
CS 240: Exceptions – Exceptions in Java Transcript

 This video shows a split screen of Professor Rodham on the right and a

PowerPoint screen on the left. The left screen will often switch to IntelliJ. Any text

displayed or action performed that is not verbalized will be included in italics as

visual descriptions.

[00:00:00] KEN RODHAM: In this video, we’re going to talk about exception handling in

Java.

[00:00:04] Hopefully you’ve been exposed to exceptions and exception handling before.

[00:00:10] If you learned C++ or some of the language in a previous class, you should have

had been exposed to this idea.

[00:00:16] What we’re really talking about here is error handling.

[00:00:19] Generically speaking, error handling is a big part of computer programming.

[00:00:23] The idea here is that while programs are running, things will go wrong, and when

things go wrong, we need to handle that appropriately in our code.

[00:00:34] A big part of writing good software is contemplating what things could go wrong

while the program is running and then writing code that handles those possible

error conditions so that if they happen, something reasonable happens.

[00:00:47] What we don’t want to do is crash.

[00:00:50] We don’t want programs that crash.

[00:00:51] Really, crashing is never acceptable, and so we want to avoid crashing.

[00:00:57] At a minimum, if an error occurs, we would at least like to do what’s called a

graceful exit, which is to give the user some feedback and tell them that

something has gone wrong and that we can’t continue, and then shut down the

program.

[00:01:12] Much better than that would be to actually recover from the error.

[00:01:16] If something goes wrong, we can actually take action to recover from the error

and have the program keep running.

[00:01:23] That would be ideal, but both of those are better than just crashing, and that’s

the idea here.

[00:01:31] Now if you think about the errors that can occur while a program is running, I’m

going to talk about two large classes of errors.

[00:01:40] The first is errors that are caused by bugs in the code.

[00:01:45] Now ideally, we would never have these kinds of errors, but in fact, programs do

have bugs and so these errors do occur.

[00:01:53] One class of errors is caused by bugs in your code.

[00:01:56] The other class of errors is errors that occur even if your program is perfectly

written.

[00:02:03] Even for a perfectly written program, bad things can still happen while it’s

running.

[00:02:09] For example, maybe it tries to open a file and the file is not there. That’s an

error.

[00:02:16] Where did the file go, who deleted it, who moved it? I don’t know. All I know is

that right now, that file is not there and I can’t open it.

[00:02:24] Maybe the program’s perfectly written, but that can still happen.

[00:02:28] Another example would be maybe my program uses the internet, which many

programs do these days, and I tried to access maybe a web resource or

something on the internet, and for whatever reason, the internet’s down right

now.

[00:02:42] Well, that can happen and it often does happen, but it’s not the program’s fault.

Doesn’t mean the program is poorly written, it just means the internet’s down.

[00:02:49] You need to write your code so that you can handle errors like that that aren’t

actually caused by bugs in your code.

[00:02:56] Another example would be running out of memory.

[00:02:59] Maybe you call ‘new’ to create an object and they throw an out-of-memory

exception.

[00:03:03] The Java Virtual Machine throws an out-of-memory exception and you’re like,

“Wow, I’m out of memory.

[00:03:08] It’s not my fault. I didn’t do it, but I still need to do something reasonable in that

case.” We’re going to distinguish between errors that are caused by bugs and

errors that are not caused by bugs.

[00:03:25] All right, the way I want to do this is, I want to use some code examples to talk

through how we do exception handling in Java.

[00:03:35] The idea here is that when a program starts running, it starts executing in its

main method.

[00:03:43] Then main will call another function, which will call another function, which will

call another function, which will call another function, and every time a new

function gets called, the runtime stack gets deeper and deeper and deeper.

[00:03:54] Maybe you’re down 30 or 40 levels in your runtime stack and that’s usually the

code where you would detect that an error occurred.

[00:04:03] For example, where would the code be that detects that the internet’s down?

Well, the code that actually detects that the internet’s down would actually be

down in the bowels of the operating system somewhere, Linux or Windows or

whatever it may be, and of course, that code in the operating system was called

by some class in Java’s library.

[00:04:23] The kind of code that actually detects a lot of errors is very low-level.

[00:04:27] It’s down in the bowels of the Java library or in the operating system.

[00:04:33] That code knows exactly what went wrong.

[00:04:36] It knows the internet is down right now or it knows the file does not exist.

[00:04:40] But that low-level code has no idea what to do about it because it doesn’t have

enough context, it doesn’t even know what application it’s part of, it doesn’t

know how to respond to the error, it doesn’t know how to recover from it.

[00:04:51] The challenge we have is the code that detects the error is very low level and

can’t really respond to the error.

[00:04:57] The code that can respond to the error is probably much higher up the runtime

stack, closer to main, could be main itself.

[00:05:03] What we do with exceptions is we take all the information about the error that

occurred and we package it up in an object, an Exception object.

[00:05:13] Then we take the object and we throw it up the runtime stack.

[00:05:20] While the exception is traversing the runtime stack, a process called stack

unwinding occurs.

[00:05:28] What Java does in this case, when we throw an exception, is it looks for a try-

catch block that would handle the exception.

[00:05:37] If the method that throws the exception doesn’t have a try-catch block, then

that method would be terminated immediately and then Java would go to the

next method that called the first one, the parent method, if you will.

[00:05:52] It’ll check to see if there’s a try-catch block in that method that handles the

exception.

[00:05:57] If yes, it’ll handle the exception and continue processing.

[00:06:01] If not, the parent method also gets terminated and then it goes to the

grandparent method call and checks for a try-catch there to see if there’s a try-

catch to handle the error.

[00:06:13] If yes, it runs the try-catch and then it continues.

[00:06:17] If not, that grandparent method gets terminated and so on and so forth.

[00:06:21] What Java does is it kind of searches the runtime stack, looking for a method

that wants to handle the error.

[00:06:30] That’s typically how things go when an error occurs.

[00:06:33] Create an object with all kinds of good information about the error, throw it up

the runtime stack until somebody wants to handle it.

[00:06:42] That’s the way exception handling works at a high level.

[00:06:46] Another thing that’s good about exceptions is that it actually lets us separate the

error handling code from the regular code in our program.

[00:06:56] It gets confusing when the error handling code is intermixed with the regular

code.

[00:07:01] The nice thing about a try-catch block is it lets us put the regular code in the try

block and then let’s us put the error handling code in a catch block, and that

physically separates the two kinds of code; it makes the code more readable.

[00:07:13] Exception handling is a very elegant way to handle errors in code.

[00:07:18] Now let’s look and see how this works in Java.

[00:07:27] In Java, when you throw an exception, you have to throw an object.

[00:07:32] In C++, you can throw anything.

[00:07:35] You can throw an integer, you can throw a character, you can throw a pointer,

you can throw a float.

[00:07:40] But in Java, you can only throw an object, which makes sense.

[00:07:44] In fact, you can only throw objects that inherit from this base class called

Throwable.

[00:07:50] If an object doesn’t inherit from Throwable, you can’t actually throw it as an

exception.

[00:07:55] Then underneath throwable, there’s two subclasses.

[00:08:02] One’s called Exception and one’s called Error.

[00:08:05] It’s important to understand the difference between exceptions and errors.

[00:08:09] An error is something that represents a catastrophic condition that’s occurred

down in the Java Virtual Machine.

[00:08:21] For example, maybe we ran out of memory.

[00:08:24] Well, that’s pretty catastrophic.

[00:08:27] You’re probably not going to recover from that very well.

[00:08:30] Maybe a stack overflow exception, maybe you’ve exceeded the size of your

runtime stack and you get a stack overflow exception; you’re probably not going

to recover from that very well.

[00:08:39] Another common error would be NoClassDefFoundError.

[00:08:44] If your program is trying to use a class that doesn’t actually exist, and the virtual

machine can’t find the class file for that class, it’ll throw a

NoClassDefFoundError.

[00:08:54] Again, these errors are thrown by the Java Virtual Machine.

[00:08:59] Typically, they’re catastrophic errors you can’t really recover from.

[00:09:04] Typically, you don’t do try-catches on errors.

[00:09:07] They just happen. You want to write your code so that hopefully they don’t

happen, but if they do happen, there’s nothing you can do about it.

[00:09:17] You just live with it. Typically, don’t catch an error in your code.

[00:09:21] Now, on the other side, this is usually what we focus on, with exception

handling.

[00:09:25] There is a class named Exception.

[00:09:27] Most of the Exception objects that we throw and catch would be subclasses of

Exception.

[00:09:35] Just realize that most Exception classes are going to inherit directly or indirectly

from the Exception class. All right.

[00:09:45] Let’s look at some code where we can actually see what exception handling

looks like in Java. (Rodham switches to IntelliJ.)

[00:09:55] This sample actually doesn’t compile at first.

[00:09:58] There’s a problem with it.

[00:10:00] Java is interesting in the sense that it’s the only language, that at least I’ve ever

used, that forces you to handle exceptions properly.

[00:10:11] In a lot of languages, you can handle exceptions if you want to, but you don’t

have to, but in Java, they actually look at your code and try to make sure that

you’re catching exceptions that could be thrown, and they try to make sure that

you’re handling exceptions properly.

[00:10:30] Your code actually won’t compile unless you’re doing it correctly in their opinion.

[00:10:34] This is why this program doesn’t compile.

[00:10:38] The reason is that in this sample code, I’ve got this method called processFile,

which is called by the main method.

 The following code is processFile:

 private static void processFile(File file) {

 Scanner scan = null;

 scan = new Scanner(file);

 //…use Scanner for something useful

 scan.close();

 }

 End of code.

[00:10:49] In this method, what it does is it creates a Scanner.

[00:10:53] It wants to parse the text out of this file.

[00:10:55] It creates a Scanner object so it can parse the file.

[00:10:59] The problem is, is that if you look at the documentation for the Scanner class,

which we will.

[00:11:06] Let’s see, Scanner is in the java.util package. (Rodham opens Javadocs in a

browser.)

[00:11:11] We’ll jump to there.

[00:11:15] We look for Scanner.

[00:11:21] We can see that the Scanner class has a bunch of constructors on it.

[00:11:26] Let’s just pick one. I think this is the one we’re using.

[00:11:29] If you go to the documentation for this Scanner constructor, it says that it can

throw a FileNotFoundException.

[00:11:36] If I try to open a file on a Scanner, and if the file doesn’t exist, it’s going to throw

a FileNotFoundException.

[00:11:42] Now that makes a ton of sense.

[00:11:44] If I go back to my code (in Intellij), what Java does is it looks at this code and says,

oh, okay, you’re creating a Scanner, and you’re calling a constructor that could

throw a FileNotFoundException.

[00:11:57] Then what Java does is it looks to see if I have a try-catch around that code.

[00:12:02] It checks to see if I’m handling that FileNotFoundException.

[00:12:06] In this case, I’m not handling it.

[00:12:09] It says, oh, that’s not right.

[00:12:12] You’re not handling exceptions properly.

[00:12:13] One way to fix that is to actually put a try-catch around it.

[00:12:17] I’m assuming here you’ve learned about try-catch before.

[00:12:21] This is not entirely new to you.

[00:12:23] I put the code inside the try block.

[00:12:25] This is the normal code, or the regular code.

[00:12:28] Then I put the error handling code inside a catch block.

[00:12:31] From the catch block, I’ll catch the FileNotFoundException.

[00:12:40] Now that I’ve caught the exception that could be thrown, the Java compiler is

happy.

[00:12:45] It says, okay, now you’re handling the exception properly.

[00:12:48] Now my code is worthy to compile.

[00:12:51] Now what I do in the catch block is up to me.

[00:12:53] Of course, this catch block will only execute if a FileNotFoundException is thrown

by the Scanner constructor.

[00:12:59] At a minimum, I would want to go ahead and print the stack trace.

 The following code adds try-catch blocks to processFile:

 private static void processFile(File file) {

 Scanner scan = null;

 try {

 scan = new Scanner(file);

 }

 catch (FileNotFoundException ex) {

 ex.printStackTrace();

 }

 scan.close();

 }

 End of code.

[00:13:04] At a minimum, when an exception gets thrown, you want to print out the error,

you want to log the error somehow.

[00:13:10] Ideally, I would actually recover from the error in some way.

[00:13:13] Maybe this program can proceed without the file that is trying to open or

whatever.

[00:13:20] Try to recover if you can.

[00:13:21] At a minimum, you need to log or print out the stack trace for the exception.

[00:13:27] What you don’t want to do is nothing.

[00:13:31] If I catch an exception and I don’t do anything, I don’t log it, I don’t print it out, I

don’t do anything, I just swallow it or I eat it, I didn’t do anything with it.

[00:13:44] This is bad programming practice, to catch an exception and then not do

something with it.

[00:13:50] Because that means if that error actually ever occurs, that no one will know.

[00:13:56] It’ll be very hard to diagnose and debug what’s going on.

[00:13:59] If an exception occurs, you do want to do something useful with it.

[00:14:05] That’s one way to fix this program and make it compile, is to handle the

exception in that version.

[00:14:11] Now you would only want to do that if this method is actually the right place or

the best place to handle the error.

[00:14:17] But we said earlier that a lot of times, the code that detects an error is not the

right place to actually handle the error because it doesn’t have enough

knowledge or context to do that well.

[00:14:29] A lot of times, the method that actually throws an exception is not the right

place to handle the exception.

[00:14:36] Let’s assume that’s the case here.

[00:14:38] Let’s just get rid of that try-catch that we just put in.

[00:14:41] Now it’s back to the state where it doesn’t compile.

[00:14:44] The other choice you have, if you don’t want to do a try-catch in that method, is

you can put a throws clause on the method and declare that this method throws

a FileNotFoundException.

 Rodham removes the try-catch blocks and changes code back to original. The

following code makes a change to the processFile declaration:

 private static void processFile(File file) throws FileNotFoundException{

 End of code.

[00:14:58] What that means is, is that this method called another method that could

potentially throw a FileNotFoundException, and this method chose not to do a

try-catch.

[00:15:10] That means that this processFile method now could potentially throw a

FileNotFoundException.

[00:15:16] What we need to do is declare that as part of the method signature.

[00:15:20] What we’re doing is we’re advertising to anybody who might call the processFile

method, hey, if you call this method, it’s possible that you’re going to get a

FileNotFoundException thrown at you.

[00:15:31] That’s your other option on making this code compile.

[00:15:35] You either put a try-catch around the code that can throw the exception or you

put a throws clause on your method that says, I might throw it.

[00:15:45] Really, you’re declaring that you didn’t handle it and so whoever called you

might want to think about handling it as well.

[00:15:51] Now if we look at this program, we go back to the main method that calls

processFile(file).

[00:15:57] Now it’s got a problem.

[00:15:59] Java is complaining about that code, saying this code doesn’t handle the

exception.

[00:16:04] It says, unhandled exception, FileNotFoundException.

[00:16:08] Well, this is just the same problem we had in processFile, except we’ve moved it

up a level.

[00:16:13] In the main method, we have the same two options.

[00:16:16] We can either put a try-catch around the code

 The following code puts a try-catch block in main:

 public static void main(String [] args) {

 File file = new File(args[0]);

 try {

 processFile(file);

 }

 catch (FileNotFoundException ex) {

 ex.printStackTrace();

 }

 }

 End of code.

—you can see that that made the compiler happy—or we can declare that we

didn’t handle it.

Rodham removes the try-catch block and changes main back to original code.

The following code shows the second option of updating the main declation:

public static void main(String [] args) throws FileNotFoundException {

End of code.

[00:16:47] Now the program compiles.

[00:16:48] The problem with this approach is that if you don’t catch the exception in the

main method, then this is your last chance to catch it.

[00:16:57] If you don’t catch it at this point, that means the exception is going to propagate

out of the main method.

[00:17:04] If an exception propagates out of the main method, that causes your program to

crash.

[00:17:09] Actually, declaring or putting a throws clause on the main method is generally a

very bad idea because it means if that exception occurs, the program’s going to

crash.

[00:17:19] Earlier, we said writing programs that crash is typically not acceptable.

[00:17:25] You’d only really do this thing if you’re writing a little program that you’re going

to probably just use once and throw away or something.

[00:17:32] You would really never want to do this in production code. I’m going to get rid of

that.

[00:17:37] I’m going to say that main should actually have a try-catch that handles the

exception in this case.

[00:17:52] As we just said, one way to make the compiler happy is to simply put throws

clauses on all the methods in your code.

[00:18:03] Not a good idea to do that on main though.

[00:18:05] Eventually, somebody needs to handle the errors, the idea.

[00:18:11] The other solution that we mentioned is put a try-catch around the code or

around the code that can throw the exception, which is what I did in this

example here.

[00:18:28] Now the try-catch, you can actually have multiple catch blocks on a try-catch.

 The following code shows processFile with multiple catch blocks:

 private static void processFile(File file) {

 Scanner scan = null;

 try {

 Scanner scan = new Scanner(File);

 scan.close();

 }

 catch (FileNotFoundException ex) {

 System.out.println(“Could not find file: “ + file);

 ex.printStackTrace();

 }

 catch (IOException ex) {

 ex.printStackTrace();

 }

 }

 End of code.

[00:18:35] There could be different kinds of exceptions that could be thrown by the code in

the try block, and so you can have as many catch blocks as you want that would

handle different kinds of exceptions in different ways.

[00:18:47] What Java does is when an exception is thrown and it’s looking for a catch block

to handle that exception, it just searches the catch blocks in order, and it uses

the first catch block that matches the type of the exception that was thrown.

[00:19:05] If it was a FileNotFoundException, it would use this catch block, and after

running that catch block, the program would just continue running down here

after the try-catch.

[00:19:18] But if the exception was not a FileNotFound, but it was some kind of

IOException, then it would use this catch block and execute that.

[00:19:28] The method keeps running.

[00:19:30] The advantage of catching an exception and handling it is that method gets to

keep going.

[00:19:34] It doesn’t get terminated.

[00:19:36] Now if the exception that got thrown was neither a FileNotFound nor

IOException, then this method would terminate, and it would go to the caller to

look for a try-catch that will handle the exception as we discussed.

[00:19:52] But you can have as many catch blocks as you want, and because it uses the first

catch block that matches, you want to be careful how you order these things.

[00:20:01] Because what this really means is any exception that is a FileNotFoundException

or a subclass of FileNotFoundException.

[00:20:09] Catch blocks are inheritance aware, so any subclass of FileNotFoundException

would also match this catch block.

[00:20:15] The same for IOException.

[00:20:17] This would catch an IOException or any subclass of IOException.

[00:20:22] Because FileNotFound is an IOException, actually, you’d need to put that one

first because if you put IOException first, you would never get to the file not

found.

[00:20:31] Put the more specific exception types first and then put the more generic ones

down at the bottom.

[00:20:38] In the most generic case, you would say catch exception, and that would catch

any kind of exception.

[00:20:51] Try-catch is the way we handle the exceptions, and we would only do that in the

appropriate place in our code that knows how to handle it.

[00:21:00] Now, there’s actually an error in this code that I’m looking at right here.

[00:21:05] It does compile, but it has a problem.

[00:21:08] The problem is this, that if you go into this try-block or the program goes into the

try-block, it opens a Scanner.

[00:21:16] Now, that could throw a FileNotFoundException as we’ve discussed but let’s

suppose in this case, that it doesn’t do that and it opened successfully, then

we’re going to run some code that uses a Scanner to do whatever the program

does.

[00:21:29] Then after it finishes using the Scanner, it’s going to close the Scanner.

[00:21:34] Now, this is a pattern we use in programming all the time.

[00:21:37] We open a resource or allocate a resource, we use the resource, and then we

close the resource or deallocate it.

[00:21:45] That’s a pattern we follow over and over and over again in code.

[00:21:49] It is very important to make sure we do close resources or deallocate them, and

in this case, we’re opening a file, so we need to make sure that file gets closed.

[00:22:00] The reason that’s important is that there’s a limit to the number of files a

program can open.

[00:22:04] If I don’t close the files that I open, eventually, the operating system’s going to

say you can’t open anymore files.

[00:22:10] You’ve maxed out. You’ve got to make sure you close your files.

[00:22:14] Similarly, the same would go for a database connection or a network connection

or any other resource.

[00:22:22] If you look at this code, let’s suppose that the Scanner opens the file successfully,

and then it uses the Scanner.

[00:22:30] But let’s assume that while we’re using the Scanner, an exception happens.

[00:22:33] Maybe it’s an IOException of some sort.

[00:22:36] Something bad happens.

[00:22:38] Well, what’s going to happen when that exception gets thrown is Java’s going to

jump to the catch blocks and try to find one that handles the exception.

[00:22:47] It’s going to look. Is it a FileNotFoundException? No, not in this case.

[00:22:52] Is it an IOException? Yes, it’s an IOException.

[00:22:55] Then the program would jump to the catch block here, it would execute this

catch block, and then the program would continue execution right after the

catch block.

[00:23:09] You’ll notice in this case that even though we opened the Scanner successfully,

the Scanner would never get closed.

[00:23:16] That’s the problem with this code, is that if an exception actually does occur

after the Scanner opens the file, the files are never going to get closed, and so

we’re going to leave this file just hanging out there open.

[00:23:31] That’s the problem. There’s actually three possibilities in this case.

[00:23:38] One possibility is that the try-block runs without exception, everything goes well.

[00:23:46] In that case the Scanner gets closed.

[00:23:49] But the other possibility is an exception does get thrown, and in that case, the

Scanner is not going to get closed.

[00:24:00] How do we fix that? That’s a big problem.

[00:24:03] In Java, they’ve got this thing called the finally clause.

[00:24:10] On a try-catch, you can also have a clause called finally.

 The following code shows processFile with a finally clause:

 private static void processFile(File file) {

 Scanner scan = null;

 try {

 Scanner scan = new Scanner(File);

 }

 catch (FileNotFoundException ex) {

 System.out.println(“Could not find file: “ + file);

 ex.printStackTrace();

 }

 catch (IOException ex) {

 ex.printStackTrace();

 }

 finally {

 if (scan != null) {

 scan.close();

 }

 }

 }

 End of code.

[00:24:18] You’d only have one of these.

[00:24:20] You can have as many catch blocks as you want, but you would only have one

finally clause.

[00:24:23] What the finally clause does is it has what’s called no matter what execution

semantics.

[00:24:31] Whatever code you put inside the finally clause it’s going to execute no matter

what.

[00:24:35] Even if an exception gets thrown, it’s going to execute.

[00:24:39] Even if an exception doesn’t get thrown, it’s going to execute.

[00:24:43] No matter what, the code in the finally block is going to execute.

[00:24:46] What we did here is we open the Scanner on the file.

[00:24:53] We use the Scanner as before, but we took the code where we close the Scanner

and we moved it down to the finally clause, the finally block.

[00:25:04] You can see here, if Scanner is not equal to null, close it.

[00:25:09] One thing you’ll see here also is that we took the Scanner variable and we lifted

it outside the try-catch.

[00:25:16] The declaration of the Scanner is actually before the try now, and that’s so it’s

visible in the finally block.

[00:25:23] We declare the Scanner outside the try.

[00:25:27] But otherwise, the code’s just like it was before, except we moved the code that

closes the Scanner into the finally.

[00:25:34] What this means is that now the Scanner’s going to get closed no matter what.

[00:25:41] What are the possibilities? Well, one possibility is the try-block runs with no

errors.

[00:25:47] But after the try-block finishes, the finally block is going to execute.

[00:25:53] Great. That’s what we hope happens most of the time.

[00:25:57] But the other possibilities we said is an exception does get thrown in the try-

block, and in that case, the finally clause is still going to execute.

[00:26:12] Before Java handles the exception, it’s going to make sure the finally block runs

so the Scanner gets closed.

[00:26:20] The finally clause is really important in Java programming to make sure that your

resources get cleaned up properly whether or not an exception gets thrown.

[00:26:31] The try-catch finally is actually a construct you’ll see in many different

programming languages like C#, JavaScript, etc.

[00:26:40] Most of the modern languages have a finally clause for this purpose to make

sure things get cleaned up properly.

[00:26:48] It’s interesting to note that C++ does not have a finally clause because it really

doesn’t need one.

[00:26:55] Because C++ has something else that most languages don’t have, which is

something called a destructor.

[00:27:00] As you know, a destructor gets called on an object when it goes out of scope,

and so you can achieve no matter what semantics using destructors in C++.

[00:27:12] They actually don’t need the finally clause.

[00:27:16] But since most newer languages are garbage collected and don’t have

destructors, then they do need the finally clause to make sure we clean up our

resources correctly.

[00:27:29] Now a couple other points on exceptions.

[00:27:35] We just talked about the finally clause that you can put on a try-catch.

[00:27:43] Try, catch, finally.

[00:27:45] You can imagine in code you’d have a lot of try-catch finally stuff.

[00:27:49] It becomes very repetitive in some sense.

[00:27:52] Creating these finally clauses to close your resources gets pretty repetitive and

cumbersome.

[00:27:59] Java added a nice feature called try with resource.

[00:28:05] This example shows the same code, but it uses a try with a resource.

 The following code shows processFile with try with resource:

 private static void processFile(File file) {

 try (Scanner scan = new Scanner(File)) {

 //use Scanner for something useful

 }

 catch (FileNotFoundException ex) {

 System.out.println(“Could not find file: “ + file);

 ex.printStackTrace();

 }

 catch (IOException ex) {

 ex.printStackTrace();

 }

 }

 End of code.

[00:28:09] What you’ll notice here is in the try statement here, it actually has some code

inside parentheses.

[00:28:19] Inside this code here, we open the resource that we’re wanting to make sure

gets closed.

[00:28:24] In this case, it’s a Scanner.

[00:28:26] We open the Scanner and the code that is in the try.

[00:28:34] We open the Scanner and then we use the Scanner.

[00:28:40] Rather than writing a finally clause to close the Scanner, what this will do is Java

will automatically close the Scanner for us.

[00:28:49] In effect, if you use a try with resource, whatever resource you open inside the

parentheses there, Java will make sure that the close method gets called on it.

[00:28:59] In effect, what Java does is it writes the finally clause for you automatically so

you don’t have to write it yourself.

[00:29:05] That’s a much more concise and simple way to make sure your resources get

closed.

[00:29:11] Use the try with resource, that’s the recommended way to do it rather than

writing your own finally clause.

[00:29:18] You may have other reasons to write finally clauses that don’t have anything to

do with closing resources.

[00:29:24] In those cases, go ahead and write your finallys.

[00:29:26] But if you want to make sure your resource gets closed, then go ahead and just

use the try with resource syntax and Java will do it for you.

[00:29:33] That’s a nice feature.

[00:29:43] This next version of this code shows a couple more ideas that are important.

[00:29:51] I’ve modified this processFile method such that it can throw exceptions.

 The following code shows processFile that can throw exceptions:

 private static void processFile(File file) throws java.net.MalformedURLException,

SomethingBadHappenedException {

 Scanner scan = null;

 try {

 scan = new Scanner(File);

 //use Scanner for something useful

 boolean invalidURL = true;

 if (invalidURL) {

 throw new MalformedURLException();

 }

 boolean somethingBad = true;

 if (somethingBad) {

 throw new SomethingBadHappenedException(“The Sun

went out!”);

 }

 }

 catch (FileNotFoundException ex) {

 System.out.println(“Could not find file: “ + file);

 ex.printStackTrace();

 }

 catch (IOException ex) {

 ex.printStackTrace();

 }

 }

 End of code.

[00:29:59] It has a throws clause now.

[00:30:02] This method can throw a MalformedURLException, which is built into Java, that’s

just a type of error that is built into Java so MalformedURL.

[00:30:12] Another type of error it can throw is a SomethingBadHappenedException, and

that’s an exception class that I wrote myself.

[00:30:19] What this example demonstrates is that in your own code, when you’re writing

code, normally exceptions are being thrown at you usually by Java, the Java

library, or maybe some other library that you’re using.

[00:30:33] A lot of times, exceptions are being thrown at you and so you need to catch

them and handle them.

[00:30:40] But also in your own code, you can throw exceptions as well.

[00:30:44] In your own code, when detect those errors have occurred, you can actually

create an exception object of your own and then throw it.

[00:30:54] This example shows that you can catch exceptions, but you can also throw them,

which you should probably get in the habit of doing.

[00:31:03] For example, here in the processFile method, it checks to see if the URL is valid.

[00:31:14] If the URL is invalid, what it does is it throws a MalformedURLException.

[00:31:21] That just shows you the syntax for throwing an exception.

[00:31:24] If something bad happened, I can create my own exception object and throw it.

[00:31:28] Now in this case, MalformedURLException is built into Java.

[00:31:32] You can throw the exception classes that are built into Java, you don’t have to

write your own exception classes if the ones that are built into Java suffice for

what you’re doing.

[00:31:43] But a lot of times for your application you’ll need to create exception classes that

are specific to what you’re doing.

[00:31:49] Maybe Java doesn’t have an exception class that’s right for what you’re trying to

do, you can create your own.

[00:31:55] In this case I created an exception class called

SomethingBadHappenedException.

[00:32:02] I create one of those objects and I throw it.

[00:32:05] Because I’m throwing these exceptions, I had to declare that in my method

signature.

[00:32:11] You can be a catcher of exceptions, you can also be a thrower of exceptions,

which is nice.

[00:32:17] Now to create your own exception classes, it’s quite simple.

[00:32:21] In this example, I’ve got my SomethingBadHappenedException class, which I

wrote.

[00:32:27] Actually, I didn’t write it, IntelliJ wrote it for me, but you’ll notice that

SomethingBadHappenedException, it extends Exception so it does inherit from

exception.

[00:32:37] If you want to create exceptions of your own, all you have to do is create a new

class.

[00:32:45] New, Java class, and I’ll say myException, for example.

[00:32:53] I just create a new class, and then all I have to do is say extends Exception.

[00:33:02] Now I’ve created a minimal exception class that I can throw in my own code.

[00:33:07] Now you probably want to add some more stuff to it.

[00:33:10] You might want to put some variables on it that can contain information about

the error that occurred.

[00:33:15] You want to probably put some good constructors on it so it can be initialized in

different ways.

[00:33:21] In this example, I’d probably like to add some constructors to my exception class.

[00:33:26] I’m going to go to the code, let’s say, I’m going to generate some constructors.

[00:33:34] Basically what it’s going to do is it’s going to say, “Hey, here’s some constructors

your superclass has.

[00:33:41] Would you like to have the same constructors on in this class?” In this case, I’m

going to say, yeah, that’s exactly what I want.

[00:33:47] I want to have the same constructors that my superclass has because the

exception superclass has a bunch of useful constructors that you want.

[00:33:57] I would typically add those to my exception class, then add whatever else you

want to it.

[00:34:02] It’s really easy to create an exception class.

[00:34:09] Now the last thing that this example shows is it shows a multi-catch.

 The following code shows main with a multi-catch:

 public static void main(String [] args) {

 File file = new File(args[0]);

 try {

 processFile(file);

 }

 catch (MalformedURLException | SomethingBadHappenedException ex) {

 for (StackTraceElement ste : ex.getStackTrace()) {

 System.out.printf(“Class: %s, Method: %s, File: %s, Line:

%d\n”, ste.getClassName(), ste.getMethodName(), ste.getFileName(),

ste.getLineNumber());

 }

 }

 End of code.

[00:34:17] You can have as many catch blocks as you want on a try.

[00:34:21] That’s great if you want to handle different errors differently, but sometimes you

want to handle different errors in the same way, and so it’s convenient if you

could write a catch block that can handle multiple different kinds of exceptions,

not just one kind.

[00:34:40] In this example, it shows a catch block that handles a MalformedURLException or

a SomethingBadHappenedException.

[00:34:46] Because I want to handle those two kinds of exceptions identically, I don’t want

to duplicate that code, I’d rather just put both of those on the same catch block.

[00:34:55] Therefore, the syntax is, put the name of an exception class, then you can put an

OR bar.

[00:35:00] You can have as many ORs as you want.

[00:35:04] That’s how you handle multiple exceptions in the same catch.

[00:35:11] Let’s see, I think that’s pretty much it.

[00:35:17] Exceptions are obviously core to Java programming because the compiler

doesn’t force proper exception handling.

[00:35:24] Hopefully the things we’ve just talked about will help you properly use and

handle exceptions in your code.

