@@ -505,11 +505,13 @@ Enhancements
505505- :meth:`~pandas.io.json.json_normalize` is a new method to allow you to create a flat table
506506 from semi-structured JSON data. See :ref:`the docs<io.json_normalize>` (:issue:`1067`)
507507
508-
509508- Added PySide support for the qtpandas DataFrameModel and DataFrameWidget.
510509
510+ - Python csv parser now supports usecols (:issue:`4335`)
511+
511512- DataFrame has a new ``interpolate`` method, similar to Series (:issue:`4434`, :issue:`1892`)
512513
514+
513515 .. ipython:: python
514516
515517 df = DataFrame({'A': [1, 2.1, np.nan, 4.7, 5.6, 6.8],
@@ -654,7 +656,7 @@ Experimental
654656 against extremely large datasets. :ref:`See the docs <io.bigquery>`
655657
656658 .. code-block:: python
657-
659+
658660 from pandas.io import gbq
659661
660662 # A query to select the average monthly temperatures in the
@@ -665,8 +667,8 @@ Experimental
665667 query = """SELECT station_number as STATION,
666668 month as MONTH, AVG(mean_temp) as MEAN_TEMP
667669 FROM publicdata:samples.gsod
668- WHERE YEAR = 2000
669- GROUP BY STATION, MONTH
670+ WHERE YEAR = 2000
671+ GROUP BY STATION, MONTH
670672 ORDER BY STATION, MONTH ASC"""
671673
672674 # Fetch the result set for this query
@@ -675,7 +677,7 @@ Experimental
675677 # To find this, see your dashboard:
676678 # https://code.google.com/apis/console/b/0/?noredirect
677679 projectid = xxxxxxxxx;
678-
680+
679681 df = gbq.read_gbq(query, project_id = projectid)
680682
681683 # Use pandas to process and reshape the dataset
@@ -686,9 +688,9 @@ Experimental
686688
687689 The resulting dataframe is::
688690
689- > df3
691+ > df3
690692 Min Tem Mean Temp Max Temp
691- MONTH
693+ MONTH
692694 1 -53.336667 39.827892 89.770968
693695 2 -49.837500 43.685219 93.437932
694696 3 -77.926087 48.708355 96.099998
0 commit comments