@@ -1794,27 +1794,31 @@ similar to how ``read_csv`` and ``to_csv`` work. (new in 0.11.0)
17941794
17951795 os.remove(' store_tl.h5' )
17961796
1797- .. _io.hdf5- storer :
1797+ .. _io.hdf5- fixed :
17981798
1799- Storer Format
1800- ~~~~~~~~~~~~~
1799+ Fixed Format
1800+ ~~~~~~~~~~~~
1801+
1802+ .. note::
1803+
1804+ This was prior to 0.13 .0 the `` Storer`` format .
18011805
18021806The examples above show storing using `` put`` , which write the HDF5 to `` PyTables`` in a fixed array format , called
1803- the `` storer `` format . These types of stores are are ** not ** appendable once written (though you can simply
1807+ the `` fixed `` format . These types of stores are are ** not ** appendable once written (though you can simply
18041808remove them and rewrite). Nor are they ** queryable** ; they must be
18051809retrieved in their entirety. These offer very fast writing and slightly faster reading than `` table`` stores.
1806- This format is specified by default when using `` put`` or by `` fmt = ' s ' ``
1810+ This format is specified by default when using `` put`` or `` to_hdf `` or by `` format = ' fixed ' `` or `` format = ' f ' ``
18071811
18081812.. warning::
18091813
1810- A `` storer `` format will raise a `` TypeError `` if you try to retrieve using a `` where`` .
1814+ A `` fixed `` format will raise a `` TypeError `` if you try to retrieve using a `` where`` .
18111815
18121816 .. code- block:: python
18131817
1814- DataFrame(randn(10 ,2 )).to_hdf(' test_storer .h5' ,' df' )
1818+ DataFrame(randn(10 ,2 )).to_hdf(' test_fixed .h5' ,' df' )
18151819
1816- pd.read_hdf(' test_storer .h5' ,' df' ,where = ' index>5' )
1817- TypeError : cannot pass a where specification when reading a non - table
1820+ pd.read_hdf(' test_fixed .h5' ,' df' ,where = ' index>5' )
1821+ TypeError : cannot pass a where specification when reading a fixed format .
18181822 this store must be selected in its entirety
18191823
18201824
@@ -1827,7 +1831,11 @@ Table Format
18271831format . Conceptually a `` table`` is shaped very much like a DataFrame,
18281832with rows and columns. A `` table`` may be appended to in the same or
18291833other sessions. In addition, delete & query type operations are
1830- supported. This format is specified by `` fmt = ' t' `` to `` append`` or `` put`` .
1834+ supported. This format is specified by `` format = ' table' `` or `` format = ' t' ``
1835+ to `` append`` or `` put`` or `` to_hdf``
1836+
1837+ This format can be set as an option as well `` pd.set_option(' io.hdf.default_format' ,' table' )`` to
1838+ enable `` put/ append/ to_hdf`` to by default store in the `` table`` format .
18311839
18321840.. ipython:: python
18331841 :suppress:
@@ -1854,7 +1862,7 @@ supported. This format is specified by ``fmt='t'`` to ``append`` or ``put``.
18541862
18551863.. note::
18561864
1857- You can also create a `` table`` by passing `` fmt = ' t' `` to a `` put`` operation.
1865+ You can also create a `` table`` by passing `` format = ' table ' `` or `` format = ' t' `` to a `` put`` operation.
18581866
18591867.. _io.hdf5- keys:
18601868
@@ -2363,7 +2371,7 @@ Starting in 0.11, passing a ``min_itemsize`` dict will cause all passed columns
23632371External Compatibility
23642372~~~~~~~~~~~~~~~~~~~~~~
23652373
2366- `` HDFStore`` write storer objects in specific formats suitable for
2374+ `` HDFStore`` write `` table `` format objects in specific formats suitable for
23672375producing loss- less roundtrips to pandas objects. For external
23682376compatibility, `` HDFStore`` can read native `` PyTables`` format
23692377tables. It is possible to write an `` HDFStore`` object that can easily
0 commit comments