diff --git a/Tasks/daily tasks/Jamcey_V_P/task2.py b/Tasks/daily tasks/Jamcey_V_P/task2.py new file mode 100644 index 0000000..aaaa057 --- /dev/null +++ b/Tasks/daily tasks/Jamcey_V_P/task2.py @@ -0,0 +1,34 @@ +import torch +import torch.nn as nn + +class neural_network(nn.Module): + def __init__(self, ): + super(neural_network, self).__init__() + + self.input_layer = 4 # Number of input units + self.hidden_layer1 = 5 # Number of hidden units + self.hidden_layer2 = 3 # Number of hidden units + self.output_layer = 1 # Number of output units + + # Weights + W1 = torch.randn(self.input_layer, self.hidden_layer1) + W2 = torch.randn(self.hidden_layer1, self.hidden_layer2) + W3 = torch.randn(self.hidden_layer2, self.output_layer) + + + # bias + B1 = torch.randn((1, self.hidden_layer1)) + B2 = torch.randn((1,self.hidden_layer2)) + B3 = torch.randn((1,self.output_layer)) + + def forward(self, X): + z1 = torch.mm(X, w1) + b1 + Relu = nn.ReLU() + a1 = Relu(z1) + z2 = torch.mm(X, w2) + b2 + Relu = nn.ReLU() + a2 = Relu(z2) + z3 = torch.mm(X, w3) + b3 + Sigmoid = nn.Sigmoid() + Result = Sigmoid(z3) + return Result