@@ -52,10 +52,10 @@ def test_groupby_with_timegrouper(self):
5252 assert_frame_equal (result1 , expected )
5353
5454 df_sorted = df .sort_index ()
55- result2 = df_sorted .groupby (pd .TimeGrouper (freq = '5D' )).sum ()
55+ result2 = df_sorted .groupby (pd .Grouper (freq = '5D' )).sum ()
5656 assert_frame_equal (result2 , expected )
5757
58- result3 = df .groupby (pd .TimeGrouper (freq = '5D' )).sum ()
58+ result3 = df .groupby (pd .Grouper (freq = '5D' )).sum ()
5959 assert_frame_equal (result3 , expected )
6060
6161 def test_groupby_with_timegrouper_methods (self ):
@@ -80,7 +80,7 @@ def test_groupby_with_timegrouper_methods(self):
8080
8181 for df in [df_original , df_sorted ]:
8282 df = df .set_index ('Date' , drop = False )
83- g = df .groupby (pd .TimeGrouper ( '6M' ))
83+ g = df .groupby (pd .Grouper ( freq = '6M' ))
8484 assert g .group_keys
8585 assert isinstance (g .grouper , pd .core .groupby .BinGrouper )
8686 groups = g .groups
@@ -265,11 +265,11 @@ def test_timegrouper_with_reg_groups(self):
265265 ['date' , 'user_id' ]).sort_index ().astype ('int64' )
266266 expected .name = 'whole_cost'
267267
268- result1 = df .sort_index ().groupby ([pd .TimeGrouper (freq = freq ),
268+ result1 = df .sort_index ().groupby ([pd .Grouper (freq = freq ),
269269 'user_id' ])['whole_cost' ].sum ()
270270 assert_series_equal (result1 , expected )
271271
272- result2 = df .groupby ([pd .TimeGrouper (freq = freq ), 'user_id' ])[
272+ result2 = df .groupby ([pd .Grouper (freq = freq ), 'user_id' ])[
273273 'whole_cost' ].sum ()
274274 assert_series_equal (result2 , expected )
275275
@@ -340,7 +340,7 @@ def sumfunc_series(x):
340340 return pd .Series ([x ['value' ].sum ()], ('sum' ,))
341341
342342 expected = df .groupby (pd .Grouper (key = 'date' )).apply (sumfunc_series )
343- result = (df_dt .groupby (pd .TimeGrouper (freq = 'M' , key = 'date' ))
343+ result = (df_dt .groupby (pd .Grouper (freq = 'M' , key = 'date' ))
344344 .apply (sumfunc_series ))
345345 assert_frame_equal (result .reset_index (drop = True ),
346346 expected .reset_index (drop = True ))
@@ -358,8 +358,10 @@ def sumfunc_value(x):
358358 return x .value .sum ()
359359
360360 expected = df .groupby (pd .Grouper (key = 'date' )).apply (sumfunc_value )
361- result = (df_dt .groupby (pd .TimeGrouper (freq = 'M' , key = 'date' ))
362- .apply (sumfunc_value ))
361+ with tm .assert_produces_warning (FutureWarning ,
362+ check_stacklevel = False ):
363+ result = (df_dt .groupby (pd .TimeGrouper (freq = 'M' , key = 'date' ))
364+ .apply (sumfunc_value ))
363365 assert_series_equal (result .reset_index (drop = True ),
364366 expected .reset_index (drop = True ))
365367
@@ -617,7 +619,7 @@ def test_nunique_with_timegrouper_and_nat(self):
617619 Timestamp ('2016-06-28 16:46:28' )],
618620 'data' : ['1' , '2' , '3' ]})
619621
620- grouper = pd .TimeGrouper (key = 'time' , freq = 'h' )
622+ grouper = pd .Grouper (key = 'time' , freq = 'h' )
621623 result = test .groupby (grouper )['data' ].nunique ()
622624 expected = test [test .time .notnull ()].groupby (grouper )['data' ].nunique ()
623625 tm .assert_series_equal (result , expected )
0 commit comments