You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Used CDC dataset for heart attack detection in patients. Balanced the dataset using SMOTE and Borderline SMOTE and used feature selection and machine learning to create different models and compared them based on metrics such as F-1 score, ROC AUC, MCC, and accuracy.
A Python implementation of feature selection algorithms using k-Nearest Neighbor classification. This project implements three different search strategies for finding optimal feature subsets: Forward Selection, Backward Elimination, and Simulated Annealing.