|
1 | | -from .pandas_vb_common import * |
| 1 | +from datetime import datetime |
2 | 2 |
|
| 3 | +import numpy as np |
| 4 | +import pandas.util.testing as tm |
| 5 | +from pandas import Series, date_range, NaT |
3 | 6 |
|
4 | | -class series_constructor_no_data_datetime_index(object): |
5 | | - goal_time = 0.2 |
6 | | - |
7 | | - def setup(self): |
8 | | - self.dr = pd.date_range( |
9 | | - start=datetime(2015,10,26), |
10 | | - end=datetime(2016,1,1), |
11 | | - freq='50s' |
12 | | - ) # ~100k long |
13 | | - |
14 | | - def time_series_constructor_no_data_datetime_index(self): |
15 | | - Series(data=None, index=self.dr) |
16 | | - |
17 | | - |
18 | | -class series_constructor_dict_data_datetime_index(object): |
19 | | - goal_time = 0.2 |
20 | | - |
21 | | - def setup(self): |
22 | | - self.dr = pd.date_range( |
23 | | - start=datetime(2015, 10, 26), |
24 | | - end=datetime(2016, 1, 1), |
25 | | - freq='50s' |
26 | | - ) # ~100k long |
27 | | - self.data = {d: v for d, v in zip(self.dr, range(len(self.dr)))} |
| 7 | +from .pandas_vb_common import setup # noqa |
28 | 8 |
|
29 | | - def time_series_constructor_no_data_datetime_index(self): |
30 | | - Series(data=self.data, index=self.dr) |
31 | 9 |
|
| 10 | +class SeriesConstructor(object): |
32 | 11 |
|
33 | | -class series_isin_int64(object): |
34 | 12 | goal_time = 0.2 |
| 13 | + params = [None, 'dict'] |
| 14 | + param_names = ['data'] |
35 | 15 |
|
36 | | - def setup(self): |
37 | | - self.s3 = Series(np.random.randint(1, 10, 100000)).astype('int64') |
38 | | - self.s4 = Series(np.random.randint(1, 100, 10000000)).astype('int64') |
39 | | - self.values = [1, 2] |
| 16 | + def setup(self, data): |
| 17 | + self.idx = date_range(start=datetime(2015, 10, 26), |
| 18 | + end=datetime(2016, 1, 1), |
| 19 | + freq='50s') |
| 20 | + dict_data = dict(zip(self.idx, range(len(self.idx)))) |
| 21 | + self.data = None if data is None else dict_data |
40 | 22 |
|
41 | | - def time_series_isin_int64(self): |
42 | | - self.s3.isin(self.values) |
| 23 | + def time_constructor(self, data): |
| 24 | + Series(data=self.data, index=self.idx) |
43 | 25 |
|
44 | | - def time_series_isin_int64_large(self): |
45 | | - self.s4.isin(self.values) |
46 | 26 |
|
| 27 | +class IsIn(object): |
47 | 28 |
|
48 | | -class series_isin_object(object): |
49 | 29 | goal_time = 0.2 |
| 30 | + params = ['int64', 'object'] |
| 31 | + param_names = ['dtype'] |
50 | 32 |
|
51 | | - def setup(self): |
52 | | - self.s3 = Series(np.random.randint(1, 10, 100000)).astype('int64') |
| 33 | + def setup(self, dtype): |
| 34 | + self.s = Series(np.random.randint(1, 10, 100000)).astype(dtype) |
53 | 35 | self.values = [1, 2] |
54 | | - self.s4 = self.s3.astype('object') |
55 | 36 |
|
56 | | - def time_series_isin_object(self): |
57 | | - self.s4.isin(self.values) |
| 37 | + def time_isin(self, dtypes): |
| 38 | + self.s.isin(self.values) |
58 | 39 |
|
59 | 40 |
|
60 | | -class series_nlargest1(object): |
61 | | - goal_time = 0.2 |
62 | | - |
63 | | - def setup(self): |
64 | | - self.s1 = Series(np.random.randn(10000)) |
65 | | - self.s2 = Series(np.random.randint(1, 10, 10000)) |
66 | | - self.s3 = Series(np.random.randint(1, 10, 100000)).astype('int64') |
67 | | - self.values = [1, 2] |
68 | | - self.s4 = self.s3.astype('object') |
69 | | - |
70 | | - def time_series_nlargest1(self): |
71 | | - self.s1.nlargest(3, keep='last') |
72 | | - self.s1.nlargest(3, keep='first') |
73 | | - |
| 41 | +class NSort(object): |
74 | 42 |
|
75 | | -class series_nlargest2(object): |
76 | 43 | goal_time = 0.2 |
| 44 | + params = ['last', 'first'] |
| 45 | + param_names = ['keep'] |
77 | 46 |
|
78 | | - def setup(self): |
79 | | - self.s1 = Series(np.random.randn(10000)) |
80 | | - self.s2 = Series(np.random.randint(1, 10, 10000)) |
81 | | - self.s3 = Series(np.random.randint(1, 10, 100000)).astype('int64') |
82 | | - self.values = [1, 2] |
83 | | - self.s4 = self.s3.astype('object') |
84 | | - |
85 | | - def time_series_nlargest2(self): |
86 | | - self.s2.nlargest(3, keep='last') |
87 | | - self.s2.nlargest(3, keep='first') |
| 47 | + def setup(self, keep): |
| 48 | + self.s = Series(np.random.randint(1, 10, 100000)) |
88 | 49 |
|
| 50 | + def time_nlargest(self, keep): |
| 51 | + self.s.nlargest(3, keep=keep) |
89 | 52 |
|
90 | | -class series_nsmallest2(object): |
91 | | - goal_time = 0.2 |
| 53 | + def time_nsmallest(self, keep): |
| 54 | + self.s.nsmallest(3, keep=keep) |
92 | 55 |
|
93 | | - def setup(self): |
94 | | - self.s1 = Series(np.random.randn(10000)) |
95 | | - self.s2 = Series(np.random.randint(1, 10, 10000)) |
96 | | - self.s3 = Series(np.random.randint(1, 10, 100000)).astype('int64') |
97 | | - self.values = [1, 2] |
98 | | - self.s4 = self.s3.astype('object') |
99 | 56 |
|
100 | | - def time_series_nsmallest2(self): |
101 | | - self.s2.nsmallest(3, keep='last') |
102 | | - self.s2.nsmallest(3, keep='first') |
| 57 | +class Dropna(object): |
103 | 58 |
|
104 | | - |
105 | | -class series_dropna_int64(object): |
106 | 59 | goal_time = 0.2 |
107 | | - |
108 | | - def setup(self): |
109 | | - self.s = Series(np.random.randint(1, 10, 1000000)) |
110 | | - |
111 | | - def time_series_dropna_int64(self): |
| 60 | + params = ['int', 'datetime'] |
| 61 | + param_names = ['dtype'] |
| 62 | + |
| 63 | + def setup(self, dtype): |
| 64 | + N = 10**6 |
| 65 | + data = {'int': np.random.randint(1, 10, N), |
| 66 | + 'datetime': date_range('2000-01-01', freq='S', periods=N)} |
| 67 | + self.s = Series(data[dtype]) |
| 68 | + if dtype == 'datetime': |
| 69 | + self.s[np.random.randint(1, N, 100)] = NaT |
| 70 | + |
| 71 | + def time_dropna(self, dtype): |
112 | 72 | self.s.dropna() |
113 | 73 |
|
114 | 74 |
|
115 | | -class series_dropna_datetime(object): |
116 | | - goal_time = 0.2 |
117 | | - |
118 | | - def setup(self): |
119 | | - self.s = Series(pd.date_range('2000-01-01', freq='S', periods=1000000)) |
120 | | - self.s[np.random.randint(1, 1000000, 100)] = pd.NaT |
121 | | - |
122 | | - def time_series_dropna_datetime(self): |
123 | | - self.s.dropna() |
124 | | - |
| 75 | +class Map(object): |
125 | 76 |
|
126 | | -class series_map_dict(object): |
127 | 77 | goal_time = 0.2 |
| 78 | + params = ['dict', 'Series'] |
| 79 | + param_names = 'mapper' |
128 | 80 |
|
129 | | - def setup(self): |
| 81 | + def setup(self, mapper): |
130 | 82 | map_size = 1000 |
| 83 | + map_data = Series(map_size - np.arange(map_size)) |
| 84 | + self.map_data = map_data if mapper == 'Series' else map_data.to_dict() |
131 | 85 | self.s = Series(np.random.randint(0, map_size, 10000)) |
132 | | - self.map_dict = {i: map_size - i for i in range(map_size)} |
133 | 86 |
|
134 | | - def time_series_map_dict(self): |
135 | | - self.s.map(self.map_dict) |
| 87 | + def time_map(self, mapper): |
| 88 | + self.s.map(self.map_data) |
136 | 89 |
|
137 | 90 |
|
138 | | -class series_map_series(object): |
139 | | - goal_time = 0.2 |
| 91 | +class Clip(object): |
140 | 92 |
|
141 | | - def setup(self): |
142 | | - map_size = 1000 |
143 | | - self.s = Series(np.random.randint(0, map_size, 10000)) |
144 | | - self.map_series = Series(map_size - np.arange(map_size)) |
145 | | - |
146 | | - def time_series_map_series(self): |
147 | | - self.s.map(self.map_series) |
148 | | - |
149 | | - |
150 | | -class series_clip(object): |
151 | 93 | goal_time = 0.2 |
152 | 94 |
|
153 | 95 | def setup(self): |
154 | | - self.s = pd.Series(np.random.randn(50)) |
| 96 | + self.s = Series(np.random.randn(50)) |
155 | 97 |
|
156 | | - def time_series_dropna_datetime(self): |
| 98 | + def time_clip(self): |
157 | 99 | self.s.clip(0, 1) |
158 | 100 |
|
159 | 101 |
|
160 | | -class series_value_counts(object): |
161 | | - goal_time = 0.2 |
| 102 | +class ValueCounts(object): |
162 | 103 |
|
163 | | - def setup(self): |
164 | | - self.s = Series(np.random.randint(0, 1000, size=100000)) |
165 | | - self.s2 = self.s.astype(float) |
| 104 | + goal_time = 0.2 |
| 105 | + params = ['int', 'float', 'object'] |
| 106 | + param_names = ['dtype'] |
166 | 107 |
|
167 | | - self.K = 1000 |
168 | | - self.N = 100000 |
169 | | - self.uniques = tm.makeStringIndex(self.K).values |
170 | | - self.s3 = Series(np.tile(self.uniques, (self.N // self.K))) |
| 108 | + def setup(self, dtype): |
| 109 | + self.s = Series(np.random.randint(0, 1000, size=100000)).astype(dtype) |
171 | 110 |
|
172 | | - def time_value_counts_int64(self): |
| 111 | + def time_value_counts(self, dtype): |
173 | 112 | self.s.value_counts() |
174 | 113 |
|
175 | | - def time_value_counts_float64(self): |
176 | | - self.s2.value_counts() |
177 | | - |
178 | | - def time_value_counts_strings(self): |
179 | | - self.s.value_counts() |
180 | 114 |
|
| 115 | +class Dir(object): |
181 | 116 |
|
182 | | -class series_dir(object): |
183 | 117 | goal_time = 0.2 |
184 | 118 |
|
185 | 119 | def setup(self): |
|
0 commit comments