1313 pass
1414
1515
16- class Factorize ( object ) :
16+ class Factorize :
1717
1818 params = [[True , False ], ['int' , 'uint' , 'float' , 'string' ]]
1919 param_names = ['sort' , 'dtype' ]
@@ -30,7 +30,7 @@ def time_factorize(self, sort, dtype):
3030 self .idx .factorize (sort = sort )
3131
3232
33- class FactorizeUnique ( object ) :
33+ class FactorizeUnique :
3434
3535 params = [[True , False ], ['int' , 'uint' , 'float' , 'string' ]]
3636 param_names = ['sort' , 'dtype' ]
@@ -48,7 +48,7 @@ def time_factorize(self, sort, dtype):
4848 self .idx .factorize (sort = sort )
4949
5050
51- class Duplicated ( object ) :
51+ class Duplicated :
5252
5353 params = [['first' , 'last' , False ], ['int' , 'uint' , 'float' , 'string' ]]
5454 param_names = ['keep' , 'dtype' ]
@@ -67,7 +67,7 @@ def time_duplicated(self, keep, dtype):
6767 self .idx .duplicated (keep = keep )
6868
6969
70- class DuplicatedUniqueIndex ( object ) :
70+ class DuplicatedUniqueIndex :
7171
7272 params = ['int' , 'uint' , 'float' , 'string' ]
7373 param_names = ['dtype' ]
@@ -86,7 +86,7 @@ def time_duplicated_unique(self, dtype):
8686 self .idx .duplicated ()
8787
8888
89- class Hashing ( object ) :
89+ class Hashing :
9090
9191 def setup_cache (self ):
9292 N = 10 ** 5
@@ -124,7 +124,7 @@ def time_series_dates(self, df):
124124 hashing .hash_pandas_object (df ['dates' ])
125125
126126
127- class Quantile ( object ) :
127+ class Quantile :
128128 params = [[0 , 0.5 , 1 ],
129129 ['linear' , 'nearest' , 'lower' , 'higher' , 'midpoint' ],
130130 ['float' , 'int' , 'uint' ]]
0 commit comments