@@ -927,16 +927,17 @@ def max(self, axis=None, skipna=True, *args, **kwargs):
927927 nv .validate_max (args , kwargs )
928928 return nanops .nanmax (self ._values , skipna = skipna )
929929
930+ @doc (op = "max" , oppose = "min" , value = "largest" )
930931 def argmax (self , axis = None , skipna = True , * args , ** kwargs ):
931932 """
932- Return int position of the largest value in the Series.
933+ Return int position of the {value} value in the Series.
933934
934- If the maximum is achieved in multiple locations,
935+ If the {op}imum is achieved in multiple locations,
935936 the first row position is returned.
936937
937938 Parameters
938939 ----------
939- axis : {None}
940+ axis : {{ None} }
940941 Dummy argument for consistency with Series.
941942 skipna : bool, default True
942943 Exclude NA/null values when showing the result.
@@ -946,21 +947,22 @@ def argmax(self, axis=None, skipna=True, *args, **kwargs):
946947 Returns
947948 -------
948949 int
949- Row position of the maximum values .
950+ Row position of the {op}imum value .
950951
951952 See Also
952953 --------
953- numpy.ndarray.argmax : Equivalent method for numpy arrays.
954- Series.argmin : Similar method, but returning the minimum.
954+ Series.arg{op} : Return position of the {op}imum value.
955+ Series.arg{oppose} : Return position of the {oppose}imum value.
956+ numpy.ndarray.arg{op} : Equivalent method for numpy arrays.
955957 Series.idxmax : Return index label of the maximum values.
956958 Series.idxmin : Return index label of the minimum values.
957959
958960 Examples
959961 --------
960962 Consider dataset containing cereal calories
961963
962- >>> s = pd.Series({'Corn Flakes': 100.0, 'Almond Delight': 110.0,
963- ... 'Cinnamon Toast Crunch': 120.0, 'Cocoa Puff': 110.0})
964+ >>> s = pd.Series({{ 'Corn Flakes': 100.0, 'Almond Delight': 110.0,
965+ ... 'Cinnamon Toast Crunch': 120.0, 'Cocoa Puff': 110.0}} )
964966 >>> s
965967 Corn Flakes 100.0
966968 Almond Delight 110.0
@@ -970,8 +972,11 @@ def argmax(self, axis=None, skipna=True, *args, **kwargs):
970972
971973 >>> s.argmax()
972974 2
975+ >>> s.argmin()
976+ 0
973977
974- The maximum cereal calories is in the third element,
978+ The maximum cereal calories is the third element and
979+ the minimum cereal calories is the first element,
975980 since series is zero-indexed.
976981 """
977982 nv .validate_minmax_axis (axis )
@@ -1019,25 +1024,8 @@ def min(self, axis=None, skipna=True, *args, **kwargs):
10191024 nv .validate_min (args , kwargs )
10201025 return nanops .nanmin (self ._values , skipna = skipna )
10211026
1027+ @doc (argmax , op = "min" , oppose = "max" , value = "smallest" )
10221028 def argmin (self , axis = None , skipna = True , * args , ** kwargs ):
1023- """
1024- Return a ndarray of the minimum argument indexer.
1025-
1026- Parameters
1027- ----------
1028- axis : {None}
1029- Dummy argument for consistency with Series.
1030- skipna : bool, default True
1031-
1032- Returns
1033- -------
1034- numpy.ndarray
1035-
1036- See Also
1037- --------
1038- numpy.ndarray.argmin : Return indices of the minimum values along
1039- the given axis.
1040- """
10411029 nv .validate_minmax_axis (axis )
10421030 nv .validate_argmax_with_skipna (skipna , args , kwargs )
10431031 return nanops .nanargmin (self ._values , skipna = skipna )
0 commit comments