@@ -11,6 +11,25 @@ def float_frame():
1111 Fixture for DataFrame of floats with index of unique strings
1212
1313 Columns are ['A', 'B', 'C', 'D'].
14+
15+ A B C D
16+ P7GACiRnxd -0.465578 -0.361863 0.886172 -0.053465
17+ qZKh6afn8n -0.466693 -0.373773 0.266873 1.673901
18+ tkp0r6Qble 0.148691 -0.059051 0.174817 1.598433
19+ wP70WOCtv8 0.133045 -0.581994 -0.992240 0.261651
20+ M2AeYQMnCz -1.207959 -0.185775 0.588206 0.563938
21+ QEPzyGDYDo -0.381843 -0.758281 0.502575 -0.565053
22+ r78Jwns6dn -0.653707 0.883127 0.682199 0.206159
23+ ... ... ... ... ...
24+ IHEGx9NO0T -0.277360 0.113021 -1.018314 0.196316
25+ lPMj8K27FA -1.313667 -0.604776 -1.305618 -0.863999
26+ qa66YMWQa5 1.110525 0.475310 -0.747865 0.032121
27+ yOa0ATsmcE -0.431457 0.067094 0.096567 -0.264962
28+ 65znX3uRNG 1.528446 0.160416 -0.109635 -0.032987
29+ eCOBvKqf3e 0.235281 1.622222 0.781255 0.392871
30+ xSucinXxuV -1.263557 0.252799 -0.552247 0.400426
31+
32+ [30 rows x 4 columns]
1433 """
1534 return DataFrame (tm .getSeriesData ())
1635
@@ -21,6 +40,25 @@ def float_frame_with_na():
2140 Fixture for DataFrame of floats with index of unique strings
2241
2342 Columns are ['A', 'B', 'C', 'D']; some entries are missing
43+
44+ A B C D
45+ ABwBzA0ljw -1.128865 -0.897161 0.046603 0.274997
46+ DJiRzmbyQF 0.728869 0.233502 0.722431 -0.890872
47+ neMgPD5UBF 0.486072 -1.027393 -0.031553 1.449522
48+ 0yWA4n8VeX -1.937191 -1.142531 0.805215 -0.462018
49+ 3slYUbbqU1 0.153260 1.164691 1.489795 -0.545826
50+ soujjZ0A08 NaN NaN NaN NaN
51+ 7W6NLGsjB9 NaN NaN NaN NaN
52+ ... ... ... ... ...
53+ uhfeaNkCR1 -0.231210 -0.340472 0.244717 -0.901590
54+ n6p7GYuBIV -0.419052 1.922721 -0.125361 -0.727717
55+ ZhzAeY6p1y 1.234374 -1.425359 -0.827038 -0.633189
56+ uWdPsORyUh 0.046738 -0.980445 -1.102965 0.605503
57+ 3DJA6aN590 -0.091018 -1.684734 -1.100900 0.215947
58+ 2GBPAzdbMk -2.883405 -1.021071 1.209877 1.633083
59+ sHadBoyVHw -2.223032 -0.326384 0.258931 0.245517
60+
61+ [30 rows x 4 columns]
2462 """
2563 df = DataFrame (tm .getSeriesData ())
2664 # set some NAs
@@ -35,6 +73,25 @@ def bool_frame_with_na():
3573 Fixture for DataFrame of booleans with index of unique strings
3674
3775 Columns are ['A', 'B', 'C', 'D']; some entries are missing
76+
77+ A B C D
78+ zBZxY2IDGd False False False False
79+ IhBWBMWllt False True True True
80+ ctjdvZSR6R True False True True
81+ AVTujptmxb False True False True
82+ G9lrImrSWq False False False True
83+ sFFwdIUfz2 NaN NaN NaN NaN
84+ s15ptEJnRb NaN NaN NaN NaN
85+ ... ... ... ... ...
86+ UW41KkDyZ4 True True False False
87+ l9l6XkOdqV True False False False
88+ X2MeZfzDYA False True False False
89+ xWkIKU7vfX False True False True
90+ QOhL6VmpGU False False False True
91+ 22PwkRJdat False True False False
92+ kfboQ3VeIK True False True False
93+
94+ [30 rows x 4 columns]
3895 """
3996 df = DataFrame (tm .getSeriesData ()) > 0
4097 df = df .astype (object )
@@ -50,6 +107,25 @@ def int_frame():
50107 Fixture for DataFrame of ints with index of unique strings
51108
52109 Columns are ['A', 'B', 'C', 'D']
110+
111+ A B C D
112+ vpBeWjM651 1 0 1 0
113+ 5JyxmrP1En -1 0 0 0
114+ qEDaoD49U2 -1 1 0 0
115+ m66TkTfsFe 0 0 0 0
116+ EHPaNzEUFm -1 0 -1 0
117+ fpRJCevQhi 2 0 0 0
118+ OlQvnmfi3Q 0 0 -2 0
119+ ... .. .. .. ..
120+ uB1FPlz4uP 0 0 0 1
121+ EcSe6yNzCU 0 0 -1 0
122+ L50VudaiI8 -1 1 -2 0
123+ y3bpw4nwIp 0 -1 0 0
124+ H0RdLLwrCT 1 1 0 0
125+ rY82K0vMwm 0 0 0 0
126+ 1OPIUjnkjk 2 0 0 0
127+
128+ [30 rows x 4 columns]
53129 """
54130 df = DataFrame ({k : v .astype (int ) for k , v in tm .getSeriesData ().items ()})
55131 # force these all to int64 to avoid platform testing issues
@@ -62,6 +138,25 @@ def datetime_frame():
62138 Fixture for DataFrame of floats with DatetimeIndex
63139
64140 Columns are ['A', 'B', 'C', 'D']
141+
142+ A B C D
143+ 2000-01-03 -1.122153 0.468535 0.122226 1.693711
144+ 2000-01-04 0.189378 0.486100 0.007864 -1.216052
145+ 2000-01-05 0.041401 -0.835752 -0.035279 -0.414357
146+ 2000-01-06 0.430050 0.894352 0.090719 0.036939
147+ 2000-01-07 -0.620982 -0.668211 -0.706153 1.466335
148+ 2000-01-10 -0.752633 0.328434 -0.815325 0.699674
149+ 2000-01-11 -2.236969 0.615737 -0.829076 -1.196106
150+ ... ... ... ... ...
151+ 2000-02-03 1.642618 -0.579288 0.046005 1.385249
152+ 2000-02-04 -0.544873 -1.160962 -0.284071 -1.418351
153+ 2000-02-07 -2.656149 -0.601387 1.410148 0.444150
154+ 2000-02-08 -1.201881 -1.289040 0.772992 -1.445300
155+ 2000-02-09 1.377373 0.398619 1.008453 -0.928207
156+ 2000-02-10 0.473194 -0.636677 0.984058 0.511519
157+ 2000-02-11 -0.965556 0.408313 -1.312844 -0.381948
158+
159+ [30 rows x 4 columns]
65160 """
66161 return DataFrame (tm .getTimeSeriesData ())
67162
@@ -72,6 +167,25 @@ def float_string_frame():
72167 Fixture for DataFrame of floats and strings with index of unique strings
73168
74169 Columns are ['A', 'B', 'C', 'D', 'foo'].
170+
171+ A B C D foo
172+ w3orJvq07g -1.594062 -1.084273 -1.252457 0.356460 bar
173+ PeukuVdmz2 0.109855 -0.955086 -0.809485 0.409747 bar
174+ ahp2KvwiM8 -1.533729 -0.142519 -0.154666 1.302623 bar
175+ 3WSJ7BUCGd 2.484964 0.213829 0.034778 -2.327831 bar
176+ khdAmufk0U -0.193480 -0.743518 -0.077987 0.153646 bar
177+ LE2DZiFlrE -0.193566 -1.343194 -0.107321 0.959978 bar
178+ HJXSJhVn7b 0.142590 1.257603 -0.659409 -0.223844 bar
179+ ... ... ... ... ... ...
180+ 9a1Vypttgw -1.316394 1.601354 0.173596 1.213196 bar
181+ h5d1gVFbEy 0.609475 1.106738 -0.155271 0.294630 bar
182+ mK9LsTQG92 1.303613 0.857040 -1.019153 0.369468 bar
183+ oOLksd9gKH 0.558219 -0.134491 -0.289869 -0.951033 bar
184+ 9jgoOjKyHg 0.058270 -0.496110 -0.413212 -0.852659 bar
185+ jZLDHclHAO 0.096298 1.267510 0.549206 -0.005235 bar
186+ lR0nxDp1C2 -2.119350 -0.794384 0.544118 0.145849 bar
187+
188+ [30 rows x 5 columns]
75189 """
76190 df = DataFrame (tm .getSeriesData ())
77191 df ['foo' ] = 'bar'
@@ -84,6 +198,25 @@ def mixed_float_frame():
84198 Fixture for DataFrame of different float types with index of unique strings
85199
86200 Columns are ['A', 'B', 'C', 'D'].
201+
202+ A B C D
203+ GI7bbDaEZe -0.237908 -0.246225 -0.468506 0.752993
204+ KGp9mFepzA -1.140809 -0.644046 -1.225586 0.801588
205+ VeVYLAb1l2 -1.154013 -1.677615 0.690430 -0.003731
206+ kmPME4WKhO 0.979578 0.998274 -0.776367 0.897607
207+ CPyopdXTiz 0.048119 -0.257174 0.836426 0.111266
208+ 0kJZQndAj0 0.274357 -0.281135 -0.344238 0.834541
209+ tqdwQsaHG8 -0.979716 -0.519897 0.582031 0.144710
210+ ... ... ... ... ...
211+ 7FhZTWILQj -2.906357 1.261039 -0.780273 -0.537237
212+ 4pUDPM4eGq -2.042512 -0.464382 -0.382080 1.132612
213+ B8dUgUzwTi -1.506637 -0.364435 1.087891 0.297653
214+ hErlVYjVv9 1.477453 -0.495515 -0.713867 1.438427
215+ 1BKN3o7YLs 0.127535 -0.349812 -0.881836 0.489827
216+ 9S4Ekn7zga 1.445518 -2.095149 0.031982 0.373204
217+ xN1dNn6OV6 1.425017 -0.983995 -0.363281 -0.224502
218+
219+ [30 rows x 4 columns]
87220 """
88221 df = DataFrame (tm .getSeriesData ())
89222 df .A = df .A .astype ('float32' )
@@ -99,6 +232,25 @@ def mixed_int_frame():
99232 Fixture for DataFrame of different int types with index of unique strings
100233
101234 Columns are ['A', 'B', 'C', 'D'].
235+
236+ A B C D
237+ mUrCZ67juP 0 1 2 2
238+ rw99ACYaKS 0 1 0 0
239+ 7QsEcpaaVU 0 1 1 1
240+ xkrimI2pcE 0 1 0 0
241+ dz01SuzoS8 0 1 255 255
242+ ccQkqOHX75 -1 1 0 0
243+ DN0iXaoDLd 0 1 0 0
244+ ... .. .. ... ...
245+ Dfb141wAaQ 1 1 254 254
246+ IPD8eQOVu5 0 1 0 0
247+ CcaKulsCmv 0 1 0 0
248+ rIBa8gu7E5 0 1 0 0
249+ RP6peZmh5o 0 1 1 1
250+ NMb9pipQWQ 0 1 0 0
251+ PqgbJEzjib 0 1 3 3
252+
253+ [30 rows x 4 columns]
102254 """
103255 df = DataFrame ({k : v .astype (int ) for k , v in tm .getSeriesData ().items ()})
104256 df .A = df .A .astype ('int32' )
@@ -114,6 +266,11 @@ def timezone_frame():
114266 Fixture for DataFrame of date_range Series with different time zones
115267
116268 Columns are ['A', 'B', 'C']; some entries are missing
269+
270+ A B C
271+ 0 2013-01-01 2013-01-01 00:00:00-05:00 2013-01-01 00:00:00+01:00
272+ 1 2013-01-02 NaT NaT
273+ 2 2013-01-03 2013-01-03 00:00:00-05:00 2013-01-03 00:00:00+01:00
117274 """
118275 df = DataFrame ({'A' : date_range ('20130101' , periods = 3 ),
119276 'B' : date_range ('20130101' , periods = 3 ,
@@ -131,6 +288,11 @@ def simple_frame():
131288 Fixture for simple 3x3 DataFrame
132289
133290 Columns are ['one', 'two', 'three'], index is ['a', 'b', 'c'].
291+
292+ one two three
293+ a 1.0 2.0 3.0
294+ b 4.0 5.0 6.0
295+ c 7.0 8.0 9.0
134296 """
135297 arr = np .array ([[1. , 2. , 3. ],
136298 [4. , 5. , 6. ],
@@ -147,6 +309,13 @@ def frame_of_index_cols():
147309
148310 Columns are ['A', 'B', 'C', 'D', 'E', ('tuple', 'as', 'label')];
149311 'A' & 'B' contain duplicates (but are jointly unique), the rest are unique.
312+
313+ A B C D E (tuple, as, label)
314+ 0 foo one a 0.608477 -0.012500 -1.664297
315+ 1 foo two b -0.633460 0.249614 -0.364411
316+ 2 foo three c 0.615256 2.154968 -0.834666
317+ 3 bar one d 0.234246 1.085675 0.718445
318+ 4 bar two e 0.533841 -0.005702 -3.533912
150319 """
151320 df = DataFrame ({'A' : ['foo' , 'foo' , 'foo' , 'bar' , 'bar' ],
152321 'B' : ['one' , 'two' , 'three' , 'one' , 'two' ],
0 commit comments