
CS 240: Implementing a Hashcode Method Transcript 

[00:00:00] JEROD WILKERSON: In the lecture on method overwriting, I mentioned three 

methods that are commonly overwritten: toString, equals, and hashCode. I 

described toString and equals, but hashCode is little more involved and requires 

a little more explanation, and it requires you to remember something from 235. 

[00:00:18] If you think back to CS 235 when you took that, you learned about hash tables. 

Remember that hash tables are a way to create an efficient data structure that 

you can put objects in and then you can find an object later without needing to 

scan through all the values in the structure. 

[00:00:39] The way that works is you somehow convert the object to an integer and then 

you use that integer to determine a positioning for the object inside of the 

underlying data structure. 

[00:00:50] That’s the underlying concept. In order to do that, we have to have some method 

that will represent an object as an integer, and that’s what hashCode does. 

[00:01:01] It’s very common to override hashCode inside of some object that you create so 

instances of that class can be efficiently placed in hashing data structures. 

[00:01:14] You typically don’t have to write those data structures yourself, there are several 

that are already part of Java. When you download Java, you get them for free. 

[00:01:22] We typically don’t write a hash table, for example, but in order to efficiently 

place objects inside of a hash table, we have to have a hashCode that works 

appropriately. 

[00:01:32] We need to understand, first of all, what does it mean for a hashCode method to 

work appropriately, and then we need to know how to specifically write one. We 

need to understand the contract of a hashCode. 



[00:01:45] When you write a hashCode method, you must follow a couple of rules. There 

are two rules here that you have to follow, and then there’s a third rule that’s 

really saying the third thing is not a rule. 

[00:01:56] That’ll make sense when I get to it. The first rule says that whenever hashCode is 

invoked on the same object more than once during an execution of the Java 

application, the hashCode method must consistently return the same integer. 

[00:02:12] That must be true as long as no information used in equals comparisons of the 

object is modified. 

[00:02:20] In other words, if I have an equals method and I compare some variables, then as 

long as I haven’t changed those variables, then calling hashCode multiple times 

on some object must always return the same hashCode value. 

[00:02:36] That tells me that it can’t be a random number. It can’t be a random number, it 

has to be always the same during any run of that program. 

[00:02:43] If I run my program, it’s running in the JVM, and I call hashCode, and I haven’t 

changed anything about the variables used in the equals method, then if I call 

hashCode again, I must get the same number I got before. 

[00:02:55] That’s the first rule. The second rule says that if two objects are equal according 

to the equals (Object) method—in other words, if I have a reference to one of 

the objects, I call equals and pass the other object in as a parameter—then those 

two methods must produce the same hashCode. 

[00:03:12] If I call it hashCode on either one, it must be exactly the same number. Those two 

things are rules of the hashCode method. 

[00:03:20] If I violate that, then I’m going to have problems with hashing my objects and 

probably not be able to find them as I should, and so I never violate those two 

rules with hashCode. 



[00:03:33] The third thing is telling me something that I might think is required that 

technically is not required. First of all, let me give you some background. 

[00:03:41] The reason you write a hashCode method is so you can efficiently look some 

object up in some hashing data structure, hash table or something like that or a 

hashMap. 

[00:03:51] That’s supposed to be efficient. In other words, fast. If we didn’t have number 

three here, this third item, we would probably think that if two methods are not 

equal according to the equals method, they must produce different hash codes. 

[00:04:06] Now technically, we would want that. If two methods are unequal according to 

the equals method, we generally want the hashCodes to be different because we 

want them to be placed in different places in any underlying hashing data 

structure. 

[00:04:21] If they’re always the same, then it’s going to be very inefficient. We want to be 

close to guaranteed that if two objects are not equal, their hashCode will not be 

equal. 

[00:04:34] The problem is, if I were required to guarantee that, then often, it would be very 

inefficient to calculate the hashCode. It would be really slow and the whole point 

to having a hashCode is to be able to access an object quickly. 

[00:04:52] If I have a slow method of calculating its hashCode, then I’ll lose any gains that I 

get by using a hashing data structure. 

[00:04:59] That’s why this third item says that it is not required that if two objects are 

unequal according to the equals method that they must produce different 

hashCodes. 

[00:05:08] That would just be inefficient to always have to guarantee that. However, we 

want that to be true in most cases. 



[00:05:15] What we do is we make a best effort implementation that will generally have 

objects that are not equal and returning different hashCodes, but it’s not 

required to be true all the time so it can be efficient. 

[00:05:32] That still allows us to get the efficiency gains of using a hash table without losing 

it by generating the hashCode. That was a lot of words so I’m just going to 

summarize really quickly. 

[00:05:44] The summary of these rules is that if the hashCode method is invoked on the 

same object more than once during any run of a program, it needs to produce 

the same hashCode. 

[00:05:58] If two objects are equal according to the equals method, then they must produce 

the same hashCode result. 

[00:06:05] If they are not equal, it’s not required that they produce different hashCode 

results, but we would like them to, in most cases, in order for it to be useful, they 

need to produce the same hashCode in most cases. 

Start slide description. 

The following text appears on the screen. 

The hashCode() Method 

The general contract of hashCode: 

• Whenever it is invoked on the same object more than once during an 

execution of a Java application, the hashCode method must consistently 

return the same integer, provided no information used in equals comparisons 

on the object is modified. This integer need not remain consistent from one 

execution of an application to another execution of the same application. 



• If two objects are equal according to the equals(Object) method, then calling 

the hashCode method on each of the two objects must produce the same 

integer result. 

• It is not required that if two objects are unequal according to the 

equals(java.lang.Object) method, then calling the hashCode method on each 

of the two objects must produce distinct integer results. However, the 

programmer should be aware that producing distinct integer results for 

unequal objects may improve the performance of hash tables. 

End slide description. 

[00:06:17] Let’s understand some details about how to implement the hashCode method. 

The way we do this, in general, you just convert the instance variables to an 

integer and add them together. 

[00:06:30] There’s a little bit more to it than that, but that’s the general answer. First of all, 

we need to know how to convert things to integers. For integer numbers or 

integral numbers, just use that number as the hash for that value. 

[00:06:45] For strings, we can call the string’s hashCode method because string already has 

a hashCode method. The string class already has one so just call hashCode on it. 

For objects that may be null, we can call Objects.hashCode and that will give us a 

reasonable hashCode for some object. 

[00:07:03] For arrays, we either hash the individual elements of the array. We might do that 

if it’s an integer array, or we can call Arrays.hashCode and that method will do it 

for us. 

[00:07:16] Now the rest of this gets a little mathy and so most of us don’t care too much 

about the details I’m about to share. It’s useful to know why you’ll see hashCode 

methods the way you will though. 



[00:07:28] People that care a lot about math, people that have gotten PhDs in math, have 

determined that if we just simply convert the instance variables to numbers and 

add them together, we’re going to get more hash collisions than we need to, and 

when hashing, we don’t want to hash collisions because that slows down the use 

of a hash table. 

[00:07:51] What has been determined is if we use a clever use of a prime number and use 

that to multiply as we’re adding these numbers together, we can have fewer hash 

collisions. 

[00:08:04] It’s suggested that we use the number 31 because it’s prime and it’s also really 

close to the number 32. 

[00:08:11] Computers are very efficient in doing mathematical operations on powers of 2, 

and so that’s why 31, although it’s not a power of 2, it’s close to a power of 2, so 

that’s a good number to use. 

[00:08:22] If you want a lot of details, here’s a reference that you can look up for a lot of 

details about how to calculate a hashCode method. 

Start slide description. 

The following text appears on the screen. 

Implementing a HashCode() Method 

• Hash each value in the object that you want included in the hash 

o For integral numbers, use the number as the hash for that value 

o For Strings (or other objects), call the object's hashCode() method 

o For Objects that may be null, can use the Objects.hashCode() method 

o For arrays, either hash each element in the array, or call 

Arrays.hashCode() 



• While computing a hash, accumulate the hashed values, multiplying the 

accumulated value by an odd prime number (not 2) before adding the next 

hashed value 

o We usually multiply by 31 

• Resources for learning more: 

o API documentation for hashCode() method in Object class 

o https://www.baeldung.com/java-hashcode 

End slide description. 

[00:08:30] If you just want to know how to do one, here’s how you do one. You write your 

hashCode method, and you take the first variable that’s been converted to an 

“int” and set it to some variable where you’re calculating the hash. 

[00:08:46] Then after that, you take that hash value, multiply it by 31, and then add that to 

the next variable and you do that for every variable that should be included in 

the hash. 

[00:08:57] If you do that, you will have a reasonably unique hashCode that satisfies all the 

requirements from the previous slide, and it doesn’t really matter that you 

understand the details about why we’re using a prime number, but you should do 

that to have a good hashCode. 

[00:09:13] You also...the last thing that I’ll say about this is you can get IntelliJ to generate a 

simple hashCode method for you, and you saw me do that in a previous lecture. 

[00:09:24] You can specify which variables should be included in the hashCode and that will 

work for a lot of cases, but it won’t work for some of the assignments that we’re 

going to have you use hashCodes for. 

https://www.baeldung.com/java-hashcode%208:26


[00:09:34] Just know that you can generate a hashCode and that’s a good idea for a lot of 

classes, but sometimes you have some special requirements that will require you 

to write one on your own. 

Start slide description. 

The following text appears on the screen. 

hashCode() Method Example 

public int hashCode() { 

int hash = 7; 

hash = 31 * hash + (int) id; 

hash = 31 * hash + (name == null ? 0 : name.hashCode()); 

hash = 31 * hash + (email == null ? 0: email.hashCode()); return hash; 

} 

Source: https://www.baeldung.com/java-hashcode 

End slide description. 

https://www.baeldung.com/java-hashcode

