@@ -4336,16 +4336,82 @@ def get_ftype_counts(self):
43364336
43374337 @property
43384338 def dtypes (self ):
4339- """Return the dtypes in this object."""
4339+ """
4340+ Return the dtypes in the DataFrame.
4341+
4342+ This returns a Series with the data type of each column.
4343+ The result's index is the original DataFrame's columns. Columns
4344+ with mixed types are stored with the ``object`` dtype. See
4345+ :ref:`the User Guide <basics.dtypes>` for more.
4346+
4347+ Returns
4348+ -------
4349+ pandas.Series
4350+ The data type of each column.
4351+
4352+ See Also
4353+ --------
4354+ pandas.DataFrame.ftypes : dtype and sparsity information.
4355+
4356+ Examples
4357+ --------
4358+ >>> df = pd.DataFrame({'float': [1.0],
4359+ ... 'int': [1],
4360+ ... 'datetime': [pd.Timestamp('20180310')],
4361+ ... 'string': ['foo']})
4362+ >>> df.dtypes
4363+ float float64
4364+ int int64
4365+ datetime datetime64[ns]
4366+ string object
4367+ dtype: object
4368+ """
43404369 from pandas import Series
43414370 return Series (self ._data .get_dtypes (), index = self ._info_axis ,
43424371 dtype = np .object_ )
43434372
43444373 @property
43454374 def ftypes (self ):
43464375 """
4347- Return the ftypes (indication of sparse/dense and dtype)
4348- in this object.
4376+ Return the ftypes (indication of sparse/dense and dtype) in DataFrame.
4377+
4378+ This returns a Series with the data type of each column.
4379+ The result's index is the original DataFrame's columns. Columns
4380+ with mixed types are stored with the ``object`` dtype. See
4381+ :ref:`the User Guide <basics.dtypes>` for more.
4382+
4383+ Returns
4384+ -------
4385+ pandas.Series
4386+ The data type and indication of sparse/dense of each column.
4387+
4388+ See Also
4389+ --------
4390+ pandas.DataFrame.dtypes: Series with just dtype information.
4391+ pandas.SparseDataFrame : Container for sparse tabular data.
4392+
4393+ Notes
4394+ -----
4395+ Sparse data should have the same dtypes as its dense representation.
4396+
4397+ Examples
4398+ --------
4399+ >>> import numpy as np
4400+ >>> arr = np.random.RandomState(0).randn(100, 4)
4401+ >>> arr[arr < .8] = np.nan
4402+ >>> pd.DataFrame(arr).ftypes
4403+ 0 float64:dense
4404+ 1 float64:dense
4405+ 2 float64:dense
4406+ 3 float64:dense
4407+ dtype: object
4408+
4409+ >>> pd.SparseDataFrame(arr).ftypes
4410+ 0 float64:sparse
4411+ 1 float64:sparse
4412+ 2 float64:sparse
4413+ 3 float64:sparse
4414+ dtype: object
43494415 """
43504416 from pandas import Series
43514417 return Series (self ._data .get_ftypes (), index = self ._info_axis ,
0 commit comments