-
Notifications
You must be signed in to change notification settings - Fork 7
Open
Description
This is a continuation of Issue #88 addressed by PR #90.
Counting the number of row with no start times, about half of the data have no start times:
def count_start_times(row):
table = stimulus_presentations
change_frame = row['change_frame']
if np.isnan(change_frame):
return np.nan
start_times_len = len(table[table.start_frame == change_frame]['start_time'].values)
return start_times_len
n_start_times = trials.apply(count_start_times, axis=1)
print(f'number of zero entries: {np.count_nonzero(n_start_times == 0)}')
print(f'total entries: {len(n_start_times)}')number of zero entries: 254
total entries: 567
trials['start_time_count'] = n_start_times
trials[trials.start_time_count == 0].head()| start_time | stop_time | initial_image_name | change_image_name | is_change | change_time_no_display_delay | go | catch | lick_times | response_time | ... | hit | false_alarm | miss | correct_reject | aborted | auto_rewarded | change_frame | trial_length | change_time_with_display_delay | start_time_count | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| trials_id | |||||||||||||||||||||
| 0 | 28.08763 | 29.05453 | im036_r | im036_r | False | NaN | False | False | [28.55387, 28.73684, 29.30404] | NaN | ... | False | False | False | False | True | False | -99 | 0.96690 | NaN | 0 |
| 2 | 37.09446 | 40.78107 | im078_r | im078_r | False | NaN | False | False | [40.48052] | NaN | ... | False | False | False | False | True | False | -99 | 3.68661 | NaN | 0 |
| 4 | 50.60569 | 51.75679 | im111_r | im111_r | False | NaN | False | False | [51.43985] | NaN | ... | False | False | False | False | True | False | -99 | 1.15110 | NaN | 0 |
| 5 | 52.10729 | 53.62505 | im111_r | im111_r | False | NaN | False | False | [53.19128, 53.3242] | NaN | ... | False | False | False | False | True | False | -99 | 1.51776 | NaN | 0 |
| 7 | 62.61569 | 67.41981 | im047_r | im047_r | False | NaN | False | False | [67.12002] | NaN | ... | False | False | False | False | True | False | -99 | 4.80412 | NaN | 0 |
5 rows × 22 columns
I also have a Jupyter notebook and pkl file of the problematic rows that I can share.
Edit: change start_time to start_frame
Reactions are currently unavailable
Metadata
Metadata
Assignees
Labels
No labels