Skip to content

Divi-patel/V1_GPR

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

1 Commit
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Renewable Energy Data Processing & Analysis Project

This project provides a complete workflow for processing renewable energy data, from raw weather and generation data to comprehensive analysis and simulation dashboards.

πŸ“‹ Project Overview

This project processes renewable energy data through multiple stages:

  1. Data Preparation: Weather data processing and solar generation modeling
  2. Data Integration: Combining generation, price, and weather data
  3. Analysis & Simulation: Running simulations and creating interactive dashboards

πŸ—οΈ Project Structure

V1_infrasure_GPR/
β”œβ”€β”€ README.md                           # This file
β”œβ”€β”€ site_registry.csv                   # Site configuration and portfolio mapping
β”œβ”€β”€ weather_data/                       # Weather data processing
β”‚   β”œβ”€β”€ weather_processing_script.py    # Weather data processing script
β”‚   β”œβ”€β”€ run_weather_processing.bat      # Weather processing batch file
β”‚   └── requirements.txt                # Weather processing dependencies
β”œβ”€β”€ generation_data/                    # Solar generation modeling
β”‚   β”œβ”€β”€ solar_generation_modeling.py    # Generation modeling script
β”‚   β”œβ”€β”€ run_solar_modeling.bat          # Generation modeling batch file
β”‚   └── requirements.txt                # Generation modeling dependencies
β”œβ”€β”€ resurety_gen_pr_data/               # Data combination
β”‚   β”œβ”€β”€ combine_data_script.py          # Data combination script
β”‚   β”œβ”€β”€ run_data_combiner.bat           # Data combination batch file
β”‚   └── requirements.txt                # Data combination dependencies
β”œβ”€β”€ simulation/                         # Simulation and analysis
β”‚   β”œβ”€β”€ simulation_script.py            # Simulation script
β”‚   β”œβ”€β”€ run_simulation.bat              # Simulation batch file
β”‚   └── requirements.txt                # Simulation dependencies
β”œβ”€β”€ dashboard/                          # Interactive dashboard
β”‚   β”œβ”€β”€ dash_app.py                     # Dashboard application
β”‚   β”œβ”€β”€ run_dashboard.bat               # Dashboard batch file
β”‚   └── requirements.txt                # Dashboard dependencies
└── output/                             # Generated output files
    β”œβ”€β”€ infrasure_input_data/           # Combined data (CSV format)
    β”œβ”€β”€ infrasure_input_data_parquet/   # Combined data (Parquet format)
    └── simulation_results/             # Simulation outputs

πŸš€ Quick Start Guide

Prerequisites

  1. Python Installation: Ensure Python 3.8+ is installed
  2. Required Packages: Install all dependencies
    pip install pandas numpy pvlib pyarrow plotly dash

Step-by-Step Workflow

πŸ“Š STEP 1: Data Preparation

1.1 Weather Data Processing

Purpose: Process raw weather data into hourly format for generation modeling

Location: weather_data/ folder

How to Run:

# Method 1: Batch file (Windows)
cd weather_data
run_weather_processing.bat

# Method 2: Direct Python execution
cd weather_data
python weather_processing_script.py

What it does:

  • Processes raw ERA5 weather data
  • Converts to hourly format
  • Creates site-specific weather files
  • Output: [SITE_NAME]_weather_hourly.csv files

1.2 Solar Generation Modeling

Purpose: Model solar generation using weather data and site parameters

Location: generation_data/ folder

How to Run:

# Method 1: Batch file (Windows)
cd generation_data
run_solar_modeling.bat

# Method 2: Direct Python execution
cd generation_data
python solar_generation_modeling.py

What it does:

  • Loads weather data and site parameters
  • Models solar generation using hybrid approach
  • Applies degradation, soiling, and efficiency factors
  • Output: [SITE_NAME]_modeled_generation.csv files

πŸ”— STEP 2: Data Integration

2.1 Combine Data Sources

Purpose: Integrate generation, price, and weather data into unified datasets

Location: resurety_gen_pr_data/ folder

How to Run:

# Method 1: Batch file (Windows)
cd resurety_gen_pr_data
run_data_combiner.bat

# Method 2: Direct Python execution
cd resurety_gen_pr_data
python combine_data_script.py

What it does:

  • Matches files across price, generation, and weather folders
  • Combines data with flexible date handling options
  • Calculates revenue metrics (RT and DA)
  • Organizes output by portfolio
  • Output: [PORTFOLIO]/[ASSET_NAME]_generation_price_combined.csv or .parquet

πŸ“ˆ STEP 3: Analysis & Simulation

3.1 Run Simulations

Purpose: Perform statistical analysis and simulations on combined data

Location: simulation/ folder

How to Run:

# Method 1: Batch file (Windows)
cd simulation
run_simulation.bat

# Method 2: Direct Python execution
cd simulation
python simulation_script.py

What it does:

  • Loads combined data from previous step
  • Performs statistical analysis
  • Runs Monte Carlo simulations
  • Generates risk metrics and forecasts
  • Output: Simulation results and reports

3.2 Launch Dashboard

Purpose: Create interactive web dashboard for data visualization

Location: dashboard/ folder

How to Run:

# Method 1: Batch file (Windows)
cd dashboard
run_dashboard.bat

# Method 2: Direct Python execution
cd dashboard
python dash_app.py

What it does:

  • Creates interactive web dashboard
  • Visualizes generation, prices, and revenue data
  • Provides filtering and analysis tools
  • Runs on local web server (typically http://localhost:8050)

πŸ“ Input Data Requirements

Required Files Structure:

V1_Input_data_files/
β”œβ”€β”€ site_registry.csv                   # Site configuration
β”œβ”€β”€ weather_data/
β”‚   └── raw_data/                       # Raw ERA5 weather files
β”œβ”€β”€ resurety_gen_pr_data/
β”‚   └── [PRICE_DATA_FILES].csv          # Price data files
└── [OTHER_INPUT_FILES]                 # Additional input files

Site Registry Format:

site_name,portfolio_name,latitude,longitude,dc_capacity_mw,ac_capacity_mw,system_type,start_month,start_year
Albemarle_Beach_Solar,General_Renewable,29.30418,-98.40034,100.0,80.0,fixed,Jan,2020

πŸ”§ Configuration Options

Weather Processing Options:

  • Date range selection
  • Weather variables selection
  • Output format options

Generation Modeling Options:

  • Site selection (individual or all sites)
  • Degradation model parameters
  • Efficiency factor adjustments

Data Combination Options:

  • Date handling (fixed year, common date, all data)
  • Output format (CSV or Parquet)
  • Portfolio organization

Simulation Options:

  • Analysis parameters
  • Simulation scenarios
  • Risk metrics calculation

πŸ“Š Output Files

Weather Data Output:

  • weather_data/[SITE_NAME]_weather_hourly.csv

Generation Data Output:

  • generation_data/[SITE_NAME]_modeled_generation.csv

Combined Data Output:

  • infrasure_input_data/[PORTFOLIO]/[ASSET_NAME]_generation_price_combined.csv
  • infrasure_input_data_parquet/[PORTFOLIO]/[ASSET_NAME]_generation_price_combined.parquet

Simulation Output:

  • simulation_results/ folder with analysis reports

πŸ› οΈ Troubleshooting

Common Issues:

  1. Missing Dependencies

    pip install pandas numpy pvlib pyarrow plotly dash
  2. File Path Issues

    • Ensure all required input files are in correct locations
    • Check file naming conventions
    • Verify site registry format
  3. Memory Issues

    • Process smaller datasets for testing
    • Use Parquet format for large files
    • Close other applications to free memory
  4. Data Quality Issues

    • Check input file formats
    • Verify date ranges and time zones
    • Review error messages in console output

Performance Tips:

  • Use Parquet format for large datasets
  • Process sites individually for testing
  • Monitor memory usage during processing
  • Use batch files for automated execution

πŸ“ž Support

For issues or questions:

  1. Check the individual README files in each folder
  2. Review console output for error messages
  3. Verify input file formats and requirements
  4. Ensure all dependencies are installed

πŸ”„ Workflow Summary

Raw Weather Data β†’ Weather Processing β†’ Hourly Weather Files
                                                      ↓
Site Parameters β†’ Generation Modeling β†’ Modeled Generation Files
                                                      ↓
Price Data β†’ Data Combination β†’ Combined Data Files
                                                      ↓
Combined Data β†’ Simulation β†’ Analysis Results
                                                      ↓
Analysis Results β†’ Dashboard β†’ Interactive Visualization

πŸ“ Notes

  • Each step can be run independently if previous outputs exist
  • Batch files provide easy execution on Windows
  • Scripts include comprehensive error handling and progress reporting
  • Output files are organized by portfolio and asset name
  • All scripts support both individual and batch processing modes

About

Renewable Energy Portfolio Analysis and Dashboard

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published