|
1 | 1 | # -*- coding: utf-8 -*- |
| 2 | +# cython: profile=False |
2 | 3 | from datetime import datetime, date, timedelta |
3 | 4 | import operator |
4 | 5 |
|
@@ -27,28 +28,23 @@ from util cimport is_period_object, is_string_object, INT32_MIN |
27 | 28 |
|
28 | 29 | from lib cimport is_null_datetimelike |
29 | 30 | from pandas._libs import tslib |
30 | | -from pandas._libs.tslib import Timestamp, iNaT, NaT |
| 31 | +from pandas._libs.tslib import Timestamp, iNaT |
31 | 32 | from tslibs.timezones cimport ( |
32 | 33 | is_utc, is_tzlocal, get_utcoffset, get_dst_info, maybe_get_tz) |
33 | 34 | from tslibs.timedeltas cimport delta_to_nanoseconds |
34 | 35 |
|
35 | | -from tslibs.parsing import parse_time_string, NAT_SENTINEL |
| 36 | +from tslibs.parsing import (parse_time_string, NAT_SENTINEL, |
| 37 | + _get_rule_month, _MONTH_NUMBERS) |
36 | 38 | from tslibs.frequencies cimport get_freq_code |
37 | | -from tslibs.nattype import nat_strings |
| 39 | +from tslibs.resolution import resolution, Resolution |
| 40 | +from tslibs.nattype import nat_strings, NaT |
38 | 41 | from tslibs.nattype cimport _nat_scalar_rules |
39 | 42 |
|
40 | 43 | from pandas.tseries import offsets |
41 | 44 | from pandas.tseries import frequencies |
42 | 45 |
|
43 | 46 | cdef int64_t NPY_NAT = util.get_nat() |
44 | 47 |
|
45 | | -cdef int RESO_US = frequencies.RESO_US |
46 | | -cdef int RESO_MS = frequencies.RESO_MS |
47 | | -cdef int RESO_SEC = frequencies.RESO_SEC |
48 | | -cdef int RESO_MIN = frequencies.RESO_MIN |
49 | | -cdef int RESO_HR = frequencies.RESO_HR |
50 | | -cdef int RESO_DAY = frequencies.RESO_DAY |
51 | | - |
52 | 48 | cdef extern from "period_helper.h": |
53 | 49 | ctypedef struct date_info: |
54 | 50 | int64_t absdate |
@@ -487,98 +483,10 @@ def extract_freq(ndarray[object] values): |
487 | 483 | raise ValueError('freq not specified and cannot be inferred') |
488 | 484 |
|
489 | 485 |
|
490 | | -cpdef resolution(ndarray[int64_t] stamps, tz=None): |
491 | | - cdef: |
492 | | - Py_ssize_t i, n = len(stamps) |
493 | | - pandas_datetimestruct dts |
494 | | - int reso = RESO_DAY, curr_reso |
495 | | - |
496 | | - if tz is not None: |
497 | | - tz = maybe_get_tz(tz) |
498 | | - return _reso_local(stamps, tz) |
499 | | - else: |
500 | | - for i in range(n): |
501 | | - if stamps[i] == NPY_NAT: |
502 | | - continue |
503 | | - dt64_to_dtstruct(stamps[i], &dts) |
504 | | - curr_reso = _reso_stamp(&dts) |
505 | | - if curr_reso < reso: |
506 | | - reso = curr_reso |
507 | | - return reso |
508 | | - |
509 | | - |
510 | | -cdef inline int _reso_stamp(pandas_datetimestruct *dts): |
511 | | - if dts.us != 0: |
512 | | - if dts.us % 1000 == 0: |
513 | | - return RESO_MS |
514 | | - return RESO_US |
515 | | - elif dts.sec != 0: |
516 | | - return RESO_SEC |
517 | | - elif dts.min != 0: |
518 | | - return RESO_MIN |
519 | | - elif dts.hour != 0: |
520 | | - return RESO_HR |
521 | | - return RESO_DAY |
522 | | - |
523 | | -cdef _reso_local(ndarray[int64_t] stamps, object tz): |
524 | | - cdef: |
525 | | - Py_ssize_t n = len(stamps) |
526 | | - int reso = RESO_DAY, curr_reso |
527 | | - ndarray[int64_t] trans, deltas, pos |
528 | | - pandas_datetimestruct dts |
529 | | - |
530 | | - if is_utc(tz): |
531 | | - for i in range(n): |
532 | | - if stamps[i] == NPY_NAT: |
533 | | - continue |
534 | | - dt64_to_dtstruct(stamps[i], &dts) |
535 | | - curr_reso = _reso_stamp(&dts) |
536 | | - if curr_reso < reso: |
537 | | - reso = curr_reso |
538 | | - elif is_tzlocal(tz): |
539 | | - for i in range(n): |
540 | | - if stamps[i] == NPY_NAT: |
541 | | - continue |
542 | | - dt64_to_dtstruct(stamps[i], &dts) |
543 | | - dt = datetime(dts.year, dts.month, dts.day, dts.hour, |
544 | | - dts.min, dts.sec, dts.us, tz) |
545 | | - delta = int(get_utcoffset(tz, dt).total_seconds()) * 1000000000 |
546 | | - dt64_to_dtstruct(stamps[i] + delta, &dts) |
547 | | - curr_reso = _reso_stamp(&dts) |
548 | | - if curr_reso < reso: |
549 | | - reso = curr_reso |
550 | | - else: |
551 | | - # Adjust datetime64 timestamp, recompute datetimestruct |
552 | | - trans, deltas, typ = get_dst_info(tz) |
553 | | - |
554 | | - _pos = trans.searchsorted(stamps, side='right') - 1 |
555 | | - if _pos.dtype != np.int64: |
556 | | - _pos = _pos.astype(np.int64) |
557 | | - pos = _pos |
558 | | - |
559 | | - # statictzinfo |
560 | | - if typ not in ['pytz', 'dateutil']: |
561 | | - for i in range(n): |
562 | | - if stamps[i] == NPY_NAT: |
563 | | - continue |
564 | | - dt64_to_dtstruct(stamps[i] + deltas[0], &dts) |
565 | | - curr_reso = _reso_stamp(&dts) |
566 | | - if curr_reso < reso: |
567 | | - reso = curr_reso |
568 | | - else: |
569 | | - for i in range(n): |
570 | | - if stamps[i] == NPY_NAT: |
571 | | - continue |
572 | | - dt64_to_dtstruct(stamps[i] + deltas[pos[i]], &dts) |
573 | | - curr_reso = _reso_stamp(&dts) |
574 | | - if curr_reso < reso: |
575 | | - reso = curr_reso |
576 | | - |
577 | | - return reso |
578 | | - |
579 | | - |
| 486 | +# ----------------------------------------------------------------------- |
580 | 487 | # period helpers |
581 | 488 |
|
| 489 | + |
582 | 490 | cdef ndarray[int64_t] localize_dt64arr_to_period(ndarray[int64_t] stamps, |
583 | 491 | int freq, object tz): |
584 | 492 | cdef: |
@@ -1191,7 +1099,7 @@ class Period(_Period): |
1191 | 1099 |
|
1192 | 1100 | if freq is None: |
1193 | 1101 | try: |
1194 | | - freq = frequencies.Resolution.get_freq(reso) |
| 1102 | + freq = Resolution.get_freq(reso) |
1195 | 1103 | except KeyError: |
1196 | 1104 | raise ValueError( |
1197 | 1105 | "Invalid frequency or could not infer: %s" % reso) |
@@ -1236,7 +1144,7 @@ def _quarter_to_myear(year, quarter, freq): |
1236 | 1144 | if quarter <= 0 or quarter > 4: |
1237 | 1145 | raise ValueError('Quarter must be 1 <= q <= 4') |
1238 | 1146 |
|
1239 | | - mnum = tslib._MONTH_NUMBERS[tslib._get_rule_month(freq)] + 1 |
| 1147 | + mnum = _MONTH_NUMBERS[_get_rule_month(freq)] + 1 |
1240 | 1148 | month = (mnum + (quarter - 1) * 3) % 12 + 1 |
1241 | 1149 | if month > mnum: |
1242 | 1150 | year -= 1 |
|
0 commit comments