|
14 | 14 | import pandas as pd |
15 | 15 | import pandas.tseries.offsets as offsets |
16 | 16 | import pandas.util.testing as tm |
17 | | -import pandas.util._test_decorators as td |
18 | 17 | from pandas import (Series, DataFrame, Panel, Index, isna, |
19 | 18 | notna, Timestamp) |
20 | 19 |
|
21 | | -from pandas.core.dtypes.generic import ABCSeries, ABCDataFrame |
22 | 20 | from pandas.compat import range, lrange, zip, product, OrderedDict |
23 | 21 | from pandas.errors import UnsupportedFunctionCall |
24 | 22 | from pandas.core.groupby.groupby import DataError |
|
28 | 26 | from pandas.core.indexes.datetimes import date_range |
29 | 27 | from pandas.tseries.offsets import Minute, BDay |
30 | 28 | from pandas.core.indexes.period import period_range, PeriodIndex, Period |
31 | | -from pandas.core.resample import (DatetimeIndex, TimeGrouper, |
32 | | - DatetimeIndexResampler) |
| 29 | +from pandas.core.resample import DatetimeIndex, TimeGrouper |
33 | 30 | from pandas.core.indexes.timedeltas import timedelta_range, TimedeltaIndex |
34 | 31 | from pandas.util.testing import (assert_series_equal, assert_almost_equal, |
35 | 32 | assert_frame_equal, assert_index_equal) |
@@ -84,122 +81,6 @@ def test_api(self): |
84 | 81 | assert isinstance(result, DataFrame) |
85 | 82 | assert len(result) == 217 |
86 | 83 |
|
87 | | - def test_api_changes_v018(self): |
88 | | - |
89 | | - # change from .resample(....., how=...) |
90 | | - # to .resample(......).how() |
91 | | - |
92 | | - r = self.series.resample('H') |
93 | | - assert isinstance(r, DatetimeIndexResampler) |
94 | | - |
95 | | - for how in ['sum', 'mean', 'prod', 'min', 'max', 'var', 'std']: |
96 | | - with tm.assert_produces_warning(FutureWarning, |
97 | | - check_stacklevel=False): |
98 | | - result = self.series.resample('H', how=how) |
99 | | - expected = getattr(self.series.resample('H'), how)() |
100 | | - tm.assert_series_equal(result, expected) |
101 | | - |
102 | | - with tm.assert_produces_warning(FutureWarning, |
103 | | - check_stacklevel=False): |
104 | | - result = self.series.resample('H', how='ohlc') |
105 | | - expected = self.series.resample('H').ohlc() |
106 | | - tm.assert_frame_equal(result, expected) |
107 | | - |
108 | | - # compat for pandas-like methods |
109 | | - for how in ['sort_values', 'isna']: |
110 | | - with tm.assert_produces_warning(FutureWarning, |
111 | | - check_stacklevel=False): |
112 | | - getattr(r, how)() |
113 | | - |
114 | | - # invalids as these can be setting operations |
115 | | - r = self.series.resample('H') |
116 | | - pytest.raises(ValueError, lambda: r.iloc[0]) |
117 | | - pytest.raises(ValueError, lambda: r.iat[0]) |
118 | | - pytest.raises(ValueError, lambda: r.loc[0]) |
119 | | - pytest.raises(ValueError, lambda: r.loc[ |
120 | | - Timestamp('2013-01-01 00:00:00', offset='H')]) |
121 | | - pytest.raises(ValueError, lambda: r.at[ |
122 | | - Timestamp('2013-01-01 00:00:00', offset='H')]) |
123 | | - |
124 | | - def f(): |
125 | | - r[0] = 5 |
126 | | - |
127 | | - pytest.raises(ValueError, f) |
128 | | - |
129 | | - # str/repr |
130 | | - r = self.series.resample('H') |
131 | | - with tm.assert_produces_warning(None): |
132 | | - str(r) |
133 | | - with tm.assert_produces_warning(None): |
134 | | - repr(r) |
135 | | - |
136 | | - with tm.assert_produces_warning(FutureWarning, |
137 | | - check_stacklevel=False): |
138 | | - tm.assert_numpy_array_equal(np.array(r), np.array(r.mean())) |
139 | | - |
140 | | - # masquerade as Series/DataFrame as needed for API compat |
141 | | - assert isinstance(self.series.resample('H'), ABCSeries) |
142 | | - assert not isinstance(self.frame.resample('H'), ABCSeries) |
143 | | - assert not isinstance(self.series.resample('H'), ABCDataFrame) |
144 | | - assert isinstance(self.frame.resample('H'), ABCDataFrame) |
145 | | - |
146 | | - # bin numeric ops |
147 | | - for op in ['__add__', '__mul__', '__truediv__', '__div__', '__sub__']: |
148 | | - |
149 | | - if getattr(self.series, op, None) is None: |
150 | | - continue |
151 | | - r = self.series.resample('H') |
152 | | - |
153 | | - with tm.assert_produces_warning(FutureWarning, |
154 | | - check_stacklevel=False): |
155 | | - assert isinstance(getattr(r, op)(2), Series) |
156 | | - |
157 | | - # unary numeric ops |
158 | | - for op in ['__pos__', '__neg__', '__abs__', '__inv__']: |
159 | | - |
160 | | - if getattr(self.series, op, None) is None: |
161 | | - continue |
162 | | - r = self.series.resample('H') |
163 | | - |
164 | | - with tm.assert_produces_warning(FutureWarning, |
165 | | - check_stacklevel=False): |
166 | | - assert isinstance(getattr(r, op)(), Series) |
167 | | - |
168 | | - # comparison ops |
169 | | - for op in ['__lt__', '__le__', '__gt__', '__ge__', '__eq__', '__ne__']: |
170 | | - r = self.series.resample('H') |
171 | | - |
172 | | - with tm.assert_produces_warning(FutureWarning, |
173 | | - check_stacklevel=False): |
174 | | - assert isinstance(getattr(r, op)(2), Series) |
175 | | - |
176 | | - # IPython introspection shouldn't trigger warning GH 13618 |
177 | | - for op in ['_repr_json', '_repr_latex', |
178 | | - '_ipython_canary_method_should_not_exist_']: |
179 | | - r = self.series.resample('H') |
180 | | - with tm.assert_produces_warning(None): |
181 | | - getattr(r, op, None) |
182 | | - |
183 | | - # getitem compat |
184 | | - df = self.series.to_frame('foo') |
185 | | - |
186 | | - # same as prior versions for DataFrame |
187 | | - pytest.raises(KeyError, lambda: df.resample('H')[0]) |
188 | | - |
189 | | - # compat for Series |
190 | | - # but we cannot be sure that we need a warning here |
191 | | - with tm.assert_produces_warning(FutureWarning, |
192 | | - check_stacklevel=False): |
193 | | - result = self.series.resample('H')[0] |
194 | | - expected = self.series.resample('H').mean()[0] |
195 | | - assert result == expected |
196 | | - |
197 | | - with tm.assert_produces_warning(FutureWarning, |
198 | | - check_stacklevel=False): |
199 | | - result = self.series.resample('H')['2005-01-09 23:00:00'] |
200 | | - expected = self.series.resample('H').mean()['2005-01-09 23:00:00'] |
201 | | - assert result == expected |
202 | | - |
203 | 84 | def test_groupby_resample_api(self): |
204 | 85 |
|
205 | 86 | # GH 12448 |
@@ -251,23 +132,6 @@ def test_pipe(self): |
251 | 132 | result = r.pipe(lambda x: x.max() - x.mean()) |
252 | 133 | tm.assert_frame_equal(result, expected) |
253 | 134 |
|
254 | | - @td.skip_if_no_mpl |
255 | | - def test_plot_api(self): |
256 | | - # .resample(....).plot(...) |
257 | | - # hitting warnings |
258 | | - # GH 12448 |
259 | | - s = Series(np.random.randn(60), |
260 | | - index=date_range('2016-01-01', periods=60, freq='1min')) |
261 | | - with tm.assert_produces_warning(FutureWarning, |
262 | | - check_stacklevel=False): |
263 | | - result = s.resample('15min').plot() |
264 | | - tm.assert_is_valid_plot_return_object(result) |
265 | | - |
266 | | - with tm.assert_produces_warning(FutureWarning, |
267 | | - check_stacklevel=False): |
268 | | - result = s.resample('15min', how='sum').plot() |
269 | | - tm.assert_is_valid_plot_return_object(result) |
270 | | - |
271 | 135 | def test_getitem(self): |
272 | 136 |
|
273 | 137 | r = self.frame.resample('H') |
@@ -301,15 +165,6 @@ def test_attribute_access(self): |
301 | 165 | r = self.frame.resample('H') |
302 | 166 | tm.assert_series_equal(r.A.sum(), r['A'].sum()) |
303 | 167 |
|
304 | | - # getting |
305 | | - pytest.raises(AttributeError, lambda: r.F) |
306 | | - |
307 | | - # setting |
308 | | - def f(): |
309 | | - r.F = 'bah' |
310 | | - |
311 | | - pytest.raises(ValueError, f) |
312 | | - |
313 | 168 | def test_api_compat_before_use(self): |
314 | 169 |
|
315 | 170 | # make sure that we are setting the binner |
@@ -3012,23 +2867,6 @@ def setup_method(self, method): |
3012 | 2867 | freq='s', |
3013 | 2868 | periods=40)) |
3014 | 2869 |
|
3015 | | - def test_back_compat_v180(self): |
3016 | | - |
3017 | | - df = self.frame |
3018 | | - for how in ['sum', 'mean', 'prod', 'min', 'max', 'var', 'std']: |
3019 | | - with tm.assert_produces_warning(FutureWarning, |
3020 | | - check_stacklevel=False): |
3021 | | - result = df.groupby('A').resample('4s', how=how) |
3022 | | - expected = getattr(df.groupby('A').resample('4s'), how)() |
3023 | | - assert_frame_equal(result, expected) |
3024 | | - |
3025 | | - with tm.assert_produces_warning(FutureWarning, |
3026 | | - check_stacklevel=False): |
3027 | | - result = df.groupby('A').resample('4s', how='mean', |
3028 | | - fill_method='ffill') |
3029 | | - expected = df.groupby('A').resample('4s').mean().ffill() |
3030 | | - assert_frame_equal(result, expected) |
3031 | | - |
3032 | 2870 | def test_tab_complete_ipython6_warning(self, ip): |
3033 | 2871 | from IPython.core.completer import provisionalcompleter |
3034 | 2872 | code = dedent("""\ |
|
0 commit comments