1515from typing import (
1616 TYPE_CHECKING ,
1717 Any ,
18- Dict ,
19- List ,
20- Optional ,
2118 Sequence ,
22- Set ,
2319 Sized ,
24- Tuple ,
25- Type ,
26- Union ,
2720 cast ,
2821 overload ,
2922)
125118
126119
127120def maybe_convert_platform (
128- values : Union [ list , tuple , range , np .ndarray , ExtensionArray ]
121+ values : list | tuple | range | np .ndarray | ExtensionArray ,
129122) -> ArrayLike :
130123 """ try to do platform conversion, allow ndarray or list here """
131124 if isinstance (values , (list , tuple , range )):
@@ -159,7 +152,7 @@ def is_nested_object(obj) -> bool:
159152 )
160153
161154
162- def maybe_box_datetimelike (value : Scalar , dtype : Optional [ Dtype ] = None ) -> Scalar :
155+ def maybe_box_datetimelike (value : Scalar , dtype : Dtype | None = None ) -> Scalar :
163156 """
164157 Cast scalar to Timestamp or Timedelta if scalar is datetime-like
165158 and dtype is not object.
@@ -245,9 +238,7 @@ def _disallow_mismatched_datetimelike(value, dtype: DtypeObj):
245238 raise TypeError (f"Cannot cast { repr (value )} to { dtype } " )
246239
247240
248- def maybe_downcast_to_dtype (
249- result : ArrayLike , dtype : Union [str , np .dtype ]
250- ) -> ArrayLike :
241+ def maybe_downcast_to_dtype (result : ArrayLike , dtype : str | np .dtype ) -> ArrayLike :
251242 """
252243 try to cast to the specified dtype (e.g. convert back to bool/int
253244 or could be an astype of float64->float32
@@ -460,7 +451,7 @@ def maybe_cast_result_dtype(dtype: DtypeObj, how: str) -> DtypeObj:
460451
461452
462453def maybe_cast_to_extension_array (
463- cls : Type [ExtensionArray ], obj : ArrayLike , dtype : Optional [ ExtensionDtype ] = None
454+ cls : type [ExtensionArray ], obj : ArrayLike , dtype : ExtensionDtype | None = None
464455) -> ArrayLike :
465456 """
466457 Call to `_from_sequence` that returns the object unchanged on Exception.
@@ -727,7 +718,7 @@ def _ensure_dtype_type(value, dtype: np.dtype):
727718 return dtype .type (value )
728719
729720
730- def infer_dtype_from (val , pandas_dtype : bool = False ) -> Tuple [DtypeObj , Any ]:
721+ def infer_dtype_from (val , pandas_dtype : bool = False ) -> tuple [DtypeObj , Any ]:
731722 """
732723 Interpret the dtype from a scalar or array.
733724
@@ -744,7 +735,7 @@ def infer_dtype_from(val, pandas_dtype: bool = False) -> Tuple[DtypeObj, Any]:
744735 return infer_dtype_from_array (val , pandas_dtype = pandas_dtype )
745736
746737
747- def infer_dtype_from_scalar (val , pandas_dtype : bool = False ) -> Tuple [DtypeObj , Any ]:
738+ def infer_dtype_from_scalar (val , pandas_dtype : bool = False ) -> tuple [DtypeObj , Any ]:
748739 """
749740 Interpret the dtype from a scalar.
750741
@@ -834,7 +825,7 @@ def infer_dtype_from_scalar(val, pandas_dtype: bool = False) -> Tuple[DtypeObj,
834825 return dtype , val
835826
836827
837- def dict_compat (d : Dict [Scalar , Scalar ]) -> Dict [Scalar , Scalar ]:
828+ def dict_compat (d : dict [Scalar , Scalar ]) -> dict [Scalar , Scalar ]:
838829 """
839830 Convert datetimelike-keyed dicts to a Timestamp-keyed dict.
840831
@@ -852,7 +843,7 @@ def dict_compat(d: Dict[Scalar, Scalar]) -> Dict[Scalar, Scalar]:
852843
853844def infer_dtype_from_array (
854845 arr , pandas_dtype : bool = False
855- ) -> Tuple [DtypeObj , ArrayLike ]:
846+ ) -> tuple [DtypeObj , ArrayLike ]:
856847 """
857848 Infer the dtype from an array.
858849
@@ -944,7 +935,7 @@ def maybe_upcast(
944935 values : np .ndarray ,
945936 fill_value : Scalar = np .nan ,
946937 copy : bool = False ,
947- ) -> Tuple [np .ndarray , Scalar ]:
938+ ) -> tuple [np .ndarray , Scalar ]:
948939 """
949940 Provide explicit type promotion and coercion.
950941
@@ -970,7 +961,7 @@ def maybe_upcast(
970961 return values , fill_value
971962
972963
973- def invalidate_string_dtypes (dtype_set : Set [DtypeObj ]):
964+ def invalidate_string_dtypes (dtype_set : set [DtypeObj ]):
974965 """
975966 Change string like dtypes to object for
976967 ``DataFrame.select_dtypes()``.
@@ -1524,7 +1515,7 @@ def maybe_castable(dtype: np.dtype) -> bool:
15241515 return dtype .name not in POSSIBLY_CAST_DTYPES
15251516
15261517
1527- def maybe_infer_to_datetimelike (value : Union [ np .ndarray , List ] ):
1518+ def maybe_infer_to_datetimelike (value : np .ndarray | list ):
15281519 """
15291520 we might have a array (or single object) that is datetime like,
15301521 and no dtype is passed don't change the value unless we find a
@@ -1619,8 +1610,8 @@ def try_timedelta(v: np.ndarray) -> np.ndarray:
16191610
16201611
16211612def maybe_cast_to_datetime (
1622- value : Union [ ExtensionArray , np .ndarray , list ] , dtype : Optional [ DtypeObj ]
1623- ) -> Union [ ExtensionArray , np .ndarray , list ] :
1613+ value : ExtensionArray | np .ndarray | list , dtype : DtypeObj | None
1614+ ) -> ExtensionArray | np .ndarray | list :
16241615 """
16251616 try to cast the array/value to a datetimelike dtype, converting float
16261617 nan to iNaT
@@ -1784,7 +1775,7 @@ def ensure_nanosecond_dtype(dtype: DtypeObj) -> DtypeObj:
17841775 return dtype
17851776
17861777
1787- def find_common_type (types : List [DtypeObj ]) -> DtypeObj :
1778+ def find_common_type (types : list [DtypeObj ]) -> DtypeObj :
17881779 """
17891780 Find a common data type among the given dtypes.
17901781
@@ -1873,7 +1864,7 @@ def construct_2d_arraylike_from_scalar(
18731864
18741865
18751866def construct_1d_arraylike_from_scalar (
1876- value : Scalar , length : int , dtype : Optional [ DtypeObj ]
1867+ value : Scalar , length : int , dtype : DtypeObj | None
18771868) -> ArrayLike :
18781869 """
18791870 create a np.ndarray / pandas type of specified shape and dtype
@@ -1947,7 +1938,7 @@ def construct_1d_object_array_from_listlike(values: Sized) -> np.ndarray:
19471938
19481939
19491940def construct_1d_ndarray_preserving_na (
1950- values : Sequence , dtype : Optional [ DtypeObj ] = None , copy : bool = False
1941+ values : Sequence , dtype : DtypeObj | None = None , copy : bool = False
19511942) -> np .ndarray :
19521943 """
19531944 Construct a new ndarray, coercing `values` to `dtype`, preserving NA.
@@ -1997,7 +1988,7 @@ def construct_1d_ndarray_preserving_na(
19971988
19981989
19991990def maybe_cast_to_integer_array (
2000- arr : Union [ list , np .ndarray ] , dtype : np .dtype , copy : bool = False
1991+ arr : list | np .ndarray , dtype : np .dtype , copy : bool = False
20011992):
20021993 """
20031994 Takes any dtype and returns the casted version, raising for when data is
0 commit comments