamp+Omnn1CrVi3pJKIqFRoaisLCQnh7e0unEBGRGjIyMsLQoUOxYcMGLtYmUjIjRoxA+/btMX78eL4+iVTcmDFj4OLiAl9fXzx58kQ6h4io3Nzc3BATE4OsrCzpFCKl9eWXX6JGjRr4+OOPpVOIqpSOjg5Wr16Nr776CgsWLMCYMWNQVFQknUVqztTUFC4uLggPD5dOIQ1hZmYGHR0dLragV8bFFpotMTERAFC/fn3hElJVZmZmaNasGWJiYqRTiIjE8VRWIsIvv/wCZ2dn6QzScFOmTEFUVBT27NmDxo0bS+cQKYW0tDRMnDgRo0ePhouLi3QOkcaaMWMGunTpwtchaYTk5OSyhQNElcnS0hI6OjpQKBTSKUSk4dauXYsdO3YgJCSEh24QAbhz5w7Onj3LgziIiOiF2rZti1atWiE0NFQ6hUjtaWtrY8GCBdixYweXyRApofbt2+Ojjz7ClClTkJaWJp1DREQEAAgMDMTt27exadMm6OjoSOcQEb22rKws9OrVC2fOnMHhw4fRq1cv6SQiAlBaWopRo0bh9OnTiIyMRIMGDaSTiKrchg0bMGjQIN5fQkRElWbMmDG4efMmTpw4IZ1CRH+hra2NNWvWIDY2Ftu3b5fOIaJy0NLSwoYNG5CdnY2AgADpHCKicuvduzcA4NChQ8IlRMrLxMQE69evx/bt2/n9PGmkSZMmITw8HJs3b0bfvn254I0qnaenJ6Kjo5GamiqdQhpAW1sbtWrV4v389MoyMzN53V+DJSUlAQCsra2FS0iVOTo6IjY2VjqDiEgcF1sQabjr169DoVBwsQWJCg4OxsqVKxEcHAxHR0fpHCKlMW7cOBgZGWHp0qXSKUQaa9++fTh27BgWL14snUJU6YqLi/Hw4UMutqAqoaOjgzfeeAPJycnSKUSkwa5fv44pU6Zg5syZ/GyM6A+bN29G7dq10bNnT+kUIiJSUh988AG2bt2KgoIC6RQitefu7g5nZ2fMmDFDOoWIXuDzzz+HoaEhD7sgIiKlEBMTg+XLl+Prr79G48aNpXOIiF5bSkoKunfvjvj4eBw7dgwODg7SSUT0h+nTp2Pr1q3Yvn072rRpI51DVOUuX76M8+fPw9/fXzqFiIjUmL29Pdq1a4fg4GDpFCL6m3bt2mHYsGGYMmUKcnJypHOIqBzq1auH9evXY+3atfjpp5+kc4iIysXMzAyOjo6IjIyUTiFSaj179oSvry/GjRvHg69JIw0cOBDR0dG4cOECunTpwmf7qVJ5eHjAwMAAu3fvlk4hDVG7dm2kp6dLZ5CK4WILzZaUlISaNWuievXq0imkwpycnHDu3Dk+Z01EGo+LLYg0XHR0NExNTdGuXTvpFNJQUVFRGDduHBYsWABvb2/pHCKlERoaip07d2L9+vUwNTWVziHSSCUlJQgMDMTAgQP5kDRphJSUFBQXF3OjNFUZKysrKBQK6Qwi0lD5+fnw9vZGixYtMHfuXOkcIqURFhaGDz74ALq6utIpRESkpLy9vfHo0SNERUVJpxBphMWLF+PEiRM4cOCAdAoR/Y2pqSlWrFiBTZs2ITo6WjqHiIg02NOnTzFixAi4ublh5MiR0jlERK/t7t276NKlCwoLC3H69Gm0atVKOomI/rB27VosW7YMwcHB6NWrl3QOkYh169ahadOm6NKli3QKERGpOX9/f2zfvh1ZWVnSKUT0N0FBQXj8+DGWLFkinUJE5TRgwAAMHjwY/v7+yMzMlM4hIioXNzc3HDhwAMXFxdIpREpt+fLlMDQ0xKeffiqdQiSiU6dOOHnyJJ49e4YuXbrg1q1b0kmkpkxMTODq6oqIiAjpFNIQFhYWyMjIkM4gFZORkQFzc3PpDBKSlJSE+vXrS2eQinN0dERubi5+++036RQiIlFcbEGk4Y4ePYpu3bpBT09POoU00LVr1zB48GB4e3tj9uzZ0jlESiMlJQUTJ07E+PHj+QAYkaCQkBBcuXIFn332mXQKUZVITk4G8K9lA0RVwdramostiEjMrFmzcOvWLYSGhvJzMaI/nDlzBjdv3uTyWSIi+q9sbGzg5OSE0NBQ6RQijdChQwd4eHggICAAJSUl0jlE9DeDBg2Cu7s7xo0bh/z8fOkcIiLSUB9//DGys7Oxfv166RQiotd2/vx5ODg4wMzMDMeOHeODo0RKZO/evZgwYQIWL16MYcOGSecQicjNzUVYWBj8/PygpaUlnUNERGrO29sbOjo6vCZPpITq1KmDwMBALFmyBPHx8dI5RFRO3377LXR0dDBhwgTpFCKicnFzc0N6ejrOnTsnnUKk1GrUqIG1a9ciNDQUu3fvls4hEtGkSRPExsaidu3a6Nq1K+Li4qSTSE15enri6NGjSE1NlU4hDWBhYYH09HTpDFIxmZmZqFWrlnQGCeFiC6oITZo0QZ06dRATEyOdQkQkiostiDRYaWkpjh07BmdnZ+kU0kAPHjyAq6sr7O3tsW7dOukcIqUyfvx41KhRA4sWLZJOIdJYeXl5mDt3Lvz8/NC8eXPpHKIqoVAooKWlBUtLS+kU0hBWVlZlC1WIiKrS4cOHsWLFCqxZswZNmzaVziFSGqGhoWjSpAnat28vnUJERErO29sbe/bsQXZ2tnQKkUYICgrC9evXsWXLFukUInqB1atX4/79+1i6dKl0ChERaaA9e/Zg06ZN+Pbbb1G3bl3pHCKi1/LLL7+gR48eaNWqFaKjo1G7dm3pJCL6w5kzZzB06FD4+flh+vTp0jlEYsLDw/H06VP4+PhIpxARkQaoVq0aPD09ucSUSElNmjQJjRs3xtSpU6VTiKicatasie+++w5bt27Ftm3bpHOIiF5by5YtYWtri8jISOkUIqXn5uYGb29vfPTRR8jKypLOIRJhYWGB6OhotGzZEt26dcPp06elk0gNubu7w9DQEDt37pROIQ3AxRb0OrjYQrMlJibCxsZGOoNUnJaWFhwcHBAbGyudQkQkiostiDTYpUuXkJ6ejh49ekinkIbJy8tDv379YGRkhN27d8PAwEA6iUhpbNq0CXv27MH333+PatWqSecQaaw1a9YgLS0N//d//yedQlRlkpOTUadOHX5vRlXGysoKCoVCOoOINEx6ejqGDx+OAQMGYNiwYdI5REqjqKgI4eHhPIiDiIheipeXF0pLS7Fr1y7pFCKN8NZbb2HYsGEIDAxEfn6+dA4R/Y2NjQ0CAwOxcOFC3LhxQzqHiIg0SFpaGsaMGQM/Pz8MHDhQOoeI6LXs3bsXrq6u6NGjByIjI2FqaiqdRER/uH79Ovr06YOePXtizZo10jlEooKDg9GvXz+88cYb0ilERKQh/P39ERcXh3PnzkmnENHf6Orq4quvvsLOnTsRFRUlnUNE5fTee+9h9OjRGDt2LJKTk6VziIheW58+fbjYguglrVy5EqWlpVxWRxqtWrVqiIyMRNeuXfHee+/hyJEj0kmkZoyNjeHm5oaIiAjpFNIAXGxBryMjI4OLLTRYUlIS6tevL51BasDR0REnT56UziAiEsXFFkQaLDo6Gubm5rC3t5dOIQ0zbtw43Lx5E/v27eNwT/QX9+/fx+TJkzFx4kR069ZNOodIY2VnZ2PRokX45JNPYG1tLZ1DVGUUCgWsrKykM0iDWFtb4/79+ygpKZFOISINMmrUKOjo6GDdunXSKURK5dChQ3j48CGGDBkinUJERCrAzMwMrq6uCA0NlU4h0hifffYZUlNTOcsQKanJkyejefPmGDt2LEpLS6VziIhIQ4wcORLGxsZYvny5dAoR0WsJCQnBwIED4evrix07dsDQ0FA6iYj+kJKSAldXVzRu3Bhbt26Fjo6OdBKRmBs3biAmJgb+/v7SKUREpEEcHBzQunVrbNiwQTqFiF7g3XffRf/+/fHpp5+isLBQOoeIymnZsmWoXbs2Ro4cyev9RKSy3NzccPHiRSgUCukUIqVnbm6OdevWYePGjTh48KB0DpEYAwMDhIeHw9XVFR4eHnw9UIXz9PTEL7/8gpSUFOkUUnMWFhZIS0uTziAVUlxcjMePH/PsSw1VWloKhULBxRZUIZycnPDw4UPcvXtXOoWISAwXWxBpsKNHj8LZ2Rna2nwroKqzatUqhISE4Mcff0STJk2kc4iUip+fH8zMzLBw4ULpFCKNtmTJEpSUlGDq1KnSKURVSqFQcJkLVSkrKysUFhYiNTVVOoWINMQ333yD/fv3Y/PmzbzZgOhvQkND4ejoyM/riIjopXl7eyM6OpoPwRFVESsrK4wfPx4LFizA48ePpXOI6G90dXWxbt06HD9+HGFhYdI5RESkAdavX4+ffvoJ33//PUxNTaVziIhe2cqVKzFixAhMmTIF33zzDe9lJ1IiT548gZubG/T09LB//34YGxtLJxGJWr9+PaytrdGzZ0/pFCIi0jC+vr4ICwvDkydPpFOI6AWWLVuG+Ph4rF69WjqFiMrJxMQEmzZtQnR0NJdKEZHKcnZ2hpGREQ4cOCCdQqQSPDw84OnpCT8/Pzx69Eg6h0iMvr4+wsLCMGTIEPTr1w/bt2+XTiI10qdPHxgbG2PXrl3SKaTmLCwskJ6eLp1BKiQrKwslJSU8a0JDPXz4EPn5+VxsQRWiffv2MDQ0RGxsrHQKEZEYPgFApKGKiopw/PhxODs7S6eQBomNjcXUqVMxf/58uLm5SecQKZUNGzYgKioKmzZtgomJiXQOkcZKSUnBypUrMXv2bH4ATRonOTkZVlZW0hmkQf5cpMJDUImoKly7dg3Tpk3D7Nmz0b17d+kcIqWSk5ODvXv3wtvbWzqFiIhUiLu7O6pXr46tW7dKpxBpjFmzZqGkpATLli2TTiGiF+jQoQNGjx6NyZMnIysrSzqHiIjU2N27dzF16lQEBASgW7du0jlERK+ktLQUAQEB+PTTT7F06VIsXrxYOomI/qKwsBCDBg3CgwcPcPjwYdSuXVs6iUhUQUEBNm/eDH9/f+jo6EjnEBGRhvHx8UFRURG2bdsmnUJEL9CoUSNMnToV8+bNQ0pKinQOEZWTo6Mjpk6dismTJ+PWrVvSOUREr8zIyAjOzs6IjIyUTiFSGd988w0KCwsxc+ZM6RQiUTo6OggODsbo0aMxZMgQbN68WTqJ1ISxsTHc3d0RHh4unUJqzsLCAvn5+VwSTS8tMzMTAGBubi5cQhKSkpIAADY2NsIlpA4MDAzw9ttvIyYmRjqFiEgMF1sQaahff/0Vjx8/Ro8ePaRTSEOkpKTA09MTrq6umD17tnQOkVJRKBSYPn06pkyZgi5dukjnEGm0+fPno2bNmvjoo4+kU4iqnEKh4GILqlJ//nlLTk4WLiEidZefnw9vb2+0bNkSgYGB0jlESmfXrl3Iz8+Hl5eXdAoREakQQ0NDDBw4EKGhodIpRBqjZs2amDZtGpYvX44HDx5I5xDRCwQFBUFHRwczZsyQTiEiIjVVUlICX19fvPnmm5g3b550DhHRKykuLoa/vz+WL1+O7777DlOmTJFOIqK/KC0thb+/P06dOoXIyEjY2tpKJxGJ27VrFzIzMzF8+HDpFCIi0kC1atXC+++/j+DgYOkUIvoHs2bNgpmZGe9NJlIT8+fPx5tvvokRI0aguLhYOoeI6JW5ubnh8OHDyMvLk04hUgkWFhZYsWIF1q1bh8OHD0vnEInS0tLCqlWrMG3aNPj6+nLRKlUYT09PnDhxAvfv35dOITVmYWEBAEhPTxcuIVXx52KLWrVqCZeQhMTERGhpafF8Laowjo6OiI2Nlc4gIhLDxRZEGio6OhqWlpZo1qyZdAppgIKCAgwYMAA1atRASEgItLS0pJOIlEZpaSlGjRqFN954A/Pnz5fOIdJoN2/exMaNG7Fw4UIYGRlJ5xBVqdLSUigUClhbW0unkAYxMjJCrVq1oFAopFOISM3NmDEDt2/fRmhoKPT09KRziJROaGgoXFxcym7gIiIielne3t747bffcOXKFekUIo3xySefwMzMDAsXLpROIaIXqF69Or788ksEBwcjJiZGOoeIiNTQokWLcObMGYSEhEBfX186h4jopeXn52Pw4MEICwvDnj174OvrK51ERH8za9YsbNmyBREREWjbtq10DpFSCA4OhqurK2xsbKRTiIhIQ/n7++PMmTO4ePGidAoRvYCRkRGCgoLw/fff4+zZs9I5RFROBgYG2LJlCy5cuIBly5ZJ5xARvTJ3d3c8e/YMx48fl04hUhlDhw5F//79MXr0aDx9+lQ6h0jcokWLMHnyZPj4+GDfvn3SOaQG+vTpg2rVqmHHjh3SKaTGuNiCXlVGRgYALrbQVElJSahbty4MDAykU0hNODo64sqVK8jOzpZOISISwcUWRBrq6NGj6Nmzp3QGaYiAgABcuXIFO3bsQPXq1aVziJTK2rVrceTIEWzatIkH6RMJmz17Nt588018+OGH0ilEVS4zMxN5eXncKE1VztramostiKhSHTp0CCtXrsS3336LJk2aSOcQKZ3U1FT8/PPP8Pb2lk4hIiIV1K1bN9SvXx9hYWHSKUQaw9DQEIGBgVi/fj1u374tnUNELzB06FC4urpi7NixKCwslM4hIiI18ttvv+Gzzz7DokWLYGdnJ51DRPTSnj59Cnd3dxw5cgRRUVHo06ePdBIR/c26desQFBSE9evXo3fv3tI5REohPj4e0dHR8PPzk04hIiIN1r17dzRp0gQbN26UTiGifzB48GB07doV48ePR0lJiXQOEZVTy5YtMWfOHMyZMweXL1+WziEieiX169dHq1atEBkZKZ1CpFLWrFmDx48fY/bs3UcalQAAIABJREFU2dIpREohKCgIo0aNwqBBg3DgwAHpHFJxhoaGcHd3R0REhHQKqTEutqBXlZmZCQMDA5iYmEinkICkpCTUr19fOoPUiJOTE0pKSnD69GnpFCIiEVxsQaSBCgoKEBsbC2dnZ+kU0gD79+/HypUrsWbNGjRv3lw6h0ipJCQkICAgANOnT0fHjh2lc4g02rlz57Bjxw4EBQVBV1dXOoeoyiUnJwP415IBoqpkZWVV9uePiKiipaWlYcSIERg0aBCXlxH9g7CwMBgZGaFv377SKUREpIK0tbUxdOhQ/PjjjygtLZXOIdIYI0eORJMmTTBnzhzpFCL6B6tXr0Z8fDyWL18unUJERGoiPz8fw4cPR8eOHTFp0iTpHCKil/bw4UN07doVV65cwS+//ILOnTtLJxHR3+zbtw/jx4/HwoULMWLECOkcIqURHByMOnXqcCETERGJ0tLSwqhRo7B582Y8e/ZMOoeI/sHq1atx8eJFhISESKcQUQUICAhAhw4dMGzYMBQUFEjnEBG9Ejc3N+zfv186g0ilWFpaYtmyZVi9ejVOnDghnUMkTktLC9988w0+/PBDDBo0CMePH5dOIhXn5eWFmJgYKBQK6RRSU6ampjA0NORiC3ppmZmZMDc3l84gIVxsQRWtTp06aNy4MWJjY6VTiIhEcLEFkQaKjY3Fs2fP0KNHD+kUUnOJiYkYPnw4/Pz8MGzYMOkcIqVSUlICX19fWFtbIzAwUDqHSOPNnDkTHTp04GGupLH+vBBsZWUlXEKaxtramjciEFGlKC0txahRo6Crq4t169ZJ5xAprdDQUAwcOBDGxsbSKUREpKK8vb2RmJiIkydPSqcQaQwdHR0sWLAAW7duxfnz56VziOgFbG1tMXPmTMyfPx93796VziEiIjUQEBCAxMREbN68GdravPWbiFRDQkICunTpgkePHuHEiRNo3bq1dBIR/c3Zs2cxdOhQjBo1CrNmzZLOIVIaRUVF2LRpE0aOHAk9PT3pHCIi0nAjRoxATk4Odu7cKZ1CRP+gZcuWGDNmDGbMmIHs7GzpHCIqJ21tbWzatAl37tzB/PnzpXOIiF6Jm5sb7t69ixs3bkinEKmUESNGwN3dHX5+fsjNzZXOIRKnpaWF9evXw93dHX379sWvv/4qnUQqzMXFBaampti+fbt0Cqkxc3NzLragl5aZmYlatWpJZ5CQxMRE2NjYSGeQmnFyckJMTIx0BhGRCF3pACKqekePHkWjRo1ga2srnUJqrLCwEEOGDEG9evWwYsUK6RwipbN69WqcPHkSsbGxMDQ0lM4h0mgHDx7EkSNHcOLECWhpaUnnEIlITk5G9erVYWpqKp1CGsbKygrHjx+XziAiNbRmzRpERkYiOjoaZmZm0jlESun27ds4d+4cvvjiC+kUIiJSYfb29rCzs0NoaCi6dOkinUOkMQYMGAAHBwfMmjULUVFR0jlE9ALTpk3Dli1b8NFHH+HgwYPSOUREla6kpATZ2dkoKChATk4OAODp06coLCws+zlGRkZl98jUqFEDurq6qFGjhkivKjly5AhWrVqFH374AQ0aNJDOIfpHT548QVFREbKysgDgufcD4F9L+qpXrw7g3+8Hpqam0NXl4wzq6OrVq+jduzfMzMzwyy+/oF69etJJVMny8vKQm5uLnJwcFBQUAEDZ+8GfatSoAW1tbejq6sLU1BQGBgZcvi7o9u3b6Nu3L5ydnbFmzRrpHFJx6jYPREZGIiUlBb6+vtIpRCrjn+aB4uJi3Lt3DxcvXuQ8QPSa6tatC3d3dwQHB+PDDz+UznkhzgNEwIIFC7Bt2zYsXLgQS5culc6pUuo2DxABQKNGjRAUFISPP/4YLi4uvC/uf+D1ASLl4eDgAHNzc0RGRuKtt96qkq/JeYDUxbfffouWLVti7ty5WLJkiXQOkTgdHR1s3rwZAwYMwHvvvYejR4+iTZs20lmkggwMDODh4YGIiAhMmjRJOofUVO3atbnYgl4aF1totqSkJHh5eUlnkJpxdHTE5MmTUVRUVGGfefLzFiJSFbzSQ6SBoqOj0aNHD+kMUnPTp0/HlStX8Ouvv/KbXKK/iY+Px+zZszFr1iy888470jlEGq20tBSzZ8+Gh4cHOnfuLJ1DJEahUMDa2lo6gzSQlZUVkpOTpTOISM1cu3YN06dPx5w5c9CtWzfpHCKltXnzZlhaWsLZ2Vk6hYiIVJy3tzeCgoKwcuVKGBgYSOcQaYzFixeja9eu+Pnnn/Huu+9K5xDR3+jr62PdunXo2rUrIiIi4OnpKZ1ERPRaioqKkJycjPj4eCQkJCAhIQH37t1DRkbGf/x4Hbq6ujA3N3/uR506ddCgQQPY2trC1tYWDRs2hKWlZQX/zlRDdnY2Ro4ciX79+intwYWk/lJTU5GQkFD2PpCYmIgHDx78x3vAnw9OvaoaNWqgdu3az70P1K9fv+z1b2trCxsbG+jr61fw74wqy5kzZ+Dm5oZWrVphz549PKRQxeXk5Dz3HhAfH4+UlBRkZGQgPT0d6enpyMjIeO6guldhZGRU9tq3sLBA7dq1Ubdu3bLX/5//++fBd1Qx0tLS4OrqigYNGmDr1q08RJD+kabOA8HBwejZsycaN25cpV+XSBlVxDzw+eef4/PPP3/hP+M8QPRy/P390adPH1y/fh3Nmzevsq/LeYDo5ZmZmWHBggWYOHEiRo0ahWbNmkknlZumzgNEfxo3bhz279+PESNG4NKlS6hWrZp0UpXj9QEi1aOjo4NevXohMjISkydPLtevxXmANE29evUQFBSEcePGoV+/fnBycpJOIhKnr6+PiIgIuLq6wtXVFbGxsWjYsKF0FqkgT09P9OvXD4mJibCxsZHOITVkYWHBxRb00jIyMmBubi6dQQIKCwvx8OFD1K9fXzqF1IyTkxNycnIQFxeHtm3b/tefy89biEjdaJWWlpZKR9DzoqKi4OLigkePHvFBDqpwz549g5mZGb7//nt88MEH0jmkpg4dOgQXFxf88MMP8PHxkc4hUiolJSVwdnZGdnY2zp49yxtqiIRt2bIFw4YNw6VLl9CyZUvpHCIxfn5+SExMxKFDh6RTSMMcPHgQrq6u/AyEiCpMfn4+OnbsCAMDA5w8eRJ6enrSSURKq2nTpujbty+WLVsmnUKk1GrWrImlS5fC399fOoVIaSkUCtjY2GDHjh3o37+/dA6RRunTpw/S0tJw9uxZaGlpSecQ0Qv4+fkhMjIS169fR82aNaVziIj+UVFREW7duoW4uDhcunQJcXFxuHLlCpKSklBUVATgXw86NGzYEA0aNICFhcV/PPRQo0YNGBoawsjICABgYmLy3H0xubm5yMvLAwA8efIEBQUFzx168+eDGA8ePMC9e/eQlJSEwsJCAIChoSHefPNNtGrVCq1bt0arVq1gZ2cHW1vbqv0PVcW8vb1x9OhRxMXF8UE6qnT3799/7j0gLi4Ot27dwrNnzwD86yAca2trNGjQAJaWls+9D/z5Q19fv+y6r76+PkxMTMp+/aKiIjx58gQAkJeXh9zcXDx58gTp6elIS0t77v3g3r17iI+Px9OnTwEA2trasLa2RvPmzdG6dWvY2dnBzs4OzZs35/13SiYyMhJeXl7o2bMntm3bVvZ3Aim/p0+f4sqVK7h8+TIuX76MuLg4/P7770hNTS37ORYWFmjYsCGsrKzKvgf484e5uTmMjIxgampatiTBzMzsua+RnZ2NkpISlJSUIDs7G3l5ec+99tPS0pCeno6UlBQkJCTgwYMHZf9urVq10LRpU9jb28Pe3h52dnawt7fnnPUanjx5gu7duyM7OxuxsbGoU6eOdBIpAc4D/6ZQKNCgQQOEhoZi8ODBFf7rEykrzgNEyq2kpASNGjWCl5cXlixZUuG/PucBoopRUlKCjh07ombNmjh8+LB0zkvjPED0z+7fvw87OzsMHToUq1evls6pNJwHiNRLaGgofH19kZaW9lLPa3IeIPq30tJSuLi4IDExEb/99hsMDQ2lk4iUwpMnT9CtWzfk5eUhJibmP97nif6XgoICvPHGGwgMDMSnn34qnUNqaOjQoSgoKMCOHTukU0gFuLi4wNraGsHBwdIpVMUSEhLQsGFDnDp1Cp06dZLOITVSWloKCwsLzJ8/HxMmTADAz1uIKhrP+1BeXGyhhLjYgirTn4eGKhQK1KtXTzqH1FB6ejrs7e3h6OiI7du3S+cQKZ3ly5cjICAAp0+fRrt27aRziDRaYWEhmjdvjq5du2Ljxo3SOUSiXFxcYGlpie+//146hTRMXFwc7O3tcfXqVbRo0UI6h4jUwMSJExESEoLffvsNDRs2lM4hUlqnTp2Co6Mjzp8/j7fffls6h0ip8UI30ctxdnaGhYUFIiIipFOINEpcXBzatGmDsLAweHl5SecQ0QtkZmaiefPm8PT0VOuDLohI9SgUCpw8eRKxsbE4deoU4uLikJeXB11dXTRt2rTs4YRGjRrB1tYWtra2eOONN6q0sbi4GAqFAvHx8UhISMDNmzfLDtNJSEgAANSoUQNt27ZF586d4ejoCAcHB7V5oGLnzp0YNGgQ9u/fjz59+kjnkJp5+vQpzpw5g5iYGJw6dQrnzp1DRkYGAMDKyqrsPaBp06Zo2LAhbG1tUb9+/SpfKJ6eno6EhATEx8fj7t27uHLlCuLi4nD9+nUUFBRAT08PzZs3h6OjIxwdHeHk5IRGjRpVaSP9258HJQ0ZMgQbN24se5iOlE9xcTGuXLmCmJgYxMbG4vTp07h79y5KS0thampadkBkixYt0KhRo7L3gWrVqlVpZ25ubtn3AfHx8bh+/XrZ9wJZWVkAABsbG3To0AFOTk5wdHRE27Ztq/y9SpUUFhaib9++uHDhAmJiYtCkSRPpJBLCeeCfLViwACtXroRCoYCBgUEF/E6IlA/nASLVNG/ePKxZswbJycnl+juK8wBR5YqNjUXnzp2xa9cu9OvXTzrnhTgPEL2aLVu24MMPP0RkZCRcXV2lc8qN8wCR+svMzESdOnWwbds2DBw48Ll/xnmA6H9LSEiAvb09Jk6ciIULF0rnECmNlJQUODg4wMbGBocPH+Y1FHplI0aMwM2bNxEbGyudQmro448/xuXLl3Hs2DHpFFIBHTp0QPfu3StlkTgptxMnTqBr165ITk6GlZWVdA6pkeLiYnTv3h15eXl46623+HkLUSXgeR/Ki4stlBAXW1BlCggIwP79+3H16lXpFFJTXl5eiI2NxeXLl1GrVi3pHCKlcuPGDbRt2xYzZ85EYGCgdA6Rxlu1ahWmT5+OGzduwMbGRjqHSJSdnR369++PBQsWSKeQhsnKykKtWrUQFRWFXr16SecQkYqLioqCq6srNm/eDG9vb+kcIqU2YcIEREdH49q1a9IpREqPF7qJXk5wcDA+/vhjpKSk8CFxoirm4+OD2NhYXL9+Hfr6+tI5RPQCISEh8PX1xcmTJ+Hg4CCdQ0QaKikpCQcPHsQvv/yCkydPIjExEbq6umjTpg0cHR3Rrl27sgcmVOHB4+zs7LIDbM6cOYNTp07hxo0b0NbWRosWLeDk5ISePXvivffeU8kZ5f79+7C3t8fgwYOxZs0a6RxSAzk5OYiOjsbhw4cRExODy5cvo6ioCLa2tnByckKHDh1gb28Pe3t7lbjvs7CwEDdu3EBcXBwuXLiA2NhYnD9/Hvn5+bC0tISjoyO6desGV1dXNG7cWDpXI6xevRqTJk3ChAkTsGLFCmhpaUkn0V+UlJTg/PnziIqKwokTJ3D69Gk8fvwY1atXh6OjIzp16oQ2bdrAzs4ODRs2VIn//5KSkhAXF4dLly7h1KlTOHXqFNLT02FsbIx33nkHXbp0Qa9eveDg4MAlK38oLS3FqFGjsG3bNhw5cgSdOnWSTqIqxHng5ZSWlqJJkybo168fli1bVom/A6KqxXmASD0kJyfD1tb2hYfT/jecBzgPUNXz9vbG6dOncfXqVRgaGkrncB4gqgBDhgzBiRMnEBcXpxLfM/8V5wEizeTk5IS33noLwcHBnAeIXsPq1avx6aef4vTp02jXrp10DpHSuHbtGpycnNC7d29s2bIF2tra0kmkQiIjI9G3b1/cvXsXtra20jmkZubNm4eIiAieq0kv5c0334S/vz9mzJghnUJVbMuWLRgxYgRyc3Oho6MjnUMq7J+uv1arVg2dO3fm5y1ElYDnfSgvLrZQQlxsQZXpnXfeQadOnbBq1SrpFFJDwcHBGDNmDA4fPowePXpI5xAplZKSEnTr1g05OTk4c+YMNxASCXv69CkaN24MHx8fLF26VDqHSJyZmRkWLVqEsWPHSqeQBqpWrRpWrVoFX19f6RQiUmFpaWmwt7fHe++9h5CQEOkcIqVWVFQEKysrTJo0CbNmzZLOIVJ6vNBN9HKys7NhaWmJVatWYdSoUdI5RBolISEBzZo1w1dffYVx48ZJ5xDRP3j33XeRmpqK8+fP81oxEVWJgoICnDhxAgcPHsSBAwdw9epVmJiYoEuXLnBycio7qMbExEQ6tcKkpaUhNjYWMTExOHnyJM6ePQstLS106tQJrq6ucHFxQdu2bZX+4ZDS0lK4ubnh5s2buHjxIqpVqyadRCrq6tWrZe8BJ0+eRGFhIdq2bYvOnTuXvQ/Uq1dPOrPC5OXl4fz584iJiUFMTAyOHTuG7OxsNG7cGC4uLnB1dUX37t1hbGwsnap2goKCMHPmTMyZMwfz5s2TzqE/pKWl4dChQzhw4AAOHTqEtLQ0WFtbo3v37nB0dETnzp3RsmVLtTlspLS0FDdu3EBsbCxOnjyJ48eP486dO6hZsybefffdsvcBdXrfe1X/93//h8WLF2PHjh3o16+fdA5VMs4DrzcP/Pk839WrV9GiRYsqrCeqeJwHOA+QeurTpw9KSkpw8ODB//rzOA9wHiBZCoUCzZo1w4wZMzB79uwq//qcB1T3+gApr0ePHsHOzg7dunXDjz/+KJ3zP3Ee4DxAmi0tLQ0TJkzA3r17YWpqynmA8wC9hpKSEjg7O+PRo0c4d+4c9PX1pZOIlMaRI0fQp08fTJ8+HQsWLJDOIRVSWFiIN954AzNnzsTUqVOlc0jNrF69Gp999hlSU1OlU0gFmJmZISgoCKNHj5ZOoSq2ePFirF27FgkJCdIppIJ4/ZWft5AsnvehvLjYQglxsQVVlkePHsHCwgLh4eEYMGCAdA6pmbt376JNmzYYN24cgoKCpHOIlE5QUBDmzp2Lc+fOwc7OTjqHSOPNmzcPK1aswJ07d2Bubi6dQyQqJycH1apVw969e9G3b1/pHNJATZs2hY+PDwIDA6VTiEhFlZaWwsPDA1evXsXFixdRvXp16SQipbZ//354eHjgzp07aNiwoXQOkdLjhW6ilzdo0CBkZmYiOjpaOoVI43zyyScICwvD7du3YWpqKp1DRC9w69Yt2Nvb4/PPP8fkyZOlc4hITeXl5eHgwYMIDw/Hvn378PTpUzRv3rzs0KauXbvCwMBAOrPKZGVl4fDhwzh48CAOHjyIlJQU1KtXDwMHDsTgwYPh4OCglA+PrF69Gp9++ilOnjyJjh07SueQijl//jzCw8MRHh6OhIQEWFhY4L333oOrqyt69+6NOnXqSCdWmaKiIsTGxpa9B1y8eBEGBgZwcXHB4MGD4e7uzsUx5VRcXIzx48cjODgY3377LT9DVQIpKSnYsWMHtm3bhtjYWOjq6sLJyansewFNu3f11q1bOHDgAA4cOIBjx44hNzcX7du3h5eXF7y8vNCgQQPpxCqzYcMGjBkzBsHBwRg5cqR0DlUSzgPPe515wNPTEw8ePMCJEyeEqonKh/PAv3EeIHW1a9cuDBo0CHfu3IGtre1z/4zzwPM4D5C0RYsWYeHChbh27VqV/HnjPPA8Vb0+QMrt0KFDcHFxwdatW+Hl5SWd8x84D/wb5wHSRH+fB3R0dMqe2ezTpw/nAc4D9Bri4+NhZ2eH6dOnY86cOdI5RErlu+++g7+/P8LCwjB48GDpHFIhI0eOxNWrV3HmzBnpFFIz27Ztg7e3NwoKCviZD/1XxcXF0NfXR3h4OAYOHCidQ1Vs/PjxiIuLw/Hjx6VTSEXw+uvz+HkLSeJ5H8qLiy2UEBdbUGXZvXs3Bg4ciIcPH8LCwkI6h9RIUVERunTpgvz8fJw+fZrbxon+5vr163j77bcxd+5czJgxQzqHSOOlpaWhcePGmDFjBmbOnCmdQyTu5s2beOutt3DhwgW0bdtWOoc0UI8ePdC0aVOsXbtWOoWIVNTKlSsxdepUHD9+HA4ODtI5REpv6NChSE5O5mEcRC+JF7qJXt6fh2gkJCSgfv360jlEGiU9PR1vvvkmpk+fjtmzZ0vnENE/mDdvHpYuXYorV65w0SARVZiCggIcOnQI4eHh2LNnD54+fYrOnTvDy8sLbm5u/3HAnaYqLS3FxYsXsXfvXoSHh+PatWuwtraGp6cnBg8erDQLJG7fvo22bdtiypQpmDdvnnQOqYhLly4hPDwc27ZtK1toPHjwYPTv3x/t27eHjo6OdKJSSElJwU8//YSIiAgcOXIEenp6cHNzw+DBg+Hm5gYjIyPpRJVSUFAAHx8f7NmzBz/++CMGDRoknaSx0tLSyh6ePHHiBIyNjeHh4YGBAwfi3Xff5QLMP+Tm5uKXX37Bjh07sGvXLmRlZaFjx47w8vKCp6cnrK2tpRMrTWRkJPr37485c+YgMDBQOocqGOeBl/My80B6ejqsra2xbt06DB8+XDqZ6KVxHng5nAdIXRQVFaFBgwbw8/PD/PnzOQ+8JE2eB0hOQUEB7Ozs8PbbbyMsLKzSvgbngf9NVa4PkGoYPXo0du7cibi4OFhaWkrncB54SZwHSF1xHng5nAeoPJYtW4ZZs2bh119/1bgDS4n+l08++QTr16/HsWPH8M4770jnkIo4ePAgXF1dcfv2bbz55pvSOaRGjhw5gnfffRfp6ekwNzeXziEllp6ejtq1ayM6OhrOzs7SOVTFPDw8YGpqitDQUOkUUmL8vOXl8PMWqmo870N5cbGFEuJiC6oskyZNwokTJ3DhwgXpFFIzc+fOxZIlS3D27FlejFFhqampSEhIQEJCApKTk5Gamor09HRkZGSU/cjLy0NWVhaAf934lpOTU/bv6+jooHr16gAAY2NjGBgYwMLCAubm5s/9sLS0hK2tLWxtbWFjY6P2i1CKiorg6OiI4uJinD59Gnp6etJJpAH4ev7vJk6ciO3bt+PWrVswMTGRziH6r6ri9ZydnY1NmzYhIiICbdq0UanXM6kHHx8fPHr0CPv27ZNOIaow/H6s6ly9ehXvvPMOZs6cyUM4qFKo2+s5JycHdevWxZdffomxY8dWytcgUlbq9nomUkYFBQWoV68eAgICMG3atEr7Onw9E73YZ599hi+//BK3b99GnTp1pHNeCl/PpGkKCgrQpk0b2Nra4qeffpLOqVB8PRNVvZs3b2Ljxo34/vvvkZqaihYtWmDYsGH48MMPYWVlJZ2n9K5evYqIiAhs27YNv//+O5o2bYqRI0fC19dX7HupoqIidO7cGYWFhbzHiP6nx48fY+vWrVi3bh0uXLiA+vXr4/3334enpyecnJygpaUlnajUsrKysG/fPkRERCAqKgpGRkYYMmQIxowZg7fffls6T+nl5ORg4MCBiImJwc6dO/Hee+9JJ2mckpISREdHY/369di9ezd0dXXRs2dPeHp6YuDAgbwn7n8oLi7GqVOnEBERgbCwMGRkZKBHjx4YPXo0+vfvr1Z/B587dw7Ozs4YOnQoNmzYIJ1DFYjzQPm8aB5o3LgxTp48iZSUFBgbG0snEv1XnAfKh/MAqboZM2Zg48aN6NatG/bs2cN54BVp0jxA8vbt2wcPDw8cPXoU3bt3r7Bfl/NA+Sjj9QFSHTk5OWjTpg0aNWqEgwcPinzvzXmgfDgPkKrj9YHy4TxAr6qkpATdunVDTk4Ozpw5o9Z/Rnj/H72q4uJi9O3bF5cuXcLZs2c5j9JLKSwshKWlJaZPn47p06dL55AauXTpEtq0aYPff/8db731lnQOKbEbN26gWbNmuHjxIlq3bi2dQ1Wsbdu26N27NxYvXiydQkqGn7eUDz9voarAxRbKi4stlBAXW1BlsbOzQ+/evfHll19Kp5AaOXXqFLp27YqvvvoKEyZMkM6h/6GkpAR37tzBpUuXcPnyZVy5cgU3b95EfHw8nj17BuBfF4wsLS1Ru3Zt1K5d+7mLRcbGxmV/N+nr6z83bBUVFeHJkycAgLy8PDx79uy5i1QZGRlIT0+HQqHA06dPAQDa2tqoV68eGjVqhJYtW6J169aws7ODnZ2d2mwlXLhwIRYuXIjz58+jZcuW0jmkRvh6fj0JCQlo1qwZvv76a4wePVo6hwiAcryek5OTy24gUZXXM6mPGTNmICoqCr/99pt0CtErUYb3b1X8fqwi5eXloWPHjjA1NcWxY8ego6MjnUQqSpNezz/88ANGjx6N+/fvw9zcvFy/FpEy0qTXM5GyGj16NM6ePYuLFy+W69fh65no1eXk5KBx48YYOnQoli9fLp1Thq9noucdO3YMzs7O2LFjB95//33pnFfC1zORvLy8PGzfvh3BwcE4fvw4bGxsMHLkSIwYMQI2NjbSeSrrwoUL+O677xAaGorc3Fz0798ffn5+6NmzJ7S1tausY+7cuViyZAl+/fVX3mNE/yg2NhYbNmxAeHg4AMDLywt+fn5wdHTkYVWv6eHDh/jxxx8RHByM33//He3bt4efnx+GDh1advAG/VtmZibc3d1x584dHDhwgAd9VTGFQoGNGzfiu+++Q2JiIrp06QJ/f38MGDCAh7C/pvz8fERGRiI4OBhRUVGoU6cOhg8fDj8/PzRu3Fg6r1zu3LkDR0dHtG/fvuzAY1JtnAcqx5/zwKZNm5Cfn49i7CjYAAAgAElEQVSBAweKzANEL4PzQMXjPECq5M95YN26dVAoFHB0dMS4ceM4D5SDOs8DpDzc3Nxw7949XLx4sVxzGeeByqEs1wdItcTExKBbt25Yu3Yt/Pz8quzrch6oeJwHSJXw+kDF4zxAL+vGjRto06YN/p+9O4+v6UzcAP7cbBKCNKiSxF7rqH1LUInYgloitGNrq9a0doKaJqUqtpSxx6BSiqDRWiKhiSBiC2miqKWWJGhIaEhElvv+/vhN+zGKZrn3vuec+3z/7MTNM9N5zs1zctw3ICAAfn5+suOUCJ//I0N78OAB2rRpg0qVKuHw4cP8wFoqlJEjRyIhIQGnT5+WHYU0JDU1Fc7Ozjh27Bjc3NxkxyEFi4uLg6urK27dugUXFxfZccjEKlSogDlz5sDX11d2FFII3m8xPN5vIWPhwRbKxYMtFIgHW5AxpKWl4Y033sCePXvQs2dP2XFII548eYKmTZuidu3a2LdvHx98UKDU1FQcP34csbGxOHHiBJKSkpCdnQ1LS0vUrl0bTZo0Qb169VCjRg3UrFkTNWrUgIuLi9F/WXD//n1cv379zxPbf/31VyQlJSEpKQmZmZnQ6XSoWbMmWrRoATc3N7i6uqJZs2aq+0tVFy5cQIsWLTB37lxMnTpVdhxSOfbZMAYPHowzZ87g/Pnz/MUoScM+E/2v5cuXY+7cuUhLS5MdheiVeP1Wno8//hibN29GQkICatSoITsOqYg597lr164oXbo0du/ebcT/JkSmY859JlKqmJgYdOrUCYmJiWjcuHGh/xz7TGQYK1euxOTJk3Hx4kXUqlVLSgb2mejvDR8+HAcPHsTFixcV/WwY+0ykHL/99htWrFiB1atXIzMzE71798bIkSPRtWtXfrCSAWVnZ2PHjh1Yt24dYmNj8eabb2LSpEkYPny40f9ySnx8PNq1a4evvvqKf2GK/iIvLw/btm1DUFAQEhIS0LRpU4wcORKDBw9W9M8SanT06FGsW7cOO3fuhKWlJUaMGIGJEyfy91D/dfv2bXTv3h2ZmZmIjIxE3bp1ZUcyG6dOncKSJUuwa9cuODo6YtiwYfjoo49Qv3592dE05datW1i/fj02bNiA1NRUdO/eHVOmTEHnzp1lRyuy+/fvw9XVFeXLl0d0dDTs7e1lR6IS4B4wDZl7gOhVuAdMh3uAlIp7wDS0tAdIWa5evYp//OMfCAoKwrhx44r857kHTIN7gIpq+vTpWLVqFRISEoz6YVzcA6bDPUBKxT1gGtwD9Hfmz5+Pzz//HPHx8WjUqJHsOIXG5//IFC5cuIDWrVtjzJgxWLx4sew4pAKRkZHo1q0brly5wg83JoN5+vQpbG1tsXv3bvTp00d2HFKwffv2oVevXsjKyuJ9PzOTnZ2NMmXK4IcffkDv3r1lxyHJeL/FNHi/hQyJB1soFw+2UCAebEHGsH37dgwZMgTp6ekoV66c7DikEdOmTUNwcDDOnz/P0ycVIjU1FQcOHEB0dDSOHTuGmzdvwsrKCk2aNIGrqyuaNGmCJk2aoFGjRrCzs5Md94WuX7+OpKQkJCYm4uTJk4iLi0N6ejrKlCmDVq1aoWPHjujWrRvatGkDS0tL2XFfKj8/H+3atYO1tTWOHj2q6KykTOyz4SUmJqJZs2YIDQ2Ft7e30b8f0R/YZ6JXCwsLg7e3N7Kzs2Frays7DtGfeP1WtgMHDsDLywtbtmzBe++9JzsOKRz7/P/u3LkDFxcXbN26FT4+Pib+b0BkGOwzkfIJIVCrVi0MGjQIgYGBL/069pnIOPLy8tCwYUO4urpi06ZNJvme7DNR0aWnp6N+/foYMmQIvvrqK9lx/sQ+EynPhQsXEBQUhM2bN6N8+fIYN24cRo8ejTfeeEN2NM27cOECli1bhpCQENjb22Ps2LH4+OOP8frrrxv8e2VnZ6N58+aoVq0aIiIioNPpDP49SJ0ePnyI4OBg/Pvf/0ZaWhp8fHwwceJEtGrVSnY0zXvw4AE2btyIZcuW4fbt2+jfvz+mTp1q1v/bX7p0Cd26dYO9vT0iIiLg7OwsO5Lm6fV67NmzB0uWLMHRo0fRokULTJkyBd7e3rCxsZEdT9MKCgqwf/9+BAUF4fDhw2jWrBmmTJmCgQMHGv2DfAwhOzsbnTt3RlpaGo4fP47KlSvLjkTFxD0gjyn3ANHLcA/Iwz1ASsA9II/a9wAp0/Tp0/Gf//wHly9fRsWKFQv1Z7gH5OEeoMJ4+vQpWrdujbJlyyImJsbgv3vmHpCHe4CUgHtAHu4Bepk/PjvG0tISsbGxin3ujM//kSxbt27F4MGDsWvXLvTr1092HFK4/Px8ODk5YdKkSZgxY4bsOKQh5cqVw1dffYURI0bIjkIKFhISglGjRiEnJ0d2FDKxS5cuoUGDBjh37hyaNm0qOw5JwPst8vB+CxkCD7ZQLh5soUA82IKMYcyYMUhMTMTx48dlRyGNOHnyJNzc3LBmzRp89NFHsuOYrby8PBw7dgwHDhzAgQMHkJiYiNKlS6NDhw5wc3ODm5sbWrduDXt7e9lRi00IgUuXLuH48eM4duwYDh8+jBs3bsDR0RGenp7o0aMHunfvrriH8gICArBo0SKcO3cOdevWlR2HVIB9Nn6fu3fvjoyMDJw8eZIfBEFGxT4r9/2ZlOnUqVNo06YNrl27hlq1asmOQ2aM12/1XL/T0tLQpEkTdOvWDV9//bXsOKRA7POL+xwUFITPP/8cd+/eVewDyETPY5/V8/5M9KyZM2diy5YtuHHjBiwsLACwz+wzmdK2bdswePBgxMfHG+VhW/aZfSbDWL9+PUaPHo2TJ0+iRYsWUjKwz+wzKdfJkycxZ84chIeHo27dupg8eTKGDRvGA8IlSEtLw6pVq7Bq1So8evQIw4cPx6xZs1CtWjWDfY9x48Zh69atSExMhIuLi8Fel9QrLS0NCxYswLp166DT6TBy5EiMHz/eoP+/o8LJz89HaGgolixZgrNnz6Jjx47417/+BU9PT9nRTOrMmTPw8vJCzZo1sW/fvkJ/ACMVT35+Pr755hsEBgbiypUr6NmzJ6ZMmYJOnTrJjmaW4uPjsXjxYuzcuRNVqlTBlClTMHr0aMX+XFZQUABvb2/ExsYiNjaWzy+rFPeAcphiDxA9j3tAObgHSAbuAWVR2x4g5Xr06BHq16+PPn36YNWqVa/8Wu4B5eAeoL+TkJCANm3aYN68eZg6dapBXpN7QDm4B0gG7gFl4R6g5yUmJqJVq1YIDAzEpEmTZMcBwOf/+Pyfsnz00UfYtWsXzp49i5o1a8qOQwo3evRonDlzBvHx8bKjkIbUqlULo0ePhp+fn+wopGBLly7FokWLkJqaKjsKmdjBgwfRtWtX3L9/HxUqVJAdh0yI91uUhfdbqLh4sIVy8WALBeLBFmQMdevWxcCBA/HFF1/IjkIa8PTpU7Ro0QKVK1fGoUOH+OHgJlZQUIC4uDjs2LED27ZtQ1paGmrVqgVPT88/f/Gi5l8sFcavv/6KQ4cOYc+ePTh06BByc3PRrl07+Pj4wMfHB1WrVpWaLyEhAa1bt8aiRYswYcIEqVlI2dhn0/U5JiYGnTp1wqFDh9C5c2eDvCbRs9hn5b8/k3Ldvn0bTk5OOHLkCDp06CA7DpkZXr/Vd/0WQqB37964ePEizp07h3LlysmORArBPv99n3v37o2mTZti/fr1sqMSvRL7rL73Z6LnXbhwAY0aNUJUVBSsra3ZZ/aZTEwIgVatWqFKlSrYs2ePQV6T78/sMxmeEAKdO3dGZmYmTp48CUtLS5N8X/aZfSZlO3fuHD777DPs3bsXrq6umDFjBnr27PnngXEkz5MnT7Bp0yYsXLgQqampGDlyJGbNmlXia8bBgwfRrVs3bN26FYMGDTJQWlKr9PR0LF68GMuXL0fZsmUxZcoUjBo1ir8LUYioqCgsXLgQERER6NixI7744guz+P12dHQ0+vbti1atWiEsLAxly5aVHUmz9Ho9vv32W8yZMwc3btzAsGHDMHXqVNSvX192NAJw8+ZNfPXVVwgODoajoyM+/fRTjBgxAjY2NrKj/Q9fX19s3LgRP/74I9q1ayc7DhUR94ByGWsPED2Le0DZzHUPkOlwDyibWvYAKVtISAg++OADnDx5Ei1btvzLf849oFzcA/Qq8+bNw9y5c3H69Gk0bty42K/DPaBs3ANkbNwDysY9QM8KCAjAokWLkJCQgDfffFNKBj7/x+f/lConJweurq6wsrLC0aNHUapUKdmRSMEOHTqELl264PLly9Kup6Q9bdq0QceOHbFo0SLZUUjB/P398d133yEpKUl2FDKxDRs24JNPPkFWVpbsKGQivN+ibLzfQkXFgy0UTJDiHDhwQAAQDx8+lB2FNOLWrVsCgDh06JDsKKQRn376qShTpoy4evWq7ChmQ6/Xi+joaDFq1ChRsWJFAUC0atVKLFq0SFy7dk12PKmysrLE999/LwYPHizKli0rLCwsRKdOncTq1atFRkaGyfM8ffpUvPXWW8LNzU0UFBSY/PuT8rHPL2esPuv1etG2bVvRvXt3A6YlYp9fRWnvz6Rs+fn5wsrKSnz77beyo5CZ4PX75dRw/Q4KChJWVlbi+PHjsqOQArDPL/eiPtepU0f4+fkpps9Ez2KfX04N789Ez/qjzy1bthSvvfYa+/wM9plMKTIyUgAQUVFRxX4Nvj+/HPtMhnLp0iVRqlQpsWzZMqN+H/b55dhnUoqff/5Z+Pj4CJ1OJ9566y0RGhoqOxK9RG5urti0aZOoVauWsLGxEaNGjRK3b98u1mtlZGQIZ2dnMXjwYAOnJLXJzMwUgYGBwsHBQVSoUEEEBgaKrKws2bHoJY4fPy48PT0FAOHm5iYOHz4sO5LRhIWFCVtbW/HPf/5T5Obmyo6jWXq9Xvzwww+iSZMmwsLCQvj4+IjLly/LjkUvkZaWJvz8/IStra2oVq2aWLp0qcjJyZEdSwghhL+/v7C0tBRhYWGyo1ARcQ+ohyH3ANEfuAfUxZz2AJkG94C6KHkPkPLp9XrRoUMH4ebmJvR6/Z//nHtAPbgH6EUKCgpE+/btRdOmTcXTp0+L/Oe5B9SFe4AMjXtAXbgHSAgh8vLyRPPmzYWrq6tJP0uGz/+9HJ//U5bLly+LcuXKifHjx8uOQgqXn58vXn/9dTFv3jzZUUhDvLy8xPvvvy87Bimcr6+vePvtt2XHIAkCAgJEvXr1ZMcgE+D9FnXh/RYqrPLly4vg4GDZMegFeLCFAvFgCzK0r7/+WpQqVUpkZ2fLjkIakJCQIKytrcWKFStkRzELd+/eFQsWLBBvvvmmACCaNWsmAgMDxa+//io7miJlZ2eLXbt2iUGDBokyZcoIOzs7MXToUHHkyBGTZfj0009F6dKlxZUrV0z2PUkd2OeiMWSfQ0NDhYWFhYiPjzdCUjJH7HPRKOH9mZTP2dlZLFq0SHYM0jhev4tGidfvpKQkYWtrK7744gtpGUgZ2OeiUWKfif7APhcN+0xKxj4XDftMpuDp6Slat279Px+KURjsc9Gwz1RSn376qShbtqxITk42+Guzz0XDPpMM9+/fF+PHjxeWlpaiUaNGIjQ0tMjv3STH06dPxdq1a0XVqlVF6dKlhb+/f5Gfzxw4cKBwcnIS6enpRkpJSpeXlyfWrl0rKlWqJMqWLSv8/Pz47LiKHD16VLi7uwsAolevXpr7wJCNGzcKKysr4evra9IPZTE3J0+eFO3atfvzL1BeunRJdiQqpFu3bonx48eLUqVKibp160r/4NH//Oc/AgCf71cZ7gH1MsQeIOIeUDet7wEyDe4B9VLaHiD1iI+PFxYWFuLbb7/lHlAx7gF63tWrV4W9vb2YPXt2of8M94C6cQ+QIXAPqBf3AJ07d85kn7nE5/+Khs//KcP27duFTqcTO3bskB2FFG7MmDGiSZMmsmOQhgwbNkz06tVLdgxSuPfee0/069dPdgySYMSIEcLT01N2DDIy3m9RL95vob/Dgy2UiwdbKBAPtiBDGz58uHB3d5cdgzQgLy9PtGjRwuSnh5sbvV4vDh48KLy9vYW1tbV47bXXxCeffCISExNlR1OVzMxMsXbtWtGyZUsBQNSvX18sXrzYqKeqnz17VlhbW4uVK1ca7XuQurDPhlGSPufn54sGDRqIwYMHmyApaRn7bBgy3p9JHdq2bSsmTpwoOwZpEK/fhqGE6/eTJ09E48aNRYcOHUR+fr7Jvi8pB/tsGEroMxH7bBjsMykB+2wY7DMZS0JCgrCwsBBhYWF/+7Xss2Gwz1QcOTk5ol69esLb29sgr8c+Gwb7TMaWk5MjFixYIMqVKydcXFzEli1b+CyWSmVlZYm5c+eKMmXKiBo1ahT6L2WHhIQInU4nwsPDjZyQlCoyMlI0atRI2NjYiGnTpokHDx7IjkTFtGfPHlGvXj1ha2srZs6cKR49eiQ7UokFBgYKAMLPz092FM26efOmePfdd4VOpxOdO3cWP/30k+xIVExXr14V3t7eAoDo0aOHuHjxoskz7Nu3T1hZWYnPPvvM5N+biod7QDuKuweIuAe0Q4t7gIyPe0A7lLAHSH0+/PBD4eDgwD2gAdwD9Kzly5cLKysrceLEib/9Wu4B7eAeoOLgHtAO7gHzNmvWLFGmTBlx9epVg782n/8zDD7/J9eYMWNE2bJl+UHC9Eo//vijACAuXLggOwppxOTJk0Xbtm1lxyCF69atmxgxYoTsGCRBly5dxIcffig7BhkJ77doB++30MvwYAvl4sEWCsSDLcjQqlevLubMmSM7BmnAnDlzhJ2dnbh8+bLsKJr09OlT8fXXX4u33npLABAdOnQQISEhIjs7W3Y01Tt37pwYN26cKF++vLC3txfjx483+Cn0OTk54h//+Ifw8PAQer3eoK9N6sM+G09R+7xmzRphbW1tlAcDyDywz8ZjivdnUg9vb28xYMAA2TFIQ3j9Nh5Z1++xY8cKBwcHcePGDaN/L1IW9tl4+PMYmRr7bDzsM5ka+2w87DMZ2sCBA0W9evVEXl7eC/9z9tl42GcqioiICAFAfP/998V+DfbZeNhnMrSwsDBRu3ZtUbp0aeHv7y+ysrJkRyIDSElJEUOHDhU6nU68/fbb4ty5cy/92uTkZPHaa6/x0HczdfnyZdG7d28BQPTp00dcuXJFdiQygNzcXBEUFCQcHBxElSpVxMaNG1X5DKFerxdTpkwROp1OfPXVV7LjaFJWVpb47LPPROnSpUWdOnXE7t27ZUciA4mOjhZNmjQR1tbWYsKECSb7UJzTp08Le3t7MWTIEFVed8wR94A2FWUPkHnjHtAmrewBMj7uAe2StQdIfcLCwkSNGjWEra0t94CGcA+QEP9/b7VHjx6idu3aLz3cgHtAm7gHqLC4B7SLe8A85eTkiEaNGhn0s2X4/J/x8Pk/03vy5Ilo3ry5aNasmXjy5InsOKRQBQUFokqVKvxcRDKYefPmiTp16siOQQrXsmVLMX36dNkxSIL69esLf39/2THIwHi/Rbt4v4Wex4MtlIsHWygQD7YgQ7p8+bIAII4dOyY7Cqnc+fPnRalSpcSiRYtkR9GcjIwMMX/+fFG1alVhbW0thgwZIs6ePSs7liZlZmaKoKAgUb16dWFpaSl8fHzEiRMnDPLa06dPF2XKlOGH55s59tl0CtPn7Oxs4ezsLMaPHy8pJakZ+2w6xnx/JvWYMGGCaNeunewYpAG8fpuOKa/f+/fvFzqdTmzdutUor0/KxD6bDn8eI2Njn02HfSZjY59Nh30mQ7l27ZqwsbER//nPf/7nn7PPpsM+U2G99957olq1ai/9kIuXYZ9Nh32mkrp9+7bw9vYWOp1O+Pj4iOvXr8uOREZw5swZ4ebmJqysrMT48eP/cl0vKCgQHh4eokGDBvzwATOTl5cnli5dKkqXLi3q168v9u/fLzsSGUF6eroYP368sLKyEm5ubuLChQuyIxVaXl6e+PDDD4WNjQ1/J2ckMTExom7duqJMmTLC399f5OTkyI5EBlZQUCA2bdokKleuLCpXriw2bdpk1O937do1UblyZdGjR4+XHmpKysE9YB7+bg+Q+eIeMA9q3gNkfNwD2mfqPUDqwj1gHrgHKCUlRTg6OopPPvnkf/4594B54B6gV+Ee0D7uAfN04sQJYWlpKdatW1ei1+Hzf6bD5/9M6+rVq6JcuXJiypQpsqOQgvn6+orGjRvLjkEasXbtWuHg4CA7BilcrVq1xPz582XHIAns7e3/8nfrSN14v0X7eL+FnsWDLZSLB1soEA+2IENas2aNKFOmjHj69KnsKKRier1euLm5idatW4v8/HzZcTTj0aNHIjAwUDg4OIiyZcuK8ePHi5s3b8qOZRYKCgrEDz/8INq1aycACE9PT3Hy5Mliv15cXJywtLQUa9euNWBKUhP2WZ5X9XnevHnC3t5e3L17V3JKUhP2WR5Dvz+TuixcuFC4uLjIjkEqxuu3PMa+ft+9e1dUrlxZfPDBBwZ7TVI29lke/jxGhsY+y8M+k6Gxz/Kwz2QIY8eOFVWrVhVZWVnss0TsM/2du3fvitdee01MmzatUF/PPsvDPlNR6fV6sWnTJuHo6Chq1aolDh48KDsSGdmz/85r1qwpIiMj//zPlixZIqysrMSpU6ckJiRTO3funGjRooWws7MT/v7+Ijc3V3YkMrKEhATRsmVLYWtrK/z9/RX/DHdWVpbw8vISZcqUEeHh4bLjaM6DBw/EqFGjhE6nE7169RLJycmyI5GRPXjwQIwfP15YWFiInj17ilu3bhn8e9y7d0/Uq1dPtGjRgh+UqXDcA+bnVXuAzBP3gPlR2x4g4+IeMD+m2AOkHtwD5od7gL755huh0+n+vM/KPWB+uAfoWdwD5od7wPxMmTJFlCtXrlj/rvn8nzx8/s90NmzYICwsLMThw4dlRyGFOnz4sAAgfv75Z9lRSAO+++47odPpuMPolRwcHPih2GYoPT1dABARERGyo5AB8H6L+eH9FhKCB1soGQ+2UCAebEGGNGjQINGjRw/ZMUjl1q1bJywtLXmqt4E8evRIfPnll8LR0VE4ODiIOXPmiMzMTNmxzFZkZKRo27at0Ol04p133hEJCQlF+vM5OTmiYcOGonPnzkKv1xspJSkV+6wsz/a5d+/ewsnJSfj7+8uORSrBPitLSd+fSX22bNkirKyseJAeFRmv38pi6Ou3Xq8XXl5eonbt2vz3agbYZ2Xhz2NUEuyzsrDPVBLss7Kwz1Rcd+7cEaVLlxbvvfce+6wQ7DO9zOrVq4WVldUrn83g+7OysM/0dy5duiQ6dOggrKyshJ+fn8jOzpYdiUwoNTVV9OvXT+h0OvHBBx+I48ePCzs7OzFv3jzZ0chEsrKyxOTJk4WlpaXw8PAQV65ckR2JTCgvL08EBgYKOzs70aRJE8UeaPPgwQPRvn178dprr4nY2FjZcTRn+/btonLlyqJq1ariu+++kx2HTCwqKkrUqVNHlC9fXqxevdpgzxhnZ2cLV1dXUbNmTXHnzh2DvCYZB/eAeXt+D6Snp8uORCbGPWDe1LIHyLi4B8ybsfYAqQf3gHnjHjBvAwcOFFWrVhXjxo3jHjBT3AMkBPeAueMeMB85OTmiQYMGwsvLq9B/hs//KQuf/zO+/v37i5o1a/L/5/RCBQUFomrVqiIgIEB2FNKAI0eOCADi9u3bsqOQQuXl5QmdTid27twpOwqZWEJCggAgLl68KDsKlRDvt5g33m8xbzzYQrksQESaJYTA4cOH4e7uLjsKqVh6ejpmzpyJ8ePHo1mzZrLjqFp+fj5WrFiB2rVrY/78+Rg3bhyuX7+Of/3rXyhbtqzseGarS5cuiIuLw549e5CSkoJmzZph0KBBuHHjRqH+/MyZM5GamooNGzZAp9MZNywpBvusTM/2OTU1Fbdv30ZSUlKh+0zmiX1WppK+P5P6ODs7Iz8/H2lpabKjkErw+q1Mhr5+BwUFITIyEps3b+a/Vw1jn5WJP49RcbDPysQ+U3Gwz8rEPlNx5OfnY+fOnbCzs8PevXvZZ4Vgn+llRo0ahdatW2P06NHQ6/X/85/x/VmZ2Gd6lZCQELRo0QKZmZmIi4tDYGAg7OzsZMciE6patSq+++47fP/99zh48CA6deqEGjVqwM/PT3Y0MoEzZ86gefPm2LBhA1atWoVDhw6hTp06smORCVlZWcHPzw/nz59HpUqV4OrqihkzZiAvL092tD/dvXsXnTp1wrVr13D48GG4urrKjqQZmZmZGDp0KN5991107doViYmJ6Nevn+xYZGLu7u5ITEzExIkTMWHCBHTp0gWpqakles2CggL885//xC+//ILw8HC88cYbBkpLhsY9QM/vgYYNGyI8PFx2LDIR7gFSwx4g4+EeIMA4e4DUg3uAuAfM28iRI5GZmYnNmzdzD5gp7gHzxj1AAPeAOSlVqhTWr1+PAwcOICQk5JVfy+f/lInP/xnfmjVrkJWVhalTp8qOQgpkYWEBb29vbNu2TXYU0oCKFSsCAO7fvy85CSnVgwcPIISAo6Oj7ChkYrdu3QLw/59rROrE+y0E8H4LkWLJPlmD/urAgQMCgHj48KHsKKRyiYmJAoA4c+aM7CikYsOHDxdVqlThNamEIiIiRMOGDYWNjY2YMmWKuHfvnuxI9AJ6vV589913ol69esLW1lbMmjVLPHr06KVfHxsbKywtLcWGDRtMmJJkY5/Voah9JvPEPqsD+2werl69KgCIU6dOyY5CKsDrtzqU9PqdlJQkbG1txfz5842YkmRjn9WBP49RYbDP6sA+U2Gwz+rAPlNhsM/qwD7T85KSkoS1tbVYtWrVn/+MfVYH9pn+kJaWJnr37i0sLS2Fn5+fyM3NlR2JFODhw4eif//+QqfTifHjx4ucnBzZkchI9Hq9WLp0qbCxsREeHh4iJSVFdiRSAAJ9SaIAACAASURBVL1eL9auXStKly4tWrduLa5cuSI7kvj1119FnTp1RK1atcTVq1dlx9GU48ePi1q1aonKlSuLffv2yY5DCnH69GlRt25dUbFiRbF79+5iv46vr6+ws7MTsbGxBkxHhsQ9QC/y8OFDMXjwYO4BM8A9QC+ixD1AxsM9QC9iqD1Aysc9QC/CPWA+uAfoRbgHzAv3AL0I94B5+OSTT0T58uVf+v7P5//Ugc//GU9YWJjQ6XR8f6QXOnLkiAAgzp8/LzsKqVxaWpoAIKKiomRHIYW6dOmSACB++ukn2VHIxFauXCkcHR1lx6Bi4v0WehHebzE/5cuXF8HBwbJj0AtYyDxUg4iMKyoqCg4ODmjatKnsKKRSR48eRUhICFasWIHy5cvLjqNKV65cwcCBA9GtWzdUrVoV586dw+LFi/884ZWURafToV+/fkhKSsKyZcsQHByMunXrIjg4GAUFBf/ztdnZ2Xj//ffh4eGB999/X05gMin2WV2K0mcyP+yzurDP5sHJyQk6nY4nIdMr8fqtLiW5fmdnZ2PgwIFo1aoVpk2bZqLEZErss7rw5zF6FfZZXdhnehX2WV3YZ3oV9lld2Gd63j/+8Q9MmjQJM2bMQGxsLPusIuwzAUBkZCSaNGmCxMREREdHIzAwENbW1rJjkQKUL18eu3btwtdff42NGzeiZcuWSExMlB2LDCw5ORnu7u6YNm0aZs6ciYMHD8LJyUl2LFIAnU6HUaNG4cyZM8jNzUWLFi0QHBwsLc/58+fRvn17lC9fHnFxcahdu7a0LFqSn5+PgIAAdOjQAXXr1kVCQgK8vLxkxyKFaNmyJRISEvDPf/4Tffv2xbBhw/D48eMivcbcuXOxZs0abN68Ga6urkZKSiXBPUAvU758eWzevJl7QOO4B+hllLYHyDi4B+hVDLEHSPm4B+hluAfMA/cAvQz3gHngHqBX4R4wD4GBgahYsSLGjh37P/+cz/OqC5//M56+ffvi3XffxciRI5GRkSE7DimMm5sbnJycsGPHDtlRSOUcHR1hYWGB+/fvy45CCvXHe5Cjo6PkJGRqycnJcHFxkR2Dioj3W+hVeL+FSDl4sAWRhkVHR8Pd3R2Wlpayo5AK5ebmYsyYMejWrRv69+8vO47q5OXlYcGCBWjcuDGSkpKwf/9+HDx4EA0bNpQdjQrB2toao0aNwi+//AIfHx/4+vqiY8eOuHDhwp9fM2PGDKSlpWHDhg3Q6XQS05Kxsc/qVpg+k/lgn9WNfdY2W1tbVKhQASkpKbKjkALx+q1uxbl+T5o0CXfu3MHmzZt5X0tj2Gd1489j9Cz2Wd3YZ3oW+6xu7DM9i31WN/aZnjVr1izY2NjA3d2dfVYh9tk85efnY/LkyejevTs8PT2RmJiIDh06yI5FCjRs2DCcPXsWZcqUQbt27bBp0ybZkchA9uzZg7feegv37t3DqVOnEBAQAAsLPqZP/6tBgwaIi4vDBx98gDFjxmD48OF48uSJSTMcOXIE7du3R926dREVFYXXX3/dpN9fq5KTk+Hm5obFixdj1apVCA8PxxtvvCE7FimMnZ0dli1bhh07dmDfvn1o3bo1Ll68WKg/u2XLFvj7+2Pp0qV8rl+BuAeosLgHtIt7gApDCXuAjIN7gAqjJHuAlI17gAqLe0C7uAeoMLgHtIt7gAqDe0D7SpcujXXr1mHv3r3Ytm0bn+dVOT7/ZxyrVq2CpaUlPvnkE9lRSGEsLCwwYMAAbNu2TXYUUjlLS0u89tprPNiCXio9PR0AD7YwRzzYQn14v4UKg/dbiJSBvxEj0qiCggIcOXIE7u7usqOQSi1atAg3btzAypUrZUdRnbi4ODRr1gxz587F/PnzkZSUhB49esiORcXg6OiIZcuW4fTp03j69CmaN2+OuXPnIiYmBitXrsSKFSvg7OwsOyYZEfusHS/rc15enuxoZCLss3awz9rl5OSE1NRU2TFIYXj91o7CXr93796N4OBgrFmzBtWqVZOUloyBfdYO/jxG7LN2sM/EPmsH+0zss3awzxQXFwc3Nzc8efIECxYsYJ9VjH02H7/99hs6d+6MtWvX4ptvvkFISAjKlSsnOxYpWJ06dXDs2DH4+vrigw8+gK+vL3Jzc2XHomLS6/X47LPP0KdPH/Tv3x9nzpxB06ZNZcciBbO1tcXSpUuxd+9e7N27F66urvj1119N8r337NmD7t27o1OnTggPD+f7lYFERUWhRYsWyMrKQnx8PEaNGiU7EincgAED8NNPP8HBwQFt2rTBzp07X/n1UVFR+PDDDzFr1ix8/PHHJkpJhcU9QEXFPaAt3ANUVDL3ABkH9wAVVVH3ACkb9wAVFfeAtnAPUFFxD2gP9wAVFfeAtrm7u2PkyJGYP38+n+fVCD7/Z1gODg5Yv349tm7ditDQUNlxSGF8fHzwyy+/IDExUXYUUrmKFSvyYAt6qYyMDJQqVQqlS5eWHYVM7NatW/zcEhXh/RYqKt5vIZKLB1sQadTZs2fx4MEDeHh4yI5CKnTz5k3Mnz8fn332GWrVqiU7jmo8fvwYEyZMQPv27VG1alUkJSVh0qRJsLKykh2NSqhp06Y4ceIE5s2bh8DAQPTs2RPt27fHkCFDZEcjI2Gftev5Prdo0QKnTp2SHYuMiH3WLvZZe5ydnXmwBf2J12/tetX1+/bt2xg5ciQ++ugjDBo0SHJSMhT2Wbv485j5YZ+1i302P+yzdrHP5od91i722fywz9rFPmvbmTNn0Lp1a9y+fRtxcXEYPHiw7EikElZWVli4cCF2796NLVu2wNXVFTdv3pQdi4ooIyMDPXv2xMKFC/HVV19h/fr1sLOzkx2LVMLLywsJCQmwtrZGs2bNsHv3bqN+v82bN8Pb2xsDBw7Ezp07YWtra9TvZw6EEFi2bBm6d+8OV1dXHD9+HPXq1ZMdi1TC2dkZR44cwbhx4+Dj44PRo0e/8ENw4uPj0adPHwwYMABz586VkJRehXuAiot7QBu4B6gkTL0HyPC4B6gkCrsHSNm4B6i4uAe0gXuASoJ7QP24B6gkuAe06/Hjx7C0tMT58+f5/J/G8Pk/w+nSpQtGjhwJX19f/Pbbb7LjkIK4urqiWrVq2LFjh+wopHKVKlXiwRb0UhkZGahQoYLsGCRBcnIyXFxcZMegv8H7LVQSvN9CJA8PtiDSqKioKLz++uto2LCh7CikQmPGjEHNmjUxefJk2VFU4/Tp02jevDlCQkKwevVqREREoGbNmrJjkQFZWVlhypQpOH/+PNq0aYPY2FjMmDGDw0WD2Gfte7bPVapUgaurK/usUeyz9rHP2uLk5ISUlBTZMUgBeP3Wvhddv/38/DBs2DA4ODggKChIdkQyEPZZ+/jzmPlgn7WPfTYf7LP2sc/mg33WPvbZfLDP2sc+a9OaNWvg5uaGxo0b4/Tp03jrrbdkRyIVeueddxAXF4esrCy0adMGR44ckR2JCumnn35Cy5Ytcf78ecTExGDChAmyI5EKubi4ICYmBn369IG3tzfmzp0LIYTBv8+///1vDB8+HJMnT8bGjRv54SkG8PjxYwwcOBBTp07F/PnzERYWhnLlysmORSpjZWWFwMBAfP311/jmm2/QvXv3//mAhevXr6NXr15o1aoVNm7cCJ1OJzEtPY97gAyBe0C9uAfIEEy1B8jwuAfIEP5uD5CycQ+QIXAPqBf3ABkC94B6cQ+QIXAPaM8fz/9t3bqVz/9pFJ//M5wlS5bA3t4eEydOlB2FFESn08Hb2xuhoaGyo5DKVaxYkT9X0UvxYAvzpNfrcfv2bR5soXC830KGwPstRHLwYAsijYqOjoaHhwf/AgMVWVhYGCIiIrB69WpYW1vLjqN4BQUFWLBgAdq3b4/q1avj/PnzGDVqFLunYTVr1sSPP/6IDRs2YMWKFWjfvj2uXLkiOxYZAPtsfmrWrImIiAj2WYPYZ/PDPmuDk5MTUlNTZccgiXj9Nj/PX79PnTqFhQsXomzZsrKjUQmxz+aHP49pF/tsfthn7WKfzQ/7rF3ss/lhn7WLfTY/7LM26PV6TJo0CePGjcPMmTPxww8/wMHBQXYsUrEGDRrg5MmTaNeuHbp06YLNmzfLjkR/Izw8HB06dED16tURHx+PNm3ayI5EKmZnZ4eQkBD8+9//xty5czF06FA8ffrUIK8thEBAQAAmTpyIwMBABAYG8mdNA7hz5w7efvttxMTEIDIyElOmTOH/rlQiw4cPR2xsLK5du4Z27drhypUrSE9PR48ePVCpUiWEhYXBxsZGdkz6L+4BMjTuAfXhHiBDMuYeIOPgHiBDe9EeIOXiHiBD4x5QH+4BMiTuAfXhHiBD4x5QPz7/Z374/F/J2dvbY/Xq1di2bRv27dsnOw4pyMCBA3H58mUkJCTIjkIqxoMt6FUyMjLg6OgoOwaZ2N27d5Gbm8uDLRSM91vI0Hi/hci0eLAFkQbl5ubi2LFjcHd3lx2FVObp06eYPn06hgwZgvbt28uOo3g3b96Eh4cHAgICMGfOHERERMDJyUl2LDKRYcOG4cyZM8jLy0OLFi0QHBwsOxKVAPts3thnbWGfzRv7rG7Ozs482MKM8fpt3oYNG4b4+HjUqVMHw4cP5/Vb5dhn88afx7SFfTZv7LO2sM/mjX3WFvbZvLHP2sI+mzf2Wb1ycnLw3nvvYfXq1fjmm28QEBAACws+hkslV65cOXz33XeYOXMmhg0bhoCAAAghZMeiF1i/fj369OmD/v37IyIiAq+//rrsSKQRvr6+CA8Px969e+Hu7o579+6V6PUKCgowevRofPHFF1i3bh2mTZtmoKTm7eeff0a7du2QmZnJZ/XJoJo1a4YzZ86gcuXKaNu2Ldzd3fH06VNERESgfPnysuPRf3EPkLFwD6gH9wAZi6H3ABkH9wAZy/N74MiRI7Ij0QtwD5CxcA+oB/cAGQv3gDpwD5CxcA+oF5//M298/q9kunfvjgEDBsDX1xdZWVmy45BCtGnTBjVq1MCOHTtkRyEV48EW9Co82MI8JScnAwAPtlAo3m8hY+H9FiLT4W/MiTTo1KlTyMrKgoeHh+wopDILFy7E3bt3ERgYKDuK4u3fvx/NmjXD/fv3ERcXBz8/Pz6IZobq16+PkydPYvLkyRg7diyGDBmC7Oxs2bGoiNhnAthnrWCfCWCf1czJyQlZWVl4+PCh7ChkYrx+E8Drt1awzwSwz1rBPhPAPmsF+0wA+6wV7DMB7LNWsM8EsM9qlJ6eDk9PTxw6dAiRkZEYPHiw7EikMTqdDgEBAVi3bh2+/PJLfPDBB8jNzZUdi/5LCIGAgACMHDkSs2bNwsaNG2FjYyM7FmlM586dERsbi9u3b8PV1RWXL18u1us8ffoU7777LkJCQhAaGooRI0YYOKl5+vHHH+Hm5gYnJyccP34cdevWlR2JNKZixYo4dOgQunTpgkuXLsHX1xdVqlSRHYv+i3uAjI17QNm4B8gUDLUHyDi4B8jYnt0DXbt2xbfffis7Ej2De4CMjXtA2bgHyBS4B5SNe4CMjXtAffj8HwF8/q+kli9fjt9//x1ffvml7CikEDqdDgMGDMC2bdtkRyEVq1ChAg+2oJdKT09HhQoVZMcgE0tOToaFhQUPoVMg3m8hY+P9FiLT4B0xIg2KioqCi4sL6tSpIzsKqUhKSgoWLFiATz/9FFWrVpUdR7H0ej0CAgLQu3dv9OnTB/Hx8WjatKnsWCSRtbU1AgICsGfPHuzfvx/t27fH9evXZceiQmCf6Xnss3qxz/Q89lmdnJ2dAfz/NiHzwOs3PY/Xb/Vin+l57LN6sc/0PPZZvdhneh77rF7sMz2PfVYv9pmexz6rx9WrV9GqVSv89ttvOHHiBDp27Cg7EmnYiBEjsHv3bnz33Xfo2bMnHj9+LDuS2cvNzcV7772H+fPnIyQkBAEBAdDpdLJjkUY1atQIx48fR7ly5dChQwfEx8cX6c8/fvwYvXv3xqFDh3Dw4EH079/fSEnNyzfffIMePXqgZ8+eiIqKQqVKlWRHIo2ytbXFt99+C19fX0yfPh1LliyRHYnAPUCmxT2gPNwDZEol3QNkHNwDZCp/7IE/PgyTe0AZuAfIlLgHlId7gEyJe0CZuAfIVLgH1IHP/9Hz+Pxf8b3xxhuYO3cuFi5ciJ9++kl2HFIIHx8f/Prrrzh79qzsKKRSFStWxL1792THIIXKyMiAo6Oj7BhkYrdu3ULlypV5UK3C8H4LmQrvtxAZHw+2INKg6OhodO7cWXYMUpmpU6fijTfewKRJk2RHUazMzEx4e3tj3rx5+PLLL7Fx40bY2trKjkUK4eXlhYSEBFhaWqJly5Y4cOCA7Ej0CuwzvQr7rC7sM70K+6wuf5xwnpqaKjkJmQKv3/QqvH6rC/tMr8I+qwv7TK/CPqsL+0yvwj6rC/tMr8I+qwv7TK/CPivbzz//jI4dO6JixYqIi4vDm2++KTsSmQEvLy/ExMQgKSkJXbt2xcOHD2VHMls5OTno378/9u/fj4iICAwZMkR2JDIDVatWRUxMDJo1a4bOnTsjNja2UH8uIyMDnp6eSExMRHR0NDp06GDkpOZhzZo1eP/99zF58mRs3rwZpUqVkh2JNM7CwgJfffUVgoKCMG3aNPj7+8uOZNa4B0gG7gHl4B4gGYq7B8g4uAfI1LgHlIV7gGTgHlAO7gGSgXtAWbgHyNS4B5SNz//Rq/D5v+IZN24cWrVqhdGjR0Ov18uOQwrQunVr1K5dGzt27JAdhVSqUqVKePLkCbKzs2VHIQXiwRbmKTk5GdWqVZMdg57B+y1karzfQmRcPNiCSGNycnJw4sQJuLu7y45CKhIbG4vQ0FAsXbqUP+C/xC+//ILmzZvj9OnTOHr0KPz8/GRHIgWqVq0aYmJi/jwJctGiRbIj0Quwz1QY7LM6sM9UGOyzejg4OMDe3h4pKSmyo5CR8fpNhcHrtzqwz1QY7LM6sM9UGOyzOrDPVBjsszqwz1QY7LM6sM9UGOyzMp07dw7u7u6oXbs2Dh06hIoVK8qORGakWbNmiImJQXJyMjw8PHDv3j3ZkcxOdnY23nnnHcTGxiIyMhKdOnWSHYnMiL29PX744Qd4enqia9euiIyMfOXX37x5E66urvjtt99w9OhRNG3a1ERJtW3lypUYN24cpk2bhsDAQOh0OtmRyIxMnDgRISEh+PLLL/Hxxx9DCCE7ktnhHiCZuAfk4x4gmYq6B8g4uAdIJu4B+bgHSCbuAfm4B0gm7gFl4B4gmbgHlIfP/1Fh8Pm/orOwsMDatWtx9uxZrF+/XnYcUghvb29s376d739ULH/cw+O9FHqR9PR0HmxhhpKTk+Hi4iI7Bv0X77eQTLzfQmQcPNiCSGOOHTuGnJwceHh4yI5CKlFQUABfX194enqiV69esuMo0pEjR+Dq6opKlSohPj4ebdu2lR2JFKx06dLYvHkzFi1ahBkzZmDs2LHIz8+XHYv+i32momCflY19pqJgn9WjatWqSE1NlR2DjIjXbyoKXr+VjX2momCflY19pqJgn5WNfaaiYJ+VjX2momCflY19pqJgn5Xl9OnT8PT0RKNGjRAeHo5y5crJjkRmqF69ejh27BgePXqEjh078vdoJvT777+ja9eu+OmnnxAdHc33cJLCxsYG27dvh4+PD3r37o2wsLAXft3FixfRvn17WFlZ4dixY3jzzTdNnFSbFixYgE8++QSLFy9GYGCg7DhkpoYMGYLNmzcjODgYY8aMgV6vlx3JbHAPkBJwD8jDPUBKUNg9QMbBPUBKwD0gD/cAKQH3gDzcA6QE3ANycQ+QEnAPKAef/6Oi4PN/Rde4cWOMHz8e06ZNw507d2THIQXw8fHB9evXER8fLzsKqdAfB1vcv39fchJSmvz8fGRmZvJgCzPEgy2Ug/dbSAl4v4XI8HiwBZHGREdHo27dunB2dpYdhVQiODgYFy9exPLly2VHUaQdO3agW7duePvtt/Hjjz+icuXKsiORSkyePBm7du1CSEgIvLy8kJmZKTuS2WOfqbjYZ+Vhn6m42Gflc3Z25gP3GsbrNxUXr9/Kwz5TcbHPysM+U3Gxz8rDPlNxsc/Kwz5TcbHPysM+U3Gxz/IdO3YMHh4ecHNzw4EDB2Bvby87Epmx6tWr4/DhwwCATp068XdpJvD777/D09MT169fx+HDh9G0aVPZkciMWVpaYsOGDRg+fDgGDRr0lw+vOn36NDp27AgnJyfExMTAyclJUlJtmT17NmbNmoXVq1dj8uTJsuOQmRs0aBB27NiBTZs2YcSIEfzLlCbAPUBKwj1getwDpCR/twfIOLgHSEm4B0yPe4CUhHvA9LgHSEm4B+TgHiAl4R6Qj8//UXHx+b+i+fzzz+Hg4ICpU6fKjkIK0LJlS9SpUwehoaGyo5AK8WALepkHDx5ACIEKFSrIjkImduvWLR5soQC830JKwvstRIbFgy2INCYqKgoeHh6yY5BKPHjwAJ999hkmTJiAevXqyY6jOPPmzcOgQYPg6+uLnTt3onTp0rIjkcr07dsX0dHRSExMxNtvv43bt2/LjmS22GcqKfZZOdhnKin2WdmcnJyQkpIiOwYZAa/fVFK8fisH+0wlxT4rB/tMJcU+Kwf7TCXFPisH+0wlxT4rB/tMJcU+y3PmzBn07NkTXbp0wa5du1CqVCnZkYj+/MB6a2trdOnSBffu3ZMdSbOysrLg5eWF27dvIyYmBg0aNJAdiQgWFhZYu3YtPvroI7z77rs4cOAAAODHH39E586d0bZtW0RFRfEv3hrIl19+ifnz52P9+vUYPXq07DhEAIA+ffogLCwM3377LT7++GMIIWRH0izuAVIi7gHT4R4gJXrZHiDj4B4gJeIeMB3uAVIi7gHT4R4gJeIeMC3uAVIi7gF5+PwflRSf/yu8MmXKYPny5fj2229x5MgR2XFIAQYMGIBt27bxfY+KrHz58rCxseHBFvQXGRkZAABHR0fJSciUcnNzkZaWhmrVqsmOYtZ4v4WUiPdbiAyHB1sQacijR48QHx8Pd3d32VFIJQICAmBlZYXZs2fLjqIoQghMnToV/v7+WLFiBRYvXgwLC75lUvG0bt0acXFxyMnJQceOHXHjxg3ZkcwK+0yGxD7LxT6TIbHPyuXs7IzU1FTZMciAeP0mQ+L1Wy72mQyJfZaLfSZDYp/lYp/JkNhnudhnMiT2WS72mQyJfTa9pKQkdO/eHW3atMHWrVthbW0tOxLRn15//XUcPHgQubm58PT0/PMv2pHh5ObmYsCAAbhy5QoOHjyIOnXqyI5E9CedToeVK1di2LBh6N+/P/z9/eHl5YW+ffsiLCyMH6RiIMuXL8fs2bOxfPlyvP/++7LjEP2PHj16YPv27Vi3bh0mTZokO44mcQ+QknEPGB/3ACnZ83vg8OHDsiNpEvcAKRn3gPFxD5CScQ8YH/cAKRn3gGlwD5CScQ+YFp//I0Pi83+F17t3b3Tv3h0TJkxAQUGB7Dgk2cCBA5GcnIxTp07JjkIqVKFCBR5sQX+Rnp4OgAdbmJuUlBTo9Xq4uLjIjmK2eL+FlIz3W4gMg3fNiDQkJiYG+fn5ePvtt2VHIRW4du0a1qxZg7lz56JcuXKy4yiGEAITJ07E0qVLsWHDBowbN052JNKAmjVrIjY2Fo6OjnB1dcXPP/8sO5JZYJ/JGNhnOdhnMgb2WZmcnJyQkpIiOwYZCK/fZAy8fsvBPpMxsM9ysM9kDOyzHOwzGQP7LAf7TMbAPsvBPpMxsM+mc+XKFXTr1g3169dHWFgYSpUqJTsS0V84OTkhOjoav//+O7y8vPDo0SPZkTQjLy8P3t7eiIuLw4EDB9CwYUPZkYj+QqfTYc2aNejTpw8WLlwIb29vbNq0CVZWVrKjacLXX3+NCRMmYP78+fxZnhSrb9++2Lp1K1asWIHPP/9cdhxN4R4gNeAeMB7uAVKDZ/dAr169cOzYMdmRNIV7gNSAe8B4uAdIDbgHjId7gNSAe8C4uAdIDbgHTIPP/5Ex8Pm/wgsKCsLPP/+MjRs3yo5CkjVr1gxvvvkmduzYITsKqVDFihV5sAX9xR8HxVaoUEFyEjKl5ORkAODBFpLwfgupAe+3EJUcD7Yg0pDo6Gg0btwYlStXlh2FVGDKlCmoU6cOT7B7RkFBAUaMGIE1a9YgNDQUw4YNkx2JNMTR0RGRkZGoUaMGPDw88NNPP8mOpGnsMxkT+2xa7DMZE/usPE5OTkhPT8eTJ09kR6ES4vWbjInXb9Nin8mY2GfTYp/JmNhn02KfyZjYZ9Nin8mY2GfTYp/JmNhn40tOToaHhweqV6+OAwcOoEyZMrIjEb2Ui4sLIiMjcePGDfTt2xe5ubmyI6meXq/HkCFDEBMTg8jISDRv3lx2JKKXsrS0REhICDw9PXHgwAFcuHBBdiRN2L59O0aMGAF/f3/4+fnJjkP0SgMGDMDq1avx+eefY9myZbLjaAL3AKkJ94DhcQ+QmvyxB9zd3fHOO+/wQ/AMhHuA1IR7wPC4B0hNuAcMj3uA1IR7wDi4B0hNuAeMi8//kTHx+b/CadCgAcaOHYtPP/0Uv//+u+w4JNnAgQMRGhoKIYTsKKQyPNiCXiQjIwO2traws7OTHYVMKDk5GTY2NvxcXgl4v4XUhPdbiEqGB1sQaUhUVBQ8PDxkxyAViImJwffff4+goCBYWVnJjqMIBQUFGDx4MLZv344ffvgB/fv3lx2JNMjBwQERERFo2LAhPDw8cO7cOdmRNIl9JlNgn02DfSZTYJ+VxdnZGQBw+/ZtyUmoJHj9JlPg9ds02GcyBfbZNNhnMgX22TTYZzIF9tk02GcyBfbZNNhnMgX22XgyMzPRq1cvODg4IDw8HPb29rIjEf2tunXrIjIyEmfOnMGIESP4F3hLyM/PD99//z1++OEHtG7dWnYcor9lbW2NHTt2oHHjxvDyaA7M4gAAIABJREFU8sKdO3dkR1K1o0ePYvjw4Rg/fjz8/f1lxyEqlJEjR2LBggWYPHkywsLCZMdRNe4BUiPuAcPiHiC14R4wLO4BUiPuAcPhHiA14h4wLO4BUhvuAcPiHiA14h4wDj7/R6bA5/8KJyAgAHq9HvPmzZMdhSTz8fFBcnIyTpw4ITsKqUylSpV4sAX9RXp6OipUqCA7BpnYrVu34OTkBAsLfuS2KfF+C6kR77cQFR/fZYk0Ij09HYmJiXB3d5cdhRROCIGpU6eie/fu6Natm+w4iqDX6/Hhhx9iz5492LdvH/93IaMqW7Ys9u/fj+bNm6Nbt264cOGC7Eiawj6TKbHPxsU+kymxz8rh5OQEAEhJSZGchIqL128yJV6/jYt9JlNin42LfSZTYp+Ni30mU2KfjYt9JlNin42LfSZTYp8NLy8vDz4+Prh37x727t0LBwcH2ZGICu2tt97C7t27ERoaioCAANlxVGvdunVYsmQJ1q1bh06dOsmOQ1Rotra2CAsLg52dHXr16oXHjx/LjqRK165dg7e3N7p06YLFixfLjkNUJNOmTcO4ceMwePBgxMXFyY6jStwDpGbcA4bBPUBqxT1gGNwDpGbcAyXHPUBqxj1gGNwDpFbcA4bBPUBqxj1gWHz+j0yJz//9vddeew0BAQFYtmwZLl++LDsOSdSkSRM0aNAAO3bskB2FVKZixYo82IL+4sGDB3B0dJQdg0wsOTkZLi4usmOYFd5vITXj/Rai4uHBFkQaER0dDZ1Oh44dO8qOQgq3efNmnDt3DgsXLpQdRRGEEPj444+xbds27Nixgw+fkEnY2dnh+++/R4MGDeDh4YFffvlFdiRNYJ9JBvbZONhnkoF9VobKlSvD2toaqampsqNQMfD6TTLw+m0c7DPJwD4bB/tMMrDPxsE+kwzss3GwzyQD+2wc7DPJwD4b1oQJE3D06FGEhYWhevXqsuMQFZm7uztWr16NOXPmYO3atbLjqE54eDjGjRuHOXPmYOjQobLjEBWZo6MjwsPDkZKSgkGDBiE/P192JFVJT09Hjx49UL16dWzbtg2WlpayIxEV2dKlS9GlSxe88847uHr1quw4qsM9QGrHPVAy3AOkdtwDJcM9QFrAPVAy3AOkdtwDJcM9QGrHPVAy3AOkBdwDhsHn/0gGPv/398aMGYN69eph+vTpsqOQZAMGDMCOHTug1+tlRyEV4cEW9CLp6emoUKGC7BhkYsnJyahWrZrsGGaD91tIC3i/hajoeLAFkUZER0ejRYsWcHBwkB2FFOzJkyeYPXs2PvzwQzRu3Fh2HEWYMWMGgoODsXnzZnh5ecmOQ2akdOnS2LNnD6pVq4YuXbrgxo0bsiOpHvtMsrDPhsc+kyzss3wWFhaoUqUKUlJSZEehYuD1m2Th9dvw2GeShX02PPaZZGGfDY99JlnYZ8Njn0kW9tnw2GeShX02jPnz5yM4OBjbt29HmzZtZMchKrYPP/wQM2fOxCeffIKoqCjZcVQjISEBAwcOxNChQzF79mzZcYiKrWbNmti9ezeio6MxadIk2XFUIycnB71790Z+fj727t2LMmXKyI5EVCyWlpbYsmULXFxc0Lt3bzx8+FB2JNXgHiCt4B4oHu4B0grugeLhHiCt4B4oPu4B0grugeLhHiCt4B4oHu4B0gruAcPg838kC5//ezVLS0ssXboU33//PSIiImTHIYl8fHyQkpKCuLg42VFIRSpUqMCDLegvMjIy4OjoKDsGmVhycjJcXFxkxzALvN9CWsH7LURFx4MtiDQiKioKHh4esmOQwgUFBSEjIwOff/657CiK8MUXX2DJkiXYvHkzfHx8ZMchM1SuXDmEh4fDwcEB3bt3R3p6uuxIqsU+k2zss+GwzyQb+yyfk5MTUlNTZcegIuL1m2Tj9dtw2GeSjX02HPaZZGOfDYd9JtnYZ8Nhn0k29tlw2GeSjX0umfDwcMyePRtLlixB7969ZcchKrF58+ahX79+GDRoEG7evCk7juKlp6ejX79+aNWqFdauXSs7DlGJtWvXDps2bcLKlSuxceNG2XFU4eOPP8aFCxewb98+VK5cWXYcohKxt7fHnj178OjRIwwZMgR6vV52JMXjHiCt4R4oGu4B0hrugaLjHiAt4R4oOu4B0hrugaLhHiCt4R4oOu4B0hLugZLh838kG5//ezUPDw+88847mDx5MvLz82XHIUkaN26Mhg0bIjQ0VHYUUpGKFSvi/v37EELIjkIKwoMtzBMPtjAd3m8hLeH9FqKi4cEWRBpw584dXLp0Ce7u7rKjkIKlpaVh4cKF8PPzQ5UqVWTHkW7Lli347LPPsHz5crz77ruy45AZq1ChAiIiIpCTk4N+/frh6dOnsiOpDvtMSsE+lxz7TErBPsvl7OzMgy1UhtdvUgpev0uOfSalYJ9Ljn0mpWCfS459JqVgn0uOfSalYJ9Ljn0mpWCfi+fmzZsYOnQo3nvvPUyYMEF2HCKD0Ol0+Prrr+Hi4oK+ffviyZMnsiMpll6vx9ChQ1FQUIDt27fD2tpadiQig/Dx8cH06dMxbtw4nDlzRnYcRQsODsaGDRuwYcMGNGjQQHYcIoNwcnLCzp07cejQIcydO1d2HEXjHiAt4h4oPO4B0irugcLjHiAt4h4oPO4B0iLugcLjHiCt4h4oPO4B0iLugeLh83+kFHz+79UWL16Mq1evYv369bKjkEQ+Pj4IDQ1FQUGB7CikEpUqVUJ+fj5+//132VFIQXiwhfl5/PgxHjx4wIMtTID3W0iLeL+FqPB4sAWRBvz444+wsbGBm5ub7CikYP7+/ihbtiwmT54sO4p0R48exYgRIzB16lSMHTtWdhwiVKlSBfv370dSUhKGDRvGE3+LgH0mpWGfi499JqVhn+VxcnJCSkqK7BhUSLx+k9Lw+l187DMpDftcfOwzKQ37XHzsMykN+1x87DMpDftcfOwzKQ37XDRPnjxB//794ezsjODgYNlxiAzKzs4OoaGhuHHjBkaPHi07jmL961//QlRUFHbt2oVKlSrJjkNkUF9++SXefvtteHt74/79+7LjKNKpU6cwfvx4zJ49G/3795cdh8ig2rZti6CgIMyZMwf79u2THUeRuAdIy7gHCod7gLSMe+DvcQ+QlnEP/D3uAdIy7oHC4R4gLeMe+HvcA6Rl3ANFw+f/SGn4/N/Lvfnmmxg9ejQ+//xzZGdny45Dkrz77ru4e/cuYmNjZUchlahYsSIA4N69e5KT/B97dx7nc7n/f/w5M5bsywwluxwjkhNisi+VoQXVjH0LkbJ9W4hI1tFCRIiIkbKmkDXEoCOiDcm+hGKMsTNmfn/4cY4MZsbM53q/39fj/uf39j29nx3neb3ndbnmesNJjh8/zoctLHPgwAFJUqFChQwn8Tb2W+Bl7LcAScOHLQAPWLlypSpVqqQsWbKYjgKH+uOPP/TJJ59owIABypw5s+k4Rm3fvl0NGzbUU089pYiICNNxgGtKlSqlL7/8UvPmzVPfvn1Nx3EF+gynos/JR5/hVPTZjPz58+vQoUOmYyAJWL/hVKzfyUef4VT0OfnoM5yKPicffYZT0efko89wKvqcfPQZTkWfk65z587as2eP5s6da/0ZKnhT8eLFFRkZqc8++4zL2RLx9ddfa+jQoRo9erQefvhh03GAVOfv76/p06crICBATZo00eXLl01HcpTjx4+rcePGqlatmt566y3TcYA00blzZ7Vp00YtW7bUrl27TMdxHOYBeB3zwK0xD8DrmAdujXkANmAeuDXmAXgd88CtMQ/A65gHbo15ADZgHkgazv/BqTj/d3N9+/bV6dOnNWrUKNNRYEjJkiVVunRpzZo1y3QUuMTVD1vw0T/8r+joaD5sYZn9+/dLkgoWLGg4iXex3wIbsN8C3B4ftgA8YMWKFapdu7bpGHCwN998U8WKFVOrVq1MRzEqOjpaTzzxhIKDgzV16lT5+/MahLPUrFlT48aN05AhQzR16lTTcRyNPsPp6HPS0Wc4HX32vQIFCujw4cMconU41m84Het30tFnOB19Tjr6DKejz0lHn+F09Dnp6DOcjj4nHX2G09Hn25swYYKmTp2q6dOnq1ixYqbjAGnmySefVJ8+fdS1a1dt2bLFdBzH2Lt3r1q1aqX27durffv2puMAaSZ37tyaOXOm1q5dq8GDB5uO4xgJCQlq1qyZ/Pz8NGPGDAUEBJiOBKSZ0aNHq0iRIgoPD9fFixdNx3EM5gHYgnkgccwDsAXzQOKYB2AT5oHEMQ/AFswDiWMegC2YBxLHPACbMA/cGuf/4HSc/0tcnjx51KNHDw0bNkzHjx83HQeGhIeHa/bs2dw9gSTJkyePJD5sgf+Ki4tTbGysAgMDTUeBDx04cEBZs2ZVrly5TEfxJPZbYBP2W4BbY4cNcLndu3dr7969qlWrlukocKiffvpJs2fP1tChQ5UuXTrTcYyJj49XixYtdPHiRc2bN0+ZMmUyHQlIVNu2bfXKK6+oU6dO2rx5s+k4jkSf4Rb0+fboM9yCPvtW/vz5dfnyZR05csR0FNwE6zfcgvX79ugz3II+3x59hlvQ59ujz3AL+nx79BluQZ9vjz7DLejzze3cuVOvvPKKevXqpdDQUNNxgDTXv39/Va5cWc2aNdO5c+dMxzEuPj5ebdu2Vf78+TVy5EjTcYA0V6FCBQ0bNkwDBw7U+vXrTcdxhA8++EArVqzQ9OnTlTt3btNxgDSVKVMmzZo1S3/88Yf69u1rOo4jMA/ANswD12MegG2YB27EPACbMA/ciHkAtmEeuB7zAGzDPHAj5gHYhHng5jj/B7fg/F/iXnvtNWXMmFHDhg0zHQWGNG7cWEeOHNGaNWtMR4EL3HXXXcqSJQsftsA1J06cUEJCAjOhZQ4cOKCCBQuajuFZ7LfAJuy3ALfGhy0Al1u5cqUyZ86skJAQ01HgUK+99poqVKighg0bmo5i1FtvvaXly5friy++UN68eU3HAW4pIiJC1apVU6NGjdgkTQR9hpvQ51ujz3AT+uw7BQoUkCQdOnTIcBLcDOs33IT1+9boM9yEPt8afYab0Odbo89wE/p8a/QZbkKfb40+w03o843i4uLUokULlShRQm+99ZbpOIBP+Pv7a+rUqTp69Khef/1103GMGzJkiNavX6/p06dzQQWs0aVLF4WGhqpFixaKjY01Hceo3377TX369FH//v05bw9r3HfffRoxYoTee+89rVixwnQco5gHYCPmgesxD8BGzAP/xTwAGzEP/BfzAGzEPHA95gHYiHngv5gHYCPmgcRx/g9uwvm/G2XNmlW9evXShx9+qAMHDpiOAwOCg4P14IMPatasWaajwCWCgoJYQ3HN8ePHJYnL9y3Dhy3SDvstsBH7LcDN8WELwOVWrlypKlWqKGPGjKajwIG+++47LVu2TEOHDpWfn5/pOMYsWLBAQ4YM0ZgxY1SlShXTcYDbCggI0PTp0+Xn56emTZvq8uXLpiM5Bn2G29Dnm6PPcBv67Dv33nuv/Pz8dPDgQdNRkAjWb7gN6/fN0We4DX2+OfoMt6HPN0ef4Tb0+eboM9yGPt8cfYbb0Ocb9evXT7/++qs+++wzZciQwXQcwGcKFCigjz/+WGPGjNH8+fNNxzFm06ZNGjBggIYNG6ayZcuajgP4jJ+fnz755BOdPXtW3bp1Mx3HmAsXLqhZs2YqV66cevXqZToO4FPt2rVTWFiYWrVqde2X9G3EPABbMQ9cwTwAWzEPXME8AJsxD1zBPABbMQ9cwTwAWzEPXME8AJsxD1yP839wG87/Ja5z58669957NWDAANNRYEhYWJhmzZqluLg401HgAkFBQfwchGuio6MlSYGBgYaTwJf279+vQoUKmY7hOey3wGbstwCJ48MWgMutWrVKtWrVMh0DDpSQkKBevXopNDRUtWvXNh3HmD179qhly5Zq27atOnToYDoOkGSBgYGaMWOG1qxZo4EDB5qO4wj0GW5Fn29En+FW9Nk3MmbMqKCgIB06dMh0FPwD6zfcivX7RvQZbkWfb0Sf4Vb0+Ub0GW5Fn29En+FW9PlG9BluRZ//a/Xq1XrnnXc0YsQIBQcHm44D+Nyzzz6rli1bqn379jp69KjpOD535swZNW3aVLVr11bXrl1NxwF8Lm/evJowYYKmTJmimTNnmo5jRM+ePbVv3z599tlnCggIMB0H8LmPPvpIktSpUyfDScxgHoDtmAeYB2A35gHmAYB5gHkAdmMeYB6A3ZgHmAcA2+eBqzj/B7fi/N+NMmTIoLfeekuTJ0/W1q1bTceBAeHh4fr777+1evVq01HgAkFBQfr7779Nx4BDXP2wRe7cuQ0ngS8dOHBABQsWNB3Dc9hvge3YbwFu5JeQkJBgOgSut2TJEoWGhiomJkY5cuQwHQcOtm3bNpUqVUrff/+9KlWqZDoOHGb27NkKDw/Xxo0bVa5cOdNxjIiLi1ONGjV05swZff/997rrrrtMRwKS7aOPPlLXrl21atUqVa1a1XQcY+gzvIA+X0Gf4QX0Oe2VK1dOjz/+uCIiIkxHwf/H+g0vYP2+gj7DC+jzFfQZXkCfr6DP8AL6fAV9hhfQ5yvoM7zA9j6fPXtWZcuWVenSpTVv3jzTcQBjYmNjVbZsWVWsWFEzZswwHcenunfvrmnTpumXX35Rvnz5TMcBjHnxxRc1e/Zsbdu2TUFBQabj+ExUVJRq1KihKVOmqEWLFqbjAMZ8++23euyxxzRjxgyFhYWZjuMzzAPAFcwDzAMA8wDzAOzGPMA8ALsxDzAPAMwDzAOwm63zwFWc/4MX2H7+75/i4+NVvnx5FStWTHPmzDEdBwY89NBDCgkJ0dixY01HgcO1bNlSsbGx+uqrr0xHgQNMmTJFnTp10rlz50xHgQ9lyZJFo0ePVtu2bU1H8Qz2W4ArbN9vMSVnzpx69913+XCpA/mbDgAg5VasWKFs2bKpfPnypqPAYS5fvqx+/fqpSZMm1n7UQpIGDx6sH3/8UZGRkfwlE1zrxRdf1BNPPKFmzZrpxIkTpuMYQ5/hBfT5CvoML6DPaS9//vw6dOiQ6Rj4H6zf8ALW7yvoM7yAPl9Bn+EF9PkK+gwvoM9X0Gd4AX2+gj7DC2zvc//+/fXXX39pzJgxpqMARmXPnl2ffPKJZs2aZdUlbhs2bNDo0aP1/vvvc2kVrDds2DBlypRJPXr0MB3FZy5cuKCOHTuqbt26/BIlrFenTh09//zz6tq1q1VzAfMAcAXzAPMAwDzAPAC7MQ8wD8BuzAPMAwDzAPMA7GbrPHAV5//gBbaf//snf39/DRgwQF9++aV++OEH03FgQFhYmGbPnq24uDjTUeBwQUFBOnbsmOkYcIjo6GgFBgaajgEfOnbsmM6ePauCBQuajuIZ7LcA/2X7fgvwT3zYAnCxlStXqmbNmkqXLp3pKHCYTz/9VDt37tSAAQNMRzHmhx9+0ODBg/Xee++pTJkypuMAKebn56eJEycqLi5OXbt2NR3HCPoMr6DP9BneQZ/TXoECBXTw4EHTMfD/sX7DK1i/6TO8gz7TZ3gHfabP8A76TJ/hHfSZPsM7bO7zTz/9pA8++EDvvvuu8ufPbzoOYFzt2rXVokULde7cWTExMabjpLmLFy+qXbt2ql69ulq1amU6DmBc9uzZNW7cOE2bNk3z5883HccnBg4cqH379nGBJfD/vf/++woICNBrr71mOopPMA8A12MeAOzGPACAeQCwG/MAYDfmAQC2zQNXcf4PXmHz+b+beeqpp1SxYkWr71SzWZMmTXTs2DGtXLnSdBQ4XGBgIB+2wDV82MI+Bw4ckCQ+bJGK2G8BrmfrfguQGD5sAbhUfHy8vvvuO9WqVct0FDjMxYsXNXDgQLVr107Fixc3HceIU6dOqWnTpnrsscfUuXNn03GAO5YnTx5NmjRJn332maZPn246jk/RZ3gNfabP8A6b++wL+fPn16FDh0zHgFi/4T02r9/0GV5Dn+kzvIM+02d4B32mz/AO+kyf4R029jkuLk7PP/+8KleurA4dOpiOAzjGiBEjdPnyZfXu3dt0lDQ3dOhQ7d69WxMmTJCfn5/pOIAj1K9fX40bN9bLL7+sU6dOmY6Tpn755Re98847ioiIUNGiRU3HARwhR44c+uCDDzRp0iQtW7bMdJw0xTwAJI55ALAb8wBgN+YBAMwDgN2YBwC72TQPXMX5P3iNjef/bqdfv35asGCBNmzYYDoKfKxYsWIqV66cZs2aZToKHC4oKIgPW+Ca6Oho5c6d23QM+BAftkhd7LcAN7JxvwW4GT5sAbjUTz/9pGPHjql27dqmo8BhJkyYoKNHj1pxwORm3njjDZ08eVKTJk3i4Ak8IzQ0VC+//LK6dOmio0ePmo7jM/QZXkSf6TO8w9Y++0L+/Pl18OBB0zEg1m94k63rN32GF9Fn+gzvoM/0Gd5Bn+kzvIM+02d4h219Hj58uLZu3aqPP/6YHgP/IzAwUMOHD9f48eO1du1a03HSzPbt2zV06FANGDBA9913n+k4gKOMHDlSp0+fVr9+/UxHSTPx8fFq3769KlSowEU1wD8899xzatCggTp37qzz58+bjpNmmAeAxDEPAGAeAOzGPADYjXkAAPMAYDdb5oGrOP8HL7Lt/N/t1K9fX5UqVdLAgQNNR4EB4eHhmjt3ri5dumQ6ChwsKChIJ06cUFxcnOkocAA+bGGf/fv3KzAwUJkzZzYdxfXYbwFuzrb9FuBm+LAF4FIrVqxQYGCgypQpYzoKHOT8+fOKiIhQx44drf1S4Pfff6+xY8fqgw8+0N133206DpCqIiIilDNnTnXv3t10FJ+gz/Ay+gx4h2199pUCBQro3Llzio6ONh3Faqzf8DLb1m/6DC+jz4B30GfAO+gz4B30GfAOW/p8+PBhDRo0SG+88YZKlChhOg7gOM2bN1edOnXUtWtXxcfHm46TJnr06KH777/f8+sdkBJ33323IiIiNHr0aG3dutV0nDQxZcoU/fjjjxo/frz8/flVGeCfPvzwQx0+fFjDhw83HSVNMA8At8Y8ANiNeQAA8wBgN+YBwG7MAwC8Pg9cxfk/eJkt5/+Sql+/flqwYIE2bNhgOgp8LDw8XNHR0VqxYoXpKHCwoKAgJSQkcFcJJEnHjx9XYGCg6RjwoQMHDqhQoUKmY3gC+y3Ardmy3wLcil9CQkKC6RC43pIlSxQaGqqYmBjlyJHDdBw41JNPPqnMmTNr5syZpqPAQYYPH64333xTO3fu1L333ms6js9duHBB5cqVU+HChfXNN9+YjgOkicWLF6tevXqaN2+eGjRoYDpOmqHPsAF9BrzDlj770tatW1W6dGn9/PPPfNDRENZv2MCW9Zs+wwb0GfAO+gx4B30GvIM+A95hQ5/btGmjFStWaPv27cqcObPpOIAjbdu2TWXLltW4ceP0/PPPm46TqhYuXKgnn3xSq1atUo0aNUzHARwpPj5elSpVUo4cObR8+XLTcVLVqVOnFBwcrGeeeUajR482HQdwrEGDBmnYsGH6/fffPff7BswDwO0xDwB2Yx4AwDwA2I15ALAb8wAAL88DEuf/YAcbzv8lR0hIiPLkyaP58+ebjgIfq1ixoh588EFNnDjRdBQ41G+//aYHHnhAv/76q0qXLm06DgyrUKGCHn30UUVERJiOAh9p1qyZzpw5o6+++sp0FFdjvwVIGq/vtzhFzpw59e6776pDhw6mo+Af+OwR4EJxcXFas2aNatWqZToKHOTMmTN655131KVLF2t/qBk0aJD27dunMWPGmI4CpJnQ0FA1b95cnTt31smTJ03HSTP0GTagz4B32NJnXypQoIAk6eDBg4aT2Iv1GzawZf2mz7ABfQa8gz4D3kGfAe+gz4B3eL3PmzdvVmRkpN577z0urQJu4f7779cLL7ygN954w1NrQVxcnHr27KnnnnuOS6uAW/D399cHH3ygFStWaOHChabjpKohQ4bo/Pnz6t+/v+kogKO9+uqrCgoKUu/evU1HSVXMA0DSMA8AdmMeAMA8ANiNeQCwG/MAAK/OA1dx/g828Pr5v+Tq16+fFixYoB9++MF0FPhYWFiY5s6dq4sXL5qOAocKCgqSJB07dsxwEjhBdHS0cuXKZToGfOjAgQMqWLCg6Riux34LkDRe328BbocPWwAu9MMPPyg2Nla1a9c2HQUOMmrUKJ05c0avvPKK6ShGbNu2TcOGDdOQIUNUtGhR03GANDVixAhdvHhRb731lukoaYI+wyb0GfAOr/fZ17Jnz65s2bLp0KFDpqNYifUbNvH6+k2fYRP6DHgHfQa8gz4D3kGfAe/wcp+7deumkJAQhYWFmY4CON7AgQN1+fJlDR061HSUVDN69Gjt3LnTU/9OQFqpUqWKnn32WXXv3l0XLlwwHSdV7NmzRx988IH69+9/7ZfTASTurrvu0rBhwzR16lRt2LDBdJxUwzwAJB3zAGA35gHAbswDAJgHALsxDwB28+o8IHH+D3bx8vm/5Kpfv74qVqyogQMHmo4CH2vSpIliYmL07bffmo4ChwoMDJSfnx8ftoAk6fjx4woMDDQdAz60f/9+Pmxxh9hvAZLOy/stQFL4JSQkJJgOgestWbJEoaGhiomJUY4cOUzHgQMNHjxYH330ERd84prY2FgVLVpUL730kgYMGGA6jhH16tXTkSNHtHHjRgUEBJiOA6S5CRMmqHPnztq8ebMeeOAB03FSFX2Gbegz4B1e7rMJ999/vxo3bszXuw1g/YZtvLx+02fYhj4D3kGfAe+gz4B30GfAO7zY51mzZqlJkybasGGDypcvbzoO4AqjRo3S66+/rm3btrn+Yofo6GgVL15cnTp10pAhQ0zHAVxh7969uv/++zV06FB1797ddJw7Fh4erl9++UU///yz0qdPbzoO4HgJCQmqUaOG4uPjFRUVZTrOHWMnyEYYAAAgAElEQVQeAJKPeQCwG/MAYDfmAQDMA4DdmAcAu3ltHriK83+wjRfP/6XUwoUL9eSTT2rDhg16+OGHTceBD4WEhKhUqVKaNGmS6ShwqNy5c2vo0KHq2LGj6SgwKC4uThkyZNDs2bP1zDPPmI4DH7h8+bIyZcqkKVOmqGnTpqbjuBb7LUDyeHW/xUly5sypd999Vx06dDAdBf/Ahy0ciA9b4HYeffRR3XvvvZo6darpKHCIt99+WyNGjNCePXuUK1cu03F87uom86pVq1SjRg3TcQCfiI+PV8WKFZUzZ04tX77cdJxUQ59hI/oMeIdX+2zKo48+qqJFi2rChAmmo1iF9Rs28ur6TZ9hI/oMeAd9BryDPgPeQZ8B7/Bany9fvqwHHnhAFSpUUGRkpOk4gGtcunRJpUqVUtWqVTV58mTTce5I7969NWHCBO3evVvZsmUzHQdwjddff11TpkzRrl27lDVrVtNxUmzz5s0qX768vvzySzVo0MB0HMA1NmzYoJCQEC1YsED169c3HSfFmAeAlGEeAMA8ANiNeQCwG/MAAOYBwG5emQeu4vwfbOS18393qlKlSrr77rv19ddfm44CH3r//fc1aNAgHTlyRBkzZjQdBw5UokQJtW7dWn369DEdBQb99ddfuvvuu7Vy5UrVrFnTdBz4wMGDB1WwYEGtWbNGVatWNR3HldhvAVLGa/stTsOHLZzL33QAAMlz4cIFrVu3TrVq1TIdBQ5x4sQJjRgxQq+++qqVH7WIi4tTz5499dxzz/GXTLCKv7+/Ro4cqRUrVmjhwoWm46QK+gxb0WfAO7zYZ5MKFCigQ4cOmY5hFdZv2MqL6zd9hq3oM+Ad9BnwDvoMeAd9BrzDa32eNm2a/vjjD7355pumowCukj59evXr10+RkZHavn276TgpduzYMY0ePVqvv/46l1YBydSzZ0+dO3dOo0ePNh3ljvTr10/lypXT008/bToK4CoVK1bUk08+qb59+yohIcF0nBRjHgBShnkAAPMAYDfmAcBuzAMAmAcAu3llHpA4/wd7ee38353q3bu3FixYoF9//dV0FPhQeHi4Tp48qWXLlpmOAocKCgrS8ePHTceAYdHR0ZKkwMBAw0ngKwcOHJAkFSxY0HAS92K/BUgZL+23AMnBhy0Al1m3bp3OnTvHhy1wzciRIxUQEKBu3bqZjmLE6NGjtWvXLr3zzjumowA+V6VKFT377LN65ZVXdOnSJdNx7hh9hs3oM+AdXuuzSfnz59fBgwdNx7AK6zds5rX1mz7DZvQZ8A76DHgHfQa8gz4D3uGVPl+6dEkDBw5U69atFRwcbDoO4DrNmjVTiRIlNHDgQNNRUmzo0KHKkiWLXnrpJdNRANcJDAxU165dNWzYMMXExJiOkyIbN27UwoULNWjQIPn5+ZmOA7jO4MGDtWXLFn311Vemo6QI8wBwZ5gHALsxDwBgHgDsxjwA2I15AIDb54GrOP8Hm3nl/F9qePrpp1W6dGnWAssULFhQISEhmjVrlukocKigoCD9/fffpmPAsKsftsidO7fhJPCVAwcOKCAgQPfee6/pKK7EfgtwZ7yy3wIkBx+2AFxm5cqVuu+++1SkSBHTUeAAJ0+e1KhRo9SjRw9ly5bNdByfi42N1aBBg9S9e3cVLVrUdBzAiHfeeUd79+7VJ598YjrKHaHPAH0GvMQrfTYtf/78OnTokOkY1mD9BryzftNngD4DXkKfAe+gz4B30GfAO7zQ508//VT79+9Xnz59TEcBXCkgIEBvvfWWvvjiC/3888+m4yTb4cOHNW7cOPXq1UuZM2c2HQdwpVdffVV+fn4aNWqU6Sgp0rt3bz3yyCMKDQ01HQVwpTJlyqhRo0bq27ev4uPjTcdJNuYB4M4wDwBgHgDsxjwA2I15AADzAGA3t88DEuf/AMkb5/9Sg5+fn1599VV9/vnn2rt3r+k48KGwsDDNmzdP58+fNx0FDpQnTx4dO3bMdAwYdvz4cUl82MIm+/fv1z333KP06dObjuJK7LcAd8YL+y1AcvFhC8BlVqxYoVq1apmOAYcYOXKk4uPj9fLLL5uOYsQHH3yguLg4vfbaa6ajAMYULVpU7du318CBA3Xu3DnTcVKMPgP0GfASr/TZtAIFCig6Olpnz541HcUKrN+Ad9Zv+gzQZ8BL6DPgHfQZ8A76DHiH2/t86dIlDRo0SO3atVOxYsVMxwFcKywsTA888IAGDRpkOkqyRUREKFeuXOrYsaPpKIBr5cyZUz169NDw4cMVExNjOk6yREVFadmyZRo4cKDpKICrvf3229q6datmz55tOkqyMA8AqYN5ALAb8wAA5gHAbswDgN2YBwC4dR64ivN/gPvP/6WmZs2aKX/+/Bo+fLjpKPChsLAwnT59WkuXLjUdBQ4UFBTEhy2g6OhoZcqUSZkyZTIdBT5y4MABFSxY0HQMV2K/BUgdbt9vAZLLLyEhIcF0CJvFxcXpzz//1KlTp3TmzBnFxsYqKipK7733niZMmKC8efMqZ86cypo1q7Jly6Z7773XdGSk0JkzZ3T06FHFxsbq9OnT1/68JSlr1qzKkiWLsmbNqpw5cyowMFA5cuRI9J+RO3duTZ48Wc2aNfP1vwKS6K+//tLJkycVGxurkydP6syZM9e+6porV65rf97ZsmVT/vz5U/xVv9OnT6to0aJ66aWX1L9//1T8N3CHmJgYFStWTD169FDfvn1NxwGMOnz4sIoXL66hQ4eqa9eupuMkG30G/os+A97h9j47waZNm1ShQgUtXbpUuXPnTtP5ynas38B/uX39ps/Af9FnwDvoM+Ad9BnwDvoMeIeb+xwZGal27dpp586dKlSokOk4gKvNmjVLTZs21fbt21W8eHHTcZLk+PHjKly4sIYMGeK69QtwmtjYWBUqVEhvvPGGevbsaTpOkj399NOKjo5WVFSU6SiA64WHh2v37t3auHGj6ShJxjwApB7mAcBuzAMAmAcAuzEPAHZjHgDgxnlA4vwf8L/cfP4vtY0cOVK9e/fW3r17lSdPnmT9Z311XxxSX7Vq1VSkSBFFRkbe9v83sfs+T548qfj4eGXIkOHa/Y/c9+l+Z86c0cCBAxUZGakZM2ak6L5PuMPt1u8FCxboiy++0Pfff8/67WLJWb979OihbNmyacaMGaZjuw77LUDqcet+i1Mk9n5v166dwsPD1bBhQ+Yzh+HDFj60Y8cOrVu3Ttu3b9eOHTu0fft27dq1SxcvXkzyPyNr1qwqUaKEgoODFRwcrFKlSql69eq6++670zA5kuPSpUvasGGDNm3apN9//12///67duzYoQMHDiTrn3PPPfeoZMmSKlGihEqUKKFy5copNjZWjRo10qFDh5QvX740+jdAUkVHR2vNmjX67bfftH379mt/1jExMUn+Z6RLl05Fixa91ung4GA98sgjKl26tPz8/G75nx0yZIiGDRumvXv3KleuXHf6r+M6b775psaNG6fdu3cre/bspuMAxr3yyiuaPn26du3apcyZM5uOkyz0GbgefQa8w8199rXE5qvff/9dJ0+eTPI/407mK9uxfgPXc/P6TZ+B69FnwDvoM+Ad9BnwDvoMeIdb+/zQQw+pdOnSmjZtmukogOtdvnxZwcHBqlu3rsaMGWM6TpIMGjRIw4cP1/79+5U1a1bTcQDXe/311/XZZ59pz549ypAhg+k4t7Vjxw7df//9mjNnjho2bGg6DuB6Gzdu1MMPP6yVK1eqZs2apuMkCfMAkHqYBwAwDwB2Yx4A7MY8AIB5ALCbG+cBifN/wD+59fxfajt79qyKFCmiTp06acCAAYn+/5i+Lw6pb9SoUXrzzTd19OhRZcqU6dr/nfs+7ZCW932GhIRc978pmMX6bY/UWL8zZcqk+++/n/U7GdhvAVKXW/dbfI33uzfwYYs0dODAAX377bdasWKFVq5cqYMHDypz5szXBpcSJUqoZMmSKlasmLJnz66sWbMqe/bsyp49uwICAnThwgWdOXNGMTExOnXqlE6ePKkdO3ZcK9v27du1e/duxcXFqXTp0qpVq5Zq166tWrVqKWfOnKb/9a2RkJCgjRs3XvtzjoqK0pkzZ5QnTx6VLFlSwcHB1/68CxQooOzZs1/7WuPVzfHTp0/r9OnT1/68jx49eu0H6qt/5n/++acyZsyoggULqlWrVqpVq5YeeeQRBQQEGP5vwB5nzpzRqlWrtHLlSq1YsUI//fST/Pz8VKRIkWt9vvpnnTt37mt9zpIlizJlyqSEhATFxMRc+/OOjY3V3r17r/X56p/1qVOnlDdvXtWsWVO1a9dWnTp1VLx48RuyFC1aVB07dtTAgQMN/TdizrFjx1SsWDH17t1bvXr1Mh0HcIS//vpL9913n/r166fXXnvNdJwko8/Ajegz4B1u7bMvOGm+sh3rN3Ajt67f9Bm4EX0GvIM+A95BnwHvoM+Ad7ixz8uWLdPjjz+uTZs2qVy5cqbjAJ7w4YcfqlevXtq3b5+CgoJMx7mlCxcuqGjRomrbtq0GDx5sOg7gCYcOHVKxYsX08ccfq3Xr1qbj3FbHjh21cuVKbd++Xf7+/qbjAJ5QvXp15ciRQ/Pnzzcd5baYB4DUxzwA2I15AADzAGA35gHAbswDANw0D0ic/wMS48bzf2nl7bff1siRI7Vv3z5ly5aN+wwscOTIERUoUEDjxo1TunTpuO/T43x53+ddd92lkJCQa3/O3PfpW6zf9uC+ZmdgvwVIfW7bb/EF3u/exIctUllsbKzmzZunyMhIffvttwoICFDZsmX16KOP6tFHH1W1atWUMWPGVHve2bNntW7dOi1fvlxRUVHasGGD/P399dhjj6lVq1Zq0KCBK76K7kb79u3TF198oQkTJmjXrl3KmzevatSooSpVqqhq1aoqX758qj7vyJEjWrNmjZYvX66lS5dq7969CgwM1LPPPquWLVuqatWqqfo8XBEfH69169YpMjJS06dP1+nTp1WsWLFrna5Tp45y586dqs/btm2b1q5dq+XLl2vZsmWKiYlRqVKl1KpVK7Vp00Z33323hg0bpkGDBmnPnj2OPySSFgYMGKBRo0Zp3759ypIli+k4gGO8/vrrmjZtmvbs2ZOqP2+kJfoMJI4+A97hxj6nFafOV7Zj/QYS58b1mz4DiaPPgHfQZ8A76DPgHfQZ8A639Tk0NFSXLl3St99+azoK4Blnz55VoUKF1K1bN/Xt29d0nFv65JNP1LlzZ+3du1f58uUzHQfwjJYtW2rLli36+eef5efnZzrOTf39998qXLiwhg8frk6dOpmOA3jGV199pUaNGunXX39VqVKlTMe5JeYBIPUxDwBgHgDsxjwA2I15AADzAGA3N80DEuf/gJtx2/m/tBIdHa3ChQurdevWunTpEvcZeNzV+z4jIiK0fft27vv0MO77tAP30diD+5qdhf0WIG24bb8lrfB+9z4+bJFKvvvuO40bN05fffWVEhIS9PTTT6tVq1aqU6eO7rrrLp/lOHHihObNm6epU6dq9erVCgwMVJMmTdSlSxf961//8lkOr7pw4YKmTp2qyZMna/369cqfP7+aN2+uZs2aqWzZsj7N8vvvv+vzzz9XZGSkdu/erQcffFBt27ZV+/btlTVrVp9m8aKDBw9qzJgxmjZtmg4ePKiQkBC1bNlSzz33nPLmzeuzHHFxcVq9erUiIyM1Z84cnT9/Xo8//rjWrl2rF198UUOGDPFZFqe4cOGCihQpovbt22vgwIGm4wCOcujQIRUrVkzjx49XmzZtTMe5LfoM3Bx9BrzDbX1OC06er+rVq6cXXnhB9evXd/TB27TC+g3cnNvWb/oM3Bx9BryDPgPeQZ8B76DPgHe4qc+//fabypQpo/nz5+uJJ54wHQfwlD59+uiTTz7R3r17fXr2OTkSEhJUpkwZPfzww5o8ebLpOICnbNmyRQ899JAWL16sunXrmo5zU2+//bZGjx6tffv2KXPmzKbjAJ4RHx+vUqVKqVq1apowYYLpODfFPACkHeYBwG7MA4DdmAcAMA8AdmMeAOzmlnlA4vwfcCtuOv+XVq7eZzBu3DjFxMRwn4GHcd+nHbjv0x7cR2MP1m9nYr8FSBtu2m9JC7zf7cGHLe7QokWLNGTIEEVFRaly5cpq06aNwsLClDNnTtPRtH//fkVGRurTTz/Vnj17FBYWpt69e6tMmTKmo7nOmTNn9PHHH+u9997T8ePHFRYWppYtW6pOnToKCAgwmi0hIUFr165VZGSkPv/8c6VPn17dunVTly5dlCtXLqPZ3GjXrl2KiIjQ1KlTlSdPHrVp00YtW7ZUcHCw6Wg6e/asvvzyS02ePFkrVqxQqVKl1K9fPz333HPy9/c3Hc9nJkyYoC5dumjPnj3Kly+f6TiA47Ru3Vo//vijfv75Z8f/sEyfgVujz4B3uKnPqckN89WUKVO0fPlyPfjgg+rduzfzFYDruGn9ps/ArdFnwDvoM+Ad9BnwDvoMeIdb+vzyyy9r+fLl2rZtm6NzAm50+PBhFS5cWJMnT1bz5s1Nx0nUqlWrVKtWLW3ZssXnv6AK2KB27drKnj275s2bZzpKouLi4lS4cGG1adNGgwcPNh0H8JyxY8fq1Vdf1aFDhxzxO1GJYR4A0g7zAADmAcBuzAOA3ZgHADAPAHZzwzwgcf4PuB23nP9LbdxnYA/u+7QD933ag/XbHqzfzsV+C5C23LLfkpp4v9uH/+ZS6KuvvlL58uX1xBNPKHv27IqKitLatWvVoUMHxywYhQoVUp8+ffT777/rs88+09atW1W2bFk1aNBAW7ZsMR3PFc6ePavBgwerSJEi6tu3r5o0aaLdu3crMjJSjz/+uPEhV5L8/PxUtWpVjR8/Xnv37lWXLl00cuRIFS5cWL169dKJEydMR3SFHTt2qEWLFgoODtaqVas0ZswY7d69W4MGDXLES1CSMmfOrObNm2v58uXavHmzHnjgATVt2lSlS5dWZGSkbPhOUUJCgj744AO1aNGCv2QCbuLVV1/Vb7/9piVLlpiOckv0Gbg9+gx4h1v6nFrcNF8tXbpUmzdvVsmSJZmvANzALes3fQZujz4D3kGfAe+gz4B30GfAO9zQ53Pnzmn69Onq0KGDVb98C/hKvnz59MQTT2jixImmo9zUhAkTVKlSJS6tAtJIhw4dtHDhQv3555+moyRq4cKFOnz4sJ5//nnTUQBPatasmfz8/DR9+nTTURLFPACkLeYBAMwDgN2YBwC7MQ8AYB4A7Ob0eUDi/B+QFG44/5eauM/AHtz3aQfu+7QH67c9WL+dj/0WIG25Yb8ltfB+t5dfAv/NJcvOnTvVpUsXLVmyRM8884z69Omjhx56yHSsJElISNCCBQs0aNAgbdq0SS+++KIGDRqkHDlymI7mSF999ZW6deummJgYde3aVV27dlVQUJDpWEly6tQpjR07Vu+//74k6Z133lGrVq04rJOIc+fOaciQIXr33XdVvHhx9e7dW40bN3bEJkZS/P7774qIiNC0adNUsWJFffTRR54+kPHNN9/oySef1C+//KLSpUubjgM4Vt26dZWQkKClS5eajnJT9BlIGvoMeIcb+nynmK/chfUbSBo3rN/0GUga+gx4B30GvIM+A95BnwHvcHqfP/30U3Xs2FEHDhxQ3rx5TccBPOnqO3P79u0qUaKE6TjXOX78uAoUKKDRo0erXbt2puMAnnTx4kUVKFBA3bt3V+/evU3HucGTTz6pS5cuWXMRB2BC27Zt9eOPP+qnn34yHeUGzANA2mMeAOzGPACAeQCwG/MAYDfmAQBOngckzv8BSeX083+pgfsM7MF9n/bgvk87sH7bg/XbPdhvAdKe0/db7hTvd/ibDuAWFy9e1LBhw1SmTBnt2bNHy5Yt0+zZs13zQ5J05Ut/Tz31lL7//ntNmjRJM2fOVMmSJTV16lS+DPM/Dh48qLCwMDVs2FBlypTRr7/+qgEDBrhmyJWkbNmy6fXXX9eOHTvUpEkTtWvXTtWrV9cvv/xiOpqjLFiwQKVLl9aIESP09ttva8uWLWrWrJlrXoKSFBwcrMmTJ2vTpk2SpHLlyqljx46KjY01nCxtjB8/XrVr1+YvmYDb6Nq1q5YvX66dO3eajnJT9BlIGvoMeIcb+nwnmK/ch/UbSBo3rN/0GUga+gx4B30GvIM+A95BnwHvcHqfJ0yYoIYNG3JpFZCGQkNDVahQIU2aNMl0lBtERkYqXbp0Cg8PNx0F8KwMGTKoefPmmjhxouLj403Huc7Bgwe1ePFidejQwXQUwNM6dOign3/+WRs3bjQd5QbMA0DaYx4A7MY8AIB5ALAb8wBgN+YBAE6eByTO/wFJ5fTzf3eK+wzswH2f9uC+T3uwftuB9dtd2G8BfMPp+y13gvc7JD5skSQ//vijypQpo8GDB2vw4MH69ddfVadOHdOxUszPz0+tWrXS9u3b1bBhQ7Vt21ahoaE6evSo6WjGffTRRypRooS2bt2qVatWaf78+SpQoIDpWCmWI0cOjRw5Uhs2bNDFixdVvnx5DRw40HF/kehrsbGxatKkiZ566imFhITojz/+UM+ePZUuXTrT0VLswQcfVFRUlD7++GPNnTtXpUqV0sqVK03HSlWHDx/WN998oxdeeMF0FMDx6tWrp4IFC+qTTz4xHSVR9BlIOvoMeIfT+5xSzFfuxPoNJJ3T12/6DCQdfQa8gz4D3kGfAe+gz4B3OLnP27dv1/r16/nlCSCN+fv7q02bNvr000916dIl03GuM3HiRDVr1kzZsmUzHQXwtI4dO2rv3r2O+3vyTz75RLly5dJTTz1lOgrgaZUrV1bp0qU1ceJE01GuwzwA+AbzAADmAcBuzAOA3ZgHADAPAHZz6jwgcf4PSA4nn/+7E9xnYA/u+7QH933agfXbHqzf7sN+C+AbTt5vSSne7/hffNjiNsaMGaPKlSurQIEC2rZtm/7v//7P1WX5X7ly5dLYsWO1bt067dy5Uw899JC1xTl58qTCw8PVtWtXvfbaa9qyZYtq1KhhOlaqKVeunNavX693331XgwcPVt26dT31g3FybNq0SeXKldN3332nJUuWaPr06cqXL5/pWKnCz89P7dq10/bt2xUSEqLHHntMAwYM8MzGxsSJE5UjRw41aNDAdBTA8fz9/dW6dWtNnjzZcQfIJPoMJAd9BrzD6X1OCeYr92L9BpLO6es3fQaSjj4D3kGfAe+gz4B30GfAO5zc50mTJqlIkSKqXbu26SiA5z3//PP6+++/tWjRItNRrvnhhx/022+/qX379qajAJ5XsmRJPfLII5o8ebLpKNckJCRoypQpatOmjTJmzGg6DuB57dq10+eff67z58+bjnIN8wDgO8wDgN2YBwAwDwB2Yx4A7MY8AMCJ84DE+T8gOZx8/i+luM/AHtz3aQfu+7QH67c9WL/dh/0WwLecut+SErzf8U982OImrn4BpkuXLurevbuWLl2q/Pnzm46VJipVqqTNmzerRo0aqlOnjnr16qXLly+bjuUzP/74oypUqKDvvvtOCxcu1Ntvv6306dObjpXq/P391a1bN61bt0579+7Vgw8+qCVLlpiO5VNTp05VtWrVVKhQIf344496/PHHTUdKE4GBgZo9e7YmTZqkiIgI1alTR3/++afpWHckPj5ekyZNUtu2bRmAgCTq0KGDjh07pgULFpiOch36DCQffQa8w6l9TgnmK/di/QaSz6nrN30Gko8+A95BnwHvoM+Ad9BnwDuc2OeEhATNmjVLTZs2lb8/x16BtFaoUCFVqVJFM2bMMB3lmi+++EL33XefHn74YdNRACs0bdpUX3/9tc6dO2c6iiRpw4YN2rNnj5o3b246CmCFpk2b6syZM1q8eLHpKJKYBwBfYx4AwDwA2I15ALAb8wAA5gHAbk6bByTO/wEp4cTzfynFfQZ24L5P7vv0Gu77ZP22Beu3e9dv9lsA33LifktK8H5HYvgb/ETs27dPFStW1OrVq/Xtt98qIiJCAQEBpmOlqezZs+vzzz/X6NGjNXLkSDVq1Mgxf9GUlmbPnq3KlSurSJEi+vnnn1W3bl3TkdJcuXLltGnTJtWsWVNPPPGExo4dazpSmouLi1Pbtm31/PPPq1evXlq+fLlnvup0K61atVJUVJQOHjyoihUr6tdffzUdKcWWL1+uffv2qV27dqajAK5RsGBBPfbYY5o4caLpKNehz0Dy0WfAO5za5+RgvmK+Amzk1PWbPgPJR58B76DPgHfQZ8A76DPgHU7s8/fff6+9e/cqPDzcdBTAGuHh4Y65tCYhIUFz5sxR06ZNTUcBrPHcc8/p7NmzWrRokekokqSZM2fqvvvu07///W/TUQAr3HPPPapatapmzpxpOook5gHABOYBwG7MA4DdmAcAMA8AdmMeAOzmtHlA4vwfkBJOPP+XXNxn4P77DJKK+z6579PLuO+T9dvLWL/dvX6z3wL4lhP3W5KD97s97/eU4MMW//Dbb7+pSpUquuuuu7Rp0ybVqlXLdCSf6ty5s1auXKl169bpscce04kTJ0xHSjPjxo1TkyZN1KFDBy1ZskR333236Ug+kz17ds2YMUMDBgzQSy+9pP79+5uOlGbOnTunZ555RrNmzdLXX3+tfv36yd/fnqWvXLly2rhxo/71r3+pevXqioqKMh0pRaZPn65KlSqpZMmSpqMArtK6dWstXbpUx44dMx3lGvoMpAx9BrzDiX1OKuYr5ivAZk5cv+kzkDL0GfAO+gx4B30GvIM+A97htD7PnDlTwcHBKlu2rOkogDWee+45nTt3zhGX1qxfv1779u3j8jrAh+655x5Vq1bNEb9ExeV1gBlXL7E8c+aM6SjMA4ABzAOA3ZgHADAPAHZjHgDsxjwAwEnzgMT5PyClnHb+Lzm4z8Ab9xkkBfd9ct+nDbjvk/Xbi1i/3b1+s98CmI4ATnEAACAASURBVOG0/Zak4v1uz/s9pez5X0MSbNiwQTVr1lTBggX17bffWvEFmMSEhIRozZo1OnDggKpWraoDBw6YjpTqhg0bphdffFGvvvqqPvzwQ6sWxv/Vu3dvTZ48WYMHD9bzzz+vuLg405FSVUxMjOrWrauoqCgtWbJE9evXNx3JiBw5cmjx4sV69NFH9eijj2rOnDmmIyXLhQsXNG/ePDVu3Nh0FMB1nn76aWXMmFFz5841HUUSfQbuBH0GvMNpfU4q5qsrmK8Aezlt/abPQMrRZ8A76DPgHfQZ8A76DHiHk/qckJCguXPn0mXAx+655x5Vr15dM2bMMB1FM2bMUHBwsMqUKWM6CmCV8PBwzZ8/3/gvUa1bt47L6wADwsLCdOHCBeOXWDIPAGYwDwBgHgDsxjwA2I15AADzAGA3p8wDEuf/gDvhpPN/ycF9Ble4/T6DpOC+zyu479Me3PdpB9Zve7h5/Wa/BTDDSfstScX7/Qob3u93ws6f7hOxatUq1apVS1WqVNHKlSsVGBhoOpJR999//7UvwVSrVs1VPyzdzuuvv64+ffpo/PjxioiIMB3HuNatW2vWrFn6/PPP1apVK8XHx5uOlCpiYmJUq1Yt7dmzR1FRUapSpYrpSEZlzJhRn3/+uVq3bq0mTZo44jBJUi1ZskSxsbF65plnTEcBXCdz5syqV6+eZs6caTqKJPoM3An6DHiH0/qcFMxX12O+AuzktPWbPgMpR58B76DPgHfQZ8A76DPgHU7q87p167R//36FhYWZjgJYJzw8XAsXLtTZs2eNZUhISNCcOXO4qAIw4Nlnn9XFixf1zTffGM0xa9YslSxZksvrAB/LkyePqlevbnwmYB4AzGEeAOzGPADYjXkAAPMAYDfmAcBuTpkHJM7/AXfCSef/kor7DK7n5vsMbof7Pq/HfZ/24L5PO7B+28Ot6zf7LYAZTtpvSQre79fz8vv9TvFhC0lbtmxRw4YN9eSTT2rOnDm66667TEdyhIIFC2r16tXKli2bQkNDdfz4cdOR7tg777yj999/X1OnTtULL7xgOo5jNGzYUAsWLNDcuXPVrVs303Hu2Llz5/TUU0/p+PHjioqKUqlSpUxHcoSAgACNHz9eL730klq1aqVly5aZjpQkM2bMUNWqVVWoUCHTUQBXCg8P16pVq3T06FHTUegzcIfoM+AdTurz7TBfJY75CrCTk9Zv+gzcGfoMeAd9BryDPgPeQZ8B73BKnxcsWKDixYvrgQceMJoDsFGDBg109uxZrVy50liGzZs369ChQ2rYsKGxDICt8ubNq8qVK2vBggVGcyxcuFCNGjUymgGwVaNGjbR06VJdunTJWAbmAcAc5gHAbswDAJgHALsxDwB2Yx4A4IR5QOL8H3CnnHL+Lym4zyBxbr3P4Fa47zNx3PdpD+77tAPrtz3cuH6z3wKY45T9ltvh/Z44L77fU4P1H7bYvXu36tWrp/Lly2vq1KkKCAgwHclRAgMDtWTJEp09e1b169fX6dOnTUdKsWnTpqlXr156//331axZM9NxHKdOnTqaMWOGxo4dq0GDBpmOk2KXL19WixYttG3bNi1evFiFCxc2HclxRowYoWbNmqlhw4Zav3696Ti3dP78ec2fP19hYWGmowCu9cQTT+iuu+7S3Llzjeagz8Cdo8+Adzilz7fDfHV7zFeAXZyyftNn4M7RZ8A76DPgHfQZ8A76DHiHU/q8aNEi1atXz2gGwFb58uVT2bJltXjxYmMZFi1apHvuuUf//ve/jWUAbBYaGqqlS5cqISHByPP/+OMP7dy5k58FAEPq16+vkydPGj0TwzwAmMM8AIB5ALAb8wBgN+YBAMwDgN2cMA9w/g+4c045/3c73Gdwe266z+BWuO/z1rjv0x7c92kP1m87uGn9Zr8FMMsJ+y23w/v99rzyfk8tVn/Y4siRI3r88cdVsGBBzZs3TxkzZjQdyZHuvfdeLV68WLt371Z4eLjjv+6TmPnz56tt27Z688031b17d9NxHKtBgwb68MMP1a9fP02YMMF0nGRLSEhQ+/bttWTJEi1YsIAvO92En5+fPv74Y1WrVk0NGjTQH3/8YTrSTa1atUqnT5/my37AHcicObNCQ0M1f/58oznoM3Dn6DPgHU7p860wXyUN8xVgF6es3/QZuHP0GfAO+gx4B30GvIM+A97hhD4fOXJEP//8M788ARhUr149LVy40NjzFy9erHr16snPz89YBsBm9erV05EjR7R582Yjz1+0aJGyZ8+ukJAQI88HbFesWDEVL17c2CWWzAOAecwDgN2YBwC7MQ8AYB4A7MY8ANjN9Dwgcf4PSA1OOP93O9xnkDRuus/gZrjvM2m479Me3PdpB9Zve7hl/Wa/BTDLCfstt8L7PWm88H5PTdZ+2OLy5ctq0qSJ/P39tXDhQmXLls10JEcLDg7WwoUL9d1336lPnz6m4yTLjh071Lx5c7Vt21YDBgwwHcfxXnzxRfXt21cvvfSS677+M2rUKE2bNk2zZ8/mB+bbSJ8+vWbPnq0iRYqoUaNGOnv2rOlIiVq0aJHKlCmjAgUKmI4CuFq9evW0atUqo12nz0DqoM+Adzihz7fCfJV0zFeAXZywftNnIHXQZ8A76DPgHfQZ8A76DHiH6T4vWrRIGTNmVI0aNYw8H8CVdWDPnj3auXOnz58dExOj77//nsvrAIPKli177ZcuTVi8eLEef/xxpU+f3sjzAVz5WWDRokVGns08AJjHPADYjXkAAPMAYDfmAcBuzAMATM4DEuf/gNRi+vzf7XCfQdK55T6DxHDfZ/Jw36c9uO/TDqzf9nDD+s1+C2Ce6f2WW+H9nnRufr+nNms/bNG/f3/95z//0YwZM5QnTx7TcVyhYsWK+vDDD/Xee+/p66+/Nh0nSS5cuKAmTZooODhYo0ePNh3HNfr376969eqpcePGOn78uOk4SbJx40b17NlTb7/9tkJDQ03HcYWsWbNqzpw5OnLkiLp06WI6TqIWL17MoRMgFdSvX1/nz5/X6tWrjWWgz0DqoM+AdzihzzfDfJV8zFeAPZywftNnIHXQZ8A76DPgHfQZ8A76DHiH6T4vWrRINWvWVObMmY08H4D0yCOPKGfOnEZ+gWLZsmVKSEhQnTp1fP5sAFf4+fmpbt26RtaA8+fP67vvvuPcAmBYaGiofvrpJ/35558+fzbzAGAe8wBgN+YBAMwDgN2YBwC7MQ8AMDkPSJz/A1KL6fN/t8J9BsnnhvsMEsN9n8nHfZ/24L5PO7B+28PJ6zf7LYAzmN5vuRne78nn1vd7arPywxYrV67U0KFDNXLkSD300EOm47jK888/r5YtW6pt27bat2+f6Ti31b17d+3Zs0czZsxQhgwZTMdxDT8/P02ePFn+/v5q3bq1EhISTEe6pZiYGDVu3FiVK1dWz549TcdxlYIFC2rKlCmaPHmypk6dajrOdfbs2aMdO3bwgw2QCvLly6cyZcpo8eLFRp5Pn4HUQ58B7zDd55thvko55ivADqbXb/oMpB76DHgHfQa8gz4D3kGfAe8w2eeEhAR9++23qlu3rs+fDeC/0qVLpzp16mjp0qU+f/by5ctVqVIl5c6d2+fPBvBfoaGh+v7773Xq1CmfPjcqKkpnz57lZwHAsFq1ailjxoxavny5T5/LPAA4A/MAAOYBwG7MA4DdmAcAMA8AdjM1D0ic/wNSk+nzvDfDfQYp5+T7DBLDfZ8px32fduC+T3uwftvDqes3+y2AM5jcb7kZ3u8p57b3e1qw7sMWR48eVdOmTRUWFqYXXnjBdBxX+uijj3T33XerRYsWunz5suk4NzVr1iyNHz9eEydOVLFixUzHcZ3cuXNr2rRpWrJkiUaOHGk6zi116NBB586d0xdffKGAgADTcVzniSeeUI8ePfTSSy/p999/Nx3nmm+++UbZsmVT5cqVTUcBPCE0NFSLFi0y8mz6DKQu+gx4h8k+3wzz1Z1hvgLswM9jgHfQZ8A76DPgHfQZ8A76DHiHqT5v3bpV0dHRql69us+fDeB61apV09q1axUfH+/T565Zs4Y1AHCA6tWrKy4uTv/5z398+tyoqCgVK1ZMBQoU8OlzAVwvU6ZMqlChgtauXevT5zIPAM7BPADYjXkAsBvzAADmAcBuzAOA3UzNAxLn/4DUxn0G3uPU+wz+ifs+7xz3fdqB+z7twfptDyeu3+y3AM5gcr/lZni/3xm3vN/TinUftvi///s/ZcqUSePHjzcdxbWyZMmiGTNmaMOGDRo3bpzpOIk6ceKEXn75Zb3wwgt69tlnTcdxrapVq6pfv37q06eP9u7dazpOoubNm6c5c+YoMjJSefPmNR3HtSIiIlSiRAl16tTJMV/sXLFihWrVqsXXV4FUUrduXe3YsUMHDx70+bPpM5C66DPgHSb7nBjmq9TBfAV4Hz+PAd5BnwHvoM+Ad9BnwDvoM+Adpvq8du1aZcmSRQ8++KBPnwvgRlWrVtWJEyd8etD+6vOqVKnis2cCSNw999yjYsWK+fyXqNauXcsaADhElSpVjKwBzAOAMzAPAHZjHgDAPADYjXkAsBvzAAAT84DE+T8gtXGfgTc58T6Df+K+zzvHfZ/24L5Pe7B+28GJ6zf7LYBzmNpvSQzv99Thhvd7WrHqwxarV6/W559/rlGjRil79uym47hamTJl1KNHD/Xu3VuHDx82HecGffr0kZ+fnyIiIkxHcb2ePXuqcOHC6t69u+koNzh79qx69Oihli1bqk6dOqbjuFr69On18ccfa82aNZo+fbrpOJKkdevWqVq1aqZjAJ4REhKi9OnTGxlk6DOQuugz4B0m+/xPzFeph/kK8D5+HgO8gz4D3kGfAe+gz4B30GfAO0z1ed26dQoJCVG6dOl8+lwANypbtqyyZs2qqKgonz1z7dq1SkhIUEhIiM+eCeDmfP1LVJcvX9aGDRv4RUrAIapUqaKtW7cqOjraZ89kHgCcg3kAAPMAYDfmAcBuzAMAmAcAu5mYByTO/wGpjfsMvMmJ9xn8L+77TD3c92kP7vu0A+u3PZy0frPfAjiLqf2Wf+L9nnqc/n5PS9Z82OLixYvq1KmTnnrqKT311FOm43hCv379lDt3bvXq1ct0lOts2rRJH3/8sd577z3lzJnTdBzXy5Ahg8aOHauvv/5aCxYsMB3nOgMGDFB0dDQbGqmkfPny6tChg1555RXFxMQYzbJr1y4dOXKEAQhIRZkzZ1bZsmV9/hdN9BlIffQZ8A5TfU4M81XqYr4CvI2fxwDvoM+Ad9BnwDvoM+Ad9BnwDlN9Xrt2LV0GHCJdunSqWLGiT9eBdevWqWTJkgoKCvLZMwHcXJUqVbR+/XrFxcX55Hm//PKLYmNjVblyZZ88D8CtXe3i+vXrffZM5gHAOZgHADAPAHZjHgDsxjwAgHkAsJuJeYDzf0Dq4z4D73LSfQb/i/s+Ux/3fdqB+z7twfptD6es3+y3AM5iYr8lMbzfU5dT3+9pzZoPWwwfPlz79u3TyJEjTUfxjMyZM2v48OGKjIzU6tWrTceRJMXHx+vFF19U1apV1bx5c9NxPKNGjRpq0qSJunbtqnPnzpmOI0natm2bRowYoSFDhihfvnym43jGkCFDFB8fr379+hnNsXbtWmXMmFHlypUzmgPwmqpVqxq5aII+A6mPPgPeYaLP/8R8lTaYrwBv4+cxwDvoM+Ad9BnwDvoMeAd9BrzD133+66+/tHPnTn55AnCQKlWq+HQdWLt2LWsA4CBVqlTR6dOn9csvv/jkeWvXrlX27NlVqlQpnzwPwK0FBgYqODjYZz8LMA8AzsM8ANiNeQCwG/MAAOYBwG7MA4DdfD0PSJz/A9IK9xl4l1PuM/hf3PeZ+rjv0x7c92kP1m87OGX9Zr8FcBYT+y3/xPs9bTjx/Z7WrPiwxcmTJzVs2DD17NlTRYoUMR3HUxo1aqTHHntMvXv3Nh1FkjR37lxt2rRJo0ePlp+fn+k4nvLee+/p6NGjmjBhgukokqS33npL999/vzp16mQ6iqfkypVLQ4YM0bhx47Rv3z5jOdauXasKFSooY8aMxjIAXlSlShX99NNPOnXqlM+eSZ+BtEGfAe8w0ed/Yr5KG8xXgLfx8xjgHfQZ8A76DHgHfQa8gz4D3uHrPm/atEmSVLFiRZ88D8DtVapUSbt27VJMTEyaPyshIUGbN29mDQAcpFSpUsqWLZs2btzok+dt2rRJFStWVEBAgE+eB+D2KlWq5NM1QGIeAJyEeeD/sXfn4VWU5//HP9lZg5CArLIoYQ1UXNi0COKCtf261AUXcCl1w6W2isvPrdpqtWKxetXaqlUUcW+1Il+tgBUQaxVNkF3ZRNaAEBaTkDy/P/I9gZAEzknmeWbOzPt1Xb2uimGemUw+98w9Tu4DRBv9AAD6ASDa6AeAaKMfAOCyH5B4/w+whXkG4RWUeQYxzPu0h3mf0cG8z2igfkdHEOo3z1uA4HH9vGV/XN/tCNr13YVIfLDF448/LmOMrrvuOr93JZTuuecezZkzRx988IHfu6IHHnhAP/3pT9W3b1+/dyV02rdvr3Hjxumhhx5SaWmpr/uyZMkSvfbaa7rjjju4QbZg7Nix6tChgx566CHf9uHjjz/W4MGDfVsfCKshQ4aovLzcaSNDngE7yDMQHn7keV/0V3bRXwHhxf0YEB7kGQgP8gyEB3kGwoM8A+HhOs9ffPGFDjvsMLVs2dLJegAOrl+/fjLGqLCw0PpaX3/9tYqLi9W/f3/rawGIT2pqqvr27eukBkiV9wLUACBY+vXr57QG0A8AwUI/AEQb/QAA+gEg2ugHgGijHwDgsh+QeP8PsIV5BuEWhHkGMcz7tIt5n9HAvM/ooH5Hh9/1m+ctQPC4ft6yL67vdgXp+u5C6D/YYteuXZo0aZKuvfZaHXLIIX7vTigNGjRIJ5xwgn7zm9/4uh/Tpk3Tp59+qgkTJvi6H2H2q1/9Sps2bdKzzz7r637cf//9ysvL05lnnunrfoRVRkaGbrrpJj311FP69ttvna9fWlqqRYsWacCAAc7XBsKuffv2atOmjT7//HMn65FnwB7yDISH6zzvj/7KLvorILy4HwPCgzwD4UGegfAgz0B4kGcgPFznubCwUPn5+U7WAhCfTp06qVWrViooKLC+VkFBgVJTU9WnTx/rawGIX35+vpMaUF5erkWLFnEvAARMv379tH79em3cuNH6WvQDQPDQDwCgHwCijX4AiDb6AQD0A0C0uewHeP8PsId5BuHm9zyDGOZ92se8z+hg3mc0UL+jw8/6zfMWIJhcPm/ZH9d3u4JyfXcl9B9s8eSTT2rnzp18+pdlt99+u9577z3NnTvXt324//77dfrpp/Nw2qKOHTtq7NixeuCBB7Rnzx5f9mH16tV68cUXddtttyk1NfQlzDeXX365WrVqpUceecT52osWLVJpaan69evnfG0gClx+Qh95Buwiz0B4+PUJuvRXbtBfAeHF/RgQHuQZCA/yDIQHeQbCgzwD4eEyzwUFBWQZCKA+ffo4qQMFBQXq1q2bmjVrZn0tAPFzNbhq6dKl2r17N79ICQRMLJOu7gXoB4DgoR8Aoo1+AIg2+gEA9ANAtNEPANHmsh/g/T/ALuYZhJuf8wximPfpBvM+o4F5n9FB/Y4Ov+o3z1uAYHL5vGVfXN/dCML13ZVQ/xRVVFToD3/4g8aNG6fWrVv7vTuhNnLkSB177LGaNGmSL+vPmzdPs2fP1q233urL+lEyYcIErVq1Sn//+999WX/SpElq3769Ro8e7cv6UZGVlaUbb7xRTzzxhHbs2OF07YKCAmVlZSkvL8/pukBU5OfnOx00QZ4Be8gzEB4u87wv+is36K+A8OJ+DAgP8gyEB3kGwoM8A+FBnoHwcJXn0tJSLV26lF+eAALI1S+4FxYWMqgCCKD8/Hxt3bpV33zzjdV1CgoKlJaWpl69elldB0BiDj30ULVp08b6ADv6ASC46AeAaKMfAKKNfgAA/QAQbfQDQLS56gck3v8DbGOeQbj5Oc9AYt6nS8z7jA7mfUYD9Ts6/KrfPG8Bgsnl85Z9cX13w+/ru0uh/mCLmTNnatWqVbriiiv83pVIGDdunN5880199913ztd+9tln1adPHw0ZMsT52lHTrVs3jRw5UpMnT3a+9p49ezRlyhRddtllSk9Pd75+1Fx66aUqKyvTG2+84XTdwsJC9erVSxkZGU7XBaIiPz9fX375pcrLy62vRZ4Bu8gzEB4u8xxDf+UW/RUQTtyPAeFBnoHwIM9AeJBnIDzIMxAervK8ePFilZaWMrgKCKDYL7gbY6yuU1hYqL59+1pdA0DiYgPlbA+6WLBggbp3767GjRtbXQdA4lwMsaQfAIKLfgCINvoBAPQDQLTRDwDRRj8AwOWHXPH+H2AP8wzCz695BhLzPl1j3mc0MO8zOqjf0eFH/eZ5CxBcrp63xHB9d8vP67tLof5gi8mTJ+vYY49Vz549/d6VSDj33HOVmpqqV155xem6paWleuWVVzR27Fin60bZxRdfrGnTpmnDhg1O150+fbo2bNigCy+80Om6UdWqVSuNGjXK+UONwsJCXjwDLMrPz9fu3bu1fPly62uRZ8Au8gyEh8s8x9BfuUV/BYQT92NAeJBnIDzIMxAe5BkID/IMhIerPC9btkwpKSk64ogjrK4DIHF5eXkqLi7Wxo0bra1RXl6uFStWqEePHtbWAFA/LVu2VOvWrZ3cC/D7H0Aw5eXl0Q8AEUY/AEQb/QAA+gEg2ugHgGijHwDgoh+QeP8PsI15BuHn1zwDiXmfrjHvMzqY9xkN1O/o8KN+87wFCC5Xz1tiuL675ef13aXQfrDFzp079frrr+viiy/2e1ciIzs7Wz/+8Y+dh+bNN9/U1q1bNXr0aKfrRtmZZ56pxo0b6+WXX3a67uTJk/XDH/5Q3bp1c7pulF188cV6//339c033zhbc+nSpTRAgEWxfC1dutT6WuQZsIs8A+HhMs8x9Ffu0V8B4cP9GBAe5BkID/IMhAd5BsKDPAPh4SrPK1asUPv27dWoUSOr6wBIXNeuXSVV5tSWb775RmVlZVVrAQiWLl26WK0BkrRy5Up16dLF6hoA6sdFDaAfAIKLfgAA/QAQbfQDQLTRDwCgHwCizUUNkHj/D7CNeQbR4Mc8A+Z9use8z+hg3md0UL+jwY/6zfMWILhcPW+J4frunh/Xd9dC+8EWb7zxhkpKSnT++ef7vSuRMmbMGM2ePdt5cRw5cqQ6duzobM2oa9Kkic4++2w999xzztbctm2b3nzzTZofx370ox/pkEMO0ZQpU5ysV15erjVr1tAAARY1a9ZMubm5WrlypdV1yDNgH3kGwsNVnmPor/xBfwWED/djQHiQZyA8yDMQHuQZCA/yDISHqzyvXLmSgTVAQHXs2FEZGRlW3xGO1Riu6UAwde3a1fq9wIoVK6gBQEB17dpV3377rUpKSqytQT8ABBf9AAD6ASDa6AeAaKMfAEA/AESbi36A9/8A+5hnEA2u5xlIzPv0C/M+o4F5n9FB/Y4O1/Wb5y1AcLl43hLD9d0fflzfXQvtB1u8/fbbGj58uHJzc/3elUg5+eSTlZ2drbffftvJeiUlJfrXv/6lc88918l62Oucc87Rp59+qvXr1ztZ71//+pfKysp01llnOVkPlbKysvQ///M/zjL9zTffqKysjJfPAMtcvDxCngE3yDMQHi7yHEN/5Q/6KyCcuB8DwoM8A+FBnoHwIM9AeJBnIDxc5HnlypX88gQQUOnp6erYsaPVOrBixQo1atRIbdu2tbYGgPrr2rWr1V+o3L17tzZt2sR9PRBQXbt2VUVFhdasWWNtDfoBILjoBwDQDwDRRj8ARBv9AAD6ASDaXPQDvP8HuME8g/BzPc9AYt6nX5j3GR3M+4wG6nd0uKzfPG8Bgs3F85YYru/+8OP67looP9jCGKNZs2ZpxIgRfu9K5KSnp2vYsGGaOXOmk/XmzZunXbt2ca598MMf/lDp6enOzvXMmTM1YMAAtWzZ0sl62GvEiBGaN2+edu7caX2t2INvXj4D7LL98ohEngFXyDMQHi7yHEN/5R/6KyB8uB8DwoM8A+FBnoHwIM9AeJBnIDxc5HnFihX88gQQYLbrQGx4XUpKirU1ANRfly5drNaAFStWyBjDvQAQULGe23YdoAYAwUU/AEQb/QAQbfQDAOgHgGijHwCizUU/wPt/gBvMM4gGl/MMmPfpH+Z9RgfzPqOD+h0NLus3z1uAYHPxvCWG67t/XF7f/RDKD7ZYuHCh1q9fz42ST4YPH65Zs2apoqLC+lozZ85U586duVnyQbNmzXTsscc6a3RnzJhBpn1y4oknqrS0VHPmzLG+1sqVK9WoUSO1bdvW+lpAlHXp0sX6J6iTZ8AN8gyEh4s8x9Bf+Yf+Cggf7seA8CDPQHiQZyA8yDMQHuQZCA8XeV61apU6d+5sdQ0A9de1a1erdWDVqlUMqgACrGvXrtq2bZu2bt1qZfux+sK9ABBMOTk5ys7OtvqLlPQDQLDRDwDRRj8ARBv9AAD6ASDa6AeAaHPRD/D+H+AG8wyiweU8A+Z9+ot5n9HAvM/ooH5Hh6v6zfMWINhcPG+J4fruH5fXdz+E8oMtZsyYoRYtWujII4/0e1ciacSIEdqyZYu++OIL62vNnDlTJ554ovV1ULsRI0ZoxowZ1tfZsGGDFi9erOHDh1tfCzW1a9dOPXv2dPJQY/Xq1TrssMOUkpJifS0gyrp06aJVq1ZZXYM8A26QZyA8XORZor/yG/0VED7cjwHhQZ6B8CDPQHiQZyA8yDMQHrbzvGPHDu3cuVPt2rWztgaAhmnbtq02bNhgbfvr16+nBgABFhsks3HjRivb37Bhg5o2bars7Gwr2wfQcG3btrVWA+gHgOCjHwCijX4AAP0AEG304s9sXwAAIABJREFUA0C00Q8AsNkPSLz/B7jCPINocDnPgHmf/mLeZ3Qw7zMaqN/R4ap+87wFCD7bz1skru9+c3l990MoP9jigw8+0LBhw5SWlub3rkRSfn6+WrdubT0033//vT7++GOKo49GjBihr776SmvWrLG6zqxZs5Senq6hQ4daXQd1GzFihJML4aZNm9SmTRvr6wBR16ZNG23dulV79uyxtgZ5Btwgz0B4uMizRH8VBPRXQLhwPwaEB3kGwoM8A+FBnoHwIM9AeNjO8+bNmyVJubm5VrYPoOFycnJUVFRkbftFRUXUACDAYvmMXbO9tnnzZmoAEHC5ubnW7gXoB4Dgox8Aoo1+AAD9ABBt9ANAtNEPALDZD0i8/we4wjyD6HA1z4B5n/5i3md0MO8zOqjf0eCqfvO8BQg+289bJK7vQeDq+u6HUH6wRWFhoQYMGOD3bkRWSkqKjjzySC1YsMDqOkuXLlVJSQnn2kexT9mzfa4LCwvVo0cPNWvWzOo6qFss08YYq+vw0gngRk5Ojowx2rJli7U1yDPgBnkGwsNFniX6qyCgvwLChfsxIDzIMxAe5BkID/IMhAd5BsLDdp5jL2STZyC4cnNzrQ2skSp/iSonJ8fa9gE0TOwabeuXqIqKiqgBQMDl5ORYuxegHwCCj34AiDb6AQD0A0C00Q8A0UY/AMBmPyDx/h/gCvMMosPVPAPmffqLeZ/RwbzP6KB+R4Or+s3zFiD4bD9vkbi+B4Gr67sfQvfBFmVlZVqxYoV69Ojh967EZdq0aZo6darfu+G5vLw8LVmyxOoaS5YsUVpamg4//HCr63ghrOe5RYsWOvTQQ52c67y8PKtreCWs57pHjx7auXOnvv32W6vrRP2lk3/84x96+eWX/d6NpDZ16lRNnjzZl7Vfe+01TZs2zZe1E2X75RGJPJPnhiPP8SHP9pHnhiPP8XGRZ4n+Kgjor9ygfjcc9Ts+3I/ZR54bjjzHhzzbR54bjjzHhzzbR54bjjzHhzzbR54bjjzHhzzbR54bjjzHx8WwCkmRzrNEpl0i+4nLyclRSUmJdu7caWX7/BIVNcA16kBisrKy1KxZM6v3AgysoQ64RA1IXG5uLv2AZdQAd6gBiaMfsI8a4BZ1IDH0A25QB9yhBiSOfsA+aoA71IDE0Q/YRw1wizqQGPoBN6gD7lADEmezH5B4/4/8Nxy5jg/zDGpinkH9Me8zGJj3WV1YzzPzPmsK67mmftcU1nPton7zvKUS/ZY79GWJs/28ReL6HgSu5s35IXQfbPH111+rrKwsaW6UHnzwQd10001+74bnevToocWLF1tdY8mSJerSpYuysrKsruOFsJ5nqfJcu2h0ybS/Yt9/GiC77rvvPt1yyy1+70ZSe/jhh/Xb3/7Wl7XvvPNO/f73v/dl7UTF/oOuzU/oI8/kuaHIc3zIs33kueHIc3xc5FmivwoC+is3qN8NR/2OD/dj9pHnhiPP8SHP9pHnhiPP8SHP9pHnhiPP8SHP9pHnhiPP8SHP9pHnhiPP8bGd582bNysjI0PZ2dlWtp8syHTd5s6dq/vuu08bNmzwZHtkP3Gx662NOlBWVqbi4uJIX9MlasCBeF0DJOpAfeTk5Fi7F2B4XSXqQO2oAcGQk5Nj7Rcp6QcqUQPqRj/gP/oB+6gBdeNeIBjoB+yjDtSOGhAM9AP2UQPqRj/gP/oB+6gBdeNeIBjoB+yjDtSOGhAMNvsBiff/yH/Dkev4MM+gJuYZ1B/zPoOBeZ/VhfU8S8z73F9YzzX1u6Ywn2vb9ZvnLZXot2rH85ZgsP28ReL6HgSu5s35Id3vHfDakiVLlJKSou7du/u9K5HWo0cPbdmyxerNTDIVxzCz3ehWVFRo+fLlnGuftWnTRq1atdKSJUs0YsQIa+tE/RPUx48fr927d/u9G4iA3NxcpaSkWG1kyDN5hhvk2T7yDFdc5Jn+Khjor9ygfsMV7sfsI89whTzbR57hCnm2jzzDFfJsH3mGK+TZPvIMV2zneevWrWrVqpVSUlKsbD9ZkOm6ffjhh7rjjjt0+umn69BDD/V7dyIpdr0tKipS586dPd32li1bZIxRq1atPN1usqEG1I0aEAw5OTnasmWLlW1v2bJFffv2tbLtZEIdqB01IBhs/iIl/UAlakDdqAP+ox+wjxpQN2pAMNAP2EcdqB01IBjoB+yjBtSNOuA/+gH7qAF1owYEA/2AfdSB2lEDgsH2oEXe/yP/cIN5BtHhYp4B8z6DgXmf0cG8z2igfkeHi/rN85ZK9Fu143lLMNh+3sL1PRhczZvzQ+g+2GLZsmVq3769mjVr5veuRFpeXp4kaenSpRo8eLCVNZYvX65BgwZZ2Tbil5eXp3feecfa9r/55hvt3r2b5icAunfvrqVLl1pdY8eOHcrOzra6RpCNHTvW711ICsYYSYr8S4oNkZGRoUaNGmn79u3W1iDP5Dke5LnhyLN95Dk+5LnhXOSZ/io46K/so37Hh/rdcNyP2Uee40OeG44820ee40OeG44820ee40OeG44820ee40OeG44820ee40OeG852nnfu3KkmTZpY2XYyCUKm481LRUWFUlNTXexSg5B/78QyauMXfHbt2lVtjahKphogJUcdoAZ4q0mTJtZ+yW/Xrl1q2rSplW0nk2SqA8lQAyTqgJds1gD6gUrUAO9RA7xDP2BfMtUAKTnqADXAW/QD9iVTHUiGGiBRB7xEP2AfNcB71ADv0A/Yl0w1QEqOOkAN8Bb9gH3JVAeSoQZI1AEv2awBEu//BSH/yYBMNxzzDKLF9jwD5n0GA/M+o4N5n9FB/Y4GF/Wb5y2VgtBv8bwFdbH9vIXre3C4mDfnh+BXrARt2bJFrVu3trLta6+9Vscff7zWrVtX49/9/Oc/18knn6zS0lJJ0qxZs3TNNdcoLy9PnTp10ujRo/XEE0+ovLz8gGuMGTNGF110UY0/f+CBB3T88cdrz549VX/23Xff6eqrr1bfvn3Vtm1bnXXWWZo2bVqNv/v999/rrrvu0uGHH66srCx1795dV1xxhYqLixP9FsQtdg5sfdq6JBUVFSk3N9fKtpPxXPtxnqXKc23zPMe2bSPXiZxnqX7nOpHzLAX7XOfm5mrr1q1W1ygpKVFmZqbVNeoj3u95POfvuuuu0+WXX65vvvlG11xzTbWf7euuu06XXnppwtts6M9EPH8/3p/lcePGaezYsVq+fLl+9rOfqVOnThoxYoSef/55SdLEiRN11FFHqU2bNho1apSWLVsW1z5K0hdffKGRI0fqkEMOUZMmTTRw4MA6H7R9+eWXuvjii9WhQwd169ZNP/vZz6rdtCdyPOPHj9e3336rCy64QJ07d9bhhx+uyy67TDt37jzoPr/66qs6/vjjdffdd8d9nK5kZmZWq3FeI8/k+UDIs7fIM3neH3k+sCjnmf6K/ioIqN/Ub+p34sgzeT4Q8uwt8kye90eeD4w8k+dEt0meayLPB0eeyfP+yPOBkWfynOg2yXNN5PngbOa5tLQ0kFmO8TLTUt25rm+mE9nHusSTl0WLFum0005T69at1bRpUx1zzDF67bXXamzL67z8/Oc/1xNPPCFJuuyyy3Tdddd5cjzSwbNv43hqE+Tsx8QyaqMOxLYZ1DqQSL4acm0Peg2Q4qsDyVQDJO4BEpGVlaWSkhIr247SvUAQ7+8l7+4FEnnHI57c1KcGxHs8knc1IN7jqUsy1IDMzExqAP0A/YAHx1ObZKkBEv0A/QD9QEOPpy7JUAfoB+gH6Acafjx1SYYaQD9AP0A/4M3x1CZZaoBEP0A/QD/Q0OOpSzLUAfoB+gH6gYYfT12SoQbY7Ack3v/j/b8D49ruLeYZMM/AK8z7ZN6nF5LxXDPvM3HU78RQv6nfXuF5y95/x/MWnrcEle3nLVzfo3N9940JmWuvvdYcd9xxVrb9hz/8wUgyjz32WLU/X7t2rUlNTTXnnXeeMcaYGTNmmLS0NNOqVSszfvx4c/fdd5uhQ4caSeamm26q9neHDRtmOnbsWPXPvXv3Nj179qyx9mWXXWYkmZKSEmOMMWvWrDFdunQxTZs2NVdddZW55ZZbzJFHHmlSU1PNI488Uu3vXnrppSYtLc1ccsklZtKkSea6664zjRs3NoMHD/bk+1KbiooKk5aWZl588UVra7Rt29ZMmjTJyra9Ptf7n2djvD/XfpxnY4x57bXXjCRTVlZmZfv//ve/jSSzbt06z7cd73k2pv7nOt7zbEzwz/X5559vzjzzTKtrZGRkmOeff97qGvURz/c83vM3bNgw06NHD9OvXz8jyQwYMKDq3x199NGma9euCW+zoT8T8fz9eH+Wjz76aNO2bVvTvn1707t3b3PxxRebzMxMk5KSYkaNGmXS09PNT37yE3PmmWeazMxMc9hhh5ny8vKD7uPMmTNNo0aNTIcOHcwvfvELc9lll5kWLVqY9PR0M2fOnGrfw5ycHNO6dWvTvXt3c9NNN5mTTjrJSKqW6USOp0uXLqZDhw7muOOOMzfffLMZNmyYkWTOOuusan+3d+/eZvjw4VX/PHXqVJOenm5OPvlks2vXroMeo2tt2rSpUf+8RJ7Jc13Is/fIM3neH3k21bZJnveiv6K/CgLqN/Wb+p048kye60KevUeeyfP+yLOptk3yvBd5Js91Ic/eI8/keX/k2VTbJnneizyT57qQZ+/ZzPMdd9xh8vPzrWzbC15m2pi6c13fTMe7j3WJJy8ffvihadq0qenSpYu5/fbbzX333WcGDhxoJJlf//rX1bbndV4eeughM3jw4KpcHuz90XiOJ97s2zieZMt+THFxsZFk3nnnHc+3XVBQYCSZRYsWeb5tL8Sbr4Ze24NcA4yJvw4kQw2Irc89QGJGjRplLr30Uivb7tmzp7nnnnusbNsLYb+/9/JeIJF3POLJTaI1IN7j8boGxHs8sW0mYw14+umnTbNmzaxsm34g+PcC9AP0A/QD9AP0A94cT2ybyVgH6AfoB+gHGn48sW0mYw2gH6AfoB/w5niStQbQD9AP0A94czyxbSZjHaAfoB+gH2j48cS2mYw1wGY/YAzv//H+X924tnuPeQbMM/AK8z6Z9+kF5n3Gj3mf1G+vUL+jU7953lKJ5y08bwliXxZj+3kL1/foXN/9EroPtrjkkkvMqFGjrGx748aNJj093ZxwwgnV/vyRRx4xksz06dONMcaMGzfOZGVlma1bt1Z9ze7du027du1qBKK+obnwwguNJDNv3ryqrykpKTEjRowwmZmZpqioyBhjzPfff28yMjLMT37yk2rbmzRpkpFklixZUp9vRVxatGhhnnzySWvbb9q0qXn66aetbNvrc92QRjeec+3neX733XeNpGrfAy+9/fbbRpLZsWOH59uO9zwbU/9znciFMOjnety4cWbkyJHWtl9RUWEkmVdeecXaGvUR7/c83rocuxE+5ZRTarxgs3/j4+JnIt6/n8h/mJFk7rvvvqqvmTZtmpFkGjduXG1/xo4dG9c+lpeXm/79+5sWLVqYZcuWVf35okWLTEpKirnwwgur/iy2/t13311tG8cee6xp2bJl1T8nejwTJkwwFRUVVfszYMAA06JFi2p/d9+G5vnnnzdpaWnmtNNOM99///0Bj88vHTt2NA8//LCVbZNn8lwX8mwHed6LPFciz6baNsnzXvRX9Fd+o35Tv6nfiSPP5Lku5NkO8rwXea5Enk21bZLnSuSZPNeFPNtBnvciz5XIs6m2TfJciTyT57qQZzts5nnChAnmqKOOsrLthvI608bUnev6ZDqRfaxNPHmpqKgwAwYMMK1atTJr166t+prS0tKqfdl3DRt5eeCBB4wkM3/+/DqPJd7j2Xftg2XfxvEkW/ZjSkpKjCTz97//3fNtf/LJJ0aS+frrrz3fdkMlkq+GXtuDWgOMMQnVgWSoAfuuzz1A/M444wxzwQUXWNl2t27dzAMPPGBl2w0V9vt7r+8FEv3Fw3hyE28NiPd49l3bqxqQyPEkaw14/vnnTUZGhpVt0w9UCuq9AP0A/YAx9AP0A/QDXh5PstYB+gH6AfoBb44nWWsA/QD9AP2AN8eTrDWAfoB+gH7Au+NJ1jpAP0A/QD/gzfEkaw2w2Q/w/h/v/9WFa7sdzDNgnoFXmPfJvE8vMO8zfsz7pH57hfodnfrN85ZKPG/heUuQ2XzeYgzX9yhd3/2SqpApLi5W8+bNrWy7devWGjVqlD788ENt3Lix6s+nTp2qDh066KSTTpIk3Xjjjfrkk090yCGHVH1NaWmpDjnkEG3fvr3B+7FlyxZNmTJFxxxzjAYOHFj155mZmRo3bpxKS0v1+uuvS5LKy8slSbNmzdL8+fOrvnb8+PHasWOHDj/88AbvT12aN2+u4uJiK9uuqKjQrl27ONf/d679Ps+SrJ3r4uJipaamqkmTJp5vO97zLHGuJbuZliq/n1LlMQdJPN/zROpyzL333quePXvWua7XPxMVFRXauXNntf+Vl5db+ZlKS0vTTTfdVPXP/fv3lySNGDFCeXl5VX9+wgknSJIWLlx4wH2cP3++vvjiC51xxhk64ogjqv5+z5499eijj+rYY4+ttn5qaqpuueWWan921FFHaevWrfrmm28SPp7GjRvr7rvvVkpKStX2hw4dqm3bttW6veeee05jxozRqFGj9MYbbygrKyvhNV3Iysqqyp3XyHN15Jk820aeyXM8yDN5luiv6K/8R/2mflO/E0eeqyPP5Nk28kye40GeyTN5ro48k2fbyDN5jgd5Js/kuTryTJ5ts5nnkpKSwB63rUxLB8611++LNiQvn332mT777DONGDFC7du3r/qajIwMXXLJJSotLdV7772X0Pc1JtG8xHiRf6+zn+jxJEv2YzIzM5WSkqKSkhLPtx3Ua7oU//vYXl/bg1QDJFmrA37WgNh63APELzMz0+q9QBBrgBT++/tkvBeo61gkcS9gUVZWlsrKymSM8Xzb9AM1BeleIGg1QKIf8AP9AP0A/YD3x5OMdYB+gH4gCPcC9AP+oB+gHwhKDZDoB/xAP0A/QD/g/fEkYx2gH6AfCMK9AP2AP2z2A0G9Fwh7/nn/7+DCem1nngHzDLzCvE/mfXoh2c613+dZYt5nQyXLuaZ+Nwz1uxLPW2rieQvPW4LG5vMWiet7lK7vfkn3ewe8tnPnzmpF2Wtjx47VW2+9pTfeeENXXHGFVq5cqY8//li33nqrUlMrPyekZ8+eKioq0sMPP6yPPvpIK1eu1LJly7R9+3ZP9m3JkiUyxmjHjh0677zzqv27WCC/+uorSVKTJk1011136f/9v/+nAQMGqFevXho+fLhOO+00nXLKKUpLS2vw/tQlOzvbWmh27twpY4yaNm1qZftScp1rP89zrDHx4mJQm507d6pp06ZVNxFei+c8S5xryd3g1YyMDGtr1Ec83/NE6rJUeRN2zDHHHHBdr38mPv74Yw0ZMqTadqZMmaLRo0d7/jPVvn37ao1so0aNqv58X7Ftx859XfsYy2J+fn6NtcaPH1/jzzp06FCjiYjdxO7YsSOhY5GkNm3aVB1DTMuWLWvd3ueff65LL71UFRUVMsYEtqGXKhsZGy+QSeR5f+R57z6SZzvIM3mOB3kmzxL9lUR/5TfqN/Wb+p048lwded67j+TZDvJMnuNBnskzea6OPO/dR/JsB3kmz/Egz+SZPFdHnvfuI3m2w2aey8rKApflGBuZlg6ea6/fF/3oo4/qnZepU6dKkoYNG1bjawYMGCBJWrp0aZ3HciCJ5GVfXuTf6+xL8R9PMmV/X5mZmVYHVwWxDsR73fT62h6kGiBJy5Ytk+R9HfCzBkjcAyQqKytL3333nZVtl5WVBfZ7EPb7+2S8FzhQr7J8+XJJ3AvYENvHkpKSGsfYUPQDNQXpXiBoNUCiH/AL/QD9AP3AgdEP1B/9QE30A/QDQUM/QD8QlBog0Q/4hX6AfoB+4MDoB+qPfqAm+gH6gaCx2Q8E9V4g7Pnn/b+DC+u1nXkGzDPwCvM+mffplWQ6135net/98Rr1O1jnmvrdMNTvSjxvqYnnLTxvCRqbz1skru9SdK7vfkk9+Jckl4yMDJWVlVnb/umnn66WLVvq1VdflSS99NJLkqRLLrmk6mseeughdezYUffee6/Kyso0cuRI/e1vf9PQoUPrve6WLVuq/n9RUZGkygdEGRkZ1f6Xk5OjCy+8UH369Kn6+ttvv13Lly/XHXfcoSZNmuiJJ57Q6aefrj59+mj9+vX13qeDsfkJXbEH0Zzrvefar/Mce0Bs65Oo0tPTfT/Pkvfnet/zLCXPubZ5cxa7iFdUVFhbo74O9j1PtC7HkxevfyZyc3N14YUXVvtfly5d4v77ddn/Z1lSnQ8h9725rE1d+7hp0yZJlY1KPA70EPRgn0ZX2/E0btw47u1t3bpVF1xwgcaMGaO3335bU6ZMOcje+mfPnj3Wbp7Jc3XkmTzbRp7J8/7IM3muC/0V/VUQUL/rRv2mfteGPFdHnsmzbeSZPO+PPJPn2pDn6sgzebaNPJPn/ZFn8lwb8lwdeSbPttnMc2pqaiCzHON1pmNfeyBevy/akLxs3rxZkqpqwL5iv+wcz89GQ/OyLy/y35DsSw07nmTK/r727Nmj9PR0z7cbq/dBrQPxXPe8vrYHqQZI3tSBoNUAiXuARNm+FygvL7eybS+E+f7e1b1AbZmR6lcHDtSruLoXaOjxJGMNiGXU1r1AUO8DJPoB+oHa0Q94h36gpiDVAIl+oDb0A96iH6iJfoB+IGjoB+gH6Aeqox/wDv1ATUGqARL9QG3oB7xFP1AT/QD9QNDY7Ad4/6863v/j2m4b8wyYZ+CVjAzmfSbam9nCvM/6Yd5nddTvYJ1r6nfiqN818bylJp638LwlaGw+b4lt1++aL3F9l+xf331jQmb06NHmjDPOsLrGlVdeadLT083mzZvND37wAzNkyJCqf7dx40aTmppqDj30ULN9+/Zqf++oo44y7du3r/Znw4YNMx07dqz65z59+pi8vLwaa/bq1ctIMiUlJebLL780ksw555xT4+v27Nljtm7dakpKSowxxpSUlJitW7eaPXv2VH3NunXrzPjx440kc9ttt9XvmxCHNm3amD/+8Y/Wtp+RkWFeeOEFa9s3xrtzvf95Nsbbc+3nef7ggw+MJLN+/Xor23/99deNJFNaWmpl+8Yc+Dwb07BzHc95NsYkxbkeP368Of74461tv6yszEgyr7/+urU16iOe73kidbm2ehBz9NFHm65duxpj3P1MxPv34/1ZPvroo03Pnj2rfU1RUZGRZK644opqf/7cc88ZSeall1464D6+9dZbRpK54YYbavy7Z5991jzzzDNV/1zb+sYYc+uttxpJZuHChQ0+HmOMufPOO6ttzxhjevfubY466ihTUVFhNm/ebHJyckzr1q3Npk2bDnh8funSpYt58MEHrWybPJPnupBnO8hzJfK8F3kmz3Whv6K/8hv1m/pN/U4ceSbPdSHPdpDnSuR5L/JMnmtDnslzXcizHeS5EnneizyT59qQZ/JcF/Jsh808//KXvzQDBw60su2G8jrTxtSd6/pkOt59rEs8efnnP/9pJJmbb765xtc89thjRlK1d0Zt5OWBBx4wksz8+fPrPJZ4j+dAa++ffRvHk2zZjykvLzeSzGuvveb5tufNm2ckmVWrVnm+7YaKN19eXNuDWgOMMQnVgWSoAQdan3uAup199tnmvPPOs7Ltww47zDz00ENWtt1QYb+/9/peIN7MxI43ntzEWwPiPZ4DrV3fGpDI8SRrDXjxxRdNamqqlW3TD1QK6r0A/QD9gDH0A/QD9ANeHk+y1gH6AfoB+gFvjidZawD9AP0A/YA3x5OsNYB+gH6AfsC740nWOkA/QD9AP+DN8SRrDbDZD/D+H+//1YVrux3MM2CegVeY98m8Ty8x7/PgmPdJ/fYK9Ts69ZvnLZV43lKJ5y3BZPN5izFc342JzvXdLwf+KNMk1Lx5cxUXF1tdY+zYsdqzZ49+97vf6fPPP9ell15a9e9WrVqliooKnXXWWWrevHnVn69Zs0aff/75QbfdpUsXrVy5ston2nz55Zdavnx51T8fccQRat26tf73f/+3xiff3H///WrZsqX+85//SJJmzJihli1b6sUXX6z6mrZt2+qmm26SVPmJQrYUFxdX+x54rVmzZpzr/zvXfp9nSdbOdWy7O3bssLJ96cDnWWrYuY7nPEvJc66zs7OtbT89PV1paWlVnwoaFPF8zxOpy/Fy9TMR79+P92fZhmOOOUaNGzfWjBkzqv35woULdckll+iDDz5IeJu2jic7O1spKSnKycnRQw89pE2bNun6669v0DZtKSkpsfrpu+R5L/K8F3m2gzxXIs+VyHNN5Hkv+iv6K79Rv6nfiaB+VyLP1ZHnvcizHeS5EnmuRJ5rIs+VyHN15Hkv8mwHea5EniuR55rIcyXyXB153os822Ezz1lZWYHLckzQMx3vPtYlnrwceeSRyszM1HvvvVfj78+aNUtpaWk65ZRTqv6M/B9cMmU/pqSkRJKUmZnp+bZj2wxiHYg3X17XgSDVAEkJ1QFqQHyStQ5wL1ApSPcCDb2/9/pewM8aIHlfB6gBe5WWllID/k+QakC8+1gX+oGDox+oRD9AP5AM9wLJUgOk5K0D3AtUCtK9AP1AdfQD9tAPBLMGxLuPdaEfODj6gUr0A/QDyXAvkCw1QEreOsC9QKUg3QvQD1RHP2CPzX6A9/+q4/2/vbi228E8A+YZeIV5n8z79FKynGu/z7PEvM+6UL/jR/2OTv3meUtNPG+pH5632GPzeYvE9V2KzvXdL3ywRT0MGjRIeXl5mjhxopo0aaJzzz236t/16NFDzZo100svvaS33npLy5Yt09/+9jcNGTJE2dnZ2rFjh5YsWVLntgcOHKjS0lK4CzzQAAAgAElEQVRdcsklmjVrlv7617/qjDPOUIsWLaq+JjMzU/fff7+2b9+uiy66SJ999pmWL1+uhx9+WPfdd59OOukkDR06VJI0dOhQtWnTRr/+9a81a9Ysbdu2TZ9++qluuOEGSdKPfvQjK9+jPXv2aPfu3Ul/U5ws59qv8yxJ27dvV1pampo0aWJl+7ELj81zfaDzLDXsXMdznqXkONe2mx+p8vsQe7ElKOL5nidSl+Pl6mci3r8f78+yDYceeqhuuOEGFRQU6Morr9R///tfPffccxo9erTS09N15ZVXJrxNF8dzySWX6Pjjj9eUKVM0bdo0z7brFduNDHneizzvRZ7tIM/kmTzHL+p5pr+iv/Ib9Zv6XV9Rr9/keS/yvBd5toM8k2fyHD/yTJ5jyPNe5NkO8kyeyXP8yDN5jiHPe5FnO2zmOYhZjgl6puPdx7rEk5f27dtr/Pjxmj9/vq6++motWLBAS5Ys0V133aVXX31VF110kbp37161TRt56dy5syTpySef1CeffNKg40mU7fwHPfsxsYzaqAOxbQbxl6jizZfXdSBINUBSQnWAGpC4ZKkDpaWlVobXSZU/80GsAVLw7wUaen/v9b2AnzUg3uNJBDVgr5KSEqs1gH6guiDdC9AP0A9I9AP0A8lxL5CMNUBKnjpAPxDMewH6gcSPJxHUgL3oB4JZA+Ldx7rQDxwc/UAl+gH6gWS4F0jGGiAlTx2gHwjmvQD9QOLHkwhqwF42+wEpmD1B2PPP+3/RzTXzDJhn4BVmQDLv00vJcq6Z99kw1O/4UL+p317heUtNPG/Zi+ctwWD7eQvX9+hc331jQuaee+4xPXv2tL7OvffeaySZiy66qMa/e/nll02zZs2MJCPJtGrVyjz77LPm1VdfNU2bNjXp6elVXzts2DDTsWPHqn/euXOnGTVqVNXf7dChg7nlllvMLbfcYiSZkpKSqq999NFHTaNGjaq+Nj093Vx55ZWmqKio2v689957pn379lVfJ8k0atTI/OY3v7HwnalUVFRkJJl3333X2hp9+/Y1d9xxh7Xtx3hxrvc/z8Z4f679OM/GGPPnP//ZHHLIIda2/+WXXxpJpqCgwNoaxhz4PBtT/3OdyHk2JtjneuTIkWbcuHFW12jRooX5y1/+YnWN+oj3ex7P+autHsQcffTRpmvXrglvs6E/E/H8/Xh/lo8++uga1+HYNeGKK66o9ufPPfeckWReeumlg+7jnj17zC233GLS0tKq9qFdu3bm5ZdfrvE9rO0+4NZbbzWSzMKFCxt8PMYYc+edd1bbnjHG9O7d2wwfPrza13355ZcmIyPDdOrUyWzfvv2gx+lSs2bNzNNPP21t++SZPNeFPHuPPJNn8lyJPB8c/RX9VRBQv6nf+6N+Hxx5Js91Ic/eI8/kmTxXIs8HR57Jc13Is/fIM3kmz5XI88GRZ/JcF/LsPZt5/u1vf2uOOOIIK9v2gpeZNqbuXNc304nsY23iyUtJSYm5/vrrq21fkrnyyitr/LcaG3nZvHmzGTRokJFkTjjhhAYfT7zZt3E8yZb9mA0bNhhJ5oMPPvB828uWLTOSzGeffeb5tr2QSL4acm0Pcg0wJv46kAw14EDrcw9Qt2HDhplrrrnGyrYHDBhgbr31Vivb9kLY7++9vBdI5B2PeHOTSA2I93i8rgGJHE+y1oDHHnvMtGnTxsq26QcqBflegH6AfoB+gH6AfoB+gH6AfoB+gH6AfoB+gH6AfoB+gH6AfoB+wAb6gUr0A5XoB4JZA2z2A8bw/h/v/9WNa7v3mGfAPAOvMO+TeZ9eY97ngTHvk/rtFep3dOo3z1sq8bylEs9bgtWXxdh+3sL1PTrXd7+kGGOMQuTpp5/Wtddeq+LiYqWmpvq2H0VFRZo/f77atWun3r17KyUlperPt27dqiOOOOKAf3/Tpk1au3at+vfvX/V3a1NcXKz58+drx44dys/PV6dOnWr9ul27dqmgoECrV69Wbm6u+vbtqzZt2tT/AA9i/vz5GjBggBYvXqwePXpYWWPUqFFq06aNnn32WSvbj1eQzrXr8yxJt912m/75z3+qoKDAyvaLi4vVokULvfXWW1Y/vSgeDTnX8Z5nKbjnunv37hozZozuuOMOa2u0a9dOt912m6699lpra9RXvN/zeOtyIlz8TMT79xP5WbZh586dKigoUHZ2trp3797gT5jz+3j8YoxRZmZm1acd2kCea0ee9yLP3iDP5Fny/+efPHvDRZ7pr+ivgoL6Xcnvekf99gb3Y+RZ8v/nnzx7gzyTZ8n/n3/y7A3yTJ4l/3/+ybM3yDN5lvz/+SfP3iDP5Fny/+efPHvDdp4feeQRPfLII1q9erXn2/ZK0DOdyD7WJZ68bNy4UZ9//rmysrLUr18/tWzZss7t2cjLt99+q+bNm6t58+YH/Vry7601a9bosMMO00cffaRBgwYlzba9kki+vK4DQaoBUvx1gBoQPkOGDNHgwYP18MMPJ9W2vRL0ewEv3oHw8l7A7xogeVsHqAF279npBw4sSPcC9APRrQP0A/QDMclyL0AN8B79QLDvBegHaqIf8Bb9QLBrQCL7WBf6gQOLeh2gH6AfiEmWewFqgPfoB4J9L0A/UBP9gLds37Pz/l/teP9vL67t3mCeAfMMvMS8T+Z9uhakc828T7uo39Rv6rc3eN5yYDxvqcTzFn/Zft7C9T0613e/hO6DLebMmaPjjjtOq1ev9uRig/qZOnWqLr74Yu3atUsZGRlW1rjhhhs0b948zZs3z8r2EZ+zzz5bqampeuWVV6yt0b59e/3qV7/SjTfeaG0NHFhpaamaNm2qF154Qeeee661dfr06aNzzjlHd999t7U1AEjfffedWrZsqXfffVcnnXSSlTXIM+AGeQbCw0WeJfqrIKC/AsKF+zEgPMgzEB7kGQgP8gyEB3kGwsN2np966in94he/0Pbt2z3fNgBvFBYWql+/flq0aJF69uzp6ba3b9+uFi1aaPr06TrllFM83TYA7/Tq1UujR4/WnXfe6fm2R40apfbt2+upp57yfNsAvHHnnXfq73//u5VBCfQDQPDRDwCgHwCijX4AiDb6AQD0A0C02ewHJN7/A1xhnkF0uJhnwLzPYGDeZ3Qw7zMaqN/R4aJ+87wFCD7bz1skru9B4GrenB/8+4gsS2KfNrVkyRKf9yTalixZom7dulm7SZIqzzXn2X9Lliyx9ilvMZxr/3311Vfas2eP9XOdk5OjoqIiq2sAUFXOcnJyrK1BngE3yDMQHi7yLNFfBQH9FRAu3I8B4UGegfAgz0B4kGcgPMgzEB6285ybm6vi4mKVlJRY2T6Ahtu8ebOkyrx6LTs7W5mZmVVrAAimoqIiKzVA4r4eSAZFRUX0A0CE0Q8AoB8Aoo1+AIg2+gEA9ANAtNnsByTqAOAK8wyiw8U8A+Z9BgPzPqODeZ/RQP2ODhf1mz4LCD7bz1skru9B4GrenB9C98EWubm5ysnJITQ+W7p0qZPm57vvvtPGjRutroO6VVRU6KuvvnJyrpcuXWp1DRzYkiVLlJKSou7du1tdJzc3lwYIcCD2cpfNRoY8A26QZyA8XORZor8KAvorIFy4HwPCgzwD4UGegfAgz0B4kGcgPGznObbdLVu2WNk+gIYrKipSamqqWrZsaWX7rVq14poOBFhFRYW2bNli9V6A4XVAsG3evJl+AIgw+gEg2ugHANAPANFGPwBEG/0AAJv9gMT7f4ArzDOIDhfzDJj3GQzM+4wG5n1GB/U7OlzUb563AMFn+3mLxPU9CFzNm/ND6D7YQqoMzaJFi/zejUhbtGiRk+Ynthb8sWLFCn3//ffKy8uzuk7Pnj05zz5bvHixOnXqpCZNmlhdhwYIcCP2H3Rzc3OtrUGeATfIMxAeLvIs0V8FAf0VEC7cjwHhQZ6B8CDPQHiQZyA8yDMQHrbzHHshmzwDwbV582YdcsghSktLs7J9hlUAwfbdd9+pvLzc6uAqagAQbEVFRfQDQITRDwDRRj8AgH4AiDb6ASDa6AcA2OwHJN7/A1xhnkF0uJpnwLxP/zHvMxqY9xkd1O/ocFG/ed4CBJ/t5y0S1/cgcHV990MoP9hi4MCBmj17tt+7EVnbtm1TQUGBBg0aZHWdDh066LDDDtOHH35odR3U7d///rcaNWqk/v37W11n4MCB2rBhA5/y5KN///vfGjx4sPV1aIAAN4qKipSVlaWmTZtaW4M8A26QZyA8XORZor8KAvorIFy4HwPCgzwD4UGegfAgz0B4kGcgPGznOfZCNr+oDgTX5s2brQ2skRhWAQRdLJ+2fokqNzeXGgAEnM17AfoBIPjoB4Boox8AQD8ARBv9ABBt9AMAXNwL8P4fYB/zDKLD1TwD5n36i3mf0cG8z+igfkeDq/rN8xYg+Gw/b5G4vgeBq+u7H0L5wRbDhw9XQUGBNm3a5PeuRNKsWbNkjNGwYcOsr3XCCSdo5syZ1tdB7WbMmKHjjjtOjRo1srrOMccco+zsbM2YMcPqOqjdnj17NHv2bA0fPtz6Wu3atdPatWutrwNE3dq1a9WuXTura5BnwA3yDISHizxL9Fd+o78Cwof7MSA8yDMQHuQZCA/yDIQHeQbCw3aeW7ZsqdTUVH6BAgiwoqIiq788wS9RAcEWGybTqlUrK9vPycnR1q1bVV5ebmX7ABrO5r0A/QAQfPQDQLTRDwCgHwCijX4AiDb6AQC27wV4/w9wg3kG0eByngHzPv3FvM/oYN5nNFC/o8NV/eZ5CxB8tp+3SFzf/eby+u6HUH6wxQknnKC0tDTNmjXL712JpJkzZ6p///7WPml9X8OHD9fcuXO1e/du62uhppkzZzopjunp6TruuON4qOGTjz/+WMXFxRoxYoT1tTp37qyNGzdq165d1tcComzFihXq0qWL1TXIM+AGeQbCw0WeJforv9FfAeHD/RgQHuQZCA/yDIQHeQbCgzwD4WE7z+np6Tr00EO1Zs0aa2sAaJjVq1erU6dO1rbfoUMHagAQYKtXr1ZaWpq1QRcdO3ZUeXm5vv32WyvbB9AwZWVlWrdunTp27Ghl+/QDQPDRDwDRRj8ARBv9AAD6ASDa6AeAaLPdD0i8/we4wjyDaHA5z4B5n/5i3md0MO8zGqjf0eGqfvO8BQg2F89bJK7vfnN5ffdDKD/Yonnz5howYACh8cmMGTOcBebEE0/U999/r3nz5jlZD3stXrxYa9eudXauhw8frpkzZ8oY42Q97DVjxgx16NBB3bt3t75W165dZYzRqlWrrK8FRNnKlSvVtWtXq2uQZ8AN8gyEh4s8x9Bf+Yf+Cggf7seA8CDPQHiQZyA8yDMQHuQZCA9XeV65cqXVNQDU38qVK63+gnuXLl20YsUKa9sH0DArVqxQx44dlZGRYWX7sfrCvQAQTKtXr1Z5ebnVnoB+AAg2+gEg2ugHgGijHwBAPwBEG/0AEG2u+gHe/wPsY55BNLicZ8C8T38x7zMamPcZHdTv6HBVv3neAgSbi+ctMVzf/ePy+u6HUH6whSSNHDlS06dPJzSOrVmzRgsWLHDW/HTq1Endu3fXtGnTnKyHvd555x21aNFCRx99tJP1TjzxRG3atEn//e9/nayHvaZPn66TTjrJyVqxmyoaIMAuF5+gTp4BN8gzEB4u8hxDf+Uf+isgfLgfA8KDPAPhQZ6B8CDPQHiQZyA8XOS5S5cuZBkIsBUrVlgfVrFhwwbt2rXL2hoA6s/2kIv27durUaNGDLADAip2n26zDtAPAMFGPwBEG/0AEG30AwDoB4Boox8Aos1FP8D7f4AbzDOIBpfzDCTmffqFeZ/RwbzP6KB+R4PL+s3zFiDYXDxvieH67h/X13fXQvvBFqNHj9aKFSs0e/Zsv3clUp5//nm1bNlSJ554orM1zzvvPE2ZMkXl5eXO1kTluf7pT3+q9PR0J+sdeeSR6tmzp55//nkn66HSV199pY8++kjnnXeek/Wys7PVsmVLGiDAooqKCq1evdp6E0OeAfvIMxAervIcQ3/lD/orIHy4HwPCgzwD4UGegfAgz0B4kGcgPFzluWvXrmQZCKht27Zp69atVn/BvWvXrjLGaPXq1dbWAFB/tofXpaSk6LDDDmNgDRBQK1asUNOmTZWbm2ttDfoBILjoBwDQDwDRRj8ARBv9AAD6ASDaXPQDvP8H2Mc8g2hwPc9AYt6nX5j3GR3M+4wG6nd0uKzfPG8Bgs3F85YYru/+8OP67lpoP9iib9++6t+/vyZPnuz3rkTKlClTNHr0aGVlZTlbc8yYMVq3bp1mzJjhbM2oW7hwoT777DNdfPHFTte98MIL9eKLL6qsrMzpulE2efJktWnTRiNHjnS2Zrdu3fT11187Ww+Imm+++UYlJSVO/kMTeQbsIs9AeLjMcwz9lXv0V0D4cD8GhAd5BsKDPAPhQZ6B8CDPQHi4ynOXLl34JXUgoGLZtFkHYtumDgDBtHLlSqvD6ySGWAJBtnLlSvoBIMLoBwDQDwDRRj8ARBv9AAD6ASDaXPQDEu//AbYxzyAa/JhnwLxPfzDvMxqY9xkd1O/ocF2/ed4CBJer5y0xXN/d8+P67lpoP9hCqmyAXn75Ze3evdvvXYmE//73v1qwYIHz5qd79+4aOHAgN8UOPffcc+rcubOOP/54p+tefPHFKioq0vTp052uG2UvvviiLrroImef1ClJffr00YIFC5ytB0RNYWGhpMqs2UaeAbvIMxAeLvMcQ3/lHv0VED7cjwHhQZ6B8CDPQHiQZyA8yDMQHq7y3K1bN+3cuVMbNmywug6AxK1YsUIpKSnq3LmztTWys7PVqlUrhlUAAVReXq5Vq1ZZ/yWqrl27UgOAgPr666+t1wD6ASC46AeAaKMfAEA/AEQb/QAQbfQDAFz0AxLv/wG2Mc8gGvyYZyAx79M15n1GB/M+o4P6HQ1+1G+etwDB5ep5SwzXd/f8ur67FOoPtrjgggu0c+dOvfnmm37vSiRMnjxZeXl5GjhwoPO1x4wZo9dff13FxcXO146a8vJyvfDCC7rooouUmuq2hHTu3FnDhg3Ts88+63TdqJo9e7aWLl2qiy66yOm6+fn5KigocLomECWFhYXq1KmTWrZsaX0t8gzYRZ6B8HCZ5xj6K7for4Bw4n4MCA/yDIQHeQbCgzwD4UGegfBwlefevXtLEr+oDgRQYWGhunXrpsaNG1tdp3fv3tQAIICWLVumkpIS60MuqAFAcBUWFjqpARL9ABBE9ANAtNEPAKAfAKKNfgCINvoBAC76AYn3/wDbmGcQfn7NM5CY9+ka8z6jgXmf0UH9jg4/6jfPW4DgcvW8JYbru1t+Xt9dCvUHW7Rt21Y//vGPNXHiRL93JfS2bNmiZ555RuPGjfNl/dGjRys1NVVPPPGEL+tHyUsvvaR169bp0ksv9WX9cePG6R//+Ie++uorX9aPkokTJ+qYY47RD37wA6fr9uvXT+vWrdPGjRudrgtERWFhofr16+dkLfIM2EWegfBwmed90V+5Q38FhBP3Y0B4kGcgPMgzEB7kGQgP8gyEh6s8t23bVm3atFFhYaH1tQAkxlUd6NevH8MqgAAqKChQWlqaevXqZXWd/Px8bdmyRWvXrrW6DoDElJaWaunSpcrPz7e6Dv0AEFz0A0C00Q8A0UY/AIB+AIg2+gEg2lz1AxLv/wG2Mc8g/PyaZyAx79Ml5n1GB/M+o4P6HQ1+1W+etwDB5PJ5y764vrvj5/XdpVB/sIUk3XHHHfrkk0/03nvv+b0rofboo48qIyNDV1xxhS/rH3LIIbrqqqv08MMPa/fu3b7sQxQYY/TAAw/o/PPP1+GHH+7LPpx77rnq2rWrHnzwQV/Wj4qFCxfqH//4h26//Xbna8cegPPyGWBHQUGB08ExEnkGbCHPQHi4zPO+6K/coL8Cwov7MSA8yDMQHuQZCA/yDIQHeQbCw2We8/PzyTIQQK7qQKwGGGOsrwUgfoWFhcrLy1Pjxo2trhOrMwywA4Jl8eLFKi0tdXovACBY6AeAaKMfAKKNfgAA/QAQbfQDQLS57Ad4/w+wi3kG4ebnPIMY5n26wbzPaGDeZ3RQv6PDr/rN8xYgmFw+b9kX13c3gnB9dyX0H2xx5JFH6qSTTtJvfvMbv3cltHbs2KHHH39c119/vZo3b+7bftx4443avn27nn76ad/2IezeeOMNLViwQLfccotv+5CWlqabb75ZzzzzjFavXu3bfoTdfffdp549e+rHP/6x87Xbtm2rNm3a8B+aAAtin87Xt29fJ+uRZ8Ae8gyEh+s874v+yg36KyCcuB8DwoM8A+FBnoHwIM9AeJBnIDxc57lfv3788gQQMLt379ZXX32l/Px862v169dPxcXFWrVqlfW1AMSvsLDQSQ1o1aqVOnbsyH09EDCFhYXKzMxUXl6e9bXoB4DgoR8AQD8ARBv9ABBt9AMA6AeAaHPZD/D+H2AP8wzCz895BjHM+7SPeZ/RwbzP6KB+R4Of9ZvnLUAwuXzesi+u724E4fruSug/2EKSbr/9dn3wwQeaPXu237sSSo8//rhKS0t17bXX+rofhx56qC6//HL97ne/U2lpqa/7Elb333+/zjrrLF8eUO5r7Nixat++vSZOnOjrfoTVV199pVdeeUV33HGHUlP9uUwcddRR+vjjj31ZGwizzz//XKWlpTrqqKOcrUmeATvIMxAefuR5X/RXdtFfAeHF/RgQHuQZCA/yDIQHeQbCgzwD4eE6z/n5+fryyy9VXl7uZD0ABxfLpIuhNfn5+UpJSWGAHRAwrgZXSZUD7PhFSiBYCgsL1atXL2VmZlpfi34ACB76AQD0A0C00Q8A0UY/AIB+AIg2l/2AxPt/gC3MMwi3IMwziGHep13M+4wO5n1GA/U7Ovyu3zxvAYLH9fOWfXF9tytI13cXwn+Ekn74wx9q2LBhmjBhgowxfu9OqGzevFkPPvigxo8fr5YtW/q9O7r55pu1adMmPfbYY37vSuhMnTpVn332mW6//Xa/d0UZGRm66aab9Oc//1nLly/3e3dCZ8KECTriiCN0zjnn+LYPQ4cO1dy5c31bHwir2bNnKzc31+mn85FnwA7yDISHH3neF/2VXfRXQHhxPwaEB3kGwoM8A+FBnoHwIM9AeLjOc//+/bV7924tWbLEyXoADu7zzz9X06ZNdfjhh1tfq3nz5urWrZvmz59vfS0A8fnuu++0cuVK9evXz8l6/fv3pwYAATN//nynNYB+AAgW+gEg2ugHANAPANFGPwBEG/0AAJf9gMT7f4AtzDMItyDMM4hh3qc9zPuMDuZ9Rgf1OxqCUL953gIEj+vnLfvi+m5XkK7vLkTigy0k6Y9//KM++eQTPfPMM37vSqhMmDBBWVlZmjBhgt+7Iknq1KmTJkyYoLvvvltr1671e3dCo7i4WL/61a90+eWX68gjj/R7dyRJV1xxhXr06KFrrrnG710JlXfffVevvfaaJk6cqLS0NN/2Y+jQoVq9erXWrFnj2z4AYTRnzhwdd9xxSklJcbYmeQbsIM9AePiR5/3RX9lBfwWEG/djQHiQZyA8yDMQHuQZCA/yDISH6zz369dPzZo14xfVgQCZPXu2Bg4c6Oy/ew0ePJgaAATI3LlzZYzR4MGDnaw3ePBgLVy4UFu2bHGyHoADKy8v18cff6whQ4Y4WY9+AAge+gEg2ugHgGijHwBAPwBEG/0AEG2u+wGJ9/8AW5hnEF5BmWewL+Z92sG8z2hg3md0UL+jIwj1m+ctQLD48bxlf1zf7Qji9d22yHywRX5+vq6++mrdfPPN2rx5s9+7Ewr/+c9/9Le//U2TJk1Sdna237tT5dZbb1W7du30y1/+0u9dCY0777xTu3fv1m9/+1u/d6VKenq6Hn/8cb333nt67bXX/N6dUCgpKdG1116rc889V6NGjfJ1XwYOHKjMzExePAE8NnfuXA0dOtTpmuQZsIM8A+HhR573R3/lPforIPy4HwPCgzwD4UGegfAgz0B4kGcgPFznOT09Xccee6zmzJnjbE0ABzZnzhyndWDIkCGaN2+eysvLna0JoG5z5sxRXl6eWrdu7WS92C9rzZs3z8l6AA6ssLBQ27Ztc3YvQD8ABA/9ABBt9ANAtNEPAKAfAKKNfgCINtf9gMT7f4AtzDMIpyDNM9gX8z69x7zP6GDeZzRQv6MjKPWb5y1AsPjxvGV/XN+9F9Tru22R+WALSbr33nvVqFEj3X777X7vStIrLy/XFVdcoRNPPFHnnHOO37tTTVZWlh599FG99NJLeuedd/zenaS3YMECPf7443rwwQeVm5vr9+5UM3ToUI0dO1Y33HCDduzY4ffuJL37779f69at08SJE/3eFTVu3Fj9+/fn5TPAQ8uXL9f69eudNzHkGfAeeQbCw68814b+ylv0V0C4cT8GhAd5BsKDPAPhQZ6B8CDPQHj4lechQ4aQZSAgNm7cqOXLlzutA0OHDtX27du1YMECZ2sCqJvr4XU5OTnKy8vjXgAIiDlz5ig7O1u9e/d2tib9ABAc9AMA6AeAaKMfAKKNfgAA/QAQbX70A7z/B3iPeQbhFaR5Bvtj3qd3mPcZHcz7jA7qdzQEqX7zvAUIFj+et9SG67u3gnx9tylSH2zRvHlz/f73v9df//pXTZ8+3e/dSWr33nuvFi9erMcee8zvXanVKaecorPPPltXXXWVtm7d6vfuJK3vv/9eY8aM0THHHKNLL73U792p1YMPPqhdu3bpF7/4hd+7ktQ+/fRTPfDAA7r77rvVoUMHv3dHknT88cdr1qxZfu8GEBqzZs1SkyZNNGDAAOdrk2fAW+QZCA8/81wb+itv0F8B4cf9GBAe5BkID/IMhAd5BsKDPAPh4Veehw4dqmXLlmn9+vVO1wVQ0+zZs5WamqpBgwY5W7Nv375q0aIFv0QFBEBZWZk++eQT51DnO6cAACAASURBVEMuhg4dSg0AAiI2vC4tLc3ZmvQDQHDQDwDRRj8AgH4AiDb6ASDa6AcA+NEPSLz/B3iNeQbhFMR5Bvti3qd3mPcZDcz7jA7qd3QErX7zvAUIDr+et9SG67s3gn59tylSH2whSeeff74uvPBCjRkzRmvXrvV7d5LSrFmzdN9992nixInKy8vze3fq9OSTT8oYozFjxsgY4/fuJKUbb7xRy5cv1zPPPKPU1GCWi9atW+vZZ5/VU089pcmTJ/u9O0mpuLhYF154oYYMGaLrr7/e792pcvLJJ6uwsFBr1qzxe1eAUHjnnXd0wgknKCsry/na5BnwFnkGwsPPPNeG/qrh6K+AaOB+DAgP8gyEB3kGwoM8A+FBnoHw8CvPgwcPVmpqqubNm+d0XQA1zZ07t2qQlCuxQVlz5851tiaA2s2fP1+7du3SkCFDnK47dOhQffLJJyorK3O6LoCa5s6d67wG0A8AwUE/AEQb/QAA+gEg2ugHgGijHwDgRz8g8f4f4DXmGYRPUOcZ7I95nw3HvM/oYN5nNFC/oyOI9ZvnLUBw+PW8pTZc3xsuWa7vtgTzztWyP/3pT8rNzdUFF1ygPXv2+L07SWXjxo264IILdNZZZ+mqq67ye3cOqFWrVnr++ec1ffp0TZo0ye/dSTqvvPKK/vSnP+nPf/5zYG6I63L66afruuuu09VXX61Fixb5vTtJ58orr9R3332nF154IRCf2hUzbNgwNWnSRO+++67fuwIkvT179uj999/XqFGjfFmfPAPeIc9AePid57rQXzUM/RUQfn7Xb/IMeIc8A+FBnoHwIM9AeJBnIDz8zHOLFi3Uv39/vf/++87XBlDd+++/r2HDhjlfd9iwYZoxYwa/7Ar47P3331fbtm3Vo0cPp+sOGzZMu3bt0kcffeR0XQDVLV++XKtWrXJ+L0A/AAQH/QAQbfQDQLTRDwCgHwCijX4AiDa/+gGJ9/8AL/n9Pm9dmGfQMEGdZ1Ab5n3WH/M+o4N5n9FB/Y6GoNZvnrcAweDn85a6cH1vmGS6vtsQyQ+2aNq0qaZOnapPPvlEd911l9+7kzTKy8t1wQUXqEmTJvrLX/7i9+7E5fjjj9c999yjCRMm6D//+Y/fu5M0li1bpp/97Ge6+uqrNXr0aL93Jy4PPvigevXqpdGjR2v37t1+707SePzxxzV16lRNmTJF7dq183t3qmnUqJFOOOEEvfPOO37vCpD05s6dq23btunUU0/1ZX3yDHiHPAPh4XeeD4T+qn7or4Bo8Lt+k2fAO+QZCA/yDIQHeQbCgzwD4eF3nk899VRNmzbNl7UBVFq/fr2++OILX37B/dRTT9W6dev0xRdfOF8bwF7vvPOOTj31VKWkpDhd9/DDD9cRRxyh6dOnO10XQHXvvPOOsrOzNWjQIOdr0w8A/qMfAEA/AEQb/QAQbfQDAOgHgGjzsx/g/T/AO36//3cgzDOonyDPM6gN8z7rh3mf0cG8z+igfkdDkOs3z1uAYPDzecuBcH2vn2S7vtsQyQ+2kKR+/frp0Ucf1f3336+nn37a790JPGOMrrzySs2dO1cvv/yyWrRo4fcuxe2WW27RiBEj9JOf/ETLly/3e3cCb+PGjTrttNOUl5eniRMn+r07ccvMzNTUqVO1Zs0anXfeeXy6Xxzefvtt3XDDDbrrrrs0YsSI/8/evcflfPd/AH9dlXNUmENjmZtQDjk2hyFCxeaYyHmjzfne5pybZI7bbUZzSohYSw5zKKRSzGjOZ5njjO1mjEJU1/X7w09bU6lc1/X5fj/f1/Ov+2aPu5dfv9fn2vvj0+cjOk6OPDw8EBMTg/T0dNFRiFQtOjoa1atXR40aNYRlYJ+JjIN9JpKHEvqcG85XBcf5ikg7lLB+s89ExsE+E8mDfSaSB/tMJA/2mUgeovvs4eGBK1eu8NwfkUDR0dEoVqwY2rRpY/av7eLigsqVK/OyCiKBHj58iEOHDgm75MLT05NrAJFg0dHR6NixI4oUKWL2r815gEg8zgNE2sZ5gIg4DxBpG+cBIm3jPEBEIucBgOf/iIxF9Pm/vPA+g4JTw30GOeF9nwXD+z61g/d9agfXb21Qw/rN/RYi8UTvt+SGn+8Fp9bPd2PT7MMWADB06FD4+/vDz88PmzdvFh1H0f7zn/9g9erVWL9+PRo1aiQ6ToFYWFhg06ZNqF69Ojp16oTbt2+LjqRYKSkp8PLygsFgwPbt21GsWDHRkQqkevXqiI6ORnx8PIYMGQKDwSA6kmIlJSXBx8cHffv2xX/+8x/RcXLl6emJhw8fYv/+/aKjEKnazp070blzZ6EZ2Gci42CfieShhD7nhfNV/nG+ItIWJazf7DORcbDPRPJgn4nkwT4TyYN9JpKH6D63aNECtra2/AEKIoGio6PRpk0blCxZ0uxfW6fToWPHjlwDiATas2cP9Ho93N3dhXx9Dw8PnDx5Erdu3RLy9Ym0Li0tDQkJCcIur+M8QCQe5wEibeM8QKRtnAeIiPMAkbZxHiDSNtHzAMDzf0TGIvr836vwPoP8U8t9BrnhfZ/5x/s+tYH3fWoH12/tUMP6zf0WIrGUsN+SF36+55/aP9+NSdMPWwDAzJkzMWLECPTv358bmblYunQpZs+ejeXLl6N79+6i4xRKyZIlsW3bNhQtWhSdOnXC/fv3RUdSnPT0dHh7e+PGjRuIiopCpUqVREcqlGbNmmHLli2IiIjA5MmTRcdRpEuXLuG9996Dm5sbVq1aBZ1OJzpSrmrUqIEGDRpg48aNoqMQqdaFCxdw+vRp9OrVS2gO9pno9bHPRPJQSp9fhfPVq3G+ItIWpazf7DPR62OfieTBPhPJg30mkgf7TCQPJfTZysoK7du356U1RIJkZmYiNjYWnp6ewjJ4enrixx9/xJ9//iksA5GWRUdHw9XVFeXKlRPy9d3c3FC8eHHs3r1byNcn0rp9+/bh8ePH6Nixo5Cvz3mASCzOA0TEeYBI2zgPEGkb5wEi4jxApG2i5wGA5/+IjEEJ5//yg/cZvJqa7jPIC+/7fDXe96kNvO9TO7h+a4da1m/utxCJpYT9llfh5/uryfL5biyaf9gCAL766it4eHjg/fffx8GDB0XHUZSVK1di1KhRmDNnDj788EPRcV5L+fLlER0djT/++APvvfce/xL7b9LS0tC7d2/8+OOP2LNnDxwdHUVHei3u7u4IDg7G/PnzERgYKDqOopw/fx7t2rWDo6MjIiIiYGVlJTrSK/Xu3RuRkZHIyMgQHYVIlcLDw1GpUiW0bNlSdBT2meg1sc9E8lBSn1+F81XuOF8RaY+S1m/2mej1sM9E8mCfieTBPhPJg30mkodS+uzp6Yl9+/bh0aNHQnMQadHBgwdx7949eHh4CMvQoUMHGAwG7NmzR1gGIq3S6/XYtWuX0DWgRIkSaNOmDXbu3CksA5GWRUVFoX79+qhataqwDJwHiMThPECkbZwHiIjzAJG2cR4g0jbOA0SkhHkA4Pk/otellPN/+cH7DHKnxvsM8sL7PnPH+z61gfd9agfXb+1Q0/rN/RYisZSy3/Iq/HzPnWyf78bAhy0AWFpaYsOGDWjdujU6dOjAD9r/N2vWLPj5+WHatGmYOHGi6DhGUa1aNcTExOD69eto3bo1bt26JTqScA8ePICHhwcSEhIQFRUFFxcX0ZGMYuDAgVi6dCkCAwMxevRo6PV60ZGEO3ToEN599104ODhg+/btKFGihOhI+dKnTx/88ccfiI+PFx2FSJU2btyI3r17w9LSUnQU9pnoNbHPRPJQUp/zg/PVyzhfEWmTktZv9pno9bDPRPJgn4nkwT4TyYN9JpKHUvrctWtXpKenY8eOHUJzEGlRREQEateujVq1agnLULZsWbRt2xYbN24UloFIqw4cOIBbt26hR48eQnN0794d0dHRSE1NFZqDSGv0ej02bdokfA3gPEAkDucBIm3jPECkbZwHiIjzAJG2cR4g0jalzAMAz/8RvS6lnP/LL95n8DK13meQF973mTPe96kNvO9TO7h+a4ca12/utxCJoaT9lvzg5/vLZPx8NwY+bPH/ihcvjs2bN6Nfv37o2rUrQkJCREcSxmAwYNy4cZg+fTq++eYbTJ8+XXQko3JycsLhw4cBAC1btsTFixcFJxLnt99+g5ubG5KTkxEfH6+K13UL4qOPPkJkZCRWrlyJXr16IS0tTXQkYfbu3YuOHTuiefPm2LNnD2xtbUVHyrfq1aujUaNGiIiIEB2FSHVOnz6Nc+fOwcfHR3QUAOwz0etgn4nkobQ+5xfnq79wviLSJqWt3+wzUeGxz0TyYJ+J5ME+E8mDfSaSh5L6XL58ebi5ubHLRGam1+uxefNm+Pr6io4CHx8f7NixAw8fPhQdhUhTIiIiULduXTg7OwvN0aNHD15iSSTA/v37cevWLXh7ewvNwXmASAzOA0TEeYBI2zgPEGkb5wEi4jxApG1KmQcAnv8jeh1KOv9XELzP4C9qvs/gVXjf519436d28L5P7eD6rQ1qXr+530IkhpL2W/KLn+9/kfnz/XXxYYu/sbS0xPLlyzF+/HgMGzYMM2fO1NyrMCkpKfD29kZQUBDCw8MxfPhw0ZFMwt7eHnFxcahQoQJat26NxMRE0ZHM7sSJE2jRogUeP36MH3/8EQ0aNBAdySS6deuGqKgoxMbGonPnzrhz547oSGa3bNkyeHl5oWfPntiyZQtKliwpOlKB+fj4YPPmzXj69KnoKESqEh4ejqpVq6J58+aio2Rhn4kKh30mkocS+5xfnK84XxFpmRLXb/aZqHDYZyJ5sM9E8mCfieTBPhPJQ2l97t27N6KionhpDZEZJSQk4NatW+jVq5foKOjRowcyMzOxc+dO0VGINOPF5XW9e/cWHQXly5dHu3bteGENkZlFRESgfv36cHJyEh2F8wCRAJwHiLSN8wARcR4g0jbOA0TaxnmAiJQ0DwA8/0dUWEo7/1cQvM9AjvsMXoX3ffK+Ty3hfZ/awfVbG9S+fnO/hUgMpe235Bc/37Xx+f46+LDFP+h0OsyZMweLFy/G559/Dk9PT/zvf/8THcssTpw4gcaNG2P//v3YtWuXIv6y2ZTKly+P2NhYtGzZEu3bt8esWbM08y/Gy5YtQ/PmzfHWW2/hwIEDcHBwEB3JpNzc3LBv3z5cuXIFLi4umtnYSElJQd++fTFy5EhMmTIFq1atgpWVlehYhTJgwACkpKRgy5YtoqMQqUZGRgbWrFmDgQMHQqfTiY6ThX0mKjj2mUgeSu1zQXC+4nxFpEVKXb/ZZ6KCY5+J5ME+E8mDfSaSB/tMJA8l9rlnz57Q6/XYsWOH6ChEmhEREYEGDRqgTp06oqOgXLly/CEqIjNLSEjA7du3FfPzBL1790Z0dDQePHggOgqRJmRmZmLTpk2KuLwO4DxAJALnASJt4zxApG2cB4iI8wCRtnEeINI2pc0DAM//ERWGEs//FRTvM1D/fQb5wfs+ed+nFvC+T67fMuL6rf71m/stROalxP2WguDnuzY+3wuLD1vkYuTIkTh48CAuX76MevXqISYmRnQkk1q7di1atmwJe3t7HD9+HG3bthUdySysra2xefNmfPPNNwgMDIS7uztu374tOpbJpKSkwNfXFyNGjICfnx9iYmJQvnx50bHMomHDhjh58iRatWqFdu3aISAgQOqNjePHj6Nx48aIjY3Fzp07ERAQoNqNZgCoVKkSPD09ERwcLDoKkWpERUXh9u3bGDJkiOgo2bDPRAXHPhPJQ6l9LijOV5yviLRGqes3+0xUcOwzkTzYZyJ5sM9E8mCfieShxD7b2dmhffv2+O6770RHIdKEjIwMbN68WVE/POHj44Ndu3bh4cOHoqMQacLGjRsVc3kdAHTv3h16vR7bt28XHYVIExISEvD777/D29tbdBQAnAeIzI3zABFxHiDSNs4DRNrGeYCIOA8QaZvS5gGA5/+ICkOJ5/8Kg/cZqPs+g4LgfZ9tRUcyC973yfs+ZcX1m+u3GnG/hci8lLjfUlD8fNfO53tB8WGLPDRu3BhHjhxBq1at4OnpiQkTJiA1NVV0LKO6ceMGunbtiiFDhmDcuHGIjY2Fvb296Fhm5+fnhwMHDuD69eto3LixlAdcdu/eDRcXF8TFxWHPnj34+uuvUaRIEdGxzKpMmTIIDw/Hf//7X8yZMwft27fHhQsXRMcyqqdPn2LWrFlo0aIFqlSpgpMnT8LDw0N0LKMYNmwY4uPjcenSJdFRiFQhODgY7u7u+Ne//iU6ykvYZ6KCYZ+J5KHkPhcU5yt14/pNVDBKXr/ZZ6KCYZ+J5ME+E8mDfSaSB/tMJA+l9tnX1xe7du3C77//LjoKkfR27dqFO3fuoE+fPqKjZOnevTt0Oh3Cw8NFRyGSXlpaGr777jv4+vqKjpLFzs4OHh4eCA0NFR2FSBNCQ0PRpEkTODo6io6ShfMAkflwHiDSNs4DRMR5gEjbOA8QaRvnASJS4jwA8PwfUUEp9fxfYfA+A+3gfZ/awfs+tYHrt3Zw/VYn7rcQmZdS91sKip/vlBM+bPEKtra22LRpE5YsWYKVK1eiTp062LRpk+hYr+3Zs2eYO3cunJyccPHiRcTGxmLGjBmwtLQUHU2Ypk2b4ujRo/Dy8oKvry86dOiA5ORk0bFe282bN+Ht7Q0PDw80bNgQJ06cgLu7u+hYwuh0OowdOxY//vgjHj58iAYNGmDy5Ml49OiR6Givbe/evWjQoAHmzJmDgIAAxMTEoHLlyqJjGY2XlxeqVq2KVatWiY5CpHi//voroqOjMXToUNFRcsQ+E+Uf+0wkD6X3uTA4X6kX12+i/FP6+s0+E+Uf+0wkD/aZSB7sM5E82GcieSi5zz179kSpUqWwdu1a0VGIpBccHIz27dujevXqoqNksbW1Rc+ePbFy5UrRUYikt2nTJjx8+BADBgwQHSWboUOHIjY2Fj///LPoKERSe/DgASIjIxU3E3AeIDIfzgNE2sZ5gEjbOA8QEecBIm3jPECkbUqdBwCe/yMqCCWf/yss3megHbzvUzt436c2cP3WDq7f6sT9FiLzUPJ+S2Hw853+iQ9b5JOfnx8uXrwId3d3eHt7w9PTE2fPnhUdq1B27doFFxcXzJw5E5MnT8bJkyfRtm1b0bEUwdbWFitXrsSBAwdw9+5d1K9fH/7+/njw4IHoaAX2+PFjzJ8/H3Xq1MHJkyexa9cuREZGolKlSqKjKUKjRo2QlJSEBQsWYNmyZXB2dsbGjRuh1+tFRyuwq1evok+fPujQoQPq1KmDc+fOYeLEidIMPi9YWFhg8ODBWL16NZ4+fSo6DpGirVy5EnZ2dujatavoKDlin4nyj30mkofS+/w6OF+pD9dvovxT+vrNPhPlH/tMJA/2mUge7DORPNhnInkouc8lSpRAv379sHz5chgMBtFxiKT122+/KfYH3IcNG4affvoJx48fFx2FSGrBwcF4//33FffDOF5eXqhSpQpWr14tOgqR1MLCwqDT6dC3b1/RUbLhPEBkHpwHiIjzAJG2cR4g0jbOA0TEeYBI25Q6DwA8/0dUEEo+//e6eJ+BdvC+T23gfZ/awfVbO7h+qwv3W4jMQ8n7La+Dn+/0Ah+2KIA33ngDq1evRmJiIm7fvo369eujZ8+eOHr0qOhor2QwGLBt2za4urrC09MTjo6OOHv2LPz9/VGsWDHR8RSnefPmOHLkCObPn48lS5bAwcEBU6dOxd27d0VHe6WUlBTMmzcPb7/9NmbMmIHx48fj1KlT6NSpk+hoimNpaYmRI0fiwoULaN26Nfr06YP69etj/fr1yMjIEB3vlS5cuIDBgwejVq1aOHr0KHbu3IktW7bgrbfeEh3NZEaMGIEHDx4gLCxMdBQixUpLS8PSpUsxfPhwRX/Gs89Er8Y+E8lDLX1+HZyv1IfrN9GrqWX9Zp+JXo19JpIH+0wkD/aZSB7sM5E81NBnPz8/XL58GYmJiaKjEEkrJCQEZcqUQbdu3URHeUnr1q1Rp04dhISEiI5CJK0Xn7NKvLzO0tISgwYNwqpVq5Ceni46DpG0QkJC4OPjgzJlyoiO8hLOA0Smx3mASNs4DxAR5wEibeM8QKRtnAeISMnzAMDzf0T5oYbzf6+L9xloB+/71A7e96kNXL+1g+u3enC/hcg8lL7f8jr4+U4AH7YolFatWuHYsWOIjIzEjRs30KRJE3h5eSE+Ph4Gg0F0vGzS0tKwYcMGuLi4oFu3brC3t8dPP/2ErVu3olq1aqLjKZqlpSXGjBmDa9euYcKECVixYgWqVauGzz77DFevXhUd7yW3b99GQEAAHBwcMHv2bHz44Ye4evUqpk2bhuLFi4uOp2gVK1bE2rVrcfr0aTRs2BCDBw9G7dq1ERwcjNTUVNHxXpKUlAQfHx84OzsjKSkJISEhOH/+PLy8vERHM7mKFSuiT58++OKLL1T5GheROaxZswZ//vknRowYITpKnthnoldjn4nkoZY+G4Ma5qv09PSs/RvOV1y/ifKilvWbfSZ6NfaZSB7sM5E82GciebDPRPJQQ5/r1auHZs2aITg4WHQUIikZDAasXr0aAwcOVOwPYX3wwQcICwvD48ePRUchktKKFSvw5ptvomPHjqKj5GjYsGG4c+cOoqKiREchktJPP/2E48ePK/LyOoDzAJGpcR4gIs4DRNrGeYBI2zgPEBHnASJtU/o8APD8H1F+qOH8n7Go4T6Dv9PyfQavi/d9agPv+9QOrt/awfVbHbjfQmRaathvMQZ+vmubzqC0T3YV2r17N2bPno3ExEQ4ODhgwIAB6N+/P2rVqmXWHJmZmbC0tITBYMAPP/yAdevWISIiAikpKejduzemTJmCunXrmjWTTB4/fowVK1bgyy+/xK1bt9CqVSsMHDgQ3t7esLGxMVuO1NRUWFtbZ2XasmUL1q1bh71798LOzg5jxozB6NGjYWtra7ZMsrly5QrmzZuH0NBQWFlZoUePHujfvz/at28PS0tLs+UwGAzQ6XQAgBs3biAsLAzr1q3DhQsX0LBhQ0yZMgU9evSAhYW23ig6c+YM6tevjx07dvDDn+gfDAYDnJ2d0apVK6xYsUJ0nFdin4lyxz4TyUNtfTY2pcxXf3f69Gl8+OGHSElJ4XzF9ZsoV2pbv9lnotyxz0TyYJ+J5ME+E8mDfSaSh5r6HBISglGjRuHatWuoWLGi6DhEUomOjkbnzp1x5swZODk5iY6Tozt37qBq1aoICgqS/oc8iMztyZMncHBwwMiRIzF9+nTRcXLl4eEBg8GA3bt3i45CJJ0PPvgASUlJOHPmjOgoueI8QGQ6nAeItI3zABFxHiDSNs4DRNrGeYCI1DAPADz/R5QXNZ3/MwUl3mfA++JMQyn3fb7A+z5NI7/3faalpZntIQne92kaXL+1g+u3cnG/hch01LLfYmz//Hzv2rUrrK2tsWTJEn6+S4gPWxjR2bNnsW7dOqxfvx43b96Eq6srunTpAjc3N7i6usLKyspkXzs1NRX//ve/YWFhgdjYWFy5cgX169fHwIED4evri8qVK5vsa2tNRkYGdu/ejXXr1mHbtm0wGAzo3LkzOnbsiHbt2qFGjRom/frz58/HL7/8gvv372Pbtm1IS0uDp6cnBgwYgC5duvC1RiO6d+8ewsPDERYWhh9//BFvvvkmunfvjvbt26NNmzaws7Mz2dfOzMzExx9/DEdHR0RFRSExMRFly5ZF3759MWDAADRt2tRkX1sNPDw8kJ6ejtjYWNFRiBRl69at6NGjh6IPj/0T+0yUM/aZSB5q7LMpiJ6vjh8/jvj4+Kz5ymAwoEGDBlixYgXnK67fRDlS4/rNPhPljH0mkgf7TCQP9plIHuwzkTzU1OenT5+iWrVqGDZsGAIDA0XHIZJKu3btUKxYMURHR4uOkqcPP/wQP/zwA86dO8cfJCAyoqVLl+KTTz7BtWvXUKlSJdFxcrVr1y54enri+PHjcHFxER2HSBq///47qlWrhqCgIHz44Yei4+SK8wCR6XAeINI2zgNE2sZ5gIg4DxBpG+cBIm1TyzzwAs//EeVMTef/TCmv+wz++OMP+Pr6okSJEib52jndZ8D74kwnt/s+3333XZw7dw7Dhw832ddOTU1FYmIi4uLisGXLFt73aUJ53feZnJyMIUOGwNnZ2WRf/5dffkFcXBxiYmJ436eJ5bZ+t2rVCjqdDr179zbZ1+b6bV65rd9t2rTBxYsXTfqgLdfvnHG/hcg01LbfYgr37t1DWFgYpk+fjj///FP4fXP8fDcNPmxhAnq9HnFxcdiwYQNiYmJw8+ZNWFtb491330WbNm3g7OyMWrVq4e233y7UYxdPnjxBcnIykpOTcerUKcTFxSEpKQmZmZkoWrQohg4dCj8/P9SvX98Efzr6uwcPHiAyMhKRkZHYv38/Hj16hKpVq6Jdu3Zo0aIFHB0dUbt27UL/5d3du3dx8eJFXLx4EYcPH0ZcXBx+/vlnAECjRo0wePBg9OnTB2+88YYx/1iUg+TkZISFhWHnzp04ceIEdDodXFxc0K5dOzRq1AiOjo5wdHSEtbV1gf+39Xo9rl+/juTkZJw7dw6JiYlISEjA/fv3Ubp0aXTp0gV9+vSBp6cnihQpYoI/nfrExMSgY8eOOHz4MJo1ayY6DpFiNG/eHOXLl8f27dtFR8k39pkoZ+wzkTzU2GdTEzVfVaxYEe3atUOfPn0wcuRI3Lx5ExMmTMC8efNM8KdUD67fRDlT4/rNPhPljH0mkgf7TCQP9plIHuwzkTzU1ucZM2Zg0aJFuHHjBkqVKiU6DpEUjh49iiZNmiAmJgbu7u6i4+TpwoULcHJywrZt29ClSxfRcYikoNfr4ezsjNatW2P58uWi47ySi4sLGjRogNDQUNFRiKQxefJkrFq1CtevX1f85QucB4iMj/MAkbZxHiAizgNEl/4f8wAAIABJREFU2sZ5gEjbOA8QkZrmAYDn/4hyo7bzf+bw9/sMjh8/DoPBgMaNG5v1PgPeF2d6Od33aWVlhQ4dOpj8vk8nJ6esRw5436fp/f2+z/j4eDx9+hSVK1dGx44dTXrfZ/HixdG8eXN0796d932ayYv1e8eOHVn30TRs2JDrt2S4fisL91uIjE9t+y2m8OzZM3Tv3h1RUVEYPnw4ypcvL/S+OX6+mwYftjCDS5cuIS4uDnFxcTh48CBu3rwJAChSpAiqV6+OmjVrwtraGmXKlIGNjQ2sra1RrFgxPHr0CKmpqUhNTcWff/6J+/fv49KlS7hx4wYMBgMsLS1Ro0YNtG7dGu3atcOVK1fg7++PRo0aITExkQcyzCw9PR1JSUlZ3+tjx47h4cOHAAAbGxs4OjqiatWqsLa2hrW1NUqXLg1bW1vodDr8+eefSE1NRUpKClJTU/Hrr78iOTkZ9+7dAwCULFkSLi4ucHNzQ+nSpTFp0iSUKlUKP/zwAxo0aCDyj61J9+7dQ0JCAuLi4rBv3z5cvHgR6enpAIAqVaqgZs2aKF++PMqUKZPt+52eno7U1FTcv38/q9tXr15FcnIynj59CgCoWLEi3nnnHbRr1w6LFi3ClStXsG7dOvTr10/kH1mRWrdujZIlS2LXrl2ioxApws6dO9GlSxccOnQIrq6uouMUCPtMlB37TCQPNffZXMw1X7Vr1w7Ozs7Q6XQAAFdXVyQlJUGn02Hq1KkIDAwU9n8DJeD6TZSdmtdv9pkoO/aZSB7sM5E82GciebDPRPJQY5//+OMPODg4YN68eRg5cqToOERS8PX1xdmzZ7N+UEDpvLy88OTJE8THx4uOQiSFLVu2oGfPnjh79izq1KkjOs4rrV69Gh999BEuX76MqlWrio5DpHqPHj2Cg4MDPvnkE/j7+4uO80qcB4iMj/MAkbZxHiDSNs4DRMR5gEjbOA8QaZva5oEXeP6PKDs1nv8zpzNnzuCdd95BRkYGhg0bZtb7DMi8pk6dilmzZqFt27aoUKGCSe/7dHNzQ8WKFQX/ibUpPj4eHTt2REZGBiZNmoRDhw6Z7L7Pdu3aoUWLFpq9jFq0YcOGYeXKlRg+fDgsLS25fkts/vz5mDhxIlq1agV7e3uu3wJwv4XIuNS632JMGRkZ8Pb2xo4dO5CZmYmgoCCMGDECgLj75sg0+LCFACkpKVkveF24cAFXr17NGnJeDDzPnj1DyZIls0pkZ2eHMmXKoEaNGlmvAtaoUQNFixbN+t8NCwvDgAEDYGVlBTc3N+zcuZOvwQh2+/ZtXLhwIev7fevWrawFMCUlBffv3wcA2NraZn2vra2tUalSJTg6OqJWrVpZA/KLxfDHH39EixYtYGFhgQoVKuCnn35ClSpVRP4xNS89PR1Xr17Nem3z559/xr179/DgwYOs73dqaiqsrKyyNjhefDi+9dZbqFWrVtb32s7OLut/t2XLljh48CCsrKwQFRWFDh06CPxTKs/evXvRoUMH7Nu3D23atBEdh0gog8EAV1dX2NvbY+vWraLjFBj7TPQX9plIHmrvsyimmq/+qXfv3ti0aRP0ej10Oh0CAwMxdepUM/5JlYXrN9Ff1L5+s89Ef2GfieTBPhPJg30mkgf7TCQPNfd5+PDh2L17Ny5dugRLS0vRcYhU7ebNm6hevTpWrVqF/v37i46TL7GxsXB3d8fhw4fRrFkz0XGIVK9Vq1YoV64cvv/+e9FR8iU9PR3Vq1eHr68v5s2bJzoOkeotXLgQ/v7+uHHjBsqVKyc6Tr5wHiAyHs4DRMR5gEjbOA8QaRvnASLiPECkbWqcBwCe/yP6OzWf/zOHX3/9FU2aNMFvv/2GcuXK4e7duwDMd58Bmc+KFSvw0UcfQafTYcKECZg7dy4A0933SWK8eKjm8ePHMBgMePr0adb3xRT3fZI4gYGBCAgIgMFgQHh4OHx8fABw/ZZReHg4fH19AQBjx47FV199BYDrt7lxv4XIuNS632IsmZmZGDBgACIiIpCZmQng+QPL3bp1y/Gf5+e7uvFhC4m8eDkVACwtLdGrVy9s2LABFhYWgpORMZ0/fx5OTk4Anr8iV61aNRw6dAhly5YVnIyMrUuXLti5cycsLCxQrFgxHDhwAI0aNRIdS1Hc3NyQkZGB/fv3i45CJNTmzZvRq1cvHDt2DC4uLqLjFAr7TPQc+0wkDxn6LLNPPvkES5YswbNnzwAAOp0On3/+OaZMmSI4mThcv4mek2H9Zp+JnmOfieTBPhPJg30mkgf7TCQPNfc5OTkZderUQXh4OLy9vUXHIVK1sWPHYvPmzbhy5QqKFCkiOk6+NWrUCDVq1EBERIToKESqduDAAbz77rtISEhA69atRcfJtzlz5mDevHm4du0abG1tRcchUq1nz57B0dER7733HhYvXiw6Tr5xHiAyHs4DRNrGeYBI2zgPEBHnASJt4zxApG1qnQde4Pk/oufUfP7P1FJSUtC8eXMkJycjPT0dDg4OuHbtmuhYZALR0dHo0qUL9Ho9ihUrhqlTp2Lq1KmiY5GR3bp1C02aNMGdO3eQkZGBIkWKZN0VQnIJCQnB0KFDs/57VFQUPD09BSYiU9m/fz/at2+PjIwMFC1aFBMmTEBgYKDoWJrF/RYi41D7fsvrMhgMGDp0KEJDQ7MetQCAQ4cOwdXVVWAyMhW+eCCRv78Mk5mZiY0bN2LUqFECE5Ep2NjYZP3n9PR0XLt2DR07dsSjR48EpiJTsLOzg4WFBfR6PdLT0+Hu7o5Lly6JjqUogYGBOHDgAGJjY0VHIRJGr9cjICAAvXr1UvVfMrHPROwzkUxk6bPMKleunO2/GwwG+Pv7a/rlcK7fRPKs3+wzEftMJBP2mUge7DORPNhnInmovc+Ojo7w9vZGQEAA9Hq96DhEqnXr1i0EBwdj0qRJqrq0CgD8/f0RGRmJkydPio5CpGrTpk1Dy5YtVXVpFQCMGDEClpaWWLBggegoRKoWEhKC27dv47PPPhMdpUA4DxAZB+cBIuI8QKRtnAeItI3zABFxHiDSNrXOAy/w/B+R+s//mVJ6ejq6d++e9agFAFhbWwtORaZw7Ngx9OzZEwaDAcDzOyP4vZbPw4cP0aFDB9y9excZGRkAgBIlSghORaYQFRUFPz+/bL9WpkwZQWnIlM6fP48uXbogMzMzaw0vVaqU4FTaxv0WIuNQ+37L6zAYDBg+fDjWrFmT7VELALC3txeUikyND1tI5O8PWwDPN56WLVuGuXPnCkpEpvD3hy2A55toJ0+ehLe3d9bATXIoU6YMLC0tAQAZGRlISUmBu7s7fv/9d8HJlOPdd9+Fh4cHJkyYwANopFmhoaE4f/48AgICREd5LewzEftMJBNZ+iwze3v7HGfoyZMnIygoSEAi8bh+E8mzfrPPROwzkUzYZyJ5sM9E8mCfieQhQ58DAwORnJyM8PBw0VGIVGvmzJl44403MHToUNFRCqxHjx5o0qSJqtcxItH279+P+Ph4fP7556KjFJiNjQ0+++wzfPXVV7hz547oOESqlJaWhtmzZ8PPzw/VqlUTHafAOA8QvT7OA0TaxnmASNs4DxAR5wEibeM8QKRtap8HAJ7/IwLkOP9nCgaDAX5+fti3b1/WoxYAULp0aYGpyBSuXbuGTp06IT09PetSdL1ez4ctJJOeno5u3brh0qVL2TrNC/Dlc+TIEfTq1eulX+fDFvK5c+cOPD098fjx46x/l+fDROJxv4Xo9cmw31JYBoMBo0aNQnBw8Ev7NDqdDhUrVhSUjEyND1tI5J8PWwDPyz1lyhSEhIQISESmUKpUqazHDl7IyMjAnj178PHHHwtKRaZgY2MDC4u/lumMjAzcvn0bnTp1QmpqqsBkyrJgwQKcPn0aa9asER2FyOxSUlLg7++Pjz/+GE5OTqLjvDb2mbSMfSaSh2x9lpW9vX2Oh9UMBgPGjBmDpUuXCkglHtdv0jLZ1m/2mbSMfSaSB/tMJA/2mUge7DORPGTps6OjI3x9fREQEJDjg9ZElLfr169j1apVmDp1KooVKyY6ToHpdDpMmzYNW7duRVJSkug4RKo0depUuLu7o23btqKjFMrYsWNRsmRJ/Pe//xUdhUiVli9fjrt372LSpEmioxQK5wGi18N5gIg4DxBpG+cBIm3jPEBEnAeItE3t88ALPP9HWibL+T9TmDFjBkJDQ5GZmZnt121sbAQlIlN48OABPD098eDBg2x7Q5mZmXzERCIGgwEffPAB9u/fn+1RC4CP1cjmypUr6NSpE549e/bSPTB82EIujx8/hoeHB27duvXS+s2HLcTjfgvR65Flv6UwJk2ahKVLl+Z4n5uNjQ2KFi0qIBWZAx+2kEhOD1sAf70gumnTJjMnIlPJ6aXIzMxMrF69mi/oSiSnYTo9PR3nzp1Dz549edjq/9WpUwd+fn6YPHkyHjx4IDoOkVnNmjULaWlpmD59uugoRsE+k5axz0TykK3PsrK3t8/19wwGA0aOHIkVK1aYMZEycP0mLZNt/WafScvYZyJ5sM9E8mCfieTBPhPJQ6Y+z5gxA9evX0dYWJjoKESqExgYCHt7ewwaNEh0lELr0qUL3nnnHcyYMUN0FCLV2b17NxITExEYGCg6SqGVKlUKEyZMQFBQEH7//XfRcYhU5cmTJ5g/fz5GjBiBN998U3ScQuM8QFR4nAeItI3zAJG2cR4gIs4DRNrGeYBI22SZBwCe/yNtk+n8nzGtX78egYGBMBgM2X5dp9PxYQuJPHv2DO+//z4uX7780mMHBoOBF6NLxN/fHxs2bMjxrkU+bCGPu3fvwt3dHSkpKS89SgTwYQuZZGZmwsfHB6dOnXpp/ebDFsrA/RaiwpNpv6Wg/P398cUXX7w0h71QsWJFMycic+LDFhIpVqxYrq/QGAwG9O3bF4mJiWZORaaQ20Ct1+sxY8YMBAUFmTkRmYKNjU2OL06lp6cjNjYWgwYNyvXDW2tmzpyJzMxMzJkzR3QUIrO5cuUKFi5ciBkzZqB8+fKi4xgN+0xaxD4TyUPWPsuocuXKef6+wWDAxx9/rMkfcuH6TVok6/rNPpMWsc9E8mCfieTBPhPJg30mkodsfa5WrRoGDRqEGTNmIC0tTXQcItW4cOEC1q5di4CAgFzPHqvFjBkzEBUVhQMHDoiOQqQaer0eU6dOhZeXF5o3by46zmsZMWIEypQpg1mzZomOQqQqX3/9NR48eICJEyeKjvJaOA8QFQ7nASJt4zxARJwHiLSN8wCRtnEeICJZ5oEXeP6PtEi283/GEh8fj8GDB+d4H5ulpSUvy5aEwWDAkCFDcPDgwZcuRX+B32s5BAcHY86cOTnewQiAj9VI4vHjx/Dy8sLNmzfZaQ0YPXo0oqOjc3ysBuD3Wim430JUOLLtt+TX9OnTMWfOnDzvxa5SpYoZE5G58WELyeT2qpzBYEBmZiY8PT1x4sQJM6ciY7O1tc3z98eOHYtNmzaZKQ2Zio2NTY6vRwLPXxYMDw/H1KlTzZxKmezs7DBt2jQsXLgQly5dEh2HyCw+/fRTVK9eHR9//LHoKEbFPpMWsc9E8pC1zzKysbFB8eLF8/xnDAYDBg0apLn5mus3aZGs6zf7TFrEPhPJg30mkgf7TCQP9plIHjL2efr06bh79y6++uor0VGIVOPTTz+Fs7Mz+vfvLzrKa+vYsSM6deqEMWPG5PqDrESUXWhoKI4fPy7FBS8lSpRAYGAgli5dijNnzoiOQ6QKv//+O+bMmYMJEyagQoUKouO8Ns4DRAXHeYBI2zgPEGkb5wEi4jxApG2cB4i0TbZ5AOD5P9ImGc//va4zZ87g/fffz3UusLCw4GXZkpgwYQLCw8NzvRQd4MXoMti5c+cr17hX3cNJypeZmQkfHx8cP34810ctihUrhiJFipg5GZnCrFmzsGzZslzvVQW4fisF91uICk7G/Zb8mD17NgIDA/N81MLS0hJVq1Y1YyoyN50hr/8PINWpWbMmfv7551x/39LSEmXLlsXhw4fx9ttvmzEZGdO7776LAwcO5Pr7Op0ORYoUQWxsLFq1amXGZGRMO3fuRJcuXV75zwUFBWHkyJFmSKRs6enpaNq0KcqWLYvY2FjodDrRkYhMZvPmzejVqxdiYmLQvn170XGMjn0mLWGfieQhe59l5ODggBs3brz06zqdDjqdDra2thg/fjyGDx8OGxsbAQnF4fpNWiL7+s0+k5awz0TyYJ+J5ME+E8mDfSaSh8x9/vzzzzFv3jxcvHgR9vb2ouMQKVpUVBQ6d+6MPXv2oEOHDqLjGMX58+fRoEEDLF++HEOGDBEdh0jRUlNT4ejoiO7du+Obb74RHcco9Ho9XF1dYWtri5iYGNFxiBRvyJAh2Lt3Ly5cuIBSpUqJjmMUnAeI8o/zAJG2cR4gIs4DRNrGeYBI2zgPEJGM8wDA83+kLTKf/yusX375BU2aNMG9e/dyfeygWLFi+PTTTzF79mwzpyNjCgoKwujRo1/5z124cAG1atUyQyIyhaSkJLRu3Rrp6em5PlZjaWmJ/v37Y82aNeYNR0b14YcfIjQ0NM+HDuzs7HDv3j0zpiJTWLduHQYNGpTnxecAcOLECTRo0MBMqSgv3G8hKhhZ91vyYjAYsG7dOsyZMwcXLlyAlZVVjvMYZzH5WYgOQMZVtmzZXH/PwsICBoMBmZmZ2Lt3rxlTkbGVK1cu19+zsrKCwWBA5cqVkZycbMZUZGxlypTJ8/ctLS2h0+kwZ84c3Lp1y0yplKtIkSIIDg5GYmIiQkJCRMchMpmHDx9izJgxGDx4sLR/ycQ+k1awz0Ty0EKfZVSlSpVs/93CwgI6nQ6VK1fGggULcPPmTUyaNElzj1oAXL9JO7SwfrPPpBXsM5E82GciebDPRPJgn4nkIXufx40bh/Lly8Pf3190FCJFy8jIwIQJE9CzZ09pLq0CgDp16sDPzw+TJ0/Gw4cPRcchUrRZs2YhLS0NM2bMEB3FaCwsLLBw4ULExsYiKipKdBwiRTt+/DjWrl2LL7/8UqofouQ8QJQ/nAeIiPMAkbZxHiDSNs4DRMR5gEjbZJ0HAJ7/I+2Q/fxfYWRmZqJnz5743//+l+fF6ABgbW1tplRkCidOnMAnn3wCC4tXX5vK77W6rVu3DpmZmXl+ry0sLFC6dGkzpiJjCwoKwqpVq1750AG/z+p39uxZfPjhh/l6fI7rt3Jwv4Uo/2Teb8mLTqfDwIEDcf78eezfvx/u7u4Anu/R/J1er4e9vb2IiGQmfNhCMuXLl3/p114U29nZGUuXLsXNmzcxbNgwc0cjI7K1tYWlpWW2XytSpAh0Oh3effddRERE4PLly/jggw8EJSRjyO3y1KJFiwIA6tatizVr1uDq1av8sP5/TZs2xdixYzFu3Dj8+uuvouMQmcT48ePx9OlTzJ8/X3QUk2KfSQvYZyJ5aKXPsnnrrbeg0+my5uvatWvD2toagwYNwtixY1GiRAnBCcXi+k1aoJX1m30mLWCfieTBPhPJg30mkgf7TCQP2ftcvHhxzJs3D2vXrkVSUpLoOESKFRQUhEuXLmHu3LmioxjdzJkzkZGRgTlz5oiOQqRYV69excKFCzF9+vQcf+5AzVq2bImePXti7NixePbsmeg4RIo1duxYuLq6onfv3qKjGBXnAaL84TxApG2cB4iI8wCRtnEeINI2zgNEJOs88ALP/5EWyH7+rzAsLS0RExOD5cuXo3bt2gD+upvt7wwGAy/LVjkXFxdcvXoVs2fPRoUKFbLdEfFP/F6r2+LFi3Hz5k18/vnnqFq1KgDAysoq2z/Dhy3Ub8SIEYiJiUG3bt1gaWn50iXYL5QpU8bMycjYnJ2dcebMGYwfPx62trZcv1WE+y1E+SP7fkt+tGrVCtHR0ahfvz4qVqwInU6XNZdlZGSgUqVKghOSKfFhC8mUK1cu65VBKysrWFlZoVatWggMDMSpU6fg5+en+YsZZfDiX8wtLCxgYWEBGxsbtGrVClOnTkVcXBy8vb1z/Zd2Uo+/D9Qvvt8lSpRAixYtcPr0aZw4cQIDBw7MdSDXqpkzZ6JcuXIYO3as6ChERpeYmIjg4GAEBQVJd2gkJ+wzyYx9JpKH1vosE3t7exgMBrRo0QK7d+/G2bNn4e/vj8WLF+POnTui4ykC12+SmdbWb/aZZMY+E8mDfSaSB/tMJA/2mUgeWumzt7c3WrZsibFjx0Kv14uOQ6Q4v/32G2bMmIFPP/0UNWrUEB3H6Ozs7DBt2jR89dVXuHjxoug4RIr073//G9WqVcOIESNERzGJ+fPn4+bNm/j6669FRyFSpHXr1uGHH37AokWLoNPpRMcxOs4DRHnjPEBEnAeItI3zAJG2cR4gIs4DRNom+zzwAs//kcy0cv6vMGxsbODn54dz584hMTERTk5OWZekv1jz9Ho9L8uWQJUqVTBx4kT88ssvCAsLy3rY4J+PmZQqVUpEPDKiihUrYuLEibh27Rq6d+8Oa2trWFhYZH2v2Wn1s7CwgLu7OzZt2oTr16/Dz88PVlZWLz16YGtrKzAlGYujoyPmzp2L27dvY9WqVVn3q/5z/WavlYf7LUR508p+S37s2bMHp06dwsaNG3H27Fn07dsXVlZWMBgMsLe3Fx2PTIgPW0jGzs4Oer0e5cuXx9SpU/HLL7/A1dUVoaGhyMjIEB2PjMTGxgYZGRmoX78+QkJC8Ntvv6F169b45ptvkJKSIjoeGYmNjU3Wf3Z0dERQUBBiY2ORkJCAq1evCkymbCVLlsTy5cuxefNmrF+/XnQcIqNJSUnBkCFD0LlzZ/j4+IiOYxbsM8mKfWafSR5a7LNMOnfujMOHDyMxMREdO3YEAIwaNQolS5bEggULBKdTBq7fJCstrt/sM8mKfWafSR7sM/tM8mCf2WeSB/vMPpM8tNRnnU6HJUuW4NixY/jmm29ExyFSnNGjR8PGxgb+/v6io5jMiBEjULduXfj5+cFgMIiOQ6QoERER2L59OxYvXowiRYqIjmMSb7/9Nvz9/REQEIDLly+LjkOkKH/88QfGjRuH4cOHo0mTJqLjmATnAaK8cR4g0jbOA0TaxnmAiDgPEGkb5wEibdPCPPACz/+RrLR0/u91ubi44Nq1a5g0aRLmzp2Lt99+GwCQkZHBy7IlUrRoUTx58gSPHj1CfHx81swLAMWKFYOVlZXghGQsf/75J2JiYjBt2jRcu3YNEydOxBtvvIH09HR2WiJvvvkmUlNTUb16daxbty7bv7PyYQu5FC9eHCVLlsSDBw+wY8cO+Pn5ZT1GpNPpULJkScEJ6Z+430KUOy3tt+THzJkz4eXlhXfeeQd16tTBmjVrcPXqVXz22WeoWrWq6HhkQjoD/1ZOKt999x30ej169uyZ9QrZ5cuXUbt2baxduxZ9+/YVnJCMYf/+/ShWrBiaNWuW9Wv37t1DtWrVMH36dHz22WcC05GxZGZmol+/fhg+fDjatGmT9evvvfce7ty5g0OHDglMp3xjx45FaGgoTpw4gWrVqomOQ/TaBg0ahOjoaJw6dQqVKlUSHces2GeSDfvMPpM8tNxnmX355ZcICAjAlStXUKFCBdFxFIHrN8lGy+s3+0yyYZ/ZZ5IH+8w+kzzYZ/aZ5ME+s88kDy32edq0aViwYAFOnz6d9cOpRFq3c+dOdOnSBbt27UKnTp1ExzGpkydPomnTpggKCoKfn5/oOESK8ODBAzg5OcHLywvBwcGi45hURkYGmjVrBltbW8TGxkKn04mORKQI/fv3R3x8PM6ePSv9D/5zHiB6GecBIm3jPEBEnAeItI3zAJG2cR4gIi3NAy/w/B/JRovn/wpr/vz5+Pzzz3Hjxg3Y2trCYDBg3759WL58OYYOHQp3d3fREckI9Ho96tWrh3feeQchISEAgKdPnyIyMhKRkZHYsmWL4IRkLDNmzMCiRYtw/fr1rIcsMjIysG3bNlSoUAGtWrUSnJCM4ZdffkGNGjWwfPlyDB48GABw6tQpLFmyBBYWFliyZInYgGRUTZo0QfXq1REREQEAePz4McLDw7F+/XrExsYKTkc54X4LUc60uN+Sm+joaHh5eeHw4cPZ7kgnbeDDFhrRr18/nDhxAqdPn4aFhYXoOGQi48ePR1hYGK5cuYISJUqIjkMmcvjwYbzzzjuIi4uDm5ub6DiK9fTpUzRr1gylS5dGQkICLC0tRUciKrTIyEj07t0b33//Pd577z3RccyOfSaZsM/sM8lD632W2ZMnT1CjRg3069cP8+fPFx1HEbh+k0y0vn6zzyQT9pl9Jnmwz+wzyYN9Zp9JHuwz+0zy0Gqfnz59ikaNGsHBwQFRUVGi4xAJ9/DhQzg7O6Ndu3YIDQ0VHccsJk6ciGXLluHcuXN48803RcchEm7o0KHYuXMnzp07Bzs7O9FxTO6nn35C8+bNsXLlyqwfeCbSsl27dsHT0xNbt25F165dRccxOc4DRNlxHuA8QMR5gEjbOA8QaRvnAc4DRJwHiLRNa/PACzz/RzLR6vm/wnj69CmqV6/O+wE0YPPmzejVqxfOnDkDJycn0XHIRB4/foxq1aphxIgRCAgIEB2HTGjMmDHYsmULLl++jKJFi2b7PYPBwEv0JRITE4OOHTvi0KFDcHV1FR2HCoD7LUTZaXW/JTfvvPMO3njjDWzfvl10FBKAD1toxPnz51G3bl1s2rQJ3bp1Ex2HTOS3335D9erVsWDBAnz88cei45AJubm5oUiRItizZ4/oKIp29uxZNG3aFFOmTMHUqVNFxyEqlJs3b6JBgwbw9fXF4sWLRccRhn0mGbDPz7HPJAP2WX4LFizAtGnTcPnyZVSsWFF0HEXg+k0y4Pr9HPtMMmCfn2OfSQbs83PsM8mAfX6OfSYZsM/Psc8kA633+dChQ2jZsiXCwsLQt29f0XGIhBoxYgQ2btyIc+fO4Y033hAdxyyvXzDDAAAgAElEQVSePHmC+vXro3bt2vwhCdK8hIQEuLm5ISIiAr169RIdx2w++eQTrF27FufOnePf+5OmPX78GPXq1UPTpk0RHh4uOo7ZcB4g+gvnAc4DpG2cBzgPkLZxHuA8QMR5gPMAaRvnAc4DpG1anQde4Pk/koHWz/8VVHBwMEaPHo0rV67A3t5edBwyoRYtWqBSpUrYvHmz6ChkQl9//TWmTJmCa9euaWZPQ4v++OMPODg4YPbs2RgzZozoOGRi7u7u0Ol0iImJER2FCoH7LUTPaX2/5Z927tyJLl26ICkpCU2bNhUdhwTgwxYa0rNnT1y9ehVHjx7l63MSGz58OHbv3o3k5GRYWVmJjkMmsmfPHnTq1AkHDx5E8+bNRcdRtIULF2L8+PGIj49Hq1atRMchKpD09HS4ubnh/v37OHLkCEqUKCE6klDsM6kZ+5wd+0xqxj5rQ1paGmrUqAEfHx/897//FR1HMbh+k5px/c6OfSY1Y5+zY59Jzdjn7NhnUjP2OTv2mdSMfc6OfSY1Y5+fGzlyJL777jucPHkSb775pug4RELExMSgU6dOCAsLg6+vr+g4ZhUfH4/27dtj7dq16N+/v+g4REI8ePAALi4ucHFxwZYtW0THMatHjx6hXr16qFevHrZu3cqfnyDN+uijjxAZGanJHyrmPEDEeYDzAGkd5wHOA0ScBzgPkLZxHuA8QNrGeYDzAJGW54EXeP6P1Izn/wpGr9ejTp06aN26NYKDg0XHIROKi4tD+/btee+e5NLT01GzZk1069YNCxcuFB2HTGjq1KlYtmwZrl27Bmtra9FxyISOHDmCpk2bIiYmBu7u7qLjUCFwv4XoOe63ZOfq6orKlStj69atoqOQIHzYQkNOnDiBRo0aISoqCh4eHqLjkIncuHEDNWrUQEhICAYMGCA6DplQ06ZNUbVqVb4c+woGgwHdu3dHUlISjhw5wheVSVXGjBmD1atX49ChQ3B2dhYdRzj2mdSMfc6OfSY1Y5+1Y9GiRZg0aRKSk5NRpUoV0XEUges3qRnX7+zYZ1Iz9jk79pnUjH3Ojn0mNWOfs2OfSc3Y5+zYZ1Iz9vm5x48fo3HjxqhYsSLi4uJgYWEhOhKRWd29exf169dHixYtEBkZKTqOEJ9++imCg4Nx7Ngx1KxZU3QcIrPr378/YmJicPLkSVSqVEl0HLP74Ycf0KZNGwQFBeHjjz8WHYfI7L7//nt069YN4eHh8PHxER3H7DgPkNZxHuA8QMR5gPMAaRvnAc4DpG2cBzgPEHEe4DxA2qb1eeAFnv8jNeP5v4LZuHEj+vTpgzNnzqBOnTqi45AJderUCc+ePUN8fLzoKGRCoaGhGDZsGC5dugQHBwfRcchEHj58CAcHB4wbNw7+/v6i45CJeXt74+eff8axY8f4IIKKcb+FtI77Ldlt3boVPXr0wNGjR9GwYUPRcUgQPmyhMV5eXkhJScH+/ftFRyETGjhwII4cOYIzZ87wsI3ENm3aBG9vb5w6dQp169YVHUfRUlJS4OrqChsbGyQkJKBo0aKiIxG90oYNG9C/f3+Eh4ejd+/eouMoBvtMasQ+54x9JjVin7Xl2bNncHJyQps2bRASEiI6jmJw/SY14vqdM/aZ1Ih9zhn7TGrEPueMfSY1Yp9zxj6TGrHPOWOfSY3Y5+yOHTuG5s2bY9asWRg3bpzoOERm1a1bNxw9ehQnT55E2bJlRccR4unTp3B1dUXRokXxww8/oEiRIqIjEZnNxo0b4ePjg23btqFLly6i4wgzbdo0fPHFF0hKSkK9evVExyEym1u3bqFBgwbo2rUrVq5cKTqOMJwHSMs4D3AeIG3jPPAc5wHSKs4Dz3EeIC3jPMB5gLSN88BznAdIqzgPZMfzf6RGPP9XcE2bNoWDg4NmH/bTipMnT6Jhw4aIioqCh4eH6DhkInq9HvXq1UPjxo2xdu1a0XHIhObNm4dZs2bh+vXrsLOzEx2HTOjy5cuoVasWvv32W3h7e4uOQ6+J+y2kVdxvyS4zMxP169dH/fr18e2334qOQwLxYQuNOXjwIFq2bIldu3ahU6dOouOQiZw/fx716tXDunXr0LdvX9FxyERebMA0aNAAGzZsEB1H8S5evIhmzZph4MCBWLx4seg4RHk6deoUmjdvjuHDh+PLL78UHUdx2GdSE/Y5b+wzqQn7rE3r16/HoEGDcPLkSTg7O4uOoxhcv0lNuH7njX0mNWGf88Y+k5qwz3ljn0lN2Oe8sc+kJuxz3thnUhP2OWdz587FtGnT8MMPP6Bp06ai4xCZxbJlyzBy5Ejs3bsXbm5uouMIde7cOTRp0gQTJ07E9OnTRcchMotffvkFDRo0wMCBA7Fw4ULRcYTKyMhA69atkZKSgp9++gnFixcXHYnI5AwGAzp37ozk5GQcP34cpUuXFh1JKM4DpEWcB/7CeYC0iPPAXzgPkBZxHsiO8wBpEeeBv3AeIC3iPPAXzgOkRZwHcsbzf6QmPP9XcNHR0fDy8sLhw4fRrFkz0XHIhHr06IGrV6/i2LFj0Ol0ouOQiXz77bcYMGAATp06BScnJ9FxyERSUlLwr3/9Cx988AHmzp0rOg6Z2ODBg3Hw4EGcP38elpaWouPQa+J+C2kR91tetmLFCowaNQrnzp1DjRo1RMchgfiwhQZ17doV165dw/Hjx2FhYSE6DpnIkCFDkJCQgAsXLvC1aIlt3LgRPj4+OHLkCBo1aiQ6juJFRESgT58+CAkJwZAhQ0THIcrR3bt34erqiqpVq2Lv3r2wsrISHUmR2GdSA/Y5f9hnUgP2WbsMBgOaNGmCKlWq4PvvvxcdR1G4fpMacP3OH/aZ1IB9zh/2mdSAfc4f9pnUgH3OH/aZ1IB9zh/2mdSAfc6dXq9H+/bt8fvvvyMpKQnW1taiIxGZ1Llz59C0aVP8+9//xqxZs0THUYSgoCB88skniI+PR6tWrUTHITKp9PR0tG3bFikpKUhKSuIPDgK4fPkyGjZsiKFDh2LBggWi4xCZ3BdffAF/f39e3Pr/OA+Q1nAeeBnnAdISzgMv4zxAWsN5IDvOA6Q1nAdexnmAtITzwMs4D5DWcB7IHc//kRrw/F/B8R4A7Thy5AiaNWuGbdu2oUuXLqLjkIlkZGSgbt26cHV1RWhoqOg4ZEIBAQFYuHAhLl++jHLlyomOQyZ08eJF1K1bF6GhofD19RUdh4yE+y2kNdxvye7JkydwdHRE9+7dsWjRItFxSDDLgICAANEhyLwaNmyIwMBA1KxZE/Xq1RMdh0ykYcOGmDNnDsqXL8+XZCXm5OSE3bt34+DBg+jfv7/oOIrn7OyMp0+fwt/fHy1btsTbb78tOhJRNmlpafD09ERKSgp27dqFMmXKiI6kWOwzKR37nH/sMykd+6xtOp0O1apVw3/+8x+0bdsW1apVEx1JMbh+k9Jx/c4/9pmUjn3OP/aZlI59zj/2mZSOfc4/9pmUjn3OP/aZlI59zptOp0P79u2xcOFCnD59Gj179oROpxMdi8gkHj58CHd3d1SvXh1r1qyBpaWl6EiK0LRpUxw9ehSLFi1Cv379eIEdSe2zzz5DdHQ0oqOjYW9vLzqOIpQtWxZVq1bFxIkT4eTkBGdnZ9GRiEwmISEBgwYNwuzZs+Ht7S06jiJwHiAt4TyQM84DpCWcB17GeYC0hPPAyzgPkJZwHsgZ5wHSEs4DL+M8QFrCeSBvPP9HSsfzf4WzceNGfPPNN/j2229RqVIl0XHIhAYOHIjy5ctj/vz53NuRWHBwMDZs2IDIyEjY2dmJjkMmcvfuXfTt2xcTJkxAp06dRMchE/Pz84OlpSWCgoK4fkuE+y2kJdxvedkXX3yBvXv3IjIykn/nQtAZDAaD6BBkfkOGDMG+fftw4cIFFCtWTHQcMpFPP/0U69evx88//4zSpUuLjkMmkpCQgLZt2yI2Nhbt2rUTHUfxDAYDBg4ciG3btuHAgQN84IcUw2AwYMCAAdi+fTv/fzOf2GdSKva54NhnUir2mV7o0KEDUlJS8OOPP/Ivy/6G6zcpFdfvgmOfSanY54Jjn0mp2OeCY59JqdjngmOfSanY54Jjn0mp2Of8i4+PR8eOHTF37lx89tlnouMQGZ3BYEDv3r2xf/9+HD16FG+++aboSIqSkpICV1dX2NraYt++fShatKjoSERG9+2338LX1xehoaEYOHCg6DiKM2rUKISGhuLQoUP8YUqS0u3bt9G4cWM0a9YMW7Zs4RmXf+A8QLLjPJA3zgOkBZwH8sZ5gGTHeSBvnAdIdpwH8sZ5gLSA80DeOA+Q7DgP5A/P/5FS8fxf4WRmZqJevXpo1KgRwsLCRMchE0pMTESbNm0QFxcHNzc30XHIRNLS0lCzZk1069YNixcvFh2HTOjTTz9FWFgYLl++zLtRJXfkyBE0a9YM33//Pd577z3RccgEuN9CsuN+y8vu37+Pf/3rXxg7diymT58uOg4pAB+20Khff/0VNWvWxLx58zB69GjRcchE7t79P/buOz6nu/8f+PtcV/aOmDGjEY00qNSsXXsrUUVu6ou7LaKqqHUHLWJXa1RRs0YojU3tXcSKIoSgxI5Ehszr/fvj/iV3R0LGda7PGa/n49F/Gnfyyl2vk7zOda5zntIbb7xBI0eOpPHjx4uOAzJq2bIlvXjxgk6dOoVfePIhPT2d2rRpQzExMXTy5Ek8cRkUYfTo0TR37lzatWsXvffee6LjqAb6DEqEPhcO+gxKhD5DtgsXLlBAQABt2rSJunbtKjqOouD4DUqE43fhoM+gROhz4aDPoEToc+Ggz6BE6HPhoM+gROhz4aDPoEToc8HMmDGDxo4dS7t27aKWLVuKjgNgVtOmTaP//Oc/tG/fPmrSpInoOIp07do1qlOnDn300Uc0b9480XEAzCoyMpLq169PAwcOpLlz54qOo0gZGRn03nvv0cOHD+nMmTPk6uoqOhKA2WRkZFDz5s3p8ePHdPr0afz9zgP2AGgZ9sDrYQ+AlmEPvB72AGgZ9kD+YA+AlmEPvB72AGgZ9sDrYQ+AlmEPFAyu/wMlwvV/hbNs2TL65JNP6OrVq/TGG2+IjgMyatCgAbm4uNDu3btFRwEZzZw5kyZNmkTR0dH4+axh2fe/nTFjBg0ZMkR0HJAZ7o2qfTjfAlqG8y25wwOq4O/wYAsdGzFiBK1evZqio6PJxcVFdByQyeTJk2nWrFkUHR1NJUuWFB0HZHLx4kWqVasWbrJaAM+ePaP69euTi4sLHThwAMdBEGrBggU0dOhQWrlyJQUFBYmOozroMygJ+lw06DMoCfoMf9ezZ0+6ePEiRUZGkpWVleg4ioLjNygJjt9Fgz6DkqDPRYM+g5Kgz0WDPoOSoM9Fgz6DkqDPRYM+g5KgzwXHzBQYGEhHjx6liIgIKleunOhIAGaxb98+atOmDc2cOZOGDx8uOo6irVu3jnr37k1r1qyhXr16iY4DYBbx8fFUu3ZtKlOmDO3fv5+sra1FR1Ks2NhYCggIoHr16tHmzZvxplnQjE8//ZTWrFlDv/32G/n6+oqOo1jYA6BV2AP5hz0AWoQ9kH/YA6BV2AP5gz0AWoU9kH/YA6BF2AP5hz0AWoU9UHC4/g+UBNf/FU5aWhr5+PhQu3btaNGiRaLjgIx++eUXev/99+nUqVNUp04d0XFAJomJieTt7U0DBgygKVOmiI4DMurfvz8dPHiQrl27Rra2tqLjgIyOHDlCTZo0oQMHDlCzZs1ExwEZ4XwLaBXOt/zTnTt3qGrVqjR79mwaPHiw6DigEAbRAUCc8ePHU2ZmJs2ZM0d0FJDR559/To6OjjR9+nTRUUBGNWrUoO7du9OYMWMoMzNTdBxV8PDwoF27dtGDBw+oQ4cOlJKSIjoS6NTKlSspODiYpk6diheZCgl9BqVAn4sOfQalQJ8hN1OmTKGYmBhauHCh6CiKg+M3KAWO30WHPoNSoM9Fhz6DUqDPRYc+g1Kgz0WHPoNSoM9Fhz6DUqDPhSNJEi1fvpw8PDyoc+fOlJSUJDoSQJFdu3aNPvjgAwoMDMRNq/Lhww8/pGHDhtGAAQPo1KlTouMAFFlGRgb16NGDUlJSKCwsDDeteg1PT0/asGED7dixgyZMmCA6DoBZLFiwgL7//nv68ccf8SbK18AeAC3CHigY7AHQGuyBgsEeAC3CHsg/7AHQIuyBgsEeAK3BHigY7AHQIuyBwsH1f6AUuP6v8BYtWkSPHz+mcePGiY4CMjKZTDRx4kTq3r07HmqhcTNnzqT09HQaMWKE6Cggo6ioKFq9ejVNnjwZD7XQgS+//JJat26Nh1roAM63gBbhfEvuRo0aRRUqVKBBgwaJjgIKIjEziw4B4kydOpVCQ0Ppxo0bVKpUKdFxQCbfffcdjRo1iqKioqhChQqi44BMbty4QX5+fvT9999T//79RcdRjaioKGrSpAn5+/vTtm3byM7OTnQk0JEtW7ZQjx49aPTo0fT111+LjqN66DOIhD6bF/oMIqHP8CpjxoyhxYsX0/Xr16l48eKi4ygOjt8gEo7f5oU+g0jos3mhzyAS+mxe6DOIhD6bF/oMIqHP5oU+g0joc9HFxMRQ/fr1qVatWrR161aysrISHQmgUJ4+fUoNGjQgNzc3OnToEDk4OIiOpApZWVnUrVs3On78OJ04cYKqVKkiOhJAoX3yySe0atUqOnjwIN7IXwDLly+n/v3706JFi+jjjz8WHQeg0Hbt2kWdOnWiiRMn4sYtBYA9AFqBPVA42AOgJdgDhYM9AFqBPVA42AOgFdgDhYM9AFqCPVA42AOgFdgDRYfr/0AkXP9XeElJSeTt7U19+/al6dOni44DMlq9ejV99NFHFBkZiRsKa9jjx4/J29ubxowZQ2PGjBEdB2TUvXt3ioqKoosXL5LBYBAdB2QUHh5OXbt2pZMnT1LdunVFxwELwfkW0Aqcb8nd8ePHqVGjRrRt2zZq37696DigIHiwhc4lJyfTm2++SS1atKDly5eLjgMySU9PJz8/P3r77bcpLCxMdByQ0ccff0zbt2+nq1evkrOzs+g4qnHx4kVq3rw5NWzYkDZt2kTW1taiI4EO/Prrr9SxY0caOHAgfffdd6LjaAb6DCKgz/JAn0EE9BleJykpiapWrUqdO3emhQsXio6jSDh+gwg4fssDfQYR0Gd5oM8gAvosD/QZRECf5YE+gwjoszzQZxABfTafs2fPUtOmTalXr170ww8/iI4DUGAvX76k9957jx4+fEgnT56kUqVKiY6kKikpKdSsWTN69uwZnTp1Cg+2B1WaMmUKhYSE0M8//0ydO3cWHUd1JkyYQNOnT6cdO3ZQy5YtRccBKLDz589T48aNqUePHrRs2TLRcVQHewDUDnugaLAHQAuwB4oGewDUDnugaLAHQO2wB4oGewC0AHugaLAHQO2wB8wH1/+BCLj+r2jGjx9P8+fPp5s3b5KHh4foOCCTlJQU8vX1pZYtW9LSpUtFxwEZDRgwgPbs2UPXrl0jR0dH0XFAJocOHaLmzZtTeHg4dezYUXQckFF6ejrVqFGD3nrrLdq4caPoOGBhON8CaofzLbkzmUxUp04dKlasGO3du1d0HFAYPNgCKCwsjHr27EmHDx+mRo0aiY4DMtmzZw+1adOGdu3aRW3atBEdB2Ty7Nkzqlq1KvXv359mzJghOo6qnDhxglq3bk2tWrWidevWkY2NjehIoGE7d+6k7t2704cffkhLly4lSZJER9IU9BksCX2WF/oMloQ+Q36tXLmS/u///o8iIiKoRo0aouMoEo7fYEk4fssLfQZLQp/lhT6DJaHP8kKfwZLQZ3mhz2BJ6LO80GewJPTZ/LZt20Zdu3alGTNm0Oeffy46DkC+MTP17t2b9uzZQydOnKCqVauKjqRKDx48oHr16lHFihXp119/JVtbW9GRAPIt+z0A3377LQ0ZMkR0HFViZurbty+Fh4fT0aNHqXr16qIjAeTb/fv3qV69euTt7U179uzBFi0k7AFQK+wB88AeADXDHig67AFQM+wB88AeALXCHjAP7AFQM+yBosMeADXDHjA/XP8HloTr/4omOjqa/P39afr06RQcHCw6Dsho3LhxNH/+fLp27RqVKVNGdByQydmzZ6lu3bq0du1a+uCDD0THAZlkZmZSQEAAlS5dmvbs2SM6Dshs+vTpNGnSJPr999/Jy8tLdBywMJxvATXD+Za8ff/99xQcHEyRkZF4TQr+AQ+2ACIiatu2LT169IjOnDlDRqNRdByQSefOnenq1asUGRmJF9c1bOHChTRs2DA6d+4c+fv7i46jKkePHqUOHTrQu+++Sz///DPZ29uLjgQatGnTJurduzf16dOHfvjhB/zclQn6DJaAPlsG+gyWgD5DQTAz1a9fnxwcHOjAgQOi4ygWjt9gCTh+Wwb6DJaAPlsG+gyWgD5bBvoMloA+Wwb6DJaAPlsG+gyWgD7LZ/bs2TRq1Chas2YNffjhh6LjAOTL0KFDacmSJbR3715q3Lix6DiqFhkZSY0aNaLWrVvT2rVrcXwFVdi3bx916NCBBg8eTLNnzxYdR9XS0tKoVatWFBMTQ0eOHKFKlSqJjgTwWk+fPqWmTZuSJEl07NgxcnV1FR1J1bAHQI2wB8wHewDUCHvAfLAHQI2wB8wLewDUCHvAfLAHQI2wB8wHewDUCHtAPrj+DywB1/8VXfv27enOnTt0/vx5sra2Fh0HZIIHmOiDyWSi+vXrk62tLR0+fBgP+tGwOXPm0JgxYygyMpJ8fHxExwEZ3bt3j3x9fWnUqFE0YcIE0XFAEJxvATXC+Za8PX/+nHx8fOhf//oXzkdDrvBgCyAiohs3bpC/vz/NnTuXPvnkE9FxQCZ3794lX19fmjhxIo0cOVJ0HJBJ9gkbOzs7OnToEE7YFFBERAS1adOGqlWrRtu2bSMXFxfRkUBD1q5dS3379qWBAwfS/PnzyWAwiI6kaegzyAl9tiz0GeSEPkNhREREUJ06dSgsLIy6desmOo5i4fgNcsLx27LQZ5AT+mxZ6DPICX22LPQZ5IQ+Wxb6DHJCny0LfQY5oc/yGzlyJH3zzTe0ceNG6tKli+g4AK80duxYmjFjBm3YsAGvVZnJoUOHqF27dvTBBx/Qjz/+iOsuQdGOHz9OrVu3pi5dutCqVavwe4EZPH/+nJo3b06JiYl05MgR8vT0FB0JIE8JCQn03nvvUVxcHB05coTKlSsnOpImYA+AmmAPmB/2AKgJ9oD5YQ+AmmAPyAN7ANQEe8D8sAdATbAHzA97ANQEe0B+uP4P5ITr/4puy5Yt1K1bNzpw4AA1bdpUdByQER5gog+LFy+mIUOG0Llz58jf3190HJDJo0ePqGrVqhQcHEyTJ08WHQdk9sEHH1BERARdvnyZ7OzsRMcBgXC+BdQE51tebdiwYbR+/XqKiooiNzc30XFAgXB2A4iIqEqVKhQcHEzjxo2jJ0+eiI4DMqlQoQKNGjWKJk+eTPfv3xcdB2RiMBho/vz5dOzYMdqwYYPoOKoTEBBA+/fvp6ioKGrdujU9f/5cdCTQiIULF1JQUBCNHDmSFi5ciBeZLAB9Brmgz5aHPoNc0GcorICAAOrTpw8NHz6cUlJSRMdRLBy/QS44flse+gxyQZ8tD30GuaDPloc+g1zQZ8tDn0Eu6LPloc8gF/TZMmbMmEEDBw6kDz74gHbu3Ck6DkCepkyZQqGhobR48WLctMqMmjZtSuHh4bRu3ToaOnSo6DgAebpw4QJ17NiRWrRoQStWrMDvBWbi7u5Oe/fuJVtbW2rWrBk9evRIdCSAXKWkpFCnTp3owYMHtG/fPryJ0oywB0AtsAfkgT0AaoE9IA/sAVAL7AH5YA+AWmAPyAN7ANQCe0Ae2AOgFtgDloHr/0AuuP6v6F6+fEkjRoyg3r1746EWGrdlyxbatWsXzZ8/Hw+10LC4uDgaP348DRs2DA+10LgRI0aQq6srjR49WnQUkNmRI0do48aN9M033+ChFoDzLaAaON/yalevXqVFixbRlClT8FALyJPEzCw6BChDUlISvfnmm9S2bVtasmSJ6Dggk7S0NKpevTrVqlWL1q1bJzoOyGjAgAG0Y8cOioqKwlPACyEqKopatmxJTk5OtGPHDvLy8hIdCVSKmWns2LE0ffp0mjJlCo0ZM0Z0JN1Bn8Fc0Gfx0GcwF/QZzCE2NpaqVq1KX3zxBYWEhIiOo2g4foO54PgtHvoM5oI+i4c+g7mgz+Khz2Au6LN46DOYC/osHvoM5oI+Wx4z08CBA2nt2rW0c+dOvAkWFGf+/Pk0dOhQmjNnDg0fPlx0HE365ZdfKDAwkIYMGUJz584VHQfgL6KioqhJkybk7+9P27ZtwxtAZXD//n1q3LgxOTk50cGDB6lYsWKiIwHkSE9Ppy5dutCZM2fo8OHDVK1aNdGRNAd7AJQOe0B+2AOgZNgD8sMeACXDHpAf9gAoHfaA/LAHQMmwB+SHPQBKhj1gebj+D8wF1/+Zz4QJE2jevHl07do18vT0FB0HZPLy5Uvy8/Ojd999l1avXi06Dsjo448/pl9++YWioqLI1dVVdByQybFjx6hx48a0efNm6tKli+g4IKPMzEyqVasWeXl5UXh4uOg4oCA43wJKhvMtr9eyZUuKi4ujM2fO4AGNkCf8zYAcTk5ONGvWLPrxxx/p1KlTouOATGxtbenbb7+l9evX04EDB0THARlNnz6dMjIy6OuvvxYdRZWqVq1Kv/32Gzk4OFDt2rXp2LFjoiOBCqWlpVGfPn1ozpw5tGLFCrzIJAj6DOaAPisD+gzmgD6DuXh6etLEiRNp2rRpdO3aNdFxFA3HbzAHHL+VAX2Gosh+zjr6rAzoM5gD+qwM6DOYA/qsDOgzmAP6rAzoM5gD+iyGJEm0ePFiateuHXXq1ImOHj0qOhJAjoULF1JwcDBNnz4dN50QAr0AACAASURBVK2SUZcuXWj58uX07bff0vjx40XHAcjx+++/U9OmTcnHx4fCw8Nx0yqZlC1blvbt20dxcXHUtm1bev78uehIAET03xt4dO3alU6ePEl79+7Fmyhlgj0ASoY9YBnYA6BU2AOWgT0ASoU9YBnYA6Bk2AOWgT0ASoU9YBnYA6BU2ANi4Po/MIdvv/2WatWqRbNnz8b1f0V08+ZNmjVrFk2ePBkPtdC4qVOn0tOnT2n69Omio4CMzp07R0uXLqVZs2bhoRYalpmZSUOGDKEWLVrgoRY6MHfuXIqOjsbDYuEfcL4FlArnW15vzZo1dODAAVqwYAEeagGvJHH2nYQA/r/33nuP4uPj6dSpU2RtbS06DsikU6dOdPPmTTp37hzZ2tqKjgMyWbRoEQ0bNozOnz9Pfn5+ouOoUnJyMvXs2ZP27dtHy5cvp549e4qOBCoRFxdHXbt2pUuXLtHmzZupWbNmoiPpHvoMhYU+Kw/6DIWFPoO5ZWVlUe3atcnFxYUOHjxIkiSJjqRoOH5DYeH4rTzoMxRGZmYmBQUF0enTp+np06f0yy+/oM8KgD5DYaSmplJwcDCdOHGC7t+/j5/PCoE+Q2GkpqbSsGHD6Pjx4+izgqDPUBhpaWk0bNgwOnbsGPqsIOgzFAZ+PitDeno6ffjhh7R7927asmULtWrVSnQk0LmZM2fS6NGj6euvv6axY8eKjqMLy5cvp4EDB9LQoUNpzpw5eB0QhIqIiKA2bdqQr68vbd++nVxcXERH0rzr169TixYtqFixYrR3714qWbKk6EigY0lJSdSpUye6cOEC7dq1i+rWrSs6kuZhD4DSYA9YHvYAKAn2gOVhD4CSYA9YHvYAKA32gOVhD4CSYA9YHvYAKAn2gHi4/g8KKy4ujjp27EgnT54kIqImTZrQRx99RF27diVnZ2fB6dSnffv2dPfuXTp//jxZWVmJjgMyiY6OJn9/f5o6dSoe6qhhWVlZ9O6775KNjQ0dPnwYm1vD5s6dS2PGjKHIyEiqUqWK6Dggo/v375Ovry+NGDGCQkJCRMcBhcL5FlASnG95vbi4OPL19aXu3bvTggULRMcBhTNOnDhxougQoCyNGjWiKVOmkMlkoiZNmoiOAzKpX78+TZ8+nVJSUqhFixai44BMatWqRTt37qTw8HD66KOP8LSrQrCxsaEePXrQgwcPaNy4cWRjY0MNGzbESTF4pcjISGrRogXFx8fT/v37qU6dOqIjAaHPUDjoszKhz1AY6DPIwWAwUK1atSgkJIS8vLyoRo0aoiMpGo7fUBg4fisT+gyF8fvvv9PUqVPp7t27lJGRQbdv3yZJkuiNN97Aw5cFQp+hMK5evUrjx4+nmJgYMhqNZDAYyN3dncqXL4+/OwKhz1AYV69epXHjxuX02crKCn1WAPQZCuPvfba2tiY3Nzf0WTD0GQrjz322srIia2trcnd3p3LlyuHvjgUZjUbq3r073bx5k8aOHUt+fn7k6+srOhbo1PTp0+nLL7+k2bNn06hRo0TH0Y23336b3nzzTRozZgzdu3eP2rdvj+MwCHH69Glq06YNVa9enbZv346bXFiIh4cHdevWjZYtW0YrVqygLl264IZhIER8fDy1bduWoqKiaP/+/RQQECA6ki5gD4CSYA+IgT0ASoE9IAb2ACgF9oAY2AOgJNgDYmAPgFJgD4iBPQBKgT2gDLj+Dwoj+/2wL168oNGjR9O+ffvozp07FB4eTrNnz6YrV66Qo6MjeXl54T5g+bBu3TqaPn06hYWFUeXKlUXHAZkwM3Xv3p3s7e3pxx9/RDc0bN68ebRmzRoKDw+nUqVKiY4DMrlx4wb16NGDRo8eTd26dRMdB2QWFBREKSkp9NNPP5G1tbXoOKBQON8CSoHzLfkzZMgQio6Ops2bN5OdnZ3oOKBweLAF/IO7uzs5ODjQ+PHjqX379uTp6Sk6EsjAzc2NPDw8aOzYsfTee+9RhQoVREcCGRgMBmrUqBF99dVXRER4WE0hGQwG6tChA7m5udHYsWPpwoUL1LZtW9xwD3K1bt066ty5M/n4+NDevXvJy8tLdCT4E/QZCgJ9Vjb0GQoCfQY5lS1blp48eUKzZ8+m/v37k4ODg+hIiobjNxQEjt/Khj5DQWT3uVq1atS0aVO6cOEC3b17N+ei3MuXL5ODgwMuyhUEfYaCyO7zW2+9RV5eXnTjxg26ePEiLVu2jJYsWULx8fHk6elJxYsXFx1Vl9BnKIg/97lixYoUHR1NFy5coKVLl9LSpUvp+fPn6LNA6DMUxKv6vGzZMvx8Fgx9hoL4c58rVKhA0dHRdP78+Zw+JyQkUNmyZcnDw0N0VF0wGAzUuXNnevLkCY0aNYoqVapENWrUoISEBFycDRbBzPTFF1/Q1KlT6YcffqBPP/1UdCTd8fPzo1q1atH48ePpypUr1LlzZ0pMTMQxACzm0KFD1LZtW2rcuDH98ssveC3awlxdXSkwMJDWrl1LixYtoo4dO5KjoyOlpqaSjY2N6HigA3FxcdS6dWu6e/cu7d+/n/z9/UVH0pXc9oC3tzfFxsaSm5ub6HigA9gD4uW2B4xGo+hYoCPYA2LltgeKFSsmOhboCPaAWHm9PgBgKdgD4mEPgGjYA2JhD4Bo2APKguv/oCD+/n7Y1q1b08GDByk2NpaysrIoKyuLoqKiaNWqVTRv3jyKiYkhd3d33PctD0+ePKFOnTpR3759sYs0buHChfTDDz/Q1q1bqXz58qLjgExiYmIoMDCQxo4dS4GBgaLjgExMJhO9//775OzsTKtWrcL5FI1bs2YNzZgxgzZv3kze3t6i44DC4XwLiIbzLflz5MgR+uyzz2j58uVUq1Yt0XFABSRmZtEhQHlMJhM1b96c4uPj6fTp03jzhYa1a9eObt26RefPnyd7e3vRcUAmc+bModGjR9PJkyfpnXfeER1H1Y4dO0Y9evQgJycn2rx5M7311luiI4FCZGZm0vjx42n69Ok0aNAgmj9/Pp4gqnDoM+QFfVYf9Bnygj6Dpbx48YKqVatGbdq0oaVLl4qOoxo4fkNecPxWH/QZ8pJbn1NSUsjb25uePXtG2S9RWVtbU0ZGBjk7O9OHH35IQUFB9O6775IkSYK/A/1BnyEvufX57t27VK1aNUpPT8/5c9l99vHxof79+1Pfvn2pdOnSApPrF/oMecmrz76+vpSRkZHz59Bn5UCfIS/os/qgz5CX3Pp8584dqlatGvqsACaTiYKCgmjdunVUqlQp2rx5M9WvX190LNC49PR0GjhwIK1bt45WrVpFPXv2FB1J19atW0f9+vUjZ2dn6tevH82aNUt0JNCB9evXU79+/ah79+60YsUKsrKyEh1Jt2JiYqh58+b06NEjqlKlCp0+fRo3qgHZ3bx5k9q3b0+ZmZm0b98+qlSpkuhIuvXs2TPq06cP7dmzh5ydneny5cu4mQrIDntAWfbt20ddunShpk2b0vr168nJyUl0JNAB7AHlePLkCbVu3ZoePXpEO3bsoJo1a4qOBDqAPaAc2Q8XmDdvHs2dO5eGDh0qOhLoAPaAsmAPgAjYA8qBPQAiYA8oG67/g7y86v2w169fJz8/P8rMzPzH/87GxobS09PJ29ubevfuTX379iUvLy9Lx1es7t2709mzZykyMpKcnZ1FxwGZ3L59m6pXr05Dhw6lKVOmiI4DMjGZTNSsWTOKj4+ns2fP4p4BGjZt2jSaNGkSnTlzBjcM17iHDx+Sn58f9erVi7777jvRcUBFcL4FRMD5lvxJT0+nmjVrUqVKlWjnzp2i44BKGEQHAGUyGAy0fPlyunnzJn399dei44CMli5dSo8fP6axY8eKjgIy+uyzz6hhw4bUt29fSk1NFR1H1Ro2bEhnz56lEiVKUIMGDWj9+vWiI4EC3Lt3j5o3b07z58+ntWvX0uLFi3ECVQXQZ8gN+qxO6DPkBn0GS3JxcaG5c+fSjz/+SAcOHBAdRzVw/Ibc4PitTugz5CavPru6utKcOXP+8mezb9KZmJhIy5cvp0aNGlG5cuXoyy+/pOjoaBHxdQt9htzk1ec33niDxo8fT0ajMefPZvf5xo0bNG7cOPL09KT69evTDz/8QImJiaK+BV1CnyE36LM6oc+Qm6L0uWzZstS8eXNatWoVJSUlifoWdAl9htzk1Wdvb28aN24c+ixIZmYm7d+/n4YMGUKenp60du1aYmZ6+PAhbdiwgbKyskRHBA2Lj4+nNm3a0JYtW2jr1q24aZUg165do2nTplGtWrWod+/elJ6eTvHx8bR//36KjY0VHQ80btq0adSrVy/69NNPadWqVbhplQBPnjyhpUuXUtu2balq1ap0+/ZtSk1NpejoaNq/f7/oeKBxJ0+epPr165OTkxMdPXoUb6IU4P79+7RgwQJq1qwZlSpVinbv3k3MTImJiTR79mzsAZAV9oDytGjRgvbv309nzpyhJk2aYA+A7LAHlKVEiRJ08OBBqlatGjVq1Ag3bwDZYQ8oiyRJNHv2bJoyZQoNGzaMPvvsM+wBkBX2gPJgD4ClYQ8oC/YAWBr2gPLh+j/IzeveD+vj40NffPFFrj/X09PTiYgoOjqapkyZQm+88QY1bdqUVq1aRcxsse9BiTZs2ECbN2+mpUuX4qEWGsbMNGDAACpfvjz95z//ER0HZLRgwQI6ceIErVixAvcM0LArV67Q5MmTadKkSXiohQ588skn5OrqStOmTRMdBVQG51vA0nC+Jf+mTZtGd+7coQULFoiOAmrCAK/w3XffsZWVFZ8+fVp0FJDRypUr2WAw8MGDB0VHARnFxMSws7Mzjxo1SnQUTUhLS+Pg4GCWJImDgoI4ISFBdCQQZOPGjVysWDF+8803+dKlS6LjQCGgz5ANfVY/9Bmyoc8gSvv27dnX15dTU1NFR1EVHL8hG47f6oc+Q7bX9dlkMnGjRo3Y2tqaiSjPf6ysrFiSJK5bty5v3rxZwHeiX+gzZHtdn1NTU7ly5cpsNBrz7LLBYGCDwcB2dnbcu3dvPn78uIDvRL/QZ8iGPqsf+gzZzNVnSZLYzs6O+/Tpgz5bGPoM2fLTZy8vr3z12d7envv06cMnTpwQ8J1oQ0pKCm/ZsoWDgoLYxcWFiYhtbW1z/n/29vbmdevWsb29Pbdp04ZfvHghOjJo0K1bt9jX15c9PT05IiJCdBxdMZlMfObMGR4zZgx7e3szEbGNjQ0bDIac48CWLVty/vucO3dOdGTQoIyMDP7444/ZaDTyt99+KzqO7sTExPDcuXO5QYMGbDAY2Gg0spWVFRMRS5LEY8eO5X//+99sNBr5u+++Ex0XNOrnn39me3t7bt26NX7ftLDr169zaGgoBwQEsCRJbGVllfN7gNFo5FatWvGmTZuwB0BW2APK9uf/PtgDIAfsAWXLyMjAHgDZYQ8oG/YAyA17QNmwB0Bu2APKhj0AloA9oC64/g+y5ff9sMnJyezp6Znz2tPr/tH7vcH++OMPLlasGP/73/8WHQVkNmfOHLa2tubffvtNdBSQ0e+//8729vY8ceJE0VFARhkZGfzOO+9w/fr1OTMzU3QckNmyZcvYYDDwgQMHREcBFcP5FrAEnG/Jv2vXrrGtrS3PmjVLdBRQGTzYAl7JZDJxq1at2NfXl1++fCk6DsioW7duXKlSJfzA1bjFixezwWDgw4cPi46iGXv37mVPT0+uWLEiHzlyRHQcsKCUlBQODg5mIuKgoCBOSkoSHQmKCH3WL/RZe9Bn/UKfQbTsBwp++eWXoqOoEo7f+oXjt/agz/pVkD5fuXIl54ZQr/pHkiS2tbXl8+fPW/A7gWzos34VpM/79+9nSZLydYG9tbU1nzx50oLfCWRDn/ULfdYe9Fm/Ctrn/HQ5u8+4Eb4Y6LN+FaTPv/76a4H6jJ/PBRMXF8dhYWHcq1cvdnBwYEmScn0Qp8FgyHnz5LFjx9jDw4Nr167NsbGxgr8D0JJTp05xqVKluEaNGnzv3j3RcXQhMzOTjx49yqNHj+YKFSr85YE2f/7HaDTymDFjmJn52bNn3KRJE3ZxceHdu3cL/g5AS+Lj47lVq1bs6OjIW7duFR1HN27evMnffPMN16lThyVJYqPR+I9zI1ZWVuzr68tpaWnMzDx58mSWJIm/+OILvBEbzGrGjBlsMBh4yJAh+LtlIZcvX+aQkBD29/fP2VR/PwZIksSOjo589+5dZsYeAPlgD6gD9gDIBXtAPbAHQC7YA+qAPQBywR5QB+wBkAv2gHpgD4BcsAfUC9f/6Vdh3g/7yy+/5Ov6vxYtWuj6WJCVlcXvvfcee3t7c2Jioug4IKPLly+zvb09f/XVV6KjgIzS09O5du3a/M4773B6erroOCCjCRMmsIODA0dFRYmOAjK7efMmOzs788iRI0VHAY3A+RaQC8635F9mZiY3aNCAa9WqxRkZGaLjgMrgwRbwWtk3ZRw9erToKCCjhw8fcvHixfGkWh1o164dV65cGSdvzejRo0fcrl07trKy4gkTJuS8eQ206/jx41ylShUuUaIEh4eHi44DZoQ+6w/6rF3os/6gz6AU33//PRsMBj569KjoKKqE47f+4PitXeiz/hSmz2PHjn3twy0kSeJ169bJnB5eBX3Wn8L0+cMPP8z15q9//2fJkiUyp4dXQZ/1B33WLvRZfwrT5549e6LPKoA+6w/6LN6jR4944cKF3Lx5czYajWwwGF55fsJoNP7jgdbXr1/nKlWqsKenJx8/flzQdwJasmTJErazs+O2bdvyixcvRMfRtIyMDA4PD+d+/fqxq6trng+z+PMN7X18fDg1NTXnc6SmpnKfPn3YaDRyaGgom0wmgd8RaEFkZCRXqVKFy5Qpw2fPnhUdR/POnj3Lo0aN4kqVKjERsY2NzSt/xzIajXzu3Lm/fI7Vq1ezra0tt27dmp8+fSroOwGtSEpK4g8//JCNRiPPmTNHdBzNi4qK4uHDh3PZsmVf+3tA9muVy5cv/8vnwB4Ac8MeUBfsATA37AH1wR4Ac8IeUB/sATA37AF1wR4Ac8MeUB/sATAn7AFtwPV/+lOU98O2b98+z+sAraysuHLlyvz8+XOZkqvDzJkz2dramn/77TfRUUBGqampXL16dX733Xdxk2GNGzVqFDs6OuJhBxoXERHB1tbW/N1334mOAjLLyMjgevXq8dtvv43fe8GscL4FzAnnWwpu6tSpbGtry5cuXRIdBVQID7aAfPnhhx/YYDDw7t27RUcBGYWFhbEkSbxlyxbRUUBG9+/f52LFivGAAQNER9EUk8nE8+fPZ0dHR65WrRouStOohIQEHjx4MBsMBm7bti3HxsaKjgQyQJ/1AX3WB/RZH9BnUBqTycRt27blqlWrckpKiug4qoTjtz7g+K0P6LM+FKXPKSkpXL58eTYajblelGswGHjcuHEypof8Qp/1oSh9fvjwITs7O7/y5m/BwcEypof8Qp/1AX3WB/RZH9BnfUCf9aGofXZyckKfzeTu3bvs7u7OkiS99mEhud3QPltCQgJ37dqVraysODQ0VMB3AlqQmprKgwYNYkmSePTo0XijrgWYTCbu0KHDa/v/53OUZ86cyfVzLV68mK2trbljx466v7EAFN66devY0dGR3333XbxeZiGrVq3K9zHAaDRySEhIrp8nIiKCK1WqxOXLl8dNNaDQbty4wf7+/uzh4cF79uwRHUcXHj58yCVKlMjXHrC2tubWrVvn+nmwB8AcsAfUDXsAzAF7QL2wB8AcsAfUC3sAzAF7QN2wB8AcsAfUC3sAzAF7QFtw/Z8+mOP9sHfu3GE7O7tcr02xtrbmY8eOyZBcPc6ePcu2trbY2jowZMgQdnV15ZiYGNFRQEZ79uxhg8HAS5cuFR0FZPTixQuuWrUqN2/eHA8A1YGxY8eyg4MDX7lyRXQU0CCcbwFzwPmWgrt8+TLb2dnxzJkzRUcBlcKDLSDf/vWvf3GxYsVwMkDjBg4cyG5ubnzr1i3RUUBG27ZtY0mSeOXKlaKjaE5MTAy3bt2aJUniQYMGcUJCguhIYCbbt2/nChUqsLu7Oy9evFh0HLAA9Fm70Gf9QZ+1C30Gpbp//z67u7vzZ599JjqKquH4rV04fusP+qxd5ujzrl278rxRjJ+fHycmJpo5NRQF+qxd5ujzwoULc70RlLW1Nfv7+3N6erqZU0NRoM/aJXefq1evjj4rDPqsXebo84IFC/Lss6+vL6elpZk5NRQF+qxd5ujz/Pnz8fPZjHbu3JmvG9kaDAY+ffp0np/HZDJxaGgoGwwG7tWrFycnJ1vwuwC1++OPP7hu3brs7OzMmzZtEh1HV+Li4rhs2bJsZWX12hvajx8//pWf68iRI1y6dGn28fHhy5cvW+g7AC3IyMjg0aNHMxHxoEGD8Lu5hfXr1++1xwArKyuuVq3aK//bPHnyhFu2bMl2dnZ4Iz4U2Pbt29nd3Z3ffvttvHfDwg4dOsQGg+GVxwBJktjR0ZH/+OOPPD8P9gAUBfaANmAPQGFhD2gD9gAUBfaA+mEPQFFgD2gD9gAUFvaANmAPQFFgD2gXrv/TLnO+H3bq1KlsNBr/8bpUiRIluGzZsnz48GEzpVaXuLg49vLy4pYtW3JWVpboOCCj9evXsyRJHBYWJjoKyOiPP/7gEiVK8AcffCA6CsisT58+XLJkSb53757oKCCz7du3s8Fg4CVLloiOAhqG8y1QFDjfUnDp6ekcEBDADRo0wAPYodDwYAvIt6SkJPbz8+M6dergxTENe/nyJdesWZNr166N/84aN3z4cHZ0dOTff/9ddBRNWrVqFRcvXpzLly+PE6kqd/v2be7WrRsTEffp04efPHkiOhJYGPqsHegzoM/agT6DGqxYsYINBgMfOnRIdBTVw/FbO3D8BvRZO8zd5y5durC1tfVfbhZVoUIFdnNzY39/f7569aqZkoO5oM/aYc4+Z2Vlce3atf/R51KlSrG1tTW3bduWHz9+bMb0YA7os3ZYss/t2rXD7/MKhD5rh7n7/M4776DPKoM+a4cl+9y+fXt++vSpGdNr36hRo/7xJuG/38x6woQJ+fpcO3fu5GLFinH16tVxLRbky9atW7l48eLs5+fHUVFRouPo0m+//fbKm9pbWVlxlSpV+OXLl6/9XPfu3eP69euzs7Mzr1y50gLpQe1u377NDRs2ZAcHB16zZo3oOLr08uVLrlat2iuPA0ajkSMiIl77uTIzM3nUqFEsSRIPGDCAk5KSLPAdgJqlpaXl/J3p379/vn7WgPlNmjTplQ+3kCQp3z/XsQegoLAHtAV7AAoKe0BbsAegoLAHtAd7AAoKe0BbsAegoLAHtAV7AAoKe0A/cP2fdsjxfti0tDSuUqVKznVrkiTx7NmzOT4+nnv06MFGo5FDQkJ0dVNRk8nEXbp04XLlyuE9RxoXFRXFLi4u/Nlnn4mOAjLKyMjghg0bso+PDx7ypHHz589ng8HAe/bsER0FZHbnzh328PDg3r17i44COoDzLVBQON9SeGPGjGFHR0e+fv266CigYniwBRQITgzow9WrV9nJyYmHDRsmOgrIKD09nevVq8dvvfUWfmmXyePHj7lv374sSRI3btyYz507JzoSFEBSUhKPHz+e7e3t2cfHh3fv3i06EgiEPqsb+gx/hj6rG/oMavP++++zl5cXv3jxQnQU1cPxW91w/IY/Q5/VTa4+x8bGsoODAxMRGwwGdnZ25uvXr/Pdu3e5QYMGbG9vz0uWLDHL1wLzQZ/VTa4+X7p0KedGUJIksZ2dHV+6dInPnDnDlStX5rJly/KRI0fM8rXAfNBndZOrzxcvXnxln8uVK4c+KxD6rG6W7vPp06fRZwVDn9VNRJ+9vLy4XLlyfPToUbN8LT3IyMjgt99++y8PC/nzDe19fX05LS0t35/v1q1bXK9ePba3t+f58+ezyWSSMT2oVUpKCn/66acsSRL37duXExMTRUfStUmTJrEkSXne0P7MmTP5/lxpaWk8fPhwliSJe/bsyc+fP5cxOajZunXr2M3Njf38/PjSpUui4+jatWvX2M7OLtfjgNFo5MmTJxfo823ZsoU9PDzYx8enQMcP0Jdr165xQEAAOzo68rJly0TH0bWsrCwOCAjIdQ9YW1tzmzZtCvT5sAcgP7AHtAt7APILe0C7sAcgP7AHtAt7APIDe0C7sAcgv7AHtAt7APIDe0B/cP2fusn9ftiDBw+yJElsMBi4T58+f/nYypUr2d7enps2bcr3798369dVqq+++oqtra352LFjoqOAjJKSktjPz4/r16/P6enpouOAjD7//HN2dHTky5cvi44CMjp9+jTb2tpySEiI6Cggs9TUVH7nnXfY39+fk5OTRccBHcH5FsgPnG8pvJMnT7LRaORFixaJjgIqhwdbQIGtX7+eJUnCE4E17qeffmJJknj16tWio4CM7ty5w8WLF+cePXrgYikZnT17lhs2bMgGg4GDgoL4wYMHoiPBK5hMJg4LC+OKFSuyk5MTh4SEcGpqquhYoBDos7qgz/Aq6LO6oM+gVo8fP+aSJUvyJ598IjqKZuD4rS44fsOroM/qYok+z549O+ei3F27duX8+/T0dP78889ZkiTu378/LnxRIPRZXSzR52HDhrHBYGBJknjTpk05/z4hIYEDAwPZaDRySEgIZ2VlmfXrQtGhz+oiss/x8fHos8Khz+piiT4HBwe/ss9WVlbos0Khz+piiT4PHToUfTaDtLQ0njBhAltZWbGTk1POA0P+fDPrs2fPFvjzZmRkcGhoKFtbW3OrVq04NjZWhvSgVpcvX+bq1auzq6srr1mzRnQc3du5cyeXLVuWK1as+I8bWmcfSwvj119/5bJly3KFChX40KFD5g0NqvbixQseNGgQS5LEgwYNwrluwW7dusVNmzblYsWK5fqAKz8/v0LdSOHhw4fctm3bnONIZmamDOlB+miG+AAAIABJREFUrVauXMlOTk78zjvvcFRUlOg4uvbkyRMODAxkSZLY3d2djUZjzjFAkiR2cnLiP/74o8CfF3sAXgV7QB+wByAv2AP6gD0Ar4I9oH3YA/Aq2AP6gD0AecEe0AfsAXgV7AF9w/V/6mLJ98P27t2bAwIC+OXLl//4WEREBFepUoVLlCjBO3fulOXrK8X27dvZaDTyvHnzREcBGZlMJu7evTuXKFGC7969KzoOyGj16tW4b6UOPHz4kMuXL8+tWrXC9eo60LdvX3Z1deXr16+LjgI6hPMt8Co431J4ycnJ7OPjwy1atMA9qKHI8GALKJRPP/2UnZyc+OrVq6KjgIxGjBjBdnZ2fPr0adFRQEZHjx5lGxsbnjJliugomrd161auVKkSOzo68ujRozkuLk50JPibX3/9lQMCAnJeFHz48KHoSKBQ6LPyoc+QX+iz8qHPoHbZDwjdtm2b6CiaguO38uH4DfmFPiufpfqckZHB/v7+PHPmzFw/vnXrVi5WrBj7+vpyRESELBmgaNBn5bNUn1+8eMGlS5fmCRMm5PrxxYsXs42NDTdv3rxQN4YC+aHPyoc+Q36hz8pnqT4nJCRwqVKlcu2zyWTib775Bn1WOPRZ+dBn9bh06RLXqlWL7e3tOTQ0lHfs2MGSJJnlhvbZjh8/zl5eXlyqVCkODw83T3BQrYyMDJ4xYwbb2tpykyZN8OZcwRISEnJuHhQYGMg3btzgsmXLspWVVc4xoFq1apyWllbor/HkyRPu0qULG41G/vLLL3O9CQHoy+HDh7ly5cpcqlQp3rFjh+g4umYymXjx4sXs7OzMfn5+fObMGe7Xr1/OMSD7OHDp0qUifY1Zs2axra0tN23alG/evGnG7wDU6MGDB9y1a1c2Go08ZsyYQj00Bcxnx44d7OnpyWXKlOFt27bxoUOH/vKgO3PcZAN7AP4Me0B/sAfg77AH9AV7AP4Oe0B/sAfgz7AH9Ad7AP4Oe0BfsAfg77AH4M9w/Z/yWfr9sA8fPuT79+/n+fEXL15w7969WZIkDg4O1uQx5OrVq+zq6sp9+/YVHQVk9p///Ietra35wIEDoqOAjCIiItjBwYG/+OIL0VFARunp6dy4cWP28vLiJ0+eiI4DMpsxYwYbDAbcKweEwvkW+Ducbym6jz/+mN3c3PCeMzALPNgCCiU1NZVr167N1atXxxPhNSwzM5Pbtm3LFSpU4EePHomOAzL69ttv2WAw8NatW0VH0bzk5GQODQ1lDw8PdnV15UmTJnFCQoLoWLq3Z88erlu3LkuSxJ07d+aLFy+KjgQqgD4rE/oMhYE+KxP6DFrSr18/dnd359u3b4uOoik4fisTjt9QGOizMono8+vetPfgwQNu06ZNzg0mMzMzZc8EBYM+K5OIPl+4cIGzsrLy/HhERAS/+eab7O7uzhs2bJA9DxQc+qxMSuzz2bNnuWrVqlysWDEOCwuTPQ8UHPqsTCL6fP78+Vf2+cyZMzl93rhxo+x5oODQZ2VCn9UjIyODQ0ND2cbGhhs0aMBRUVE5Hxs1ahQbjUY2Go3s5+dnlovbExISuF+/fkxEHBgYyA8ePCjy5wT1OX/+PAcEBLCdnR1Pmzbtld0F+e3du5crVKjAJUuW5E2bNuX8+xMnTrDRaGQiYqPRyOfPnzfL11u8eDG7uLhw1apV+fDhw2b5nKAu8fHxOQ9S6dixIx4EL1hsbCx36NCBraysePTo0ZyamsrM//09u2rVqmxlZcUGg4G//vprs3y98+fPs7+/Pzs4OPDMmTM5IyPDLJ8X1MNkMvGyZcvY3d2dvby8+NChQ6Ij6Vr2MTn79/Nnz57lfOzrr79mg8HAVlZW3L59e7N8PewBYMYe0DvsAcAe0DfsAcAe0DfsAWDGHtA77AHAHtA37AHAHoC84Po/ZVL6+2FXrlzJjo6OXKdOHb5165boOGbz7Nkz9vb25gYNGuS8dg/a9PPPP7MkSfz999+LjgIyevDgAZcrV45btWqF9/xq3KBBg9jZ2ZkjIyNFRwGZ7d69m41GI8+ePVt0FABmxvkWwPkWc9mwYQNLkvSX91IAFAUebAGFFhMTwx4eHty9e3e8mK5hT58+ZS8vL27YsCG/fPlSdByQUf/+/dnFxYUvXbokOoouvHjxgidPnsxubm7s4eHBX331FT99+lR0LF0xmUy8Y8cObtiwIRMRt2vXjs+cOSM6FqgQ+iwe+gzmgj6Lhz6DViUlJbGvry83atQIL47IAMdv8XD8BnNBn8VTQ59NJhN/8803bGtry/Xr1+ebN2+KjgS5QJ/FU0OfU1JSODg4mCVJ4sDAQI6LixMdCXKBPounxj4/f/5cdCTIBfosHvoM5oI+i4c+q8/ly5f5nXfeYTs7Ow4NDf3HG+cyMjK4bt26bGVlxRcuXDDr1z506BD7+Piwm5sbL168mE0mk1k/PyhTSkoKh4SEsI2NDb/77rt85coV0ZF0LTk5+S/HxMePH//jz8ycOZOJiCdOnGjWrx0bG8vvv/8+S5LEQUFBf7mJNmjb1q1buXz58lyqVCleuXKl6Di6FxYWxu7u7vzGG2/wkSNH/vHxK1eusL29PdesWdOsr+lnP1jLzs6Oa9SoobjfGUE+N2/e5BYtWrDBYOBBgwZxYmKi6Ei6tnv3bi5XrhyXKlWKf/nll398PCsri5s3b84uLi4cGxtr1q+NPaBP2AOQDXtAv7AHgBl7QM+wByAb9oA+YQ9ANuwB/cIeAGbsAT3DHoD8wPV/4qnh+r8/i4yM5GrVqnGxYsV448aNouMUWWpqKjdp0oQrVqzIjx49Eh0HZHT69Gl2cHDg4OBg0VFARklJSVy7dm328fHR/bXKWjd37lw2GAwcHh4uOgrI7NKlS+zi4sIfffSR6CgAf4HzLfqF8y3mcePGDXZxceGhQ4eKjgIaggdbQJEcOXKEbW1teezYsaKjgIyuXLnC7u7uHBgYiIeYaFj2Sd9y5crxvXv3RMfRjbi4OB4/fjy7u7uzg4MDDx48mKOjo0XH0rTU1FRetmwZ+/n5sSRJ3KZNGz5x4oToWKAB6LPloc8gF/TZ8tBn0IPIyEi2t7fn8ePHi46iWTh+Wx6O3yAX9Nny1Njnc+fOsa+vL7u5ufGqVatEx4E8oM+Wp8Y+b9u2jUuWLMleXl588OBB0XEgD+iz5amxz1u3bs3p86FDh0THgTygz5anxj6Hh4dziRIluHLlynz48GHRcSAP6LPloc/qk/3mBVtbW65Xrx5fvXo1zz979+5d/vbbb2XJkZSUxMOHD2ej0cjNmjXDTYw0bvfu3ezt7c2urq68aNEi3KxMsKNHj7K3tze7u7vz4sWL8/xzJpOJx44dy+np6bLkWLduHZcsWZI9PT15w4YNsnwNUIbbt29z165dWZIk7tevH25WJtiDBw+4U6dOOW9mS05OzvPPrl27li9fvixLjqtXr3LDhg3ZysqKR44cyS9evJDl64B4qampPGXKFLa3t+caNWrw6dOnRUfStYSEBB40aFDOw61edVOoR48e8datW2XJgT2gL9gDkBvsAf3AHoDcYA/oB/YA5AZ7QF+wByA32AP6gT0AucEe0A/sASgMXP9neWq8/i9bcnJyzutevXv35ri4ONGRCiUrK4t79OjBrq6ufPHiRdFxQEbXr1/nEiVKcLt27TgjI0N0HJBJRkYGt2/fnkuUKMHXr18XHQdktHHjRjYYDDxz5kzRUUBmd+7c4bJly3KTJk04NTVVdByAXOF8i37gfIv5pKamcq1atTggIADHdzArPNgCimzFihVMRK98wxeo36FDh/AQEx2Ij49nf39/fuutt/D0UwtLTEzkefPmsZeXFxsMBu7WrRsfOnQIFy6Z0cOHD3nKlClcpkwZtrGx4b59+/KlS5dExwINQp/lhz6DpaDP8kOfQW8WLVrEBoOB9+7dKzqKpuH4LT8cv8FS0Gf5qb3PycnJPHToUDYYDNyxY0eOjY0VHQnygD7LT+19fvjwIXfs2JElSeLBgwdzYmKi6EiQB/RZflrq85AhQzgpKUl0JMgD+iw/tff5wYMH3KFDBzYYDDx06FD0WcHQZ/mhz+r0+++/c506ddjOzo5nzJjBmZmZoiPxb7/9xm+//TZbW1tzcHAwbmaiMVFRUdyhQwcmIn7//ff53r17oiPpWlJSEg8ePJglSeKuXbvyw4cPRUfiZ8+e8UcffcSSJHHjxo05IiJCdCQwo6SkJJ4wYQLb29tzlSpV+NdffxUdSfdWrFjBbm5u7OPjw8ePHxcdh7OysnjhwoXs7u7OZcqU4R9//JGzsrJExwIz2rx5M1euXJkdHBx46tSpsj0sCfJnz549XKFCBS5ZsiRv3rxZdBxmxh7QOuwBeB3sAW3DHoDXwR7QPuwBeB3sAW3DHoDXwR7QNuwBeB3sAe3DHoCiwvV/8lP79X9/tnv3bi5btiyXLl2at23bJjpOgX322WdsY2OD35k07vHjx1ylShWuXbs23h+mcZ9++inb29sr4rockM+RI0fYzs6OP/74Y9FRQGZPnz5lX19ffuutt1T7EC3QD5xv0T6cbzGvTz75hJ2dnTkqKkp0FNAYPNgCzGLMmDE4YaQDy5cvZ0mS+PvvvxcdBWR0+/ZtLlOmDLds2ZLT0tJEx9GdzMxM3rBhA9etW5eJiKtWrcozZ87kR48eiY6mSllZWbxz505+//332dramt3d3Xn06NF8//590dFAB9Bn80KfQST02bzQZ9C7Xr16ccmSJXHjbQvA8du8cPwGkdBn89Jin48fP84+Pj7s6uqKh3ArHPpsXlrsc1hYGBcvXpwrVarE+/btEx0HXgF9Ni/0GURCn81Lq3328PBAn1UAfTYv9Fm9Xr58ySEhIWxra8t16tThK1euiI70F1lZWbxy5UouXbo0u7u78zfffMMZGRmiY0ERJCYm5vyde/PNN3nnzp2iI+ne1q1buWLFiuzm5qbI84Vnz57lhg0bssFg4KCgIH7w4IHoSFAEJpOJw8LCuGLFiuzk5MQhISGcmpoqOpauRUdHc+vWrVmSJB40aJDiHur17NkzDg4OZisrK65VqxYfOXJEdCQooitXrnCbNm1YkiQODAzk27dvi46ka48ePeI+ffowEXFgYCA/fvxYdKS/wB7QHuwBKCjsAW3BHoCCwh7QHuwBKAjsAe3BHoCCwh7QFuwBKCjsAe3BHgBzw/V/5qXF6/+yPXv2jHv27MmSJPEnn3yimgcHTJ06lQ0GA2/cuFF0FJBRQkIC16xZk318fPjJkyei44CMQkJC2MrKirdu3So6Csjo999/52LFivH777+PG8ZrXHJyMtevX58rVqyoid+XQD9wvkV7cL7F/MLCwpiIeO3ataKjgAbhwRZgFllZWdyrVy92dnbmM2fOiI4DMpo8eTIbjUbesGGD6Cggo4iICHZxceFu3bpxZmam6Di6df78eR48eDC7ubmxjY0NBwYG8rZt2/DAkXy4du0ah4SEcIUKFViSJG7SpAmvXr2aX758KToa6BT6XHjoMygN+lx46DPAf7148YJ9fHy4WbNm2FsWhON34eH4DUqDPhee1vuclJTEQ4cOZYPBwB07duQ//vhDdCR4DfS58LTe5wcPHnCXLl1yLrJPSEgQHQleA30uPK33OTY2ljt37sySJPGnn36KPqsA+lx4euhzp06dWJIkHjx4MPqsAuhz4aHP6nbgwAF+88032cHBgUNDQxV9Q6j4+HgeOXIk29jYsJ+fH2/ZsoVNJpPoWFAAL1++5Hnz5nGJEiW4ePHivGjRIrz2I9j9+/c5KCiIiYg7dOjA9+7dEx0pTyaTiX/66ScuX748u7i48FdffcUvXrwQHQsKaP/+/VyvXj02Go08cOBA3FBEsPT0dA4NDWU7OzuuXr06Hz9+XHSkV4qMjOQWLVqwJEnco0cPvnr1quhIUEB37tzhgQMHstFo5Dp16vCJEydER9I1k8nEK1eu5OLFi7OnpyeHhYWJjvRK2APqhz0ARYE9oA3YA1AU2APqhz0ARYE9oH7YA1AU2APagD0ARYE9oH7YA2AJuP6v8LR+/d+fbdiwgT08PLhixYq8a9cu0XFead68eSxJEi9YsEB0FJBRYmIiN2jQgMuUKcO3bt0SHQdkNGvWLJYkiZcsWSI6CsgoOjqaPT09uWHDhpySkiI6DsgoJSWFW7RowcWLF+dr166JjgNQKDjfon443yKP6OhodnV15aFDh4qOAhqFB1uA2aSnp3Pbtm25ePHi+EGucV988QVbW1vzjh07REcBGZ04cYKdnJw4KCgIT8oULCUlhVeuXMmNGjViSZLYzc2N+/Xrx7t27eL09HTR8RQjOjqap06dyjVr1mQi4tKlS/PIkSM5KipKdDSAHOhz/qDPoAboc/6gzwC5O336NNvY2HBISIjoKLqD43f+4PgNaoA+548e+3z48GGuUqUKOzs787x58/BmQRVAn/NHj31eu3atam5ABf+FPuePHvv8008/5fR548aNouNAPqDP+aPHPq9Zs4Y9PDy4bNmyvGnTJtFxIB/Q5/xBn9Xf59jYWO7ZsycTEXfr1k3RN7P/uxs3bnD37t1ZkiQOCAjANXkqkJaWxosWLeJy5cqxvb09jxgxgp8/fy46lq6lp6fzrFmz2MnJiX18fHjfvn2iI+VbcnIyT5o0iV1dXbl48eI8Y8YMTk5OFh0LXuPo0aPctGlTJiJu1aoVnz9/XnQk3du3bx/7+Piwk5MTz5o1S9EPt/q78PBw9vPzY6PRyP/61784OjpadCR4jfv37/OQIUPY1taWK1WqxKtWrcINSAW7dOkSN2jQgK2srHjEiBGcmJgoOlK+YQ+oD/YAmBP2gDphD4A5YQ+oD/YAmBP2gPpgD4A5YQ+oE/YAmBP2gPpgD4AIuP4vf/R4/V+2R48ecVBQEBMRBwYG8pMnT0RH+oclS5awJEk8depU0VFARsnJydysWTMuWbIkX758WXQckNHSpUtZkiSeMWOG6Cggoz/++IO9vLy4Zs2aHBcXJzoOyCgtLY3bt2/Pbm5ufPbsWdFxAIoM51vUB+db5JOUlMQ1atTggIAATk1NFR0HNAoPtgCzSkpK4rp163KlSpX47t27ouOATEwmE/fr148dHBz4yJEjouOAjHbv3s22trY8ePBg/IKnEHfv3uXZs2dz3bp1WZIk9vDw4L59+/L69ev52bNnouNZVGZmJp86dYpDQkI4ICCAiYhLlCjBH3/8MR84cAA3LQTFQ5//B30GtUOf/wd9Bsi/H3/8kSVJ4g0bNoiOols4fv8Pjt+gdujz/6DP/5Wens6hoaFsa2vLNWvW5N9++010JMgn9Pl/0Of/iouL4+DgYDYYDNyuXTu+deuW6EiQT+jz/6DP/4U+qxf6/D/o83/9uc/t27fnmJgY0ZEgn9Dn/0Gf/0sLfU5NTeXQ0FB2dnZmLy8v3r59u+hIhXb+/Hnu2LEjExHXr1+ff/31V9GR4G/S09N52bJlXKlSJba1teUhQ4bw/fv3RcfSvb1793K1atXYzs6OJ06cqNo3XTx79ozHjBnDTk5OXLp0af7mm2/45cuXomPB35w6dYpbtWrFRMRNmzblo0ePio6kezExMdytWzcmIu7SpQvfuXNHdKRCycrK4p9++ol9fHzY2tqaBwwYwLdv3xYdC/7m0aNHPHz4cLa3t+dy5crxokWLOC0tTXQsXYuLi+MhQ4awlZUV16tXT9U3EsQeUD7sAZAT9oA6YA+AXLAH1AF7AOSEPaB82AMgJ+wBdcAeALlgD6gD9gAoBa7/+x9c//dP27dv5/Lly3PJkiV55cqVouPkWLZsGRsMBv76669FRwEZpaSkcPPmzblEiRL/j737Dqu6fv8H/mSKigPZe7pANMXF0MrwKw6yHKi590pzm5arcuI2R840DRXNgSiEqxScGLLU0MM+IENFQPZ5//7ox7kktU8a57zhnOfjus4F1FGfp7xf59zv8bqFmJgYseOQAlXuj8FBNaotIyNDaNasmeDq6irk5OSIHYcUqKSkRPD19RUaNWok3Lx5U+w4RNWGx1tqBx5vUayKigqhX79+grGxca28V4xqDw62oGqXk5MjtGrVSnBychLS0tLEjkMKUl5eLgwYMEDQ19cXfvvtN7HjkAL98ssvgra2tjBlyhQOt6hhEhMThdWrVwtdunQRtLW1BS0tLcHDw0P49ttvhevXr6vkdPXU1FThwIEDwpAhQwQjIyMBgGBjYyNMmDBB+PXXX4WysjKxIxK9E9Yz65lUB+uZ9Uz0NiZPnizo6+sLd+/eFTuK2uP6zfWbVAfrmfX8sri4OPnfhZkzZwp5eXliR6K3wHpmPb/st99+E5ydnYV69eoJq1at4sUptQzrmfX8MtZz7cZ6Zj2/7PLly0LLli2FevXqCatXr2Y91zKsZ9bzy2prPYeFhQktW7YU6tatK8yfP1/Iz88XO1K1uHv3rjBw4EABgNC2bVth//79av33sybIz88XNm7cKNja2go6OjrC8OHDhUePHokdS+09fPhQXit9+vQRHj58KHakapGdnS3Mnz9fqFevnmBsbCwsWbJEyM7OFjuW2rty5YrQp08fAYDQuXNn4fTp02JHUnuFhYXCkiVLhLp16wpNmzat1cOtXlZRUSEcPXpUcHJyEjQ1NYU+ffoI169fFzuW2nv48KEwffp0+dq8atUq4cWLF2LHUmsVFRXC/v37BRMTE8HQ0FDYuHGjymxQxH6g5mE/QMrEfqBmYj9AysJ+oGZiP0DKxH6g5mE/QMrEfqBmYj9AysJ+oGZiP0A1Ga//4/V/r5OXlydMnz5d0NTUFLp16ybEx8eLmmfLli2CpqamsGzZMlFzkGLl5+cL3bt3Fxo3bizcvn1b7DikQDt27BA0NTWFRYsWiR2FFCg1NVVo3ry50KxZMyEjI0PsOKRAhYWFQs+ePYVGjRoJN27cEDsOkULweEvNxOMtyvHVV18JOjo6wqVLl8SOQipOQxAEAUTVLDs7G926dUNJSQkuX74MCwsLsSORAlRUVGDkyJE4ceIETp8+jY8++kjsSKQgZ86cwcCBA9G/f3/s378fWlpaYkeivyksLMTFixdx5swZnDt3DqmpqahXrx7atm0LNzc3eHl5oVu3bjA0NBQ76r9WUVGB+/fvIzIyEuHh4bh69Sri4+Ohra2NTp06wdfXF97e3mjXrh00NDTEjktUbVjPrGdSHaxn1jPR/1JWVoYePXpAIpHg1q1bMDY2FjsSges3129SJaxn1jMACIKAvXv3Yv78+dDW1saKFSswatQoaGpqih2N3gLrmfUMAKWlpfD398fy5cthZWWFdevWwdfXV+xY9JZYz6xngPWsKljPrGfgr3pes2YNVqxYAWtra6xbtw59+vQROxa9JdYz6xmoXfUcFxeH2bNnIzQ0FIMGDYK/vz+sra3FjlXtbty4gbVr1+LEiROwtrbGjBkzMHbsWOjr64sdTW2kp6dj8+bN+OGHH1BRUYGxY8dixowZsLOzEzuaWnv+/DlWrlyJDRs2wNHRERs3bkT37t3FjlXtMjMzsWXLFuzYsQPFxcUYNWoUZs6cCScnJ7GjqY2SkhIcOnQI69atw71799CjRw/MmTOH10qLTBAEBAQEYP78+cjPz8eiRYswffp06OjoiB2tWpWVlSEgIADr1q1DdHQ0PvroI8yZMwc9evTg51clunr1KtatW4fTp0/DwcEBM2fOxKhRo1CvXj2xo6m13377DTNnzkRsbCymTZuGxYsXo1GjRmLHqnbsB8THfoDExH5AfOwHSEzsB2oG9gMkJvYD4mM/QGJiPyA+9gMkJvYDNQP7AapteP0f18e/u3LlCqZOnYqEhATMnTsXCxYsQN26dZWaYfXq1ViwYAEWL16MpUuXKvXPJuV58uQJevfujaSkJISEhKBNmzZiRyIF2bJlC7744gvMmzcPq1atEjsOKUhSUhK8vb2hq6uL8+fPc+9YFfbs2TP4+voiPj4ewcHB6Ny5s9iRiBSKx1tqBh5vUZ7AwEAMGjQIO3bswIQJE8SOQyqOgy1IYR4/fowPP/wQgiDg4sWLMDc3FzsSKUB5eTmGDx+O06dP49SpU/D29hY7EinI2bNn0b9/fwwYMAD79u2Dtra22JHoH9y/fx8RERG4evUqIiIi8ODBA2hoaMDOzg6urq5wdXVF69at4erqCicnJ9Fv6svKykJMTAxiYmIQGxuLu3fvIj4+Hi9evECjRo3g4eEBd3d3eHl5oWPHjqhfv76oeYmUifVMpDpYz0T0Orm5uejUqRPMzc1x4cIF6Orqih2J/obrN5HqYD2rt6dPn2L16tXYsGEDWrVqhU2bNsHLy0vsWPSOWM/qLT09HQsWLMDBgwfRrVs3bNiwAa6urmLHonfEelZvrGfVwnpWb2lpaVi4cCHrWUWwntVbTa7ntLQ0LFmyBPv370fr1q2xceNGdO3aVexYCieRSLBhwwbs27cPurq6GDlyJMaPHw9nZ2exo6kkQRBw+fJl7N69G8eOHYOhoSGmT5+OiRMnwsDAQOx4aq20tBTbt2/Hd999h4qKCixZsgRTp05V+esYCwsLsW/fPmzYsAFJSUno06cPJkyYAB8fH2hpaYkdTyUlJiZi79692LNnD3Jzc/HZZ59h9uzZaNWqldjR1N758+cxf/58REVFYfTo0Vi+fDlMTU3FjqVwYWFhWLt2LcLCwuDs7IyJEydi2LBhfF9SkMLCQhw5cgQ7d+7EjRs34OHhgdmzZ+OTTz7h0HSRxcXFYf78+QgODoaPjw82bNiAFi1aiB1L4dgPKBf7Aapp2A8oH/sBqmnYDygX+wGqadgPKBf7Aapp2A8oH/sBqmnYDygX+wFSJbz+j4C/9oTbunUrFi9ejIYNG2LDhg0YMGCAwv9cQRAwZ84cbNq0Cdu2beMmqiosIyMDPXr0QH5+Pn4fKuM+AAAgAElEQVT99Vc0bdpU7EikIIsWLcLy5cuxceNGTJ8+Xew4pCD379+Ht7c3zMzMEBISAiMjI7EjkYJkZmaiZ8+eePz4MUJDQ2vMfQJEysLjLcrF4y3Kd+fOHXTp0gWTJ0/G2rVrxY5DaoCDLUihMjIy8NFHH6GkpARhYWFwcHAQOxIpQEVFBUaNGoXAwED89NNPGDhwoNiRSEHOnz+Pvn37olu3bjh8+DAP9tci2dnZuH79OmJiYnD37l3ExMQgISEB5eXl0NLSgpWVFezt7WFnZyf/amRkBENDQxgZGcHY2BgNGzZ87e999uxZ9OzZ87VTB0tKSpCbmyt/ZGdnQyqVIjExUf5ISkpCfn4+AMDY2Fh+AszV1RUdOnSAi4sLmw+il7CeiVQH65mIKkVHR8PDwwOjRo3C999/L3Yc+h+4fhOpDkXW8z9hPYsrLi4OM2bMwIULFzBkyBCsWLECtra2Ysei/4j1rJ6uXLmCGTNmIDo6GpMnT8bixYt50aQKYD2rJ9azamI9q6fff/8dM2bMQGxsLCZPnoxFixaxnlUA61k91aR6LigowNq1a7FmzRoYGRnh66+/xtixY9Vuw5YnT55g586d2LVrFyQSCTw8PDB+/Hj4+fmhXr16Yser9TIzM7F//37s2bMHCQkJ6NSpEyZNmoTPPvuMQ8lFJggCjh07hgULFiA1NRWjRo3Cd999B2NjY7GjKVVFRQVOnDiB7du349KlS7C0tMSYMWMwZswYHt+sBqWlpTh58iR2796NCxcuwMzMDKNHj8aUKVNgYWEhdjy1FxcXh2XLliEwMBDe3t7w9/fHe++9J3YspYuOjsaWLVtw+PBhlJeXY8CAARg3bhy6du362vPL9HZu376NXbt24fDhwygpKUG/fv3w+eefw8PDQ+xoai89PR3ffPMN9uzZgxYtWmD16tXo3bu32LGUjv2AYrEfoJqO/YBisR+g2oD9gGKxH6Cajv2AYrEfoJqO/YBisR+g2oD9gGKxHyB1wOv/1JtUKsWcOXMQEBCAnj17Yu3atQobmFhUVISRI0fi9OnTOHjwoFIGaZA4oqKi4Ovri8aNGyM0NJSfnVVUWVkZJk+ejB9//BG7du3C6NGjxY5EChIREYGPP/4YLVq0QHBwMBo1aiR2JFKQ2NhY+Pr6ok6dOvj1119hY2MjdiQi0fB4i2LxeIs4MjIy0LFjR7i4uCA4OFjt7rkicXCwBSnckydP0KtXLyQnJyM0NBStW7cWOxIpgCAImDdvHtatWwd/f3/Mnj1b7EikILdu3UKfPn1ga2uLoKAgmJqaih2J3lFxcTHi4+ORkJCApKQk+UmfxMREJCcno6SkpMrzdXR0oK+vDz09PdStWxcA0LBhQzx8+BBWVlYQBAFlZWWQyWTIy8tDWVkZCgoKXvlzzczMqpzQsre3h729PVq1agUzMzOlvHYiVcN6JlIdrGci9XX8+HEMHDgQP/zwA8aPHy92HHpLXL+JVEd11XPlSb6CggLWcw118uRJzJ07F6mpqZgyZQoWLlzIDXdVDOtZPchkMuzduxeLFi3CixcvMHv2bMyaNQv6+vpiR6NqxHpWD6xn9cB6Vg8ymQx79uzBokWLUFRUhDlz5mDmzJmsZxXDelYPYtdzQUEBvv/+e6xduxYA8NVXX2HKlCmoU6eOUv78mkomk+HixYvYvXs3Tp48CT09Pfj5+WHQoEH44IMPePH5WygsLERQUBAOHz6Ms2fPQl9fH8OHD8e4cePg6uoqdjy1JwgCzpw5gyVLliA6OhrDhw/HN998A2tra7Gjie7hw4fYs2cPfvzxR2RlZcHb2xtDhgzBJ598gsaNG4sdr9YQBAHXrl3DkSNHEBAQgCdPnqBnz54YP348evXqBW1tbbEjqr379+/jm2++wZEjR9C+fXusXr0aH3zwgdixRJefn4/Dhw9j165duHXrFpo1a4Zhw4bBz88PzZs3FzterZKcnIzAwEAcOnQIUVFRcHFxwbhx4zB8+HAYGhqKHU/tZWdnY/Xq1di2bRtMTU2xfPlyDB48WO03L2I/UH3YD1BtxX6gerAfoNqK/UD1YT9AtRH7gerDfoBqK/YD1YP9ANVW7AeqD/sBIl7/p44uX76MWbNmISYmBuPHj8eyZctgbGxcbb9/RkYG+vbtC4lEgmPHjvHcvgo7deoUhg0bhk6dOiEwMBAGBgZiRyIFyM/Px6BBg/D7778jICAAvr6+YkciBTlx4gSGDh2KHj164NChQxykq8LOnTuHwYMHo02bNvjll194Pz3R/8fjLdWHx1vE9eLFC3Tt2hVFRUWIiIjgoCpSGg62IKV4/vw5fH19ERsbi+DgYHTu3FnsSKQgq1atwsKFC7FgwQJ89913nDimoh4+fAgfHx8AwNmzZ9GsWTORE5EiFBQUIDc3Fzk5OcjJyUFubi4KCgpQWlqKwsJCAEBKSgq2bdsGNzc39O3bF7q6utDS0kLDhg2hra0NIyMjNGnSRD6N3dDQUO1vKCISA+uZSHWwnolU29KlS7FixQqcOnUKPXv2FDsOVSOu30Sq49/Uc15eHmQyGQCgfv36rOcarKysDPv27cPSpUuRn5+PqVOnYuHChWjYsKHY0UgJWM+q5cWLF9iyZQtWrVoFbW1tzJkzB1988QX09PTEjkZKwHpWLaxn9cZ6Vi2FhYX4/vvvWc9qivWsWpRdz4WFhdi6dSv8/f1RUlKCL774AnPmzOGF1a+Rk5ODAwcO4NChQ7hz5w5MTEzQv39/+Pn5oWvXrqyZ1ygqKkJwcDCOHj2K4OBglJaWolu3bhgxYgT69+/P96ka4syZM1i2bBkiIyPRt29ffPvtt2jVqpXYsWqcsrIynDlzBvv370dISAgA4P/+7//g5+eHjz/+mMc5X0MQBNy8eRNHjx5FYGAgUlNT0bJlS3z22WcYPXo0LC0txY5IAB48eIBvv/0Whw8fRosWLbB06VL079+f16S/xt27d7Fnzx4EBgYiMzMT7733Hvz8/ODn5wdHR0ex49VIaWlpOHbsGI4cOYIbN27AwMAA/fr1w+jRo+Hh4SF2PAKQm5uLtWvX4vvvv4e+vj6+/PJLTJo0Se0H3L0O+4G3x36AVAn7gbfHfoBUDfuBt8d+gFQJ+4G3x36AVAn7gbfHfoBUDfuBt8d+gOjt8Po/1SSTybB//358/fXXKCwsxFdffYXp06f/5/Nw0dHR8PX1ha6uLoKCgtCiRYtqSkw1zaZNmzBr1iyMGTMG27Ztg46OjtiRSAGSkpLQu3dv5OXlISgoCG3bthU7EinI+vXrMXfuXEydOhUbNmzg4FwVtnPnTkydOhUDBw7E3r17eSyU6A14vOXt8XhLzVBWVoZ+/frh2rVruHHjBv++klJxsAUpTVFREfz8/HDhwgUcOHAAAwYMEDsSKciPP/6ICRMm4JNPPsG+fftQv359sSORAmRlZcHX1xcJCQk4dOgQN11VUytXrsTChQthYGCArKwsaGtrix2JiN4R65lIdbCeiWovQRAwfvx4/PzzzwgLC4Onp6fYkUiJuH4TEYmnoKAAGzZsgL+/P+rXr4/58+djwoQJqFevntjRiOgt5ebmYuXKldi6dSvMzc2xcOFCjBgxArq6umJHI6K3xHomUh25ublYsWIFtm3bxnomquUUXc8FBQXYvn07/P39UVRUhGnTpmH27NkwNDSslt9f1SUkJODo0aM4evQooqOjYWZmhl69eqFnz57w9vZG48aNxY4omtTUVISEhODcuXMICwtDUVER3n//ffj5+aF///4wMjISOyLhr/NkZ8+exbJly3D79m34+vpi6dKlvDH2X8rLy8OpU6dw9OhRhIWFQVNTE926dUPPnj3h4+MDJycnsSOKprCwEBcvXsS5c+dw9uxZJCcno2nTphg0aBD8/Pzg6uoqdkT6/+7fv4/ly5cjICAAzZo1w+LFi+Hn58fNTf6FiooK/P777zh69CiOHz+O7OxstG3bFj179kTPnj3RuXNntT3/LJPJEBkZiZCQEJw9exY3b95EgwYN8Mknn8DPzw/du3fnZhs1RG5uLjZu3IhNmzZBT08P8+bNw5QpU3i+7l9iP/Bm7AdIHbAfeDP2A6QO2A+8GfsBUhfsB96M/QCpA/YDb8Z+gNQB+4E3Yz9ARPRmL168wJYtW7B8+XI0btwYX3/9NcaMGfNO7xkHDhzAlClT4O7ujqNHj8LAwEABiUls+fn5mDhxIo4ePYrly5dj/vz5YkciBQkNDcXQoUNhbW2NM2fOcAigiioqKsKkSZNw8OBB+Pv7Y9asWWJHIgUpKirC9OnTsWfPHixevBhLly4VOxJRrcDjLW/G4y01jyAIGDt2LI4cOYJff/2Ve5WR0nGwBSlVRUUFZs2ahS1btvADroq7evUq+vfvDzMzM5w6dQp2dnZiRyIFKCkpwZQpU7Bv3z7MmzcPK1euhIaGhtixSImcnZ1x7949AMCvv/6K7t27i5yIiN4V65lIdbCeiWq3iooK+Pn54eLFi/jtt9/QunVrsSORknD9JiISX3Z2NlauXIkffvgBDRo0wOzZszF58mTo6+uLHY2I3lJqaiq+/fZb7N+/H2ZmZpg3bx7Gjh0LPT09saMR0VtiPROpDtYzkeqo7np+/PgxNm/ejO3bt6OsrAxTp07FnDlzuJnQf3D//n0cP34c586dw/Xr16GhoQF3d3f4+PjA29sb7dq1U+mbKQoKCnDt2jX8+uuvCAkJQWxsLOrVq4cPP/wQvXv3Rr9+/WBqaip2TPr/ysrKEBAQgLVr1yI2NhZ9+vTBkiVL4ObmJna0Wuvp06c4efIkgoODcf78eeTl5cHJyQk9e/ZEjx494OXlhUaNGokdU2EqKioQGxuL8+fPIyQkBFeuXEFZWZn8prJ+/fpxYEoNc+3aNaxZswanT59Gs2bNsGjRIgwePJgDLd5ReXk5Ll26hFOnTiEkJASPHj1C48aN4e3tjZ49e+LDDz+Evb292DEVKj09HZcvX0ZISAhCQ0ORnZ0NKysr+Pj4wNfXFz169ECdOnXEjkn/X0pKCtavX4/du3dDT08Pc+bMweeff87zc/8B+wH2A6Te2A+wHyD1xn6A/QAR+wH2A6Te2A+wHyD1xn6A/QAR0dtKT0/Hd999hz179sDOzg7Lli3DoEGD/tW5+qKiIsyYMQO7du3CtGnTsHbtWm5gq6Lu3buHgQMH4vHjxzh48CB69OghdiRSAEEQsGbNGnz11VcYNGgQdu7cifr164sdixQgNTUV/fv3x4MHD3DgwAH07dtX7EikIPfv38fAgQORmZmJAwcOoGfPnmJHIqqVeLyFx1tqulmzZmHr1q04deoUfHx8xI5DaoiDLUgUmzdvxqxZszBy5Ehs27aNb0QqKjExEX379kVWVhaOHj2Krl27ih2JFGTTpk2YM2cOPv30U+zevRsNGzYUOxIpwb179+Ds7AwA0NHRwdChQ7Fv3z6RUxHRu2A9E6kO1jORaigqKkKPHj0gkUgQHh4OW1tbsSORgnH9JiKqWbKysrBu3Tps27YNenp6mDlzJqZOnarSN3MRqaqUlBT4+/tj9+7dMDAwwJw5czBhwgRuiEVUC7GeiVQH65lIdfzXepZIJNi0aRN27doFfX19TJkyBdOmTYOhoaGCk6uXgoICXLp0CWfOnMHZs2eRlpaGevXqoW3btvDy8oKnpyc8PDxq9X/3zMxM3Lp1C+Hh4bh69Spu3bqF0tJSODg4wNvbG3369EH37t05TKmGKSgowJ49e7B+/XqkpaWhV69eWLx4MTp06CB2NJVSUVGBqKgoBAUF4cyZM7hz5w4EQYCDgwM8PT3l64CLi4vYUd9ZYWEh/vjjD/kaEBERgSdPnsDQ0BDdunWDt7c3evfuDUtLS7Gj0ksEQcCFCxewadMmnDlzBm3btsWMGTMwdOhQaGlpiR1PpUgkEpw/f16+mVt+fj7MzMzQvn17+RrQoUOHWn0/h0QiwdWrV+XrQHx8PLS0tPDee++hT58+8PX1Rbt27aChoSF2VHpJbGws1qxZg8OHD8PQ0BATJ07EzJkzeT6umrEfYD9A6o39APsBIvYD7AdIvbEfYD9A6o39APsBIvYD7AeIiP4tiUSCZcuW4dChQ3B2dsayZcvQt2/fNw64iI2NxeDBg+UbZffq1UvJiUlZdu/ejenTp6NDhw4ICAiAhYWF2JFIAbKzszFy5EhcuHAB69evx9SpU8WORApy7tw5DB8+HFZWVvjll1/g4OAgdiRSkL1792LatGlo164dAgICYGVlJXYkIpXB4y083lKTLFmyBMuXL0dAQAAGDhwodhxSUxxsQaIJDg7G0KFD0bRpUxw7doybNKqogoICjBw5EqdPn8aSJUuwcOHCfzWVl2qfS5cuYciQIahfvz5+/vlndOrUSexIpGBfffUV/P39UVZWBgCoV68ecnJyULduXZGTEdHbYj0TqQ7WM5HqyMvLwwcffIDCwkJcvXoVJiYmYkciBeL6TURUM+Xm5mLLli3YtGkTysvL8dlnn2HWrFlo3ry52NGI6C1lZWVh27Zt2LBhAwBg1KhRmDVrFs9PEtVCrGci1cF6JlIdb1PPlZtY79y5E7/88gtsbW0xffp0jB8/HvXq1VN2dLUjCALu37+PiIgI+eYuf/75JzQ1NeHg4IA2bdrA1dUVrVq1Qps2beDg4FCjrvUrLS1FfHw8YmNjERMTg+joaMTExCA9PR3a2tpo06YNPD095Zvx8Ebamunhw4fYvXs3du3ahdLSUowZM4afAZQoKysL165dk68Bt2/fRmlpKUxMTODq6orWrVvD1dUVrq6ucHFxqXHnqhITE19ZA/7880+Ul5fD1tYWXl5e8PDwgJeXF1q1alWj1jD6S35+PgICArBlyxbExsbC09MT8+fPh6+vr9jR1EJxcTFu376N8PBwhIeHIyIiArm5uahbty5cXFyqrAGtW7eGsbGx2JGrePr0KaKjoxEbGytfA2JjY5Gfn4+GDRvC3d1d/lmgU6dOqF+/vtiR6W9kMhkuXryITZs2ITg4GI6Ojvj8888xadKkWn0zb23BfoCIxOgHysvLoa2tXQ3p2Q8Q/Vdi9QPVtQ6wHyD6b8TqB6prDWA/QPTfsR8gUm/sB4iI6N+Ij4/H4sWLceLECbRs2RJffvklBg8eLF/LKyoq4O/vj6VLl6J9+/YICAiAtbW1yKlJETIyMjBhwgScPXsW8+fPxzfffFNtn+2pZgkODsbYsWNRp04dHDlyBJ07dxY7EilAcXEx5s+fjy1btmDYsGHYsWMHr9lWUZmZmZgwYQKCg4MxZ84cLF++nOs3kQLxeAuJaevWrZg2bRp++OEHjB8/Xuw4pMY42IJE9fDhQ/Tv3x/p6ek4ePAgfHx8xI5ECrJz505Mnz4dHh4eOHToEMzNzcWORAqQnZ2N0aNHIzQ0FF999RUWLVoELS0tsWORgtja2iIlJUX+s4aGBo4fP45PP/1UxFRE9C5Yz0Sqg/VMpFqkUik8PT1hYmKCCxcuQF9fX+xIpCBcv4mIarb8/Hzs3bsXGzZsQGpqKnr16oUvvvgC3t7eYkcjoreUm5uLnTt3YuvWrXj8+DH69euHGTNmwN3dXexoRPSWWM9EqoP1TKQ6/qmenz17hn379mH79u14+PAhPvzwQ0ydOhWffPIJNxURWeUmNlFRUfKNYB49egSZTIa6devCwcEB9vb2sLOzk3+1sbGBiYkJDA0Nq/UGhby8PGRnZyMrKwtJSUlISkpCYmKi/GtKSgrKysqgq6sLZ2dn+Y0ebm5u6NixI8+j1GAymQzBwcHYunUrfv31V9ja2mLy5MkYN24cmjRpInY8tVZ5U9Xt27fla0BcXByKioqgpaUFa2vrKvVvb28Pe3t7mJiYwMjIqFr//xUVFSE3NxfZ2dlITU1FYmKi/JGUlASJRIKCggIAgL29vXwNeO+99+Du7g5LS8tqy0LVLz4+Hlu3bsVPP/0EmUyGYcOGYdq0aXBxcRE7mlqr3NTyxo0b8hsTo6OjkZWVBQAwMjKCg4PDK+uAlZUVDA0NYWhoCB0dnWrJUlFRgdzcXOTk5EAqlb7yOSAxMRGZmZkAAAMDgyo3fXbu3BkuLi68Zr0Ge/bsGfbu3Ytt27ZBIpGge/fumD59Onr16gUNDQ2x46k19gNE6k0Z/cCKFSswc+bM/7kpLvsBIuVTRj9w584dpKamom/fvv/4PPYDROJQRj+wbNkyLFmy5H8+j/0AkfKxHyBSb+wHiIjonzx8+BD+/v7Yu3cvLC0tMXPmTHh7e2Py5Mm4desWli5dijlz5nD9VVGBgYGYPHkyGjZsiL179+KDDz4QOxIpQFFREb788kts2bIFAwYMwI4dO3gdn4qKj4/H0KFDIZFI4O/vjwkTJogdiRQkMDAQU6ZMQYMGDbBnzx58+OGHYkciUjs83kLKcujQIYwYMQKrVq3C3LlzxY5Dao6DLUh0L168wMSJE/Hzzz9j3rx5WLp0KerUqSN2LFKAyMhIDBo0CAUFBVixYgVGjBjBSX4qSBAEbNy4EQsWLICxsTHs7e1ha2sLGxsbWFlZyS9ksLKyQuPGjcWOS+/o2rVr8PDwqPLPtLW18fHHH+P48eMipSKid8F6JlIdrGci1fTgwQN06dIFbdu2xalTp6Cnpyd2JKpmXL+JiGqP8vJyHD9+HOvXr8fNmzfh5uaGkSNHYsiQITAyMhI7HhG9hbKyMgQGBmLDhg24ffs22rVrhxEjRmDIkCEwMTEROx4RvQXWM5HqYD0TqY7Kel6/fj0iIyPRpEkTFBQUQEdHByNGjMDnn38OZ2dnsWPSP3jx4gXi4uIQExNT5eaFxMREZGRk4OXLjvX09GBkZCS/mUJTUxMNGzaElpYWtLS00LBhQwB/XVP27NkzAEBJSQlevHiB0tJS5Obmyh9lZWXy31dHRwfW1tbymzbs7Ozg5OSEVq1aoXnz5tW2iTYpVnR0NAICAhAQEICUlBR4e3vj888/R+/evXmzSw1WUVGBR48eITo6Gg8fPqxyM1NycjJKSkrkz9XS0pLXv6GhIfT09KCnpyffpKpyPQCAgoIClJWVQSaTIS8vDwDkN03l5ubixYsXVXKYmpq+smFW5aZ1lWsL1Ww5OTkIDAxEQEAArl69CkdHR0yZMgWjR4/m9cM13OPHjxEdHY379+9XuZkxKSlJ/n5eqWHDhjA2NoaRkREaNGgATU1NNGrUCABQt25d+TUOle//wF8DxcvLy1FYWIicnBzk5OTg6dOnVX5ffX39V9aAZs2awdXVFdbW1kr4r0D/VXl5OcLCwvDzzz/jxIkT0NTUxMiRI/H555+jefPmYsejf8B+gEi9VXc/cPToUXTq1AkmJibsB4hqiersB+7evYv8/Hx06dKF/QBRLVGd/UBxcTGCg4MxbNgw+Yb07AeIajb2A0TEfoCIiF6WmJiIlStXYt++faioqICFhQUCAgLQpUsXsaORAkgkEsyYMQNnzpzBlClTsHr16modck81x8mTJzF79mzk5eVhx44dGDBggNiRSAGKioqwZs0arFq1Cm5ubjh48CDs7OzEjkUK8OjRI8ycOZPrN1ENxuMtVJ2OHTuGIUOGYM6cOVi5cqXYcYg42IJqjt27d2PWrFmwsbHBjz/+iPbt24sdiRTg+fPnWLhwIX744QeYm5tj/Pjx8PPz480JKigmJgZnzpxBamoqUlNTkZycjNTU1CofoBs0aAAbGxvY2NjA2toa1tbWVX62srLioJsaavr06fjhhx9QWlpa5Z/r6OggOztb3gQRUc3HeiZSHaxnItUVGRmJ7t27o0OHDjh58qT8Qm9SDVy/iYhqp4iICOzatQvHjx9HSUkJ3n//ffj6+sLX15cXeBHVMuHh4di9ezd++eUXvHjxAl26dEGvXr3Qq1cvbrZLVMuEh4djz549OH78OOuZqJZ7Uz337t0bLVu2FDseEf0DqVSKkJAQhIaGIiwsDM+ePYOxsTGeP3+O8vJy1rMKKCkpQVpaGrKzs6tsOlX5kMlk8psjysvLkZ+fL/+1BgYGACDf1EZXV7fKhjeGhoYwMjKCqakpzM3NOfigFioqKsLly5cREhKCc+fOISEhAba2thg0aBDGjBnD60RVgEwmQ0ZGBrKzs1+7DhQXF1fZvD4vLw8ymQwAUL9+fejq6lbZ5Prva0Dlw8bGhudEayGZTIaoqCiEhIQgJCQE165dQ506ddC3b18MGzYMPXr0gKamptgx6T96+vQppFJpldqvXA/y8/OrbF5fVFSE4uJiAICurq78punKTS7r168vf/83NjaWrwFmZmYcKF5LPX36FKGhoQgODsa5c+fw5MkTuLu7Y9iwYRg6dCg3HlQB7AeI1Nvb9gPJycm4efMmjI2N4eHhwX6ASAW8bT8QFhaG0tJSdO/eXX4tLPsBotrrbfuByMhIpKSkwNXVFS1atADAfoCoNmM/QETsB4iI1IsgCDh27Bjmzp2L3NxcdOzYETExMXj+/Dn8/Pwwbdo0dOjQQeyYVA2eP3+ONWvWYN26dXB0dMT333+PDz74QOxYpAB3797FrFmzcOnSJQwZMgRr166Fubm52LFIAU6dOoWZM2ciJycHixcvxsyZM3m8TQXl5+dj5cqVWL9+PZycnLh+E9VSPN5Cb+PQoUMYNWoUpkyZgo0bN0JDQ0PsSEQcbEE1S3JyMsaNG4fLly9j9uzZWLZsGTe1V1FJSUn4/vvvcfDgQTx+/Bht2rTBwIEDMWDAAN68qOKKi4shlUohkUgglUqRkZEBiUQi/zklJQUFBQXy5xsYGMDBwQHm5uawsLB45XtbW1seNFGyiooKmJqaIjc395V/p6mpiX379mHEiBEiJCOit8V6JlIdrGci1RcVFQVvb2+4uLggODgY+vr6YkeiasD1m4io9issLMTJkydx6tQphIaG4vnz52jevCZfwTUAACAASURBVDm8vLzQpUsXeHl5wdHRUeyYRPQvFBUVISgoCEFBQQgJCUFOTg4sLCzg7u4ODw8PuLu7w83NDbq6umJHJaL/4U317OHhAQ8PD3Tu3Jn1TFRLVNbz6dOnERISgtzcXFhaWsrr2d3dHe3atYOOjo7YUYnUUllZGaKionDjxg3cuHED169fx8OHD1G3bl107doVPj4+6NevH2xsbF77/mxlZVXl/Zn1TFT7JCYm4vr16/J14I8//kBpaSlat24NHx8ffPzxx3B3d+dNE0QqKicnR/4Z4Pr167h58yaeP38Oc3Nz9OjRAz179kTv3r3lwwyISPUkJSUhPDwc165dw9WrVxEbGwsNDQ14eXmhV69e6N+/PxwcHMSOSUREIpk+fTq2bNkCHR0dZGdnyzdVICL18Pvvv+P999+HhoYGDhw4gGHDhokdiYiUqKKiAubm5sjOzkafPn0QFBQkdiQiUjL2A0Tqjf0AEVHtdv78eSxcuBC3b9/GgAEDsG7dOlhbW6O4uBg///wztmzZgqioKLi7u2P69Ono168fr8uvhYqKivD9999j9erVkMlkWLJkCaZOnQptbW2xo1E1++OPP7BhwwYEBATgvffew4YNG+Dl5SV2LFKAq1evYsmSJbh48SL69OmDrVu3wsbGRuxYVM2KioqwdetWrF69GuXl5Vi6dCnXbyI1weMt6m337t2YOHEiZs+ejTVr1ogdh0iOgy2oxhEEAdu3b8f8+fPh4OCAvXv3ws3NTexYpCAymQwREREIDAzE0aNHkZmZCXNzc3h5ecHb2xt9+vSBhYWF2DFJySqnx/196EXlz8nJyaioqAAA6OrqwtDQUD7o4u+DLxwdHdG4cWORX5FqCQsLw//93/+99t9pamqiW7duCAsLU3IqInoXrGci1cF6JlIPUVFR6N69O5ydnTncQkVw/SYiUi2lpaX47bffcOnSJVy5cgW3b99GcXExLCws0KVLF3h6eqJr165o1aoVh/US1XAVFRW4efMmfv/9d0RERODatWvIzs6Gnp4e3Nzc4O7uDk9PT7Rv3x5WVlZixyWif1BZz7/99hsiIiJw/fr1V+rZw8MDHTt2hKWlpdhxiegfVFRU4MaNG7h8+TKuXbuGa9euITc3F3p6emjfvr38/bljx44wNzcXOy6RyhEEAUlJSbh9+7Z8E/vIyEgUFxejcePG6NSpEzp37gx3d3d07doVdevWfePvVVnPly5dwvXr1+X1XLduXbi5ucmHXXTq1AlmZmZKfJVE9E+ePHmCP/74o8ogi6ysLOjo6KBNmzbo3LkzOnXqhI8++ojvxUQq6NmzZ4iLi5MPtbp+/ToSEhIAAM2aNUPnzp3RuXNneHp6wtXVlQNtiFRQcXExoqOjERERgYiICISHh0MqlUJHR0d+nM3LywvdunXjtftERITy8nKYmpriyZMn0NLSwu7duzFq1CixYxGREk2aNAn79u1DRUUFvL29ERISInYkIlKiCxcuwNvbGwCgra2NzMxMGBoaipyKiJSF/QARsR8gIqp9BEFAaGgoVqxYgStXrqBPnz745ptv0LZt29c+PzIyEps2bUJAQAAaNGiAgQMHYurUqWjdurWSk9PbysrKwvbt27F9+3YUFBTgiy++wNy5c3mOV8XIZDKEhobC398fly5dQvv27TFv3jwMGDCA1/SoGJlMhqCgICxfvhy3bt2Cj48PFi9eDHd3d7GjUTV79uwZdu3ahY0bNyIvLw/Tpk3D3Llz0aRJE7GjEZGS8HiL+tqxYwemTp2KuXPnYtWqVWLHIaqCgy2oxpJIJBgzZgyuXLmC0aNH49tvv+XNbiquoqICERERCAsLw/nz53Hz5k0IgoC2bdvio48+gpeXFzw8PHjxCqG0tBQ5OTlvHHwhkUjw9OlT+fP19PTeOPjC3Nwc9vb2qFevnoivqHYZPXo0fv75Z5SWlr7232tpaSE9PR2mpqZKTkZEb4v1TKQ6WM9E6iMqKgre3t5o06YNgoKC2MvUcly/iYhUW3l5Oe7evYurV68iPDwcFy9eRG5uLnR1deHk5AQ3Nze4ubnBxcUFbdu25bFvohpOKpUiPDwcV69eRWRkJG7evImysjI0atQITk5OcHZ2houLC5ydndG+fXue1ySqwV6u5/DwcPzxxx+QyWSvrecOHTpwQ22iGuxN9dy4cWO4uLjIa9nFxQWurq48xkL0L0mlUsTHxyMuLk7+9e7duygoKICWlhaaN28u72m9vLzQtm1baGpq/qc/UyKRyD9rv1zPBgYGVd6bXVxc0Lp1a5iYmFTTqyWiv3v69CkkEkmVNSA+Ph6JiYkQBAHm5uZV1gAPDw+eryJSIXl5eXj48OEb1wB9fX20adMGXl5e8PT0ROfOnWFsbCx2bCKqZi/3BJGRkYiPj0dsbCxKSkrQsGFDdOzYEZ6envK14J8G2xERkXoKDQ2Fj48PgL+ugXv//fdx4cIFkVMRkbKUlZXByMgIz58/B/DXOiCVSnlcl0iNjB07FgcPHkRpaSm0tLSwY8cOjBs3TuxYRKQk7AeI1Bv7ASKi2qWsrAxHjhyBv78/YmJi0KNHj7faED0tLQ179+7Fvn37kJSUBC8vL4wbNw4DBw7k9UQ1TGxsLDZu3IhDhw5BX18fEydOxLRp03httYpJT0/HwYMHsXPnTkgkEnh6emL+/Pnw9fUVOxpVs2fPnmH//v3YvHkzJBIJvL29sXz5cnTs2FHsaFTN/vzzT2zevBn79++HpqYmxo8fj7lz53L9JlIzPN6ivtauXYt58+Zh2bJlWLRokdhxiF7BwRZU4wUFBeGLL75AVlYW5syZg/nz5/PCdzWRl5eHS5cuISwsDJcvX8a9e/cAAC1btoSHh4f8RggnJyeRk1JNVFRUJB908fehF1KpFMnJySgsLJQ/38DA4JWhFy//bGdn959vwlcFJSUlMDIyQkFBwRufo6WlhU2bNmHq1KlKTEZEb4v1TKQ6WM9E6ufu3bvw9vZG8+bNERQUBAMDA7Ej0Tvg+k1EpH5kMhliY2Nx48YNREdH4+7du4iOjkZeXh40NDTg4OCANm3aoHXr1vKvPC5JVHM9f/4cUVFRiIuLQ0xMDOLi4hAbG4snT54AAExNTdGqVSu0atUKLi4ucHJygqOjI6ysrFjXRDVMXl4e7ty5g/j4+Cr1/OzZMwCAmZmZvJZbtWqFpk2bwtHREZaWltDQ0BA5PRG97NmzZ4iMjERsbKy8luPi4uQX7lpaWspr2cXFBc2bN4ejoyMH2JBaevbsmfw6mj///BNxcXG4d+8e7t+/j6KiIgCAjY0NWrZsCRcXF/lXV1dX6OvrKyXfrVu3EBcXJ//MHR8fj/z8fACAlZVVlXpu0aIFHB0deWE+0b9UWlqK5ORkSCQS+Qb29+7dQ1xcHLKzswEAjRo1qrIGtGrVCq6urrCwsBA5PRH9V0VFRfLPAY8ePYJEIsH9+/cRHx+P9PR0AIC+vr58DXh5yJStrS17YSIVIQgC0tLSkJCQID8uFh0djbi4OOTn50NDQwP29vZwdXWFq6ur/PxV06ZNuQ4QEdH/NHLkSAQEBKCsrAwAoKmpCalUyg1WiNTEmTNnqmyUpq2tjc2bN2Py5MkipiIiZSktLYWRkZH8nI6mpiY8PT3x+++/i5yMiJSF/QCRemM/QERUO2RmZmL//v3Ytm0b0tLS0KtXLyxevBgdOnR4p99PJpPh/Pnz2L17N06dOoW6deti8ODBGD58ODw8PHh+USQVFRUIDQ3Fxo0bcf78ebRo0QIzZszA8OHDuYejCsnLy0NQUBAOHDiACxcuwNjYGMOHD8eYMWPQsmVLseNRNZLJZPj999+xZ88eBAYGom7duhg5ciQmTZqEFi1aiB2PqtnVq1exefNm/PLLL7CxscHEiRMxYcIE7i1DpKZ4vEX9CIKAxYsXY/ny5diwYQO++OILsSMRvRYHW1CtUFRUhM2bN2PFihVo2LAhli9fjuHDh/OAlZrJzc1FREQEwsPDER4ejtu3b6O4uBimpqbo1KkTOnToIH80adJE7LhUCzx9+vSNgy8yMjKQlJQEmUwGANDV1YWVlVWVwRcvf+/k5IRGjRqJ/IoU78SJE+jXr98/PkdDQwMdO3bE9evXlZSKiN4F65lIdbCeidTTvXv30KNHDzRo0AChoaGwsrISOxK9Ja7fRERUSSqVIj4+HnFxcYiMjERkZCTu378PmUwmPy5ZuXFY5UBeFxcXmJubix2diF5DKpVWGXYRExODe/fuyQea1alTB/b29nB0dJQPu6h82NvbQ1dXV+RXQESVnj59Kn9/rnyvvnv3rryeK9+nK9+fX344OzvzZg+iGuTlz9yVX6OiolBYWAjgr/dnS0vLV+rYxcUFNjY20NbWFvkVEL298vJypKSkyK+FqXwkJiZCIpHIB7JpamrC1tb2lQEWLVu2RIMGDUR+Fa/6X/Wsp6cnv5bn5Vp2cHCAra0ttLS0RH4FRMqTk5PzyhpQ+UhLS0NFRQUAoEmTJq9dA3juiah2e/z4sXxoxcsDLCqvka1kamoKR0dHNGvWjAMsiFRU5fXyEolE/jlaIpHgwYMH8uNcjRo1gpOTE5ydneHm5gYXFxe0bdsWhoaGIqcnIqLaqLi4GEZGRvLjNcBfmyqsX78e06ZNEzEZESnLZ599hmPHjlXZzLpjx464du2ayMmISBlOnjyJfv364eUtTDQ0NJCamgpLS0sRkxGRMrAfICL2A0RENVdZWRlCQ0Oxf/9+nDp1CgYGBhg7diwmTZoEGxubavtzsrOzceDAAfz444+IjY2Fvb09hg4diqFDh3LjdSWJi4tDYGAg9u/fj6SkJHh6emL+/Pno06cPrwVREc+ePcPp06cRGBiIsLAwyGQy+Pj4YMyYMejduzd0dHTEjkjVKCYmBgcPHkRAQABSU1PRvn17TJo0CUOGDEG9evXEjkfVKDMzE4cPH8bevXsRExOD999/HzNmzMDHH38MTU1NseMRkYh4vEW9lJWVYeLEifjpp5+wc+dOjB49WuxIRG/EwRZUq0ilUnz99dfYv38/OnbsiCVLlsDHx0fsWCSSkpISREZGIiIiAjdu3MCtW7eQnJwMAHB0dKwy6KJdu3aoX7++yImptiktLUVaWlqVwRcvf//w4UPk5eXJn//3m+NfHnzh4OCgEhte+Pn5ITAw8H8+T0NDA4mJibC1tVVCKiJ6F6xnItXBeiZSX1KpFD4+PsjPz0doaCiaNWsmdiR6C1y/iYjonxQUFCAuLg7379/HgwcPkJCQgD///BN//vkniouLAQCGhoZo1qwZWrRogWbNmqFp06Zo2rQp7O3ta+Tmo0TqLjMzE48ePXrtIzs7GwCgpaUFa2trODo6ws7ODtbW1rCxsYGVlRWsrKxga2vLC06JagCpVPrGes7NzQXw1w3Z1tbWcHJygoODA6ysrGBjYwNra2tYWVnB2toaenp6Ir8SIvUmk8mQlpb22lqWSCR49uwZAEBHRwd2dnbyQVQ2NjawtLSEra0trKysYGlpyZt/SBRPnz5Feno6UlJSIJVKkZaWhtTUVPkwi5SUFJSXlwMAGjZsWGVwi729vfx7Ozu7Wj9craKiAqmpqW98f87Pzwfw11CqyiFzlZ+5X/6sbWZmxsEXVGuUlpbKaz8tLQ3p6elV1oDExEQ8f/4cwF/vZdbW1q8dyGZvb48mTZqI/GqI6G1Vfg5ITk5Geno60tLSkJKSIl8PUlJS8OLFCwB/DXGzs7OT172jo2OVdYDXVhPVfmVlZUhLS0NSUhKSk5ORmJiIhIQE+aPyWve6devKzyW9/GjWrBlMTU1FfhVERKRKjh07Bj8/v1c2s3Zzc8OtW7dETEZEyvDixQsYGhrKr2+qpKGhAYlEAjs7O3GCEZHSDBw4EKdOnZJvrgT8dQ3FmjVrMHPmTBGTEZEysB8gUm/sB4iIaqbr16/j0KFDOHLkCHJycuDp6YlJkyZhwIABqFOnjkL/7MoBCwcOHEBiYiKcnZ0xYsQIjBgxAubm5gr9s9VNeno6jh07hgMHDuDOnTuwsbHBkCFDMGbMGO4/oCISEhJw7tw5nD17FpcuXYKGhga6d++OAQMG4OOPP4aBgYHYEakaxcbG4uTJkwgMDER0dDTs7OzkQ4JatmwpdjyqRoWFhThx4gQOHTqEsLAw1K9fHwMGDMDnn3+Otm3bih2PiGoAHm9RL4WFhRg0aBAuX76MI0eOoHfv3mJHIvpHHGxBtdKdO3ewaNEinD17Fh07dsSiRYvQu3dvTgMl5OXlISYmBuHh4bh69Spu376NzMxMAIC5uTnc3Nzkj06dOsHExETkxFTbFRUVyQdd/H3whUQiQWpqapULsAwMDF47+KLye3t7+xq9lv399QDAe++9hy+//BKDBw+u8s9NTU150yNRDcZ6JlIdrGci9fbkyRP06dMHEokEZ8+eRbt27cSORP8S128iInpXT58+RVxcHOLj4+XHIePi4vDgwQNUVFQA+Os45N8H71Y+mjZtioYNG4r8KojoZc+fP39l892kpCSkpaUhOTlZvhEh8NdQm8pN8f8+9KLy+9q+MTFRbfbs2bPXbpBfudn4yxcQmpqayuv25aEXld9bWFhAW1tbxFdDpN5yc3Nfu0F+amoq0tPT5cd1NDU1YWZmJq/hv78v29jYcLN8emtZWVnyTapTU1MhlUqRmpqKtLQ0SKXSKptVA38Nrqj8jPj3zevt7e1hZGQk4qsRX3Z29mvrOSkpCZmZmfJeWltbG2ZmZq/U8Mv1bWZmVqOv6yHVUFRUVGVYxcu1n56ejvT0dDx+/Fi+IVDl393Kv69/H2BjbW3Nz5VEtUR5eTmysrIglUqRmZkJqVRaZYBF5fcvfw5o1KiR/D3r5fevymEWVlZW0NTUFPFVEdF/VVJSguTk5FceiYmJSE5OhlQqlX+mrVu3Luzs7ODk5FRlKLqTkxOsra35WZaIiJTik08+QXBwsHzoaiUNDQ08evQI9vb2IiUjImUICAjA0KFD8fetC3R0dPDdd99h3rx5IiUjImUoLCyEkZHRazdXat26NaKiokRKRkTKwn6ASL2xHyAiqjmSk5Nx+PBh7N27F3/++SdatmwJPz8/DBs2DE5OTkrPI5PJEBERgcDAQPz888948uQJ3N3dMXDgQAwcOBAWFhZKz6QK0tLSEBQUhGPHjuHy5cto3LgxBg0ahGHDhsHd3Z3nh2u5wsJCXL58GefOnUNISAgePXqExo0bw9vbG3379oWvry8aNWokdkyqJjKZDDdu3MDJkydx4sQJJCQkwMzMDJ988gmGDh0KT09P1rQKqXxf/OmnnxAQEIAXL17gww8/xPDhw9G/f3/uK0JEVfB4i/p4/PgxevfujaSkJAQFBcHd3V3sSET/EwdbUK0WHR2N7777DseOHYOrqytmz56NYcOG8QYcqiIlJQW3b9/GnTt38Mcff+CPP/5ARkYGAMDGxgZt27aVP9577z3Y2NiInJhUzdOnT1879KLy56SkJMhkMgBAnTp1YGlp+cqmc5U/18RN5xo3bgx/f3+MHz9e7ChE9B+xnolUB+uZSL0UFBSgX79+uHHjBo4fPw5vb2+xI9E74vpNRET/RXFxMSQSCRITE5GUlPTKIycnR/5cY2Nj2NnZVXnY2NjAxsYGFhYWar/pKVFN809DtqVSKZKTk1FYWCh/vp6eHiwsLOTnFl731dLSEo0bNxbxVRGpp6ysLPnmxMnJyUhLS0NaWhpSUlKQkpKCjIwM+Y3dWlpaMDU1hbm5OczNzWFqagpLS0uYmJjA0tISpqamsLCwgJmZGerUqSPyKyNSLzKZDJmZmfJ6Tk1NfaWmMzMz5dcBVG44bmVlVaWGK+vbzMwMFhYWMDExgY6OjsivjhSluLgYT548QUZGBqRSKZ4+fSr//uWvaWlpKC0tlf+6ys92L1878vfvDQwMRHxltVt5eTkyMjKQkpJSpaZTUlLkNZ2ZmSl/fuV1PZWfq9/0Hm1iYsIbyKgKmUyGrKws+Yb1WVlZyMzMREZGxiv/7MmTJ/JfV6dOHVhYWMDS0lJ+3KZy2IqlpSWsra1hZmbGa2aJariioqI3vve//LkgOTlZvjk98L8/Bzg6OvL4DlEtV1paKu8D0tLS5J9NK4daVQ5jq7ztS19fH7a2trC3t4etra38YWdnB1tbW5iamor8ioiISN09f/4cxsbGVY5vVdLR0cGyZcuwYMECEZIRkbL07t0boaGhVfrbSs7OzoiLixMhFREpy8GDBzFy5Ej5edK/e/DgAZo1a6bkVESkLOwHiIj9ABGRuO7fv4+goCAcP34cN27cgLm5OQYPHoxhw4ahXbt2YseTKy4uxtmzZ3Hs2DGcOXMGhYWF8PDwwIABA9C/f39YWVmJHbFGi4qKwunTp3H69GncuXMH9evXh4+PD4YOHYpevXpBV1dX7Ij0jl68eIE7d+4gPDwc58+fx5UrV1BSUgJnZ2f4+vrC29sbXbt25f9jFfLkyROEhYXJh5c8fvwYjo6O+PTTT/Hpp5+ic+fOvDZUhRQVFeHChQsICgrCqVOnkJWVBXd3dwwdOhSDBg2CoaGh2BGJqIbi8Rb1kJCQAB8fH2hqaiIkJASOjo5iRyL6VzjYglRCVFQUvv32W5w8eRKtWrXCggULMGDAAGhra4sdjWqop0+fIi4uDpGRkfLH/fv3IZPJ0KhRIzg5OcHZ2Rlubm5wcXFBmzZtYGxsLHZsUlElJSVIT09/4+CLhIQEPH/+XP58AwODNw6+cHBwgI2NjVLXP268SqQ6WM9EqoP1TKR+SktLMXr0aAQGBmLbtm0YN26c2JHoHXD9JiIiRSouLoZUKpUff3z5UXksslKdOnXQpEmTf9w0zc7OjhfGEdUQgiBU2Vw7PT0djx8/Rnp6OrKysuQ/Z2VlVblxXF9f/5XN8Ss31zY2NoaJiQlMTExgbGwMPT09EV8hkfqoqKhAZmYmkpOTkZqaKt/ktHLT44yMDGRmZiI3N7fKr2vSpIm8hl/eJL9y43wjIyMYGxvDyMiI11EQKUlZWRmkUql8g3ypVPrKe7NUKq1yLQAA+Yb4rxt+8fd6JvH9P/buPLqt8k4f+KNdlqzNmySviuM4iWQnYAfI4oYsBgLE0NCSlhZKS0tYWmB6SqHLTGfa0o1pZ7p3Ss/QKdOWTtlOG7oEHKBpQlLAARLb2RzHqyyv2ldr+f2R3/tyJUve4liO/f2coyPpavHV8t57JV89z9jYGIaHhzEyMsIPdrsdw8PDfJnNXmthERkAvq1lMplgMpn4686Oi4uLUV5ejpycnCw9OsKEw+Gk4pre3l44HI4J6+hgMMhvI5VKUVRUxLezhetm9jqz112tVmfx0ZELEYlEksY/+9yVrrBiaGhoQlg9+yxWWFjI3x/sPVJaWsrfP4SQhYeN/+HhYT7GhcuC4eFhDA8P8+2AQCDAbyuRSFBUVMSXAanbfsL1hkqlyuKjJIRcKL/fn/R5sLe3l39OZNMGBwd5aYVYLOaliOzzACusYMf0I3ZCCCEL3S9/+Ut86lOfyhhmvWLFCpw+fXqe54oQMl+cTieMRiPGx8czXqe1tRU2m20e54oQMp927NiB5ubmtOFKcrkcX/7yl/GVr3wlC3NGCJkP9HmAkKWNPg8QQsj8i0aj+Pvf/44XX3wRe/fuxZkzZ1BQUICdO3fiIx/5CLZt2waJRJLt2ZxUKBTCvn378Oyzz2Lv3r3weDxYv349du3ahZtvvpnKEXF+H5UDBw7gD3/4A/bu3Yvu7m6UlJRg586duPnmm7F161b6vc8lanR0FEeOHMHrr7+Ov/3tb3jjjTcwPj6O6upqXH311diyZQu2bdtG+xAuItFoFEePHsW+ffvwl7/8BW+88QZEIhE2bNiAHTt2oKmpCbW1tdmeTTKHHA4HX083NzcjGAxi3bp1uPnmm3HbbbehsrIy27NICFng6PuWpWH//v3YvXs3qqqqsHfvXhQVFWV7lgiZNiq2IItKa2srHnvsMTz77LMwm824//77sWfPHtqBn0yLx+PBO++8g9bWVhw7dgytra1obW2F2+0GAJSXl6Ompga1tbWora1FTU0NVq9eTQ2mZF44nc6k4ovUEoyenh5Eo1F+fYPBkLb0gp03m80QiURzMm8UvErI4kHjmZDFg8YzIUtTIpHA448/ji9+8Yt44IEH8J//+Z8UNn2JoeU3IYSQbPL5fEmh+D09Pejv7+en7XZ7Uoi2QqFASUkJSkpKUF5ezoNXWehaUVERSktLKaCTkAUkGo3ykFW73Z62/IJND4VCSbfNzc3lQdssUJuFMbPzRqMRhYWFKCwshEKhyNKjJGRpYCGqTqeTl1+kO+7t7Z2w46JSqYTBYEBxcTHMZvOE08LzhYWFkMlkWXqUhCwNoVAIY2NjE8Zw6vhO3ScAOL9fQLqxm+680Whc8D9QzDZhQD0LqRYG1rOAauG01NdEo9HAbDbz0gJ2mn1GYmHVRUVFtHxdhILBYMYxLDweHBxMCnNh6+bpjGU27udqnx+SLBgMwul0Jr1+7Hy6aamvJZC8bGavXbrtLnodCVlYvF4vRkdHMTo6ytf7bH3vcDiSpg0ODvL9ihmZTMa/H2HfkRQUFCQVV7ECm6KiItouI+QSlkgkeKEN27YTlloJv28VFhkqlcqkAjuz2YzS0lJeYlFWVgaTyUSFpIQQQi5527Ztw4EDB9KGWTPHjh2jUB5CFqlf/OIXuPfeezOGWctkMnzhC1/A1772tXmeM0LIfBgZGYHJZJp0O6CyshJnz56dx7kihMwn+jxAyNJGnwcIIWR++P1+vPLKK3jmmWfw4osvwul0orKyEjt37kRTUxOuvvrqS3bfxHA4jJdffhnPPvssXnzxRYyOjqK6uho33XQTmpqasGnTpiWxv0U8HseJEydw6NAhNDc346WXXoLb7YbV9oxHEQAAIABJREFUakVTUxN27tyJTZs20b5nl5hYLIa2tja8/vrrOHLkCI4cOYJTp05BJBKhuroamzdvxtVXX42tW7eiuLg427NL5kg0GsW7776LgwcP8jHtdDpRVFSEq6++mi+7DQZDtmeVzKF3330XL774Iv74xz/irbfeglKpRGNjI3bu3ImdO3fCbDZnexYJIZcQ+r5l8XviiSfwmc98Brt27cIvf/lLqFSqbM8SITNCxRZkUbLb7XjiiSfw4x//GD6fD7t378bDDz+MNWvWZHvWyCXIbrejvb0dbW1t/Pjo0aMIBoOQSqUoLy+H1WpFfX09bDYbrFYrVq9eTeGhZN45nU5edJFafGG32+FwOMBW+0qlkpddCIsv2OmVK1ciNzd3Wn+XglcJWTxoPBOyeNB4JmRp+/3vf48777wT119/PX7961/Tl9aXEFp+E0IIWeiCwSB6e3vR39+fVILBTjscjgmhjmq1GiUlJTAajTy4kZVfGI3GpEA3QsjC4fV6MTg4mBTgnBrk6HA4+OlwOJx0e41GA5PJhPz8fH7Iy8tLOi4oKEi6jIpwCJl7iURiQiA7G9tsmvD8yMjIhB+XFxYW8oBW4ZiebHxfqj+IImQhi8VivGiBhaiysZvu/NjYWNLtpVIpH8sFBQUwGo18zKYbx+z0pSgej2NsbGzKw+joKD89NDSUFDoLABKJBAUFBUkHo9HIt2OEZV/sPJV7kekIh8MYGhrCwMDAhOD0dEHqfr8/6fY5OTn8/cgC1FPHMtvWZueX2v8JwuHwtJcBwrKa1M81KpUqKaheuDwoKiqaMK2goCBLj5gQIuR0OicU06Q7sLKasbGxCeMfoBIxQpYan8/H/8fBCoCF5RUDAwO8vEJYcKdUKvn/OoQlNmazGSUlJby4orCwMIuPjhBCCJkfQ0NDMJvNGQMVAEAul+Nzn/scvvnNb87jnBFC5svmzZtx6NChSZcDZWVl6O7upuA9Qhahn/3sZ3jggQcmDbQHgKNHj+Lyyy+fp7kihMwX+jxACKHPA4QQcnGEw2H84x//wCuvvIJXX30Vr7/+OkQiEd73vvehqakJTU1NWL58ebZnc87FYjEcOnQIe/fuxR//+EecPn0a+fn5uOGGG9DU1ITrrrsOWq0227M5Z06ePIn9+/fjlVdewWuvvYaxsTEUFRVh27Zt2LZtG6699lpUVFRkezbJDNjtdrS0tPDDoUOH4HQ6kZubi7Vr16K+vh4NDQ3YsmUL7U+wiITDYbzxxht47bXXcODAARw+fBh+vx9msxlXX301LzCxWq3ZnlUyh+x2Oy8u+ctf/oLe3l4UFhZix44daGpqwo4dO6DRaLI9m4SQSxR937J4RaNRfPazn8VPfvITPPLII/jWt75FryG5JFGxBVnU/H4/nnrqKfzwhz/EyZMnsW3bNjz44IPYuXMn/YCIXJBoNIqenh60tbWhpaWFF16cPHkS8XgccrkcVVVVSWUX69ato6ZEklWhUAh2u31C8QU7ffr0aXi9Xn599sNMVnqRWoJRUVEBiURCwauELCI0nglZPGg8E0L+/ve/Y9euXVi2bBn+8Ic/oLi4ONuzRKaBlt+EEEIWAxa463A4eOBTf38/hoaG0N/fzwOhHA4HQqEQv51MJkNRUREvwSgqKoLJZOLhkSaTiYdGFhYWUrk0IQuMx+PhwbssLN/hcPCw2NHR0QmnU3dVUCqVE8K0heUXbJrBYIBer+dBklSIQcjcYUUYmcLy2fhlp8fGxpL+v8hotdoJYzhTaD4by3q9HlKpNAuPmpDFKRqNTlp8MTw8PGHdnBroLBaLJx2/qeH5eXl50Ov1c/bDC6/XC7fbDZfLxQ9Op3PKoHqn0znhvhQKBZ/HdAdhOQUF1JOFJhAIYGRkZELxXGo5lbCsId22dup4nmw9zcZGtsuqhOM/3TJAWFAjPKSWgQBAbm7uhLHPHr9w3AsLa5ZaIQghC4XT6YTL5UraDkh3mh0Llwnpxr9Wq51ymSc8LiwsXFThB4QsVeFwmH8+EJbZpJ52Op3o7++H2+1Our1SqeQFNqnHwnIbk8lE/68ghBBC/r8f/ehHePDBB6e8XklJCXp7e+kH+YQsMna7HaWlpRO+m0znH//4B6688sp5mCtCyHzatGkTDh8+POlyQCQS4eGHH8bjjz8+j3NGCJkP9HmAkKWNPg8QQsjciUajeOutt5KKLAKBACwWC7Zu3YrrrrsO1113HfR6fbZndV51dnZi7969ePHFF/G3v/0N8Xgcl112GXbu3ImmpibU1dVdMtuYsVgMx48fx6FDh3D48GG8+uqrsNvt0Gq1uPrqq7Ft2zZs374dNTU1l8xjWsoCgQBOnDiB48eP49ixY2hpacHbb78Nr9cLuVyO2tparFu3DvX19bjqqqtgs9ko+3IRCQaDvLikubkZhw4dQjAYhNlsRkNDAzZt2oSGhoZLahlFptbf349XXnmFr6u7u7uhUqnQ0NDAl+H19fX0mhNCLhh937J4jY6O4tZbb8Wbb76Jp556Crt27cr2LBEya1RsQZaMgwcP4oc//CGef/55GI1G3HHHHbj77rsXZeMsyR6v14u2tjYcP34cra2taG1txbFjxzAyMgIAMJlMsFqtWLVqFT9evXo1BYySBcPpdCaVXqSWYHR3dyMWiwE4HzRXUFCAoaEhXHbZZWhsbEwqvmCnCSGXDgpSJmTxoPFMCAGAjo4O7Ny5E16vF88++yw2bNiQ7VkiU6DlNyGEkKXG5XLx8ovUEozBwcGk0M5oNMpvJxaLecFFpgKMgoICfppC7wlZmILBIA+PSxcol+7gcDjS7oilVCp5OP5MDkVFRRSkT8gcCAaD0xrD7DpjY2MTAvSB6Y/lnJycCdc1m8204zchFyh13ZxpDAunpW6rM0qlEnq9HlqtFmq1Grm5uVCpVJDL5ZBIJBCJREgkEojFYohEIgiFQggEAvD5fHC5XBgdHUUkEkk7n2zMz2SdT8sIstTM1bZ2unVzuvVwuoPJZEI4HM7490Kh0KTLncmWL9Md+yxwOj8/HwqFYr6efkKWtGg0mlRC4XQ6JxRRTFVUkY5KpYJer4dOp4Ner086bTAYJi2qoM/9hCwOLpcrqWiTFfQNDw9jcHAQQ0NDvMhvcHBwQhFnTk4O/78B+38C+59CYWEhCgoKYDQa+f8Vsl3wRQghhFyK7rvvPhw6dCjp+4XR0VGo1WoolUo+TSaT4emnn8bKlSuzMZuEkIvkueeew9e//nX+u0MA8Pl8iMVi0Ol0fJpYLMaePXvw6U9/OhuzSQi5SFwuFxobG5P2A4hEIvB4PMjPz0/6P11VVRVeeOGFbMwmIeQios8DhCxt9HmAEEJmLxqN4t1338Vrr72GV199FQcOHIDX60VxcTG2bt2Kbdu2YevWrVi2bFm2Z3XBGB0dxb59+/DXv/4VL730EgYHB2EymXDddddhx44duOaaa5Cfn5/t2eRcLhcOHz6Mw4cP4/XXX8cbb7wBr9cLrVaLDRs24H3vex+2b9+OdevW0T4uC9j4+DhOnz6N1tZWHD9+HO3t7Th+/Dg6OzsRj8ehVCphtVpRX1+P+vp6rFu3DrW1tZDL5dmedTJHEokETp8+jTfffJMfWlpaEIlEUFlZic2bN2PLli3YvHkzLbMXma6uLrz++us4cOAAXn31VZw+fRoKhQLr16/n6+qrrrqKxjshZM7R9y2L09GjR/GBD3wAIpEIf/jDH1BbW5vtWSLkglCxBVlyzpw5gyeffBK/+tWv4HA4sHXrVnzyk5/ELbfckvRPUULmksPh4GUXJ06c4IfR0VEAgE6nw6pVq2Cz2bBy5UpYrVasXr0aFouFGlbJgjI+Po7h4eGk4ouvfOUrfKOYlWAwSqVyQtFFZWUlP2+xWChUjpAFhIKUCVk8aDwTQhiv14s777wTe/fuxWOPPYZHH30027NEJkHLb0IIISQzVnAxPDwMh8OBoaEhHlglLMBwOBwTAqtUKhUvwSgoKEB+fn7ScVFR0YRptDMwIQuTMBiXBWSy40ynhUGa6RgMhqRQTJ1OB61Wm3RaeHnqZRqNZp6fBUIWB6/Xi9HR0UnHcqbjUCg04f7kcjkfzwaDgY9Vg8GQduyyY3a5Tqej9T8h/18sFoPH44HT6YTH45lwYKHT7PzIyAjGxsbgdrvhdrvh8/kQCAQQj8cn3LdIJIJYLOZ/Jx2lUonc3FxoNBro9XoeSs0OwvGdbmzn5uZe1OeHkMUqHA7zoGiHwwG73Q6Hw4HBwUE+ztl2tc/ng8/nQzAYRDgcTltAkYlUKoVSqYRKpYJarU4a0/n5+SgqKkJRUREvpGDb4mwdT+trQi6+qcquJiupGRwcTLsNkFpKM92SHLZsoHIaQhaPYDCYVEwxNjbGCyuEpRWp10n9/CCXy5Gfn4/CwkIYjUb+/b+wrIL9X8BoNNLnBEIIISRLaH84Qpa2u+++Gz09Pdi3b1+2Z4UQkgX79u3Djh074HK5kgKWCCFLB30eIGRpo88DhBCSntvtxptvvomDBw+ipaUFBw8ehMvlQkFBAdavX4+GhgY0Njairq4uqSSQpJdIJPD222/jr3/9K/bt24fXX38diUQC69atw/bt27F9+3Zs3Lhx3nIFo9Eo2tvb0dLSwossTpw4gXg8jhUrVmDDhg3YuHEjNm7cCJvNxvenJQuL3W5He3s72tra0NLSgvb2drS3tyMYDEIqlaK8vBxWqxU2m40f19TU0P5Ni0xvby8vsHjjjTfQ0tICt9sNuVyOyy67DFdccQXWr1+PLVu2oLS0NNuzS+ZIMBhMWoYfOXIEDocDMpkM9fX1vMhi48aNUKlU2Z5dQsgSRN+3XNp+8Ytf4MEHH8SmTZvwu9/9DgUFBdmeJUIuGP3Ciyw5K1aswLe+9S184xvfwCuvvIInnngCH//4x3H//ffjQx/6EO644w40NDRkezbJImMymWAymXDNNdckTXc6nejs7ERbWxv/Muu1115DV1cX4vE4ZDIZysrKJnyRtXr1avpQS7JCJpOhuLgYxcXFqK+vBwB861vfwj333MN3LAmFQrDb7ejs7ORFF6wEo6WlBd3d3fD7/fw+DQZDxuKL4uJiWCwW+iKeEEIIIYSQWdJoNHjuuefw+OOP40tf+hLa2trw85//HDk5OdmeNUIIIYSQGWEhVNMRCoV4Qa+wEGNoaAijo6MYGRlBZ2cnRkZGeDhnKr1ej8LCQl52wQovhEUYbFpeXh7y8vIoXJOQeaBQKPj/3WYqHo+nDdBn510uFw/kdrlc6O7uhtvthsfj4ZcnEokJ9ysWiyeEa6cL2TYYDFCr1cjNzYVarYbBYOCnc3Nzodfr5+IpIuSSodFoZl0MEwqFpizDYOH7nZ2d/DQb04FAIO39qlSqCWNXWHqTGpyv1+uRm5vLx7Jer4dGo6FtApIV0WgUXq8Xbrcbfr8fgUAAbrcbXq8XgUAAfr8fTqcTfr+fF1J4vV6+/hMWVwj/ny8kk8mSxoZWq4VWq0VBQQEqKyt5GZRw7AgD6fV6/YTvJdk6drIyGzamBwYG+Ly63W44nc608zmTdTM7rdFooFar+eVqtZq+QyWXHLYcYOM4EAjA5XLxshmfz5e2sCbdsiBdiRRwPpheo9FAq9WioqKCj5nc3FwoFApIpVLIZDJIJBIA57fBY7EYIpEIwuEwXzaxchy32w2Hw4FgMJj27wmLL9Ktm1MvE5ZWqdVqfntCFrtgMDihYCJd6cR0zmf67DtZCcVUJRWFhYWQyWRZeGYIIRebcBkyMDAAu90+ZSHOwMDAhPtJtwyx2Wwwm80Zly1ms5mCXAghhBBCCCGEEEIIIYQQQgghC1Y0GsXx48d5MPaRI0fQ0dEBkUiEVatWYf369Xj88cexYcMG2Gw2+v/nLIhEItTV1aGurg5f+tKX4Ha7sX//frz00kv4/e9/j29+85vIycnBpk2beNFFXV0d37/tQoyPj6O1tRVHjx5FS0sLjh49imPHjiEYDCInJwf19fW48cYb8Y1vfAMbNmxAUVHRHDxiMle8Xi86Ojpw5swZfmhra8OJEyfg9/shEolgsVhgs9lwzTXX4LOf/SzP/aMCi8XH7Xbj+PHjaGlpwaFDh/D3v/8dDocDAFBZWYlNmzbhpptuQn19PdatWzdvZTnk4rPb7fx1P3jwIN566y2Ew2GYTCasW7cO99xzDxoaGqjIghBCyAUJhUJ44IEH8N///d944IEH8L3vfY9+f0oWDXonkyVLLBajsbERjY2NcDgceOqpp/Dkk0/iiSeewJo1a3Dbbbfhwx/+MCwWS7ZnlSxiBoMB9fX1vCCACYfD6Ojo4GUX7e3taG5uxve//32Ew2EAgNlsTiq7qKysxNq1a6cd7EXIxaJUKnk5RSas1EVYfMHKMJqbm9Hd3Y1YLAYAkMvlyM/PT1t6UVlZieXLl1PYEyGEEEIIIZMQiUR49NFHUVNTg9tvvx1tbW144YUXUF5enu1ZI4QQQgi5KJRKJcrKylBWVjbt2wSDwYzBW2x6R0cHnzY4OIh4PD7h72YK2TIYDCguLp4QxEXBfoTMH7FYzItoZosFhgtDtYVlGKmX9fb28tMsVDgSiWS8/3QB+az4goVus8uFwdu5ubk8XJxdTgG+ZDFTKpUwm80wm82zvo/U0N9M4b5OpxMOhwMnTpxIujzdtkDqPGYK+p3J+fz8fPrxyyLlcrl44QQLlvf7/fD7/XC5XPy0z+dLW1bBzrOyisnWLwqFAiqVipcssXWGVqtFZWVlUkkFO2g0Gl78wA4Xo+iBFV7Mdv8sNl7Tjd10Y7u7uztp+ujo6KTPHRuLFzKO2XmdTgexWDzLZ4osRmysBwIBXijBlgvTWQ4IS2sCgQDfpywduVzOy9VSx7vJZOKFEay0QngQ3kYul1+05+NirpuVSuWcjGOlUomioiL6EQG5YGxs+3w+/lmRHdgYZ+fZ8oGdZ59LhbfJRKFQTPg8yT4/Go1Gfl6j0fDyNlZUlVpWRQhZ3Cbbls5UWjE8PIxoNJp0P5m+I6+srMz4PTl9R04IIYQQQgghhBBCCCGEEEIIudTF43GcPn0ab7/9Nt5++2288cYbeOutt+D3+6HT6XDVVVfhIx/5CNavX4/169fDYDBke5YXJZ1Oh1tuuQW33HILAKC7uxv79+/HK6+8gh/84Af44he/CIPBgC1btmDr1q3YsmULbDbblPt2BgIBtLe3J5VYHD9+HOFwGGq1GmvXrsUVV1yBe++9F3V1dbBarbSP2QIQCARw5syZpAKLjo4OnD59mpcWSCQSVFRUoKqqCg0NDbjnnntQW1sLq9UKjUaT5UdALob+/n4cO3YMx44dw9GjR/Hmm2/i3LlzAIBly5bhyiuvxMMPP4wrrrgCdXV1yM3NzfIck7nS2dmJt99+G0ePHuXHg4ODkMlkWLt2LTZs2ID7778fGzdupOxZQgghc+bMmTP44Ac/iO7ubjz33HPYtWtXtmeJkDlFn3wJAWAymfDII4/gkUcewcGDB/Gb3/wG3/ve9/ClL30JGzZswG233Ybdu3dT6ymZNwqFAjabDTabDbfeeiufHolEcOrUKZw8eRInTpxAe3s7Dhw4gCeeeAKhUAgAUFJSgtWrV2PVqlWwWq2orq5GdXX1jAK8CLnYMpW6MJFIBCMjI7z0QliC0dzcjLNnz8LlcvHrK5XKjMUXZrMZy5Yto8ZTQgghhBCy5N1444144403sGvXLqxbtw5PPfUUduzYke3ZIoQQQghZEHJycqYs7BUKh8MYHR3FyMgIxsbG+GF0dBSjo6P8fE9PD9555x0+jX2XL6TT6VBQUMAD9/Py8pCfn89PszBBg8HAT7PwYULI/NJoNNBoNCgtLb2g+5kshDt1GjvPwgPTXZ7JXAT4smlarRYSieSCHjchC0lOTg5ycnJQXFw86/vINJanOj8wMDDhcrfbTUUZC9x0X+PpXDY0NIRYLJbxb022/DabzbBarUmXT/aa5+XlQalUzuMzNb/YWL4Qfr+fB4gLi0OmOj86Oor29vYJpSSZiMXitEVVsz1/MYpGSGbBYHDGY32yZYbH46HlQIoLXTfHYjF4PB44nU54PB4+blkpQLrzfr8fAwMDOHXqFD/PxnlqULcQK5ibybhNLaxjt9fr9bN9ysg8YePf6XQiHA7zgplwOMzfUz6fj5dVsSIaVkLBimpYCYXT6cz4t9i6IrW0UKfTIT8/H+Xl5dBoNNDr9fzy3NxcXl7FiirY5RQUT8jSMd3Ct3SHsbGxtAVZwm0LVkYhLKhIV+xM4SuEEEIIIYQQQgghhBBCCCGEkMVufHwcra2tvMTi6NGjOHbsGHw+H2QyGaxWK+rr63H77bdjw4YNWL169ZTFCeTiqKiowF133YW77roLANDW1ob9+/dj//79+MpXvgKXy4W8vDw0NDRgy5Yt2Lx5M4qKivDOO++gvb0dbW1taGlpwalTpxCLxZCbm4u1a9di48aNuPvuu2G1WnHllVdCLpdn+ZEuXZFIBH19fTyfrK2tDe3t7ejs7ERXVxffP99gMMBqtcJms+GGG27gvyFcvXo1ZZItUsFgEO3t7Xj33Xdx7NgxHD9+HO+88w7GxsYAAGVlZVi7di0+/vGP44orrsAVV1yBgoKCLM81mQuxWAynTp1KKrF4++234XK5IJFIUF1djbq6Onz+85/HlVdeifr6eloOEEIIuSieeeYZfOpTn8LKlSvx7rvvoqKiItuzRMico2ILQlI0NDSgoaEBP/7xj3H48GH87//+L7785S/joYcewoYNG3Drrbfiox/9KH0AJVkhl8tRW1uL2trapOnxeBznzp3DiRMncOLECZw8eRJvvfUWfv3rX/MfzavVal5yUV1djVWrVvHTFH5FFhq5XI7i4mIUFxdnLL8IBoNpiy86Oztx8OBBdHV1IRAI8OsbDIYJpRfC8xaLhf4RRAghhBBCFr0VK1bg8OHD2LNnD2688UZ8+ctfxr/+679SOCkhhBBCyAwpFAr+HeZMBAKBCUUY6Y6PHTvGr+NyuZK+62TEYvGE0ovU8gvhIfUy2uGOkOyZixBuJhQK8QDedIG9mQJWBwYGcPLkSX45C1xNJBIZ/5bBYODhqWq1GgaDAQqFAiqVClqtFgqFgof0KhQK6PV6Hsqs0+mgUCh40KpCoYBOp+Ohy4RciuZyLMfjcR6kzcZluvPCIG63242hoaG0Qd3BYDDj31KpVFCr1dBoNNDpdHxcsxDu1PGp1+uhUCj4dRQKBbRaLVQqFR/r7PJs8fv9iEQicDqdGB8f588ZmxaJRPjzFIlE4HK5eDC11+tFJBKB2+3mIbBerxeBQIAXFUy2bEx9Ptl5nU6HoqIifp4FTqtUqrTX1Wg0/DyZX2y9NldSiy6mc97tdsNut6e9PJOpijJUKlXSujh1XS2XyzOuyy9FwvGbOqY9Hg8ikQg8Hk/aaSy03u12IxKJ8NeELQfcbvekf1u4faTX6/lY12q1MBqN/DwLmlepVDx4no17rVbLXxv6rDY7EomEB2vPBeF2drr1c7rCG7/fj87Ozgnj2OfzYXx8POPfSi26SD3PtqFVKhV0Oh3kcvmE7W7hWJbL5Utuf8BM5TOZSmemOs2OR0dHEYlEJv3bMy2imayMTKfT0f5rhCxRgUAALpcr6eB2uydMczqdE6a5XK606xmZTJb2e+Li4mJYrVbodLqk6axsuaCggAoqCCGEEEIIIYQQQgghhBBCCCEEgNvtRmtrK9555x0ejN3a2opIJAKVSoU1a9bg8ssvx8c//nHU1dWhpqYGCoUi27NNMrDZbLDZbHjwwQfR09ODP/3pT/jrX/+Kd955B3/+858RjUYBACKRCPn5+aipqcEtt9yCyy67DLW1taiqqqJ9e+ZZOBxGf39/2nyxzs5OdHd3IxaLAXgvW8xqtaKxsZFni61atYr2z17k7HZ7UhlNe3s7jh8/jkgkArlcjqqqKtTX1+Paa6/lhTRGozHbs03mwNjYGFpbW9HW1sbLS959910EAgHI5XLU1NTg8ssvxwc+8AHU1dVhzZo1tDwghBBy0fn9fnz2s5/FL37xC9x///34j//4D/qcSBYtKrYgJAOJRMJLLr7//e9j7969ePrpp/Hoo4/iC1/4Aq699lrs2rULTU1NyM/Pz/bskiVOLBZj+fLlWL58OXbu3Jl0mdPpnNAo++c//xnf/e53eZiF8Es5m83Gv5Sz2WwUJEMWrJycHP5ezYS9/1O/lG5ra0Nzc3NSs7JCoUBJSUnG4ouqqirodLr5eniEEEIIIYRcNBqNBk8//TSuv/563HfffThw4AB++9vfzjiUmRBCCCGEzJxKpYJKpUJpaemMb8tCFqc6OBwOnDhxgp8fGxtDOBxOe5+poYrTPeTn59NOFIQsEEqlEkqlcs7+Zx0IBODz+eDz+XgILwvtdTqd/DQL6Q2Hw/D7/ejv70c4HIbH40EgEEA4HIbT6eTB8VOZKjh/tiUaLLibkIVOLBbPaRh3LBZLW3AzWeGN1+vF4OAgwuEwXC4XD3R2u90Ih8Pw+XxT/t1041en00EqlUImk/GwdrlcDqlUilgsBqVSyX8IJhaLEQ6H+fH4+Dji8Tj8fj+i0SgvnGDzGIlEpjVfUqmUF0ewZYZcLk9aTlRWVkImk/FprIBCq9XycHFhEQgrqyAklUajmdNyiNkWZQwMDCSti71eL19XTyXT+peF5ae7fLLiG7lcDrFYjFgsBrlcnrFwZqoSmvHx8YzFNFMRiUR87KvVauTm5kIulycVApSWlkIul08omzEYDJOW2JDFaa63s9l2M9vGFm5TC7e5hedZUYbwvLCUZSrCscre+8Kxmq7ESlhylWn7mo3vmZpOkcRMSifYNLfbzff/yiS1fCL1NNt/kk2f7LrC0xqNBlIp7YpPCJlYsDPTQygUSnu/6b6/NZlMWL16ddrvbYXLKbO97EIOAAAgAElEQVTZDJFINM/PBCGEEEIIIYQQQgghhBBCCCGEXHoikQjOnDkzIRj93LlzSCQS0Gq1qK2tRUNDAx566CHYbDbU1tbSfuoLXCQSQV9fH89cY5lTx48f5/tfGQwGWK1WvP/974fRaITL5UJfXx8OHTqE1157DQcPHkR1dTUaGhqwadMm1NfXw2azZfmRLR5OpxPd3d3o6elBV1cXurq60N3dzQ8jIyP8unl5eaioqEBFRQVsNhtuvPFGWCwWLF++HCtWrKCcvCVgbGwMJ06cQHt7O44dO4bjx4/j3XffhcvlAgBYLBasWbMG119/PR599FGsWbMGVVVVkEgkWZ5zcqG8Xi8vLGlvb0draytaW1sxMDAA4Pxv0mw2G+rq6vDJT34Sl19+OWpqamg9TQghZN61trbitttuQ19fH55++ml8+MMfzvYsEXJR0a9pCJmGnJwc7N69G7t374bL5cLzzz+P559/Hvfeey/uvvtubN68Gbt27cL73//+WQUREXIxGQwG1NfXo76+HrfeeiufHo1G0dPTM6H04tChQ/xLdalUivLych7wLyy+WLZsGf3giSx4wvd/OqyVObX4wm63o7m5GR0dHUkBCEqlMm3pBTtfXl5OP1YmhBBCCCGXjI997GNYt24ddu/ejcsuuwxPPfUUduzYke3ZIoQQQgghGeTk5CAnJ2dWhWQsLDPTwel08tN2ux3t7e1J09IFRKpUKuj1euj1ehgMBn469SC8jJ3W6XS0UyghCxQr4CkqKprT+/V4PAiFQjzENxwOw+128+BHYUmGMHibBdh3dnbyEGuPx4NwOMyDvCORyKR/mwVZpwvmFQb3pgv2FQb/ssB7Fn7Nrp+bmwuZTDanzxchF0oikUxZlOHxeBCLxXgYtMvlQiKRgNPpRCKR4NsAbrcb4+PjvOAmGAxiaGiIj2lhwHY4HEY4HMbQ0BCi0WjGcNZUIpEIiURiyuspFApIJBIeNq7VarFs2TI+vg0GAx/HLHjeZDLx7Sjh+GdjmBVbaLVa2j4hC9JcF2UA4OvXoaEhuFwuuN1ujI6OwufzYWxsjK+Dx8bGEAqF4PF4eOh+b28vwuEwQqEQQqEQotEoxsfHeRFNLBab1TxJpVKIxWLIZDLIZDJIpVKo1WrIZDLk5OTwsVpaWgqlUgmNRsPHfFFREbRaLbRaLQoLC3mYs7DEgtbVJNsUCgUUCgXy8vLm9H5nWhAhnBYIBDA4OIi3334bwWCQX87KIljx1GQkEglkMhlEIhHEYnHS+jwejyMej0+5vQ6c3ydLWLihVquRl5fHt8uNRiMvt0u3DS8s2hGu76l4ghAyFfaZx+12w+v1wuPxwOv1wuv1wul0TpjGrut2u5O+X01XLCyVSvn3ojqdjn83ajKZsGrVqozfp7KDWq3OwjNCCCGEEEIIIYQQQgghhBBCCCGLVzgc5qHora2taGtrQ2trK7q6uhCPx6FUKnm+1p49e1BTUwObzQaLxZLtWScZJBIJ9Pf348yZMzh16hROnTqFkydP4tSpU+ju7kY8HodEIsGyZcuwcuVKrF+/HnfeeSdWrlwJm82G/Pz8jPfd0dGBI0eO4MiRIzh8+DCefPJJRKNRFBcXY/369di4cSOuuuoq1NfXIycnZx4f9aUhEAigr68PdrsdfX196O/vR39/f1KBBSsYAQCj0ciLK7Zu3YqKigpYLBZYLBZUVFTM+b60ZOHq6enByZMnceLECZw8eRInT55Ee3s7hoaGAAC5ubmoqanB2rVrsXv3bqxZswa1tbXQ6XRZnnNyoVwuF06fPo1Tp07xdXRbWxu6u7uRSCSgUqlgtVpRU1ODa6+9FrW1tbBarSgrK8v2rBNCCFniEokEfvjDH+KRRx7Bpk2b8Je//IWyycmSQL/WIWSG9Ho97rrrLtx1110IBALYv38/nnnmGfzzP/8zHnjgAVitVtx6663YvXs3rFZrtmeXkIykUikP408VDofR0dHBm4ZZ8cXTTz8Nr9cLANDpdKiqqppQerFy5Urk5ubO98MhZFYUCkXGccAEg8EJpRfsfHNzM3p6epJ+yG0wGDIWX5jNZpjNZiqFIYQQQgghC4bVasXhw4dxzz334MYbb8TnPvc5PPbYY5DL5dmeNUIIIYQQMofUajXUajVKSkpmdXsWepnuIAzFdDqd6O7uxjvvvMPPDw0NpQ23ZQHULICSHdJNyzQ9Ly8PSqXyQp8eQsg8YGHTc12YwWQK8Z0q2Jedttvtk14+XWw5xZZZMz2e7m11Oh3EYvFFeS5JdkxWKhGLxeDxeBCNRuH1ennJRCQSgd/v56Uv7H3L3vssuJ4VwPh8PoyPj8Pr9U4rqJrR6/WQSqU8aFqpVEKn00Eul8NgMKCkpAQKhQJ6vR5yuRy5ublQqVQTprFQ+snC5oXjdibB3MLTo6Oj6Ovrm3A5K/CYDhrLJFvSjYHpHqcbH5MdT6ccSij1vc1KYzK996VSKeLxONRqNUQiEcbHx3mJjUwmQyKRgN/vRzwe58u9yR5Td3c3L9QZHx+f1TxfrLFMxThkLrExwN7rbFvA5XLxbQG27mfrerZudzqdfLuBbSdMdn/TxdZXarUaUqmUF01JJBLI5XLEYjHIZDLE43HIZDLEYjHEYjFebBEOhxGNRvmBldwJx7KwUENoNmN3pmOY1suEXJpYIaawgEJYQjFVWQWb7vf7094/K8nUarW8aEyj0UCn06GiogJarXbKYgral5oQQgghhBBCCCGEEEIIIYQQQrKjr68Pp0+f5odTp07h9OnT6OrqQjQahUwmQ3V1NWw2Gz7xiU/AarWitrYWlZWVtC/YAhSNRtHT08Ozn4SHU6dOwefzAUjOQ2P5fzabDatXr4ZKpZrx362qqkJVVRVuv/12AOeLGo4ePYqWlha0tLTgRz/6ER5++GFIpVJUV1ejoaEBmzZtQn19PaxW66LOlxocHMTAwAAvrLDb7ejt7cXAwAB6e3tht9vhdDr59eVyOUwmE8rKylBRUYGdO3fyEgtWYEHlIEuLcFy3tbWhvb0dbW1tOHbsGM84ZDluVqsVO3bs4GPaYrHQvn6XsPHxcfT29ia99myZfu7cOb6veVlZGaxWK+68807YbDZYrVasWrWK1tOEEEIWHLvdjjvvvBMHDhzA17/+dTz88MO0rUKWDCq2IOQCqFQqNDU1oampCeFwGPv378cLL7yAn/70p/jqV7+KVatWYefOnbj++uvxvve9L+nH+IQsZAqFAjabDTabbcJlwi/uWUvxs88+i66uLsRiMYhEIpSVlaG6uhrV1dWoqqrix8uWLaNwVHLJycnJmbL8wul0pi2+aGlpwYsvvsi/MAPOj6+SkpK0pRfFxcWorq6mhmhCCCGEEDKvNBoNfvvb36KxsREPPfQQXn75ZfzmN7+hwk5CCCGEEMLl5OQgJycHxcXFM75tPB6Hy+WCy+WC0+mEy+WC2+1OCpTzeDw8VM7j8WBwcBCtra1wu91wuVw8xDsdpVIJjUbDw+RYeD6bptFoYDAYks6z6+j1en6eCjIIubSx5ZTBYJjVsmoqcxko7nQ6MTAwkPa2LJx4ui4kuJcCu9Njrwsrj5htmcRUpRIejwexWGxGZQtisRg6nQ4SiQRarRZSqRQajQYymQy5ubm8LEKv10OlUvHXj72WrGyCFUywUgmNRsOLKyQSCQ91zka4s3AsXwxOp5O/Puy1Ya8FKxNxuVw8FJy97uw2wkIAp9M56W2niz3ver0eYrEYer2ev8bstVUoFFCpVPy1ZK/dbG5Lpid1jE6nfGa2JTTseLrYmM00dvV6PUQiEYqLi3kgs3BMT2c5wt43bDmy0LBlrHBMX8hYZstm9no7nU7++k7XhYxLtlxmryl7rQwGA3/N2GvFXiNy8QnfA+wHtmxZwN5vbP3O3pNsTLP3Gnvvsemp6550RRTTwd5LbIyy9xB7/xkMBqhUKhiNRv5+Y9sB7H3G3ps6nW7K+7tY2PPi8Xh4QQd7jpxO56RjNxKJJG1Xse8bMo3/6ZrOOJzuWJ7O8oCQpSj1s/BkBbqZpk1VQpmpSNdsNsNqtU6rXNdoNC6Zz8GEEEIIIYQQQgghhBBCCCGEEHIpcrvdE4or2IHth6PT6VBdXY0VK1bgYx/7GC+zWLlyJWXBLTAulwvd3d3o6urC2bNn0dHRgbNnz+Ls2bPo7u5GNBoFAOTl5WH58uVYvnw5rr/+enzmM5/B8uXLsWLFCphMpos6jyqVCg0NDWhoaODT7HY7WlpacOjQIRw8eBC/+tWvEA6HYTKZsG7dOtTX16OhoQEbN26cVbnGfPP5fOjv78fw8DD6+vowMDCAnp4eDAwMoL+/n08T/uZBp9OhpKQEpaWlMJvNuOKKK2A2m1FaWoqSkhIUFxfDaDQu6qIPkpnL5cKZM2dw+vRptLe34+TJkzhx4gQ6OjowPj4OkUgEi8WClStX4qqrrsKdd96J1atXY/Xq1cjPz8/27JNZisfj6Ovrw9mzZ/m6+eTJk0klUwBQWlrKsypvuOEGrFy5EtXV1bBYLJBKKSaZEELIwvfMM8/gvvvug1arxWuvvYYNGzZke5YImVe0xUbIHFEoFLjhhhtwww034L/+679w6NAh7N27F3/605/w3e9+F1qtFtdeey2uv/563HDDDRf9SzBCLpbS0lKUlpZi27ZtSdMjkQg6OjqSvug/fvw4nnvuOQwODgIApFIpKioqUFVVhRUrVvBDVVUVLBYLfeFPLlkGgwH19fWor69Pe3k4HObt0qz0gpVgNDc348yZM0nhJgaDIWPxRWVlJcrLy+mLN0IIIYQQMufuuusubNu2DXfccQfq6+vxb//2b/j85z9PLdCEEEIIIeSCiMVi5OXlIS8v74Lva7qBd2x6T0/PhGkskDSdTKF3mQLu0k0zmUy0DU3IInSxw/ZTTadIY7qFGherSEN4PNllM7mNSCTiy1CxWAy5XA7gfOixTCZL+/im83xNdh3hZSxk+kKfD+GxWq1Gfn7+jEtHUstHqJRgbszXGAYwZRj3TEL4XS4XHA7HpLedrtRCExZ0zsK5WWg3K0QA3ivfYIHd7D3KQrlZ4DcAHgTO/g57784kjH82Y3kulwksuH46pjuetVrtrJcDwuNsFM4sRCykfz7GNCsqYaUD7P3C1qGs2GA6Y9rn82FoaChjOP9Myo7YeyK1rCDT2BOOU1Z+ciHXnS+pxRHsuUstjmDPNSueAd4ro2DPK3ue2fPO7ou9puw1Zq/5TLDXgz2HbFnKSgzY9IKCgqSCIlY0o9fr+W2mU0SxWCiVSr69c7FNdwynK7hJXQ7M5Vhm743UMZ1alpO6Dp5sfZ26bmfvQ+C9bSH2viJkOtgylpXP+P1+uFwuftrn88HlciEQCPASW5fLBY/HM6HYdrLtLLVazUtphUW1Go0GRqMRtbW10Ol00Ol0SQW2qaW2CoVinp8hQgghhBBCCCGEEEIIIYQQQgghF4swo0d4OHPmDM+zksvlqKysxMqVK9HY2Ij7778f1dXVWLlyJYxGY5YfAWGcTueE3CXhQfhbH4PBwPOWPvjBD/LTNpsNZrM5i49iouLiYhQXF6OpqQnA+f2Hjx07hoMHD6KlpQW/+tWv8NWvfhUSiQQrV67k+VQ2mw11dXVz8lurqYRCIYyNjWFgYAB2u53/viD1tN1un7BPsjADy2q1Yvv27SguLubTli9fzvdfIktXKBTC2bNn0d7ennZ8A4BMJkNZWRmsVituuukmVFZWwmq14rLLLkNubm6WHwGZDZapl+41P3HiBAKBAIDz+azLly+HzWbDBz7wAf7ar127FhqNJsuPghBCCJmdoaEh3HfffXjhhRfw6U9/Gt/+9ren/bs5QhYT+lUKIReBRCLB5s2bsXnzZvz7v/87urq68NJLL6G5uRkPPfQQPvnJT8JqtaKpqQmNjY3YsmUL/UiMXPLkcjmsViusVuuEy8LhMDo6OpK+eDp58iT+/Oc/49y5c0gkEpBKpSgvL+dfJLOD1WrFypUraYyQS5pCoeDv6UzS/QPGbrejs7MTzc3N6Onp4U2zQPI/YdKVYJjNZmqqJoQQQgghM2axWPDqq6/ie9/7Hv7lX/4F+/fvx//8z/+guLg427NGCCGEEEIID/a+kO1TFjbpdrvhcrmSwvVY8J7b7U6aNjAwgPb2dn7e4/HwnStTsRBYvV7Pw/XUajV0Oh1yc3OhVquhVqthMBigVquhUqmg0Wig0+n4ZSyYj11OCFl65rNIw+PxYHR0FIFAACMjIwiHwzyo1+PxwOfzIRgM8jBfr9ebFLrPgqE9Hg8GBgaQSCQQDAaRSCQQDocRj8cRjUYRi8UQj8d5ccR0w34zEYvFEIlEkEgkEIvFkEgkkEgkkMlkkEqlkEqlUCgUkMlkUCgUkMvlUCgUUCqV0Ol0PPCXLWvZdIVCAb1eD7lczsOn8/PzeUgqCxEmZCoymWxeizQylWJMVqiRSCT42PZ4PPx67LpdXV1JIfE+nw/xeByhUAjj4+OIRqOIRCIzmk+RSMT/jy0SiXiw8WyWCTKZDHK5HGKxGCqVCmKxGGq1GjKZLKl8g5VBFBUV8TEslUr5dYSB3+y67DrsmIWFs8tZ2D9Z/KRS6byOZQBJgfpTjenUIH12LBzzg4ODPJhfOKZTrzsTbAyJRCL+mUWhUEAkEkEqlfKyKlbEIhKJEI/H+XE8HkcikcD4+DiA8z9qFIlE8Pv9AIBAIDCj5YIw3J+NTzZu2ThmxQBs/c5C/1lJDxvzwmIP9tqnLhtY6QDbniALn1wu56Vp82U65VXTKctJJBIYGBhALBbj12MlG+x+2d+bbjETM5tiGzZmhOOOjZFMBRzAe+MptYCDzD32vdVkBRR+v3/aZRWs/Csd9t7R6/VQq9XIzc2FVquFTqdDWVkZ/26MfdclLKtg01hZBZV3EUIIIYQQQgghhBBCCCGEEELI0hMKhXDu3Lm0odidnZ1JodgWiwWVlZVYu3YtbrnlFqxatQorVqyAxWKhXKosi0Qi6O/vR19fH3p6etDX14e+vj50dXXxg8/nA3B+Xy+z2QyLxYKKigpce+21qKioQEVFBSwWCywWC5RKZZYf0ezJZDJeXsF0d3fjyJEjOHr0KI4ePYqvfe1rGBsbg1gsRnV1Nerq6vjh8ssvn1ZRRCAQwPDwMAYGBjA0NITBwUEMDAxgeHgYdrs9aRp77pm8vDyYTCYUFhaipKQENpsN27dvh8lkQlFREcxmM4xGI4xGIyQSyZw/R+TS5PV6cebMGXR0dPDj06dPo6OjA0NDQwDO71tqsVhQVVWF1atX46abbsKKFStQVVVFy+pLUCwWw8DAALq6upLWzWfPnkVnZyccDge/rjD77qabbsI//dM/obKyEsuXL6eSKUIIIYvOM888g09/+tNQqVR4+eWXsX379mzPEiFZQ1v4hMwDi8WCPXv2YM+ePQgGgzh06BD27t2L3/3ud/jOd76DgoICbN26FY2NjbjmmmuwbNmybM8yIXNKoVDAZrPBZrNNuCxT22pzc/OEttXUwgubzYaKigr6ApQsCgaDAQaDIe04YZxOZ1LpBSvBOHToEOx2OxwOB/+BslKp5F/4pSu+qKiooLZiQgghhBCSllQqxaOPPoqtW7fi9ttvh81mw3e+8x3s2bMn27NGCCGEEELIBZPL5cjPz0d+fv4F3Q8Lj3S5XEmFF6w0w+1280B4Fg7ocDjShgV6vd6Mf4cFRbLSi9zcXH5epVJBq9VCq9Xyy9MVaKhUKqjVah4WSEGBhGQHC6IWnk43barL5/I2LNB6plhQbeqxVqtFTk7OpNdhx+w6wPllMyupYKH3YrEYoVAIEokEkUgEcrkcgUCAH8diMR7EzR4jCwpmwd7AewG/Ho8H0WiUhwGzMOGZEIbfs2Be9pimO00YAHwh0ygI+NLExhwLmAeQFCjvdDoBIOn9yULrhcHVwnHM3uMs4BoAD8UWjgU2ToTzIbyfmcjNzYVCoYBWq4VKpYJIJIJGo0EikeBFEVKpFDKZDMD5fUZisRgUCgXi8TgPux8fH4dcLkcoFIJMJksa86wIJxwOQyQSwev1QiqV8sfj8/mSxvRk21OpWCB3uvBuFsgtvCzdNDYG002b7pgGMO+FCWRhY0H2wmUA+0FpNBoFAD5W1Go1otEoNBoNH8fCQHuZTIbx8XG+bgTOr2/j8ThycnIQCoWg0+ngdrthMBjg8/kQiUQQiUSmtX6MRqP8ftn4Y+9/VjbF1ucAeBEMm0dWdDU+Ps4LLti06ZLL5VCpVLx0BsgcxD/dsQqAX0/442g2/5FIBFKpFD6fDzqdDoFAANFoFGq1ekbzTpYG9v7Ky8ub17/Lth3Yej7dNjLbFmDbDKnb08ISHLZsGhkZQSQS4cso4fYM24Zhf3smWMlMum1tViYzWQEHW09Pta5lfwd4r4iD3R/wXuFGNgSDQTidTv46OJ3OKc9numx4eHjS10D4uYztr8jOm83mpPOpp1PP5+XlXdJBEoQQQgghhBBCCCGEEEIIIYQQQi4+n8+H7u5u9PT0JB1Y2UF/fz/fp6iwsJCHYL///e9PypkqKSmh30Fkyfj4OAYGBtDb24ve3l709fUlne7r60vKO5LJZDCbzSgrK4PFYsHNN9/MSytYgcVS2weaPe4PfehDfJrdbkdLSws/fPe73+Uh8QaDARUVFTCZTDAYDJBKpXwfEafTCbvdzvftYdj+HMXFxTCbzbBardi+fXvSNHa/lDdFMnE6nTh37hzOnj07ocBicHAQwPkcivLycqxYsQKXX345du/ejRUrVvCiIbb/OFn4wuEw+vv7J2TZsUNvby/Gx8cBnN9nt7S0FJWVlaipqcFNN93E19HV1dXQaDRZfjSEEELIxedyufDoo4/iiSeewB133IGf/OQntA4kSx4VWxAyz3JyctDY2IjGxkb84Ac/QGtrK/bt24fm5mZ89rOfRSAQwIoVK3DNNdegsbERW7dunVaDKiGXKqVSmbH0QhjiLzzs3bsXAwMDAKj0giwtBoNhQiu3UCgUgt1uT/tlYUtLC3p6epJatA0GQ9rSC3aexhAhhBBCyNJ25ZVXoqWlBY888gjuvfde7Nu3Dz/96U9hNBqzPWuEEEIIIYRknUQi4aF+c0EYPj+TwEK73Y62tra0l08mUyjhZIGFmc5nM/yRECFhSUO6cHgWyCoMYGWB6Jluky5QPt1thIHy6W4zG8LgVTbOhGGvwmIDYVhragjsdG6TGiTLgl5ZSKww8HWxYe+HdOG90ynOYNcRvt7CaZ2dndO63mzfK+nKLtJNm24g/1TTphv6ny1TFTlku1BiNtKFNU+1fCgqKuJjnYW8C8cxC3xPFw7N7o+t86VSKd/Jlt3XQsReO+HrxV7X1DGdGsgtHP/sdReWATgcDkSj0aT3D7uecBp7/WcjXQC3sAiIPffppgnfD+mmsWX6dAO9F/Myn0ktjmCvG3vPCF9/4XqfLUuEl7NlAVs+CN+D7H0iXE6wv8Hu90LWAaljGXjvPcDeU8JlQ2lpKaRSadJ7gb3f2DJfOObZe4JdX7gcYssm4fXnAltmphuf7PlPXT9P57rhcJivkycbvxe6/caeM1agA7y3TSZ8rthrJ3x9JivRmSqwf6plA1la2Pssm+VJbBnHln/CscWWm2zczaSAw+PxYHBwcMp1snA7b6YmG6usqEsqlSIWi0GlUiEajSaVdkkkEkSjUb7tGYlE+DYjW2aFw2EEg0EEAoFJiwZzcnKgVqszlpoajUbYbLakQlSNRjNpASohhBBCCCGEEEIIIYQQQgghhBAyVxKJBBwOR9rSCnZ6bGyMX1+v16O8vBwVFRW47LLLJpRXUCDo/EokEhgcHITD4UB/f/+E44GBAX6e7d8gkUhgMplQUVGB0tJSNDQ0oLy8HGVlZSgpKUF5eTlMJtOSLyEJBoMYGxvD2NgYRkZGMDg4iJGREX4YHh7G0NBQ0rRoNMpv73Q64fP50N7ezveBUalUMJvNWL58ObZu3QqbzYa6ujqYTCYYjUa+Txkhk4lEIujr60ub6dfZ2cn3cQUAs9kMm82G1atX48Ybb0zK9mP7K5KFKxqNYnBwEL29vbDb7ejt7UVXV1dS2dTw8DC/vkajQXl5OZYtW4bq6mo0NjaivLwc5eXlsFgsKC4uXrC/IyCEEELmwzPPPIPPfOYzkEgk+OMf/4impqZszxIhCwIVWxCSZTU1NaipqcHnPvc5hMNhvP7663j55ZfR3NyMn//85wCAK664Ao2Njbjmmmtw1VVXLbnGWbJ0TRbiPzo6ijNnziQdjh49iv/7v//jP2xUKpVYvnw5qqqqUFVVheXLl/Pz5eXlkEppNUgWF6VSyb8EzoQ1bwtLL1gZRnNzM7q7uxGLxQCcb8rNz8/PWHxRWVmZ1R9BE0IIIYSQi0+j0eBnP/sZPvrRj+ITn/gEVq1ahe985zvYs2dPtmeNEEIIIYSQRSUnJwc5OTkwGAwoLi6+4PtjgZAulwt+vx9+vx9erxcej4efd7vd8Pl8/LzT6YTf78fw8DDa29vhdrv5ZVOFuxoMBqhUKh6iqNPp+HmdTge1Wg2lUsmnK5VK6PX6pKIMFsaq0+mgVCopcHGBEJausDD3hXb6QoLEgeQg4HSnU6epVCrk5eXN6DaZpmW6nAWOk4tPKpXy/3fl5eVleW7SB2vPdFq6oG7htKGhoWldj4UEzwYL/AXOv8fZjxiE+7vIZDJ+OtP7nf0QLpFI8HlhofIikYiHBYtEIoRCoVnPL5vPmYxlvV5/Uca/8DT9L3b6FAoFf38VFBRkdV6mGquTFd0Iw7xZKHi6aYlEAufOnZswjYX6C9eTwh+ZzVS6kH5hqRkL0BeG7rPihEQiwcP8AfACFkYikST92JWFgYtEIgSDQcjlch58rlAoMD4+jlAoBJlMxotJpFIpD0gXLr+Ej58VmwifxwPZebMAACAASURBVNlKVxqVWv4AvDd2TSbThPIHdn021oXPHQtQFz7fbJuALSsWQonQxaRUKvkPbAsLC7M6L5ONy6nGm7DUiL1HhYUqLKw/GAxiZGQEwHvvVWFxSrrA/tmYrMxG+H5j70Hh5UD6sS58Lwrf48K/IVynCQvWMv0dsnioVKqsFau4XC6EQiEEAgE4nU6Mjo4iEAhgZGQEPp8PgUAAw8PDiEQicLvd8Hq9GB8fh8vlQjgcRjgchs/nQyQSQSAQ4OucqT5zikQiSCQSXnLBtn9Z4YVIJOJFi9MVDAb5ciJTwc1kpVbC8S0cg6xIB3hv3QakH/fAe+u1TONe+HcIIYQQQgghhBBCCCGEEEIIIYQsDtFolJdWDAwMoK+vD/39/bDb7ejp6YHdbkdfXx/C4TCA8/9TNpvNsFgsKC8vx3XXXZcUiF1eXs73uSIX1/j4OIaGhnhpxeDgIPr6+pKKK/r6+vj+xIxarUZpaSmMRiPKyspQVVWF0tJSlJSUoLS0lJdWLLW8LpbT5HQ6p30YGBiYcD9KpRLFxcUwm80wGAwoKyvDmjVrkqax3xOVlJTw/TxcLhdaW1vR0tLCD83NzYjH4zAYDLBarbDZbLBaraivr8fatWupJGYJi8Vi6Ovrw7lz5yYcOjs7k96b+fn5WLZsGZYtW4bt27fjU5/6FD9vsVj4/kVk4QmHwxgdHeX5cSxLTpgp19PTk7SvmsFg4Nlx9fX1uPXWWyfkyRFCCCFkoq6uLtx///3Yt28f9uzZg29/+9uL+jc9hMzU0vqGgJAFTqFQYOvWrdi6dSu++c1vwufz4ciRI2hubsbzzz+Pxx57DDk5Oairq0NDQwMaGxvR0NBAbalkScrPz0d+fj7Wr18/4bLh4eGkwouzZ8/ib3/7G5588kn+A2KZTAaLxZJUdsHKLyorK6lAhixa7B8ZNpst7eXj4+MYHh6eUHwxMDCA5uZmfpph/zhJV3rB/ulI4WOEEEIIIZe+hoYGHD16FJ///Odx77334qWXXsJPfvITGI3GbM8aIYQQQgghJA2ZTMa/D54rXq+XF10ICzOEBRqBQAAejyepQKOzsxOBQAChUAgul4sHv04nZFmr1UKpVCI3NxcajQZKpRIajQa5ublQKpXQarUzKs3Q6/VQKBTz+r01C78FMCGQlgXaAsmBuMKga+Fp4e2Fp4Xht8LTkUgEfr9/wmlhqK7wtDCA90IIA2yFgZvC08JQzdSATfa+FYZtCk8Lg3CFp4WBnOmCPNl9CANBCZkvky0LWJA1kFzUshBOzxYL/ZZKpQgEApDJZJBKpfD7/ZDJZBCLxQiHw5BKpRCJRIjH45BIJEgkEojH4xCLxTyIXiwWIxKJJN03cL7ggp2erdQwfvZDLmEwsHDZJVzmCAto2HJLIpHw5Z9M9v/YO9PgSI/yjv/nntE5o3skrVarXXsPeddey/EBC8ZgjoBNPtgfqIpxQYJzFIkhCYHYBBu7IGVwgJAQsEmCi3AkoQoSsCvExSZlkixH4TWweC/bq92VVrdWc2vumXzYdLunp7vfGc2MNJKeX9XUvPPeI83T3W/30/+/iy+LiOLd7FypVIobgKRSKXg8HtjtdoRCoZLyj9gcOBwO/puoZ1uMieOblsW2hbgcjUaRSqWQzWYRi8V4W4GJeAPA5cuXUSwWkclk+PZEIoFsNotCoYDV1VUUCgXMz8/zNgszxGHL7HrrDTObsNlsvLwRRb5tNht8Ph9GRkYAlBtUOBwOOJ1OLuLN2pNsX1Y2iPFoJfovml+Q4PfmpLW1lT83dHd3b/DdvIrJMKdWEw6xTTI1NYVisVhyvHhN8blDfKaoBVXdWouBhk68vx7XIWpDNFAMhUKWy5XuK9Z9OkRjsUAgwJe7u7uV6ytZ7urqqjqPm9Xf4rO6yuDGFPNW8R2LxbC4uFhyHvE6QGl7oRYzLIbYjq42Nqsx1tDVs7qYFdv01L4mCIIgCIIgCIIgCIIgCIIgCIIgCGK7E4/HcenSJW5OwQwrpqen+bqFhQU+nmyz2dDf388F96+55hq85S1vwcjICHbu3ImRkREMDw/znEiiMYgGC6KAubxucXGR5wUA4HkOzEDh2muvxdve9jb+WXzfqkQiEYTDYYRCIYTDYb68srKCy5cv83e2zF4sp0Okvb0dXV1d6OrqQk9PD7q6urBjxw5cd911fD17MX20np4engdRLX6/H0eOHMGRI0f4unA4jBdeeAEnTpzAiy++iJ///Of4xje+gUQiAZvNhl27duGaa67BNddcg0OHDmF8fBx79+6lGN0C5PN5zM/P48KFC5iamsL58+dx4cIFbl4xNTXFc4RaWlq4UcX111+Pu+++G6Ojo3wdmQ01H+l0GgsLC5iZmcHi4iJmZmawsLDAy3tmLHX58mV+jMvlQjAYxI4dO3gd/fa3vx3BYBDDw8MYHh7G4OAg5UsRBEEQRJUUCgX8/d//Pf7kT/4EwWAQR48exW233bbRt0UQTQcZWxBEE9PW1obbb78dt99+Ox577DGcP38ezz33HJ577jn80z/9Ez71qU/B5/Phlltuwa233orbbrsNN954IwnyE9ue3t5e9Pb24jWveU3ZtlAoxMX62evs2bP4/ve/j/Pnz/PJ/sxhdGxsjDsTj42N4aqrrqJOOWJL43K5MDg4iMHBQUxMTCj3SaVSmJ2dLTG9YPF0/PhxXLx4sWRwRnTslY0vBgcHMTo6yieMEwRBEARBEM1Le3s7nnjiCdx999143/vehwMHDuAv//Iv8Z73vGfNCTUEQRAEQRAEQWweRFHfemISp1xYWEA8HkcymUQ6nUYsFsPly5eRTqeRSCQwMzODdDqNZDKJaDSKTCaDdDqNaDTKRZZ1OJ1O/vJ6vbDb7bDb7VwU2eFw8BcTXbfb7SgWi8jn83zfbDaLTCYDh8OBVCrFxdeZ0GS9EAUZq1l2u91rPnYty/UU8CYIhijSKi6btlW6Xz3OYdqvnmXBWmOTmQGtVzkgisauJ5X8f6pZttoeiUSqOodoblIrtfx/1usY+fhmqh90hlDiss5MSmc+JS6LwvLisig+rVsGSkWl6yEwDZSasuiMo5iwtM1mw/DwMIBScWhxXyY2LYq/i7HPhKlFAWpR6Fq8H/m3Uc84rWY5Go1iZWXF8tz1MP8BmiteK92PhMCbA9EkpaenZwPvRI2u7tOJ6jNx/2oNNERDjpWVlTVdpxZ0pn2iwL5sqCcK+IvHy+Y3YrkoHiPGo1j+yseIZax4jGgEYEU0GkU2m0UkEuF/91gshmw2y02RmLFlKpVCPB5HLBZDKpXippisvaQyujTBvpvJ0LKrqwvj4+NaQ0uv14uWlhZ0dnbC6/WitbW1xDShGWhms0VdPIptItGQQ4xH3bNQJcYaFy9eXNP1a6ESYw1d7MpxKB4j1plie8pULpjiVTTkofqYIAiCIAiCIAiCIAiCIAiCIAiCIAgdzPhAZXbA3mdnZ0tyJ9xuN7q7u7m5weHDh3HXXXeVGB6Mjo7ycU+iPqyurmJ5eRnLy8tYXFzE5cuXsby8zN8XFxf59qWlJSwuLpYc7/P50N/fj2AwiN7eXgwNDeH6669HX18fgsEg+vr60NfXh8HBwZK8lM0Mm2tS7Wt5eVmZ88dyTsTX8PAwDh48WLKOxUEgEEB3d3dTaPv5/X688Y1vxBvf+MaS9bOzszh16hROnjyJ48eP49lnn8VnP/tZpFIpOJ1OjIyM4MCBA5iYmMD4+DgOHDiA/fv3k+ZTE7G6uspNK6anpzE1NYWLFy/i4sWLmJqawszMDP89u1wu7NixgxtV3HbbbXx5165d6O/v3+BvQzDC4TDm5uaUphVzc3OYm5vD/Pw8VlZWSo7r6urCwMAAgsEghoaGcO2112JwcJCbWAwODmJgYIB0PgiCIAiizrzwwgv4nd/5Hbz44ot44IEH8MADD1DuLkFoIGMLgthEsA6D9773vQCAyclJ/PCHP8Rzzz2Hf/iHf8DDDz8Mn8+Hm2++GW94wxtw5MgR3HTTTdQxTBACgUAAExMTSsH+dDqNmZkZLtB/8uRJnDp1Cl/72tdw8eJFPplONL1QvQhiq+P1ei1/78xERja+OHnyJI4ePYoLFy7wSalutxvDw8Mlxhfi8p49e7jYBUEQBEEQBLHx3H777Th16hQeffRR3HfffXjqqafw5S9/Gfv27dvoWyMIgiAIgiCIbYco8AeUCn0C5YLqonigLOgpCoYC5ULtsogvEwZV3Yd4Xfm84nGi0KkoUFgvWN9ysViE1+uFw+FAsViEzWaD2+1GoVBAoVCAy+VCoVAo+dukUilujpHNZpHNZlEoFCoSJff5fPD5fAgEAlzktKWlBT6fD62trVygs7W1FX6/H06nE36/H52dnfB4POjo6EAgEEBHRwcXTezo6IDL5aL+ckKJHD/VlAVAqXC6HM+yYKhcNojnEgVN5TJGLEPkc+rKhXogC4KKYqWiyLosMCoKAjOxYSYYLAqWikLG9biWKJS6UQYRmxVW9gLNZaIgE4vFeP2iE9kWY1KMMTE+xDiX41Y8XryeeLwYh/LxYkzWS8QfuCL+6/F4eF3s8/n492f/u3w+D5fLBYfDgVwux02mWJ3NhH8zmQxfFu8vl8shl8vBZrMhn88jnU7DZrMhl8vVpWyR41f8remWWZlhs9mwa9cuXn6IAsW6ZbEcEZdFEWTdsli2bCY2SyxbifHrBL/lOrvaeBXNUoBSQXCxvjeVEbUiCmqL9ZtcD+rE+XWC/nJ8ib95sb4FSuti2RSgmn2J+rNZYhioXrBfZ9QhLov7m+rXpaUlfowpXnUxXg+cTicvx+x2OwqFAv9shd1uh9PphNvthsPhgMfjgcfj4XV9a2srnE4n2traEAwG4Xa70dLSgtbW1pJ3v9+P1tZWuFwu9Pf3o62tDQ6Ho8wwQI5rsa4k6o/NZiuJ32Y00RERY6gScx2xvhVjjNXJcttcjF0xDldXV7G0tKQ8RmzDi/dU776veptm6Ix6gLUZ6IjnluOanncJgiAIgiAIgiAIgiAIgiAIgiAIwppisciNDZaWljA/P4/FxcUSYezZ2VksLCxgcXGxJDe4paUFwWAQAwMDGBgYwP79+3HrrbdiaGgIfX19XOOlr69vA7/h1iCbzZaYUlRiVsHySxgulws9PT3o6elBd3c3ent7MT4+jp6eHvT29iIYDKK/v39TmlXkcjlEIhFEIhGEw2FEo1H+ikQi/J1ti0QiCIVCCIfDCIfDCIVCJbnrDJfLBb/fD7/fj0AgwJeHhoYwPj7O14nbxOXNmF9pxeDgIAYHB3H77bfzdZlMBqdPn8aLL76IF198Eb/61a/w1a9+FRcuXABwJU9vfHwcBw8exDXXXINrrrkG4+PjVDY0CJ0eF/t8/vx5nqfi9Xq59ta+fftw22238c9jY2MYGRnhuSHE+pLL5bC0tITl5WVeNzMTovn5eV5vz83NYXFxsaQMc7lcvCwfGBjA2NgYXvva16K/v5/X0UNDQ+jv728KIx2CIAiC2E6Ew2F87GMfw5e+9CW85jWvwS9+8QvS0iIIC+iJhCA2MayDQWV08ZWvfAUPP/wwnE4nrrvuOrz2ta/FkSNH8NrXvhbBYHCD75wgmhOPx6MV689ms5ienuadgex19OhRnDp1ig8Y+P1+7N69W2l4MTo6ShMqiW2DyUQGuDLwsby8rOxkP3r0KM6dO1cy2VPsbJeNL8bGxrBjx44tOWhEEARBEATRrLS0tOCxxx7Du971Ltx33304fPgwPvKRj+DBBx8kl2mCIAiCIAiiaZBFH0WBSaDccEHeXo2RgywiLwuzN8pQop7Y7fYS0wRRHA8oF5IUBfKAUoG77u5uLmonn1c8rlKhd/lexGuJwrrrJVS7urqKVCqFcDjM/19swkQymUQ4HEYqlcLq6ioikQhSqRQSiQSi0ShSqRSi0ShmZmaQzWYRDof576dS8XAmGtje3s4nZLC/Jfu7BQIB/ndjfyO/3w+32422tjb+/+zs7ITb7UZ7e3uJiQYTEd4KyPFoik+gNpMHUSATKI1XWYi62jJIFNyUy5F6I8aYLEwpxi2gj0FZwF0Urayn2QRDFK0mgUyimZBjXS6DxNiWhW7Fbclkkh9XKBTK2h0M2bxBLJPE9gOLF+BKTDJBa+BKHLKyzefz1c3YgplOeL1e2O12JBIJOBwOuN1uXrZ6vV6kUikUi0W4XC7kcjluhGG32/n3s9vt/B7tdntJmy+fz/PvbbPZsLq6Wre2U7FYRCgU4u0bVmf4fL6S+qNQKPD8kHg8zsurUCjEy81QKMTLOXas1+stOY9YPspiwGL5C5SW3XJZLZ5HLoPlNh5RGWL91NXVtYF3Uj068xqxXSOWXSax7rUYcCwvLysNOCo1/agnpjiSn0HEdojcRpFjTnzmkZ+HqtlXFAsHzLFM7Z/qcTgcJf/z3t7ems/J4iiZTJY8I8rvqm2qdaxeZM8J2Wy2ojqNGU243W5ukshMJxwOB3w+H9xuN69fXS4XXC4XbDYbnE4nN39kBha5XA75fB5OpxOFQkFZbsifY7EYF/3XmQ3UEzlexM+mbfU8tp77is83hBn2ewea31BHhSmOKlmudb9IJLKmc9fbbIexHvG3nsdSLBMEQRAEQRAEQRAEQRAEQRAEQRAyiUQCCwsLWFhYKDGsYMvMpIJ9FnOc7XY7ent7S0SvDx06xM0rBgcH+bbNZHzQTORyOYTD4TJTCvb/EM0rLl++jMXFxZI8KYZoUtHT04OhoSEcPny4bH1PTw/6+vpK8oCaiXA4jHg8jlgsxs0owuEwN6oQTSrYNtm8QsxxFWHzFjo6OtDZ2Qm/34+Ojg709fVh7969SjMKcZl+45Xhdrtx7bXX4tprry1ZH41G8fLLL+PkyZM4deoUTp48ie9973uYn58HUKqhduDAAYyPj2NsbAzj4+OUp6YhFAphZmYG09PTmJmZwaVLlzA1NYWpqSlMT09jamqqJPd5YGAAo6OjGBkZwWte8xqMjIxg586d2LlzJ0ZGRkpyFInGkslkcPnyZVy+fBkrKyu4fPkyr5NFkwq2zPLiGC6Xi9fPAwMD6O3txdVXX42BgQH09/ejv7+f19H9/f0b9C0JgiAIgtBRLBbxta99DR/+8IeRzWbxmc98Bn/4h39IusEEUQFkbEEQWwjZ6GJubg7PP/88jh07hv/93//Fl770JWQyGQSDQW5yceTIERw+fJgqTYKwwOVyaU0vcrkcpqamcO7cOZw7dw6vvPIKzp07h3//93/HK6+8wieWtrS0aE0vdu3aRUIBxLbC7XZzp2+d+UUymVQaXzBTmenp6RIRlUAgoDS9YJ/JXIYgCIIgCKL+XHfddfjxj3+Mz3zmM3jkkUfwne98B1/4whfw+te/fqNvjSAIgiAIgpAwiZJVuk+tn9frnKJoaiOoh/AZE9prBgE2EkCtnpaWFrS0tDRMxLgW4VP2Pjs7W7ZuZWUFqVQK8Xi8ImFgt9sNj8cDl8vFRVFbWlrgdDrhdrvhdrv5NiaG6na7uRg5E08tFAooFArwer1cFDWXy3EhVfE7y3+DSj+r1jWyLKhHvDIDklrOpTv3Ws9FgovERlOpoOp67VvLsesh2lxpecCWmdmR1X71uJZqP1EUfqOQDYpEUX9ZiF82HBLrFdmwRBT2lU0A5POIpgDZbBaTk5PK8wClwv6ykZpszFQvZEFouW6w+tzZ2VkyLm/1WTbUsvosm6tV+7kZfocbjTjZcTMKgMsxJseGaIJhFddiHMmGZqa2pcqEg03otdpXrh8aZVwoxppsjCOba8gmHrKBmHy8bKohG3LIxh+AddliVTbUEsvs/87+9uw3Eg6Hkc/nEYlEeLkumw6GQiG+jZXR4XAYmUwG8Xicn7PS/2NbW1uJ6aBoRBgIBPgzgmhO6HK50N7ebjQn7OzshMvlalqRAxVijMmxKse1WF/LZYCpbgdK61J5X1O9a6rrgdLYlfetF3IsmQx3gPI4kz/LcWYVV7L5ldzOk+9HLivkskF1T/QMeqVfTvy7bra6WazX5FgwtWVNRr5y3SnXySYDYas4NxkXy+2EeiL+X+VYkftmxTpQLgfkOrqSOJNjv9pYl68ptwNU9T5BEARBEARBEARBEARBEARBEMR2QRTCFo0O5HWXL1/m4tiyyH97ezsXwe7t7cXY2BhuueUW/lnc1tvbS5opFcDy7FUvMQ9f9VpYWCjLP/d6vQgEAvw1ODiIG2+8sWQdWx8MBtHb27uhOWryPAPT9zfts7S0pJ1zIP5N2JhnIBBAMBjEgQMHlNvEV1dXF81h2WA6OjowMTFRpvk0NzeH06dP4+zZs/z9qaeewvT0NJ8nsnv3buzfvx979+7Fvn37sG/fPm5GslVZXFzE7OwspqencenSJczOzmJqagozMzOYmZnB1NRUSfne2tqKkZERDA8PY3R0FK9//eu5iQVb73a7N/AbbV1isRg3phCNKmTjCrGOFvNUGJ2dnSV18Pj4OF9mZhXMzKJRc8sIgiAIgmg8J06cwPvf/3786Ec/wm/+5m/is5/9LHp6ejb6tghi00DGFgSxhQkGg7jzzjtx5513ArjywP3jH/8Yx44dw7Fjx/DRj34UiUQCgUAAN998M2666Sb+vpU7iQii3jidTi6g/+Y3v7ls+8zMTInhxeTkJI4dO4avfe1rWF5eBnBlYs/Q0JDS9GJsbIycVoltic/n0xrKMEKhUJnpxeTkJE6ePImjR4/iwoULfNDQ4/FgaGhIa3xx1VVXbaoJ3gRBEARBEM2C0+nERz7yEdx99934gz/4A7zhDW/Au971Ljz++OMYGhra6NsjCIIgCGIbIYsIyqJWQLkoFlAudgWoRaxU4sSyABegFpit5N5kIS3dvYmCYKrrNUpEWaQSAS1ZmE4Wy5MFs5gYHhPekgWygHJRLlnokgk/MmQRLiuBPVmQjwwfNh8qswNVTMiidoA6nkVRXIYqxlUGCnKsquJeFu8EyuNetY98Pfn7yGKBayWTyZT9nURYTMsCrsVisWJDCafTCYfDwd9FowxmnOHz+eB0OrlxBhNlt9lsXKhdNNzo7OxES0sLN9Lw+/0lZZYs5CuXHXLZstlEJYnNjao9YBXzayk35LJRPoeqzJLLP7nMlc8pXnO9BEPlul2Od5P4r9y+EUWmgdK2TTVCpNXck7wvCfDXH2bMxNgqZbwcYybhfDneTSYA8nnl7Vafi8UiLly4UPJZLFtUZY3chpI/1xs5zuTPcjvB6rP8nKN6ppDFheUyRXWeWo6Tn83k8m6zYbPZtkzsylgJ6ZsE+k3C//LzgVxGyHW6XE8nEgksLS1pry3ft9z3omrf1Bu73Q6bzVb2bFLpc4nNZoPL5YLNZuPPHuz5wm63w+v18ucLZioxNDTE9/V4PGhra0Nrayvfp6WlBX6/n6/zeDxl7QBAXd/Lv3FVvG/2PgtZzL+7u3sD76a+mOphK7MbkzGOyXBHjjP5s1wnA+V1rPzMIPeJqPpS6o38PF6r2cZaBPnlelO+J9UxqrpVvjfV91Fdb7PBzF8ZfX19G3g39UWOAZP5jSmWqzHvka8jlwOxWAyLi4va+1DFvtzebrQpNGBtpGPVj29lnLOW2JWvKdejqnOq6l9VXb7Z62SCIAiCIAiCIAiCIAiCIAiCIK4Qi8UQCoWwsrLCX0z0WhS/Xl5exvLyMpaWlpRC2N3d3eju7kZPTw+6u7vR39+P8fFx9PX1oa+vDz09Pejr6+Ni2TTOUE4+n0coFEI4HF7Tu8qMwefzIRAIwO/3l7yPjo7iuuuuK9sm/h/lfKx6sbq6ilQqhXA4jNXVVSSTSUQikZLlRCKBVCrFl5PJJKLRKBKJBOLxOOLxOMLhMGKxGOLxuDE3t6OjA21tbWhra0N7ezvPsW9ra8Pw8DDGx8e1+7S3t6OjowOdnZ1lc4eIrUUwGEQwGMQb3/jGkvWZTAYvv/wyTp06xXWdfvCDH+Bv/uZveC5ZIBDA2NgYDhw4gPHxcb68f//+pjblCYVCJbpV8vL09HRJee/1erlu1eDgIG644YYSLSu2TNQOM96Zm5vD7Oys1pSIbb98+bIyv4n9z4LBIAKBAPr6+rB3716tQVFPTw8ZjxAEQRDEFicUCuHjH/84vvjFL+LXfu3X8Pzzz+Pw4cMbfVsEsekgYwuC2Ea0t7fjLW95C97ylrcAuDLZ4Re/+AWOHTuGn/70p/jqV7+Kj3/847DZbNi3bx9uuukm3HTTTbjlllswPj5eMqGAIIjKGRoawtDQEF7/+teXbUulUpidneVi/Oz13e9+F6dPn+aTl5ggv8r0Yu/evZt6wjlB1EIgEFA6gDPS6TRmZmbKjC9mZ2dx9OhRvPzyyyUT+ZgDvDxYwOJtZGSE6kOCIAiCIAgNu3fvxve//308/fTT+OAHP4irr74af/qnf4oHHnigYYlbBEEQBLFd2GwGDRt1b41GFlMC1AJlKiFRWbgJKBd3cjgcZSavKsMIWZBJvp4srFSJ6JN8L7LImup7EuuLKl4qNXGot2GDXA4A5WKIKlF1lZipqryQBdkAdRlSL/OGapFF0AC1MKEq7uX4Bcrjz+fzlRmey8JsVjGqEl2ThVHrcQ4r2P+I/QZDoRD/XzJBzHA4jEwmg3g8zn+/kUgEmUwGsViM/87ZOS5fvswnK1UrkBsIBHi5ykQn2fdmZSn7v/n9ftjtdvj9fv63YOUrE6tjf0P2PwwEAkpTHqI6VG0LucySyz9VuSGXS/I55HJVVR7J5Z1cnsrnUP0m5XM0yojGCrnsktsLqjaHXD7J5+js7CyZdGMybJDbH3K7Sj73Wk0kCGK74nA4SurprSr6D5SX73I5a/VZbt9afZbbyFafFxYWSuobuf5RtZNVdYGqvd5I1mqIoWobr/U4+XeregZf63GVGAeojltvXC7XhsYya2OJ76FQqGydgkIAxAAAIABJREFU7r3SfVXPlDrcbjc3lGhvb+cGRcwUj5nhAeAmEy6XCw6HgxvouVwuHk9OpxNOpxPZbBaFQoEbTqTT6YrNPvL5PFZXVzE3N8e3q9qwqufYRiO3i1RtvErNNeRYrtRcoxnvYb2Rhf63cr0MlMdLrZ/reU7WF1GPe2q02ZYKVZ+svK6SfTbiXPU+/0YYgNTaL7bZqHcs1zO2c7ncmmJZtW49jD1EmjmuNuKaG11HEwRBEARBEARBEARBEARBENsDlsNgeskC2SsrK2U5+MCV/m5Z7HrPnj1KEexAIIDe3t6yse/tRigUQiwW4694PF62LhaLcTMG9hKNKVSGISwPVTagGBkZwaFDh8rWy/vWMsc5HA4jmUwimUxql8XxLNWy6lgTLCe9tbUVPp+PG074fD60t7ejv78fu3fvRltbGzo7O42mFe3t7WRGQdSM2+3G+Pg4xsfHS9YXCgVcuHABZ8+exenTp3H27FmcOXMG//Ef/4GlpSUAV3Jp9u7di71792LPnj0lL3nuTD2JRCKYmZnB3NxcifYUW3fp0iXMzc2VzA/o6+vD4OAghoeHcdVVV+HWW2/FyMgI148bGRkpy3si9GSzWUQiEUQiEYTDYf5i6yKRCK+HmYEUM5GSc22BKzlmonlUd3c3RkdHMTExga6uLr5O3Ifm9xAEQRAEIZLL5fDEE0/g4x//OBwOB5588km8973vXfccVYLYKpAqL0FsY5xOJ2644QbccMMNfN3CwgJ++tOf4qc//Sl+/OMf49vf/jZisRhaW1txww034Oabb8aNN96IiYkJ7Ny5cwPvniC2Bl6vlwvmqwiFQmWmF5OTkzh69CjOnz/PJ/kyx2LVa3R0tKldiwmikXg8HmOMAVcGpmXTC/b56NGjmJqaKhGMEONNNr5gzuP0gEoQBEEQxHbmzjvvxFvf+lZ86Utfwp//+Z/jG9/4Bv7qr/4K73jHOzb61giCIIgmQCXyBqhFgAG9AJxK4B0oFwpmbDaDhmoE/uqFSmBGJRhZiUEDUC7y5PV6y5JNVWJ0lZpH1PPeVAJ7qnsj6oNKyBXQlwOqOATUIuZA5SYOazVsUJUVlZo4NLthg0rMttJYq8SwweFwYNeuXWX9p3JMqsxXVGYBqjhVieaqyhWViKaqrFEJZBKV4/F44PF41kX4rx4Cu8lkkptpnDx5UrlPNSLT7Deleg8EAtptTIDX5/PB4/HA5/OhWCyitbUVXq8XHo8HNpsNhUIBHo8HbW1tKBaLZWWOXM5ZGSqoyjL5HHL7Ri7DVGWk3NaRz6Erz+uNXMbJ5YWq7JHLO7lMaG9vRzAYLDlG/r3L56jERKZaMxtVGbkRop8EQRDrgVzObnWBYYaqnlb1RVRipKE6Tq6vVc8zaz0uGo1icXGx6uNUwsTrLUQs18Gq9kIlAv2VHsfaDYVCAZlMBoVCAT6fD/l8HplMhv9vHQ4HMpkMstksstks7HY734ett9lsSKfTyGQySKVSKBQKSCaTKBQKiEajKBQKSCQSyOVyFT9/sjYHe8bSGb4NDg5a7sueIUVzOHnfrUwlwtuqdWs9rh7n0omK13IPur7cRtKMpgAbcQ+qPtO14vP5Ss6/XepmoLEx2ujzs/6Set3reht/NLNw/3obD6j6dNfCdotleRxBNQ6h6qdXjf2p+gvlsQZVu7yZr9loVP1hqvaxql2oMsOS6zVV+3uzXZMgCIIgCIIgCIIgCIIgCGK7Iuf9mswpVPssLS0p83xFgwpmRjExMVGyTn5tJ5OKeDxeZjKhWseMKuR14nodzHihvb2dGy90dHSgq6sLo6OjSjMK2ahCB8tfZjnJbEyT6cYkEglEo1Ekk0kkEglEIhGkUim+nEwmsbq6WrIcDoeRSqUsx1HY+J3f7+djboFAgK8fGxvj68V9/H4/Wlpa4PP50NnZWbKsmsNBEM2K3W7nmku//uu/XrJtZWWlxPDi7Nmz+M53voNz587xMdD29nbs2bMHu3fv5mYXbHloaEiZD7+6uopLly5hfn4ely5dwsLCAqanp/nn+fl5zMzMlMSvx+NBMBjE0NAQgsEgbrjhBvzGb/wGBgcHS4wraNyuFNmEQjSpkA0rVNt1ZSgz3Ons7ITf70d3dzcGBgYwPj5eYkohm1VQ2UgQBEEQRC0cPXoUf/zHf4wzZ87g93//9/Hoo4+SCSBB1AgZWxAEUUJ/fz/e+c534p3vfCeAK5NGT506hZ/85Cf4yU9+gmeeeQaPP/44CoUCenp6MDExgeuvvx4TExOYmJjA6Ojoxn4BgthiBAIBHl8yqVQKs7OzStOL06dP8449j8eDoaEhpenF3r17ywSeCGK7wQYDTeYXosmMaHxx7NgxzM7OYn5+nk8I83q93OxCNL5gy1dffTWJIhIEQRAEseVxu934wAc+gLvvvhsPPPAA7rjjDtxxxx34/Oc/b2x3EQRBNCOVivY02/pmuhdg/UWNdDRKQMjr9fLExWYQMqpm3VYXJ6qFZoujzbxet+9606iYstvtPJaaKb4rKXtIMIlYbxot8ljNOoY4iYjtNzg4qD2Wif8mEgkUi0UugpdIJJBOp1EoFFAoFFAsFpFOp5FOp7kIdKFQQC6XQy6X4+MKxWIR+Xx+3UytHA4Hn2hns9ngdDq5WQYTY2MGGsywpqWlBV6vF06nEzabDW1tbfD5fHC73XC73Wsqg+pxTCXnUBnvEARBEMRmQ3zmINTUS/xbJbwvin8zU69wOIx0Oo1UKsVNxjKZDJ9wG4/HkclkkEwmUSwWce7cORSLRW4QwNqDzMAin8/z92qw2Wx88m6jTT/y+by2j6/S59R67LuVrieKJFOMX6HZDT5M+4RCIczNzdXlXNWYKtaTZo6jRp6jXucOBoPb3mBQJcAvG1pVajKuMtVSmRpXIuavMhfeiHttNKo+EJXpL6A3xFCdQyXYD6hNhoHK6j0RlTmnysQTUJsC1OP7OJ1O9PX1UU79/7PZDTyy2SwmJycbds31oBIzDd1+un0BdZtTF2/VxrguDlVm6bp71JU3KpMQQF/G0dgXQRAEQRAEQRAEQRAEQWwMzBhAfoVCobJ10WhUuY8q98HhcHDha2aGwMSwBwYGcN111/HPgUAAXV1d6Orq4stbSdsjn88jGo0ikUgglUpx0fBUKoVwOMzHn0OhUMkyG88Kh8MlZhWxWMzYD+7z+bgZRSAQ4KYU7e3t6O3tLVvHDCvEzy6XC4VCgd+D/C7eXyqVwtTUFF566SXjPvJ7pXPWRIMT1pfMljs7O3HgwIGy9abl7u7uupjQE8RWpaurC7fccgtuueWWsm1Mx+nkyZM4deoUJicn8eyzz+ILX/gC4vE4gCvlf3t7O5+3xcxrxHE/p9OJ/v5+DA0NYWBgAAcPHsSb3/xm7NixA/39/RgeHsbAwAB6e3vX7Xs3C6y+MNXLOuMKtp8Kj8fD612xfh4eHsb4+Dj8fn/Jdnk/v9+vHMskCIIgCIJoFGfPnsWHPvQhPPPMM7jjjjvwr//6r9i9e/dG3xZBbAnI2IIgCCMOhwMHDx7EwYMHcd999wG4MtHiF7/4BY4fP47jx4/ju9/9Lj796U8jn8+js7MT11xzDRfin5iYwIEDB7b9RB2CaARer9coxi8K8cvGF+fPn+cDS4FAQGl6MTY2htHRUeoIJAiYTWaAKxOeZmZmSkwvmAnGqVOn8NJLL5VMzAoEAiWmF7IJxs6dO0lkiSAIgiCILcHQ0BD+8R//Ee9973tx//33Y//+/fi93/s9fPKTnyRBAIKoEpP4iS5BSCUSwTAJ+8qiLQyV6AugFmsBroi8ZTKZsvU6QSZVIqxKMAbQfzeVIAWg/74bISqjQye6oBOGaG1thdvtLluvE4ZQicKIwhCiiEW9hCF096gTF1bdo91uR2dnZ9m+unvUCdpsZljiuQqWkKnClJyti0/dtXQxp7t+teWFLkZVgjKm+9eVL7pyTTfxYSPQ/dZ1YjK6GNCJzOhiQyxjxHJAF9c6URqdcI6uTKqmHJDvjaETtyGxGmI9UJWXKgEtXVtGVT6r2kKqdaqyS1XOqcpEVdtHtU5VzqrKZFX5rSvr1wNVWaEqV1SCWapySVWGqco71TpVO0hVhqrKLLn9F4/H4XK5kM/nkc1mkUwmkc/nYbfbkUwmeb3r8XgQiUT479PhcCAej/PPlb5XCiuH1/qeTqfh8/m021ndKL8TBEEQBLF90U1Ob9R7tUatogEqm8Te1dXF19XzXdfvBqj7a1RtfPn76Z5fdG181bOJrg9Jdf1qr6d67mnk9dYbXZ+L6jlH18+jeq7R9SFt5uvJx+jOvRVQPadVKqAvx7iuL1fX16oqA3Xn0PXjqsoJ3bOnro9YFfuqPhhAP0a03uj6LXVjLLoyXdWnUW2MqfpAdH3OuvEoVf+I7hldF79i34nNZuNxrCoDdH+nrcB6m3DojlUdbzqHLvaj0SgWFxfL1uvGX1V9nboyoVniGdicRh2AfrxIN4aylu8jX9fj8WDPnj0Vf5/NSqWmN/U009DFpyqudPWkru28urqK5eXlsvXV5ljoxmOrfa5qJM2Uv1BtLOrusZnMSgiCIAiCIAiCIAiCIIjNSTqdRiKRQDgcRiKRwOrqKmKxGDdMWF1dRTgcRjwe5+tl0WtmUqGbnxUIBJQC18PDw9ykQrdPZ2fnppyHGg6HkUql+N+PLUciEaRSKSQSCUSjUaRSKcTj8ZLlWCyGVCqFWCyGeDyOVCrFxclVY7siLS0t8Hq98Pv98Pl88Pl8fNnr9WLXrl18PM7pdKKlpQUOhwNerxfFYpH3/dlsNp6HnMvlEA6H+ZgR6z+enp7G5OQkwuEwcrkcotEoH+vSjVGpYH2OgUCA97WyvlXWrzswMACn04nOzk7e18m+Ezve7/fD6XSio6ODH8/220rmJgSxGQmFQpidnUUoFMLc3BzXZhLfQ6EQ5ufnS8a+vF4vnE4nCoUCMpkM4vE4L1tcLhd27NiBffv24eqrr8bu3buxe/du7Nq1C6Ojo5tyXpls5BMKhSw/67YtLS0p51gCpSY/otmP3+8vW6/aTzU+RRAEQRAE0YwsLS3hE5/4BL74xS/i4MGDeO6553Drrbdu9G0RxJaCssgIgqiatrY2HDlyBEeOHOHrMpkMXn75ZW52cfz4cTzxxBPIZDLo6OjAwYMHS8wu9u/fT2L5BNFgTEL8qVQKs7OzStOL06dP80kUHo8HQ0NDStOLvXv3bsoBQIJoBB6Px2g0A7w60CIbX7DYu3jxIp/Q43K50NPTw40udCYYBEEQBEEQm4XbbrsNP//5z/G3f/u3ePjhh/Htb38bf/EXf4F77713o2+NqACTAUK9tzX7+Zrl3psB3cT2eq8XxW10+6/XvdSyvlpzimZgI+JHJWqxnvdR6/3X81o6g4ZmYD1jqKWlhQt9NFNM12s9GTAQ60W14mC6SS/1EDvTCYZWI3amE2XSmeroyltVWasSdjKZhTWaWgwTKjVR6OnpKSufVEJLKlFBlQiSap1K0EklrKQShNIJs1EyfOOo1gjD6j2Xy2FyclK5nsVhNTGmM7xo1DtAvzeCIAiCAF5t47O6XHwWYMLlrG5nzxSsLc7a6qzeF9v0rD+InYM9G7AJ7tVMdAdebQezd9Z+Zu+sjd3W1oZAIMA/s0nu7J2JhrJ3XXtBZ9C4kbhcrrL2C7Vn1k61fYKq9Y3at5ZzMAGSRl5PJ268UVTbn9fMx6z1XKqyIBAI1PU6zS5evpFx18hzsJhu5P1VWyc3mnr+but9vvU6Rt7W1dXVsHvQCaqvN43su66mHxmoj1GH7vvMz8+v+/fZCHS/q7X8Fk2muDpjAUAv0K/rlwbMBjym8X9dm9zUfjfVq7pnEZ3BAtA8Y5O6WKl2bElXN+l+5yrTLV1s6e5RNxalu8eVlRXMz8+Xrde1lethVrJRqAy1bDYbYrEYPvrRj+Kxxx4r2WYyyND9vk2xbopN029fZyYCqL8TYC4jTDFoKt9M5YepHqbnfYIgCIIgCIIgCILYXrA+NGY6kUgkEIlEEI/HkUgkuEEF2xaNRhGLxfjnUCjEx5Wi0ajlmK7X60Vrays3l2hvb+dmE/39/UpDCmZUIb6aAdbnx/r4WD8666tnf4twOIx8Ps+NOpiIOvu7pdNpntsSiURKjmHmFKq+QhGWt9LW1sb7tXw+H1wuF7xeL9xuN9rb29Hd3Q2n0wmbzcbfi8Uif8/n8ygWi8jlcvzFrs/eV1ZWMDMzw8cMqjEjZv1ZbKyZLbP3trY2eL1ejI2NafcxHe/z+ZpmDIogiOpJJBKYmZnB4uIi5ubmMD8/j4WFhbJ1i4uLJXWNz+dDf38/BgcH0dfXh7179+J1r3sdgsEgBgYG+Lb+/n5l/30oFCrTS3vxxRfxve99D5OTk3y/QCBQppXGtJr279+vHT+slFgsVlL3xuNxrK6uIh6Pc7OoRCJRYhbF6m35WCvjIrE+bm9vR2trK1pbW+H3+9Ha2oq+vj6Mj4/zz62trbzObm1tLaubCYIgCIIgtjrRaBSPP/44Pve5z6Grqwt/93d/h3vvvZf0rwmiAZCxBUEQdcHtdmN8fBzj4+NclDKbzeKll14qMbt48sknkU6nyeyCIDYYNjikE+FXdeIy8f3z58/zZPlAIIB4PI4nn3wS586dK+nMHR0dpZgmCAHmPj0+Pq7cns1msbS0xI0vRBOMY8eO8c8Mr9drNL7YuXMnmc8QBEEQBNFU5HI53HvvvXjb296GRx55BO95z3vw5JNP4pFHHsHExIRyYi7DKqGvUcfqxAUadezq6iqeeOIJfOtb36r6nKbEFd19NtsEZxWmSbu6ycMqgVyGaYKwacK0OAlYXFaJ9jJMAgO6e1+r2IJpkrVuAnOjxQx0k/wZVsYdKkEBhtVvd63nTqVSiMfjxnNbifaYygXddXVCCYD576gTTADMfwOrRLdmwBRba53oXw9RBDGeTDFkildT2VBvwQRTeWgSddBdiyDWg3oIQenK6mqErXR1TbWmDKqyv5GmDEB1k00ajaodois/qzWBUpVVXq8X/f39Zfvq6hVVm6caEwVV/aG6L9U61SQcU11FEOuJw+Hgv/menp51vbY4ma4e77Ozs8btaxHlVE24U71Xs28lx1IZQRAEQVRiCsGeE1gdx+o92VhCfBZiz2HsmYk937D60qqvWwWrw1gfCXsOUBlHsfwi1i/C+k6s6kt5XbMLqRObF/Z7kyHx0OpQ9cvo+l9UfdimfnSd2IqpD13XX28q83T9/6axSF0/zVqO0fURmf42zYCu/93U16+Lr7UcoxvzMvWt6+oU0zierg+LibGY8vhM5Ylp3MPUz2/6fvVAF1+6MShV/OjKAN1vXSd2Duj7Z3V9sabrAPo4NJURurLINK6p+3s1e1ybxvF0Y12m+DGNTevKENNYnE4AyTS2p4s1Uyz19fUZY9s03ma6f0D/vQFzWVgLjTTqqMZMANCPf5iOMcWnrowAgKmpKeV6UztiLfk5pjKsWVivHJx658XUw4RENAYCzHWzKT5N1wPM40Cmv3O16OJBV/fpYkRXt6nqSV2dm81m8aEPfQive93rcOONN/L1png21Z1W7fWFhQXlNpOpj67eX2u+TrNg+k2tNael3mYkpjZFs5iRAOYywerYRtXbBEEQBEEQBEEQRHPD+jdYf0wsFkM2m0U4HOZ9hSyvIxqNcsMEZjrBRLCj0SgSiQRWV1crEr1mz9pMxLqlpYULYLe1taG/v58LXre0tKCjowMdHR1oaWkpEcdubW3l52nEvBL2dxH7gVjfKuurYv1AYr8T668KhUJ8vc54gvUHicYTldLa2gqbzcaf+X0+H+x2O1wuFxwOB2w2Gx+HcDgcKBQKCAQCyGaz6OrqQjqdht1uRzqdhs1mQyKRgN1u5981Go0im80iFApVlPfP+nJY/yP7P7N+CdYP5PF40NfXV9IPwvps2P+SjaGwfh7Wz9LZ2QmHwwG/32/ssyEIYuuTSCS4QQXTP1pcXOTLCwsLWFhYwOzsbEk/uc1mQ19fH/r6+rgpxcGDB0uMKti2Wo0VAoEA1yuUYfMHTp8+jZdffhmvvPIKzp8/j6effhoXL14suefW1lZ0dXXB7/fzvA7Wd+5wOJBKpcrmH4RCIaRSqYqMoURjH9HcJxgM4sCBA0rjH3nfQCCA7u5uyoskCIIgCIKokGw2i6eeegoPPfQQMpkMPvaxj+H++++ncXuCaCA045kgiIbhcrnKzC6SySR++ctfcqOL5557Dl/84heRy+XQ2dmJw4cP4/Dhwzh48CAOHjyI8fFxaggQxAZQSScuM7u4//77AQBHjx7FmTNneCeux+PB0NBQmXvx2NgY9u7dS4NZBCHhcrkwODiIwcFBZewBpfEnGl9MTk7i+PHjmJqaKpn4xBzEReMLcXnnzp3KCXwEQRAE0ayYErWsRMwbdayVacJmPLZRJhEqfvSjH+HNb35zxfs3ApMYiGliZa3H6iaB2mw2bTttrZO7Tfepm1S6VtMD3QTWaiaSm35HVpP9rZJ0TbFhNem4nueW9zUJKVgJl1gJy5kmZ5vEXADrmLdKwGpWrETuTEIEVgm6pngzxf3IyIh28ne9J12bxBTWOjFcJxAD6Cd411OYgSDqhalduJZtdL7KtpnMjNYblbCETmxirevtdntJ2bge11yvcwPmepQgCMIKJhq8niLBbHKk7l18bpKFv9lzIqvn2LMfE7wSn+dYfcee/9ZiqsHa66xNz9rU4rMBe36QxcFNwuKs7GbP9Oy5hpX1NFGRIAjiCqz8Z+W+2FfJ+vvkcp71r7F9VXUEq19Y/SPXL2sxlmBlOKszTOX/yMgIHA6Htu5g9YCp3pHrEIIgCBldX3Bvb+8638n2Zb36++p5TD3OlUwm+VjXen3PzTZ+ZiW2a9q+1m3rdd5K+mKb6X5lTONvwOYdF6jHPaTTad6v0gz33aw06nddy7G1ntfUb7gR36fWY+Xv0wwxupHnqzW213rvm63uBprz967bXigUsLy8jNnZ2YqPlZ8TGnFf63Gs0+nU5mzV+zdu2rae15K3FQoF3m+23vfRTHkIlbLe8bke1/7Zz36GeDyOT33qU+t+7Vq3Wx1ryqUjCIIgCIIgCKI5qdZwIpvNIhKJ8LxAls/BDBWi0SjPC2H5IpUYFQCvPnMwEW3ZkGJsbAzt7e3cdCIQCKClpcVoSGHK12C5KWI+pJj3Eo1GEQqFMDMzg3Q6bcyJYd9ZNAZlz+Hsb8T+ZmJ+jGl+mwk2X9LlcsFut8PtdsNms8HlcqFYLMLhcKBYLMLpdKJYLPLvmc/n4Xa7kc1m0d/fj0wmw+/fdB9s/p88f1EUKRffW1tbletNx1T6Ts+eBEHUg5WVFW5UIZpWqJblPEW/34+BgQH09vZiYGAAhw8fRl9fH4aGhtDX14dgMIiBgQH09fVp58YCr86RLhQKOH/+fEk+Pqtf4vE4MpkMwuFwWd3L1ol1tVgfs7q90jEft9uNQqGAcDiMlZUV5PN5ZDIZ3qdst9vR2tqKzs5OdHV1obe3F3v27MHIyAjXbGpvb+dmUKI5lMkMmSAIgiAIgmgM+Xwe3/zmN/HII49gZmYG73//+/Hggw+iq6tro2+NILY8ZGxBEMS64vP5cPPNN+Pmm2/m65LJJE6cOIHjx4/jhRdewP/8z//giSeeQDKZhMPhwJ49e3Do0CFudnHo0CHs2rWLRHEIYoPwer3coAIAPvzhD+N3f/d3cd999wG4MjDJhPbF19GjR3nnMvCq4L7qNTo6qhRsJIjtjhx/KlgMisYXzAzj6NGjuHjxIh+Icbvd6O7u5kYXqVQK//mf/wm/34+xsTHs3r1bK5JKEASxFVjrZCc6dv2O3WoTy6y21/NYeeJzM05mZdteeOEFPPnkk7h48SLe9ra34d5770VXV1fN17XZbMrfV2trK3K53Jp/t1bbazn2mWeewZ49e3DVVVdVfWw6nUY4HG7IfVltr/XcmzHWgeaZCM5E5hpx7mY5ttZzUyIv0WyYjHJ05j4mYx+TKLLufGxSRrXn05XZpvOtRUhAnORQzfl0Caim8zULOoEqkwnMWgSvTEZZ4vnk9qTOvKrS88nozqcrs1VmCbq/jc7Ax8rYiCAIgtieOJ1OXu9thKguEys3GWnIQuc6kXTg1Umks7OzJZN9ZPMNU/tNh1j3sr8Za3OwOpxNqpSNNEQRdHYM21c8LxNIZ/W2aKpB5kkEsb1h5Zj8btpWr30As6mtDt2kc3mb3+/nuQCVTlw3nV/3vEUQBEFsb5iRoIr1NBckGiPa26jzbsQ1gSttr7m5uXW937WKKW0UG2E6sB7XVJVHzXy/IqlUCqlUCp2dnWX9FxsVS814rCm+a7mu1T1tthgHmjN3Y63H+nxXzIyb7Z5V21ifKtvu9Xr5tlwux7f5fL4yoUBTHoAo4KeC9UPoMOVWmXIJgFcFB1WI/dEqrGJLl48AoMQI+uLFi1wQkGGKS6vx/bUYRzcDpvwl07g78KrxtQ5T/7lu/Jxh6kvSjcmz5wurMXjTswYbR6jnfTHk+2JGtAxxjgyrwxlut5uXDVbxZRUjJhE1q3LB6tpWcVDLtVn81uPaS0tLyOVy+PKXvwzAutyxunYzYxUPJuM6cRxNhVUc13Jtq/Kn1muzsb9GXNtKuLeWaxMEQRAEQRCNhT1XVJM7V+kxuVwO0WiU78f6Rkz9GCKyoUAgEOA5cOz5fHh4GMCVZ1eWM8cMF9rb25HNZuHz+eByuZDL5eDxeOBwOJDP5+FwOOByuXjuHrtPoPQ5Mx6PIxaLIRaL8b4h8XlOzP8TzyE+s9XSL2q323lbn707HA7YbDY4HA7Y7XYUCgX+Dlzp02Gfc7kc8vk8crkccrmctn/KCpaLWEm+TLXbKt2f5qQRBNFsZDIZLC8vY2lpCYuLi9ycYmFhAfPz82WmFeLYhd08YLP+AAAgAElEQVRuR3d3N7q7u9HV1YWuri7s2rULhw4dQkdHB+/79Xq9cLvdcDqdZfmUS0tLmJ6etszJVOVhVoKqbGbjTF6vFy0tLejq6uL5luI21f7yOlO5LmumibpNP/nJT0r6LkXdNGZ2IS6TdhpBEARBEETjKRQK+Od//mc8+uijOHfuHO655x488sgjGBkZ2ehbI4htg61YSa8rQRDEBjA7O4vjx4/j1KlTOHnyJI4fP44zZ86gUCjA7XZjz549mJiYwPj4OA4cOIAbb7wR/f39G33bBLHt8Pv9ePzxx7mxhYlYLKY0vZicnMSFCxd4Z3hLSwt27dqFXbt2YXR0tGyZhPYJYu2wQSo2eCIOpnznO9+Bx+MpSdr3er18AEU1oLJr1y7jhAKC2OqYJpOZJlaYJl1ZTRYxJVCxRKMPfvCDuOuuu/C6172ObzNNmlvr9zCJn9Xje6gwTYaxumazYpp8xZLedJgGz7fbsVYT1ao5NplMlvzOWltb+bGmyWJWv0HTb9uUmGE1Qc0kqGW6pin2rcQNTdc0TYY1XTORSGBpaQnFYpEnHIqTLTfrhDWryU9iwuOFCxfQ3d1dEgemCWVWv3urCa2mSVtW8Wg1Gc00WVYUpVRhNdnMNOG1kecmiM2Mrj4w1V1icruMrqw3nc9UjpvqDl2dYzqfqe27Xuezqr+bAV2ZZypLTeWoruw3nc9Un+jOZ6qjTOfT1Xum85nqUt35TPWzVd1MEARBEASx3ohteDYBVp4MLBtpiJOBWXuYiRSxtrNspCH2ibO+YVM72wRrk4piNqxty/oAmSCWKATE+mFZX4zYZ7NWsw2C2A7UaghRL9OJaqhkAnoj96EJ7QRBEARBEJsfkxCwqZ1qlWthEiY35URZndeUh2U6by35KKbnetO4m1VujWnc0DR+2YxY5XSYcjZMY0pW+RymfA3TWJrJAMAkKmy6H6ucGVOOhunvY3ruquQ7mmLcKj/JFG9W5gSmmDKVLVYi4KZ4tDIIMOWWWZURpr+jVbzW8ndsRqzMN0y/dVO8W8WQafy+ljLIdF5TeaC63/e85z1497vfjTe96U1rvqbJAEH1PcV6pqOjo+SaVr/NRhpumMoAq/syxZtVO2Ezmq40M6Z8Tqs62vQ7tzI2sCpnTPFlZQ5gajuYyiircqa9vR1//dd/jcXFRTz22GN1uadkMgmn06n9OyYSCW15UauphtW4likerK5tVQbUcm2rsqvWa5vqdKtrNzNW5ju1mGpYxU6t167F7KiWMk7VRn/++efxwAMP4Omnn0YwGNQea2rDW5WPlI9HEM1NNfoDBEE0Hp0RgtjmY21Ltl2VL2ZlOJFOpxGLxTA1NYVkMom+vj5EIhEUi0XE43Ht860Oj8cDp9MJl8sFp9MJh8MBr9eLQqFQYryQz+fhdrtht9ths9lgs9n4/plMBi6XCzabDYVCgRsw2O12xONxbtiQzWZLnoPFtnY95zXabDbe5mMGEoVCAU6nE06nky+ztrbdbkexWEShUOBtvUwmA4fDgWw2y00v0uk0bDYbUqmU9hnBhMfjgc/ng8Ph4H08rJ2nytVj7TixrcjawqocvWrPRRAEsRkR+0XFPmNWf4r1sZhrPT8/j1gshng8jvn5eUSjUW5wlEgkEIlEkEqlkE6nkUwmy/pjWB3C9CpYHQFcqferrX9Z+czKdZaDzfol2PM468dgZTsrx8XyXz4X639g9QKrA6zmrG80xWIRs7OzuHjxIqanp/nr4sWLuHTpEqanp7G4uMj39/l8GBkZwY4dO7Bjxw6MjIxgZGQEw8PD2LFjB3bu3ElaTQRBEARBVM19992HqakpPPvssxt9KxtKsVjEM888g4ceeggnTpzAXXfdhU984hO4+uqrN/rWCGLbQcYWBEFsKjKZDF5++eUSw4uf/exnWFhYAHClI+vAgQMlhhcTExPGxD2CIGqjXoklhUIBly5dwuTkJM6fP4/z58/jwoULfHl2dpZ3rPv9/jKzC9EAgzpuCWJtsHi+5557uPGF6CDOPl+4cKEkcZk5iYumF+Qkvr7oJpXoEsF1E0V0Sem6CXO6CSW6yTOqpHXdvesm2dRiCGFK2DdNRFqruNZGwJJ9wuEwfD5fyeCtKQndlBxvlQhuSnw3GTaYEupNk2+sRMNqMYnYqGNV6H53urjT/YZ18aiLB93kEtWEOl3M6SbfmCblrHXivikh0GoSkGmiXzNimtxqmqxtiieriTGm+DZds9qJpCI+nw/Hjh3DM888A5vNhre+9a1405veBKfTaVkeWU3kMcVpNeYT1Z67Gihxn9iqmAQY1rKNzlfbMc2Crmw1lblr2bbdzmfaZjWplSAIgiAIgiA2iloF8k3bKj3e1EdpYi1C+GvdRgL6WxtRJI711YvrWD+9+LuV14n99qxvXewrV61j4wvsWlZCeDrYb1LsA2Z9zLIhjcpYRmUew/rFZWMacdxFvgZBEARBEARBENsTq9xBU36gSbS7lvwj03mtRH5N/RSNMldZaw6l6X42kxlJs5l31Dv3Upd3pcvl0n1n3d9Jl7elu59axIlM5gCmXMNaDEKsYqsWgxBTXDbKIMSqDDKd1/R32kwxD9TXTEPElHe53tfUHVftel1ZV+16qxxQhlW8WuVFmX7DtRhuNPK+rARSazFdqaV8W2tbp1kx1a9Wgv+mOt1Ur1ViAKK7J6u8aNM96bbp2h86QwPd/enKM93fQtUmsKo3rAxwajHVsPr91nJtq7iq9dqmtlAtZkdWZZyVgVOzYqqXrWLM1F5v5LwmU3vB6vlDF8u62NT9DXT3aKrLddemMbztDc2PIZoBU/1nqt+q6fMSnzFWV1exsrIC4ErdzM4vGj8w04FiscjbBdlslrdfstksbw9kMhnk83lkMhl+P8zAALjS7mHnyOVyJSYMxWIRxWKx5rnRrD50OBwlfRg2mw3FYnHd5mfK9S/LmSoUCjzvhH1nt9sNp9OJfD6PYrHIjbCy2SycTifsdjt/xmImGNlsFsViEQ6Hg/+t2fH5fB7pdBoOhwPJZBKFQqHk/2t6zjQh1rms/SA+m7C2DKvLxecLVveytrZYT6sMJORzidc2GZwRBEGsN/IzvficLD/3in1mcr+f2K9l2ib3y4l99mw/8ZlZbAeI92Z6Xq8Wm80Gh8PB6wWn08lziN1uN/x+P7xeL1paWtDT0wOPx1PS96IzjpDNKFjdyuqXSvtvCT2pVApTU1OYnp7GpUuXcOHCBb7MTDDE31t3dzeGh4e56cWOHTv458HBQQwNDZGhJ0EQBEEQJWx3YwtmaPHwww/jl7/8Je666y48+uij2Ldv30bfGkFsW2pXWyMIglhH3G43xsfHMT4+XrJ+ZmYGv/rVr3DixAn86le/wg9/+EM88cQT3Dl93759OHjwIA4dOoSDBw9i//792LlzJ4lsE0QTYbfbeUfrG97whrLtmUyGG1+IYvsnTpzAv/3bv+H8+fM8IZCJ7Mvi+mNjY9i/fz8ZXxCEBT6fj8ePjlAopDS+OHnyJI4ePYoLFy7wATu3243h4eGSWBSX9+zZw5MqVQm6csKvKnlZTphXTTiQk/lVCbuqJCVdcq4u4Vc3qUCXyKRLjNJNPlirsFIjqHbCmU5cSZf0okqmdzgcRrMUU/KvacKASRS2UYYQjZiUyGiGxE/VZABVHMgxroohOR5UccnOLQ78qyYM6CYk6WJXN2FCN6GgWnHpZkvw18Wpbr3ut6qLa93vPhgMauPTlPRvFWempDqWgFHtNQHzRCBT/JrKmrUYoGxV7r//fqysrODTn/40Pv/5z+P48eN48MEH8du//dv0HE9YoksAM02A07W7TJO0TBPLdJM5TRPlTEnvuvafaQKaqX7RTagzTdrVtVmtxEGaAV3dYyp3Te1GXR1gajOK9ah4vKkeM02Y09U1pglrpjpIV1+u9Xz1MvshCIIgCIIgCGL74PP5+DOGqe9tPaiXoYZqWygUwtzcXMXHV0slJhmNXCcuN7vhBptQKPavsD4i1Tqx34T1/YjjCqp1rE9H7JdSrTOJH1nB+j3EfgQ2EV21rqurqyzWKjGdYP9zk+kEQRAEQRAEQRDERmKz2dYk7EtsHKYcBSshYpM4UDOZd6z1OxaLRUxNTSm3Aea+BN13rDY/cqPQ5cfWK09RVRbocjd0ORO6fBNdzmFbWxv6+vpK1snfU85llHNQ5GtaCRo3Eyyf+bd+67fWbKZhEvhulIHHWq9pJShuKr8uX76M+fn5ul5Td1yzxb4ph0pXh1e7XidsXu16XfnS2dlZMtbBkMsp1XeVzyn3r1uVEc0Iyyv8wAc+gEuXLuHb3/52yfZazDZMdb0pVqxyHU33VItJkZWJmqnON5VFpnvS/Q2tysWNQJcnqatXdfWwbl7PWsqXas0/VGNivb29ynaNKn5V+aqVlB1W8x3WG1Ud91//9V+4++67cebMGeO4YS3GPyYDHjlO5LovkUhoYyyfz2NlZUV77mQyqZx/mMvlUCwWjeUYEzYHoGy7x+Nx7d9DPFamWCxq/1arq6trHo9sFExsW4aZ3auQ46dYLKJQKHAxbxkmAK66tuo3yURjZex2uzZnWndtr9dbVpaorqu6R5/PV3asXFba7fZNIW6ayWTw3//93+v6+6unoHAtWLUfTNRSZ9c6v6OWucuq+Z/y/75QKJSdv1AoYHV1taRMFvdhRgWrq6t8vXheZvLQLHOuq0UsQxwOB//MygFmuuB0Oku2s7LDZrPB5/PB4XDAbreXmFDY7Xa43e6SsoqVQy6Xi/ctOBwOOBwOtLa2oqWlhZ/H5/OVtbHkNg5rpySTSeRyOayurvJ7++pXv4qVlRXcc8898Hg83JyD5eE4HA5eZ0ajUbhcLiQSCX4etl8ymeQxJc7zunTpUtXli8o8grX/xPyn0dFRAFAaSrD2n9geY+03Va4Oe6YT+3PI+IkgCB2quljVZyE/R6naHqr5pfL5Ve0OVV+GXM+r2hzy85s8N1f8HvJ1Tf0ya0Usa+V+A9M28Tl/cHAQLpcL6XQau3bt4vUYe+5jf+PV1VUEAgGEQiHlc6rb7UZnZyc6OzvR39+P4eFh+P1+dHd3Y+fOnQgGgwgEAvwVDAa1Jo1Ec+P1enH11Vfj6quv1u6TTCZLNJqYZtPZs2fx/e9/H9PT0yVtY6/XW6bTJL/v3LmTTKoIgiAIgtjyHD16FH/2Z3+GF154Ae94xzvwla98Bdddd91G3xZBbHtsxWYbhSQIgqgTuVwOU1NTOHnyJI4fP45Tp07h5MmTOH36NHdZ37NnD8bHxzE2NoYDBw5gfHwcBw4c0CYYEARRTjMIZwNXkrJmZmZ4x634OnfuXMmgiGx8Ib5GRkZIdIHYlLDBRzZ5ShwMFAcdxcFGeXDwAx/4AN7+9rfjxhtvNDrLV7KtWCwik8kgHA4jm80im80ik8kgk8lwV/r1fhRRJfvKicg6cdZqJjhVO5FJl4itE1yvdtKWalKFLjlbl8zdbAnPWx2TqJGYDCAObMsJB2I8yxMTxAkOpoF/OWFALEtUCQemSZ+NQP5tq5L8VZMEqp2EqIsL3fpqJy3qJhfpygZdOaUrM3TC3JT8RmwWLl68iIceeghf//rXcfjwYTz88MO44447tmxSDnu+uvfee8smz6gmyasStlSJT3KimqocVyWhqSYDqRLTVEluqgl1qsS6eposNAsm45x6myzoJtBWarIg0uwmCyZDMdPfnCAIgiAIgiAIgiA2I6zPhPWDiP00TIiB9b+I4wmsb0jsW1EZNrBjxT4hdi2x76gWow3xWb6lpYX3R7C+cjbxu1gs8n4Cp9MJu92OXC5X0h9it9uRzWZht9ths9n4WCO7X5vNxr9POp1GLpeDzWZDOp3mk9xZf1ItQhZrNQCpt4mIqb+IIAiCIAiCIAiCIAiiVnQi3KocIUCfy6PLK9UJEOsENFX9OTqxTp0AqE7kW5ejpBP+1/1tdP1o65XnJOe0y/k3cr6Q3L8k5wbJOa9y3k4l4vzt7e143/veh3e/+91405veVJa3KucPsXsWr93sBrpbDd3vXrdeJzauW6+Lt2rX6+K52vW68kK3Xs6tX+v6eqPKq7MqE+R4dDqd8Hg8fK4PM08uFArIZrOw2WxlOX2sv55RKBRKyoBsNosTJ04gmUzilltuQTqdLjmHKHjL7oH9n1g+IhPjZViNWVQi5Kyry7Y7ch6vw+FAe3u7VtRfJxwtrhfrEd0cMtN6t9tdlh+rEsNm6+V7dTqdsNlsyrZIsVjUrme5zzabreT3p6vP5d8Tu+d0Or3u8+ZMovlizLa0tPDlQqEAh8PB4y6fz/NzsBhl5QX7f7HtmUwGLpcLDocDmUwGhUIBLS0tyGazKBQKiMVieOWVVzA+Ps7vQYxhdv58Po98Pl8i1J3L5ZTxHovFyv6uqVSK4pogqkQs45hoPvBqfSB+rmXuDhOuV11Dvo7uPpmpgQnVdvb9Kjl+o2hWI4ZK/ucb+TcVf09AqQGE+FncV7eNGTi4XK6yup/lr7B9xbarWHfabDZ0dHTwazAjA3Y9tp/dbufnEM+tm2NUCZXOD83n88hkMjyfhglyO51OnlfD6t58Pl9iPpFOp5XrmJ4B0w+oBGYoYbfbeXuEzXtipj5erxdOp5MbILFnFXYM+97yMR6PB52dnfB4PNwkyW63833XMj++3n0SpjlRa4XmCG8uTKZs1VJv09Jq8umszOdEKv3O9T6nqX/AZECp6582mXDq+n/Xeg+NRlVuyPNTVfNcVXM35f4mVTknnlvuDxb7r+Tz67bJ/dJiP3elhtCpVAorKysIhUIIhUKYm5vD7Ows/yyvW1xcLPvNMaMB2ZBCXjc4OIihoSHK9SSqolAoYH5+HjMzM5ibm8PU1BTm5+dx6dIlzM7OYmZmBpcuXSrpw3a73QgGgxgeHsbg4CAGBwcxPDyMYDCIHTt28G2kqUgQBEEQm5/77rsPU1NTePbZZzf6VtaNo0eP4sEHH8Tzzz+Pd7zjHXjkkUdw/fXXb/RtEQTx/5CxBUEQ245IJIJXXnkFk5OTOHnyJDe8OHv2LPL5PJxOJ0ZGRsrMLg4dOlT3gSKC2Ao0i7GFFaFQiLsUy8YXL730Eh9IcrlcvFOWORaLr9HR0TUnCBDbC+awnkgkEIlEsLq6itXVVYTDYSQSCSSTSUSj0ZL92OQdMQGfDa6KA7Iq0fu1IA8ORiIRdHd3o7293egsX69tTFxmeXkZCwsLCIVCiEQiWF5extzcHJaWlkoShTs6OjA0NMQHU/r7+7Fjxw709fVhdHQUe/bsKUkwqmTgkSAqwRTPbJnFczKZRDweV8ZuI+NZ/s2L8SwP0psG9+WkAFPCgJyooBJRqsR8QhbDViUukFg1QRAnTpzAQw89hO9973uYmJjAQw89VJHBBRPoY+0sq3c5YUycXC0mjMkTF8WEOHHinJy0pprwaDJwaCSq5Gd5MqOqTaVKTFOZHqjKblXi21Y0WSAIgiAIgiAIgiAIgtgoxL4ptlzPdYlEAolEAqurqygUCiX7pFIpFItFpNNpPiG+0snrMmxCPxPKEAUAmGiOTryoUtxuN395vV7YbDbeT8T6n+x2O9ra2tDS0lKTEYXVdppoThAEQRAEQRAEQRAEsX2QxddYjhtDFm6Xc4zlfDNVTposRieLssmmI7IAmyyuJovLyXlxKgF/Zt5bD8TcLzFfmeW7iflkKoOMjo4O3g8nLnd2dsLr9fJlZipbi7AoQZiQY0clcijHKysj2LyFUCiEcDjM++zj8TjC4TDS6TRSqRQSiQSi0SgXoBWFanO5HJ/PwMyj14pVjNRbRJqZHDCRW7aOifWzcsHr9XJhYpbD6na74XK5+Lb29nbeL+9yueDz+fhyS0sLF9DdztQquFqrsVOtIp8m0dFKqMQkRYWV+YrKyCMajZaNp6nGv/L5PB8fY+N0LM7YOeXPbJ3unER98Pl8vFxaiwFAtfOl5PLXlAffaGiulxpdWzKXy5XFYjabRTKZLCkz5TKBmfEUCoWSdzY3l5n7sG1snfgCwMt19rmWckH8rYvmFyRdVB1er1c5VwV4NZ9BhcPh0MYea9NYnYuZBsjrnE5nye9RtR8zJ6hkncvlKnmWdDgcZfvZ7fayOalut7vkb8PKubXW0SZqfXatpd1TaZuHGc6JL9b2l+NfLBfYy+r7sbwc1rZm77p17HlCzucBSo1GkskkCoUC2traSsoNMpsjiO2DaQ6ojKxHUOs5dXNMTXNCVToJDHnebSX3U697ULX55XOr5uKqNB22GrFYDJcvXy55rayslL0zPZvl5eUyExWPx4Oenh709PSgr68Pvb29/HNvby/6+/v5Z/aqxfyNIOpFIpHA9PQ05ubmuOnF7OwsLl26hLm5OUxPT2NhYaHkGZMZruzYsQMDAwMYHh5GX18fBgcHMTAwgIGBAQSDwYrLboIgCIIg1p/tYmxRLBbx9NNP45Of/CR+9rOf4c4778QjjzyC6667bqNvjSAICTK2IAiC+H+y2Symp6dLzC5OnTqF06dP8wTgQCBQYnYxPj7Oxe4JYr3YvXt3WdL5RpJIJJSJDhvJ5z73Odxzzz1VHRMKhcoMLyYnJzE7O4vz58/zxACPx4OhoaEyw4uxsTFuhkFsLdhg1tLSEpaXl/mAFlsW17OBLKsYZRMeotEoTwhhCRxyEof4Lq+z2m51rEwzxvMnPvEJ3HDDDTwemTkNW75w4QJPomPxKRvTsM9XXXUViQ9vc2KxGJaXl7G0tFQWyxTPjWct9TNBENsLNsE2EokgFoshHo/zCXfRaBTxeBznzp3DD37wA5w5cwZ+vx979uxBR0cHIpEINxlKp9Nlk32tEMtUeRKBqqyW95PL5ErPJ69Lp9NwOp1wOp3G/azOVcl+lULlN0EQBEEQBEEQBEEQRDli/xMTiWNiNeJEejYZW7VOFHtjE91FETrVOnZdUZCn2r4wEWY6KpqZqtaxiZCiGJxqHRONEydFqtYxMQ9xYmctYnHVGnas5ZhK19U6Ab9a04x6mWuQ4QZBEARBEARBEARBEMTmp5nnG8nTmHXC2/I6eb24XRTjVe2nWvb5fFwU3ITH40Frayu6urrQ3d2tfZdfrE+VIHQUi0U+X0F8LS4u8mW2fWFhAZFIxCjeywxb2tvbEQ6HEQqFSuYzrHWOgkqYtlrYWIjP56u4DBCX61kGsHcmzmxVVjJByLa2Nh7zPT09xvKAvZMxDmFFOp3mc5uYsKZYFojlwfLyMsLhcIkhlUhHRwd/AcArr7yijWkr8Wn5XRastkKOa2au4/P5lKL3qjgVl2ttJ+j29fl8XGjbBDO9aW9vR1tbG39nL2aW5XA40Nrayl/VzONSGZRVQyME3q2o1Thmq1LNGHGhUEAmk0E6neYvJkKfSqVKxqFTqRQymYy2DLDZbNy0wOVyIRKJlBhNsH2qWa7kswpV/ZfJZOBwOOBwOMraAqyckVHFs2q71b66MsDtdqNYLFr+v9xuN7xeLzo7OxEIBPiLfWbv3d3dGBwcRHd3NwKBQMnzgEpgmiAY+XweCwsLmJ+fx9zcHBYWFjAzM4PFxUXMzs5iYWEBc3NzWFxcLDG3ZHR2dqK3txd+vx9+vx8dHR04c+YMJicny4woVM8HtbTzK0V8Hmg0lUqnHTlyBE899ZTlflaGZWtBNiGtlVrN4Ij1p971Qj3zusQ8wUogU1ii3qRSKaUpxfLystKogi3LebMOh0Pbh8sMKkTjiv7+furPJbY0hUIBCwsLStOLubk53v5cXFwsOa69vR1DQ0Pc9KK/vx/BYBADAwPo7+/n2/r6+sjohSAIgtjy/NEf/RG+/vWvb/RtcNazv6VSbrvtNnzrW9+qy7kymQy++c1v4vHHH8fp06dxxx134OGHH8bExERdzk8QRP0pt/QkCILYprhcLi6Afeedd/L1+Xwe58+fx+nTp3H69GmcOXMGv/zlL/Ev//IvXGCgq6sL+/fvx/79+7Fv3z4cOHAAV111FUZHR5XuyQRRC8vLy7jjjjv+j707j27srO/H/7YtWZK125aszZKX2Z1kEpyZhEwoYTqBhmaak24sPfSw97AMHE4IO7R8Od0hDZBAKWnLzmFJmzQzIaQeKCSBrAyEmYHZbMuyJMuyR5JteV9+f8zveXjuleTdlpf36xwdXa2+sn2v7vJ5Pm/cdNNN5Z6VDen973//sk7Cut1utLe3l9x5KRV80dHRgWg0ipmZGQBXGjyoDfXVC5vql9/09LQ8qN7X11eyqb16n75AyWQyaQYeeDwe7N27VxYoi8JEu90Oi8UCm80Gp9OJmpoaWCwWuN1u+V5Op5PL8zze//73o7Kyct5lc2JiAvF4XBN6IYIvOjo6cOHCBU2Bp9vtLhl80dLSgnA4zO/uTWJqakoWcYvluVTojLh/cnJS8x7q8ixOQO/bt0/eV2p5FmEWXJ4Xb7nfz0S08U1OThaET4yMjGB4eBjZbFYTUJHL5ZDL5eTtkZERZDIZ+Zz51hMOh0MzIOTGG29ELBbD888/j7q6Otx88804ePAg7HY7TCaTbJYnmuuJa9GUT1w3NTVx/T0Prr+JiIiIiIiIqFwWG0qw3Oeuxs9YjqUEC1itVtTV1a1quIF6n8vl2jIDiiwWS8G52HLL5XKyKUk+nwcADA0NYWZmBlNTU7LxwPDwMKanpzVNYESoiRp+UiwkZWxsTA58F9fqwPVi87Ac4vda7P+nWDiJGmIijs0WC0+pqqqSNRQ1NTUwmUya16jvqQ7uXupgaiIiIiIiIiKi7YLjjeb3/ve/H/fccw/e9ra3Abhy/GxsbAyjo6NFp/P5vGySJpqmdXV1aZqo6ZsMG43GRQVgiCb5Ho8HHo9nyxyr3Y7GxsaQTqflRR2TlE6n0d/fXxBkoW+m7nA44PV65ZgGr9eLffv2wev1yqbJdrtdjm2w2+1wOp0FjSTf+iVU5ecAACAASURBVNa34qmnnsK73/3u9f41bArf+ta3YLVa8fjjjwO4cix+fHwcuVwOo6OjGBsbk9Pj4+PIZrMYGRmRy/vAwAB++9vfatYBxUJyRJPrhUIwPB6P/Lubzeb1/nXQKsrn80VDKsRtsW4Q6wR9KIDRaNR8J3i9Xlx33XVyneB2u2V4hdPplNf6c30//OEP8Qd/8Af49Kc/zf+pIn7zm9/g/vvvRzweh9PplOfrhoaGMD4+LsdAjI+Pa8ZA6JuoplIpnD17FgMDA/I8nqqmpkazvM8XilNfXw+/38/zXpvc8PBwwfKvD61S79P/31RWVsrlXfy/iKa79fX1crl3OByyeb3YLhDnZAWOb5zf+9//fnzuc5+T+wOZTEaeX89msxgfH8fo6KicVvcHxPXFixcX3B+Y7/tfXSeIpsoej4fNwbeQfD6vCaYQoRXiPrV5sLpfYLVaEQwGZdPg9vZ22ThYvy9ZV1dXdBz8W9/6VszOznJ/oIRvfetbGB0dXVRt0UaqPyIi2mxETWMmk0EymUQikZC3S12SyWTB+5jNZk3AmNvtRnNzMw4dOgS/31/wmNvtRkNDA6qqqsrwqYk2psrKSvj9frl9WcrU1JQMWOvr65Pbr/39/YjH43juuefkY2oNvcFggNfrlT+joaEBgUAAXq9Xhl+IQAxRZ0xERLTZDA8Po76+nsdbSvjWt761KgHcIyMj+Pd//3d85jOfQV9fH1772tfiO9/5Dq666qpVmEsiWkvs2EpEtICqqirs2LEDO3bs0AReAFdOWJ85cwZnz55FZ2cnzpw5gx/96Efo6urC3NwcDAYDwuGwprH9vn370NbWhkgkwoOhtGy33HKLLJwgrY985CNr8r7zBV9MTU0hFovJZvpqc/2Ojg65ThDvU6yZfktLC/bs2VNQSESLk8lk5AktcXJLPcklpvv7+2UIiSCCDsTJqlAohKuvvhputxuBQKDgpJbP51vVIiEuz6UtZnk2mUxyGSpF/H+IZVOd7ujoQE9Pj6aAbL7lVJxQ4cCRtaP+vfTL8FKX58bGRlxzzTVFl2Xx3NX8W3J5Lm2tvp+JaGXEAEz9JZPJYGhoqOhj4iIGa+lDg1Rutxs2m00GUohBNPX19WhubobNZoPL5ZJhFWKwncvl0oRYOJ3Okj/j17/+NT71qU/h+9//Prq6uvCxj30Mf/qnf7qk9TvX36Vx/U1ERERERES0tYgm92qzfLXhvRraIJrtA79rmK823leb54+MjGBqagoAkM1mMTc3h5mZGRk+rv4M0Zwf+F2Tf7VR/3KJMFMAMsAB0DbIF81d1Gb6JpNJDka2Wq2orq4G8Ltm+pWVlfL4lNqsX23CL56rNvgXP0sNAqDtZb7jmuW22FCXldyXy+WW/NqVmC/QZSXTq/Ee6jqJiIiIiIiIiGitsR6uNH09nAgGWAm1UZu+GZuof+/v78e5c+fkY6lUqiDYwGw2a2re9fXv6m2OZ1h74u+60JiGTCaDvr4+OWZM0I9riEQieOlLX1owpiEQCCAUCslzE6uhsbER73rXu1bt/baSU6dOoaenR962Wq0yZHy5xsfHcfny5QUbNJ49e1b+zwwODhbUX4tmjfMt+2La6/UWbWRMq0v8bRdaDyQSiYLznPrmm4FAAAcPHiy4T/xtV3us4lvf+tYNfZ6qXH74wx/i/vvvl7eNRqP8e6xEse8M/SUWi+HFF18s2bTVZDKhtrZ23mVfHSsnznXT2hkbG1vUdkBvb6+sixCKrQMOHDhQch2w2ut17g+Upt8fWI3G9YvZH0in0zh//rx8rNi42KXsD6z29wYtznx9DPTrCJW6bxAIBHDLLbfIv6d6vVpBCtwfKE2/P0BERPNbzHaO/lJqO6dYCEVLS0vRbR232w2PxwOj0VimT060/RiNRgSDQQSDwQWfW2p/WVz/8pe/LNoPSF0XlNr3EdMMqSEioo2Gx1tKW+nxlnQ6jfvvvx+f//znMTk5iTe/+c246667EA6HV3EuiWgtsXKBiGgF3G43br75Ztx8882a+7PZLC5duiQb24vL//zP/6Cvrw/AlYYHoVBIE3YhmmY3NzezwJRoEzEajfM21p+YmEA8Hi9YJzz11FPo7OyUjWAAbUN9/SUcDm+rwtNUKoW+vj7E43H09/fLVOf+/n4kk0n09/ejv78f6XRa8zqLxYKGhgb4/X54PB4EAgG85CUvgcfjkQewxTSL+LYHcXKjra2t5HMymYxcNtXgi6eeekomh4vBBqJITB98IaZ3794tGycRMDc3V7A8q8twIpFAOp1GKpXC4OCg5rU1NTXw+Xzw+XzweDwIhUJob2+Xy7bX64XX64XP54Pdbi/TJyQiKo+JiYmCoIlsNjtvIIV4jrgtmg3qud1uOWBThFE4nU4Eg0E5LcInRACFeK4aSLEerr76anz3u9/FL37xC3zyk5/Ea17zGrS3t+MTn/gEbr/9du5bExEREREREdG6WahBfKnp9XhuPp+fN6B0MZbT/N3tdq9qo/hSjzscDg5gIVoCEbawWo0RVst6rEf102pjiYXeTw3xWa6NErZR6v3UgB8iIiIiIiIiIlqYONYWCAQW/Zrp6WkMDg5iYGAA6XQafX19SKfTsqY+lUrhzJkz+L//+z8kk0kZOC2YzWZ4PB74fD54vV7U19fLmnqPx4P6+nr4fD40NDSwAZRiaGgIyWRS/p7VafE36OvrQ19fH0ZHRzWvra2t1YxF2rdvH17+8pfLkAHxe/d6vRyntM2I8UVLWQcAV8Lo0+k0+vv7MTAwIMfNpdNpDAwMIB6P49SpU3I9oTaBq6yshMfjkRex7Hs8HjQ0NMj/STG2ToSy05Vj/mL5F79z8XsXDffE4/l8XvPa2tpa+bsOBAJoa2vD4cOH5fjF+vp6uZ6wWq1l+oRUDuq2QHt7+6JeMzY2hsHBQfndU2yb4Oc//7l8bGxsTPN6u92uWfa9Xq/8/1O3ERoaGlBfX78WH3tTEr9bdTyjOs5R3SaYmJiQr6usrJTrVrGNdcMNN2i2A8Tvv66ujuvdbWY5+wMzMzMl9wfE99PZs2fxk5/8BKlUqiBAyWQylVz21W0CsS5gU+jS9EFWpRr0xmIxTa2APpSspaUFhw4d0twXCATQ2NjI3z8REZXV1NTUgmGcly9fxuDgYMG1PqDCaDSirq4OtbW18trj8WDPnj2ora1FfX19weN1dXUwm81l+vREtBYsFsu8PdaEqakpeZwtlUohnU7LY/LiWJw4/tnf368JAzcYDAXHOMR+jtgHUs+JcD1DRES0+XR1deHee+/FAw88AKvVimPHjuHYsWOoq6sr96wR0RJtn87IRETryOVyob29vWgRito4u7OzE2fOnMFTTz2F//zP/5SFpiaTCa2trZqwC/VCRJuLyWSad/nNZDLo7u5GV1cXurq65PQjjzyCrq4uWXhmNBrR2NiI5uZmRCIRNDU1aS6BQGBTFJyr6cvFrjs7O9Hb26tprqMv8giFQjh48GDRBGa/388GxrRkbre75Hc3cKVAKZFIFARfJBIJnD17FufPn9cMGBH/iyL0Qh+CEYlENsXyupBSy7P6e1qoaCscDuPGG28smahORLRVjY6OIpvNIpPJyGsxrYZP5HI5ZDKZgpAK0UhLz+FwaMIoxGXHjh1wuVxwuVwFj+kvm9FLXvISPPzwwzLg4o477sC+ffvwgQ98AK973etYCExERERERES0ya1nIMRSX5fNZmU49nIstxG52+1ekybobHBOROUimn4A2HChG3prGbZR6v0ymcyiXzc0NFQwuHipNkrYRqlpu90Og4El0ERERERERES0+RgMBtmAaTEmJiYwODgo60yLNVu9ePEiMpkMent7MTQ0pHm9GNugb7KqXm/W2v25uTmkUin09/ejt7dXXqdSKSQSCfT19clrfd2taH7l9Xrh9/vR1NQkgwD0zYB5roRWm1rfvRjq2B39eiCTyeDs2bPydiqV0jSC04/hKXW9mYNwxO9E/F7UZT8ej6O/vx/xeBwjIyOa17lcLrmc+/1+tLe3w+v1IhAIyMZ5XA/QWrBYLAiFQgiFQot6vjhPVGo7IJlM4uzZs0XH8VVXV6Ourm7B7YBwOAy73b5WH3nNTE1NyWVcfP+L9UEymZTrg/7+fs3vRW2SGQgE4PV6sXfvXs12gJj2er2orKws46ekraaqqkpuhy5WJpMpuR2QTCbx9NNPI5PJIB6PI5fLaV4rgrjm2w/w+/1bamx+Pp9HLBZDX1+fvBbrAnV9od93Upd/n8+Hm266Sa4jgsEgGhoaEAgEGGZHRETramJiQhNEoY5Hn++SzWYL9oOBK32LXC4X3G43amtr5aWlpaUglEK9bMb9BSIqH6PRuOhjH7OzszLwQh+AIaYvXryIvr4+9Pf3FwRT2+12uQ+vhlCLwJ36+noZSltXVwebzbZWH5uIiIgW8MILL+Cf/umf8OCDDyISieCf//mf8aY3vUmOESGizYejuoiI1tl8jbPj8TguXLiguTzyyCO4dOkSJiYmAAC1tbXYuXMnduzYgdbWVk3gRSAQ2DInjIm2E7fbDbfbjeuuu67o46lUqiD0IhqN4sknn0Q0GpXrBxF8IUIvIpEImpub5XQwGFzTQf1DQ0Po7e2VRTHiot5OJpOaYnCLxSKLXoLBIK666iq86lWvgs/nQygUktc8KEzlZjabFwyYEsVhIthBhDt0dnaio6MD0WhUNg8xGo2or68vGXwhpssll8shHo8XLMvxeFxe9/X1yfUP8LuiWp/Ph2AwiAMHDmiWY3FttVrL9rmIiFabCJ1Qi4H0IRWl7lPXoYLJZILb7S4In2hpaVkwjEKEVmz3fUIRcHH69Gn80z/9E9761rfigx/8IP7qr/4K73vf+zZtcAcRERERERHRahkZGZGD9dXpfD4vQ8dHR0flsQt1Wm2YLZps66cnJibkYIHJyUnk8/mC6ampKTlYSr1f/VkrbchdUVEBl8sF4MoxeXGuSW2IbbPZZBimOK5SVVUFh8MBt9sNk8mEmpoaANqAB6fTicrKSlRWVspjDerPEA25AW3TbdGk3WAwcIAXEdEmtxlCOKanpzE8PAxA+/2sfp+r2wK5XE42OxMhGjMzM7KZh/r9rX73q9/fw8PD8rXi/ebm5pDNZgvmSd0GWK5S38Xqd3hNTQ1MJhMA7Xe/+D4Hfvc3FNsB+vdTtx/U91O/59VzNOr/hPpziIiIiIiIiIiWw2QyIRAILHp8wdDQEPr6+pBKpWRDZ9G4NZVK4f/+7//Q39+P/v5+TfN7q9WKQCAgG7mKRvf6Rq7r0dx5enq6IJxCbU4trlOpFKanp+XrampqEAgE4PP5EAgEcODAAflZPB4P/H6/bCLM0FTaTCwWy4JjmoSJiQmk02n09fXJi9rI+fTp03j88ccLAl9E6I5o5CyW/4aGBgSDQRn+4PP51q25TDqdRiqVkmOY9OuEYmMVq6ur0dDQgFAoBK/Xi/3798uwCrH8i2lxrJdooxPnpQKBANra2uZ97tzcHAYGBtDf34++vj4kk0m5HIkAqBdeeAHJZFKe0xFqa2tloIv6/S+WG/FYbW3tWn5cAFfORelDavSfQ4Rbzc3Nyde5XC7NumvXrl3yM4h1m9frhcfj2fZjb2hzEX0IFmNkZETuA+i3A/r7+/Hkk0/KhrDqtrTFYoHP55P7Aeryr+4jlHNbemZmBqlUSvYyiMViSCaT6O3tleOg9WF/1dXVcsyz1+vFvn378IpXvKLoPg+DrIiIaC2pgXVLufT19Wm2eQURZKleIpEIrr322oL71YvP52MtExFtKJWVlUsKA8/n80ilUkilUkin0/IYSDqdxsDAAKLRKJ577jkMDAxgcHCwIPTabDbLsAsRgKFe1IAMEYzB8wlERETLNzs7ixMnTuBzn/scOjo6sH//fvzHf/wHXv/61/M7lmgL4FJMRLSBBINBBINB3HLLLZr7Z2dn0dPTI8Muzp8/j4sXL+J73/seurq65METtel2sQvTyIg2J3Hw9cYbbyz6eCaTkU30RSP9ZDKJRx55BOfOndOkqLvd7pLriHA4XHInb2xsTDbrVxv3q9NqIVt1dTXq6upkaEVbWxuOHDkib4trv9/PAjDaMsTJ3FIFolNTUzIRXL+8dnR0yGnBbDYXBF2oIRhNTU3LColYaHm+dOmSbCwCFC7PV111FW699VYuz0S0ZSy3GGhgYEA2e1IVKwaqq6vDjh07ihYBiUaHbre7rKFGW81VV12Fr33ta/jUpz6Fe+65B5/+9KfxL//yL3jjG9+ID33oQ/D7/eWeRSIiIiIiItrk1ObO6rTasFltBq1Oz87OIpfLAYCm2bM6DUBz7iWbzcqBSeq02oRaDYNQp4eHhzUDkZerurpaHpdWp9XGz2pogzptsVjkYAO1CbX6nFKhE8WCJNSfrzaYdjgcqKqqWvFnJSIi2uwMBsOGDd0oRg3cWI3phR7P5XJLeg81wGMl1O0ddXq+x5Y6vZrvpQZ2EREREREREdHm4HA44HA4sGvXrnmfJ5rCigAJtdltIpHACy+8IBtii9BU4Eo4qGh0HQgEEAqF4PP50NjYCL/fj1AoBL/fX7Tp9dzcnGyuK5rOioa08zWpdjqdsqF2MBjEzp07ZdP6UCgkG+8yWJzoShhOKBRCKBRa8LnZbLag6b0IjYlGo3j66aeRSqUwMDCgeZ1oHB8MBjXLfWNjI3w+n1wuS41TzGaziMfjmnWAaFKtrgsmJyflaywWixy75Pf70d7ejj/8wz/UrBsaGhrg8XhW9gsk2uQqKipkA8aFQjDGx8cLtgPUYKzz58/LdYI6dsZkMsllXYRvifWAei1CyFVTU1NIpVLo6elBMplEPB5HPB7XhNUUC93wer3y+76hoQHXXnutbEavrhvYR4HoSs3Vjh07sGPHjnmfNzs7KwPv1O0AEYz1q1/9Sj6m9imoqKiQgVf69YC6X7DU72Qx7lkfYKWOfe7p6dHUwOnHYLe3t2vGPAcCAUQiEdaSERHRqljuWPTx8fGC7Vuh2Hh00RNovnAK9vUgou3MarUuOgQYuBL+J0JABwYGNBdxXzQaxeDgoLxfr7a2Fh6PRwZdqKEXdXV1qKurQ21treaawXlERLTdDQwM4IEHHsAXvvAFxONxHD16FCdPnsThw4fLPWtEtIoYbEFEtAlUVlaiqakJTU1NuPXWWwse1ze17+zsxNmzZ3H8+HF0d3fLRibzNbRvampiojLRJuV2u9He3o729vaij6vrCLWQo6OjA+fPn5fNlYArjX+cTqds/jMxMSFPlgk2mw3hcBihUAjBYBAveclL5LQoQGURKFEho9Eoi7RKLa/j4+NIJBIFy2tnZydeeOEFRKNR5PN5+Xzx3S6KrHw+H+x2O2ZnZzE1NYXx8XHEYjH09vYiHo+jp6dHM6jEbrejsbERjY2NCAaDaG9vL1ie6+vr1/x3Q0S0UiMjI8hkMrh8+fKiLqIgSC2sFSorK+F2u+FyuWSRjxh809bWVnC//rksdt1YIpEIPvvZz+LjH/847rvvPtx333340pe+hD//8z/Hxz/+8XLPHhERERERESlWu5nxYqeX8xo1WGIllttk2OVyrVqz4sU2QXa5XBwERURERGvGYrHI7Y6NHMihBoaJgDE1nEwNM9OHlqmBZOr7qKEZIlAD0Ianqe8LaAPQ1PcdGRmRzaVWK4wD0AZcmEwm2YxKDSlTQ8gA7fajGj5mtVrloE31fdXgMvV9Kyoq4HK5ir6v3W6XzfHU99Vv4xIRERERERFRoaqqKjm+4brrrpv3ucPDwwXNbnt7e9HX14fTp0/jf//3f9Hb2yuPawBXxk9YrVa57z4xMYHR0VEZzA5c2c8PBoOyCe7+/fvh8/lkI1oxzf18orXhcrngcrmwd+/eeZ83OTlZ0PQ+kUjIZvSnTp1CMpnUNH2rrKyE3W6HxWKBwWDA7OwsJicnMTQ0VBBYIdYBwWAQN9xwA+688055W6wH1GOERLQ6zGYzIpEIIpHIgs8Vze/FdoBYD/T29uLZZ5/Fgw8+WBCAIY7Vi3XAxMQE8vm8rLepqKhAQ0MD/H4/gsEgWlpacOjQIU1YTTAYhNfrZTNIojVQWVkJn88Hn8+Ha665Zt7njo6OakIvRFBdIpHAhQsX8MQTTyAWi2nG6ZlMJrl8ezwe1NTUyPOCs7OzGBsbw9DQEPr7+3Hp0iXNeVWTyYTa2lq5X9DW1oajR49qQivC4TCD7YiIaElGRkaQy+WQzWaRy+UKpjOZTMFj2WxWjkcvVoNjsVgKQidqa2vR2tqqGXde7MLjXURE68Nms8Fms6GpqWlRz5+ZmcHAwIAm6EIfihGPx/Hiiy9iYGAAly9f1tR2qj9XBF2IAAwRelEsCENcExERbXbnzp3DF77wBTzwwAMwGAx47Wtfi/e9733Ys2dPuWeNiNYAgy2IiLaA+Zra5/P5gtCLzs5OPPTQQ+ju7pYHzi0WC1paWtDa2oqWlhY0NzejubkZTU1NiEQicDgc6/2xiGgVTE1NIZPJYHh4GKOjo8hms+jv78fly5eRz+c1BeEAZDP8ubk5TE9PY3h4WHOCzeVyyfWEuIhCkL1798qB60S0PGazuWQy+OTkJGKxGE6fPo1Tp07h/PnziEajiMfjuHDhAkZGRmSzCqGiogLV1dWw2+1oaGjAy1/+ckQiEezatQvt7e245pprWNxNRBtKNptdVCiF/j51cIvgdDo1J3Jra2uxb98+WRhUKpiC+z5bU319Pf7mb/4Gd999Nx544AHcc889+Pa3vy0HTBIREREREW015QqJWOq02nh3JZYT1KBOqwOE1iIwQp1Wm+8SERER0eaiNkfZyAEcpZQrHG5oaGhZ76uGdqzUeoTBreZ7qWEgREREREREROU0NzeHkZERDA8PI5vNFm3m1N/frwm1MBgMcDgcsFqtMBqNmJubw9TUFAwGg2Z/P5vNwmAwoLKyElVVVTAYDDAajaipqYHNZoPb7S4Y90RE66+6ulo2gMtmszCZTDAYDKiurkZVVRWMRiMMBgMqKipkw/q5uTnMzs7KcGBxu5SKigpUVVWhqqpK/jy73S5r/YmofKanpzExMYGhoSEMDQ0hk8kUNHgcHBzU1P9UV1fD4XBogi3Gx8dRUVGB4eFhAFfWE+l0GpWVlTAajaisrER1dTVMJhNsNhucTicmJibkeoWIyqempgY7duzAjh07NPePjY3JoJtkMonf/OY3uHDhAmKxGBKJBAYHBxGNRuddjs1mM1wuF/bv34/Gxka0trZiz549aGxsRCQSQSgU4rYAERFhZmZGhk1kMpmiwRTFpsVzs9ls0WNMBoMBTqcTTqdT7n86nU74fD7s2bOnZDiFuF+ENhER0dZRVVWFhoYGNDQ0LPo1U1NTGBwcxOXLl4teiwCMM2fOaB5T6yaBK8dIS4VezBeW5Ha7YTKZVvtXQUREtGizs7M4ceIEPve5z+HkyZPYsWMH/u7v/g5vectbYLPZyj17RLSGOFKeiGiLs1qtuPrqq3H11VcXPDY7O4t4PF4QevH000/jW9/6Fvr7++Vza2trEYlE5KW5uRmRSEQGX2zGgbpEW8Ho6Ci6u7sRjUYRjUbR09Mjp7u7u5FMJmXRp9lsRiQSQTgcRlNTE172spehsbERwWAQjY2NaGxs1AzAFzKZDDo7O2VhiVhXdHR04OLFi8jlcvK5brdbE3qhBl/s2bMHVqt13X43RJtNPp8vujz39PSgq6sLfX19muW5qakJ4XAYr3zlKxEKheTy3NDQgJqaGgwNDcnlVV1+f/7znyObzcqfazabEQgECpZZMd3c3MzQGiJakrm5OQwODsoTqqXCKIrdrx+sUlVVJU+0inCK2tpaNDU1Fb1fvVRWVpbpN0AbmdVqxXvf+168853vxLe//W28613vKvcsERERERHRBqI2UVGbqYogaCGbzcrBlvl8XgYuTk1NYWRkRD4vk8nIaTXAYXJyEvl8HsCV/Wj1eN3w8DCmp6cBAOPj47IBzOzsrOZ4/NDQkBxgo28Eu1xVVVUy8LGyshJOpxPAleJoMThUnQa0zXzFIB0xXVFRAeBK+KTYT1ebs6rTatiDzWaD0WgsmLZaraiurgZwZbAsC6+JiIiIiJbGYrFowt02A3V/TL//pO6bqftS6n6aul+l7ovNzMxgaGio6Puq+4bDw8Ny3250dBQTExMF76vuC6rvu1Lqfhmg/Zup+1PqfpPFYpGNE0wmk6z3MBgMsi5M/77q/pv6vurr9c/TB3So88b9NSIiIiIios0lk8loxhvop6PRqNyfBrTjD/x+P17ykpfIMQjiOhKJlAxsnJ6eRiqVQm9vL/r6+hCLxZBMJtHb24toNIqf//zn6Onp0Zx3dblcCIVCsrFtKBRCOBxGOByWYym4L0q0fOPj40gkEkXXAclkEpcuXdIcPzOZTKitrZXrgptvvlmzDvD7/Whqaio5jvDy5ctyuU8mk3I9EI/Hce7cObl+UH+eGP8YDofR2Ngol31xe7Mc7yTaiIqNH1ane3p65PF34MrxYPU7/6UvfalmTKLf74ff75fHk/XEOieRSGjWA319fXjxxRfxgx/8AL29vfI4PwD4fD657IvlXtyORCLw+XwMiyZaRbOzs3JbPR6PIxaLyeW0p6dHfm+r4XY1NTUIhUJyeT1w4ABCoRACgQACgQAaGxvh8/lgMBiQSqU06wF1v+DkyZP4yle+oqmVtNlsmu1//b5BJBLRnLciIqKNR9S6j42NIZPJLOqiPj+VShUNSzSbzXC73bJWQjT3DgaDuOqqq4o2/laf6/P5OBadiIhWzGg0wufzwefzLel1+Xy+aACGPhzj4sWLmu9IUcOoqqmpWTD8gqEYRES0FtLpNFpbW9HT04NXv/rVeOyxx3DrrbeWPEdARFsLgy2IiLaxyspKWbzx8pe/vODxiYkJLBSQuwAAIABJREFUTfCFKEQ5c+YMHnnkEXR3d2sabKtNsfXNsZubm7mBSbQMY2NjmjAJ/fLY1dUlB2iry2FbWxuOHj2qaVDf1NS0rJNqbrcb7e3taG9vL/q4voh9KcEX6vzt3r2byYq0pZVaVtZyeS613OrXLep8Pfnkk+ju7sbo6Kh8vlh21XlQby93/UJEm4NYZyQSiaLFQfrH0um0pmhdEOs2v98Pt9uN+vp67Ny5c96ToA0NDSwupzVhNBrxl3/5lzh27Fi5Z4WIiIiIaEtQgxX0TTzVhqBqE1B9CESpsAi18ShQOixiYmJCHtPSh0CUCotYzYajgDYYAtA2BFWbi6oNRQFt8ENDQ4MsCjYajZrj5mojBjXkQW02Wl1dLZtDqK9Xp9Wfr59nIiIiIiKijcRgMGj2hWpra8s4N8uj7jOXml7s85YyPTExgYmJiSW/Xt3XXi36IAz1dqnpjfSYuk9PRERERES0mWQyGfT29qKnpwe9vb1yOhaLobe3F7FYTLNvWl9fL5vF79q1C4cPH5aNYoPBIILB4Ir3jwwGg3yv+ahjHtTxDpcuXcITTzxREH6hNtkuNvYhHA7DYOCQetp+RkdHC9YB+mm1vsJqtWqaRre3t6OxsVEGSwQCgRWHSNTW1qK2thZtbW0lnzM5OYmBgYGiY59++MMfIpFIoK+vr2AcVqlxTzt27NCEvRJtF319fejt7UU8Hkc0GpXLfywWk83pxfHgiooKTYBEW1sbbrvtNrn8i6b0Imh5ucxms1xG51NsLGYikZA9DooFbhQbt8zxj0RaMzMzMqAiHo/LdYKYFusGsXxVVFSgoaFBbsNfffXVuPXWWxEOh+H3++X9Lpdr0fMgAnBKjX8G5g/eOnXqFC5cuKCp/dT3OtGvB5qbmzWB7kREtHijo6MYGhqSl2w2i1wuh+HhYeRyOXkR9+dyOWQyGc3tYjUIlZWVcLlc8uJ0OuFyuVBfX4/W1lbNfU6nU0673W55m8d6iIhoM7NarfJ47FKMjo4uKiRqYGAAFy5cWHIohvr9q14X+952Op0MxiAi2uaMRiPuuOMOvPvd78aOHTvKPTtEtM54ZIaIiEoymUzzFoeMj48jGo3KS3d3N6LRKM6cOYMTJ04gmUzKRkVWqxVNTU3yEg6HZSFLOBxGIBDgCQPaljKZTNHG8p2dnSVDIfx+v2x0r4ZErLQodLnEQclSxaTzBV9cunQJ2WxW816lgi927dqlafRFtNGs1vIsTrSvJYvFsmABqPg8+s9y5swZdHR0aAKuTCYTgsEgC8CJNrixsTEMDg5icHAQAwMDGBgYkLf1l3Q6jcHBwaLNPZ1OJzweD+rq6uTlwIEDmtvicbfbjdraWtlQk4iIiIiIiIpbaWPLxT5vtd9bDapYDSttdGkymZbVoHKlrwG04RREREREREREgsVikfuP5arvWom1PK6wlMcymQySyeSSX7fWQR3lDNxY7nvU1NRwQDERERER0RYgGr0Wa/icTCYLxjCojV5DoRAOHjyoqfnfuXMnHA5HGT+R1mLHPBT7/GLMUqmG16XGPbDhNW02ExMTGBwcLLoOENNq+IN+7M/tt99e0PTZ7/ejoqKizJ8MqK6uRiAQQCAQKNn0er71YEdHx7zrwWINr5uamjjugTYVNQSq2PI/XwjUvn378Pu///sbehlYaNwyUHo85wsvvIDjx49rxj9WV1ejrq5u3vVAIBBYr49HtGaKjQtWp4ttI4v//7a2Nhw5cmRDrBsWE4Kj3x9Qp5988kl0d3djdHRUPr/Y/oA6HYlEUFVVtR4fj4hoXUxOTsowikwmowmnGB4e1oRUqI+pARZDQ0Oa7w2VzWaDw+HQhE44nU7Z+0YfSKGfZu8YIiKi5ampqUFNTc2CAeLFzBeKcfnyZbltkM1mEYvFNLfVHnEqi8VSMgxjvqAMu90Ou92+KWsqiYjod1wuF+69995yzwYRlQk7iBMR0bKZzWbs3r0bu3fvLvr45OQkYrGYDLwQ4Re//vWvcfz4cSQSCTlgsKqqCj6fD5FIBKFQCKFQCOFwGOFwGKFQCI2NjfD5fOv58YhWbGpqCul0uiDQQRRG/Pa3v0U+n5fPV0Mdjhw5gre//e2yIGIzhzosJvhCrCe6u7vl5bHHHkM0GtUc1PT7/YhEIjIgJxKJyNuRSAQ2m229PhZtM6WWZ7FMR6NRuTwbjUbU19fLYib98rx79+5N8b/qdrvR3t5esgB8YmIC8Xh8VQrAW1paEA6HGXJFtARjY2MFJwqTySQSiUTJE4lqkw/BbDbD7XYjEAjA7/ejvr4eO3fulN/f4qI+Xl1dXYZPTERERERE9DvZbFYOup+cnNQcZx0eHpaDJ2ZmZjSBffl8HpOTkwCAubk5zbHH8fFxjI2Nydu5XE4OatX/jEwmI6fV5ogTExNyEJz+/dX50v+slVIbE1ZWVmoCRh0OhxxoZ7FYYDabAQAGg0FzzNnpdMpCULW5odFo1BzLUotFrVar3Eesrq6WgxcrKio0wa02mw1GoxHAlSYJNTU1ReeViIiIiIiIiDaezR7MIajHcKampjQN3YaGhjAzMwOg8DiQehxKf0xHPUakhmnMzs5qambUY1L641XqMaOlzNdqUI8p6Y/nqMeH9Mdw1GM9+mNMdrtd1v/ojyupoaDqMSLgysA20TRTPYY133zpX0dEREREtJUUq9UvNi2IWn1Ro68fw9Da2qrZtt4qltLwWj/u4cyZM+jo6EA0GpX7XotpeL1Rmv7T1jc5OYmBgYF51wHzNWw/dOhQQcPmrRbespiG1/M1/n/yySc148EAbXPvYusBjn2i9aL+7xZb/i9cuKA5zqiO2/P7/Whvb9f8D4fD4U07Pnk+C41/1K9L1d9hR0dHyW2qUo3vN1oQGG0/KwmtKLZ9sNECbZZqufsDahieuj+gHxtebD3Q3NzM/QEiWhfqGHJxnrrYuPFSj42Pj2vOZ+uJseXqxWKxFNynPqa+hmPNiYiINqeVhGIAxfvclNoeSSQSOHPmjCY4Y2Jiouj7ijo2/TbKYu8T96v1aURERES09njmnIiI1kx1dTVaW1vR2tpa8jmlikOfeeYZPPTQQywOpQ1P/N92dXVpGt13dXUhkUjI4lCLxSJDGMLhMG688UaEw2E0NzcjHA4jEAhs26JGcXDwuuuuK/p4NpstCL3o7u6WBSODg4PyuXV1dUUDL8Slrq5uvT4WbUKiGKnY8pxMJjXLs/jfamlpwSte8QqEw2F5XyAQkM0CtzKTybSiAvCOjo6ihXKlgi/4PU9bmXqSbr5wCvHY4OCgbHqhEsWm6sm3lpaWgnAKcdvr9W7b7Q8iIiIiou1C32xvsYEQ09PTGB4elo8tJRBiPUInVotarKhvtKc24auqqtIMSFVf5/F4SoZFqI311BCI+cIiSoVA6Jv4qfNHRERERERERETzU4/FAIDX6y3TnKweNUxDf3s1HlvM86anp5HJZJb9s9VjiatFDexY6PZSnlvO127mUBkiIiIiKjQ9PY14PI6enh5Eo1HEYjF5OxaLobe3FwMDA/L5FosFjY2NCIVCCIVCePWrX41gMIhQKIRIJIJQKLQlQytWy0INrycmJtDb24ve3l7N3yAWi+HRRx9Fb2+vphGkzWZDOByWfxMxdklctst4ElqZmZkZJJNJuQ4Q/3Niure3F319fXKf2Wg0IhAIoLGxEY2NjbjpppsQCoUQDoflusHn85X5U21MFotl3rFPc3Nz6Ovr0/wNenp60Nvbi9OnT+PEiRPo6+vTNLwWIQFiXaCOYWxubtbs0xMVMz4+jmg0Kv/X9N8/sVhMU7tnt9vR2Ngol/nrr79es/xHIhFNiCz9TnV1NQKBAAKBQMltgeHhYc2yr04/++yz6Onp0dQuejweze9eXQc0NTXB4/Gs18ejLWY5oRVi3G1LSwuOHDmiGZPb2Ngoa1G3s4X2B6amppBIJBCLxRCNRuW2WDQaxRNPPIHe3l6k02n5fIvFItfBYjugublZrgNCoRBre4m2sbGxMYyMjGB4eBjZbFZOj4yMIJfLYWhoCMPDwxgaGpKXbDZb8NjIyEjR9zcYDHA4HHC5XHA6nbDb7XA4HHA4HAiFQmhra4PL5ZL3ORwO+Ry32y3vYyAFERERLZfFYoHFYkEgEFjW60dHRwu2fzKZjNxuEpdMJiOn+/v7cebMGWSzWfmaUgEZYgyoy+WC3W7XXNxud8F9YttJvc/pdMLhcPBcDxEREdEi8Gg4ERGV1WKKQ+PxuCwEUQv0Hn30UcRiMU1zK6vVKkMCRJGuKBTz+/0IhUJoaGhgqiYt2tjYWEGDe/W2KEgymUxoampCc3Mzrr76atxxxx2aIIuGhoYyf5LNy+VyweVyYf/+/UUfHx8fl4EEaqHOmTNn8Mgjj2gCcsxmc8lwnJaWFkQiER5U3MJGR0fnXZ7FoGmTyYTm5mY0Nzdj//79uPPOOzXL81YY2L5eFioAB35XcKcvtHvhhRdw/PhxdHV1yWJ8k8mEYDBYNPQiEAhg165dmuaRROUgAl0WCqcQt9PptKaoFEDRdHhRbKoPpxAXn8/HbVwiIiIiolWw3IZvS3nuevwMNSRiNS23+ZqYFvvti32f1WoGp3+MxYVERERERERERLTZiYHCwmYNP5idnUUul5O31WOb+gBeNThX/zp9yK7+GGkul8Ps7CyAwtDdiYkJjI6OlnytGsChf60+lHdkZARTU1NL/TUsSB98W11dDavVKm/X1NTAZDLJ22o4b2VlJZxOZ8nXqqG8+tfqQ3/VMN5ir1XDfvWv1R+nVUN+iYiIiLaSyclJ9Pb2amrj1YvakLa6uhp1dXWyNv73fu/35LSokW9qamKN8BoymUxobW1Fa2tryefk83lNk9uenh55eeKJJxCNRmUTJaPRWLTRvbgdDAbZ6HYbmG89kEgk0N3drdkPVRtTX3fddfiTP/kTzbgZjndbOxUVFfD7/fD7/Thw4EDR50xPTyOZTMrlXm14/fjjjyMajeLy5cvy+Q0NDQWN7sV1c3MzAwi2Af14V/2Yue7ubnmcSj9W7ujRo5rlX0zT2rHb7di3bx/27dtX8jkDAwMFoRe9vb345S9/iYcffhiJREKOYa6pqZHLe7F1Aceabz9zc3Pye0T8H+nDrVKplFwvVFVVwefzIRwOIxgM4qqrrpLhdsFgUPbM4Dbl6jAajXL8+M0331z0OWNjY5oeJ+q+wbPPPouuri55nsBgMCAYDGq++9V1AANHiDaekZERecnlcsjlcpr7RFNlcXtoaAi5XE5zXzab1ZzH1BPn6ooFTrS0tBQ8Ji76kAruSxAREdFmV1NTg5qamhUf75qcnMTw8LDcflNDMUR4mLgttuG6uro0zxMBGvPNqxp2IYLFxKVUgIbdbofZbJbTFosFNpttRZ+XiIiIaKPimQoiItrQTCbTgg2xR0ZGCorC4vE4EokETp06hUQigcHBQfl8g8EgT+j7/X4ZgBEIBNDY2ChDMdTBU7S1qU3V9Re1SEwUiba0tOD222+X0ywQLS+z2TzvemK+YuCOjg7EYjE5kLS6uloG4qhN80URYEtLC9cNG9xyluejR49yeS6jxYZc6ZfhRCKBjo4OnD9/XjOA3e12lwy+aGlpQTgcZtEeLdrQ0BD6+/uRTqcxMDCAgYEBpNNp9Pf3y9vivoGBAU3jAsHhcMDj8aCurk5err/+ejldX1+P+vp6zeP8riEiIiKijWhubk4TMqxvKKZv/KUPXdA381KbiOnfW98YTN+QTP/ealMx/XPVAQL6eV6L8Ad9czF9oy61IZi+eZjdbpf7rKLhl2hGpzYlW+2fIcz3M4iIiIiIiIiIiIjWQmVlpSaUY7MGdJSiHr/WH6PWh2LoG96og6f1r9UfJ1dfqz/mPjU1hZGREXk7l8shlUrJ20NDQ7Lxnv61+mPuo6OjsmHvalNDMQwGgwxKBgqPg6vHugHt/43+tRaLBWazuehr9cfCjUajZjC5/rX6MA59sIc+YER/m4iIiLaGpTSrNpvNmrr2Q4cOaW5z7MLmYLVaF2x4rR/LIv4nHnnkkaJjHtQxLBy3tPlkMhk5nrW7uxvRaFTejkaj6Ovrk8+1Wq2yWXJraysOHz6McDgs72Nj6o3PYDCgsbERjY2NOHToUNHnFPtu6OzsxM9+9jM8+OCD6OrqkscH1CAT/fjFHTt2aMIpaWNKpVJyuRfXXV1d8rZ6bKW+vl4u821tbbj99tvl7XA4jPr6+jJ+ElosMfbr2muvLfr41NQU0ul0wfjl8+fP47HHHtMEm4kwk2LjHltaWhhqtglls9miYRXidjwel7XKIlApHA4jFArhpptuQiQSkaEVIvyE2wYbi8Viwa5du7Br166SzxH7A/px0MePH8eFCxc0dfHz7Q8wBItoccR5srGxMWQyGXlZzH3q7cHBwXnHk5jNZrjdbrjdbnnOyO12o6GhAXv27NHcp3+Oep86voOIiIiIVk4Ex9fV1a34vZaybSnuz2azBfep46WLEbVPYntxNabr6+s1dUtERERE641nM4iIaNOz2WwLFoeOj4+jt7cXyWQSPT09SCaTMgDj+eefx3//93+jr69P01itrq5OFgd4vV6EQiF4vV4EAgH4fD74/X74/f5tXyw6MjKy4RNBRVP0Yo3uz507JwfsiVADUQBw5MgROb1z505NkzfaPKqrqxcMyClVQF6qab6+UEQUju3atUszIHKzmZ2d3fAnxUsV+nZ2duK3v/2tHEQ73/K82f9O281iQq4ymUzR4AsRYKMWfwLa5bhYCIbf75eDpDej6elpVFRUcJCTzuzsrCaMYmBgAKlUSnNbhFiIoAp9QZLVaoXH44HX65VFybt374bH49GEV9TW1sppdTA7EREREW1d+kZO+uZTauOqpQZELPTe8wVELPW95wufWG365k9qsb6+kZQ+gEEf1tDY2FgyrEFtKrVWgRD6xlVERERERERERERERAAKAoQ9Hk+Z5mRtqUEb+tCN+W4v5bmLfe309DQymcyKfq4a9rEW9OcnNtrt1XgPNmkiIqLNrFRDUvU+we12a+rR1XELW6EunRbP7Xajvb0d7e3tRR9Xxy2p/1sdHR1bttGtqGPajAGGpf5enZ2duHTpkqY+S10P7N+/H3feeadmrEpzczPXA9uA2Wyed+xTqVAksR7QB18UC71oaWlBa2trwbGGjWp6ehpVVVWb8v+/1FhTEVRQaqzpy1/+cs3fjUEl24fRaEQgEEAgEFjUtoB60Y99VMfFFlsXbLZgtOHhYUxOTq5Ko8lymJycxMDAQMG4VXFbv12gBtvt2bMHr3jFK+Rtv9+PpqYmTW0ybR2L3R/Qb1t2dHTg4sWLyOVymvcqti8QCASwZ88e/g/RpiPGtAwNDSGfzyOfzyOXy2F4eBj5fB6jo6PIZDLysZGREWSzWYyOjiKfz2NoaEi+dmRkRLP/rGexWGCz2WC32+FyuWC322Gz2WCz2eQypN7ndrvl8202GxwOB5xOJ2w2G4PLiYiIiLYJi8UCi8UCt9uNQCCwovcqFpKh3p5vWuw36u9fzBjv1QjLUG/X1tbCbDav6HdBRGtjenoaU1NT2773LRFtHAy2ICKibcFsNmPHjh3YsWNHyefMzc2hr68P8XgciUQCsVgMyWRSXr/wwgtIpVLo7+/XvM7hcCAQCKChoQHBYBBerxfBYBANDQ2yCNnn823aootifvGLX+DDH/4wnnvuOWQyGTQ0NOCOO+7AP//zP5c9/GF2dhYPPfQQfvzjH6OrqwudnZ2av5koCG1pacHtt9+O97znPfKk/koPLNHmtZKCkc7OTmQyGc17lSoaa2lp2XAF2efPn8f999+Phx9+GLlcDocOHcL73vc+/P7v/365Z02zPIvfeTqdBnClEaW6PB89ehTvfe97NUU6tH2IA+RtbW0ln1NqYMFTTz2FRCKBvr4+WQSuFhAWC76IRCIbMtTpm9/8Ju6//36cOnUK09PTaG1txbvf/W68853v3JKDhCcmJjA4OKhJMU8mk0gkEkXvS6fTmua/wO9OzgQCAbndtm/fPs194v8rGAxumgEARLR57dy5E7fccgu+/OUvl3tWiIhWjT4oQR+koG8UlM/nNQFj8wVEzM7OagZxTE1NyQBTALKAp9TPXsp7LxQQsZoMBoMmkNFkMmkGpNfU1GiK5OcLiDAajZrBsgu9tyg8Wsx760Mi9O+tD4bQvzcREREREREREREREW0NYpA3gA1XI7kSCwWC6wMw9Lf156L076c/L7bQeTT9uS/9+arJyUnk8/mSt/Xn0vTnv9aC/lyTPixcf1t/Hkx/fkkfoKE/16U/P2U0GjW1fvrzWfowc/3tyspKTRNS/fkxYGv9zxMRrcTJkyfxnve8Z97ntLe342tf+9o6zVFpy21WfeTIEU1t+c6dO8s+hoo2j4XGLaVSKUSjUXR3d2uujx8/jq6uLrndV1lZiUAggKamJjQ3NyMSiaCpqQmRSGTe5p7rKZPJ4AMf+AC++c1vYmxsDHa7Hbfddhvuv/9+1NfXl3v2ijaoVtcH0WhUsx2tXw+84Q1v4HqAlmyh4It8Po/u7m55EeuBX/7yl3jooYc042Nra2vlct/U1CQviURivT7OvB599FF87GMfw9mzZ+FwOHD48GG8853vxO/93u+Ve9YAXFkHlAqw6uzsRCwWk/vu1dXVqKur0wRYvf3tb9+UYUNUfvNtC0xPTyMej8vlv6urS04/+eST6O3tlf+XJpNJs/yr2wKiBnqjGBwcxDXXXAOn04mzZ8+We3aKKjV2XNzu7u6WxwOLrRPU7YLNFD5E62+h/YF0Ol2wP9Dd3Y0TJ06gu7tbHtetrKyUISn69cBG2B+YnZ3FddddVzCOFwCamppw4sSJMswVLdXIyAhGR0dlwIQInBgeHkYul5OBE2o4RT6f1zxXfa163kPPZDLBarXC5XLBZrPBarXK23V1dQiHw7Db7XA6naipqYHdbpehFSKcwmazweVyweFwbKrwJyIiIiLaelYzJEOlD8xY6nQymSwI29DXNBUjanSKXatBGCt5zG63w2BgS2yihTz++OP40Ic+hNOnT2N6ehqRSAR33XXXlu0rR0SbB7/FiYiI/n8VFRWyofFCMpmMLErQXz/33HN4/PHH0dPToxn8IwoW1EbJxa4bGxs1A3g2mueffx5HjhyBwWDA61//etTW1uI73/kO/u3f/g2nTp3C008/XdadnLm5OfzqV79Ce3s7brzxRrzuda/ThAqweR4tx0IFI9lsFtFoVFM0Eo1GcerUqYLiUZfLhUgkgkgkohnAWA5jY2P4oz/6I8Tjcbz+9a9HXV0dHnzwQRw9ehSPPfZY2QtGxfJ8/fXX46abbsJf/MVfyGW5ubmZyzMtyULL8cjICHp6etDT04NYLIZYLIZoNIpYLIaf//zniMVimuIZn8+HxsZGeSn38vy1r30Nb3zjG7F79268973vxdjYGB588EEcO3YM2WwWH/vYx8o6f4uhngSZL6BC3FbDSAS3260JoxCBJ+p9YrvL4/Fs6G0uItp+vvKVr+DixYu45ZZbyj0rRLQO9E1oNvrt5bxG39hntalNa/QNbBZ7WzStme/5y33v5dzWN+ohIiIiIiIiIiIiIiKi8lEDEYCtH2AwMzOjaX6mD4Kfm5tDNpvVvCaTyWhuq0HywOqHgQwODq5qGMhacLlcqKiokLf1zbT0YR36sA1AGzYPFJ5HLPYa/c/Vh4boQz6Awv9p/Wv0QSHFgj304SVEtH1VVFSUXB+Mj4/j3Llz2Llz5zrPldbc3Bze8Y534O1vfzuAK+u5cDiMcDiMSCSCo0ePyqag4XB4w4/voq2loaEBDQ0NOHjwYNHHSzVd/sEPfoCLFy8il8vB5XLhwIED6zznWpOTk3j1q1+NZ555Bm9+85vx0pe+FM8++yz+7d/+Db29vXjqqafKOn8vvvgizGaz3Ga1WCxoampCOBxGS0sLbrnlFoTDYbkuCAQCbKhE68JqtaKtrQ1tbW1FH5+YmEA8Hi9ouP7rX/8aDz/8sKbxejl9+9vfxl/8xV+gqakJd999N+LxOL773e/iBz/4AZ599lns3r273LMIr9crp202m2wGvnPnThw5ckRuFzQ1NcHv92v2s4jWisFgkGOOS9GHs4nLk08+ie7uboyOjm64GuS3vOUtSCQSmtDQcvuP//gPfP3rX0csFkM8HpfHnSorK+Hz+eR+wA033CD3FRobGxEKheDz+co897SVeTweeDweXH/99UUfV3ubqOuAxx57DJcuXUI2m90Q+wO9vb148cUXcfXVV6O2tlbzmP42rZw4Hp7JZDA2NoaxsTFks1nN9OjoKMbHx+X02NiYDKcQ0/pwivk4nU4ZPuFwOOBwOFBTUwOr1YqWlhZNOIXb7ZaPiXAK9bVsYEtEREREtDhrFZgxNDSEsbExGVw3Pj4upycmJjAyMiL3O0Q9TyaTwfT0NIaHh+X+iKjtyWazmJ6extDQ0JLqc0StitPphMFggNPplPUqol7G4XDAYDDA5XLJ+hdRfyP2Ldxut6ynEWP3xXMrKys31DEqoqU4efIk/uAP/gAulwtvetObYDQa8f3vfx/Hjh1DOp3GJz/5yXLPIhFtYzy6R0REtAxqo+T5DAwMIJVKIZlMIplMoq+vD4lEAv39/ejp6cFzzz2HRCKhGQQEXClG9Xq9CAaDaGhogN/vh8/ng9/vL2jgvN7uu+8+jI2N4ZlnnsG1114LAPh//+//4ciRIzh58iQefPBB/Nmf/VnZ5q+qqgp//dd/jbe97W1lmwfaflwuF1wuF/bv31/08bGxMU3gRU9PD6LR6DrPZaGPfvSjOHfuHB599FHcdtttAID3vve92L9/P974xjeis7OzrPPH5ZnWk81mw759+7Bv376Sz+nr65OhF2rwxdNPP1327+fPfOYz2LlzJ55XMfGFAAAgAElEQVR55hk4HA4AwAc/+EE0Nzfj/vvv3xDBFk8//TRSqRQGBgYwMDCAdDqN/v5+eVvfOLmmpgb19fXwer3weDyor6/HwYMH4fF4NPfV19fD4/Fs+YHjRLQ19fb24pOf/CSee+45/OpXvyr37BCtK30DE31DkWJNUfRNTPL5/JKaluiLICYnJ5HP5+XtqakpTUipKKwQltO4Za3DHfTNR6qqquT2IICCQotijUb0DU6cTqdm20rfaEXfmETf3ETfVEUf5GAymVBTUyNv65uh6J/PsAciIiIiIiIiIiIiIiKitVdVVVVQg1VXV1emuVkfKz2HvJwwEH1Yh34eir0mlUppzpXrz6/rfy5QGBqiP3++VvTng4udo9Y3LNOfIy7WUEB/3lr/Gv25cqAwIGQ1QkWKBYToz7kTbVeHDx/GL3/5y6KPHTt2DENDQ/jXf/3XdZ4rrYqKCrz5zW/GG9/4Rjarpk3H7Xajvb0d7e3tRR8fHBzEO97xjgWbkK61r371q3j66afx6U9/GnfddReAK02tKyoq8KUvfQnPP/98yWa96yEYDOILX/iCbFzv8XjKNi9ES2EymdDS0oKWlpaij4+NjeEb3/iGDG8qh8nJSdx9992wWq34xS9+IfcD/uEf/gGhUAivfe1rcerUqbLNn/DNb34Te/fuRTgc3vL7vLS1zLctMDs7i0QiMe+4yPX2xS9+EY899tiGa2Q/Pj6O6667DrfddhsaGxsRiUTQ2NiIYDDIUDva0BbqbXL58mW84x3vKBjPst4uXrwIAPj6179esufCdpTL5TA2NobR0VHNdDabxfj4uJwuFk6RyWTk8WARYCGax85HHGOtqamBxWKRoRIWiwUOhwMej0dOOxwO2TDW5XIVhFOIx/THUomIiIiIaHMT+wNrTezH6Pdx9NfzPZZKpRZ83VKImpOlXi/ntepr9DUpRIvxqU99CnNzc3juuefQ2toKAPj7v/97hEIhfOYzn8EnPvEJTU0VEdF6YrAFERHRGhLNlhcKwBgfH8fly5eRTCaRSCTkdSaTQTKZxBNPPIFkMomenp6yF0b87Gc/w7XXXitDLYQ3velNOHnyJJ599tmyBlsQbUQWiwV79+7F3r17NfeXO8X1K1/5Cq655hoZagFcCdZ51ateha997Wt45plncMMNN5RxDok2Fp/PB5/PhwMHDhQ8Vs7lOZfL4fTp0zh27JjmhEEgEMDhw4fxox/9CFNTU2XfhnjiiSfw5JNPyu2jxsZGtLe3FwRUeL1e1NfXawa3EhFtVcPDwzh//jycTicOHDiA5557rtyzROtI3zRiodur9Zy1et/l/uy1oG9gsdzbBoNBNm5Zrfdcrdv6MAkiIiIiIiIiIiIiIiIiIloak8mkCS3Yjtar7mClrxEBIqvxc4aHhzVBIWtpoXP/K7lvvV+3kvdic4bt7bHHHsMXvvAF/O///i98Pl+5ZwcHDhzATTfdVO7ZIFp1dXV1cDgcZQ+2+MY3vgGv14tjx45p7v/IRz6CQ4cOlT1Ioq6uDn/8x39c1nkgWgsWiwXhcLis83D27FnE43H8+Z//uSbczuv14pWvfCVOnDiBXC5X9vGUf/iHf1j2eSBabZWVlQiFQhsmtO3MmTO466678I//+I/48pe/jNnZ2XLPkvTOd74Tb3vb28o9G0Srrra2Fna7vezBFhcuXEBFRQV27dpV1vlYrmJBEiud1gcQF2M2m+F2u2XjU3Xa7/cXvX+haYbxEhERERHRRmGxWGCxWOB2uxEIBNbkZ8zOziKXy2FychL5fB6jo6OYmJjAxMQERkdHMTU1hZGREfk8AMhms5ibm5P7bfl8HpOTk7LGZHJyEplMBtPT0xgeHsbc3Jw8D5fL5TA7O7us+hObzQaj0YiamhpZt1RTUyMDCgHIfTzgd/UWRqMRNpsNgLbPhOiFId4HAOx2OwwGA6qqqmQvsoXekzauWCyGUCgkQy2AK3/jgwcP4qc//SnGx8dhtVrLOIdEtJ0x2IKIiGgDMJvNCAQCCAQCaG9vL/m8mZkZ1NbWruOcaU1NTeFVr3oVDh48WPBYLBYDgLLOHxEt3sDAADKZDN70pjcVPCYKRp5//nkGWxBtAgaDAT/96U/R0tKiuT+Xy+HFF1/EK1/5yrKHWgDA3XffzcJPIiKdvXv34ic/+QkA4OLFi9i5c2eZ52jtiJPAKnGyV9A3ElBPDAsjIyOYmpqSt8VJZJU4ESyIomBBPWksiBPNwszMjGyKIOhPLC/nM60lh8OBqqoqeVs9+SyIE9OCOOEtqCenBXHiWry2urq64MSmvuBZPbENQHMiXRAn3YViJ771n0k/v8WaIRAREREREREREREREREREdHiiAYCKn1twVYlGhgIxepU9LUi+hqUYvUl+ucUex8ABY0Gi9XAiGYLKn0zvGLzrf9sQGFtDFBY57LWitWcqA0XBH0dSrF6lmI1I/paFKDw/7lYfYq+zgUorFkpVvuymp9nqxocHMSb3/xmvOY1r8Hhw4fLPTtEtA4uXLiA2267DdXV1ejs7MTp06cRDAaxf/9+vOENbyj37BHRGkokEgBQdOzxwYMHceLECZw5c4YBU0Rb3Pj4OF73utfhZS97Gd7znvfgy1/+crlniYjW0cWLFxEOhzEyMoKTJ08ilUph7969uOGGGzTHWcolGo3i8OHDGBoawsjICMbGxjA8PFwwVq0Ym80Gi8UCu92umbbb7bJB6+7du2GxWGCz2eBwOGCxWGC1WjXTTqcTZrNZTjMMloiIiIiIaOUqKyvLWusiajtEvYio/1BrSkSNiKj5EPuioh+JWjMi6jvm5ubQ3d0NQFsHImpQ1PdfaV8TUetQUVEhw6uLhWUA2hoLg8EAu90u30etj1DrJ9T6CvVn6N9brQXR11ao+9HFaji2qjvvvBOf+cxn8Oijj+LVr341AODcuXP48Y9/jCNHjjDUgojKisEWREREm0i5T9gajUZ8/vOfL7i/v78f999/P4xGI26//fYyzBkRLdW5c+cAAH6/v+Cx3bt3A7iybBPRxme1WnHo0CF5+95770U0GsWJEycwMzODD3/4w2WcOyIi2szm5uZwzz334Etf+pLmfv2g+cWEQKyVxQQm6E+GAguHQFRVVRWERi0lBEJYzxAIIiIiIiIiIiIiIiIiIiIiIlock8mkqQMBgLq6ujLNzcYwPT2N4eFhzX2bKaijt7dXE9Sxmp9nrRUL6tDXIQELB3Xof7/l9q53vQvZbBb/8A//UO5ZIaJ1MDIygmQyiYaGBhw9ehTHjx+Xj+3Zswf/+Z//iRtvvLGMc0hEa6m1tRUA8KMf/Qh33XWX5rGzZ88CAIMtiLaBu+++G4lEAj/84Q81YyaIaHu4ePEihoaG0NTUpDmW097ejq9//evYu3dvGefuyvHA3bt3w+l0oqamBhaLBU6nE1arFWazWU5bLBY4HA7YbDaYzeZtE1BKREREREREy1NTU6PpVVJu2WwWc3NzJcMystksAG0thqjdKBWWId5TfS/gSh1IOp0GAM17A9paDLVWo1h/mtWgr6fQB0rqazDU4A2gsG6juroap0+fhtfrXfV5XYpjx47h5MmTuP3223HTTTfBbDbjxz/+MQKBAP72b/+2rPNGRMRgCyIiIlqR48eP4y1veQvS6TTuvfdeXH311eWeJSJahIsXLwIAamtrCx6LRCIAoDlIRESbx0c/+lF50Litra1goBsREdFSeL1eHDx4cN4QCKDwJN96hUAQEREREREREREREREREREREdHKGQyGghoguqIcQR1qYwhgcUEdTz311BI+1do6c+YMvvvd7+IjH/kIwuFwuWeHiNaBGKf02c9+Fjt27MDnP/953HTTTXjqqafwwQ9+EHfccQd+/etfl735CxGtjZ07d+L666/HyZMn8cADD+A1r3kNZmdn8Y1vfAPf+973AECznUREW8/x48dx33334b/+67/g9/vLPTtEVAYXL17E8PAw/vZv/xZ33nkn0uk0vvrVr+Lf//3fcccdd+DUqVMF48bWk8/nwxe/+MWy/XwiIiIiIiKi9eByueT0/8fenUZZWV5pA76rBBQRcY5GI4kaBhUjGAcERAXnMWrUREUx0NHVccgcx9ZOO8Woiaa1HeLAHMUhgAOIQhBagyIqEEGNina00SiC4FBA1fcjn3QIFQWsqrfOOde1lmvpOSy468d+kv24fXYp/Hu5BQsWpLa2NsmKcxj/OKcxf/785X9fU1OTxYsXL//nf1yW8Y9LNpKVZzD+cb7jH+c2FixYsMKfUZQNNtgg7du3zzPPPJMnn3wyLVu2TG1tbVq0aLHSDAlAU7PYAgBYI3/+85/z/e9/P6NHj852222XoUOHpm/fvkXHAlbRJ48Mv/vuuyt998lliv8wCUrT4sWL8+KLL2by5Mk599xzs/vuu+e1117L5ptvXnQ0AEpMVVVVTjzxxAwcOLDoKAAAAAAAAAAAAIVo2bLlSrP1zXHWfsSIEUVHWO4Xv/hFWrVqlR/84AdFRwGayCf/fdLHH3+ckSNHplOnTkmSbt26Zd68ebnkkksyYsSInHnmmUXGBBpJdXV1br311hx22GEZOHBgzjrrrNTW1qa2tjYDBw7MjTfemB122KHomEAjefPNN9O/f/8MGDAg3/jGN4qOAxTk9ttvz9prr50dd9wxyd8WX+25555p165drrzyytxzzz056aSTCk4JAAAANCft2rVb/vfNbQ5jwIABee211wrN0KtXr8yYMSPXX399jj/++Kyzzjp58MEHM3DgwBxyyCGZNWtWvvzlLxeaEahc1UUHAABKz5AhQ7Lzzjtn4sSJ+cUvfpGZM2daagEl5pMH7l9++eWVvvtkmHzTTTdt0kzAmqmrq1u+dfgTX/3qV9O/f/9cfvnlWbJkSR544IGC0gEAAAAAAAAAAAAAleK1117LsGHDcuSRR2ajjTYqOg7QRLbccsskyR577LF8qcUnDjvssCTJ888/3+S5gKbTpUuXzJgxI7fccktOO+20/PznP8/UqVPTuXPnJLHYAsrYDTfckL/+9a9ZsGBB+vfvv/yvv/zlL3njjTfSv3//XHbZZUXHBBrZLrvssnypxd87+OCDkyQzZ85s6kgAAAAAJev555/PjBkzsvfee+f000/PhhtumNatW+eoo47KKaeckg8++CD33HNP0TGBCtai6AAAQGkZM2ZM+vXrl+7du2f48OHZeuuti44ErIEOHTqkqqqq3sUWzz77bJJk9913b+pYwBq4/PLLc+655+b+++9fPuD1iU022SRJ8vrrrxcRDQAAAAAAAAAAAACoIDfddFOWLl2a73znO0VHAZrQJ/+N4ZIlS1b67sMPP0yStGvXrkkzAU2npqYmr7zySjbZZJOV/j/A5Zdfni222MLCKyhjm266aXbeeee8+OKLK3z+8ccfp7a2Ns8880yqq6sLSgc0hddffz1Tp07NrrvuutL7I5+8ZbDZZpsVEQ0AAACgJD333HNJkt69e6/03X777Zerr7468+fPb+pYAMv5Nz8AwGo599xz065du4wcOdJSCyhhX/ziF7PXXntl0qRJ+fOf/7z88yVLlmTYsGHZcssts8suuxSYEFhVXbp0SZI8/PDDK3138803J0m+9rWvNWkmAAAAAAAAAAAAAKDyjBs3LhtttFH69OlTdBSgCbVu3Tr77rtvpk2bttKj1vfdd1+SZM899ywiGtAEPvjgg3Tq1ClnnHHGCp//z//8T+6+++4cfvjhBSUDmsIZZ5yR6dOnr/RX586ds80222T69On57W9/W3RMoBG9++67OeaYY3LJJZes9N3vfve7JEmvXr2aOhYAAABAydp+++2TJCNHjlzpuzvvvDPJ/709B1CEFkUHAABKx/z58zNz5sx07do1V111Vb2/Zu+9986hhx7axMmANXHuuefmkEMOybHHHpvzzjsvG264Ya644oq8/PLLGTNmTKqqqoqOCKyCgw8+OF26dMl1112XDTbYIAcccED+8pe/5K677sro0aOz6667+t9mAAAAAAAAAAAAAKBRzZ8/P9OmTcthhx2W6urqouMATezyyy/P7rvvnmOPPTaXXnppvvSlL+XRRx/NjTfemJ49e3rYHsrYBhtskH333TcjR45M3759841vfCMvvfRS/uVf/iVbbbVVrrzyyqIjAgCNaKeddkr37t1z8803Z+ONN85RRx2V2traDBkyJOPGjcvRRx+d3XbbreiYAAAAACVjhx12yP77759x48blwAMPzIknnpgvf/nLuffeezN8+PDssMMOOfLII4uOCVQwiy0AgFU2ZcqU1NXV5emnn87TTz9d76+pqqryeDaUiP333z+DBw/OgAEDcvTRRyf52xDp1VdfnYMOOqjgdMCqqq6uzn333ZcTTzwxF110US666KLl3x111FG59tpr06KF9h8AAAAAAAAAAAAAaDwTJkxIbW1tunfvXnQUoAC77rpr7r///vTv3z8HH3zw8s8PP/zw3HbbbQUmA5rCrbfemm9961v5zne+k+985ztJkm7dumXYsGFp27ZtwekAgMZUVVWV++67LwMGDMhll12Wyy67bPl3p59+eq666qoC0wEAAACUnurq6gwfPjxnnHFGhg8fnrFjxy7/bq+99sqtt96aVq1aFZgQqHRetgQAVtmhhx6aurq6omMADej444/PMccck6eeeiq1tbXZfffds9ZaaxUdC1hN22yzTSZPnpxXXnkls2fPTuvWrdOxY8dsueWWRUcDYBVtt912+i0AAAAAAAAAAABK1lFHHWUODircQQcdlNdffz0zZ87M22+/nS5dumSLLbYoOhbQBNq3b58pU6ZkxowZefnll9OtW7dsvfXWRccCCjRt2rSiIwBNaLPNNsuoUaMyd+7czJkzJxtssEE6d+5swRUAAADAGtpoo40ydOjQXHHFFZk1a1Y+/PDDdOrUKR07dkxVVVXR8YAKZ7EFAABUuBYtWmSPPfYoOgbwOVVXV2fbbbfNtttuW3QUAAAAAAAAAAAAAACgArVs2TJdu3YtOgZQgKqqquy0007Zaaedio4CABSkffv2ad++fdExAAAAAMrGVlttla222qroGAArqC46AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM2TxRYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUy2ILAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6mWxBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPWy2AIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB6WWwBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAvSy2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoF4WWwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAviy0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACol8UWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1MtiCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOplsQUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD1stgCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAellsAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQL0stgAAPpelS5cWHQFoIOoZyod6BihNzm8AAAAAAAAAAADKgXk4wDkAlc0ZAJXNGQA4BwAAAAAalvsWoDmx2AIA+FyuvPLKfPjhh0XHABqAeobyoZ4BSpPzGwAAAAAAAAAAgHJgHg4q29NPP53777+/6BhAgS699NKiIwAF0g9AZdMPAAAAADQs9y1Ac1NVV1dXV3QIAGDVtWvXLrW1tVlnnXWKjpIkmT9/ftZdd92svfbaRUdJkrzzzju58cYbM3DgwKKjwGdSz59OPVNK1POnU89Ac+X8/nTObwAAAAAAAAAAgNJgHu7TmYej3A0YMCCDBg1Ku3btio6SJFm8eHFqa2vTtm3boqMkSRYtWpRevXpl3LhxRUeBRjF27NgceOCB2XjjjVNVVVV0nCxdujQLFizIRhtt1CzyLFmyJAsWLMh7773XbM5JaGj6gU+nH6Dc6Qc+nX4AAAAAWF3uWz6d+xagRdEBAIDVc9VVV+Xjjz8uOkaS5OWXX87VV1+dbbbZplkNcvTo0aPoCLBK1PNnU8+UCvX82dQz0Bw5vz+b8xsAAAAAAAAAAKD5Mw/32czDUc5OOOGEdO3ategYSZK6urqcf/75Wbx4cc4555xm86D11ltvXXQEaDTbb799fvOb3xQdY7m77747EyZMyBFHHJFu3boVHWe51q1bFx0BGo1+4LPpByhn+oHPph8AAAAAVof7ls/mvgUqW1VdXV1d0SEAgNJ05pln5rrrrkvLli3z9ttvN5uNgsDqU89QPtQzQGlyfgMAAAAAAAAAAFAOzMNBZZs0aVJ69+6dqqqqDBo0KCeeeGLRkYAmVFtbm8033zxvv/12Dj300IwePbroSEAT0w9AZdMPAAAAADQs9y1Ac1RddAAAoDQtW7YsQ4cOTfK3QbN777234ETAmlLPUD7UM0Bpcn4DAAAAAAAAAABQDszDAcOGDUurVq1SXV2dIUOGFB0HaGITJkzI22+/nSR56KGH8u677xacCGhK+gFAPwAAAADQsNy3AM2RxRYAwBoZP378CgNlgwcPLjAN8HmoZygf6hmgNDm/AQAAAAAAAAAAKAfm4aCyLVmyJCNGjEhNTU2WLVuW8ePH56233io6FtCEhg0blpYtWyZJ6urqcs899xScCGhK+gGobPoBAAAAgIblvgVoriy2AADWyN8Ply1btiwTJ07MvHnzCk4FrAn1DOVDPQOUJuc3AAAAAAAAAAAA5cA8HFS2cePGZcGCBcv/uaqqyqP2UEFqampy1113ZcmSJUn+tthi0KBBBacCmpJ+ACqbfgAAAACgYblvAZoriy0AgNX20Ucf5e67714+XJYk1dXVufPOOwtMBawJ9QzlQz0DlCbnNwAAAAAAAAAAAOXAPBzw949ZJ0ltba1H7aGCPPDAA1m0aNHyf66trc3kyZPzl7/8pcBUQFPRDwD6AQAAAICG5b4FaK4stgAAVtuYMWPywQcfrPDZsmXLNDlQgtQzlA/1DFCanN8AAAAAAAAAAACUA/NwUNk++OCD3HvvvSs8Zl1bW5snnngir776anHBgCYzdOjQtGjRYoXP1lprLY/aQ4XQD0Bl0w8AAAAANCz3LUBzZrEFALDahgwZkrXWWmuFz+rq6jJt2rS88sorBaUC1oR6hvKhngFKk/MbAAAAAAAAAACAcmAeDirbqFGj8tFHH630eYsWLXLXXXcVkAhoSosXL86YMWNWeFwp+duj9nfccUdBqYCmpB+AyqYfAAAAAGhY7luA5sxiCwBgtSxcuDAPPvhgli5dutJ3LVq0yIgRIwpIBawJ9QzlQz0DlCbnNwAAAAAAAAAAAOXAPBwwZMiQVFev/HTBkiVLPGoPFeDee+9NTU3NSp/X1dXl2WefzQsvvFBAKqCp6AcA/QAAAABAw3LfAjRnFlsAAKvlnnvuqXeoJPlbk3Pbbbc1cSJgTalnKB/qGaA0Ob8BAAAAAAAAAAAoB+bhoLLNnz8/48aNy7Jly+r9ftasWfnTn/7UxKmApjRkyJBUVVXV+12rVq3yu9/9rokTAU1JPwCVTT8AAAAA0LDctwDNncUWAMBqGTx48D8dLkuSF198MTNnzmzCRMCaUs9QPtQzQGlyfgMAAAAAAAAAAFAOzMNBZRs5cuQ/fVQlSVq2bOlReyhjf/3rXzN+/Ph/eg7U1NTk9ttvb9pQQJPSD0Bl0w8AAAAANCz3LUBzZ7EFALDK3nrrrfzhD3/41CanVatWGT58eBOmAtaEeobyoZ4BSpPzGwAAAAAAAAAAgHJgHg4YPHjwp36/ZMmS3Hbbbamrq2uiREBTuuuuuz7z17z88suZPn16E6QBmpp+ANAPAAAAADQs9y1Ac2exBQCwyu68885PHSpJkpqamtxxxx2aHGjm1DOUD/UMUJqc3wAAAAAAAAAAAJQD83BQ2d54441Mnjw5tbW1n/rrXn/99Tz11FNNlApoSkOGDPnMM6Cqqsqj9lCm9ANQ2fQDAAAAAA3LfQtQCloUHQAAKB2zZs1Kly5dVhgaeeutt9K2bdu0bt16+WctW7bMiy++mA4dOhQRE1gF6hnKh3oGKE3ObwAAAAAAAAAAAMqBeTiobI8//nh22mmnFR60XrhwYZYtW5YNN9xw+WfV1dWZOnVqdt111yJiAo3kvffey8cff5wddthh+Wc1NTWZP39+Nttss1RVVS3//MUXXywiItDI9ANQ2fQDAAAAAA3LfQtQCqrqrDMHAD6HDTbYIFdeeWUGDhxYdBTgc1LPUD7UM0Bpcn4DAAAAAAAAAABQDszDQWUbOHBgXnvttYwdO7boKEABxo4dmwMPPDDvvfde2rVrV3QcoAD6Aahs+gEAAACAhuW+BWhuqosOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPNksQUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD1stgCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAellsAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQL0stgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBeFlsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQL4stAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqJfFFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANTLYgsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqZbEFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9bLYAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgHpZbAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEC9LLYAAAAAAAAAAI+IGfMAACAASURBVAAAAAAAAAAAAAAAAAAAAACgXhZbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUC+LLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKiXxRYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUy2ILAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6mWxBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPWy2AIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB6WWwBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAvSy2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoF4WWwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAviy0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACol8UWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1MtiCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOplsQUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD1stgCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAellsAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQL0stgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBeFlsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQL4stAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqJfFFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANSrqq6urq7oEABA8/b6669nzpw5mTt3bhYtWpTFixdn4cKFWbhwYSZOnJivfvWr2W677dKmTZu0adMmG264YTbccMN06NAhHTt2zDrrrFP0jwD8f+oZyod6BihNzm8AAAAAAAAAAADKgXk4qGzvvfdeXnjhhcyZMyfvv/9+3n///SxYsCCLFy/Os88+m48++ii77rrr8vpv06ZN2rZtm+222y6dOnXKxhtvXPSPAHwONTU1eemllzJnzpy8/fbby+t/8eLFmTt3bp599tn06tUrm2yySdZbb720adMm6623Xrbeeut06NAh7du3T3V1ddE/BvA56AegsukHAAAAABqW+xaglFhsAQAst2zZskybNi0TJ07M9OnTlzc2ixcvTpK0bds2bdu2TZs2bbL++utn/fXXT+vWrVNTU5P3339/+dDZe++9l4ULF2bZsmWprq5O+/bt06FDh2y//fbp2bNnevfurfGBRqaeoXyoZ4DS5PwGAAAAAAAAAACgHJiHA1599dVMmDAhTzzxRObMmZPZs2dn3rx5SZK11147bdu2XV7/nzxeXV1dvUL9L1q0KO+//34+/PDDJMnGG2+cjh07plOnTtl1112zzz77pGPHjkX+mMA/sXDhwkyaNCmPPfZYZs2alTlz5uTVV1/N0qVLU1VVlQ022CDt2rXLuuuumzZt2qRdu3Zp1apVPv744+X1//cP3ifJOuuss/xx+y5dumSfffbJbrvtllatWhX80wL/SD8A6AcAAAAAGpb7FqDUWWwBABVu1qxZGTduXB599NFMmjQpCxcuzOabb57ddtstHTt2XP5Xp06dsskmm6zy71tTU5MXX3wxc+bMWT6gMmPGjDzzzDOpq6vLTjvtlH322Sd9+vRJnz59ss466zTiTwmVQT1D+VDPAKXJ+Q0AAAAAAAAAAEA5MA8Hle2dd97Jgw8+mAkTJmTChAl55ZVX0rp16+y2227p3Lnz8vrv0KFD2rdvn7XWWmuVft+6urq8/vrry8+A2bNnZ86cOXniiSfy/vvv54tf/GL23Xff7LPPPjnooIOyxRZbNPJPCtRn6dKlmTBhQh599NFMmDAh06ZNy7Jly7LjjjumS5cu6dy58/KlFB06dEjr1q1X+feeP3/+CvX/wgsv5KmnnsrcuXPTpk2b9OjRI/vss0/222+/7LLLLo34UwKfRj8AlU0/AAAAANCw3LcA5cZiCwCoQO+++25GjhyZQYMGZcqUKWnbtm1233339O3bN3379k23bt1SVVXVKH/2okWL8sQTT2T8+PEZP358pk+fnrZt2+bwww9Pv3790qdPn0b7s6EcqWcoH+oZoDQ5vwEAAAAAAAAAACgH5uGgstXU1GTs2LEZPHhwfv/736e2tjZf+9rXlp8BPXv2bLTHpZctW5Znnnkm48ePz+TJkzNp0qQsWrQo3bt3T79+/fLtb3876623XqP82cD/mTVrVgYPHpzbb7898+bNyzbbbJO+ffumR48e6dOnT7bccstG+7PfeOONTJkyJePHj8+DDz6Y119/PZ06dcpxxx2Xfv36ZZtttmm0Pxv4G/0AVDb9AAAAAEDDct8ClDOLLQCgQtTW1mbUqFG55ZZbMnbs2LRp0ybHHHNM+vXrl549e6a6urqQXG+88UaGDx+eQYMG5bnnnsu2226bk046Kaeddlq+8IUvFJIJmjv1DOVDPQOUJuc3AAAAAAAAAAAA5cA8HPCnP/0p119/fUaMGJH58+dn3333zUknnZSjjjqqsMdMPvroo4wZMyaDBg3KQw89lHXWWSdHH310Tj/99Oy2226FZIJytWDBgtx888254447MnPmzHz1q1/NSSedlBNPPDFf+cpXCss1derUDBkyJMOHD8+7776b3r1759RTT81xxx2Xli1bFpYLyo1+ANAPAAAAADQs9y1AJbDYAgDK3NKlSzNixIhcdtllmT17dg488MCcdNJJOeKII9K6deui463gueeey6BBgzJkyJAsXLgwAwYMyI9//ON86UtfKjoaNAvqGcqHegYoTc5vAAAAAAAAAAAAyoF5OGDatGm59NJLc99996VDhw455ZRTcsIJJ2SrrbYqOtoK3n777YwYMSJ33HFHpk2blv322y/nnXdeevfuXXQ0KGlvv/12fv3rX+c3v/lNqqqq8q1vfSsnnXRSunfvXnS0FSxZsiQPPvhgBg8enN///vfZcsst85Of/CSnnnpq1l577aLjQcnSDwD6AQAAAICG5b4FqCQWWwBAmaqpqcntt9+eK664Iq+99lq+9a1v5Zxzzknnzp2LjvaZPvzww/z2t7/NlVdemf/93/9Nv3798rOf/Szbbrtt0dGgEOoZyod6BihNzm8AAAAAAAAAAADKgXk4YPLkybnkkkvy0EMP5etf/3rOO++8HHHEEamqqio62md65JFHcskll2TChAnp0aNHzjvvvBx00EFFx4KS8sYbb+TKK6/MzTffnHXXXTdnn312vve972X99dcvOtpnmjt3bn7xi1/k1ltvzUYbbZQf/vCHOe2007LuuusWHQ1Khn4A0A8AAAAANCz3LUAlqi46AADQ8P7whz+kW7duOeOMM9KjR4/MmjUrgwYNKomhkiRp3bp1vve97+Wll17KzTffnMceeyydO3fOWWedlUWLFhUdD5qUeobyoZ4BSpPzGwAAAAAAAAAAgHJgHg4q25tvvpl+/fqlV69eef/99zNq1KhMnTo1Rx55ZEk8qpIkffr0yaOPPpopU6Zkww03zCGHHJJ99903zz//fNHRoNlbunRpfv3rX6dTp04ZPnx4Lrjggrz66qs599xzS2KpRZK0b98+//mf/5m5c+dm4MCB+fd///d06NAhgwYNKjoalAT9AFQ2/QAAAABAw3LfAlQyiy0AoIy8+eabOeGEE7L33ntn2223zZw5czJo0KB06NCh6GhrpGXLlunXr19mzpyZX/7yl7njjjvSpUuXjBo1quho0OjUM5QP9QxQmpzfAAAAAAAAAAAAlAPzcFDZli5dmmuuuSYdO3bMlClTMmbMmEyePDmHHXZYyTyo8o/23HPPjB49OpMmTco777yTbt265d/+7d/y4YcfFh0NmqVJkyZl5513zjnnnJMf/ehHefXVV/PTn/406667btHR1shmm22Wiy66KHPmzMm+++6bU045JYccckhefvnloqNBs6QfgMqmHwAAAABoWO5bACy2AICyUFdXl+uvvz6dO3fOf//3f2fUqFH5/e9/ny9/+ctFR2sQLVq0yJlnnpnnn38+e+65Z4444ogcfvjheeONN4qOBg1OPUP5UM8Apcn5DQAAAAAAAAAAQDkwDwc8+eST2WWXXXLOOefk+9//fmbOnJlDDjmk6FgNpmfPnpk2bVouvfTSXHPNNdlxxx0zfvz4omNBszF//vycfPLJ2XvvvdO+ffvMnDkzF154YdZZZ52iozWIL3zhCxk0aFAmTJiQuXPnZscdd8x//Md/ZNmyZUVHg2ZBPwDoBwAAAAAalvsWgL+x2AIAStz8+fNz1FFH5ayzzsq//uu/ZtasWTnssMOKjtUotthiiwwdOjSPPvpo5syZk65du2bs2LFFx4IGo57VM+VDPatnoDQ5v53fAAAAAAAAAAAA5cA8nHk4KltdXV1+9atfpWfPntl0000zY8aMXHzxxWndunXR0RpcixYt8v3vfz+zZ89Ot27dcsABB+T888/P0qVLi44GhZo6dWq6deuWRx55JHfffXfuv//+bLPNNkXHahS9e/fO9OnTc/HFF+fSSy9Nnz59PGxPxdMP6AeobPoB/QAAAADQsNy3uG8BVlRVV1dXV3QIAGDNPPXUUznuuOPy8ccfZ/jw4enVq1fRkZrMokWLctppp2XYsGE544wz8stf/jItW7YsOhasMfWsnikf6lk9A6XJ+e38BgAAAAAAAAAAKAfm4czDUdkWLFiQgQMH5p577sn555+fCy+8MNXV1UXHajKDBg3K6aefnq9//esZNmxYttxyy6IjQZOqq6vLtddem5/85Cfp1atXhgwZks0337zoWE3mT3/6U4499tjMmzcvgwYNykEHHVR0JGhy+gH9AJVNP6AfAAAAABqW+xb3LcDKKucUBIAyc80112TPPfdMx44d88wzz1TUUEmSrLfeehkyZEhuuumm3HzzzenTp0/efPPNomPBGlHP6pnyoZ7VM1CanN/ObwAAAAAAAAAAgHJgHs48HJXtySefzNe+9rU8/vjjmThxYi666KKKelQlSfr165fHH3888+bNS9euXTNu3LiiI0GTWbBgQY488sj86Ec/ysUXX5yHH364opZaJMn222+fJ554IgcccEAOPfTQnHfeeamtrS06FjQZ/YB+gMqmH9APAAAAAA3LfYv7FqB+lXUSAkAZqK2tzZlnnpkf//jH+fnPf577778/m2yySdGxCjNgwID88Y9/zLx587LnnnvmhRdeKDoSrDL1vCL1TClTzytSz0CpcH6vyPkNAAAAAAAAAABQmszDrcg8HJXowQcfzD777JPOnTtn+vTp6dmzZ9GRCrPTTjvlqaeeSt++fXPIIYdk0KBBRUeCRvfmm2+md+/emTZtWiZOnJif/exnqaqqKjpWIT552P7GG2/MVVddlW9/+9upqakpOhY0Kv3AivQDVCL9wP/RDwAAAAANwX3L/3HfAvwjiy0AoITU1NTkhBNOyI033phhw4blpz/9acUOlv29Ll265PHHH88Xv/jFdO/ePY8//njRkeAzqef6qWdKkXqun3oGmjvnd/2c3wAAAAAAAAAAAKXFPFz9zMNRSYYOHZojjjgiRx99dEaNGlXRD1l/Yr311svQoUNz3nnn5ZRTTslFF11UdCRoNK+88kr22muvLFq0KH/4wx/So0ePoiM1CwMGDMhDDz2Uhx56KAceeGAWLlxYdCRoFPqB+ukHqCT6gZXpBwAAAIDPw33Lyty3AH/PYgsAKBGLFy/OEUcckTFjxmT06NE59thji47UrGy00UYZN25cdt999+y333556KGHio4E/5R6/nTqmVKinj+degaaK+f3p3N+AwAAAAAAAAAAlAbzcJ/OPByV4Nprr02/fv1y+umn5/bbb0/Lli2LjtRsVFVV5aKLLsqvf/3r/PznP89ZZ52V2traomNBg5o2bVr22GOPbLjhhnn88cez7bbbFh2pWdl7770zefLkvPDCC9l3333z1ltvFR0JGpR+4NPpB6gE+oF/Tj8AAAAArAn3Lf+c+xbgE1V1dXV1RYcAAD7d4sWLs99+++WVV17JAw88kK5duxYdqdlasmRJ+vfvn7vuuiv33XdfDjrooKIjwQrU86pTzzR36nnVqWegOXF+rzrnNwAAAAAAAAAAQPNlHm7VmYejXF1yySW54IILcvXVV+fss88uOk6zNmzYsPTv3z+nnnpqbrjhhqLjQIN46qmn0qdPn3Tv3j0jR47MeuutV3SkZuvll1/OAQcckLXWWiuPPfZYNt1006IjweemH1h1+gHKlX5g1ekHAAAAgFXhvmXVuW+Bytai6AAAwKdbsmRJvvnNb+all17KY489lo4dOxYdqVlr2bJlBg8enBYtWuSb3/xmHnnkkey+++5Fx4Ik6nl1qWeaM/W8etQz0Fw4v1eP8xsAAAAAAAAAAKB5Mg+3eszDUY5uuummXHDBBbn++utz2mmnFR2n2fv2t7+dddddN8ccc0w222yzXHzxxUVHgs/lhRdeyMEHH5wePXrkvvvuS6tWrYqO1Kxts802mTRpUnr27JmDDz44EyZMsAiEkqYfWD36AcqRfmD16AcAAACAz+K+ZfW4b4HKVlVXV1dXdAgAoH51dXU59dRTc+edd2b8+PHp3r170ZFKxrJly/LNb34zkyZNymOPPZbOnTsXHYkKp57XnHqmuVHPa049A0Vyfq855zcAAAAAAAAAAEDzYR5uzZmHo1yMGjUqRx99dC688MJccMEFRccpKYMHD87JJ5+ca665JmeddVbRcWCNvPHGG+nRo0c222yzPPLIIxY0rIY///nP6dmzZ7bffvs88MADWXvttYuOBKtNP7Dm9AOUC/3AmtMPAAAAAPVx37Lm3LdAZbLYAgCasR/+8Ie57rrrMnr06BxwwAFFxyk5H374Yfbff/+8+uqrmTJlSrbeeuuiI1HB1PPno55pTtTz56OegaI4vz8f5zcAAAAAAAAAAEDzYB7u8zEPR6mbOHFiDjrooJxyyim54YYbio5Tki655JJceOGFGT58eI499tii48BqWbBgQfbee+8sXrw4kydPzmabbVZ0pJLz3HPPpXfv3jnwwAMzdOjQVFdXFx0JVot+4PPRD1Dq9AOfn34AAAAA+HvuWz4/9y1QeSy2AIBm6pZbbsl3v/vdDB06NMcff3zRcUrWu+++m169eqV169aZMmVK1l577aIjUYHUc8NQzzQH6rlhqGegqTm/G4bzGwAAAAAAAAAAoFjm4RqGeThK1dy5c9O1a9f07ds3I0aM8Bj753DmmWfm5ptvzuOPP56dd9656DiwSmpra3PIIYdk5syZHmP/nB555JEcfPDBOe+883LhhRcWHQdWmX6gYegHKFX6gYajHwAAAAAS9y0NyX0LVBaLLQCgGZo1a1Z22223nHXWWbn00kuLjlPyXnrppeyyyy45+eSTc+211xYdhwqjnhuWeqZI6rlhqWegqTi/G5bzGwAAAAAAAAAAoBjm4RqWeThKzdKlS9O7d+8sWLAgU6dOzbrrrlt0pJJWW1ub/fffP3Pnzs20adOy/vrrFx0JPtPll1+eCy+8MBMnTsyee+5ZdJySd9111+Xss8/O2LFj07dv36LjwGfSDzQs/QClRj/QsPQDAAAAgPuWhuW+BSqLxRYA0MwsXrw4u+22W9Zff/1MmjQpLVu2LDpSWbjzzjtz/PHHZ+TIkTnqqKOKjkOFUM+NQz1TBPXcONQz0Nic343D+Q0AAAAAAAAAANC0zMM1DvNwlJIf/ehH+a//+q9MnTo122+/fdFxysK8efOy8847Z6+99srvfve7ouPAp/rjH/+YXr165fLLL88PfvCDouOUjWOOOSaTJ0/OM888k80337zoOPBP6Qcah36AUqIfaHj6AQAAAKhs7lsanvsWqBwWWwBAM3PKKadk9OjRefrpp9O+ffui45SV7373u7nzzjvz9NNP5ytf+UrRcagA6rnxqGeamnpuPOoZaEzO78bj/AYAAAAAAAAAAGg65uEaj3k4SsEDDzyQQw89NLfddltOPvnkouOUlQkTJmS//fbLDTfckIEDBxYdB+o1f/78dO3aNTvuuGNGjx6dqqqqoiOVjffeey+77LJL2rdvn4cffjhrrbVW0ZGgXvqBxqMfoBToBxqPfgAAAAAqk/uWxuO+BSqDxRYA0IzcddddOe644zJmzJgcfPDBRccpOx999FH22GOPtG3bNpMmTTK8R6NSz41LPdOU1HPjUs9AY3F+Ny7nNwAAAAAAAAAAQNMwD9e4zMPR3L3zzjvp1KnT8odVaHjnn39+rr766syYMSPbbrtt0XFgJccee2z++Mc/Zvr06dloo42KjlN2nnzyyfTs2TNXXHFFzj777KLjwEr0A41LP0Bzpx9ofPoBAAAAqCzuWxqf+xYofxZbAEAz8f7776dz58458MADc8sttxQdp2zNmDEj3bp1y0033ZT+/fsXHYcypZ6bhnqmKajnpqGegYbm/G4azm8AAAAAAAAAAIDGZR6uaZiHozkbOHBgxowZk9mzZ6ddu3ZFxylLS5cuzde//vVsvvnmeeihh4qOAyt4+OGHs//+++f+++/3oH0juvDCC/OrX/0qzz//fLbccsui48By+oGmoR+gOdMPND79AAAAAFQW9y2Nz30LlD+LLQCgmfjhD3+Y22+/PbNnz86mm25adJyyduaZZ2bYsGGZPXt2Ntlkk6LjUIbUc9NRzzQ29dx01DPQkJzfTcf5DQAAAAAAAAAA0HjMwzUd83A0R08++WT22GOPDBs2LMcdd1zRccra5MmTs9dee+Xuu+/ON77xjaLjQJLk4//H3r2HW1mW+QO/N0dRMBHNwDxg6gbkoCKaAgIbCLEQj6jBhhwtm1KbRsV+6SSZDVZOZuZhQivd4KEckwBPIAiiIgpkHgBPkKJpU8hJQATW749JskTYwFrreddan891zXXpdreeb9p9995P96z3vfeiS5cu0alTp/jNb36TOk5ZW7NmTXTs2DGOPPLIuOOOO1LHgU3MA8VjHiCLzAPFYx4AAACAyuC+pXjct0B582ILAMiA5557Lg4//PC4/vrr48tf/nLqOGVvxYoV0b59+zjhhBPixhtvTB2HMqOei0s9U0jqubjUM5Av+ndx6d8AAAAAAAAAAACFYR+uuOzDkTUbNmyIbt26RatWrWLy5Mmp41SEESNGxLRp0+KFF16I5s2bp44D8d3vfjd++MMfxgsvvBD77bdf6jhl74EHHoiBAwfG/fffH8cdd1zqOGAeKDLzAFljHig+8wAAAACUN/ctxee+BcqXF1sAQAYce+yxsW7dunj88cejQYMGqeNUhHHjxsXw4cPjySefjCOOOCJ1HMqIei4+9UyhqOfiU89APujfxad/AwAAAAAAAAAA5J99uOKzD0eWXHfddXHxxRfHM888E9XV1anjVIS333472rVrF1/96ldj9OjRqeNQ4RYtWhQdOnSIK664Ii6++OLUcSrGiSeeGAsWLIhnn302GjdunDoOFc48UHzmAbLEPFB85gEAAAAob+5bis99C5QvL7YAgMQeeuihGDBgQMyaNSuOOuqo1HEqRi6Xi+7du0fLli1j0qRJqeNQJtRzGuqZQlDPaahnYEfp32no3wAAAAAAAAAAAPllHy4N+3Bkxdq1a6Nt27YxdOjQuPrqq1PHqSg//vGP4zvf+U4sWrQo9txzz9RxqGBf+cpXYurUqTF//nwvWCiiRYsWRXV1dfz85z+PL33pS6njUMHMA2mYB8gK80A65gEAAAAoT+5b0nHfAuXJiy0AILFevXpFs2bN4oEHHkgdpeLcd9998fnPfz6efvrp6Nq1a+o4lAH1nI56Jt/UczrqGdgR+nc6+jcAAAAAAAAAAED+2IdLxz4cWXD99dfHRRddFK+88kq0adMmdZyKsnr16mjbtm18+ctfjiuvvDJ1HCrUkiVL4jOf+Uxcf/31cc4556SOU3HOOuusmDlzZixYsCAaNmyYOg4VyjyQjnmALDAPpGMeAAAAgPLkviUd9y1QnrzYAgASeuKJJ+KYY46JGTNmRM+ePVPHqUjdunWL/fffP37zm9+kjkKJU8/pqWfyRT2np56B7aF/p6d/AwAAAAAAAAAA7Dj7cOnZhyOl999/Pw4++OD4whe+ENddd13qOBXpP//zP+MHP/hB/PGPf4zddtstdRwq0De+8Y2455574pVXXokmTZqkjlNxXn755WjXrl3cfvvtMWTIkNRxqEDmgfTMA6RkHkjPPAAAAADlxX1Leu5boPx4sQUAJDRw4MBYvnx5PP7446mjVKz/+Z//iSFDhsQzzzwTHTt2TB2HEqae01PP5It6Tk89A9tD/05P/wYAAAAAAAAAANhx9uHSsw9HSr/85S/j3HPPjZdeein222+/1HEq0ooVK2L//fePf//3f4/LLrssdRwqzF/+8pfYf//9Y/To0XH++eenjlOxzjzzzJg/f37MmzcvqqqqUsehwpgH0jMPkJJ5ID3zAAAAAJQX9y3puW+B8uPFFgCQyLPPPhudO3eOBx54IAYMGJA6TsXauHFjdO7cOY466qi45ZZbUsehRKnnbFDP5IN6zgb1DGwr/Tsb9G8AAAAAAAAAAIAdYx8uG+zDkVKHDh3i6KOP9p+9xC6//PK44YYbYsmSJdG0adPUcaggl19+efz3f/93LFq0KJo1a5Y6TsV69tlno0uXLjFp0qQYOHBg6jhUEPNANpgHSMk8kA3mAQAAACgf7luywX0LlJcGqQMAQKX61a9+FZ/5zGfic5/7XOooFa1BgwZx7rnnxl133RWrVq1KHYcSpZ6zQT2TD+o5G9QzsK3072zQvwEAAAAAAAAAAHaMfbhssA9HKrNmzYr58+fH1772tdRRKt65554b77zzTkyaNCl1FCpILpeLurq6OOuss7zUIrFOnTpFz54949Zbb00dhQpjHsgG8wCpmAeywzwAAAAA5cF9S3a4b4Hy4sUWoZr96AAAIABJREFUAJDA+vXr4/bbb4/a2tqoqqpKHafiffGLX4z3338/xo8fnzoKJUg9Z4t6Zkeo52xRz0B96d/Zon8DAAAAAAAAAABsH/tw2WIfjhTq6uqiQ4cO0bVr19RRKl6bNm2ipqYm6urqUkehgjzyyCOxaNGiGDp0aOooRERtbW2MHz8+li1bljoKFcI8kC3mAVIwD2SHeQAAAADKg/uW7HDfAuXFiy0AIIGHHnoo3n777Rg2bFjqKEREq1at4rjjjjPksF3Uc7aoZ3aEes4W9QzUl/6dLfo3AAAAAAAAAADA9rEPly324Si2devWxa9//esYPnx46ij8TW1tbUyaNCn+8pe/pI5Chairq4sjjjgiOnbsmDoKETFkyJCoqqqKu+++O3UUKoR5IFvMAxSbeSB7zAMAAABQ2ty3ZI/7FigfXmwBAAnU1dVFjx494jOf+UzqKPxNbW1tTJ48Od54443UUSgx6jl71DPbSz1nj3oG6kP/zh79GwAAAAAAAAAAYNvZh8se+3AU08SJE2Pp0qXxxS9+MXUU/ubkk0+Opk2bxl133ZU6ChVgzZo1cc8990RtbW3qKPzNrrvuGoMGDfKl9hSNeSB7zAMUk3kge8wDAAAAUNrct2SP+xYoH15sAQBFtmbNmhg/fnwMGzYsdRQ+ZNCgQbHrrrvG3XffnToKJUQ9Z5N6Znuo52xSz8DW6N/ZpH8DAAAAAAAAAABsG/tw2WQfjmK68847o0+fPrHPPvukjsLf7LLLLnHSSSfFHXfckToKFWDixInx7rvvxplnnpk6Ch9SW1sbjz76qC+1p+DMA9lkHqCYzAPZYx4AAACA0ua+JXvct0D58GILACiyxx57LNasWRPHH3986ih8SNOmTaOmpiYefvjh1FEoIeo5m9Qz20M9Z5N6BrZG/84m/RsAAAAAAAAAAGDb2IfLJvtwFEsul4tp06bpARk0cODAePLJJ2PlypWpo1DmHn744ejWrVvsueeeqaPwIf369YumTZvG1KlTU0ehzJkHssk8QLGYB7LLPAAAAAClyX1LdrlvgfLgxRYAUGTTpk2Lgw8+OD796U+njsI/6dOnT8yYMSM2bNiQOgolQj1nl3pmW6nn7FLPwJbo39mlfwMAAAAAAAAAANSffbjssg9HMTzzzDPxl7/8JWpqalJH4Z/07ds3NmzYEDNnzkwdhTI3depUPSCDdtpppzjqqKNi2rRpqaNQ5swD2WUeoBjMA9llHgAAAIDS5L4lu9y3QHnwYgsAKLJp06ZFnz59UsdgM2pqamL58uUxZ86c1FEoEeo5u9Qz20o9Z5d6BrZE/84u/RsAAAAAAAAAAKD+7MNll304imHatGnRqlWr6Ny5c+oo/JNPfvKT0aFDB19qT0G9+eab8dJLL3kWyKg+ffrEww8/nDoGZc48kF3mAYrBPJBd5gEAAAAoTe5bsst9C5QHL7YAgCJatWpVPP300xZLMqpDhw7Rpk2bmDp1auoolAD1nG3qmW2hnrNNPQMfR//ONv0bAAAAAAAAAACgfuzDZZt9OIrhgy+zbtDA/+t/FtXU1OgBFNTDDz8cTZo0iaOPPjp1FDajpqYmXnvttXjllVdSR6FMmQeyzTxAMZgHss08AAAAAKXHfUu2uW+B0qe7AkARPfbYY7F+/fro3bt36ih8jN69e8f06dNTx6AEqOfsU8/Ul3rOPvUMbI7+nX36NwAAAAAAAAAAwNbZh8s++3AUUi6XixkzZugBGVZTUxPz5s2L5cuXp45CmZoxY0Z89rOfjZ133jl1FDbjqKOOil122SUeeeSR1FEoU+aB7DMPUEjmgewzDwAAAEBpcd+Sfe5boPR5sQUAFNFzzz0XrVu3jr322it1FD7GoYceGs8//3zqGJQA9Zx96pn6Us/Zp56BzdG/s0//BgAAAAAAAAAA2Dr7cNlnH45Cev3112P58uVx2GGHpY7Cxzj00ENj48aNMX/+/NRRKFPPPfecHpBhTZo0iQ4dOsQLL7yQOgplyjyQfeYBCsk8kH3mAQAAACgt7luyz30LlD4vtgCAIlq4cGFUV1enjrHDxo8fH7/+9a9TxyiI6urqWLJkSaxatSp1FDJOPWefeqa+1HP2qWdgc/Tv7NO/AQAAAAAAAAAAts4+XPbZh6OQFi5cGBFR8n2gnHvAvvvuG82aNdv0zwry7cUXXyz5HhBR3n2guro6FixYkDoGZco8kH3mAQrJPJB95gEAAAAoLe5bss99C5Q+L7YAgCIqxcWSxx9/PK688sp4++23N/3syiuvjG9961tb/J1SVV1dHblcLl566aXUUcg49Zx96pn6Us/Zp56BzdG/s0//BgAAAAAAAAAA2Dr7cNlnH45CWrhwYey+++7RqlWr1FHqrdJ6QIMGDeLAAw/0xSoUxJ///OdYunRpST0LfFx9l3MfqK6u1gMoGPNA9pkHKCTzQPaZBwAAAKC0uG/JPvctUPq82AIAiqgUF0seffTR+I//+I/405/+tOln5513XowcOXKLv1OqDjjggGjcuHEsWLAgdRQyTj1nn3qmvtRz9qlnYHP07+zTvwEAAAAAAAAAALbOPlz22YejkBYuXBjt2rVLHWObVFoPiPCl9hTOB//dUkrPAh9X3+XcB6qrq2Px4sWxdu3a1FEoQ+aB7DMPUEjmgdJgHgAAAIDS4b6lNLhvgdLWKHUAAKgUy5Yti7fffrvkFks2Z8SIEakjFEzjxo3jgAMOMOSwReq5NKhn6kM9lwb1DPwz/bs06N8AAAAAAAAAAABbZh+uNNiHo5BK8cusN6ece0BERLt27eKee+5JHYMy9OKLL0bz5s2jTZs2qaPssHLuA+3atYsNGzbEK6+8EoccckjqOJQR80BpMA9QSOaB0mAeAAAAgNLhvqU0uG+B0tYgdQAAqBRvvfVWRETsvffeBT3nD3/4Q5x88snRtm3bGDx4cNx6660xZcqUOO200+Kvf/3rpt9btmxZfO1rX4uOHTvGpz71qTj55JPjvvvu+4fP+spXvhI33XRTRET8y7/8S1xwwQUREXHBBRfEWWedtcXfqe8ZERFf/vKXY8SIEfHyyy/HOeecE/vss0/U1NTE2LFjIyLixz/+cXTt2jU++clPxsCBA+Oll17K49+xj/r0pz9dNm8ipDDUs3qmfKhn9QyUJv1b/wYAAAAAAAAAACgH9uHsw8Fbb70Vn/70pwt6Rn17QMTWa3RHe0B9zojIZg/4oGdDPv3pT3+KvffeO6qqqgp6Tr6eBbZU3/l8FshiD4gIzwLknXnAPADmgdJ5FjAPAAAAQGlw3+K+BSg8L7YAgCJZuXJlRETsuuuuBTtjxowZcfTRR8ejjz4aPXr0iJYtW8Z5550X559/ftx9992xevXqiIhYsmRJHHbYYXHbbbfFscceG2eddVYsXrw4Bg0aFD/5yU82fd7BBx8crVu33vTHBx54YEREPPHEEzF9+vQt/k59z4iI+P3vfx8PPfRQ9OrVK5544ono06dPPPbYYzF8+PA4/vjj45JLLolPf/rT0aNHj5g6dWr069cvNm7cWLC/j82bN49Vq1YV7PMpfepZPVM+1LN6BkqT/q1/AwAAAAAAAAAAlAP7cPbhYMWKFdGiRYuCfX59e0BE/Wp0R3pAfc+IyGYP+KBnQz6tXLmyoD0gIr/PAluq73w+C2SxB0SEZwHyzjxgHgDzQOk8C5gHAAAAoDS4b3HfAhRBDgAoiocffjgXEbn//d//Lcjnb9iwIdelS5dcy5Ytc4sXL9708z/84Q+5Jk2a5CIi99prr+VyuVxu6NChuYjIzZo1a9Pvvffee7mamppckyZNcn/96183/fyqq67KRURu3rx5m352xBFH5Nq2bbvF39mWM4444ohcROSuvPLKTT+77777chGRa9asWW7hwoWbfj5ixIhcRPzDz/Jt2LBhuUGDBhXs8yl96lk9Uz7Us3oGSpP+rX8DAAAAAAAAAACUA/tw9uGgVatWuRtuuKEgn70tPSCXq3+Nbm8P2JYzstYDxo8fn4uI3Nq1awt2BpXpX//1X3N9+vQp2OcX4lng4+o7n88CWesBuVwu17Rp09xtt91W0DOoPOYB8wCYB0rjWcA8AAAAAKXDfYv7FqDwGtT7DRgAwA5ZtWpVRETB3t43b968eOaZZ+Lcc8+N/fbbb9PPO3XqFKeffvqmP1+6dGncfvvt0a1btzjqqKM2/bxJkybx5S9/OdatWxf33HPPDmXZnjMaNmwYF1988aY/79KlS0RE1NTUxMEHH7zp5717946IiBdeeGGHMm5JixYtvL2PLVLP6pnyoZ7VM1Ca9G/9GwAAAAAAAAAAoBzYh7MPBytXrkzeAyKy2Qey1gMiQh8g71auXBnNmzcv2OeX8rNAlnpAhGcBCsM8YB4A80BpPAuYBwAAAKB0uG9x3wIUXqPUAQCgUqxcuTIaN24cTZs2Lcjnv/LKKxERUV1d/ZG/dsghh2z644ULF0Yul4tVq1Z9ZPhZsWLFP3zW9tqeM9q0aRNNmjTZ9Oc77bTTpp9/WMOGDSMiYt26dTuUcUsslrA16nnLZ6hnSol63vIZ6hnIKv17y2fo3wAAAAAAAAAAAKXBPtyWz7APR7lbt25drFu3rmBfal/fHhCRzT6QtR4Q8X99e4899ijYOVSeVatWFezLlSJK+1kgSz0gwrMAhWEe2PIZWeoDegCFYB7Y8hlZ6wER5gEAAADIOvctWz7DfQuQL15sAQBFsnbt2mjWrFnBPv+dd96JiIhWrVp95K9t2LBh0x//9a9/jYiIpk2bRuPGjf/h91q1ahVDhw79yFC0rbbnjF122WWzn9WgQYMdyrI9dt5551i9enXRz6V0qOctn6GeKSXqectnqGcgq/TvLZ+hfwMAAAAAAAAAAJQG+3BbPsM+HOVuzZo1EREF6wP17QER2ewDWesBERHvvvtu0c+mvK1ZsyZ23333gn1+KT8LZKkHRPxfHs8C5Jt5YMtnZKkPmAcoBPPAls/IWg+IMA8AAABA1rlv2fIZ7luAfPFiCwAokmbNmhV0WWH//fePiIjHHnssBg0a9A9/bd68eZv++IADDoiIiIMOOijGjh37D7+3YcOGWLly5aaH/O1VjDMKafXq1ZnOR3rqOb9nFJJ6ZmvUc37PKCT1DHyY/p3fMwpJ/wYAAAAAAAAAAPh49uHye0Yh2YejED74z9QHX7CSb/XtARH6wNZ80Ks/7steYHs1a9asYD0gwrNAPr377ruZzkdpMg/k94xCMg9QCOaB/J9RKOYBAAAAKA3uW/J/RqG4b4HSVvzX4QBAhWrevHmsX78+1q5dW5DP79ixYzRq1CgmT578Dz9/9dVXY8qUKZv+/MADD4w999wzHnzwwXj//ff/4XdHjx4dLVu2jNmzZ+9QlmKcUUgrV66MFi1apI5Bhqnn/J5RSOqZrVHP+T2jkNQz8GH6d37PKCT9GwAAAAAAAAAA4OPZh8vvGYVkH45CaNy4cTRt2jRWrlxZkM+vbw+I0Ae25oN/RvoA+daiRYtYtWpVwT7fs0D+eBagEMwD+T2jkPQACsE8kP8zCsU8AAAAAKXBfUv+zygU9y1Q2rzYAgCK5IMH5kItmO29997xjW98I+bOnRtf+tKX4v7774+f/vSnMXDgwH/4vSZNmsTo0aNjxYoVMWzYsJg7d268/PLL8V//9V9x5ZVXRv/+/aN79+6bfn+//faLiIif//zn8dRTT2327H/+nW09I2sslrA16lk9Uz7Us3oGSpP+rX8DAAAAAAAAAACUA/tw9uGgefPmyXtAxLb1ge3pAdt6Rtb4YhUKpXnz5gX7cqWIwjwL1KcHbO73SrkHRHgWoDDMA3oAmAdKow+YBwAAAKB0uG9x3wIUXqPUAQCgUnzwwLxy5crYY489CnLGVVddFbvttlv85Cc/iVtvvTVatWoVQ4cOjd122y2uuOKK2HXXXSMi4uyzz47Vq1fHyJEj49e//nVERDRq1CjOOeec+P73vx9VVVWbPrN///7x2c9+Nm688caYP39+TJs27SPnbu53tuWMrLFYwtaoZ/VM+VDP6hkoTfq3/g0AAAAAAAAAAFAO7MPZh4MWLVoU9Evt69sDIurfB7a3B2zLGVmzcuXKaNy4cTRt2jR1FMpMixYtCvblSh/I97NAfXrAx/1eqfaA999/P9577z3PAuSdeaA0ekCEeYDCMQ+URh8wDwAAAEDpcN/ivgUovKpcLpdLHQIAKsHChQujXbt28cwzz0Tnzp0Lft4777wTLVu2jIiI888/PyZOnBiLFi36h99ZuXJlzJs3L1atWhWdOnWKffbZ52M/780334wWLVpsceFic7+zLWdkRd++feOggw6Km266KXUUMko9q2fKh3pWz0Bp0r/1bwAAAAAAAAAAgHJgH84+HHTu3DkGDx4c3/ve9wp+Vn16QET9a3R7e8C2nJEVN910U1x66aXx17/+NXUUysyVV14ZdXV1sXDhwqKcl89ngfr0gI/7vVLrAUuXLo1WrVrFlClTom/fvqnjUEbMA6XRAyLMAxSOeaA0+oB5AAAAAEqH+xb3LUDhNUodAAAqRevWrSMiYsmSJQVZLFmzZk3U1NTEZz/72bjmmms2DTjvvvtuPPjgg3HooYd+5F/TokWLOPbYY+v1+W3atNmu39mWM7Li9ddfj169eqWOQYap59Khntka9Vw61DPwYfp36dC/AQAAAAAAAAAAPp59uNJhH45Cad26dSxZsqQgn709PSCi/jW6vT1gW87Iitdff71e/35hW7Vu3TreeOONyOVyUVVVlffPL+SzQH1rohyeBV5//fWIqP+/Z6gv80DpMA9QKOaB0mAeAAAAgNLhvqU0uG+B0ubFFgBQJLvuumu0bt06FixYEMcff3zeP79Zs2ax++67x3XXXRfLly+PL3zhC/HOO+/EL3/5y3jjjTfi5ptvzvuZ5WjdunWxaNGiqK6uTh2FDFPPpUE9Ux/quTSoZ+Cf6d+lQf8GAAAAAAAAAADYMvtwpcE+HIXUrl27eOqppwry2XpA/ixcuDDatWuXOgZlqLq6Ot59991YsmRJ7LPPPnn/fH0gPxYsWBCNGjWKAw44IHUUyox5oDSYBygk80BpMA8AAABA6XDfUhrct0Bpa5A6AABUkurq6li4cGHBPv/222+PCy+8MH7/+9/HqaeeGv/2b/8WDRs2jAkTJpTU2/NSeuWVV2L9+vWGHLZKPWefeqa+1HP2qWdgc/Tv7NO/AQAAAAAAAAAAts4+XPbZh6OQqqurY8GCBQX7fD0gPxYsWODLrCmID/67xbNAti1cuDDatm0bTZs2TR2FMmQeyD7zAIVkHigN5gEAAAAoHe5bSoP7FihtVblcLpc6BABUiq9+9auxYMGCeOSRRwp+1vLly6NFixbRoIH3WG2Le++9N04++eRYtWpV7LzzzqnjkGHqOfvUM/WlnrNPPQObo39nn/4NAAAAAAAAAACwdfbhss8+HIX08MMPR79+/eLPf/5z7LnnngU9Sw/YPhs3boxddtklfv7zn0dtbW3qOJShPfbYI7773e/G17/+9YKfpQ9sn6FDh8aKFStiwoQJqaNQhswD2WceoJDMA9lnHgAAAIDS4r4l+9y3QOnT9QCgiKqrq2PhwoVFOesTn/iEAWc7LFy4MPbZZx9LJWyVes4+9Ux9qefsU8/A5ujf2ad/AwAAAAAAAAAAbJ19uOyzD0chVVdXR0QUpQ/oAdtn8eLFsXbt2k3/rCDfDj74YM8CGbdw4UI9gIIxD2SfeYBCMg9kn3kAAAAASov7luxz3wKlT+cDgCLq1KlTvPXWW/Hmm2+mjsLHmDdvXnTs2DF1DEqAes4+9Ux9qefsU8/A5ujf2ad/AwAAAAAAAAAAbJ19uOyzD0ch7b333tGyZcuYO3du6ih8jHnz5kXDhg2jffv2qaNQpjp16qQHZNh7770XL7zwgmcBCsY8kH3mAQrJPJB95gEAAAAoLe5bss99C5Q+L7YAgCI65phjomnTpvHII4+kjsJm5HK5eOSRR6J3796po1AC1HO2qWe2hXrONvUMfBz9O9v0bwAAAAAAAAAAgPqxD5dt9uEotKqqqujVq1dMmzYtdRQ+xtSpU6Nr167RokWL1FEoU7169YrZs2fHu+++mzoKm/HEE0/EmjVrPAtQMOaBbDMPUGjmgewzDwAAAEBpcd+Sfe5boPR5sQUAFNHOO+8c3bp1M+Rk1HPPPRdvv/121NTUpI5CCVDP2aae2RbqOdvUM/Bx9O9s078BAAAAAAAAAADqxz5cttmHoxj69OkTjzzySGzYsCF1FDZj6tSpegAF1adPn1i/fn3MnDkzdRQ2Y9q0aXHAAQfE/vvvnzoKZco8kG3mAYrBPJBt5gEAAAAoPe5bss19C5Q+L7YAgCKrqamJqVOnpo7BZkydOjV22223OPTQQ1NHoUSo5+xSz2wr9Zxd6hnYEv07u/RvAAAAAAAAAACA+rMPl1324SiGmpqaWLZsWfz+979PHYV/8qc//SkWLFgQffr0SR2FMta6deto166dL7XPKF+uRDGYB7LLPEAxmAeyyzwAAAAApcl9S3a5b4Hy4MUWAFBkffr0iVdffTUWL16cOgr/ZNq0adGnT59o2LBh6iiUCPWcXeqZbaWes0s9A1uif2eX/g0AAAAAAAAAAFB/9uGyyz4cxXDIIYfEXnvt5QutM+jhhx+OJk2aRPfu3VNHocz16dNHD8ig1atXx+zZs325EgVnHsgu8wDFYB7ILvMAAAAAlCb3LdnlvgXKgxdbAECRHX300dG8efOYNGlS6ih8yOrVq2Pq1KnRr1+/1FEoIeo5m9Qz20M9Z5N6BrZG/84m/RsAAAAAAAAAAGDb2IfLJvtwFEtVVVX07ds3Jk6cmDoK/2TSpElxzDHHxC677JI6CmWuf//+MXfu3PjTn/6UOgof8uCDD8b69eujpqYmdRTKnHkgm8wDFIt5ILvMAwAAAFCa3Ldkl/sWKA9ebAEARda0adM46aSTYuzYsamj8CHjx4+PNWvWxCmnnJI6CiVEPWeTemZ7qOdsUs/A1ujf2aR/AwAAAAAAAAAAbBv7cNlkH45iOuOMM+LRRx+NRYsWpY7C36xYsSJ+97vfxZlnnpk6ChXguOOOixYtWsTtt9+eOgofUldXF3369IlPfepTqaNQ5swD2WQeoJjMA9ljHgAAAIDS5r4le9y3QPnwYgsASKC2tjZmzZoVCxYsSB2Fv6mrq4vjjjsu9tprr9RRKDHqOXvUM9tLPWePegbqQ//OHv0bAAAAAAAAAABg29mHyx77cBTTwIED45Of/GSMGzcudRT+5u67747169f7MmuKYqeddoohQ4bEr371q9RR+JulS5fGfffdF7W1tamjUCHMA9ljHqCYzAPZYx4AAACA0ua+JXvct0D58GILAEigb9++sc8++xhyMuLPf/5zTJ482XIZ20U9Z4t6Zkeo52xRz0B96d/Zon8DAAAAAAAAAABsH/tw2WIfjmJr1KhRnHHGGXHbbbdFLpdLHYf4vy+zPuGEE6JVq1apo1Ahamtr47nnnos//OEPqaMQEXfddVc0bNgwTj755NRRqBDmgWwxD1Bs5oHsMQ8AAABAaXPfkj3uW6B8eLEFACTQoEGD+OIXvxh1dXWxcePG1HEq3rhx42LnnXeOQYMGpY5CCVLP2aKe2RHqOVvUM1Bf+ne26N8AAAAAAAAAAADbxz5cttiHI4Xa2tp46aWXYvbs2amjVLzXXnstZsyY4cusKaru3bvHZz7zmairq0sdhfi/L1c66aSTokWLFqmjUCHMA9liHiAF80B2mAcAAACgPLhvyQ73LVBevNgCABIZMWJEvPbaazFp0qTUUSrahg0b4qabboozzjgjmjVrljoOJUo9Z4N6Jh/UczaoZ2Bb6d/ZoH8DAAAAAAAAAADsGPtw2WAfjlS6du0anTt3jp/97Gepo1S8G2+8Mfbcc88YOHBg6ihUkKqqqhgxYkT88pe/jFWrVqWOU9Hmzp0bs2bNii996Uupo1BhzAPZYB4gFfNAdpgHAAAAoDy4b8kO9y1QXqpyuVwudQgAqFSDBw+Ot956K5588snUUSrWHXfcEbW1tfHCCy/EwQcfnDoOJUw9p6eeyRf1nJ56BraH/p2e/g0AAAAAAAAAALDj7MOlZx+OlMaNGxcjRoyI+fPnx0EHHZQ6TkVavnx57LfffvHtb387Ro4cmToOFWbp0qWx//77x+WXXx4XXnhh6jgV65RTTolFixbFnDlzoqqqKnUcKox5ID3zACmZB9IzDwAAAEB5cd+SnvsWKD9ebAEACc2ePTuOOuqomDx5cvTr1y91nIqTy+WiS5cu0alTpxg3blzqOJQ49ZyWeiaf1HNa6hnYXvp3Wvo3AAAAAAAAAABAftiHS8s+HKlt2LAh2rdvH3369In//u//Th2nIo0aNSquu+66WLx4cbRo0SJ1HCrQxRdfHGPHjo1XX301mjVrljpOxZk/f3507Ngx7r777jjppJNSx6ECmQfSMg+QmnkgPfMAAAAAlBf3Lem5b4Hy48UWAJDY5z73uXj//fdj2rRpqaNUnN/+9rdxyimnxDPPPBOdOnVKHYcyoJ7TUc/km3pORz0DO0L/Tkf/BgAAAAAAAAAAyB/7cOnYhyMLxowZE1//+tfj5Zdfjn333Td1nIqyatWqaNu2bZx33nlx+eWXp45DhXr77bejbdu2cfXVV8fXvva11HEqztChQ+P3v/99PPvss9GgQYPUcahQ5oF0zANkgXkgHfMAAAAAlCf3Lem4b4Hy5MUWAJDY9OnTo3fv3jFjxozo2bNn6jgVI5fLRbdu3WLfffeNe+65J3UcyoR6TkM9UwjqOQ31DOwo/TsN/RsAAAAAAAAAACC/7MOlYR+OrFi3bl0ceOCBMXjw4LjuuutSx6koo0ePjquuuioWL14cLVu2TB2+sntPAAAgAElEQVSHCnbeeefFxIkTY+HChdG0adPUcSrGiy++GB06dIi6uro488wzU8ehgpkH0jAPkBXmgXTMAwAAAFCe3Lek474FypMXWwBABvTv3z/+8pe/xNNPPx0NGzZMHaci3HLLLfHVr3415syZE507d04dhzKinotPPVMo6rn41DOQD/p38enfAAAAAAAAAAAA+Wcfrvjsw5ElY8aMia997Wsxd+7c6NSpU+o4FeGNN96I9u3bx4UXXhiXX3556jhUuCVLlkT79u1j5MiR8R//8R+p41SMgQMHxptvvhlz5871/EVy5oHiMw+QJeaB4jMPAAAAQHlz31J87lugfHmxBQBkwEsvvRSdOnWKH/3oR3H++eenjlP2li5dGu3atYuhQ4fGNddckzoOZUY9F5d6ppDUc3GpZyBf9O/i0r8BAAAAAAAAAAAKwz5ccdmHI2s2btwY3bt3j0aNGsWMGTOiqqoqdaSyd/rpp8ecOXPiueeei5122il1HIgf/vCHMWrUqHjuuefigAMOSB2n7N19990xZMiQmDZtWvTq1St1HDAPFJl5gKwxDxSfeQAAAADKm/uW4nPfAuXLiy0AICMuvfTS+NnPfhbz58+PNm3apI5T1r7yla/EhAkTYsGCBfGJT3widRzKkHouHvVMoann4lHPQD7p38WjfwMAAAAAAAAAABSOfbjisQ9HFs2dOzeOPPLIuOWWW2LEiBGp45S1KVOmRP/+/WPixInx+c9/PnUciIiI9evXR9euXaNNmzZx//33p45T1lavXh0dOnSImpqa+MUvfpE6DmxiHige8wBZZB4oHvMAAAAAVAb3LcXjvgXKmxdbAEBGrFmzJg455JA45phjYuzYsanjlK2nn346jjrqqBg3blycccYZqeNQptRzcahnikE9F4d6BvJN/y4O/RsAAAAAAAAAAKCw7MMVh304suz888+PO+64IxYuXBitWrVKHacsrVu3Lrp06RIdOnSI//mf/0kdB/7Bo48+Gr169Yrf/va3MXjw4NRxytbIkSPj5ptvjgULFsQnP/nJ1HFgE/NAcZgHyDLzQOGZBwAAAKCyuG8pPPctUP682AIAMmTChAkxePDg+M1vfhOnnHJK6jhlZ9WqVdGtW7fYe++9Y8qUKanjUObUc2GpZ4pJPReWegYKRf8uLP0bAAAAAAAAAACgOOzDFZZ9OLJu2bJl0aFDhzj22GPjzjvvTB2nLF144YXx85//PJ5//vnYd999U8eBjxgxYkRMnjw55s2bF3vttVfqOGVn5syZ0adPn/jZz34W5557buo48BHmgcIyD5B15oHCMw8AAABAZXHfUnjuW6D8ebEFAGTMv/7rv8add94Zc+bMiQMOOCB1nLIyYsSImDhxYsybN8+AQ1Go58JRzxSbei4c9QwUkv5dOPo3AAAAAAAAAABA8diHKxz7cJSCRx55JPr16xfXX3+9L13Ps0mTJsWgQYPi1ltvjdra2tRxYLNWrlwZRxxxROy9994xefLkaNiwYepIZWPp0qVx+OGHR8eOHWPChAlRVVWVOhJslnmgcMwDlALzQOGYBwAAAKAyuW8pHPctUBm82AIAMua9996Lo48+Oho2bBgzZ86Mpk2bpo5UFn7xi1/EOeecE/fee2+ccMIJqeNQIdRzYahnUlDPhaGegULTvwtD/wYAAAAAAAAAACgu+3CFYR+OUvKd73wnfvSjH8Xjjz8ehx12WOo4ZeH111+Pww47LE466aQYM2ZM6jiwRXPmzInu3bvHZZddFpdddlnqOGUhl8vFiSeeGPPmzYt58+ZFq1atUkeCj2UeKAzzAKXEPJB/5gEAAACobO5b8s99C1QOL7YAgAx6+eWXo2vXrnHWWWfFT37yk9RxSt7zzz8fRx55ZFxwwQUxevTo1HGoMOo5v9QzKann/FLPQLHo3/mlfwMAAAAAAAAAAKRhHy6/7MNRajZu3BgDBgyIxYsXx5w5c2LXXXdNHamkrV+/Pnr37h3Lli2L2bNnx84775w6EmzVT3/60/jmN78ZDz30UPTt2zd1nJL3gx/8IC677LKYPn16HHPMManjwFaZB/LLPECpMQ/kl3kAAAAAcN+SX+5boLJ4sQUAZNQdd9wRQ4cOjTFjxsTZZ5+dOk7Jevvtt6N79+7RunXrmDZtWjRq1Ch1JCqQes4P9UwWqOf8UM9Asenf+aF/AwAAAAAAAAAApGUfLj/sw1Gq3nzzzTjssMOiW7duce+99/rP7nbK5XJxzjnnxK9//euYPXt2tG/fPnUkqJdcLhennnpqzJw5Mx577LE48MADU0cqWRMnToyTTjoprrrqqrjwwgtTx4F6Mw/kh3mAUmUeyA/zAAAAAPAB9y354b4FKk/DUaNGjUodAgD4qE6dOkUul4uRI0fGIYccEh06dEgdqeSsXLky+vfvH++99148+OCD3oJIMup5x6lnskI97zj1DKSgf+84/RsAAAAAAAAAACA9+3A7zj4cpaxFixbRu3fvuOKKK2LBggVx0kknRVVVVepYJefSSy+Nm266Ke655544+uijU8eBequqqopBgwbFpEmT4sYbb4whQ4ZEixYtUscqOU8++WSccMIJMXz48Bg9enTqOLBNzAM7zjxAKTMP5Id5AAAAAPiA+5b8cN8ClcdrgAAgw0aNGhVLly6NYcOGxZ577hnHHnts6kglY926dXHqqafGkiVLYubMmbHXXnuljkSFU8/bTz2TNep5+6lnICX9e/vp3wAAAAAAAAAAANlhH2772YejHHTr1i3uvffe+PznPx9t2rSJH/7wh6kjlZQbbrghrrrqqrjlllti4MCBqePANtt5551j/Pjx0bNnzxgwYEBMnz49WrZsmTpWyXjhhRfi+OOPj5qamrjhhhtSx4HtYh7YfuYByoF5YMeYBwAAAIB/5r5lx7hvgcpUlcvlcqlDAAAfb8OGDTFkyJCYOnVqTJ8+PTp37pw6UuZt2LAhvvjFL8aDDz4Y06dPjy5duqSOBBGhnreHeiar1PO2U89AFujf207/BgAAAAAAAAAAyB77cNvOPhzlZty4cVFbWxs//OEP46KLLkodpyTccccdMWzYsLjqqqvi4osvTh0HdsjixYuje/fucdBBB8X9998fzZo1Sx0p81577bXo0aNH7L///vHggw/6e0ZJMw9sO/MA5cY8sO3MAwAAAMCWuG/Zdu5boHI1SB0AANiyhg0bxrhx4+Kwww6LPn36xOOPP546UqatXbs2TjvttJgwYULce++9lkrIFPW8bdQzWaaet416BrJC/942+jcAAAAAAAAAAEA22YfbNvbhKEdDhw6N//qv/4qRI0fGFVdckTpO5o0ZMyZqa2vj3//9332pCmVh//33jwceeCCeffbZGDBgQCxbtix1pEybP39+9OzZM3bffff43e9+56UWlDzzwLYxD1COzAPbxjwAAAAAbI37lm3jvgUqmxdbAEAJ2GmnneL++++Pmpqa6N+/f0yaNCl1pExatmxZDBgwIKZNmxYPPvhg9O7dO3Uk+Aj1XD/qmVKgnutHPQNZo3/Xj/4NAAAAAAAAAACQbfbh6sc+HOXsm9/8ZvziF7+I733ve/H1r389Nm7cmDpSJv3gBz+Ic889Ny666KL40Y9+lDoO5E2nTp3i0UcfjcWLF0ePHj1iyZIlqSNl0uzZs+PYY4+N1q1bx5QpU2K33XZLHQnywjxQP+YBypl5oH7MAwAAAEB9uW+pH/ctQMNRo0aNSh0CANi6Ro0axSmnnBKvv/56jBw5Mtq0aROHH3546liZ8dZbb0X//v3jtddeiylTpsSRRx6ZOhJ8LPW8ZeqZUqKet0w9A1mlf2+Z/g0AAAAAAAAAAFAa7MNtmX04KsGhhx4aXbp0icsuuyzmzJkTJ554YjRq1Ch1rEzI5XJx0UUXxX/+53/G9ddfH9/61rdSR4K823PPPeP000+PcePGxY033hgDBw6MPfbYI3WszJg8eXJ8/vOfj549e8aECRPiE5/4ROpIkFfmgS0zD1AJzAMfzzwAAAAAbA/3LR/PfQvwAS+2AIAS0qBBg/jCF74Q69ati0suuSTWrVsXvXr1igYNGqSOltSTTz4ZAwYMiKqqqpg+fXpUV1enjgRbpZ43Tz1TitTz5qlnIOv0783TvwEAAAAAAAAAAEqLfbjNsw9HJWnXrl306NEjRo8eHQ899FB87nOfi1133TV1rKSWLl0aZ5xxRtx1111x5513Rm1tbepIUDAtWrSIIUOGxIQJE+Lqq6+OLl26xIEHHpg6VlK5XC6uueaaOOuss2Lo0KFRV1cXTZs2TR0LCsI8sHnmASqJeeCjzAMAAADAjnDf8lHuW4APq+z/FQoASlBVVVV8//vfjzFjxsQ111wTffv2jTfeeCN1rCRyuVz8+Mc/jp49e0aHDh1i5syZse+++6aOBfWmnv9OPVPq1PPfqWeglOjff6d/AwAAAAAAAAAAlC77cH9nH45K1atXr5g5c2b8+c9/jsMOOyweeOCB1JGSmTVrVhx++OExb968mDJlSpx88smpI0HBtWrVKqZMmRIDBgyI448/Pi699NJYv3596lhJLF26NE488cS45JJL4nvf+16MGTMmGjVqlDoWFJR54O/MA1Qq88DfmQcAAACAfHDf8nfuW4B/5sUWAFCizj777JgzZ04sXbo0Dj300LjvvvtSRyqq5cuXx5AhQ+KSSy6Jb3/72zFp0qRo1apV6liwXdSzeqZ8qGf1DJQm/Vv/BgAAAAAAAAAAKAf24ezDUdk6duwY8+bNi8GDB8fxxx8f3/jGN+L9999PHatocrlcXHvttdGrV6848MAD46mnnoru3bunjgVFs8suu8TYsWPjl7/8ZVx77bXRo0ePWLx4cepYRfX0009Ht27dYu7cuTF16tT41re+FVVVValjQdGYB8wDVDbzgHkAAAAAyC/3Le5bgM3zYgsAKGHt27ePJ554Io477rj4whe+EBdccEEsX748dayC+93vfhedO3eOWbNmxbRp02LUqFHRoIHHGkqbelbPlA/1rJ6B0qR/698AAAAAAAAAAADlwD6cfTgqW7NmzWLMmDExZsyYuPnmm6NXr17xhz/8IXWsgnvllVfi+OOPj4suuiiuuOKKmDx5cnzqU59KHQuSGD58eDzxxBOxfPny6NatW9x2222Ry+VSxyqoNWvWxHe+85045phjol27djFv3rzo2bNn6liQhHnAPEBlMw+YBwAAAID8ct/ivgX4KP8LDACUuObNm0ddXV3ceuutceedd0b79u1j3LhxZblktmjRojjhhBNi8ODB0aNHj5g3b1706NEjdSzIG/Wsnikf6lk9A6VJ/9a/AQAAAAAAAAAAyoF9OPtwcPbZZ8fs2bMjIqJr167xzW9+M1asWJE4Vf6tXbs2vvvd70bHjh1jyZIlMWPGjLjkkkuiqqoqdTRIqlOnTvHUU0/F6aefHv/yL/8SvXv3jueeey51rIKYOHFidOzYMa699tq4+uqrY+LEibHHHnukjgVJmQfMA2AeMA8AAAAA+eW+xX0L8HdebAEAZaK2tjYWLFgQgwcPjuHDh0ffvn3jhRdeSB0rL9auXRtXXnllHHLIIfHyyy/H1KlTY9y4cRbLKFvqGcqHegYoTfo3AAAAAAAAAAAA5cA+HFS2Qw45JGbOnBk33XRTjB07Ntq3bx933nln2Xyp9f333x+dOnWKq6++Or73ve/F3Llz4+ijj04dCzKjefPm8bOf/SyefPLJWLt2bRx++OFx8cUXx8qVK1NHy4vFixfHiSeeGIMGDYojjzwy5s+fHxdccIEvVoIPMQ9AZTMPAAAAAOSX+xaA/+PFFgBQRnbfffe48cYb46mnnorVq1dHp06dYtCgQTF37tzU0bbLu+++G9dee20cdNBBMXr06Bg5cmTMmzcv+vTpkzoaFJx6hvKhngFKk/4NAAAAAAAAAABAObAPB5WtQYMGcfbZZ8eLL74Yp556agwbNiy6dOkSt912W2zYsCF1vO0yc+bM6NevXxx//PHRrl27eP755+Oiiy6Kxo0bp44GmdS1a9eYNWtW3HzzzfGrX/0q2rZtG6NGjYqlS5emjrZdFi9eHN/4xjeiffv28fzzz8cDDzwQd9xxR7Rp0yZ1NMgk8wBUNvMAAAAAQH65bwHwYgsAKEuHH354PP744zFu3Lj44x//GEcccUScdNJJ8fTTT6eOVi8rVqyI0aNHR9u2bePSSy+N0047LV566aUYNWpUNG3aNHU8KCr1DOVDPQOUJv0bAAAAAAAAAACAcmAfDipby5Yt49prr405c+ZE+/bt46yzzopOnTpFXV1drF+/PnW8rcrlcjF+/Pjo1q1b9OzZM5o0aRIzZ86MCRMmxL777ps6HmReVVVVDB8+PBYuXBjnnXde/PSnP422bdvGt7/97fjf//3f1PHqZf78+TF8+PA46KCDYtKkSXHdddfF888/HwMGDEgdDUqCeQAqm3kAAAAAIL/ctwCVrCqXy+VShwAACieXy8Xvfve7+P73vx9PPfVU9OzZM4YPHx6nnnpq7LbbbqnjbZLL5eKxxx6LsWPHxl133RW5XC6+/vWvx7/927/FnnvumToeZIJ6hvKhngFKk/4NAAAAAAAAAABAObAPByxYsCBGjx4dt99+e7Rp0yaGDx8ew4YNi+rq6tTR/sFrr70WY8eOjbq6unjxxRdj8ODBcemll0bXrl1TR4OStmLFirjhhhvimmuuiVWrVsXJJ58ctbW10bdv32jYsGHqeJusXr06fvvb38bYsWPjoYceinbt2sX/+3//L84444xo1KhR6nhQsswDgHkAAAAAIL/ctwCVxIstAKCCTJ48OW655ZYYP358RESccMIJUVtbG5/73OeiSZMmSTK9+OKLMW7cuBg7dmy8+uqr0blz5xg+fHicffbZmVp8gaxRz1A+1DNAadK/AQAAAAAAAAAAKAf24aCyLVq0KG666aYYN25cvPHGG3HUUUfFsGHD4vTTT0/2hdHLli2L3/72t3HbbbfFjBkzYvfdd48zzzwzzj333DjkkEOSZIJytXr16rjtttvi1ltvjVmzZkWbNm1i6NChMWzYsOjcuXOSTOvXr4/p06dHXV1d3HPPPbF27doYOHBgnHXWWXHCCSdEgwYNkuSCcmUegMpmHgAAAADIL/ctQCXwYgsAqEDLly+P8ePHR11dXTz88MPRrFmzOOaYY6J79+7Ro0eP6NWrVzRu3LggZ7/99tsxY8aMmDJlSkyZMiVeffXVaN26dZx22mlx2mmnRY8ePQpyLpQr9QzlQz0DlCb9GwAAAAAAAAAAgHJgHw4q28aNG+Pxxx+Purq6uOOOO2LlypVxwAEHRL9+/Tb9X8uWLQty9po1a+Kxxx6LmTNnxmOPPRbTp0+PBg0aRP/+/WP48OExePDgZF+sDZXkj3/8Y9x5551x8803x8svvxx77bVXHHvssdGvX7/o379/tG3btmBnv/rqq5ueA6ZMmRLvvPNOdOjQIYYPHx5f+tKXYq+99irY2cD/MQ9AZTMPAAAAAOSX+xagnHmxBQBUuNdeey0eeuihmDZtWkydOjXeeuut+MQnPhFdu3aN6urqqK6ujnbt2sXBBx8c++233/9n796DtCzP+4F/d2FRAgoi8YBEPBTFWtBo1GhCaqjnUxJzPjQToqTNVJKMmTSp6bRJM6loYibGQ2oOJnJaJZhYRSs0aGKDVQQRVAwHUTnFiLiLgAu7sPv7I3V/pbwg4PI++77v5zOzM+7zAPPdP66b97q9ua/U19dv8/tXrFiRt73tbdv9uc3NzVm8eHF+//vfZ9GiRVm8eHGefPLJLFq0KL169cppp52WUaNGZdSoUXnXu96VHj16lOtHhqqlnqF6qGeAymT9BgAAAAAAAAAAoBo4Dwe1bePGjXnggQcyc+bMPPjgg3nyySfTo0ePnHDCCTnuuOM66/+YY47Jsccem3333Xeb37958+asW7cuBx100DbPW1tbs3Tp0ixatKhzDVi4cGGeeOKJbN68OcOGDct73/vejBo1KmeddVb69+9fzh8b+B8dHR2ZPXt25xowa9astLS05IgjjsiJJ57YWfuvfw0cOHC7P2NHnwVWrFjRWf+vfx54/PHH8/LLL+fAAw/MmWeemVGjRuXss8/O0KFDy/HjAiXoB6C26QcAAAAAupb9FqDaGGwBAGxj4cKFefDBBzN//vwsWrQov//97/PSSy91vu/fv3/69u2bPn36pG/fvlm1alXe9ra3pbW1NevXr09zc3M2btyYzZs3J0n22WefzgZp2LBhGTlyZN71rnelT58+Rf2IUDPUM1QP9QxQmazfAAAAAAAAAAAAVAPn4aC2rVmzJr/5zW/yyCOPdF5E/fzzz2fr1q1Jkre85S3p27dv+vbtmwMOOCAtLS1pbW1Nv379sm7dumzYsKHzK0nq6uoyZMiQznXg1FNPzahRozJo0KAif0xgBzZv3pxHHnkkv/3tb7Nw4cIsXrw4ixYtymuvvZYkaWhoSN++fTs/D7zlLW/Js88+myOPPHKb+m9ubs7r15sMGDCg83PA8OHD8973vjcjRozY7nJ8oHvQD0Bt0w8AAAAAdC37LUClM9gCAHhDTU1NWbx4cVasWJFXXnklGzduzIYNG9LU1JQbbrghp59+ekaOHJn9998//fr1S9++fTNw4MAcc8wxGTJkSHr06FH0jwD8D/UM1UM9A1Qm6zcAAAAAAAAAAADVwHk4qG2tra1ZsmRJli5dmqampmzYsCEbN25MU1NTpk6dmldffTWf/exn069fv85Lrg844IAcddRROeaYY9K7d++ifwTgTejo6MiKFSuyaNGirFmzpvMzwIYNGzJv3rzce++9+dznPpdBgwalb9++2W+//dK/f/8MGjQow4YNy8CBA4v+EYA3ST8AtU0/AAAAANC17LcAlcRgCwBgj02ePDmf/OQnM2LEiMyfP7/oOMCboJ6heqhngMpk/QYAAAAAAAAAAKAaOA8HtW39+vUZOHBgWltbs3jx4gwdOrToSECZXXLJJbnnnnsybty4fPWrXy06DlBm+gGobfoBAAAAgK5lvwXojuqLDgAAVK7Jkyenrq4uCxYsyOLFi4uOA7wJ6hmqh3oGqEzWbwAAAAAAAAAAAKqB83BQ2+66665s2bIlPXv2zJQpU4qOA5RZc3Nz7r///iTJ+PHjC04DFEE/ALVNPwAAAADQtey3AN2RwRYAwB5pamrK9OnT09HRkV69eqWxsbHoSMAeUs9QPdQzQGWyfgMAAAAAAAAAAFANnIcDJkyYkLq6umzZsiU/+9nPio4DlNkvf/nLtLe3J0kWLlyYp59+uuBEQDnpBwD9AAAAAEDXst8CdEcGWwAAe+QXv/hF5+Gy1tZWTQ5UMPUM1UM9A1Qm6zcAAAAAAAAAAADVwHk4qG1r1qzJAw88kK1btyZJnn322SxYsKDgVEA5TZgwofO/e/Xqldtvv73ANEC56QegtukHAAAAALqW/RaguzLYAgDYI//7cFmSvPDCC3n88ccLSgO8GeoZqod6BqhM1m8AAAAAAAAAAACqgfNwUNumTJmyzfcNDQ1pbGwsKA1Qbi+++GIeeuihzsuVWltbc9ttt6Wjo6PgZEC56AegtukHAAAAALqW/RaguzLYAgDYbatXr87DDz+c9vb2zme9evXS5EAFUs9QPdQzQGWyfgMAAAAAAAAAAFANnIcDxo8fv80F9m1tbS61hxpyxx13pL5+2ytMVqxYkdmzZxeUCCgn/QCgHwAAAADoWvZbgO7KYAsAYLc1NjZud7istbU1t912W7Zu3VpQKmBPqGeoHuoZoDJZvwEAAAAAAAAAAKgGzsNBbVu+fHkee+yxbS6zTpI//OEPefjhhwtKBZTT+PHjt1sDXGoPtUM/ALVNPwAAAADQtey3AN2ZwRYAwG4bP358yQMka9asye9+97sCEgF7Sj1D9VDPAJXJ+g0AAAAAAAAAAEA1cB4OatvkyZPTo0eP7Z43NDS41B5qwLJlyzJv3rztLldqbW3NxIkTXWoPNUA/ALVNPwAAAADQtey3AN2ZwRYAwG5ZunRpFixYkI6Oju3eNTQ0ZPLkyQWkAvaEeobqoZ4BKpP1GwAAAAAAAAAAgGrgPBywo8us29raMmnSpGzZsqWAVEC5TJ48OT179iz5bu3atfnNb35T3kBAWekHAP0AAAAAQNey3wJ0ZwZbAAC7ZeLEiWloaCj5rq2tLY2NjWltbS1zKmBPqGeoHuoZoDJZvwEAAAAAAAAAAKgGzsNBbXvmmWfyzDPPlLzMOkmam5vz61//usypgHKaMGFC2traSr5zqT1UP/0A1Db9AAAAAEDXst8CdHcGWwAAu2Vnh8uSZMOGDZkxY0YZEwF7Sj1D9VDPAJXJ+g0AAAAAAAAAAEA1cB4OatukSZN2eJl14lJ7qHbz58/P4sWLd/i+ra0tt99+ezZt2lTGVEA56QegtukHAAAAALqW/RaguzPYAgDYZXPnzs2yZct2+mt69OiRSZMmlSkRsKfUM1QP9QxQmazfAAAAAAAAAAAAVAPn4YA3usy6ra0tU6dOTUtLSxlTAeXS2Ni408uVkqSlpSX3339/mRIB5aQfAPQDAAAAAF3LfgvQ3RlsAQDssttvvz1Jss8+++zwq6OjI3fffXc2btxYcFpgZ9QzVA/1DFCZrN8AAAAAAAAAAABUA+fhoLY9+uijWb58eXr27LnDNaChoSEtLS2ZNm1a0XGBLtbR0ZFJkyZl69atO/0skCSTJ08uOC2wN+gHoLbpBwAAAAC6lv0WoBL0LDoAAFA5jj/++IwbN26bZ9dcc03OPvvsnHTSSds8X7t2bfr06VPOeMBuUM9QPdQzQGWyfgMAAAAAAAAAAFANnIeD2tbR0bHdGnDPPfdk3bp1+dSnPrXN8379+pUzGlAG69atyxVXXLHNs9+9mHcAACAASURBVGeffTYTJ07M1772tc6hFknSu3fvcscDykA/ALVNPwAAAADQtey3AJWgrqOjo6PoEABA5erfv3++853vZMyYMUVHAd4k9QzVQz0DVCbrNwAAAAAAAAAAANXAeTiobWPGjMny5cszffr0oqMABZg+fXrOO++8NDc3u1AJapR+AGqbfgAAAACga9lvAbqb+qIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0D0ZbAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBJBlsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQksEWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGSwBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUZbAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBJBlsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQksEWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGSwBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUZbAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBJBlsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQksEWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGSwBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUZbAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBJBlsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQksEWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGSwBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUZbAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBJBlsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQksEWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGSwBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUZbAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBJBlsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQksEWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGSwBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUZbAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBJBlsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQksEWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGSwBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUZbAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBJBlsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQUs+iAwAAu+f666/P5s2bi47R6bDDDst///d/p6mpqegonc4777yMGDGi6BjwhtTzG1PPVAr1/MbUM9AdWb/fmPUbAAAAAAAAAACg+3Me7o05D0c1mz59eubPn190jE4vvvhiWltbc+211xYdpdORRx6ZD3/4w0XHgL3i+eefz5QpU4qO0WnlypUZOnRobrjhhvTq1avoOJ2+9KUvdas80JX0A29MP0A10w+8Mf0AAAAAsDvst7wx+y1Q2+o6Ojo6ig4BAOy6fv36paGhIX379i06Sre0fPny3HLLLRkzZkzRUeANqeedU89UEvW8c+oZ6K6s3ztn/QYAAAAAAAAAAKgMzsPtnPNwVLvLL788kyZNysEHH1x0lG5p7dq1Of300zNjxoyio8BeMX369Jx33nk5/PDDU1dXV3ScbmfTpk354x//mObm5vTr16/oOLBX6Ad2Tj9AtdMP7Jx+AAAAANhd9lt2zn4L0LPoAADA7rv66qsdnNgBh8qoNOp5x9QzlUY975h6Broz6/eOWb8BAAAAAAAAAAAqh/NwO+Y8HLVg5MiRLg7ZgcsvvzzLly8vOgbsdQsWLPB3XgmvD/6Aaqcf2DFrI7VAP7Bj+gEAAABgT9hv2TH7LUB90QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADongy2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoCSDLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACjJYAsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABKMtgCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAkgy2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoCSDLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACjJYAsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABKMtgCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAkgy2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoCSDLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACjJYAsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABKMtgCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAkgy2AADelA0bNhQdAegi7e3tRUcAusCWLVuydevWomMAAAAAAAAAAAAAAAA1qKOjI01NTUXHAAqyZcuWdHR0FB0DKNj69euzdu3aomMAAAAAAFS8LVu2pKWlpegYAJ0MtgAAdtvjjz+ec889NwMGDMh+++2XQw45JH/zN3+TV199tehowG5avHhxvvjFL+aII47IgQcemIsuuigzZ84sOhawByZNmpQzzjgj++23X/bdd98MGzYsN954o6E1ABVk6NChGTNmTNExAAAAAAAAAAAAYJfNnDkzxx9//E6/Pv3pTxcdEyiDpqamjBkzJn369MmAAQOy//7756Mf/WhefvnloqMBZXDfffflpJNOSt++fXPwwQfnYx/7WB566KGiYwEFWLt2bYYNG5aRI0cWHQUok/b29pxwwgkl9wQuvPDCouMBAAAAVKQZM2bkpJNOylve8pb06dMnRx55pHvlgG6hZ9EBAIDKMmfOnJx11lnp2bNnPvGJT2TAgAG544478qMf/Sjz5s3LI488kvp6s7OgErS0tOSSSy7JqlWr8olPfCIHHnhg7rzzzlx88cW5//778573vKfoiMAuGj9+fD7zmc/k2GOPzRe/+MW0tLTkzjvvzNixY9Pc3Jx//Md/LDoiAG/g5z//eZYuXZozzzyz6CgAAAAAAAAAAACwy+rq6tLQ0FDy3aZNm7Jo0aIMHTq0zKmAcmttbc0FF1yQRx99NJ/97Gdz+umnZ/bs2fnRj36UlStXZtasWUVHBPaixsbGfPKTn8wRRxyRr3zlK1m1alWmTJmS//iP/8js2bNz7LHHFh0RKKPLLrssq1evTr9+/YqOApTJypUrs2DBggwfPjwDBgzY5t3//R4AAACANzZz5sycd9556d+/f0aPHp2GhoZMnTo1Y8eOzZo1a/LNb36z6IhADTPYAgDYLTfeeGNaWlry6KOP5sQTT0yS/Mu//EvOOuuszJw5M3feeWc+/OEPF5wS2BVf//rXs2jRotx33305//zzkyRf/OIXc8IJJ+Qzn/lMli1bVnBCYFddd911GTp0aB599NHsv//+SZKvfvWrOfLII3PTTTcZbAHQTa1cuTLf/OY389hjj2X+/PlFxwEAAAAAAAAAAIDdNmrUqDzxxBMl340dOzavvvpq/u3f/q3MqYByu+222/LII4/ku9/9br785S8n+dOl1nV1dbnlllsyZ86cvOMd7yg4JbA3tLa25itf+Ur69OmTxx9/PP3790+SjBs3LoMHD87HPvaxzJs3r+CUQLn88Ic/zP333+8ie6gxS5cuTZJMmDAhJ5xwQsFpAAAAACrft771rXR0dOSxxx7L0UcfnSS5+uqrM3jw4Fx33XX5p3/6p/To0aPglECtqi86AABQWR5++OGceOKJnUMtXjd69OgkyezZs4uIBeyBn//85xkxYkTnUIskOfjgg3Puuefmueeey6OPPlpgOmBXrVu3Lk899VTOP//8zqEWSTJo0KCMGjUqr7zyStra2gpMCMCOrF+/PosXL06/fv1yyimnFB0HAAAAAAAAAAAAusz999+fm2++ORMnTswhhxxSdBxgL5s4cWIOOuigjB07dpvnV111VcaPH5+3vvWtBSUD9raFCxdm1apVueCCCzqHWiTJQQcdlHPOOSdPPPFE1q1bV2BCoFyefvrpfPnLX84111yTQw89tOg4QBktWbIkdXV1OeaYY4qOAgAAAFAVVqxYkcGDB3cOtUiS/fbbL6eeemra2tqyadOmAtMBtc5gCwBgl7W1teXcc8/NFVdcsd27FStWJEkGDBhQ7ljAHnj55ZfT1NSUs846a7t3rx8YmTNnTrljAXugZ8+eeeihh/LVr351m+fr1q3LggULcs4556ShoaGgdADszHHHHZff/va3+e1vf5vJkycXHQcAAAAAAAAAAAC6xNq1a/PZz342H/3oRzNq1Kii4wBlsGTJkpx//vnp1atXli1blrvvvjtz587NoEGD8td//dcZMmRI0RGBvWT16tVJklNPPXW7d68/e/rpp8uaCSi/TZs25eMf/3hGjhyZL3zhC0XHAcps6dKlOfzww7Nhw4ZMmzYtP/3pT/Pwww9n69atRUcDAAAAqEgf+MAHsnLlytx3332dzxYtWpQHH3ww733ve9OnT58C0wG1rmfRAQCAytHQ0JAbbrhhu+cvvfRSbrrppjQ0NOSiiy4qIBmwuxYtWpQkOfTQQ7d7d+yxxyb5U20D3V+fPn3yrne9q/P773//+3nhhRdy7733ZuvWrfmHf/iHAtMBAAAAAAAAAAAAALXm7/7u79Lc3Jxx48YVHQUogw0bNuQPf/hDDj744Fx88cWZNm1a57thw4blZz/7Wd75zncWmBDYm44++ugkyQMPPJAvf/nL27xbuHBhkj8NtjjjjDPKng0on6985StZvXp1pk+fnrq6uqLjAGW2dOnSvPrqqzniiCPy2muvdT4/+eSTM2HChBx33HEFpgMAAACoPGPHjs3MmTNz0UUX5Ywzzsi+++6bBx98MIMGDcq3v/3touMBNa6+6AAAQGWbNm1ahg8fnlWrVuW73/1uhg8fXnQkYBcsXbo0STJgwIDt3g0ZMiRJ0tzcXNZMQNf4+te/nu9///tZsmRJBg4cmN69excdCQAAAAAAAAAAAACoEU8//XSmTJmSK6+8MocffnjRcYAyeP3fKV1//fV57rnncsMNN2Tu3Ln5wQ9+kBdeeCHve9/78tJLLxWcEthbhg4dmne84x2ZOXNmfvKTn2T9+vVZt25dbrrppvziF79IkmzdurXglMDeNG3atNx444358Y9/nEMPPbToOEABli5dmvXr1+ef//mfs3jx4syaNSuf+9zn8sQTT+R973tfNm7cWHREAAAAgIrSv3//DBkyJB0dHXnsscfyyCOPpL29PT179sz69euLjgfUOIMtAIA98uyzz+aSSy7JxRdfnP333z8zZszIF77whaJjAbton332SZK88sor2717/WDIAQccUNZMQNfYuHFjFi9enFtvvTVr167NaaedlhdffLHoWAAAAAAAAAAAAABADbj22mvTq1evXHnllUVHAcrk9X+ftHnz5kydOjVXXHFFTjrppIwdOzZXXnllXnrppdx+++0FpwT2lvr6+tx666055JBDMmbMmBxyyCE55JBDcuWVV2bMmDFJkuOPP77glMDe8oc//CGjR4/O5Zdfng984ANFxwEK8vOf/zzz5s3L3//932fo0KE544wzcsstt+TKK6/MkiVL8stf/rLoiAAAAAAVZeTIkfn3f//33HzzzXnxxRezZs2a3HnnnXn11Vdz4YUX5vnnny86IlDDDLYAAHbbxIkTc+KJJ+Y3v/lNrr322jz11FM566yzio4F7IZDDjkkSbJs2bLt3r1+mPytb31rWTMBe6ajoyPt7e3bPBs6dGhGjx6dcePGpa2tLffdd19B6QAAAAAAAAAAAACAWrF8+fJMnjw573//+zNgwICi4wBlcthhhyVJ3vnOd2bYsGHbvLv44ouTJM8880zZcwHlM3z48Dz55JP5yU9+kr/927/Nt771rcyePTvHHXdcEoMtoJr98Ic/zMsvv5x169Zl9OjRnV+rVq3K6tWrM3r06Fx99dVFxwT2spNPPjl/8Rd/sd3zCy64IEny1FNPlTsSAAAAQMV65pln8uSTT+bMM8/M5z//+RxwwAHp3bt3Lr300nzmM5/Ja6+9ZpAoUKieRQcAACrLtGnT8ulPfzqnn356Ghsbc/jhhxcdCdgDxxxzTOrq6koOtpg/f36S5LTTTit3LGAPjBs3LldddVXuvffezgNerxs4cGCSZMWKFUVEAwAAAAAAAAAAAABqyI9+9KNs2bIll112WdFRgDJ6/d8YtrW1bfeupaUlSdKvX7+yZgLKp7W1Nc8991wGDhy43WeAcePG5dBDDzXwCqrYW9/61px44olZsmTJNs83b96c9vb2PPHEE6mvry8oHVAOK1asyOzZs3PKKadsd//I63cZHHTQQUVEAwAAAKhICxYsSJL85V/+5Xbvzj777Hzve99LU1NTuWMBdPJ/fgCA3XLVVVelX79+mTp1qqEWUMEGDRqU97znPXnooYfy7LPPdj5va2vL5MmTc9hhh+Xkk08uMCGwq4YPH54k+c///M/t3v34xz9OkpxwwgllzQQAAAAAAAAAAAAA1J4ZM2ZkwIAB+au/+quiowBl1Lt374waNSpz587d7lLru+66K0lyxhlnFBENKIPXXnstw4YNy9ixY7d5vnLlytx555255JJLCkoGlMPYsWMzb9687b6OO+64HHXUUZk3b15++tOfFh0T2IteeeWVfOhDH8q3v/3t7d7dcccdSZKRI0eWOxYAAABAxfrzP//zJMnUqVO3ezdlypQk///uOYAi9Cw6AABQOZqamvLUU0/l7W9/e6677rqSv+bMM8/MRRddVOZkwJ646qqrcuGFF+YjH/lIvv71r+eAAw7INddck2XLlmXatGmpq6srOiKwCy644IIMHz48N9xwQ/r3759zzz03q1atyi9+8Yvcc889OeWUU/zdDAAAAAAAAAAAAADsVU1NTZk7d24uvvji1NfXFx0HKLNx48bltNNOy0c+8pH867/+a972trflgQceyC233JJ3v/vdLraHKta/f/+MGjUqU6dOzVlnnZUPfOADWbp0aT73uc9l8ODB+c53vlN0RABgLxoxYkROP/30/PjHP86BBx6YSy+9NO3t7Zk4cWJmzJiRD37wgzn11FOLjgkAAABQMY4//vicc845mTFjRs4777x86lOfyhFHHJFf/epXaWxszPHHH5/3v//9RccEapjBFgDALps1a1Y6Ojry+OOP5/HHHy/5a+rq6lyeDRXinHPOyYQJE3L55Zfngx/8YJI/HSL93ve+l/PPP7/gdMCuqq+vz1133ZVPfepT+cY3vpFvfOMbne8uvfTS/OAHP0jPntp/AAAAAAAAAAAAAGDvefDBB9Pe3p7TTz+96ChAAU455ZTce++9GT16dC644ILO55dcckl+9rOfFZgMKIdbb701H//4x3PZZZflsssuS5KcdNJJmTx5cvbbb7+C0wEAe1NdXV3uuuuuXH755bn66qtz9dVXd777/Oc/n+uuu67AdAAAAACVp76+Po2NjRk7dmwaGxszffr0znfvec97cuutt6ZXr14FJgRqnZstAYBddtFFF6Wjo6PoGEAX+tjHPpYPfehDmTNnTtrb23PaaaelR48eRccCdtNRRx2V3/3ud3nuuefy+9//Pr17986xxx6bww47rOhoAOyiP/uzP9NvAQAAAAAAAAAAULEuvfRS5+Cgxp1//vlZsWJFnnrqqaxZsybDhw/PoYceWnQsoAyGDBmSWbNm5cknn8yyZcty0kkn5fDDDy86FlCguXPnFh0BKKODDjood999d1544YUsWrQo/fv3z3HHHWfAFQAAAMAeGjBgQCZNmpRrrrkmTz/9dFpaWjJs2LAce+yxqaurKzoeUOMMtgAAgBrXs2fPvPOd7yw6BvAm1dfX5+ijj87RRx9ddBQAAAAAAAAAAAAAAKAGNTQ05O1vf3vRMYAC1NXVZcSIERkxYkTRUQCAggwZMiRDhgwpOgYAAABA1Rg8eHAGDx5cdAyAbdQXHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDuyWALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASjLYAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJIMtgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKAkgy0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoyWALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASjLYAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJIMtgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKAkgy0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoyWALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASjLYAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJIMtgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKAkgy0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoyWALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASjLYAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJIMtgAA3pS5c+cWHQHoIuoZqod6BqhM1m8AAAAAAAAAAACqgfNwUNuam5uzdOnSomMABfJZAGqbNQBqm34AAAAAoGvZbwG6m55FBwAAdt/06dPT1NRUdIwkya233poLL7wwBx98cNFRkiStra1FR4Ddop53TD1TadTzjqlnoDuzfu+Y9RsAAAAAAAAAAKByOA+3Y87DUQuef/75XHvttUXHSJI89thjaW5uztlnn110lCTJggUL0r9//6JjwF53/fXXZ9999y06RlpaWnLLLbfkS1/6UtFRkiSLFy8uOgKUhX5gx/QD1AL9wI7pBwAAAIA9Yb9lx+y3AAZbAECFGTJkSObMmZM5c+YUHSVbt27NypUr8+KLL3abxuLggw/OfvvtV3QM2CXqeefUM5VEPe+cega6K+v3zlm/AQAAAAAAAAAAKoPzcDvnPBzVbuDAgWltbc3NN99cdJQkyR//+Mds2bIlS5YsKTpKp2HDhhUdAfaa3r17Z8iQIbn11luLjpIk2bBhQ9auXZvvf//76dWrV9Fxkvzps1J9fX3RMWCv0Q/snH6AaqcfeGP6AQAAAGB32G95Y/ZboLbVdXR0dBQdAgCoTDfddFOuuOKKDB48OMuXL09dXV3RkYA9pJ6heqhngMpk/QYAAAAAAAAAAKAaOA8Hte3FF1/MYYcdlvb29syZMycnn3xy0ZGAMnv3u9+dWbNm5Wtf+1quvvrqouMAZaYfgNqmHwAAAADoWvZbgO6ovugAAEDlmjBhQurq6rJy5crMnj276DjAm6CeoXqoZ4DKZP0GAAAAAAAAAACgGjgPB7VtypQpqa+vT0NDQxobG4uOA5TZqlWr8vDDDydJxo8fn46OjoITAeWmH4Daph8AAAAA6Fr2W4DuyGALAGCPLF++PLNnz05HR0d69eqlyYEKpp6heqhngMpk/QYAAAAAAAAAAKAaOA8H3HbbbWlvb09bW1vGjx+frVu3Fh0JKKPGxsb06NEjSbJ69erOIRdAbdAPAPoBAAAAgK5lvwXojgy2AAD2yP8+XNba2pqJEydqcqBCqWeoHuoZoDJZvwEAAAAAAAAAAKgGzsNBbVu2bFnmzZuX9vb2JMmaNWvyX//1XwWnAsrpf1+o1NDQ4FJ7qDH6Aaht+gEAAACArmW/BeiuDLYAAPbI/53Wt3bt2jz44IMFJgL2lHqG6qGeASqT9RsAAAAAAAAAAIBq4Dwc1LbJkyenZ8+end83NDRk8uTJBSYCymnp0qV58skn09HRkSRpa2vLpEmTsmXLloKTAeWiH4Daph8AAAAA6Fr2W4DuymALAGC3PfPMM1m4cGHn4bJEkwOVSj1D9VDPAJXJ+g0AAAAAAAAAAEA1cB4OGD9+fNra2jq/b2try+23357W1tYCUwHlMnHixDQ0NGzzrLm5Ob/+9a8LSgSUk34A0A8AAAAAdC37LUB3ZbAFALDbJk2atN3hsra2ttxxxx3ZtGlTQamAPaGeoXqoZ4DKZP0GAAAAAAAAAACgGjgPB7Vt/vz5WbJkyXbPN2zYkBkzZhSQCCi3CRMmbHO5UuJSe6gl+gGobfoBAAAAgK5lvwXozgy2AAB228SJE7c7XJYkLS0tuf/++wtIBOwp9QzVQz0DVCbrNwAAAAAAAAAAANXAeTiobY2NjdtdZp0kPXr0yKRJkwpIBJTT3Llzs2zZsu2et7W1ZerUqWlpaSkgFVBO+gGobfoBAAAAgK5lvwXozgy2AAB2y6OPPpoXXnih5DtNDlQW9QzVQz0DVCbrNwAAAAAAAAAAANXAeTiobR0dHZkwYULJy6y3bNmSX/3qV9mwYUMByYByaWxsTK9evUq+27RpU6ZNm1bmREA56QegtukHAAAAALqW/RaguzPYAgDYLTs7XLZly5bcfffdefXVV8ucCtgT6hmqh3oGqEzWbwAAAAAAAAAAAKqB83BQ22bNmpXVq1fv8H1bW1vuueeeMiYCyqm9vT0TJ05Ma2tryfc9evTIxIkT/x97dx5mdV32D/weBhAYFsHUFL0ClGUQQxA3RHTGRNHAPUIbEMvMrtSnNJeyHlPcnsxKn1IzN8AdNRfU1GZARAw1FBcYEBUyDQ1jnwSG8/vDx/lpDfuc8/2ec16vf5LDeL5v8Lrv69yf6+58cpwKyCXzABQ38wAAAABA03LeAqSdiy0AgE22bt26uOOOO9a7XBbxyXLJQw89lMNUwJZQz1A41DNAftK/AQAAAAAAAAAAKAT24YC77rorWrRosd7fLykp8aX2UMCeeeaZWLRo0Xp/cXFjnQAAIABJREFUf+3atfH444/HkiVLcpgKyBXzAGAeAAAAAGhazluAtHOxBQCwyWpqauIf//jHBn/GkAP5QT1D4VDPAPlJ/wYAAAAAAAAAAKAQ2IeD4rZ27dq48847Y82aNev9mfr6+njyySfjo48+ymEyIFfuvvvuDX65UsQnfeDBBx/MUSIgl8wDUNzMAwAAAABNy3kLkA9cbAEAbLK77rproz9TX18f1dXV8eGHH+YgEbCl1DMUDvUMkJ/0bwAAAAAAAAAAAAqBfTgobk8//XQsWbJkoz+3du3amDhxYg4SAbm0Zs2auPfeezf45UoREevWrdukzwxA/jEPQHEzDwAAAAA0LectQD4oyWQymaRDAAD5Yfr06bFy5crPvXbMMcfEt7/97TjyyCM/93q/fv1iu+22y2U8YDOoZygc6hkgP+nfAAAAAAAAAAAAFAL7cFDc3nrrrXjrrbc+99o111wTH3zwQVx55ZWfe33nnXeO3r175zIekGUrV66M6dOnf+61F198MS688ML4wx/+EGVlZQ2vl5aWRkVFRa4jAllmHoDiZh4AAAAAaFrOW4B80DzpAABA/jjggAP+47XmzZtHeXl5fOUrX0kgEbCl1DMUDvUMkJ/0bwAAAAAAAAAAAAqBfTgobt26dYtu3bp97rV77rkn6uvr9QAoAmVlZf9R6/X19RERccghh0SHDh2SiAXkkHkAipt5AAAAAKBpOW8B8kGzpAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQTi62AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoFEutgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBRLrYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgUS62AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoFEutgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBRLrYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgUS62AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoFEutgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBRLrYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgUS62AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoFEutgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBRLrYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgUS62AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoFEutgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBRLrYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgUS62AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoFEutgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBRLrYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgUS62AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoFEutgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBRLrYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgUS62AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoFEutgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBRLrYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgUS62AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoFEutgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBRLrYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgUS62AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoFEutgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBRLrYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgUc2TDgAA5J+PP/44Vq5cGUuWLIn6+vr44IMP4v3334+ysrJo37590vGAzaCeoXCoZ4D8pH8DAAAAAAAAAABQCOzDQXHLZDKxZMmSWLFiRcP/LliwINq3bx/t27eP0tLSpCMCWbZixYpYsWJFvP/++xER8c4770Tnzp2jrKwsWrdunXA6INvMA1DczAMAAAAATct5C5BmJZlMJpN0CAAgXerq6mL27Nkxd+7cmDNnTtTW1kZtbW0sXLgwli5dGmvXrt3gv9++ffvo1KlT9OjRI3r16hU9e/aMnj17Rnl5eey88845+lMAEeoZCol6BshP+jcAAAAAAAAAAACFwD4cFLdMJhPz58//XP3X1tbG3LlzY9myZbFq1aoN/vutWrWKDh06RLdu3Rp6QI8ePaK8vDy6d+/ui1cgD3z44YfxxhtvNNT+7Nmzo7a2NhYvXhxLlizZ4L/brFmz6NChQ+yyyy4N9f9pLygvL4927drl6E8BbCnzABQ38wAAAABA03LeAuQzF1sAALF69ep4/vnno6amJqqrq+PPf/5zfPzxx9GiRYvPDSpdunSJDh06RFlZWZSVlUXHjh2jrKws6urqYuXKlbFy5cpYtmxZLFu2LD788MOora2NOXPmxNy5c+Ojjz6KiIhu3bpFRUVFVFRURGVlZey0004J/+mhsKhnKBzqGSA/6d8AAAAAAAAAAAAUAvtwwJw5c6KmpiZqampi8uTJ8eGHH0ZEROfOnRu+GKVnz57RsWPHaNOmTUP9l5WVRbNmzWLlypWxfPnyWLp0aaxcuTKWLl0ac+fObfhCloULF0Ymk4kOHTrE4MGDo7KyMiorK2PPPfeMkpKShP/0wD/+8Y+YPHlyQx+YPXt2RHzy5fSf1n+vXr1ixx13jG233Tbatm3b0APatWv3ufpfuXJlLFmyJBYuXNjQB+bNmxcff/xxNG/ePAYMGNDwOWDgwIHRpk2bhP/0gHkAMA8AAAAANC3nLUChcLEFABSpurq6ePDBB+OOO+6IyZMnx6pVq6JLly4NSx/77bdfdO3aNVq0aNEkz/vwww/j1VdfjSlTpkR1dXXMmDEjVq9eHeXl5XHCCSdEVVVVdO/evUmeBcVGPUPhUM8A+Un/BgAAAAAAAAAAoBDYhwOee+65GDduXDz88MPx/vvvR7t27Rq+9GTQoEFRXl4e7dq1a5Jn1dXVxZw5c2LatGlRU1MTU6ZMicWLF8cXvvCFOPLII2PUqFFRUVERzZo1a5LnARv317/+NSZMmBD33ntvvPLKK9GsWbPYe++9o6KiIg455JDo27dvk33hfH19fSxYsCBefPHFhi9xqq2tjW222SYOPPDAOPnkk+OEE06I9u3bN8nzgI0zDwDmAQAAAICm5bwFKEQutgCAIpLJZOKZZ56J22+/Pe6///6oq6uLww8/PI455piorKyMrl275izLypUr49lnn40nn3wy7r777njvvffigAMOiKqqqhgxYkR06tQpZ1kgH6lnKBzqGSA/6d8AAAAAAAAAAAAUAvtwwNtvvx3jx4+P8ePHx5tvvhl77rlnfP3rX4/KysoYMGBANG/ePCc51q1bF6+88kpUV1fHvffeGzNmzIhddtklTj755Bg1alT07t07Jzmg2KxYsSIeeOCBGDduXNTU1ETHjh1jxIgRccQRR8TgwYOjQ4cOOcvyt7/9Laqrq+ORRx6JRx55JEpKSuKYY46JqqqqGDJkSJSWluYsCxQL8wBgHgAAAABoWs5bgELnYgsAKAJr1qyJ8ePHx1VXXRVz586NvffeO6qqqmLkyJGxww47JB0v6uvr409/+lOMHz8+HnzwwVi7dm2ccsopcf755+d02QXygXqGwqGeAfKT/g0AAAAAAAAAAEAhsA8HTJ8+PS6//PKYNGlS7LDDDnHSSSfFqFGjYq+99ko6WkRE1NbWxvjx42PChAmxYMGCOPjgg+NHP/pRDBkyJOloUBD+/ve/xy9+8Yu48cYbY/Xq1XHUUUfFqFGjYujQodGyZcuk48WSJUvivvvui3HjxsW0adOic+fOce6558Zpp50Wbdq0SToe5D3zAGAeAAAAAGhazluAYuFiCwAoYHV1dXHzzTfHz3/+8/j73/8eVVVV8f3vfz/22GOPpKOt14oVK+LOO++Mq666KhYuXBgnnXRSXHDBBVFeXp50NEiUeobCoZ4B8pP+DQAAAAAAAAAAQCGwDwdUV1fHZZddFtXV1TFw4MA4//zz48gjj4zmzZsnHa1R69ati8mTJ8f//M//xB//+MfYZ5994sc//nEMHz48SkpKko4HeWfBggXx85//PG6++ebo2LFjnHPOOTFmzJjo1KlT0tHW66233orrrrsufve730Xbtm3j+9//fnz3u9+N9u3bJx0N8o55ADAPAAAAADQt5y1AsWmWdAAAoOmtW7cubrjhhujatWucd955cfTRR8ebb74Zv//971O9VBIR0bZt2/j2t78dtbW1ccstt8QLL7wQffr0iZEjR8a7776bdDzIOfUMhUM9A+Qn/RsAAAAAAAAAAIBCYB8OmDFjRgwcODAOPfTQKCkpierq6pg2bVoMHz48tV+qEhHRrFmzqKysjCeeeCJeeOGF6Ny5cxx77LHRt2/fePrpp5OOB3njH//4R5x++unRvXv3ePTRR+MXv/hFvPXWW3HOOeek+lKLiIhu3brFL3/5y3jnnXfim9/8ZlxxxRXRpUuXuOqqq2LNmjVJx4O8YB4AzAMAAAAATct5C1CsXGwBAAXmpZdeiv333z/OOuusOOmkk+Ltt9+Oa6+9Nnbdddeko22W5s2bR1VVVbz22mtxzz33xIsvvhjl5eVx9dVXWzKjaKhnKBzqGSA/6d8AAAAAAAAAAAAUAvtwUNw++uij+M53vhMHHHBAbLPNNjF9+vR4+umno6KiIulom23AgAHx4IMPxqxZs6Jbt25x2GGHxde//vV47733ko4GqbVu3br4/e9/H7169YpHH300brzxxpg3b15897vfjVatWiUdb7Nsv/32cfnll8eCBQvizDPPjJ/97GfRt2/fqKmpSToapJp5AIqbeQAAAACgaTlvAYqdiy0AoEAsWbIkzj777Nhvv/2iVatW8dJLL8U111wTO+64Y9LRtkqzZs3ihBNOiDfeeCPGjh0bF198cfTp08dNfhQ09QyFQz0D5Cf9GwAAAAAAAAAAgEJgHw6KWyaTiXHjxkV5eXk89NBDceutt0Z1dXXsv//+SUfban369Ik//OEP8fTTT8fLL78cPXr0iIsvvjhWr16ddDRIlVdeeSUOOuigOOOMM+Lkk0+O2bNnx5gxY6JFixZJR9sq2267bfzsZz+LuXPnxh577BGVlZUxbNiwePfdd5OOBqliHoDiZh4AAAAAaFrOWwA+4WILACgAU6ZMiT322CPuueeeuOWWW2LKlCmx5557Jh2rSbVo0SLOPvvseOWVV2L33XePIUOGxPe//32DDgVHPUPhUM8A+Un/BgAAAAAAAAAAoBDYh4Pi9sEHH8TQoUPj1FNPjREjRsScOXNi1KhRUVJSknS0JnXooYfGzJkz4wc/+EFceeWVcdBBB8U777yTdCxI3Lp16+Kyyy6LAQMGRElJSbz00kvx61//Otq3b590tCa1yy67xH333RcPPfRQvPbaa/HlL385HnrooaRjQSqYB6C4mQcAAAAAmpbzFoD/z8UWAJDH1q1bF2PHjo1DDz009t9//5g9e3ZBDjeftdtuu8WkSZNi3LhxcfPNN8egQYPi7bffTjoWbDX1rJ4pHOpZPQP5Sf/WvwEAAAAAAAAAAAqBfTj7cDBlypTo169fzJ07N5577rm49tpro0OHDknHyprWrVvHJZdcEi+//HL861//iv79+8eDDz6YdCxIzAcffBBHHHFEXHLJJXH11VfH1KlT48tf/nLSsbJq+PDh8frrr8fxxx8fxx57rC+2p6iZB8wDYB4wDwAAAABNy3mL8xbg81xsAQB56sMPP4yjjjoqLrnkkrjsssti4sSJ0bFjx6Rj5cw3vvGNePHFF2P16tWx1157xT333JN0JNhi6lk9UzjUs3oG8pP+rX8DAAAAAAAAAAAUAvtw9uEobplMJn7961/HYYcdFvvss0+89NJLse+++yYdK2d69eoVf/7zn6OqqiqOO+64OP300+Pjjz9OOhbk1Ge/WGnKlClx9tlnF/SX2X9WmzZt4qabbor77rsvbr311hg4cGDMnz8/6ViQU+YB8wDFzTxgHgAAAACalvMW5y1A40ovvvjii5MOAQBsnlmzZsVBBx0Uy5YtiyeeeCJOPPHEolks+6ztttsuRo8eHe+++25ceOGFUV9fHxUVFUX5d0H+Us+fUM8UAvX8CfUM5Bv9+xP6NwAAAAAAAAAAQH6zD/cJ+3AUq1WrVsXxxx8fN954Y1x99dXxy1/+Mlq3bp10rJxr3rx5DB06NHr06BFXXnllPP7443HssccW5d8Fxec3v/lNjBw5MoYMGRKPP/547L777klHSkTv3r3juOOOi3vuuSeuvvrqOOCAA+JLX/pS0rEg68wDnzAPUKzMA58wDwAAAABNxXnLJ5y3AI0pyWQymaRDAACbburUqTF8+PDo169fPPjgg9GhQ4ekI6XCzTffHN/5znfilFNOiRtuuCFKS0uTjgQbpZ4bp57JR+q5ceoZSDv9u3H6NwAAAAAAAAAAQH6xD9c4+3AUi48++iiGDRsWc+fOjUcffTT222+/pCOlwuzZs2Po0KFRVlYWTzzxROy6665JR4Ks+elPfxpjx46Nyy67LC688MKk46TCv/71r6iqqopHH3007rrrrjjmmGOSjgRZYx5onHmAYmEeaJx5AAAAANhSzlsa57wF+FSzpAMAAJvukUceicMPPzwOOeSQeOyxxyyVfMY3v/nNeOCBB+LOO++M4447Lurq6pKOBBukntdPPZNv1PP6qWcgzfTv9dO/AQAAAAAAAAAA8od9uPWzD0cxeP/996OioiL+9re/xdSpU32pymeUl5fH9OnTo0WLFrHffvvFrFmzko4ETa6+vj7OOOOMuPzyy+PGG290qcVntGrVKu6+++4YM2ZMnHDCCXHjjTcmHQmywjywfuYBioF5YP3MAwAAAMCWcN6yfs5bgE+52AIA8sRtt90Wxx57bIwePTomTpwYrVq1SjpS6gwbNiyefPLJmDp1ahxxxBGxfPnypCNBo9Tzxqln8oV63jj1DKSR/r1x+jcAAAAAAAAAAED62YfbOPtwFLJ58+bF/vvvH/X19TFt2rTo1atX0pFSZ6eddoqampro1q1bVFRUxIwZM5KOBE1mzZo1MWLEiLj99tvjgQceiNNOOy3pSKlTWloav/3tb+MnP/lJwwUgUEjMAxtnHqCQmQc2zjwAAAAAbA7nLRvnvAWIiCjJZDKZpEMAABt2//33x4gRI+KCCy6IsWPHJh0n9V577bX4yle+EnvuuWdMmjQpWrZsmXQkaKCeN496Js3U8+ZRz0Ba6N+bR/8GAAAAAAAAAABIJ/twm8c+HIXmb3/7WwwaNCh23HHHePzxx6Njx45JR0q1urq6OP7442PGjBnxzDPPRO/evZOOBFslk8lEVVVVPPzww/HYY4/FoEGDko6Uer/97W/je9/7Xvz617+OM888M+k4sNXMA5vHPEChMQ9sHvMAAAAAsDHOWzaP8xYobi62AICUmzx5cgwdOjROPfXU+M1vfpN0nLzx6quvxuDBg+OQQw6JiRMnRmlpadKRQD1vIfVMGqnnLaOegaTp31tG/wYAAAAAAAAAAEgX+3Bbxj4chWLp0qVx8MEHx5o1a2Lq1KnRqVOnpCPlhbq6ujj88MPjrbfeimnTpsWXvvSlpCPBFjvnnHPif//3f+Phhx+Oww8/POk4eePKK6+MH/3oR3HbbbfFqFGjko4DW8w8sGXMAxQK88CWMQ8AAAAA6+O8Zcs4b4Hi5WILAEixWbNmxcEHHxxHHHFE3HHHHdGsWbOkI+WVT5dyxowZE7/97W+TjkORU89bRz2TJup566hnICn699bRvwEAAAAAAAAAANLBPtzWsQ9HvvPlIFvn0y+lWbVqVTz77LOxww47JB0JNtsVV1wRF110Udx1113xta99Lek4eeecc86J6667Lh555BGXgpCXzANbxzxAvjMPbB3zAAAAAPDvnLdsHectUJxKL7744ouTDgEA/KcFCxbEwQcfHP3794/77rsvmjdvnnSkvNOlS5fo1atXXHjhhdGqVas48MADk45EkVLPW089kxbqeeupZyAJ+vfW078BAAAAAAAAAACSZx9u69mHI59lMpk48cQT46WXXorq6uro3r170pHyTqtWrWLYsGFx0003xWOPPRZVVVVRWlqadCzYZOPHj48zzzwzrr322hgzZkzScfLSYYcdFrW1tTF27Ng46qijYscdd0w6Emwy88DWMw+Qz8wDW888AAAAAHyW85at57wFipOLLQAghdasWRNf/epXo7S0NJ588slo06ZN0pHyVu/evaNt27ZxwQUXxCGHHOIGRHJOPTcd9UzS1HPTUc9ALunfTUf/BgAAAAAAAAAASI59uKZjH4589fOf/zxuvPHGePzxx2PvvfdOOk7eat++fRx++OExduzYWLx4cRxxxBFJR4JN8vrrr8fRRx8dZ511Vlx00UVJx8lbJSUlMXz48Hjqqafi1ltvjVNOOSW22WabpGPBRpkHmo55gHxlHmga5gEAAADgU85bmobzFig+JZlMJpN0CADg8374wx/G9ddfHzNmzIjevXsnHSfvZTKZOP7442P69Okxc+bM+OIXv5h0JIqIem5a6pkkqeempZ6BXNG/m5b+DQAAAAAAAAAAkAz7cE3LPhz5ZsaMGXHQQQfFZZddFueee27ScQrCPffcEyNHjoz7778/jj322KTjwAbV1dXF/vvvH61bt46pU6dGixYtko6U9xYtWhR77bVXHHzwwXH33XcnHQc2yjzQtMwD5BvzQNMzDwAAAEBxc97S9Jy3QPFwsQUApMzjjz8eRx11VNx6660xevTopOMUjCVLlkT//v2jZ8+eMWnSpGjWrFnSkSgC6jk71DNJUM/ZoZ6BbNO/s0P/BgAAAAAAAAAAyC37cNlhH4588c9//jP69+8f5eXlMWnSpCgpKUk6UsE47bTTYuLEifGXv/wlunbtmnQcWK8xY8bEQw89FH/5y1+iS5cuSccpGNXV1TFkyJC44YYb4lvf+lbScWC9zAPZYR4gX5gHssc8AAAAAMXJeUv2OG+B4uBiCwBIkffeey/69u0bRx11VNx2221Jxyk4n96KeOmll8Z5552XdBwKnHrOLvVMLqnn7FLPQLbo39mlfwMAAAAAAAAAAOSGfbjssg9HPjjmmGPiL3/5S8ycOTO22267pOMUlLq6uthvv/2irKwspk6dGs2bN086EvyHCRMmxKhRo+Lhhx+Or371q0nHKTg//vGP45e//GW88MILscceeyQdB/6DeSC7zAPkA/NA9pgHAAAAoDg5b8ke5y1QHFxsAQAp8rWvfS1mzpwZL7/8cpSVlSUdpyBdddVVcfHFF8drr70Wu+22W9JxKGDqOfvUM7minrNPPQPZoH9nn/4NAAAAAAAAAACQffbhss8+HGk2ceLE+NrXvhaTJ0+OwYMHJx2nIM2ePTv69esXV111VZx99tlJx4HPWbx4cfTq1StGjhwZ1157bdJxCtLatWtj0KBB0bx585g6dWqUlJQkHQk+xzyQfeYB0sw8kH3mAQAAACguzluyz3kLFD4XWwBASjz11FMxZMiQePTRR+Ooo45KOk7BWrt2bey9996x0047xRNPPJF0HAqUes4N9UwuqOfcUM9AU9O/c0P/BgAAAAAAAAAAyC77cLlhH460Wr58efTu3TuGDBkSN998c9JxCtpFF10U1157bcyZMyd23nnnpONAg9NOOy0effTRmDNnTnTo0CHpOAXr1Vdfjf79+8dNN90Up5xyStJxoIF5IDfMA6SVeSB3zAMAAABQHJy35I7zFihsLrYAgBT4+OOPo2/fvtGnT5+YOHFi0nEK3rPPPhuDBw+O+++/P4499tik41Bg1HNuqWeyST3nlnoGmor+nVv6NwAAAAAAAAAAQHbYh8st+3Ck0bnnnhu33HJL1NbWxvbbb590nIJWV1cXffr0if333z/uuOOOpONARES88MILsf/++8edd94ZI0aMSDpOwTvrrLPizjvvjDlz5sQXvvCFpOOAeSDHzAOkkXkgd8wDAAAAUByct+SO8xYobC62AIAUuOSSS+Kqq66K119/Pbp06ZJ0nKIwatSomDx5crzxxhvRtm3bpONQQNRz7qlnskU95556BpqC/p17+jcAAAAAAAAAAEDTsw+Xe/bhSJPXX389+vXrF9ddd12cfvrpSccpCk888UQMHTo0/vSnP0VlZWXScShy9fX1sc8++8R2220XTz31VNJxisKyZcuivLw8hg8fHtdff33SccA8kADzAGliHsg98wAAAAAUNuctuee8BQqXiy0AIGGLFi2Kbt26xX//93/Heeedl3ScorFo0aLo2bNnnHvuuXHRRRclHYcCoZ6ToZ7JBvWcDPUMbC39Oxn6NwAAAAAAAAAAQNOyD5cM+3CkydChQ2Px4sXx/PPPR7NmzZKOUzSGDx8eCxcujJkzZ0ZJSUnScShit9xyS5xxxhkxa9as6NmzZ9JxisaECRNi9OjR8eqrr0bv3r2TjkMRMw8kwzxAmpgHkmEeAAAAgMLlvCUZzlugMOmiAJCwa665Jtq1axdnnnlm0lGKyo477hhnnXVW/OpXv4rly5cnHYcCoZ6ToZ7JBvWcDPUMbC39Oxn6NwAAAAAAAAAAQNOyD5cM+3CkxcyZM+OPf/xjXHrppb5UJccuvfTSmDVrVjz66KNJR6GI1dfXx1VXXRVVVVUutcixk08+OXr37h1XXnll0lEocuaBZJgHSAvzQHLMAwAAAFCYnLckx3kLFCadFAAStHTp0rjxxhvjBz/4QbRu3TrpOEXnv/7rv2L16tXxu9/9LukoFAD1nCz1TFNSz8mV5IPjAAAgAElEQVRSz8CW0r+TpX8DAAAAAAAAAAA0DftwybIPRxpceumlsddee8WQIUOSjlJ0+vbtG8OGDYuxY8cmHYUidu+998b8+fPjvPPOSzpK0SkpKYnzzz8/7rzzzpg3b17ScShS5oFkmQdIA/NAcswDAAAAUJictyTHeQsUJhdbAECCfvWrX0VpaWmcccYZSUcpSp06dYrTTz89rr766qirq0s6DnlOPSdLPdOU1HOy1DOwpfTvZOnfAAAAAAAAAAAATcM+XLLsw5G02bNnx0MPPRQ//elPo6SkJOk4RenHP/5xzJgxI/70pz8lHYUilMlk4oorrogRI0ZEjx49ko5TlEaOHBndunWLq6++OukoFCnzQLLMAyTNPJA88wAAAAAUFuctyXPeAoXHxRYAkJAVK1bEddddF2eddVa0a9cu6ThF65xzzomlS5fGrbfemnQU8ph6Tgf1TFNQz+mgnoHNpX+ng/4NAAAAAAAAAACwdezDpYN9OJJ0+eWXR3l5eRx99NFJRyla++67bxx22GExduzYpKNQhB555JF47bXX4sILL0w6StEqLS2N8847L2677bZ49913k45DkTEPpIN5gCSZB5JnHgAAAIDC4rwlec5boPC42AIAEnLvvffGypUr48wzz0w6SlH74he/GFVVVXH99dcnHYU8pp7TQT3TFNRzOqhnYHPp3+mgfwMAAAAAAAAAAGwd+3DpYB+OpCxevDjuvffeOPfcc6OkpCTpOEXtvPPOi8mTJ8ecOXOSjkKRuf766+PII4+MPn36JB2lqI0aNSo6deoUt9xyS9JRKDLmgXQwD5AU80B6mAcAAACgMDhvSQ/nLVBYXGwBAAkZN25cDB8+PDp16pR0lKI3evToeO211+Lll19OOgp5Sj2nh3pma6nn9FDPwObQv9ND/wYAAAAAAAAAANhy9uHSwz4cSbj77rujRYsWccIJJyQdpehVVlbGrrvuGuPHj086CkVk0aJF8fTTT8fo0aOTjlL0WrZsGSNHjozx48dHJpNJOg5FxDyQHuYBkmAeSA/zAAAAABQG5y3p4bwFCouLLQAgAQsWLIipU6dGVVVV0lGIiIEDB0aPHj0MOWwR9Zwu6pmtoZ7TRT0Dm0r/Thf9GwAAAAAAAAAAYMvYh0sX+3AkYfz48XH88cdH27Ztk45S9Jo1axYnn3xyTJgwIdatW5d0HIrE+PHjo6ysLL761a8mHYWIqKqqijfffDOef/75pKNQJMwD6WIeIAnmgfQwDwAAAEBhcN6SHs5boLC42AIAEjBu3Lj4whe+EIcffnjSUfg/J510UkyYMCHWrl2bdBTyjHpOH/XMllLP6aOegU2hf6eP/g0AAAAAAAAAALD57MOlj304cmnevHkxY8YMX2adIqNGjYqFCxfGlClTko5CkRg/fnx8/etfj9atWycdhYjo169f7Lnnnr7UnpwxD6SPeYBcMg+kj3kAAAAA8pvzlvRx3gKFw8UWAJCACRMmxMiRI6NFixZJR+H/VFVVxYcffhhPPfVU0lHIM+o5fdQzW0o9p496BjaF/p0++jcAAAAAAAAAAMDmsw+XPvbhyKXbb789OnfuHJWVlUlH4f+Ul5fHgAEDfKk9OfHKK6/ErFmzfLlSynzjG9+Ie+65J1avXp10FIqAeSB9zAPkknkgfcwDAAAAkN+ct6SP8xYoHC62AIAcmzt3bsydOzdOPPHEpKPwGd26dYu99947Jk2alHQU8oh6Tif1zJZQz+mknoGN0b/TSf8GAAAAAAAAAADYPPbh0sk+HLk0adKkOO6446JZM//3/zQ58cQT47HHHotMJpN0FArcpEmTonPnzjFw4MCko/AZJ554Ynz00Ufx3HPPJR2FAmceSCfzALlkHkgn8wAAAADkL+ct6eS8BQqDzgoAOVZTUxNt27aNfffdN+ko/JvKysqoqalJOgZ5RD2nl3pmc6nn9FLPwIbo3+mlfwMAAAAAAAAAAGw6+3DpZR+OXFi8eHHMmjUrDj300KSj8G8qKipi0aJF8cYbbyQdhQJXXV0dlZWVUVJSknQUPqNr167RtWvXmDx5ctJRKHDmgfQyD5AL5oH0Mg8AAABAfnLekl7OW6AwuNgCAHKspqYmDjrooGjRokXSUfg3FRUV8cYbb8R7772XdBTyhHpOL/XM5lLP6aWegQ3Rv9NL/wYAAAAAAAAAANh09uHSyz4cuTB58uQoKSmJwYMHJx2Ff9O/f//o2LFjVFdXJx2FArZ69eqYPn16VFRUJB2FRlRWVuoBZJ15IL3MA+SCeSC9zAMAAACQn5y3pJfzFigMLrYAgBzKZDIxefJky2UpNXjw4GjZsmVMnjw56SjkAfWcbuqZzaGe0009A+ujf6eb/g0AAAAAAAAAALBp7MOlm304cqGmpib69+8f2267bdJR+DelpaUxePDgqKmpSToKBWz69OmxatUqnwVSqqKiIv785z/HypUrk45CgTIPpJt5gFwwD6SXeQAAAADyk/OW9HLeAoXBxRYAkEOvv/56LFq0KCorK5OOQiPatGkT++67ryGHTaKe0009sznUc7qpZ2B99O90078BAAAAAAAAAAA2jX24dLMPRy5UV1frASlWUVERNTU1UV9fn3QUClRNTU107do1unTpknQUGlFZWRlr1qyJZ599NukoFCjzQLqZB8gF80C6mQcAAAAg/zhvSTfnLZD/XGwBADn04osvRps2bWKvvfZKOgrrceCBB8aMGTOSjkEeUM/pp57ZVOo5/dQz0Bj9O/30bwAAAAAAAAAAgI2zD5d+9uHIphUrVsScOXNi4MCBSUdhPQYNGhRLliyJ+fPnJx2FAvXCCy/EgQcemHQM1mOnnXaKbt26xQsvvJB0FAqUeSD9zANkk3kg/cwDAAAAkF+ct6Sf8xbIfy62AIAcmjNnTnTv3j1KS0uTjsJ69OrVK+bNmxfr1q1LOgopp57TTz2zqdRz+qlnoDH6d/rp3wAAAAAAAAAAABtnHy797MORTbW1tZHJZKK8vDzpKKxHr169oqSkJGpra5OOQoGaM2dO9OrVK+kYbEDPnj31ALLGPJB+5gGyyTyQfuYBAAAAyC/OW9LPeQvkPxdbAEAO1dbWRs+ePZOOsdUeeuihuPfee5OOkRU9e/aMurq6+Otf/5p0FFJOPaefemZTqef0U89AY/Tv9NO/AQAAAAAAAAAANs4+XPrZhyObamtro2XLltG1a9eko2yVQu4BZWVlsfPOO/tiFbLi448/jgULFvgskHIutiCbzAPpZx4gm8wD6WceAAAAgPzivCX9nLdA/nOxBQDkUG1tbfTq1SvpGJvlueeei7Fjx8aiRYsaXhs7dmxccMEFG/yZfPXp4s+cOXMSTkLaqef0U89sKvWcfuoZaIz+nX76NwAAAAAAAAAAwMbZh0s/+3BkU21tbey2227RvHnzpKNssmLrARERvXr18sUqZMW8efOivr4+r77Ufn31Xch94NOLLTKZTNJRKEDmgfQzD5BN5oH8YB4AAACA/OG8JT84b4H85mILAMiRtWvXxvz58/NquSwiYurUqfGTn/wk3n///YbXvve978V55523wZ/JV506dYrtt9/ekMMGqef8oJ7ZFOo5P6hn4N/p3/lB/wYAAAAAAAAAANgw+3D5wT4c2TRnzhw9IA/07NnTl1mTFbW1tdGsWbPo3r170lE22frqu5D7QK9evWLZsmXx97//PekoFBjzQH4wD5BN5oH8YB4AAACA/OG8JT84b4H8lj9XBwFAnnv33Xdj9erVsdtuuyUdZauNHj066QhZ1b1795g/f37SMUgx9Zw/1DMbo57zh3oGPkv/zh/6NwAAAAAAAAAAwPrZh8sf9uHIlrfffjsGDx6cdIytVug9YPfdd48//OEPScegAL311luxyy67RKtWrZKOstUKuQ/svvvuERExf/782GmnnRJOQyExD+QP8wDZYh7ID+YBAAAAyB/OW/KD8xbIb82SDgAAxWLp0qUREdGxY8esPmfWrFlx3HHHRdeuXePoo4+O22+/PZ5++uk48cQTY/HixQ0/t2TJkvjud78bffr0iS9+8Ytx3HHHxWOPPfa59/r2t78dN9xwQ0REnHrqqXHWWWdFRMRZZ50VY8aM2eDPbOozIiJOO+20GD16dLz55pvxrW99K3bdddeorKyMCRMmRETENddcE3vvvXfssMMOMXTo0Jg3b14T/o39p2233TaWLVuW1WeQ39SzeqZwqGf1DOQn/Vv/BgAAAAAAAAAAKAT24ezDwZIlS1LTAz7Ns6Ea3doesCnPiEhfD+jYsWNDz4amtHTp0th2222z/pym+iywofpuys8CaewBEeGzAE3OPGAeAPNA/nwWMA8AAABAfnDe4rwFyD4XWwBAjixfvjwiItq1a5e1ZzzzzDNxwAEHxNSpU2PQoEHRsWPH+N73vhdnnnlmTJw4MVatWhUREe+++27069cvxo0bF4MHD44xY8bEO++8E8OGDYtf/epXDe/Xo0eP2GmnnRr+effdd4+IiOnTp8eUKVM2+DOb+oyIiJdffjmefPLJOPjgg2P69OlRUVER06ZNi1GjRsWRRx4Z559/fuyyyy4xaNCgqK6ujq985Suxbt26rP09tmvXruG/FzRGPatnCod6Vs9AftK/9W8AAAAAAAAAAIBCYB/OPhysWLEiFT0gYtNqdGt6wKY+IyJ9PaBt27axatWqqK+vz9ozKE7Z7gERTftZYEP13ZSfBdLWA1q3bh2lpaU+C9DkzAPmATAP5MdnAfMAAAAA5A/nLc5bgBzIAAA58fjjj2ciIrNs2bKsvH99fX2mb9++mY4dO2beeeedhtdnzZqVadmyZSYiMgsXLsxkMpnMySefnImIzPPPP9/wcx9//HGmsrIy07Jly8zixYsbXr/yyiszEZGZOXNmw2sDBgzIdO3adYM/sznPGDBgQCYiMmPHjm147bHHHstERKZ169aZ2trahtdHjx6diYjPvdbUvvnNb2aGDBmStfcn/6ln9UzhUM/qGchP+rf+DQAAAAAAAAAAUAjsw9mHg7Zt22ZuvvnmrLz35vSATGbTa3RLe8DmPCNtPeCJJ57IRERm6dKlWXsGxenUU0/NHHHEEVl7/2x8FlhffTflZ4G09YBMJpNp37595qabbsrqMyg+5gHzAJgH8uOzgHkAAAAA8ofzFuctQPY12+QbMACArbJ8+fIoKSmJsrKyrLz/zJkz45VXXonTTz89vvSlLzW8vueee8aIESMafv3RRx/FnXfeGfvss0/st99+Da+3bNkyTjvttFi9enU88MADW5VlS55RWloaP/zhDxt+3bdv34iIqKysjB49ejS8fsghh0RExBtvvLFVGTekXbt2sXz58qy9P/lPPatnCod6Vs9AftK/9W8AAAAAAAAAAIBCYB/OPhzFbd26dbFq1apo165dVt5/U3tARDr7QNp6QEToAzS55cuXR9u2bbP2/vn8WSBNPSDCZwGywzxgHqC4mQc2/Iy09YAI8wAAAACknfOWDT/DeQvQVJonHQAAisWKFSuiTZs20axZdu6Vmj9/fkRE9OzZ8z9+b4899mj459ra2shkMrFixYr/GH6WLVv2uffaUlvyjJ133jlatmzZ8OtWrVo1vP5ZpaWlERGxevXqrcq4Ie3bt2/ICY1Rzxt+hnomn6jnDT9DPQNppX9v+Bn6NwAAAAAAAAAAQH6wD7fhZ9iHo9CtWrUq1q1bl7Uvtd/UHhCRzj6Qth7wac7OnTtn7TkUnxUrVsSOO+6YtffP588CaeoBET4LkB3mgQ0/I019QA8gG8wDG35G2nrApznNAwAAAJBezls2/AznLUBTcbEFAORISUlJZDKZrL3/P//5z4iI2G677f7j9+rr6xv+efHixRERsc0220SLFi0+93PbbbddnHzyyf8xFG2uLXlGWVlZo++VrUWcDVm3bl0izyV/qOcNP0M9k0/U84afoZ6BtNK/N/wM/RsAAAAAAAAAACA/2Ifb8DPsw1HoSkpKIiKy1gc2tQdEpLMPpK0HJPVsCpvPAut/Rpp6QITPAmSHHrDhZ6SpD+gBZIN5YMPPSFsPSOrZAAAAwKZz3rLhZzhvAZqKiy0AIEfatWsXdXV1UV9f33ADXVPq0qVLRERMmzYthg0b9rnfmzlzZsM/d+vWLSIiunfvHhMmTPjcz9XX18fy5cujTZs2W5UlF8/IpuXLl0e7du2SjkGKqeemfUY2qWc2Rj037TOyST0Dn6V/N+0zskn/BgAAAAAAAAAAWD/7cE37jGyyD0c2tGnTJkpLS2P58uVZef9N7QER+sDGfPrfSB+gqbVr1y5WrFiRtff3WaDp+CxANpgHmvYZ2aQHkA3mgaZ/RraYBwAAACA/OG9p+mdki/MWyG+upAGAHGnbtm1kMplYuXJlVt6/T58+0bx583jqqac+9/pbb70VTz/9dMOvd99999h+++3jj3/8Y6xZs+ZzP3vFFVdEx44dY8aMGVuVJRfPyCaLJfw/9u47uqoybf/4dVIIAgEsM4qoICIBhKEqAgFJ0FFGug0IoakgQ/2BouCoqBRRGGAclEEGKUpHFBVQWoAgUqRJSQJIB4EQSCfJKb8/8pIxkEAScvbe55zvZ61Z6yWJZ1/Ju+47537y7P3cCPVcvNdwJ+oZN0I9F+813Il6BvBH9O/ivYY70b8BAAAAAAAAAAAAAAAAIH/shyvea7gT++HgDjabTaVLl3bbQ+0L2gMk+sCN8GAVuEtwcLDbHq4k8V6gOPFeAO7APFC813AnegDcgXmg+K/hLswDAAAAAAB4BtZbiv8a7sJ6C+DZONgCAACDXHnD7K4NZhUrVtSgQYO0Y8cO9ejRQytWrNC//vUvtWrVKtfXlShRQmPHjlVSUpK6du2qHTt26NChQ5owYYJGjRqlJ554Qk2bNs35+kqVKkmSpk2bpm3btuV57au/prDXsBo2luBGqGfqGd6DeqaeAXgm+jf9GwAAAAAAAAAAAAAAAAC8Afvh2A8HlClTxvQeIBWuDxSlBxT2GlaTnJyc8yAcoDi5swdI7nkvUJAekNfXeXIPuHLwAO8FUNyYBzyjB0jMA3Af5gHP6APMAwAAAAAAeA7WW1hvAeB+AWYHAADAV7h7Y4kkffDBBypfvrwmTZqkWbNm6fbbb1dERITKly+v9957T2XLlpUkvfjii0pLS9OwYcO0cOFCSVJAQIBeeukljR49WjabLec1n3jiCT366KP69NNPdeDAAa1bt+6a6+b1NYW5htUkJyerQoUKZseAhVHP1DO8B/VMPQPwTPRv+jcAAAAAAAAAAAAAAAAAeAP2w7EfDggODrZED5AK3geK2gMKcw2rSU5OVunSpeXn52d2FHiZ4OBgpaSkuPUaxf1eoCA9IL+v89QekJqaKqfTyUPtUeyYBzyjB0jMA3Af5gHP6APMAwAAAAAAeA7WW1hvAeB+NpfL5TI7BAAAvuDEiRO67777FB0dbcipdRcvXtStt94qSRowYIC+++47HTlyJNfXJCcna+fOnUpJSVHt2rV177335vt6p0+fVnBw8HU3XeX1NYW5hlU0atRIoaGhmjBhgtlRYFHUM/UM70E9U88APBP9m/4NAAAAAAAAAAAAAAAAAN6A/XDshwMaN26sRo0aadKkSW6/VkF6gFTwGi1qDyjMNazio48+0scff6zjx4+bHQVeZuLEiRo/frxOnTplyPWK871AQXpAfl/naT3g2LFjqly5sn766Sc1btzY7DjwIswDntEDJOYBuA/zgGf0AeYBAAAAAAA8B+strLcAcL8AswMAAOArKlasqFKlSungwYNu2ViSnp6u8PBwPfroo5o4cWLOgJOamqoffvhBdevWvea/CQ4OVvPmzQv0+nfffXeRvqYw17CKuLg49ezZ0+wYsDDq2XNQz7gR6tlzUM8A/oj+7Tno3wAAAAAAAAAAAAAAAACQP/bDeQ72w8FdqlatqoMHD7rltYvSA6SC12hRe0BhrmEVcXFxevDBB82OAS9UtWpVnTlzRikpKSpTpkyxv7473wsUpAfk93We2AMkqVq1aiYngbdhHvAczANwF+YBz8A8AAAAAACA52C9xTOw3gJ4Ng62AADAIH5+fqpatapiY2Pd8vq33HKLbrvtNn388cdKTExU69atdfHiRX3++ec6deqUpk+f7pbrepuzZ8/q0qVLCgkJMTsKLIx69gzUMwqCevYM1DOAq9G/PQP9GwAAAAAAAAAAAAAAAACuj/1wnoH9cHCnkJAQzZw50y2vTQ8oPrGxsapVq5bZMeCFQkJC5HK5FBcXp/r16xf769MHikdsbKxuu+023X777WZHgZdhHvAMzANwJ+YBz8A8AAAAAACA52C9xTOw3gJ4Nj+zAwAA4EtCQkLctrFEkubOnauhQ4dq165devbZZzV48GD5+/vr22+/9ajT88x05f8/bCzBjVDP1kc9o6CoZ+ujngHkhf5tffRvAAAAAAAAAAAAAAAAALgx9sNZH/vh4E4hISE6evSoMjIy3PL69IDiERsbSw+AW1SpUkWBgYG8F7C42NhYVa9e3ewY8FLMA9bHPAB3Yh7wDMwDAAAAAAB4DtZbPAPrLYBns7lcLpfZIQAA8BVvv/22lixZon379rn9WomJiQoODpafH+dYFcZnn32moUOHKjExUTabzew4sDDq2fqoZxQU9Wx91DOAvNC/rY/+DQAAAAAAAAAAAAAAAAA3xn4462M/HNxpz549qlOnjvbt26eaNWu69Vr0gKK5dOmSbr31Vq1YsUJPPfWU2XHghWrUqKEXXnhBI0eOdPu16ANF89e//lX33nuv/vvf/5odBV6IecD6mAfgTswD1sc8AAAAAACAZ2G9xfpYbwE8H10PAAADhYSE6NChQ8rMzHT7tcqVK8eAUwQHDhxQSEgIm0pwQ9Sz9VHPKCjq2fqoZwB5oX9bH/0bAAAAAAAAAAAAAAAAAG6M/XDWx344uNODDz4of39/7d+/3+3XogcUzYEDByRl92vAHapXr25ID5DoA0V14MABVatWzewY8FLMA9bHPAB3Yh6wPuYBAAAAAAA8C+st1sd6C+D56HwAABjo0UcfVWZmprZu3Wp2FORjw4YNaty4sdkx4AGoZ+ujnlFQ1LP1Uc8A8kL/tj76NwAAAAAAAAAAAAAAAADcGPvhrI/9cHCnW265RXXq1NHGjRvNjoJ8rF+/XnfeeacqV65sdhR4qUaNGik6Oloul8vsKMjDb7/9ppMnT/JeAG7DPGB9zANwJ+YB62MeAAAAAADAs7DeYn2stwCej4MtAAAw0AMPPKBKlSpp7dq1ZkdBHi5duqRdu3YpLCzM7CjwANSztVHPKAzq2dqoZwD5oX9bG/0bAAAAAAAAAAAAAAAAAAqG/XDWxn44GCE8PJweYGHr1q1Ty5YtZbPZzI4CLxUeHq4zZ84oJibG7CjIw9q1a1WqVCk1atTI7CjwUswD1sY8ACMwD1gb8wAAAAAAAJ6H9RZrY70F8HwcbAEAgMHCwsK0bt06s2MgD+vWrZPL5VLz5s3NjgIPQT1bF/WMwqKerYt6BnA99G/ron8DAAAAAAAAAAAAAAAAQMGxH8662A8HI4SFhWnfvn06e/as2VFwlczMTG3atImHWcOtGjRooPLly/OAJYtat26dQkNDFRQUZHYUeDHmAetiHoARmAesi3kAAAAAAADPxHqLdbHeAngHDrYAAMBgYWFh2rx5s9LT082OgqusW7dO9erV0+233252FHgI6tm6qGcUFvVsXdQzgOuhf1sX/RsAAAAAAAAAAAAAAAAACo79cNbFfjgYoVmzZgoICFBUVJTZUXCVn3/+WampqQoPDzc7CryYv7+/QkNDeai9RUVFRfFwJbgd84B1MQ/ACMwD1sU8AAAAAACAZ2K9xbpYbwG8AwdbAABgsPDwcGVkZCg6OtrsKLjK6tWr2VyGQqGerYt6RmFRz9ZFPQO4Hvq3ddG/AQAAAAAAAAAAAAAAAKDg2A9nXeyHgxGCg4PVsGFDrV692uwouMqaNWtUqVIlValSxewo8HLh4eGKioqS3W43Owr+YN++fTp9+jQPV4LbMQ9YF/MAjMA8YF3MAwAAAAAAeCbWW6yL9RbAO3CwBQAABrvnnntUv359zZ8/3+wo+IO9e/fqwIEDateundlR4EGoZ2uinlEU1LM1Uc8AboT+bU30bwAAAAAAAAAAAAAAAAAoHPbDWRP74WCktm3b6quvvlJGRobZUfAHCxcuVPv27c2OAR/Qvn17JSQk8IAli5k/f77uvvtuNWjQwOwo8HLMA9bEPAAjMQ9YE/MAAAAAAACei/UWa2K9BfAOHGwBAIAJIiMjtXjxYqWlpZkdBf9n5syZqly5spo2bWp2FHgY6tl6qGcUFfVsPdQzgIKgf1sP/RsAAAAAAAAAAAAAAAAACo/9cNbDfjgYKTIyUomJiVq+fLnZUfB/tmzZopiYGEVGRpodBT7g/vvvV5MmTTRnzhyzo+D/uFwuffnll+ratav8/f3NjgMfwDxgPcwDMBLzgPUwDwAAAAAA4NlYb7Ee1lsA78HBFgAAmKBLly5KT0/XN998Y3YUSHI6nZo/f766desmm81mdhx4GOrZWqhn3Azq2VqoZwAFRf+2Fvo3AAAAAAAAAAAAAAAAABQN++Gshf1wMFrFihUVFhbGQ+0tZM6cOapRo4YaNGhgdhT4iMjISC1dulSJiYlmR4GkjRs36siRI+ratavZUeAjmAeshXkARmMesB7mAQAAAAAAPBvrLdbDegvgPTjYAgAAE/z5z3/Wk08+yZBjEatWrdKpU6fUpUsXs6PAA1HP1kI942ZQz9ZCPQMoKPq3tdC/AQAAAAAAAAAAAAAAAKBo2A9nLeyHgxkiIyP1/fffKz4+3uwoPi8rK0sLFixQZGSk2VHgQzp16iRJ+uqrr0xOAin74Ur16tVT7YWTaWIAACAASURBVNq1zY4CH8E8YC3MAzAD84B1MA8AAAAAAOAdWG+xDtZbAO/CwRYAAJgkMjJSq1at0smTJ82O4vNmzpypxo0bKyQkxOwo8FDUs3VQz7hZ1LN1UM8ACoP+bR30bwAAAAAAAAAAAAAAAAAoOvbDWQf74WCGjh07qkSJEpo7d67ZUXzesmXLlJCQoIiICLOjwIeUK1dOrVu31owZM8yO4vNSUlK0aNEide3a1ewo8DHMA9bBPAAzMA9YB/MAAAAAAADegfUW62C9BfAuHGwBAIBJOnTooIoVK2rChAlmR/Fphw8f1uLFi9W/f3+zo8CDUc/WQD2jOFDP1kA9Aygs+rc10L8BAAAAAAAAAAAAAAAA4OawH84a2A8Hs5QpU0Y9evTQ+PHjlZmZaXYcnzZu3Di1a9dO9913n9lR4GP69++v6OhoRUdHmx3Fp33yySey2+3q1q2b2VHgY5gHrIF5AGZhHrAO5gEAAAAAALwD6y3WwXoL4F042AIAAJMEBgZqyJAhmjZtms6dO2d2HJ81duxYVapUSc8//7zZUeDBqGdroJ5RHKhna6CeARQW/dsa6N8AAAAAAAAAAAAAAAAAcHPYD2cN7IeDmYYNG6azZ8/qyy+/NDuKz/rhhx+0bds2DR8+3Owo8EHNmzdXs2bNNGbMGLOj+KzLly9r0qRJ6t+/v+644w6z48DHMA9YA/MAzMQ8YD7mAQAAAAAAvAvrLeZjvQXwPjaXy+UyOwQAAL7q8uXLqlKlinr06MEmMxOcOHFCVatW1aeffqpevXqZHQcejno2F/WM4kQ9m4t6BlBU9G9z0b8BAAAAAAAAAAAAAAAAoHiwH85c7IeDFbz44otav369YmJiFBAQYHYcn9O8eXOVKVNGy5cvNzsKfNTKlSvVqlUrbdu2TQ0bNjQ7js/5+OOPNWzYMP3222+qUKGC2XHgg5gHzMU8ACtgHjAX8wAAAAAAAN6H9RZzsd4CeB8/swMAAODLSpYsqYEDB2rKlCm6ePGi2XF8zocffqg777xTXbt2NTsKvAD1bC7qGcWJejYX9QygqOjf5qJ/AwAAAAAAAAAAAAAAAEDxYD+cudgPBysYMWKEjh07psWLF5sdxeesX79eGzdu1IgRI8yOAh/21FNPqWHDhho7dqzZUXxOVlaWJkyYoN69e3OoBUzDPGAu5gFYAfOAeZgHAAAAAADwTqy3mIf1FsA72Vwul8vsEAAA+LKkpCTdf//96tWrlz766COz4/iMQ4cOqXbt2powYYL+/ve/mx0HXoJ6Ngf1DHegns1BPQO4WfRvc9C/AQAAAAAAAAAAAAAAAKB4sR/OHOyHg5VERERo27Zt+vXXXxUUFGR2HJ/gcrkUGhqqoKAgrV271uw48HFff/21nnnmGW3atEmPPvqo2XF8xsSJEzVixAgdPHhQ99xzj9lx4MOYB8zBPAArYR4wHvMAAAAAAADejfUW47HeAngv/5EjR440OwQAAL4sKChIZcuW1TvvvKP27dvrzjvvNDuST+jWrZv8/Pw0bdo0+fv7mx0HXoJ6Ngf1DHegns1BPQO4WfRvc9C/AQAAAAAAAAAAAAAAAKB4sR/OHOyHg5U88sgjGjdunGw2m5o3b252HJ8wY8YMTZ06VUuWLNFdd91ldhz4uOrVq2vjxo2aP3++Xn75Zfn5+Zkdyev9/vvveu655zR06FC1a9fO7DjwccwD5mAegJUwDxiPeQAAAAAAAO/GeovxWG8BvJfN5XK5zA4BAICvczqdatq0qQICArRhwwbZbDazI3m1JUuW6LnnntPatWvVokULs+PAy1DPxqKe4U7Us7GoZwDFhf5tLPo3AAAAAAAAAAAAAAAAALgH++GMxX44WNG4ceP07rvvau/evapSpYrZcbxaQkKCqlevroiICE2cONHsOIAk6eDBg6pdu7Y++ugjDRgwwOw4Xq9Tp076+eeftX//fpUqVcrsOADzgMGYB2BFzAPGYR4AAAAAAMA3sN5iHNZbAO/GwRYAAFjEL7/8okaNGunzzz9XZGSk2XG8Vlpamh566CG1aNFCn3/+udlx4KWoZ2NQzzAC9WwM6hlAcaN/G4P+DQAAAAAAAAAAAAAAAADuxX44Y7AfDlZlt9tVv359VaxYUStWrDA7jlfr06ePli1bppiYGJUrV87sOECOESNGaMqUKTpw4IDuvvtus+N4rfXr1yssLEzLli1T69atzY4D5GAeMAbzAKyKecA4zAMAAAAAAPgG1luMw3oL4N042AIAAAvp16+flixZoj179ujPf/6z2XG80pAhQzRz5kzFxMTwM4ZbUc/uRz3DKNSz+1HPANyB/u1+9G8AAAAAAAAAAAAAAAAAcD/2w7kf++FgZVFRUQoPD9eCBQv03HPPmR3HK0VHR+uxxx7TnDlz1KVLF7PjALlcedj6I488ogULFpgdxyulpqaqQYMGqlGjhpYuXWp2HOAazAPuxzwAK2MecD/mAQAAAAAAfAvrLe7Hegvg/TjYAgAAC0lMTFS9evVUrVo1LV++XH5+fmZH8irfffed2rZtq5kzZ6pbt25mx4GXo57di3qGkahn96KeAbgL/du96N8AAAAAAAAAAAAAAAAAYAz2w7kX++HgCfr27av58+drx44duv/++82O41UuXLigevXqqW7dulq2bJnZcYA8rVq1Sk899ZSmTp2ql19+2ew4Xqdnz5769ttvtWvXLt1zzz1mxwGuwTzgXswD8ATMA+7DPAAAAAAAgG9ivcV9WG8BfAMHWwAAYDHbtm1TaGioRo4cqeHDh5sdx2ucPHlS9erVU5s2bTRjxgyz48BHUM/uQT3DDNSze1DPANyN/u0e9G8AAAAAAAAAAAAAAAAAMBb74dyD/XDwFJcvX1aTJk0UEBCg6OholShRwuxIXsHlcqlDhw7asWOHdu7cqdtvv93sSEC+/vGPf2jChAnavHmz6tata3YcrzFv3jxFRERo6dKlateundlxgHwxD7gH8wA8BfOAezAPAAAAAADgu1hvcQ/WWwDf4T9y5MiRZocAAAD/U7FiRQUHB2v48OEKDQ3lBL9iYLfb1bp1awUEBGjp0qUKDAw0OxJ8BPVc/KhnmIV6Ln7UMwAj0L+LH/0bAAAAAAAAAAAAAAAAAIzHfrjix344eJKAgAC1bNlSY8aMUUJCgp588kmzI3mF8ePHa+rUqfruu+8UEhJidhzgulq0aKGoqCj997//Vffu3RUUFGR2JI8XFxentm3batCgQerfv7/ZcYDrYh4ofswD8CTMA+7BPAAAAAAAgO9ivcU9WG8BfIfN5XK5zA4BAAByc7lc6tixo7Zv366tW7eqQoUKZkfyaEOGDNG0adO0detW1axZ0+w48DHUc/GinmEm6rl4Uc8AjEL/Ll70bwAAAAAAAAAAAAAAAAAwB/vhihf74eCJ5s6dq65du2rhwoV69tlnzY7j0TZs2KDHH39cY8aM0auvvmp2HKBATp06pXr16qlly5aaO3eubDab2ZE8VmJiopo2bapy5copKiqKB9rDIzAPFC/mAXgi5oHiwzwAAAAAAAAk1luKE+stgG/hYAsAACzq4sWLatKkiUqUKKH169erfPnyZkfySBMnTtTQoUP15ZdfqnPnzmbHgY+inosH9QwroJ6LB/UMwGj07+JB/wYAAAAAAAAAAAAAAAAAc7EfrniwHw6ebODAgfrss8+0cuVKPfbYY2bH8Ui//vqrHnvsMbVs2VILFy7kcAB4lDVr1uhvf/ubBgwYoPHjx5sdxyNlZGSoVatWio2N1c8//6x7773X7EhAgTEPFA/mAXgy5oGbxzwAAAAAAAD+iPWWm8d6C+B7ONgCAAALO3nypJo2baqKFStq9erVKlWqlNmRPMq8efPUtWtXffTRRxoyZIjZceDjqOebQz3DSqjnm0M9AzAL/fvm0L8BAAAAAAAAAAAAAAAAwBrYD3dz2A8HT+d0OtW5c2etXLlSUVFRqlevntmRPMrJkyfVpEkTPfDAA1qxYoVKlixpdiSg0ObPn6+IiAiNGzdOr776qtlxPIrT6VSnTp30448/KioqSnXr1jU7ElBozAM3h3kAno554OYwDwAAAAAAgKux3nJzWG8BfBMHWwAAYHH79u1T8+bN1bRpU3311VcKCAgwO5JHWLt2rf72t79p8ODB+uCDD8yOA0iinouKeoYVUc9FQz0DMBv9u2jo3wAAAAAAAAAAAAAAAABgLeyHKxr2w8FbZGZmqk2bNtq1a5eio6P14IMPmh3JI1y4cEGhoaEKDAzUhg0bVL58ebMjAUX2ySefqH///po+fbp69epldhyPMWjQIE2bNk0//vijmjVrZnYcoMiYB4qGeQDegnmgaJgHAAAAAABAflhvKRrWWwDfxcEWAAB4gE2bNumJJ57QM888oxkzZigwMNDsSJa2Zs0atW/fXh07dtTMmTNls9nMjgTkoJ4Lh3qGlVHPhUM9A7AK+nfh0L8BAAAAAAAAAAAAAAAAwJrYD1c47IeDt0lKSlKLFi2UlJSkH3/8UVWqVDE7kqWdP39erVq1UkJCgjZt2qQKFSqYHQm4acOHD9eECRM0e/ZsderUyew4luZyuTRs2DBNnDhRixcvVvv27c2OBNw05oHCYR6At2EeKBzmAQAAAAAAcCOstxQO6y2Ab/MzOwAAALixpk2b6uuvv9bXX3+t9u3bKzU11exIlrVw4UI9/fTTatu2raZPn86mElgO9Vxw1DOsjnouOOoZgJXQvwuO/g0AAAAAAAAAAAAAAAAA1sV+uIJjPxy8UdmyZbVy5UqVK1dOoaGh2r17t9mRLOvIkSMKDQ3VpUuXtHr1ah6qAq8xZswY9e/fXxEREfr444/NjmNZWVlZ6tmzpyZPnqzZs2dzqAW8BvNAwTEPwBsxDxQc8wAAAAAAACgI1lsKjvUWABxsAQCAh/jrX/+qdevWadu2bQoLC9P58+fNjmQ5U6ZMUefOndW7d2/NmTNHgYGBZkcC8kQ93xj1DE9BPd8Y9QzAiujfN0b/BgAAAAAAAAAAAAAAAADrYz/cjbEfDt7sz3/+s9avX6/atWsrNDRUq1atMjuS5ezdu1fNmzdXiRIltH79elWpUsXsSECxsdls+uc//6l//vOfGjRokN544w25XC6zY1lKWlqaOnTooMWLF+ubb75Rly5dzI4EFCvmgRtjHoA3Yx64MeYBAAAAAABQGKy33BjrLQAkDrYAAMCjNGzYUBs3btT58+f12GOP6ciRI2ZHsgSn06kRI0ZowIABGj16tP71r3/Jz4+3ObA26jlv1DM8EfWcN+oZgNXRv/NG/wYAAAAAAAAAAAAAAAAAz8J+uLyxHw6+okyZMlq2bJlatWqltm3batGiRWZHsow1a9YoNDRU1apV06ZNm1SxYkWzIwFuMWjQIM2YMUMTJkzQyy+/rMzMTLMjWcLZs2fVsmVLbdmyRWvXrlWrVq3MjgS4BfNA3pgH4CuYB/LHPAAAAAAAAIqC9Zb8sd4C4Ar+4gIAgIcJCQnRpk2bFBQUpAYNGmjp0qVmRzLVuXPn9NRTT2nChAmaMWOG3njjDbMjAQVGPedGPcOTUc+5Uc8APAX9Ozf6NwAAAAAAAAAAAAAAAAB4JvbD5cZ+OPiaoKAgzZ8/X71799YLL7ygwYMH+/SD7Z1Op95//309+eSTeuqpp7R8+XKVLVvW7FiAW/Xo0UNLly7VwoUL1axZM59/sP26detUr149nTt3TtHR0XrkkUfMjgS4FfNAbswD8DXMA7kxDwAAAAAAgJvFekturLcAuBoHWwAA4IHuvvtubd68WZGRkerYsaP69Onjk4PO+vXrVa9ePcXGxmr9+vXq0aOH2ZGAQqOes1HP8AbUczbqGYCnoX9no38DAAAAAAAAAAAAAAAAgGdjP1w29sPBV/n5+Wny5MlavHixZs2apSZNmujw4cNmxzLc+fPn9fTTT+v999/X6NGjNW/ePAUFBZkdCzBE69attX37dmVmZqpu3bpauHCh2ZEM53K5NG7cOD3xxBN65JFHtH37doWEhJgdCzAE80A25gH4KuaBbMwDAAAAAACguLDeko31FgB54WALAAA8VMmSJTV58mTNnTtX8+bNU2hoqA4ePGh2LENkZWXpvffeU8uWLdW4cWPt2bNHjz76qNmxgCKjnqlneA/qmXoG4Jno3/RvAAAAAAAAAAAAAAAAAPAG7IdjPxzQsWNHbdmyRQ6HQw0bNvSpB9uvXr1aderU0cGDB/XTTz/p9ddfl81mMzsWYKhq1app8+bN6ty5szp16qSBAwcqLS3N7FiGOH36tP7617/qnXfe0aRJk/T111/r1ltvNTsWYCjmAeYBgHmAeQAAAAAAABQv1ltYbwFwLQ62AADAw3Xu3Fnbt2+X3W7XX/7yF73zzjtKT083O5bbbNiwQfXr19fYsWM1adIkLV68WOXKlTM7FlAsqGfqGd6DeqaeAXgm+jf9GwAAAAAAAAAAAAAAAAC8Afvh2A8H33b1g+2ffvppHT582OxYbnPmzBlFREToiSeeULNmzfTLL7+oYcOGZscCTFOyZElNnTpVc+fO1ezZs/XQQw/p22+/NTuW29jtdk2cOFHVq1fXsWPHtGnTJvXv39/sWICpmAeYB+DbmAeYBwAAAAAAQPFivYX1FgC5cbAFAABeoFq1atq6das++OADTZo0SbVq1dL3339vdqxideHCBfXp00ctWrTQnXfeqZ07d7KxDF6Jega8B/UMAJ6J/g0AAAAAAAAAAAAAAAAA8AbshwN8W8mSJfXJJ59o/fr1OnHihGrXrq2RI0fq8uXLZkcrNk6nU9OmTVONGjW0YcMGzZo1SwsWLOBB1sD/6dSpk2JiYtSsWTO1a9dObdq00ZEjR8yOVayio6PVoEEDvf766+rZs6d27typBg0amB0LsATmAcC3MQ8AAAAAAAAUL9ZbAOB/ONgCAAAvERAQoEGDBunAgQN6+OGH1bp1a7Vt21Y7duwwO9pNSU5O1gcffKCqVatq5cqVWrJkiVavXq3q1aubHQ1wG+oZ8B7UMwB4Jvo3AAAAAAAAAAAAAAAAAMAbsB8OQLNmzfTLL7/ovffe04QJE1S7dm19+eWXcjgcZkcrMpfLpWXLlql+/foaOHCg+vfvr9jYWHXr1s3saIDl3HXXXZo9e7bWrFmjw4cPq1atWvrHP/6h+Ph4s6PdlJiYGHXt2lXNmzdXhQoVtH//fk2ePFmlS5c2OxpgKcwDAJgHAAAAAAAAihfrLQDAwRYAAHidu+++W/Pnz9eqVat0+vRpNWjQQE8//bR++ukns6MVSkJCgkaOHKlKlSpp7Nix6t+/v/bv368OHTqYHQ0wDPUMeA/qGQA8E/0bAAAAAAAAAAAAAAAAAOAN2A8H+LbAwEC9+uqrOnDggBo3bqwePXooJCRE06dPV2ZmptnxCszpdGrBggWqW7eu2rdvr8qVK2v37t0aNWqUSpUqZXY8wNLCwsK0e/dujRw5UtOmTVPlypU1dOhQnTlzxuxohbJ792698MILeuihh7Rjxw4tWrRIK1euVNWqVc2OBlga8wDg25gHAAAAAAAAihfrLQB8HQdbAADgpR5//HFt375dK1asUGJiopo2barw8HB9++23ysrKMjtevg4dOqTXX39dlStX1scff6zBgwfr6NGjev/991W6dGmz4wGmoJ4B70E9A4Bnon8DAAAAAAAAAAAAAAAAALwB++EA33bPPfdo9uzZiomJUXh4uPr166eqVatq0qRJio+PNztevpKSkjR9+nTVrFlTERERqlmzpnbv3q2vv/5aISEhZscDPEZgYKBee+01HTlyRO+//77mz5+vKlWq6O9//7v27Nljdrx8OZ1OrVmzRu3atVO9evUUFxen+fPna+/evXrmmWfMjgd4FOYBwLcxDwAAAAAAABQv1lsA+Cqby+VymR0CAAC4X1RUlMaOHavVq1fr9ttvV6dOnRQZGamHH37YtEwul0s2m00JCQlasGCB5syZo82bN+vuu+/W4MGD9corryg4ONi0fIBV5VfPt912mx544AFTs1HPQOFY8ffz+fPnVaJECTkcDuoZAPJhtf59ZbaSeD8GAAAAAAAAAAAAAAAAACi46+2Hy8rKktPpVFBQkCnZ2A8HuN+JEyc0fvx4zZgxQxkZGWrVqpUiIyPVpk0b02pfko4dO6Y777xTa9eu1Zw5c/TNN9/I5XKpc+fOeuONN1StWjXTsgHeJCMjQzNmzNCECRN0+PBh1alTR926dVPnzp1VoUIFUzL9cW/8vn37NGfOHH355Zc6efKkmjZtqjfeeENPP/10ztcAuDlWuz/mj06fPq0RI0YoLi6OeQBwk+vNA6dOnVKVKlVMy2a32/Xjjz8yDwAAAAAAAI9i1b+/Hj58WJUqVWK9BUCx4WALAAB8zLFjx/TFF19ozpw5io2NVY0aNdS+fXuVKVNGgwcPVqlSpQzJERMTo3fffVdJSUlavXq1AgMD1aFDB0VGRqply5by9/c3JAfgya6u59tuu019+vRRWFiYmjZtakg9R0dH64477tDatWv1ww8/aOXKldQzUAT5/X5u2rSpgoKC9PjjjxuSIyYmRrNnz9asWbMUHx9PPQPADeTXv8PCwuR0OvXkk08akmPz5s369NNPlZiYyPsxAAAAAAAAAAAAAAAAAECh5bUf7rbbbtNLL72k559/3rD7jVatWqWDBw9yfwJgsNTUVC1dulRffPGFVq9erbJly6p9+/a69dZb9eqrrxr2gPv4+HhFRUVp+vTpio6OVlpamkJDQxUZGannnntO5cuXNyQH4GtcLpc2bdqk2bNna9GiRUpOTlbLli3VqlUrlShRQn379jXkIInMzEyNHj1aSUlJWr9+vXbu3KlKlSqpa9euioyMVEhIiNszAL7qevfHNG3aVL///rshD7iPiYnJdb9yVlaW2rRpo379+jEPAG509TwQFBSk2rVra8CAAQoPDzd0Hhg/frwSExO1dOlSnTt3jnkAAAAAAAB4pPz+/tqyZUsFBgbq+eefNyTHlb+/DhgwQA6HQ/Hx8ay3ACgWHGwBAIAP27Jli+bOnavly5fr0KFDCgoKUqNGjRQeHq5GjRopJCRElSpVkp+f301d59KlS4qNjdWvv/6q9evXa82aNTpz5oxKlCihP/3pTxozZow6duyoMmXKFNN3BviW3377TX/5y1/0wAMPKCMjQ7GxsYbV87x58+RwOFS2bFk99thjevbZZ6ln4CZd+f38ww8/KDY2VgEBAWrSpIlhv59Lly6t1NRUde/eXf/+97+pZwAooKv7t81mU7NmzQzr3zabTWFhYerevTvvxwAAAAAAAAAAAAAAAAAARbZlyxZNmjRJCxYskMvlMuz+hNWrV+v333/n/gTAZKdPn9bcuXM1d+5c7dq1Sy6XSzVq1FBYWJiaNWumGjVqqFq1arrllltu6jqZmZk6dOiQYmJiFB0drbVr1+rXX3+VzWbT/fffr0OHDumzzz7TSy+9VEzfGYCCuHz5sr799lstXLhQK1euVEpKiu644w61aNFCYWFhqlOnjkJCQnTHHXfc1HVcLpdOnDihuLg4bd++XWvXrtWmTZuUlpamkiVLKjIyUhEREWrevLkhh2oA+J+r748JDAzUn/70J/Xu3duQ+2OuzAOPP/64Bg0apJo1a+qXX35RyZIli+k7BHA9y5cvV9u2bXXffffp1KlTyszMNHQecLlcqlq1qiIjI9W1a1fdf//9xfSdAQAAAAAAmOPK31+/+eYbbdmyRVlZWYb//dXPz08VK1bU6tWr9cADDxTTdwbAl3GwBQAAUMeOHbV06VJNnjxZu3bt0rp163T06FFJUlBQkKpVq6aQkBBVrlxZ5cuXV+nSpVWmTBmVK1dOZcuWVVpamlJTU5WSkqLExEQlJSXp/PnziouL04EDB3Tu3DlJUqlSpXIezB0WFqZPP/1Us2fP1syZM9W9e3cTfwKA57p8+bIaNWqkPXv26JVXXtGnn36qU6dOae3atVq3bp1b67lhw4basGGD2rRpo6+++koBAQEm/iQA77N79241aNBALVq00H333WfY7+eUlBQ98cQTCgwM1M8//6z69eub+FMAAM/Upk0bfffdd4qIiNCmTZvc3r/vvfdeRUZGql69etqyZYsCAwNN/O4BAAAAAAAAAAAAAAAAAJ4sIyNDderUUWxsrGbMmKGAgAC335/QpEkTNWjQQOPGjdPo0aM1YsQIE38CADIzM1W3bl399ttvWrZsWc59Sjt27JDdbpefn5/uu+++nD5w66235tR/cHCwypQpIz8/v5z6T05OVkpKii5duqS4uDjFxcXpyJEjcjgc8vPzU61atRQeHq7w8HA1b95cy5YtU7du3RQcHKzdu3fzMFvABOfPn9eDDz6oe+65R7169dK6deu0YcMGJSUlSZJuu+02hYSEqHr16rrrrrty1X/p0qVVtmxZXbp0Kaf+U1NTdenSJR07diynD6SmpkqSKlSooLCwMIWHh2vXrl3697//rTFjxmj48OFm/ggASDp06JAaN26s0qVLy2azGXJ/Y8OGDRUQEKAjR46oSpUqkqTevXvrP//5j1k/BsBnXLx4UX/5y1908uRJjR49WoMGDdKmTZsMnQcGDhyo1NRUxcXFqXz58mb/SAAAAAAAAIpNVlZWztpLv379DP37a+XKlXXp0iW9++67evvtt83+UQDwAhxsAQCAj1u2bJnatWsnSdq2bZsaNmwoSbp06ZJiY2MVGxurmJgYxcXF6fjx40pMTFRKSopSUlJyNqBJ2RtQSpcurfLlyys4OFi33357zmBUvXp1hYSEqFKlSvLz88v5b5599lktWbJEJUuW1O7du1WtWjVjv3nAC/To0UNffvmlXC6Xevbsqc8+++yar3FXPf/yyy965JFHZLPZtHbtWrVo0cLA7xzwbg6HBbKF7wAAIABJREFUQw0bNtSuXbvUtm1bffPNN5KM+f28YsUK/e1vf5O/v7/uvfde7dmzR8HBwYb/DADAU13po5L066+/qlatWm7v39HR0WrWrJlsNpuGDx+u0aNHm/K9AwAAAAAAAAAAAAAAAAA837BhwzRx4kQ5nU5Nnz5dPXv2zPmcO/fD7dy5U/Xr11dAQIC2b9+uOnXqmPHtA5D09ttv6/3335ckJScnq0yZMpKyD7w4dOhQTv3HxsYqLi5OiYmJSk1NzXlotcPhkCTZbLac+i9durTKlSunBx54IKf+r/SDkiVL5rr+jBkz1Lt3b9lsNtWqVUs///yzgoKCjP0hAD7uueee0+LFi1WxYkWdPHky5+PHjx/Pqf+YmBjFxsYqPj4+p/5TU1OVnp6e8/VlypTJ+V+5cuV0zz335NT/lV5wxx135Hz94MGDNXnyZPn7+2vz5s16+OGHDf2+AeQ2ZMgQTZw4UQ8//LC2bt1qyP2NV+zfv18PPfRQzr/nzJmjrl27GvJ9A77I5XKpdevWWrVqlSRpxIgRGjlyZK6vMWIeCA4OVkpKiiIjIzV79mzDvn8AAAAAAAB3GzNmjN58803ZbDalp6crKCjIsL+/lipVSunp6fLz89OaNWt4ZiSAmxZgdgAAAGCehIQE9erVS35+fnI6nfr9999zPle+fHk1atRIjRo1uu5rJCUl6ZZbblFgYGChr5+cnCwp++Hd7du3144dO64ZggDkb9q0aZo1a5YkKSAgQE6nM8+vc1c9Hz9+XDabTX5+furTp4/27t1bpF4A4FqTJk3Snj17JEnHjh3L+bgRv58vX74sKfv386lTp9SrVy8tWrSo0K8DAL4oNTVVL730Us6MdfLkSdWqVcvt/fvKbOVyuTR27Fi1bNlS4eHhRf4+AAAAAAAAAAAAAAAAAAC+afPmzZowYYKcTqeCgoJ0/vz5XJ935364ixcvSsreC9elSxft3LlTJUqUKPw3AeCm7Nq1S2PGjMn599mzZ3MOtihRooRq1qypmjVrXvc10tPT5XQ6Vbp06SJlyMzMlJ+fn7KysrR3714NGTJEU6ZMKdJrASi8r7/+WosXL5YkxcfH5/rcfffdp/vuu0+PP/54vv+9w+FQcnKyypcvX+hrJyUlyd/fX5L07LPPau/evQoODi706wC4eT///LMmT54sSTnPIDDi/sYrrtznKGU/rK13795q2LChqlevXuTXBJC/Dz/8UCtXrsxZD8jKyrrma9w9D2RmZio1NVVS9mE2HTt2VPv27Qv1GgAAAAAAAFYUFxeXc4ioy+XS77//rkqVKhn691cpe631yt9f7rrrriK9FgBI0rVHlgMAAJ8xaNAgJSUlyel0KiAgINfBFgVVtmzZIm8qufLw1aysLB08eFCvv/56kV4H8EW7du3SgAEDcv7tcrlkt9tv6jULW8/Hjh1TYGCgHA6HDh8+rH/+8583dX0A2Y4ePaq33nor57Ca06dPF/o1bub3c3p6umw2m6Ts39FLlizRZ599VqTXAgBf89Zbb+n8+fM5M9aJEycK9d8XtX8nJSXl9G4/Pz916dJFCQkJhX4dAAAAAAAAAAAAAAAAAIDvSktLU0REhPz8/nfr8YULF4r0WkXZDxcfHy+bzSaHw5HroQ4AjGO329WtW7ecfamSdO7cuUK/zi233FLkh6pI2Q9WuZLBbrfrk08+0RdffFHk1wNQcImJierTp0/O+4GMjAwlJSUV6jX8/f2LdKiFlL033uFwyOFw6MyZM7nuoQRgnIyMDHXv3j3n9/HVB97dyM3c33jFHw+2cLlcysrKUocOHZSenn5TrwvgWps3b9abb76Zc1/zlZorqqLOA+fOnZPL5ZKUfY/cyy+/nHMIJgAAAAAAgKdyuVx6+eWXc32ssM+Vu5m/v9rtdjkcDknZh5MnJSXp+eefz/kYABQFB1sAAOCjVqxYoS+++CLnD8r+/v5FOtjiZlw52ELKHng+/vhjffPNN4ZmADxRQkKC2rRpk7M5RMpetDB6geD48eM5/7fD4dDbb7+t3377zdAMgDfq1atXroNqLly4YGh9X758OdfNaC6XS/369dOuXbsMywAAnmj37t2aPHlyrhnr1KlThlw7OTlZ/v7+krLflyUkJKhXr16GXBsAAAAAAAAAAAAAAAAA4B1ef/11nThxImcvs8PhUHx8vGHXT0hIUEBAgKTs+4w++OADbdy40bDrA5Def/997d+/P9c9DUU52OJmZWZm5vq3zWZT7969deDAAcOzAL5m4MCBunjxYq57F4289/iPD6/OysrSrFmzNG/ePMOuDyDbu+++q8OHD+fc13j58mWlpKQYmuGPB1tI2TPCoUOHNHToUENzAN7u3Llzat++/TUfv/o9uVFZrnA6nUpMTNT/+3//z/AcAAAAAAAAxek///mPoqOjc55JZLPZDHsmkXTtWmtWVpY2bdqkcePGGZYBgPfhYAsAAHxQUlKSevXqlfPgUyn7D7tGH2yRmpp6zcciIyNzPSwfQG5Op1OdO3fW2bNnc20SN+Ngi6NHj+YsklzJ8MorrxiaAfA2n3/+uaKionLVltPpNPRGkKsPtpCy67tDhw65DqUCAPyPw+FQt27dcvVPh8OhEydOGHL95OTkXNfOysrSsmXLNGPGDEOuDwAAAAAAAAAAAAAAAADwbOvWrdOUKVNy3adgt9sN3cd84cKFXHvh/Pz8FBERYfgDdAFftXv3bo0ePTrX/UkBAQGmHWxhs9ly/u1yuZSVlaUOHTooLS3N8DyAr1izZo3mzJmT674mSTpz5oxhGRITE3P9+8rBNseOHTMsA+Drdu3apQ8//PCae5bPnj1raI6rH7YmZc8on376qebOnWtoFsBbXXluwcWLF3PVvMvlMv1gCyn7HrnZs2drxYoVhmcBAAAAAAAoDmfOnNFrr72W60DxgIAAnT592rAM6enp13zM6XTqrbfe0tq1aw3LAcC7cLAFAAA+6LXXXtOFCxdy/XHZbrcburlM0jWbSF0uly5fvqzOnTsb/oB+wFOMHDlSq1evvmZzqBkHWxw+fFgulyvn31lZWVq1apUWL15saA7AW8THx2vIkCF5fs7IRcjLly/nugFEyn6fcPLkSb300kuG5QAATzJp0iTt3bv3mht6jx49asj1k5KSrundLpdL/fr1U2xsrCEZAAAAAAAAAAAAAAAAAACeKTU1VT169Mh1qMQVv//+u2E5EhISct2j4HA4dObMGQ0bNsywDICvstvt6tat2zX7Uf39/U052OLq+6ak7IyHDx/Wiy++aHgewBekpqaqZ8+e17wfsNlshr4fSEpKyvVvl8uljIwMderUifuOAQPk955AMnY2kPI+2ELK7ksvvfQS98sAxeCdd95RVFRUns8tMOtgi7zei3Tv3l0XL140PA8AAAAAAMDN6tOnjzIyMnJ9zM/Pz/BnyuXFZrOpc+fOio+PNywLAO/BwRYAAPiYqKgoffbZZ3n+cfnEiROGZsnr9L6srCxt2bJFY8aMMTQL4Am+//57jRo1Ktepm3+U16Ztd8qrZ/j5+alv375KTEw0NAvgDV555RWlpqbmuhnrilOnThmWIz09Pc+Np3a7XYsWLdLnn39uWBYA8ATHjx/XW2+9led7tGPHjhmSITk5Oc/fHw6HQ88//7wpG4kBAAAAAAAAAAAAAAAAAJ5h0KBBOn36dJ4Piz5//rxhORISEq7JYLfbNXXqVK1YscKwHIAvGjVqlPbt2ye73Z7r4y6XyzIHW0jZPWHBggX673//a3AiwPu99tprOnPmzDW/iwMDAw19mH1ycvI1H8vKytK2bds0duxYw3IAvmr06NHav3//Ne8JjD7kRsp+2Fpe9zm6XC7Z7XZ16NAhz2cVACiYNWvWaMyYMXneE+dyuQx/boGUfbBFQEBAro85nU5dvHhRQ4YMMTwPAAAAAADAzVi0aJG+/fbba9ZZ7Ha7JQ62cDgcunjxorp06ZLvsy0BID8cbAEAgA9JS0tTjx495OeX91uAM2fOGJrnekPOO++8o3Xr1hmaB7CyY8eOKSIiIs9NWFdcvVHMndLS0vI8vMLpdOrSpUt66623DMsCeIPvv/9eS5YsyXOjV0BAgKGLkFef7vtHLpdLr7zyinbv3m1YHgCwur59++b7Psyo/p3fwRZZWVnav3+/3n77bUNyAAAAAAAAAAAAAAAAAAA8y6pVqzRjxox898ElJCQYluX8+fN5Hq5hs9nUvXt3Q7MAvmT37t0aPXp0nvWXlZVlysEWmZmZ+X7O5XKpb9++2rlzp4GJAO/2008/aerUqXm+HzD6Yfapqal5fvzKfcebN282LAvgaw4cOKBRo0bl+Z4gICDAlIMt8nsmQlZWlg4ePKjXXnvN0EyAtzh58qSeffbZfD/vdDqv+57cXc6dO5fnsxTsdrtmzZrFoZcAAAAAAMBjJCYmql+/fnmucTocDh0/ftywLNc7IDgrK0tr1qzR+PHjDcsDwDtwsAUAAD7kH//4h06dOpXnhhIpewO4URwOx3X/mG2z2dS5c2dduHDBsEyAVV2+fFlt2rRRWlradU+0NPJgi+stiNjtdv373//Wli1bDMsDeLKkpCS9+OKL+W6y9Pf3t8Tpulc4nU4999xzSktLMygRAFjX/PnztXz58jwPJpKy/7CT12FgxS05OTnfOc9ut+vDDz/UmjVr3J4DAAAAAAAAAAAAAAAAAOA5EhMT1a1bt3z3MUtSSkqKYfcq5PfwfKfTqUuXLql///6G5AB8id1uV7du3fL9vMvl0qlTpwxMlC0zM1Mulyvfz7tcLnXs2FFJSUkGpgK8U3p6uiIiIvJ9P2C32w19mP317ley2Wx64YUXqH3ADRwOhyIiIvJ8oLwk+fn56ezZs4ZmysjIuO6sYrfbNWXKFC1evNjAVIDny8rK0jPPPKPU1NR8n1vgcrmUkZFhcLLsdYH81iCuHHp58eJFg1MBAAAAAAAU3qBBg3Tp0qV811+MPNiiIM+UGz58uDZt2mRQIgDegIMtAADwEVu2bNHkyZOvu5k8IyNDycnJhuS50cOwnU6nLly4oF69ehmSB7CyN998U7/++ut1N2RLyveByu5wowURf39/9e7dO98HLAP4n2HDhikhISHfBUiHw2H4wRbX6zcOh0MHDx7kxjAAPi8xMVEDBw687iZ5STp58qTbs1zvD1lS9sbdLl26cHAgAAAAAAAAAAAAAAAAACDHgAEDdP78+evu+3e5XIbtPYuPj8/3c1lZWZo3b54WLlxoSBbAV4wePVr79u277j2HRj7Q/oqsrKzr3tfgdDp19OhR9e7d28BUgHd66623dPLkyXzfDzgcDsMOuElPT7/u+xKHw6EzZ87o73//uyF5AF8yfvx47d69O9/7lB0Oh+EHW1y+fPm6B20EBATIZrNp6tSphh3GB3iDN998U1u3br3hMwBu9MBDdzhz5ky+uZxOpy5evKihQ4canAoAAAAAAKBwoqKiNHv27Os+F9LI9daCrPO4XC516tSJZxMBKDAOtgAAwAdkZGSoW7duN3wovpT9x14jpKamXvfzJUqUkN1u1+bNm7V9+3ZDMgFW9eGHH2rjxo3q27evbr31VklSQEDANV9n5CESx48fzzPDFXa7XXv27NGUKVMMywR4oo0bN2ratGnXXYC02+06ceKEYZnS09OveTi6zWaTv7+/bDabateurdGjR+vVV181LBMAWNGrr76q+Pj46x4oIRl3sEV+rvTv8+fPa/LkyW7PAgAAAAAAAAAAAAAAAACwvv379+v777+Xw+FQYGBgvg+Mla5/4ERxut5eOCl7T3OfPn1Mecg+4I327NmjUaNG3fB+JKN6wB9lZmZecy+kv7+//P395efnp0ceeUSTJk3SxIkTDc8GeJOtW7dq4sSJN3wgvFH3NSUnJ1/384GBgbLb7VqyZIm2bt1qSCbAF8TGxurtt9++7v0xdrtdp0+fNjBV9n2Of5xT/vheoGHDhho1apTi4uK0evXq697vDCC3kSNHatmyZerUqZNKliwpm82mwMDAa74uMzPT8Gw3etaJ3W7XzJkz9cMPPxiUCAAAAAAAoHDS0tLUvXv3An1dSkqKAYnyP9jiyrrqn/70J/Xt21czZsxQ2bJlDckEwPNxsAUAAD7g7Nmzevrpp1WrVi35+WX/+r/lllvy/FqjNndffbCFzWbLGW7uvfdevfLKK1q1apVOnz6thg0bGpIJsCp/f3+FhobqX//6l86ePauJEyfK5XKpdOnSkpSzWeRGG0iL0/Hjx+Xv///Zu/PYqO87/+OvsbGNDcHE3JQz5jQ2Zsa3wTZHzOHBwYnD9lDTbbWtuttNFXW7aVfdrLTtKlX36G4rdavdSltVW3WrDTExOKZgQ/D4PmY8jM0ZnATCDQYbAw7Gx+wf+cEvKRAuz3zmeD4kpNSR8nlKZb7j+c7383lH3rP19ms5Ojpae/bs8WsXEGy6urq0atUqxcTESPr4dXP7vfqTTp486bemmzdvanh4+M5DnpGRkZo1a5ZefvllnTx5Uh6PRz/4wQ+UlJTktyYACDRXr17V+fPn9dRTT0n69O9AnxQZGemXwRZXr1791P++/b4SExOj/Px8/fSnP9WHH36oH/3oRz5vAQAAAAAAAAAAAAAAAAAEvqSkJF26dEkul0uvv/661q5dq+joaEn//xm02y5fvuzzHq/Xq76+vnv+u9t7JqKjo5Wenq7Dhw/7vAcIB16vV9/73veUnp5+Z4/QvfYc9vb2PnD4xWi7devWnX0Nt/cdWiwW/eVf/qUuXbqkpqYmvfLKK5oxY4Zfu4BQ09PToy9+8YuaPn26pI+ff7/XwdYXLlzwS88f/y7wyYO2Z8yYoa997Wt64403dPHiRWVmZvqlCQgHO3bsuLNfecyYMffcOyzJL/tjPmlgYEC3bt2SxWJRdHS0Nm7cqLy8PL388stqaWnR97//fS1YsMCvTUAoiIuLU3FxsX73u9/p0qVL+slPfqLh4eE7Qy5u3xu434GHvnTx4sW7fnZ7GKfFYtGyZcv0ne98R+PHj/d7GwAAAAAAwMN49913lZGRoYSEBEn3/+5Fkt+GCd++z/PJ816nTp2qvLw8tbS06MKFC/r3f/93FRYW3rcVAP4YI8cBAAgDc+bM0b/+679K+vjA07q6Ov30pz/Ve++9p7Nnz975ovnmzZt+G2zR399/559vH9o/btw4OZ1OnTx5UhaLxS8dQLCJiorSqVOnlJiYqM7OTlVXV+uNN97Q9u3b/drx4Ycf6tatWxozZoyGh4fl9Xo1fvx45ebmym63Kzs7W1arlRsUwAN87Wtf09e+9jXdunVLTqdTNTU1+uUvf6ne3l7duHFDY8aM0cjIiN/en6WPb0LeftCztLRUdrtdGzduVH9/v2bPnu23DgAIZPHx8aqoqJDX69WRI0fU2Nio//3f/1V7e7uuXLly5yHewcFBnTp1yuc9n5zAPnfuXOXn5+u3v/2t3nnnHeXm5vp8fQAAAAAAAAAAAAAAAABA8ImIiJDNZpPNZtOrr76qjIwMzZo1S8uWLdPu3bvldrs1MjKiS5cu+bzl2rVrdw7Oj4qK0tDQkCRp5syZeumll1RYWKiVK1feNXQDwONLTU1VamqqXn/9dV27dk11dXX67ne/q1u3bunEiRPyer2KjIzU0NCQuru7NW3aNL+1DQ4OKjo6WkVFRdq6davsdrvsdrt6enruHAID4Mlt2LBBGzZskCS9//77qqmp0euvv67r16/r4sWLioiIkPTxvuShoaE7hx35yrVr1+78c2RkpLKysjR27FgdOXLEb4c7AeHoe9/7nl599VUdPnxYNTU12rdvn/bs2aP+/v47r/uhoSG/7nGUPh649eUvf1klJSXauHGj4uLi9P3vf19lZWX6+c9/7tcWIFSNHz9eV69e1ec+9zkdPXpUVVVVevPNN7Vjxw6/D7eTPh66FRERIa/XK0n63Oc+p6ioKP3jP/6j1q1bx2cBAAAAAAAQ8FasWKE333xT0sdDLurr6/XLX/5SJ0+eVHd3953hEoODgzp79qwWLVrk86abN2/KYrHIarVq69atKikp0c6dO/VP//RPstlsnPsK4LFYvLfv5AIAgLCSlJSkLVu26Ac/+IHq6+vlcDi0f/9+/emf/qm+9a1v+Xz9jo4O/eQnP9Fzzz2njRs3auLEifJ4PFqxYoVaW1uVkZHh8wYgGHm9Xs2fP18vvfSS/uEf/uHOzwcGBnTw4EGlpaX5pWPTpk26cuWK8vPzlZubq+zsbGVkZOjll1/W3/zN3/ilAQhFDQ0NWrVqlY4fP66PPvpIDodDdXV1qq+v1/vvv++XjVgdHR1auHChYmNj7/zsxz/+sX7+85/r7NmzioyM9HkDAASjr371qzp9+rT+53/+R42Njaqvr1dtba3S09P1y1/+0qdrf+lLX1JmZqbsdrsWLlwoSZo3b56++tWv6u///u99ujYAAAAAAAAAAAAAAAAAIPhdu3ZNCQkJ+v3vf68XX3xR0seHWNfU1GjOnDmyWq0+Xf/EiROaP3++pk+fLrvdrsLCQg0NDemll17S2bNnNX36dJ+uD0A6c+aMZs2apb179yotLe3OfsN33nlHv//977Vs2TK/tXg8Hi1cuFBxcXF3fvazn/1MP/zhD3XhwgVFR0f7rQUIJ4cOHVJycrKcTqcmT54sh8Mhh8Ohmpoa1dfXa8aMGT5dv729XT//+c9VVFSkDRs2aOLEiWpqalJubq4OHTqkpKQkn64P4GPNzc3KyclRRUWFTp48eef3gRs3bmhgYMBoW21trQoKCvTuu+/e2T8D4MksXbpURUVF+ulPf3rnZ7du3VJnZ6ffzi2QPr4HkZGRobVr12rNmjVas2aNenp6tGTJEjU1NSk7O9tvLQAAAAAAAKNp1qxZ+va3v62XXnrpznly+/fv12uvvaYvfOELPl//9OnTioiI0MyZM+/8rKurSwsXLtT+/fu1evVqnzcACD0MtgAAIAxduXJFU6ZM0Y4dO7R582bTOZ/yzDPP6Mtf/rJ+9KMfmU4BAlJjY6NWrlwpj8ej5cuXG+sYGRlRRETEp372wgsvyGKxqKyszFAVEPz+5V/+Rf/8z/+sCxcumE75lMOHD2vZsmWqq6vTqlWrTOcAQEBasmSJSktL9frrr3/q516v18hk8j//8z+Xy+VSW1ub39cGAAAAAAAAAAAAAAAAAASXXbt2afPmzTp37pymTZvm9/X7+vp07tw5LV68+M7Prl27pkmTJuk3v/mNvvSlL/m9CQg3v//97/WVr3xFPT09Gj9+vOmcu5w+fVpz5szRrl27tHHjRtM5QEj6z//8T333u99Vb2+vxowZYzpH0sf7GGfMmKG//uu/1quvvmo6BwgLP/nJT/Rv//ZvOn/+/Kf2wxw+fFhLliy5a2+xPw0PD2vatGn627/9W33nO98x1gGEittDrRoaGpSbm2s65y5er1fTp0/n9wAAAAAAABC0Tp48qXnz5snhcCg/P990zqckJyfr2Wef1c9+9jPTKQCCkLlviwAAgDENDQ3yer3KyckxnXIXu92unTt3ms4AAta2bdu0ePFio0MtJN3zwbOMjAwOTgaeUFNTU0A+/JWUlKTFixervLzcdAoABKTe3l4dP35cWVlZd/07E0MtJKmoqEgul0vnzp0zsj4AAAAAAAAAAAAAAAAAIHg4HA4tXbrUyFALSZowYcKnhlpI0lNPPaXs7GxVV1cbaQLCTV1dndLS0gJyqIUkzZo1S+np6SorKzOdAoSshoYGZWdnB8xQC+njfYzr169XZWWl6RQgbDgcDq1Zs+au/TBJSUlGh1pIUmRkJNcEYBS9+eabmj59urKzs02n3JPFYlFeXp7q6upMpwAAAAAAADyWpqYmRUVFKT093XTKXUpKSlReXi6v12s6BUAQYrAFAABhqKGhQUuXLtWkSZNMp9yluLhYHo9HJ06cMJ0CBByv16vt27fr85//vOmUe8rIyNCpU6c4PBl4Ai0tLQE5eEr6+CYkG0AA4N5aWlo0MjJyz8EWpqxbt04xMTHas2eP6RQAAAAAAAAAAAAAAAAAQIBzOBwqKCgwnXGXwsJCVVVVcZAC4Ae1tbXKz883nfGZSktL9dZbb2loaMh0ChCSGhoatGrVKtMZdykqKlJDQ4N6e3tNpwAhb2hoSA0NDQH52eA2u92u2tpaXb161XQKEPTKyspUWlpqfGjNZ8nLy1N9fb1GRkZMpwAAAAAAADyypqYmpaamKi4uznTKXUpKSnTy5Em53W7TKQCCUODeVQYAAD7T0NCglStXms64pzVr1mjixIl6++23TacAAaehoUEffvihtm7dajrlnjIyMmSxWOR0Ok2nAEHpxIkTOnPmTMAOttiyZYtOnDihzs5O0ykAEHBaWlo0b948TZs2zXTKHePGjVNBQYEqKytNpwAAAAAAAAAAAAAAAAAAAtj169fV3t4ekIfXrl+/XmfPntWRI0dMpwAh7cqVKzpy5Ijy8vJMp3ymrVu36vLly6qtrTWdAoSc8+fP6/333w/IvccbN26UJFVVVRkuAUKfy+XStWvXtHr1atMp97Vp0yZ5vV7t3bvXdAoQ1I4fP67Ozk6VlpaaTvlMeXl56unp0eHDh02nAAAAAAAAPLLGxkbl5uaazrintLQ0zZkzR+Xl5aZTAAQhBlsAABBmBgYG5HQ6A/LhMkmKiopSYWGhKioqTKcAAWfbtm1asmSJkpOTTafcU3x8vBYuXKi2tjbTKUBQamxsVFRUlNLS0kyn3FNWVpZmzJjBTUgAuIeWlhZlZ2ebzriL3W5XVVWVbt26ZToFAAAAAAAAAAAAAAAAABCg6uvrNTg4GJAH2qenpyshIYGDrAEfq6urk9frDdhDVW575plnlJqaqrKyMtMpQMipr69XZGSkMjMzTafc5emnn1Z2drYvv5mWAAAgAElEQVR27dplOgUIeTU1NZo6daqWLFliOuW+EhISlJWVpcrKStMpQFArKyvT5MmTA/JewCelpqYqPj5edXV1plMAAAAAAAAeyUcffaSOjg7l5OSYTrkni8WiLVu2cKYcgMfCYAsAAMKM0+nUzZs3A3awhSQVFxdr//79unr1qukUIGCMjIyorKxMn//8502nfKaMjAwGWwCPqampSStWrFBcXJzplHuKiIjgJiQA3IPX61Vra6uysrJMp9xl8+bN6uvrU0NDg+kUAAAAAAAAAAAAAAAAAECAcjgcWrJkiWbOnGk65S6RkZFas2aNqqurTacAIa2urk7JycmaNGmS6ZQHKi0t1fbt2zU8PGw6BQgpDQ0NWr58ueLj402n3JPdbteuXbs0MjJiOgUIaQ6HQ6tXr5bFYjGd8pnsdrsqKyu5JgBPoKysTM8//7zGjBljOuUzRUZGKicnh8EWAAAAAAAg6LS1tenWrVsBO9hCkrZs2aLOzk4dP37cdAqAIMNgCwAAwkxDQ4OmTZumBQsWmE65L7vdLq/Xq6qqKtMpQMCor6/XmTNn9Cd/8iemUz5TRkaGWltb5fV6TacAQaepqUm5ubmmMz5TSUmJ2tvb9cEHH5hOAYCA8d5776m7uzsgB1vMnz9fS5YsUWVlpekUAAAAAAAAAAAAAAAAAECAcjgcKigoMJ1xX4WFhXI4HBoYGDCdAoSsuro65eXlmc54KKWlpTp//ryamppMpwAhpb6+XitXrjSdcV92u12XLl2S0+k0nQKErKGhITU0NAT0Z4PbNm/erIsXL3JNAB7TiRMn5HK5VFpaajrloeTl5am2ttZ0BgAAAAAAwCNpamrSzJkzNXfuXNMp91VQUKDJkydr586dplMABBkGWwAAEGYaGhoC+uEySUpISFBubq4qKipMpwABY9u2bUpOTlZSUpLplM+UkZGhK1eucOg98Ig++ugjdXR0BPRkXUlau3atJk6cyE1IAPiE5uZmRUVFacWKFaZT7slutzPYAgAAAAAAAAAAAAAAAABwT/39/XK5XAF9eO2GDRt048YNDrEHfOTGjRtyu91BM9giKSlJS5cuVVlZmekUIGTcuHFDHo8noPcep6SkaO7cuTwbD/hQe3u7+vr6tHr1atMpD5SSkqJ58+ZxTQAe0/bt2xUfH681a9aYTnkoeXl5OnPmDOcXAAAAAACAoNLU1BTwZ8qNGTNGRUVFKi8vN50CIMgw2AIAgDDi9XrV1NQU0A+X3VZcXKzKykoNDQ2ZTgGMGxkZ0fbt27V161bTKQ9ktVoVFRWltrY20ylAUGltbdXg4GDA34SMiorSpk2btGPHDtMpABAwWlpatGLFCsXGxppOuSe73a6jR4+qq6vLdAoAAAAAAAAAAAAAAAAAIMDU19fr1q1bAT3YYt68eUpMTFR1dbXpFCAkNTU1aXBwUKtWrTKd8tBKS0v15ptvyuv1mk4BQkJLS4sGBwcDfu/xpk2bOMQe8KGamhpNnTpVS5cuNZ3yUDZt2qS3337bdAYQlMrKyrRlyxZFR0ebTnkomZmZGjt2rOrq6kynAAAAAAAAPLTm5uaAP1NOkkpKStTY2Kjz58+bTgEQRBhsAQBAGDl27JguXboUFA+ZlpSU6MqVK2psbDSdAhhXW1urs2fPBsVgi9jYWC1btozBFsAjamxs1MyZMzVnzhzTKQ9UUlKi2tpadXd3m04BgIDQ0tKi7Oxs0xn3tWrVKsXHx+sPf/iD6RQAAAAAAAAAAAAAAAAAQIBxOBxatGiRZs6caTrlMxUWFjLYAvCRuro6JSYmatasWaZTHlppaalOnz4tp9NpOgUICQ0NDZozZ45mz55tOuUz2e12tbe36+zZs6ZTgJDkcDi0evVqWSwW0ykPxW63y+1268yZM6ZTgKBy/vx5NTc3q7S01HTKQ4uJiVFGRgaDLQAAAAAAQNDo6urShQsXgmKwxYYNGzR27FhVVFSYTgEQRBhsAQBAGGloaFBsbKxWrFhhOuWBFixYoMWLF/MBB5C0bds2LV++XEuXLjWd8lAyMjIYbAE8oqamJuXm5prOeChFRUWKiorS22+/bToFAIwbGBhQR0eHsrKyTKfcV1RUlJ599lnt2rXLdAoAAAAAAAAAAAAAAAAAIMDU1NSooKDAdMYDFRYWyuVyqbu723QKEHLq6uqUl5dnOuORrFixQomJiSorKzOdAoSEhoYGrVy50nTGA61bt06xsbHavXu36RQg5AwNDam+vj4oPhvctnbtWsXGxuoPf/iD6RQgqLz55puKi4tTYWGh6ZRHkpeXx2ALAAAAAAAQNJqamhQTEyObzWY65YFu3ysqLy83nQIgiDDYAgCAMNLQ0KCsrCxFR0ebTnkozz33HB9wEPZGRkb01ltvaevWraZTHlpGRoZcLpeGhoZMpwBBwev1qrm5OSgm60rS+PHjtXbtWt6jAUBSe3u7BgYGAnqwhSTZ7Xbt379f169fN50CAAAAAAAAAAAAAAAAAAgQ/f39cjqdQXF47dq1axUREaH9+/ebTgFCyuDgoFpaWoJusIUkvfDCC3rjjTdMZwBBb2RkRM3NzUEx2CI2NlYFBQWqrKw0nQKEnPb2dvX19QXFZ4PbYmNjtXbtWq4JwCMqKyvT5s2bNXbsWNMpjyQvL0/Hjh3TuXPnTKcAAAAAAAA8UFNTk2w2W9DcgykpKdG+ffvU19dnOgVAkGCwBQAAYaS+vj4oHi67rbi4WF1dXTp27JjpFMCYmpoanTt3Ti+++KLplIeWmZmpGzdu6OjRo6ZTgKDQ1dWlS5cuKTc313TKQyspKVFVVZVu3LhhOgUAjGppadGkSZOUmJhoOuUz2e12DQ4OsqEXAAAAAAAAAAAAAAAAAHBHY2Ojbt26pfz8fNMpDzRx4kSlp6erurradAoQUpxOp/r7+4NysEVpaak++OADeTwe0ylAUOvs7NTVq1e1atUq0ykPpaioSFVVVRoYGDCdAoQUh8OhKVOmKCkpyXTKI7Hb7aqurtbNmzdNpwBBobu7W/X19SotLTWd8shyc3MVGRmpxsZG0ykAAAAAAAAP1NjYqJycHNMZD624uFjDw8PavXu36RQAQYLBFgAAhIlLly6pq6srqAZb5ObmavLkydq5c6fpFMCYbdu2acWKFVqyZInplIeWnJyscePGqa2tzXQKEBSampoUExMjq9VqOuWhbdmyRbdu3VJVVZXpFAAwqqWlRVlZWbJYLKZTPtPUqVNls9lUWVlpOgUAAAAAAAAAAAAAAAAAECAcDocWLFig2bNnm055KIWFhTy/DIyy2tpaTZ8+XQsXLjSd8sgyMzM1Z84clZWVmU4Bglp9fb0mTJig5ORk0ykPxW636/r166qvrzedAoQUh8Oh1atXB/z+mD+2efNm9ff3y+FwmE4BgsJbb72l6Ohobdq0yXTKI5swYYJSU1NVV1dnOgUAAAAAAOAz3bhxQ4cOHQqqwRaTJk1SXl6eysvLTacACBIMtgAAIEzU19fLYrEoKyvLdMpDi4yMVFFRkSoqKkynAEYMDw9r+/bt2rp1q+mURxIZGanU1FQGWwAPqampSWlpaYqJiTGd8tCmTp2qnJwcbkICCHvNzc1B8xnLbrersrJSXq/XdAoAAAAAAAAAAAAAAAAAIADU1NSooKDAdMZDKyws1MmTJ3X8+HHTKUDIqKurU35+vumMx2KxWPT888/rjTfeMJ0CBLWGhgbl5OQoMjLSdMpDmT9/vpYuXapdu3aZTgFCxvDwsBoaGoLqs8Fts2bN0vLly7kmAA+prKxMGzdu1Lhx40ynPJa8vDwGWwAAAAAAgIDX3NysoaEhZWdnm055JFu2bNGuXbt069Yt0ykAggCDLQAACBONjY1KSkpSQkKC6ZRHUlxcrMbGRnV3d5tOAfxu//79unjxYtANtpCkzMxMBlsAD6mpqSnobkBKH9+E3LlzpwYHB02nAIARFy9e1IkTJ4JqsMXp06fV2dlpOgUAAAAAAAAAAAAAAAAAYNjNmzfV1tYWVAfa5+TkaMKECaqurjadAoSEkZERNTY2atWqVaZTHltpaamOHTumI0eOmE4BglZjY6Nyc3NNZzwSu92uyspK0xlAyGhvb1dvb29QDraQpPXr1/MZAXgIvb292r9/v0pLS02nPLa8vDx5PB719fWZTgEAAAAAALiv5uZmzZ49W7NmzTKd8khKSkrU19en/fv3m04BEAQYbAEAQJhobm4OuofLJGnjxo0aM2aMdu3aZToF8Ltt27bJZrNp4cKFplMeWVpamjo7OznwHniA/v5+HTp0KCgHWzz//PPq7e1VXV2d6RQAMMLlckmS0tPTDZc8nLS0NE2fPp0NPAAAAAAAAAAAAAAAAAAAOZ1ODQwMBNWB9mPGjFFBQQGH1gKj5MiRI+rp6dHKlStNpzy2lStXasaMGSorKzOdAgSl8+fP6+TJk8rJyTGd8kjsdruOHTumrq4u0ylASHA4HJoyZYqWLVtmOuWxFBYW6siRIzp16pTpFCCg7dixQxaLRXa73XTKY1u1apWGh4fV2tpqOgUAAAAAAOC+Wltbg/JMublz58pqtaq8vNx0CoAgwGALAADCwPDwsNxutzIzM02nPLLx48dr9erVqqioMJ0C+NXQ0JDKy8u1detW0ymPxWq1amBgQIcPHzadAgQ0t9utoaGhoDkU/ZMSExOVkpLCTUgAYcvpdGr+/PmaNGmS6ZSHEhERoY0bNzI0EAAAAAAAAAAAAAAAAACgxsZGTZs2Tc8884zplEdSWFioffv2aXBw0HQKEPSam5sVFxen5cuXm055bBERESopKWGwBfCYWlpaZLFYgm5f06pVqzRx4kSejQdGicPhUEFBgSwWi+mUx5KXl6fY2Fjt3bvXdAoQ0MrKylRYWKj4+HjTKY9t2rRpmjdvnpqbm02nAAAAAAAA3JfT6Qy6715uKykp0VtvvaWRkRHTKQACHIMtAAAIA52dnbpx40ZQDraQpOLiYu3evVsDAwOmUwC/eeedd3Tx4kW9+OKLplMey5IlSxQXFye32206BQhobW1tSkhI0Lx580ynPJaSkhJt375dXq/XdAoA+J3L5VJaWprpjEdSVFSkpqYmXb582XQKAAAAAAAAAAAAAAAAAMCgpqYmrVy50nTGI1u/fr2uXbumtrY20ylA0GtublZGRobGjBljOuWJlJaW6sCBA3rvvfdMpwBBp7W1VYsXL9bTTz9tOuWRjBkzRoWFhaqsrDSdAgS94eFh1dfXq6CgwHTKYxs7dqxWrVql6upq0ylAwLp+/bqqq6tVWlpqOuWJZWdnM9gCAAAAAAAErDNnzujs2bPKyMgwnfJYSkpKdOHCBbW0tJhOARDgGGwBAEAYaGlp0bhx47R06VLTKY+luLhYN27ckMPhMJ0C+M22bduUnp6uBQsWmE55LJGRkUpOTmawBfAATqdTmZmZslgsplMeS0lJic6cOSOXy2U6BQD8rr29XTabzXTGI9mwYYMiIiJUVVVlOgUAAAAAAAAAAAAAAAAAYFBzc7NycnJMZzyyxYsXa968eTwHB4yC5uZmZWdnm854YqtXr9aUKVNUVlZmOgUIOq2trcrMzDSd8VjsdrscDoeuXbtmOgUIam63W729vVq9erXplCdSWFio6upqjYyMmE4BAlJFRYWGhoa0efNm0ylPLCsrS83NzfJ6vaZTAAAAAAAA7tLW1iaLxSKr1Wo65bGkpKRo0aJFKi8vN50CIMAx2AIAgDDQ2tqqjIwMjRkzxnTKY5kzZ45SU1NVUVFhOgXwi8HBQb311lvaunWr6ZQnYrVaGWwBPEBbW1vQTtaVJJvNpvnz53MTEkDY6e7u1qlTp5SWlmY65ZFMmDBBK1euVGVlpekUAAAAAAAAAAAAAAAAAIAhXV1dOn/+vHJzc02nPJZ169apurradAYQ1K5du6YjR44oKyvLdMoTi4yMVHFxMYMtgEfk9XrldDqDdrBFUVGRBgcH9c4775hOAYJaTU2NJk2apKSkJNMpT6SwsFDd3d3yeDymU4CAVFZWpjVr1mjy5MmmU55YTk6OLl++rK6uLtMpAAAAAAAAd3E6nVq8eLEmTpxoOuWxPffcc9q+fbvpDAABjsEWAACEgdbW1qB9uOy24uJi7dy5U16v13QK4HP79u3T5cuXVVpaajrliVitVnk8Ho2MjJhOAQLS1atX1dXVpfT0dNMpT6S4uJjBFgDCjtPplKSgnI5ut9v1hz/8QcPDw6ZTAAAAAAAAAAAAAAAAAAAGNDY2KiYmRjabzXTKYyksLFRra6uuXr1qOgUIWi0tLRoeHg6JwRaSVFpaqra2Nn344YemU4CgcfToUfX29gbtdWDKlClKT09XZWWl6RQgqDkcDq1evVoREcF9/FBqaqqmT5/OADzgHvr7+7V79+6gP7fgNqvVqrFjx6q5udl0CgAAAAAAwF2cTmfQnylXUlKirq4uHT582HQKgAAW3N8sAQCAB7p+/bqOHDkSEoMtPvzwQ3V0dJhOAXxu27ZtyszMVGJioumUJ2K1WtXX16f333/fdAoQkFwul0ZGRkLiJuShQ4f07rvvmk4BAL9xuVyaO3eupkyZYjrlkdntdl25ckUtLS2mUwAAAAAAAAAAAAAAAAAABjQ2NiotLU1jx441nfJYnn32WY2MjGj//v2mU4Cg1dzcrLlz52rmzJmmU0ZFYWGhJk6cqLfeest0ChA0WltbFRMTo5SUFNMpj62oqEhvv/22vF6v6RQgKA0PD6u+vl4FBQWmU56YxWLR2rVrGWwB3MPu3bv10UcfacuWLaZTRkV0dLSsViuDLQAAAAAAQMDxer0hMdgiJydH06dP57tXAJ+JwRYAAIQ4p9Op4eHhoB9skZ6erlmzZmnnzp2mUwCfGhwcVHl5ubZu3Wo65YmlpKRozJgxcrvdplOAgNTW1qYZM2YE/UaQ/Px8TZ48WTt27DCdAgB+097eLpvNZjrjsSxdulSJiYmqrKw0nQIAAAAAAAAAAAAAAAAAMKCxsVG5ubmmMx7bpEmTZLVaObQWeALNzc3KyckxnTFqoqKiZLfbVVZWZjoFCBqtra2yWq2KiYkxnfLY7Ha7zp07J4/HYzoFCEoHDhxQb2+vVq9ebTplVBQWFqq+vl79/f2mU4CAUlZWpry8PE2fPt10yqjJzs5msAUAAAAAAAg4H3zwgS5fvqyMjAzTKU8kIiJCxcXFnCkH4DMx2AIAgBDX0tKiGTNmaPbs2aZTnojFYlFRUZEqKipMpwA+VV1drZ6eHr344oumU55YbGysFi1axGAL4D6cTmfQD56SpMjISG3evFnl5eWmUwDAb1wul9LS0kxnPLZNmzYx2AIAAAAAAAAAAAAAAAAAwlBfX58OHz4c1IMtpI8PrWWwBfB4vF6vWlpalJWVZTplVJWWlqqhoUFnz541nQIEhdbW1qDf15SWlqaZM2dq165dplOAoFRTU6OEhAQtW7bMdMqoWL9+vQYGBlRfX286BQgYAwMDqqysVGlpqemUUZWdna2Ojg5dv37ddAoAAAAAAMAdTqdTkZGRSk1NNZ3yxEpKSuR0OnXq1CnTKQACFIMtAAAIcW1tbSHzkGlxcbGcTqfOnDljOgXwmW3btikrK0vz5s0znTIqrFYrgy2A+3A6nUpPTzedMSpKSkrU3Nysc+fOmU4BAJ+7fPmyTp48GdSDLYqKiuTxePThhx+aTgEAAAAAAAAAAAAAAAAA+FFTU5OGh4eVk5NjOuWJFBYW6vjx4/rggw9MpwBBp6urS93d3crOzjadMqo2btyocePGaceOHaZTgIA3MDCgzs7OoB9sYbFYtGHDBlVWVppOAYKSw+HQ6tWrFRERGkcPzZw5U0uXLmUAHvAJ1dXV6uvrU0lJiemUUZWdna2hoSG5XC7TKQAAAAAAAHc4nU4lJydr3LhxplOe2Lp16/TUU0/x3SuA+wqNb5cAAMB9tbS0BP3DZbetW7dOcXFxPGSGkDU4OKidO3dq69atplNGjdVqVXt7u+kMIOB0d3frxIkTysjIMJ0yKtavX6/Y2Fjt3LnTdAoA+NztB16tVqvhkse3Zs0axcXFac+ePaZTAAAAAAAAAAAAAAAAAAB+1NTUpMTERE2fPt10yhNZtWqVxo0bp71795pOAYJOc3OzYmJigvpZ2HsZO3asNm3apLKyMtMpQMBzu90aGBhQVlaW6ZQnZrfb1dLSou7ubtMpQFAZGRlRfX29CgoKTKeMqvXr16uqqsp0BhAwysrKlJ2drdmzZ5tOGVVz5szR5z73OTU3N5tOAQAAAAAAuKOtrU3p6emmM0ZFTEyMNm7cqPLyctMpAAIUgy0AAAhh586d0+nTp0NmsEVsbKyeffZZVVRUmE4BfGLPnj3q6elRaWmp6ZRRY7VadfHiRZ07d850ChBQ2traJEk2m81wyeiIjY3V+vXrma4LICy4XC7NmjVL06ZNM53y2MaOHau1a9cyNBAAAAAAAAAAAAAAAAAAwkxjY6Nyc3NNZzyx6Oho5eXlqbq62nQKEHSam5tltVoVExNjOmXUlZaWqqamRpcuXTKdAgS0lpYWJSQkKDEx0XTKEyssLFRkZKT27NljOgUIKgcOHFBPT49Wr15tOmVUFRYWqrOzkz3NgKTBwUHt3LkzpM4t+KSsrCy1tLSYzgAAAAAAAJAkeb1eud3ukBlsIUklJSVyOBy6fPmy6RQAAYjBFgAAhLCWlhZZLBalpaWZThk1xcXF2rdvn27cuGE6BRh127ZtU05OjubOnWs6ZdRYrVZZLBa53W7TKUBAcTqdmj9/vqZMmWI6ZdSUlJRo79696u3tNZ0CAD7V3t4eEp+x7Ha79u7dq5s3b5pOAQAAAAAAAAAAAAAAAAD4wfDwsFpbW5WTk2M6ZVQUFhZq7969Gh4eNp0CBJXm5uaQuQ78saKiIkVHR2vnzp2mU4CA1tbWpszMTFksFtMpT2zChAlatWqVKisrTacAQaWmpkYJCQlKTk42nTKqCgoKFB0drX379plOAYzbv3+/rly5oueff950ik9kZ2ersbHRdAYAAAAAAIAk6dixY7p69aoyMjJMp4yaoqIiRUREaNeuXaZTAAQgBlsAABDCWltbtWTJEk2cONF0yqgpLi7WwMCA9u7dazoFGFUDAwPasWOHtm7dajplVD399NOaM2cOgy2AP+J0OkPqBqQkbd68WV6vV7t37zadAgA+5XK5ZLPZTGc8Mbvdrv7+ftXW1ppOAQAAAAAAAAAAAAAAAAD4QWdnp65evarc3FzTKaNi/fr16unpUXt7u+kUIGj09/ero6NDWVlZplN8Yvz48Vq/fr3KyspMpwABraWlRZmZmaYzRo3dbtfu3bs1NDRkOgUIGg6HQwUFBYqICK1jh8aNG6ecnBxVV1ebTgGMKysrk81m0zPPPGM6xSeys7N14cIFnThxwnQKAAAAAACA2traFBMTE1LDhOPj47V27VqVl5ebTgEQgELrGyYAAPApra2tIfeQ6dSpU5WZmamKigrTKcCo2rNnj/r6+vTCCy+YThl1VquVwRbAH3E6nUpPTzedMaoSEhKUn5/PTUgAIa2np0cnTpxQWlqa6ZQnNnv2bCUnJ6uystJ0CgAAAAAAAAAAAAAAAADADxobGzVhwoSQOUhh2bJlmjFjhqqqqkynAEHD6XRqaGhI2dnZplN8prS0VHv37lVPT4/pFCAgXblyRe+9917IDbbo6elRc3Oz6RQgKIyMjKi+vl4FBQWmU3yisLBQVVVV8nq9plMAY0ZGRrRz506VlpaaTvGZ9PR0RUVF8f4PAAAAAAACgtPpVGpqqmJiYkynjKqSkhLt3r1b/f39plMABBgGWwAAEKK8Xq9cLldIPVx2W3FxsSoqKjQyMmI6BRg127Zt08qVKzVnzhzTKaOOwRbAp505c0Znz55VRkaG6ZRRV1JSosrKSt28edN0CgD4hMvlktfrlc1mM50yKux2u95++23TGQAAAAAAAAAAAAAAAAAAP2hqalJ2drYiIyNNp4wKi8WiwsJCVVdXm04BgkZTU5NmzJihuXPnmk7xmeeee04Wi0WVlZWmU4CA1NraKq/XG1L7mhYvXqwFCxbwugceksfj0ZUrV7R69WrTKT5RWFio8+fP6/Dhw6ZTAGPq6up0/vx5vfDCC6ZTfCY2NlbLly9nsAUAAAAAAAgITqdT6enppjNGXUlJiW7evMlzGQDuwmALAABC1NGjR9Xb2xuSgy2ee+45Xbx4Ua2traZTgFExMDCgiooKbd261XSKT1itVn3wwQfq7e01nQIEBKfTKYvFIqvVajpl1L3wwgu6ceOG9u/fbzoFAHzC5XJp5syZmjFjhumUUWG32/X+++/r2LFjplMAAAAAAAAAAAAAAAAAAD7W2NionJwc0xmjqrCwUE1NTbp+/brpFCAotLS0KDs723SGT8XHx2vdunUqKysznQIEpNbWVj3zzDOaOnWq6ZRRVVRUxGAL4CHV1NQoISFBKSkpplN8Ii0tTZMnT1ZVVZXpFMCYsrIyJScna8mSJaZTfCo7O5vBFgAAAAAAwLjh4WF5PJ6QHGwxbdo0ZWVlaceOHaZTAAQYBlsAABCiWlpaNHbsWL89VOL1ev32Z9myZVqwYIEqKir8uu6T/IH/mf7//FH+7Nq1S9euXdMLL7wQkn8vrVarvF6vPB6P39YEAllbW5sWL16s+Ph4v6znz+vKzJkzZbPZVF5ebvzaGojXQwDBr729XWlpaT5dw5/Xv+zsbE2aNElvv/228Wsx12wAAAAAAAAAAAAAAAAA8J0LFy7o/fff9/lgC38/U/bss89qcHBQNTU1xp9v4xk4BAOTgy38+Vp74YUXtHv3bvX19Rl/3XN9QKBpbW1VZmamz9fx92to06ZN6uzs1IkTJ4y/nnndhzfTf68e5o/D4VB+fr4sFktI/r2PiIjQmjVrtNoLcaUAACAASURBVG/fPr+sh/Bh+rX7sH9GRkZUXl4esucWfFJ2drbcbrdu3rxpZH0AAAAAAABJOnjwoG7cuKGMjAy/renP+z5btmzRzp07NTg4aPzeVyDfqwLCjcXLqw0AgJD08ssvy+Vyqampyedrff3rX9d//dd/+XydYFZYWKiqqirTGWFjz5492rhxo+mMgNfb2+u3g/WnTJmi1157Ta+88opf1gMCWVFRkSZNmqTf/va3Pl+L6+HD8ef1EEBwW7Rokb74xS/qhz/8oU/++/Hx8err6/PJfztU/OpXv9I3vvEN0xkAAAAAAAAAAAAAAAAAEFR27typkpISXblyRRMnTvTJGuwvejD2F8GkU6dOac6cOaqpqVFBQYFf1+b68GBcH+Av06dP1/e+9z391V/9lc/WYD/Tw2E/U+jh/e7B/PV+94tf/EKvvfaaLl++rMjISJ+vh9DH6/vBTPw+29XVpYULF6qpqcnYAD8AAAAAAIBf//rX+va3v62+vj6/3I/kfKIH43wiwPfGmA4AAAC+0d7errS0NL+tt3z5cr322mt+Wy+Y/Md//IfphLD1m9/8RnFxcaYzAo7H49Hrr7/u1zVTUlJ08OBBv64JBCq3261XX33Vr2tyPbw3E9dDAMHrxo0beu+997RixQqfrvPNb35T69at8+kaweqrX/2q6QQAAAAAAAAAAAAAAAAACEptbW1atGiRz4Za3Mb+ovtjfxFMczqdioiIkM1mM7I+14f74/oAfzlz5owuXLjgt73H7Ge6N/YzhTbe7+7Pn+93+fn5unr1qjo6OmS1Wv22LkIbr+/7M/X7bGJiohISEuRyuRhsAQAAAAAAjDlw4IBSU1P9OmSX84nuj/OJAP9gsAUAACFoZGREnZ2d+rM/+zO/rTlt2jRt3brVb+sFkz179ujDDz80nRGWSkpKFB8fbzoj4EyYMMHvayYnJ6utrc3v6wKB5uLFizp//rzPD0X/Y1wP783E9RBA8Ors7NTIyIiWL1/u03XS0tL4bHUfX//6100nAAAAAAAAAAAAAAAAAEBQcjqdSk9P9/k67C+6P/YXwbT29nYtWrRITz31lJH1uT7cH9cH+Ivb7ZbFYvH5M/G3sZ/p3tjPFNp4v7s/f77fpaSkaNKkSaqtrWWwBUYNr+/7M/X7rMVi0YoVK9Te3u73tQEAAAAAAG67PdjCnzif6P44nwjwjwjTAQAAYPS9++67un79Og9aAAgYycnJOnjwoLxer+kUwCi32y1JfnsAHAAwejo7OzVu3DjNnz/fdAoAAAAAAAAAAAAAAAAAAI/E5XL5ZbAFgMDlcrlks9lMZwAwyO12a/78+Xr66adNpwCAT1ksFq1atUq1tbWmUwD4mM1mk8vlMp0BAAAAAADClNfrVWdnp98HWwCAaQy2AAAgBLndbkVFRSkpKcl0CgBI+niwxfXr13Xy5EnTKYBRHo9Hs2bN0uTJk02nAAAeUWdnp1JSUhQRwS1VAAAAAAAAAAAAAAAAAEDwOHHihC5dusRgCyDMud1upaWlmc4AYJDb7ZbVajWdAQB+kZeXp9raWnm9XtMpAHzIZrPp0KFDunnzpukUAAAAAAAQhk6cOKHe3l4GWwAIO5zCBgBACHK73UpKStLYsWNNpwCApI8HW1gsFh08eNB0CmCUx+PhBiQABKmOjg4tX77cdAYAAAAAAAAAAAAAAAAAAI+kra1NkZGRHGQNhLHTp0/r/PnzstlsplMAGMRgCwDhJD8/X93d3Tpy5IjpFAA+lJaWpqGhIXV2dppOAQAAAAAAYcjj8SgiIkIpKSmmUwDArxhsAQBACOLhMgCBZsKECZo9ezaDLRD2GGwBAMHr4MGDfIkEAAAAAAAAAAAAAAAAAAg6LpdLS5cu1bhx40ynADCkvb1dFotFK1asMJ0CwJDe3l6dPHmSvccAwobVatWECRNUW1trOgWADy1cuFDx8fFyuVymUwAAAAAAQBg6cOCAEhMTNX78eNMpAOBXDLYAACAEHThwgIfLAASc5ORkHTp0yHQGYMzAwICOHTvGYAsACEKnT5/W5cuXGWwBAAAAAAAAAAAAAAAAAAg6bW1tSk9PN50BwKD29nYtWLBAEydONJ0CwBC32y2v18veYwBhY8yYMcrNzWWwBRDiLBaLUlNT1d7ebjoFAAAAAACEIY/HoxUrVpjOAAC/Y7AFAAAh5tSpU+ru7ubhMgABJzk5WQcPHjSdARhz8OBBDQ0NcRMSAIJQR0eHpI9/nwEAAAAAAAAAAAAAAAAAIFh4vV61t7cz2AIIcy6XSzabzXQGAIPcbremTp2qGTNmmE4BAL/Jy8tTTU2N6QwAPpaWliaXy2U6AwAAAAAAhCGPx6PU1FTTGQDgdwy2AAAgxLjdblksFi1fvtx0CgB8yrJly3TkyBENDQ2ZTgGMOHDggMaNG6cFCxaYTgEAPKLOzk7Nnj1bkyZNMp0CAAAAAAAAAAAAAAAAAMBDO378uHp7exlsAYQ5l8ultLQ00xkADHK73Qy4ARB28vPzde7cOb333numUwD4kM1m08GDBzUwMGA6BQAAAAAAhJG+vj6dOHGCwRYAwhKDLQAACDFut1uJiYmKj483nQIAn5KcnKyBgQF1dXWZTgGM8Hg8SklJUUQEH8UBINh0dnYqJSXFdAYAAAAAAAAAAAAAAAAAAI/E6XQqKipKy5cvN50CwJALFy7o3LlzHGgPhDm32y2r1Wo6AwD8KjMzU3FxcaqtrTWdAsCH0tLSdOvWLR06dMh0CgAAAAAACCMej0der5fBFgDCEqdpAgAQYni4DECgSkpKUmRkpA4ePGg6BTDC4/FwAxIAglRHRwebegEAAAAAAAAAAAAAAAAAQcfpdColJUWxsbGmUwAY4nQ6ZbFY2HMIhLGbN2/q2LFjXAcAhJ3o6GhlZWWprq7OdAoAH1q8eLHGjx8vl8tlOgUAAAAAAISRAwcOKCEhQbNnzzadAgB+x2ALAABCjNvt1ooVK0xnAMBdxo4dq8TERAZbICx5vV51dHQw2AIAgtDg4KCOHTumlJQU0ykAAAAAAAAAAAAAAAAAADwSp9Op9PR00xkADHK5XJo/f74SEhJMpwAwpKOjQ0NDQ+w9BhCW8vPz5XA4TGcA8KGIiAilpqaqvb3ddAoAAAAAAAgjHo+HM+UAhC0GWwAAEEJ6enp06tQpWa1W0ykAcE/Jyck6dOiQ6QzA706ePKne3l5uQgJAEDpy5Ihu3bql5cuXm04BAAAAAAAAAAAAAAAAAOChjYyM6MCBAwy2AMJce3u7bDab6QwABrndbj311FNKTEw0nQIAfpeXl6f3339fp06dMp0CwIfS0tIYbAEAAAAAAPzK4/EwVBxA2GKwBQAAIaS9vV1er5fBFgACVnJysg4ePGg6A/C7AwcOyGKxKDk52XQKAOARdXR0KDo6WosWLTKdAgAAAAAAAAAAAAAAAADAQzt8+LCuXbvGYAsgzLlcLqWlpZnOAGCQ2+1WamqqIiI4XgRA+MnJyVF0dLTq6upMpwDwIZvNpo6ODg0ODppOAQAAAAAAYWB4eFiHDx9Wamqq6RQAMIJvngEACCFut1vTpk3T9OnTTacAwD0tW7ZMXV1dunnzpukUwK88Ho8SExM1YcIE0ykAgEfU2dmppUuXKjo62nQKAAAAAAAAAAAAAAAAAAAPzel0auzYsUpOTjadAsCQ7u5unT59WjabzXQKAIPcbresVqvpDAAwIi4uTunp6Qy2AEKczWbTzZs3dfjwYdMpAAAAAAAgDBw7dkz9/f0MtgAQthhsAQBACHG73Txk+v9cv37ddALwKSMjI6YTAkJycrKGhoZ09OhR0ymAX3k8Hq1YscJ0hnFDQ0MaHh42nQEAj6Szs1PLly83nQEAAAAAAAAAAAAAAAAAwCNxOp1KTU1VVFSU6RQAhjidTkniQPs/4vV61dPTYzoD8Ivh4WEdPHgwrK8DQ0ND8nq9pjMAY65du6bLly+bzjAqPz9fDofDdAYAH0pKSlJcXJxcLpfpFAAAAAAAEAY8Ho+ioqK0dOlS0ylGDQ0N6aOPPjKdAcAABlsAABBC3G53WD9c1t7erg0bNighIUFPPfWUpk+frm9+85vq6+sznYYw9e677+qVV17RvHnzNGnSJG3evFn79u0znWXUokWLFBMTo4MHD5pOAfzK4/GE9WTd3/3ud8rNzdVTTz2lsWPHasmSJfrFL37B0B8AQaGjo0MpKSmmM4xYuHChvvGNb5jOAAAAAAAAAAAAAAAAAAA8BqfTqfT0dNMZfrNv3z4tW7bsM/985StfMZ0J+JXL5dLcuXM1ZcoU0ykBoaenR9/4xjc0btw4JSQkaMKECfr85z+v7u5u02mAzxw9elT9/f1hufd4165dstlsGj9+vKZNm6YvfOELqq2tNZ0F+NXly5e1ZMkS5eXlmU4xKi8vT0ePHtXFixdNpwCPbWRkRKmpqff8rGu3203nGRcZGanly5ervb3ddAoAAAAAAAgDHo9HS5cuVUxMjOkUI6qqqmSz2RQXF6dx48Zp/vz5nCkHhBkGWwAAECI++ugjvfvuu2H5cJn08cP2a9eulcvl0pe+9CX93d/9neLj4/WrX/1Kzz77LB9y4HcfffSRnnvuOf3617/Whg0b9Bd/8Rc6fvy4iouLw/rhxzFjxmjx4sU6dOiQ6RTAb/r6+vTBBx+E7WCL//7v/9ZLL72knp4evfLKK/rWt76l69ev69vf/rZ+/OMfm84DgM905coVnTlzJiwHW/zmN79RV9f/sXfv0XHXdf7HX5NMJk3vDU3Tps2lzbXNpQUKrRdYZZFrEcXLiqt7LCBe1uqKAru660/XVcAFV0URablji71CrawUquCKFOglTTLJZDLJJJnc2qRN00vSZDIzvz9qIqFJm4RmPt+ZeT7OyR/M9Jw+zyHf73S+3+/n8/aYzgAAAAAAAAAAAAAAAAAAjIPf71dZWVlMDbaw2WxKSEgY9icQCKiyslLHjh0znQmE1b59+3TRRReZzrCEvr4+XXfddXr00Uf16U9/WuvWrdPNN9+sjRs36sYbbzSdB0yY/fv3y+FwaMmSJaZTwmrDhg1atWqVjh49qjvvvFOrVq3Sjh07dMMNN6i6utp0HhA2t956q1paWkxnGPf+979fcXFx+r//+z/TKcC4NTU1qaysTPHx8UpJSRnyk5ycbDrPEi6++GIGWwAAAAAAgLAoLS2N2T3ldu3apWuuuUb19fVavXq1vvzlL6unp0dr1qzR9773PdN5AMLEbjoAAACcH2VlZQoEAjE72OLnP/+5enp69MYbb2jZsmWSpP/8z//UlVdeqV27dmnLli36xCc+YbgSseTb3/62qqur9cILL+jaa6+VJH3ta1/T0qVL9bnPfU51dXWGC80pKipSRUWF6QwgbA4cOKBQKBSzFyEfeOAB5ebm6o033tD06dMlSXfffbcWLlyoX/ziF/r3f/93w4UAMLKysjJJUklJieGS8GhqatL3vvc9vfXWWzpw4IDpHAAAAAAAAAAAAAAAAADAODmdTvX09Ojiiy82nRI2V1xxhUpLS4d9b82aNTp27JgefvjhMFcBZu3du1ef//znTWdYwpNPPqndu3fr/vvv1ze+8Q1Jpzf7ttls+tWvfqU9e/bE1DAgxI7S0lIVFhbK4XCYTgmbvr4+3XnnnZoyZYr27dunmTNnSpLuvfdeLViwQJ/61Ke0f/9+w5XAxPvlL3+p3//+92x4L2n69OlaunSp/vznP+tjH/uY6RxgXDwejyTp6aefjtn1yudy0UUX6fHHH1d/f7/sdrZVAwAAAAAAE+fAgQP65je/aTrDiO9///sKhUJ66623lJ2dLUm65557tGDBAj3wwAP6zne+o/j4eMOVACZanOkAAABwfpSVlWnatGlatGiR6RQj/vKXv2jZsmWDQy0GrF69WpL05ptvmshCDHviiSdUUlIyONRCklJTU3X11VfL6/XqjTfeMFhnVlFRkZxOp+kMIGwqKio0c+ZMpaenm04Ju66uLlVUVOjaa68dHGohSWlpabriiit05MgR+f1+g4UAcHZOp1PJyclKS0sznRIWx48fl9vt1owZM3TJJZeYzgEAAAAAAAAAAAAAAAAAjFNpaakmTZqkxYsXm04x7ve//70eeughPfPMM5o7d67pHCBsjh49qoaGhjPW28WqZ555RnPmzNGaNWuGvP6tb31LTz31lFJSUgyVAROrrKws5ja/rqysVHNzs6677rrBoRaSNGfOHF111VUqLS1VV1eXwUJg4jmdTn3jG9/Qfffdp3nz5pnOsYT3vOc92r17t+kMYNxqampks9mUl5dnOsWyLrzwQnV3d8vtdptOAQAAAAAAUayjo0NtbW0qKSkxnWKEz+fTggULBodaSNK0adN06aWXyu/369SpUwbrAIQLgy0AAIgSFRUVWrJkiWw2m+mUsPP7/br66qv1la985Yz3fD6fJCk5OTncWYhhHR0d6uzs1JVXXnnGewMPi+zZsyfcWZaRl5enhoYGLjwgZlRWVsbsZ7Tdbtef/vQn3X333UNe7+rqUllZma666iolJCQYqgOAc3O5XDG1qHfx4sV69dVX9eqrr2r9+vWmcwAAAAAAAAAAAAAAAAAA41ReXq7CwkLZ7XbTKUYdPnxYt9xyi/7hH/5BV1xxhekcIKwqKiokScXFxYZLrKGmpkbXXnutHA6H6urqtH37du3du1dpaWn67Gc/q8zMTNOJwISoqKhQUVGR6YywamlpkSRdeumlZ7w38JrT6QxrExBOp06d0s0336zLLrtMX/3qV03nWMbKlSu1f/9+1jYjYnk8HmVkZOjEiRPasWOHHn30Uf3lL39RIBAwnWYZixcvVnx8PJ/zAAAAAABgQlVWVkqSlixZYrjEjI9+9KNqamrSCy+8MPhadXW1/vjHP+qDH/ygpkyZYrAOQLgw2AIAgCgxsGl2LEpISNCDDz6oz372s0NeP3TokH7xi18oISFBq1atMlSHWFRdXS1Jmjdv3hnv5efnSzr9+xmr8vPzFQwGVVtbazoFCIuqqqqY2hT97aZMmaL3ve99g+fDn/zkJ/r617+uSy65RIFAQP/2b/9muBAAzs7lcqmgoMB0BgAAAAAAAAAAAAAAAAAAY1JWVqaSkhLTGcb98z//s44ePap7773XdAoQdhUVFZo+fbrS09NNpxh34sQJtba2KjU1VTfccIOys7N14403avny5SouLtbu3btNJwIT4ujRo2ptbY25tcfZ2dmSpD/84Q9nvDew2RQbXiOa3XnnnWppadETTzwhm81mOscyVq5cqd7eXu3fv990CjAuHo9Hx44dU1ZWlm644Qbddtttet/73qcVK1aoqqrKdJ4lTJo0STk5OYND/gAAAAAAACZCVVWVpk+frrS0NNMpRqxZs0bLli3TqlWr9P73v19XXnmllixZonnz5ukHP/iB6TwAYcJgCwAAooTT6VRhYaHpDMvYsWOHiouL1dzcrPvvv1/FxcWmkxBDPB6PJCk5OfmM9zIzMyWdfig0VuXm5io+Pn5wAAgQ7WJ5sMU7ffvb39ZPfvIT1dTUaPbs2UpKSjKdBABn5XK5BgeTAQAAAAAAAAAAAAAAAAAQKcrKymJ+LY3T6dTGjRt1xx13KCMjw3QOEHYVFRUqKipiQ2v9ba3XT3/6U3m9Xj344IPau3evfvazn6mhoUE33nijDh06ZLgSOP8GhjfE2trj3NxcLV++XLt27dK6det0/PhxdXV16Re/+IU2bdokSQoEAoYrgYmxY8cO/fznP9fatWs1b9480zmWkpOTo9TUVAZaIWJ5PB4dP35c/+///T+53W699tpruv3221VaWqobb7xRJ0+eNJ1oCUVFRQy2AAAAAAAAE2pgT7lYvQ87c+ZMZWZmKhQK6a233tLu3bsVDAZlt9t1/Phx03kAwoTBFgAARIHOzk61trZqyZIlplOMq62t1Yc//GHdcMMNmj59unbu3KmvfvWrprMQYxITEyVJR44cOeO9gYdCZs2aFdYmK0lMTFR6errcbrfpFGDCHTt2TK2trQy2+KuTJ0/K7Xbrscce0+HDh7VixQq1tbWZzgKAYZ08eVLNzc0qKCgwnQIAAAAAAAAAAAAAAAAAwKi1t7fr0KFDMT/Y4kc/+pEcDofuuOMO0ymAEQODLfC3NV69vb3avHmzvvKVr+iiiy7SmjVrdMcdd+jQoUN69tlnDVcC55/T6dTUqVOVnp5uOiWs4uLi9Nhjj2nu3Ln6/Oc/r7lz52ru3Lm644479PnPf15S7A37QGxobW3V6tWrddttt+mjH/2o6RxLuvTSS/X666+bzgDG5YknntD+/ft11113KTc3V+9973v1q1/9SnfccYdqamq0detW04mWwGALAAAAAAAw0QYGW8Sqyy67TM8//7weeughtbW1qb29XVu2bNGxY8d0/fXXq76+3nQigDBgsAUAAFHA6XRK4kGqZ555RsuWLdMrr7yiH/3oR6qoqNCVV15pOgsxaO7cuZKkurq6M94beBA6JSUlrE1Wk5+fz2ALxITKykqFQqGYvQgZCoUUDAaHvJabm6vVq1fr3nvvld/v1wsvvGCoDgDOzuVyKRQKKT8/33QKAAAAAAAAAAAAAAAAAACjVlpaKkkqKSkxXGJOY2Oj1q9fr4985CNKTk42nQMY4XQ6Y3694YD58+dLklauXKmCgoIh791www2STm9AA0SbyspKFRYWymazmU4Ju+LiYpWXl2vdunX64he/qO9///t68803B9d4cX5ENPrlL3+pjo4OdXV1afXq1YM/zc3Namlp0erVq3XPPfeYzjRq5cqV2r17t+kMYFwuvvjiYQfXXXfddZLEMIe/KiwsVG1trXp6ekynAAAAAACAKFVZWRmze8pVVVWpvLxcH/jAB/SlL31Js2bNUlJSkm666SZ97nOfU3d3NwNYgRjBYAsAAKJAZWWlpk6dqvT0dNMpxuzYsUP/9E//pJKSElVUVOjOO+9UYmKi6SzEqLy8PNlstmEHWxw4cECStGLFinBnWUpeXp6qq6tNZwATrqqqSklJScrMzDSdYsS9996r+Pj4YYdXzJ49W5Lk8/nCnQUAo+JyueRwOLRo0SLTKQAAAAAAAAAAAAAAAAAAjFp5eblSU1M1Z84c0ynGPPLII+rv79ett95qOgUworW1VR0dHcNufBuLMjIyJEl+v/+M9wY2vJ0xY0ZYm4BwcDqdWrJkiemMsOvr61N1dbX6+vp066236oEHHtA3v/lNLV26VLt379a8efMYfIWolJKSomXLlqmmpkalpaWDP729vTp16pRKS0vl8XhMZxq1cuVK+Xw+NTU1mU4BxsTn82nLli1qbGw8472B/Qxi+RrA2xUXFysQCDC4DgAAAAAATIgTJ06oubk5ZgdblJWVSZL+7u/+7oz3PvShD0mSOjs7w9oEwAwGWwAAEAWcTqcKCwtls9lMpxjzrW99SzNmzNDmzZsHHzQFTElLS9Pll1+uP/3pT6qtrR183e/3a/369Zo/f74uvvhig4Xm5eXlye12m84AJlxVVZUKCgoUFxebX7+Li4slSS+99NIZ761du1aStHTp0rA2AcBoVVdXKycnR3a73XQKAAAAAAAAAAAAAAAAAACjVl5erpKSEtMZRu3cuVPJycn6+7//e9MpgBEVFRWSxGCLv0pKStIVV1yhvXv3qqamZsh7zz33nCTpve99r4k0YEINrD2ONd3d3SooKNCaNWuGvN7U1KQtW7bowx/+sKEyYGKtWbNG+/fvP+Nn8eLFWrRokfbv369HH33UdKZRK1askN1u1+7du02nAGNy5MgRffzjH9cPfvCDM977zW9+I0m67LLLwp1lSTk5OZo0aZLKy8tNpwAAAAAAgChUVVWlUCgUs4MtBgaqb968+Yz3Nm7cKOlv+84BiG7sygYAQBSorKwc/Ed+LOrs7FRFRYUuvPBCPfDAA8P+mQ984ANatWpVmMsQy771rW/p+uuv1yc/+Ul9+9vf1qxZs3Tfffeprq5OO3bsiOlBNNLpwRYdHR06fPiwLrjgAtM5wISpqqqK2QuQknTdddepuLhYDz74oGbOnKmrr75azc3N2rRpk37729/qkksu4fMZgGW5XC4VFBSYzgAAAAAAAAAAAAAAAAAAYEzKysr0wQ9+0HSGMZ2dndq7d69uuOEGxcXFmc4BjKioqNDs2bM1Z84c0ymWce+992rFihX65Cc/qR/+8IdKT0/XH/7wB/3qV7/S+9//fja6R9Tp7OxUa2trTK49njlzpq644gpt3rxZV155pT760Y/K4/Ho9ttv14IFC/Tf//3fphMBGDJlyhQVFhZq9+7d+vjHP246Bxi1kpISvec979HatWt1wQUX6KabblIwGNQzzzyjnTt36mMf+5guvfRS05mWYLfbVVBQIKfTaToFAAAAAABEoaqqKk2aNEkLFy40nWJEYWGhrrrqKu3cuVPXXHONPvOZzygrK0vbtm3Thg0bVFhYqI985COmMwGEAYMtAACIAk6nU9dcc43pDGNee+01hUIh7du3T/v27Rv2z9hsNjbORlhdddVVevrpp3XbbbfpYx/7mKTTD0T++Mc/1rXXXmu4zrz8/HxJktvt1nve8x7DNcDEqaqq0uc+9znTGcbExcXpueee02c+8xl997vf1Xe/+93B92666Sb97Gc/k93OpQkA1uRyufgOAQAAAAAAAAAAAAAAAACIKIFAQFVVVfrqV79qOsWYP/7xjwoGg6xVQExzOp0qKSkxnWEpl1xyiX73u99p9erVuu666wZf//CHP6zHH3/cYBkwMQY2cy4sLDRcYsZjjz2mm2++WbfeeqtuvfVWSdJFF12k9evXa9q0aYbrAJi0cuVKvfHGG6YzgDGx2Wx67rnndNttt+mee+7RPffcM/jel770JT3wwAMG66ynqKhIFRUVdtnnzAAAIABJREFUpjMAAAAAAEAUqqqqUl5enuLj402nGBEXF6cNGzZozZo12rBhg1588cXB9y6//HI99thjcjgcBgsBhAu7RwIAEOE6OzvV2tqqJUuWmE4xZtWqVQqFQqYzgDN86lOf0sc//nHt2bNHwWBQK1asiNkLEe+Unp6upKQkBlsgqp06dUr19fVavHix6RSjFi1apD//+c/yer1yuVxKSkpSfn6+5s+fbzoNAEYUDAZVU1MzOIwrFuXk5PA9CwAAAAAAAAAAAAAAAAAijNvtVk9Pj4qLi02nGHPTTTfx/BtiXkVFhVasWGE6w3KuvfZa+Xw+VVRUqL29XcXFxZo3b57pLGBCVFZWaurUqUpPTzedYkRmZqZee+01lZeXq66uThdddJEyMjJMZwFG7N2713SCpVxyySV6+umn1d/fL7udbZcQOebMmaPt27eroaFB1dXVmjlzphYvXszApmEUFhbqoYceMp0BAAAAAACiUGVlZczvKZecnKxf//rXuu++++R0OtXT06OCggLl5+fLZrOZzgMQJtxhAQAgwjmdTkmnb64CsB673a6VK1eazrCcuLg45eTkyO12m04BJkx1dbUCgUDMX4SUTh/z2dnZys7ONp0CAKNSX1+vU6dOqaCgwHQKAAAAAAAAAAAAAAAAAACjVl5ervj4eJ5hBmJYKBRSZWWlbrnlFtMplpSQkKALL7zQdAYw4ZxOpwoLC2N6AyGbzaaSkhKVlJSYTgFgIcuXL1d3d7eqqqpieiAgIldmZqYyMzNNZ1haUVGRfD6fjh49qpkzZ5rOAQAAAAAAUaSqqkr/+I//aDrDEhYsWKAFCxaYzgBgSJzpAAAA8O5UVlZq6tSpSk9PN50CAGOSn5+v6upq0xnAhKmqqpLdbmeYAwBEIJfLJen0v1cAAAAAAAAAAAAAAAAAAIgU5eXlysvLU1JSkukUAIbU19fr+PHjKioqMp0CwCCn06klS5aYzgAAyykqKtLkyZO1Z88e0ykAJsjA0Bqn02m4BAAAAAAARJO+vj55vV4tXrzYdAoAGMdgCwAAIpzT6VRhYaFsNpvpFAAYk7y8PLndbtMZwISpqqpSTk6OEhMTTacAAMbI5XJp3rx5mjlzpukUAAAAAAAAAAAAAAAAAABGraysTCUlJaYzABhUUVEhm83GhvZAjKusrFRhYaHpDACwnPj4eC1dulR79+41nQJggmRkZGj69OkqLy83nQIAAAAAAKKI2+1Wf38/gy0AQAy2AAAg4lVWVvKQKYCIlJeXp5qaGgUCAdMpwISoqqriAiQARKjq6moVFBSYzgAAAAAAAAAAAAAAAAAAYEzKyspUXFxsOgOAQRUVFUpPT9fMmTNNpwAwpLOzU62trQy2AIARLF++XG+99ZbpDAATxGazqbCwUE6n03QKAAAAAACIIpWVlYqPj1dubq7pFAAwjsEWAABEOKfTyWALABEpPz9fp06dks/nM50CTIjKykoGWwBAhHK5XMrPzzedAQAAAAAAAAAAAAAAAADAqB0/flwNDQ0qKSkxnQLAoIqKChUVFZnOAGDQwCbOrD0GgOEtX75cBw4cUF9fn+kUABOkqKhIFRUVpjMAAAAAAEAUqaqq0qJFizRp0iTTKQBgHIMtAACIYJ2dnWptbVVhYaHpFAAYs4HNot1ut+ES4Pzr7++Xx+NhsAUARCgGWwAAAAAAAAAAAAAAAAAAIk15eblCoZCKi4tNpwAwiMEWAJxOp6ZOnar09HTTKQBgScuXL1dvby+b3gNRrLCwkGMcAAAAAACcV1VVVewpBwB/xWALAAAimNPplCQGWwCISLNmzdLs2bNVXV1tOgU47+rq6tTb28tFSACIQEePHtWhQ4dUUFBgOgUAAAAAAAAAAAAAAAAAgFErKyvT9OnTlZmZaToFgCH9/f2qrq5msAUQ4yorK1VYWCibzWY6BQAsqaCgQNOnT9eePXtMpwCYIEVFRero6FBbW5vpFAAAAAAAECUYbAEAf8NgCwAAIlhlZaWmTp2q9PR00ykAMC75+flyu92mM4DzrrKyUjabTfn5+aZTAABjVFVVJUkMtgAAAAAAAAAAAAAAAAAARJTy8nKVlJSwiTUQw9xut3p7exlsAcQ4p9OpwsJC0xkAYFlxcXG68MILtXfvXtMpACbIwHeiiooKwyUAAAAAACAaBAIB1dTUMNgCAP6KwRYAAEQwp9OpJUuW8MA5gIiVl5fHYAtEpaqqKmVkZGjq1KmmUwAAY+RyuZSUlKSMjAzTKQAAAAAAAAAAAAAAAAAAjFpZWZmKi4tNZwAwqKKiQvHx8SooKDCdAsCggbXHAICRLV++XG+99ZbpDAATJDU1VXPmzFF5ebnpFAAAAAAAEAW8Xq96enq4/wIAf8VgCwAAIlhlZSVfbgBEtPz8fFVXV5vOAM47l8vFZF0AiFDV1dXKy8tTXByXTgEAAAAAAAAAAAAAAAAAkcPpdKqoqMh0BgCDnE6nsrOzlZSUZDoFgCGdnZ1qa2tj7TEAnMOFF14op9Opvr4+0ykAJkhRUZEqKipMZwAAAAAAgCjgcrlks9mUn59vOgUALIHd2QAAiGDV1dUqKCgwnQEA47Zo0SL5fD4e/ELUcbvdXIAEgAjl8XiUm5trOgMAAAAAAAAAAAAAAAAAgFFra2tTZ2enFi9ebDoFgEEul4vzABDjqqurJYm1xwBwDsuWLVNfX5+qqqpMpwCYIAUFBYP/NgIAAAAAAHg3qqurNW/ePE2fPt10CgBYAoMtAACIUD09PWpublZeXp7pFAAYt6ysLAWDQfl8PtMpwHlVU1OjnJwc0xkAgHHwer1auHCh6QwAAAAAAAAAAAAAAAAAAEbN5XJJYhNrINZVV1crPz/fdAYAg9xutxITE5WRkWE6BQAsLT8/X5MmTdKBAwdMpwCYIHl5eXK73aYzAAAAAABAFPB4POwpBwBvw2ALAAAiVE1NjYLBIIMtAES0rKwsSVJ9fb3RDuB8Onr0qA4fPsxFSACIUAy2AAAAAAAAAAAAAAAAAABEGpfLpRkzZmjevHmmUwAYEgqF5PF4GGwBxLiamhplZ2crPj7edAoAWJrdbldhYSGDLYAolp+fr/b2dh05csR0CgAAAAAAiHAej0e5ubmmMwDAMhhsAQBAhKqpqVFcXJwWLVpkOgUAxi0lJUVTp05lsAWiSk1NjSQx2AIAIlBXV5c6OzsZbAEAAAAAAAAAAAAAAAAAiCgul0sFBQWmMwAY5PP5dPLkSQZbADHO7XYrLy/PdAYARIRly5aptLTUdAaACTLw3cjtdhsuAQAAAAAAkc7j8Sg7O9t0BgBYBoMtAACIUG63WxkZGUpKSjKdAgDvSmZmphoaGkxnAOeNx+OR3W5XZmam6RQAwBjV1dVJEoMtAAAAAAAAAAAAAAAAAAARxeVyafHixaYzABhUXV0tSQy2AGJcTU0Ngy0AYJSWLl2qAwcOmM4AMEEyMzM1adIkBlsAAAAAAIB3pbe3Vz6fT7m5uaZTAMAyGGwBAECEqqmp4cvNWQSDQdMJwCB+H88uKytL9fX1pjOA86ampkYLFy5UQkKC6RRL4pwIwMrq6upks9kYTvQ2nLcBAAAAAAAAAAAAAAAAwPpcLheb2Q+DZ+AQS6qrq5WcnKzZs2ebTokInB8QjUKhkDweD2uPAUjis240li5dqsOHD8vn85lOAcaE43t04uLilJ2dPTgEEAAAAAAAYDzq6uoUCASUk5NjOsWyuF4FxB4GWwAAEKHcbrfy8vJMZwwRCoUs83P//fcrGAwa7wiFQqb/t8Q80///Q6GQ1q5dqyNHjhjvsOrvJIMtEG08Ho8lL0CaPvcM/Lzyyivau3ev8Q4rng8BmOf1epWWlqZJkyYZ7TB9fnz7zwMPPGC8gfM2AAAAAAAAAAAAAAAAAIysu7tbPp9PBQUFplMkWesZONYXIZa43W7LD7gxfRxyfkC0a21t1fHjxy012ML08fX2n+7ubr366qvGOxD9TP+ODfz8+Mc/Nt5g9d/9ZcuWyWaz6cCBA6ZTECFMH0cc32OXn58vt9ttOgMAAAAAAEQwj8cjScrOzjZcMpTpa0IDP4FAQD/96U+Nd0TCtSogmthNBwAAgPGpqanRJz7xCdMZg1566SXFxVlrZtbdd99tOmHQhz70IdMJMWnmzJmmEwZ98YtfNJ1gWZmZmdq+fbvpDOC88Xg8uuSSS0xnDGGl8yEAWJnX69WiRYuMNtx+++26/fbbjTa801133WU6AQAAAAAAAAAAAAAAAAAwApfLpWAwaInBFqwvOjvWF2EiVVdXW3qwBeeHs+P8gPNhYNPmvLw8wyWnsZ4Jschqn3d33nmn6YQhrPZ5N336dGVlZam0tFSrVq0ynQOL4/g+O6sd3wPy8/O1Y8cO0xkAAAAAACCC1dTUaN68eZo2bZrplEFW3J/ojjvuMJ0AIIwYbAEAQATq6urSoUOHLPNw2Ze+9CVdffXVpjMGVVdX6z/+4z90+eWX6ytf+YrpHEnS3LlzTSfElGXLlmnjxo2mMyRJDQ0NuvPOO3XppZfqm9/8pumcIaZMmWI6QZKUlZWl5uZm9fX1yeFwmM4B3jWPx6Obb77ZdIYka50PpdMTfr/whS+ot7dX69atU0JCgukkSdY5HwIwz+v1auHChcb+/ieffFJ+v9/Y3/9OLpdL3/nOd/SBD3xAX/7yl03nSJKWL19uOgEAAAAAAAAAAAAAAAAALMXlcikhIUHZ2dlGO1hfdG6sL8JEqq6u1gc/+EHTGcPi/HBunB9wPrjdbk2dOtX475PV1jMNWL9+vZ577jn9+Mc/1oIFC0znsJ4pClnp8+43v/mNtmzZon/5l3/Re9/7XtM5g0yfn4azdOlSHThwwHQGLI7j+9yseHxLpwd+eTweBYNBSw0mAQAAAAAAkaO2tlY5OTmmMwZZbX+iJ598Ur/73e9099136+KLLzadI4n9iYBwYLAFAAARyO12S5Jyc3MNl5x28cUXW+ZLhCTdeeedkqQ333xT11xzjaWmGyI8UlNT9YlPfMJ0hiTp61//uiSprKxM119/vSZPnmy4yHqysrIUDAbl8/mML6QB3q2uri61t7db5iKklc6H0unP5qNHj0qS7Ha7pdoAQJLq6up06aWXGvv7P/KRjxj7u4dz1113SZJ2796t559/XtOnTzdcBAAAAAAAAAAAAAAAAAB4p+rqamVnZyshIcFoB+uLAHN6enrk8/mUn59vOmVYnB+A8KipqVFeXp5sNpvRDqutZxrwwx/+UJJUVVU1uO4TOJ+s8nkXDAb1ta99TZLU1NRkyePRSpYuXaoNGzaYzoDFcXxHrvz8/MHvS5mZmaZzAAAAAABABKqpqbHMvq+StfYnCoVCg9erXC6X7r33XsNFAMKFMcIAAEQgj8ejhIQEZWVlmU6xpGeffVaS5Pf7tXHjRsM1iGV9fX164oknJEm9vb168cUXzQZZ1MC5rL6+3mgHcD7U1tZKEkNaRrB161YlJCQoPj5ea9euNZ0DAEOEQiE1NDRo4cKFplMsY/PmzZJOf7dav3694RoAAAAAAAAAAAAAAAAAwHDcbrdlN7M3ifVFiCW1tbUKBoOW2lDFyjg/IFrV1tYqJyfHdIYlHT16VGVlZZKkJ598Uu3t7YaLgImza9cutba2SpJ+97vf6dSpU4aLrK2wsFC1tbXq6ekxnQKcE8f32OXl5Uk6fe0EAAAAAABgPOrq6thTbgR79+4dcr2K+y9A7GCwBQAAEaiurk4ZGRmy2+2mUyyntLRUTU1Nkk5vTPvII48YLkIs27Fjh7q6uiRJ8fHx2rp1q+Eia0pJSdHUqVMZbIGo4PV6FRcXp8zMTNMplrRx40b5/X4FAgHt2rVLPp/PdBIADGppadGpU6e0aNEi0ymW4HK55PV6JUnBYFAPPvig4SIAAAAAAAAAAAAAAAAAwHA8Hg+bWL8D64sQa2pra2Wz2XgOdhQ4PyCasbHSyF555RWFQiFJp4/9hx9+2HARMHEeffRRJSQkSJJ6enr00ksvGS6ytsLCQgUCATa9R0Tg+B67Cy64QDNnzlRdXZ3pFAAAAAAAEIECgYAaGxu1cOFC0ymWtG3btsHrVZK0fv16gzUAwonBFgAARCCv18tDpiN4+5ebYDCoN998Uy6Xy3AVYtW6desUHx8vServ79dzzz2nvr4+w1XWlJmZyWALRAWv16u0tDQlJiaaTrGc8vLywQ3SJclut+vpp582WAQAQw2co7iRdNr27dsHhymGQiFVVlZq7969hqsAAAAAAAAAAAAAAAAAAO9UW1vLJtbvwPoixJra2lrNnTtXkydPNp1ieZwfEM28Xi/Pw49g165dg8e+3+/X//zP/+jUqVOGq4Dzr6urS9u2bZPf75ckJSQkaOvWrYarrC03N1cOh0NOp9N0CnBWHN/jt3DhQtXW1prOAAAAAAAAEaipqUl+v5/7LyN49tlnB69XBQIBBosDMYTBFgAARKC6ujoGW4zg7V9upNM35J988kmDRYhVBw8e1M6dO9Xf3z/42okTJ/TKK6+Yi7KwrKwsBlsgKtTX13MBcgRbt24dMlnX7/fr4YcfVigUMlgFAH/j9XqVmJiotLQ00ymWsG3bNgUCgcH/TkhI0COPPGKwCAAAAAAAAAAAAAAAAADwTh0dHers7FROTo7pFEthfRFiTV1dHQNuRonzA6JVe3u7jh07xtrjEfzv//6v+vr6Bv+7q6tLGzZsMFgETIxf//rXQ9aC+P1+bd26dchaZwyVkJCgnJwcBlvA8ji+xy87O5vBFgAAAAAAYFwG9kbMysoy2mFFlZWVqqurG/zvUCgkl8ulffv2GawCEC4MtgAAIALV1dWxafYwampq5Ha7h7zm9/u1du1absgj7J544gnZbLYhryUkJGjbtm2GiqyNwRaIFvX19VyAHMHGjRuHLP6QJJ/Ppz//+c+GigBgqLq6OmVmZioujkumhw8f1ptvvjlk+JDf79fTTz+t48ePGywDAAAAAAAAAAAAAAAAALydx+ORJAZbvA3rixCLamtrGWwxCpwfEM28Xq8kMdhiGK2trUM2VpJOb6503333DXlmHogGjzzyiILB4JDXjh07pldffdVQUWQoLCxksAUsj+N7/LKzs8/4twAAAAAAAMBoeL1eJSUlKTU11XSK5WzdulUJCQlDXktISNDjjz9uqAhAOLFLGwAAEcbv96upqYnBFsPYsmWL7Hb7Ga8fPnxYO3fuNFCEWLZu3ToFAoEhr/n9fm3cuPGM1yFlZmYy2AJRwev18hk9DK/Xq8rKyjNeT0hI0KOPPmqgCADOxDn8b377298O+3pfX582btwY5hoAAAAAAAAAAAAAAAAAwEg8Ho8cDocyMjJMp1gG64sQixhsMTqcHxDN6urqZLfbtWDBAtMplrNr1y7ZbLYhr4VCIVVXV2vXrl2GqoDzr6KiQgcOHDhjYEtCQoK2bdtmqCoyMNgCVsfx/e5kZ2cPDgYFAAAAAAAYi/r6emVlZZ1xnwHSxo0b5ff7h7zm9/v11FNP6dSpU4aqAIQLgy0AAIgwDQ0NCgQCWrRokekUyxlpYIDdbmfTbITV66+/Lo/Hc8bDIZJ05MgRvf766waqrC0rK0stLS3q7e01nQK8Kw0NDcrKyjKdYTmbN28edvGH3+/Xb37zGx0/ftxAFQAMxWCLv3n++ecVF3fmpeNQKKSHHnrIQBEAAAAAAAAAAAAAAAAAYDgej0cLFy5UfHy86RTLYH0RYk0gEFBDQwPrDUeB8wOiWV1dnTIyMpSQkGA6xXJefvnlYf+tZLfbdf/99xsoAibGY489Nuw5wO/3a+PGjQoGgwaqIkNhYaHq6urU09NjOgUYFsf3u5Odna0TJ06ovb3ddAoAAAAAAIgwXq+XPeWGUV9fr4qKimHfO378uLZv3x7mIgDhxmALAAAijNfrlSQeNH2H5uZmlZaWDjtIoL+/X9u3b+dGM8JmpIdDJMnhcGjbtm1hLrK+rKwsBYNB+Xw+0ynAuB08eFAnT55kU/RhbNq0acQH4/x+vzZt2hTmIgA4E4MtTuvt7dWLL76o/v7+M94LBoPat2+fSktLDZQBAAAAAAAAAAAAAAAAAN6ptrZWOTk5pjMsg/VFiEU+n099fX3Kzs42nWJpnB8Q7bxeL+uOR7Bz5075/f4zXu/v79fOnTtVVVVloAo4v/r7+/XUU08N+7suSe3t7XrjjTfCXBU5CgsLFQwGVV1dbToFOAPH97s38F2ptrbWcAkAAAAAAIg09fX17Ec0jK1btw47VFyS4uLitHbt2jAXAQg3BlsAABBh6urqNGPGDCUnJ5tOsZQtW7aM+OVmwIYNG8JUg1jW09OjZ599dsSHQ/r6+vTss88O+xB0LBuYRlpfX2+0A3g3Bn5/ma47VFtbm/bs2TPiYItQKKRHHnkkzFUAMFRfX5+am5tZyCNp165d6unpGfH9hIQEPfroo2EsAgAAAAAAAAAAAAAAAACMxOPxKDc313SGZbC+CLGorq5OkhhscQ6cHxDtvF4vGysNo6amRq2trSO+b7fb9ZOf/CSMRcDE+O1vf6sjR46M+L7D4dC2bdvCWBRZcnJy5HA45HQ6TacAZ+D4fvfS09OVmJjIYAsAAAAAADBmXq+XPeWGsWnTJgUCgWHfCwQC2rVrl3w+X5irAIQTgy0AAIgwXq+XzVaHsWnTphE3zJZOf8H55S9/GcYixKpNmzbp5MmTZ/0zLS0t2r9/f5iKIkNKSoqmTZvGYAtENK/XK7vdrgULFphOsZQtW7YoLm7kyw/BYFBvvPGGXC5XGKsAYKiGhgYFg0EW8kjavn27HA7HiO/7/X49/vjj6u7uDmMVAAAAAAAAAAAAAAAAAGA4Ho+HzezfhvVFiEW1tbWaNm2aUlJSTKdYGucHRLu6ujqehx/Grl27zjrUxu/364knnlBHR0cYq4Dzb926dWf9Xe/r62OA01kkJCQoLy9PFRUVplOAM3B8v3txcXHKzMxksAUAAAAAABgTv9+vlpYW7r+8w8GDB/Xmm28qFAqN+GfsdrueeuqpMFYBCDcGWwAAEGG8Xi9fbt6ho6NDr7/++lkfLA2FQnK5XNq3b18YyxCL1q1bd84/ExcXp23btoWhJrJkZmYy2AIRraGhQenp6bLb7aZTLGXz5s1n/YyWJJvNxkVIAEZ5vV5JivnvWqFQSFu3blVfX99Z/9zJkye1efPmMFUBAAAAAAAAAAAAAAAAAIbT1dWljo4OBlv8FeuLEKvq6uq0aNEi0xmWxvkB0a6/v18+n49zwTBefvnlc/6Zvr4+Pfzww2GoASZGW1ubXnzxRfX395/1zzU1NamsrCxMVZGnoKBA1dXVpjOAITi+z5/s7GwGWwAAAAAAgDFpbGxUIBBQVlaW6RRLef7558+5p5zf79cjjzxy1uEXACIbu20CABBh6uvrddlll5nOsJTt27crEAjI4XDI4XDIZrMpPj5ewWBQc+bM0aRJk2Sz2TR79myVlpbqoosuMp2MKNXV1aXExEQtX75cPT09CoVC6ujo0LFjx5SUlDS4QfCJEye0detWff/73zdcbC3p6elqamoynQGMW0NDgzIzM01nWMqRI0f02muvKS4uTklJSZIkh8Ohnp4ezZ49WzNmzJAkTZs2TS0tLSZTAcS4hoYGTZkyRcnJyaZTjNq3b5/a29slSfHx8UpKSlJ8fLz6+/u1cOFCJSYmaurUqZo5c6ZaW1sN1wIAAAAAAAAAAAAAAABAbKuvr5ckLVy40GyIRbC+CLGqvr6e88A5cH5AtGtqalJ/fz8bK71DMBjUH/7wh2E3V7Lb7Zo5c6YuuOACzZ07V0eOHDFQCJwfe/bs0eWXX64jR44oEAior69Phw4dUjAYlM1mUyAQUH9/v06dOqWtW7eqpKTEdLIl5eXlafv27aYzgCE4vs+frKwsVVZWms4AAAAAAAARpLGxUZLYV+4dtm7dKkmaMmWKbDabEhIS1Nvbq8mTJyslJUXx8fFKTEzUjBkzVFtbq5ycHMPFACYCgy0AAIgwjY2NSk9PN51hKbfccotuueWWIa994QtfUG1trV5++WVDVYhFM2bM0EsvvTTktRdeeEHXX3+92tvbNWXKFENlkSEtLU0NDQ2mM4Bx8/l8WrBggekMS0lOTh4c6jPg5Zdf1oc+9CEdOHBAs2bNMlQGAEM1NzfzPUtScXGxjhw5ohkzZiguLk6S9OCDD+oHP/iBysvLDdcBAAAAAAAAAAAAAAAAAN6uvr5eNptNGRkZplMsgfVFiFWNjY1avny56QxL4/yAaOfz+SSJfxO8w9GjR/Wv//qvSklJ0ezZszV79mzV19fr05/+tBobGzVv3jzTicB5sWrVKq1atWrIa6tXr9bBgwf1wgsvGKqKPLm5uaqtrVUwGBxcUwOYxvF9/mRkZOj3v/+96QwAAAAAABBBfD6fJk2apNmzZ5tOsZThrrEkJyfrv/7rv/SFL3zBQBEAExhsAQBABOnr69OhQ4fYcHUUEhMT1dvbazoDGPw9TExMNFxiffPnz9frr79uOgMYt6amJhUXF5vOsLyB8yGf0wCspLm5meFEkhwOhxwOx5DXJk+erO7ubkNFAAAAAAAAAAAAAAAAAICRNDQ0aM6cOZo8ebLpFMtifRFiQUNDg2666SbTGRGH8wOiSWNjoxwOh1JTU02nWEpycrLuuuuuIa/NmjVLktTR0cFgC0S13t5e1jWPUW5urnp6euTz+ZSZmWk6BxgRx/f4ZGRkqKmpSYFAQPHx8aZzAAAAAABABPD5fFqwYIFsNpvpFMvj3isQexgRDgBABPH5fAoGg8rIyDCdYnl8uYFV9Pb2Ki4uTnY7M+XOJS0tTc3NzaYzgHEbuAiJs2OwBQArampq0vz5801nWBKDLQAAAAAAAAAAAAAAAADAmhoaGthw9RxYX4Ro5/f71dbWxrlgHDjBrn4xAAAgAElEQVQ/IJo0NjZq/vz5iotj+5BzSUlJkSS1t7cbLgEmFhvfj11eXp4kqaamxnAJcHYc3+OTmZkpv9+v1tZW0ykAAAAAACBCNDU1safcKHHvFYg93JkGACCCNDY2SpLS09MNl1gfX25gFTwcMnrz589XV1eXTpw4YToFGLPu7m4dPnyYz+hRYLAFACtqbm7mRtIIpkyZokAgoFOnTplOAQAAAAAAAAAAAAAAAAC8TX19vbKyskxnWBrrixDtmpqaFAgElJGRYTol4nB+QDTx+XycB0Zp1qxZio+PZ7AFoh5rm8cuJSVFs2bNktvtNp0CnBXH9/gM/FtpYM8WAAAAAACAc/H5fOwpN0rcewViD4MtAACIID6fT4mJiZozZ47pFMvjyw2sgodDRi8tLU2S1NraargEGLumpiZJYlP0UWCwBQArampq0vz5801nWNLkyZMlnR7iBAAAAAAAAAAAAAAAAACwjvr6emVmZprOsDTWFyHaNTQ0SBLngnHg/IBo0tjYyGCLUYqLi1NycjKDLRD1WNs8Prm5uaqpqTGdAZwVx/f4pKWlKSEhYfA7FAAAAAAAwLkw2GL0uPcKxB4GWwAAEEEaGxuVnp4um81mOsXyHA4HX25gCTwcMnoDm0k3NzcbLgHGzufzSRIXIUfB4XBIYrAFAOvo7u5WZ2cnw4lGMDDY4uTJk4ZLAAAAAAAAAAAAAAAAAABvx2CLc2N9EaJdQ0ODEhMTNWfOHNMpEYfzA6IJGyuNTUpKijo6OkxnABOKtc3jw2ALRAKO7/GJj4/X/PnzGWwBAAAAAABGrampif2IRonBFkDsYbAFAAARxOfzKSMjw3RGRODLDayit7d3cBN3nF1KSoocDgeDLRCRmpqaNGnSJF1wwQWmUyxv4IE5PqcBWEVTU5Okvw3ZwlBTpkyRdHoACAAAAAAAAAAAAAAAAADAGo4fP64jR44oKyvLdIqlsb4I0a6xsVEZGRmy2WymUyIO5wdEk8bGRgZbjEFKSora29tNZwATirXN45Obmyu32206Azgrju/xy8jIUGNjo+kMAAAAAAAQAbq7u3XkyBHuv4ySw+Hg3isQYxhsAQBABBl40BTnxoOlsIre3t7BTdxxdnFxcZo7d65aWlpMpwBj5vP5lJ6ezmKQUWCwBQCrGRiqxYT04U2ePFkSgy0AAAAAAAAAAAAAAAAAwErq6+slicEW58D6IkQ71huOH+cHRIvjx4/r6NGjnAvGYPbs2ero6DCdAUwo1jaPT15enrxer/x+v+kUYEQc3+PHYAsAAAAAADBaPp9PEvsRjRb3XoHYw2ALAAAiSGNjI1P7RikxMVF9fX2mMwD19fXxcMgYpKWlMdgCEcnn83EBcpQYbAHAapqamuRwOJSSkmI6xZIGBlucPHnScAkAAAAAAAAAAAAAAAAAYEBDQ4MksYn1ObC+CNGuoaFBmZmZpjMiEucHRIuBzZn5N8HopaSkqL293XQGMKFY2zw+eXl56u/vHxwkCFgRx/f4ZWZmDl5PAQAAAAAAOJuBwRbs/To63HsFYg+DLQAAiCDNzc1smj1KTO2DVfT29vJwyBgw2AKRqqWlRfPnzzedEREGzolchARgFa2trZo3b55sNpvpFEuaMmWKJKm7u9twCQAAAAAAAAAAAAAAAABggM/n06xZszRt2jTTKZbG+iJEu6amJjZTGSfOD4gWTU1NksS6pjFgsAViAWubx2fhwoWSJK/Xa7gEGBnH9/hlZGQMbkoJAAAAAABwNi0tLZo0aZKSk5NNp0QE7r0CsYfBFgAARIju7m51dXUpLS3NdEpESExMlN/vVzAYNJ2CGMfDIWMzd+5cHTx40HQGMGatra18Ro+Sw+GQzWbjIiQAyxgYbIHhTZ48WRKDLQAAAAAAAAAAAAAAAADASpqamrRgwQLTGZbH+iJEu+bmZjazHyfOD4gWLS0tSkpK0qxZs0ynRIzZs2cz2AJRj7XN45OcnKwZM2aovr7edAowIo7v8UtLS1NXV5dOnDhhOgUAAAAAAFhcS0uL5s2bJ5vNZjolIjDYAog9DLYAACBCtLS0SBIbro7SwM34vr4+wyWIdTwcMjZz5sxhsAUiUmtrq1JTU01nRAyHw8FFSACWcfDgQc2dO9d0hmU5HA7Z7XadPHnSdAoAAAAAAAAAAAAAAAAA4K9aWlrYzH4UWF+EaHbixAkdO3ZMaWlpplMiEucHRIvW1lbWHY9RSkqKDh8+rFAoZDoFmDCsbR6/zMxMNTQ0mM4ARsTxPX4D350G9m4BAAAAAAAYSVtbG/sRjQGDLYDYw2ALAAAiRGtrqyQGW4zWwM14vuDANB4OGZvU1FQGWyDiBINBtbe38xk9BlyEBGAlbW1tDCc6h8mTJ6u7u9t0BgAAAAAAAAAAAAAAAADgr5qbm9nMfhRYX4RoNrAZK2sZxofzA6IFgy3GLiUlRf39/Tp69KjpFGDCsLZ5/LKyslRfX286AxgRx/f4MdgCAAAAAACMFoMtxoY95YDYw2ALAAAiRGtrq+Li4jRnzhzTKRGBB0thFTwcMjapqak6evQoxy4iSkdHh/x+Pxchx4CLkACs5ODBg5zDz2HKlCkMtgAAAAAAAAAAAAAAAAAAC2lubtb8+fNNZ1ge64sQzQY2Y2XIzfhwfkC0YLDF2KWkpEiS2tvbDZcAE4e1zePHYAtYHcf3+M2ZM0cJCQkMtgAAAAAAAOfU1tbG/ZcxYE85IPYw2AIAgAjR2tqqlJQU2e120ykRgQdLYRU8HDI2qampCoVCPBSKiNLW1iZJbIo+BlyEBGAlBw8eVGpqqukMS5s8ebJOnjxpOgMAAAAAAAAAAAAAAAAA8FcMthgd1hchmrW0tMhutw9u0I6x4fyAaMFgi7GbPXu2JAZbIHqFQiH5/X7WNo9TZmYmgy1gWRzf705cXJxSU1MZbAEAAAAAAM6pra2N/YjGgD3lgNjDYAsAACIED5eNjcPhkMSDpTCPwRZjM3AR5+DBg4ZLgNEbGGzB5/TocRESgFX4/X4dOXKEG0nnMGXKFPX09JjOAAAAAAAAAAAAAAAAAABI6u7uVldXF4MtRoH1RYhmLS0tmjt3ruLj402nRCTOD4gWrD0eu5SUFNlsNgZbIGr19fUpFAoNftZhbLKystTa2qpTp06ZTgHOwPH97qWlpam1tdV0BgAAAAAAsDjuv4wNe8oBsYfBFgAARAi+3IzNwCABvuDAtN7eXh4OGQMGWyAStba2KjExUTNmzDCdEjEcDgef0QAs4eDBgwqFQgy2OIfJkyfr5MmTpjMAAAAAAAAAAAAAAAAAAJKam5slicEWo8D6Ivx/9u48vqryzh/4NyRsCWEPAhaFiqAWdcZltKD8CrVWi452cS2idcStWpzOjNVpFa3Vn1uLovZlF0cLtipDcam24oygti7FBWe6KIwipcqaAEnIAtl+f/gL40IgITc5956833+1tj33k5nn+d5zn/Oc55tma9asieHDhycdI2epD6TFunXrvHvcRj169Iji4uIoLS1NOgp0iObvtubvOtpm5MiR0dTUFKtWrUo6CnyM+d1+e+65Z6xevTrpGAAAAEAWq6mpiYqKihg6dGjSUXKGM+Wg69HYAgByhI2mbWNjKdli69atNoe0QZ8+faKoqEhjC3LK2rVrY9iwYZGXl5d0lJyhuy6QLZrvOTxI2rnCwsKorq5OOgYAAAAAAAAAAADxv40tvGe0a94vIs1Wr16tDrSD+kAabN68OaqrqzW22A0lJSWxYcOGpGNAh3DwffuMHDkyIiJWrlyZaA7YEfO7/YYPH66xBQAAALBTa9asiQjnEbWFM+Wg69HYAgByxJo1a2wuawMbS8kW27ZtszmkjYYMGRLr169POga02rp16yxAtlHPnj1j27ZtSccA2N7YYo899kg4SXYrKiqKqqqqpGMAAAAAAAAAAAAQ7ze26N69e5SUlCQdJet5v4g009iifdQH0qD5YCW1oO0GDx4cpaWlSceADuHg+/YZOHBg9OvXT2MLspL53X7Dhg3T2AIAAADYqbVr10ZEOPu1DZwpB12PxhYAkCPWrVvnsNU2aH4Y7wcOSdu6davNIW20xx57bD9kGnLB2rVrfUe3ke66QLZYt25dFBYWRp8+fZKOktUKCwujuro66RgAAAAAAAAAAADE+4dYDx06NLp184rwrni/iDRbs2aNw1TaQX0gDZoPVvJeU9uVlJTEhg0bko4BHaL5u827zbtvr732ir/85S9Jx4CPMb/bb88999TYAgAAANipdevWRV5eXgwZMiTpKDnDmXLQ9di1BgA5oKGhIcrKymLo0KFJR8kZzQ/j/cAhaRpbtF1JSUmUlpYmHQNabf369b6j28giJJAt1q9f7yWeVtDYAgAAAAAAAAAAIHusXbvWYfat5P0i0mzt2rXeZWgH9YE0WLduXeTn58fgwYOTjpJzNLYgzZq/27zbvPscfE+2Mr/bb4899ojq6uqorKxMOgoAAACQpdatWxcDBgyIHj16JB0lZzhTDroejS0AIAeUlZVFY2OjzWVtYGMp2UJji7YbOHBgbNy4MekY0GqlpaUxaNCgpGPkFIuQQLYoKytTw1uhqKgoqqqqko4BAAAAAAAAAABARKxfvz6GDBmSdIyc4P0i0mrr1q1RWVkZJSUlSUfJWeoDadD8TlO3bo4NaSuNLUgzB9+337Bhw2LNmjVJx4CPMb/br/k3lPsAAAAAoCXOlGs7Z8pB1+MJNQDkgOaHojaatp6NpWQLjS3abuDAgVFWVpZ0DGg1i5BtZxESyBYaW7ROYWFhVFdXJx0DAAAAAAAAAACAeP89I40tWsf7RaSV9w3bT30gDUpLS2Pw4MFJx8hJgwcPjtLS0qRjQIdw8H37DR8+PFavXp10DPgY87v9NLYAAAAAdqWsrMzzlzbq2bNnbNu2LZqampKOAnQSjS0AIAc0b47yA6f18vLyonv37jaWkjiNLdpu4MCBsXHjxqRjQKtZhGw7jS2AbKGxRetobAEAAAAAAAAAAJA91q9fr7FFK3m/iLRqPoRVLdh96gNpUFpaqsHNbiopKXGgNanl4Pv2GzZsmMYWZCXzu/00tgAAAAB2xZlybdezZ89oamqKurq6pKMAnURjCwDIAaWlpZGXl+fA1TZyaDbZQGOLttPYglyyZcuWqK2ttQjZRr6jgWzhQVLrFBYWRlVVVdIxAAAAAAAAAAAAiPcbWzjEuvXsXSaNmg9hVQvaR30g123YsMF++N1UUlIS1dXVUV1dnXQUyDgH37ff8OHDY+PGjVFbW5t0FPgQ87v9CgsLo7CwUGMLAAAAoEWlpaWev7RR83qVZ6/QdWhsAQA5YMOGDTFgwIAoKChIOkpOsbGUbKCxRdsNGjQoNm3aFI2NjUlHgV0qLS2NiLAI2Ua+o4FsUVpaqoFgKxQWFnphBwAAAAAAAAAAIEts2LAhhgwZknSMnGHvMmm0fv366NGjR/Tt2zfpKDlNfSDXlZaWanCzm5rfBXOoNWnk4Pv2Gz58eDQ1NcXatWuTjgIfYn5nRklJyfb3wwEAAAA+SmOLttPYAroejS0AIAf4cbN7bCwlG2zbti169OiRdIycMnDgwGhoaIiKioqko8AulZWVRYTGFm3lOxrIFmVlZRpbtEJRUZHGFgAAAAAAAAAAAFlg8+bNsXXrVo0t2sDeZdJow4YNUVJSEnl5eUlHyWnqA7luw4YN3mnaTc0NQTS2II2av9u827z7hg8fHhERq1evTjgJfJj5nRklJSXuAQAAAIAWlZaWOo+ojZrXqzx7ha5DYwsAyAGlpaXbN0nRej169PDjhkTV1dVFY2Pj9i6StM7AgQMj4n8bBkA2Ky0tjYiwCNlGvqOBbNDU1BSbNm1Sw1uhsLAwampqorGxMekoAAAAAAAAAAAAXdr69esjIjS2aAN7l0mj5sYWtI/6QK4rLS3V2GI3NdfQ5nfDIE22bt0a+fn5kZ+fn3SUnDV06NDo1q2bxhZkHfM7MzS2AAAAAHamrKzMeURt1HzWpmev0HVobAEAOWDDhg02l+2Gnj17+nFDoprHn8YWbdO8mLNx48aEk8CulZaWRvfu3aNv375JR8kpvqOBbFBeXh719fUeJLVCUVFRNDU1RU1NTdJRAAAAAAAAAAAAujSNLdrO3mXSSGOLzFAfyGVNTU1RVlamFuym4uLi6Nmzp0OtSaWtW7d6r7mdunfvHoMHD441a9YkHQU+xPzODI0tAAAAgJZs27YtKisrnf3aRhpbQNejsQUA5IDS0lKby3ZDz549Y9u2bUnHoAvT2GL3DBw4MCI0tiA3lJaWxuDBgyMvLy/pKDnFdzSQDUpLSyMiPEhqhcLCwoiIqK6uTjgJAAAAAAAAAABA17Z+/frIy8vznlEb2LtMGmlskRnqA7msvLw8tm3bZj98OwwePNih1qSSg+8zY/jw4RpbkHXM78zQ2AIAAABoSWlpaTQ1NXn+0kYaW0DXo7EFAOSAsrKy7Qe903o9e/b044ZENW9stkGkbYqLi6OgoEBjC3LCpk2bfEfvBt/RQDbYtGlTREQMGDAg4STZT2MLAAAAAAAAAACA7FBWVhZ9+/aN7t27Jx0lZ9i7TBqVlZU5TCUD1AdyWfO7d4MGDUo4Se4qKSmJ0tLSpGNAxm3bts17zRmwxx57xLp165KOAR9ifmeGewAAAACgJc3nETlXrm2a16yaz94E0k9jCwDIAZs3b3bY6m6wsZSkNY8/G0TaJi8vL/r27RsVFRVJR4Fd2rx5c/Tv3z/pGDnHdzSQDTZv3hwRoY63QlFRUUREVFVVJZwEAAAAAAAAAACga9u0aZMDFNrI3mXSaNOmTd43zAD1gVzWvB9eLdh9JSUlsWHDhqRjQMZt3brVe80ZMHjw4CgrK0s6BnyI+Z0Z/fv3334vBQAAAPBBnr/snuY1K89eoevQ2AIAckB5eXn069cv6Rg5pa6uLvLz86O0tDTWrl0blZWVSUeiC6mrq4tNmzbF22+/HRER9fX1CSfKPcXFxRpbkBN8R++ehoaGqKmpib/+9a+xadOmaGpqSjoS0AVVVFREXl5eFBcXJx0l6/Xo0SMiIt566y2/rwAAAAAAAAAAABK0efPm6N+/f9Ixcob3i0irzZs3e5ehndQHcl3zwUpqwe4rKSmJtWvXxvr162PFihWxceNGBy6R06qqqmL9+vWxdu3aKCgoMJ7badCgQVFaWpp0DIgI8zvT+vXrF+Xl5d5tBgAAAD6mvLw8IiL69u2bcJLc0tDQEBERK1eu9LwFuoiCpAMAALvm0OyW1dXVxe9///t49tln449//GMsW7Ysli9fHlVVVdv/Ow888EBERHTr1i322muvGDt2bOy3335x5JFHxqRJk2KPPfZIKj45rjXjLyJi/Pjxxl8b9e3b14ZwckJFRYUFyJ1Yvnx5LF68OF599dVYvnx5vPHGG7F+/frt//lee+21/V8PGjQoxowZE/vvv38cfPDBMXny5PjUpz4VeXl5SUQHuoCKioooKiqK/Pz8pKNkjV3d35500knb/7vubwEAAAAAAAAAADqfxhY75v0iupry8nK1oJXUB9LKwUpts3Hjxnj22WfjhRdeiDfeeCOWLVsWK1asiMbGxo/N8Z49e8bYsWNjzJgx8alPfSomTpwYn/70p6N3794JpYcP29F4fuedd7YfHNasV69exnM7DBo0KMrKypKOQRdjfneO/v37R0NDQ2zZsiWKi4uTjgMAAABkkfLy8igoKIjCwsKko2SlXa1fTZs2bft/1/oVpFtek9bBAJDVqquro6ioKB5//PGYMmVK0nGywtatW+NXv/pVzJ07N55++umoqqqKESNGxCGHHLL9x8vAgQOjuLg4+vXrFzU1NVFVVRXl5eWxcuXKWLZsWfz5z3+O1157Lerr62PcuHFx6qmnxllnnRUjR45M+s8jyxl/neOoo46Kww47LG677bako8BOHXPMMTF69Oi4++67k46SNV5++eWYO3duLFiwIN57773o06dPHH744TF27NgYO3Zs7LnnntG/f/8oKiqKvLy8qKqqis2bN8e6devizTffjOXLl8fLL78cmzZtiiFDhsSJJ54Y06ZNi6OPPlqTCyCjbr/99rj55pvjvffeSzpKotzfAgAAAAAAAAAA5I4zzzwzamtrY8GCBUlHSZz9b3RV9fX10aNHj5g/f3586UtfSjpOVlIf6Aruu++++PrXv/6hJi182Jo1a+IXv/hFPPDAA7F06dLIy8uLAw88MD71qU/FfvvtF5/85CejX79+UVRUFMXFxbFp06aoqqqKTZs2xfLly2P58uXxX//1X/HWW29Fr169YuLEiTF16tT40pe+FEVFRUn/eXQxxnPnu+uuu+Laa6+N9evXJx2FlDO/O99LL70Un/70p2PVqlUxYsSIpOMAAAAAWeRHP/pR/Ou//qumtx9g/QrYkYKkAwAAO1deXh4REf369Us4SfLWrFkTP/jBD+Kee+6JioqKOOaYY2LWrFkxadKkGD16dJuvt2XLlvjtb38bTz75ZNx1110xc+bMmDRpUnzrW9+KY489tgP+AnKZ8de5+vbtGxUVFUnHgF2qqKjwHR0R27Zti/vvvz++//3vx5///OfYb7/94vzzz49jjjkm/u7v/i4KCtq2/NDQ0BCvv/56PP300/Hggw/GPffcE6NGjYoZM2bE9OnTdTMGMqKioiL69u2bdIzEuL8FAAAAAAAAAADIPZs3b46hQ4cmHSNR9r/R1ZWXl0dTU1P0798/6ShZR32gKykvL1cHWvDiiy/GjTfeGE888UQUFxfHKaecEldddVVMnDgxBgwY0Obr/fWvf41FixbFI488Euedd15cfPHFMXXq1Lj88stj1KhRHfAXwP8ynpMzePDg2LhxYzQ2Nka3bt2SjkMKmd/Jab6H2rx5s8YWAAAAwIeUl5c7U+7/s34F7IwnJwCQ5ZobW3TlDWalpaVxySWXxCc/+cn4+c9/HpdffnmsWrUqnnzyyZg+ffpubSqNiOjTp08cf/zxcfvtt8e7774bv/rVr6JHjx7x+c9/Pg4//PD4j//4jwz/JeQi4y8ZxcXFGluQE8rLy7v0oeiNjY3xox/9KEaPHh0XXXRRHHnkkfHSSy/FG2+8EVdffXWMHz++zU0tIiLy8/Pj0EMPjcsvvzxee+21+MMf/hAnnnhi/Ou//muMHDkybrnllti2bVsH/EVAV1JZWdkla7j7WwAAAAAAAAAAgNy1efPmLvuOkf1v8D7vG36c+kBX5GClj/v9738fkydPjvHjx0dpaWn84he/iDVr1sSPf/zjOOmkk3brkKWIiBEjRsTZZ58dDz/8cKxevTpuuOGGeOqpp2LMmDExbdq0+Otf/5rhvwSM52wwaNCgaGho2H7vBZlififvg40tAAAAAD6ooqKiS55H9EHWr4DW0NgCALJc82aHrrjBrLGxMX7yk5/EfvvtF4888kj84Ac/iBUrVsQVV1wRw4cPz+hnFRQUxJQpU+I3v/lNvPLKKzFs2LA49thj47TTTov33nsvo59FbjD+ktW3b9+orKxMOgbsUlfeBP7KK6/EEUccEZdeemmcfPLJ8dZbb8U999wTRxxxRMY/a9y4cXH77bfHypUr47zzzotrrrkmDj744Fi0aFHGPwvoOrragyT3twAAAAAAAAAAALmvKza2sP8NPqz58NWu+i7DB6kPdGVd+Z2mj9q4cWNccMEFMX78+GhqaorFixfH888/H6eeemr06tUro581aNCguPTSS2PZsmVx7733xosvvhj7779/3HLLLVFXV5fRz6JrMp6zx6BBgyIioqysLOEkpIX5nT2a76E0rgEAAAA+qis/f7F+BbSFxhYAkOW6amOLDRs2xBe+8IW4+OKL46tf/Wr8+c9/josuuijjP2p25NBDD43HHnssnn766fjv//7vOOCAA+LBBx/s8M8lexh/yevbt29UVFQkHQN2qasdih4R0dTUFDfddFMceeSRUVhYGK+99lrMnj07RowY0eGfXVJSEjfccEMsX748Dj/88PjsZz8b06ZNi5qamg7/bCB9ulINd38LAAAAAAAAAACQDl2tsYX9b/Bxze8bdqVasCPqA11dVz5Y6YOeeeaZOPDAA+Oxxx6Le++9NxYtWhSf+cxnOvxzCwoKYurUqfHnP/85rr/++rj22mvjyCOPjLfeeqvDP5v0Mp6zy+DBgyMiorS0NOEkpIH5nV169+4dPXv23N40EAAAAKBZRUVFl3z+Yv0KaCuNLQAgy5WXl0e3bt2iT58+SUfpNIsXL46DDjoo3n777XjppZfi9ttvT+TA2cmTJ8fSpUtj6tSpccYZZ8Qll1wS27Zt6/QcdC7jLzsUFxdrbEHWq6uri5qami61CLlu3bo45phj4pprronZs2fHM888E+PGjev0HHvuuWfMmTMnHnzwwXj00Ufj6KOPjhUrVnR6DiC3dZXGFu5vAQAAAAAAAAAA0qMrNbaw/w12rPnw1a6wD7Yl6gNobNHU1BTXXHNNHHPMMTFhwoR48803Y9q0aZGXl9epObp37x4zZsyIpUuXRlNTUxx22GHxy1/+slMzkPuM5+w0aNCgiIgoKytLOAm5zPzOXv3799fYAgAAAPiY8vLyLvUc1voVsLs0tgCALFdeXh7FxcXRrVvX+Np+4IEH4rjjjoujjz46Xn311Tj00EMTzdOrV6+46667Yt68eTFnzpw48cQTY8uWLYlmouMYf9lDYwtyQXl5eUREl9kEvmLFipgwYUKsWrUqXnjhhbj44os7ffHxo0477bR49dVXo7GxMcaPHx+vvfZaonmA3NIVGlu4vwUAAAAAAAAAAEiPbdu2RU1NTZfYv2z/G7SsvLw8ioqKonv37klHSYT6AO/ryo0t6urqYtq0aXHjjTfGHXfcEfPmzUv8/xb77rtvvPDCC3HmmWfGKaecEh4B3w0AACAASURBVLfddluiecgdxnP2KiwsjN69e2tswW4zv7Nbv379tr8nDgAAANCsoqIi8TWczmL9CmiPrnFCNgDksKqqqujTp0/SMTrFXXfdFVOnTo1vfOMb8dBDD2XVIbOnnHJKPPPMM/H666/H5MmTbUJJIeMvuxQXF9vETdarqqqKiIiioqKEk3S8P/zhDzFhwoQYMGBAvPDCC/G3f/u3SUfabvTo0fHcc8/FQQcdFJMmTYpnnnkm6UhAjtiyZUuqa7j7WwAAAAAAAAAAgHSprKyMiPf326eZ/W+wc1u2bOky7xt+lPoA/6srvXv8QTU1NXHyySfHI488Eo8//nhcdNFFSUfarlevXvHDH/4wbr311vjmN78ZV155ZdKRyHLGc/YrLi7e/jsM2sL8zn7mNwAAALAjXeVZrPUroL00tgCALFdVVRWFhYVJx+hw9957b1x66aVxww03xC233BJ5eXlJR/qYQw45JJ5//vlYv359nHDCCdsPNCf3GX/Zp1evXlFbW5t0DNip6urqiIjUf0+//fbbceyxx8Z+++0XixYtipKSkqQjfUyfPn3i8ccfj89//vNx4oknxiuvvJJ0JCAH1NTURO/evZOO0SHc3wIAAAAAAAAAAKRPV9i/bP8b7FpVVVUUFRUlHaPTqQ/wYdXV1am+J9iR+vr6OP300+Oll16KRYsWxTHHHJN0pB365je/Gffdd1/ccsstcd111yUdhyxlPOeGPn36OPieNjO/c0NhYWHU1NQkHQMAAADIMtXV1ak9j6iZ9SsgEzS2AIAsl+bDVps99thjcf7558d3vvOd+Na3vpV0nJ0aPXp0PPXUU/H222/HKaecEnV1dUlHop2Mv+zUq1ev2Lp1azQ2NiYdBVrUvGEpzd/Ta9eujWOPPTZGjBgRjz32WBQXFycdqUU9evSIn//853HUUUfFF77whVi+fHnSkYAsl9bfWu5vAQAAAAAAAAAA0intjS3sf4PWSese2J1RH+DjusLBSh/U1NQU559/fjz99NPxxBNPxOGHH550pJ2aNm1a3HnnnTFz5sz4yU9+knQcsozxnDv69OmjURVtYn7njt69e29fZwEAAABolvZnsdavgEzR2AIAslx1dXVqN5xHRCxbtiy++tWvxrnnnhvf/e53k47TKmPGjIlf//rX8dxzz8W3v/3tpOPQDsZf9urdu3c0NTXF1q1bk44CLWresJTWRcj6+vo47bTToqCgIJ544omsbmrRrHv37jF//vwYNWpUfOlLX7KpDNipND5Icn8LAAAAAAAAAACQXs0HqqbxPSP736D1ampqUlkHWqI+wI51tcYWs2fPjrlz58b8+fPjyCOPTDpOq1x44YUxc+bM+PrXvx4vvvhi0nHIIsZz7ujTp09s2bIl6RjkEPM7dxQWFkZNTU3SMQAAAIAsk8bziD7I+hWQKRpbAECWS/OPm9ra2jjjjDNi//33jzvuuCPpOG1y2GGHxZ133hm33nprPProo0nHYTcYf9mtV69eEfH+/58gWzVvWErr9/TMmTNjyZIl8dBDD0VJSUnScVqtqKgofvnLX8a6devikksuSToOkMXS9lvL/S0AAAAAAAAAAEC6VVdXR8T7+2XTxP43aJvq6uou09hCfYCWdaUmN6+88kpcfvnlce2118Zxxx2XdJw2ufrqq+MLX/hCnHbaaVFaWpp0HLKA8ZxbNLagLczv3FJYWLh9nQUAAACgWZobi1u/AjJJYwsAyHJp3mj67W9/O95555146KGHokePHknHabNzzjknpk2bFtOnT4+NGzcmHYc2Mv6yW/OiTnPjAMhGaW5s8fzzz8eNN94Ys2fPjr/5m79JOk6bfeITn4h777037rvvvliwYEHScYAslbbGFu5vAQAAAAAAAAAA0q35wMW0vWdk/xu0TZoPU/ko9QFa1lVqQW1tbZx55pnxmc98Jq644oqk47RZXl5e3HPPPRERcckllySchqQZz7mnuLhYYwtaxfzOPb1799bYAgAAAPiYtJ1H1Mz6FZBpGlsAQJZL6+ayP/7xj3HHHXfEzTffHKNGjUo6zm674447onv37nHllVcmHYU2MP6yX3Pdq62tTTgJtKympia6desWPXv2TDpKRtXX18cll1wSn/3sZ2P69OlJx9ltJ5xwQkybNi1mzJhh8yjwMfX19VFfX5+a31rubwEAAAAAAAAAANIvjY0t7H+Dtquurk5VHWiJ+gAta2pqitra2i5RC2688cZ477334sc//nF065abx6MMGjQofvKTn8RDDz0Uv/nNb5KOQ4KM59zTp0+fqKysTDoGOcD8zj2FhYUaWwAAAAAf0tDQENu2bUvl8xfrV0Cm5WYlAYAupKamJpU/bi688MI49NBD4x/+4R+SjtIuxcXFceutt8ZPf/rTWLJkSdJxaCXjL/v16tUrIt6vgZCt0tp86s4774w33ngj7rrrrqSjtNvNN98cVVVVcd111yUdBcgyzfcYzfccuc79LQAAAAAAAAAAQPpVVVVF9+7do3v37klHyRj736DtukpjC/UBWlZTUxNNTU2pfK/pg1asWBE33XRTXHvttbH33nsnHaddPv/5z8cXv/jFuOyyy6Kuri7pOCTAeM5Nffr0iS1btiQdgyxnfucmjS0AAACAj2o+jyhtz1+sXwEdQWMLAMhyaTw0e+HChfH888/H7Nmzc7Zj3wedccYZ8elPfzpmzpyZdBRawfjLDc11r7a2NuEk0LKamprUfUfX1NTEjTfeGDNmzIh999036TjtNmTIkLj66qvjzjvvjPXr1ycdB8giaXqQ5P4WAAAAAAAAAACga0jbYfb2v8HuSeP7hh+lPsDONR/CnKb7gh254YYbYsSIETFjxoyko2TED37wg1i5cmXMnTs36SgkwHjOTRpb0Brmd27q3bu3xhYAAADAh6TpPKIPsn4FdITc38kBACmXtk3nEe//uDnuuOPi8MMPTzpKxnznO9+JJ598Ml555ZWko7ALxl9u6NWrV0T87yIPZKM0Nrb46U9/GuXl5XHZZZclHSVjLrzwwujXr1/MmjUr6ShAFknTgyT3twAAAAAAAAAAAF1D2t4xsv8Ndk9NTU2qasGOqA+wc2naD9+Sd999N+bOnRtXXHFFdO/ePek4GTFy5MiYOnVq3HDDDVFfX590HDqR8Zy7ioqKNLZgp8zv3NW7d2/nGAAAAAAfksbnL9avgI6isQUAZLna2trtB7ynwZIlS+K5556LK6+8MukoGXXcccfFYYcdFt///veTjsJOGH+5o7nu1dbWJpwEWpa27+jGxsaYNWtWTJ8+PYYNG5Z0nIzp1atXzJgxI374wx9GVVVV0nGALNF8j9GzZ8+Ek7SP+1sAAAAAAAAAAICuI037l+1/g91XU1OTmlqwI+oD7Frzfvg0Haz0UbNnz4499tgjpk6dmnSUjLryyitj5cqV8eijjyYdhU5kPOeuoqIi7ySyU+Z37iosLIzq6uqkYwAAAABZJC3nEX2Q9Sugo2hsAQBZrr6+PgoKCpKOkTH33XdfHHDAATFx4sSko2TcBRdcEI888khs3rw56Si0wPjLHc11r6GhIeEk0LK0fUc/++yz8c4778T555+fdJSMO++886K2tjYefvjhpKMAWaK523audxJ3fwsAAAAAAAAAANB11NXV5fy+t2b2v8Huq6+vT00t2BH1AXateT98mt5r+qD6+vq4//7749xzz40ePXokHSejRo8eHZ/97Gdjzpw5SUehkxjPua2goGB7zYWPMr9zW35+vvkNAAAAfEhaziNqZv0K6EgaWwBAlmtoaIj8/PykY2TEtm3bYt68eXH22WcnHaVDnHrqqZGXlxfz589POgo7YPzllua6p7EF2SxN39EREXPmzInDDjssxo0bl3SUjBs0aFAcd9xxMXfu3KSjAFmi+R4jl+u4+1sAAAAAAAAAAICupb6+Pqf3vTWz/w3aJy21YEfUB2id5oOV0loLnnrqqVi7dm2cddZZSUfpEGeddVb8+te/jnXr1iUdhU5gPOc2jS3YGfM7txUUFDjHAAAAAPiQNJxH9EHWr4COpLEFAGS5+vr6KCgoSDpGRixevDg2btwYZ5xxRruv9eijj8a8efMykCpz+vbtG1OmTIlf/vKXSUdhB4y/3KKxBbkgTY0tGhoa4pFHHokzzzyz3dfKxhoZEXHmmWfG008/HZs3b046CpAF0vAgyf0tAAAAAAAAAABA19LQ0JCKd4zsf4P2SdO7DB+lPkDrNO+HT8N9wY4sWLAgjjzyyNhnn33adZ1srAMREV/84hejR48e8cQTTyQdhU5gPOc2jS3YGfM7t5nfAAAAwEel4TyiD7J+BXQkjS0AIMulaaPpokWLYv/9948RI0a0+1rf+9734oorrshAqsz63Oc+F88991xs27Yt6Sh8hPGXW5rrng0hZLO0vBgWEbF06dLYvHlzHHvsse2+VrbWyGOOOSaampri2WefTToKkAXS8CDJ/S0AAAAAAAAAAEDXkpZ3jOx/g/apr69PRS3YEfUBWicN++F3ZtGiRal+x6moqCjGjx8fixYtSjoKncB4zm0OvmdnzO/clp+fv/2eCgAAACDif888TMvzF+tXQEdKxwmcAJBiadl0HhGxePHimDRpUkaudckll0RNTU1GrpVJkydPjurq6liyZEkcddRRScfhA4y/3NJc92wIIZul6WWQRYsWxZAhQ+KAAw5o97WytUYOGjQoDj744Fi8eHGcdNJJSccBEpaGF3nc3wIAAAAAAAAAAHQtDQ0NUVCQ+68F2/8G7ZOWWrAj6gO0Thr2w7dk1apV8c4772SkFmRrHYh4vxbccccd0dTUFHl5eUnHoYMYz7lPYwtaYn7nPvMbAAAA+Kjm5y9peBZr/QroaN2SDgAA7FxaGlvU1dXF66+/HuPHj8/I9c4+++y48MILM3KtTBo9enQMHTo0Xn755aSj8AHGX+7p1q1b5OXlaWxBVkvLd3RExCuvvBITJkzIyMJcttbIiIgJEybEkiVLko4BZIFcf5HH/S0AAAAAAAAAAEDXU19fn7P73prZ/wbtl6Z3GT5IfYDWy/X98DuzZMmSyM/PjyOOOKLd18rWOhARcdRRR8WaNWvivffeSzoKHch4zn3du3ePurq6pGOQhczv3Jefn+8cAwAAAOBD0vT8xfoV0NE0tgCALJeWjaYrVqyIurq62H///TNyvW984xvxta99bfu/nz59elxyySWxevXqOPPMM2PvvfeOffbZJ84999yoqqqKiIhLL700jj766FizZs3Hrnf++efHscceG9u2bWt3trFjx8by5cvbfR0yx/jLTTaEkO3S8h0dEfHmm2/Gfvvtl5Fr7U6NjOicOjl27NhYtmxZu64BpEOuP0hyfwsAAAAAAAAAAND1NDQ0REFBQdIx2sX+N2i/+vr6nK8FO6I+QOvV19dHRO7uh9+ZN998M0aOHBm9evVq97U+WgcisqcWjB07NiJCLUg54zn3FRQURENDQzQ1NSUdhSxjfue+goKCaGpqcpYBAAAAsF2un0f0QdavgI6msQUAZLm0bDRdtmxZ5OXlxb777puR67344ovx7LPPbv/3r7/+ejzxxBPxd3/3d/HXv/41Tj/99BgxYkTce++9MW3atIiIGD16dPzud7+LBQsWfOhaq1evjnvuuScGDhwYPXr0aHe2MWPGODQ7yxh/uUljC7JdWhpbNDY2xltvvbV9ga69dqdGRnROnRw7dmxs3LgxysrK2nUdIPfl+oMk97cAAAAAAAAAAABdT319fc7ue2tm/xu0X1reZfgo9QFar3k/fBrePf6oZcuWddg7ThHZUwuGDBkSAwcOVAtSznjOfc11trmhEDQzv3Nf828qZxkAAAAAzXL9PKIPsn4FdDSNLQAgy6Vlo+l7770XAwcOjD59+nTYZ6xcuTKmTp0azz33XNx0002xaNGiOOSQQ+Lpp5+OiIgzzzwzCgoKYv78+R/6382bNy8aGxs/1glwd+29997x3nvvZeRaZIbxl5s0tiDbpeU7euPGjVFTUxMjRozosM/YVY2M6Jw6uddee0VExLvvvtvuawG5LdcfJLm/BQAAAAAAAAAA6HoaGhpy/gBr+9+g/dLyLsNHqQ/Qerm+H35nVq9evf39n46SLbVgxIgR3nFKOeM592lsQUvM79xnfgMAAAAflabnL9avgI6msQUAZLnGxsbo1i33v7IrKyujuLi4Qz+jd+/ecc0110ReXl5ERHTr1i0mTJgQ5eXl8e6770ZJSUkcf/zx8dvf/jbWr1+//X/34IMPxp577hmf+9znMpKjT58+UVlZmZFrkRnGX24qKCiwGYSs1tjYmIoFyOaa0ZF1clc1MiI6pU42/41pqZPA7mt+kJSrv7Xc3wIAAAAAAAAAAHQ9aTjM3v43aL801IIdUR+g9XJ9P/zOdKVaUFxcHFu2bMnItchOxnPu6969e0RE1NXVJZyEbGN+5z6NLQAAAICPStPzF+tXQEfL/UoJACnX1NS0/WY9l23ZsiX69OnToZ8xZMiQ6NWr14f+2YABA7Z/fkTE2WefHQ0NDfHwww9HxPud/n7/+9/HtGnTMvYjsm/fvlFRUZGRa5EZxl9uysvLi6ampqRjQIvS9B0d0bGNLVpTIyM6vk727ds3IjS2AGL7PUau1nH3twAAAAAAAAAAAF1PGvYv2/8G7ZeGWrAj6gO0Xq7vh9+ZysrKLlMLiouL1YKUM55zX3Od9a4zH2V+5z7zGwAAAPioND1/sX4FdDSNLQCATtHQ0BD5+fkd+hm9e/du8T9r/qF4wgknxIABA2L+/PkREfHQQw9FRMQ555yTsRz5+fnbOy6SHYw/gJZ1Rpfg1tTIiI6vk83fBfX19Rm5HkBS3N8CAAAAAAAAAACQi+x/A1qiPgAREY2NjV2mFhQUFKgFKWc8Q3qZ3wAAAABkM+tXQEfT2AIA6BR9+vTZ3jkvST179ozTTjstnnnmmSgrK4sHH3wwxo8fH2PGjMnYZ1RWVkZxcXHGrkf7GX8ALWvuqltVVZVwko6vk5WVlRER0bdv34xcDyAp7m8BAAAAAAAAAADIRfa/AS1RH4CIrlULKioq1IKUM54hvcxvAAAAALKZ9Sugo2lsAQB0iuLi4qz4cRMRcfbZZ0d9fX3cdNNN8frrr8fXvva1jF6/srLSgdlZxvgDaFnzglxz04ekdWSdbP4bLUICuc79LQAAAAAAAAAAALnI/jegJeoDEJE9By1FqAW0n/EM6WV+AwAAAJDNrF8BHU1jCwCgU5SUlERZWVnU1dUlHSWOPPLIGDNmTPzgBz+IwsLCOPXUUzN6/bVr18bgwYMzek3ax/gDaNmAAQOioKAg1q5dm3SUiOjYOtn8N5aUlGTsmgBJcH8LAAAAAAAAAABALrL/DWiJ+gBEvF8L1qxZk3SMiOj4WrBu3Tq1IOWMZ0gv8xsAAACAbGb9CuhoGlsAAJ1izJgxUV9fHytWrEg6SkREnHXWWdHQ0BBf+tKXMt5hb9myZTF27NiMXpP2Mf4AWtajR48YOXJkLF++POko23VUnVy2bFkUFhbGnnvumbFrAiTB/S0AAAAAAAAAAAC5yP43oCXqAxARMXbs2C7xjlNlZWWsXr1aLUg54xnSy/wGAAAAIJtZvwI6Wl5TU1NT0iEAgJb1798/brnllpg+fXrSUdqlqqoqiouL4+GHH46TTjop6Tgdap999olzzz03vv3tbycdhf/P+MtNaal/pNf06dNj1apVsXDhwqSjtNsJJ5wQ/fv3j/vvvz/pKB3qiiuuiIULF8bSpUuTjgIkbOHChXHcccfF5s2bo1+/fknHaTP3twAAAAAAAAAAAF1PGvYv2/8G7ZfW923UB2i9XN8PvzNz5syJCy64IKqqqqJbt25Jx+kwr732Whx66KGxbNmyGDNmTNJx6CDGc+5Lc72lfczv3Gd+AwAAAB+VpvUC61dAR0tvZQEAskpRUVHsu+++8fLLLycdpUNt2LAh3nnnnTj44IOTjsIHGH8AO3fwwQenvkZGRCxZsiQOOuigpGMAtJv7WwAAAAAAAAAAAHKR/W9AS9QHIOL9d5xqa2vjv//7v5OO0qGWLFkSxcXF8clPfjLpKHQg4xnSy/wGAAAAIJtZvwI6msYWAECn+cxnPhOLFy9OOkaHWrx4ceTn58fEiROTjsJHGH8ALfvMZz4Ty5cvj3fffTfpKB2mtrY2XnzxxZg8eXLSUQAywv0tAAAAAAAAAAAAucj+N6Al6gNw4IEHxuDBg1NfCxYtWhQTJ06MgoKCpKPQgYxnSC/zGwAAAIBsZv0K6GgaWwAAnWby5Mnx8ssvR0VFRdJROsyiRYvisMMOi759+yYdhY8w/gBaNmHChOjZs2csWrQo6Sgd5ne/+13U1tZqbAGkhvtbAAAAAAAAAAAAcpH9b0BL1AegW7du8X/+z/+Jp59+OukoHaaxsTEWL14ckyZNSjoKHcx4hvQyvwEAAADIZtavgI6msQUA0Gk+97nPRbdu3eLhhx9OOkqHqKuriwULFsQJJ5yQdBR2wPgDaFlhYWF89rOfjXnz5iUdpcPMmzcv/uZv/iZGjBiRdBSAjHB/CwAAAAAAAAAAQC6y/w1oifoARESccMIJ8Z//+Z+xcePGpKN0iEWLFkVpaWmceOKJSUehExjPkF7mNwAAAADZzPoV0JE0tgAAOs3AgQNjypQpMXfu3KSjdIgnn3wySktL48wzz0w6Cjtg/AHs3NSpU2PhwoWxdu3apKNkXG1tbfz7v/97nHXWWUlHAcgY97cAAAAAAAAAAADkIvvfgJaoD0BExFe+8pXo3r17zJs3L+koHWLu3LlxxBFHxJgxY5KOQicwniG9zG8AAAAAspn1K6AjaWwBAHSqs88+OxYvXhxvv/120lEy7t/+7d9i4sSJMWrUqKSj0ALjD6BlJ598chQVFcWcOXOSjpJxCxYsiMrKyjjjjDOSjgKQUe5vAQAAAAAAAAAAyEX2vwEtUR+APn36xMknnxz33HNP0lEybtOmTbFgwYI466yzko5CJzGeIb3MbwAAAACymfUroCNpbAEAdKopU6bEPvvsEzfffHPSUTLqjTfeiMceeyxmzJiRdBR2wvgDaFnv3r1j+vTpMWvWrKipqUk6TsY0NTXFjTfeGKeddloMGzYs6TgAGeX+FgAAAAAAAAAAgFxk/xvQEvUBiIj4x3/8x3j11VfjP//zP5OOklGzZ8+O/Pz8mDp1atJR6ETGM6SX+Q0AAABANrN+BXQUjS0AgE6Vn58f//Iv/xI/+9nP4r333ks6TsZ873vfiwMOOCBOPvnkpKOwE8YfwM790z/9U2zevDnuu+++pKNkzKOPPhp//OMf48orr0w6CkDGub8FAAAAAAAAAAAgF9n/BrREfQAiIg455JD43Oc+F9dff33SUTKmsrIyZs+eHZdddln069cv6Th0IuMZ0sv8BgAAACCbWb8COorGFgBApzv77LNj6NChqTlgesmSJfHggw/GVVddFXl5eUnHYReMP4CWDR06NM4///z47ne/G+Xl5UnHabdt27bFFVdcEV/+8pdj3LhxSccB6BDubwEAAAAAAAAAAMhF9r8BLVEfgIiIq666Kp599tn41a9+lXSUjLj++uujsbExvvGNbyQdhQQYz5Be5jcAAAAA2cz6FdARNLYAADpdjx49YtasWXH//ffH4sWLk47TLo2NjXHppZfGhAkT4pRTTkk6Dq1g/AHs3DXXXBONjY1x1VVXJR2l3W699dZYtWpV3HzzzUlHAegw7m8BAAAAAAAAAADIRfa/AS1RH4CIiKOOOirOOOOMuOSSS6KqqirpOO2yfPnyuO222+L666+PgQMHJh2HBBjPkF7mNwAAAADZzPoV0BE0tgAAEvHFL34xjj/++Lj44otz+gfObbfdFkuXLo2777478vLyko5DKxl/AC0bMGBA3HTTTfHDH/4wnn/++aTj7LY333wzrr/++rjqqqti1KhRSccB6FDubwEAAAAAAAAAAMhF9r8BLVEfgIiIW2+9NTZv3hxXX3110lF2W319ffzDP/xDjBs3Li644IKk45Ag4xnSy/wGAAAAIJtZvwIyTWMLACAxd999d2zYsCG+/vWvJx1ltyxZsiSuvPLKuPbaa+OAAw5IOg5tZPwBtOzss8+O448/Ps4444woKytLOk6b1dTUxKmnnhoHHnhg/PM//3PScQA6hftbAAAAAAAAAAAAcpH9b0BL1Adg2LBhcccdd8SsWbPi8ccfTzrObpk5c2a8+uqrce+990Z+fn7ScUiQ8QzpZX4DAAAAkM2sXwGZprEFAJCYESNGxM9+9rOYM2dO/PSnP006Tpts2LAhTj/99Jg8eXJ861vfSjoOu8H4A2hZXl5e3HfffZGXlxfTpk2LhoaGpCO1yde//vV4991348EHH4zu3bsnHQegU7i/BQAAAAAAAAAAIBfZ/wa0RH0AIiKmTZsW55xzTpxzzjmxYsWKpOO0yeOPPx433nhjzJ49Ow488MCk45AFjGdIL/MbAAAAgGxm/QrIJI0tAIBETZkyJb7zne/ERRddlDPd+7Zs2RJTpkyJbt26xZw5c6JbN7dUucr4A2jZoEGDYt68efHMM8/EBRdcEE1NTUlHapWZM2fG3LlzY+7cuTFy5Mik4wB0Kve3AAAAAAAAAAAA5CL734CWqA9ARMSdd94ZI0eOjM9//vOxbt26pOO0yu9///s4/fTT42tf+1qcd955ScchixjPkF7mNwAAAADZzPoVkCl2QQAAibv22mvjnHPOiVNPPTWeffbZpOPsVE1NTXz5y1+OVatWxZNPPhklJSVJR6KdjD+Alh1xxBExb968+NnPfhbf+ta3ko6zS3fccUdcd9118aMf/SimTJmSdByARLi/BQAAAAAAAAAAIBfZ/wa0RH0ACgsL49e//nXk5eXF8ccfHxs3zfFm2AAAIABJREFUbkw60k798Y9/jBNOOCEmTZoUd999d9JxyDLGM6SX+Q0AAABANrN+BWSKxhYAQOLy8vLi7rvvjhNOOCGOP/74ePTRR5OOtEObNm2KY489Nl555ZX49a9/HaNHj046Ehlg/AHs3JQpU+Lee++NWbNmxYUXXhgNDQ1JR9qha6+9NmbMmBE33XRTnHvuuUnHAUiM+1sAAAAAAAAAAABykf1vQEvUByAiYsiQIbFw4cIoKyuLo48+Ot59992kI+3Q7373u5g4cWKMGzcuHnrooSgoKEg6ElnIeIb0Mr8BAAAAyGbWr4BM0NgCAMgK+fn58cADD8S0adPiK1/5Stx5551JR/qQt956KyZOnBh/+ctf4ne/+10ccsghSUcig4w/gJ2bOnVqzJ8/P+bMmRNf+cpXoqKiIulI29XW1sb06dPjuuuuix//+MfxL//yL0lHAkic+1sAAAAAAAAAAABykf1vQEvUByAiYtSoUfHCCy9EXl5eTJgwIV577bWkI33IQw89FMcee2xMmjQpfvOb30RhYWHSkchixjOkl/kNAAAAQDazfgW0l8YWAEDWyM/Pj7vvvjuuueaauOyyy+LUU0/NioOz582bF4ceemj07NkzXnjhhdh///2TjkQHMP4Adu6kk06Kp556Kl566aU49NBDs2Ih8q233orx48fHv//7v8fDDz8c5513XtKRALKG+1sAAAAAAAAAAABykf1vQEvUByAiYs8994zf/va3se+++8b48ePjrrvuSjpS1NbWxsUXXxynn356nH/++TFv3rzo1atX0rHIAcYzpJf5DQAAAEA2s34FtIfGFgBA1vn2t78dTz31VPz2t7+Ngw46KB577LFEcqxZsya++tWvxmmnnRbTpk2L559/Pj7xiU8kkoXOY/wBtOyoo46KpUuXxt577x3jx4+PmTNnRk1NTafnqK+vj1mzZsUhhxwS3bp1i1dffTVOPPHETs8BkAvc3wIAAAAAAAAAAJCL7H8DWqI+AAMGDIiFCxfGlVdeGTNmzIgvfOEL8fbbbyeS5dlnn43DDjssfvGLX8T8+fPjtttui/z8/ESykJuMZ0gv8xsAAACAbGb9CthdGlsAAFlp8uTJ8frrr8eECRPipJNOir//+7+PP/3pT53y2dXV1fH9738/9ttvv3jhhRfiscceizvuuCN69uzZKZ9P8ow/gJYNHTo0Fi5cGP/3//7fmDVrVowbNy5++ctfRmNjY6d8/sKFC+OQQw6JK6+8Mi677LJ4/vnnY5999umUzwbIVe5vAQAAAAAAAAAAyEX2vwEtUR+A/Pz8mDlzZjzzzDOxatWqGDduXMycOTPKy8s75fPfeeedOOuss2LSpEmx9957x9KlS+PLX/5yp3w26WM8Q3qZ3wAAAABkM+tXwO7Q2AIAyFp77LFH/PznP49FixbFypUr46CDDoovf/nLsWTJkg75vE2bNsVNN90Uo0aNiquvvjouvfTS+NOf/hQnnnhih3we2c34A2hZfn5+/OM//mO88cYbccQRR8Spp54aBx10UNx///2xdevWjH9eQ0NDPProo3HEEUfEcccdF3vttVf84Q9/iO9+97te/ABoJfe3AAAAAAAAAAAA5CL734CWqA9ARMRRRx0VS5cujeuuuy5mz54de++9d3znO9+JtWvXdsjn/elPf4pzzjknxowZEy+88EIsWLAgnnjiiRg1alSHfB5di/EM6WV+AwAAAJDNrF8BbaGxBQCQ9SZNmhSvv/56zJ8/P/7yl7/EEUccEZ/61KfixhtvjP/5n//Z5f++qampxf+ssrIyHn744fjKV74Sw4YNixtuuCHOPffceOedd+J73/teFBYWZvJPIQe1Z/ztbOxFGH9A7ttzzz3jF7/4RfzhD3+Iv/3bv42vfe1rMXz48Ljoooviueeei7q6ulZdp7S09GP/rKGhIZYsWRLf/OY34xOf+ER88YtfjGHDhsWSJUvi8ccfj3333TfTfw5Al+D3FQAAAAAAAAAAALmovfvfIiLKysp2+M/tf4PcZn8s0L179/jnf/7nWLlyZVx++eXx4x//OEaMGBFTpkyJBx54IDZu3LjLa+ysFvzlL3+J22+/PQ4//PAYN25cLFmyJO65555YtmxZnHzyyZn8U6Bd43lX7zVHGM+QJPMbgP/H3r1G2VWXeeL/1j2pSkgIdbhoJAhCggyI0CjQA2JEBAQVbVvtoV2ipu/RNbjUGZg10+pyQBFb8dISrk1oaDBBCIhJmgRhgOESSFqIkBCJEQIIuZJUJVWVOvV/kX/VGFLBJFTOrnP4fNZi6dm7Xnxh7d8+VXs/z+8BAAAYzobifUsy+J5yiedXUEvq+nbmqTUAUJixY8fmkksuyZQpU4qOMmw8+OCDuf766/Nv//ZvWb16dd7ylrfkve99b4455phMnDgxhx12WMaNG5exY8cmSb7//e/nr//6r/PKK69k+fLlWbJkSZ588snce++9efjhh1Mul3PKKafkL//yL/Oxj30so0ePLvjfkOFsZ6+/J598Mo2NjTnuuOOyefNm199ucP9juJsyZUp+97vfZc6cOUVHGTZWrlyZG264IdOnT8/jjz+eUaNG5aSTTsoJJ5yQSZMm5bDDDstb3vKWjB49Ok1NTUmSF154IRdeeGG+9KUvZcmSJVm6dGkeeuih/PKXv8y6devytre9Leeee27OPffcHHLIIQX/GwK1Ys6cOTn99NOzbt26jBkzpug4hdrVv6+mT5+eU089NQ0NDX6/BQAAAAAAAAAAqCD1y9va1fq3JPne976X8ePH5y1veYv6N6qWfps/Tv8htU49/B+3efPmzJo1K9OnT8/s2bNTLpfzzne+M+95z3vy9re/PRMnTszb3va27LXXXmltbc2LL76Y++67L6eddlrWrVuXpUuXZunSpVm0aFHuvvvuLFu2LHvttVc+9rGP5dOf/nROPvnk1NfXF/2vyRvEzl7Pra2tueGGG/I3f/M3SZJXXnnF9fw6ud+yp1nfxbG+AQAAgFfzvGB7u/q+pd8555yTb3/721mxYoXnV1CjDLYAgGFOoemObdmyJQ899FDmz5+fe+65J48//nheeumlbX5m1KhR2bhx4zbHWlpacthhh+WEE07I5MmT8973vjf77rtvJaNTA3bm+mtubk65XM6WLVsGjrn+dp77H8OdxrDXtmzZssyfPz/z58/PggUL8tvf/ja9vb0D51taWlJfX59NmzYNHKuvr8+BBx6Yo48+OpMnT87kyZNzxBFHFBEfqHFeJG1vZ36/HT16dDZu3Jg/fKTs91sAAAAAAAAAAIDKUL88uJ2tf9u0aZP+DmqCfpudp/+QWqUeftesXbs299xzT+bPn5/77rsvS5cuTUdHx8D5+vr6tLS0bNPjlCTjxo3LEUcckfe85z2ZPHlyTjjhhIwYMaLS8WEbf+x6TpIxY8Zk/fr12xxzPe8e91sqyfquLOsbAAAAeDXPC17bzrxvGT16tOdX8AZhsAUADHMKTXfNunXrsnTp0qxbty7r16/PHXfckeuuuy5TpkzJpz71qRx00EGZMGGCyXzsEf3X3+9///t8/OMfz+jRo3PZZZdl1KhRGTVqlOtvF7n/MdxpDNs13d3dWbZsWZ5//vls2LAhGzduTLlcznXXXZf58+fn7//+7/Od73zHA0egIrxI2jmv/vtq1apV+cIXvpD99tsv06dP9/stAAAAAAAAAABABalf3nmvrn975ZVXMmLEiEyZMiWbNm3K3Llz8773vU/9G1VJv83ro/+QWqAe/vXp6+vLs88+m+XLl2fjxo3ZsGFDvva1r2XJkiW57rrrcvDBB+ewww5Le3t70VHhj/rD6/m//tf/moULF+biiy/OwQcfnNGjR2evvfZyPb8O7rcUyfres6xvAAAA4NU8L9g1g71v2bBhQ1asWJFvfvObmTBhQh555JGUSqWiowJ7QGPRAQAAhtLYsWPzrne9a+DzFVdckSR54IEHMm3atKJi8QbRf/1Nnz49XV1d6erqylFHHZUjjjii6GgAhWtubs7b3/72vP3tb9/m+IUXXpgkuemmm/Ld7363iGgA7MCr/7667bbbsmXLlqxcuTIjRozIW9/61gLTAQAAAAAAAAAAwOBeXf+WJAsWLMimTZtSX1+fGTNm5P3vf39B6YAi6T8E6urqcuCBB+bAAw9MkqxZsybnnntu+vr6smLFipx77rkFJ4Sd13899/X1ZdGiRUmStra2fPzjHy84GfB6Wd8AAAAADGevft/S76tf/WoaGhqyYsWKPP7445k8eXJBCYE9qb7oAAAAe8q6dety9913J0kWL16chQsXFpyIN4pp06aloaEhTU1NueWWW4qOAzBsPfPMM1m5cmWSrUXgN954Y8GJAHgtt912W5qamtLU1KRxDwAAAAAAAAAAgKoyb968NDU1pVwu59prr82qVauKjgQUTP8hkCSzZs1KX19fkuQnP/nJwP+HanLVVVelsbEx9fX1+dnPflZ0HGAIWd8AAAAAVJNf/OIX6e3tTWNjYy655JKi4wB7iMEWAEDNuv3221Mul5Mkzc3NueaaawpOxBvB8uXLc//996e3tzc9PT256aabio4EMGzNmzcvDQ0NA58vvvhixd8Aw1S5XM6sWbPS09OTnp6e3HDDDVm3bl3RsQAAAAAAAAAAAGCnzJkzJ729vUmSvr6+XH755QUnAoqm/xBIkhkzZqSuri5J8txzz+X//J//U3Ai2DW9vb258sor09PTk3K5nHvuuUe/B9QI6xsAAACAarJ27dosXrw4SbJly5bMmTMnTz75ZMGpgD3BYAsAoGbNnDkz9fVbf93p7u7Ov/zLv6Srq6vgVNS6a665Jo2NjQOfFy9enGeeeabARADD17x58wYKv8vlcp566qncfffdBacCYDAPPvhgVq9ePfC5t7c3N954Y4GJAAAAAAAAAAAAYOd0d3fn//7f/zuwgX1PT0+++93vZvPmzQUnA4qk/xDYuHFj/v3f/31g+FVTU1OuvvrqglPBrrnzzjvzwgsvDHwul8uZO3dugYmAoWJ9AwAAAFBN5s+fn76+voHPTU1N+f73v19gImBPMdgCAKhJnZ2dmTNnTrZs2TJwbMOGDZk1a1aBqah15XI5V111VXp6egaONTY25tZbby0wFcDw1NfXl7vuumub7+rGxsZccsklBaYCYEduv/32NDc3D3wul8v5wQ9+UGAiAAAAAAAAAAAA2DkPPPDAdkMs1q1bl5tvvrmgREDR9B8CSfKLX/xim37Qnp6e3HTTTdmwYUOBqWDX/OQnP0ljY+PA58bGxtx2220FJgKGivUNAAAAQDWZP39+mpqaBj53d3fn2muvzapVqwpMBewJBlsAADVp9uzZ6erq2uZYfX19rrjiioIS8UYwb968PP/889sc6+3t1egAMIgnnngiq1ev3ubYli1bMmfOnDz55JMFpQJgR2bMmJHu7u6Bz319fXnyySezYMGCAlMBAAAAAAAAAADAHzdv3rw0Nzdvd/yiiy5KX19fAYmAouk/BJJk5syZ22wYnmzdZOmnP/1pQYlg17zwwgvbDWrq6enJrFmzthnaAlQf6xsAAACAavOLX/xim/2JkqRcLmfatGkFJQL2FIMtAICadMstt2xXTNbb25u77rorzz77bEGpqHVXX331NlMik60b/j788MN54YUXCkoFMDzNmzdvu+/qJGlqaspll11WQCIAduQ3v/lNli1btt3xpqYmL44AAAAAAAAAAAAY9mbPnj3o5glPPfVUfvnLXxYTCiiU/kOgq6srt99++6Cbg6uTp1pceeWVqaur2+74xo0bc9999xWQCBgq1jcAAAAA1eT555/P8uXLtzve09OT733ve9vVbADVzWALAKDm9PT0ZNasWYMWkzU2Nmb69OkFpKLWrV+/Pj/72c8Gve7q6+tz2223FZAKYPiaO3duyuXydse7u7tzzTXXZPXq1QWkAmAwt91223YD3JKtf3tdf/312bBhQwGpAAAAAAAAAAAA4I/bsGFDFi5cOOi5xsbGXHLJJRVOBBRN/yGQJHfddVc6Ozu3O14ul/PQQw/lqaeeKiAV7LxyuZzLL788W7Zs2e5cc3Nzbr/99gJSAUPB+gYAAACg2tx1112prx98q/vVq1fnpptuqnAiYE8y2AIAqDnz5s3b4caqPT09mTZtWvr6+iqcilp3ww03DFockiR9fX356U9/WuFEAMPXli1bcs899ww62CLZWnQ3bdq0CqcCYEduueWWHf6u293d7cURAAAAAAAAAAAAw9Y999yT3t7eQc9t2bIls2fPtnE1vMHoPwSSrXXyTU1Ng55ramrKddddV+FEsGvmzp2blStXDnquu7tbXzNUMesbAAAAgGpz1113paGhYYfnL7roIu9goYYYbAEA1Jyf/exnaW5u3uH5FStW5L777qtgIt4IXqtguVwu55577smaNWsqnApgeHrkkUfS2dm5w/M9PT35p3/6p3R3d1cwFQCDWbNmTR588MHX/F33xz/+cYVTAQAAAAAAAAAAwM6ZN2/ea/YZNTY25rLLLqtgIqBo+g+B3t7e3HLLLenp6Rn0fE9PT6666qodDseC4eDyyy/f4XCWJHnuueeyePHiCiYChor1DQAAAEC1mTNnzg7fu5TL5Tz55JP55S9/WdlQwB5jsAUAUFPK5XJmzpz5mhthNzU15eqrr65gKmrd4sWLs2jRopTL5R3+TF9fX+64444KpgIYvv5Yc1iSvPzyy7n55psrlAiAHbnzzjtfc9p5X19fFi5cmIULF1YwFQAAAAAAAAAAAOyc2bNnv2afUU9PT6655pqsWbOmgqmAoug/BJLk3nvvzbp1617zZ1566aXMnTu3Qolg1/z+97/P7bffvsNNwpKt32ezZs2qYCpgKFjfAAAAAFSbJUuW5KWXXnrNn2loaMh3vvOdCiUC9jSDLQCAmvLAAw9k9erVr/kzPT09uemmm7Jx48YKpaLWXX311amrq/ujPzdjxowKpAEY/ubOnTvQBFJXV5fm5uY0Nzenqalpm5/7p3/6pyLiAfAHbrvttj/6u25dXV2uuOKKCiUCAAAAAAAAAACAnfPSSy9lyZIlA58bGhoGapcbGhoGjm/evDnTpk0rIiJQYfoPgSS59dZbt/ldYDB1dXW58sorK5QIds21116b3t7e1/yZnp6e3HLLLRVKBAwV6xsAAACAajNv3rxtPjc2Ng7UZtTXb93+vre3N7Nnz87SpUuLiAgMscaiAwAADKU/fAHf1NSUlpaW9Pb2ZtSoUWlubs7IkSMzYsSINDU15bHHHsvJJ59cYFpqxW9/+9scccQRSZK1a9emr68v69evT5L09fWls7Mz5XI5d911Vzo6OtLW1lZkXIBCdXV15dlnn83EiROz7777Zvz48ent7c3NN9+cr3/965k0aVJKpVLa29vT3t6evr6+nRoeBMDQ6+7uzty5cweKoRsaGjJixIjU19dn9OjRGTduXFpaWjJq1Khs2rTJPRsAAAAAAAAAAIBh5YEHHsj48eOzzz77ZL/99st+++2XX//613nxxRfzta99baBmub29PQcccEDRcYEK0H8I9PX15ZZbbhmokx85cmQaGhpSLpczZsyY1NfXD/zv6tWr093dnebm5oJTw7ZWr16dU045JR0dHdm0aVPWr1+f9evXp7e3N93d3enp6UmSPPbYY/n973+f/fbbr+DEwM6yvgEAAACoNo899lgOPvjgtLe3Z//9989+++2Xm2++OSeddFI+8YlPpL29PaVSKfvuu6/nWVAjDLYAAGrK17/+9VxyySVpaGgYOHb88cfnT//0T3PppZcWmIxaNnPmzG0+r1y5MuPHj8/999+fE088ceD4xo0bM2LEiErHAxhWWlpasnz58m2O/fa3v83NN9+c008/Pccdd1xByQB4tbq6ujz11FMZMWLEQGPOggULctxxx2XRokU5+OCDi44IAAAAAAAAAAAAO/SRj3wkH/nIR7Y5dskll+RHP/pRPvvZzxaUCiiS/kMgSRYvXpy99tpr4PPvfve7TJgwIfPmzcvxxx9fYDLYOd/+9re3+dzT05Pm5ubccsstOeecc5Ika9euTXd39zbXOjD8Wd8AAAAAVJsrr7xyu2OLFi3KpEmTcu655xaQCNjTDLYAAGrKqFGjtjvW0tKSrq6uAtLwRtV/vbW0tGxzfLDrE4CkVColSV5++eWCkwDwh5qamnLAAQdsc6y1tTVJ0tnZWUQkAAAAAAAAAAAAeF1KpZK6ZXgD038I1NXVbbcReH8vaHd3dxGR4HXr7/Ho7/lIkr333ruoOMAQsr4BAAAAqEZqM6C21RcdAABgT1NYSqXtaLAFAINra2vLyJEjPYQEqAJtbW1Jko6OjoKTAAAAAAAAAAAAwK5rb29PZ2fnwOagAPoPgf5eUPcCqlV/j0d/zwdQO6xvAAAAAKqRwRZQ2wy2AABqnsJSKs1gC4Bd197e7iEkQBVobW1NEg29AAAAAAAAAAAAVKVSqZQkapeBAfoPAYMtqHb9PR79PR9A7bC+AQAAAKhG7e3tWbVqVdExgD3EYAsAoOYpLKXSDLYA2HWlUslDSIAq0F8E3dHRUXASAAAAAAAAAAAA2HX9gy3ULgP99B8CBltQ7fp7PGx8D7XH+gYAAACgGpVKpbz88stFxwD2EIMtAICap7CUSjPYAmDXeQgJUB1aW1tTV1eXzs7OoqMAAAAAAAAAAADALusfbKF2Gein/xCor69PY2OjewFVq7/Ho62treAkwFCzvgEAAACoRu3t7eoyoIYZbAEA1DyFpVSawRYAu85gC4DqUFdXl5EjRxpsAQAAAAAAAAAAQFUaPXp0Wlpa1C4DA/QfAol7AdWtv8ejtbW14CTAULO+AQAAAKhGpVIpGzduzObNm4uOAuwBBlsAADVPMRmV1n+9NTc3F5wEoHq0t7dn1apVRccAYCe0tramo6Oj6BgAAAAAAAAAAACwW9rb2w22AAboPwQS9wKqW3+Ph43vofZY3wAAAABUo1KplCT2lYMaZbAFAFDzmpubFZNRUf3XW0tLS8FJAKpHqVTSHAZQJVpbW9PZ2Vl0DAAAAAAAAAAAANgtpVLJ5gnAAP2HQGKwBdWts7Mz9fX1GTFiRNFRgCFmfQMAAABQjfoHW9hXDmqTwRYAQM1TTEaldXV1paGhIQ0NDUVHAagaBlsAVI+2tjaDLQAAAAAAAAAAAKhaapeBP6T/EEjcC6hunZ2daW1tTV1dXdFRgCFmfQMAAABQjdrb25MYbAG1ymALAKDmtbS0pLu7u+gYvIF0dXWlpaWl6BgAVaW9vT3r16/3nQ1QBVpbWw22AAAAAAAAAAAAoGoZbAH8If2HQGKwBdWto6Mjra2tRccA9gDrGwAAAIBqNGbMmDQ3N6vNgBplsAUAUPMUk1Fp3d3dBlsA7KJSqZQkWbVqVcFJAPhj2traDLYAAAAAAAAAAACgarW3t6tbBgboPwSSpLm52b2AqtXZ2Zm2traiYwB7gPUNAAAAQDWqq6vLPvvsozYDapTBFgBAzVNYSqV1dXUZbAGwiwy2AKgera2t6ejoKDoGAAAAAAAAAAAA7JZSqZSXX3656BjAMKH/EEjcC6hunZ2daW1tLToGsAdY3wAAAABUK7UZULsMtgAAap5iMirNYAuAXdc/2MJDSIDhr7W1NZ2dnUXHAAAAAAAAAAAAgN1i8wTgD+k/BBL3Aqqbje+hdlnfAAAAAFSr9vb2rFq1qugYwB5gsAUAUPMUk1FpBlsA7Lq99947jY2NGsQAqkBbW1s6OjqKjgEAAAAAAAAAAAC7pb29PevWrUtPT0/RUYBhQP8hkGy9F3R3dxcdA3ZLR0dH2traio4B7AHWNwAAAADVqlQq2VMOapTBFgBAzVNYSqUZbAGw6+rq6jJu3DgPIQGqQGtrazo7O4uOAQAAAAAAAAAAALulVCqlr68vq1evLjoKMAzoPwQS9wKqW2dnZ1pbW4uOAewB1jcAAAAA1cpgC6hdBlsAADVPMRmVZrAFwO4plUpZtWpV0TEA+CMMtgAAAAAAAAAAAKCalUqlJFG7DCTRfwhs5V5ANbPxPdQu6xsAAACAatXe3m6wBdQogy0AgJrX3Nyc3t7e9Pb2Fh2FNwiDLQB2j+m6ANWhra0tHR0dRccAAAAAAAAAAACA3dI/2ELtMpDoPwS2MtiCatbR0ZG2traiYwB7gPUNAAAAQLUqlUpZtWpV0TGAPcBgCwCg5vUPGFBQRqV0dXWlubm56BgAVcdgC4DqMHLkyHR2dhYdAwAAAAAAAAAAAHbLuHHj0tDQoHYZSKL/ENjKYAuqWWdnZ1pbW4uOAewB1jcAAAAA1apUKmXNmjXp7e0tOgowxAy2AABqnsJSKq2rq2vgugNg57W3t5uuC1AF2traDLYAAAAAAAAAAACgatXX12fvvfc22AJIov8Q2MpgC6qZje+hdlnfAAAAAFSr9vb2lMvlrFmzpugowBAz2AIAqHkKS6m07u5ugy0AdkOpVNIcBlAFWltb09HRUXQMAAAAAAAAAAAA2G2lUimrVq0qOgYwDOg/BBKDLahuHR0daWtrKzoGsAdY3wAAAABUq1KplCT2lYMaZLAFAFDz+gtLu7u7C07CG0VXV5fBFgC7wWALgOrQ1taWzs7OomMAAAAAAAAAAADAblO7DPTTfwgkBltQ3To7O9Pa2lp0DGAPsL4BAAAAqFb9gy1WrVpVcBJgqBlsAQDUvP7CUgVlVIrBFgC7p729PatXr065XC46CgCvobW1NVu2bNG8BwAAAAAAAAAAQNUy2ALop/8QSAy2oLp1dHTY+B5qlPUNAAAAQLXaZ599Ul9frzYDapDBFgBAzVNYSqUZbAGwe0qlUnp7e7N27dqiowDwGvqLoTs6OgpOAgAAAAAAAAAAALunvb09q1atKjo/Dh4pAAAgAElEQVQGMAzoPwQSgy2obp2dnTa+hxplfQMAAABQrRobGzN27FiDLaAGGWwBANQ8haVUmsEWALunVColiQYxgGGura0tydbCaAAAAAAAAAAAAKhGpVLJ5glAEv2HwFYGW1DNNm3aNNDrAdQW6xsAAACAatbe3q42A2qQwRYAQM1TWEqlGWwBsHva29uTxENIgGGutbU1icEWAAAAAAAAAAAAVC+bJwD99B8CSdLc3Ow+QFXavHlzent7B3o9gNphfQMAAABQ7UqlUlatWlV0DGCIGWwBANQ8haVUmsEWALunVCqlrq5OgxjAMNdfDN3R0VFwEgAAAAAAAAAAANg9/Zsn9PX1FR0FKJj+QyDZei9wH6Aa9fd22Pgeao/1DQAAAEC1K5VK9pSDGmSwBQBQ85qbm5MoLKVyurq6Bq47AHZeU1NT9tprL9N1AYa5tra2JElnZ2fBSQAAAAAAAAAAAGD3lEqlbNmyJevXry86ClAw/YdAYrAF1au/t6O/1wOoHdY3AAAAANWuvb3dnnJQgwy2AABqXktLSxKFpVROV1fXwHUHwK4xXRdg+GttbU1isAUAAAAAAAAAAADVq1QqJYnaZUD/IZDEYAuqV39vR3+vB1A7rG8AAAAAqp095aA2GWwBANS85ubm1NXVKSijYgy2ANh9HkICDH9tbW1Jko6OjoKTAAAAAAAAAAAAwO5pb29PYrAFoP8Q2KqlpSU9PT3p6+srOgrskv7ejv5eD6B2WN8AAAAAVDt7ykFtMtgCAKh5dXV1aWpqUlhKxXR3dxtsAbCb2tvbs2rVqqJjAPAaWlpa0tDQkM7OzqKjAAAAAAAAAAAAwG4plUpJDLYA9B8CW/X3hHZ3dxecBHZNf29Ha2trwUmAoWZ9AwAAAFDt7CkHtclgCwDgDaGlpUUxGRXT1dVlsAXAbjJdF6A6tLa2GmwBAAAAAAAAAABA1Wppacno0aNtoAAk0X8I/L/BFobcUG1sfA+1y/oGAAAAoNqVSqV0dXXllVdeKToKMIQaiw4AANSmnp6eYfXHQ3Nzc9asWZPVq1cXHWUb48aNS11dXdExqlpHR0c2b95cdIxtbN68OT09PcPmemtubs7o0aOLjgEMc8Plfjpq1Ki88MILw+Ye+ofcT4GirV27NuVyuegYSZIRI0bkpZdeGnb361GjRhkyBwAAAAAAAAAAMMwNl3q4cePGZcWKFcOuFi5RD0ft03+4c/QfUuuGSz9T8v8GWrz44ovp6ekpOM3/o59peBlu31/J1ms22drbPFy+x3x/UY2s751jfQMAAABUh+HyvKu5uTlJsmzZskyYMKHgNNvzvAt2j8EWAMAeMX/+/Jx++ulFx9jGV77ylXzlK18pOsY21q1blzFjxhQdo6p98YtfzFVXXVV0jO383d/9Xf7u7/6u6BhJkve///2ZO3du0TGAYW643U/b29uLjrAd91OgaAcddNCweGHU74ILLsgFF1xQdIxtTJs2LVOmTCk6BgAAAAAAAAAAAK9hONXDfeMb38g3vvGNomNsRz0ctU7/4c7Rf0itG279TEkyceLEoiNsQz/T8DIcv7/6HXDAAUVHGOD7i2pkfe8c6xsAAACgOgy3513HHnts0REG5XkX7B6DLQCAPeq2225LW1tb0TGGnQULFuS//bf/VnSMmnHsscfmW9/6VtExhqVLL700W7ZsKToGUCXcT3fM/RQYLs4///yceeaZRccYlj784Q8XHQEAAAAAAAAAAICdpB5ux9TD8Uai/3Bw+g95I9HPtGP6mYYv31+D8/1FLbC+B2d9AwAAAFQnz7sG53kXvD4GWwAAe9R73vMeE+gGoZBsaI0bNy7ve9/7io4xLN1444353e9+V3QMoEq4n+6Y+ykwXEyaNMm9egcaGhqKjgAAAAAAAAAAAMBOUg+3Y+rheCPRfzg4/Ye8kehn2jH9TMOX76/B+f6iFljfg7O+AQAAAKqT512D87wLXp/6ogMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwPBlsAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwKAMtgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBQBlsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwKIMtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGJTBFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzKYAsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGZbAFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgzLYAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgEEZbAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCgDLYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgUAZbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCiDLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABiUwRYAwBvGxo0bi47AG0S5XC46AkDV27JlS3p7e4uOAQAAAAAAAAAAAAAA1Li+vr6sXbu26BhAwbZs2ZK+vr6iY8Au27BhQ1avXl10DAAAAAAAGNSWLVuyadOmomMAQ8RgCwCgpj322GP5wAc+kHHjxmX06NHZf//989d//dd55ZVXio5GjVm6dGm++MUv5qCDDso+++yTs846K/PmzSs6FkDV+dd//deceOKJGT16dEaMGJFJkyblhz/8oaFBAMPQoYcemilTphQdAwAAAAAAAAAAAHbavHnzcsQRR7zmP5/+9KeLjglUyNq1azNlypS0tbVl3Lhx2WuvvfKJT3wiq1atKjoaUEF33nlnjjnmmIwaNSr77bdfPvnJT+bee+8tOhbslNWrV2fSpEk56aSTio4CvE7lcjnveMc7Bv079YMf/GDR8QAAAABgl82dOzfHHHNMWltb09bWlre+9a32lIMa0Fh0AACAPWXBggU59dRT09jYmL/4i7/IuHHjctNNN2XatGlZuHBhHnzwwdTXm/PF67dp06Z86EMfysqVK/MXf/EX2WeffTJz5sycffbZmT17dk4++eSiIwJUheuuuy6f+cxnMnHixHzxi1/Mpk2bMnPmzEydOjXr1q3L//gf/6PoiAD8/6699tosW7Ysp5xyStFRAAAAAAAAAAAAYKfV1dWlqalp0HObN2/OkiVLcuihh1Y4FVCE7u7unHnmmXnooYfy2c9+NieccEIefvjhTJs2Lc8991zuv//+oiMCFXDjjTfmv/yX/5KDDjooX/7yl7Ny5crcfPPN+cUvfpGHH344EydOLDoivKbPfe5zef755zNmzJiiowCv03PPPZdf/epXOfLIIzNu3Lhtzr36MwAAAAAMd/Pmzcvpp5+esWPH5rzzzktTU1NmzJiRqVOn5uWXX87Xvva1oiMCu8lgCwCgZv3whz/Mpk2b8tBDD+Xoo49Oknz961/Pqaeemnnz5mXmzJn5+Mc/XnBKasGFF16YJUuW5M4778wZZ5yRJPniF7+Yd7zjHfnMZz6TZ555puCEANXh0ksvzaGHHpqHHnooe+21V5Lkq1/9at761rfmRz/6kcEWAAV77rnn8rWvfS2PPPJI/uM//qPoOAAAAAAAAAAAALDLJk+enEWLFg16burUqXnllVfyk5/8pMKpgCL8y7/8Sx588MF85zvfyZe+9KUkWzcHr6ury+WXX54FCxbkT/7kTwpOCexJ3d3d+fKXv5y2trY89thjGTt2bJLk4osvzvjx4/PJT34yCxcuLDgl7Ng///M/Z/bs2Ta8hxqxbNmyJMn06dPzjne8o+A0AAAAAPD6fOMb30hfX18eeeSRHHLIIUmSiy66KOPHj8+ll16a//k//2caGhoKTgnsjvqiAwAA7CkPPPBAjj766IGhFv3OO++8JMnDDz9cRCxq0LXXXpujjjpqYKhFkuy33375wAc+kOXLl+ehhx4qMB1AdVi/fn2eeOKJnHHGGQNDLZLkTW96UyZPnpw1a9akp6enwIQAbNiwIUuXLs2YMWNy3HHHFR0HAAAAAAAAAAAAhszs2bPz4x//ONdff33233//ouMAFXD99ddn3333zdSpU7c5fsEFF+S6665LqVQqKBlQKb/+9a+zcuXKnHnmmQNDLZJk3333zWmnnZZFixZl/fr1BSaEHVu8eHG+9KUv5Vvf+lYOOOCAouMAQ+Dpp59OXV1dDjvssKKjAAAAAMDr9uyzz2b8+PEDQy2SZPTo0XnXu96Vnp6ebN68ucB0wOthsAUAUJN6enrygQ98IP/wD/+w3blnn302STJu3LhKx6IGrVq1KmvXrs2pp5663bn+opEFCxZUOhZA1WlsbMy9996br371q9scX79+fX71q1/ltNNOS1NTU0HpAEiSww8/PPfcc0/uueee3HDDDUXHAQAAAAAAAAAAgCGxevXqfPazn80nPvGJTJ48ueg4QIU8/fTTOeOMM9Lc3Jxnnnkms2bNyqOPPpo3velN+cu//MtMmDCh6IjAHvb8888nSd71rndtd67/2OLFiyuaCXbG5s2b86lPfSonnXRSvvCFLxQdBxgiy5Yty4EHHpiNGzfmjjvuyFVXXZUHHnggvb29RUcDAAAAgF12zjnn5Lnnnsudd945cGzJkiW5++678973vjdtbW0FpgNej8aiAwAA7AlNTU35wQ9+sN3xl156KT/60Y/S1NSUs846q4Bk1JolS5YkSQ444IDtzk2cODHJ1usOgNfW1taWP/3TPx34/L3vfS8rVqzIz3/+8/T29ua///f/XmA6AAAAAAAAAAAAAKBW/f3f/33WrVuXiy++uOgoQIVs3LgxL7zwQvbbb7+cffbZueOOOwbOTZo0Kddcc02OP/74AhMClXDIIYckSebPn58vfelL25z79a9/nWTrYIsTTzyx4tngtXz5y1/O888/nzlz5qSurq7oOMAQWbZsWV555ZUcdNBB6ezsHDh+7LHHZvr06Tn88MMLTAcAAAAAu2bq1KmZN29ezjrrrJx44okZMWJE7r777rzpTW/KN7/5zaLjAa9DfdEBAAAq5Y477siRRx6ZlStX5jvf+U6OPPLIoiNRA5YtW5YkGTdu3HbnJkyYkCRZt25dRTMB1IILL7ww3/ve9/L000+nvb09I0eOLDoSAAAAAAAAAAAAAFBjFi9enJtvvjnnn39+DjzwwKLjABXS3xP2/e9/P8uXL88PfvCDPProo7nsssuyYsWKfPjDH85LL71UcEpgTzv00EPzJ3/yJ5k3b16uvPLKbNiwIevXr8+PfvSj/PSnP02S9Pb2FpwStnXHHXfkhz/8Ya644ooccMABRccBhtCyZcuyYcOG/K//9b+ydOnS3H///fmrv/qrLFq0KB/+8IfT0dFRdEQAAAAA2Gljx47NhAkT0tfXl0ceeSQPPvhgyuVyGhsbs2HDhqLjAa+DwRYAQM37zW9+kw996EM5++yzs9dee2Xu3Ln5whe+UHQsakRLS0uSZM2aNdud6y8O2XvvvSuaCaAWdHR0ZOnSpbn66quzevXqvPvd786LL75YdCwAAAAAAAAAAAAAoIZ8+9vfTnNzc84///yiowAV1N8L1tXVlRkzZuQf/uEfcswxx2Tq1Kk5//zz89JLL+Xf/u3fCk4J7Gn19fW5+uqrs//++2fKlCnZf//9s//+++f888/PlClTkiRHHHFEwSnh/3nhhRdy3nnn5fOf/3zOOeecouMAQ+zaa6/NwoUL85WvfCWHHnpoTjzxxFx++eU5//zz8/TTT+eWW24pOiIAAAAA7LSTTjopt912W3784x/nxRdfzMsvv5yZM2fmlVdeyQc/+MH89re/LToisJsMtgAAatr111+fo48+Or/85S/z7W9/O0888UROPfXUomNRQ/bff/8kyTPPPLPduf4C51KpVNFMANWor68v5XJ5m2OHHnpozjvvvFx88cXp6enJnXfeWVA6AAAAAAAAAAAAAKDW/O53v8sNN9yQj3zkIxk3blzRcYAKevOb35wkOf744zNp0qRtzp199tlJkieffLLiuYDKO/LII/P444/nyiuvzN/8zd/kG9/4Rh5++OEcfvjhSQy2YHj553/+56xatSrr16/PeeedN/DPypUr8/zzz+e8887LRRddVHRMYDcde+yx+U//6T9td/zMM89MkjzxxBOVjgQAAAAAu+XJJ5/M448/nlNOOSV/+7d/m7333jsjR47MRz/60XzmM59JZ2enQa5QxRqLDgAAvLa+vr7U1dUVHaMq3XHHHfn0pz+dE044ITfeeGMOPPDAoiNRgw477LDU1dUNOtjiP/7jP5Ik7373uysdC6iQvr6+oiPUjIsvvjgXXHBBfv7znw8U2fVrb29Pkjz77LNFRANqkL+xAAAAAAAAAAAAqEbql4fWtGnTsmXLlnzuc58rOgpQYf29hj09Pdud27RpU5JkzJgxFc0EO0s9/NDp7u7O8uXL097evt3vAxdffHEOOOAAw68YVkqlUo4++ug8/fTT2xzv6upKuVzOokWLUl9fX1C62lMul5PEf1Mq4tlnn83DDz+c4447brt9Mfr3Mdh3332LiFaTrG8AAADg1bx/GVq/+tWvkiTvec97tjv3/ve/P9/97nezdu3aSscChognqwBAzbrgggsyZsyYzJgxw1AL9pg3velNOfnkk3PvvffmN7/5zcDxnp6e3HDDDXnzm9+cY489tsCEwJ5SX1+vMWwIHXnkkUmSf//3f9/u3BVXXJEkecc73lHRTEDt6n+R1F+ACgAAAAAAAAAAAMOd+uWhN3fu3IwbNy7ve9/7io4CO62+vl4N7BAYOXJkJk+enEcffXS7zcFvvfXWJMmJJ55YRDT4o9TDD53Ozs5MmjQpU6dO3eb4c889l5kzZ+ZDH/pQQclgcFOnTs3ChQu3++fwww/PwQcfnIULF+aqq64qOmbN6P/7y8b3VMKaNWvyZ3/2Z/nmN7+53bmbbropSXLSSSdVOlbNsr4BAACAV/P+ZWi9/e1vT5LMmDFju3M333xzkv+37xxQfRqLDgAAsCesXbs2TzzxRN75znfm0ksvHfRnTjnllJx11lkVTkYtuuCCC/LBD34wf/7nf54LL7wwe++9d771rW/lmWeeyR133GECJ9QozSBD68wzz8yRRx6ZH/zgBxk7dmw+8IEPZOXKlfnpT3+a22+/Pccdd5zvbWDI9Becuo8DAAAAAAAAAABQLdQvD621a9fm0Ucfzdlnn20jS6qKe8HQufjii/Pud787f/7nf57//b//d97ylrdk/vz5ufzyy/Of//N/tqE9w5Z6+KEzduzYTJ48OTNmzMipp56ac845J8uWLctf/dVfZfz48bnkkkuKjggUqP8+q0+cSjjqqKNywgkn5Iorrsg+++yTj370oymXy7n++uszd+7cfOxjH8u73vWuomPWDOsbAAAAeDXvX4bWEUcckdNOOy1z587N6aefnnPPPTcHHXRQfvazn+XGG2/MEUcckY985CNFxwR2k8EWAEBNuv/++9PX15fHHnssjz322KA/U1dXZ4NshsRpp52W6dOn5/Of/3w+9rGPJdla0Pjd7343Z5xxRsHpgD1FM8jQqq+vz6233ppzzz03//iP/5h//Md/HDj30Y9+NJdddlkaGz3GAIaGF0kAAAAAAAAAAABUG/XLQ+vuu+9OuVzOCSecUHQU2CXuBUPnuOOOy89//vOcd955OfPMMweOf+hDH8o111xTYDJ4berhh9bVV1+dT33qU/nc5z6Xz33uc0mSY445JjfccENGjx5dcDqgSP33WYPwqIS6urrceuut+fznP5+LLrooF1100cC5v/3bv82ll15aYLraY30DAAAAr+b9y9Cqr6/PjTfemKlTp+bGG2/MnDlzBs6dfPLJufrqq9Pc3FxgQuD1sCMkAFCTzjrrrPT19RUdgzeQT37yk/mzP/uzLFiwIOVyOe9+97vT0NBQdCxgD6qrq/MAcogdfPDBue+++7J8+fI89dRTGTlyZCZOnJg3v/nNRUcDakz/iyR/M+y+t73tbf77AQAAAAAAAAAAVJD65aH10Y9+VB0cVamurs61O4TOOOOMPPvss3niiSfy8ssv58gjj8wBBxxQdCx4Terhh9aECRNy//335/HHH88zzzyTY445JgceeGDRsWCXPProo0VHqEk2vqfS9t1338yaNSsrVqzIkiVLMnbs2Bx++OEGLe0B1jcAAADwat6/DL1x48blX//1X/Otb30rixcvzqZNmzJp0qRMnDgxdXV1RccDXgeDLQBgmOvr6/NLN1SJxsbGHH/88UXHACqkvr7eA8g9oL6+PoccckgOOeSQoqMANaz/bywNvgAAAAAAAAAAAFQL9ctAsvVeoAZ2aDU1NeWd73xn0TFgp6mHH3p1dXU56qijctRRRxUdBRhGbHxPUSZMmJAJEyYUHaOmWd8AAADAq3n/sueMHz8+48ePLzoGMIQ8WQUAAIDdoBkEoHr1F5y6jwMAAAAAAAAAAFAt1C8DiXsBoB4eoFJsfA+1y/oGAAAAXs37F4Cd58kqAAAA7AbNIADVy4skAAAAAAAAAAAAqo36ZSBxLwDUwwNUio3voXZZ3wAAAMCref8CsPM8WQUAAIDdUFdX5wEkQJXqf5HU19dXcBIAAAAAAAAAAADYOeqXgWTrvUANLLyxqYcHqIxyuWzTe6hR1jcAAADwat6/AOw8T1cBAABgN9TX13sACVCl6urqkpiQDgAAAAAAAAAAQPVQvwzk/2Pv3qPsLst7gT9z2Xv2TCbJTCYXicQAwSRC0bMqRFFUAlaOPa2eepB1aEVbj3pYbS3Csu1yLdu62h5Po0WOFFE4oAhBIdxvCiEkiCIXBeRwTbiakJCQTGaSTDKZ2XM5f7Bm2kAShmT/5t37N5/PWq4lOyz4RvO+89u/93mfJ17dC9TAwsSmHh5gfAwNDY3uuUC+WN8AAADAazl/ARg7gy0AoMoNDw87EAUmpLq6OpduqGougwDUrpEJ6fZxAAAAAAAAAAAAaoX6ZSDCXgCohwcYL8PDw6N7LpAv1jcAAADwWs5fAMbO21UAAAA4AC6DANQuB0kAAAAAAAAAAADUGvXLQIS9AFAPDzBehoaGNL6HnLK+AQAAgNdy/gIwdt6uAgAAwAGoq6vzAhKgRo0cJA0PDydOAgAAAAAAAAAAAGOjfhmIeHUvUAMLE5t6eIDxofE95Jf1DQAAALyW8xeAsfN2FQAAAA5AfX29F5AANaquri4iTEgHAAAAAAAAAACgdqhfBiJe3QvUwMLEph4eYHxofA/5ZX0DAAAAr+X8BWDsvF0FAACAA9DQ0BADAwOpYwBwABobGyMi7OMAAAAAAAAAAADUDPXLQMSrdbCDg4OpYwAJqYcHGB9DQ0PR0NCQOgaQAesbAAAAeC3nLwBjZ7AFAAAAHIBCoRDlcjl1DAAOQKFQiIiwjwMAAAAAAAAAAFAz1C8DEfYCQD08wHjp6+uLYrGYOgaQAesbAAAAeC3nLwBjZ7AFAFS54eHhqKurSx0DAHiNYrEY/f39qWMAcABGik7t4wAAAAAAAAAAANQK9ctAhL0AUA8PMF76+/s1voecsr4BAACA13L+AjB2BlsAAADAAXAZBKB2OUgCAAAAAAAAAACg1qhfBiLsBYB6eIDxovE95Jf1DQAAALyW8xeAsTPYAgAAAA6AyyAAtctBEgAAAAAAAAAAALVG/TIQYS8A1MMDjBeN7yG/rG8AAADgtZy/AIydwRYAAEBVqquri+Hh4dQxYJ9cBgGoXQ6SAAAAAAAAAAAAqDXql4EIewGgHh5gvJTLZY3vIaesbwAAAOC1nL8AjJ3BFgDAhNLT05M6AjnmzxdMLC6DZG/Hjh2pIwA55SCpsjwHAwAAAAAAAAAAZE/9crbULlMr7AXZGR4ejp07d6aOAW9IPXy2PBNQS3bu3BlDQ0OpY+RWf3+/xvckY31ny/oGAAAAXsv5S/acwUB+NKYOAADs3/DwcNTV1aWOccC6urpiYGAgdYxR3/zmN+O0006LuXPnJs3hS1Vllcvl6OzsTB0jzj777PjGN74RhUIhdZRRfX19qSNAbuXxMki17Kcj/uqv/irOP//81DEiwn4KeVPLB0k7d+6sqr16aGgovvzlL8e3vvWt1FFieHg4dQQAAAAAAAAAAIDM5K1+udrq4c4+++w477zzUseICPVw7F/e9oJqun/40EMPxRNPPBGf/vSnU0dx/5D9quV6+L2ptvtM//iP/xhnnnlmzJw5M3UU95mqWLX8/LriiitiwYIFsWjRotRRIiJ/P780vp+YrO+9s74BAACAvMvb+cuIannfFRFx4YUXxoknnhhHHXVU6ii5e98F481gCwAgU4cffnjqCK+zZMmS1BGosLvvvjumT5+eOkZEvFokUm1+7/d+L3UEyKVisRhDQ0MxMDAQjY35+HpdTfvpiB/96EepI4yyn0J+NDQ0RENDQ00eJJ199tlx9tlnp47xOpdffnnqCAAAAAAAAAAAALmWt/rlaqyHq8Y7IfBaxWIxent7U8eomGq8f3jOOeekjgD7Vcv18HtTjfeZzj///NQRRrnPVJ2q8ecXldfX16fx/QRkfU8M1jcAAADwWnk7fxnhfReQhdqvXAMAqtJxxx0XK1asSB1jDzt27IhPfOIT0dzcHNdcc000NTWljhStra2pI9S8L3/5y3H66aenjhE/+MEP4sorr4xPfepT8ad/+qep4+yho6MjdQTIpZGCpb6+vlxcDKuW/XTE9ddfHxdeeGF87GMfi7/6q79KHSci7KeQN8ViMfr6+lLHeFNuvvnmqpmAPuLHP/5xXHrppXHqqafGmWeemTpOvOMd70gdAQAAAAAAAAAAIBN5ql+utnq4yy67LJYuXVpVd0LUw7EvxWIxtm3bljrGQavG+4dnnHFGvPzyy3HRRRfFvHnzUseJCPcP2bdarIffm2q7z/TCC8zWeXUAACAASURBVC/E5z//+TjkkEPi8ssvj7q6utSR3GeqMtX082vjxo3xqU99KqZNmxZXX311Vfx5HZGXn1/9/f0a308g1vfYWN8AAABAnuXl/CWiut53RURs2bIlTj/99Jg8eXJcc8010dDQkDpSROTnfReMt9quXAMAqta0adPi5JNPTh1jD1dffXVEROzevTs2bdoUf/Znf5Y4EZWwcOHCWLhwYdIM/f39cdppp0VExOOPP151f/aBbIwULPX398ekSZMSpzl41bCf/kd/93d/FxERd999dyxbtqwqBlIB+VIsFmtuQvqHPvSh1BFe55/+6Z8iIuKnP/1pfP/734/JkycnTgQAAAAAAAAAAJBPeapfrrZ6uL/8y7+MiIgVK1bEZZddVjUNFGBvarEGdm+q7f7h6tWr4+WXX466urp48skn4wtf+ELqSLBfedkLqu0+0z//8z9HfX19vPzyy9Hc3Bzvf//7U0eiylTTz6+///u/j/r6+ti6dWtMnTo1jjvuuNSRckfj+4nF+p5YrG8AAABgb/Jy/hJRXe+7IiIuuOCCqKuri+3bt0e5XI6PfOQjqSMBB6E+dQAAgPFy++23R2NjYwwPD8e5556bOg45smzZsujq6oqIiEcffTQ2b96cOBEwHv7jxTAqa9OmTfHAAw9ERMSOHTvi5ptvTpwIyKM8HSSlsnv37vjlL385+t8vu+yytIEAAAAAAAAAAAByTP1yNl588cV4+umnIyJi48aNceeddyZOBPunBjYb119/fRQKhRgeHo7LLrss+vr6UkeC/bIXZGPZsmUxNDQUhUIhLr300tRxYJ+Gh4fj+9//fgwNDUWxWIzrr78+daRc0vieFKzv8WF9AwAAAHvj/CU7V111VURENDY2xg9+8IPEaYCDZbAFADBh/PSnP41yuRzDw8PxxBNPxL333ps6Ejlx3nnnRX39q4/WdXV1cddddyVOBIwHF8Oyc/3110ddXV1ERNTX1ysEBzLhIOng3XPPPVEulyMiYnBwMP71X/81hoaGEqcCAAAAAAAAAADIJ/XL2bjuuuuisbExIl5toHDxxRcnTgT7pwY2G9dee20MDAxERMT27dvj5ptvTpwI9s9eUHlr166Nxx9/PCIiyuVy/PjHP44dO3YkTgV7t3Llyli/fn1EvPr94Morr0ycKJ80vicF63t8WN8AAADA3jh/ycamTZvivvvui6GhoRgYGIibbropOjs7U8cCDoLBFgDAhPDYY4/Fpk2bRv+6UCjE+eefnzARefHwww/Hww8/HIODgxHxagP222+/PXGqfBhpag/VqlQqRUREX19f4iT5c/XVV8fw8HBEvNoofcWKFfHyyy8nTgXkTalUsocfpBUrVuxRwLtu3bq47bbbEiYCAAAAAAAAAADIL/XL2bj22mtH74QMDAzELbfcEps3b06cCvatVCrF7t27U8fIlQ0bNsQjjzwyeo+hvr4+LrroosSpYP/Uw1fejTfeGPX1/96CpVwux7JlyxImgn277LLLolAojP71unXr4tFHH02YKJ/6+vqiqakpdQwmGOt7fFjfAAAAwN44f8nGjTfe+Lq+kldffXWiNEAlGGwBAFWuvr4+hoaGUseoeXfcccceB/jlcjmuu+66WL9+fcJU5MF55523x5+tgYGBuPXWW0cLmTlwg4ODexSCQrVpaWmJiIhdu3YlTpIvnZ2d8Ytf/GKP55+6urpYunRpwlRAHrW0tNjDD9JPfvKTPabM19fXx7nnnpswEQAAAAAAAAAAQH6pX668V155JR588MHX3QFRu0w1a25utg9U2Gub2Q8ODsbKlSvjt7/9bcJUsH/q4Svv2muv3eOZYHh4OL73ve8lTAR719PTE9dee22Uy+XRz4rFYlx33XUJU+XTzp07Y9KkSaljMIFY3+PH+gYAAAD2xvlLNl47xGJwcDAuueSSRGmAStAlFgCqnMEWlXHbbbfF4ODgHp/V19fHxRdfnCgRebB58+a4+uqr9ygOiXi1Kftjjz2WKFV+DA0NGWxBVRspWNq5c2fiJPlyww03vO5i2MDAgJ/ZQMU5SDo4W7ZsiSeffHKPzwYHB+NnP/tZPProo4lSAQAAAAAAAAAA5Jf65cq7+eabo66ubo/PBgYG4rvf/W6iRPDGJk2apAa2wq6//vrXfdbY2Bg//OEPE6SBsVEPX1lbt26NX/7yl3vc5x4aGopf//rXr6ubh9Suvvrq6O/v3+Oz/v7+uPLKKxMlyi+N7xlv1vf4sb4BAACAvXH+UnmdnZ1xzz337NELdnh4OB555BH9OqGG6RILAFXOYIuDt2vXrrj33ntf979juVyOf/u3f4u+vr5Eyah1F1100euar0dEFAqFuP322xMkyheDLah2IwVLXkJW1rJly153OSwi4tlnn41f//rXCRIBeTVp0iSXew/CihUr9vp5oVCIb3/72+OcBgAAAAAAAAAAIP/UL1feddddt9fPn3nmmXjggQfGOQ2MjRrYytq2bVv87Gc/26ORSsSrdw+/+93vvu5zqBb2gsq65ZZb9nlX9Pvf/36CRLBvl1566V4/f/755+Opp54a5zT5pvE94836Hj/WNwAAALA3zl8q76abbtrrGUyxWIylS5cmSARUgi6xAFDlDLY4eHfffXeUy+W9/tq2bdvi2muvHedE5MHAwEBccMEFMTAwsNdfu/XWWxOkyheDLah2IwVLXkJWTnd3d6xatWqvFz8KhUL88Ic/TJAKyCsHSQdnxYoV0djY+LrPy+VyLF26NDZt2pQgFQAAAAAAAAAAQH6pX66snp6euOuuu/ZZu3zJJZckSAVvTA1sZd166637vL+5cePGWLVq1TgngrGxF1TW9ddfv9e7jOVyOS699NLo6+tLkApe74UXXoj7779/rz+7CoWCO/MVtmvXLo3vGTfW9/iyvgEAAIC9cf5SecuWLYu6urrXfd7f3x+XXHLJXnt5AtVPl1gAqHIGWxy8O+64I4rF4j5//bzzzhvHNOTFDTfcEK+88spef214eDjuu+++6OnpGedU+TI4OBgNDQ2pY8A+NTU1RWNjo5eQFXTzzTfv87mnXC7H5ZdfrhAcqBgHSQfnpz/96T4HCEZE/N//+3/HMQ0AAAAAAAAAAED+qV+urJ/85Cf7bJBQLpfjyiuvdC+EqjRp0qTo7+/fbx0nY3fDDTfstZl9RERjY6OaWKqWevjK6e3tjeXLl+/zuWDbtm1x6623jnMq2LvLLrssGhsb9/pr5XI5fvzjH49zonzbuXNntLS0pI7BBGF9jy/rGwAAANgb5y+VtWPHjli5cmUMDg7u9de3bt0ay5cvH+dUQCUYbAEAVa6hoWGfD+KMzS233BL9/f17/bWhoaF46KGH4le/+tU4p6LWnXfeefssWo54dSjD3XffPX6BcmhoaGi//xtDNWhpafESsoKWLVu233W/Y8eOuOWWW8YxEZBnkyZNil27dqWOUZOeeeaZ2LBhwz5/vVwux7e//e19fg8DAAAAAAAAAADgwKhfrpwbb7xxn01DIyL6+vri2muvHcdEMDaTJk2KiFAHWwF9fX37HXIzMDAQ119/fWzZsmWck8EbUw9fOXfccUf09fXt89fr6+vjoosuGsdEsHfDw8Px/e9/f7/DrZ566qlYvXr1OKbKt507d44+e0GWrO/xZ30DAAAAe+P8pbJuuumm/fbSbWxsjB/84AfjmAioFF1iAaDK1dfXx9DQUOoYNevFF1+MF154Yb9/T6FQiPPPP3+cEpEHjz/+eNx3331v+EX5jjvuGMdU+WOwBbXAS8jK6enpieXLl+/zQkjEq89Fl1566TimAvLMhPQDt2LFiv1e5o14dSL6smXLxikRAAAAAAAAAADAxKB+uTLK5XLceuut+20aGhHxve99b5wSwdgZbFE5K1asiN7e3jf8+370ox+NQxp4c9TDV84NN9yw3/r4wcHBWLFiRaxdu3YcU8HrrVq1Kl566aX9/j2FQiFuvPHGcUqUb8PDw9Hb26vxPePC+h5f1jcAAACwL85fKuuaa67Zby/JgYGBuPHGG6Ozs3McUwGVoEssAFQ5gy0OzvLly1/3WUNDQxSLxWhqaopisRiDg4NxzTXXxObNmxMkpBaNDEJpbGyMpqamaGpqel3hYrlcjptvvjlFvNww2IJa4CVk5dx22217vRjW2NgYhUIhCoVCRETceeedsXHjxvGOB+SQPfzALV++/HVD3kaejYvFYjQ0NMTQ0FD8n//zfxIlBAAAAAAAAAAAyCe1b5WxatWq2LFjx+s+LxQKo/Vw9fX18eCDD8bq1asTJIR9G2m+ai84eDfeeGPU1dXt8Vl9ff3oHYampqYYGhqKiy++OFFC2DfPBJUxMDAQN9100+vuNDU0NEShUIhisRjFYjGGh4fj8ssvT5QSXvXDH/4w6urqRn9OFQqF193BLZfLcdVVVyVKmC+9vb0xNDSk8T3jwvoeX9Y3AAAAsC/OXypn586dcfvtt8fAwMAen4+cwYz8Z2BgIK6++upEKYED1fjGfwsAkJLBFgfnF7/4RcyaNSumTp0a7e3tMWPGjFi5cmUcd9xxsXjx4mhra4v29vZob2+P4eHh1HGpEWeccUZ8+MMfjq6urujq6oru7u745je/Ge9973ujubk5tmzZEl1dXbFjx4544YUX4vDDD08dueaM7HsGW1DtvISsnLVr18aJJ54Yw8PDMX369Kivr4//9//+XxxyyCExf/78iIhobW2NQqEQGzZsiLe85S2JEwO1zh5+YAYHB+Pee++NadOmxbRp02LGjBnR0tISK1asiM9+9rOxYMGC6OjoiGnTpkVHR0cMDg5GQ0ND6tgAAAAAAAAAAAC5oPatMp544ol417veFW1tbVFXVxczZsyIJ554IqZPnx4LFy4c/Xzq1Kl7HYABKRlsUTnr16+Pd7/73TFp0qQolUrR3NwcDz/8cCxatChmzZoVra2t0djYGJMnT46enp5obW1NHRlGeSaojKeeeioOP/zwaGlpiUKhEG1tbbF169bYuHFjLF68OFpaWqKpqSlaWlrisMMOSx2XCe7II4+Mv/mbv4nt27fH4OBglMvluOuuu2LhwoUxderU2L59e+zevTsKhUJs27Ytpk6dmjpyTRvZYzW+ZzxY3+PL+gYAAAD2xflL5TzxxBNxwgknxODgYLS2tkZLS0usX78+tm7dGh/84AcjIkbPYLyngdpjsAUAVDmDLQ7O5Zdf/rrPfud3fidOPPHE+Id/+IcEiciDD3zgA3v89fbt22PJkiXxta99LU455ZREqfLFYAtqxaRJk2LXrl2pY+TCX//1X8df//Vf7/HZcccdF4sWLYolS5YkSgXkWUtLiz38ADQ0NMQrr7yyx2cbN26MQw45JP7kT/5k9OAIAAAAAAAAAACAylO/XBlnn312nH322Xt8dsopp8ScOXPioosuSpQKxqalpSUiDLaohJ/85Cd7/PW2bduira0tLr74YnfEqHrq4SvjmGOOiUceeWSPzy655JI455xzPBNQdf7u7/5uj78euctxxRVXuMuRgZE9VkM1xoP1Pb6sbwAAAGBfnL9UzqJFi+Kuu+7a47MlS5bERRdd5AwGckCXWACocgZbVF5bW1t0d3enjkGOdHV1RUREe3t74iT5MbLvNTQ0JE4C+9fS0uIySIYKhUL09/enjgHklAnpldPR0RF1dXXR2dmZOgoAAAAAAAAAAECuqV/OTqlUit27d6eOAW9opPmqhiqV19zcHBERvb29iZPAG1MPn53m5mbPBNSEcrkcERHFYjFxknwa2WM1vicF6ztb1jcAAACwL85fslUsFvWUg5ww2AIAqlxDQ0MMDg6mjpEr7e3to4MIoBJGBqUYbFE5I/tefb2vLFS3yZMnx44dO1LHyK1isThagAdQaZMnT46enp7UMXKhUCjElClTYsuWLamjAAAAAAAAAAAA5Jr65exoYk2taG1tjYiwF2SgWCxGfX29vYCaoB4+O6VSKcrlsrvdVL2R5l+FQiFxknwa2WM1vicF6ztb1jcAAACwL85fslUoFPSUg5zQJRYAqlx9fX0MDQ2ljpErBltQaSN/ntra2hInyY+Rfc9gC6pdW1vb6HAbKq9QKJiuC2Rm6tSpUS6XTUmvkI6Ojujs7EwdAwAAAAAAAAAAINfUL2enVCpFb29v6hjwhhobG6O1tdVekJFSqWSwBTVBPXx2SqVSRIS9gKo3cu+uWCwmTpJPI3fH29vbEydhIrK+s2V9AwAAAPvi/CVbxWJRTznICV1iAaDKGWxReYr4qTSDLSrPYAtqhZ8p2fISEsjSSOGpoXeVYbAFAAAAAAAAAABA9tQvZ0cze2pJW1ubGtiMGHJDrVAPn53m5uaICHsBVa9cLkdERKFQSJwkn7q7u6OhoSEmT56cOgoTkPWdLesbAAAA2BfnL9kqFAp6ykFO6BILAFXOYIvKa29v92WRiuru7o7W1lbFIRVksAW1wsWwbBUKhdECPIBKGxlKZh+vjOnTpxtsAQAAAAAAAAAAkDH1y9lpbm422IKa0d7eHtu2bUsdI5fsBdQK9fDZKZVKERH2AqreSPOvYrGYOEk+dXV1xdSpU6Ouri51FCYg6ztb1jcAAACwL85fslUsFvWUg5zQJRYAqpzBFpXX1tZmsAUV1dXVNTphk8ow2IJa4WdKtorFoum6QGYcJFVWR0dHbNmyJXUMAAAAAAAAAACAXFO/nJ1SqRS9vb2pY8CY2AuyUyqVNLOnJqiHz47BFtSKkeZfhUIhcZJ86u7udnecZKzvbFnfAAAAwL44f8lWoVCIcrkcw8PDqaMAB0mXWACocgZbVF57e7svi1RUd3f36IsIKmNwcDAiIhoaGhIngf1rb293GSRDIy8hAbIwUnxqH6+M6dOnR2dnZ+oYAAAAAAAAAAAAuaZ+OTua2VNL2tra3I/LiL2AWqEePjvNzc0REQZeUfX6+/sjIqJYLCZOkk/ujpOS9Z0t6xsAAADYF+cv2Rp536WvHNQ+gy0AoMo1NDQYbFFhbW1tsXPnzujr60sdhZzo6uoafRFBZYzse/X1vrJQ3dra2qKvr8+lhYwUi8XRAjyASiuVSlEqlVzqq5COjo7YsmVL6hgAAAAAAAAAAAC5pn45O5rZU0va29vVwGakubnZXkBNUA+fnVKpFBFhL6DqjTT+KhQKiZPkk8b3pGR9Z8v6BgAAAPbF+Uu2Rt53GWwBtU+XWACocvX19QZbVNjIAIJt27YlTkJedHV1KV6oMIMtqBUja99LyGwUi0UvIIFMtbW12cMrpKOjIzo7O1PHAAAAAAAAAAAAyDX1y9kplUrR29ubOgaMSVtbW3R1daWOkUv2AmqJevhsGGxBrejv74+IV+/gUXka35OS9Z0t6xsAAADYH+cv2Rl53zXy/guoXbrEAkCVM9ii8kYGWyjepVK6u7tH/1xRGQZbUCv8TMlWoVDwAhLIlEt9lTN9+vTo6uqKwcHB1FEAAAAAAAAAAAByS/1ydpqbmzWwpmZoppKdUqlkL6BmqIfPRnNzc0SEITdUvXK5HBEa32fF3XFSsr6zZX0DAAAA++P8JTsj77tG3n8BtUuXWACocgZbVF5bW1tEhOJdKqarq0vxQoUZbEGt8DMlW8Vi0QtIIFPt7e2xbdu21DFyoaOjI4aGhvxMBAAAAAAAAAAAyJD65exoZk8tMdgiO4bcUEvUw2ejVCpFRNgLqHr9/f0REdHY2Jg4ST51dXWNfv+C8WZ9Z8v6BgAAAPbH+Ut2CoVCRPz7+y+gdukSCwBVrr6+PgYHB1PHyJWRAQQmIVIpihcqb2SwRUNDQ+IksH8uhmWrUCh4AQlkyoT0yuno6IiIiC1btiROAgAAAAAAAAAAkF/ql7NTKpWir69v9D4DVDM1sNkplUrR29ubOgaMib0gG01NTVFXV2ewBVWvXC5HY2Nj1NdrHZSF7u7umDp1auoYTFDWd7asbwAAAGB/nL9kp1gsRsSr77+A2ubtNQBUuYaGBoMtKmzy5MlRKBR8YaRiuru7RwemUBkjF0Hq6uoSJ4H9a21tjUKhEFu3bk0dJZeKxaIXkECm2tvbfS+okOnTp0dERGdnZ+IkAAAAAAAAAAAA+aV+OTulUimGh4ejr68vdRR4Q+3t7bFz587o7+9PHSV3SqWSZvbUDPXw2airq4umpiZDbqh6/f39o03AqLzu7u7RwYIw3qzvbFnfAAAAwP44f8lOoVCIiHDODTlgsAUAVLnGxsYYGBhIHSN3pk6dGt3d3aljkBNdXV2KFypspJG9ohtqwYwZM+KVV15JHSOXCoWCF5BApuzhldPR0REREVu2bEmcBAAAAAAAAAAAIN/UvmWjubk5IkJDe2rCjBkzIiLsBRkw2IJa4pkgO/YCakG5XB5tAkZlDQ4ORmdnZ8yaNSt1FCYo6zs71jcAAADwRpy/ZGekr+RIn0mgdhlsAQBVrqmpKfr6+lLHyJ22tjaTEKmIvr6+2L17d7S3t6eOkisj+15TU1PiJPDGZs6cGZs3b04dI5cKhYIXkECmZs6c6SCpQkqlUkyaNCk6OztTRwEAAAAAAAAAAMg19cvZKJVKEWGwBbVhpAmrOtjKa25ujt7e3tQxYEzUw2enubnZMwFVr7+/f7QJGJW1ZcuWGBwcjJkzZ6aOwgRlfWfH+gYAAADeiPOX7IwMc+3v70+cBDhYBlsAQJVramry4J2B9vb26O7uTh2DHBgZkGKwRWUZbEEtmTVrlpeQGSkWi56DgEw5SKqs6dOnx5YtW1LHAAAAAAAAAAAAyDX1y9kYGWyhoT21YKQJq72g8kqlkmb21Az18NkplUqeCah6/f39o03AqKxNmzZFxL8PE4PxZn1nx/oGAAAA3ojzl+yMDHPVVw5qn8EWAFDlisXiaIN3Kqe9vX10IAEcjJE/R21tbYmT5IvBFtSSmTNnjhYyUVmFQsELSCBTM2fOjO3bt7twUiEdHR3R2dmZOgYAAAAAAAAAAECuqV/ORnNzc0SEhvbUhClTpkRzc7OGKhkw2IJaoh4+O/YCakG5XB5tAkZljTxjjQwTg/FmfWfH+gYAAADeiPOX7IwMcy2Xy4mTAAfLYAsAqHJNTU0GW2Sgra0turu7U8cgB0YGW7S3tydOki8GW1BLTNfNTrFY9AISyNRIAap9vDIMtgAAAAAAAAAAAMie+uVslEqliDDYgtoxY8YMQ24yoJk9tUQ9fHaam5vd7abq9ff3jzYBo7I2bdoUhULB3XGSsb6zY30DAAAAb8T5S3ZGhrn29/cnTgIcLIMtAKDKGWyRjfb29tGBBHAwRgakKF6oLIMtqCUuhmWnUCh4AQlkatasWRHhIKlSpk+fbrAFAAAAAAAAAABAxtQvZ8NgC2rNzJkzY/Pmzalj5E6pVIre3t7UMWBM1MNnx15ALSiXy6NNwKisTZs2xcyZM6Ouri51FCYo6zs71jcAAADwRpy/ZGdkmGu5XE6cBDhYBlsAQJUrFosaOmfAYAsqpaurK4rFYrS0tKSOkisGW1BLZs6cGZs2bUodI5eKxaIXkECmHCRVVkdHR2zZsiV1DAAAAAAAAAAAgFxTv5yN5ubmiAhNrKkZs2bNshdkoLm52YAbaoZ6+OyUSiV7AVWvXC6PNgGjsl555ZWYOXNm6hhMYNZ3dqxvAAAA4I04f8nOyDBX/XWh9hlsAQBVrqmpabTBO5XT1tYW3d3dqWOQA11dXdHW1pY6Ru709fVFXV2dohtqwsyZM6O3tzd27NiROkruFAoFLyCBTLW0tMSkSZNc6quQjo6O6OzsTB0DAAAAAAAAAAAg19QvZ6NUKkVEaGJNzZg5c6ZmKhnQzJ5aoh4+O4bcUAv6+/tHm4BRWa+88spo8zpIwfrOjvUNAAAAvBHnL9kZ6StZLpcTJwEOlsEWAFDlDLbIRnt7e3R1daWOQQ50d3dHe3t76hi509fXF8ViMerq6lJHgTc0c+bMiDBdNwvFYjGGh4djYGAgdRQgx1zqq5zp06fHli1bUscAAAAAAAAAAADINfXL2TDYglqjBjYbI4MthoeHU0eBMbEXZKNUKkVvb2/qGLBf5XJZ4/uMbNq0afR7F6RgfWfH+gYAAADGwvlLNhoaGqKhoSH6+/tTRwEOksEWAFDlisWiB+8MtLW1xbZt22JoaCh1FGpcV1eXwRYZ6Ovri6amptQxYExcDMvOSOGd6bpAlhwkVU5HR0ds3brVRT4AAAAAAAAAAIAMqV/ORkNDQxQKBU2sqRkzZ86MTZs2pY6RO83NzTE0NOROJzVDPXw2RobcQDXr7++PQqGQOkYuvfLKKxrfk5T1nR3rGwAAABgL5y/ZKRQKespBDhhsAQBVTvFTNtrb22NoaCi2b9+eOgo1rru7O9ra2lLHyB2DLaglhxxySNTX18eGDRtSR8mdkcI7F0KALM2ePdseXiHTp0+PgYGB2LZtW+ooAAAAAAAAAAAAuaV+OTvNzc3ucVEzDjnkkNi0aVMMDg6mjpIrpVIpIsJeQM1QD58NzwTUgnK5HMViMXWMXFq/fn3Mnj07dQwmMOs7O9Y3AAAAMBbOX7JTLBb1lIMcMNgCAKpcS0tL7Ny5M3WM3BkZRNDd3Z04CbWuq6sr2tvbU8fInR07dkRra2vqGDAmhUIhZs6cGevWrUsdJXdGCu9M1wWydOihh9rDK6SjoyMiIjo7OxMnAQAAAAAAAAAAyC/1y9kplUqaWFMz5syZEwMDA7Fx48bUUXLFYAtqjXr4bJRKpejt7U0dA/arv78/CoVC6hi5Uy6X45VXXok5c+akjsIEZn1nw/oGAAAAxsr5S3YKhYKecpADBlsAQJWbPHly9PT0pI6ROyODCLq6uhInodZ1dXWNDkqhcnbu3GmwBTVlzpw5XkJmYKTwznRdIEv28MoZGWyxZcuWxEkAAAAAAAAAAADyTe1bNjSxppaMNGO1F1RWc3Nz6Yj5YQAAIABJREFURIS9gJrhmSAbhl1RC8rlchSLxdQxcmf9+vUxODio8T1JWd/ZsL4BAACAsXL+kp1isainHOSAwRYAUOVaW1ujp6cnhoeHU0fJFYMtqJTu7u7RP09UjsEW1Jo5c+bESy+9lDpG7owU3pmuC2Rpzpw5sWHDhhgcHEwdpeZNnz49IiI6OzsTJwEAAAAAAAAAAMg39cvZaG5u1sSamjF79uxoaGjQUKXCSqVSRIS9gJqhHj4bngmoBf39/VEoFFLHyJ2R71mHHnpo4iRMZNZ3NqxvAAAAYKycv2SnUCjoKQc5YLAFAFS51tbWGBoait7e3tRRcqWtrS3q6uqiu7s7dRRqXFdXV7S1taWOkTs9PT0GW1BTTNfNxkjhnem6QJbmzJkTg4ODsXHjxtRRat6kSZOiubk5tmzZkjoKAAAAAAAAAABArqlfzkapVNLEmppRKBRi1qxZhtxUmMEW1Br18Nloampyr5uqVy6Xo1gspo6RO+vWrYvGxsZ4y1vekjoKE5j1nQ3rGwAAABgr5y/ZKRaLespBDhhsAQBVbqSxe09PT+Ik+dLQ0BCtra3R1dWVOgo1rru7O9rb21PHyB2DLag1hx56qIthGRgpvPMSEsjSoYceGhFhH6+QadOmRWdnZ+oYAAAAAAAAAAAAuaZ+ORsGW1BrDLmpvObm5ogIDe2pGerhs9Hc3OyZgKrX398fhUIhdYzceemll2L27NnR0NCQOgoTmPWdDesbAAAAGCvnL9kpFAp6ykEOGGwBAFVupLH7zp07EyfJn/b29uju7k4dgxo2ODgYO3bsMNgiAwZbUGvmzJkTL7/8cgwMDKSOkisjhXflcjlxEiDPRopRHSRVxvTp0w22AAAAAAAAAAAAyJj65WxoYk2tOfTQQ+Oll15KHSNXSqVSRIS9gJqhHj4bhl1RC/r7+6NYLKaOkTvr1q2LOXPmpI7BBGd9Z8P6BgAAAMbK+Ut2isWinnKQAwZbAECVG2ns3tPTkzhJ/rS3t0dXV1fqGNSwbdu2xdDQULS1taWOkjsGW1Br5syZE4ODg7Fx48bUUXJlpPDOdF0gS4VCIWbNmuVSX4V0dHTEli1bUscAAAAAAAAAAADINfXL2SiVStHb25s6BozZnDlzNFOpMIMtqDXq4bPhmYBaUC6Xo1AopI6ROy+99JLG9yRnfWfD+gYAAADGyvlLdgqFgsEWkAMGWwBAlTPYIjttbW3R3d2dOgY1bGQwSnt7e+Ik+WOwBbVmpJDJhZDKGim88xISyJpLfZXT0dERnZ2dqWMAAAAAAAAAAADkmvrlbJRKJc3sqSlqYCuvubk5IkJDe2qKvaDympubPRNQ9fr7+6NYLKaOkTvr1q2LQw89NHUMJjjrOxvWNwAAAPBmOH/JRrFYjP7+/tQxgIPUmDoAALB/BltURl9fXzzzzDOxevXqWLNmTbzyyitRKBTi8ccfj9///d+PnTt3xs6dO2PKlCkxadKkmDRpUkydOjWmTJkSs2fPjoULF8aCBQti7ty50dDQkPq3Q4a6urpi9erV8fTTT8dzzz0XW7duHf3z0d3dHT09PTE0NBRTpkyJUqkUxx57bFxwwQUxe/bsOOyww2LBggWxcOHCmDFjRurfSk3r6emJSZMmpY4BY3bIIYdEQ0NDrFu3Lo4//vjUcWrK8PBwrF27NtasWROrV6+OtWvXxrZt22LHjh2xffv2OPLII+PP//zPR39GT5kyZfS/T58+PebPnx8LFiyI+fPnR0tLS+rfDlCjHCQduNc+P/f29sauXbvik5/85Ouen//j962Ojg7PzwAAAAAAAAAAAAdI/fKB21/98oYNG6K/vz+OPfbYaG5uVr9M1ZszZ05s3LgxBgYGorFR24A3Y2/3DUfujy1cuDD+5V/+Jb7+9a+7b0hNUA9/4PZ1n3Tjxo0xb968OP7449XDM+7297z62vvO99xzT5x22mmeVyto/fr1Gt+TGes7LesbAAAAeDOcvxy4/fXz3L59e9x5553xnve8x/kL1DAVKgBQ5SZPnhx1dXWxY8eO1FFqxuDgYPzmN7+JVatWxT333BNPPvlkvPjiizE4OBj19fUxd+7cOOSQQ2LSpEkxc+bMaG1tHf0ys23bttEvPc8//3xs37491q5dGxs3boyIiKampnj7298exxxzTCxevDgWL14cRx55ZOLfMQeqp6cnfv7zn8eqVavigQceiKeeeio2b94cERGlUimOPPLI6OjoGP3zccQRR8SkSZOivr4+duzYEdu2bYu3vOUt8eKLL8ZDDz0Uzz///OgQmvb29liwYEEsWrQoTjrppPjgBz8Y7e3tKX+7NaWnpycmT56cOgaMWWNjYxx66KHxwgsvpI5S9datWxerVq2KlStXxqOPPhpr1qyJXbt2RUTE9OnTY+7cudHe3h6tra3R1tYWJ510UrS3t0dvb+/oS8mXXnopdu7cGZs2bYoXXnghBgYGoq6uLt72trfFwoUL44QTToiTTjopFi1a5HIOMCaHHXZYrFq1KnWMqvdmnp/r6ur2+vzc1dUVL730UnR2dnp+BgAAAAAAAAAAOEDql8fuzdQvv/3tb49JkyapX6ZmHHbYYTE4OBhr166NI444InWcqvVm7hu2tbXF8ccf774hNUU9/Ni8mXr4KVOmxIknnqgennHxZp5XJ0+eHG95y1s8r2Zk165dsXHjxjj88MNTRyEnrO/qYX0DAAAAb5bzl7F5s/083/e+9zl/gRyoGx4eHk4dAgDYv6lTp8a5554bn/vc51JHqVobNmyI6667Lu6666645557oqurK2bOnBkf+tCH4l3velcsWLAg5s+fHwsWLIimpqY3/c/ftm1brF69evQ/Dz30UPz85z+PnTt3xpw5c2Lx4sXxkY98JD7+8Y9Ha2trBr9DKuXBBx+Mm2++OVatWhUPPvhgDAwMxNFHHx0f+MAH4h3veEcsWLAgFixYEG9729uivr7+Tf/z161bF2vWrIk1a9bEU089Fffee2/85je/ibq6uvhP/+k/xeLFi+MP/uAP4oMf/GDU1dVl8DvMh9bW1rjgggviT//0T1NHgTE7+eSTY968eXHxxRenjlJVdu/eHbfeemssX748Vq1aFc8++2yUSqU4/vjjY9GiRTF//vxYuHBhLFiwIDo6Ot70P7+/vz+ef/75ePrpp2P16tXx+OOPx9133x0vvfRStLa2xgc+8IFYvHhxnHrqqQrOgH363ve+F1/5yleiq6srdZSq4/kZAAAAAAAAAACgOqlf3jv1y0wkW7dujY6Ojli+fHn83u/9Xuo4VcV9QyYS9fD7ph6eauR5tXo9/vjjccwxx8Tjjz8eRx99dOo41CDru3pZ3wAAAMCb5fxl35y/AAZbAEANOOKII+LMM8+Mv/mbv0kdpars2rUrbrjhhrjiiitixYoVMXny5DjxxBNj8eLFcdJJJ8XRRx+d6ReNcrkcDz74YKxcuTJWrVoV9957bxQKhfjEJz4RZ5xxRpx00knR0NCQ2b+fsVu7dm0sXbo0rrjiinj66adj3rx5cfLJJ8fixYtj8eLFMWvWrEz//Vu3bo2f/exnsWrVqrjrrrviySefjLlz58YZZ5wRZ5xxRsyfPz/Tf3+t6evri1KpFDfddFN87GMfSx0HxuwLX/hCPPfcc3HXXXeljpLc8PBw3HvvvXHFFVfEsmXLYseOHfHe9753dN993/veF6VSKdMMzzzzzOjP6JUrV8aWLVvihBNOiE9/+tPxyU9+MqZOnZrpvx+oLXfeeWd85CMfic7Ozpg2bVrqOMl5fgYAAAAAAAAAAKh+6pf/nfplJrJp06bF17/+9TjzzDNTR0nOfUMmKvXwe1IPTzXyvFobbrrppvijP/qj6OnpiZaWltRxqBHWd22wvgEAAIA3y/nLnpy/AP+RwRYAUAOOPfbY+PCHPxz/8i//kjpKVXjiiSfiW9/6VlxzzTWxe/fu+OhHPxpnnHFG/OEf/mE0NTUly7V169a46qqr4oorroj7778/3vrWt8ZnPvOZOOuss2LmzJnJck1UQ0NDcdNNN8W//du/xc9+9rOYNm1anH766XHGGWfEcccdlzTbE088EZdffnlceeWVsX79+njve98bZ555ZvzxH/9xFAqFpNmqwYYNG+Ktb31r/OIXv4j3v//9qePAmC1ZsiS++93vxosvvpg6SjLbtm2LCy+8MC699NJ47rnn4p3vfGd85jOfidNPPz0OOeSQZLkGBgbijjvuiKVLl8ZNN90Uw8PD8fGPfzzOOeecWLRoUbJcQPV4/vnnY968efHAAw9M2H3B8zMAAAAAAAAAAEBtUb+sfhkiXr17uHjx4vjmN7+ZOkoy7hsy0amHVw9P9fK8WlvOPffc+Na3vhXr169PHYUaYH3XFusbAAAAeLOcvzh/AfatPnUAAOCNTZs2LbZu3Zo6RnIPPfRQfOITn4h3vvOd8cADD8T/+l//K9avXx833XRTnHrqqUmLTCNe/f/pz//8z+O+++6L1atXx2c/+9m49NJL47DDDouzzjor1q1blzTfRDEwMBBLly6Nd77znXHqqafGlClT4oYbbogNGzbE+eefn/xLcETE0UcfHUuWLIm1a9fGnXfeGfPmzYvPf/7zMX/+/Pjud78bfX19qSMmNbLfmU5KrZk3b16sW7duQq7hzZs3x1e/+tWYO3dufOMb34iPf/zj8eijj8ajjz4a55xzTtIivIiIxsbG+C//5b/Ej3/843j55ZfjggsuiBdffDHe8573xEc+8pG4++67k+YD0ps7d24Ui8V47rnnUkcZd56fAQAAAAAAAAAAapP6ZfXLEBFx5JFHxrPPPps6RhLuG8Kr1MOrh6f6eF6tTc8991wceeSRqWNQ5azv2mR9AwAAAG+W8xfnL8C+GWwBADWgo6MjOjs7U8dI5v7774+PfvSjceyxx8a6deviuuuui8ceeyy++MUvxowZM1LH26v58+fHP/7jP8YLL7wQS5YsiRtuuCGOPPLI+PznPx+//e1vU8fLpcHBwbjkkkti4cKF8Wd/9mfxu7/7u/HYY4/FjTfeGB/72MeqcnJifX19fPjDH46lS5fGM888E7//+78f55xzThxxxBHxrW99a8J+IR7Z7zo6OhIngTfnyCOPjKGhoXjxxRdTRxk3mzZtirPPPjsOP/zwuPjii+Nv//Zv47e//W2ce+658c53vjN1vL2aOnVq/I//8T/i/vvvjxUrVkS5XI7FixfHCSecEMuXL08dD0ikoaEh3va2t02ogyTPzwAAAAAAAAAAALVN/bL6ZYh4dcjNRKqBjXDfEF5LPbx6eKqH59Xa9txzz8W8efNSx6BKWd+1zfoGAAAA3iznL85fgH0z2AIAasC0adNi69atqWOMu82bN8dnP/vZeN/73hc9PT1x++23x69+9av4r//1v0ZdXV3qeGPS3NwcX/ziF+PZZ5+N73znO7Fq1ao46qij4utf/3r09/enjpcb999/fxx33HHxF3/xF3HyySfH6tWr4/LLL4+jjjoqdbQxmzt3bnznO9+J559/Pv77f//v8fd///dxzDHHTLiikIgY3e/a29sTJ4E3Z6Sg6dlnn02cJHuDg4Nx4YUXxsKFC2PZsmXxz//8z/Hiiy/GV77ylZgyZUrqeGN28sknx6pVq+Lee++NqVOnximnnBKf+MQnYu3atamjAQlMpEt9np8BAAAAAAAAAABqn/pl9csQ8e81sMPDw6mjZM59Q9g39fDq4UnL82o+aHzP3ljf+WB9AwAAAAfC+YvzF2DvDLYAgBowbdq06OzsTB1j3AwPD49+ibn99tvjsssui5///OdxyimnpI52wIrFYnzuc5+Lp556Kr7+9a/H//7f/zt+53d+J+64447U0WpaV1dXnHXWWXHCCSfElClT4uGHH46LLroojjjiiNTRDtghhxwS5557bqxZsybe+973ximnnBJ/+Id/OGGKQiIiOjs7Y8qUKVU5lRP2Z/LkyTFjxozcv4R85JFH4v3vf3986Utfik9/+tPx9NNPx5e+9KVoaWlJHe2Ave9974vbbrstVq5cGatXr453vOMd8bWvfc2kXZhg5s2bl/vLvZ6fAQAAAAAAAAAA8kP9svpliHi1BnbXrl2xcePG1FEy474hvDH18LVJPXw+eF7Nh4GBgVi7dq3G9+zB+s4H6xsAAAA4UM5fapPzF8iewRYAUAOmTZsWW7duTR1jXKxZsyaOP/74+NznPhef+cxnYs2aNfHpT386dayKKRQKcdZZZ8Xjjz8eRx11VPzn//yf41Of+lRs27YtdbSac9VVV8X8+fPj2muvjSuuuCLuvvvuOProo1PHqpjZs2fH5ZdfHj/5yU/i6aefjqOPPjq+853vpI41LrZu3RodHR2pY8AByfN03d7e3vjiF78Yxx57bDQ3N8dvfvOb+Pa3vx2TJ09OHa1iFi9eHA8//HB85StfiW984xvxu7/7u/HrX/86dSxgnOR5D4/w/AwAAAAAAAAAAJBHea59U78MYzPSnDWve4H7hjA2eX4miFAPT3XyvJovv/3tb6NcLmt8T0RY33ljfQMAAAAHyvlLbXP+Atkx2AIAasC0adOis7MzdYzM/ehHP4pjjz02hoaG4qGHHop//dd/jdbW1tSxMjF37ty48cYb45ZbbomVK1fm+qC/0np7e+N//s//GX/8x38cp512Wjz11FNx+umnp46VmY9+9KPx2GOPxZe+9KU466yz4r/9t/8W3d3dqWNlqrOzM6ZNm5Y6BhyQt7/97fHMM8+kjlFxq1evjuOPPz6WLl0aP/zhD2PlypVx1FFHpY6ViaampvjqV78aTzzxRMyePTtOOOGEOP/882N4eDh1NCBjb3/722Pjxo2xY8eO1FEqyvNz/p+fAQAAAAAAAACAiUv9cu1Tv8zBeutb3xotLS2xZs2a1FEqzn1D9w0ZO/Xw+aAevnZ4Xs3f8+rI9yqN77G+rW8AAACAEc5f8sH5C1SewRYAUANmzJgRu3fvjp6entRRMrF79+4466yz4k/+5E/i9NNPj1/84hdxzDHHpI41Lv7gD/4gHn300Zg/f34cf/zxsWTJktwd9FfSmjVr4vjjj4+rrroqrrrqqvjOd74TU6ZMSR0rc6VSKf7pn/4p7rrrrrj//vvjXe96V9x3332pY2Vmy5Yt0dHRkToGHJCFCxfGU089lTpGRV133XXxnve8JxobG+PXv/51fOpTn4q6urrUsTJ3+OGHx/Lly2PJkiXx5S9/Of7oj/4otm7dmjoWkKGFCxfG8PBwrF69OnWUivH8PDGenwEAAAAAAAAAgIlL/XJ+qF/mQNXV1cX8+fPj6aefTh2lYtw3dN+QN089fH6oh69+nlfz+bz61FNPxaxZs2LatGmpo5CQ9W19AwAAAPxHzl/yw/kLVJbBFgBQA2bPnh0RERs2bEicpPKef/75WLRoUVxxxRVxww03xEUXXRTFYjF1rHE1Y8aMuO222+JrX/tafPWrX41TTz01du7cmTpW1bnmmmvi3e9+dzQ1NcWjjz4ap512WupI4+5DH/pQPPLII7Fw4cI48cQT48ILL0wdKRMbNmyIt771raljwAF5xzveEWvXrs3FPl4ul+MLX/hCfPKTn4zPfvaz8ctf/jLmzZuXOta4qquri7POOivuvPPO+NWvfhXvfve74ze/+U3qWEBGjjjiiCiVSvHkk0+mjlIRnp8nzvMzAAAAAAAAAMD/Z+/Ow6Ouzv6Pf7ITIAmIbEEwBEICJMSQQBYQSGQRLVqttiogpai1itpaFxTbp7aI2rq1aqXa52cBpYq2FKkLiEGIkoSwhS0EDCBlkS2JJGyJyfz+4BkKypJlvnO+M9/367qe65KYnvt+5HvO3DPnPnMAOBf9y/6F/mU0VZ8+ffzmkhvOG3LeEE1DP7z/oR/efqhX/bteLSkpUe/evU2nAUOY38xvAAAAAACAs2H/xf+w/wJ4BhdbAADgA9wXW+zevdtwJp5VXFysQYMGKSQkRGvWrNH3v/990ykZExgYqKlTp+qTTz5RXl6errjiCh06dMh0Wrbx4osv6qabbtLEiROVl5enmJgY0ykZ06FDB3344YeaOnWqJk+erEcffVQul8t0Wh61Z8+eU+se4Gv69Omj+vp6n79d98iRI7r22mv11ltvad68eXruueccdxDkdO4PIrt3766hQ4dqyZIlplMCYIGgoCDFxcX5xaE+6uf/ckL9DAAAAAAAAAAAAAAAAMC56F/2T/Qvo7F69+7tF1+mwnnD/+K8IRqLfnj/RD+8fVCvnskf61W++N65mN9nYn4DAAAAAAD8F/sv/on9F6D5uNgCAAAf0L59e4WGhmrPnj2mU/GYpUuXaujQoerdu7eWLFmiSy+91HRKtjBkyBAVFBTo0KFDGjx4sHbu3Gk6JeOefvpp3XffffrVr36lP/3pT45uBHELDAzUr3/9a82cOVPPPPOMfvzjH6u2ttZ0Wh6zZ88ede7c2XQaQJP06NFDYWFhPv0hZEVFhUaNGqXCwkItXLhQ1157remUbKFDhw766KOPdNVVV+nKK6/U3LlzTacEwAK9e/f26TVcon4+G3+vnwEAAAAAAAAAAAAAAAA4F/3L/ov+ZTRG7969tWPHDh07dsx0Kk3GecOz47whGoN+eP9EP7x51Ktn52/16ubNm/niewdifp8d8xsAAAAAAOC/2H/xT+y/AM3DxRYAAPiAgIAAderUyW8utnjvvfc0evRo5eTk6IMPPlBkZKTplGwlNjZWeXl5atGihTIyMlRcXGw6JSPq6up05513aurUqXr11Vf1m9/8xnRKtjN+/Hi9//77+uc//6kf/OAHPt187lZTU6NDhw4pOjradCpAkwQHB6tnz54++yHknj17NHToUO3evVvLly9XZmam6ZRsJTQ0VHPmzNHkyZN1yy23aMaMGaZTAuBhvryRRP18Yf5YPwMAAAAAAAAAAAAAAABwNvqX/Rv9y2io3r17q76+Xlu2bDGdSpNw3vD8OG+IhqIf3r/RD28G9er5+Uu9euDAAR08eJAvvncY5vf5Mb8BAAAAAABOYv/Fv7H/AjQNF1sAAOAjunTpor1795pOo9n+9a9/6frrr9dPfvITvfvuu2rRooXplGypU6dOWrJkieLi4jR8+HBt3rzZdEpe5XK5NGnSJM2ePVv/+te/dNttt5lOybZGjBihhQsX6vPPP9d1113n8zc97tmzRy6Xi4st4NN89UPIvXv3avDgwZKkzz//XPHx8YYzsqeAgAA9++yz+p//+R/dddddeuWVV0ynBMCD+vTpo23btunEiROmU2kU6ueG87f6GQAAAAAAAAAAAAAAAADoX/Zv9C+jIeLi4hQSEuKTawHnDRvG6ecN0TD0w/s/+uG9i3q1YfyhXnXXUHzxvXMwvxuG+Q0AAAAAAMD+ixOw/wI0HhdbAADgI6Kjo7V7927TaTTL0qVLdfPNN+u2227TSy+9pMBASpHzadOmjT766CMlJCRoxIgR2rlzp+mUvOahhx7SnDlz9I9//EPf+973TKdje1lZWVqyZIkKCgp06623qr6+3nRKTea+wIeLLeDLfPFg2OHDh3X11VcrKChIixcvZg42wK9+9Sv99re/1eTJk/XOO++YTgeAh/Tu3VvffPONtm7dajqVRqF+bhx/qp8BAAAAAAAAAAAAAAAAgP5lZ6B/GecTEhKiHj16+NxawHnDxnHyeUM0DP3wzkA/vHdQrzaeL9erJSUlioyM5O/ZIZjfjcf8BgAAAAAATsb+izOw/wI0Dt0dAAD4iOjoaO3Zs8d0Gk22fv16XXfddRo1apRefvll0+n4jPDwcP373//WRRddpKuuukrl5eWmU7LcH/7wBz377LN67bXXdOWVV5pOx2f069dP8+bN07x583TPPfeYTqfJ9uzZo8DAQHXq1Ml0KkCT9e7dW1988YVqampMp9Igx44d05gxY7Rv3z59/PHH6tChg+mUfMZjjz2me++9V+PGjdOiRYtMpwPAA3r16qXg4GCfOtRH/dw0/lI/AwAAAAAAAAAAAAAAAAD9y85B/zLOp0+fPtq0aZPpNBqM84ZN48Tzhmg4+uGdg354a1GvNp2v1qslJSXq3bu3AgICTKcCizG/m475DQAAAAAAnIr9F+dg/wVoOC62AADAR/jyxRbbt2/XqFGjlJKSorfffltBQUGmU/IpUVFR+ve//63Dhw/rmmuu0bFjx0ynZJlZs2bp4Ycf1nPPPacJEyaYTsfnZGdn629/+5tmzJihp59+2nQ6TbJnzx61b99eISEhplMBmqxPnz6qra31idt16+rqdPPNN2v9+vVatGiRYmJiTKfkc5599lldd911uvHGG7VmzRrT6QBoprCwMMXGxvrMoT7q5+bxh/oZAAAAAAAAAAAAAAAAAOhfdhb6l3EuvXv39pkeWM4bNo+TzhuiceiHdxb64a1Bvdp8vlivur/4Hv6N+d18zG8AAAAAAOBE7L84C/svQMNwsQUAAD7CfbGFy+UynUqjHD9+XNdff706duyoefPmKSwszHRKPqlr16766KOPtGnTJk2ePNl0OpZYtWqV7rjjDj344IP6+c9/bjodn3XTTTfp+eef16OPPqqPPvrIdDqNtnfvXnXu3Nl0GkCz9O7dW6GhoVq/fr3pVC7o8ccf18KFC7VgwQL17dvXdDo+KTAwULNmzVJaWpquu+46VVRUmE4JQDMlJSVp3bp1ptO4IOpnz/D1+hkAAAAAAAAAAAAAAAAA6F92FvqXcS5JSUnasmWLjh8/bjqV8+K8oWc44bwhmoZ+eGehH97zqFebzxfr1eLiYiUlJZlOAxZjfjcf8xsAAAAAADgV+y/Owv4LcGFcbAEAgI+IiYnR8ePH9dVXX5lOpVF+8YtfqKysTG+//bYiIyNNp+PT+vTpo1mzZun111/X7NmzTafjUVVVVbq1OE+lAAAgAElEQVTllluUlZWl6dOnm07H5917770aO3asbr31Vu3evdt0Oo2ybds2xcTEmE4DaJbQ0FD16tVLxcXFplM5ryVLlmj69Ol6/vnnNWjQINPp+LTQ0FC98847crlcuvXWW33uIjIAZ+rXr5/t13DqZ8/y5foZAAAAAAAAAAAAAAAAAOhfdh76l3E2ycnJ+uabb7Rp0ybTqZwX5w09x5/PG6Lp6Id3HvrhPYd61XN8qV7dv3+/9u3bp+TkZNOpwELMb89hfgMAAAAAACdi/8V52H8Bzo+LLQAA8BE9evSQJJWVlRnOpOHeeecdzZgxQ3/5y1/Uq1cv0+n4he9973v6+c9/rp/97GcqKSkxnY7H3Hnnnfr666/15ptvKigoyHQ6fuGVV17RxRdfrFtuuUXffPON6XQarKys7NR6B/iy5ORkW9+uu2/fPo0dO1bXX3+97rzzTtPp+IWLLrpIb7zxhj766CP98Y9/NJ0OgGZITk7Wtm3bdPjwYdOpnBP1s+f5av0MAAAAAAAAAAAAAAAAABL9y05E/zK+LS4uTi1btrT1F6pw3tDz/PW8IZqOfnhnoh+++ahXPc9X6tW1a9dKkpKSkgxnAqswvz2P+Q0AAAAAAJyG/RdnYv8FODcutgAAwEdER0crPDxc27ZtM51Kg5SVlen222/X3XffrZtvvtl0On7l6aefVr9+/fTDH/5QR48eNZ1Os/35z3/WW2+9pdmzZ6tz586m0/EbrVq10ty5c7Vy5Ur95je/MZ1Og3GxBfyFnW/Xra+v1/jx49WyZUu99tprptPxK5dffrkef/xxPfTQQ8rPzzedDoAm6tevn1wulzZu3Gg6lbOifraGr9bPAAAAAAAAAAAAAAAAACDRv+xU9C/jdEFBQerbt69tL7nhvKF1/O28IZqHfnhnoh++eahXreML9WpxcbGio6PVoUMH06nAAsxv6zC/AQAAAACAk7D/4kzsvwDnxsUWAAD4iICAAMXExKisrMx0Khfkcrk0ceJExcbG6tlnnzWdjt8JCQnRnDlztGvXLj3++OOm02mWbdu26YEHHtBjjz2mESNGmE7H7yQmJur555/Xk08+qRUrVphO54IqKytVUVHBxRbwC8nJydq9e7cOHjxoOpXvePHFF7Vs2TLNnTtXUVFRptPxO1OmTFF2drYmTpyompoa0+kAaIKYmBhFRUXZ8oAv9bO1fK1+BgAAAAAAAAAAAAAAAAA3+pedi/5lnM6ul9xw3tBa/nTeEM1HP7xz0Q/fdNSr1rJ7vVpcXKzk5GTTacAizG9rMb8BAAAAAIBTsP/iXOy/AGfHxRYAAPiQHj16+MTFFjNnztTnn3+uGTNmKCwszHQ6fikmJkZPPPGEnnvuOa1bt850Ok123333qXv37nrsscdMp+K37rjjDg0bNkx33XWX6urqTKdzXlu3bpUkLraAX+jXr58k2W6N/uqrr/Sb3/xGDz74oPr37286Hb8UGBio1157Tbt27dIzzzxjOh0ATRAQEKCkpCRbbiRRP1vPl+pnAAAAAAAAAAAAAAAAAHCjf9m56F/G6ex6sQXnDa3nL+cN0Xz0wzsb/fCNR71qPbvXq+vWrTv1fgr+hfltPeY3AAAAAABwCvZfnI39F+C7uNgCAAAf4gsXW1RUVOjhhx/W3XffrYEDB5pOx6/deeedSk1N1eTJk+VyuUyn02jz5s3T+++/r5deekkhISGm0/Frr7zyijZs2KC//OUvplM5r7KyMgUHB6tbt26mUwGarXPnzurQoYPtPoS8//77FRkZqSlTpphOxa9169ZNU6dO1bRp07R9+3bT6QBogn79+tnuQBf1s/f4Sv0MAAAAAAAAAAAAAAAAAG70Lzsb/ctwS05OVnl5uXbt2mU6lVM4b+g9vn7eEJ5DP7yz0Q/fONSr3mHXerWmpkalpaVKTk42nQoswPz2DuY3AAAAAABwCvZfnI39F+BMXGwBAIAPiY2N1bZt20yncV6PPvqoAgIC9Nvf/tZ0Kn4vMDBQL7/8spYvX64333zTdDqNcvToUd1///0aN26csrOzTafj93r16qX77rtPjzzyiPbu3Ws6nXMqKytTt27d+GAEfsNuH0IuXbpUb731ll566SW1atXKdDp+75e//KViYmL0i1/8wnQqAJogOTlZ69atU319velUJFE/e5uv1M8AAAAAAAAAAAAAAAAAcDr6l52N/mVIJ3tgAwICbLUWcN7Qe3z5vCE8i354Z6MfvuGoV73LjvXqpk2bVFNTwxff+yHmt3cxvwEAAAAAgBOw/+Js7L8AZ+JiCwAAfEhsbKz279+vw4cPm07lrNasWaNXX31VzzzzjNq0aWM6HUdITU3V7bffrgceeEDV1dWm02mw6dOnq7KyUn/4wx9Mp+IYv/71r9WmTRtNnTrVdCrnVFZWph49ephOA/CYfv36qbi42HQakqS6ujr97Gc/05gxYzRmzBjT6ThCaGioXnrpJc2fP18ffvih6XQANFK/fv1UXV1tm4sFqZ+9zxfqZwAAAAAAAAAAAAAAAAA4Hf3Lzkb/MiSpTZs26tq1q23WAs4bep+vnjeEZ9EPD/rhL4x61fvsWK+uW7dOYWFh6tWrl+lU4EHMb+9jfgMAAAAAACdg/wXsvwD/xcUWAAD4EPcXvm/fvt1wJmf3u9/9Tv3799fYsWNNp+Io06ZN05EjRzRjxgzTqTRIRUWFXnzxRU2ZMkUdO3Y0nY5jtGrVStOmTdPs2bNt84HIt3GxBfxNSkqKNm7cqJqaGtOpaO7cudqyZYueeeYZ06k4Sk5OjsaMGaPHH3/cdCoAGikpKUlBQUFas2aN6VSonw3xhfoZAAAAAAAAAAAAAAAAAE5H/zLoX4YkXXbZZVq9erXpNCRx3tAUXztvCM+jHx70w18Y9aoZdqtXV69ercTERAUHB5tOBR7E/DaD+Q0AAAAAAPwd+y9g/wX4Ly62AADAh8TGxio4OFibN282ncp3lJSUaP78+Zo6daoCAgJMp+Mo7dq105133qlnn31Wx44dM53OBf3pT39ScHCw7rrrLtOpOM4tt9yi7t276/e//73pVM5qy5YtiouLM50G4DGpqamqqanR+vXrjebhcrn05JNP6kc/+hFzzIDHHntMhYWFWrx4selUADRCq1atlJCQoFWrVplOhfrZILvXzwAAAAAAAAAAAAAAAABwOvqXIdG/jJNrgR16YDlvaI6vnTeE59EPD4l++POhXjXLTvXqypUrlZaWZjoNeBDz2yzmNwAAAAAA8Gfsv0Bi/wVw42ILAAB8SFhYmHr27KmNGzeaTuU7pk2bpoSEBF1zzTWmU3GkBx54QF9//bVef/1106mc15EjR/TSSy/pnnvuUUREhOl0HCcoKEgPPPCA/t//+3/auXOn6XTOcPDgQX311VdKTEw0nQrgMfHx8YqIiDD+IeT8+fO1YcMGTZkyxWgeTjVw4ECNGDFCTzzxhOlUADSSHQ71UT+bZef6GQAAAAAAAAAAAAAAAAC+jf5lSPQv42QP7I4dO3To0CGjeXDe0CxfOW8I69APD/rhz4161Sy71Kv19fUqLi5Wamqq0TzgWcxvs5jfAAAAAADA37H/AvZfgJO42AIAAB+TmJioDRs2mE7jDNu2bdPcuXP12GOPKTCQ8sKEjh07atKkSXrqqadUU1NjOp1z+vOf/6xjx45p8uTJplNxrIkTJyo6OlrPP/+86VTOsH79ekniYgv4lcDAQCUnJxv/EHL69On6/ve/r6SkJKN5ONnUqVP16aef6rPPPjOdCoBGcG8kuVwuYzlQP5tn1/oZAAAAAAAAAAAAAAAAAL6N/mW40b/sbGlpaXK5XFqzZo2xHDhvaJ6vnDeEdeiHh0Q//LlQr5pnh3p18+bNqq6u5ovv/Qzz2zzmNwAAAAAA8Gfsv0Bi/wWQuNgCAACf07dvX9tdbPHCCy8oJiZGP/zhD02n4mgPPvigvvrqK/3jH/8wncpZ1dXV6Y9//KPuuusuXXzxxabTcayQkBDdf//9evXVV3X48GHT6ZyyYcMGtW3bVtHR0aZTATwqLS3N6MGwvLw8FRUV6dFHHzWWA6ShQ4dq8ODBeu6550ynAqARUlNTVVFRoR07dhiJT/1sD3atnwEAAAAAAAAAAAAAAADgbOhfhkT/stN17NhRXbp0MboWcN7QHux+3hDWoh8eEv3wZ0O9ag92qFdXrVql0NBQ9e3b11gO8Czmtz0wvwEAAAAAgD9j/wUS+y+AxMUWAAD4nMTERJWVlenIkSOmU5Ek1dbW6u9//7t+8pOfKCgoyHQ6jtatWzddeeWVmjVrlulUzmrx4sXavXu3Jk2aZDoVx5swYYJcLpetmpI3btyopKQk02kAHpeamqr169frxIkTRuLPnDlT/fv3V1pampH4+K/bb79d77//vg4ePGg6FQANlJKSouDgYGOH+qif7cOO9TMAAAAAAAAAAAAAAAAAnA39y3Cjf9nZUlNTjfXAct7QPux+3hDWoh8ebvTDn4l61T5M16urVq1Sv379FBYWZiQ+PI/5bR/MbwAAAAAA4K/Yf4Eb+y9wOi62AADAxyQmJqq+vl6bN282nYok6f3331d5ebnGjRtnOhVIGj9+vD7++GPt3bvXdCrfMXv2bGVlZSk+Pt50Ko4XFRWlq6++WrNnzzadyikbNmxQYmKi6TQAj0tNTVVNTY02btzo9djHjx/XP/7xD40fP97rsfFdP/jBDxQaGqq5c+eaTgVAA7Vs2VLx8fHGNpKon+3DjvUzAAAAAAAAAAAAAAAAAJwN/ctwo3/Z2UxebMF5Q3ux83lDWIt+eLjRD/9f1Kv2YrpeXbVqlVJTU43Ehucxv+2F+Q0AAAAAAPwV+y9wY/8FTsfFFgAA+Ji4uDiFh4drw4YNplORdPLNTXZ2trp27Wo6FUgaM2aMIiIiNGfOHNOpnKG6ulrz58+nGcRGxo8fr08//VTbt283nYokaePGjerbt6/pNACPi4+PV0REhJEPIefNm6fq6mrddNNNXo+N72rVqpWuu+46PoQEfIypQ33Uz/Zjt/oZAAAAAAAAAAAAAAAAAM6G/mW40b/sbKmpqdq+fbvKy8u9HpvzhvZi1/OG8A764eFGP/xJ1Kv2YrJera+vV3FxMV9870eY3/bC/AYAAAAAAP6M/Re4sf8CJ+NiCwAAfExQUJDi4+O1ceNG06movLxc77//Pm9ubKRFixa68cYbbdd0/s4776impkY33nij6VTwf6666ip16NBBf//7302nov/85z+qrKxUYmKi6VQAjwsMDFRycrKRDyFnz56tK6+8Up06dfJ6bJzd+PHjVVBQoNLSUtOpAGgg90aSy+XyalzqZ/uxU/0MAAAAAAAAAAAAAAAAAOdC/zJOR/+yc6WlpcnlcmnNmjVejct5Q/ux63lDeAf98HCjH/4k6lX7MVWvlpaWqqqqii++9yPMb/thfgMAAAAAAH/F/gvc2H+Bk3GxBQAAPigxMVHr1683nYbmz5+vwMBA/eAHPzCdCk4zbtw4FRcXa8uWLaZTOeXdd9/V1VdfrXbt2plOBf8nODhYN9xwg9555x3TqWjDhg2SpL59+xrOBLBGWlqaVq5c6dWYlZWV+vjjjzV27FivxsX55eTkqHPnznr33XdNpwKggVJTU1VeXu71W7Gpn+3HTvUzAAAAAAAAAAAAAAAAAJwP/ctwo3/ZuTp27KguXbp4fS3gvKE92fG8IbyDfni40Q9PvWpXpurVlStXKiwsjHPNfoL5bU/MbwAAAAAA4K/Yf4Eb+y9wMi62AADAByUlJdniYovc3FxlZWWpdevWplPBabKyshQZGanc3FzTqUiSvvnmG+Xl5WnUqFGmU8G3jBw5UsXFxTp48KDRPDZs2KDOnTvzQQn81sCBA7Vu3TodPXrUazGXLVumuro6DR8+3GsxcWFBQUEaPny4lixZYjoVAA3Uv39/hYaGqrCw0GsxqZ/tyy71MwAAAAAAAAAAAAAAAACcD/3LcKN/2dnS09O92gMrcd7Qrux23hDeQz88Tuf0fnjqVXsyVa8WFhYqJSVFYWFhXo0LazC/7Yn5DQAAAAAA/BX7Lzid0/df4FxcbAEAgA/q37+/du/erT179hjN49NPP1V2drbRHPBdwcHBGjx4sG2azlesWKGqqirl5OSYTgXfMnToUAUGBurTTz81msfKlSuVlpZmNAfAShkZGaqtrdXq1au9FnPJkiVKTk7WxRdf7LWYaJjs7Gx9/vnnOnbsmOlUADRAeHi4kpKSvLqRRP1sX3apnwEAAAAAAAAAAAAAAADgfOhfxunoX3au9PR0FRQUeDUm5w3tyW7nDeE99MPjdE7vh6detS8T9WpBQYHS09O9Fg/WYn7bF/MbAAAAAAD4I/ZfcDqn77/AubjYAgAAHzRgwAAFBgZq5cqVxnLYsmWLdu3axZsbm8rOztYnn3yi+vp606koNzdX0dHRiouLM50KviUqKkqpqanGm5JXrFihAQMGGM0BsFL37t3VsWNHr34ImZuby2u0TV1xxRU6fvy41w8IAWi6jIwMr85Z6mf7skv9DAAAAAAAAAAAAAAAAADnQ/8yTkf/snOlp6dr79692rlzp1ficd7Q3ux03hDeRT883JzeD0+9al/erlePHTum9evX88X3foT5bV/MbwAAAAAA4K/Yf4Gb0/df4FxcbAEAgA+KiopSz549VVRUZCyH3NxctW7dWmlpacZywLnl5OTo0KFD2rBhg+lUtGTJEg0fPtx0GjiHnJwc5ebmGot/4MAB7dixg4st4PcGDhzotYNh7vU/OzvbK/HQON26dVOPHj34EBLwIenp6Vq7dq1OnDjhlXjUz/Zmun4GAAAAAAAAAAAAAAAAgIagfxlu9C8714ABAxQcHOy1L1ThvKG92em8IbyLfniczqn98NSr9ubtenX16tWqqalRRkaGV+LBWsxve2N+AwAAAAAAf8X+C07n1P0XOBsXWwAA4KMGDhxo9GKLzz77TIMHD1ZISIixHHBul112mdq2bau8vDyjedTV1Sk/P19Dhw41mgfObdiwYdq8ebP2799vJH5RUZECAgK42AJ+Lz093WuHQT777DNJ0uWXX+6VeGi87OxsLVu2zHQaABooPT1dJ06c0Nq1ay2PRf1sf6brZwAAAAAAAAAAAAAAAABoCPqXcTr6l52pZcuWSkxM9NolN5w3tDe7nDeE99EPj9M5tR+eetX+vFmvFhQUqH379urevbtX4sFazG/7Y34DAAAAAAB/xP4LTufU/Rc4GxdbAADgowYMGKCioiK5XC4j8Tdt2qSkpCQjsXFhgYGB6tOnj0pKSozmsX37dh07dkz9+vUzmgfOzT2PN2/ebCT+ihUrFBsbq3bt2hmJD3hLRkaG/vOf/2j37t2Wx9q0aZO6deumqKgoy2OhaRITE42/RgNouLi4OLVr184rB3ypn+3PdP0MAAAAAAAAAAAAAAAAAA1B/zJOR/+yc6Wnp3vtYgvOG9qbXc4bwvvoh8fpnNoPT71qf96sVwsLC5WRkeGVWLAe89v+mN8AAAAAAMAfsf+C0zl1/wXOxsUWAAD4qAEDBqi8vFzbtm3zemyXy6WtW7cqPj7e67E9bf78+Zo7d67pNCwRHx+v0tJSozm44/fq1ctoHs3lz89JdHS0IiMjjT0rRUVFGjhwoJHYgDcNHDhQQUFBWrFiheWxSktLeY22ufj4eO3fv1/l5eWmUwHQAAEBARo4cKBXDvVRP9uf6foZAAAAAAAAAAAAAAAAABqC/uXG8+feN/qXnSs9PV2rVq1STU2NpXE4b+gb7HDeEN5HP3zj+fM64NR+eOpV+/NmvVpYWKj09HTL48A7mN/2x/wGAAAAAAD+iP2XxvPnz8Ccuv8CZ+NiCwAAfFRKSopCQkJUVFTk9di7d+9WdXW1T23yL1++XNOmTdO+ffvO+Pm0adM0ZcqUC/6eL7JDo2lpaak6d+6syMhIo3k0xtmeAX9+TqSTt36aelZWrlypAQMGGIkNeFNERIQSEhK89iGkL71GS85be91/P1u3bjWcCYCGSk9P99oaTv1sfybrZwAAAAAAAAAAAAAAAABoCPqXz89pvW/0LztXRkaGjh8/rnXr1lkah/OGvsEO5w1hBv3w5+a0mkByZj889ar9eate3bt3r3bu3MkX3/sR5rf9Mb8BAAAAAIC/Yv/l3Jz2GZjkzP0XOBsXWwAA4KNatGihxMREIxdbbN68WZJ8apM/Ly9Pv/rVr7R3794zfj558mQ99NBDF/w9XxQfH69du3apurraWA6lpaVKSEgwFr8pzvYM+PNzIkkJCQlG3gjv2LFD+/fv52ILOEZGRoYKCgosj7Nlyxafeo2WnLf2XnrppQoPDz9VUwGwv/T0dG3bts3yjRDqZ99gqn4GAAAAAAAAAAAAAAAAgMagf/ncnNb7Rv+ycyUkJKht27aWf6EK5w19gx3OG8IM+uHPzWk1geTMfnjqVfvzVr1aUFCggIAApaWlWRoH3sP8tj/mNwAAAAAA8Ffsv5yb0z4Dk5y5/wJnCzadAAAAaLoBAwYYudhiy5Ytuuiii9S+fXuvx/a0CRMmmE7BMgkJCXK5XNq6datSUlKM5OCLzSBn48/PiXSyKXn27Nlej1tUVKSgoCBjzyfgbenp6Xrrrbf0zTffKDjYmrfjBw4cUHl5OWuvzQUGBqpnz558CAn4kIyMDAUEBGjFihUaM2aMZXGon32DqfoZAAAAAAAAAAAAAAAAABqD/uXG8efeN/qXncv9xa6FhYW6++67LYvDeUPfYIfzhjCDfvjG8ed1QHJePzz1qm/wVr1aWFioPn36qE2bNpbGgXcwv30D8xsAAAAAAPgr9l8ax58/A5Oct/8CBJpOAAAANN3AgQO1evVq1dbWejXugQMH1KlTJ8vjrFu3Ttdff726d++ua6+9VjNnztTixYt144036tChQ6d+r7KyUnfddZcSExPVqVMnXX/99frggw9O/fs77rhDM2bMkCT95Cc/0b333nvq3917772aOHHiBX/vQjEk6fbbb9eECRP0xRdf6LbbblPXrl2Vk5OjN954Q5L03HPPKTU1VR06dNDo0aO1detWD/8XO5P77+jgwYOWxjmf/fv3W/6sNPQ5kZr+rDT0OWlIDMmez8qBAwcsjXE2hYWFSkxMVKtWrbweGzAhPT1dR44c0caNGy2L4Z7Ldll7G7ImNnftbUgMyZ5rr8nXaACN06ZNG/Xq1UuFhYWWxqF+pn4GAAAAAAAAAAAAAAAAAE+hf5n+5dPRv+xcGRkZKigosDQG5w19pwdWMnveEGbQD08//Omc1g9PvUq9errCwkKlp6dbGgPew/xmfp+O+Q0AAAAAALyN/Rf2X07ntP0XgIstAADwYYMHD9aRI0e0evVqr8atrq5W69atLY2xbNkyZWZmKi8vT4MHD1bbtm01efJk3XPPPXr33Xd19OhRSdKuXbuUkpKiWbNmaciQIZo4caJ27NihMWPG6IUXXpAk9erVS507dz71zz179jwVJz8/X0uXLj3v7zUkhiStXbtWixYt0tChQ5Wfn6/s7Gx9/vnnuvXWW3XVVVfp4Ycf1iWXXKLBgwcrNzdXw4cPV319vWX/Dd1/R1VVVZbFuJDq6mpFRERYNn5DnxOpec9KQ56ThsaQ7PmsmHhO8vLydPnll3s9LmBKYmKiIiMjLT0Q4p7Ldlh7G7omNmftbWgMyX5rb0REhNHXaACNl56ebvlGEvUz9TMAAAAAAAAAAAAAAAAAeAr9y/Qvn47+ZedKT0/XF198YekXyXLe0Hd6YCWz5w1hDv3w9MO7Oa0fnnqVetWtrq5OK1eu5Ivv/Qjzm/ntxvwGAAAAAACmsP/C/oub0/ZfALkAAIBPi46Odj399NNejfnTn/7UdcUVV1g2fl1dnSs5OdnVtm1b144dO079fN26da7Q0FCXJNfOnTtdLpfLNXbsWJckV0FBwanfO3HihCsnJ8cVGhrqOnTokMvlcrmeeuoplyTXmjVrzoiVlpbm6t69+6k/n+33GhojLS3NJck1bdq0U7/3wQcfuCS5wsPDXaWlpad+PmHCBJekM35mhfDwcNff/vY3S2OcT9u2bV0zZsywZOzGPCcuV/OelYY8J42JYbdnZcGCBS5JrqNHj1oW49uqqqpcISEhrrfffttrMQE7yM7Odk2cONGy8RcvXuySdGq98TQrXqNdrqavvY2JYbe199Zbb3VdffXVlo0PwPNefvllV0REhKuurs6yGNTP1M8AAAAAAAAAAAAAAAAA4En0L9O/7Eb/snMdPHjQFRAQ4Prggw8si8F5Q9/ogXW5zJ83hDn0w9MP7+a0fnjqVepVt7Vr17okuYqLiy2LAe9ifjO/3ZjfAAAAAADAFPZf2H9xc9r+CxDY0AswAACAPQ0ePFjLli3zasyqqiq1bt3asvHXrFmj4uJi/fSnP9Wll1566udJSUn60Y9+dOrP5eXlmjNnjgYMGKD09PRTPw8NDdXtt9+umpoa/fOf/2xWLo2NERQUpAcffPDUn5OTkyVJOTk56tWr16mfDxs2TJK0adOmZuV3IREREUZv7rPyhseGPicSz8qFuP+OvPmsLF++XLW1tRo8eLDXYgJ2YPXtuu55bNXrtC+/Rkv2W3u5XRfwLRkZGaqqqlJJSYllMaifqZ8BAAAAAAAAAAAAAAAAwJPoX6Z/2Y3+Zedq166dYmNjLV8LOG9o/x5YibXAyeiHZy1wc1o/PPUq9apbYWGhWrVqpT59+lgWA97F/GZ+uzG/AQAAAACAKey/sP/i5rT9FyDYdAIAAKB5Lr/8cj322GOqq6tTUFCQV2JWV1crMjLSsvHLysokSfHx8d/5d3379j31z6WlpXK5XKqurv7OG5/Dhw+fMVZTNTZGdHS0QkNDT/25RYsWp35+OvffVU1NTbPyuxCTjabHjx9XbfR291UAACAASURBVG2tZc0gDX1OJJ6VCzn9jXCHDh0si3O6ZcuWqVevXt/5/xfwd+np6Xr66adVWVmpNm3aeHz8qqoqhYWFnbG+eJIvv0ZL9lt7+QAS8C1JSUlq2bKlCgsLv1NvegL18/lj2G0Nl7xbPwMAAAAAAAAAAAAAAABAU9C/TP+yG/3LzpaRkaGCggLLxue84blj2GkdkFgLnIx++JNYC5zXD0+9ev4Ydns2rf7i+wEDBig4mK9a8hfM7/PHYH4DAAAAAABYj/2Xk9h/cd7+CxBoOgEAANA8Q4cO1ddff61169Z5LeaJEycs2+CXpIqKCklSu3btvvPv6urqTv3zoUOHJElhYWEKCQk54//atWunsWPHNvsNXmNjtGrV6qzjBAaaKbtatGih48ePG4ntfuMWFhZmyfgNfU4knpULcb8J9+azsmzZMg0ZMsRr8QC7yMjIkMvlUlFRkSXj19TU8Bp9nhh2W3tPnDjh9bgAmi4kJET9+/dXYWGhJeNTP1M/AwAAAAAAAAAAAAAAAICn0b9M/7Ib/cvOlp6ersLCQtXX11syPucNfaMHVjJ73hBm0Q/PWuDmtH546lXqVbeCggKlp6dbNj68j/nN/HZjfgMAAAAAAFPYf2H/xc1p+y8A1wwDAODjEhMT1a5dOy1dulQpKSleidmqVSsdOXLEsvFjYmIkSZ9//rnGjBlzxr9bs2bNqX+OjY2VJMXFxemNN9444/fq6upUVVWlli1bNisXb8SwUnV1tWU3LF6I+7+LVc9KQ58TiWflQqqrqyXJa8/KiRMnVFRUpNtuu80r8QA76dSpky699FIVFBRoxIgRHh+/VatWOnr0qFwulwICAjw+Pq/RnlNdXX3OD0UB2FdGRoYWLVpkydjUz56PYRVv188AAAAAAAAAAAAAAAAA0FT0L9P35kb/srOlp6ersrJSW7ZsUUJCgsfH57yhZ2NYyeR5Q5hHPzxrgeS8fnjqVc/GsJKV9erhw4e1efNmTZs2zZLxYQbz27MxrMT8BgAAAAAA/oz9Fz4Hk5y3/wJ4//oYAADgUQEBARo8eLDy8vK8FjMiIuJU4WyFxMREBQcH6+OPPz7j59u2bdPixYtP/blnz55q3769Fi5cqNra2jN+98knn1Tbtm21YsWKZuXijRhWqqqqUkREhJHYwcHBCg8PV1VVlSXjN/Q5kXhWLsT9d+StZ6WgoEDHjx/XkCFDvBIPsJv09HTLbtdt3bq16urqdOzYMUvG5zXac0y+RgNouvT0dG3YsEGHDx/2+NjUz56PYRVv188AAAAAAAAAAAAAAAAA0Bz0L9P3JtG/7HQpKSkKDw+3bC3gvKFnY1iJtcDZ6IdnLZCc1w9PverZGFay8jVqxYoVqq+vV3p6uiXjwwzmt2djWIn5DQAAAAAA/Bn7L3wOJjlv/wXgYgsAAPzAkCFDtGzZMrlcLq/Ea926tWVvbiSpS5cuuu+++7R69Wr9+Mc/1ocffqg//elPGj169Bm/FxoaqieffFKHDx/WuHHjtHr1an3xxRd69tlnNW3aNI0YMUKDBg2SJF166aWSpFdffVVFRUXnjP3t32tMDDuqrq42+uamdevWljUlN/Q5kTz/rJztd3z5WXHPZ2/d8Lhs2TJ17dr11C2dgNOkp6eroKDAktdt95pveu1t7JrYlLXXl9ddicMggK9KT09XfX29Vq1aZcn41M++sY57u34GAAAAAAAAAAAAAAAAgOagf5n+ZYn+ZacLCQnRZZddZuklN5w39I21wPR5Q5hFPzz98JLz+uGpV33juZSsrVcLCgrUrVs3RUdHWzI+zGB+M78l5jcAAAAAADCP/Rf2XyTn7b8AwaYTAAAAzTdkyBD98pe/1KZNm9S3b1/L40VERFj25sbtqaeeUps2bfTCCy9o5syZateuncaOHas2bdrot7/9rSIjIyVJkyZN0tGjR/XQQw9p7ty5kk7eLHjbbbfpiSeeUEBAgCRpxIgRysjI0CuvvKKSkhItWbLkrHHP9nsNjWE3J06cUE1NjdFG04iICEubkhv6nEiefVbO9Tu++qxUVVUpLCxMoaGhXomXl5enYcOGeSUWYEcZGRk6dOiQysrK1LNnT4+O7V7zq6qq1KFDB4+O7ebp12ip6Wuvr6670sm/o6ioKNNpAGikrl27Kjo6WoWFhcrOzvb4+NTPvrGOe7t+BgAAAAAAAAAAAAAAAIDmoH+Z/mWJ/mWc/EKVpUuXWjI25w19Yy2ww3lDmEU/PP3wkvP64alXfeO5lKytV1esWKGBAwdaMjbMYX4zvyXmNwAAAAAAMI/9F/ZfJOftvwABLpfLZToJAADQPHV1dbrooos0ffp03X333ZbHmz59ul5//XVt3brV8liSVFFRobZt20qS7rnnHv373//W9u3bz/idqqoqrVmzRtXV1UpKSlLXrl3POtaePXsUERFxwebLs/1eQ2PYxYEDB9ShQwfl5uZa8ia3IVJSUjR69GhNnz7d8lgNeU4kzz4r5/odX3tWXn75ZT3++OPav3+/5bFqamrUrl07Pffcc7r99tstjwfY0YkTJxQVFaXXXntN48eP9+jYW7duVa9evbR69WqlpKR4dOyz8eRrtNT0tdfX1l1Jys7OVu/evfXnP//ZdCoAGumGG25QbW2t5s+f7/GxqZ99Yx33Zv0MAAAAAAAAAAAAAAAAAM1F/zL9yxL9y5Dmzp2rW265RZWVlWrdurVHx+a8oW+sBXY4bwjz6IenH95p/fDUq77xXErW1asul0sdO3bUI488ol/84hceHRtmMb+Z38xvAAAAAABgF+y/sP/itP0XINh0AgAAoPmCgoI0bNgwLV682CsXW3Tt2lU7d+7UN998o+Bgz5cTx44dU05OjjIyMvT888+fenNz5MgRLVy4UJdddtl3/jcREREaMmTIBceOjo5uUA5n+72GxrAL95vAbt26Gcuha9eu+vLLLy0ZuynPieTZZ+Vcv+Nrz8qOHTu89pwsX75c1dXVuuKKK7wSD7CjsLAwpaSkKD8/3+MHwy655BIFBgZqx44dljTiWfkaLTV97fW1dVc6+To9atQo02kAaILMzEw99dRTcrlcHr/Bm/rZN3izfgYAAAAAAAAAAAAAAACA5qJ/+dzoX4aTDBo0SHV1dSoqKvL4pQacN/QNdjhvCPPohz87+uH9F/Wq77CqXt26dasOHDigzMxMj48Ns5jfvoP5DQAAAAAA/B37L2fH/gvgv7jYAgAAPzFy5Eg98sgjqq2tVUhIiKWxEhISVFNToy+//FI9evTw+Pjh4eG66KKL9OKLL+rrr7/W9773PVVUVOj111/X7t279de//tXjMf1RaWmpQkNDFRMTYyyH+Ph45ebmWjI2z4nnbN68WfHx8V6JtWjRIsXFxSk2NtYr8QC7yszM1JIlSzw+bnh4uLp27arS0lKPj+0en7W3+Y4dO6b//Oc/SkhIMJ0KgCbIysrSwYMH9cUXXyguLs6jY1M/+wZv1s8AAAAAAAAAAAAAAAAA4An0Lzsb/cuQpC5duuiSSy5Rfn6+xy+24Lyhb7DDeUOYRz88nNYPT73qG6ysV5cvX37qsj/4F+a3b2B+AwAAAAAAJ2D/BU7bfwECTScAAAA8Y+TIkaqqqlJBQYHlsdwFs1Wb/JI0Z84c/fKXv9TatWt1ww036Oc//7mCgoK0YMECn7o5z6TS0lLFxcUpKCjIWA7x8fEqLS2Vy+WyZHyeE88oLS312hvhhQsXauTIkV6JBdhZZmam1q9fr8OHD3t8bPfaaxXW3ubbsmWL6uvr+RAS8FH9+/dXWFiY8vPzPT429bNv8Gb9DAAAAAAAAAAAAAAAAACeQP+ys9G/DLfMzEzLemAlzhvanR3OG8I8+uHhxH546lX7s7Jezc/PV2pqqsLCwjw+Nsxjftsf8xsAAAAAADgB+y9w4v4LnI2LLQAA8BNxcXGKjY3VokWLLI8VGRmpTp06WbrJHxUVpaefflqrV69WRUWFvv76ay1dulQ5OTmWxfQ3dnhzEx8fryNHjmjPnj2WjM9z0ny1tbXasWOHV56VgwcPau3atVxsAUgaNGiQ6urqtHLlSo+PbXUjHmtv85WWliooKEixsbGmUwHQBGFhYerfv79lG0nUz/bmzfoZAAAAAAAAAAAAAAAAADyF/mVno38Zbu6LLTz9pSecN/QNdjhvCPPoh3c2p/bDU6/an5X1an5+vrKysjw+LuyB+W1/zG8AAAAAAOAE7L84m1P3X+BsXGwBAIAfGTlypFcutpCkhIQESzf5TxcVFaXAQMqWxtqyZYvxNzcJCQmSpM2bN1sei+ekacrKylRbW+uVZ2XRokUKCgrSsGHDLI8F2F10dLS6du2q5cuXe3xsXqPtr7S0VN27d1dYWJjpVAA0kftQn6dRP9ufN+tnAAAAAAAAAAAAAAAAAPAU+pedjf5luGVlZenQoUPasmWLx8dmLbA/O5w3hD3QD+9cTu2H5zXK/qyqVw8fPqxNmzYpMzPTo+PCPpjf9sf8BgAAAAAATsH+i3M5df8FzsZKAQCAHxkxYoRWrlypgwcPWh4rOTlZK1assDwOmqa6ulolJSVKTk42mkf79u0VHR2toqIio3ng3IqKihQWFuaVN8ILFy5UVlaWIiMjLY8F+AKrPoRMTk5WeXm5ysrKPD42PKOoqMj4azSA5snMzNT69et1+PBhj45L/Wx/3qyfAQAAAAAAAAAAAAAAAMCT6F92LvqX4da/f3+Fh4dbthZw3tC+7HLeEPZAP7xzObUfnnrV/qyqVwsLC1VXV6f09HSPjw17YH7bH/MbAAAAAAA4BfsvzuXU/Rc4GxdbAADgR4YPH66goCDl5uZaHmvYsGEqLi72yiUaaLxly5bpm2++0bBhw0ynomHDhmnJkiWm08A55ObmKisrS+Hh4ZbGcblc+vjjjzVy5EhL4wC+xH0wzOVyeXTcAQMGqFWrVl6pB9B4dXV1ysvLU05OjulUADRDVlaW6uvrLTl8R/1sb96qnwEAAAAAAAAAAAAAAADA0+hfdib6l3G6kJAQ9e/f35KLLThvaG92Om8I8+iHdy6n9sNTr9qblfXq8uXLFRMToy5dunh8bNgD89vemN8AAAAAAMBJ2H9xLqfuv8DZuNgCAAA/EhkZqYEDB2rRokWWxxo2bJgCAgKUl5dneSw03pIlS9S3b1917NjRdCrKzs7WZ599phMnTphOBWexZMkSZWdnWx5n/fr12rt3r0aNGmV5LMBXZGVlqaKiQqWlpR4dNzQ0VIMGDeJDSJtauXKlKisrORgG+Ljo6Gh169bNkkN91M/25q36GQAAAAAAAAAAAAAAAAA8jf5lZ6J/Gd/mvuTG0zhvaG92Om8I8+iHdy6n9sNTr9qblfVqfn6+MjMzPT4u7IP5bW/MbwAAAAAA4CTsvziXU/df4GxcbAEAgJ8ZOXKkFi5caHmcNm3a6LLLLmOT36Y++eQT2zSc5+Tk6OjRoyosLDSdCr7liy++0JdffumVN8ILFy7UxRdfrJSUFMtjAb4iJSVF4eHhln0ImZubK5fL5fGx0Ty5ubnq3Lmz4uPjTacCoJmysrIsWcOpn+3Lm/UzAAAAAAAAAAAAAAAAAHga/cvORP8yvi0zM1MbN27U119/7dFxOW9ob3Y6bwh7oB/eeZzeD0+9al9W1asul0srVqzgi+8dgPltX8xvAAAAAADgNOy/OI/T91/gXFxsAQCAnxk5cqR27dqlTZs2WR4rJydHubm5lsdB45SXl6u4uNg2b25iY2MVExPDs2JDn3zyiVq2bKmBAwdaHmvRokUaMWKEAgN5CwK4hYSEKDU11bIPIfft26eSkhKPj43myc3NVU5OjgICAkynAqCZMjMzlZ+fr/r6eo+OS/1sX96snwEAAAAAAAAAAAAAAADA0+hfdib6l/FtgwYNUn19vVasWOHxsTlvaE92O28Ie6Af3nmc3g9PvWpfVtWrmzZtUkVFhbKysjw6LuyH+W1fzG8AAAAAAOA07L84j9P3X+BcfKssAAB+ZsCAAbrooov00UcfWR5r5MiR2rRpk7Zu3Wp5LDTcggULFBISomHDhplO5ZSRI0dq/vz5ptPAt7z33nvKyclRaGiopXGOHDmizz77TCNHjrQ0DuCL3B9Celpqaqouvvhi1l6bqaioUF5eHush4CcyMzNVWVmp0tJSj49N/WxP3qqfAQAAAAAAAAAAAAAAAMAq9C87C/3LOJuOHTsqJiZGy5cv9/jYnDe0JzueN4R59MM7j9P74alX7cnKejU/P1/h4eHq16+fx8eGvTC/7Yn5DQAAAAAAnIj9F+dx+v4LnIuLLQAA8DNBQUEaPXq0FixYYHmsnJwcdenSRW+88YblsdBws2bN0tVXX602bdqYTuWUsWPHau3atVq3bp3pVPB/9u/fr0WLFmncuHGWx1q4cKFqamo0evRoy2MBviYzM1MbN25URUWFR8cNCgrSTTfdpNmzZ3t0XDTP22+/rcDAQF177bWmUwHgAZdddplatmxpyaE+6mf78Wb9DAAAAAAAAAAAAAAAAABWoX/ZWehfxrlYdckN5w3tyY7nDWEe/fDOQj889apdWVmv5ufna+DAgQoJCfH42LAX5rc9Mb8BAAAAAIATsf/iLOy/wMm42AIAAD80ZswY5eXl6dChQ5bGCQwM1M0336yZM2fK5XJZGgsNs3v3bi1dulTjx483ncoZLr/8csXGxtKUbCNz5sxRy5YtNWbMGMtjLViwQJmZmerYsaPlsQBfk5WVJZfLpaKiIo+PPX78eJWUlGjlypUeHxtNM3v2bF133XWKiooynQoADwgJCVFqaqolh/qon+3Hm/UzAAAAAAAAAAAAAAAAAFiF/mVnoX8Z55KZmanCwkLV19d7dFzOG9qPXc8bwjz64Z2FfviTqFftx8p6dfny5crMzPT4uLAn5rf9ML8BAAAAAIATsf/iLOy/wMm42AIAAD80evRoBQUF6cMPP7Q81oQJE/Tll1/qs88+szwWLmz27NmKiorS6NGjTadyhoCAAI0dO1Zvvvmm6urqTKcDnXxWbrzxRrVs2dLSOPX19frwww95ww2cQ8eOHdW9e3dLbtcdOHCgEhISNHv2bI+PjcYrKytTfn4+h0EAP5OVlWXJRhL1s/14q34GAAAAAAAAAAAAAAAAACvRv+wc9C/jfLKyslRZWamSkhKPj815Q3ux63lD2AP98M5BP/xJ1Kv2YmW9WllZqS1btvDF9w7C/LYX5jcAAAAAAHAy9l+cg/0XOBkXWwAA4IciIyM1dOhQLViwwPJYffv2VUpKimbNmmV5LFzYG2+8oR/96EcKCwszncp3jB8/Xnv37tUnn3xiOhXH27hxo1avXq1x48ZZHis/P1/79u3jYgvgPDIzMy35EFI6ufb+/e9/V21trSXjo+Fmz56tjh07avjw4aZTAeBBmZmZKikpUXl5ucfHpn62D2/WzwAAAAAAAAAAAAAAAABgNfqXnYH+ZZxPcnKyWrVqZclawHlDe7HzeUOYRz+8M9APfybqVfuwsl5dvny5XC4XX3zvMMxv+2B+AwAAAAAAJ2P/xRnYf4HTcbEFAAB+asyYMfrggw904sQJy2NNmjRJc+bM0f79+y2PhXP7+OOPtXHjRk2aNMl0KmcVFxenIUOG6IUXXjCdiuO98MIL6tmzp4YMGWJ5rAULFqhHjx7q06eP5bEAX5WZmamCggLV19d7fOxbb71VlZWVevPNNz0+Nhru2LFj+stf/qIJEyYoODjYdDoAPCgzM1Mul0srVqzw+NjUz/bhzfoZAAAAAAAAAAAAAAAAAKxG/7L/o38ZFxIcHKy0tDTLLrnhvKE92P28IcyjH94Z6Ic/E/WqPVhdr+bn56tnz55q3769x8eGfTG/7YH5DQAAAAAAnI79F2dg/wVOx8UWAAD4qWuuuUbV1dVaunSp5bEmTZqkqKgo3uAYNm3aNI0aNUqpqammUzmnKVOm6MMPP9TKlStNp+JYu3bt0qxZszRlyhQFBlr/duC9997TNddcY3kcwJdlZWXp8OHD2rRpk8fHvuSSSzRu3Dg98cQTqqur8/j4aJj//d//VWVlpe677z7TqQDwsA4dOqhHjx6WHeqjfjbP2/UzAAAAAAAAAAAAAAAAAFiN/mX/R/8yGiIzM9PSiy04b2ieL5w3hFn0w/s/+uG/i3rVHqyuV/Pz85WZmWnJ2LAv5rc9ML8BAAAAAIDTsf/i/9h/AbjYAgAAv3XppZeqX79+WrBggeWxWrRooXvvvVcvv/yyKioqLI+H78rPz9eyZcs0depU06mc15VXXqkBAwboySefNJ2KY/3+979Xx44dNX78eMtjlZWVqaSkRGPGjLE8FuDL+vXrp9atW1v2IeTUqVO1Y8cOvfvuu5aMj/Orra3VM888ozvuuEOdO3c2nQ4AC2RmZmr58uWWjE39bJ4362cAAAAAAAAAAAAAAAAA8Ab6l/0b/ctoqMzMTG3evFnl5eUeH5vzhub5ynlDmEc/vH+jH/7sqFfNsrperaurU1FREV9871DMb7OY3wAAAAAAACex/+Lf2H8BuNgCAAC/ds011+i9996Ty+WyPNbdd9+toKAgvfjii5bHwnc9/vjjGjp0qC6//HLTqVzQI488onnz5mnDhg2mU3Gcffv26a9//asefvhhhYaGWh5v/vz5atOmjQYPHmx5LMCXBQcHKy0tzbKDYT169NANN9yg3/3ud6qvr7ckBs5t5syZ2rNnj+6//37TqQCwSGZmpgoLC1VXV2fJ+NTP/5+9Ow2rulr/P/5hVFJJjdScKi2nRNTSvcGhQCtnM7ScoNlTPy0zbbTB5rLR9FSnTlngmGE5lkOgKQoqKhwy0RzL2XACFBn2/4GXnMMfZ9nftYf369G5Nhzuj12urzd73Wsvc6zunwEAAAAAAAAAAAAAAADACswvezbml3GhIiIiJEmpqalO+fmcNzTLnc4bwizm4T0X8/BnR79qlrP71czMTB09epQPvvdSrG+zWN8AAAAAAACnsP/iudh/AU7hYgsAADxYz549tXPnTmVkZDi9VpUqVfT444/rk08+0aFDh5xeD/+1cuVKLViwQC+88ILpKBekd+/eatasmV5//XXTUbzOu+++qyuvvFIPPfSQJfXmzJmjbt26KSAgwJJ6gDsLDw932sEwSXrhhRe0YcMG/fDDD06rgbLy8/P1zjvv6P7779e1115rOg4AJ4mIiNCxY8f022+/OeXn0z+bY3X/DAAAAAAAAAAAAAAAAABWYX7ZMzG/jIsREhKihg0bOu1ZwHlDc9ztvCHMYh7eczEPf270q2ZY0a+uWLFCVapUUfPmzZ3y8+H6WN9msL4BAAAAAAD+i/0Xz8X+C3AKF1sAAODB2rRpozp16mj27NmW1BsxYoT8/f01evRoS+pBKioq0rBhwxQVFaU77rjDdJwL4uvrq7feekvfffedkpKSTMfxGr/99psmTJigMWPGqGLFik6vd/jwYSUnJ6tnz55OrwV4gvDwcGVlZengwYNO+fmhoaEaOHCgRo4cqby8PKfUQFnvv/++9u7dqxdffNF0FABOFBoaqipVqjjtUB/9sxlW988AAAAAAAAAAAAAAAAAYCXmlz0T88u4WBEREVqxYoXTfj7nDa3njucNYRbz8J6Jefjzo181w4p+deXKlbLZbPLz83NaDbg21rcZrG8AAAAAAID/Yv/FM7H/AvwXF1sAAODBfHx81K1bN82ZM8eSelWrVtXYsWP1r3/9S6mpqZbU9HafffaZMjMzNWHCBNNRLkqvXr3Us2dPPfroo8rPzzcdx+M5HA49/vjjCgsL08MPP2xJzfnz50uSunTpYkk9wN2Fh4dLklatWuW0Gh988IGOHDmiN99802k18F87d+7U22+/rZdeekn169c3HQeAE/n5+alNmzZO20iS6J+tZqJ/BgAAAAAAAAAAAAAAAAArMb/seZhfxqWw2+1atWqVioqKnPLzOW9oPXc9bwhzmIf3PMzDXzj6VWtZ1a+mpqbKZrM57efDPbC+rcX6BgAAAAAAKI39F8/D/gtQGhdbAADg4Xr37q01a9Zo586dltSLiYnRrbfeqqFDhzptoBWn7Nu3Ty+99JJGjhyppk2bmo5z0SZMmKBdu3bp448/Nh3F402aNElLly7VP//5T/n5+VlS84cfftCtt96qqlWrWlIPcHchISFq2LChUw9q1KxZU6+99pref/99/f77706rg1OGDRumOnXq6MknnzQdBYAF7Ha70w/b0T9bx0T/DAAAAAAAAAAAAAAAAABWYn7Z8zC/jEtht9t17NgxbdiwwWk1OG9oHXc/bwhzmIf3LMzDXzj6VWtZ0a/+/fff2rx5c8lFfvBerG9rsb4BAAAAAADKYv/Fs7D/ApTGxRYAAHi4O+64Q1WrVlVCQoIl9Xx8fDR+/HhlZGToyy+/tKSmt3r66acVHBys0aNHm45ySerXr6/nn39er7/+unbs2GE6jsc6fPiwnn76aT366KNq27atJTXz8vL0008/qW/fvpbUAzyF3W5XSkqKU2v83//9n2666SY9/vjjcjgcTq3lzWbPnq05c+bo888/V4UKFUzHAWABm82mrKwsZWdnO60G/bM1TPTPAAAAAAAAAAAAAAAAAGAC88ueg/llXKoWLVqocuXKTn0WcN7QOu5+3hDmMA/vOZiHv3j0q9awql89/SFxNpvNaTXgPljf1mB9AwAAAAAAnBn7L56D/RegLC62AADAwwUEBKhHjx6WXWwhSTfddJNGjhypp59+Whs3brSsrjf57rvvNGnSJI0fP16VKlUyHeeSjRo1Stdee61iYmJUWFhoOo5HeuSRR+Tr66s33njDsprz5s3TiRMn1KdPH8tqAp7AZrMpNTVVxcXFTqvh5+enzz//XEuXLtW4ceOcVseb7d27V0OGDFFMTIwiIyNNxwFg1JvGKAAAIABJREFUEbvdLofDodWrVzu1Dv2z85nonwEAAAAAAAAAAAAAAADABOaXPQPzy7gcfn5+at26dcmHxDoL5w2dz1POG8IM5uE9B/PwF49+1fms7FdTU1PVsGFDhYSEOLUO3APr2/lY3wAAAAAAAGfH/ovnYP8FKIuLLQAA8ALR0dFasWKF/vzzT8tqvvbaa2rRooX69eunvLw8y+p6gy1btmjIkCEaOnSoevXqZTrOZalQoYKmT5+utLQ0vfLKK6bjeJwJEyZo5syZiouLU7Vq1Syrm5CQoI4dO6pGjRqW1QQ8gc1m05EjR5SVleXUOm3bttWrr76qZ555RitXrnRqLW9TXFys2NhYValSRRMmTDAdB4CFatSooeuvv14pKSlOrUP/7Fym+mcAAAAAAAAAAAAAAAAAMIH5ZffH/DLKg91ud/rFFhLnDZ3Jk84bwgzm4T0D8/CXjn7VeazuV1NSUmS3251eB+6D9e08rG8AAAAAAIBzY//FM7D/ApwZF1sAAOAFunTpoipVqujHH3+0rGZAQICmTZumPXv2aMSIEZbV9XT5+fm65557dO2112rs2LGm45SL5s2ba9y4cXrnnXe0YMEC03E8RkZGhp555hm98sor6ty5s2V1T5w4ofnz5ys6OtqymoCnaNmypYKCgpz+JqQkPffcc4qKilL//v2VnZ3t9Hre4rXXXtOvv/6q6dOnKzg42HQcABaz6lAf/bNzmOqfAQAAAAAAAAAAAAAAAMAU5pfdH/PLKA82m00bNmzQkSNHnFqH84bO4YnnDWEG8/DujXn4y0e/6hxW9qsOh0OrV6+WzWZzah24H9a3c7C+AQAAAAAAzo/9F/fG/gtwdlxsAQCAF6hQoYK6d++uhIQES+vWq1dP//73v/Xll19qypQpltb2VCNHjtSWLVs0c+ZMBQUFmY5Tbh5++GENGDBAsbGx2r17t+k4bu/IkSOKjo5WRESEXnzxRUtr//TTT8rNzVWfPn0srQt4goCAALVu3dqSNyF9fX0VHx+voqIiPfzww3I4HE6v6ekSExP1xhtv6MMPP1Tr1q1NxwFggM1mU2pqqiXPVPrn8mWyfwYAAAAAAAAAAAAAAAAAU5hfdm/ML6O8hIeHq7i4WKtXr3Z6Lc4blj9PPW8I6zEP776Yhy8f9Kvlz+p+dePGjTp06BAffI8yWN/lj/UNAAAAAABwYdh/cV/svwDnxsUWAAB4iejoaC1btkx79uyxtO5dd92lJ598Ug8//LCSk5Mtre1pJkyYoE8//VRffvmlGjZsaDpOufv8889VvXp19ejRQ0ePHjUdx22dPHlS0dHRys3N1eTJk+Xra23Ln5CQoHbt2ql27dqW1gU8hd1uV0pKiiW1rr76ak2ZMkVz587VCy+8YElNT7Vhwwb169dPffv21f/93/+ZjgPAELvdruzsbG3evNmSevTP5cN0/wwAAAAAAAAAAAAAAAAAJjG/7J6YX0Z5uuaaa1S/fn1LLrmROG9Ynjz9vCGsxTy8e2IevnzRr5YfE/1qamqqKlasqLCwMEvqwb2wvssP6xsAAAAAAODCsf/inth/Ac6PVQEAgJfo2rWrgoKC9OOPP1pe+7333lP37t3VvXt3paenW17fE/z444968skn9c4776hfv36m4zhF5cqVtXDhQh08eFC9e/fWiRMnTEdyO8XFxYqJidHq1as1b9481axZ09L6+fn5mjt3rqKjoy2tC3gSm82mzMxM5eTkWFKvY8eO+uabbzR27Fh9+OGHltT0NLt27VK3bt3UqFEjff3116bjADCoVatWqlChgmUHfOmfL5/p/hkAAAAAAAAAAAAAAAAATGN+2f0wvwxnsNlsll1sIXHesDx4w3lDWIt5ePfDPLxz0K9ePlP9ampqqlq3bq3AwEDLasK9sL4vH+sbAAAAAADg4rD/4n7YfwEuDBdbAADgJa644gp169ZNCQkJltf28/PT5MmT1aZNG3Xr1k3bt2+3PIM7S0pKUv/+/fXoo4/qmWeeMR3HqerVq6f58+crPT1d/fv3V1FRkelIbmXkyJH68ccf9f3336tVq1aW11+4cKGOHj2qPn36WF4b8BQ2m01FRUVas2aNZTUHDhyocePGadSoUfr2228tq+sJjhw5om7duqly5cqaP3++rrjiCtORABgUGBioVq1aWXqoj/758pjunwEAAAAAAAAAAAAAAADANOaX3Qvzy3AWm81m2YepSJw3vFzedN4Q1mEe3v0wD+889KuXzmS/mpKSIrvdblk9uCfW96VjfQMAAAAAAFw89l/cD/svwIXhYgsAALxIdHS0lixZov3791teOzAwUDNmzFBISIi6du2qffv2WZ7BHa1evVp33XWXoqOj9cknn5iOY4nmzZvrxx9/1IIFCzR06FA5HA7TkdzC66+/rvHjx2vKlCm6/fbbjWRISEiQ3W5X/fr1jdQHPEH9+vVVp04dSw+ESNKwYcP01FNPaciQIZo/f76ltd3VsWPH1K1bNx05ckQLFixQtWrVTEcC4ALsdrvlz3D650vjCv0zAAAAAAAAAAAAAAAAAJjG/LL7YH4ZzmS323XgwAFt2bLFspqcN7w03njeENZhHt59MA/vfPSrF89kv5qXl6fMzEzZbDbLasJ9sb4vHusbAAAAAADg0rH/4j7YfwEuHBdbAADgRbp3767AwEDNnj3bSP2qVavq559/VlFRkdq3b6+tW7cayeEuFi1apE6dOqlDhw6aOHGifH29p3Xr2LGjpk2bpokTJyomJkYFBQWmI7ksh8OhUaNGacyYMfr0008VHR1tJEdBQYHmzJljrD7gSWw2m6W365723nvvadCgQerTp4+mTp1qeX13sn//fkVGRmrr1q36+eefVadOHdORALgIm82mjIwM5ebmWlqX/vnCuUr/DAAAAAAAAAAAAAAAAACugvll18f8Mpzt5ptvVmBgoOXPAs4bXhxvPm8IazAP7/qYh7cW/eqFM92vrl69WoWFhbLb7ZbWhftifV841jcAAAAAAMDlYf/F9bH/Alw8phUAAPAilStX1p133qmEhARjGa655hqtXLlSISEhioiI0Lp164xlcWUzZ85Ur1691KtXL/3www8KDAw0HclyvXv31k8//aQ5c+aoa9euOnbsmOlILqewsFAPP/ywxo8fr0mTJmnIkCHGsixevFjZ2dnq06ePsQyApzB1MMzHx0dfffWVnnzySQ0aNEjvv/++5Rncwfbt29WhQwdlZ2fr119/VZMmTUxHAuBC7Ha7CgsLtXbtWstr0z+fnyv1zwAAAAAAAAAAAAAAAADgKphfdm3ML8MKFStWVIsWLYw8CzhveGE4bwgrMA/v2piHtx796oVxhX41JSVF11xzjerXr295bbgn1veFYX0DAAAAAABcPvZfXBv7L8Cl4WILAAC8TN++ffXLL7/o77//Npbhqquu0qJFi9SyZUt17NhRixYtMpbFFY0fP179+vXTkCFDFBcXp4CAANORjImKilJiYqL+85//qFOnTjpw4IDpSC4jNzdXvXv31vTp0zVr1iwNGDDAaJ7vv/9et9xyixo0aGA0B+AJbDab9uzZox07dlhe28fHR++++64++ugjPfvssxo+fLgcDoflOVxVZmam2rdvrwoVKmj58uW68cYbTUcC4GKuu+461apVSykpKUbq0z+fnav1zwAAAAAAAAAAAAAAAADgKphfdl3ML8NKdrvd2Aws5w3PjfOGsArz8K6LeXhz6FfPzVX61dTUVNntdiO14b5Y3+fG+gYAAAAAACgf7L+4LvZfgEvHxRYAAHiZXr16KSAgQAkJCUZzVK5cWbNnz1b37t3Vs2dPjR8/3mgeV3D8+HENGTJEw4cP1zvvvKNx48bJ15d27eabb9by5ct18OBB2e12rVmzxnQk47KyshQREaHVq1dryZIl6tKli9E8J0+e1I8//qj+/fsbzQF4ijZt2sjf39/Ym5CSNHz4cE2cOFGfffaZ+vXrpyNHjhjL4iqmTJmiiIgINWnSRMnJyapdu7bpSABclM1mU2pqqrH69M9luVr/DAAAAAAAAAAAAAAAAACuhPll18T8Mqxms9m0bt06HT9+3Eh9zhuWxXlDmMA8vOthHt410K+W5Ur96qpVq2Sz2YzVh3tjfZfF+gYAAAAAAChf7L+4HvZfgMvD5AIAAF6mSpUq6t69u6ZOnWo6igIDAzVlyhSNHj1aI0aMUHR0tA4fPmw6lhFZWVmy2+2aMWOGEhIS9PTTT5uO5FJuvPFGpaSkqGHDhmrfvr0++eQTORwO07GMmDx5sm655RZVqFBBqampuuWWW0xH0vz583X48GHde++9pqMAHuGKK65QaGio0TchJSk2NlYLFy7UihUr1Lp1a699I/L0QZDBgwfrgQce0Pz581WlShXTsQC4MJvNppUrVxrNQP/8X67YPwMAAAAAAAAAAAAAAACAK2F+2bUwvwxT7Ha7CgoKtH79emMZOG/4X5w3hCnMw7sW5uFdC/3qKa7Wr+7cuVO7du3ig+9xWVjfp7C+AQAAAAAAnIP9F9fC/gtw+bjYAgAALzRgwAD9+uuv2rVrl+ko8vX11UsvvaTExESlpKQoLCzM+C9dVktISJDNZlNAQIDWrFmjPn36mI7kkmrUqKEFCxbo3Xff1ahRo9SnTx8dOnTIdCzLnDhxQsOHD9fgwYM1cOBALV++XNdff73pWJKkadOmqX379qpbt67pKIDHsNvtxg+GSdJtt92m9PR0NWrUSOHh4Xr33Xe96o3ITZs2KTw8XNOnT9e0adM0btw4BQYGmo4FwMXZ7Xbt3r1bf/31l9Ec9M+u2z8DAAAAAAAAAAAAAAAAgKthftk1ML8Mkxo2bKirr75aKSkpRnNw3pDzhjCLeXjXwDy866Jfdb1+NTU1VX5+fnzwGC4b65v1DQAAAAAA4Czsv7gG9l+A8sPFFgAAeKFu3bopODhY3333nekoJTp27Kh169apSZMmuu222/TCCy8oLy/PdCyn2rVrl+655x7169dPDzzwgFasWKGGDRuajuXSfHx8NHz4cC1evFhr1qxRWFiYZs6caTqW0yUmJqpVq1aKj4/XDz/8oH/961/GB0FOy83N1dy5czVgwADTUQCPYrPZlJaWpvz8fNNRdPXVV2vevHkaM2aMXnzxRXXp0kWbN282HcupCgoK9N5776l169aqUKGC0tPTdc8995iOBcBNtG3bVv7+/sYP9Un0z67YPwMAAAAAAAAAAAAAAACAK2J+2Szml+EKfHx81LZtW5e45EbivCHnDWEK8/DmMQ/v+uhXXatfTU1NVfPmzVW5cmXTUeABWN+sbwAAAAAAAGdg/8U89l+A8sXFFgAAeKEKFSrorrvu0tSpU01HKaVGjRr66aef9MEHH+jTTz9Vs2bNNGvWLNOxyl1BQYE++OADNWnSRGvXrtVPP/2kjz76iF9sLkLHjh21fv16RUVFqW/fvurWrZu2bNliOla52717twYMGKBOnTqpcePGWr9+ve666y7TsUqZNWuW8vPzdffdd5uOAngUm82m/Px8paenm44iSfL19dXo0aP166+/at++fQoNDdXLL7+s48ePm45W7pYsWaKWLVvqlVde0bPPPqtly5bpuuuuMx0LgBupVKmSmjVr5jKH+iT6ZwAAAAAAAAAAAAAAAADAuTG/bA7zy3AlNpvNJT5M5TTOG3LeENZjHt4c5uHdC/3qdaZjlUhJSZHdbjcdAx6E9X2d6VglWN8AAAAAAMBTsP9iDvsvgHNwsQUAAF5qwIABWr16tTZv3mw6Sim+vr4aNmyYNm7cqA4dOqhPnz7q2bOny+W8VImJiWrdurVefPFFjRo1SpmZmbrzzjtNx3JLISEh+uabb7R06VL99ddfat68ucaMGaOcnBzT0S5bfn6+PvroIzVt2lSpqamaM2eOfvzxR9WvX990tDKmTp2q22+/XTVq1DAdBfAojRs3VvXq1V3qTUhJCg8P15o1a/TOO+9o3LhxuummmzRr1iw5HA7T0S7bX3/9pcGDBysqKkoNGjRQZmamXnrpJQ6CALgkdrvdpQ71SfTPAAAAAAAAAAAAAAAAAICzY37ZeswvwxXZ7Xbt2LFDu3fvNh2lBOcNAesxD28t5uHdG/2qWQUFBVq7dq1sNpvpKPBArG+zWN8AAAAAAMDTsP9iLfZfAOfiYgsAALxUp06dVLNmTU2fPt10lDOqVauW4uPjlZiYqG3btqlp06YaNGiQMjMzTUe7JAsWLFDHjh3VqVMn1atXT5mZmXrllVdUsWJF09HcXocOHbR27Vq9+eab+vDDD3XdddfpjTfe0OHDh01Hu2h5eXkaN26cGjZsqOeff15PPPGEfvvtN/Xo0cN0tDM6dOiQFi5cqAEDBpiOAngcHx8ftW3b1uUOhkmSv7+/nnzySf3++++y2+3q06ePbr75ZiUkJKi4uNh0vIu2bds2Pfroo7rhhhuUnJysH374QXPmzFGDBg1MRwPgxmw2m9LS0lRQUGA6Shn0zwAAAAAAAAAAAAAAAACA/x/zy9ZhfhmuzGazydfXV6tWrTIdpQzOGwLWYR7eGszDew76VXPS09N1/Phx2e1201HgoVjf5rC+AQAAAACAp2H/xRrsvwDW4GILAAC8lJ+fn/r27avJkyebjnJOt912m9LT0xUfH6+MjAyFhYXp7rvvVlpamulo5+VwODR79my1bdtWXbp0UaVKlbRs2TLNnz9fDRs2NB3Po/j7++upp57Stm3bNHToUH3wwQe67rrrNHr0aB04cMB0vPM6duyY3nnnHV1//fV64YUX1K9fP23ZskWvv/66goKCTMc7q4SEBPn6+qpXr16mowAeyWazudztuv+rdu3amjJlitauXauGDRvqnnvuUWhoqCZNmqTCwkLT8c4rKytL9913nxo1aqRFixbpk08+UVZWlnr37m06GgAPYLfbdfz4cWVkZJiOckb0zwAAAAAAAAAAAAAAAACA/x/zy87F/DLcQXBwsJo2beqSl9ycxnlDwPmYh3cu5uE9F/2q9VJSUnTllVeqcePGpqPAw7G+rcf6BgAAAAAAnob9F+di/wWwlo/D4XCYDgEAAMxITk5W+/btlZ6erhYtWpiOc14Oh0Nz587Vm2++qdTUVDVr1kyxsbG6//77VbNmTdPxSuzYsUPTpk3Tv//9b23ZskXdu3fXSy+9pLZt25qO5jVycnL01Vdf6d1331V2drZuv/12xcbGqnfv3goMDDQdT5JUXFysFStWKD4+XlOnTpXD4dCDDz6o5557Ttdcc43peBekU6dOqlatmr7//nvTUQCP9PPPP6tr167au3evS/07dzZbtmzR2LFj9fXXX+vqq69Wv379FBUVpbZt27rMc+3IkSOaNWuW4uPj9csvv6hBgwZ65pln9OCDD8rf3990PAAexOFwqHr16nrjjTc0dOhQ03HO60z9c0xMjK677jqX+T3GE/pnAAAAAAAAAAAAAAAAAHBlzC+XP+aX4Y4eeughbd26VUlJSaajnNfZzhvefPPN6ty5s+l4JThvCHfDPHz5Yx7eO52pX+3Xr5/at29vOlqJZcuWadu2bW7br8bExGj//v1asGCB6SjwMqxv52N9AwAAAAAAT8P+S/lj/wUwh4stAADwYg6HQw0aNFD//v319ttvm45zUZYsWaJvv/1WCQkJOnHihLp06aLBgwfr9ttvV7Vq1SzP8+eff2r27NmaNGmSUlJSVKdOHQ0cOFAPPPCAmjZtankenJKXl6fp06crPj5eS5cuVfXq1dW/f3/de++9stvtlg9dFBUVad26dfruu+80ZcoU7dq1S3a7XYMHD9agQYNUtWpVS/Ncjr1796pu3bqaPn26oqOjTccBPNLhw4dVvXp1zZo1Sz179jQd54Jt27ZN3377reLi4rRt2zY1btxYjzzyiHr37q0bbrjB8jw5OTlKTEzUlClTNGvWLElSr169FBsbq65du8rX19fyTAC8wx133KFatWopLi7OdJQL9r/985IlSxQUFKQHH3yQ/hkAAAAAAAAAAAAAAAAAvADzy+WD+WW4uy+++EJPPfWUDh8+7BYfeHva6fOGM2bMUF5ennr06MF5Q+AyMA9/+ZiHx2mn+9X4+Hht3bpVLVq0UGxsrEv0qzNmzJC/v7/uuusut+xXGzVqpAEDBujVV181HQVeivXtPKxvAAAAAADgidh/uXzsvwCugYstAADwcs8++6ymTZum7du3y8fHx3Sci3bixAnNmTNHcXFx+vnnn1VcXKwmTZqoffv26ty5s+644w4FBQVp8+bNuummm8qt7oEDB7RkyRItX75cycnJSktLU1BQkHr06KGYmBh17drVrQZ3vcGuXbv0/fffa+LEiUpPT1elSpUUHh6uzp07q127duX+i/G6devUqlUrbd26VYsXL9bixYv1yy+/KDs7W3Xr1tWgQYP04IMPqlGjRuVW00rjxo3TSy+9pH379ikoKMh0HMBjNWnSRH379tUbb7xhOspFGzx4sCZPnqz77rtP8+bN08GDB1WrVi116NBBnTt31p133qlrr7223OsWFhYqPT295Nm7bNky5efn6+abb1ZMTIwGDx6sq666qtzrAsD/7+WXX9a0adO0adMm01Eu2qxZs9SnTx/16NFDO3futKR/Ps1T+2cAAAAAAAAAAAAAAAAAcAfML1885pfhaTIyMhQWFqb169crLCzMdJyLsm/fPrVs2VIVKlRQaGjoWc8bXnnlleVem/OG8DTMw18a5uFxPmlpaYqLi9OUKVNcol89efKktm3bprS0NLf7+5mdna2QkBDNnTtX3bp1Mx0HYH2XI9Y3AAAAAADwVOy/XBr2XwDXw8UWAAB4ufXr16tVq1ZasWKFwsPDTce5LNnZ2Vq6dKkSExOVmJioDRs2KCAgQFWrVlXNmjXVrVs3NWrUSI0bN1bt2rUVHBysypUrq2LFimV+Vk5OjnJycnTs2DFt375dmzZt0saNG5WVlaVNmzZp586d8vPzU9u2bRUZGamoqChFRESc8WfB9WzatElJSUlKTEzUkiVLtH//fgUHB5f8/WjSpEnJ/65ataqCg4MVHBwsPz+/Uj/H4XDo8OHDysnJ0ZEjR7Rp0yZt2rRJv//+u2bMmKEKFSro8OHDqlq1qm699VZFRUUpKipKN910k1teJPO/wsPD1ahRI3377bemowAe7f7779euXbu0aNEi01EuytixY/Xss89Kknbs2KFrrrlGqampSkxMVFJSklauXKn8/HzVrl271DO3SZMmuv7661WlShVVrlxZwcHBZX52fn6+cnNzdfjwYR04cKDUv89ZWVnavHmz8vPz1bBhw5LnbmRkpGrWrGn1fwYAXm7evHnq2bOn9u/fr5CQENNxLtiGDRvUpk0b5eXl6f3339fIkSOd3j9nZWWVPM8PHTrkkf0zAAAAAAAAAAAAAAAAALgD5peZXwaKi4tVrVo1jR07Vv/4xz9Mx7lgBQUFioyMVHJyslq3bq20tLSznjds0KCBmjRposaNG3PeEDgL5uGZh4dzFRQUuES/2q9fP33//fdq0KCB0tLSVLVqVQP/NS7N/Pnz1aNHD7d7TsHzsb4vH+sbAAAAAAB4KvZf2H8BPAUXWwAAADVr1kydO3fWJ598YjpKudq7d6/mz5+vxx57TPXq1VNwcLA2bdqk3NzcUt/n5+en4OBgBQUFKS8vT4cPHy7zs6666qpSvyC1aNFCHTp0UOXKla3648BJHA6HMjMztXLlylIDxdu3b1dhYWGp7w0KClKlSpXk6+ur3NzcMn+XfH19Vb9+fdWtW1fLly/XXXfdpdGjR6tVq1Zlfol2Z9u2bVPDhg01b948de3a1XQcwKN99tlneu6553To0CH5+vqajnNB5s2bp169eqm4uFiStGvXLtWuXbvU9xw/flwrV67UunXrSobofv/9d+3fv7/Mz7vyyitVqVIlHT9+XDk5OSooKCj19QoVKpQ6TNKsWTO1b99e9evXd94fEgAuwMGDB1WjRg3NnTtX3bp1Mx3nghw8eFCtWrXS3r175ePjo/fee0/Dhw8v9T3O6J8bN25c8vtWmzZtPK5/BgAAAAAAAAAAAAAAAAB3wfwy88uAJEVFRem6667T119/bTrKBbv//vs1efJkFRYWqk2bNlq1alWZ79m7d6+WLVum3377TVlZWSXPA84bAmUxD888PKxlql8dMGCApk+fLj8/P916661asGCB2/z9HTNmjCZPnqzNmzebjgKcE+v74rG+AQAAAACAp2L/hf0XwFP4mw4AAADMGzRokD7++GO9//77CgwMNB2n3NSqVUurV6/WyZMnVbNmTSUnJ0uSdu7cqQMHDujIkSPKzc1VTk6Ojh07ptzcXFWqVEnVqlVTpUqVVLlyZVWuXFn169d3qxsNcXF8fHwUGhqq0NDQUq+fPHlSW7Zs0bFjx3T06FEdOXJEOTk5ys3NVXFxccnfkWrVqpX8XbnhhhtUsWJFzZo1S8uXL9eCBQv06aefetwvwXFxcapRo4Y6d+5sOgrg8cLDw3X06FH99ttvZZ5Trmjjxo269957S73m71/2rYegoKCSW2//1+HDh7V9+3bl5OSU/Pt8+vkbFBRU8rytXLmyqlatqurVq+vaa691m0NzALxLSEiIbrjhBq1cudItNpIKCgp09913a9++fSosLFRAQMAZn+HO6J8BAAAAAAAAAAAAAAAAAK6B+WXmlwHp1LMgISHBdIwL9uGHHyouLk4Oh0OSznpGslatWurXr5/69etX6nXOGwJlMQ/PPDysZapf9ff3l4+PjwoLC7VkyRKNGjVKH330kTP+iOVuxYoVstvtpmMA58X6vnisbwAAAAAA4KnYf2H/BfAUXGwBAAB0//3365VXXtHs2bPVt29f03HKTWZmpr744gtJpwbVT6tfv77q169vKhbcRGADsRevAAAgAElEQVRgoJo2bXpJ/9+srCwFBASosLBQL774or766qtyTmdOcXGxJk6cqJiYGAUEBJiOA3i80NBQBQcHKzk52eUPhmVnZ6tLly46efKkiouLS14/05uQZ1O1alW1bNnSGfEAwIh27dqVXLDn6oYNG6aVK1eW3HLucDgu6hl+Of0zAAAAAAAAAAAAAAAAAMA1ML8MQJIiIiL09ttv68CBA7r66qtNxzmnhQsX6umnny651EK6uOeAxHlD4GyYhwfMc3a/evqD7yWpqKhIH3/8sZo1a6ZHHnnEaTXLQ1FRkVJTUzV27FjTUYBLxvo+M9Y3AAAAAADwdOy/APAEF3YFMwAA8Gh16tTRHXfcoa+//tp0lHI1fPhw+fn5STo1rJ6dnW04EbzFxo0b5XA4VFBQoIkTJyotLc10pHKzePFi7dixQw888IDpKIBX8PPzU9u2bbVixQrTUc6psLBQ0dHR2rVrlwoKCkp9jUtwAHiziIgIrVq1qmRzxlWNHz9eX3zxRamcDoeDZzgAAAAAAAAAAAAAAAAAeBnmlwFIp2ZgfXx8tHLlStNRzikrK0vR0dFlXuc5AJQP5uEBz/e/H3x/2mOPPaalS5caSnRhMjIydPToUbVr1850FMBlsb4BAAAAAABcE/svADwBF1sAAABJ0oMPPqgFCxZo586dpqOUi9mzZysxMbHUcHpWVpbBRPAmGRkZJb+E+/n5aejQoXI4HIZTlY+vvvpKERERatasmekogNdwh9t1n3jiCS1btuyMb5RezO26AOBp2rVrp9zcXKWnp5uOclaLFy/WiBEjyrx+sTekAwAAAAAAAAAAAAAAAAA8A/PLAKpVq6YmTZq49CU3hw4dUteuXXXixAkVFxeX+hofpgKUD+bhAc8XEBBQ5oPvHQ6H7rrrLm3dutVQqvNLTk5WcHAwZ52Bc2B9AwAAAAAAuCb2XwB4Ai62AAAAkqRevXrpqquuUlxcnOkol62goEBPPvmkfH3/2+r4+flp48aNBlPBm2zevLnkfxcWFio1NVUzZ840mKh8/P3335o1a5Yeeugh01EAr9KuXTtt3bpVe/bsMR3ljL7++mt99tlnKioqOuPXeRMSgDdr2rSpqlev7rIHfLdt26a+ffue8RI2NpIAAAAAAAAAAAAAAAAAwDsxvwxAcu1LboqKijRgwAD9+eefZ7zghostgPLBPDzg+fz9/ct88H1xcbFycnLUs2dP5ebmGkp2bsnJyYqIiCj1WQIASmN9AwAAAAAAuCb2XwB4At7BBQAAkqTAwEANGjRIX3/9tYqLi03HuSzjx4/Xzp07S/05/Pz8lJWVZTAVvMX+/ft19OjRUq/5+vrqySef1IkTJwylKh+TJk1SQECA+vXrZzoK4FXsdrv8/Py0YsUK01HKWLZsmf7xj3+c83t4ExKAN/Px8VF4eLhLbiQdO3ZMXbp0UW5u7hl/B2QjCQAAAAAAAAAAAAAAAAC8E/PLACQpIiJCq1evVn5+vukoZYwYMUKLFi0646UW0qmzkgAuH/PwgOc72zopLCzUpk2bNHDgQJf83IHk5GS1a9fOdAzApbG+AQAAAAAAXBP7LwA8ARdbAACAEg899JC2bdumxYsXm45yybKzszVmzBgVFRWVer2goEC///67oVTwJhs3bizzWnFxsfbs2aNx48YZSFQ+HA6HvvjiC/Xv319VqlQxHQfwKlWqVFHz5s1d7mDY9u3b1bt37zPeqnuar6+vfHx8LEwFAK4nIiJCy5cvNx2jlOLiYt17773atm3bWQ/0SRzuBQAAAAAAAAAAAAAAAABvxPwyAElq166d8vPztXbtWtNRSvnmm280fvz4s34Ir4+PjwICAixOBXgu5uEBz+bv73/W/rmwsFBz587Vq6++anGqc9u1a5f+/PNPPvgeOA/WNwAAAAAAgOti/wWAu+NiCwAAUKJ58+aKjIzURx99ZDrKJRs9erROnDhR5nWHw6H//Oc/BhLB22zcuFF+fn5lXi8qKtKrr76qPXv2GEh1+RYsWKANGzZo2LBhpqMAXqldu3Yudbvu6Vt1jx49WuYyqf91puchAHibdu3aaffu3dq5c6fpKCWeeeYZ/fTTTyooKDjn97GRBAAAAAAAAAAAAAAAAADeifllADfeeKNq1arlUpfcLFu2TI888sg5v8fHx4dnAVCOmIcHPNv5LoMqLi7W66+/rhkzZliU6PyWLVsmf39/tWnTxnQUwKWxvgEAAAAAAFwX+y8A3B0XWwAAgFJGjBhR8gH27mbDhg364osvzvrL0M6dO8/7ixJwubKyss46/FxYWKgXX3zR4kTl46OPPlKnTp0UFhZmOgrglSIiIrR27Vrl5eWZjiJJWr16tXx9fVVUVKTAwMCzfh+HQQBAatu2rQIDA13mgG92dnbJZWz+/v7y8fE56/eykQQAAAAAAAAAAAAAAAAA3on5ZQCSZLfbXWYGVpKSkpJUqVIl+fj4nHXO9VxfA3DxmIcHPNu51omfn598fX1VsWJFLV26VA6Hw8JkZ7dixQq1bNlSlStXNh0FcGmsbwAAAAAAANfF/gsAd8fFFgAAoJQePXqocePG+uSTT0xHuWiPP/74OQfQi4qKtGXLFgsTwRv99ttvZ71ApaCgQBMnTlRaWprFqS7Phg0btGjRIo0YMcJ0FMBrtWvXTgUFBVqzZo3pKJKkqKgobdiwQZmZmRoxYoSuuuoqSWXfcOQNSACQgoKCFBYW5jIbSdWrV9fcuXO1f/9+/fOf/9Qtt9wiSQoICCjzvWd6DQAAAAAAAAAAAAAAAADg+ZhfBiCduuTGVWZgJenll1/W33//rYULF+qee+5RYGBgyYfynubj48MMLFCOmIcHPNuZzuWf/tCyNm3a6LPPPtP+/fs1YcKEc36QmZWSk5PVrl070zEAl8f6BgAAAAAAcF3svwBwd1xsAQAASvHx8dGwYcMUFxengwcPmo5zwebMmaPExMSzXihw2saNGy1KBG/122+/yeFwnPXrfn5+Gj58uIWJLt/HH3+sG264QV27djUdBfBa1113nerWresyb0KedtNNN+mdd95RcnKy/Pz81LFjx5KDIT4+Pue8cAoAvEm7du20YsUK0zFKqV69uoYMGaJVq1apWbNmat26tWrUqCHpvxtIHPAFAAAAAAAAAAAAAAAAAO/E/DIA6dQM7P79+/XHH3+YjlLCz89PnTt31uTJk/Xss8+qevXqatWqlSQpMDBQxcXFPAuAcsY8POC5AgICVFBQULJeGjVqpGuvvVYxMTFauXKlhgwZosqVKxtO+V+5ubnKyMhQRESE6SiAy2N9AwAAAAAAuDb2XwC4My62AAAAZTzwwAO64oor9MUXX5iOckFOnjypUaNGSZIqVKggX98ztziBgYFcbAGnOnHihHbv3n3WrwcEBMjhcCg5OVkzZ860MNmlO3jwoCZNmqQRI0acdW0BsEZ4eLjLvQl52pQpUxQSEqIFCxZo3759+vTTT9WmTRtVqFDBdDQAcAkRERHKyMjQ0aNHTUcpY8OGDdqwYYPeffdd7d69Wz///LP69u2roKAgNpIAAAAAAAAAAAAAAAAAwIsxvwzg5ptvVsWKFV32WfDDDz/onnvu0Zo1a/T7779r1KhRqlWrFjOwQDljHh7wXP7+/qpWrZqGDh2qtLQ0ZWVl6ZFHHtHcuXOVn59vOl4ZKSkpKiws5IPvgQvA+gYAAAAAAHBt7L8AcGc+DofDYToEAABwPc8++6wmTZqkrVu3uvxQt8Ph0LZt27R+/XplZGRo3bp1SklJ0f79+yWdukzAx8dHBQUFio2N1TfffGM2MDxWZmamQkND5ePjI39/fxUWFsrhcCggIEChoaGy2Wxq2bKlwsLC1Lx5c1WqVMl05PN6/fXX9dFHH+nPP/90i7yAJxs3bpxee+01HThwwKUumnE4HLrhhhsUHR2tsWPHlvrarl27VKdOHUPJAMB17N69W3Xq1NGCBQt0xx13mI5TyrPPPqvp06dr69atpf59Ob3pFRwcbCoaAAAAAAAAAAAAAAAAAMAg5pcBSFL79u3VtGlTffnll6ajlLJ69Wq1bdtWqampatu2bcnrxcXF2rt3r2rXrm0wHeBZmIcHPNe+fftUvXp1BQQElLy2e/du1a9fX999953uvvtug+nKevXVVzVx4kRt377ddBTA5bG+AQAAAAAAXBv7LwDcmetMkgEAAJfyxBNP6O+//9bEiRNNRzkvHx8fNWjQQHfffbfGjBmjWbNm6eWXX9aVV16pJUuW6MMPP1RsbKxCQ0PZyIZTbdy4UfXq1VP37t313HPPacaMGRo+fLjq1auntLQ0ffrppxoyZIhsNptbXBKRk5OjcePGaejQoW6RF/B0t912m7Kzs7V+/XrTUUpZtmyZtm7dqsGDB5f5GofCAOCU2rVrq3HjxkpKSjIdpZTi4mJNmTJFsbGxZQ4dBwcHs4kEAAAAAAAAAAAAAAAAAF6M+WUAkhQZGelyM7CSFBcXp0aNGpW61EKSfH19udQCKGfMwwOeq2bNmqU+9F46teajoqIUFxdnKNXZJSYmKioqynQMwC2wvgEAAAAAAFwb+y8A3BkXWwAAgDOqU6eOHnzwQb399ts6efKk6TgXLT09XS1bttStt96qYcOG6csvv1R6errL/eIGzxIdHa2dO3dqzpw5eu211xQdHa3IyEht27at5IZJd/LPf/5TJ06c0PDhw01HASCpRYsWuvrqq5WYmGg6SilxcXFq1aqVWrRoYToKALi0qKgol3uGL1q0SH/99ZcGDRpkOgoAAAAAAAAAAAAAAAAAwMUwvwxAOnWxxZYtW7R9+3bTUUoUFBRo2rRpuv/++01HAbwG8/CAd4mNjdX8+fN14MAB01FK5OXlKTU1VZGRkaajAG6N9Q0AAAAAAOA62H8B4K642AIAAJzV888/r7179yo+Pt50lIuWnp6usLCwMq/7+PgYSANvcaa/Xy1btpTD4dB//vMfA4kuXV5enj788EM9/vjjCgkJMR0HgE49Y2677TaXehPyxIkTSkhIUGxsrOkoAODyIiMjlZaWpsOHD5uOUiI+Pl4RERFq3Lix6SgAAAAAAAAAAAAAAAAAABfD/DIASYqIiFBQUJCSkpJMRykxb948ZWdna/DgwaajAF6DeXjAu9x9992qWLGipk2bZjpKieXLlys/P58PvgcuE+sbAAAAAADAdbD/AsBdcbEFAAA4q3r16ikmJkZvvfWWCgsLTce5YEVFRcrMzDzjxRaA1erXr69q1aopPT3ddJSL8vnnnysnJ0cjRowwHQXA/4iKitKyZctUUFBgOook6YcfflBOTo769+9vOgoAuLyoqCg5HA79+uuvpqNIknJycjRr1izFxMSYjgIAAAAAAAAAAAAAAAAAcFHMLwOoWLGiwsPDXeqSm7i4OEVGRqpevXqmowBeg3l4wLtcccUVio6OVlxcnOkoJRITE9W4cWPVrVvXdBTArbG+AQAAAAAAXAf7LwDcFRdbAACAc3rhhRe0c+dOTZ061XSUC/bHH38oLy+Piy3gEnx8fBQaGupWF1ucOHFCH3zwgR577DHVqFHDdBwA/yMqKko5OTlatWqV6SiSTh0G6dKli2rVqmU6CgC4vKuuukqhoaEuc6jvu+++08mTJ9WvXz/TUQAAAAAAAAAAAAAAAAAALor5ZQCSFBkZqV9++cV0DElSdna25s+fz4epABZjHh7wPjExMVqzZo0yMzNNR5F06oPvo6KiTMcAPALrGwAAAAAAwDWw/wLAXXGxBQAAOKcGDRpo0KBBevPNN1VUVGQ6zgVZv369/Pz81KxZM9NRAElSWFiYW11s8e9//1uHDh3SyJEjTUcB8P9p1KiR6tat6xJvQu7bt0+LFy9WbGys6SgA4DaioqJc4hkuSfHx8erdu7euuuoq01EAAAAAAAAAAAAAAAAAAC6K+WUAktSpUyft2bNHGzduNB1FU6dOlb+/v+6++27TUQCvwzw84F0iIyN1/fXXa/Lkyaaj6MiRI1q7di0ffA+UE9Y3AAAAAACA62D/BYA74mILAABwXi+88IK2bNmi+Ph401EuSHp6uho3bqygoCDTUQBJpy62yMjIcIvLYfLy8vTWW29pyJAhuuaaa0zHAXAGrvImZHx8vCpVqqQePXqYjgIAbiMqKkqZmZnat2+f0Rw7duzQr7/+qpiYGKM5AAAAAAAAAAAAAAAAAACuj/llAG3atFFwcLDLPAuio6NVpUoV01EAr8M8POBdfHx8NHDgQMXHxxs/H71kyRIVFxfrtttuM5oD8BSsbwAAAAAAANfB/gsAd8TFFgAA4LwaNWqkBx98UGPGjFF+fr7pOOeVnp6usLAw0zGAEmFhYTp+/Lj++OMP01HO6+OPP9axY8f0/PPPm44C4CyioqK0YsUK5eXlGc0RHx+v/v37c5EUAFyEW2+9Vf7+/lqyZInRHHFxcQoJCVGXLl2M5gAAAAAAAAAAAAAAAAAAuD7mlwH4+/urQ4cOSkpKMppj06ZNWrVqFR+mAhjCPDzgfe677z7t3r3beA+QlJSksLAwhYSEGM0BeBLWNwAAAAAAgGtg/wWAO+JiCwAAcEFeeeUVHThwQJ9++qnpKOfFxRZwNc2bN5e/v7/S09NNRzmnw4cP64MPPtDIkSNVs2ZN03EAnEXnzp118uRJrVixwliGdevWKSMjQ7GxscYyAIA7qlKlim6++WbjA7+TJ0/WwIEDFRAQYDQHAAAAAAAAAAAAAAAAAMD1Mb8MQJIiIyOVlJSk4uJiYxm+/fZb1a5dW5GRkcYyAN6MeXjA+9x4441q27at4uLijOZITExUVFSU0QyAp2F9AwAAAAAAuAb2XwC4Iy62AAAAF6R27doaNmyY3nrrLR09etR0nLP6+++/tWvXLrVs2dJ0FKBExYoV1ahRI5e/2OLtt9+Wr6+vnnrqKdNRAJxDnTp1dOONNyoxMdFYhvj4eN1www0KDw83lgEA3FVUVJR++eUXY/VXrlyprKwsxcTEGMsAAAAAAAAAAAAAAAAAAHAfzC8DkE7NwP7999/KyMgwUt/hcGjKlCmKjY2Vn5+fkQwAmIcHvFFsbKxmzpypY8eOGam/f/9+ZWZmcrEV4ASsbwAAAAAAANfA/gsAd8PFFgAA4II9//zzKi4u1gcffGA6ylmdvjggLCzMcBKgtLCwMJe+2GLPnj2aMGGCRo8ereDgYNNxAJxHVFSUsYNhhYWFmjp1qmJiYuTj42MkAwC4s6ioKP3xxx/asWOHkfpxcXG66aab1Lp1ayP1AQAAAAAAAAAAAAAAAADuh/llAGFhYQoJCTH2gSpJSUnavn27Bg4caKQ+gFOYhwe8T//+/VVYWKiZM2caqZ+YmCg/Pz917NjRSH3Ak7G+AQAAAAAAXAP7LwDcDRdbAACAC1a1alU9/fTT+vDDD7V//37Tcc4oPT1dV199tWrVqmU6ClCKq19s8eqrryokJESPPfaY6SgALkBUVJTS0tJ05MgRy2v//PPP2rdvnwYPHmx5bQDwBBEREapYsaKSkpIsr33y5EnNmDFD9913n+W1AQAAAAAAAAAAAAAAAADui/llAL6+vrrtttuMXXITFxenNm3aqHnz5kbqAziFeXjA+1SvXl3du3dXXFyckfpJSUm65ZZbFBwcbKQ+4MlY3wAAAAAAAK6B/RcA7oaLLQAAwEV54oknFBwcrFdeecV0lDNKT09Xy5YtTccAyggLC9Nff/2lgwcPmo5SxoYNG/TVV1/p1VdfVYUKFUzHAXABoqKiVFxcbORASHx8vDp06KAGDRpYXhsAPEFQUJDatWunhQsXWl579uzZOnTokAYMGGB5bQAAAAAAAAAAAAAAAACA+2J+GYAkde7cWUuXLlV+fr6ldXNzczVz5kzFxsZaWhdAWczDA94pNjZWSUlJ2r59u+W1Fy5cqM6dO1teF/AWrG8AAAAAAADz2H8B4G642AIAAFyUK664Qm+99Za+/PJLZWRkmI5Txvr16xUWFmY6BlDG6b+XrrhuRo4cqdDQUIa7ATcSEhKiW265RQsWLLC07pEjRzRnzhyeFwBwme68804tWrRIxcXFltaNi4vT7bffrrp161paFwAAAAAAAAAAAAAAAADg3phfBiCdmoHNzc3V8uXLLa07c+ZMnThxQv3797e0LoAzYx4e8D7dunVTyP9j7+6jvCzr/IG/ZwAVUUFQQ0Ux05QUMR+TDVcRGRDUfKiwhDS1tk1q0x422/1ldVq1siy1NMt0BoRUzAzcAUNTV0sRZRAfEKQQpBQREBVkBub3h0f3uAw+wPf7vefh9TqHc+S+x+t6/3FfwzVzfb73Z4cdcsMNN1R03ieffDJ/+9vfMmzYsIrOCx2J9Q0AAADQOjh/AdoSjS0AgPdszJgxOfjgg/OVr3yl6Chv0djYmCeeeEJjC1qlnXfeOTvttFMaGhqKjvIWkydPTn19fS677LJUV/vxANqSmpqa3H777RWdc+LEiWlubs4pp5xS0XkB2pthw4blhRdeyMyZMys259KlS1NfX+/DvQAAAAAAAAAAAGwS9cvAHnvskX322afiTW5qa2szYsSI7LDDDhWdF2iZenjoeLp06ZJRo0bluuuuS3Nzc8Xmra+vT48ePXL44YdXbE7oaKxvAAAAgNbB+QvQlnhzLQDwnlVVVeWyyy7LXXfdldtuu63oOG964oknsnbtWo0taLUGDBjQqhpbNDY25qtf/Wo+8YlP5Mgjjyw6DvAe1dTUZNGiRXnyyScrNmddXV1OOumk9OjRo2JzArRH/fv3z2677Zb6+vqKzXnDDTeka9eu+djHPlaxOQEAAAAAAAAAAGg/1C8DyesvVKlkY4tnn302d911l5epQCuiHh46pjFjxmTevHl58MEHKzbn1KlTM2TIkHTu3Llic0JHZH0DAAAAFM/5C9CWaGwBAGySI444Ip/4xCdy3nnn5bXXXis6TpKkoaEhW265Zfbdd9+io0CLWltjiyuuuCILFy7MJZdcUnQUYBN85CMfSc+ePSv2S8inn346999/vw+DAJTIscceW9EP9dXW1ubUU0/N1ltvXbE5AQAAAAAAAAAAaD/ULwPJ601uZs+enUWLFlVkvrq6unTv3j3HHXdcReYD3h318NDxHHLIIdl///1TV1dXkfnWrFmTe+65JzU1NRWZDzoy6xsAAACgdXD+ArQVGlsAAJvskksuyZIlS3LllVcWHSXJ640tPvShD6VLly5FR4EWDRgwII8//njWrl1bdJS88MIL+d73vpevfOUr2WOPPYqOA2yCTp065ZhjjqnYLyFra2uz0047ZciQIRWZD6C9q6mpyV/+8pe8+OKLZZ/r8ccfz8MPP+zDvQAAAAAAAAAAAGwy9ctAkhx11FHp2rVr/vjHP1ZkvvHjx+e0007LlltuWZH5gHdHPTx0TJ/+9KczYcKEvPbaa2Wf6+67786rr76aoUOHln0uwPoGAAAAaA2cvwBthcYWAMAm69u3b84///x897vfzT/+8Y+i46ShoSEDBgwoOgZs1IABA7J27do8+eSTRUfJBRdckK222irf/OY3i44CbIaamprcfffdWb16dVnnaW5uzrhx4zJ69Oh07ty5rHMBdBTHHntskuTOO+8s+1zXXXdd+vbtm0GDBpV9LgAAAAAAAAAAANov9ctA165dM2jQoIo0uZkxY0bmzJnjZSrQCqmHh45p9OjRWblyZaZMmVL2uaZOnZr9998/u+++e9nnAqxvAAAAgNbA+QvQVmhsAQBslgsuuCA9e/bMV7/61aKjZPbs2Rpb0Kr169cvW265ZRoaGgrN8dBDD+XXv/51Lr300my77baFZgE2T01NTdasWZN77rmnrPPce++9WbBgQUaPHl3WeQA6ku233z6HHXZY2T/Ut379+kyYMCFjxoxJdbVfBwMAAAAAAAAAALDp1C8DyevfC6ZNm5Z169aVdZ66urp88IMfzGGHHVbWeYD3Tj08dEy77rprBg8enLq6urLPVV9fn2HDhpV9HuB11jcAAABA8Zy/AG2F7xwAwGbp2rVrfvKTn2T8+PEV6ey3MUuWLMnzzz+vsQWtWufOndOvX79CG1usX78+X/ziF/PRj340o0aNKiwHUBp9+vTJfvvtV/ZfQtbW1ubDH/5wDjjggLLOA9DR1NTUpL6+vqxz3HHHHVm8eHE+/elPl3UeAAAAAAAAAAAA2j/1y0CSDBs2LMuXL8+MGTPKNkdjY2MmTpyYz3zmM2WbA9g86uGhYxo9enSmTJmSpUuXlm2OxYsX54knnkhNTU3Z5gA2ZH0DAAAAFM/5C9AWaGwBAGy2E088MSNHjszYsWPT2NhYSIY3GgX079+/kPnh3TrwwAMLbWzxi1/8IrNmzcpVV12VqqqqwnIApTNs2LCyfjBszZo1mTRpUkaPHl22OQA6qmHDhmXx4sV57LHHyjZHbW1tBg4cmH322adscwAAAAAAAAAAANBxqF8GPvShD6Vv375lfaHKlClTsmzZspx++ullmwPYPOrhoWM6+eSTs9VWW2XixIllm+P222/P1ltvnUGDBpVtDmBD1jcAAABA8Zy/AG2BxhYAQElcccUVWbhwYX7yk58UMn9DQ0N222237LDDDoXMD+/WgAEDCmts8fzzz+c///M/85WvfCX9+vUrJANQejU1NXn88cezcOHCsoz/u9/9Li+//HJOO+20sowP0JEdeuih2XHHHcv2ob6XXnopt956qw/3AgAAAAAAAAAAUDLql4EkGTp0aFmb3NTV1eWoo47K7rvvXrY5gM2jHh46pm7duuXkk09OXV1d2eaYOnVqjj766Gy55ZZlmwPYkPUNAAAAUDznL0BboLEFAFASffv2zTe+8Y1897vfzTPPPFPx+RsaGjJgwICKzwvv1YABA7J06dL8/e9/r/jcX/va17LNNtvkP//zPys+N1A+g+WU3qUAACAASURBVAYNSrdu3cr2gZC6uroMGzYsvXv3Lsv4AB1ZdXV1jjnmmLJ9D7/55pvT1NSUj3/842UZHwAAAAAAAAAAgI5H/TKQJMOGDcuMGTOybNmyko/94osvZsqUKRkzZkzJxwZKRz08dFxjxozJjBkzMmfOnJKP3dTUlOnTp6empqbkYwPvzPoGAAAAKJbzF6At0NgCACiZr3/96+nTp0++8IUvVHxujS1oK954ThsaGio677Rp01JXV5ef/vSn6datW0XnBspryy23zODBg3P77beXfOznnnsud9xxh866AGU0fPjw3HPPPVm1alXJx66trc2JJ56YXr16lXxsAAAAAAAAAAAAOib1y0CSDBkyJNXV1WV5ocrEiRPTuXPnnHzyySUfGygt9fDQMR199NHZY489Mn78+JKPfd9992XlypUZPnx4yccG3pn1DQAAAFA85y9Aa6exBQBQMltuuWV+85vfpL6+PnV1dRWbd/Xq1Zk3b57GFrQJPXv2TJ8+fTJr1qyKzfnKK6/kC1/4Qk499dScdNJJFZsXqJwRI0bkjjvuyOrVq0s6bl1dXbp165bjjz++pOMC8L9GjBiRpqam3HHHHSUdd+HChbn33nt9uBcAAAAAAAAAAICSU78MbLfddjnyyCMzefLkko9dW1ubk08+Odtuu23JxwZKSz08dExVVVX51Kc+lbq6uqxbt66kY//hD39Iv379stdee5V0XODdsb4BAAAAiuf8BWjtNLYAAErqiCOOyL/+67/m3/7t3/Lcc89VZM45c+akqalJYwvajAEDBqShoaFi8/37v/97Vq5cmcsvv7xicwKVdfzxx2f16tX505/+VNJx6+rqMmrUqHTt2rWk4wLwv3r16pXDDz88U6ZMKem4tbW12WGHHTJs2LCSjgsAAAAAAAAAAADql4EkGTlyZG6//fY0NjaWbMx58+blwQcfzJgxY0o2JlA+6uGh4zrjjDOyZMmS3HXXXSUdd/LkyRk5cmRJxwTeG+sbAAAAoFjOX4DWTmMLAKDkLr744vTo0SPnnntuReZraGhIt27dstdee1VkPthclWxs8ec//zk///nPc9lll+V973tfReYEKm+XXXbJhz/84UyePLlkY86aNSuzZ8/WWRegAkaOHJnJkydn/fr1JRtz/Pjx+dSnPpUuXbqUbEwAAAAAAAAAAABI1C8DrzvhhBOycuXK3H///SUb87rrrssuu+ySo48+umRjAuWlHh46pr333juHHXZYamtrSzbm008/nblz52bEiBElGxN476xvAAAAgOI5fwFaM40tAICS69atW6655ppMmjQpkyZNKvt8DQ0N6d+/f6qrbW1oGwYMGJCnnnoqr776alnnee2113L22WenpqYmp59+elnnAoo3cuTI/OEPf0hzc3NJxqutrc1ee+2VgQMHlmQ8ADZu5MiRef755zNjxoySjHf//fdn7ty5PtwLAAAAAAAAAABA2ahfBvbcc8/su+++JWty09zcnBtuuCGjR49Op06dSjImUH7q4aHjGjNmTG655ZasWrWqJOPddttt6d69u58JoBWwvgEAAACK5fwFaM28/RkAKIvBgwfnjDPOyLnnnpsXX3yxrHM1NDRkwIABZZ0DSunAAw/MunXr8vjjj5d1ngsvvDCLFy/OVVddVdZ5gNZhxIgRWbRoUR599NHNHqupqSkTJkzI6NGjU1VVVYJ0ALyd/v37Z4899siUKVNKMl5dXV3222+/HHTQQSUZDwAAAAAAAAAAAP4v9ctA8voLVUrV2OKuu+7K3/72t3z6058uyXhAZaiHh45r1KhRaWpqyi233FKS8aZMmZLjjjsuXbp0Kcl4wKazvgEAAACK5fwFaM00tgAAyuYnP/lJOnXqlPPPP79sczQ3N+fRRx/V2II2Za+99so222yThoaGss3R0NCQSy+9NJdcckl23333ss0DtB6HHHJIevfuXZIPhEydOjXPPfdcTj/99BIkA+DdGDFiREm+h69duzY33XRTPvOZz5QgFQAAAAAAAAAAALRM/TKQvF4D++STT2bevHmbPVZtbW0OPfTQ7L///iVIBlSSenjomHr27JkRI0aktrZ2s8d66aWXcu+992bEiBElSAZsLusbAAAAoHjOX4DWSmMLAKBsunfvnquuuirXX3996uvryzLH3/72t6xYsUJjC9qU6urq7LfffmVrbNHU1JTPfvazGThwYD7/+c+XZQ6g9amurs5xxx1Xkl9C1tbWZtCgQdlzzz1LkAyAd2PkyJGZNWtWFi9evFnj3HbbbVm+fHlOO+20EiUDAAAAAAAAAACADalfBpJk0KBB6dWrV6ZMmbJZ47zyyiu55ZZbMnr06BIlAypJPTx0XKNHj86f/vSnPPPMM5s1ztSpU7Nu3boMGzasRMmAzWV9AwAAABTL+QvQWmlsAQCU1ciRI/Pxj388n//857Nq1aqSj9/Q0JCqqqrsv//+JR8bymnAgAGZNWtWWca++OKL88QTT+Saa65JVVVVWeYAWqeRI0fmgQceyHPPPbfJY6xcuTJ/+MMfMmbMmBImA+CdHH300dlmm202+wO+tbW1OfbYY9OnT58SJQMAAAAAAAAAAICWqV8GOnXqlKFDh252Dewtt9ySNWvWZNSoUSVKBlSSenjouEaMGJFevXpl3LhxmzXOlClTMnDgwPTq1atEyYDNZX0DAAAAFMv5C9BaaWwBAJTdlVdemTVr1uSb3/xmycduaGjInnvume22267kY0M5DRgwILNnz05zc3NJx507d26+//3v57vf/W723nvvko4NtH5Dhw7NFltskfr6+k0e47e//W2am5tzyimnlDAZAO9kyy23zDHHHJMpU6Zs8hhLly5NfX29D/cCAAAAAAAAAABQEeqXgeT1F97ec889WbFixSaPUVdXlxEjRmTHHXcsYTKgUtTDQ8fVpUuXjBo1Ktdff/0mj7F+/frU19dnxIgRJUwGbC7rGwAAAKBYzl+A1qqqudRv0gUA2pVzzz03r7766maP8/TTT+epp55KTU1NqqtL11tr4cKFWbVqVfbff/+SjflenXHGGTnyyCMLm59NV6rne1MsX748Tz31VA455JB06tSpZOMuWLAgTz75ZIYPH56qqqrNHs/zDZvnsccey6WXXlrROadNm5ZtttkmAwcO3KT//5lnnsmLL76YAw88sMTJNu7KK69M165dKzYfwLtV6f3iU089lZkzZ2bUqFGbtJdbtWpVHnnkkQwcODCdO3cuQ8IN2S8CAAAAAAAAAAC0HuqX3x31y7R31113Xe65556Kzffaa69l4sSJOfbYY7PLLrts0hgzZ85M7969s+uuu5Y4Xcv233//nHfeeRWZC4qiHv6dqYenPavkfmDZsmWZN29eDj300E36zPSKFSvy+9//PieeeGJ69OhRhoQtsx+grbK+35n1DQAAAJSL85d35vwF2j+NLQCAt9W9e/fstttu6dOnz2aP1dzcXJIX7bcm06dPz89//vOcc845RUdhE5Ty+W5NSrXWPN+w+aZOnZphw4blmGOOqdgv9BobG9OlS5eKzLW5li1bloceeigrVqxI9+7di44DsIFK7xfXrVuXqqqqkjYDLCf7RQAAAAAAAAAAgNZF/fLbU79MR3H22Wfn1ltvzSGHHFKxOdvS94LHHnss/fr1y7Rp04qOAmWlHv7tqYenvStiP7A5mpqaKvYzTGI/QNtmfb896xsAAAAoJ+cvb8/5C3QMlfuNLwDQZn35y1/2g8FGKGJv+zzfG+f5htKZNGmSNdWCNz44B9Ca2S9unH/bAAAAAAAAAAAAWif1yy1Tv0xHctBBB6W+vr7oGK3S2WefnWeeeaboGFAR6uE3zl6JjsB+YOPsB2jrrO+Ns74BAACAcnP+snHOX6BjaButdgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKg4jS0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABokcYWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtEhjCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFqksQUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAt0tgCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAFmlsAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQIs0tgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBFGlsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQIo0tAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJHGFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALRIYwsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABapLEFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALdLYAgBoU15++eWiI0DZrF+/vugIQDvX1NSUdevWFR0DAAAAAAAAAAAAAADoIJqbm7N8+fKiYwAFampqSnNzc9ExgFZg1apVWbZsWdExAAAAAADavKampqxevbroGEAHpLEFANDqPfzww6mpqUnPnj2z7bbbpnfv3vn85z+fl156qehosNmeeuqpfPnLX84ee+yRXr16ZeTIkZk+fXrRsYB2Zvz48Rk4cGC23XbbbLXVVtl3331zxRVXaKgD0MbsvffeOeecc4qOAQAAAAAAAAAAAC2aPn169ttvv7f9M2bMmKJjAhWyfPnynHPOOenWrVt69uyZ7bbbLp/85CfzwgsvFB0NqJDbb789Bx10ULbZZpu8733vy6hRo3LPPfcUHQsoyLJly7Lvvvtm0KBBRUcBNtP69eszYMCAFn/uHzFiRNHxAAAAANq1adOm5aCDDsrWW2+dbt265f3vf793ygEV1bnoAAAAb+ehhx7KkCFD0rlz53zqU59Kz54989vf/ja//OUv88gjj+Qvf/lLqqv16qJtWr16dU444YQ8++yz+dSnPpVevXpl0qRJOf7441NfX58jjzyy6IhAO1BbW5szzjgj++yzT7785S9n9erVmTRpUsaOHZsVK1bkP/7jP4qOCMC7cN1112X+/Pk56qijio4CAAAAAAAAAAAALaqqqkqXLl1avLdmzZrMnTs3e++9d4VTAUVYu3ZtjjvuuDzwwAP57Gc/myOOOCIPPvhgfvnLX2bx4sW57777io4IlNmECRPy6U9/OnvssUe+9rWv5dlnn82NN96Y//7v/86DDz6YffbZp+iIQIWdddZZWbJkSbp37150FGAzLV68OLNnz07//v3Ts2fPt9z7v38HAAAAoHSmT5+eYcOGpUePHjnzzDPTpUuX3HzzzRk7dmyWLl2a73znO0VHBDoAjS0AgFbtiiuuyOrVq/PAAw/kwAMPTJJ897vfzZAhQzJ9+vRMmjQpH//4xwtOCZvmW9/6VubOnZvbb789w4cPT5J8+ctfzoABA3LGGWdkwYIFBScE2oNLL700e++9dx544IFst912SZJvfOMbef/7358rr7xSYwuAVmzx4sX5zne+kxkzZqShoaHoOAAAAAAAAAAAAPC2Bg8enFmzZrV4b+zYsXnppZdy1VVXVTgVUITrr78+f/nLX/KjH/0o559/fpLXX2ZdVVWVq6++Og899FAOOeSQglMC5bJ27dp87WtfS7du3fLwww+nR48eSZKLL744ffr0yahRo/LII48UnBKopF/84hepr6/3wntoJ+bPn58kqaury4ABAwpOAwAAANBxfO9730tzc3NmzJiRD3zgA0mSiy66KH369Mmll16a//f//l86depUcEqgvasuOgAAwNu5//77c+CBB77Z1OINZ555ZpLkwQcfLCIWlMR1112XAw444M2mFknyvve9LzU1NfnrX/+aBx54oMB0QHuwcuXKzJkzJ8OHD3+zqUWS7LLLLhk8eHBefPHFNDY2FpgQgLezatWqPPXUU+nevXsOPfTQouMAAAAAAAAAAADAJqmvr8/Pf/7zjBs3Lr179y46DlAB48aNy0477ZSxY8e+5foFF1yQ2tra7LjjjgUlAyrh8ccfz7PPPpvjjjvuzaYWSbLTTjtl6NChmTVrVlauXFlgQqCSHnvssZx//vm55JJLsvPOOxcdByiBefPmpaqqKh/84AeLjgIAAADQoSxatCh9+vR5s6lFkmy77bY57LDD0tjYmDVr1hSYDugoNLYAAFqtxsbG1NTU5Nxzz93g3qJFi5IkPXv2rHQsKIkXXnghy5cvz5AhQza490YBx0MPPVTpWEA707lz59xzzz35xje+8ZbrK1euzOzZszN06NB06dKloHQAvJN+/frl7rvvzt13350bbrih6DgAAAAAAAAAAADwni1btiyf/exn88lPfjKDBw8uOg5QIfPmzcvw4cOzxRZbZMGCBbntttsyc+bM7LLLLhk9enT69u1bdESgjJYsWZIkOeywwza498a1xx57rKKZgGKsWbMmp512WgYNGpQvfelLRccBSmT+/PnZfffd8/LLL2fy5Mn59a9/nfvvvz/r1q0rOhoAAABAu3bSSSdl8eLFuf3229+8Nnfu3Nx11105+uij061btwLTAR1F56IDAABsTJcuXXL55ZdvcP3555/PlVdemS5dumTkyJEFJIPNN3fu3CTJzjvvvMG9ffbZJ8nrzzrA5ujWrVv+6Z/+6c2/X3bZZVm4cGGmTJmSdevW5Zvf/GaB6QAAAAAAAAAAAACA9u6LX/xiVqxYkYsvvrjoKECFvPzyy/n73/+e973vfTn++OMzefLkN+/tu++++c1vfpOPfOQjBSYEyu0DH/hAkuTOO+/M+eef/5Z7jz/+eJLXG1sMHDiw4tmAyvra176WJUuWZOrUqamqqio6DlAi8+fPz0svvZQ99tgjr7766pvXDz744NTV1aVfv34FpgMAAABov8aOHZvp06dn5MiRGThwYLbaaqvcdddd2WWXXfL973+/6HhAB1FddAAAgPdi8uTJ6d+/f5599tn86Ec/Sv/+/YuOBJtk/vz5SZKePXtucK9v375JkhUrVlQ0E9D+fetb38pll12WefPmZYcddkjXrl2LjgQAAAAAAAAAAAAAtFOPPfZYbrzxxpx33nnZfffdi44DVMgbn5v66U9/mr/+9a+5/PLLM3PmzPzsZz/LwoULc+KJJ+b5558vOCVQTnvvvXcOOeSQTJ8+Pb/61a+yatWqrFy5MldeeWVuuummJMm6desKTgmU2+TJk3PFFVfkmmuuyc4771x0HKCE5s+fn1WrVuXb3/52nnrqqdx333353Oc+l1mzZuXEE0/MK6+8UnREAAAAgHapR48e6du3b5qbmzNjxoz85S9/yfr169O5c+esWrWq6HhAB6GxBQDQJjz99NM54YQTcvzxx2e77bbLtGnT8qUvfanoWLDJttxyyyTJiy++uMG9Nwo1tt9++4pmAtq/V155JU899VSuvfbaLFu2LIcffnj+8Y9/FB0LAAAAAAAAAAAAAGiHfvCDH2SLLbbIeeedV3QUoILe+LzUa6+9lptvvjnnnntuDjrooIwdOzbnnXdenn/++UycOLHglEA5VVdX59prr03v3r1zzjnnpHfv3undu3fOO++8nHPOOUmS/fbbr+CUQDn9/e9/z5lnnpmzzz47J510UtFxgBK77rrr8sgjj+TrX/969t577wwcODBXX311zjvvvMybNy+33HJL0REBAAAA2qVBgwbl97//fX7+85/nH//4R5YuXZpJkyblpZdeyogRI/K3v/2t6IhAB6CxBQDQ6o0bNy4HHnhg/vSnP+UHP/hB5syZkyFDhhQdCzZL7969kyQLFizY4N4bxds77rhjRTMB7U9zc3PWr1//lmt77713zjzzzFx88cVpbGzM7bffXlA6AAAAAAAAAAAAAKC9euaZZ3LDDTfkYx/7WHr27Fl0HKCCdt111yTJRz7ykey7775vuXf88ccnSZ544omK5wIqq3///nn00Ufzq1/9Kv/yL/+S733ve3nwwQfTr1+/JBpbQHv3i1/8Ii+88EJWrlyZM888880/zz77bJYsWZIzzzwzF110UdExgU108MEHZ//999/g+nHHHZckmTNnTqUjAQAAALR7TzzxRB599NEcddRR+cIXvpDtt98+Xbt2zcknn5wzzjgjr776qoajQEV0LjoAAMDbmTx5csaMGZMjjjgiEyZMyO677150JCiJD37wg6mqqmqxsUVDQ0OS5PDDD690LKCdufjii3PBBRdkypQpbxaDvWGHHXZIkixatKiIaAAAAAAAAAAAAABAO/bLX/4yTU1NOeuss4qOAlTYG58BbGxs3ODe6tWrkyTdu3evaCagstauXZu//vWv2WGHHTbYC1x88cXZeeedNb6Cdm7HHXfMgQcemHnz5r3l+muvvZb169dn1qxZqa6uLigdsDkWLVqUBx98MIceeugG7/94490JO+20UxHRAAAAANq12bNnJ0n++Z//eYN7xx57bH784x9n+fLllY4FdEBOeACAVu2CCy5I9+7dc/PNN2tqQbuyyy675Mgjj8w999yTp59++s3rjY2NueGGG7Lrrrvm4IMPLjAh0B70798/SXLHHXdscO+aa65JkgwYMKCimQAAAAAAAAAAAACA9m/atGnp2bNnjjnmmKKjABXWtWvXDB48ODNnztzgZda33nprkmTgwIFFRAMq5NVXX82+++6bsWPHvuX64sWLM2nSpJxwwgkFJQMqZezYsXnkkUc2+NOvX7/sueeeeeSRR/LrX/+66JjAJnjxxRdz6qmn5vvf//4G9377298mSQYNGlTpWAAAAADt3oc+9KEkyc0337zBvRtvvDHJ/753DqCcOhcdAABgY5YvX545c+bkwx/+cC699NIWv+aoo47KyJEjK5wMSuOCCy7IiBEj8olPfCLf+ta3sv322+eSSy7JggULMnny5FRVVRUdEWjjjjvuuPTv3z+XX355evTokZqamjz77LO56aab8oc//CGHHnqof0cBAAAAAAAAAAAAgJJavnx5Zs6cmeOPPz7V1dVFxwEKcPHFF+fwww/PJz7xifzXf/1Xdtttt9x55525+uqr89GPftRL7aGd69GjRwYPHpybb745Q4YMyUknnZT58+fnc5/7XPr06ZMf/vCHRUcEADbRAQcckCOOOCLXXHNNevXqlZNPPjnr16/PuHHjMm3atJxyyik57LDDio4JAAAA0O7st99+GTp0aKZNm5Zhw4bl9NNPzx577JHf/e53mTBhQvbbb7987GMfKzom0AFobAEAtFr33Xdfmpub8/DDD+fhhx9u8Wuqqqq8kJs2a+jQoamrq8vZZ5+dU045JcnrBZs//vGPM3z48ILTAe1BdXV1br311px++um58MILc+GFF7557+STT87PfvazdO7sVwMAAAAAAAAAAAAAQOncddddWb9+fY444oiiowAFOfTQQzNlypSceeaZOe644968fsIJJ+Q3v/lNgcmASrn22mtz2mmn5ayzzspZZ52VJDnooINyww03ZNttty04HQCwqaqqqnLrrbfm7LPPzkUXXZSLLrrozXtf+MIXcumllxaYDgAAAKD9qq6uzoQJEzJ27NhMmDAhU6dOffPekUcemWuvvTZbbLFFgQmBjsLbKwGAVmvkyJFpbm4uOgaU1ahRo3LqqafmoYceyvr163P44YenU6dORccC2pE999wz//M//5O//vWvefLJJ9O1a9fss88+2XXXXYuOBsB7sNdee/n5CAAAAAAAAAAAgDbh5JNPVvMGZPjw4Vm0aFHmzJmTpUuXpn///tl5552LjgVUSN++fXPffffl0UcfzYIFC3LQQQdl9913LzoWULCZM2cWHQEogZ122im33XZbFi5cmLlz56ZHjx7p16+f5lUAAAAAZdazZ8+MHz8+l1xySR577LGsXr06++67b/bZZ59UVVUVHQ/oIDS2AACAgnXu3Dkf+chHio4BtGPV1dX5wAc+kA984ANFRwEAAAAAAAAAAAAAADqILl265MMf/nDRMYCCVFVV5YADDsgBBxxQdBQAoAz69u2bvn37Fh0DAAAAoMPp06dP+vTpU3QMoIOqLjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArZPGFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALRIYwsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABapLEFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALdLYAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBZpbAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECLNLYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgRRpbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0CKNLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiRxhYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0SGMLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWqSxBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC3S2AIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAWaWwBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAizS2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoEUaWwAAbcrcuXOLjgBl4/kGKsH3GoC2y/dwAAAAAAAAAAAA2hq1b8Arr7ySxYsXFx0DKJg9AXRs9gPQflnfAAAAAMVx/gIUoXPRAQCA1u/666/Pn//856JjJEnuvPPOHHLIIdluu+2KjpIkWb16ddER2Eye743zfEPpnHvuuenSpUvRMdLY2Jg//vGPGT58eNFRkiTPPvts0REA3pH94sbZLwIAAAAAAAAAALRO6pdbpn6ZjuSxxx7LZz/72aJjJEkWLFiQV155Jf379y86SpLkvvvuS9++fYuOARWhHn7j1MPTEdgPbJz9AG2d9b1x1jcAAABQbs5fNs75C3QMGlsAFFY/CAAAIABJREFUAG9ryJAheeWVV7JkyZKio6SpqSmLFi3KFltskT333LPoOEmSwYMHZ7fddis6BpvI8/32PN+w+XbYYYfU1NRk6dKlRUdJkixZsiT/+Mc/Mn/+/Gy99dZFx0lVVVVqampaxYfmAFpiv/j27BcBAAAAAAAAAABaF/XLb0/9Mh3F/vvvn8WLF7eKGtgkefzxx7N69er06tWr6ChJkve///05+OCDi44BZace/u2ph6e9sx94e/YDtGXW99uzvgEAAIBycv7y9py/QMdQ1dzc3Fx0CACAd+Paa6/NWWedlb322ivz5s0rOg6UlOcbqIShQ4fmjjvuyIUXXphvf/vbRccB4D2wXwQAAAAAAAAAAKCtUb8MLF++PDvttFOampoyZ86c7LfffkVHAgqgHh46NvsBaL+sbwAAAIDiOH8BilJddAAAgHdr3Lhxqaqqyvz58zN79uyi40BJeb6Bclu6dGnuvPPOJEltbW3BaQB4r+wXAQAAAAAAAAAAaEvULwNJcvPNN6e5uTldunTJxIkTi44DFEQ9PHRs9gPQflnfAAAAAMVx/gIURWMLAKBNeP7553P33Xe/eag9YcKEoiNByXi+gUq46aab3vzvBQsW5OGHHy4wDQDvhf0iAAAAAAAAAAAAbY36ZSB5vbFNc3NzGhsbc/3116e5ubnoSECFqYcH7Aeg/bK+AQAAAIrh/AUoksYWAECbMHHixFRXv751cahNe+P5BirhjeKwJNliiy38EhKgDbFfBAAAAAAAAAAAoK1RvwwsWbIk999/f9avX58kWbRoUWbMmFFwKqDS1MNDx2Y/AO2X9Q0AAABQHOcvQJE0tgAA2oTa2tqsW7fuzb///e9/z/33319gIigdzzdQbs8880wefPDBN4vD1q5dm+uvv/7NvwPQutkvAgAAAAAAAAAA0JaoXwaSZMKECW++TCXR5AY6KvXw0LHZD0D7ZX0DAAAAFMf5C1AkjS0AgFZvwYIFefjhh9/SAbBLly4OtWkXPN9AJUyYMCGdOnV6y7WlS5fm3nvvLSgRAO+W/SIAAAAAAAAAAABtjfplINnwZSpr165NXV3dW64B7Zt6eMB+ANov6xsAAACgGM5fgKJpbAEAtHoTJkxI586d33KtsbEx48ePT1NTU0GpoDQ830Al/N/isOT1X0LecMMNBSUC4N2yXwQAAAAAAAAAAKCtUb8MzJ8/P7Nnz37Ly1SSZNmyZfnTn/5UTCig4tTDQ8dmPwDtl/UNAAAAUBznL0DRNLYAAFq9urq6NDY2bnB9xYoVmT59egGJoHQ830C5Pfnkk3n88cc3KA5rbGzMxIkTs3bt2oKSAfBu2C8CAAAAAAAAAADQlqhfBpJk3Lhx6dKlywbXNbmBjkU9PHRs9gPQflnfAAAAAMVx/gIUTWMLAKBVmz17dubOndviPYfatHWeb6ASxo8f32JxWJKsWrUqd9xxR4UTAfBu2S8CAAAAAAAAAADQ1qhfBpLXX3Tb0stU3mhys2bNmgJSAZWkHh6wH4D2y/oGAAAAKIbzF6A10NgCAGjVJkyYsNFi9sbGxtx0001ZvXp1hVNBaXi+gUrYWGfdJOnUqVPGjx9f4UQAvFv2iwAAAAAAAAAAALQ16peBmTNn5umnn97o/dWrV6e+vr6CiYAiqIeHjs1+ANov6xsAAACgOM5fgNZAYwsAoNVqbm5ObW3tRovZk+S1117LlClTKpgKSsPzDVTCAw88kIULF270flNTU373u9/l5ZdfrmAqAN4N+0UAAAAAAAAAAADaGvXLQPL6y1S22GKLjd7X5AbaP/XwgP0AtF/WNwAAAEAxnL8ArYXGFgBAq3X//fdnyZIlb/s11dXVGTduXIUSQel4voFKeKfisCRZu3ZtJk+eXKFEALxb9osAAAAAAAAAAAC0NeqXgfXr12fcuHFZu3btRr+mqakpt912W1566aUKJgMqST08dGz2A9B+Wd8AAAAAxXH+ArQWGlsAAK3WxIkT3/FrmpqaUl9fn5UrV1YgEZSO5xsot3Xr1mXixIlvWxyWvF5ENmHChAqlAuDdsl8EAAAAAAAAAACgLVG/DCTJvffem+eee+4dv27t2rX5/e9/X4FEQBHUw0PHZj8A7Zf1DQAAAFAc5y9Aa9G56AAAABtzwgkn5Mgjj3zLtTPOOCOjR4/OMccc85brr732WiWjwWbzfAPltnr16lx++eVvudbQ0JDvf//7ue6667L11lu/eX2LLbaodDwA3oH9IgAAAAAAAAAAAG2J+mUgSXbaaafceOONb7l29dVX54UXXsi3vvWtt1zfc889KxkNqCD18NCx2Q9A+2V9AwAAABTH+QvQWlQ1Nzc3Fx0CAODd6tGjR374wx/mnHPOKToKlJznGyi3qVOnZtiwYVmxYkW6d+9edBwA3iP7RQAAAAAAAAAAANoS9ctAkpxzzjl55plnMnXq1KKjAAVSDw8dm/0AtF/WNwAAAEBxnL8ARaguOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACtk8YWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtEhjCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFqksQUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAt0tgCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAFmlsAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQIs0toD/z959R2lZ3evD/w5lQCKKgr0NAopKk0iQalAUAYlYERVjrEdN1GNs+LOdkxzURGMwWdFELAFED1HIWSoiRAFBiiiDg6FIEMQapSgoShme94+8khhBBpiZ+7nv5/NZy7UUR+bC7L3zHfblbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYLM8bAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBmedgCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAzfKwBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJvlYQsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2y8MWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbJaHLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANgsD1sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwWR62AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYLM8bAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBmedgCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAzfKwBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJvlYQsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2y8MWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbJaHLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANgsD1sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwWR62AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYLM8bAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBmedgCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAzfKwBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJvlYQsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2y8MWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbJaHLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANgsD1sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwWR62AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYLOKcrlcLukQAABfWbVqVSxZsiTefvvtWL58+aY/1q9fH6tWrYpx48ZF8+bNo1mzZlGvXr34zne+Ew0bNoyGDRvGfvvtFyUlJbHvvvtGjRre7yL/WN9Adfjggw9iyZIl8f7778fHH38cy5cvj9WrV8eXX34ZS5cujVdeeSV69OgRDRo0iNq1a286Zxo2bBgHHHBAlJSUxO677570LwOgIJkXAQAAAAAAAAAASBv9ZWDdunWxdOnSWLJkSfz973/f1IFdu3ZtrFq1KkpLS+PLL7+M9u3bf+Ms2HPPPaOkpCQOOuigqFu3btK/FGAH6MNDYTMPQHbZ3wAAAADJcf8C5CMPWwAAidi4cWPMmzcvpk+fHq+//nqUlZXFG2+8EcuXL9/0Mf/6RVFxcXHUr19/099bt25dfP755/H555/HsmXLYvny5fHVWFNcXBxNmzaNVq1aRevWreO73/1uHH300V/756EqWd9AdVizZk28+uqr8corr0RZWVnMmTMn5s+fH19++eWmj9l9992jUaNGUb9+/dhpp52+Vvr67LPPYv369bF8+fJYtmxZfPbZZ5v+3q677hqHH354tGrVKtq0aRPt27ePVq1aRc2aNav11wiQVeZFAAAAAAAAAAAA0kZ/GYiI+PDDD2PatGkxa9asKCsri7Kysli6dGls3LgxIuJr38S2bt26seuuu37tm6SsXLky1q1b97VvhvuVAw44IFq0aLHpLOjYsWMceOCB1f5rBL6dPjxgHoDssr8BAAAAkuH+BUgTD1sAANXmzTffjOeeey7Gjx8fU6dOjZUrV8Z3vvOdaNGiRbRu3TpatGgRTZo0iZKSkmjcuHHstNNOFf65N27cGB988EEsXrw4Fi9eHPPmzYs5c+ZsuiivWbNmtGjRIo499tjo2bNndOnS5WvleNhR1jdQ1TZs2BAvv/xyjB07Nl588cUoLS2N9evXxz777BOtWrWKVq1axeGHHx6NGzeOkpKS2H///bfpP+Rau3ZtLFmyJJYsWRKLFy+OOXPmbDprPv3009h5553j6KOPjuOPPz5OPPHEaNWqVRX+agGyx7wIAAAAAAAAAABAmugvAxH/+Ma048ePj7Fjx8ZLL70UixYtipo1a0azZs02feOTZs2aRUlJSZSUlMQee+yxzT//V2fBwoULNz2cM2/evFi/fn3sv//+0bVr1+jRo0f06NEj9tprryr6lQLfRh8eCpt5ALLL/gYAAABIjvsXIK08bAEAVKm33norhg0bFo899lgsXLgwGjRoEMcff3x06dIlOnXqFK1atYpatWpVaYYPP/wwpk6dGlOmTInx48fHG2+8EfXq1YuePXvGmWeeGSeddFLUq1evSjOQTdY3UNU2btwYkyZNiqFDh8bo0aPj008/jWbNmsUJJ5wQnTp1ik6dOsWBBx5Y5Rnmzp0bU6dOjcmTJ8e4cePio48+igMOOCBOO+20OOOMM6JDhw5RVFRUpTkA0si8CAAAAAAAAAAAQJroLwMREatXr46nnnoqhg0bFpMmTYqioqLo0KFDHHvssdGxY8c4+uijY5dddqnSDGvWrImZM2fGyy+/HBMmTIjJkyfH+vXro127dnHGGWfEGWecUeXnERQ6fXgobOYByC77GwAAACA57l+ALPCwBQBQ6T755JP405/+FEOHDo2XX3459tprr+jfv3+ccsop0aFDhyr/Qmlr3nnnnXjuuefiySefjBdffDHq1q0bZ5xxRlx88cXRsWPHRLOR/6xvoDrMnz8/hg0bFsOHD4+lS5fGUUcdFeecc06cdNJJ0bRp00Szbdy4MV577bV45plnYuTIkTF//vw46KCD4sILL4wLLrgg9ttvv0TzASTNvAgAAAAAAAAAAEDa6C8D5eXl8Ze//CWGDRsWo0ePjvLy8ujdu3ecddZZcfzxx0eDBg0Szff555/Hiy++GKNHj44///nP8cknn0SXLl3i4osvjtNPPz3q1q2baD7ICn14KGzmAcgu+xsAAAAgOe5fgKzxsAUAUGkWLFgQd955ZzzxxBNRVFQUJ598cgwYMCBOOOGExL9Y2pKPP/44Ro4cGUOGDInZs2dHq1at4vrrr4+zzjoratasmXQ88oj1DVS1XC4XTz/9dNx1110xderU2H///ePcc8+NAQMGxOGHH550vC0qKyuLYcOGxR//+MdYsWJF9O3bN2666aZo27Zt0tEAqpV5EQAAAAAAAAAAgDTRXwYiIlavXh33339/DB48ON5///3o0KFDDBgwIPr16xe777570vE2a926dTF+/Ph4+OGH4+mnn4769evHZZddFldffXU0atQo6XiQSvrwUNjMA5Bd9jcAAABActy/AFnlYQsAYIe9/vrrMWjQoHjyySejWbNm8dOf/jT69esXu+yyS9LRtsnMmTPjvvvuiyeeeCIOOuiguPHGG+O8886L4uLipKORIOsbqGobN26MkSNHxh133BFz5syJPn36xJVXXhndunWLGjVqJB2vwtatWxejR4+Ou+++O1599dXo2bNn3HTTTdG5c+ekowFUKfMiAAAAAAAAAAAAaaK/DERErFixIu677774zW9+E+vXr4/LLrssLrroomjWrFnS0bbJhx9+GA899FAMHjw41qxZE5dccklce+21se+++yYdDVJBHx4Km3kAssv+BgAAAEiO+xcg6zxsAQBst5kzZ8bPfvazeOaZZ6J169YxcODAOP3001NVYt+ct956K+6666549NFHY6+99oprr702Lr300qhTp07S0ahG1jdQ1crLy2PYsGFxxx13xKJFi+KMM86Im266KVq2bJl0tB02duzYGDRoUEyePDmOOeaYuOWWW+K4445LOhZApTIvAgAAAAAAAAAAkCb6y0BExMcffxy//OUv44EHHoji4uK48sor4yc/+UnstttuSUfbIWvWrIk//OEPcffdd8eyZcviRz/6UQwcODAOPPDApKNBXtKHh8JmHoDssr8BAAAAkuP+BSgU6T7VAIBELFu2LC666KJo3759LFu2LJ5++umYNWtWnHnmman/oiki4uCDD47f//73sWjRojj11FNj4MCB0bJlyxg3blzS0agG1jdQHWbMmBHf+9734pJLLonOnTvHvHnz4vHHH8/EfxQWEXHiiSfGSy+9FJMmTYq6detG9+7d47TTTot33nkn6WgAO8y8CAAAAAAAAAAAQNroLwMbN26M+++/Pw499NAYNmxY3HrrrbFkyZK49dZbU/9NbiMi6tWrF1dffXUsWrQoBg8eHOPGjYvDDjssBg0aFOvWrUs6HuQNfXgobOYByC77GwAAACA57l+AQpP+kw0AqDa5XC6GDh0ahx9+eIwZMyYeffTRmDp1avTu3TuKioqSjlfp9t9///j1r38dCxcujKOPPjp69OgRffr0iaVLlyYdjSpgfVvfUB1WrlwZV111VXTq1Cnq168fpaWl8dBDD0WzZs2SjlYlunbtGmPHjo0JEybE/Pnzo3nz5nH77bfH2rVrk44GsM3Mi+ZFAAAAAAAAAACAtNFf1l+GiIjS0tLo1KlTXHnllTFgwIB4880349prr42dd9456WiVrk6dOnHppZfG/PnzY9CgQXHHHXdEixYt4vnnn086GiRKH14fHswD5gGyy/62vwEAAIBkuH9x/wKFysMWAECFlJaWRseOHePCCy+MAQMGxIIFC+K8885LOla12HfffWPo0KExZsyYmDdvXrRo0SLuueee2LBhQ9LRqCTWt/UNVS2Xy8XDDz8chxxySPzpT3+KYcOGxcSJE+OII45IOlq1+P73vx+zZs2KgQMHxi9+8Yto27ZtTJo0KelYABVmXjQvAgAAAAAAAAAApIn+sv4yRER88skncfnll8dRRx0VderUidmzZ8fgwYOjfv36SUercrVr146rrroq3njjjTj88MPjxBNPjP79+8cHH3yQdDSodvrw+vAUNvOAeYDssr/tbwAAACA57l/cv0Ah87AFAPCtcrlc3HvvvXH00UdHrVq1YtasWXHPPfcUxGX2v+vZs2e88cYbcc0118TNN98cxx13XLz33ntJx2IHWN//ZH1D1VmxYkWccsopcemll8Y555wT8+fPj/79+ycdq9rVqVMnbr755vjrX/8aBx98cBx77LFx0003+Y1IIK+ZF//JvAgAAAAAAAAAAJAO+sv/oL9MoZsxY0YceeSRMWrUqPjjH/8YEyZMKJjHbf7VQQcdFH/+85/jmWeeiRkzZkTr1q1j7NixSceCaqEP/0/68BQq88A/mAfIIvv7H+xvAAAAoLq5f/kn9y9QuDxsAQBs0aeffhpnnnlmXH/99TFw4MCYNGlStGzZMulYiapbt27cfvvtMWvWrFixYkW0adMmxowZk3QstoP1/U3WN1S+V199Ndq1axevvfZavPjii/HrX/86dtlll6RjJapx48bx9NNPxyOPPBL33XdfdOrUKZYsWZJ0LIBvMC9+k3kRAAAAAAAAAAAgv+kvf5P+MoUml8vF4MGDo2vXrtGkSZOYPXt2nHvuuVFUVJR0tET17t07/vrXv8bJJ58cvXr1iquuuirWr1+fdCyoMvrw36QPTyExD2yeeYAssL83z/4GAAAAqoP7l29y/wKFycMWAMBmzZw5M9q2bRvTp0+PCRMmxO233x41ahgdvnLYYYfFK6+8En379o2TTjrJxXbKWN/fzvqGHfdVMaxTp05x8MEHx6uvvhpdunRJOlZeOe+882LmzJmxZs2aaNeuXTz77LNJRwLYxLz47cyLAAAAAAAAAAAA+UV/eev0lykEX30jlWuvvTYGDhwY48aNi7333jvpWHljp512igcffDAeffTReOihh6Jz586xePHipGNBpdOH/3b68GSdeeDbmQdIM/v729nfAAAAQFVy//Lt3L9AYXH6AQDf8Lvf/S46deoUhx12WJSWlkbnzp2TjpSXvrrYHjJkSAwZMiSOPfbYWL58edKx2Arru2Ksb9h+a9asiVNOOSWuu+66+PnPfx7jxo2LvfbaK+lYeemwww6LadOmRc+ePaNPnz5x6623Ri6XSzoWUODMixVjXgQAAAAAAAAAAMgP+ssVp79MlpWVlUWrVq1ixowZMXHiRN9I5Vucd955MX369Fi9enW0a9cuJk6cmHQkqDT68BWjD09WmQcqzjxA2tjfFWd/AwAAAJXN/UvFuH+BwuF3pwGAr7n11lvjxz/+cdx2223x9NNPR6NGjZKOlPcuuOCCmDFjRrzzzjvRpUuXWLp0adKR2ALre9tZ37BtVqxYEd27d4+XX345JkyYENddd10UFRUlHSuv7bzzzjF06NB44IEH4o477ohLLrkkysvLk44FFCjz4rYzLwIAAAAAAAAAACRHf3nb6S+TRS+99FIcc8wx0aRJkygtLY1OnTolHSnvtWjRImbOnBndunWLnj17xqhRo5KOBDtMH37b6cOTJeaBbWceIC3s721nfwMAAACVxf3LtnP/AtnnYQsAICIiysvL47LLLotBgwbF73//+/h//+//KbJvgxYtWsS0adOiuLg4jj766CgrK0s6Ev/C+t4x1jdUzAcffBDdunWL999/P6ZMmaIYto0uueSSGD16dIwYMSJOOeWU+OKLL5KOBBQQ8+KOMS8CAAAAAAAAAABUP/3lHaO/TFY8/fTTceKJJ8YxxxwTY8aMiYYNGyYdKTW+853vxMiRI+Oyyy6LM888Mx544IGkI8F20YffMfrwZIF5YPuZB8h39vf2s78BAACAHeH+Zce4f4Fs87AFABBr166Ns88+Ox555JF44okn4uKLL046Uirts88+MXHixGjatGl8//vfjylTpiQdibC+K4v1Dd9u/vz5cfTRR8eGDRti8uTJceihhyYdKZVOOumkePHFF2PatGlx7LHHxvLly5OOBBQA82LlMC8CAAAAAAAAAABUH/3lyqG/TNoNHTo0Tj311OjXr188+eSTUbdu3aQjpU5RUVH86le/iv/5n/+Jyy67LG688cakI8E20YevHPrwpJl5YMeZB8hX9veOs78BAACA7eH+pXK4f4Hs8rAFABS4tWvXxkknnRTjxo2L8ePHx+mnn550pFRr0KBBPP/889GlS5fo0aNHTJw4MelIBc36rlzWN2zenDlzonPnzrH//vvH5MmT44ADDkg6Uqq1b98+JkyYEO+8804cd9xxsXLlyqQjARlmXqxc5kUAAAAAAAAAAICqp79cufSXSavBgwfH+eefHwMHDoxHHnkkatWqlXSkVLvhhhvi/vvvj7vvvjuuvfbapONAhejDVy59eNLIPFC5zAPkE/u7ctnfAAAAQEW5f6lc7l8gm4pyuVwu6RAAQDLKy8ujX79+8cILL8SECROiTZs2SUfKjA0bNsTZZ58d48aNi4kTJ/p3mwDru+pY3/BPS5YsiU6dOkWzZs1izJgxUa9evaQjZcbbb78dnTt3jpKSkhg3blzstNNOSUcCMsa8WHXMiwAAAAAAAAAAAFVDf7nq6C+TJsOHD4/zzjsv7rrrrrjuuuuSjpMpI0aMiAEDBsSgQYPihhtuSDoObJE+fNXRhyctzANVxzxA0uzvqmN/AwAAAN/G/UvVcf8C2eJhCwAoYFdeeWUMGTIkxo4dG127dk06TuasX78++vTpE7NmzYopU6bEIYccknSkgmJ9Vy3rGyKWLVsWXbp0idq1a8ekSZNit912SzpS5sydOze6du0aHTp0iNGjR0etWrWSjgRkiHmxapkXAQAAAAAAAAAAKpf+ctXTXyYN/vKXv0Tv3r3jP//zP+POO+9MOk4m3X///XHFFVfEgw8+GBdeeGHScWCz9OGrlj48+c48UPXMAyTF/q569jcAAACwJe5fqpb7F8gOD1sAQIG65ZZb4o477oiRI0fGqaeemnSczFq9enV069YtVq5cGS+//HLsvffeSUcqCNZ39bC+KWRr1qyJ7t27x9///nfrv4q98sorcdxxx0Xfvn1j6NChUVRUlHQkIAPMi9XDvAgAAAAAAAAAAFA59Jerj/4y+cz6rD76xuQz67N66MOTr8wD1cd5S3Wzv6uP/Q0AAAD8O79fUD3cv0A2eNgCAArQ/fffH1dccUUMGTIkLrjggqTjZN5HH30UnTt3jvr168ekSZNi5513TjpSplnf1cv6phBt2LAhevWiosJvAAAgAElEQVTqFXPmzIkpU6ZEkyZNko6UeWPGjIm+ffvG9ddfHz//+c+TjgOknHmxepkXAQAAAAAAAAAAdoz+cvXTXyYfLViwIDp16hQdO3aMUaNGRa1atZKOlGm5XC4uvfTSGD58eLzwwgvRoUOHpCNBROjDVzd9ePKNeaB6mQeoTvZ39bK/AQAAgH/l/qV6uX+B9POwBQAUmOnTp0fXrl3j1ltvjZtvvjnpOAVj8eLF0b59++jRo0cMGzYs6TiZZX0nw/qm0Nx4443xm9/8JqZMmRJHHnlk0nEKxiOPPBIXXnhhjB49Ok4++eSk4wApZV5MhnkRAAAAAAAAAABg++kvJ0N/mXyyZs2aaN++fey8887x4osvxk477ZR0pIJQXl4effv2jdLS0igtLY099tgj6UgUOH34ZOjDky/MA8kwD1Ad7O9k2N8AAABAhPuXpLh/gXTzsAUAFJBPPvkk2rZtG82bN49nn302ioqKko5UUMaOHRu9e/eOBx980EuMVcD6Tpb1TaF47rnn4qSTToqHHnoozj///KTjFJyLLrooRo0aFa+99lo0btw46ThAypgXk2VeBAAAAAAAAAAA2Hb6y8nSXyZffPXIyqxZs6KkpCTpOAXlXzvIzzzzTNSoUSPpSBQoffhk6cOTD8wDyTEPUNXs7+TY3wAAAFDY3L8ky/0LpJeHLQCgQORyuTjttNNi5syZUVpaGo0aNUo6UkEaOHBg/PrXv47p06dH69atk46TGdZ3frC+ybr33nsv2rRpE927d4/HH3886TgF6csvv4wOHTpEcXFxTJ48OYqLi5OOBKSEeTE/mBcBAAAAAAAAAAAqTn85efrL5IP//d//jf79+8eoUaOib9++SccpSDNnzozOnTvHf//3f8cNN9yQdBwKkD58ftCHJ0nmgeSZB6gq9nfy7G8AAAAoTO5f8oP7F0gnD1sAQIG499574/rrr48XX3wxunTpknScgrVhw4bo1q1bfPTRR/Hqq69G/fr1k46UCdZ3frC+ybLy8vI44YQT4p133onXXnvN+k7QwoUL47vf/W5ceuml8ctf/jLpOEBKmBfzg3kRAAAAAAAAAACgYvSX84f+MklauHBhHHXUUXHRRRfFPffck3ScgvarX/0qbrjhhpgwYUJ07tw56TgUGH34/KAPT1LMA/nDPEBls7/zh/0NAAAAhcf9S35w/wLp5GELACgAr7/+enzve9+L22+/PQYOHJh0nIL37rvvxpFHHhmnnHJK/OEPf0g6TupZ3/nF+iar/uu//ivuuuuumDFjRrRs2TLpOAVv6NChcf7558fYsWPjhBNOSDoOkOfMi/nFvAgAAAAAAAAAALB1+sv5RX+ZJGzYsCHatWsXderUiZdeeimKi4uTjlTQcrlc9O3bN0pLS+ONN96IXXbZJelIFAh9+PyiD091Mw/kF/MAlcn+zi/2NwAAABQW9y/5xf0LpI+HLQAg4zZu3BidO3eOGjVqxEsvvRQ1atRIOhIRMXLkyDjrrLNiypQp0bFjx6TjpJb1nZ+sb7Jm4cKF0bJly7jzzjvj6quvTjoO/78zzzwzSktLY86cOVG3bt2k4wB5yryYn8yLAAAAAAAAAAAAW6a/nJ/0l6lu99xzT9x8880xZ86caNq0adJxiIjly5dH8+bN49xzz41777036TgUAH34/KQPT3UyD+Qf8wCVxf7OP/Y3AAAAFAb3L/nJ/Quki4ctACDjhgwZEpdddlnMnDkz2rRpk3Qc/kWvXr3i3Xffjddeey1q166ddJxUsr7zl/VNlljP+emDDz6I5s2bxzXXXBO33XZb0nGAPGVezF/+/xUAAAAAAAAAAGDz9Kvyk/4y1cl6y1/6yVQn6y1/mdeoDuaB/OV8ZkfZ3/nL/gYAAIDs8/V//nL/AunhYQsAyLAVK1ZE8+bN49xzz41f/epXScfh3/ztb3+Lli1bxp133hlXXXVV0nFSx/rOb9Y3WfHVC64TJ06Mrl27Jh2Hf3P33XfHzTffHGVlZXHIIYckHQfIM+bF/GZeBAAAAAAAAAAA+Cb95fymv0x1OfPMM2PWrFnxxhtvRN26dZOOw7/YuHFjdO7cOWrUqBGTJ0+OoqKipCORUfrw+U0fnupgHshf5gF2lP2dv+xvAAAAyDb3L/nN/Qukh4ctACDDLr744njmmWdi/vz5seuuuyYdh8245ZZbYvDgwTF//vzYd999k46TKtZ3/rO+SbvVq1fHYYcdFieeeGIMGTIk6ThsxoYNG+Koo46KvffeO8aOHZt0HCDPmBfzn3kRAAAAAAAAAADgn/SX85/+MtVh/PjxccIJJ8QzzzwTvXv3TjoOmzFnzpxo27ZtPPjgg3H++ecnHYeM0ofPf/rwVCXzQP4zD7C97O/8Z38DAABAdrl/yX/uXyAdPGwBABn16quvRvv27WPEiBHRr1+/pOOwBV988UUcccQR0blz5xg6dGjScVLD+k4H65u0u/HGG+PBBx+MBQsWRKNGjZKOwxZMnjw5jjnmmPi///u/6NOnT9JxgDxhXkwH8yIAAAAAAAAAAMA/6S+ng/4yVWnDhg1xxBFHRMuWLePJJ59MOg7f4qqrrorHH388Fi1aFPXr1086DhmjD58O+vBUFfNAepgH2Fb2d3rY3wAAAJA97l/Swf0LpIOHLQAgo/r27RsffvhhTJ8+PekobMXjjz8eAwYMiPnz50fTpk2TjpMK1nd6WN+k1fLly6OkpCRuv/32+OlPf5p0HLbitNNOi6VLl8bMmTOTjgLkCfNiepgXAQAAAAAAAAAA9JfTRn+ZqjJ8+PD40Y9+FAsWLIiDDz446Th8i5UrV0ZJSUncdNNNccMNNyQdh4zRh08PfXiqgnkgPcwDbCv7Oz3sbwAAAMge9y/p4f4F8p+HLQAgg+bOnRstW7aMP//5z9GnT5+k47AV5eXlcfjhh0eXLl1iyJAhScfJe9Z3uljfpNWtt94av/vd72LJkiWx8847Jx2HrZg9e3a0bds2nnvuuejRo0fScYCEmRfTxbwIAAAAAAAAAACgv5w2+stUhVwuF61atYojjzwyhg4dmnQcKmDgwIHx8MMPx+LFi6NevXpJxyEj9OHTRR+eymYeSB/zABVlf6eP/Q0AAADZ4f4lXdy/QP7zsAUAZFD//v1j7ty5MXv27CgqKko6DhXw8MMPx3/8x3/EwoUL46CDDko6Tl6zvtPH+iZtVq1aFSUlJXHNNdfEzTffnHQcKqhXr17xySefxNSpU5OOAiTMvJg+5kUAAAAAAAAAAKCQ6S+nk/4ylW3UqFFx+umnR1lZWbRo0SLpOFTAsmXLonHjxjFo0KD4yU9+knQcMkIfPn304alM5oH0MQ9QUfZ3+tjfAAAAkB3uX9LH/QvkNw9bAEDGLFq0KJo3bx7Dhw+Pfv36JR2HClq/fn0ccsgh0adPn7jvvvuSjpO3rO90sr5JmzvvvDPuuOOOWLJkSey2225Jx6GCpk+fHh06dIhJkyZF165dk44DJMS8mE7mRQAAAAAAAAAAoJDpL6eT/jKVrV27dlFSUhJ/+tOfko7CNrj66qvjqaeeikWLFkVxcXHScUg5ffh00oenMpkH0sk8QEXY3+lkfwMAAED6uX9JJ/cvkN88bAEAGXPRRRfF5MmTY+7cuVGzZs2k47ANfve738W1114bixcvjr322ivpOHnJ+k4v65u0+OKLL6KkpCQuvPDCGDRoUNJx2EbdunWL4uLieP7555OOAiTEvJhe5kUAAAAAAAAAAKAQ6S+nm/4ylWXs2LHRq1evePXVV6Nt27ZJx2EbvPfee9GkSZP47W9/GxdddFHScUg5ffj00oenMpgH0ss8wNbY3+llfwMAAED6uX9JL/cvkL9qJB0AAKg8q1atihEjRsQ111zji6YUuuCCC6JevXrxxz/+Mekoecn6Tjfrm7QYNWpUrFy5Mq6++uqko7Adrrvuuhg/fnwsWrQo6ShAAsyL6WZeBAAAAAAAAAAACpH+crrpL1NZfv/738exxx7rm9ym0H777Rf9+/ePBx54IOkopJw+fLrpw1MZzAPpZR5ga+zv9LK/AQAAIN3cv6Sb+xfIXx62AIAMGTlyZORyuejXr1/SUdgOdevWjTPPPNMXTltgfaeb9U1aDB06NHr16hV77rln0lHYDj169Ii99torhg8fnnQUIAHmxXQzLwIAAAAAAAAAAIVIfznd9JepDMuXL48xY8bE+eefn3QUttMPf/jDeO211+KNN95IOgoppg+fbvrw7CjzQPqZB9gS+zv97G8AAABIL/cv6eb+BfKXhy0AIEOGDRsWJ598cjRo0CDpKGynAQMGxNy5c6O0tDTpKHnH+k4/65t89/7778cLL7wQAwYMSDoK26lmzZpx9tlnx7BhwyKXyyUdB6hm5sX0My8CAAAAAAAAAACFRH85/fSXqQyPP/541K5dO/r27Zt0FLbTMcccE40bN47HHnss6SikmD58+unDsyPMA+lnHmBL7O/0s78BAAAgvdy/pJ/7F8hPHrYAgIx4++23Y8qUKcrsKdehQ4c49NBDY9iwYUlHySvWdzZY3+S7xx57LHbZZZc46aSTko7CDhgwYEAsWrQopk2blnQUoBqZF7PBvAgAAAAAAAAAABQS/eVs0F9mRw0bNixOP/302HnnnZOOwnYqKiqK/v37x7Bhw6K8vDzpOKSQPnw26MOzI8wD6WceYEvs7/SzvwEAACCd3L9kg/sXyE8etgCAjBg6dGg0atQoTjjhhKSjsIPOPvvseOyxx2L9+vVJR8kb1nd2WN/ks+HDh0e/fv2iTp06SUdhB7Rp0yZatmzpNyGhwJgXs8O8CAAAAAAAAAAAFAr95WzQX2ZHvPnmm/HKK6/4ZioZ8MMf/jDee++9mDhxYtJRSCF9+OzQh2d7mAeywzzAv7O/s8P+BgAAgPRx/5Id7l8g/3jYAgAyYsSIEdG/f/+oXbt20lHYQQMGDIiPP/44XnjhhaSj5A3rOzusb/JVWVlZlJWVKYdlxIABA2LkyJF+ExIKiHkxO8yLAAAAAAAAAABAIdBfzhb9ZbbX8OHDY//9949u3bolHYUddMghh0S7du1ixIgRSUchhfThs0Mfnu1hHsgO8wD/zv7ODvsbAAAA0sf9S3a4f4H842ELAMiAxYsXx/z58+OUU05JOgqVoHHjxtGqVasYM2ZM0lHygvWdLdY3+erZZ5+NvffeOzp06JB0FCpB3759Y8WKFTF9+vSkowDVwLyYLeZFAAAAAAAAAACgEOgvZ4v+MtvrmWeeiZNPPjlq1PCf/GdB3759Y8yYMZHL5ZKOQorow2eLPjzbwzyQLeYB/pX9nS32NwAAAKSH+5dscf8C+cfvegNABjz77LOxyy67RMeOHZOOQiXp1atXPPvss0nHyAvWd/ZY3+Sj5557Lnr06BFFRUVJR6ESNGvWLJo2bRrPPfdc0lGAamBezB7zIgAAAAAAAAAAkHX6y9miv8z2+PDDD2P27NnRs2fPpKNQSXr27Lnpf1eoKH347NGHZ1uYB7LHPMBX7O/ssb8BAAAgPdy/ZI/7F8gvHrYAgAwYN25cdO/ePWrXrp10FCrJiSeeGG+99Va89dZbSUdJnPWdPdY3+Wb16tUxbdq0OPHEE5OOQiXq2bNnjBs3LukYQDUwL2aPeREAAAAAAAAAAMgy/eVs0l9mW40fPz6Ki4ujW7duSUehkrRp0yb22WefeP7555OOQorow2ePPjzbwjyQPeYBvmJ/Z4/9DQAAAOnh/iV73L9AfvGwBQCkXC6Xi2nTpkXXrl2TjkIlat++fdStWzemTJmSdJREWd/ZZH2Tb6ZPnx4bNmyIY445JukoVKKuXbvG7NmzY9WqVUlHAaqQeTGbzIsAAAAAAAAAAECW6S9nk/4y22rKlCnRrl27qFevXtJRqCRFRUXRpUsXHVgqTB8+m/Th2RbmgewxD/AV+zt77G8AAABIB/cv2eT+BfKLhy0AIOXmz58fy5Yti06dOiUdhUpUp06dOOqoo+Lll19OOkqirO9ssr7JN1OnTo3GjRvHPvvsk3QUKlHnzp2jvLw8XnnllaSjAFXIvJhN5kUAAAAAAAAAACDL9JezSX+ZbTV16tTo2LFj0jGoZJ06dYqpU6fGxo0bk45CCujDZ5M+PNvCPJBN5gEi7O+ssr8BAAAg/7l/ySb3L5BfPGwBACk3Y8aM2GmnnaJ169ZJR6GSdezYMaZPn550jERZ39llfZNPXnnllejQoUPSMahke++9dzRu3DimTZuWdBSgCpkXs8u8CAAAAAAAAAAAZJX+cjbpL7MtVq9eHXPnznUWZFDHjh1j5cqV8eabbyYdhRTQh88ufXgqwjyQXeYB7O/ssr8BAAAg/7l/yS73L5A/PGwBACk3e/bsaNmyZdSuXTvpKFSy1q1bx7x582LdunVJR0mM9Z1d1jf5pLS0NI488sikY1AFWrduHXPmzEk6BlCFzIvZZV4EAAAAAAAAAACySn85u/SXqaiysrLYuHGjsyCDWrZsGbVq1YqysrKko5AC+vDZpQ9PRZgHsss8gP2dXfY3AAAA5D/3L9nl/gXyh4ctACDlysrKolWrVknHoAq0bNky1q9fHwsWLEg6SmKs7+yyvskXy5Ytiw8++MBZk1EtW7ZUDoOMMy9ml3kRAAAAAAAAAADIIv3lbNNfpqJef/312HXXXePAAw9MOgqVrE6dOtG0aVOP3FAh+vDZpQ9PRZgHsss8gP2dXfY3AAAA5D/3L9nl/gXyh4ctACDl5s6dG0cccUTSMagChx56aNSqVSv++te/Jh0lMdZ3dlnf5Iuv1mCLFi0STkJVaNGiRfztb3+LtWvXJh0FqCLmxewyLwIAAAAAAAAAAFmkv5xt+stU1Fcd2KKioqSjUAVatGihA0uF6MNnlz48FWEeyDbzQGGzv7PN/gYAAID85v4lu9y/QP7wsAUApNjnn38ef//736NJkyZJR6kWZWVlMXjw4Fi5cmXSUapFcXFxHHDAAbF48eKkoyTC+s62Ql/f5I+33nordtppp9hnn32SjlLlCu2ciYho0qRJlJeXxzvvvJN0FKAKmBezzbwIAAAAAAAAAABkkf5ytukvU1GLFy/Wgc2wJk2a6MCyVfrw2aYPT0WYB7LNPFDY7O9ss78BAAAgf7l/yTb3L5A/PGwBACm2ZMmSiIgoKSlJNEd1mTJlSlx99dXx4YcfJh2l2jRu3Lhgv3CyvrOvkNc3+ePtt9+OkpKSKCoqSjpKlSvUcyYinDWQUebF7DMvAgAAAAAAAAAAWaO/nG36y1TUkiVLNq2XrCvUs8A5wNbow2efs4CtMQ9kmzOgsNnf2WZ/AwAAQP5y/5J9fm8G8oOHLQAgxZYuXRoREQcddFDCSagqJSUl8fbbbycdIxHWd/YV8vomfyxdujQOPPDApGNQRXbfffeoX7++swYyyryYfeZFAAAAAAAAAAAga/SXs01/mYpyFmRbSUlJfPrpp/HJJ58kHYU8pg+fffrwbI15INvMA4XN/s42+xsAAADyl/uX7HP/AvnBwxYAkGIff/xx1K1bN3bZZZeko+StXC4XuVwu6Rjbbc8994yPP/446RiJsL63zvqGHffRRx/FXnvtlXSMvOasAfKVeXHrnOEAAAAAAAAAAAD5RX9563TfyLovvvgiPvvss9hzzz2TjpLX0nwW7LHHHhERsWzZsoSTkM/04bcuzedAhJmAb2ceqJg0nwPmgcJlf1eM/Q0AAABUBfcvW5fm35eJcP8C+cLDFgCQYsuXL49GjRpVy+e68sor48ILL4x33303rrjiik2XrRERn3zySVx++eXRokWL2HvvvePUU0+NMWPGfOPnmDhxYlxxxRVxyCGHxAEHHBD9+/ePBx54IMrLy7/xsTNnzowzzjgjDj744OjevXv89re/3aYvgF5//fXo3r17NGjQIOrVqxft27eP55577msf8+WXX8Ztt90WTZo0iTp16kSzZs3i0ksvjdWrV0dExE9+8pPo0qVLfPDBB9/4+S+55JI44YQTYt26dRXOtD0aNmwYy5cvr9LPka+s7y2zvqHyVNdZ823nTETlnzU7es5EbP2s2do5E5EfZ02jRo2cNZBR5sUtMy8CAAAAAAAAAADkJ/3lLdNfplB8tT6SPgsqeg5EpOssyJdzICKcBXwrffgt04enEJgHvp15gDSzv7+d/Q0AAABUJfcvW+b+BahMtZIOAABsv5UrV8Zuu+1WLZ+rrKwsPvzww+jdu3eUlZVF27ZtIyLi3XffjS5dusTHH38c5513Xuy6667x/PPPR58+feKee+6Jq6++OiIiJkyYEMcff3zsuuuucfbZZ0ejRo1i/Pjxcdlll8Vbb70Vv/jFLzZ9rokTJ0bv3r2jbt26ceqpp0aNGjXilltuiQYNGlQo68SJE6Nnz57RsGHDuPDCC+PTTz+Np556Kn7wgx/EpEmTomPHjhERcfnll8fQoUNjwIABceSRR8aiRYviwQcfjDlz5sTUqVOjadOm8dvf/jZGjRoVV1xxxaaf//3334+HHnoozjjjjCguLq6sf8Wb1bBhw1ixYkWVfo58ZX1vnvUNlau6zpotnTMRlX/W7Og589XPsbWzZmvnTETkxVmz++67O2sgo8yLm2deBAAAAAAAAAAAyF/6y5unv0wh+Wp97L777lX+uXa0AxuRvrMgH86Bhg0bRoRvdMu304ffPH14CoV5YMvMA6Sd/b1l9jcAAABQ1dy/bJ77F6DS5QCA1Lr22mtz7du3r5bPdcwxx+QiItejR4/cvHnzNv34Oeeck4uI3PTp0zf92Nq1a3PHHntsrri4OLd8+fJcLpfLXXzxxbk6derkVq5cuenjvvjii9w+++yTa968+dc+V+vWrXO77bZbbvHixZt+7M0338zVq1cvFxG5uXPnbjFneXl5rnXr1rldd901t3Dhwk0/Pm/evFxRUVHunHPOyeVyudyXX36Zq127du4HP/jB1/75wYMH5yIit2DBgtxHH32Uq1WrVu773//+1z7m3nvvzUVEbuzYsVv717bDRowYkatZs2aVf558ZH1/k/UNle/AAw/M3X333VX+ebZ0zuRylX/W7Mg5k8tV7KypyDmTy+Xy4qw59dRTc2eddVaVfx6g+pkXv8m8CAAAAAAAAAAAkN/0l79Jf5lCM2PGjFxE5N5+++0q/1w72oHN5dJ3FuTDOVBeXp6LiNxTTz1V5Z+L9NKH/yZ9eAqJeWDzzANkgf29efY3AAAAUB3cv3yT+xegKtSovCcyAIDqtm7duqhdu3a1fs6f/exn0bx584iIWLFiRYwYMSLatWsX7du33/QxxcXFcfHFF8e6deti1KhRERFxzTXXxMyZM7/2qt+6deuiQYMGsWrVqk0/Nn369Hj99dfj8ssvj5KSkk0/3qxZsxgwYMCmv964cWN8/vnnX/ujvLw8SktL4/XXX4++fftG06ZNN3188+bN47777ovvfe97ERFRXl4eEf94PbC0tHTTx/34xz+Ozz77LJo0aRJ77LFH9OzZMyZPnhwfffTRpo954oknYr/99ovjjz9+h/5dVkSdOnWivLx8U95CYn1b31Ad1q1bV+Wvu/6rfz1nIir/rKnoOROxY2dNRc6ZiMiLs6a4uDjWrl1b5Z8HqH7mRfMiAAAAAAAAAABA2ugv6y/DV+sjqbNgW86BiMo9C7Z0DkREpZ0F+XAO1KhRI2rWrOks4Fvpw+vDU9jMA+YBssv+tr8BAACA5Lh/cf8CVI9aSQcAALZfdX/htMcee0S7du02/fWCBQsil8vFZ599Fv369fvax371xdCiRYsi4h9fuCxfvjzuueeemDZtWixZsiQWLlwYq1atin333XfTPzd//vyIiGjTps03Pv8RRxyx6c9nzJgRHTt2/NrfHzFiRNSo8Y93u1q2bPmNf/7HP/7xpj+vV69e3HbbbXHzzTdH27Zt47DDDotu3bpFr169okePHlGzZs2IiPjhD38YTz/9dIwePTouvfTSWLJkScyYMSMGDhy46XNVpa8KC2vXro169epV+efLJ9a39Q3VYf369dV21vz7ORNR+WdNRc+ZiB0/aypyzkQkf9bUqVMnVq9eXeWfB6h+5kXzIgAAAAAAAAAAQNroL+svw/r16yMiolat6vnP/HekAxtRuWfBls6B/v37x9/+9reIqJyzIOlzIOIfZ4FvdMu30YfXh6ewmQfMA2SX/W1/AwAAAMlx/+L+Bage1fM7sQBAlahZs2Zs3Lix2j5fnTp1vvbXy5cv3/TjtWvX/tofDRs2jHPOOWfTFzu//OUvY//994+f/exnsX79+ujevXs8+uij0alTp6/9nCtWrIiI+Fqh/Ct169bd9OeNGjWK/6+9+46yurrXBv4dkColqGDQqINtlCKIqIFBbERq1ERsCEiKxvjGGjVGoxKvmJ5cWyxXDYIBRSREoyjGgmRARAGpYgkoajSI0hSp5/3jRnKNSJ2Zfc7vfD5r3bXuUuA8ePfe98vsh9lnnHHGZ/6ntLQ0Fi1aFBERu++++2Z/P1deeWW89tprcdVVV0X9+vXjtttui969e0erVq3i3XffjYiI3r17R5MmTWLUqFEREXH//fdHRMTAgQM3++tXhk9fAqyu4kI+sb6tb6gONWrUqLZXV//znImo/LNmS8+ZiO0/a7bknIlIf9asXbvWOQMZZV40LwIAAAAAAAAAABQa/WX9Zfh0v1RXD3Z7OrARlXsWfNE5EBGVehakPgcinAVsnj68PjzFzTxgHiC77G/7GwAAAEjH/Yv7F6B62IEAUMDq1KkTq1evTvb5e++9d0RE7LfffnHvvfd+5t+tW7culi9fHvXr149FixbF5ZdfHk2bNo1XX301GjZsuOHHDR48+DM/r0WLFhERMX78+PjGN77xmX+3YMGCDf/7xj4z4t9/mJs8eXKcdtppn/l3Q4cOjfXr18fAgZO1FbgAACAASURBVANj9erV8fHHH0dpaWlce+21ce2118a7774bgwcPjptvvjluuummGDx4cNSpUydOPfXUuPPOO2Px4sVx3333RadOnWL//fffyv9a22bVqlVRUlJSrS8/5gvr2/qG6pC1s2ZLz5kv+syILTtr+vbtu0XnTEQkP2tWr1694YVdIFuydoZHmBf/k3kRAAAAAAAAAADImqx13/SXP09/mc35dH2kOgu29ByIiEo/C77oHIiIDd/wtjLOgtTnQC6XizVr1mz0gSH4VNZmggh9+P+kD8+mmAfMA2SX/W1/AwAAAOm4f3H/AlSPGqkDAADbrnbt2rFq1apkn7/vvvtG06ZN4/HHH481a9Z85t/97Gc/iyZNmsTzzz8fb7zxRqxfvz6++c1vfuYPTQsXLozp06d/5ud16NAhatWqFU899dRn/vnatWtj+PDhm8106KGHRr169T738+fMmRMDBw6M8ePHR0TEU089FU2aNIkRI0Zs+DFf/vKX49JLL42IiA8//HDDPz/zzDNj7dq18Ytf/CKmT58e3/rWtzabo7KsXr066tSpEyUlJdX2mfnC+v486xsqX+ovQlb2WbO950zElp01W3PORKQ9a1atWqUcBhllXvw88yIAAAAAAAAAAEB+01/+PP1lis2n6yPVWbCl50BEFPRZkPIcWLNmTeRyOWcBm6QP/3n68BQT88DGmQfIAvt74+xvAAAAoDq4f/k89y9AVfCwBQAUsMaNG8fSpUuTfX7t2rXjZz/7WSxbtiz69esXU6dOjddeey1+85vfxHXXXRdf+9rXory8PMrKyqJBgwZx//33x8MPPxyvvvpqDBkyJDp16hSNGjWKFStWxLx58yIiYo899oj/9//+X8ycOTO+853vxNSpU2PatGnRp0+fLfq97rrrrnHhhRfGjBkz4pxzzokXXnghhg4dGqeffnrssMMOcc4550RERHl5eTRr1iyuvfbaeOaZZ2Lp0qXx4osvxoUXXhgREb169drwa371q1+N/fffP377299G/fr145RTTqmC/5ob9+GHH0bjxo2r7fPyifX9edY3VL5GjRpl6qzZ3nMmYsvOmq05ZyLSnjVLliyJL33pS9X2eUD1MS9+nnkRAAAAAAAAAAAgv+kvf57+MsXm027kkiVLknz+lp4DEVHQZ0HqDmxEOAvYJH34z9OHp5iYBzbOPEAW2N8bZ38DAAAA1cH9y+e5fwGqRA4AKFh33HFHrnHjxtXyWUceeWTuK1/5ykb/3Y033pirW7duLiJyEZHbYYcdcuecc05u8eLFG37MyJEjcw0aNNjwY3baaafcPffckxs1alRuxx13zO2www4bfuwnn3ySO+usszb82IjIHXvssblhw4blIiI3Z86cTWZdu3Zt7vLLL8/VrFlzw89v3rx5buTIkZ/5cU888URut912+8zn1K1bNzd48ODP/Zr/9V//lYuIXL9+/bbmP9t2u+aaa3ItW7as1s/MF9b3xlnfULm6du2aO+uss6r8czZ1zuRylXvWbO85k8tt2VmzNedMLpfurGnZsmXummuuqdbPBKqHeXHjzIsAAAAAAAAAAAD5S3954/SXKSYffvhhLiJy48aNq/LP2t4ObC5X2GdBqnNg9uzZuYjIzZo1q1o/l8KiD79x+vAUC/PAFzMPUOjs7y9mfwMAAABVzf3Lxrl/ASpbSS6XywUAUJBGjx4dffr0iVWrVkWtWrWSZlm+fHlMmzYtVqxYEW3atIk99tjjcz9m8eLFMW3atGjevHm0bNkySkpKNvzzDz/8MPbdd9/P/PiFCxfGzJkz48ADD4wWLVpsdaaPPvooZsyYEY0aNYr99tsvateu/bkf8/HHH8eMGTPizTffjF122SVat24dzZo12+rPqirnnXdeTJ8+PSZMmJA6SrWzvjfN+obKcfrpp8eqVati9OjRqaNU+lmzvedMxObPmnw/ZyIivvzlL8cVV1wR559/fuooQCUzL26aeREAAAAAAAAAACD/6C9vmv4yxSCXy0Xt2rVj6NChcfrppyfNsiXnQISzYGtNmDAhunTpEu+88040b948dRzylD78punDk3Xmgc0zD1Co7O/Ns78BAACAquL+ZdPcvwCVxcMWAFDAnnvuuejYsWPMnz8/SktLU8ehCpx44olRt27duO+++1JHqXbWd/YV8/omf1x88cVRUVERkydPTh2FKrBq1aqoX79+jBw5Mk466aTUcYBKZl7MPvMiAAAAAAAAAACQNfrL2aa/zJbaY4894vzzz49LL700dRSqwPDhw2PgwIGxcuXKqFmzZuo45Cl9+OzTh2dzzAPZZh4obvZ3ttnfAAAAkL/cv2Sf+xfIDzVSBwAAtt2nf1hasGBB0hxUnfnz52/Ta4hZYH1nXzGvb/JHaWmpcybD3njjjVi/fr2zBjLKvJh95kUAAAAAAAAAACBr9JezTX+ZLdWiRYt44403UsegisyfPz/22GMP3+SWTdKHzz59eDbHPJBt5oHiZn9nm/0NAAAA+cv9S/a5f4H84GELAChgu+66a9SrVy/mz5+fOgpVZMGCBUX72qP1nX3FvL7JHy1atIh//vOf8dFHH6WOQhX49P+HOGsgm8yL2WdeBAAAAAAAAAAAskZ/Odv0l9lSpaWlOrAZtmDBAt9Mhc3Sh88+fXg2xzyQbeaB4mZ/Z5v9DQAAAPnL/Uv2uX+B/OBhCwAoYCUlJbH//vvH3LlzU0ehCrz99tuxbNmyKCsrSx0lCes724p9fZM/9t9//4gIZ01GzZ07N5o2bRo77bRT6ihAFTAvZpt5EQAAAAAAAAAAyCL95WzTX2ZLlZWVOQcybO7cuRvOe/gi+vDZpg/PljAPZJt5oLjZ39lmfwMAAED+cv+Sbe5fIH942AIACtxBBx0UM2fOTB2DKvDp/13btGmTOEk61nd2Wd/ki/322y923HHHmDFjRuooVIFZs2bFQQcdlDoGUIXMi9llXgQAAAAAAAAAALJIfznb9JfZUgcddFAsWLAgli1bljoKlSyXy8Xs2bOdBWwRffjs0odnS5gHsss8gP2dXfY3AAAA5D/3L9nl/gXyh4ctAKDAHXTQQfHSSy+ljkEVmDVrVuy2226x8847p46SjPWdXdY3+aJGjRrRsmVLfzEso2bOnBmtW7dOHQOoQubF7DIvAgAAAAAAAAAAWaS/nG36y2ypgw46KHK5nG+okkELFy6MJUuWOAvYIvrw2aUPz5YwD2SXeQD7O7vsbwAAAMh/7l+yy/0L5A8PWwBAgevQoUP84x//iIULF6aOQiWbPHlydOjQIXWMpKzv7LK+yScdOnSI559/PnUMKtknn3wSL730UhxyyCGpowBVyLyYXeZFAAAAAAAAAAAgq/SXs0l/ma2x5557RtOmTWPy5Mmpo1DJJk+eHDvssEO0a9cudRQKgD58dunDsyXMA9llHsD+zi77GwAAAPKf+5fscv8C+cPDFgBQ4A4//PCoXbt2TJw4MXUUKllFRUWUl5enjpGU9Z1d1jf5pLy8PF588cVYuXJl6ihUoilTpsSqVauic+fOqaMAVci8mF3mRQAAAAAAAAAAIKv0l7NJf5mtUVJSEp06ddKBzaC//e1v0a5du2jQoEHqKBQAffjs0odnS5gHsss8gP2dXfY3AAAA5D/3L9nl/gXyh4ctAKDA1atXL9q2bRsVFRWpo1CJXn/99fjHP/5R9H9wsr6zyfom33Tq1ClWr14dL7zwQuooVKKKiopo3rx5tGjRInUUoAqZF7PJvAgAAAAAAAAAAGSZ/nI26S+ztcrLy2PixImRy+VSR6ESVVRURKdOnVLHoEDow2eTPjxbwzyQTeYBIuzvrLK/AQAAIP+5f8km9y+QXzxsAQAZcPTRR8e4ceNSx6ASjRs3Lnbcccfo0KFD6ijJWd/ZY32Tb1q0aBF77713PPHEE6mjUInGjRsXxxxzTOoYQDUwL2aPeREAAAAAAAAAAMgy/eVs0l9max111FHxj3/8I2bNmpU6CpXk/fffj2nTpjkL2Cr68NmjD8/WMA9kj3mAT9nf2WN/AwAAQOFw/5I97l8gv3jYAgAyoHv37jFv3rx4/fXXU0ehkowdOza6du0aderUSR0lOes7e6xv8tFxxx0XY8eOTR2DSrJixYqYOHFi9OjRI3UUoBqYF7PHvAgAAAAAAAAAAGSd/nK26C+zLQ455JBo1qyZsyBDHnvssdhhhx18o1u2ij589ujDszXMA9ljHuBT9nf22N8AAABQONy/ZI/7F8gvHrYAgAwoLy+Phg0butTOiJUrV8bTTz8d3bt3Tx0lL1jf2WJ9k6969OgRU6dOjXfffTd1FCrBuHHjYs2aNXHccceljgJUA/NitpgXAQAAAAAAAACAYqC/nC36y2yLGjVqRLdu3eLRRx9NHYVK8uijj0bnzp2jYcOGqaNQQPThs0Ufnq1lHsge8wCfsr+zx/4GAACAwuH+JVvcv0D+8bAFAGRA7dq1o1evXvHggw+mjkIl+POf/xyffPJJnHjiiamj5AXrO1usb/JV165do379+jF69OjUUagEw4cPjyOPPDKaNm2aOgpQDcyL2WJeBAAAAAAAAAAAioH+crboL7OtTjjhhJgwYUK88847qaOwnT766KN4+OGHo0+fPqmjUGD04bNFH55tYR7IDvMA/8n+zg77GwAAAAqL+5dscf8C+cfDFgCQEaeccko8++yzLrUzYNiwYXHcccfFl7/85dRR8ob1nR3WN/mqfv360bt373jggQdSR2E7ffjhh/GXv/wl+vfvnzoKUI3Mi9lhXgQAAAAAAAAAAIqB/nJ26C+zPXr16hUNGjSIP/3pT6mjsJ1GjRoVq1evjpNPPjl1FAqQPnx26MOzLcwD2WEe4D/Z39lhfwMAAEDhcf+SHe5fIP942AIAMqJ79+7RoEEDhfYC989//jPGjRsX/fr1Sx0lr1jf2WB9k+8+/SLkW2+9lToK22HkyJFRs2bNOOmkk1JHAaqReTEbzIsAAAAAAAAAAEAx0V/OBv1ltkfdunWjd+/eMWLEiNRR2E733ntv9OrVK3bZZZfUUShA+vDZoA/PtjIPZId5gP9kf2eH/Q0AAACFx/1LNrh/gfzkYQsAyIh69erFqaeeGrfffnvqKGyH4cOHR/369eOEE05IHSWvWN/ZYH2T7z4tFN19992po7Adhg0bFieeeGI0atQodRSgGpkXs8G8CAAAAAAAAAAAFBP95WzQX2Z7DRw4MCoqKmL27Nmpo7CN3n777Xj66aejf//+qaNQoPThs0Efnu1hHih85gG+iP1d+OxvAAAAKEzuX7LB/QvkJw9bAECGnHXWWTF37tyYOHFi6ihso2HDhkWfPn2ifv36qaPkHeu78Fnf5LvatWvHgAED4s4774x169aljsM2WLBgQUycOFE5DIqUebHwmRcBAAAAAAAAAIBior9c+PSXqQxdu3aNffbZJ+66667UUdhG9957bzRu3Dh69uyZOgoFTB++8OnDsz3MA4XPPMAXsb8Ln/0NAAAAhcv9S+Fz/wL5ycMWAJAhhx56aLRv3z5uuOGG1FHYBpMnT46pU6fGmWeemTpKXrK+C5v1TaE4++yz4+23344xY8akjsI2uPnmm2O33XaLrl27po4CJGBeLGzmRQAAAAAAAAAAoBjpLxc2/WUqQ0lJSXz3u9+NP/zhD7F06dLUcdhKa9eujTvuuCP69u0bderUSR2HAqYPX9j04dle5oHCZh5gU+zvwmZ/AwAAQGFz/1LY3L9A/irJ5XK51CEAgMozcuTI6Nu3b8yePTvKyspSx2ErfP3rX49FixbFc889lzpK3rK+C5f1TSHp06dPvP766zF16tQoKSlJHYcttHjx4igtLY2f/vSncfHFF6eOAyRiXixc5kUAAAAAAAAAAKBY6S8XJv1lKtPSpUujtLQ0Lrvssvjxj3+cOg5bYdiwYfGtb30rXn755dh3331Tx6HA6cMXLn14KoN5oHCZB9gc+7tw2d8AAABQ+Ny/FC73L5C/PGwBABmzfv36aNOmTRx22GHxhz/8IXUcttBLL70UBx98cDz88MPRq1ev1HHylvVdmKxvCs306dOjffv28cgjj0SPHj1Sx2ELXXXVVXHrrbfGggULokGDBqnjAImYFwuTeREAAAAAAAAAAChm+suFSX+ZynbFFVfEHXfcYU0VkPXr10fbtm2jffv2cc8996SOQwbowxcmfXgqk3mg8JgH2FL2d+GxvwEAACAb3L8UJvcvkN88bAEAGTRkyJA4++yz45VXXonS0tLUcdgCp5xySrzyyisxbdq0KCkpSR0nr1nfhcf6phD16tUrPvjgg5g0aVLqKGyBZcuWxV577RWXXHJJXHnllanjAImZFwuPeREAAAAAAAAAACh2+suFRX+ZqrB48eIoLS2N6667Li644ILUcdgCo0aNilNPPTVmzJgRrVq1Sh2HjNCHLzz68FQm80DhMQ+wpezvwmN/AwAAQHa4fyk87l8gv3nYAgAyaM2aNVFWVhY9evSIW265JXUcNuPll1+OVq1axf333x99+vRJHSfvWd+FxfqmUD333HPRsWPHeOaZZ+LII49MHYfNGDx4cPzqV7+KBQsWxJe+9KXUcYDEzIuFxbwIAAAAAAAAAACgv1xo9JepKhdddFGMGjUqXnvttahTp07qOGxGhw4dYp999on7778/dRQyRB++sOjDUxXMA4XFPMDWsL8Li/0NAAAA2eH+pbC4f4H852ELAMio2267LS666KKYM2dOtGjRInUcNuG0006LGTNmxKxZs6JGjRqp4xQE67twWN8UsmOOOSbWrl0b48eP91prHvvggw+irKwsvve978V1112XOg6QJ8yLhcO8CAAAAAAAAAAA8L/0lwuD/jJV6e2334599tknfvnLX8b555+fOg6bMHr06OjTp09MnTo12rVrlzoOGaMPXzj04akK5oHCYR5ga9nfhcP+BgAAgOxx/1I43L9A/vOwBQBk1Nq1a6N9+/ax++67x9ixY1PH4QuMHz8+jj766HjooYeid+/eqeMUDOu7MFjfFLoXX3wxDj/88BgyZEj069cvdRy+wDnnnBNjxoyJl19+Ob70pS+ljgPkCfNiYTAvAgAAAAAAAAAA/Jv+cmHQX6aqXXHFFXHLLbfEyy+/HM2bN08dh434+OOPo1WrVnHkkUfGkCFDUschg/ThC4M+PFXJPJD/zANsK/s7/9nfAAAAkE3uXwqD+xcoDB62AIAMmzBhQhx55JExZsyYOP7441PH4T+sXr062rVrF2VlZfGnP/0pdZyCY33nN+ubrDj33HNj9OjR/tJRnvr0L+8NHTo0+vbtmzoOkGfMi/nNvAgAAAAAAAAAAPB5+sv5TX+Z6rBy5cpo1apVdO7cOYYOHZo6Dhtx+eWXx6233uqbEVOl9OHzmz48Vc08kP/MA2wr+zv/2d8AAACQXe5f8pv7FygcHrYAgIzr169fTJgwIebMmRM77rhj6jj8H9dff31cd911MXv27GjRokXqOAXJ+s5f1jdZsXTp0jjwwAPjpJNOiptuuil1HP6P9evXR6dOnaJ27doxfvz4KCkpSR0JyEPmxfxlXgQAAAAAAAAAAPg8/eX8pb9MdRozZkx84xvfiCeffDKOOeaY1HH4P1555ZU46KCD4re//W2ce+65qeOQcfrw+UsfnupgHshf5gG2l/2dv+xvAAAAyD73L/nL/QsUDg9bAEDGvffee3HAAQfEueeeG4MHD04dh3958803o2XLlnHllVfGj3/849RxCpb1nZ+sb7LmnnvuiW9/+9sxadKkOOyww1LH4V9+//vfxwUXXBBTp06NNm3apI4D5CnzYn4yLwIAAAAAAAAAAHwx/eX8pL9MdTv++OPj9ddfj+nTp0etWrVSx+Ffjj322Fi6dGlMnjw5atasmToOGacPn5/04alO5oH8ZB6gMtjf+cn+BgAAgOxz/5Kf3L9AYfGwBQAUgZtuuikuueSSmDRpUrRv3z51nKK3fv366NmzZ7zxxhvx0ksvRe3atVNHKmjWd36xvsmiXC4XRx55ZKxYsSImTZoUderUSR2p6C1YsCAOPvjgOPvss+MXv/hF6jhAnjMv5hfzIgAAAAAAAAAAwKbpL+cf/WVSmD9/frRq1Souu+yyGDRoUOo4RMSdd94Z3/ve9zw8RLXSh88v+vBUN/NA/jEPUFns7/xjfwMAAEDxcP+SX9y/QOHxsAUAFIH169dH9+7d4+9//3u8+OKL0bhx49SRitrPfvazuOaaa2L8+PHRsWPH1HEKnvWdX6xvsur111+PQw45JPr37x833XRT6jhFbc2aNXHUUUfFsmXLYvLkyVG/fv3UkYA8Z17ML+ZFAAAAAAAAAACAzdNfzh/6y6R0yy23xPnnnx+PP/54dO3aNXWcojZ79uw47LDD4sILL4zBgwenjkMR0YfPL/rwpGAeyB/mASqb/Z0/7G8AAAAoLu5f8ov7Fyg8HrYAgCLx3nvvxcEHHxydO3eOkSNHpo5TtJ577rno0qVL/PKXv4wLL7wwdZzMsL7zg/VN1j3wwANxyimnxPDhw+P0009PHado/fCHP4zbb789pkyZEgceeGDqOECBMC/mB/MiAAAAAAAAAADAltNfzg/6y6R2xhlnxJNPPhnTpk2L5s2bp45TlD766KM47LDDolGjRvHss89GrVq1UkeiyOjD5wd9eFIyD6RnHqCq2N/p2d8AAABQnNy/5Af3L1CYPGwBAEXkmWeeia5du8bNN98c55xzTuo4ReeDDz6I9u3bR5s2beKhhx6KkpKS1JEyxfpOy/qmWHz/+9+PESNGxNSpU2PvvfdOHafoPPLII/H1r389hgwZEgMGDEgdBygw5sW0zIsAAAAAAAAAAABbT385Lf1l8sHy5cujQ4cOsfvuu8cTTzwRNWvWTB2p6Jx55pnxl7/8JaZOnRp77bVX6jgUKX34tPThSc08kJ55gKpif6dnfwMAAEDxcv+SlvsXKFw1Bw0aNCh1CACgepSWlsbatWvj6quvjl69ekXz5s1TRyoa69evjz59+sSiRYvi8ccfj3r16qWOlDnWdzrWN8Wka9eu8eCDD8bo0aPjzDPPjB122CF1pKLxxhtvRPfu3aNv375x1VVXpY4DFCDzYjrmRQAAAAAAAAAAgG2jv5yO/jL5ok6dOtGxY8f46U9/GiUlJXHkkUemjlRU7r777rjuuuviwQcfjA4dOqSOQxHTh09HH558YB5IyzxAVbK/07K/AQAAoLi5f0nH/QsUtpJcLpdLHQIAqD7r1q2Lr33ta/Hqq69GRUVF7LnnnqkjFYULL7wwbrvtthg/fnwcfvjhqeNklvWdhvVNsXnllVfisMMOi27dusWIESOiRo0aqSNl3ocffhhHHHFE1KxZMyZNmhT169dPHQkoUObFNMyLAAAAAAAAAAAA205/ufrpL5OPbr755rjgggvi3nvvjdNPPz11nKLw1FNPRc+ePePiiy+O66+/PnUc0IdPRB+efGIeqH7mAaqL/V397G8AAAAgwv1LKu5foLB52AIAitDSpUvjqKOOihUrVkRFRUU0a9YsdaRMu/766+Oqq66K++67L04++eTUcTLP+q5e1jfF6plnnokePXrEwIED49Zbb00dJ9NWrlwZxx13XCxYsMAXfYFKYV6sXuZFAAAAAAAAAACA7ae/XH30l8lnl1xySdx4443x0EMPRffu3VPHybSZM2dGly5donv37vHHP/7Ro0LkDX346qUPTz4yD1Qf8wDVzf6uPvY3AAAA8H+5f6le7l+g8HnYAgCK1DvvvBPl5eXRtGnTeOqpp6JBgwapI2XSsGHD4swzz4zf/e53ccEFF6SOUzSs7+phfVPsHnrooTjppJPi6quvjquuuip1nExat25dnHLKKTF+/PiYMGFCHHjggakjARlhXqwe5kUAAAAAAAAAAIDKo79c9fSXyXe5XC6+/e1vx8iRI+Ovf/1rdOzYMXWkTPr73/8e5eXl0bJly3j00UejTp06qSPBZ+jDVw99ePKVeaB6mAdIwf6uHvY3AAAAsDHuX6qH+xfIBg9bAEARe+2116Jz587RunXreOSRR1y4VrK//OUv8Y1vfCOuuOKK+OlPf5o6TtGxvquW9Q3/64477ojvfe97ceONN8Z5552XOk6m5HK5OOuss2L48OHxxBNPRHl5eepIQMaYF6uWeREAAAAAAAAAAKDy6S9XHf1lCsWaNWvihBNOiClTpsSECRPigAMOSB0pUxYtWhSdO3eORo0axVNPPRUNGzZMHQk2Sh++aunDk+/MA1XLPEBK9nfVsr8BAACATXH/UrXcv0B2eNgCAIrclClT4phjjomuXbvGiBEjom7duqkjZcJDDz0Up512WvTr1y/uuOOO1HGKlvVdNaxv+Kxrr702rr322rjtttviu9/9buo4mbBu3br4wQ9+EHfddVeMGTMmevbsmToSkFHmxaphXgQAAAAAAAAAAKg6+suVT3+ZQvPRRx/FscceG++880489thj0bJly9SRMuHtt9+O7t27x6pVq+Jvf/tbNGvWLHUk2CR9+KqhD0+hMA9UDfMA+cD+rhr2NwAAALAl3L9UDfcvkC01UgcAANI69NBDY+zYsTF+/Pjo1q1bLFmyJHWkgnf33XfHSSedFP369Ytbb701dZyiZn1XPusbPu/qq6+On/zkJ3H22WfH4MGDU8cpeKtWrYpTTz01hgwZEiNHjvSXwoAqZV6sfOZFAAAAAAAAAACAqqW/XLn0lylEO+64Y4wdOzb23HPP6NKlS0yaNCl1pIL38ssvR3l5eaxbty6efPJJ3+SWgqAPX/n04Skk5oHKZx4gX9jflc/+BgAAALaU+5fK5/4FssfDFgBAdO7cOf72t7/F/Pnzo3PnzvHWW2+ljlSwbrjhhvjud78bP/zhD+P222+PmjVrpo5U9KzvXfTKlgAAEQFJREFUymN9wxcbNGhQ3HzzzXH11VfHD37wg1i/fn3qSAVpxYoV8fWvfz2efPLJePzxx+PEE09MHQkoAubFymNeBAAAAAAAAAAAqB76y5VDf5lC1qRJk3jyySfjqKOOiq5du8YjjzySOlLBmjJlSnTp0iV23XXXePbZZ2OPPfZIHQm2mD585dGHpxCZByqPeYB8Y39XHvsbAAAA2FruXyqP+xfIJg9bAAAREdGyZcuYMGFCrF27No444oiYN29e6kgFJZfLxaWXXhoXXXRR/PrXv46f//znUVJSkjoW/2J9bx/rG7bMueeeGw8++GDcdddd0adPn/jkk09SRyoo7777bnTp0iVmzpwZTz/9dHTp0iV1JKCImBe3j3kRAAAAAAAAAACg+ukvbx/9ZbKgTp06cf/998cZZ5wRJ5xwQtx1112pIxWcv/71r3HsscdG27Zt469//WvssssuqSPBVtOH3z768BQ688D2Mw+Qr+zv7Wd/AwAAANvK/cv2cf8C2eZhCwBgg7322ismTpwYu+22Wxx++OExatSo1JEKwvvvvx+9e/eOG2+8MYYPHx4XX3xx6khshPW9baxv2DonnnhijB07Np566qk44ogj4u9//3vqSAXh+eefj44dO8bSpUtjwoQJ0a5du9SRgCJkXtw25kUAAAAAAAAAAIB09Je3jf4yWVKzZs24/fbb4yc/+UmcddZZccEFF8Tq1atTx8p7uVwubrjhhujZs2eceOKJ8eijj0bDhg1Tx4Jtpg+/bfThyQrzwLYxD1AI7O9tY38DAAAAlcH9y7Zx/wLZ52ELAOAzdtppp3jyySfjzDPPjFNOOcXF9mY8++yz0a5du5g5c2Y8/fTTcdppp6WOxCZY31vH+oZtc9RRR8Vzzz0Xq1evjvbt2/tC5CZ8Wgzr3LlztGnTJqZMmRL77rtv6lhAETMvbh3zIgAAAAAAAAAAQHr6y1tOf5msKikpiUGDBsU999wTd999d5SXl3voZhM+/UYql1xySVxxxRUxZMiQqFWrVupYsN304beOPjxZYx7YOuYBCon9vXXsbwAAAKAyuX/ZOu5foDh42AIA+Jy6devGDTfcEEOHDnWx/QU+LbJ37do1DjnkkJg+fXp06tQpdSy2gPW9edY3bL8DDjggJk+e7AuRm/D+++9Hr169NhTDxowZEzvttFPqWADmxS1gXgQAAAAAAAAAAMgv+subp79MMejfv3+88MILGx66eeCBB1JHyjuTJ0+OQw89NGbOnBnjx4+PQYMGRY0avuUC2aEPv3n68GSdeWDzzAMUKvt78+xvAAAAoCq4f9k89y9QXHzVFQD4Qv369YspU6bEqlWrokOHDvHHP/4xcrlc6ljJLViwILp37x6XXXZZ/PKXv1RkL1DW98ZZ31B5/vMLkUcccUTMnj07day88Oijj0a7du1i7ty5UVFRoRgG5CXz4saZFwEAAAAAAAAAAPKT/vIX01+mmJSVlcVzzz0XJ598cpx66qlx3nnnxfLly1PHSm7VqlUxaNCg6Ny5c7Rr1y5eeukl30iFTNOH3zh9eIqFeWDjzANkgf29cfY3AAAAUB3cv2yc+xcoPlpXAMAmHXDAATF58uTo27dvDBgwII499tiYO3du6lhJrF69Oq6//vpo1apVLFy4MCZMmBAXXnhhlJSUpI7GNrK+/836hqrz6RciIyIOPvjguPTSS2PFihWJU6Xx5ptvxje/+c3o1atXHHHEETF16tQ47LDDUscC+ELmxX8zLwIAAAAAAAAAABQG/eV/01+mWNWrVy/+53/+J+69994YMWJEHHDAAXH//fenjpXMuHHjok2bNvGb3/wmfvvb38bo0aOjSZMmqWNBldOH/zd9eIqReeCzzANkif39WfY3AAAAUJ3cv/yb+xcoXh62AAA2q169enHzzTfHlClT4uOPP462bdvGBRdcEMuXL08drdo888wzcfDBB8fgwYPj0ksvjWnTpimyZ4T1bX1DdTjggAPiueeeizvvvDOGDBkSZWVlMXTo0NSxqs2aNWvihhtuiNatW8fMmTNj7NixMWLECMUwoCCYF82LAAAAAAAAAAAAhUZ/WX8ZIiL69u0br776avTp0yf69u0bRx99dMyZMyd1rGrzzjvvxIABA6Jbt25RVlYWs2bNivPOO883UqGo6MPrw4N5wDxAdtnf9jcAAACQhvsX9y9Q7DxsAQBssfbt20dFRUX893//dwwdOjRat24dQ4cOjbVr16aOVmXmzp0bp556ahx99NFRVlYWc+fOjUGDBkWdOnVSR6OSWd/WN1S1kpKSGDBgQMyZMye6desWAwcOjG7dusULL7yQOlqVyeVyMWbMmGjbtm1cccUV8aMf/ShmzZoV3bt3Tx0NYKuZF82LAAAAAAAAAAAAhUR/WX8ZIiKaNGkSN9xwQ1RUVMTSpUvj4IMPjh/96EexaNGi1NGqzLJly2Lw4MFRVlYWkyZNirFjx8bDDz8ce+21V+pokIw+vD48xc08YB4gu+xv+xsAAABIx/2L+xcoVh62AAC2Ss2aNePcc8+NefPmRdeuXeM73/lOlJWVxR133BGrVq1KHa/STJ8+PU4++eRo3bp1zJo1Kx555JEYPXp07LnnnqmjUYWsb+sbqkPTpk3j7rvvjgkTJsSSJUvi0EMPje7du8eECRNSR6s069atixEjRkTbtm3jpJNOipYtW8bs2bPjyiuv9MVHoKCZF82LAAAAAAAAAAAAhUZ/WX8ZIiK++tWvxpQpU+LXv/51DBkyJEpLS+Oiiy6Kt99+O3W0SrN48eK45pprorS0NH71q1/FZZddFjNnzvS4DfyLPrw+PJgHILvsbwAAAIA03L+4f4Fi5GELAGCbNGvWLO6666547bXXonfv3nHhhRfGXnvtFb/4xS/i448/Th1vm02bNi1OOeWUaN++fbzyyivxhz/8IWbMmBE9e/ZMHY1qZH0D1aG8vDwmT54cEyZMiFq1akWXLl2ic+fO8fDDD0cul0sdb5usWbNmw6vB/fr1i7322iumTJkSo0aNitLS0tTxACqNeREAAAAAAAAAAIBCo78M1KxZM84777x4880343e/+108+OCDsffee8eAAQPilVdeSR1vmy1atCgGDRoU++yzT9xyyy1x/vnnx/z58+Oqq66KunXrpo4HeUcfHoqbeQCyy/4GAAAASMf9C1BMSnKF2jYDAPLKP//5z/j9738fv/vd76KkpCSOP/74GDBgQBx77LFRUlKSOt4mffDBBzFq1KgYOnRoVFRURKdOneLyyy+P3r175312qof1DVSHioqK+PnPfx6PPPJI7L///nHaaadF//79Y5999kkdbbNmz54dw4YNi3vuuScWL14cp512Wlx55ZVRVlaWOhpAtTAvAgAAAAAAAAAAUGj0l4HVq1fHfffdF4MHD47XXnstOnbsGAMGDIi+fftGgwYNUsfbpNWrV8fjjz8eDzzwQIwaNSoaNmwY3//+9+Oiiy6Kxo0bp44HBUUfHoqbeQCyy/4GAAAASMf9C5BlHrYAACrVokWLYtiwYTF06NB46aWXokWLFtGvX7/o379/7LfffqnjbbBy5coYM2ZM3HvvvTFu3LjYcccd4+STT46BAwdGeXl56njkKesbqA7Tpk2LIUOGxIgRI2Lx4sVxxBFHxIABA6JPnz7RqFGj1PE2WLhwYfzxj3+MYcOGxZw5c2L//fePfv36xbe+9a34yle+kjoeQBLmRQAAAAAAAAAAAAqN/jKwdu3a+POf/xxDhw6NsWPHRp06deKb3/xm9O/fP4455pioUaNG6ogbTJw4Me699964//77Y8mSJXHMMcfEgAED4uSTT466deumjgcFTR8eipt5ALLL/gYAAABIx/0LkEUetgAAqszMmTNj6NChMXz48HjnnXeidevW0aNHj+jevXt07Ngx6tWrV615Xn311XjiiSdi7Nix8dRTT8Xq1aujW7du0b9//zjhhBNcZLNVrG+gqq1ZsyYee+yxGDZsWDz88MORy+XiiCOOiB49ekS3bt2iZcuW1fpy7erVq2PKlCnx2GOPxWOPPRZTp06NJk2axGmnnRb9+vWLr371q9WWBaAQmBcBAAAAAAAAAAAoJPrLQETE+++/H/fdd18MGzYsnn/++WjWrFkcd9xx0bNnzzjmmGNi1113rdY8H3zwQTzzzDMxduzYeOyxx+Ktt96K1q1bR//+/eOMM86I3XffvVrzQLHQh4fiZh6A7LK/AQAAANJx/wJkhYctAIAqt27dunj66afj0UcfjUcffTTmzZsXtWrVikMOOSQ6deoUbdu2jTZt2kTLli2jTp06lfKZCxcujFmzZsWMGTNi8uTJMXHixHjvvfeiYcOG0bVr1+jevXuceOKJ0axZs0r5PIqX9Q1UhyVLlsRDDz0UY8eOjXHjxsUHH3wQO+20U3Tq1CkOP/zwaNOmTbRp0yZatGhRKX9ZbM2aNTFv3ryYNWtWTJ8+PSZNmhRTpkyJlStXRmlpafTo0SN69uwZxx13XNSuXbsSfocA2WVeBAAAAAAAAAAAoNDoLwMREfPmzYs///nPMXbs2KioqIg1a9bEvvvuG+Xl5dGhQ4do3bp1HHTQQbHTTjtVyuctXbo0Zs2aFbNmzYoXX3wxJk6cGHPmzIkaNWrEoYceGj169Ijjjz8+2rVrVymfB2yePjxgHoDssr8BAAAA0nD/AhQ6D1sAANXuzTffjAkTJsSkSZNi0qRJMXv27Fi1alXUrFkzdt9992jRokWUlpZG06ZNY5dddokmTZpE48aNo0aNGp/5dT766KNYtmxZLF68ON5///1YuHBhzJ8/P+bPnx8fffRRRETsscce0b59++jcufOGC/RatWql+G1TJKxvoKqtW7cupk+fHhUVFVFRUREvvPBCzJ8/P3K5XNStWzdatGgRLVq0iD322COaNm0aO++8czRq1CgaNmz4uV/rww8/jGXLlsWiRYti0aJF8cYbb8SCBQti4cKFsWbNmqhVq1aUlZXF4YcfvuGs2W+//RL8rgGyw7wIAAAAAAAAAABAIdFfBiIili9fHhMnToyJEydGRUVFTJs2LT744IOIiNh55503nAXNmzePnXfeOXbZZZdo2LBh1K1b9zO/zurVqzd0YBcvXhzvvffehg7se++9FxERjRo1irZt20anTp2ivLw8ysvLK+2b6QLbRx8eipt5ALLL/gYAAABIx/0LUGg8bAEAJLd27dp45ZVXYvbs2Rv+4PPmm2/GokWL4v33348lS5bE8uXLY+3atZ/5eQ0bNowGDRrEzjvvHDvvvHPsvvvuUVpaGi1atIj9998/2rRpE02aNEn0u4L/ZX0D1WH58uUxa9asmDdv3oaz5q233tpQ/FqxYkUsXbr0Mz+nRo0a0bhx42jUqFHsvPPO0axZs/jKV76yoVzWsmXLOPDAA6N27dqJflcAxcG8CAAAAAAAAAAAQKHRXwYiIt5+++2YNWtWvPrqq7FgwYIN36z2/54FK1eu/MzPqVOnzmc6sE2bNt1wDuy7777RqlWrKC0tTfMbAraaPjxgHoDssr8BAAAA0nD/AuQ7D1sAAAVl/fr1n3sZELLC+gaqg7MGoHA5wwEAAAAAAAAAACg0um9AhLMAcA4AzgHIMvsbAAAAIA1flwFS8LAFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG+U5HQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADbKwxYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABs1A4R8dfUIQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMg//x8yQUlW17NnrgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dask.visualize(mean_delay, std_delay)" + ] + }, + { + "cell_type": "markdown", + "id": "76f08a35", + "metadata": {}, + "source": [ + "## Extra resources\n", + "\n", + "- Explore applying custom code to Dask DataFrames: [Dask Tutorial DataFrames](https://github.com/dask/dask-tutorial/blob/main/04_dataframe.ipynb)\n", + "- [Dask DataFrame documentation](https://docs.dask.org/en/latest/dataframe.html)\n", + "- [Dask DataFrame examples](https://examples.dask.org/dataframe.html)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/notebooks/4_Machine_learning.ipynb b/notebooks/4_Machine_learning.ipynb new file mode 100644 index 0000000..8e10b76 --- /dev/null +++ b/notebooks/4_Machine_learning.ipynb @@ -0,0 +1,1945 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "33012a14", + "metadata": {}, + "source": [ + "\"Dask\n", + "\n", + "# Parallel and Distributed Machine Learning\n", + "\n", + "The material in this notebook was based on the open-source content from [Dask's tutorial repository](https://github.com/dask/dask-tutorial) and the [Machine learning notebook](https://github.com/coiled/data-science-at-scale/blob/master/3-machine-learning.ipynb) from data science at scale from coiled\n", + "\n", + "So far we have seen how Dask makes data analysis scalable with parallelization via Dask DataFrames. Let's now see how [Dask-ML](https://ml.dask.org/) allows us to do machine learning in a parallel and distributed manner. Note, machine learning is really just a special case of data analysis (one that automates analytical model building), so the 💪 Dask gains 💪 we've seen will apply here as well!\n", + "\n", + "(If you'd like a refresher on the difference between parallel and distributed computing, [here's a good discussion on StackExchange](https://cs.stackexchange.com/questions/1580/distributed-vs-parallel-computing).)\n", + "\n", + "\n", + "## Types of scaling problems in machine learning\n", + "\n", + "There are two main types of scaling challenges you can run into in your machine learning workflow: scaling the **size of your data** and scaling the **size of your model**. That is:\n", + "\n", + "1. **CPU-bound problems**: Data fits in RAM, but training takes too long. Many hyperparameter combinations, a large ensemble of many models, etc.\n", + "2. **Memory-bound problems**: Data is larger than RAM, and sampling isn't an option.\n", + "\n", + "Here's a handy diagram for visualizing these problems:\n", + "\n", + "\"scaling\n", + "\n", + "\n", + "In the bottom-left quadrant, your datasets are not too large (they fit comfortably in RAM) and your model is not too large either. When these conditions are met, you are much better off using something like scikit-learn, XGBoost, and similar libraries. You don't need to leverage multiple machines in a distributed manner with a library like Dask-ML. However, if you are in any of the other quadrants, distributed machine learning is the way to go.\n", + "\n", + "Summarizing: \n", + "\n", + "* For in-memory problems, just use scikit-learn (or your favorite ML library).\n", + "* For large models, use `dask_ml.joblib` and your favorite scikit-learn estimator.\n", + "* For large datasets, use `dask_ml` estimators.\n", + "\n", + "## Scikit-Learn in five minutes\n", + "\n", + "\"sklearn\n", + "\n", + "\n", + "In this section, we'll quickly run through a typical Scikit-Learn workflow:\n", + "\n", + "* Load some data (in this case, we'll generate it)\n", + "* Import the Scikit-Learn module for our chosen ML algorithm\n", + "* Create an estimator for that algorithm and fit it with our data\n", + "* Inspect the learned attributes\n", + "* Check the accuracy of our model\n", + "\n", + "Scikit-Learn has a nice, consistent API:\n", + "\n", + "* You instantiate an `Estimator` (e.g. `LinearRegression`, `RandomForestClassifier`, etc.). All of the models *hyperparameters* (user-specified parameters, not the ones learned by the estimator) are passed to the estimator when it's created.\n", + "* You call `estimator.fit(X, y)` to train the estimator.\n", + "* Use `estimator` to inspect attributes, make predictions, etc. \n", + "\n", + "Here `X` is an array of *feature variables* (what you're using to predict) and `y` is an array of *target variables* (what we're trying to predict)." + ] + }, + { + "cell_type": "markdown", + "id": "b6e7379d", + "metadata": {}, + "source": [ + "### Generate some random data" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "8613c202", + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.datasets import make_classification\n", + "\n", + "# Generate data\n", + "X, y = make_classification(n_samples=10000, n_features=4, random_state=0)" + ] + }, + { + "cell_type": "markdown", + "id": "1fbcf18d", + "metadata": {}, + "source": [ + "**Refreshing some ML concepts**\n", + "\n", + "- `X` is the samples matrix (or design matrix). The size of `X` is typically (`n_samples`, `n_features`), which means that samples are represented as rows and features are represented as columns.\n", + "- A \"feature\" (also called an \"attribute\") is a measurable property of the phenomenon we're trying to analyze. A feature for a dataset of employees might be their hire date, for example.\n", + "- `y` are the target values, which are real numbers for regression tasks, or integers for classification (or any other discrete set of values). For unsupervized learning tasks, `y` does not need to be specified. `y` is usually 1d array where the `i`th entry corresponds to the target of the `i`th sample (row) of `X`." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "85824219", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[-0.77244139, 0.3607576 , -2.38110133, 0.08757 ],\n", + " [ 1.14946035, 0.62254594, 0.37302939, 0.45965795],\n", + " [-1.90879217, -1.1602627 , -0.27364545, -0.82766028],\n", + " [-0.77694695, 0.31434299, -2.26231851, 0.06339125],\n", + " [-1.17047054, 0.02212382, -2.17376797, -0.13421976],\n", + " [ 0.79010037, 0.68530624, -0.44740487, 0.44692959],\n", + " [ 1.68616989, 1.6329131 , -1.42072654, 1.04050557],\n", + " [-0.93912893, -1.02270838, 1.10093827, -0.63714432]])" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Let's take a look at X\n", + "X[:8]" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "7dd8ef9a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0, 0, 1, 0, 0, 0, 0, 1])" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Let's take a look at y\n", + "y[:8]" + ] + }, + { + "cell_type": "markdown", + "id": "80d61bf2", + "metadata": {}, + "source": [ + "### Fitting and SVC\n", + "\n", + "For this example, we will fit a [Support Vector Classifier](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html)." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "5d638ce9", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "SVC(random_state=0)" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.svm import SVC\n", + "\n", + "estimator = SVC(random_state=0)\n", + "estimator.fit(X, y)" + ] + }, + { + "cell_type": "markdown", + "id": "4068406a", + "metadata": {}, + "source": [ + "We can inspect the learned features by taking a look a the `support_vectors_`:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "b891e47a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[-0.77244139, 0.3607576 , -2.38110133, 0.08757 ],\n", + " [ 1.14946035, 0.62254594, 0.37302939, 0.45965795],\n", + " [-0.77694695, 0.31434299, -2.26231851, 0.06339125],\n", + " [ 0.79010037, 0.68530624, -0.44740487, 0.44692959]])" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "estimator.support_vectors_[:4]" + ] + }, + { + "cell_type": "markdown", + "id": "a175852d", + "metadata": {}, + "source": [ + "And we check the accuracy:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "8300ec8e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.905" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "estimator.score(X, y)" + ] + }, + { + "cell_type": "markdown", + "id": "1efac1bd", + "metadata": {}, + "source": [ + "There are [3 different approaches](https://scikit-learn.org/0.15/modules/model_evaluation.html) to evaluate the quality of predictions of a model. One of them is the **estimator score method**. Estimators have a score method providing a default evaluation criterion for the problem they are designed to solve, which is discussed in each estimator's documentation.\n", + "\n", + "### Hyperparameter Optimization\n", + "\n", + "There are a few ways to learn the best *hyper*parameters while training. One is `GridSearchCV`.\n", + "As the name implies, this does a brute-force search over a grid of hyperparameter combinations. Scikit-learn provides tools to automatically find the best parameter combinations via cross-validation (which is the \"CV\" in `GridSearchCV`)." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "b4659297", + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import GridSearchCV" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "f6c889f4", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Fitting 2 folds for each of 4 candidates, totalling 8 fits\n", + "[CV] END ................................C=0.001, kernel=rbf; total time= 2.9s\n", + "[CV] END ................................C=0.001, kernel=rbf; total time= 2.9s\n", + "[CV] END ...............................C=0.001, kernel=poly; total time= 1.2s\n", + "[CV] END ...............................C=0.001, kernel=poly; total time= 1.1s\n", + "[CV] END .................................C=10.0, kernel=rbf; total time= 0.8s\n", + "[CV] END .................................C=10.0, kernel=rbf; total time= 0.7s\n", + "[CV] END ................................C=10.0, kernel=poly; total time= 1.1s\n", + "[CV] END ................................C=10.0, kernel=poly; total time= 1.0s\n", + "CPU times: user 13.7 s, sys: 237 ms, total: 13.9 s\n", + "Wall time: 14 s\n" + ] + }, + { + "data": { + "text/plain": [ + "GridSearchCV(cv=2,\n", + " estimator=SVC(gamma='auto', probability=True, random_state=0),\n", + " param_grid={'C': [0.001, 10.0], 'kernel': ['rbf', 'poly']},\n", + " verbose=2)" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%%time\n", + "estimator = SVC(gamma='auto', random_state=0, probability=True)\n", + "param_grid = {\n", + " 'C': [0.001, 10.0],\n", + " 'kernel': ['rbf', 'poly'],\n", + "}\n", + "\n", + "# Brute-force search over a grid of hyperparameter combinations\n", + "grid_search = GridSearchCV(estimator, param_grid, verbose=2, cv=2)\n", + "grid_search.fit(X, y)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "ad134157", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "({'C': 10.0, 'kernel': 'rbf'}, 0.9086000000000001)" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "grid_search.best_params_, grid_search.best_score_" + ] + }, + { + "cell_type": "markdown", + "id": "228deb1b", + "metadata": {}, + "source": [ + "## Compute Bound: Single-machine parallelism with Joblib\n", + "\n", + "\"Joblib\n", + "\n", + "In this section we'll see how [Joblib](https://joblib.readthedocs.io/en/latest/) (\"*a set of tools to provide lightweight pipelining in Python*\") gives us parallelism on our laptop. Here's what our grid search graph would look like if we set up six training \"jobs\" in parallel:\n", + "\n", + "\"grid\n", + "\n", + "With Joblib, we can say that Scikit-Learn has *single-machine* parallelism.\n", + "Any Scikit-Learn estimator that can operate in parallel exposes an `n_jobs` keyword, which tells you how many tasks to run in parallel. Specifying `n_jobs=-1` jobs means running the maximum possible number of tasks in parallel." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "d9bead16", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Fitting 2 folds for each of 4 candidates, totalling 8 fits\n", + "CPU times: user 2.22 s, sys: 107 ms, total: 2.33 s\n", + "Wall time: 6.52 s\n" + ] + }, + { + "data": { + "text/plain": [ + "GridSearchCV(cv=2,\n", + " estimator=SVC(gamma='auto', probability=True, random_state=0),\n", + " n_jobs=-1,\n", + " param_grid={'C': [0.001, 10.0], 'kernel': ['rbf', 'poly']},\n", + " verbose=2)" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%%time\n", + "grid_search = GridSearchCV(estimator, param_grid, verbose=2, cv=2, n_jobs=-1)\n", + "grid_search.fit(X, y)" + ] + }, + { + "cell_type": "markdown", + "id": "e7c73f87", + "metadata": {}, + "source": [ + "Notice that the computation above it is faster than before. If you are running this computation on binder, you might not see a speed-up and the reason for that is that binder instances tend to have only one core with no threads so you can't see any parallelism. " + ] + }, + { + "cell_type": "markdown", + "id": "1fe6255f", + "metadata": {}, + "source": [ + "## Compute Bound: Multi-machine parallelism with Dask\n", + "\n", + "\n", + "In this section we'll see how Dask (plus Joblib and Scikit-Learn) gives us multi-machine parallelism. Here's what our grid search graph would look like if we allowed Dask to schedule our training \"jobs\" over multiple machines in our cluster:\n", + "\n", + "\"merged\n", + " \n", + "We can say that Dask can talk to Scikit-Learn (via Joblib) so that our *cluster* is used to train a model. \n", + "\n", + "If we run this on a laptop, it will take quite some time, but the CPU usage will be satisfyingly near 100% for the duration. To run faster, we would need a distributed cluster. For details on how to create a LocalCluster you can check the Dask documentation on [Single Machine: dask.distributed](https://docs.dask.org/en/latest/setup/single-distributed.html). \n", + "\n", + "Let's instantiate a Client with `n_workers=4`, which will give us a `LocalCluster`." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "cdf776a5", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "
\n", + "
\n", + "

Client

\n", + "

Client-d607f712-1beb-11ec-83b7-1e00ea0a0276

\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
Connection method: Cluster objectCluster type: distributed.LocalCluster
\n", + " Dashboard: http://127.0.0.1:8787/status\n", + "
\n", + "\n", + " \n", + "
\n", + "

Cluster Info

\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

LocalCluster

\n", + "

7ce68b21

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + "
\n", + " Dashboard: http://127.0.0.1:8787/status\n", + " \n", + " Workers: 4\n", + "
\n", + " Total threads: 8\n", + " \n", + " Total memory: 16.00 GiB\n", + "
Status: runningUsing processes: True
\n", + "\n", + "
\n", + " \n", + "

Scheduler Info

\n", + "
\n", + "\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

Scheduler

\n", + "

Scheduler-d35eb497-bd1b-4230-9373-a0fc4d50ce74

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + " Comm: tcp://127.0.0.1:56106\n", + " \n", + " Workers: 4\n", + "
\n", + " Dashboard: http://127.0.0.1:8787/status\n", + " \n", + " Total threads: 8\n", + "
\n", + " Started: Just now\n", + " \n", + " Total memory: 16.00 GiB\n", + "
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "

Workers

\n", + "
\n", + "\n", + " \n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "

Worker: 0

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + "
\n", + " Comm: tcp://127.0.0.1:56119\n", + " \n", + " Total threads: 2\n", + "
\n", + " Dashboard: http://127.0.0.1:56121/status\n", + " \n", + " Memory: 4.00 GiB\n", + "
\n", + " Nanny: tcp://127.0.0.1:56108\n", + "
\n", + " Local directory: /Users/ncclementi/Documents/git/dask-mini-tutorial/notebooks/dask-worker-space/worker-xoihndbb\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "

Worker: 1

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + "
\n", + " Comm: tcp://127.0.0.1:56116\n", + " \n", + " Total threads: 2\n", + "
\n", + " Dashboard: http://127.0.0.1:56122/status\n", + " \n", + " Memory: 4.00 GiB\n", + "
\n", + " Nanny: tcp://127.0.0.1:56110\n", + "
\n", + " Local directory: /Users/ncclementi/Documents/git/dask-mini-tutorial/notebooks/dask-worker-space/worker-jk05nngf\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "

Worker: 2

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + "
\n", + " Comm: tcp://127.0.0.1:56117\n", + " \n", + " Total threads: 2\n", + "
\n", + " Dashboard: http://127.0.0.1:56120/status\n", + " \n", + " Memory: 4.00 GiB\n", + "
\n", + " Nanny: tcp://127.0.0.1:56109\n", + "
\n", + " Local directory: /Users/ncclementi/Documents/git/dask-mini-tutorial/notebooks/dask-worker-space/worker-iebvxbsd\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "

Worker: 3

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + "
\n", + " Comm: tcp://127.0.0.1:56118\n", + " \n", + " Total threads: 2\n", + "
\n", + " Dashboard: http://127.0.0.1:56123/status\n", + " \n", + " Memory: 4.00 GiB\n", + "
\n", + " Nanny: tcp://127.0.0.1:56111\n", + "
\n", + " Local directory: /Users/ncclementi/Documents/git/dask-mini-tutorial/notebooks/dask-worker-space/worker-aogycp1g\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "\n", + "
\n", + "
\n", + "\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "\n", + "
\n", + "
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import dask.distributed\n", + "\n", + "client = dask.distributed.Client(n_workers=4)\n", + "client" + ] + }, + { + "cell_type": "markdown", + "id": "bb9c77aa", + "metadata": {}, + "source": [ + "**Note:** Click on Cluster Info, to see more details about the cluster. You can see the configuration of the cluster and some other specs. \n", + "\n", + "We can expand our problem by specifying more hyperparameters before training, and when we have more resources these should scale easily. " + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "367f1c5a", + "metadata": {}, + "outputs": [], + "source": [ + "param_grid = {\n", + " 'C': [0.001, 0.1, 1.0, 2.5, 5, 10.0],\n", + " 'kernel': ['rbf', 'poly', 'linear'],\n", + " 'shrinking': [True, False],\n", + "}\n", + "\n", + "grid_search = GridSearchCV(estimator, param_grid, verbose=2, cv=2, n_jobs=-1)" + ] + }, + { + "cell_type": "markdown", + "id": "2854c927", + "metadata": {}, + "source": [ + "### Dask parallel backend\n", + "\n", + "We can fit our estimator with multi-machine parallelism by quickly *switching to a Dask parallel backend* when using joblib. " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "efb681a4", + "metadata": {}, + "outputs": [], + "source": [ + "import joblib" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "4d8228e2", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Fitting 2 folds for each of 36 candidates, totalling 72 fits\n", + "CPU times: user 3.46 s, sys: 341 ms, total: 3.8 s\n", + "Wall time: 23.5 s\n" + ] + } + ], + "source": [ + "%%time\n", + "with joblib.parallel_backend(\"dask\", scatter=[X, y]):\n", + " grid_search.fit(X, y)" + ] + }, + { + "cell_type": "markdown", + "id": "4b9194cf", + "metadata": {}, + "source": [ + "**What did just happen?**\n", + "\n", + "Dask-ML developers worked with the Scikit-Learn and Joblib developers to implement a Dask parallel backend. So internally, scikit-learn now talks to Joblib, and Joblib talks to Dask, and Dask is what handles scheduling all of those tasks on multiple machines.\n", + "\n", + "The best parameters and best score:" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "626f0886", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "({'C': 10.0, 'kernel': 'rbf', 'shrinking': True}, 0.9086000000000001)" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "grid_search.best_params_, grid_search.best_score_" + ] + }, + { + "cell_type": "markdown", + "id": "e5ea35f8", + "metadata": {}, + "source": [ + "## Memory Bound: Single/Multi machine parallelism with Dask-ML\n", + "\n", + "We have seen how to work with larger models, but sometimes you'll want to train on a larger than memory dataset. `dask-ml` has implemented estimators that work well on Dask `Arrays` and `DataFrames` that may be larger than your machine's RAM." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "01ed30f6", + "metadata": {}, + "outputs": [], + "source": [ + "import dask.array as da\n", + "import dask.delayed\n", + "from sklearn.datasets import make_blobs\n", + "import numpy as np" + ] + }, + { + "cell_type": "markdown", + "id": "3ebd444f", + "metadata": {}, + "source": [ + "We'll make a small (random) dataset locally using Scikit-Learn." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "5f703b07", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 1.00796679, 4.34582168, 2.15175661, 1.04337835, -1.82115164,\n", + " 2.81149666, -1.18757701, 7.74628882, 9.36761449, -2.20570731,\n", + " 5.71142324, 0.41084221, 1.34168817, 8.4568751 , -8.59042755,\n", + " -8.35194302, -9.55383028, 6.68605157, 5.34481483, 7.35044606],\n", + " [ 9.49283024, 6.1422784 , -0.97484846, 5.8604399 , -7.61126963,\n", + " 2.86555735, -7.25390288, 8.89609285, 0.33510318, -1.79181328,\n", + " -4.66192239, 5.43323887, -0.86162507, 1.3705568 , -9.7904172 ,\n", + " 2.3613231 , 2.20516237, 2.20604823, 8.76464833, 3.47795068],\n", + " [-2.67206588, -1.30103177, 3.98418492, -8.88040428, 3.27735964,\n", + " 3.51616445, -5.81395151, -7.42287114, -3.73476887, -2.89520363,\n", + " 1.49435043, -1.35811028, 9.91250767, -7.86133474, -5.78975793,\n", + " -6.54897163, 3.08083281, -5.18975209, -0.85563107, -5.06615534],\n", + " [-6.85980599, -7.87144648, 3.33572279, -7.00394241, -5.97224874,\n", + " -2.55638942, 6.36329802, -7.97988653, 6.80059611, -8.14552537,\n", + " 9.48255539, -0.67232114, 9.38462699, 2.09067352, 4.80505419,\n", + " -9.14866204, -4.32240399, -7.61670696, -4.14166466, -7.73998277]])" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "n_centers = 12\n", + "n_features = 20\n", + "\n", + "X_small, y_small = make_blobs(n_samples=1000, centers=n_centers, n_features=n_features, random_state=0)\n", + "\n", + "centers = np.zeros((n_centers, n_features))\n", + "\n", + "for i in range(n_centers):\n", + " centers[i] = X_small[y_small == i].mean(0)\n", + " \n", + "centers[:4]" + ] + }, + { + "cell_type": "markdown", + "id": "c28f3881", + "metadata": {}, + "source": [ + "**Note**: The small dataset will be the template for our large random dataset.\n", + "We'll use `dask.delayed` to adapt `sklearn.datasets.make_blobs`, so that the actual dataset is being generated on our workers. \n", + "\n", + "If you are not in binder and you machine has 16GB of RAM you can make `n_samples_per_block=200_000` and the computations should take less than 10 min. If you are in binder the resources are limited and the problem below is big enough. " + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "17d91e43", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Array Chunk
Bytes 2.24 GiB 4.58 MiB
Shape (15000000, 20) (30000, 20)
Count 2000 Tasks 500 Chunks
Type float64 numpy.ndarray
\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " 20\n", + " 15000000\n", + "\n", + "
" + ], + "text/plain": [ + "dask.array" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "n_samples_per_block = 30_000\n", + "n_blocks = 500\n", + "\n", + "delayeds = [dask.delayed(make_blobs)(n_samples=n_samples_per_block,\n", + " centers=centers,\n", + " n_features=n_features,\n", + " random_state=i)[0]\n", + " for i in range(n_blocks)]\n", + "arrays = [da.from_delayed(obj, shape=(n_samples_per_block, n_features), dtype=X.dtype)\n", + " for obj in delayeds]\n", + "X = da.concatenate(arrays)\n", + "X" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "9b32011e", + "metadata": {}, + "outputs": [], + "source": [ + "#X = X.persist() # Only run this on a cluster with enough memory." + ] + }, + { + "cell_type": "markdown", + "id": "dc609b5f", + "metadata": {}, + "source": [ + "### KMeans from Dask-ml\n", + "\n", + "The algorithms implemented in Dask-ML are scalable. They handle larger-than-memory datasets just fine.\n", + "\n", + "They follow the scikit-learn API, so if you're familiar with Scikit-Learn, you'll feel at home with Dask-ML." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "095e644f", + "metadata": {}, + "outputs": [], + "source": [ + "from dask_ml.cluster import KMeans" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "51a4b716", + "metadata": {}, + "outputs": [], + "source": [ + "clf = KMeans(init_max_iter=3, oversampling_factor=10)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "a0a1e790", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 17 s, sys: 1.88 s, total: 18.9 s\n", + "Wall time: 1min 12s\n" + ] + }, + { + "data": { + "text/plain": [ + "KMeans(init_max_iter=3, oversampling_factor=10)" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%time clf.fit(X)" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "7cfc4c3d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Array Chunk
Bytes 57.22 MiB 117.19 kiB
Shape (15000000,) (30000,)
Count 3500 Tasks 500 Chunks
Type int32 numpy.ndarray
\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " 15000000\n", + " 1\n", + "\n", + "
" + ], + "text/plain": [ + "dask.array" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "clf.labels_" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "30535766", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([4, 4, 5, 1, 4, 6, 6, 1, 4, 6], dtype=int32)" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "clf.labels_[:10].compute()" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "1d9a83d7", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[CV] END ..............C=0.001, kernel=poly, shrinking=False; total time= 1.9s\n", + "[CV] END .................C=0.1, kernel=rbf, shrinking=False; total time= 1.9s\n", + "[CV] END .............C=0.001, kernel=linear, shrinking=True; total time= 1.5s\n", + "[CV] END ...............C=0.1, kernel=linear, shrinking=True; total time= 1.2s\n", + "[CV] END ...............C=0.1, kernel=linear, shrinking=True; total time= 1.2s\n", + "[CV] END ...............C=0.001, kernel=rbf, shrinking=False; total time= 4.6s\n", + "[CV] END ..................C=1.0, kernel=rbf, shrinking=True; total time= 1.5s\n", + "[CV] END .................C=1.0, kernel=rbf, shrinking=False; total time= 1.4s\n", + "[CV] END ................C=1.0, kernel=poly, shrinking=False; total time= 1.3s\n", + "[CV] END .................C=2.5, kernel=rbf, shrinking=False; total time= 1.5s\n", + "[CV] END ................C=2.5, kernel=poly, shrinking=False; total time= 1.4s\n", + "[CV] END ....................C=5, kernel=rbf, shrinking=True; total time= 1.3s\n", + "[CV] END ...................C=5, kernel=rbf, shrinking=False; total time= 1.5s\n", + "[CV] END ..................C=5, kernel=poly, shrinking=False; total time= 2.0s\n", + "[CV] END .................C=5, kernel=linear, shrinking=True; total time= 2.1s\n", + "[CV] END .................C=10.0, kernel=rbf, shrinking=True; total time= 1.4s\n", + "[CV] END ................C=10.0, kernel=poly, shrinking=True; total time= 1.7s\n", + "[CV] END ..............C=10.0, kernel=linear, shrinking=True; total time= 2.4s\n", + "[CV] END .............C=10.0, kernel=linear, shrinking=False; total time= 4.4s\n", + "[CV] END ..................C=0.1, kernel=rbf, shrinking=True; total time= 1.9s\n", + "[CV] END ...............C=0.001, kernel=poly, shrinking=True; total time= 1.9s\n", + "[CV] END ..............C=0.001, kernel=poly, shrinking=False; total time= 1.7s\n", + "[CV] END .................C=0.1, kernel=rbf, shrinking=False; total time= 1.7s\n", + "[CV] END ................C=0.1, kernel=poly, shrinking=False; total time= 1.1s\n", + "[CV] END ................C=0.1, kernel=poly, shrinking=False; total time= 1.1s\n", + "[CV] END ..................C=1.0, kernel=rbf, shrinking=True; total time= 1.4s\n", + "[CV] END .................C=1.0, kernel=rbf, shrinking=False; total time= 1.5s\n", + "[CV] END .................C=1.0, kernel=poly, shrinking=True; total time= 1.0s\n", + "[CV] END ..............C=0.1, kernel=linear, shrinking=False; total time= 1.1s\n", + "[CV] END .................C=1.0, kernel=poly, shrinking=True; total time= 1.2s\n", + "[CV] END ..................C=2.5, kernel=rbf, shrinking=True; total time= 1.5s\n", + "[CV] END .................C=2.5, kernel=poly, shrinking=True; total time= 1.3s\n", + "[CV] END .................C=2.5, kernel=poly, shrinking=True; total time= 1.4s\n", + "[CV] END ................C=2.5, kernel=poly, shrinking=False; total time= 1.6s\n", + "[CV] END ...................C=5, kernel=rbf, shrinking=False; total time= 1.3s\n", + "[CV] END .................C=5, kernel=linear, shrinking=True; total time= 2.1s\n", + "[CV] END ................C=10.0, kernel=rbf, shrinking=False; total time= 1.7s\n", + "[CV] END ................C=5, kernel=linear, shrinking=False; total time= 4.9s\n", + "[CV] END ................C=10.0, kernel=rbf, shrinking=False; total time= 1.4s\n", + "[CV] END ............C=0.001, kernel=linear, shrinking=False; total time= 1.4s\n", + "[CV] END ..................C=0.1, kernel=rbf, shrinking=True; total time= 1.6s\n", + "[CV] END ...............C=0.001, kernel=poly, shrinking=True; total time= 1.9s\n", + "[CV] END ...............C=0.001, kernel=rbf, shrinking=False; total time= 5.0s\n", + "[CV] END .................C=0.1, kernel=poly, shrinking=True; total time= 1.1s\n", + "[CV] END ................C=1.0, kernel=poly, shrinking=False; total time= 1.1s\n", + "[CV] END ...............C=1.0, kernel=linear, shrinking=True; total time= 1.5s\n", + "[CV] END ..............C=1.0, kernel=linear, shrinking=False; total time= 1.7s\n", + "[CV] END ..............C=1.0, kernel=linear, shrinking=False; total time= 1.7s\n", + "[CV] END ..................C=2.5, kernel=rbf, shrinking=True; total time= 1.5s\n", + "[CV] END .................C=2.5, kernel=rbf, shrinking=False; total time= 1.4s\n", + "[CV] END ...................C=5, kernel=poly, shrinking=True; total time= 1.6s\n", + "[CV] END ..............C=2.5, kernel=linear, shrinking=False; total time= 2.9s\n", + "[CV] END ...................C=5, kernel=poly, shrinking=True; total time= 1.4s\n", + "[CV] END .................C=10.0, kernel=rbf, shrinking=True; total time= 1.4s\n", + "[CV] END ..............C=10.0, kernel=linear, shrinking=True; total time= 2.7s\n", + "[CV] END ...............C=10.0, kernel=poly, shrinking=False; total time= 2.8s\n", + "[CV] END .............C=0.001, kernel=linear, shrinking=True; total time= 1.2s\n", + "[CV] END ............C=0.001, kernel=linear, shrinking=False; total time= 1.3s\n", + "[CV] END ................C=0.001, kernel=rbf, shrinking=True; total time= 5.1s\n", + "[CV] END ...............C=1.0, kernel=linear, shrinking=True; total time= 1.4s\n", + "[CV] END ................C=0.001, kernel=rbf, shrinking=True; total time= 5.1s\n", + "[CV] END .................C=0.1, kernel=poly, shrinking=True; total time= 1.1s\n", + "[CV] END ..............C=0.1, kernel=linear, shrinking=False; total time= 0.9s\n", + "[CV] END ...............C=2.5, kernel=linear, shrinking=True; total time= 2.0s\n", + "[CV] END ...............C=2.5, kernel=linear, shrinking=True; total time= 1.8s\n", + "[CV] END ....................C=5, kernel=rbf, shrinking=True; total time= 1.3s\n", + "[CV] END ..............C=2.5, kernel=linear, shrinking=False; total time= 2.7s\n", + "[CV] END ..................C=5, kernel=poly, shrinking=False; total time= 1.8s\n", + "[CV] END ................C=10.0, kernel=poly, shrinking=True; total time= 1.7s\n", + "[CV] END ................C=5, kernel=linear, shrinking=False; total time= 3.9s\n", + "[CV] END ...............C=10.0, kernel=poly, shrinking=False; total time= 2.0s\n", + "[CV] END .............C=10.0, kernel=linear, shrinking=False; total time= 4.4s\n", + "[CV] END .................................C=10.0, kernel=rbf; total time= 1.3s\n", + "[CV] END .................................C=10.0, kernel=rbf; total time= 1.3s\n", + "[CV] END ................................C=10.0, kernel=poly; total time= 1.6s\n", + "[CV] END ................................C=10.0, kernel=poly; total time= 1.7s\n", + "[CV] END ...............................C=0.001, kernel=poly; total time= 1.8s\n", + "[CV] END ...............................C=0.001, kernel=poly; total time= 1.9s\n", + "[CV] END ................................C=0.001, kernel=rbf; total time= 3.6s\n", + "[CV] END ................................C=0.001, kernel=rbf; total time= 3.6s\n" + ] + } + ], + "source": [ + "client.close()" + ] + }, + { + "cell_type": "markdown", + "id": "8103498a", + "metadata": {}, + "source": [ + "## Multi-machine parallelism in the cloud with Coiled\n", + "\n", + "
\n", + "\"Coiled\n", + "
\n", + "\n", + "In this section we'll see how Coiled allows us to solve machine learning problems with multi-machine parallelism in the cloud.\n", + "\n", + "Coiled, [among other things](https://coiled.io/product/), provides hosted and scalable Dask clusters. The biggest barriers to entry for doing machine learning at scale are \"Do you have access to a cluster?\" and \"Do you know how to manage it?\" Coiled solves both of those problems. \n", + "\n", + "We'll spin up a Coiled cluster (with 10 workers in this case), then instantiate a Dask Client to use with that cluster.\n", + "\n", + "To learn more about how to set up an environment you can visit Coiled documentation on [Creating software environments](https://docs.coiled.io/user_guide/software_environment_creation.html)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "58d6d915", + "metadata": {}, + "outputs": [], + "source": [ + "import coiled\n", + "from dask.distributed import Client" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "e50ddd7c", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Found software environment build\n", + "Created FW rules: coiled-dask-nccleme1a-48073-firewall\n", + "Created scheduler VM: coiled-dask-nccleme1a-48073-scheduler (type: t3.medium, ip: [])\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n", + "
\n", + "
\n", + "

Client

\n", + "

Client-ebddc9ca-1bed-11ec-83b7-1e00ea0a0276

\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
Connection method: Cluster objectCluster type: coiled.Cluster
\n", + " Dashboard: http://3.239.164.166:8787\n", + "
\n", + "\n", + " \n", + "
\n", + "

Cluster Info

\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

Cluster

\n", + "

ncclementi-e7940354-4

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + " Dashboard: http://3.239.164.166:8787\n", + " \n", + " Workers: 3\n", + "
\n", + " Total threads: 6\n", + " \n", + " Total memory: 22.43 GiB\n", + "
\n", + "\n", + "
\n", + " \n", + "

Scheduler Info

\n", + "
\n", + "\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

Scheduler

\n", + "

Scheduler-8a1a9f85-1bcf-4376-8627-d8db098a7cad

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + " Comm: tls://10.4.10.249:8786\n", + " \n", + " Workers: 3\n", + "
\n", + " Dashboard: http://10.4.10.249:8787/status\n", + " \n", + " Total threads: 6\n", + "
\n", + " Started: Just now\n", + " \n", + " Total memory: 22.43 GiB\n", + "
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "

Workers

\n", + "
\n", + "\n", + " \n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "

Worker: coiled-dask-nccleme1a-48073-worker-c2dd20ad0c

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + "
\n", + " Comm: tls://10.4.29.128:41265\n", + " \n", + " Total threads: 2\n", + "
\n", + " Dashboard: http://10.4.29.128:42261/status\n", + " \n", + " Memory: 7.48 GiB\n", + "
\n", + " Nanny: tls://10.4.29.128:35733\n", + "
\n", + " Local directory: /dask-worker-space/worker-ze7tje4w\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "

Worker: coiled-dask-nccleme1a-48073-worker-f0ed5c9314

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + "
\n", + " Comm: tls://10.4.28.200:41553\n", + " \n", + " Total threads: 2\n", + "
\n", + " Dashboard: http://10.4.28.200:33961/status\n", + " \n", + " Memory: 7.48 GiB\n", + "
\n", + " Nanny: tls://10.4.28.200:37411\n", + "
\n", + " Local directory: /dask-worker-space/worker-wwdpgqq7\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "

Worker: coiled-dask-nccleme1a-48073-worker-f475e55e68

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + "
\n", + " Comm: tls://10.4.26.58:46645\n", + " \n", + " Total threads: 2\n", + "
\n", + " Dashboard: http://10.4.26.58:42815/status\n", + " \n", + " Memory: 7.48 GiB\n", + "
\n", + " Nanny: tls://10.4.26.58:39903\n", + "
\n", + " Local directory: /dask-worker-space/worker-izvh1s2b\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "\n", + "
\n", + "
\n", + "\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "\n", + "
\n", + "
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Spin up a Coiled cluster, instantiate a Client\n", + "cluster = coiled.Cluster(n_workers=10, software=\"ncclementi/dask-mini-tutorial\",)\n", + "client = Client(cluster)\n", + "client" + ] + }, + { + "cell_type": "markdown", + "id": "e34ff085", + "metadata": {}, + "source": [ + "### Compute bound: Dask parallel backend" + ] + }, + { + "cell_type": "markdown", + "id": "3089353b", + "metadata": {}, + "source": [ + "Again, we can fit our estimator with multi-machine parallelism by quickly switching to a Dask parallel backend. This time, this multi-machine parallelism is *in the cloud* because we've set up our Dask clusters via Coiled." + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "21313a78", + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.datasets import make_classification\n", + "\n", + "X, y = make_classification(n_samples=10000, n_features=4, random_state=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "2f68a357", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Fitting 2 folds for each of 36 candidates, totalling 72 fits\n", + "CPU times: user 2.67 s, sys: 91.9 ms, total: 2.77 s\n", + "Wall time: 23.2 s\n" + ] + } + ], + "source": [ + "%%time\n", + "with joblib.parallel_backend(\"dask\", scatter=[X, y]):\n", + " grid_search.fit(X, y)" + ] + }, + { + "cell_type": "markdown", + "id": "0b84df06", + "metadata": {}, + "source": [ + "Our cluster being a cloud-based cluster that adds no complexity is Coiled's mission on full display.\n", + "\n", + "The best parameters and best score:" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "f6482f71", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "({'C': 10.0, 'kernel': 'rbf', 'shrinking': True}, 0.9086000000000001)" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "grid_search.best_params_, grid_search.best_score_" + ] + }, + { + "cell_type": "markdown", + "id": "ff3980aa", + "metadata": {}, + "source": [ + "### Memory bound: Dask-ML" + ] + }, + { + "cell_type": "markdown", + "id": "efccea68", + "metadata": {}, + "source": [ + "Similarly, we can use Dask-ML estimators on the cloud to work with larger datasets." + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "dc52c251", + "metadata": {}, + "outputs": [], + "source": [ + "n_centers = 12\n", + "n_features = 20\n", + "\n", + "X_small, y_small = make_blobs(n_samples=1000, centers=n_centers, n_features=n_features, random_state=0)\n", + "\n", + "centers = np.zeros((n_centers, n_features))\n", + "\n", + "for i in range(n_centers):\n", + " centers[i] = X_small[y_small == i].mean(0)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "ba1c77b3", + "metadata": {}, + "outputs": [], + "source": [ + "n_samples_per_block = 200000\n", + "n_blocks = 500\n", + "\n", + "delayeds = [dask.delayed(make_blobs)(n_samples=n_samples_per_block,\n", + " centers=centers,\n", + " n_features=n_features,\n", + " random_state=i)[0]\n", + " for i in range(n_blocks)]\n", + "arrays = [da.from_delayed(obj, shape=(n_samples_per_block, n_features), dtype=X.dtype)\n", + " for obj in delayeds]\n", + "X = da.concatenate(arrays)\n", + "#X = X.persist()" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "d891a7b6", + "metadata": {}, + "outputs": [], + "source": [ + "X = X.persist()" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "9fef03bb", + "metadata": {}, + "outputs": [], + "source": [ + "from dask_ml.cluster import KMeans" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "8a186141", + "metadata": {}, + "outputs": [], + "source": [ + "clf = KMeans(init_max_iter=3, oversampling_factor=10)" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "56241fad", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 4.02 s, sys: 199 ms, total: 4.22 s\n", + "Wall time: 1min 22s\n" + ] + }, + { + "data": { + "text/plain": [ + "KMeans(init_max_iter=3, oversampling_factor=10)" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%time clf.fit(X)" + ] + }, + { + "cell_type": "markdown", + "id": "9a3682c1", + "metadata": {}, + "source": [ + "Computng the labels:" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "f0b9980e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([4, 7, 4, 0, 0, 0, 4, 7, 6, 3], dtype=int32)" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "clf.labels_[:10].compute()" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "id": "9988ef14", + "metadata": {}, + "outputs": [], + "source": [ + "client.close()" + ] + }, + { + "cell_type": "markdown", + "id": "6c5f839e", + "metadata": {}, + "source": [ + "## Extra resources:\n", + "\n", + "- [Dask-ML documentation](https://ml.dask.org/)\n", + "- [Getting started with Coiled](https://docs.coiled.io/user_guide/getting_started.html)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/prep_data.py b/prep_data.py new file mode 100644 index 0000000..7169cdd --- /dev/null +++ b/prep_data.py @@ -0,0 +1,107 @@ +#This script was modify from original https://github.com/coiled/pydata-global-dask/blob/master/prep.py +import time +import sys +import argparse +import os +from glob import glob +import tarfile +import urllib.request + +import pandas as pd + + +DATASETS = ["flights", "all"] +here = os.path.dirname(__file__) +data_dir = os.path.abspath(os.path.join(here, "data")) + +print(f"{data_dir=}") + +def parse_args(args=None): + parser = argparse.ArgumentParser( + description="Downloads, generates and prepares data for the Dask tutorial." + ) + parser.add_argument( + "--no-ssl-verify", + dest="no_ssl_verify", + action="store_true", + default=False, + help="Disables SSL verification.", + ) + parser.add_argument( + "--small", + action="store_true", + default=None, + help="Whether to use smaller example datasets. Checks DASK_TUTORIAL_SMALL environment variable if not specified.", + ) + parser.add_argument( + "-d", "--dataset", choices=DATASETS, help="Datasets to generate.", default="all" + ) + + return parser.parse_args(args) + + +if not os.path.exists(data_dir): + raise OSError( + "data/ directory not found, aborting data preparation. " + 'Restore it with "git checkout data" from the base ' + "directory." + ) + + +def flights(small=None): + start = time.time() + flights_raw = os.path.join(data_dir, "nycflights.tar.gz") + flightdir = os.path.join(data_dir, "nycflights") + if small is None: + small = bool(os.environ.get("DASK_TUTORIAL_SMALL", False)) + + if small: + N = 500 + else: + N = 10_000 + + if not os.path.exists(flights_raw): + print("- Downloading NYC Flights dataset... ", end="", flush=True) + url = "https://storage.googleapis.com/dask-tutorial-data/nycflights.tar.gz" + urllib.request.urlretrieve(url, flights_raw) + print("done", flush=True) + + if not os.path.exists(flightdir): + print("- Extracting flight data... ", end="", flush=True) + tar_path = os.path.join(data_dir, "nycflights.tar.gz") + with tarfile.open(tar_path, mode="r:gz") as flights: + flights.extractall(data_dir) + + if small: + for path in glob(os.path.join(data_dir, "nycflights", "*.csv")): + with open(path, "r") as f: + lines = f.readlines()[:1000] + + with open(path, "w") as f: + f.writelines(lines) + + print("done", flush=True) + + else: + return + + end = time.time() + print("** Created flights dataset! in {:0.2f}s**".format(end - start)) + + +def main(args=None): + args = parse_args(args) + + if args.no_ssl_verify: + print("- Disabling SSL Verification... ", end="", flush=True) + import ssl + + ssl._create_default_https_context = ssl._create_unverified_context + print("done", flush=True) + + if args.dataset == "flights" or args.dataset == "all": + flights(args.small) + + +if __name__ == "__main__": + sys.exit(main())