Polyscripting
Applying Moving Target Defense cybersecurity tactics to
programming languages.

>OLY VERSE

Blue Gaston, Software Engineer
Bellevue, WA
2018

When it comes to programming, it is important to accept an essential fundamental truth: every piece
of software is hackable. Ultimately, this means everyone is vulnerable. Given enough time and
resources, a vulnerability can always be found and an exploit can be crafted. What makes this attractive
to a malicious actor is that a crafted attack can be applied across a wide surface area. With any given
vulnerability, a hacker is able to execute an exploit across a range of machines that meet the criteria
defined by a presupposed, assumed, and known attack vector. The effort-to-reward ratio is in their
favor.

Exploits are cheap and widely available. While it is incredibly expensive to craft an exploit for every
vulnerability, they can be built once and sold many times over because of the homogeneity of
programs. Everyone runs the same programs, operating systems, machines, languages and databases.
This includes those concocting attacks. This sort of identical access provides an advantageous
roadmap to build malicious exploits, to find vulnerabilities and to carefully craft attacks that can be
used at a large scale. It presents difficult problems and powerful opportunities within the security
space.

Moving Target Defense (MTD) offers a solution that draws its inspiration from nature.

Genetic diversity is both a key to, and a result of the survival and evolution of organisms. All members
of a population do not share the exact genetic makeup. If every human was a clone, the first deadly
disease that came along would affect each individual the same way, essentially wiping out the human
race. Think of a disease like a malicious hack. It needs to propagate and interact with the host’s
defenses in a certain manner in order to effectively spread. If every human was genetically identical, a
disease able to successfully infect one person could similarly infect other humans with the same deadly
consequence. Yet, this is not the case with organisms. A disease that is deadly to one individual, may
not ail another with so much as a fever because of the diversity in their genetic makeup. The key here is
that everyone possess unique DNA, which is a key component to a species’ survival.

What if computer programs shared this quality of having their own unique genetic makeup? This is
the concept that MTD applies to cybersecurity. MTD is predicated on introducing unique
components between machines, programs, binaries, and languages, thus limiting exploitation to when
its makeup exactly matches the expected attack vector. As with infections, many attack vectors rely on
being able to access certain anchor points or data. MTD aims to rearrange these anchor points so that
an exploit is unable to adjust to nor account for the change, causing an attack to ultimately fail.

MTD is the practical application of nature’s genetic diversity to technology. It creates a program that
while identical in function, is entirely unique from any previous version of the program. For example,
Polyverse’s polymorphic version of Linux® is one such MTD solution. It relies on custom compilers to
generate unique binaries that allow for the constant rearrangement of the aforementioned anchor
points. By ‘scrambling’ these anchor points, the protected software programs and systems effectively
become immune to all but the most targeted of memory exploits. Simply put, a malicious actor must
choose to directly target your machine or server knowing that it is different from any with which they

1

may have previously interacted. In the case of systems running polymorphic versions of Linux and
adhering to a strategy of MTD, knowing that the attack vector, even if successfully enumerated, will
not stay the same for long is an invaluable asset. In other words, the application’s memory landscape is
a constantly shifting moving target, making exploitation significantly more difficult, resource
intensive, and time consuming.

The tactics the polymorphic versions of Linux applies to compilers, a concept dubbed “Polyscripting”
is now applying to language interpreters. Interpreted languages in web applications are ubiquitous and
are used for critical tasks, such as information storage and retrieval, as well as providing seamless
interactivity via an application’s UL These languages include PHP, JavaScript and SQL and provide
commonplace, easily identifiable, and exploitable areas of publicly distributed web applications. One
such exploitation is code injection attacks.

It is easy to point fingers when it comes to security breaches. Whether it’s deprecated legacy code, a
zero-day vulnerability, or a forgotten patch, people make mistakes and things happen. These breaches
continue to happen, even as the industry focuses on budding new technologies like artificial
intelligence, quantum computing, and blockchains in order to stay secure. SQL injection continues,
and WordPress vulnerabilities that allow code injection are being taken advantage of. Data is
consistently corrupted and stolen and ransomware is a constant plague on both the private and public
sectors.

Code injection is an incredibly powerful tool that hackers employ to accomplish their goals. Itis an
attack vector allowing a malicious actor to run their own code on a server or website belonging to a
separate entity. Often, it is used as a backdoor to access information or to change and to corrupt data.
Some of the most devastating breaches in history have relied on simple code injection. For example, the
Equifax breach relied on code that was injected through an unprotected deserialization call. There are
certain methods to meticulously guard against code injection, such as input sanitization, code signing
and whitelisting. Despite the techniques that exist to thwart code injection, such attacks continue to
occur at an increasingly alarming rate. September 2018 alone saw numerous noteworthy code
injection attacks:

® Scarma Labs published a white-paper before blackhat 2018 that described a PHP vulnerability that has gone
unpatched and unreported for over a year since they first notified various services of the issue, WordPress, the
most used CMS on the internet, as of a few weeks after the reports, had still not issued a fix for the vulnerability
which allows code injection.'

e A zero-day bug allowed hackers to access CCTV surveillance cameras, and subsequent code injection and remote
code execution allowed hackers to gain access to user accounts as well as change passwords.”

e A Remote Code Execution vulnerability existed in the widely popular Duplicator WordPress plugin that affected
many users, this was patched September 5th 2018.°

Needless to say, this exploit is hardly a thing of the past.

ps o o /385 - as-Tt's-A-PHP-

* heeps://threatpost.com/zero-day-bug-allows-hackers-to-access-cctv-surveillance-cameras/137499/
® https://www.wordfence.com/blog/2018/09/duplicator-update-patches-remote-code-execution-flaw/

https://cdn2.hubspot.net/hubfs/3853213/us-18-Thomas-It's-A-PHP-Unserialization-Vulnerability-Jim-But-Not-As-We-....pdf
https://cdn2.hubspot.net/hubfs/3853213/us-18-Thomas-It's-A-PHP-Unserialization-Vulnerability-Jim-But-Not-As-We-....pdf
https://threatpost.com/zero-day-bug-allows-hackers-to-access-cctv-surveillance-cameras/137499/
https://www.wordfence.com/blog/2018/09/duplicator-update-patches-remote-code-execution-flaw/

Equifax is probably the most potent example of code injection that led to an incredibly devastating
remote code execution attack. This mega-breach resulted in potentially 143 million Americans’ most
sensitive personal information being exposed. Equifax utilized Apache Strut’s as its framework for
creating Java web applications. The parser this uses—Jakarta—contained the security flaw. This flaw
was patched prior to the breach, but the patch was never applied.

The Jakarta parser had a feature that allows you to deserialize XML into Java objects. A simplified
version looks like this:

class="io.polyverse.Person”
"Name"
"City"

All someone had to do was try to instantiate an internal object:

class="java.system.Exec"
"Command"
"Params"

The Struts vulnerability allowed any and all objects to be instantiated by default when no
whitelist/blacklist was provided. The hackers were able to inject code and execute it remotely.

This is part of a practice that Polyverse calls DevSecOps. Safe defaults by developers that prevent
dangerous execution paths from being followed. The aforementioned flaw was widely exploited
despite a corrective patch being published the same day the vulnerability was announced to the public.
An extreme, but all too real example of someone capitalizing on an exploit of this nature.

Rather than endlessly stressing about patching and attempting to juggle all of the vulnerabilities
exposed via your application’s attack surface, Polyscripting removes the prerequisite mechanics that
allow such attacks to occur. This ensures that even when safeguards prove ineffective, the attack vector
was previously undiscovered, or a patch was not applied in a timely manner, the attack will simply not
work.

Applying the idea of Moving Target Defense, the question to ask is what kind of homogeneity allows
for malicious code injection? What makes code injection and remote code execution possible as a
whole? What information does a malicious actor have to gather that allows them to exploit a third
party’s assets?

There are two assumptions made during this kind of attack: First, that malicious code can be injected
into the system, and second, that the malicious code can be remotely executed.

Polyscripting negates that second assumption. Today, remote code execution and code injection
attacks are possible because a hacker can write injectable code, upload it to a server, and execute it. In
this scenario, the server understands the hacker’s code in the exact same way it understands valid code
because they are written in the same language, with the same syntax. This allows the attacker to derive
value from the injection. The hacker’s roadmap relies on the successful execution of their code. If a
server contains a PHP interpreter, then it has the capacity to parse and execute any PHP code.

What if that wasn’t the case? If a server was unable to execute injected code, then this attack vector as a
whole would be rendered ineffective. Without impacting functionality, Polyscripting gives each
website a unique instance of a programming language. This kind of diversity renders that second
crucial assumption, that the attacker will be able to execute the code they have injected, false.

Polyscripting takes a programming language and scrambles (explained later, but understanding
scrambling as randomization will suffice for now) the syntax and grammar within the source for that
language before the interpreter is compiled. The output is a dictionary that is used to transform all
necessary source code before it runs in production. This results in an application that has its own
unique implementation of a language, as well as the matching interpreter. The new interpreter no
longer understands the original syntax and grammar of the original language. It will only execute the
source code that matches the newly generated unique interpreter. Additionally, this process can be
repeated on demand, adding additional layers of defense, making time an ally to a system’s defenses
through the use of regular intervals at which the interpreter and source code undergo polyscripting.
This process emulates a moving target, remapping the application’s address space so frequently that
proper enumeration, crafting, and execution of an exploit becomes impractically difficult. This schews
the effort-to-reward ratio so that it is no longer in a hacker’s favor.

It comes down to cause and effect. Whether the cause of code injection is exploiting broken
deserialization methods, a legacy vulnerability in a plugin, or an unknown language vulnerability, the
responsibility to guard against these falls on the programmer. However, hackers are creative, and even
the “most securely written” of programs get hacked. Just look at Facebook, Playstation, Equifax or
Target. All companies with massive security teams that genuinely put in the research, time, and effort
to stop the cause of these attacks, yet they still happen. Polyscripting is a way to stop this effect.
Normally, the effect of a successful code injection attack would be the execution of the malicious code,
with Polyscripting a syntax error gets thrown and no malicious code is run; stopping the malicious
effect.

In a basic workflow for a standard website running PHP, the PHP interpreter is compiled and loaded
onto the web server. The website’s source code is also pushed to the same server. The PHP interpreter
then parses and interprets the source code before sending the result elsewhere: to a user, browser,
database, etc.

At a very basic level, this is a two-step process:

Source

Php

| Interpreter |

| @ |

=

Website Root Folder

Y

|

Website Source Code

Deployment

Polyscripting only adds one additional layer to this deployment process. The PHP source code gets
scrambled to the polyscripted version and the websites source code gets scrambled to match the
unique instance of PHP that was generated. The interpreter for the language (PHP) is changed at
compile time and, ideally, the scrambled dictionary is only accessed and only exists before being

deployed to a web server.

Scrambler

®hp

Source

Transform
Instructions

Website Root Folder

Transformer

Deployment

The process of scrambling a language is beautifully simple. The make-up of a programming language is
contained within its syntax and grammar. The keywords and syntax of a language are defined and
compiled to make up the words and ordering of word-tokens that a language understands. Programs
are then parsed based on this lexical syntax to generate the grammar the further defines a language.

The values of the keywords themselves are
arbitrary in any given language. Keywords
are defined for the convenience of those

as - . GBkxiVw writ;ng the code. If you think oﬁ these

words as just a means to write a language,
eval yrS FSQ the Valuei themselves are random. \%Vhegre
extends —— EFI KYZJ oWraK “echo” is defined in the lexical grammar, a
for —_— ENCdPd replacement could be defined with any

randomized value. If you replace “echo” in
foreach tVIGNMOD the lex file with “foo”y and t}I:en run the
function —— J loT Eg RX code: foo “hello world,” it will echo the
isset KvCeJT string given. However if you try to run the

) code: echo “hello world”, a syntax error will

while - leWyB Pn be thrown. The language no longer

understands “echo”, but treats the
command “foo” as it would previously have
treated “echo”.

The first step of Polyscripting is to replace all the keywords within a lex file and scramble them to
randomized strings. Since the source code will only run scrambled on the deployment server, the
development code will all be written in the standard language. During the process of scrambling, a
dictionary will also be built with the instructions to transform the source code to the matching
scramble.

<ST_IN_SCRIPTING>"require_once" { <ST_IN_SCRIPTING>"DjOoLJi" {
RETURN_TOKEN(T_REQUIRE_ONCE); RETURN_TOKEN(T_REQUIRE_ONCE);
} }
Th It of bline these k 4 <ST_IN_SCRIPTING>"namespace" { <ST_IN_SCRIPTING>"DVFXKKF" {
€ result of scrambling these keywords RETURN_TOKEN(T_NAMESPACE); RETURN_TOKEN(T_NAMESPACE);
is a language interpreter that understands ~ } } _
.]] <ST_IN_SCRIPTING>"use" { <ST_IN_SCRIPTING>"nhZjBhADI" {
only unique strings as its reserved RETURN_TOKEN(T_USE); RETURN_TOKEN(T_USE);
; } }
keywords. Whlle no l.or.lger <ST_IN_SCRIPTING>"insteadof" { <ST_IN_SCRIPTING>"6EvjMu" {
understanding the original keywords. RETURN_TOKEN(T_INSTEADOF); RETURN_TOKEN(T_INSTEADOF);
« » . } }
Use” is now an unparsable command, <ST_IN_SCRIPTING>"global" { <ST_IN_SCRIPTING>"RrWrdyPApXtLc" {
but nhZjBhADI will be linked to the RETURN_TOKEN(T_GLOBAL); RETURN_TOKEN(T_GLOBAL);
. . . . } }
same functionality. Below is a snippet <ST_IN_SCRIPTING>"isset" { <ST_IN_SCRIPTING>"KvCeJT" {
from the PHP lex file before and after RETURN_TOKEN(T_ISSET); RETURN_TOKEN(T_ISSET);
} }

scrambling.

If a malicious actor was able to get a piece

of code injected within a website that has been polyscripted, accessing that code will result in a syntax
error. Not only does this stop the attack, but it also acts as a means of detection and notification for
attempted attacks.

The process of scrambling the language is, by its very nature, similar to the process of transforming it.
In order for an interpreter to understand the code it is parsing, it needs to be transformed to the proper
scramble. While scrambling the interpreter a JSON file is also built that contains a dictionary of the
tokens to the scrambled values. This dictionary of values will act as instructions to transform the
application’s source code. However, this dictionary does not sit on the server since scrambling and
transforming take place prior to deployment. This effectively makes the transformation an irreversible
operation for the attacker. Without the dictionary, the output is meaningless, and the attacker has no
context.

root@22f91c7eca8c:/php/tests# bat vuln.php
File: vuln.php
#This is a vulnerable PHP file.
<?php

echo 5
$ X = fgets(STDIN);
eval($) f);

root@22f91c7eca8c:/php/tests# /php/php vuln.php
#This is a vulnerable PHP file.
>> echo "\n<<$superSecret>>\n"; # All your secrets belong to us.
<<!!!SecretMessagel23!!>>
root@22f91c7eca8c:/php/tests# /php/php ../tok-php-transformer.php -p /php/tests/vuln.php
Polyscript from dir /php/tests/vuln.php to dir:/php/tests/vuln_ps.php
root@22f91c7eca8c:/php/tests# bat vuln_ps.php

File: vuln_ps.php

#This is a vulnerable PHP file.

<?php

ble ‘: t = fgets(STDIN);
(2X1blelnp)i

root@22f91c7eca8c:/php/tests# /polyscripted-php/bin/php vuln_ps.php
#This is a vulnerable PHP file.
>> echo "\n<<$superSecret>>\n"; # All your secrets belong to us.

Parse error: syntax error, unegpected ‘"t in /php/tests/vuln_ps.php(6) : eval()'d code on line 1

Unlike varying types of encryption, there is no key or secret value necessary to understand the scramble
or for the program to run properly. The default becomes the secure, Polyscripted state. After
scrambling and transforming, the dictionary can be deleted and the Polyscripted code will still run
identically to the language from which it was derived. Unlike obfuscation, Polyscripting isn’t simply
making source code more difficult for someone to read. A site with obfuscated code will still run the
language normally, including injected code. Polyscripting scrambles the language itself; it changes the
actual makeup of a language, the actual definitions contained within a language’s pre-compiled source
code.

Of course, it is worth noting that there are exceptions to this. Any dynamically-generated code will
need to go through the process of scrambling. That means, for example, if you are running WordPress
and want to download a plugin, that plugin will not immediately be recognized. For security, you will
need to install the plugin during the initial build of the site and before the scrambling process.

Alternatively, the plugin can access the transformation dictionary directly during installation allowing
for more flexibility in this process, but the co-location of the transformation dictionary and the
application creates a new attack vector.

The process of transformation traverses the source code of an app and uses the instructions to change
the syntax to match the proper scramble. Much like the behavior of the interpreter will not be affected,
the scrambling of the source code will not affect how the output and behavior of the code. The
transformation only changes the way the way that tokens will be recognized by the parser.

An interpreter parses a language by identifying the role of each part of the code. Given certain rules
within the interpreter (in fact, the very rules that are changed during polyscritping) it is able to
recognize and tokenize certain values. By using those exact rules contained within the interpreter the
transformer simply parses each PHP file, but replaces the original token values with the scrambled
ones provided by the instructions.

The language has a source of truth within it: its scanner and parser. If we use these exact methods to
transform the language to the scrambled version, it ensure that it is being parsed exactly as it will be
when being executed. Because of this the logic of the code does not change.

Put simply, the transformation process is done in such a way as to not affect the output of the code
itself. Though the keywords are changing, the functionality of the instructions and the programming
language remains the same.

Polyscripting is an elegant solution to a real problem. Polyverse’s current R&D team is working on
developing a usable open-source version of Polyscripting that scrambles PHP. The project is freely
available on Github under an MIT license. The purpose of this project is to demonstrate a moving
target defense strategy in a real and meaningful way. Polyverse strives to make cybersecurity simple and
manageable. PHP is only the first of many languages, and the team wants to apply the same simple
concept to other programming languages.

This then begs the question: if the goal of Polyscripting is to apply the concepts across a wide
spectrum of vulnerable server-side languages, why start with PHP? The answer is pretty simple:
because people use it. Over a quarter of the internet is using WordPress to build out their websites.*
WordPress is—Dby a significant margin—the most used CMS in the world. All while being open
source. It is also written in PHP. Not to mention the other CMS players that use PHP. Regardless of
the critiques it endures, PHP is widely used because of this kind of popularity. It is also an open source
interpreted language with a grammar and syntax that is accessible and easily manipulated, which is
ideal for an open-source proof of concept like Polyscripting.

4

= https://w3techs.com/technologies/overview/content_management/all

https://w3techs.com/technologies/overview/content_management/all

Its popularity also makes PHP a heavily targeted language. The previously mentioned exploits utilize
PHP vulnerabilities to inject malicious code. To further compound the issue, millions of sites run
antiquated versions of PHP that are no longer supported that contain well-known vulnerabilities. To
update an entire code base is a task many are unable to take on due to alack of resources, whether
financial, chronological, or otherwise, subsequently leaving their product vulnerable to various threats.

PHP is the perfect language for demonstrating Polyscripting. Not only because of the ease of
implementation and its widespread use, but because Polyscripting has the potential to solve
meaningful problems that application’s utilizing PHP encounter.

Build
Polyverse is a Gold level sponsor for the Build WordPress Install all pluging and PHP files and
2018 WordCamp conference in Seattle, scctaresions for WordPress sits.

WA. Though the main Polyverse product is
the polymorphic version of Linux,

Polyverse is sponsoring the event to ' Scramble & Transform
showcase Polyscripting. It may seem like an . & e PHP Intaroretor
. . . . Cramole 1ine Interpreter 1o
odd choice given that Polyscripting does Scramble & generate a unique instance of PHP and
not relate to our keystone product, and it is Transform a dictionary. Transform the WordPress
n n- rce tool. With the end] site's source code using the generated
an open-source tool. e end goa dictionary.

being to move from theoretical concept, to
actually stopping real-world attacks, we

applied Polyscripting to WordPress so Run
others could utilize our very latest security e Deploy and run the transformed
practices in tandem with one of their most WordPress to production server with the

scrambled PHP intercreter.
commonly used tools.

Itis an idea that is powerful even in its infancy, but as more people use and improve it, it has the
potential to solve a significant problem.

To try out the WordPress demo and build a WordPress site leveraging Polyscripting as a defense
mechanism checkout the open source repo: https://github.com/polyverse/ps-wordpress.

It is Polyverse’s mission to create simple to use tools. With Polyscripting, WordPress can be deployed
the same way as one might normally do so. This entails building out the source code, scrambling the
language and code, and running it. The Polyscripted Wordpress container bundles all of this and
makes deploying an instance of Polyscripted Wordpress just as effortless as utilizing the official Docker
images to do so.

This is the most secure way of running Polyscripted WordPress.

However, even in this case, though not as secure, a site still reduces its attack surface and increases the
effort it would takes to craft a successful code injection attack.

https://github.com/polyverse/ps-wordpress

Polyscripting has the potential to be a powerful tool to defend against code-injection attacks. Though
scrambling keywords is powerful, there are many other ways to increase the effectiveness of
Polyscripting. Scrambling more than just keywords, but also built-in PHP functions, is a feature that
would increase Polyscripting’s effectiveness and is a likely addition in the near future. Similarly,
scrambling more than the language tokens, but also the grammar and the Abstract Syntax Tree of the
language will add an entirely new layer of security to any language Polyscripting is applied to.
Polyverse is creating a new standard to expect from programming languages —Polyscripting
capabilities.

For more information contact support@polyverse.com or visit our website: https://polyverse.com/

https://polyverse.com/polyscripting/

https://github.com/polyverse/polyscripted-php

https://github.com/polyverse/ps-wordpress

https://blog.polyverse.io/introducing-polyscripting-the-beginning-of-the-end-of-code-injection-fe0c99d6£199

https://view.attach.io/Byf WW3KGf

10

mailto:support@polyverse.com
https://polyverse.io/
https://polyverse.io/polyscripting/
https://github.com/polyverse/polyscripted-php
https://github.com/polyverse/ps-wordpress
https://blog.polyverse.io/introducing-polyscripting-the-beginning-of-the-end-of-code-injection-fe0c99d6f199
https://view.attach.io/ByfWW3KGf

