diff --git a/img/100_random_walk.png b/img/100_random_walk.png new file mode 100644 index 0000000..4b56141 Binary files /dev/null and b/img/100_random_walk.png differ diff --git a/img/pascal.svg b/img/pascal.svg new file mode 100644 index 0000000..28957a9 --- /dev/null +++ b/img/pascal.svg @@ -0,0 +1,96 @@ + +{\displaystyle {\begin{array}{c}1\\1\quad 1\\1\quad 2\quad 1\\1\quad 3\quad 3\quad 1\\1\quad 4\quad 6\quad 4\quad 1\\1\quad 5\quad 10\quad 10\quad 5\quad 1\\1\quad 6\quad 15\quad 20\quad 15\quad 6\quad 1\\1\quad 7\quad 21\quad 35\quad 35\quad 21\quad 7\quad 1\\\end{array}}} + + + \ No newline at end of file diff --git a/img/pascal_combination.svg b/img/pascal_combination.svg new file mode 100644 index 0000000..8abd8e9 --- /dev/null +++ b/img/pascal_combination.svg @@ -0,0 +1,189 @@ + +{\displaystyle {\begin{array}{c}{\binom {0}{0}}\\{\binom {1}{0}}\quad {\binom {1}{1}}\\{\binom {2}{0}}\quad {\binom {2}{1}}\quad {\binom {2}{2}}\\{\binom {3}{0}}\quad {\binom {3}{1}}\quad {\binom {3}{2}}\quad {\binom {3}{3}}\\{\binom {4}{0}}\quad {\binom {4}{1}}\quad {\binom {4}{2}}\quad {\binom {4}{3}}\quad {\binom {4}{4}}\\{\binom {5}{0}}\quad {\binom {5}{1}}\quad {\binom {5}{2}}\quad {\binom {5}{3}}\quad {\binom {5}{4}}\quad {\binom {5}{5}}\end{array}}} + + + \ No newline at end of file diff --git a/img/random_walk.png b/img/random_walk.png new file mode 100644 index 0000000..4a067b4 Binary files /dev/null and b/img/random_walk.png differ diff --git a/projects/khayyam.html b/projects/khayyam.html new file mode 100644 index 0000000..4bab533 --- /dev/null +++ b/projects/khayyam.html @@ -0,0 +1,86 @@ + + + + + + Patrick Stetz + + + + + + + + + + + + +
+
+ +
+
+
+

Random Walk

+

Written: June 2023 (Github)

+ +

Introduction

+
+

A random walk is the path followed when each individual movement is probablistic. We can simulate this by saying for each time increment, there is a 50% chance of moving up and a 50% chance of moving down. An example of this is given below

+
+ +
+
+

However the above is one of only many possibilities, we can add more simulations

+
+
+
+ +
+ +
+
+ +
+
+

\[ {N \choose r + 1} - {N \choose r} = \frac{N!}{r! (N-r)!} \frac{N - 2r - 1}{r + 1} = {N \choose r} \frac{N - 2r - 1}{r + 1} \]

+

\[ {N \choose r + 1}( \frac{N - 1}{2} - (r + 1) ) - {N \choose r} ( \frac{N - 1}{2} - r ) = {N \choose r + 1} [ \frac{(N - 2r - 1)^2}{2(N - r)} - 1 ] \]

+

\[ r_{crt} = \frac{(2N - 3) \pm \sqrt{5 + 4N} }{4} \]

+

As \( N \rightarrow \infty \), we can see how far away from the midpoint the inflection point moves.

+

\[ \lim_{N \to \infty} (\frac{N - 1}{2} - r_{crt}) = \frac{\sqrt{N}}{2} \]

+

So in the large N limit, the inflection point happens from \( \pm \frac{\sqrt{N}}{2} \) of the midpoint. It is natural to expect that most random paths will be within this range. In fact the RMS deviation for a random walk is \( \sqrt{N} \)

+
+
+
+
+ + + + + +