diff --git a/numpy_questions.py b/numpy_questions.py index 21fcec4b..a933c24a 100644 --- a/numpy_questions.py +++ b/numpy_questions.py @@ -37,10 +37,16 @@ def max_index(X): If the input is not a numpy array or if the shape is not 2D. """ - i = 0 - j = 0 + if not isinstance(X, np.ndarray): + raise ValueError("Input must be a numpy array.") - # TODO + if X.ndim != 2: + raise ValueError("Input array's shape must be 2D.") + + # find which row contains the maximum, then get its column + row = np.argmax(np.max(X, axis=1)) + col = np.argmax(X[row]) + i, j = row, col return i, j @@ -55,7 +61,7 @@ def wallis_product(n_terms): ---------- n_terms : int Number of steps in the Wallis product. Note that `n_terms=0` will - consider the product to be `1`. + consider the procduct to be `1`. Returns ------- @@ -64,4 +70,14 @@ def wallis_product(n_terms): """ # XXX : The n_terms is an int that corresponds to the number of # terms in the product. For example 10000. - return 0. + # n_terms cannot be negative (follows by definition) + if not isinstance(n_terms, int) or n_terms < 0: + raise ValueError("n_terms must be a non-negative integer.") + if n_terms == 0: + return 1.0 + # k runs from 1 to n_terms + k = np.arange(1, n_terms + 1, dtype=float) + terms = (4 * k**2) / (4 * k**2 - 1) + product = np.prod(terms) + + return 2 * product diff --git a/sklearn_questions.py b/sklearn_questions.py index f65038c6..c88eaa29 100644 --- a/sklearn_questions.py +++ b/sklearn_questions.py @@ -29,46 +29,102 @@ class OneNearestNeighbor(BaseEstimator, ClassifierMixin): - "OneNearestNeighbor classifier." + """One-nearest-neighbor classifier using Euclidean distance.""" def __init__(self): # noqa: D107 pass def fit(self, X, y): - """Write docstring. - - And describe parameters + """Fit the one-nearest-neighbor classifier. + + Parameters + ---------- + X : ndarray of shape (n_samples, n_features) + Training input. + y : ndarray of shape (n_samples,) + Target labels. + + Returns + ------- + self : OneNearestNeighbor + Fitted estimator. + + Raises + ------ + ValueError + If X and y do not have compatible shapes or if y is not suitable + for classification. """ X, y = check_X_y(X, y) check_classification_targets(y) self.classes_ = np.unique(y) self.n_features_in_ = X.shape[1] - - # XXX fix + self.X_ = X + self.y_ = y return self def predict(self, X): - """Write docstring. - - And describe parameters + """ + Predict class labels for samples in X. + + Parameters + ---------- + X : ndarray of shape (n_samples, n_features) + Input samples + + Returns + ------- + y_pred : ndarray of shape (n_samples,) + Predicted labels + + Raises + ------ + ValueError + If the estimator not fitted or X has incorrect shape. """ check_is_fitted(self) X = check_array(X) + y_pred = np.full( - shape=len(X), fill_value=self.classes_[0], + shape=len(X), + fill_value=self.classes_[0], dtype=self.classes_.dtype ) - # XXX fix + # nearest neighbor for each sample using Euclidean distances + dist = X[:, np.newaxis, :] - self.X_[np.newaxis, :, :] + dists = np.sum(dist ** 2, axis=2) + + # closest training point + nn_idx = np.argmin(dists, axis=1) + + # pred + y_pred[:] = self.y_[nn_idx] + return y_pred def score(self, X, y): - """Write docstring. - - And describe parameters + """Compute the mean accuracy on the given test data and labels. + + Parameters + ---------- + X : ndarray of shape (n_samples, n_features) + Test input + y : ndarray of shape (n_samples,) + True labels test + + Returns + ------- + score : float + Mean accuracy of the classifier on the test dataset + + Raises + ------ + ValueError + If X and y have incompatible shapes. """ X, y = check_X_y(X, y) y_pred = self.predict(X) - # XXX fix - return y_pred.sum() + # return accuracy + return float(np.mean(y_pred == y))