@@ -927,22 +927,50 @@ def max(self, axis=None, skipna=True, *args, **kwargs):
927927
928928 def argmax (self , axis = None , skipna = True , * args , ** kwargs ):
929929 """
930- Return an ndarray of the maximum argument indexer.
930+ Return int position of the largest value in the Series.
931+
932+ If the maximum is achieved in multiple locations,
933+ the first row position is returned.
931934
932935 Parameters
933936 ----------
934937 axis : {None}
935938 Dummy argument for consistency with Series.
936939 skipna : bool, default True
940+ Exclude NA/null values when showing the result.
941+ *args, **kwargs
942+ Additional arguments and keywords for compatibility with NumPy.
937943
938944 Returns
939945 -------
940- numpy.ndarray
941- Indices of the maximum values.
946+ int
947+ Row position of the maximum values.
942948
943949 See Also
944950 --------
945- numpy.ndarray.argmax
951+ numpy.ndarray.argmax : Equivalent method for numpy arrays.
952+ Series.argmin : Similar method, but returning the minimum.
953+ Series.idxmax : Return index label of the maximum values.
954+ Series.idxmin : Return index label of the minimum values.
955+
956+ Examples
957+ --------
958+ Consider dataset containing cereal calories
959+
960+ >>> s = pd.Series({'Corn Flakes': 100.0, 'Almond Delight': 110.0,
961+ ... 'Cinnamon Toast Crunch': 120.0, 'Cocoa Puff': 110.0})
962+ >>> s
963+ Corn Flakes 100.0
964+ Almond Delight 110.0
965+ Cinnamon Toast Crunch 120.0
966+ Cocoa Puff 110.0
967+ dtype: float64
968+
969+ >>> s.argmax()
970+ 2
971+
972+ The maximum cereal calories is in the third element,
973+ since series is zero-indexed.
946974 """
947975 nv .validate_minmax_axis (axis )
948976 nv .validate_argmax_with_skipna (skipna , args , kwargs )
0 commit comments