diff --git a/docs/source/en/_toctree.yml b/docs/source/en/_toctree.yml index 645cbb04c1d0..926a3ea716e8 100644 --- a/docs/source/en/_toctree.yml +++ b/docs/source/en/_toctree.yml @@ -44,6 +44,8 @@ title: Text-guided image-inpainting - local: using-diffusers/depth2img title: Text-guided depth-to-image + - local: using-diffusers/textual_inversion_inference + title: Textual inversion - local: using-diffusers/reusing_seeds title: Improve image quality with deterministic generation - local: using-diffusers/reproducibility diff --git a/docs/source/en/using-diffusers/textual_inversion_inference.mdx b/docs/source/en/using-diffusers/textual_inversion_inference.mdx new file mode 100644 index 000000000000..9eca3e7e465c --- /dev/null +++ b/docs/source/en/using-diffusers/textual_inversion_inference.mdx @@ -0,0 +1,80 @@ +# Textual inversion + +[[open-in-colab]] + +The [`StableDiffusionPipeline`] supports textual inversion, a technique that enables a model like Stable Diffusion to learn a new concept from just a few sample images. This gives you more control over the generated images and allows you to tailor the model towards specific concepts. You can get started quickly with a collection of community created concepts in the [Stable Diffusion Conceptualizer](https://huggingface.co/spaces/sd-concepts-library/stable-diffusion-conceptualizer). + +This guide will show you how to run inference with textual inversion using a pre-learned concept from the Stable Diffusion Conceptualizer. If you're interested in teaching a model new concepts with textual inversion, take a look at the [Textual Inversion](./training/text_inversion) training guide. + +Login to your Hugging Face account: + +```py +from huggingface_hub import notebook_login + +notebook_login() +``` + +Import the necessary libraries, and create a helper function to visualize the generated images: + +```py +import os +import torch + +import PIL +from PIL import Image + +from diffusers import StableDiffusionPipeline +from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer + + +def image_grid(imgs, rows, cols): + assert len(imgs) == rows * cols + + w, h = imgs[0].size + grid = Image.new("RGB", size=(cols * w, rows * h)) + grid_w, grid_h = grid.size + + for i, img in enumerate(imgs): + grid.paste(img, box=(i % cols * w, i // cols * h)) + return grid +``` + +Pick a Stable Diffusion checkpoint and a pre-learned concept from the [Stable Diffusion Conceptualizer](https://huggingface.co/spaces/sd-concepts-library/stable-diffusion-conceptualizer): + +```py +pretrained_model_name_or_path = "runwayml/stable-diffusion-v1-5" +repo_id_embeds = "sd-concepts-library/cat-toy" +``` + +Now you can load a pipeline, and pass the pre-learned concept to it: + +```py +pipeline = StableDiffusionPipeline.from_pretrained(pretrained_model_name_or_path, torch_dtype=torch.float16).to("cuda") + +pipeline.load_textual_inversion(repo_id_embeds) +``` + +Create a prompt with the pre-learned concept by using the special placeholder token ``, and choose the number of samples and rows of images you'd like to generate: + +```py +prompt = "a grafitti in a favela wall with a on it" + +num_samples = 2 +num_rows = 2 +``` + +Then run the pipeline (feel free to adjust the parameters like `num_inference_steps` and `guidance_scale` to see how they affect image quality), save the generated images and visualize them with the helper function you created at the beginning: + +```py +all_images = [] +for _ in range(num_rows): + images = pipe(prompt, num_images_per_prompt=num_samples, num_inference_steps=50, guidance_scale=7.5).images + all_images.extend(images) + +grid = image_grid(all_images, num_samples, num_rows) +grid +``` + +
+ +