S2IT runs dependency parsing, builds train/dev data, trains the model, performs extraction and classification, then evaluates results.
- Python environment:
- Install dependencies:
pip install -r requirements.txt
- Install dependencies:
- Stanza model files:
ACOS-main/preprocess_dependency.pyusesstanza- Ensure English models are available at
stanza_resources/stanza-en/
Run run.sh (default dataset=restaurant):
bash run.shThe script does the following:
export CUDA_VISIBLE_DEVICES=
export model_name_or_path=Qwen/Qwen2.5-7B-Instruct
export template=qwen
python ACOS-main/preprocess_dependency.py
python ACOS-main/preprocess_training.py
python ACOS-main/preprocess_dev.py
export dataset=restaurant
bash train.sh
bash extraction.sh
python ACOS-main/pre_classification.py
bash classification.sh
python evaluate.py