CS 240: Inner Class introduction Transcript

[00:00:00]

[00:00:08]

[00:00:14]

[00:00:25]

[00:00:31]

[00:00:34]

[00:00:37]

[00:00:46]

[00:00:55]

[00:01:00]

This video shows a split screen of Professor Wilkerson on the right and a web

browser showing Java on Oracle on the left. Visual descriptions are not needed.

JEROD WILKERSON: You’ve probably already seen so far at some point in this

class, a class declared inside of another class; that’s called an inner class.

Now I’'m going to give you a lot of details about how inner classes work and why

we need them in Java.

| want to introduce this with an example that will help illustrate one way in

which inner classes can be useful.

| want you to think about two different data structures: the list data structure

and the set data structure.

You would have learned about those in 235.

As you know, a list is an ordered collection of elements.

That’s a collection of elements where order matters and you can access things by

order, usually using something like a get method where you specify an index.

We also have a set collection, where you have a collection of elements again, but

in this case, order isn’t relevant.

You can’t necessarily get things by order because there is no defined order for a

set.

With either of these collections, it’s reasonable to want to be able to do

something to each element in the collection one time.

[00:01:08]

[00:01:17]

[00:01:18]

[00:01:28]

[00:01:37]

[00:01:40]

[00:01:44]

[00:01:51]

[00:01:59]

[00:02:07]

[00:02:16]

[00:02:18]

[00:02:25]

For example, if you have a list, you may want to process that list with a for loop
and do something to every element in the list, call a method on it or do a

calculation or something like that.

The same thing might be true of a set.

You might want to be able to see every element of the set exactly once so you

can do something, but there’s no order to a set.

If you think about that, it'd probably be pretty easy to write a for loop that will
loop through a list and let you see each element one time and do something to

it.

But how would you do that with a set? That’s a little bit trickier.

There would also be a benefit to having a common way to do that.

It would be nice to have a way that seems so common to want to iterate a

collection and do something to every element of the collection.

That really should be a common way that we can do that, that we can see every

element in a collection once so we can do something with it.

There actually is, and it’s built into the collection classes that come with Java,

and it uses a design pattern called the iterator pattern.

The iterator pattern is a pattern that provides some methods that we can call.

Actually. Let me show you, first of all.

| brought up the documentation for list and you can see that list has a method

called Iterator.

An iterator returns an instance of Iterator for a specific type.

[00:02:31]

[00:02:43]

[00:02:46]

[00:02:50]

[00:02:53]

[00:02:56]

[00:03:02]

[00:03:12]

[00:03:18]

[00:03:22]

[00:03:27]

[00:03:37]

[00:03:40]

[00:03:42]

[00:03:44]

If you think about that, I’'m calling up a method that’s returning an object that

I’'m somehow going to be able to use to iterate through the elements of this list.

Let’s go and see what Iterator looks like.

If | click on Iterator, that’s an interface, and it has some methods.

Let’s focus on just these two methods.

It has a hasNext method and a next method.

| could use those two methods in a loop to be able to process everything in that

list.

| can have a while loop where | say while whatever my reference’s iterator dot

hasNext, then inside the loop, call next, and that will give me the next element.

Now remember that would be easy to do without an iterator from a list, but not

so easy from a set.

There’s a benefit to being able to iterate all collections in the same way.

All collections have this ability to get an iterator.

You can see it here in the list documentation, but if | switch over to the set

documentation, you can see the same thing.

You can see it has an Iterator.

Now let’s think about those iterators though.

Think about how you might write them.

An iterator for a list would be pretty easy to write a simple for loop, but how

would you write it for a set? It probably depends on how the set is implemented.

[00:03:54]

[00:04:01]

[00:04:07]

[00:04:12]

[00:04:19]

[00:04:28]

[00:04:33]

[00:04:36]

[00:04:46]

[00:04:58]

[00:05:09]

[00:05:11]

[00:05:12]

We’d have to know something about the way the set is storing its values

internally in order to know how to pass them back.

Every time you call next, passing in a different , one back, I’'m not seeing anyone

more than once.

We don’t really know how to write that until we know more details about how

set is implemented.

Since that is an interface, there could be different kind of sets, and maybe we

have to implement it different ways for different sets.

My point is that conceptually, you’re just iterating, but physically, you’re doing

different things, which means there needs to be different code.

Each class needs to have a different implementation of the iterator.

Think about that for a minute and ask yourself.

Where should that class be? Where should we define that Iterator class? Well,

my answer for that is it should be defined inside of the class that needs it.

Since iterators are different for different implementations, the class that needs a
particular iterator is a great place to put it, and that is an example of why we

might want an inner class.

We can define a special iterator for each set inside of each set implementation

class, just create a separate class that implements iterator.

We do the same thing inside of the list.

That actually is the way it’s implemented.

If you look inside of the source code for Java, you’ll find that each of those

collection classes has a class inside of it that implements Iterator.

[00:05:20]

[00:05:24]

[00:05:27]

[00:05:37]

[00:05:40]

[00:05:46]

[00:05:48]

[00:05:53]

[00:06:01]

[00:06:11]

[00:06:17]

One other thing that you can see from this example is another principle.

The principle is programmed to the interface.

When we call Iterator, we get some object that implements the Iterator
interface, but we don’t even know what the data type of the object is,and we

don’t care.

We just know that whatever it is, it implements Iterator.

That’s the reference type that we have, and we know that we can call those

methods on it.

That’s a pretty useful concept.

That’s just one of many examples of where | would find an inner class useful.

There are other examples too, and event handling in Java is a great place where

we use inner classes as well.

In later videos, I'm going to show you specific examples that use this concept

where we have an iterator as an inner class.

| will show you some different ways to do inner classes to provide something like

an iterator.

That will help you to understand the rules of inner classes and how they work.

