@@ -23,11 +23,11 @@ Categorical Data
2323.. versionadded :: 0.15
2424
2525.. note ::
26- While there was in `pandas.Categorical ` in earlier versions, the ability to use
26+ While there was `pandas.Categorical ` in earlier versions, the ability to use
2727 categorical data in `Series ` and `DataFrame ` is new.
2828
2929
30- This is a introduction to pandas categorical data type, including a short comparison
30+ This is an introduction to pandas categorical data type, including a short comparison
3131with R's ``factor ``.
3232
3333`Categoricals ` are a pandas data type, which correspond to categorical variables in
@@ -276,7 +276,7 @@ Sorting and Order
276276
277277.. warning ::
278278
279- The default for construction has change in v0.16.0 to ``ordered=False ``, from the prior implicit ``ordered=True ``
279+ The default for construction has changed in v0.16.0 to ``ordered=False ``, from the prior implicit ``ordered=True ``
280280
281281If categorical data is ordered (``s.cat.ordered == True ``), then the order of the categories has a
282282meaning and certain operations are possible. If the categorical is unordered, ``.min()/.max() `` will raise a `TypeError `.
@@ -347,15 +347,15 @@ Multi Column Sorting
347347~~~~~~~~~~~~~~~~~~~~
348348
349349A categorical dtyped column will partcipate in a multi-column sort in a similar manner to other columns.
350- The ordering of the categorical is determined by the ``categories `` of that columns .
350+ The ordering of the categorical is determined by the ``categories `` of that column .
351351
352352.. ipython :: python
353353
354- dfs = DataFrame({' A' : Categorical(list (' bbeebbaa' ),categories = [' e' ,' a' ,' b' ],ordered = True ),
354+ dfs = DataFrame({' A' : Categorical(list (' bbeebbaa' ), categories = [' e' ,' a' ,' b' ], ordered = True ),
355355 ' B' : [1 ,2 ,1 ,2 ,2 ,1 ,2 ,1 ] })
356- dfs.sort([' A' ,' B' ])
356+ dfs.sort([' A' , ' B' ])
357357
358- Reordering the ``categories ``, changes a future sort.
358+ Reordering the ``categories `` changes a future sort.
359359
360360.. ipython :: python
361361
@@ -380,7 +380,7 @@ categories or a categorical with any list-like object, will raise a TypeError.
380380
381381 Any "non-equality" comparisons of categorical data with a `Series `, `np.array `, `list ` or
382382 categorical data with different categories or ordering will raise an `TypeError ` because custom
383- categories ordering could be interpreted in two ways: one with taking in account the
383+ categories ordering could be interpreted in two ways: one with taking into account the
384384 ordering and one without.
385385
386386.. ipython :: python
@@ -471,7 +471,7 @@ Data munging
471471------------
472472
473473The optimized pandas data access methods ``.loc ``, ``.iloc ``, ``.ix `` ``.at ``, and ``.iat ``,
474- work as normal, the only difference is the return type (for getting) and
474+ work as normal. The only difference is the return type (for getting) and
475475that only values already in `categories ` can be assigned.
476476
477477Getting
@@ -707,8 +707,8 @@ an ``object`` dtype is a constant times the length of the data.
707707
708708 .. note ::
709709
710- If the number of categories approaches the length of the data, the ``Categorical `` will use nearly (or more) memory than an
711- equivalent ``object `` dtype representation.
710+ If the number of categories approaches the length of the data, the ``Categorical `` will use nearly the same or
711+ more memory than an equivalent ``object `` dtype representation.
712712
713713 .. ipython :: python
714714
0 commit comments