@@ -2302,8 +2302,7 @@ def first(self, numeric_only: bool = False, min_count: int = -1):
23022302 Parameters
23032303 ----------
23042304 numeric_only : bool, default False
2305- Include only float, int, boolean columns. If None, will attempt to use
2306- everything, then use only numeric data.
2305+ Include only float, int, boolean columns.
23072306 min_count : int, default -1
23082307 The required number of valid values to perform the operation. If fewer
23092308 than ``min_count`` non-NA values are present the result will be NA.
@@ -2323,8 +2322,20 @@ def first(self, numeric_only: bool = False, min_count: int = -1):
23232322
23242323 Examples
23252324 --------
2326- >>> df = pd.DataFrame(dict(A=[1, 1, 3], B=[None, 5, 6], C=[1, 2, 3]))
2325+ >>> df = pd.DataFrame(dict(A=[1, 1, 3], B=[None, 5, 6], C=[1, 2, 3],
2326+ ... D=['3/11/2000', '3/12/2000', '3/13/2000']))
2327+ >>> df['D'] = pd.to_datetime(df['D'])
23272328 >>> df.groupby("A").first()
2329+ B C D
2330+ A
2331+ 1 5.0 1 2000-03-11
2332+ 3 6.0 3 2000-03-13
2333+ >>> df.groupby("A").first(min_count=2)
2334+ B C D
2335+ A
2336+ 1 NaN 1.0 2000-03-11
2337+ 3 NaN NaN NaT
2338+ >>> df.groupby("A").first(numeric_only=True)
23282339 B C
23292340 A
23302341 1 5.0 1
0 commit comments