diff --git a/face_detect.py b/face_detect.py index 247a4d1..91c50af 100755 --- a/face_detect.py +++ b/face_detect.py @@ -1,4 +1,33 @@ -""" Experiment with face detection and image filtering using OpenCV """ - +import numpy as np import cv2 -import numpy as np \ No newline at end of file + +cap = cv2.VideoCapture(0) + +face_cascade = cv2.CascadeClassifier('/home/andrewholmes/haarcascade_frontalface_alt.xml') + +kernel = np.ones((41,41),'uint8') + +while(True): + # Capture frame-by-frame + ret, frame = cap.read() + faces = face_cascade.detectMultiScale(frame, scaleFactor=1.2, minSize=(20,20)) + for (x,y,w,h) in faces: + frame[y:y+h,x:x+w,:] = cv2.dilate(frame[y:y+h,x:x+w,:], kernel) + cv2.circle(frame, (x+w/3,y+h/3), 30, (255,255,255), -1) + cv2.circle(frame, (x+2*w/3,y+h/3), 30, (255,255,255), -1) + cv2.circle(frame, (x+w/3,y+h/3+15), 15, (0,0,0), -1) + cv2.circle(frame, (x+2*w/3,y+h/3-8), 15, (0,0,0), -1) + cv2.ellipse(frame, (x+w/2,y+2*h/3,), (50,70),0,0,180,(0,0,0),-1) + cv2.ellipse(frame, (x+w/2,y+2*h/3,), (50,70),0,0,180,(0,0,0),-1) + cv2.ellipse(frame, (x+w/2,y+2*h/3,), (25,70),0,0,180,(180,105,255),-1) + #cv2.rectangle(frame,(x,y),(x+w,y+h),(0,0,255)) + + # Display the resulting frame + cv2.imshow('frame',frame) + if cv2.waitKey(1) & 0xFF == ord('q'): + break + +# When everything done, release the capture +cap.release() +cv2.destroyAllWindows() +