This repository contains four hands-on notebooks used for course tutorials (CIS6530).
Each notebook is designed to be easy to run, self-contained, and includes evaluation + visualizations.
Notebook: supervised_learning_example.ipynb
- Dataset: Iris (built-in via scikit-learn)
- Task: multi-class classification
- Model: Logistic Regression, k-NN
- Evaluation: confusion matrix, accuracy, precision/recall/F1
Notebook: unsupervised_learning_example.ipynb
- Dataset: Iris (features only; labels used only for optional comparison)
- Methods: k-means, DBSCAN, Agglomerative clustering
- Evaluation: silhouette score, plots in PCA space
Notebook: deep_learning_example.ipynb
- Dataset: KDD Cup ’99
- Task: intrusion detection (NORMAL vs ATTACK)
- Model: MLP (feed-forward neural network)
- Evaluation: confusion matrix, classification report, error inspection, threshold tuning
Notebook: llm_practical_example.ipynb
- Dataset: Enron spam/ham via Hugging Face Datasets (SetFit/enron_spam)
- Model: google/flan-t5-small (runs locally on CPU)
- Task: spam detection (SPAM vs HAM) using prompting
- Evaluation: confusion matrix, classification report, error analysis, few-shot prompting