Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions AUTHORS
Original file line number Diff line number Diff line change
@@ -1 +1,2 @@
Rupert Nash
Joseph Lee
71 changes: 37 additions & 34 deletions exercises/eigen/explicit.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -6,40 +6,43 @@

int main()
{
int n = 12;
int n = 20;
int steps = 200;
std::vector<double> Avec(n * n);


// Set up matrix A
Eigen::Map<Eigen::MatrixXd> A(Avec.data(), n, n);
A = Eigen::MatrixXd::Identity(n, n);
double delta = 0.4;
for (int i = 0; i < n - 1; ++i)
{
A(i + 1, i) += delta;
A(i + 1, i + 1) += -delta;

A(i, i) += -delta;
A(i, i + 1) += +delta;
}

std::cout << "A = \n" << A << std::endl
<< std::endl;


// T_n
Eigen::VectorXd b(n);
b.setZero();
b.head(n / 2).array() = 1.0;

std::ofstream f;
f.open("explicit_sim.txt");
for (int i = 0; i < steps; ++i)
{
f << b.transpose() << std::endl;
// update time-step T_{n+1} = A.T_{n}
b = A * b;
}

std::vector<double> Avec(n * n);

Eigen::Map<Eigen::MatrixXd> A(Avec.data(), n, n);
A = Eigen::MatrixXd::Identity(n, n);

double delta = 0.4;

for (int i = 0; i < n - 1; ++i)
{
A(i + 1, i) += delta;
A(i + 1, i + 1) += -delta;

A(i, i) += -delta;
A(i, i + 1) += +delta;
}

std::cout << A << std::endl << std::endl;

Eigen::VectorXd b(n);
b.setZero();
b.head(n / 2).array() = 1.0;

std::ofstream f;
f.open("a.txt");
for (int i = 0; i < 20; ++i)
{
std::cout << b.transpose() << std::endl;
f << b << std::endl << std::endl << std::endl;
b = A * b;
}

std::cout << b.transpose() << std::endl;

return 0;
}
return 0;
}
56 changes: 30 additions & 26 deletions exercises/eigen/implicit.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -5,38 +5,42 @@

int main()
{
int n = 12;
int n = 20;
int steps = 100;

Eigen::MatrixXd A(n, n);
A = Eigen::MatrixXd::Identity(n, n);
// Set up matrix A
Eigen::MatrixXd A(n, n);
A = Eigen::MatrixXd::Identity(n, n);

double delta = -0.4;
double delta = -0.4;

for (int i = 0; i < n - 1; ++i)
{
A(i + 1, i) += delta;
A(i + 1, i + 1) += -delta;
for (int i = 0; i < n - 1; ++i)
{
A(i + 1, i) += delta;
A(i + 1, i + 1) += -delta;

A(i, i) += -delta;
A(i, i + 1) += +delta;
}
A(i, i) += -delta;
A(i, i + 1) += +delta;
}

std::cout << A << std::endl << std::endl;
std::cout << "A = \n"
<< A << std::endl
<< std::endl;

Eigen::VectorXd b(n);
b.setZero();
Eigen::VectorXd b(n);
b.setZero();

b.head(n / 2).array() = 1.0;
b.head(n / 2).array() = 1.0;

std::ofstream f;
f.open("a.txt");
for (int i = 0; i < 20; ++i)
{
std::cout << b.transpose() << std::endl;
f << b << std::endl << std::endl << std::endl;
b = A.colPivHouseholderQr().solve(b);
}
std::ofstream f;
f.open("implicit_sim.txt");
for (int i = 0; i < 200; ++i)
{
// Solve A.T_{n+1} = T_{n} for T_{n+1}
f << b.transpose() << std::endl;
b = A.colPivHouseholderQr().solve(b);
}

std::cout << b.transpose() << std::endl;
return 0;
}
std::cout << b.transpose() << std::endl;
return 0;
}
28 changes: 28 additions & 0 deletions exercises/eigen/movie.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation

n = 20
steps = 200

fig, ax = plt.subplots()
xdata = np.arange(0, n)
ydata = []
ln, = ax.plot([], [], 'ro')

data = np.loadtxt("implicit_sim.txt")
def init():
ax.set_xlim(0,n)
ax.set_ylim(0,1.1)
return ln,

def update(frame):
ydata = data[frame]
ln.set_data(xdata, ydata)
return ln,

ani = FuncAnimation(fig, update, frames=np.arange(0, 200),
init_func=init, blit=True)


plt.show()
58 changes: 33 additions & 25 deletions exercises/eigen/sparse.cpp
Original file line number Diff line number Diff line change
@@ -1,42 +1,50 @@
#include <Eigen/Dense>
#include <Eigen/Sparse>

#include <fstream>
#include <iostream>
#include <vector>

int main()
{
int n = 10;
int n = 20;
int steps = 200;

Eigen::SparseMatrix<double> A;
A.resize(n, n);
Eigen::SparseMatrix<double> A;
A.resize(n, n);

double delta = 0.4;
double delta = 0.4;

std::vector<Eigen::Triplet<double>> fill;
fill.reserve(n * 4);
std::vector<Eigen::Triplet<double>> fill;
fill.reserve(n * 4);

for (int i = 0; i < n - 1; ++i)
{
fill.push_back(Eigen::Triplet<double>(i + 1, i, delta));
fill.push_back(Eigen::Triplet<double>(i + 1, i + 1, -delta));
fill.push_back(Eigen::Triplet<double>(i, i, 1.0 - delta));
fill.push_back(Eigen::Triplet<double>(i, i + 1, delta));
}
fill.push_back(Eigen::Triplet<double>(n - 1, n - 1, 1.0));
A.setFromTriplets(fill.begin(), fill.end());
for (int i = 0; i < n - 1; ++i)
{
fill.push_back(Eigen::Triplet<double>(i + 1, i, delta));
fill.push_back(Eigen::Triplet<double>(i + 1, i + 1, -delta));
fill.push_back(Eigen::Triplet<double>(i, i, 1.0 - delta));
fill.push_back(Eigen::Triplet<double>(i, i + 1, delta));
}
fill.push_back(Eigen::Triplet<double>(n - 1, n - 1, 1.0));
A.setFromTriplets(fill.begin(), fill.end());

std::cout << A << std::endl;
std::cout << A << std::endl;

Eigen::VectorXd b(n);
b.head(n / 2).array() = 1.0;
b.tail(n / 2).array() = 0.0;
Eigen::VectorXd b(n);
b.head(n / 2).array() = 1.0;
b.tail(n / 2).array() = 0.0;

std::cout << b.transpose() << std::endl;
std::cout << b.transpose() << std::endl;

for (int i = 0; i < 100; ++i)
b = A * b;
std::ofstream f;
f.open("sparse_sim.txt");
for (int i = 0; i < steps; ++i)
{
f << b.transpose() << std::endl;
b = A * b;
}

std::cout << b.transpose() << std::endl;
std::cout << b.transpose() << std::endl;

return 0;
}
return 0;
}
Loading