Skip to content

Minimum CUDA arch == compute capability 2.0? #12

@reedscot

Description

@reedscot

I tried running Caffe with Nvida GTX470 and GTX570 GPUs which have compute capability 2.0. While the MNIST demo worked, it failed on the ImageNet pipeline, giving the following CUDA-related error:

...
I1209 00:40:23.426077 21877 net.cpp:142] Network initialization done.
I1209 00:40:23.426111 21877 solver.cpp:36] Solver scaffolding done.
I1209 00:40:23.426146 21877 solver.cpp:44] Solving CaffeNet
F1209 00:40:23.521303 21877 relu_layer.cu:54] Cuda kernel failed. Error: invalid configuration argument
*** Check failure stack trace: ***
@ 0x7f9113749b5d google::LogMessage::Fail()
@ 0x7f911374db77 google::LogMessage::SendToLog()
@ 0x7f911374b9f9 google::LogMessage::Flush()
@ 0x7f911374bcfd google::LogMessageFatal::~LogMessageFatal()
@ 0x444ad5 caffe::ReLULayer<>::Forward_gpu()
@ 0x42a1ba caffe::Net<>::ForwardPrefilled()
@ 0x41d513 caffe::Solver<>::Solve()
@ 0x40b46d main
@ 0x3d8a01ecdd (unknown)
@ 0x40b2c9 (unknown)

When I try on an Nvidia Titan GPU (compute capability 3.5), it works fine. So I suspect Caffe may require compute capability 3.0 or higher.

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions