diff --git a/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py b/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py index 4a0ce91e96c1..f277e5a1eb95 100644 --- a/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +++ b/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py @@ -227,7 +227,7 @@ def decode_latents(self, latents): image = image.cpu().permute(0, 2, 3, 1).float().numpy() return image - def check_inputs(self, prompt, image, noise_level, callback_steps): + def check_inputs(self, prompt, image, callback_steps): if not isinstance(prompt, str) and not isinstance(prompt, list): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") @@ -285,7 +285,6 @@ def __call__( image: Union[torch.FloatTensor, PIL.Image.Image, List[PIL.Image.Image]], num_inference_steps: int = 75, guidance_scale: float = 9.0, - noise_level: int = 0, negative_prompt: Optional[Union[str, List[str]]] = None, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, @@ -386,7 +385,7 @@ def __call__( """ # 1. Check inputs - self.check_inputs(prompt, image, noise_level, callback_steps) + self.check_inputs(prompt, image, callback_steps) # 2. Define call parameters batch_size = 1 if isinstance(prompt, str) else len(prompt)