1717 qcut ,
1818)
1919import pandas .util .testing as tm
20- from pandas .util .testing import assert_equal , assert_frame_equal , assert_series_equal
2120
2221
2322def cartesian_product_for_groupers (result , args , names ):
@@ -159,7 +158,7 @@ def f(x):
159158 exp_idx = CategoricalIndex (levels , categories = cats .categories , ordered = True )
160159 expected = expected .reindex (exp_idx )
161160
162- assert_frame_equal (result , expected )
161+ tm . assert_frame_equal (result , expected )
163162
164163 grouped = data .groupby (cats , observed = False )
165164 desc_result = grouped .describe ()
@@ -172,7 +171,7 @@ def f(x):
172171 ord_labels , ordered = True , categories = ["foo" , "bar" , "baz" , "qux" ]
173172 )
174173 expected = ord_data .groupby (exp_cats , sort = False , observed = False ).describe ()
175- assert_frame_equal (desc_result , expected )
174+ tm . assert_frame_equal (desc_result , expected )
176175
177176 # GH 10460
178177 expc = Categorical .from_codes (np .arange (4 ).repeat (8 ), levels , ordered = True )
@@ -206,7 +205,7 @@ def test_level_get_group(observed):
206205 )
207206 result = g .get_group ("a" )
208207
209- assert_frame_equal (result , expected )
208+ tm . assert_frame_equal (result , expected )
210209
211210
212211# GH#21636 flaky on py37; may be related to older numpy, see discussion
@@ -232,21 +231,21 @@ def test_apply(ordered):
232231 # is coming back as Series([0., 1., 0.], index=["missing", "dense", "values"])
233232 # when we expect Series(0., index=["values"])
234233 result = grouped .apply (lambda x : np .mean (x ))
235- assert_frame_equal (result , expected )
234+ tm . assert_frame_equal (result , expected )
236235
237236 # we coerce back to ints
238237 expected = expected .astype ("int" )
239238 result = grouped .mean ()
240- assert_frame_equal (result , expected )
239+ tm . assert_frame_equal (result , expected )
241240
242241 result = grouped .agg (np .mean )
243- assert_frame_equal (result , expected )
242+ tm . assert_frame_equal (result , expected )
244243
245244 # but for transform we should still get back the original index
246245 idx = MultiIndex .from_arrays ([missing , dense ], names = ["missing" , "dense" ])
247246 expected = Series (1 , index = idx )
248247 result = grouped .apply (lambda x : 1 )
249- assert_series_equal (result , expected )
248+ tm . assert_series_equal (result , expected )
250249
251250
252251def test_observed (observed ):
@@ -335,7 +334,7 @@ def test_observed(observed):
335334 c , i = key
336335 result = groups_double_key .get_group (key )
337336 expected = df [(df .cat == c ) & (df .ints == i )]
338- assert_frame_equal (result , expected )
337+ tm . assert_frame_equal (result , expected )
339338
340339 # gh-8869
341340 # with as_index
@@ -522,7 +521,7 @@ def test_datetime():
522521 expected .index , categories = expected .index , ordered = True
523522 )
524523
525- assert_frame_equal (result , expected )
524+ tm . assert_frame_equal (result , expected )
526525
527526 grouped = data .groupby (cats , observed = False )
528527 desc_result = grouped .describe ()
@@ -531,7 +530,7 @@ def test_datetime():
531530 ord_labels = cats .take (idx )
532531 ord_data = data .take (idx )
533532 expected = ord_data .groupby (ord_labels , observed = False ).describe ()
534- assert_frame_equal (desc_result , expected )
533+ tm . assert_frame_equal (desc_result , expected )
535534 tm .assert_index_equal (desc_result .index , expected .index )
536535 tm .assert_index_equal (
537536 desc_result .index .get_level_values (0 ), expected .index .get_level_values (0 )
@@ -560,15 +559,15 @@ def test_categorical_index():
560559 expected .index = CategoricalIndex (
561560 Categorical .from_codes ([0 , 1 , 2 , 3 ], levels , ordered = True ), name = "cats"
562561 )
563- assert_frame_equal (result , expected )
562+ tm . assert_frame_equal (result , expected )
564563
565564 # with a cat column, should produce a cat index
566565 result = df .groupby ("cats" , observed = False ).sum ()
567566 expected = df [list ("abcd" )].groupby (cats .codes , observed = False ).sum ()
568567 expected .index = CategoricalIndex (
569568 Categorical .from_codes ([0 , 1 , 2 , 3 ], levels , ordered = True ), name = "cats"
570569 )
571- assert_frame_equal (result , expected )
570+ tm . assert_frame_equal (result , expected )
572571
573572
574573def test_describe_categorical_columns ():
@@ -757,7 +756,7 @@ def test_categorical_no_compress():
757756 exp .index = CategoricalIndex (
758757 exp .index , categories = cats .categories , ordered = cats .ordered
759758 )
760- assert_series_equal (result , exp )
759+ tm . assert_series_equal (result , exp )
761760
762761 codes = np .array ([0 , 0 , 0 , 1 , 1 , 1 , 3 , 3 , 3 ])
763762 cats = Categorical .from_codes (codes , [0 , 1 , 2 , 3 ], ordered = True )
@@ -767,7 +766,7 @@ def test_categorical_no_compress():
767766 exp .index = CategoricalIndex (
768767 exp .index , categories = cats .categories , ordered = cats .ordered
769768 )
770- assert_series_equal (result , exp )
769+ tm . assert_series_equal (result , exp )
771770
772771 cats = Categorical (
773772 ["a" , "a" , "a" , "b" , "b" , "b" , "c" , "c" , "c" ],
@@ -829,12 +828,12 @@ def test_sort2():
829828
830829 col = "range"
831830 result_sort = df .groupby (col , sort = True , observed = False ).first ()
832- assert_frame_equal (result_sort , expected_sort )
831+ tm . assert_frame_equal (result_sort , expected_sort )
833832
834833 # when categories is ordered, group is ordered by category's order
835834 expected_sort = result_sort
836835 result_sort = df .groupby (col , sort = False , observed = False ).first ()
837- assert_frame_equal (result_sort , expected_sort )
836+ tm . assert_frame_equal (result_sort , expected_sort )
838837
839838 df ["range" ] = Categorical (df ["range" ], ordered = False )
840839 index = CategoricalIndex (
@@ -857,10 +856,10 @@ def test_sort2():
857856
858857 # this is an unordered categorical, but we allow this ####
859858 result_sort = df .groupby (col , sort = True , observed = False ).first ()
860- assert_frame_equal (result_sort , expected_sort )
859+ tm . assert_frame_equal (result_sort , expected_sort )
861860
862861 result_nosort = df .groupby (col , sort = False , observed = False ).first ()
863- assert_frame_equal (result_nosort , expected_nosort )
862+ tm . assert_frame_equal (result_nosort , expected_nosort )
864863
865864
866865def test_sort_datetimelike ():
@@ -912,10 +911,14 @@ def test_sort_datetimelike():
912911 )
913912
914913 col = "dt"
915- assert_frame_equal (result_sort , df .groupby (col , sort = True , observed = False ).first ())
914+ tm .assert_frame_equal (
915+ result_sort , df .groupby (col , sort = True , observed = False ).first ()
916+ )
916917
917918 # when categories is ordered, group is ordered by category's order
918- assert_frame_equal (result_sort , df .groupby (col , sort = False , observed = False ).first ())
919+ tm .assert_frame_equal (
920+ result_sort , df .groupby (col , sort = False , observed = False ).first ()
921+ )
919922
920923 # ordered = False
921924 df ["dt" ] = Categorical (df ["dt" ], ordered = False )
@@ -942,8 +945,10 @@ def test_sort_datetimelike():
942945 result_nosort .index = CategoricalIndex (index , categories = index , name = "dt" )
943946
944947 col = "dt"
945- assert_frame_equal (result_sort , df .groupby (col , sort = True , observed = False ).first ())
946- assert_frame_equal (
948+ tm .assert_frame_equal (
949+ result_sort , df .groupby (col , sort = True , observed = False ).first ()
950+ )
951+ tm .assert_frame_equal (
947952 result_nosort , df .groupby (col , sort = False , observed = False ).first ()
948953 )
949954
@@ -1022,7 +1027,7 @@ def test_groupby_multiindex_categorical_datetime():
10221027 names = ["key1" , "key2" ],
10231028 )
10241029 expected = DataFrame ({"values" : [0 , 4 , 8 , 3 , 4 , 5 , 6 , np .nan , 2 ]}, index = idx )
1025- assert_frame_equal (result , expected )
1030+ tm . assert_frame_equal (result , expected )
10261031
10271032
10281033@pytest .mark .parametrize (
@@ -1058,7 +1063,7 @@ def test_groupby_agg_observed_true_single_column(as_index, expected):
10581063
10591064 result = df .groupby (["a" , "b" ], as_index = as_index , observed = True )["x" ].sum ()
10601065
1061- assert_equal (result , expected )
1066+ tm . assert_equal (result , expected )
10621067
10631068
10641069@pytest .mark .parametrize ("fill_value" , [None , np .nan , pd .NaT ])
@@ -1070,7 +1075,7 @@ def test_shift(fill_value):
10701075 [None , "a" , "b" , "c" ], categories = ["a" , "b" , "c" , "d" ], ordered = False
10711076 )
10721077 res = ct .shift (1 , fill_value = fill_value )
1073- assert_equal (res , expected )
1078+ tm . assert_equal (res , expected )
10741079
10751080
10761081@pytest .fixture
@@ -1112,7 +1117,7 @@ def test_seriesgroupby_observed_true(df_cat, operation, kwargs):
11121117 expected = Series (data = [1 , 3 , 2 , 4 ], index = index , name = "C" )
11131118 grouped = df_cat .groupby (["A" , "B" ], observed = True )["C" ]
11141119 result = getattr (grouped , operation )(sum )
1115- assert_series_equal (result , expected )
1120+ tm . assert_series_equal (result , expected )
11161121
11171122
11181123@pytest .mark .parametrize ("operation" , ["agg" , "apply" ])
@@ -1130,7 +1135,7 @@ def test_seriesgroupby_observed_false_or_none(df_cat, observed, operation):
11301135 expected = Series (data = [2 , 4 , np .nan , 1 , np .nan , 3 ], index = index , name = "C" )
11311136 grouped = df_cat .groupby (["A" , "B" ], observed = observed )["C" ]
11321137 result = getattr (grouped , operation )(sum )
1133- assert_series_equal (result , expected )
1138+ tm . assert_series_equal (result , expected )
11341139
11351140
11361141@pytest .mark .parametrize (
@@ -1185,7 +1190,7 @@ def test_seriesgroupby_observed_apply_dict(df_cat, observed, index, data):
11851190 result = df_cat .groupby (["A" , "B" ], observed = observed )["C" ].apply (
11861191 lambda x : OrderedDict ([("min" , x .min ()), ("max" , x .max ())])
11871192 )
1188- assert_series_equal (result , expected )
1193+ tm . assert_series_equal (result , expected )
11891194
11901195
11911196@pytest .mark .parametrize ("code" , [([1 , 0 , 0 ]), ([0 , 0 , 0 ])])
@@ -1195,7 +1200,7 @@ def test_groupby_categorical_axis_1(code):
11951200 cat = pd .Categorical .from_codes (code , categories = list ("abc" ))
11961201 result = df .groupby (cat , axis = 1 ).mean ()
11971202 expected = df .T .groupby (cat , axis = 0 ).mean ().T
1198- assert_frame_equal (result , expected )
1203+ tm . assert_frame_equal (result , expected )
11991204
12001205
12011206def test_groupby_cat_preserves_structure (observed , ordered_fixture ):
@@ -1212,7 +1217,7 @@ def test_groupby_cat_preserves_structure(observed, ordered_fixture):
12121217 .reset_index ()
12131218 )
12141219
1215- assert_frame_equal (result , expected )
1220+ tm . assert_frame_equal (result , expected )
12161221
12171222
12181223def test_get_nonexistent_category ():
0 commit comments