Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -125,3 +125,4 @@ cov.syspath.txt
#include docs images
!docs/source/logo/*
!docs/source/images/*
napari_cellseg3d/dev_scripts/wandb
2 changes: 1 addition & 1 deletion napari_cellseg3d/dev_scripts/colab_training.py
Original file line number Diff line number Diff line change
Expand Up @@ -82,7 +82,7 @@ def __init__(
)

self.dice_metric = DiceMetric(
include_background=True, reduction="mean", get_not_nans=False
include_background=False, reduction="mean", get_not_nans=False
)
self.normalize_function = utils.remap_image
self.start_time = time.time()
Expand Down
138 changes: 138 additions & 0 deletions napari_cellseg3d/dev_scripts/remote_training.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,138 @@
"""Showcases how to train a model without napari."""

from pathlib import Path

from napari_cellseg3d import config as cfg
from napari_cellseg3d.code_models.worker_training import (
SupervisedTrainingWorker,
)
from napari_cellseg3d.utils import LOGGER as logger

TRAINING_SPLIT = 0.2 # 0.4, 0.8
MODEL_NAME = "SegResNet" # "SwinUNetR"
BATCH_SIZE = 10 if MODEL_NAME == "SegResNet" else 5
# BATCH_SIZE = 1

SPLIT_FOLDER = "1_c15" # "2_c1_c4_visual" "3_c1245_visual"
RESULTS_PATH = (
Path("/data/cyril")
/ "CELLSEG_BENCHMARK/cellseg3d_train"
/ f"{MODEL_NAME}_{SPLIT_FOLDER}_{int(TRAINING_SPLIT*100)}"
)

IMAGES = (
Path("/data/cyril")
/ f"CELLSEG_BENCHMARK/TPH2_mesospim/SPLITS/{SPLIT_FOLDER}"
)
LABELS = (
Path("/data/cyril")
/ f"CELLSEG_BENCHMARK/TPH2_mesospim/SPLITS/{SPLIT_FOLDER}/labels/semantic"
)


class LogFixture:
"""Fixture for napari-less logging, replaces napari_cellseg3d.interface.Log in model_workers.

This allows to redirect the output of the workers to stdout instead of a specialized widget.
"""

def __init__(self):
"""Creates a LogFixture object."""
super(LogFixture, self).__init__()

def print_and_log(self, text, printing=None):
"""Prints and logs text."""
print(text)

def warn(self, warning):
"""Logs warning."""
logger.warning(warning)

def error(self, e):
"""Logs error."""
raise (e)


def prepare_data(images_path, labels_path):
"""Prepares data for training."""
assert images_path.exists(), f"Images path does not exist: {images_path}"
assert labels_path.exists(), f"Labels path does not exist: {labels_path}"
if not RESULTS_PATH.exists():
RESULTS_PATH.mkdir(parents=True, exist_ok=True)

images = sorted(Path.glob(images_path, "*.tif"))
labels = sorted(Path.glob(labels_path, "*.tif"))

print(f"Images paths: {images}")
print(f"Labels paths: {labels}")

logger.info("Images :\n")
for file in images:
logger.info(Path(file).name)
logger.info("*" * 10)
logger.info("Labels :\n")
for file in images:
logger.info(Path(file).name)

assert len(images) == len(
labels
), "Number of images and labels must be the same"

return [
{"image": str(image_path), "label": str(label_path)}
for image_path, label_path in zip(images, labels)
]


def remote_training():
"""Function to train a model without napari."""
# print(f"Results path: {RESULTS_PATH.resolve()}")

wandb_config = cfg.WandBConfig(
mode="online",
save_model_artifact=True,
)

deterministic_config = cfg.DeterministicConfig(
seed=34936339,
)

worker_config = cfg.SupervisedTrainingWorkerConfig(
device="cuda:0",
max_epochs=50,
learning_rate=0.001, # 1e-3
validation_interval=2,
batch_size=BATCH_SIZE, # 10 for SegResNet
deterministic_config=deterministic_config,
scheduler_factor=0.5,
scheduler_patience=10, # use default scheduler
weights_info=cfg.WeightsInfo(), # no pretrained weights
results_path_folder=str(RESULTS_PATH),
sampling=False,
do_augmentation=True,
train_data_dict=prepare_data(IMAGES, LABELS),
# supervised specific
model_info=cfg.ModelInfo(
name=MODEL_NAME,
model_input_size=(64, 64, 64),
),
loss_function="Generalized Dice",
training_percent=TRAINING_SPLIT,
)

worker = SupervisedTrainingWorker(worker_config)
worker.wandb_config = wandb_config
######### SET LOG
log = LogFixture()
worker.log_signal.connect(log.print_and_log)
worker.warn_signal.connect(log.warn)
worker.error_signal.connect(log.error)

results = []
for result in worker.train():
results.append(result)
print("Training finished")


if __name__ == "__main__":
results = remote_training()