# Clone the repository
git clone https://github.com/yourusername/ezflowx.git
cd ezflowx
# Install in development mode
pip install -e .You can use ezflowx directly in notebook environments without project initialization:
# Import key components
from ezflowx.models import ModelFactory
# Create a model
model = ModelFactory.create('xgboost', problem_type='classification')
# Train on your data (DataFrame format)
model.train(X_train, y_train)
# Evaluate performance
metrics = model.evaluate(X_test, y_test, is_classification=True)
print(f"Metrics: {metrics}")
# Make predictions
predictions = model.predict(X_test)
# Save model for later use
model.save("my_model.pkl")ezflowx includes built-in experiment tracking capabilities powered by MLflow. This lets you track metrics, parameters, and artifacts across multiple runs:
from ezflowx.models import ModelFactory
# Create your model
model = ModelFactory.create('xgboost', problem_type='classification')
# Start tracking run with an experiment name
model.start_run(experiment_name="my_classification_experiment")
# Train the model - metrics will be automatically logged
model.train(X_train, y_train)
# Log evaluation metrics
metrics = model.evaluate(X_test, y_test, is_classification=True)
# Perform cross-validation with automatic metric logging
cv_results = model.cross_validate(X, y, cv=5, is_classification=True)
print(f"Cross-validation results: {cv_results}")
# Hyperparameter optimization with tracking
param_space = model.get_param_search_space('xgboost')
best_params = model.search_hyperparams(
X_train, y_train,
param_space=param_space,
n_trials=20,
cv=3
)
print(f"Best parameters: {best_params}")
# End the tracking run
model.end_run()
# The results will be available in your MLflow UI
# Run `mlflow ui` in your terminal to view experimentsThis project is licensed under the MIT License - see the LICENSE file for details.