@@ -145,7 +145,10 @@ usecols : list-like or callable, default ``None``
145145
146146 .. ipython :: python
147147
148- data = ' col1,col2,col3\n a,b,1\n a,b,2\n c,d,3'
148+ data = (' col1,col2,col3\n '
149+ ' a,b,1\n '
150+ ' a,b,2\n '
151+ ' c,d,3' )
149152 pd.read_csv(StringIO(data))
150153 pd.read_csv(StringIO(data), usecols = lambda x : x.upper() in [' COL1' , ' COL3' ])
151154
@@ -191,7 +194,10 @@ skiprows : list-like or integer, default ``None``
191194
192195 .. ipython :: python
193196
194- data = ' col1,col2,col3\n a,b,1\n a,b,2\n c,d,3'
197+ data = (' col1,col2,col3\n '
198+ ' a,b,1\n '
199+ ' a,b,2\n '
200+ ' c,d,3' )
195201 pd.read_csv(StringIO(data))
196202 pd.read_csv(StringIO(data), skiprows = lambda x : x % 2 != 0 )
197203
@@ -366,7 +372,10 @@ columns:
366372
367373.. ipython :: python
368374
369- data = ' a,b,c\n 1,2,3\n 4,5,6\n 7,8,9'
375+ data = (' a,b,c\n '
376+ ' 1,2,3\n '
377+ ' 4,5,6\n '
378+ ' 7,8,9' )
370379 print (data)
371380
372381 df = pd.read_csv(StringIO(data), dtype = object )
@@ -387,7 +396,11 @@ of :func:`~pandas.read_csv`:
387396
388397.. ipython :: python
389398
390- data = " col_1\n 1\n 2\n 'A'\n 4.22"
399+ data = (" col_1\n "
400+ " 1\n "
401+ " 2\n "
402+ " 'A'\n "
403+ " 4.22" )
391404 df = pd.read_csv(StringIO(data), converters = {' col_1' : str })
392405 df
393406 df[' col_1' ].apply(type ).value_counts()
@@ -455,7 +468,10 @@ Specifying Categorical dtype
455468
456469.. ipython :: python
457470
458- data = ' col1,col2,col3\n a,b,1\n a,b,2\n c,d,3'
471+ data = (' col1,col2,col3\n '
472+ ' a,b,1\n '
473+ ' a,b,2\n '
474+ ' c,d,3' )
459475
460476 pd.read_csv(StringIO(data))
461477 pd.read_csv(StringIO(data)).dtypes
@@ -524,7 +540,10 @@ used as the column names:
524540
525541.. ipython :: python
526542
527- data = ' a,b,c\n 1,2,3\n 4,5,6\n 7,8,9'
543+ data = (' a,b,c\n '
544+ ' 1,2,3\n '
545+ ' 4,5,6\n '
546+ ' 7,8,9' )
528547 print (data)
529548 pd.read_csv(StringIO(data))
530549
@@ -543,7 +562,11 @@ If the header is in a row other than the first, pass the row number to
543562
544563.. ipython :: python
545564
546- data = ' skip this skip it\n a,b,c\n 1,2,3\n 4,5,6\n 7,8,9'
565+ data = (' skip this skip it\n '
566+ ' a,b,c\n '
567+ ' 1,2,3\n '
568+ ' 4,5,6\n '
569+ ' 7,8,9' )
547570 pd.read_csv(StringIO(data), header = 1 )
548571
549572 .. note ::
@@ -564,7 +587,9 @@ distinguish between them so as to prevent overwriting data:
564587
565588.. ipython :: python
566589
567- data = 'a,b,a\n0,1,2\n3,4,5'
590+ data = ('a,b,a\n'
591+ '0,1,2\n'
592+ '3,4,5')
568593 pd.read_csv(StringIO(data))
569594
570595 There is no more duplicate data because ``mangle_dupe_cols=True `` by default,
@@ -632,15 +657,26 @@ be ignored. By default, completely blank lines will be ignored as well.
632657
633658.. ipython :: python
634659
635- data = ' \n a,b,c\n \n # commented line\n 1,2,3\n\n 4,5,6'
660+ data = (' \n '
661+ ' a,b,c\n '
662+ ' \n '
663+ ' # commented line\n '
664+ ' 1,2,3\n '
665+ ' \n '
666+ ' 4,5,6' )
636667 print (data)
637668 pd.read_csv(StringIO(data), comment = ' #' )
638669
639670 If ``skip_blank_lines=False ``, then ``read_csv `` will not ignore blank lines:
640671
641672.. ipython :: python
642673
643- data = ' a,b,c\n\n 1,2,3\n\n\n 4,5,6'
674+ data = (' a,b,c\n '
675+ ' \n '
676+ ' 1,2,3\n '
677+ ' \n '
678+ ' \n '
679+ ' 4,5,6' )
644680 pd.read_csv(StringIO(data), skip_blank_lines = False )
645681
646682 .. warning ::
@@ -651,7 +687,10 @@ If ``skip_blank_lines=False``, then ``read_csv`` will not ignore blank lines:
651687
652688 .. ipython :: python
653689
654- data = ' #comment\n a,b,c\n A,B,C\n 1,2,3'
690+ data = (' #comment\n '
691+ ' a,b,c\n '
692+ ' A,B,C\n '
693+ ' 1,2,3' )
655694 pd.read_csv(StringIO(data), comment = ' #' , header = 1 )
656695 data = ' A,B,C\n #comment\n a,b,c\n 1,2,3'
657696 pd.read_csv(StringIO(data), comment = ' #' , skiprows = 2 )
@@ -661,15 +700,14 @@ If ``skip_blank_lines=False``, then ``read_csv`` will not ignore blank lines:
661700
662701.. ipython :: python
663702
664- data = ' \n ' .join([' # empty' ,
665- ' # second empty line' ,
666- ' # third empty' ,
667- ' line' ,
668- ' X,Y,Z' ,
669- ' 1,2,3' ,
670- ' A,B,C' ,
671- ' 1,2.,4.' ,
672- ' 5.,NaN,10.0' ])
703+ data = (' # empty\n '
704+ ' # second empty line\n '
705+ ' # third emptyline\n '
706+ ' X,Y,Z\n '
707+ ' 1,2,3\n '
708+ ' A,B,C\n '
709+ ' 1,2.,4.\n '
710+ ' 5.,NaN,10.0\n ' )
673711 print (data)
674712 pd.read_csv(StringIO(data), comment = ' #' , skiprows = 4 , header = 1 )
675713
@@ -724,7 +762,9 @@ result in byte strings being decoded to unicode in the result:
724762
725763.. ipython :: python
726764
727- data = b ' word,length\n Tr\xc3\xa4 umen,7\n Gr\xc3\xbc\xc3\x9f e,5'
765+ data = (b ' word,length\n '
766+ b ' Tr\xc3\xa4 umen,7\n '
767+ b ' Gr\xc3\xbc\xc3\x9f e,5' )
728768 data = data.decode(' utf8' ).encode(' latin-1' )
729769 df = pd.read_csv(BytesIO(data), encoding = ' latin-1' )
730770 df
@@ -745,12 +785,16 @@ first column will be used as the ``DataFrame``'s row names:
745785
746786.. ipython :: python
747787
748- data = ' a,b,c\n 4,apple,bat,5.7\n 8,orange,cow,10'
788+ data = (' a,b,c\n '
789+ ' 4,apple,bat,5.7\n '
790+ ' 8,orange,cow,10' )
749791 pd.read_csv(StringIO(data))
750792
751793 .. ipython :: python
752794
753- data = ' index,a,b,c\n 4,apple,bat,5.7\n 8,orange,cow,10'
795+ data = (' index,a,b,c\n '
796+ ' 4,apple,bat,5.7\n '
797+ ' 8,orange,cow,10' )
754798 pd.read_csv(StringIO(data), index_col = 0 )
755799
756800 Ordinarily, you can achieve this behavior using the ``index_col `` option.
@@ -761,7 +805,9 @@ index column inference and discard the last column, pass ``index_col=False``:
761805
762806.. ipython :: python
763807
764- data = ' a,b,c\n 4,apple,bat,\n 8,orange,cow,'
808+ data = (' a,b,c\n '
809+ ' 4,apple,bat,\n '
810+ ' 8,orange,cow,' )
765811 print (data)
766812 pd.read_csv(StringIO(data))
767813 pd.read_csv(StringIO(data), index_col = False )
@@ -771,7 +817,9 @@ If a subset of data is being parsed using the ``usecols`` option, the
771817
772818.. ipython :: python
773819
774- data = ' a,b,c\n 4,apple,bat,\n 8,orange,cow,'
820+ data = (' a,b,c\n '
821+ ' 4,apple,bat,\n '
822+ ' 8,orange,cow,' )
775823 print (data)
776824 pd.read_csv(StringIO(data), usecols = [' b' , ' c' ])
777825 pd.read_csv(StringIO(data), usecols = [' b' , ' c' ], index_col = 0 )
@@ -5451,6 +5499,7 @@ And here's the code:
54515499 sz = 1000000
54525500 df = pd.DataFrame({' A' : randn(sz), ' B' : [1 ] * sz})
54535501
5502+
54545503 def test_sql_write (df ):
54555504 if os.path.exists(' test.sql' ):
54565505 os.remove(' test.sql' )
0 commit comments