diff --git a/docs/source/en/api/pipelines/text_to_video.mdx b/docs/source/en/api/pipelines/text_to_video.mdx
index 82b2f19ce1b2..75868d7dd6ea 100644
--- a/docs/source/en/api/pipelines/text_to_video.mdx
+++ b/docs/source/en/api/pipelines/text_to_video.mdx
@@ -37,9 +37,12 @@ Resources:
| Pipeline | Tasks | Demo
|---|---|:---:|
| [TextToVideoSDPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py) | *Text-to-Video Generation* | [🤗 Spaces](https://huggingface.co/spaces/damo-vilab/modelscope-text-to-video-synthesis)
+| [VideoToVideoSDPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py) | *Text-Guided Video-to-Video Generation* | [(TODO)🤗 Spaces]()
## Usage example
+### `text-to-video-ms-1.7b`
+
Let's start by generating a short video with the default length of 16 frames (2s at 8 fps):
```python
@@ -119,12 +122,72 @@ Here are some sample outputs:
+### `cerspense/zeroscope_v2_576w` & `cerspense/zeroscope_v2_XL`
+
+Zeroscope are watermark-free model and have been trained on specific sizes such as `576x320` and `1024x576`.
+One should first generate a video using the lower resolution checkpoint [`cerspense/zeroscope_v2_576w`](https://huggingface.co/cerspense/zeroscope_v2_576w) with [`TextToVideoSDPipeline`],
+which can then be upscaled using [`VideoToVideoSDPipeline`] and [`cerspense/zeroscope_v2_XL`](https://huggingface.co/cerspense/zeroscope_v2_XL).
+
+
+```py
+import torch
+from diffusers import DiffusionPipeline
+from diffusers.utils import export_to_video
+
+pipe = DiffusionPipeline.from_pretrained("cerspense/zeroscope_v2_576w", torch_dtype=torch.float16)
+pipe.enable_model_cpu_offload()
+
+# memory optimization
+pipe.enable_vae_slicing()
+
+prompt = "Darth Vader surfing a wave"
+video_frames = pipe(prompt, num_frames=24).frames
+video_path = export_to_video(video_frames)
+video_path
+```
+
+Now the video can be upscaled:
+
+```py
+pipe = DiffusionPipeline.from_pretrained("cerspense/zeroscope_v2_XL", torch_dtype=torch.float16)
+pipe.vae.enable_slicing()
+pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
+pipe.enable_model_cpu_offload()
+
+video = [Image.fromarray(frame).resize((1024, 576)) for frame in video_frames]
+
+video_frames = pipe(prompt, video=video, strength=0.6).frames
+video_path = export_to_video(video_frames)
+video_path
+```
+
+Here are some sample outputs:
+
+
+
+
+ Darth vader surfing in waves.
+
+
+ |
+
+
+
## Available checkpoints
* [damo-vilab/text-to-video-ms-1.7b](https://huggingface.co/damo-vilab/text-to-video-ms-1.7b/)
* [damo-vilab/text-to-video-ms-1.7b-legacy](https://huggingface.co/damo-vilab/text-to-video-ms-1.7b-legacy)
+* [cerspense/zeroscope_v2_576w](https://huggingface.co/cerspense/zeroscope_v2_576w)
+* [cerspense/zeroscope_v2_XL](https://huggingface.co/cerspense/zeroscope_v2_XL)
## TextToVideoSDPipeline
[[autodoc]] TextToVideoSDPipeline
- all
- __call__
+
+## VideoToVideoSDPipeline
+[[autodoc]] VideoToVideoSDPipeline
+ - all
+ - __call__
diff --git a/src/diffusers/__init__.py b/src/diffusers/__init__.py
index 02907075345e..764f9204dffb 100644
--- a/src/diffusers/__init__.py
+++ b/src/diffusers/__init__.py
@@ -173,6 +173,7 @@
VersatileDiffusionImageVariationPipeline,
VersatileDiffusionPipeline,
VersatileDiffusionTextToImagePipeline,
+ VideoToVideoSDPipeline,
VQDiffusionPipeline,
)
diff --git a/src/diffusers/models/autoencoder_kl.py b/src/diffusers/models/autoencoder_kl.py
index d61281a53e7c..ddb9bde0ee0a 100644
--- a/src/diffusers/models/autoencoder_kl.py
+++ b/src/diffusers/models/autoencoder_kl.py
@@ -229,7 +229,12 @@ def encode(self, x: torch.FloatTensor, return_dict: bool = True) -> AutoencoderK
if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size):
return self.tiled_encode(x, return_dict=return_dict)
- h = self.encoder(x)
+ if self.use_slicing and x.shape[0] > 1:
+ encoded_slices = [self.encoder(x_slice) for x_slice in x.split(1)]
+ h = torch.cat(encoded_slices)
+ else:
+ h = self.encoder(x)
+
moments = self.quant_conv(h)
posterior = DiagonalGaussianDistribution(moments)
diff --git a/src/diffusers/pipelines/__init__.py b/src/diffusers/pipelines/__init__.py
index b1650240848a..ca57756c6aa4 100644
--- a/src/diffusers/pipelines/__init__.py
+++ b/src/diffusers/pipelines/__init__.py
@@ -89,7 +89,7 @@
StableUnCLIPPipeline,
)
from .stable_diffusion_safe import StableDiffusionPipelineSafe
- from .text_to_video_synthesis import TextToVideoSDPipeline, TextToVideoZeroPipeline
+ from .text_to_video_synthesis import TextToVideoSDPipeline, TextToVideoZeroPipeline, VideoToVideoSDPipeline
from .unclip import UnCLIPImageVariationPipeline, UnCLIPPipeline
from .unidiffuser import ImageTextPipelineOutput, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder
from .versatile_diffusion import (
diff --git a/src/diffusers/pipelines/text_to_video_synthesis/__init__.py b/src/diffusers/pipelines/text_to_video_synthesis/__init__.py
index 165a1a0f0d98..d70c1c2ea2a8 100644
--- a/src/diffusers/pipelines/text_to_video_synthesis/__init__.py
+++ b/src/diffusers/pipelines/text_to_video_synthesis/__init__.py
@@ -28,5 +28,6 @@ class TextToVideoSDPipelineOutput(BaseOutput):
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
- from .pipeline_text_to_video_synth import TextToVideoSDPipeline # noqa: F401
+ from .pipeline_text_to_video_synth import TextToVideoSDPipeline
+ from .pipeline_text_to_video_synth_img2img import VideoToVideoSDPipeline # noqa: F401
from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
diff --git a/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py b/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py
index 8bf4bafa4fe5..e30f183808a5 100644
--- a/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py
+++ b/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py
@@ -672,6 +672,9 @@ def __call__(
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
+ if output_type == "latent":
+ return TextToVideoSDPipelineOutput(frames=latents)
+
video_tensor = self.decode_latents(latents)
if output_type == "pt":
diff --git a/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py b/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py
new file mode 100644
index 000000000000..ce5109a58213
--- /dev/null
+++ b/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py
@@ -0,0 +1,770 @@
+# Copyright 2023 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import inspect
+from typing import Any, Callable, Dict, List, Optional, Union
+
+import numpy as np
+import PIL
+import torch
+from transformers import CLIPTextModel, CLIPTokenizer
+
+from ...loaders import LoraLoaderMixin, TextualInversionLoaderMixin
+from ...models import AutoencoderKL, UNet3DConditionModel
+from ...schedulers import KarrasDiffusionSchedulers
+from ...utils import (
+ is_accelerate_available,
+ is_accelerate_version,
+ logging,
+ randn_tensor,
+ replace_example_docstring,
+)
+from ..pipeline_utils import DiffusionPipeline
+from . import TextToVideoSDPipelineOutput
+
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+EXAMPLE_DOC_STRING = """
+ Examples:
+ ```py
+ >>> import torch
+ >>> from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
+ >>> from diffusers.utils import export_to_video
+
+ >>> pipe = DiffusionPipeline.from_pretrained("cerspense/zeroscope_v2_576w", torch_dtype=torch.float16)
+ >>> pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
+ >>> pipe.to("cuda")
+
+ >>> prompt = "spiderman running in the desert"
+ >>> video_frames = pipe(prompt, num_inference_steps=40, height=320, width=576, num_frames=24).frames
+ >>> # safe low-res video
+ >>> video_path = export_to_video(video_frames, output_video_path="./video_576_spiderman.mp4")
+
+ >>> # let's offload the text-to-image model
+ >>> pipe.to("cpu")
+
+ >>> # and load the image-to-image model
+ >>> pipe = DiffusionPipeline.from_pretrained(
+ ... "cerspense/zeroscope_v2_XL", torch_dtype=torch.float16, revision="refs/pr/15"
+ ... )
+ >>> pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
+ >>> pipe.enable_model_cpu_offload()
+
+ >>> # The VAE consumes A LOT of memory, let's make sure we run it in sliced mode
+ >>> pipe.vae.enable_slicing()
+
+ >>> # now let's upscale it
+ >>> video = [Image.fromarray(frame).resize((1024, 576)) for frame in video_frames]
+
+ >>> # and denoise it
+ >>> video_frames = pipe(prompt, video=video, strength=0.6).frames
+ >>> video_path = export_to_video(video_frames, output_video_path="./video_1024_spiderman.mp4")
+ >>> video_path
+ ```
+"""
+
+
+def tensor2vid(video: torch.Tensor, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) -> List[np.ndarray]:
+ # This code is copied from https://github.com/modelscope/modelscope/blob/1509fdb973e5871f37148a4b5e5964cafd43e64d/modelscope/pipelines/multi_modal/text_to_video_synthesis_pipeline.py#L78
+ # reshape to ncfhw
+ mean = torch.tensor(mean, device=video.device).reshape(1, -1, 1, 1, 1)
+ std = torch.tensor(std, device=video.device).reshape(1, -1, 1, 1, 1)
+ # unnormalize back to [0,1]
+ video = video.mul_(std).add_(mean)
+ video.clamp_(0, 1)
+ # prepare the final outputs
+ i, c, f, h, w = video.shape
+ images = video.permute(2, 3, 0, 4, 1).reshape(
+ f, h, i * w, c
+ ) # 1st (frames, h, batch_size, w, c) 2nd (frames, h, batch_size * w, c)
+ images = images.unbind(dim=0) # prepare a list of indvidual (consecutive frames)
+ images = [(image.cpu().numpy() * 255).astype("uint8") for image in images] # f h w c
+ return images
+
+
+def preprocess_video(video):
+ supported_formats = (np.ndarray, torch.Tensor, PIL.Image.Image)
+
+ if isinstance(video, supported_formats):
+ video = [video]
+ elif not (isinstance(video, list) and all(isinstance(i, supported_formats) for i in video)):
+ raise ValueError(
+ f"Input is in incorrect format: {[type(i) for i in video]}. Currently, we only support {', '.join(supported_formats)}"
+ )
+
+ if isinstance(video[0], PIL.Image.Image):
+ video = [np.array(frame) for frame in video]
+
+ if isinstance(video[0], np.ndarray):
+ video = np.concatenate(video, axis=0) if video[0].ndim == 5 else np.stack(video, axis=0)
+
+ if video.dtype == np.uint8:
+ video = np.array(video).astype(np.float32) / 255.0
+
+ if video.ndim == 4:
+ video = video[None, ...]
+
+ video = torch.from_numpy(video.transpose(0, 4, 1, 2, 3))
+
+ elif isinstance(video[0], torch.Tensor):
+ video = torch.cat(video, axis=0) if video[0].ndim == 5 else torch.stack(video, axis=0)
+
+ # don't need any preprocess if the video is latents
+ channel = video.shape[1]
+ if channel == 4:
+ return video
+
+ # move channels before num_frames
+ video = video.permute(0, 2, 1, 3, 4)
+
+ # normalize video
+ video = 2.0 * video - 1.0
+
+ return video
+
+
+class VideoToVideoSDPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin):
+ r"""
+ Pipeline for text-to-video generation.
+
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
+
+ Args:
+ vae ([`AutoencoderKL`]):
+ Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
+ text_encoder ([`CLIPTextModel`]):
+ Frozen text-encoder. Same as Stable Diffusion 2.
+ tokenizer (`CLIPTokenizer`):
+ Tokenizer of class
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
+ unet ([`UNet3DConditionModel`]): Conditional U-Net architecture to denoise the encoded video latents.
+ scheduler ([`SchedulerMixin`]):
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
+ """
+
+ def __init__(
+ self,
+ vae: AutoencoderKL,
+ text_encoder: CLIPTextModel,
+ tokenizer: CLIPTokenizer,
+ unet: UNet3DConditionModel,
+ scheduler: KarrasDiffusionSchedulers,
+ ):
+ super().__init__()
+
+ self.register_modules(
+ vae=vae,
+ text_encoder=text_encoder,
+ tokenizer=tokenizer,
+ unet=unet,
+ scheduler=scheduler,
+ )
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
+ def enable_vae_slicing(self):
+ r"""
+ Enable sliced VAE decoding.
+
+ When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
+ steps. This is useful to save some memory and allow larger batch sizes.
+ """
+ self.vae.enable_slicing()
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
+ def disable_vae_slicing(self):
+ r"""
+ Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
+ computing decoding in one step.
+ """
+ self.vae.disable_slicing()
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
+ def enable_vae_tiling(self):
+ r"""
+ Enable tiled VAE decoding.
+
+ When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in
+ several steps. This is useful to save a large amount of memory and to allow the processing of larger images.
+ """
+ self.vae.enable_tiling()
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
+ def disable_vae_tiling(self):
+ r"""
+ Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to
+ computing decoding in one step.
+ """
+ self.vae.disable_tiling()
+
+ def enable_sequential_cpu_offload(self, gpu_id=0):
+ r"""
+ Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
+ text_encoder, vae have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded
+ to GPU only when their specific submodule has its `forward` method called. Note that offloading happens on a
+ submodule basis. Memory savings are higher than with `enable_model_cpu_offload`, but performance is lower.
+ """
+ if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
+ from accelerate import cpu_offload
+ else:
+ raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher")
+
+ device = torch.device(f"cuda:{gpu_id}")
+
+ if self.device.type != "cpu":
+ self.to("cpu", silence_dtype_warnings=True)
+ torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
+
+ for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
+ cpu_offload(cpu_offloaded_model, device)
+
+ def enable_model_cpu_offload(self, gpu_id=0):
+ r"""
+ Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
+ to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
+ method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
+ `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
+ """
+ if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
+ from accelerate import cpu_offload_with_hook
+ else:
+ raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
+
+ device = torch.device(f"cuda:{gpu_id}")
+
+ if self.device.type != "cpu":
+ self.to("cpu", silence_dtype_warnings=True)
+ torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
+
+ hook = None
+ for cpu_offloaded_model in [self.text_encoder, self.vae, self.unet]:
+ _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
+
+ # We'll offload the last model manually.
+ self.final_offload_hook = hook
+
+ @property
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
+ def _execution_device(self):
+ r"""
+ Returns the device on which the pipeline's models will be executed. After calling
+ `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
+ hooks.
+ """
+ if not hasattr(self.unet, "_hf_hook"):
+ return self.device
+ for module in self.unet.modules():
+ if (
+ hasattr(module, "_hf_hook")
+ and hasattr(module._hf_hook, "execution_device")
+ and module._hf_hook.execution_device is not None
+ ):
+ return torch.device(module._hf_hook.execution_device)
+ return self.device
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
+ def _encode_prompt(
+ self,
+ prompt,
+ device,
+ num_images_per_prompt,
+ do_classifier_free_guidance,
+ negative_prompt=None,
+ prompt_embeds: Optional[torch.FloatTensor] = None,
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
+ lora_scale: Optional[float] = None,
+ ):
+ r"""
+ Encodes the prompt into text encoder hidden states.
+
+ Args:
+ prompt (`str` or `List[str]`, *optional*):
+ prompt to be encoded
+ device: (`torch.device`):
+ torch device
+ num_images_per_prompt (`int`):
+ number of images that should be generated per prompt
+ do_classifier_free_guidance (`bool`):
+ whether to use classifier free guidance or not
+ negative_prompt (`str` or `List[str]`, *optional*):
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
+ less than `1`).
+ prompt_embeds (`torch.FloatTensor`, *optional*):
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
+ provided, text embeddings will be generated from `prompt` input argument.
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
+ argument.
+ lora_scale (`float`, *optional*):
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
+ """
+ # set lora scale so that monkey patched LoRA
+ # function of text encoder can correctly access it
+ if lora_scale is not None and isinstance(self, LoraLoaderMixin):
+ self._lora_scale = lora_scale
+
+ if prompt is not None and isinstance(prompt, str):
+ batch_size = 1
+ elif prompt is not None and isinstance(prompt, list):
+ batch_size = len(prompt)
+ else:
+ batch_size = prompt_embeds.shape[0]
+
+ if prompt_embeds is None:
+ # textual inversion: procecss multi-vector tokens if necessary
+ if isinstance(self, TextualInversionLoaderMixin):
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
+
+ text_inputs = self.tokenizer(
+ prompt,
+ padding="max_length",
+ max_length=self.tokenizer.model_max_length,
+ truncation=True,
+ return_tensors="pt",
+ )
+ text_input_ids = text_inputs.input_ids
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
+
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
+ text_input_ids, untruncated_ids
+ ):
+ removed_text = self.tokenizer.batch_decode(
+ untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
+ )
+ logger.warning(
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
+ )
+
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
+ attention_mask = text_inputs.attention_mask.to(device)
+ else:
+ attention_mask = None
+
+ prompt_embeds = self.text_encoder(
+ text_input_ids.to(device),
+ attention_mask=attention_mask,
+ )
+ prompt_embeds = prompt_embeds[0]
+
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
+
+ bs_embed, seq_len, _ = prompt_embeds.shape
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
+
+ # get unconditional embeddings for classifier free guidance
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
+ uncond_tokens: List[str]
+ if negative_prompt is None:
+ uncond_tokens = [""] * batch_size
+ elif prompt is not None and type(prompt) is not type(negative_prompt):
+ raise TypeError(
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
+ f" {type(prompt)}."
+ )
+ elif isinstance(negative_prompt, str):
+ uncond_tokens = [negative_prompt]
+ elif batch_size != len(negative_prompt):
+ raise ValueError(
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
+ " the batch size of `prompt`."
+ )
+ else:
+ uncond_tokens = negative_prompt
+
+ # textual inversion: procecss multi-vector tokens if necessary
+ if isinstance(self, TextualInversionLoaderMixin):
+ uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
+
+ max_length = prompt_embeds.shape[1]
+ uncond_input = self.tokenizer(
+ uncond_tokens,
+ padding="max_length",
+ max_length=max_length,
+ truncation=True,
+ return_tensors="pt",
+ )
+
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
+ attention_mask = uncond_input.attention_mask.to(device)
+ else:
+ attention_mask = None
+
+ negative_prompt_embeds = self.text_encoder(
+ uncond_input.input_ids.to(device),
+ attention_mask=attention_mask,
+ )
+ negative_prompt_embeds = negative_prompt_embeds[0]
+
+ if do_classifier_free_guidance:
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
+ seq_len = negative_prompt_embeds.shape[1]
+
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
+
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
+
+ # For classifier free guidance, we need to do two forward passes.
+ # Here we concatenate the unconditional and text embeddings into a single batch
+ # to avoid doing two forward passes
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
+
+ return prompt_embeds
+
+ # Copied from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_synth.TextToVideoSDPipeline.decode_latents
+ def decode_latents(self, latents):
+ latents = 1 / self.vae.config.scaling_factor * latents
+
+ batch_size, channels, num_frames, height, width = latents.shape
+ latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width)
+
+ image = self.vae.decode(latents).sample
+ video = (
+ image[None, :]
+ .reshape(
+ (
+ batch_size,
+ num_frames,
+ -1,
+ )
+ + image.shape[2:]
+ )
+ .permute(0, 2, 1, 3, 4)
+ )
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
+ video = video.float()
+ return video
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
+ def prepare_extra_step_kwargs(self, generator, eta):
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
+ # and should be between [0, 1]
+
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
+ extra_step_kwargs = {}
+ if accepts_eta:
+ extra_step_kwargs["eta"] = eta
+
+ # check if the scheduler accepts generator
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
+ if accepts_generator:
+ extra_step_kwargs["generator"] = generator
+ return extra_step_kwargs
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.check_inputs
+ def check_inputs(
+ self, prompt, strength, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None
+ ):
+ if strength < 0 or strength > 1:
+ raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
+
+ if (callback_steps is None) or (
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
+ ):
+ raise ValueError(
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
+ f" {type(callback_steps)}."
+ )
+
+ if prompt is not None and prompt_embeds is not None:
+ raise ValueError(
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
+ " only forward one of the two."
+ )
+ elif prompt is None and prompt_embeds is None:
+ raise ValueError(
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
+ )
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
+
+ if negative_prompt is not None and negative_prompt_embeds is not None:
+ raise ValueError(
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
+ )
+
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
+ raise ValueError(
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
+ f" {negative_prompt_embeds.shape}."
+ )
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
+ def get_timesteps(self, num_inference_steps, strength, device):
+ # get the original timestep using init_timestep
+ init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
+
+ t_start = max(num_inference_steps - init_timestep, 0)
+ timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
+
+ return timesteps, num_inference_steps - t_start
+
+ def prepare_latents(self, video, timestep, batch_size, dtype, device, generator=None):
+ video = video.to(device=device, dtype=dtype)
+
+ # change from (b, c, f, h, w) -> (b * f, c, w, h)
+ bsz, channel, frames, width, height = video.shape
+ video = video.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height)
+
+ if video.shape[1] == 4:
+ init_latents = video
+ else:
+ if isinstance(generator, list) and len(generator) != batch_size:
+ raise ValueError(
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
+ )
+
+ elif isinstance(generator, list):
+ init_latents = [
+ self.vae.encode(video[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size)
+ ]
+ init_latents = torch.cat(init_latents, dim=0)
+ else:
+ init_latents = self.vae.encode(video).latent_dist.sample(generator)
+
+ init_latents = self.vae.config.scaling_factor * init_latents
+
+ if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
+ raise ValueError(
+ f"Cannot duplicate `video` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
+ )
+ else:
+ init_latents = torch.cat([init_latents], dim=0)
+
+ shape = init_latents.shape
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
+
+ # get latents
+ init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
+ latents = init_latents
+
+ latents = latents[None, :].reshape((bsz, frames, latents.shape[1]) + latents.shape[2:]).permute(0, 2, 1, 3, 4)
+
+ return latents
+
+ @torch.no_grad()
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
+ def __call__(
+ self,
+ prompt: Union[str, List[str]] = None,
+ video: Union[List[np.ndarray], torch.FloatTensor] = None,
+ strength: float = 0.6,
+ num_inference_steps: int = 50,
+ guidance_scale: float = 15.0,
+ negative_prompt: Optional[Union[str, List[str]]] = None,
+ eta: float = 0.0,
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
+ latents: Optional[torch.FloatTensor] = None,
+ prompt_embeds: Optional[torch.FloatTensor] = None,
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
+ output_type: Optional[str] = "np",
+ return_dict: bool = True,
+ callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
+ callback_steps: int = 1,
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+ ):
+ r"""
+ Function invoked when calling the pipeline for generation.
+
+ Args:
+ prompt (`str` or `List[str]`, *optional*):
+ The prompt or prompts to guide the video generation. If not defined, one has to pass `prompt_embeds`.
+ instead.
+ video: (`List[np.ndarray]` or `torch.FloatTensor`):
+ `video` frames or tensor representing a video batch, that will be used as the starting point for the
+ process. Can also accpet video latents as `image`, if passing latents directly, it will not be encoded
+ again.
+ strength (`float`, *optional*, defaults to 0.8):
+ Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image`
+ will be used as a starting point, adding more noise to it the larger the `strength`. The number of
+ denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will
+ be maximum and the denoising process will run for the full number of iterations specified in
+ `num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
+ num_inference_steps (`int`, *optional*, defaults to 50):
+ The number of denoising steps. More denoising steps usually lead to a higher quality videos at the
+ expense of slower inference.
+ guidance_scale (`float`, *optional*, defaults to 7.5):
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
+ 1`. Higher guidance scale encourages to generate videos that are closely linked to the text `prompt`,
+ usually at the expense of lower video quality.
+ negative_prompt (`str` or `List[str]`, *optional*):
+ The prompt or prompts not to guide the video generation. If not defined, one has to pass
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
+ less than `1`).
+ eta (`float`, *optional*, defaults to 0.0):
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
+ [`schedulers.DDIMScheduler`], will be ignored for others.
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
+ to make generation deterministic.
+ latents (`torch.FloatTensor`, *optional*):
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for video
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
+ tensor will ge generated by sampling using the supplied random `generator`. Latents should be of shape
+ `(batch_size, num_channel, num_frames, height, width)`.
+ prompt_embeds (`torch.FloatTensor`, *optional*):
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
+ provided, text embeddings will be generated from `prompt` input argument.
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
+ argument.
+ output_type (`str`, *optional*, defaults to `"np"`):
+ The output format of the generate video. Choose between `torch.FloatTensor` or `np.array`.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~pipelines.stable_diffusion.TextToVideoSDPipelineOutput`] instead of a
+ plain tuple.
+ callback (`Callable`, *optional*):
+ A function that will be called every `callback_steps` steps during inference. The function will be
+ called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
+ callback_steps (`int`, *optional*, defaults to 1):
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
+ called at every step.
+ cross_attention_kwargs (`dict`, *optional*):
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
+ `self.processor` in
+ [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
+
+ Examples:
+
+ Returns:
+ [`~pipelines.stable_diffusion.TextToVideoSDPipelineOutput`] or `tuple`:
+ [`~pipelines.stable_diffusion.TextToVideoSDPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
+ When returning a tuple, the first element is a list with the generated frames.
+ """
+ # 0. Default height and width to unet
+ num_images_per_prompt = 1
+
+ # 1. Check inputs. Raise error if not correct
+ self.check_inputs(prompt, strength, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds)
+
+ # 2. Define call parameters
+ if prompt is not None and isinstance(prompt, str):
+ batch_size = 1
+ elif prompt is not None and isinstance(prompt, list):
+ batch_size = len(prompt)
+ else:
+ batch_size = prompt_embeds.shape[0]
+
+ device = self._execution_device
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
+ # corresponds to doing no classifier free guidance.
+ do_classifier_free_guidance = guidance_scale > 1.0
+
+ # 3. Encode input prompt
+ text_encoder_lora_scale = (
+ cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
+ )
+ prompt_embeds = self._encode_prompt(
+ prompt,
+ device,
+ num_images_per_prompt,
+ do_classifier_free_guidance,
+ negative_prompt,
+ prompt_embeds=prompt_embeds,
+ negative_prompt_embeds=negative_prompt_embeds,
+ lora_scale=text_encoder_lora_scale,
+ )
+
+ # 4. Preprocess video
+ video = preprocess_video(video)
+
+ # 5. Prepare timesteps
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
+ latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
+
+ # 5. Prepare latent variables
+ latents = self.prepare_latents(video, latent_timestep, batch_size, prompt_embeds.dtype, device, generator)
+
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
+
+ # 7. Denoising loop
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
+ for i, t in enumerate(timesteps):
+ # expand the latents if we are doing classifier free guidance
+ latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
+
+ # predict the noise residual
+ noise_pred = self.unet(
+ latent_model_input,
+ t,
+ encoder_hidden_states=prompt_embeds,
+ cross_attention_kwargs=cross_attention_kwargs,
+ ).sample
+
+ # perform guidance
+ if do_classifier_free_guidance:
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
+
+ # reshape latents
+ bsz, channel, frames, width, height = latents.shape
+ latents = latents.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height)
+ noise_pred = noise_pred.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height)
+
+ # compute the previous noisy sample x_t -> x_t-1
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
+
+ # reshape latents back
+ latents = latents[None, :].reshape(bsz, frames, channel, width, height).permute(0, 2, 1, 3, 4)
+
+ # call the callback, if provided
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
+ progress_bar.update()
+ if callback is not None and i % callback_steps == 0:
+ callback(i, t, latents)
+
+ if output_type == "latent":
+ return TextToVideoSDPipelineOutput(frames=latents)
+
+ if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
+ self.unet.to("cpu")
+
+ video_tensor = self.decode_latents(latents)
+
+ if output_type == "pt":
+ video = video_tensor
+ else:
+ video = tensor2vid(video_tensor)
+
+ # Offload last model to CPU
+ if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
+ self.final_offload_hook.offload()
+
+ if not return_dict:
+ return (video,)
+
+ return TextToVideoSDPipelineOutput(frames=video)
diff --git a/src/diffusers/utils/dummy_torch_and_transformers_objects.py b/src/diffusers/utils/dummy_torch_and_transformers_objects.py
index 3f0b17d879e5..0dbc8f1f6f99 100644
--- a/src/diffusers/utils/dummy_torch_and_transformers_objects.py
+++ b/src/diffusers/utils/dummy_torch_and_transformers_objects.py
@@ -782,6 +782,21 @@ def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
+class VideoToVideoSDPipeline(metaclass=DummyObject):
+ _backends = ["torch", "transformers"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["torch", "transformers"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["torch", "transformers"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["torch", "transformers"])
+
+
class VQDiffusionPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
diff --git a/tests/pipelines/test_pipelines_common.py b/tests/pipelines/test_pipelines_common.py
index 008a8a2e6367..9fb3e167facc 100644
--- a/tests/pipelines/test_pipelines_common.py
+++ b/tests/pipelines/test_pipelines_common.py
@@ -652,11 +652,11 @@ def _test_xformers_attention_forwardGenerator_pass(
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
- output_without_offload = pipe(**inputs)[0]
+ output_without_offload = pipe(**inputs)[0].cpu()
pipe.enable_xformers_memory_efficient_attention()
inputs = self.get_dummy_inputs(torch_device)
- output_with_offload = pipe(**inputs)[0]
+ output_with_offload = pipe(**inputs)[0].cpu()
if test_max_difference:
max_diff = np.abs(output_with_offload - output_without_offload).max()
diff --git a/tests/pipelines/text_to_video/test_video_to_video.py b/tests/pipelines/text_to_video/test_video_to_video.py
new file mode 100644
index 000000000000..41e213c43dea
--- /dev/null
+++ b/tests/pipelines/text_to_video/test_video_to_video.py
@@ -0,0 +1,195 @@
+# coding=utf-8
+# Copyright 2023 HuggingFace Inc.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import random
+import unittest
+
+import numpy as np
+import torch
+from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
+
+from diffusers import (
+ AutoencoderKL,
+ DDIMScheduler,
+ UNet3DConditionModel,
+ VideoToVideoSDPipeline,
+)
+from diffusers.utils import floats_tensor, is_xformers_available, skip_mps
+from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device
+
+from ..pipeline_params import (
+ TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
+ TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
+)
+from ..test_pipelines_common import PipelineTesterMixin
+
+
+enable_full_determinism()
+
+
+@skip_mps
+class VideoToVideoSDPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
+ pipeline_class = VideoToVideoSDPipeline
+ params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"video"}) - {"image", "width", "height"}
+ batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"video"}) - {"image"}
+ required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"}
+ test_attention_slicing = False
+
+ # No `output_type`.
+ required_optional_params = frozenset(
+ [
+ "num_inference_steps",
+ "generator",
+ "latents",
+ "return_dict",
+ "callback",
+ "callback_steps",
+ ]
+ )
+
+ def get_dummy_components(self):
+ torch.manual_seed(0)
+ unet = UNet3DConditionModel(
+ block_out_channels=(32, 64, 64, 64),
+ layers_per_block=2,
+ sample_size=32,
+ in_channels=4,
+ out_channels=4,
+ down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D"),
+ up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D"),
+ cross_attention_dim=32,
+ attention_head_dim=4,
+ )
+ scheduler = DDIMScheduler(
+ beta_start=0.00085,
+ beta_end=0.012,
+ beta_schedule="scaled_linear",
+ clip_sample=False,
+ set_alpha_to_one=False,
+ )
+ torch.manual_seed(0)
+ vae = AutoencoderKL(
+ block_out_channels=[32, 64],
+ in_channels=3,
+ out_channels=3,
+ down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
+ up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
+ latent_channels=4,
+ sample_size=128,
+ )
+ torch.manual_seed(0)
+ text_encoder_config = CLIPTextConfig(
+ bos_token_id=0,
+ eos_token_id=2,
+ hidden_size=32,
+ intermediate_size=37,
+ layer_norm_eps=1e-05,
+ num_attention_heads=4,
+ num_hidden_layers=5,
+ pad_token_id=1,
+ vocab_size=1000,
+ hidden_act="gelu",
+ projection_dim=512,
+ )
+ text_encoder = CLIPTextModel(text_encoder_config)
+ tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
+
+ components = {
+ "unet": unet,
+ "scheduler": scheduler,
+ "vae": vae,
+ "text_encoder": text_encoder,
+ "tokenizer": tokenizer,
+ }
+ return components
+
+ def get_dummy_inputs(self, device, seed=0):
+ # 3 frames
+ video = floats_tensor((1, 3, 3, 32, 32), rng=random.Random(seed)).to(device)
+
+ if str(device).startswith("mps"):
+ generator = torch.manual_seed(seed)
+ else:
+ generator = torch.Generator(device=device).manual_seed(seed)
+ inputs = {
+ "prompt": "A painting of a squirrel eating a burger",
+ "video": video,
+ "generator": generator,
+ "num_inference_steps": 2,
+ "guidance_scale": 6.0,
+ "output_type": "pt",
+ }
+ return inputs
+
+ def test_text_to_video_default_case(self):
+ device = "cpu" # ensure determinism for the device-dependent torch.Generator
+ components = self.get_dummy_components()
+ sd_pipe = VideoToVideoSDPipeline(**components)
+ sd_pipe = sd_pipe.to(device)
+ sd_pipe.set_progress_bar_config(disable=None)
+
+ inputs = self.get_dummy_inputs(device)
+ inputs["output_type"] = "np"
+ frames = sd_pipe(**inputs).frames
+ image_slice = frames[0][-3:, -3:, -1]
+
+ assert frames[0].shape == (32, 32, 3)
+ expected_slice = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131])
+
+ assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
+
+ @unittest.skipIf(
+ torch_device != "cuda" or not is_xformers_available(),
+ reason="XFormers attention is only available with CUDA and `xformers` installed",
+ )
+ def test_xformers_attention_forwardGenerator_pass(self):
+ self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=False, expected_max_diff=5e-3)
+
+ # (todo): sayakpaul
+ @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline.")
+ def test_inference_batch_consistent(self):
+ pass
+
+ # (todo): sayakpaul
+ @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline.")
+ def test_inference_batch_single_identical(self):
+ pass
+
+ @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline.")
+ def test_num_images_per_prompt(self):
+ pass
+
+ def test_progress_bar(self):
+ return super().test_progress_bar()
+
+
+@slow
+@skip_mps
+class VideoToVideoSDPipelineSlowTests(unittest.TestCase):
+ def test_two_step_model(self):
+ pipe = VideoToVideoSDPipeline.from_pretrained("cerspense/zeroscope_v2_XL", torch_dtype=torch.float16)
+ pipe.enable_model_cpu_offload()
+
+ # 10 frames
+ generator = torch.Generator(device="cpu").manual_seed(0)
+ video = torch.randn((1, 10, 3, 1024, 576), generator=generator)
+ video = video.to("cuda")
+
+ prompt = "Spiderman is surfing"
+
+ video_frames = pipe(prompt, video=video, generator=generator, num_inference_steps=3, output_type="pt").frames
+
+ expected_array = np.array([-1.0458984, -1.1279297, -0.9663086, -0.91503906, -0.75097656])
+ assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array).sum() < 1e-2