|
1 | 1 | """ |
2 | 2 | Routines for casting. |
3 | 3 | """ |
| 4 | + |
| 5 | +from __future__ import annotations |
| 6 | + |
4 | 7 | from contextlib import suppress |
5 | 8 | from datetime import datetime, timedelta |
6 | 9 | from typing import ( |
@@ -114,12 +117,11 @@ def is_nested_object(obj) -> bool: |
114 | 117 | This may not be necessarily be performant. |
115 | 118 |
|
116 | 119 | """ |
117 | | - if isinstance(obj, ABCSeries) and is_object_dtype(obj.dtype): |
118 | | - |
119 | | - if any(isinstance(v, ABCSeries) for v in obj._values): |
120 | | - return True |
121 | | - |
122 | | - return False |
| 120 | + return bool( |
| 121 | + isinstance(obj, ABCSeries) |
| 122 | + and is_object_dtype(obj.dtype) |
| 123 | + and any(isinstance(v, ABCSeries) for v in obj._values) |
| 124 | + ) |
123 | 125 |
|
124 | 126 |
|
125 | 127 | def maybe_box_datetimelike(value: Scalar, dtype: Optional[Dtype] = None) -> Scalar: |
@@ -707,8 +709,8 @@ def infer_dtype_from_scalar(val, pandas_dtype: bool = False) -> Tuple[DtypeObj, |
707 | 709 |
|
708 | 710 | # a 1-element ndarray |
709 | 711 | if isinstance(val, np.ndarray): |
710 | | - msg = "invalid ndarray passed to infer_dtype_from_scalar" |
711 | 712 | if val.ndim != 0: |
| 713 | + msg = "invalid ndarray passed to infer_dtype_from_scalar" |
712 | 714 | raise ValueError(msg) |
713 | 715 |
|
714 | 716 | dtype = val.dtype |
@@ -976,7 +978,7 @@ def astype_dt64_to_dt64tz( |
976 | 978 | result = result.copy() |
977 | 979 | return result |
978 | 980 |
|
979 | | - elif values.tz is not None and not aware: |
| 981 | + elif values.tz is not None: |
980 | 982 | result = values.tz_convert("UTC").tz_localize(None) |
981 | 983 | if copy: |
982 | 984 | result = result.copy() |
@@ -1574,7 +1576,7 @@ def find_common_type(types: List[DtypeObj]) -> DtypeObj: |
1574 | 1576 | numpy.find_common_type |
1575 | 1577 |
|
1576 | 1578 | """ |
1577 | | - if len(types) == 0: |
| 1579 | + if not types: |
1578 | 1580 | raise ValueError("no types given") |
1579 | 1581 |
|
1580 | 1582 | first = types[0] |
@@ -1853,12 +1855,16 @@ def validate_numeric_casting(dtype: np.dtype, value: Scalar) -> None: |
1853 | 1855 | ------ |
1854 | 1856 | ValueError |
1855 | 1857 | """ |
1856 | | - if issubclass(dtype.type, (np.integer, np.bool_)): |
1857 | | - if is_float(value) and np.isnan(value): |
1858 | | - raise ValueError("Cannot assign nan to integer series") |
| 1858 | + if ( |
| 1859 | + issubclass(dtype.type, (np.integer, np.bool_)) |
| 1860 | + and is_float(value) |
| 1861 | + and np.isnan(value) |
| 1862 | + ): |
| 1863 | + raise ValueError("Cannot assign nan to integer series") |
1859 | 1864 |
|
1860 | | - if issubclass(dtype.type, (np.integer, np.floating, complex)) and not issubclass( |
1861 | | - dtype.type, np.bool_ |
| 1865 | + if ( |
| 1866 | + issubclass(dtype.type, (np.integer, np.floating, complex)) |
| 1867 | + and not issubclass(dtype.type, np.bool_) |
| 1868 | + and is_bool(value) |
1862 | 1869 | ): |
1863 | | - if is_bool(value): |
1864 | | - raise ValueError("Cannot assign bool to float/integer series") |
| 1870 | + raise ValueError("Cannot assign bool to float/integer series") |
0 commit comments